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PREFACE 

The opportunity to conduct research on the topic of data classification led me to focus 

my attention toward topics related to machine learning and computer vision.  It allowed 

me to investigate applying machine learning methods on imaging data for the purpose 

of classification of materials, and on the side, development of a graphical software tool 

to make analysis and processing of the imaging data more facile for people with an 

interest in this topic. As a further contribution, a paper was compiled and presented on 

the topic of the MATLAB graphical interface development for the analysis of 

hyperspectral images in co-operation with the supervisor and co-supervisor of this 

thesis work. 

 

The general topic of material identification and usage of the hyperspectral imaging data 

for classification tasks has been introduced in the Department of Electrical Power 

Engineering and Mechatronics, School of Engineering at Tallinn University of Technology 

(Taltech) and related topics were offered by Professor Mart Tamre from the same 

department. Relevant practical work for this thesis is conducted at Tallinn University of 

Technology using the equipment and tools made available by the Laboratory of 

Mechatronics, and the relevant studies and consultations have majorly taken place at 

Taltech, Estonia, at the Royal Institute of Technology (KTH), Sweden, and individually 

by the author. 

 

I would like to express my sincere gratitude to Dr. Mart Tamre and Dr. Aleksei 

Tepljakov, who kindly accepted to supervise and support me along this path. I have 

continuously benefited from the consultation, guidance and support that they have 

provided me with. I am also thankful for their patience and ongoing encouragement as 

it made taking this road easier than it could be. Their support spans not only along the 

period of my thesis work, but through the entire time of my study at Taltech. 

 

Furthermore, I want to use this opportunity to thank all the professionals at Taltech’s 

department of Electrical Power Engineering and Mechatronics, who made it possible for 

me to perform the tasks related to this work.  

 

Keywords: classification, machine learning, GUI programming, hyperspectral imaging, 

robotics, mechatronics, computer vision, master thesis 
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1. INTRODUCTION 

Employing computers and computational algorithms to yield practical solutions in a vast 

amount of fields and applications has dramatically speeded up with the introduction of 

modern Artificial Intelligence (AI) fashions into the world of computer science. Machine 

Learning (ML), as a subset of artificial intelligence, has gained popularity in providing 

powerful efficient methods to perform tasks that used to be carried out by humans, and 

tasks that have never been possible to be performed by humans. In recent years, 

machine learning methods hand in hand with methods of computer vision have been 

utilized for operations such as localization of objects, recognition of human emotions, 

and classification of different materials based on their images [1]. In this regard, they 

have been successful to surpass human vision and perception systems in many areas 

such as the food industry, where robotic systems can categorize fruits with fascinating 

speeds, far faster than a human can deliver. 

 

In parallel, the world of computer vision, digital imaging, and image processing have 

undergone numerous advancements. Conventional color imaging has been optimized in 

different ways, and techniques such as hyperspectral imaging have been made 

accessible to the public and to the researchers more widely. In color imaging, only a 

very limited amount of information from the reflecting light is captured by the cameras, 

and only a small portion of the light spectrum is registered (the visible light portion). In 

recent years, Hyperspectral Imaging (HSI) for ordinary usages has come to play and 

has flourished [2]. In hyperspectral imaging (HSI), along with spatial information, a 

significant amount of wavelength (spectral) information is registered (hundreds of times 

larger than conventional color imaging). Because of this broad range of spectral 

information, each material can be associated with a unique spectral signature that can 

be used for the identification of that material. This allows for the classification potential 

of hyperspectral imaging data to classify different materials. 

 

Merging the two technologies in question, namely machine learning and hyperspectral 

imaging, allows for combination of the possibilities that each of these technologies 

provides. In other words, computational power together with artificial intelligence 

methods and the significant information by hyperspectral images gives humans the 

power to compile approaches for material classification more efficient than ever before. 

 

There are many applications related to the different fields in engineering such as 

Mechatronics and Robotics that might be addressed if such combination is properly put 

to practical usage, but for this to come to effect, a number of items need to be 
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considered. First, according to the domain knowledge of every field and the possibilities 

of HSI in that respect, an approach needs to be developed for analyzing the current 

challenges in a field. Performing proper image acquisition, interpreting the imaging data, 

processing of the image, analyzing the possible ML solutions, and applying the computer 

classification methods on the imaging data are the next steps. It will be an advantage 

if such a system can be improved by proposing optimization approaches. Finally, to 

benefit general users of technology in that area, developing relevant software which 

may satisfy their needs can come into perspective. 

 

In this thesis work, the focus has been on performing the mentioned tasks to address 

the challenge of the usage of computer learning and processing methods on HSI data 

for identification of different materials. 

 

1.1. Problem Statement 

With respect to what was pointed out, there are three major problems that have been 

focused on throughout this work. 

 

The first is to develop a systemic approach to deploy classification models to problems 

related to the field of engineering (including Mechatronics) incorporating the spectral 

information of the hyperspectral images as the main data. The solution to this problem 

is in the scope of image data acquisition, analysis and preprocessing of the image data, 

selection of the features, creating a model for detection/classification, and testing of the 

results as the final step. The outcome of solving this problem will be working models for 

classification/identification of an entity in a specific domain. 

 

As a second challenge, in parallel with the first problem, optimization is concerned, such 

that, where applicable, solutions for increasing the performance of the models in the 

specific domain of application should be proposed. To this end, methods of 

preprocessing and feature selection, and similarity measures need to be reviewed and 

also combination of such entities may be examined. The outcome will be an extension 

to an existing models, e.g. an engineered feature/similarity measure or a combination 

of features/similarity measures, whose usage increase the performance of the methods 

at the time of test. 

 

The third problem that needs to be addressed is the development of a graphical user 

interface tool for the analysis and processing of hyperspectral images. It needs to 

provide the user with a self-explanatory interface where the minimum amount of time 
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should be needed for the process of learning to work with the software. Also, the needs 

of the users with mobile hyperspectral cameras need to be concerned. This problem falls 

in the scope writing GUI programs where the needs of the users, the existing software 

in the market, and integration of the code and the interface are important concerns. 

The outcome of solving this problem is a MATLAB GUI application for processing and 

analysis of HSI data. 

 

The tools for solving the problems consist of hardware tools (hyperspectral camera, 

computation hardware, etc.), software tools (programming languages, GUI 

development environment, software toolboxes and libraries, engineering software, 

graphical software, etc.), and theoretical tools (mathematics, statistics, machine 

learning theory, machine vision, etc.). The data needed is the raw data coming from the 

acquiring of the hyperspectral images. 

 

1.2. Thesis structure 

This work has been compiled in 6 chapters. Chapter 1 is dedicated to the introduction 

of the work, which starts with a general introduction to the subject of the thesis, and 

continues by stating the problems, and talking about the needed tools and ends with 

the research questions. 

 

In chapter 2, the reader gets familiar with the topics involved, and following that, 

background knowledge of HSI and a brief history and study of the applications is 

conducted. The same happens for the usage of machine learning in connection with HSI, 

and finally, the development of a software application for HSI is reviewed. The final 

section points out the potential areas of work in these areas. At the same time, the 

related literature is investigated. 

 

Chapter 3 is dedicated to explaining the methodology of applying spectral matching and 

machine learning methods to hyperspectral data. In the beginning, hyperspectral image 

acquisition and its details are discussed and in the following parts,  

 

In chapter 4, the development of the software for the analysis of hyperspectral images 

is discussed. Components of the software are explained and in the end, an example of 

the usage of the software is presented. 
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The discussions and final remarks about the work are put into perspective in chapter 5. 

In this chapter, the performance of the methods, the development of the application, 

and remarks about practical usage of the methods are put forward.  

 

In chapter 6, a summary of the work is presented in English and Estonian, and following 

that, in the chapter titled “References” the list of references is provided.  

 

“Appendices” chapter comes as the last chapter of the thesis including the reference 

tables, additional figures related to chapters 2 and 3, and additional references to the 

relevant paper and code. The address to the online code repository for the thesis-related 

code is made available, and in the final section, the information related to the conference 

paper that was compiled in regards to this topic is provided. 

 

1.3. Research Questions 

The three main research questions are as follows. 

 

1. What are the tasks that need to be carried out to reach a model with the 

capability of binary classification to identify a specific material present in a 

hyperspectral image (with wavelength range of 400-1000)?, and how can a 

model be compiled and programmed for such tasks? 

2. Is this possible to increase the performance of a material classification model in 

test with the evaluation criteria of accuracy and F1 score through modification of 

preprocessing operations, features or similarity measures?, and if possible, how 

can this achieved?  

3. What are the best arrangement of components and functions in a GUI software 

for qualitative and quantitative analysis and processing of hyperspectral images 

for users of portable hyperspectral cameras and based on the needs in science, 

academia and in practical usages?, and how can a GUI application with proper 

layout be developed to address this? 

 

Keywords: classification, machine learning, GUI programming, hyperspectral imaging, 

robotics, mechatronics, computer vision, master thesis 
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2. LITERATURE REVIEW 

Analysis and classification of materials using HSI data using machine learning and 

spectral processing approaches involve concepts and techniques which fall under the 

intersection of several different fields (Figure 2.1). Consequently, the review of the 

relevant literature encompasses the familiarity and overview of such various concepts 

and fields. Hence, in this chapter, the reader will be presented with a background on 

the involved topics and the literature will be reviewed alongside. 

 

 

Figure 2.1 Areas involved in this work, by indication of the connection to our research questions 

 

The main type of data that is in focus throughout this thesis work is the hyperspectral 

images data. So all the key concepts, techniques and related knowledge of 

Hyperspectral Imaging (HSI) are discussed in section 2.1. Continuing toward the fields 

of Machine Learning (ML) and the incorporation of computers in material classification, 

the second section (2.2) is dedicated to reviewing the previous works in these areas 

and how it has been linked with HSI. In section 2.3, appropriate software tools which 

might be developed in relation to HSI and the reason why there still is a drastic need in 

this area is reviewed. Finally, in section 2.4, it has been tried to identify what are the 

gaps in the current field of research and in relation to our research questions to clarify 

for the reader why this work has been compiled. 

 

First and second research 
questions: Material 

classification using HSI via 
Machine Learning (ML) and 

spectral processing 

Material 

Classification 

HS Imaging 
and Image 
Processing 

 

Machine 
Learning, 
Spectral 

Processing 

GUI 
Application 

Development 

Third research question: 
Development of a MATLAB 
GUI for the qualitative and 
quantitative analysis of HS 

images 
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2.1. Hyperspectral imaging and image processing 

The first section makes the user acquainted with important concepts of Hyperspectral 

Imaging (HSI) and Image processing, which are key for the continuation of the study. 

  

2.1.1. Introduction 

Hyperspectral Imaging (HSI) is an imaging technique that registers more wavelengths 

of light compared to the conventional color imaging or multispectral imaging methods, 

and has the possibility to cover wider ranges of the light spectrum. In other words, the 

registered range of the spectra in HSI may go beyond the scope of the visible range 

(≈380-750 nm) [3] [4] while the light striking each pixel is broken down into many 

different spectral bands (hundreds or thousands) in order to provide more 

comprehensive wavelength (WL) information on what is imaged [3].  

 

The light that is captured by the camera in most HSI applications ranges from the 

ultraviolet (starting at ~ 250 nm) up to long-wave infrared (LWIR, ~ 2500 nm). Cameras 

usually record a subset of this range, like Visible to NIR (Near Infrared) which covers 

approximately 400–1300 nm (Figure 2.2) [5]. 

 

 

Figure 2.2 The electromagnetic spectrum and the range of the spectrum that is usually captured 

in different HSI applications [6] 

 

The reflection of the light from any single point on a surface is decomposed and recorded 

by the camera in hundreds (or thousands) of wavelengths, and so for each pixel, 
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hundreds of reflectance values are registered. The set of all these values is known as 

the “spectral signature” or “fingerprint” of that specific pixel. As depicted in Figure 2.3, 

the spectral signature of a pixel (reflectance values) is possible to be graphed with 

respect to the wavelengths (or bands). Each point 𝑃 on this graph can be represented 

by an ordered pair (𝑤𝑖 , 𝑅
𝑃(𝑤𝑖)), where 𝑤𝑖 is the wavelength at band 𝑖 in nanometers 

(nm), and 𝑅𝑃(𝑤𝑖) is the corresponding reflectance value in that wavelength of pixel 𝑃. In 

mathematical terms, when 𝑅𝑃(𝑖) is the reflectance (intensity) value of point 𝑃 at band 𝑖, 

the spectral signature of a pixel (𝑆𝑠𝑖𝑔
𝑃 ) when the number of captures wavelengths (bands) 

is 𝑁𝑏, would be: 

 

𝑆𝑆𝑖𝑔
𝑃 = { (𝑤𝑖 , 𝑅

𝑃(𝑤𝑖)) | 𝑖 ∈ {1, 2, … ,𝑁𝑏} } (2.1) 

 

Or interchangeably,  

 

𝑆𝑆𝑖𝑔
𝑃 = { (𝑖, 𝑅𝑃(𝑖)) | 𝑖 ∈ {1, 2, … , 𝑁𝑏} } (2.2) 

 

 

Figure 2.3 Spectral and spatial information stored in a hyperspectral image (right), and the 

spectral signature curve derived for one pixel of the image (left) [7] 

 

The data that is captured by a conventional color camera is usually stored in three layers 

(bands), namely Red, Green, and Blue (RGB). Each of the bands may be presented by 

an 𝑙1 pixel × 𝑙2 pixel grayscale image, or an 𝑙1 by 𝑙2 matrix whose elements represent light 

intensity (reflectance) values. For each of the pixels in an RGB image, we may graph 

the spectral signature as an intensity-WL diagram with three points (Figure 2.4, left). 
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Similarly, if 𝑁𝑏 is the number of bands registered by the HS camera, and 𝑙1 and 𝑙2 are 

the spatial dimensions (height and width of the image), the image may be stored as a 

3-dimensional 𝑙1 × 𝑙2 ×𝑁𝑏 matrix. In HSI terminology, this image matrix is known as the 

image data cube (data cube). The spectral signature of an HS image is hence formed 

with 𝑁𝑏 points, from whose connection the spectral signature curve is shaped. More 

instances of the spectral signature of different materials are available in Figure A3 

(appendices). 

 

 

Figure 2.4 Spectral curves recorded in RGB and hyperspectral cameras [8] 

 

2.1.2. Hardware (camera) 

Portable HS cameras: With advances in hardware and optics design and 

miniaturization, as well as improvements in computational algorithms, the emergence 

and development of portable (mobile) hyperspectral cameras has started during the 

2010s [9]. These developments led to the possibility of taking hyperspectral images 

with a normal-sized camera, compared to what has been possible previously [10].  Still, 

there are very few portable cameras available commercially, and still, their price is 

relatively high. Three of the models of mobile HS cameras are observable in Figure 2.5. 

 

     

Figure 2.5 Specim IQ camera [11], Semi-portable Resnon hyperspectral camera (middle), 

portable BaySpec hyperspectral camera (left) [12] and [13] 
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Scanning technique: The four main imaging techniques used in HSI are illustrated in 

Figure A5 (appendices). The scanning technique used by Specim-IQ is line-scan or push-

broom scan, where one line (row) of image pixels is registered at a time.  

 

Specim IQ: The camera that is used throughout this research work for the purpose of 

imaging is a camera manufactured by the Finnish company Specim, and is branded 

under the name Specim IQ. It is a portable HS camera which is functioning with a line-

scan hyperspectral imager. The wavelength range of Specim IQ is 400-1000 

nanometers. The spatial resolution of the recorded data is 512 × 512 pixels. The 

resulting hyperspectral data is a three-dimensional data cube, it provides the user with 

both spectral and spatial information. In addition to the hyperspectral data, Specim IQ 

saves also a 5-megapixel color image of the target [14]. This camera has been 

extensively used in the hyperspectral research landscape for classification purposes and 

with the incorporation of Machine Learning (ML) algorithms, as in [11]. It has been 

shown to be comparable with non-portable models in terms of performance.  

 

2.1.3. Illumination 

There are three major concepts regarding the light and lighting of the scene. 

 

Illumination Source: The illumination available in the scene for HSI should satisfy two 

requirements. Firstly, it should cover the whole spectrum registerable by the camera, 

and secondly, a continuous spectrum without (many) spikes or without high spikes is 

needed. In outdoor conditions, direct sunlight can also be used. For Specim IQ camera, 

incandescent light and daylight are the two types of light that are recommended [15]. 

The shapes of the spectra of different lights are available in Figure 2.6. In [16], a more 

diverse set of light sources spanning along a longer WL range are available in the 

relevant diagram. 

 

Intensity: In Machine Vision (MV), the amount of light energy that the camera needs 

to be exposed to (for proper reflectance registration) will define the intensity of the light 

needed for the imaging. In HSI, there are numerous internal sensors for capturing the 

numerous wavelengths. Because of the division of the light between these sensors, more 

light energy (longer period of exposure) is needed, which is the reason for the relatively 

long integration time. The effect of lower intensity on the spectral signature is as if the 

spectral signature curve is compressed from above, as pointed out in [17].  
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Uniformity: If the light is not spread evenly, the image suffers from unequal luminance, 

meaning two similar points with one single material may have different spectral 

signatures when the light is not evenly distributed. It is practically difficult to satisfy, 

but using the correct positioning of objects in the scene, and controlling the uniformity 

of light (for instance, illuminating with four lamps instead of only one lamp), is 

achievable in MV problems [15]. 

 

 

Figure 2.6 Spectra of halogen light from 350 nm to 750 nm wavelength [18] 

 

2.1.4.  Setup and the scene 

The angle between the axis of the lens of the camera with the normal of the imaging 

plane can influence the registered data of an image. Specifically, it is important to note 

that when comparison of two surfaces is a concern, the angles of the camera with the 

imaging surface in one should be as close as possible to this angle for the other imaging 

surface. In practice, different results for different angles has been achieved while 

imaging with Specim IQ camera [11], proving that angle orientation needs to be 

accounted for when performing HSI [19]. Minimum and maximum distance to the 

camera may be defined by the manufacturer of the specific device (sensor), but we 

should consider that if the subject covers more pixels in the image, the overall result is 

clearer for further processing. For the Specim IQ camera, no maximum distance is 

mentioned, and the minimum mentioned distance is 15 centimeters from the adjustable 

lenses of the camera [15]. As a general rule, the camera should not face the light directly 
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when imaging. It also should not be in a position where the level of light is low. Too low 

levels of light will affect the quality and accuracy of the image. 

 

2.1.5. Structure of the HS image files 

Figure A6 (appendices) clearly shows how the three popular HSI file formats (BIL, BSP, 

BSQ) store the image file with respect to the order of writing the pixels. 

2.1.6. HS Image preprocessing 

For smoothening the spectra in HS images, two methods have proved useful in many 

research works. The simpler one is the “average” filter, and the “Sovitzky-Golay” filter. 

Savitzky-Golay has also been promising when the derivative of the reflectance spectrum 

is to be used for the matching/training process [20]. 

 

2.1.7. History and some applications of HSI 

Spectral imaging, and specifically hyperspectral imaging has been known, accepted, and 

applied for decades, but its availability has been bounded to a very specific range of 

users and applications. Due to the limitations of regular machine vision and 

spectroscopic techniques, hyperspectral imaging was developed back in the 1970s [21] 

when NASA started installing spectral imaging facilities in satellites. This continually 

increasing spectral image quality paired with the incredible simultaneous advances in 

desktop computing allowed the application of image processing and statistical analysis, 

and opened doors for hyperspectral imaging research to flourish [2], and has since had 

usage especially, in engineering and science fields such as Robotics [22], Mechatronics, 

Geology, and similar fields [23] [24] [25]. 

 

Detection and analysis of vegetation has been carried out in ice and snow conditions 

[2], in a similar way, there is the potential to perform such analysis for rescue 

operations, for instance when humans are lost in cold mountain environments and need 

to be found in a timely manner, or in autonomous vehicles where pedestrians need to 

be detected for better safety of the system. One method to perform this using 

hyperspectral imaging is by collecting skin samples [26] and building classification 

models based on those [27]. Classification methods have been used in this area for the 

issue of detection [27] and have been contributed to areas like medical diagnosis [28].   

 

Using features such as derivative of the spectra [20] in combination with other methods 

may allow for optimization of the classification models in regard to their performance. 
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2.2. Material classification for HSI with the use of ML 

and SM 

Material classification is one of the main purposes of the utilization of Machine Learning 

(ML) and Spectral Matching (SM) in the scope of hyperspectral images. When performing 

the classification on a pixel level, the result can be the segmentation of the image, as 

shown in Figure 2.7, meaning that each pixel will be assigned a specific class, and the 

image is divided into such classes. 

 

 

Figure 2.7 Image segmentation using HS images for plum fruit quality assurance [29] 

 

2.2.1. Feature selection 

Selecting the features with the most significant influence on the classification process, 

and thus reducing the number of features will cause the process of training, analysis, 

and detection/classification to consume fewer resources (become faster), and in some 

cases will result in the improvement of the identification of a class [30]. Moreover, in 

cases where the number of features results in an over-fitted model, feature reduction 

may be a solution. On the other hand, reducing the number of features should be carried 

out carefully, and should account for the effect of this reduction on the accuracy and 

overall performance of the model. The method to select the features and the number of 

reduced features are going to be important factors in the feature selection process. 

 

There are three groups of approaches for the feature selection procedure [31]. The filter 

method approaches select features regardless of what the model is. When a certain 

criterion is satisfied they mark a feature as selected. The filter group of approaches has 

been prominent because of the speed they offer when selection is carried out [32]. With 

wrapper and hybrid methods, although they might provide better performance of the 

model overall, the cost of the CPU time is relatively higher in those methods [33]. 

Aligned with our choice of faster models, filter methods are of preference in this work. 
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2.2.2. The models 

In the methods used for HSI material classification, pixel-wise consideration of the 

problem is extensively common and useful. In pixel-wise classification, an input data 

point of the system is the pixel vector 𝑅𝑃 (each of whose element 𝑅𝑃(𝑖) is the reflectance 

value at band 𝑖). During the last few years, numerous pixel-wise classifiers have been 

adapted and applied to HS image classification problems, maneuvering on algorithms 

such as random forests [34], k-Nearest Neighbors (kNN) [35], Support Vector Machine 

(SVM) [36]  and Artificial Neural Networks (ANN)  [37]. Besides, Spectral Matching 

methods, in which a measure of similarity of spectral signatures is calculated are 

frequently opted for classification of the pixels according to the reference data point(s). 

Among SM methods, Spectral Angle Mapper (SAM) [38] has remained performant and 

actively beneficial throughout the years for HS classification problems [39] [40] due to 

many facts, such as its tolerance against the lighting condition [38] and the speed it 

lays out for high-dimensional datasets. 

 

ANN, kNN and SAM have been around for many years [41], and they still play an 

important role in the current HSI classification literature. Employment of SVM, kNN and 

SAM classifiers for plant disease and classification on the HSI data has proposed 

promising functionality of such methods [5]. kNN and the relevant derived models based 

on kNN have proven to be 95% to 98% performant according to accuracy on the Indian 

pines dataset for classification [42]. These methods are still flourishing and are 

comparable to Convolutional Neural Networks (CNN), and except for ANN, they are all 

faster and need a very short (or no) training/processing time. 

 

2.2.3. Evaluation 

After the models are compiled, configured, and run the testing phase starts. It is where 

the performance of the models is evaluated, which provides the basis to be able to 

identify how desirable each method outcome acts relevant to our expectations. 

 

Initially, the prediction is carried out on the test dataset, which needs to be different 

from the training dataset. Through the prediction, data points (pixels) are classified (and 

labeled) into different classes (two groups for a binary classification problem), and the 

predictions are then compared to our ground truth dataset, where the actual classes of 

each data point have been marked. As a result of this comparison, in a binary 

classification problem, four groups of points can be identified: 
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 True Positive (TP): These are the points that are predicted by the model to 

belong to the positive class, and they actually belong to the positive class. 

 True Negative (TN): These are the points that are predicted by the model to 

belong to the negative class, and they actually belong to the negative class. 

 True Positive (FP): These are the points that are predicted by the model to 

belong to the positive class, but they actually belong to the negative class. 

 True Positive (FN): These are the points that are predicted by the model to 

belong to the negative class, but they actually belong to the positive class. 

 

Computing the number of the points in these groups after running the models and 

compiling the results in one table, leads to the composition of the confusion matrix 

(Figure 2.8). For the problem of classification (binary or non-binary), the confusion 

matrix is among the first fundamental entities which are calculated for assessing the 

classification performance. 

 

 

Figure 2.8 Confusion matrix together with evaluation measures derived from it, for a classification 

problem with two classes “Positive” and “Negative” 

 

For the problem of classification, there are several measures of classification 

performance that may be directly calculated from the confusion matrix. “Accuracy”, 

which defines the total number of correctly predicted points (TN, TP) in relation to the 

total number of points (TN, TP, FN, FP) expresses how accurate the model is performing 



29 

in predicting overall. It is one of the most effective measures in the field [43], 

specifically, when class imbalance (large difference between the number of data points 

in each class) is not an issue. Equation (2.3) proved the mathematical formulation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (2.3) 

 

Accuracy should ideally be 1, which means that FP and FN values are zero and it is not 

associated with a specific unit. In cases when the dataset is not balanced, the accuracy 

value may be misleading, and other measures need to be taken into account as well. 

“Recall” (aka. “sensitivity” or “true positive rate”) and “precision” are the other metrics 

for this purpose [44]. They are formulated as may be seen in Equations (2.4) and (2.5). 

Equation (2.6) shows how F1 score as a combination of precision and recall is calculated. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.5) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.6) 

 

The ideal value for precision and recall are also 1, meaning that the FP and FN are ideally 

zero (respectively). For the F1 score too, a value of 1 is ideally expected. 

 

2.3. Software for HS image analysis and classification 

It is only recently with the advent of portable HSI cameras, that this technology began 

serving numerous users and applications in science, engineering and academia. To 

complement the hardware aspects of HSI, appropriate software must be made available 

to researchers and practitioners to satisfy their diverse needs.  

 

Various software applications have been proposed in previous years, but they can be in 

most cases associated with limitations, imperfections or complexities for amateur 

portable camera users and novice learners of HSI technology.  Some of these tools are 

designed with only one very specific problem in mind [45]. Some do not offer an easy-

to-use interface or do not offer a GUI at all [46], which arise the need for the user to 

get involved with coding. A number of tools like ENVI are not free, and free GUI tools 

are usually too basic, even for the needs of amateur engineers. It might also be the 
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case that the software is outdated [47], discontinued, etc. In many of the cases, the 

current software tools are linked with more than one of the issues in question. For 

instance, ENVI is a very comprehensive multi-purpose tool for multispectral imagery, 

but it is too complicated for the aim of qualitative HSI analysis, necessitates a long 

learning process, and is not free. 

 

MATLAB, as a development and computation environment, has been, for long, a major 

player in the landscape of scientific programming [48], and at the same time, it is 

broadly accepted in academia and education (more than 6500 academic institutions are 

licensed as claimed by Mathworks in 2022 [49]). There are other features like different 

deployment methods (such as web deployment), integration of programming and image 

processing, and suitable handling of image files. These turn MATLAB into one of the 

most suitable platforms on which our HSI application could be developed, for 

interdisciplinary, engineering, scientific and educational usages. 

 

2.4. Potential areas of focus (existing gaps) 

According to what has been put forward in the previous sections, ongoing work is in 

progress in the fields involved in material classification and hyperspectral image 

analysis. Since material identification using HSI has shown to have novel applications in 

the Mechatronics-related fields (as discussed in 2.1.7), such as medical robots and 

autonomous vehicles, it is important to specifically apply learning techniques on HSI 

data for related applications.  

 

It is also crucial in some applications to be able to optimize the model with respect to 

the specific usage and knowledge of that specific domain. This might be fulfilled through 

many methods like introducing features such as spectral derivatives for classification. 

 

As a next step, as explained in 2.3 there are vast opportunities toward facilitation of the 

analysis and processing of hyperspectral images for a general user who does not intend 

to deal with the complexities of coding, or even be engaged with expensive professional 

software environments. In that respect, the development of graphical user interface 

software may provide a solution. 

 

The three mentioned areas of work are specifically becoming important as portable HS 

cameras are gaining wider availability and popularity during recent years. The three 

main concerns of this work (expressed in section 1.1) and the three research questions 

in section 1.3 are in accordance with topics in the three mentioned areas. 
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3. MATERIAL CLASSIFICATION 

The mechanisms and methodical operations involved in the first part of this research 

work such as understanding and investigating the problem, finding and applying the 

solution, and evaluation of the results are discussed in this chapter. 

 

3.1. Getting a general picture of the problem 

Human skin identification is an instance of a classification problem whose outcomes may 

be utilized in mechatronics, robotics and related fields including Machine Vision. Hence, 

although other examples for classification were considered in the progression of this 

work, human skin classification is chosen as the main problem in this section. 

 

3.1.1. The data points 

In the human skin classification problems, there are basically two desired classes to 

which we would like to classify pixels. One is “skin” which consists of real human skin 

pixels, and “non-skin” class contains all other pixels including fake skin pixels (fake skin 

pixels belong to the printed image of human skin which is present on the scene, for 

instance on a journal cover). Where a reference point is needed or when training needs 

to take place, data points from one person are used, and when the model is configured, 

it is applied to another person’s image for prediction and test purposes, ensuring that 

the model has the potential to work on different subjects (different datasets). The 

following figure is a false RGB (fRGB) representation of our original image. In the figure, 

the hand of the person on the right is pointed out as the reference set when spectral 

matching is used, and as the training set when machine learning methods are applied.  

 

The real human skin (arms, hands, necks and faces) is supposed to be classified as 

“skin” class, and all other pixels in the image, as “non-skin” class. The fake skin pixels 

(from the man’s face and neck, on the cover of the journal) are the pixels that do not 

belong to a real human in the image and should also be classified under the “non-skin” 

category. Figure 3.1 exemplifies such points. 

 

Each data point taken from the image may be considered a vector whose elements are 

the values of reflectance of different bands for a specific pixel. For 204 bands, this vector 

would be regarded a 204-dimensional vector. Each element of the said vector is 

considered a feature, and the value of each element (feature) is a 12-bit integer number.   
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Figure 3.1 The original image upon which the classification takes place 

 

The data cube of the original image is hence of size 512 by 512 by 204. 

 

3.1.2. The patterns in the skin spectral signature  

When graphing the spectral signature of sample points (Figure 3.2), unique patterns 

and trends are observable, which may render the process of classification possible. As 
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an instance, in real human skin, nearly in all such data points, there exist a “w” shape 

at WLs from 540 nm up to 585 nm. Besides, the curves related to real skin show an 

increase from 425 nm to 490 nm, while the fake skin points expose a decrease in this 

interval. 

 

 

Figure 3.2 Spectral signature of different groups of data points 

 

3.2. Imaging 

As a first step, the (imaging) data should be collected. To perform imaging 

appropriately, there are several parameters to investigate and choose from as discussed 

in section 2.1. 

 

3.2.1. Imaging parameters 

The light source: According to the explanations in item 2.1.3 the best light sources for 

hyperspectral imagery are natural light (sunlight) and incandescent light. Moreover, due 

to the applications of hyperspectral imaging that we considered in this work, the subject 

will be most probably available in open spaces where natural light is the only source of 

illumination. Hence, the imaging has been carried out under the natural and 

incandescent light. Figure 3.3 shows how the fingerprint (spectral signature) of human 

skin looks in the two environments with two different light sources. 



34 

 

Figure 3.3 The spectral signature of human skin imaged under two different light sources 

 

Intensity: The intensity of the light should be neither very small nor very large in value 

in order to gain the best results. Too large values will cause saturation and too small 

values will result in the signature to be more flat [17]. This can be controlled by changing 

the object-to-source distance under incandescent light as the distance and light intensity 

has an inverse relation with a power of two [50]. For daylight, by choosing the optimal 

time of the day for imaging, we may provide proper light for the image capture. 

 

Uniformity: As for the uniformity, in natural light, images were taken in smooth 

uniform shadows, with no direct sunlight, and during the afternoon and early evening 

(between 13:00 to 17:00). Under incandescent light, a dark room was selected, and a 

distance of approximately 1 meter existed between the subject and the lamps. The 

lamps were oriented at 45 degrees angle to the subject. 

 

Camera orientation and position (angle and distance): Based on the 

recommendations of the manufacturer [15] (visible in the next figure), the best results 

are achieved when the camera is oriented at an angle as close as possible to 90 degrees 

with subject’s surface. Hence, the attempt was to achieve photos with such a condition, 

but the angle parameter did not tremendously influence the final spectral signature and 

the final classification results with angles close to 90 degrees.  
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Figure 3.4 Two points of an object which are exposed to different light intensities[17] 

 

The distance between the imaging subject and the camera affects the accuracy of the 

spectral signature and the number of data points of a classification group in the image. 

Distances less than 100 centimeters and more than 300 centimeters did not prove to 

be useful for our purposes. 

 

 

Figure 3.5 An ideal camera/lighting positioning/orientation suggested for the Specim IQ camera 

by the manufacturer. 𝑋 should be larger than 15 cm, 𝛼 should be close to 45 degrees, and the 

distance of the camera’s lenses to the object should not be less than 15 centimeters. [15] 
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Integration time: The integration time indicates the amount of time that the sensor is 

permitted to gather light photons. The higher the integration time, the more photons 

the system collects for each wavelength, which usually leads to higher intensity. As a 

general rule, when there does not exist sufficient light, the integration time should be 

higher to collect enough photons, and as the light source intensity goes higher, less 

integration time is needed. For the image acquisition experience of this work, integration 

times between 60 seconds up to 180 seconds were opted. The camera offers an 

automatic suggestion for the integration time, but manual intervention is needed from 

time to time as the suggested time does not always produce the optimal results. 

 

Imaging Subject: The imaging subject is the skin of different parts of the body of 

human subjects. 

 

White reference: The existence of a specific pad with specific material as a white 

reference has been considered in this work. This pad is included as Specim IQ camera’s 

accessories. Image element white references have also been considered (such as snow), 

but the best result is achieved with the specific pad. 

 

3.2.2. Selected imaging parameters 

A summary of the final selected parameters in tabular format is expressed in Table 3.1. 

 

Table 3.1 Summary of imaging parameters used 

Parameter Natural light Incandescent light 

Light source type sun's uniform light two incandescent lamps 

Light source distance to 
subject 

inf. ~ 1 meter 

Light source orientation spread uniform light 
spread direct (45 
degrees) 

Other light source 
conditions 

taken between 13:00 and 
17:00, in smooth 
light/shadow 

dark room 

Distance to camera 1-3 meters 60-120 centimeters 

Camera's angle (to 
surface perp.) 

70-90 degrees 60-80 degrees 

Integration time 60-180 seconds 90-180 seconds 

White reference White reference pad Included in accessories 
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3.2.3. Camera calibration 

For the imagery, calibration happens on two different levels. The calibration of the 

camera has to be performed in each environment when the type of the light source 

changes or the intensity of the light goes under significant change. This is a partially 

automatic procedure that needs to be performed via the camera’s setting and before 

starting the imaging. For the Specim IQ camera, the calibration may be carried out using 

calibration and reference pads accompanying the camera as instructed by the manual. 

The second level of calibration (calibration of the image) is made possible with the white 

reference pad, and the related calculations are discussed in more detail in 3.4.1.  

 

3.2.4. The setup 

There are two imaging setups considered throughout this work. The imaging setup 

related to the development of the models in this chapter is illustrated in Figure 3.6. The 

other imaging setup, in which the light source is incandescent lamps, together with 

some acquired images in that setup is visible in Figure A7 (appendices). Skin samples 

are taken from 3 human subjects and it is possible to see a number of the samples in 

Figure A8. 

  

 

Figure 3.6 The imaging setup used in natural light 
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3.2.5. The summary of the process 

In short, the imaging process follows the steps illustrated in Figure 3.7. 

 

 

Figure 3.7 Summary of the steps involved in imaging 

 

3.3. Dataset 

As explained in 3.1.1, our dataset consists of data points in two main classes, “skin” 

and “non-skin”. In this section, different concerns about the dataset are put forward. 

 

3.3.1. Number of training instances 

The number of instances used for the purpose of training, for a single class in pixel-wise 

classification can largely vary such that values as low as 200 instances for a class can 

be successfully used [51] [52], and, based on the method’s choice, values may increase 

higher [53] to gain higher accuracy. The number of the data points used in different 

experiments in this work ranges between 500 and 10000 instances for each class. 

  

3.3.2. Class balance 

Class balance is a measure that specifies how close are the number of training points 

between different classes (balance). The balance of classes may have an effect on the 

training process and is influential to the evaluation process of machine learning 

methods. We may use up-sampling or down-sampling if class imbalance occurs. Since 

we have control over choosing of our samples, we can make the decision about which 

pixels to image and which pixels to select. Therefore, the imbalance is not in most cases 

a concern for us, but in case it was needed, up-sampling is applied to the dataset. 

 

Input: Imaging 
subject, lighting, 

camera (and 
accessories) 

Choosing the 
imaging subject

Identification of 
imaging 

parameters

Configuring the 
camera (incl. 
calibration)

Setting up the 
scene and 

acquiring the 
image

Output: Raw 
image data
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3.3.3. Variety 

To be able to apply the model for different scenarios, it needs to be tested and trained 

on the material data of an entity in its different varieties. For instance, if the focus is 

classification/detection of the human skin, then the skin of more than one body part 

should be taken into account for test (e.g. skin of forehead, cheeks, forearm, and hand) 

to make a proper evaluation. Moreover, the skin of people with different skin colors 

should be brought into the experiments to avoid bias as much as possible. For the 

purposes of this work, spectral signatures of the skin of five persons with various skin 

tones were captured and some of that data was used in the training process after review. 

 

3.4. Preprocessing 

Prior to the development of the models, our data (spectral signatures of the pixels in 

the image) should undergo different operations to provide the possibility of a more 

accurate analysis of data. Since this phase is happening before the main processing of 

the data (applying the models and performing evaluation), it is named preprocessing in 

MV and ML literature. 

 

3.4.1. Image calibration 

Calibration of image pixels is carried out to eliminate the effect of the light source 

spectrum on the registered material spectral signature. It is a type of normalization of 

pixels spectrum with the “Dark Reference” as the lower end, and the “White Reference” 

as the higher end. The next equation is expressive of the operation. 

 

𝑅𝑖𝑚𝑎𝑔𝑒 =
𝐼 − 𝐷

𝑊 −𝐷
× 100 (3.1) 

 

Here, 𝑅𝑖𝑚𝑎𝑔𝑒 shows the reflectance values of the calibrated image. 𝐼 is the original image 

matrix containing raw reflectance values, 𝐷 is the dark reference image, and 𝑊 

represents the white reference image, which should both be the same size as 𝐼. 

 

3.4.2. Imputation, numerical encoding  

Since our input data in the dataset is comprised of data points from an image, gaps, 

null values or values of improper type (numerical, categorical, etc.) are not going to be 

a concern. All the values are floating point (continuous) decimal numbers. There is 
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hence, no need for data type conversion or any numerical encoding, nor is there any 

need for caring about the gaps and null values in our case, since all pixels in all the 

bands have values recorded. 

 

3.4.3. Filters  

For various reasons including the presence of the effect of noise on the reflectance 

values, the shape of the spectral signature is affected and is not appropriate for analysis 

and gaining optimal information. To this end, two smoothening filters were reviewed, 

and one of them was selected and applied to all image pixels for further operations. 

The first filter is the Savitzky-Golay filter, and the second one is the Average value filter. 

The result of applying Savitzky-Golay can be observed in Figure 3.8 (right). The result 

of applying the average filter is displayed in Figure 3.9 (right). 

 

   

Figure 3.8 Spectral signature before applying Savitzky-Golay (left), and after applying it (right) 

 

   

Figure 3.9 Spectral signature before applying average filter (left), and after applying it (right) 

 

Savitzky-Golay is finally chosen as the method for smoothening the spectral signature. 
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3.4.4. Outliers 

In the case of pixel-wise classification, when the training instances are visually selected 

from acceptable points, the probability of outliers existing is very low, but it might be 

possible that on a specific texture like skin, entities like moles are present, or observing 

brown spots on fruits skin as a result of oxidation is common (Figure 3.10). These types 

of outliers may be avoided to a high degree by careful selection of training pixels. 

 

  

Figure 3.10 Two kinds of abnormalities on human skin and on fruit skin resulting in outlier points 

 

To verify that we have selected a uniform area of the skin without impurities, qualitative 

inspection of the selected training points may help. Figure 3.11 shows the pixels which 

were selected as skin in our experiments. It is observable that the values are not falling 

out of the specific range of the lowest and highest spectral curves (at least by a large 

degree). 

 

3.4.5. Normalization 

Normalization can be applied in different ways [54]. The normalization which proved to 

be the most effective takes the maximum and minimum values of each band into 

account. On a pixel level it is formulated as Equation (3.2): 

 

𝑅𝑛𝑜𝑟𝑚
𝑃 (𝑖) =

𝑅𝑃(𝑖) − min (𝑅𝑏𝑎𝑛𝑑(𝑖))

max(𝑅𝑏𝑎𝑛𝑑(𝑖)) −min (𝑅𝑏𝑎𝑛𝑑(𝑖))
 (3.2) 

 

Where 𝑅𝑏𝑎𝑛𝑑(𝑖) is the two-dimensional array of reflectance values of all points at band 𝑖, 

𝑅𝑃(𝑖) is the reflectance value of point 𝑃 at band 𝑖, and min( ) and max( ) are the regular 

minimum and maximum functions applied to the intensity of all pixels in a band. 

 



42 

 

Figure 3.11 Spectral signatures of all the selected skin pixels as training/reference data 

 

3.4.6. Selected preprocessing operations 

A summary of the final selected parameters can be expressed as is in Table 3.2. 

 

Table 3.2 Summary of preprocessing steps that were taken 

Process Final Choice Description 

Calibration 
Using the white and dark 
references data 

White comes from the 
white reference pad. 

Filters Savitzky-Golay 
Window size = 13, degree 
= 4 

Imputation, 
numerical encoding 

None is needed 
No missing data, data is all 
numeric 

Outlier detection 
Proper selection of pixels to 
avoid outliers  

Skin pixels without 
impurities are chosen 

Normalization 
Max/Min value of intensities in 

each band 
- 

Up-sampling / Down-
sampling 

Proper selection of the number 
of pixels in each class 

In training, the size of the 
classes should not largely 
differ 
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3.4.7. Summary of the preprocessing operations 

A summary of the operations carried out during the preprocessing phase is available in 

Figure 3.12. 

 

 

Figure 3.12 Summary of the steps involved in the preprocessing 

 

3.5. Selecting the features 

Two different feature reduction methods are chosen to be examined for the detection 

process alongside performing the process without the use of reduction. The two methods 

applied use the variance (variance in one class, and variance between classes), and 

local extrema as indicators of important information for making the selection of most 

informant features. The resultant set of features contains 2 or more bands in the end. 

 

To gain a general picture and discover if the reduction of the bands may perform well 

for the process of identification, after the initial selection of the bands, a qualitative 

assessment may happen. In the next part, a qualitative method, based on feature space 

visualization is incorporated. Three sample bands are selected as features. 

 

3.5.1. The influence of feature selection 

We visualize in the feature space (where axes are selected features) the data points 

with 3 of their selected features. A few sets of features are examined until the test is 

passed. We focus on “skin” and “non-skin” data points, and each class is illustrated with 

a certain color. If the two groups are possible to be distinguished by eyes, then the 
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ecoding
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qualitative test is passed, meaning that it is much more probable that the distinction 

will happen through quantitative models when all data points are analyzed. As observed 

in Figure 3.13 the data points of the two groups are clearly distinguishable by the eyes. 

 

 

Figure 3.13 Data points of two classes in feature space after feature reduction 

 

3.5.2. Different choices 

There are many options for the method to select a subset of the bands that leads to a 

minimum loss of information and/or improve the accuracy of the classification process. 

We have chosen two methods belonging to the “filter” group of feature selection 

methods, and finally, a combination of bands from both methods was opted. 

 

3.5.3. Local extrema 

The method of “Local Extrema” pays attention to the bands whose corresponding 

reflectance values are higher or lower compared to their neighboring bands. For each 
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material, based on the spectral signature, a specific set of bands will result. For human 

skin, as Figure 3.14 represents, the local extremum values may be found at wavelengths 

419 nm, 510 nm, 545 nm, 565 nm, 582 nm, 725 nm, 975 nm, 990 nm. Some of the 

extrema may be neglected as they are not relatively high or low in value. 

 

 

Figure 3.14 The local minima and maxima of the spectral signature of skin pixel. 

 

3.5.4. Using variances 

In this method, a feature’s total variance (variance over all data points) is compared to 

the variance of the feature over the data points of each of the classes (variance within 

each class). If such a ratio is calculated to be high relative to the same ratio for other 

features, that specific feature is selected, as it has the potential to represent significant 

information for the classification of the data. The variance of a feature (at band 𝐵) over 

all the points is expressed in Equation (3.3): 

 

𝑉𝐵
𝑎𝑙𝑙 =

Σ(𝑅𝑖(𝐵) − 𝑅(𝐵)̅̅ ̅̅ ̅̅ ̅ )
2

𝑁 − 1
 (3.3) 

 

𝑅𝑖(𝐵) denotes the value of reflectance of a single data point 𝑖 at band 𝐵. 𝑅(𝐵)̅̅ ̅̅ ̅̅ ̅ is the mean 

of the reflectance values of all data points in the whole dataset at band 𝐵, and 𝑁 is the 

number of all the data points. Then the within-class variances come as Equation (3.4). 
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𝑉𝐵
𝑐 =

Σ(𝑅𝑖(𝐵) − 𝑅𝐶(𝐵)̅̅ ̅̅ ̅̅ ̅̅ )
2

𝑁𝐶 − 1
 (3.4) 

 

𝑅𝑖(𝐵) denotes the value of reflectance of one data point belonging to class 𝐶 at band 𝐵. 

𝑅𝐶(𝐵)̅̅ ̅̅ ̅̅ ̅̅  is the mean of the reflectance values of all data points in class 𝐶 at band 𝐵, and 

𝑁𝐶 is the number of data points in class 𝐶. Next, the ratio in Equation (3.5) is calculated 

for all the features, and the bands corresponding to the highest values are selected. 

Based on this method, the bands with WL 422 nm, 539 nm, 975 nm, 989 nm are chosen.  

 

𝑉𝐵
𝑟𝑎𝑡𝑖𝑜 =

𝑉𝐵
𝑎𝑙𝑙

𝑉𝐵
𝑐1 +𝑉𝐵

𝑐2 (3.5) 

 

 

Figure 3.15 Variance between the classes and inside each class in selected dataset 

 

3.5.5. Summary of the feature selection operation 

The following figure puts forward, in summary, the general process of feature selection. 
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Figure 3.16 Summary of the steps involved in feature selection 

 

3.6. Selecting the models 

Based on the explanations in chapter 2 (2.2.2), different models with different 

mechanisms were considered for applying to our classification problem. There are two 

major groups of methods. The first group classifies pixels based on their spectral 

patterns’ similarity with the spectral pattern(s) of certain reference pixel(s), and in the 

second group, a pattern from a selected training set of pixels is learned through popular 

computer learning methods. 

 

There are four algorithms explored in the first group. These algorithms take into 

consideration the feature space where each axis represents one of the features 

(reflectance or 1st derivative of reflectance of the spectral bands), and investigate the 

closeness of data points with a certain combination of distance measures in this space. 

In these methods, the model can be identified by: 

 

 The feature type, which can be the reflectance value or the 1st derivative of the 

reflectance value of a spectral band. 

 The selected features (bands), which may be all bands or selected bands. 

 The distance measure, which may be the angular or Euclidean distance or a 

mixture of the two [55]. 

 The threshold, which is a continuous decimal quantity identifying the borderline 

that discriminates between accepted and not accepted pixels in a class. 

 

In the second group, two popular machine learning methods are applied to the image 

pixels, namely k-Nearest Neighbours (kNN) and Artificial Neural Networks (ANN). In 

these methods, the model can be identified by: 

 

Input: 

Preprocessed 
dataset

Investigating the 
current features

Proposing the 
candidate feature 
selection methods

Analysing the 
methods
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extracting the 

features

Output: dataset 
with extracted 
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 The feature type, which can be the reflectance value or the 1st derivative of the 

reflectance value of a spectral band. 

 The selected features (bands), which may be all bands or selected bands. 

 Model-specific parameters, which are specific to each model. For ANN, the 

number of  hidden layers, and for kNN, the number of neighbors (k) is in this 

group 

 The threshold, which is a continuous decimal quantity identifying the borderline 

that discriminates between accepted and not accepted pixels in a class. 

 

These six methods have been selected/compiled based on the literature review, the 

initial analysis, the initial results achieved, and the main purposes of this study.  

 

3.7. Applying the models 

In this section, the six pointed-out methods are going to be explained in more detail 

and the result of the classification on the image will be revealed. Figure 3.17 may be 

observed as a categorization of the methods according to their mechanism. 

 

 

Figure 3.17 Categorization of the methods based on the general mechanism 
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3.7.1. Method 1: Spectral Matching (SM) using Spectral Angle 

Mapper (SAM) 

In the method of Spectral Angular Mapper, the distances of all the points (𝑃𝑆 in Figure 

3.18) in the image with the reference point (𝑃𝑟𝑒𝑓 in Figure 3.18) is the measure of 

similarity and is used for the matching process, while each point can be considered as 

a vector whose elements are reflectance values at selected bands (selected features) in 

that pixel. 

 

 

Figure 3.18 Schematic view of methods in feature space. Method 1 (a), method 2 (b) 

 

The following equation expresses the calculation of the distance value for each of the 

data points with respect to the reference point [38]. 

 

𝑨 (𝑷𝒔,𝑷𝒓𝒆𝒇) = 𝜶° = 𝒄𝒐𝒔
−𝟏

(

 
 ∑ 𝑷𝒔(𝒊)𝑷𝒓𝒆𝒇(𝒊)

𝑵𝒃
𝒊=𝟏

√∑ 𝑷𝒔
𝟐(𝒊)

𝑵𝒃
𝒊=𝟏

√∑ 𝑷𝒓𝒆𝒇
𝟐 (𝒊)

𝑵𝒃
𝒊=𝟏

)

 
 

 (3.6) 

 

𝑷𝒔(𝑖) denotes the reflectance value of the point 𝑷𝒔 at band 𝑖. Similarly, 𝑷𝒓𝒆𝒇(𝒊) denotes 

the reflectance value of the point 𝑷𝒓𝒆𝒇 at band 𝑖. The total number of the selected bands 

is expressed by 𝑁𝑏. 𝛼° is calculated in degrees in our calculation, and may be converted 

to radians or other angle units without affecting the generality of the solution. After the 

selection of the referenced point, the threshold needs to be set. This can be evaluated 

by calculating the range of the angular distance values of a sample set of skin pixels to 

the reference point. Figure A9 (appendices) shows the range in which this angular 

distance changes. 
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When the model is run on the image (taking pixels’ spectral signature as input), the 

values which are going to be accepted as “skin” are the values that are in a proximity 

of the reference pixels with an angle less than the threshold in the feature space. They 

belong to the predicted “skin” (or “positive”) class, and the rest of the pixels belong to 

the “non-skin” (or “negative”) class. This can be formulated as follows in Equation (3.7): 

 

𝑆𝑡𝑟𝑢𝑒 = {𝑷𝒔 | 𝑨 (𝑷𝒔,𝑷𝒓𝒆𝒇) < 𝒕°} (3.7) 

 

The figure below shows the result of classification using method 1. The pixels identified 

as skin are visible in red. 

 

We observe as the result of this classification, that although the method of spectral 

angle mapper is not very sensitive to the illumination [56], the areas of the arm (the 

wrist and above) which are not properly illuminated are not detected using the chosen 

threshold. If the threshold is lowered, allowing for more FN points to be captured, then 

the FP points will also rise even in larger amounts, weakening the performance of the 

model.  

 

 

Figure 3.19 Points classified as skin in method 1 
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3.7.2. Method 2: SM using Euclidean distance 

In method 2, the Euclidean distances of all the target points (𝑃𝑆 in Figure 3.18 (b)) in 

the image with the reference point (𝑃𝑟𝑒𝑓 in Figure 3.18 (b)) is the measure of similarity 

and is used for the matching process, while each point can be considered a vector whose 

elements are reflectance values at selected bands (selected features) of that pixel. 

 

Equation (3.8) expresses the calculation of the distance value for each of the data points 

with respect to the reference point. 

 

𝑫𝑬𝒖𝒄(𝑷𝒔, 𝑷𝒓𝒆𝒇) = 𝒅 = √∑(𝑷𝒓𝒆𝒇(𝒊) − 𝑷𝒔(𝒊))
𝟐

𝑵𝒃

𝒊=𝟏

 (3.8) 

 

𝑷𝒔(𝑖) denotes the reflectance value of the point 𝑷𝒔 at band 𝑖. Similarly, 𝑷𝒓𝒆𝒇(𝒊) denotes 

the reflectance value of the point 𝑷𝒓𝒆𝒇 at band 𝑖. The total number of the selected bands 

is expressed by 𝑁𝑏. 𝛼 is calculated in radians in MATLAB, and may be converted to 

degrees or other angle units without affecting the generality of the solution. 

 

After the selection of the reference point, the threshold needs to be set. This can be 

evaluated by calculating the range of the Euclidean distance values of a sample set of 

skin pixels to the reference skin point. A process similar to Method 1 may be used for 

this purpose. 

 

When the model is run on the image (taking pixels’ spectral signature as input), the 

values which are going to be accepted as “skin” are the values that are in a proximity 

of the reference pixels with an angle less than the threshold in the feature space. They 

belong to the predicted “skin” (or “positive”) class, and the rest of the pixels belong to 

the “non-skin” (or “negative”) class. This can be formulated as follows in Equation (3.9). 

 

𝑆𝑡𝑟𝑢𝑒 = {𝑃𝑠  | 𝑫𝑬𝒖𝒄(𝑷𝒔, 𝑷𝒓𝒆𝒇) < 𝒓} (3.9) 

 

Figure 3.20 shows the result of classification using method 2. The pixels identified as 

skin are visible in red. We observe that many of the skin points are missing in the 

identification, and many non-skin points are predicted to be of skin class in this method. 

Therefore, the overall performance is not acceptable as it is later discussed in section 

5.1. 
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Figure 3.20 Points classified as skin in method 2 

 

3.7.3. Method 3: SM using a mixture of distance measures 

If we simply merge the results of running the two previous models by selecting the 

intersection of the true predictions of each model (𝑆𝑡𝑟𝑢𝑒), the true predictions of the third 

methods can be computed. In other words, the pixels labeled as “true” skin pixels, are 

the pixels: 

 

1. Whose intensity values are in the neighbouring Euclidean distance of the 

intensity of the reference point(s) (with a neighboring threshold of 𝑅), and 

2. Whose intensity values are in the neighboring angular distance of the intensity 

values of the reference point(s) (with a neighboring threshold of 𝑇) 

 

Figure 3.21 shows the schematic of this procedure and Equation (3.10) puts the 

mentioned mechanism into perspective. 

 

𝑆𝑡𝑟𝑢𝑒 = {𝑃𝑠  | 𝑫𝑬𝒖𝒄(𝑷𝒔,𝑷𝒓𝒆𝒇) < 𝒓  ∧  𝑨 (𝑷𝒔, 𝑷𝒓𝒆𝒇) < 𝒕° } (3.10) 

 

Figure 3.22 shows the result of classification using method 3. The pixels identified as 

skin are visible in red.  
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Figure 3.21 Schematic view of the third method’s feature space (features are reflectance values) 

 

 

Figure 3.22 Points classified as skin in method 3 
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3.7.4. Method 4: SM using a mixture of feature types and distance 

measures 

In this method, the derivative of the intensity (reflectance) values together with the 

intensity values are considered as features. The accepted results are the data points: 

 

3. Whose derivative of the intensity values are in the neighboring Euclidean 

distance of the intensity derivative of the reference point (with a neighboring 

threshold 𝑅), and 

4. Whose intensity values are in the neighboring angular distance of the intensity 

values of the reference point(s) (with a neighboring threshold 𝑇) 

 

The next equation defines the set of points predicted as the “true” class by this method 

and Figure 3.23 lays out a schematic view of the feature space. 

 

𝑆𝑡𝑟𝑢𝑒 = {𝑃𝑠  | 𝑫𝑬𝒖𝒄(𝑷𝒔
′ ,𝑷𝒓𝒆𝒇

′ ) < 𝒓  ∧  𝑨 (𝑷𝒔, 𝑷𝒓𝒆𝒇) < 𝒕° } (3.11) 

 

𝑃𝑠
′ and 𝑃𝑟𝑒𝑓

′  are the spectral 1st derivatives of the points 𝑃𝑠 and 𝑃𝑟𝑒𝑓. 

 

 

Figure 3.23 Schematic view of the fourth method’s feature space (features are reflectance values, 

left, and 1st derivative of the reflectance values, right) 

 

In Figure 3.24, the derivative spectra of three groups of the data points are seen. It is 

obvious how the derivative of reflectance values is making a distinction between three 

groups at some bands (e.g. at WL of 750 nm). At this band, the reflectance values are 

overlapping and do not reveal significant information, but derivatives are very different 

at this band, revealing significant information. Figure 3.25 shows the resulting image. 
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Figure 3.24 The derivative of the spectral signature of three groups of points 

 

 

Figure 3.25 Points classified as skin in method 4 

 

The spectral derivatives is considered to be calculated and used as a feature in this 

method since it shows trends in the data, that are not clearly mentioned by the 

reflectance values themselves. Many interesting features which are unique to a material 
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are discovered when considering the derivatives, specifically in places where the 

overlapping occurs in a specific band between the spectral signatures of two different 

materials.  

 

The derivatives also cause the method to be more insensitive to various illumination 

intensities, which might be very common as is constantly a concern in hyperspectral 

imaging because of the angles of the object, presence of clouds when imaging under 

the natural light, etc. [57].  

 

3.7.5. Method 5: K-Nearest Neighbors (kNN) 

In the method of k-Nearest Neighbors, as the name suggests, a number of data points 

(k data points) with the closest distance to the target data point are computed, and 

based on the majority voting of their class labels, we can assign a class label to it. 

 

The features that are selected are reflectance values, the measure of the distance that 

is chosen is the angular distance, and data points are similar to the previous methods. 

In Figure 3.26 the closest data points to the target (sample) point when 𝑘𝑡 = 3 are the 

two points from the red class and one point from the blue class. Hence, based on the 

majority of the red class points in proximity of the target, kNN classifies target as red 

class. When this process repeats for all the pixels in the image, the pixels are classified.  

 

 

Figure 3.26 Data points in the feature space of intensities in kNN, and the sample (target) [58] 

 

Figure 3.27 shows the result of classification using method 5. The pixels identified as 

skin are visible in red. Table 3.3 shows different parameters of this method. 
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Table 3.3 Specifications of the kNN model (Method 5) 

Method Element Value 

Features 15 selected features (reflectance values bands) 

Distance measure Angular distance 

Class assignment method Majority vote 

Threshold (k) 5 

Type of learning Supervised Learning (SL) 

 

 

Figure 3.27 Points classified as skin in method 5 (kNN) 

 

3.7.6. Method 6: Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) have been for long used in classification applications. 

As the final method of computer learning, they were chosen to be applied and examined 

as their method of work is unique and expose different features like non-linearity, 

investigation of trends in the data, and the ability to recognize complex patterns in the 

data. 

 

In the feed-forward neural networks that we have considered, the selected features of 

each data point (15 features) are used as the input of the network, then through the 

assignment of weights and biases, and applying activation functions (and repetition of 
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this process of all the layers) the output values are calculated. Then, in supervised 

learning, these output values are compared to the actual values that have been entered 

into the system by the user beforehand through a cost function. Finally, via the usage 

of the gradient descent algorithm on the cost function, through the process of 

backpropagation, the weights and bias values will be changed constantly in an attempt 

to yield a smaller value of error. The process is terminated when a termination condition 

is reached. Figure 3.28 displays the network configuration used in MATLAB to compile 

this model. 

 

 

Figure 3.28 Network configuration in MATLAB 

 

Table 3.4 shows in tabular form, the parameters of the network which was used in 

Method 6. Figure 3.29 shows the result of classification using method 6 where the pixels 

identified as skin are visible in red. 

 

Table 3.4 Specifications of the trained neural network model (Method 6) 

Network Element Value 

Pathway direction Feed Forward (FF) 

Nodes connection type Fully Connected (FC) 

Activation function Tansig and Purelin 

Training function Traingda (gradient descent, adaptive learning rate) 

Cost (performance) function Mean Squared Error (MSE) 

Hidden layer 1 hidden layer 

Termination condition 10000 epochs reached 

Features 15 selected features 

Type of learning Supervised Learning (SL) 
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Figure 3.29 Points classified as skin in method 6 (ANN) 

 

Table 3.5 shows in brief the specifications of models used in the six methods. 

 

Table 3.5 Summary of the specifications of the models 

Method Feature type 
Selected 
Bands 

Algorithm 

      Name Descriptions 

1 Reflectance 13 bands SAM 
 Different thresholds were 
examined 

2 Reflectance 12 bands 
SM 
(Euclidean 
Distance) 

 Different thresholds were 
examined 

3 

Reflectance 13 bands SAM 

Logical “and” between the results 
of the two is used 

Reflectance 12 bands 
SM 
(Euclidean 
Distance) 

4 

Reflectance 13 bands SAM 

Logical “and” between the results 
of the two is used 

Reflectance 
1st  
Derivative 

5 bands 
SM 
(Euclidean 
Distance) 

5 Reflectance 15 bands kNN k=5 has been selected 

6 Reflectance 15 bands 
FCFF Neural 

Network 

 1 hidden layer with 50 nodes, 
tansig, traingda, traingdx as 
activation and backpropagation. 
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3.8. Results of the evaluation 

The results (confusion matrices) will be presented in this section in Figure 3.30. 

 

  

  

 

Figure 3.30 Confusion matrices of the classification methods 1 through 6. 

 

Method 1 Method 2 

Method 3 Method 4 

Method 5 Method 6 
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As was explained in item 2.2.3, the confusion matrices are used as the fundamental 

units of evaluation in binary classification problems. From the confusion matrices, values 

of accuracy, precision, recall and F1 score may be calculated. For each of the methods, 

the four mentioned metrics are calculated and are available in Table 3.4. It is observed 

that although Method 2 and Method 3 do not result in a good recall or F1 score value, 

and the number of detected False Negatives (FN) are very high for these methods, their 

accuracy is still a large number. This would mean that accuracy is not in itself a suitable 

measure of evaluation, and other metrics also need to be definitely taken into account. 

 

Although different metrics have different meanings and are beneficial for certain 

applications, in this study, the final ranking of the models is carried out using accuracy 

and F1 score. The F1 score is used as a combination of precision and recall, so both are 

accounted for at the same time. Based on this ranking system, Method 4 is calculated 

to be the best method, and the next ones are, in order, Method 5, Method 1, Method 6, 

Method 3 and Method 2. 

 

3.9. Summary of the results 

Table 3.6 displays a summary of the evaluation of classification methods. 

 

Table 3.6 The summary of the evaluation results of methods 1 through 6 

Method Algorithm Accuracy Precision Recall F1 Score 

1 SAM (reflectance) 96.6 93.0 79.7 85.8 

2 
Euclidean distance 

(reflectance) 
86.7 42.5 16.2 23.4 

3 

SAM (reflectance) + 

Euclidean distance 

(reflectance) 

89.3 99.2 15.1 26.2 

4 

SAM (derivative of 

reflectance) + Euclidean 

distance (reflectance) 

97.1 97.9 79.1 87.5 

5 k-Nearest Neighbors (kNN) 97.0 98.6 77.7 86.9 

6 Neural network (ANN) 91.2 85.9 76.9 81.1 
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Figure 3.31 has the collection of all classified images from the previous section. 

 

   

   

Figure 3.31 The image results of skin classification laid out via the six methods.  
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4. THE SOFTWARE 

To complement the development of the code related to the HS image analysis, and to 

fill the gap of the availability of a self-explanatory graphical tool for qualitative and 

quantitative investigation and explore of HS images in MATLAB, a software application 

was designed with a focus on the needs of the people in engineering and science 

community, and the needs of the people who are amateur in coding or are learners of 

HSI technology. In this chapter, a deeper introduction to the software will be carried 

out. 

 

The code for the software was originally developed in MATLAB and Python, but was 

continued in Matlab for the better integration options it offered, and in line with the 

initial goals and the target user group. The layout and the code were developed at the 

start in the “GUIDE” environment, and were later migrated to “App Designer” 

environment as GUIDE is going to be decommissioned in the near future. These two 

environment are part of the MATLAB programming environment offering interactive 

development possibilities for the design of the interface and programming of the 

elements and behaviors. [59] 

 

4.1. The interface 

The application consists of a main frame (main windows), and a modules frame that is 

sub-divided into five different tabs (modules) for better usability and simplicity of use. 

Figure 4.1 displays how the application starts when it is run. 

 

4.1.1. Image display and spectral information 

The first four tabs are assigned mainly to display, processing, extracting information of 

choice, and analysis of the image. In case of need, the user can save the resulting image 

and various possible graphs (including the material spectral signature graph). 

Under the “Display” tab, the image may be loaded and the fingerprint (spectral 

signature) for each pixel can be graphed. The fingerprint of an HSI pixel (𝑃) consists of 

ordered pairs of the reflectance values (as a function of wavelength or band number), 

and their corresponding wavelengths (or bands) at point 𝑃, registered by the camera. 

Equations (2.1) and (2.2) represent a formulated version of what the fingerprint is. 
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Figure 4.1 “Display” tab of the interface. This tab is the active tab when the application starts. 

 

Based on the choice of the user, in the panel “Fingerprint Plotting of a pixel/region”, the 

fingerprint diagram of one or more pixels may be displayed. It is also possible for the 

user to view the spatial intensity map of a set of pixels at a specific band. The intensity 

map at a certain band previews a map in which in place of each pixel sits its intensity 

value at that specific band. In short, a fingerprint describes the behavior of a pixel 

through all bands, and an intensity map is representative of the behavior of all pixels in 

one band. It is also possible to view the picture in each band. The fingerprint and the 

intensity map are depicted in Figures 1 and 2 respectively. 

 

   

Figure 4.2 Spatial intensity map (right) at a certain region marked on the image (left) 

 

The “Add as Material” button stores the selected pixel’s fingerprint as a new material, 

and in this way, the user may store a set of materials, based on which they can further 
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classify materials in images, or use those materials for a comparative study of 

similarities and dissimilarities. 

 

4.1.2. Image histograms 

Under the tab named “Histogram” (Figure 4.3), after the selection of a specific band (or 

wavelength) by the slider, the corresponding image of that band is shown together with 

the histogram and the cumulative histogram at that band. In the next step, the 

equalized histogram of the band is displayed (bottom right diagram), and the 

equalization is applied to the original image at the specified channel. Being able to view 

the images and the graphs side by side, and immediately examining the effect of the 

equalization process on every channel of an image can be useful in situations where the 

image suffers from inappropriate contrast leading to some elements not being clearly 

detectable. An instance of such an occurrence is when proper lighting is not present, or 

when pixels are too bright. 

 

 

Figure 4.3 “Histogram” tab, including three types of histograms and their corresponding images 

 

4.1.3. False RGB image 

By selecting of 3 bands and assigning them to primary RGB (Red, Green, Blue) colors, 

it is possible to view the effects of channel combination on the image. This can be 

beneficial in gaining an understanding of the HS data in relation to the primary RGB 

data that is comprehended by the human visual system, for purposes such as qualitative 

analysis, lighting evaluation, object detection, feature extraction, image correction, etc. 
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The tab titled “False RGB” is meant for carrying out the mentioned selection and display. 

Figure 4.4 shows three images produced by this tab. Each image depicts a different 

combination of bands (i.e., different merged image). 

 

For each point 𝑃, the set of all possible combinations of 3 bands (𝑆3
𝑃), is the set of all 

ordered triplets like (𝑅𝑃(𝑖), 𝑅𝑃(𝑗) , 𝑅𝑃(𝑘)) whose members are band reflectance values at 

point 𝑃 (Equation (4.1)). The members of such triplets are not required to be unique, 

i.e., 𝑅𝑃(𝑖) can have the same value as 𝑅𝑃(𝑗) or 𝑅𝑃(𝑘). 

 

𝑆3
𝑃 = {(𝑅𝑃(𝑖), 𝑅𝑃(𝑗),𝑅𝑃(𝑘)) | 𝑖, 𝑗, 𝑘 ∈ {1,… ,𝑁𝑏}} (4.1) 

 

Where 𝑅𝑃(𝑖) is the reflectance value of point 𝑃 at band 𝑖, and 𝑁𝑏 is the total number of 

bands registered by the camera. If reflectance values for three specific bands are 

considered for every pixel in the image, and these reflectance intensity values of each 

band are merged in the end, the result is going to be a merged image of those three 

bands. Each unique selection of the triplets maps to a unique merged image. In an 

image with 𝑁𝑏 bands, the number of possible combinations of three bands is 𝑁𝑏 ×𝑁𝑏 ×

𝑁𝑏. For the specific 204-band sample image that we used, such combinations will add 

up to 2043 = 8489664 combinations (i.e. 8489664 possible three-band merged images).  

 

The image in Figure 4.4 (a) is formed by opting for band 70 to be interpreted as the red 

channel, band 53 to be interpreted as the green channel, and band 19 to be interpreted 

as the blue channel. The respective wavelengths for these bands in SPECIM IQ camera 

are 𝜆𝑅 = 449.35 nm, 𝜆𝐺 = 548.55 nm and 𝜆𝐵 = 598.60 nm. This image (Figure 4.4 (a)) is the 

closest image to what is visible by the human eyes, hence it is known as the “true” RGB 

image. All other combinations, such as the ones present in Figure 4.4 (b) and Figure 

4.4 (c) are known as the “false” RGB (fRGB) images in HSI terminology. 

 

       

 (a)                           (b)                          (c) 

Figure 4.4 The true RGB image (a), and two false RGB images (b) and (c) 

 



67 

The “False RGB 2” tab serves the user with more information about the three selected 

channels discussed in previous paragraphs. In this tab, the histograms of the three 

channels are separately displayed. Also, the pie chart of the ratio of the cumulated value 

of the selected bands is calculated for better investigation of the image. For both tabs 

“False RGB” and “False RGB 2”, the selection of the bands is conducted by the three 

sliders in the right half of the tab and under “Wavelength/Band Selection for R, G, and 

B” panel, or through their adjacent text boxes. 

 

It is also possible to conduct point operations on the image. Multiplication, addition 

(shifting), and/or a combination of them may be applied to images. Point operation is a 

mapping of values of intensity of a channel in an image in which the new intensity value 

of a pixel depends only on its previous intensity value. If we denote this transformation 

with 𝑓( ), the input image with 𝐼(𝑢, 𝑣), and the resultant image with 𝐽(𝑢, 𝑣), and 𝑙1 and 𝑙2 

are image width and height respectively, we can write Equation (4.2): 

 

𝑓(𝐼(𝑢, 𝑣)) = 𝐽(𝑢, 𝑣)          𝑢 ∈ [0, 𝑙1], 𝑣 ∈ [0, 𝑙2]  (4.2) 

 

For the two named operations (addition and multiplication), the image pixels are 

mapped according to the following relation: 

 

𝑓(𝐼(𝑢, 𝑣), 𝐶1, 𝐶2) = 𝐶1 × 𝐼(𝑢, 𝑣) + 𝐶2 (4.3) 

 

In Equation (4.3), 𝐶1 ∈ ℝ is a constant value identified by the user which is multiplied by 

all the intensity values of pixels of the image channels (R, G and B), and “×” symbol 

represents the multiplication of a matrix by a constant value. In a similar fashion, 𝐶2 ∈ ℝ 

is a constant value identified by the user that is added to each of the intensity values of 

pixels of image channels. 

 

Under “Intensity Shifting or Multiplication” panel, it is possible to change the value of 𝐶1 

and/or 𝐶2. As explained, this value is going to be multiplied by or be added to each of 

the selected channels’ (R, G or B) intensity values. The user may choose which of the 

values (𝐶1 or 𝐶2) should change by selecting “Shift” or “Multiply” (Figure 4.5). For 

instance, if the value selected by the vertical “G” lever (slider) is 𝐸𝐺 = 0.5 and the 

operation to be done is set to “Multiply”, all intensity values in the green channel will be 

multiplied by 𝐶1 = 10
𝐸𝐺 = 3.16. If 𝐼𝐺 is the matrix of intensity values of pixels in the green 

channel, this operation can be presented by 𝐼𝐺 × 10
𝐸𝐺. The default value for 𝐶1 is 1 and 

for 𝐶2 is 0. Since the intensity values are positive or zero, positive values for 𝐶2 shift the 
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histogram to the right, and negative values shift the histogram to the left. For 𝐶1 > 1 an 

increase in the intensity values happen, and for 0 < 𝐶1 < 1, those values undergo a 

decrease. In turn, this may cause the histogram of a band to stretch or shrink  [60]. 

Also, the user can choose to save the configuration or save the false RGB image. 

 

 

Figure 4.5 “False RGB 2” tab. Reflectance intensity histograms and RGB ratio pie chart of the 

three bands 

 

4.1.4. Data handling 

Concerning the input data, one must ensure interoperability between different formats 

of HS images. Towards this end, the current version of the developed application 

supports the most popular structures, namely “BIL”, “BSQ”, and “BIP” [61] 

 

4.2. Case study 

As a major application in Mechatronics and Robotics, engineers deal with pick and place 

algorithms which may consequently require material/color detection.  

 

One of the challenges faced in picking operations is to recognize/detect two 

objects/materials with closely-identical color and appearance (for later sorting). With 

RGB images, this may not be feasible in specific cases, but with hyperspectral images, 

such cases may be resolved with much more accuracy. As can be seen in Figure 4.6, 

although the two marked apples (“Apple 1” and “Apple 2”) are visually very similar to 
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each other in Figure 4.6 (a), with the proper selection of the bands, the distinction can 

be made with a high level of confidence (as shown in Figure 4.6 (b)), offering much 

higher accuracy in comparison with a true RGB image. 

 

In order to better demonstrate how our proposed software can be beneficial in certain 

applications, in this section, an approach to perform this task with the usage of our 

software tool is elaborated on. Hence, we intend to be able to distinguish between the 

two numbered apples marked in Figure 4.6 (a), and expose the investigated difference 

visually, solely using our software. The multi-step procedure is as follows. 

 

 

Figure 4.6 The true RGB image (a), and the generated False RGB image where the annotated 

apples are clearly distinguishable (b). On the left, the corresponding wavelengths that are 

interpreted as R, G and B bands can be found. 

 

4.2.1. Looking for the differences 

After loading the image, properties of the two apples under focus are to be investigated. 

This investigation is conducted with the goal of finding differences that may help in 

distinguishing the apples. We take the fingerprints of two arbitrary pixels on the two 

marked apples (Figure 4.6) by selecting one of their pixels in the “Display” tab using 

“Fingerprint Plotting” point tool. Then, these two fingerprints are compared (Figure 4.7), 

and although they appear closely similar, there are a number of bands (wavelengths) 

at each of which an obvious intensity difference can be observed. We locate the 

approximate wavelength of three of such bands as shown by arrows in Figure 4.7. 
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The three bands that were detected (with approximate wavelengths of λ=710 nm, 

λ=770 nm, λ=990 nm) have the potential to reveal the difference between the two 

apples, and thus will be used to carry out the next step. 

 

 

Figure 4.7 The fingerprint of a pixel on “Apple 1” (left), and on “Apple 2” (right). The three arrows 

show at what wavelengths the largest differences exist between the two apples’ fingerprints 

 

4.2.2. Exposing the differences 

To visually exhibit the effect of the selection of the found channels (wavelengths) to 

compose an RGB image, we choose the three bands to be interpreted as R, G and B 

values in the “False RGB” tab under “Wavelength/Band Selection” panel. After 

examining different values for different arrangements of R, G and B, a false RGB image 

is produced in which the two apples (“Apple 1” and “Apple 2” in Figure 4.6) are 

distinctively viewable, and their hidden difference is now visually revealed. 

 

The resulting image is present in Figure 4.6 (b). The final combination of the 

wavelengths (bands) for this task is 𝜆𝐵 = 771 nm, 𝜆𝐺 = 994 nm, and  𝜆𝐵 = 711 nm. As it can 

be observed, the result is highly accurate in making a distinction between the two 

apples.  

 

4.2.3. Further processing 

Alongside the steps taken to perform the analysis, it is possible through the “Histogram” 

tab and “False RGB 2” tab to analyze the image and its properties further and do 

processing tasks (like some linear point operation or histogram equalization) on the 

image.  
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4.2.4. The usage flow to perform the task 

The flow of the actions that were considered for finding the distinction between the two 

apples can be visualized with the help of a chart in which operations, results, and 

sequence of actions are depicted. For our specific case, Figure 4.8 shows one of the 

ways that the sequence of the taken actions, and other optional possible actions may 

be laid out. 

 

Figure 4.8 Flow of the actions taken to detect the difference between the two apples  

 

in Figure 4.8, and to reveal this difference in a visually observable manner, using the 

current proposed software The path that was taken to perform this specific task (finding 

a clear distinction between the two apples) is displayed in green color, and the path for 

other possible operations (options) is visible in black. Each rectangle represents an 

action that is possible throughout the flow. The outflow of each step is identified by an 

outgoing arrow which connects an action (or the result of an action) to the next possible 

actions (rectangles). 

 

This specific application is one of the tasks that are possible through our software 

application enabling the user to perform image analysis. There are also other paths to 

perform the same task with the software, and the stated sequence of actions in this 

section is only one of them. As explained, such analysis can be taken even further 

through the other sections and other functionalities of the proposed software. 
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4.2.5. Summary of the specifications 

In Table 4.1, a summary of the application’s specifications are provided.  

 

Table 4.1 GUI application specifications 

Group Sub-group Items Item Details 

Development 
Environment 

Development 
environment/language 

MATLAB 
Versions 2019b 
and 2021b 

GUI Development 
environment 

App Designer 
In-built MATLAB 
tool 

Dependencies 
Needed Libraries (add-
ons) 

Signal Processing Toolbox 
Image Processing 
Toolbox 
Deep Learning Toolbox 
Computer Vision Toolbox 

Only MATLAB 
native libraries are 
needed 

Visual 
Elements 

Input Elements 
textbox, slider, button, 
etc. 

  

Output Elements 
axis (graphs and 
images), text, label 

  

Navigation Elements 
button, status bar (text 
box), tabs, panels 

  

 Operating 
System 

 The OS used for 
development 

Windows 
 Versions 7, and 
10 

 A hardware 
configuration 
that works 

 Processor, Memory, 
Disk Space 

1-2 GB of RAM (dedicated 
to app), core i7, 100 MB 
of disk space is 
recommended 
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5. DISCUSSION AND FINAL REMARKS 

5.1. Methods performance 

For the purposes of this research, selection of a ranking system for the evaluation of 

the final results was discussed in section 3.8 and based on the data collected in Table 

3.6, further investigation can be performed. Overall, the best method regarding the 

accuracy and F1 score is Method 4, where accuracy is 97.1 % and the F1 score is 87.5 

%. This method has an acceptable performance regarding recall and precision too. 

Method 5 (kNN) and Method 1 (SAM) proved to be the next best methods with the same 

two criteria, respectively. Although the value of recall is larger in Method 1 (than the 

two named methods), the small difference of 0.6 % and 2.0 % may be neglected. The 

neural network method (Method 6) is also not performing weakly, but the performance 

is weaker than the other three methods and is very sensitive to the training set. This 

high sensitivity is a fact that we expected and matches the findings in [62]. So, Method 

6 is ranked 4th regarding both F1 score and accuracy. Method 3 and Method 2 exhibit 

very small recall values corresponding to the very small F1 score turning them to 

weakest methods out of the 6 studied methods. The high precision value in Method 3 is 

then not considered a significant advantage for this method. Figure 5.1 is expressive of 

the discussed results. 

 

The proposed addition of 1st spectral derivative as a feature, which was performed in 

Method 4, helps in reducing FP points such as the fake skin, but has not any effect on 

FN points. It accords with our expectations, as the addition of a condition through a 

“logical and” may only reduce the false positives. All considered, it might be said that 

the proposed addition has improved the results gained by this method inserting it in the 

first place when the overall performance is considered. For further improvement of 

method 4, usage of the 2nd spectral derivative is recommended. 

 

Lighting is important in general in all the methods. It seems that methods based on 

Euclidean distance suffer very much from insufficient lighting and methods based on 

angular distance are resistant toward lighting changes. This fact is also in line with 

findings in [38]. 

 

Regarding the speed of running the methods, ANN is the slowest both in training and in 

prediction and SAM is the quickest method. Generally, methods based on spectral 

matching are fast methods and may be considered when speed is a critical concern. 



74 

 

Figure 5.1 The four evaluation measures of the methods used 

 

5.2. Software 

The development of the software with the planned specifications was achieved as the 

third main goal of this research. It was demonstrated that the various components of 

the application used together allow for the analysis and processing of an input image so 

that the user could extract qualitative and quantitative information and use them for 

further operations, such as material classification. The user does not have to have 

extensive knowledge of computer-related fields or bold domain knowledge in digital 

imaging to be able to use the application. Finally, the application was developed so that 

the composition and arrangement of the interface are geared towards understandability, 

simplicity and having meaningful relationships with theoretical/academic concepts, 

making it suitable to be utilized for educational purposes. 

 

5.3. Applications 

By making use of the computer learning and spectral processing methods, two cases of 

material classification/detection were studied in elaboration in chapters 3 and 4. Such 

applications may be further consumed as part of a bigger system or algorithm such as 

pick-and-place algorithm, or the detections systems in an autonomous car. 

 

It should be noted that the evaluation of a method needs to account for the specific 

application that is intended for that method. For instance, for the detection or 

classification of human skin for rescue operations or in autonomous cars, it is very 
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important that the model outcomes the minimum amount of missed human skin pixels. 

So the number of false-negative results should strictly be kept at a minimum and hence 

“recall” will be the most influential measure among all the evaluation metrics. 

 

The type of the application, and the subject under study, may also introduce 

restrictions/instructions for the selection of the best features. This may also be affected 

by the specific domain knowledge. For instance, for the classification of apples, domain 

knowledge of food sciences may come into play. 

 

Mixed usage of sensors (sensor fusion) with hyperspectral imaging sensors can also 

influence the overall process of classification, and is recommended in many of the 

applications. 

 

5.4. Verifying that the initial goals are met 

According to what was mentioned in previous sections of this chapter, it is possible to 

claim that the initial goals has been met in line with our expectations. 

 

5.5. Future work 

Many areas for future work may be considered. Some topics are as follows: 

 

 Consideration of optimized imaging parameters (like lighting) when acquiring the 

images. It may consist of using helping devices such as lighting softboxes. 

 Expanding the dataset to include larger amount of instances through choosing a 

larger number of imaging subjects, larger number of lighting conditions, etc. 

 Usage of different mixtures of features, engineered feature and similarity 

measures. Specifically, using the second derivative of reflectance values may 

help in the classification process. 

 Incorporation of different computer learning methods, and optimization of their 

parameters using techniques such as grid search 

 Considering the software development in programming languages with better 

capabilities for memory management, or faster languages for image processing 

like the programming language C. 
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5.6. Schematic summary of the operations and data flow 

The following figure provides a summarized presentation of the operational flow 

discussed in chapters 3 and 4 and concluded in the current chapter. 

 

 

Figure 5.2 Schematic summary of the operations and data flow in the scope of this thesis work 
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6. SUMMARY 

The intent of this work was to investigate how computational methods may be useful in 

the analysis and classification of hyperspectral imaging data, and to further facilitate 

the processing of hyperspectral images for a wider range of users, a MATLAB Graphical 

User Interface (GUI) application was developed. For this to come true, hyperspectral 

computer vision, data processing, machine learning algorithms, GUI application 

programming and their related areas needed to be brought under focus and study. 

 

The initial phase is compiling the models and applying them to hyperspectral data. This 

begins with acquiring of the images incorporating hyperspectral imaging techniques. 

Then the dataset is formed, reviewed and moves to a 5-step preprocessing pipeline. 

Two options for feature selection are considered, with one focusing on the local extrema 

of spectral signatures and the other on the variance of the features. At this step, the six 

compiled models are adapted to the problem and are executed. Finally, the methods 

are tested using evaluation measures of binary classifiers. The best method regarding 

the accuracy and F1 score is Method 4 with an accuracy of 97.1 and F1 score of 87.5. 

Method 5 (kNN) and Method 1 (SAM) are next with F1 scores of 86.9 and 85.8 

respectively. The precision of Method 3 was the highest among all being 99.2 but it has 

a poor performance regarding the overall F1 score. Method 6 (ANN) shows a high 

sensitivity to the training data, while SAM-based methods proved to be less influenced 

by illumination. Speed-wise, Methods 1 and 2 have overcome other methods. 

 

Alongside compiling the methods, the second concern of the research was addressed by 

proposing specific usage of spectral derivatives as a feature (in Method 4). It improved 

the F1 score of method 1 by 1.66 and was chosen as the best method overall. 

 

Thirdly, as a complement to the developed procedures, to provide a graphical user 

interface for the analysis and processing of hyperspectral images, a software application 

in MATLAB was laid out and programmed. Target groups in the scientific community, 

academia, and practitioners who are not familiar with coding may benefit from such 

software tool. With a self-explanatory interface, this application has the potential to be 

used for educational purposes too. This contribution has also been presented at an 

international conference in June 2021 [63]. 

 

It may consequently be claimed that the three initial concerns which led to conducting 

this research work have been addressed and the three research questions are answered. 
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KOKKUVÕTE 

Käesoleva töö eesmärk oli uurida, kuidas arvutusmeetodid võivad olla kasulikud 

hüperspektraalsete kujutiste andmete analüüsimisel ja klassifitseerimisel ning 

hõlbustamaks veelgi hüperspektraalsete kujutiste töötlemist laiema kasutajatehulga 

jaoks töötati välja MATLAB graafilise kasutajaliidese (MATLAB Graphical User Interface 

- GUI) rakendus. Et see teoks saaks, tuli fookusesse tuua ja uurida hüperspektraalset 

arvutinägemist, andmetöötlust, masinõppe algoritme, GUI rakenduste 

programmeerimist ja nendega seotud valdkondi.  

 

Algfaasiks on mudelite koostamine ja nende rakendamine hüperspektraalsetele 

andmetele. See algab hüperspektraalseid pilditehnikaid sisaldavate kujutiste 

hankimisega. Seejärel moodustatakse andmestik, vaadatakse see üle ja liigutakse 5-

astmelisele eeltöötluskonveierile. Kaalutakse kahte funktsiooni valikuvõimalust, millest 

üks keskendub spektraalsignatuuride lokaalsele ekstreemumile ja teine tunnuste 

dispersioonile. Selles etapis kohandatakse kuus koostatud mudelit probleemi jaoks ja 

rakendatakse need. Lõpuks testitakse meetodeid binaarsete klassifikaatorite 

hindamismeetmete abil. Parim meetod täpsuse ja F1 skoori osas on meetod 4 täpsusega 

97,1 ja F1 skooriga 87,5. Meetod 5 (kNN) ja meetod 1 (SAM) on järgmised F1 

skooridega vastavalt 86,9 ja 85,8. Meetodi 3 täpsus 99,2 oli kõigist kõrgeim, kuid 

meetodi tulemus on F1 üldise skoori osas kehv. Meetod 6 (ANN) näitab koolitusandmete 

suhtes suurt tundlikkust, samas kui SAM-põhised meetodid osutusid valgustusest 

vähem mõjutatuks. Kiiruse osas ületavad meetodid 1 ja 2 muid meetodeid. 

 

Meetodite koostamise kõrval käsitleti uurimistöö teist eesmärki, pakkudes tunnusena 

välja spektraalderivaatide spetsiifilise kasutamise (meetodis 4). See parandas meetod 

1 F1 skoori 1,66 võrra ja valiti üldiselt parimaks meetodiks.  

 

Kolmandaks, väljatöötatud protseduuride täiendusena, pakkumaks hüperspektraalsete 

kujutiste analüüsiks ja töötlemiseks graafilist kasutajaliidest, koostati ja programmeeriti 

MATLAB-i tarkvararakendus. Sellisest rakendusest võivad kasu saada sihtrühmad 

teadusringkondades ja akadeemilistes ringkondades, samuti praktikud, kes ei tunne 

kodeerimist. Lihtsalt arusaadava liidesega on seda rakendust võimalik kasutada 

hariduslikel eesmärkidel. Töö sisu ja tulemusi on tutvustatud rahvusvahelise 

konverentsi ettekandes 2021.a. juunis [63].  

 

Sellest tulenevalt võib väita, et kolm esialgset eesmärki, mis viisid selle uurimistöö 

läbiviimiseni on lahendatud ja kolm uurimisküsimust on saanud vastuse. 
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APPENDICES 

The appendices chapter of this thesis includes the following items: 

 

 Specim IQ camera specifications 

 Workflow of the Specim IQ camera 

 ENVI Standard parameters for HS images 

 Wavelength-Band Number mapping table 

 Graphical material related to chapter 2 

 Graphical material related to chapter 3 

 The code 

 The paper 
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APPENDIX 1 Specim IQ camera specifications 

 

Table A1 Technical specifications of Specim IQ camera [64] 

Parameter Value 

Spectral camera VNIR 400-1000 nm (CMOS) 

Viewfinder camera 5 Mpix 

User interface SW By Specim 

Storage SD card max 32 GB 

Data Format Specim Dataset with ENVI compatible data files 

Battery 5200 mAh Li-Ion (Type 26650) 

Operational time Appx. 100 measurements with one SD card and battery 

Display & keyboard 4.3 ” touch screen + 13 physical buttons 

Camera interface USB Type-C, WiFi 

Size 207 x 91 x 74 mm (depth with lens 125,5 mm) 

Weight 1.3 kg 

F/number 1.7 

Wavelength band 400-1000 nm 

Spectral resolution FWHM 7 nm 

Spatial Sampling 512 pix 

Spectral bands 204 

Peak SNR > 400:1 

Object distance 150 – ∞ mm 

FOV 31 x 31 deg 

FOV at 1 m 0.55 x 0.55 m 

Temperature, operational +5°C – +40°C 

Humidity, operational 95% non-condensing 

 

 

Figure A1 Specim IQ camera 
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APPENDIX 2 Workflow of Specim IQ for imaging 

 

 

 

Figure A2 Detailed workflow of Specim IQ for the imaging procedure 
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APPENDIX 3 ENVI standard parameters for HS images 

 

Table A2 ENVI parameter and its definition according to ENVI standard [65] 

ENVI Header Definition, Explanation  

description A character string describing the image or processing performed. 

samples Number of samples (pixels) per image line for each band. 

lines Number of lines per image for each band. 

bands Number of bands per image file. 

header offset 
Refers to the number of bytes of embedded header information 

present in the file (for example, 128 bytes for ERDAS 7.5 .lan files). 
These bytes are skipped when the ENVI file is read. 

file type 
Refers to specific ENVI-defined file types such as certain data 

formats and processing results. 

data type 

Parameter identifies the type of data representation: 

1 = 8-bit byte 

2 = 16-bit signed integer 

3 = 32-bit signed long integer 

4 = 32-bit floating point 

5 = 64-bit double precision floating point 

6 = 2x32-bit complex, real-imaginary pair of double precision 

9 = 2x64-bit double precision complex, real-imaginary pair of 
double precision (not supported in COMETOpticks) 

12 = 16-bit unsigned integer 

13 = 32-bit unsigned long integer 

14 = 64-bit unsigned integer (not supported in COMETOpticks) 

15 = 64-bit unsigned long integer (not supported 
in COMETOpticks) 

interleave 
Refers to whether the data are band sequential (BSQ), band 

interleaved by pixel (BIP), or band interleaved by line (BIL). 

sensor type 
Refers to specific instruments such as Landsat TM, SPOT, RadarSat, 

etc. 

byte order 

Describes the order of the bytes in integer, long integer, floating 
point, double precision, and complex data types. 

byte order=0 is Least Significant Byte First (LSF) data (DEC and 
MS-DOS systems) 

byte order=1 is Most Significant Byte First (MSF) data (all others - 
SUN, SGI, IBM, HP, DG). 

x-start Refer to the starting and ending sample and line if the image is a 
subset from a larger image. y-start 

map info 

Lists geographic coordinates information in the order projection 
name (UTM), magic pixel x value, magic pixel y value, magic pixel 
easting, magic pixel northing, x pixel size, y pixel size, Projection 
Zone, “North” or “South” for UTM only. 
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ENVI Header Definition 

projection info Not supported by COMETOpticks. 

default bands 
If set, indicates which band numbers to automatically load into the 

Available Bands List’s gray scale or R, G, and B text boxes every time 
the file is opened. 

z plot range 
Values indicating the default minimum and maximum values for Z 

plots. 

z plot average 
Values indicate the number of pixels in the X and Y directions to 

average for Z plots. 

z plot titles Allows entry of specific X and Y axis titles for Z plots. 

pixel size Indicates X and Y pixel size in meters for non-georeferenced files. 

default stretch 
Determines what type of stretch (% linear, linear range, Gaussian, 

equalize, square root) is used when the image is displayed. 

band names Allows entry of specific names for each band of an image. 

wavelength 
Lists the center wavelength values of each band in an image. Units 

should be the same as those used for the FWHM. 

fwhm 
Lists full-width-half-max values of each band in an image. Units 

should be the same as those used for wavelength. 

bbl 
Lists the bad band multiplier values of each band in an image, 

typically zero for bad bands and one for good bands. 
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APPENDIX 4 Wavelength-Band number mapping of Specim IQ 

 

Table A3 List of the bands and their corresponding wavelengths in Specim IQ 

Band 
No. 

WL 
Band 
No. 

WL 
Band 
No. 

WL 
Band 
No. 

WL 
Band 
No. 

WL 

1 397.32, 42 516.33, 83 637.08, 124 759.56, 165 883.79, 

2 400.20, 43 519.25, 84 640.04, 125 762.57, 166 886.84, 

3 403.09, 44 522.18, 85 643.01, 126 765.58, 167 889.90, 

4 405.97, 45 525.10, 86 645.98, 127 768.60, 168 892.95, 

5 408.85, 46 528.03, 87 648.95, 128 771.61, 169 896.01, 

6 411.74, 47 530.96, 88 651.92, 129 774.62, 170 899.06, 

7 414.63, 48 533.89, 89 654.89, 130 777.64, 171 902.12, 

8 417.52, 49 536.82, 90 657.87, 131 780.65, 172 905.18, 

9 420.40, 50 539.75, 91 660.84, 132 783.67, 173 908.24, 

10 423.29, 51 542.68, 92 663.81, 133 786.68, 174 911.30, 

11 426.19, 52 545.62, 93 666.79, 134 789.70, 175 914.36, 

12 429.08, 53 548.55, 94 669.77, 135 792.72, 176 917.42, 

13 431.97, 54 551.49, 95 672.75, 136 795.74, 177 920.48, 

14 434.87, 55 554.43, 96 675.73, 137 798.77, 178 923.55, 

15 437.76, 56 557.36, 97 678.71, 138 801.79, 179 926.61, 

16 440.66, 57 560.30, 98 681.69, 139 804.81, 180 929.68, 

17 443.56, 58 563.24, 99 684.67, 140 807.84, 181 932.74, 

18 446.45, 59 566.18, 100 687.65, 141 810.86, 182 935.81, 

19 449.35, 60 569.12, 101 690.64, 142 813.89, 183 938.88, 

20 452.25, 61 572.07, 102 693.62, 143 816.92, 184 941.95, 

21 455.16, 62 575.01, 103 696.61, 144 819.95, 185 945.02, 

22 458.06, 63 577.96, 104 699.60, 145 822.98, 186 948.10, 

23 460.96, 64 580.90, 105 702.58, 146 826.01, 187 951.17, 

24 463.87, 65 583.85, 106 705.57, 147 829.04, 188 954.24, 

25 466.77, 66 586.80, 107 708.57, 148 832.07, 189 957.32, 

26 469.68, 67 589.75, 108 711.56, 149 835.11, 190 960.40, 

27 472.59, 68 592.70, 109 714.55, 150 838.14, 191 963.47, 

28 475.50, 69 595.65, 110 717.54, 151 841.18, 192 966.55, 

29 478.41, 70 598.60, 111 720.54, 152 844.22, 193 969.63, 

30 481.32, 71 601.55, 112 723.53, 153 847.25, 194 972.71, 

31 484.23, 72 604.51, 113 726.53, 154 850.29, 195 975.79, 

32 487.14, 73 607.46, 114 729.53, 155 853.33, 196 978.88, 

33 490.06, 74 610.42, 115 732.53, 156 856.37, 197 981.96, 

34 492.97, 75 613.38, 116 735.53, 157 859.42, 198 985.05, 

35 495.89, 76 616.34, 117 738.53, 158 862.46, 199 988.13, 

36 498.80, 77 619.30, 118 741.53, 159 865.50, 200 991.22, 

37 501.72, 78 622.26, 119 744.53, 160 868.55, 201 994.31, 

38 504.64, 79 625.22, 120 747.54, 161 871.60, 202 997.40, 

39 507.56, 80 628.18, 121 750.54, 162 874.64, 203 1000.49, 

40 510.48, 81 631.15, 122 753.55, 163 877.69, 204 1003.58 

41 513.40, 82 634.11, 123 756.56, 164 880.74,   
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APPENDIX 5 Graphical material related to Chapter 2 

 

 

Figure A3 Spectral signature of different materials  [66] 

 

 

 

Figure A4 Image sample and spectral signatures of skins of 28 imaging subjects [26] 
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Figure A5 Different scanning techniques used in hyperspectral cameras [67] 

 

 

 

Figure A6 Three popular file structures of a hyperspectral image (BSQ, BIL, BIP) [68] 
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APPENDIX 6 Graphical material related to Chapter 3 

 

 

Figure A7 Imaging setup when the light source is incandescent light 

 

 

Figure A8 Some skin samples collected in the dark room setup from different subjects and different 

parts of the body 
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Figure A9 The range of the angular distances of the skin points to the reference point 

  



95 

APPENDIX 7 The Code 

 

The developed code for the purpose of carrying out the research work is available at: 

 

Madani, R (2022) Master [Source Code]. https://gitlab.cs.ttu.ee/ramada/thes_mas_1/ 
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APPENDIX 8 The Paper 

 

A paper was compiled on the subject of the GUI software tool presented in this thesis 

by the author of this thesis work, the main supervisor (Dr. Mart Tamre), and the co-

supervisor (Dr. Aleksei Tepljakov): 

 

Madani, R., Tamre, M., Tepljakov, A. (2021, June 25). Development of a MATLAB GUI 

Application for Processing and Analysis of Hyperspectral Images [Paper presentation] in 

Mekon 2021 

 


