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Introduction

This thesis uses fish as inspiration to build a new kind of a sensory system for
unmanned underwater vehicles. We describe fishlike robots that are equipped
with pressure sensors to investigate the flow field around them. We also show
how to interpret the information gathered with these sensors and how to detect
periodically turbulent flow regions that can provide energy saving opportunities
for underwater robots. To increase the usability of flow field information on
moving crafts we have developed a method to predict self-motion signals in
pressure sensors. And finally we put the information gathered from periodical
turbulence in use and control the tail beat of a fishlike robot to increase the
thrust by using alternating flows.

Motivation

In the vast underwater realm there is still a lot to be discovered. One reason why
our knowledge about the aquatic world is limited is because of the harsh
conditions that impede research. Current technologies trend towards using
unmanned vehicles for jobs that are too demanding for humans. However the
high hydrostatic pressure, reduced communication capabilities and invisible
underwater currents challenge even machines. The development of terrestrial
and aerial unmanned vehicles have progressed much further than the
development of underwater vehicles because the liquid medium retards the use
of electromagnetic signals for communication and navigation is interfered with
undetectable currents.

The problem with flow currents is caused by the lack of suitable sensors for
their detection. At the same time, fish as natural habitants of the underwater
realm have had the ability to sense flow for millions of years. To detect flow
currents they use a sensory organ called a lateral line. Only recently has the
technology reached to a level that supports the manufacturing of flow sensors
that are suitable for artificial lateral lines. The inspiration from biological lateral
lines have resulted in many biomimetic designs of lateral line sensors that show
promise for results comparable with their biological counterparts [1], [2].

As the artificial lateral line sensor technology is maturing, demand for tools
that can help interpret the flow data that wasn’t available before, is growing
accordingly. Research presented in this thesis helps to move closer to
understanding the wealth of information available in flow. Adaptation to
environmental changes is the key for autonomy and thus it is expected that an
underwater robot should change its control strategy to enhance swimming
efficiency with respect to the surrounding flow regime. Even the knowledge of
the flow direction can be used to orientate an underwater vehicle to reduce drag,
but more sophisticated understanding of surroundings can help to carry out
more complicated tasks faster and energy efficiently.



Research in artificial flow sensors is still mainly concerned with the
sensitivity of the flow sensors and measuring the performance of the sensors in
comparison with biological lateral line sensors [3—5]. Testing capabilities of
these sensors help to improve the development process but to be able to start
using these sensors on an underwater vehicle requires research with flow
sensors mounted on a craft, testing them in a dynamic environment.

There is lack of research also in the area of flow feature recognition. Lateral
line sensing of the features of a naturally occurring periodic turbulence can
provide benchmark hydrodynamic challenges in laboratory conditions. From
there this research can be expanded further to investigate and characterize other
unsteady flows. Finding control strategies for periodically turbulent flow
regimes may help to prepare underwater robots for more erratic flows.

Alternating flows are also known to be energy rich environments, providing
resting opportunities for station holding fish in running waters. Even
considering that manmade vehicles operate usually under different constraints
compared to biological creatures, using the flow to maximize either thrust or
efficiency of propulsion can be equally beneficial for marine vehicles. Reducing
energy consumption is an important subject in control of underwater vehicles
and if they can be programmed to recognize and use favorable flow conditions,
the benefits will not only extend their battery life but also make their navigation
more accurate.

Contribution of the thesis

This thesis addresses control oriented flow analysis using pressure sensors
arranged into state-of-the-art artificial lateral line systems to test hydrodynamic
hypothesis and analytical models. The contribution of this thesis is in:

e Designing and building artificial lateral line platforms for flow
sensing experiments in flow tunnels, culminating in development of
a fishlike sensory platform with 3D pressure field sensing capability
around the head of the platform.

o Characterizing periodic turbulence from the perspective of a situated
sensory agent in the flow and experimentally testing the methods to
distinguish periodically turbulent flows from steady flows. The
characterization presented in this thesis serves as a starting point for
recognition of more complex flows.

e Proposing a method to derive a model that can predict pressure
changes caused by self-motion. The predictions can be used to
suppress self-induced signals in order to enhance the sensitivity to
external stimuli.

e Showing that information sensed with pressure sensors in
periodically turbulent flows can be used in a control loop to
synchronize the tail beat of a fishlike robot with respect to vortices.
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As a result an increase of thrust and efficiency of a tail fin propulsor
is demonstrated.

Outline of the thesis

The material in this thesis is divided into 5 chapters. Chapter 1 gives an
overview of fish swimming modes in steady and unsteady flows but the main
focus of Chapter 1 is on the lateral line and its sensors, describing discoveries
both about biological and manmade flow sensors. Chapter 2 provides a
description of the equipment and methods used for the research disserted in
chapters 3, 4 and 5. Chapter 3 shows the differences of steady and unsteady
flows from the perspective of a sensing platform. The measurements are
analyzed and interpreted for the characterization of flow regimes. Chapter 4
shows a method for building a model for reducing a self-movement signal in
flow sensors and an inverse model to provide motion information with flow
sensors. Chapter 5 describes the use of artificial lateral line sensors to detect
vortices in the flow for vortex synchronized tail fin propulsion.
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1 Background of the research

70 percent of the Earth’s surface is covered with water. Human kind has used
sea to extend trade and travel for thousands of years, exploiting different vessels
and mechanisms to cover distances. Most common today is propeller propulsion
that has been known for over 2000 years, but became common on ships only in
the 19" century with use of steam engines. Since then the propeller design has
improved to near perfection but it is still less efficient than fish swimming that
uses fins instead of propellers.
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Figure 1.1. Swimming modes of fish. The vertical axis aligns swimming modes based
on the role of body and fins in propulsion. The parts actively contributing to propulsion
are shaded. The horizontal axis distributes the swimming modes based on the undulant
and oscillatory motion. Adapted from [6].
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There are over 32 000 fish species and their mechanisms for creating
propulsion vary greatly. Some of the more common swimming modes are
shown in Figure 1.1. Fish use different swimming modes to adapt to different
hydrodynamic and behavioral conditions. For example pectoral fins are often
used to achieve greater maneuverability whereas caudal fin swimming modes
produce high speeds and high acceleration [6], [7].

In order to choose the best swimming pattern for its purposes, fish use
different sensory organs to collect information about the environment. Vision,
inertial sense of the inner ear and sense of smell play an important role in
different swimming behaviors but in addition fish can also sense flow around
them [8]. This sensing organ — the lateral line — gives them a direct feedback
from the medium they use for propulsion. With the heightened perception of the
surrounding fluid environment some fish are able to reduce their effort of
swimming and let the hydrodynamic forces in the flow create thrust for them.

1.1 Flow negotiation in unsteady flow

Kinematics of swimming of different fish species has been studied extensively
in steady flow [9-16]. Using that knowledge to design a propulsive system for
manmade vehicles needs a decision about what is expected from this system.
For example when high speed is the only criterion, it would be probably best to
mimic the thunniform swimming mode, allowing the development of high
cruising speed with very high efficiency [7]. However, when a fin propelled
system is required to achieve a high cruising speed along with the good
acceleration and maneuverability, one of the best examples would be trout.
Trout mainly uses a subcarangiform swimming mode that provides speed and
acceleration, whereas good maneuverability is achieved through the use of
dorsal, pectoral and anal fins [17]. Trout are also known to swim in altered
flows and have created an interest among biologists who have started to
examine the kinematics of swimming in turbulent flows [18-20].

Figure 1.2. Schematic of a Karman vortex street. Laminar flow from the left is
obstructed by a circular cylinder. At moderate Reynolds numbers the viscosity of the
fluid produce vortices that are shed intermittently from either side of the cylinder.

Turbulence in general is hard to characterize because of the unreliable
repeatability of experiments. However, there is a flow phenomenon that is
turbulent and at the same time regular and periodic. It is called a Karman



Vortex Street and it can be produced by obstructing steady flow with a bluff
body at moderate Reynolds numbers. In laboratory conditions it is usually
created with a circular or D-shaped cylinder, but it also occurs commonly in
natural running waters where rocks and tree trunks disturb flow. The
phenomenon itself can be described as a successive pattern of alternating
vortices, shed in the wake of a bluff body and traveling downstream in rows
(Figure 1.2).

(a)

— (

(b)

()

—— Suction force —— Resultant force
Lift force —— Thrust component of resultant force
Drag force Lateral component of resultant force

Figure 1.3. (a) Schematic of fish swimming in bow wake of a cylinder. (b) Schematic of
principal forces acting on an entraining fish, adapted from [21]. (c) Schematic of
principal forces acting on a Karman gaiting fish, adapted from [22].

Rainbow trout (Oncorhynchus mykiss) and some other fish species have
gained attention because of the ability to use these altered flows for their
benefit. It has been hypothesized that trout prefer turbulent flows over steady
because of the reduced drag condition, increased olfactory information and
disorientation of prey, making the feeding easier [23], [24]. Experiments show
that trout, placed in flow that is obstructed by a cylinder, have 3 preferred
station holding positions in the near vicinity of it. They swim in the bow wake
of the cylinder, entrain at the edge of the suction zone on either side of the
cylinder or slalom directly behind the cylinder in the region where vortices have
already formed [23], [21]. In the bow wake fish take advantage of the increased

14



pressure at the stagnation point that helps to reduce its drag while stationed just
upstream from the cylinder (Figure 1.3(a)). Fish exhibit very little lateral
movement when swimming in the bow wake, undulating the posterior part of
the tail with reduced frequency [22]. For entraining, fish position themselves
close to the cylinder at a side of a Kdrman vortex street so that one side of a fish
experience accelerated flow from outside of a Kadrman street and the other side
is influenced by vortices forming behind the cylinder, balancing the lift force
and the suction force (Figure 1.3(b)). Entraining is very efficient for fish but the
cost of losing the balance and resuming the entraining position can reduce its
advantages [23].

Bow wake swimming and entraining make use of steady regions in altered
flows. In a Kérmédn vortex street the body of the fish is influenced by
turbulence. Kinematics of the fish swimming in a Karman vortex street is
distinguishable from swimming in steady flow by its increased lateral motion
and body curvature, and also by the reduced tail beat frequency that match the
vortex shedding frequency. This swimming mode has gained a specific name,
Karman gaiting, as it is fairly different from the usual gait in steady flows [22].

Liao et al. [18] have shown that Karman gaiting trout decrease muscle
activity while maintaining the distance from the cylinder. In Figure 1.3(c) is a
schematic of a Karman gaiting fish that can produce thrust by using its body as
a reconfigurable hydrofoil, taking advantage of alternating flows. Beal et al.
[25] have shown that for short time a dead fish can also produce thrust and
swim upstream in a Karman vortex street. However, to hold position, live fish
make corrective strokes with fins, balancing thrust, drag, and lateral forces [23].

1.1.1 Mechanical analog to Karman gaiting

Fish extracting energy from vortices by using its body as a hydrofoil have
inspired researchers to investigate this phenomenon with the help of manmade
mechanisms. Gopalkrishnan et al. [26] experimented with a rigid hydrofoil in a
Kérman vortex street, synchronizing its movements with vortices and changing
the phase of synchronization. The high aspect ratio hydrofoil, with a cord length
less than half of the wavelength of the vortex street, was actuated in transverse
(heave) and rotational (pitch) motion. In their experiments they observed the
wake of the hydrofoil and categorized it based on how a vortex shed from the
cylinder merged with a vortex from the hydrofoil. They noticed 3 different
categories of wakes. In the destructive mode, a vortex created by the hydrofoil
is pushed to merge with an opposite sign vortex from the cylinder, resulting in a
wake of weaker vortices. In the constructive mode, the merging vortices are
rotating in the same direction, creating a wake of stronger vortices. The third,
the expanding wake mode, appears when vortices from the foil and the cylinder
are not pushed together, but form mushroom shaped vortex pairs that move
transversely in flow. Triantafyllou et al [27] describe these interaction modes
through efficiency measurements. The destructive interaction mode gives the
highest thrust with high efficiency while the constructive mode results in both
minimal efficiency and thrust. The expanding wake mode operates with highest
efficiency but the thrust produced in this mode is considerably lower than in the
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destructive mode. Streitlien et al. [28] modelled the problem of heaving and
pitching hydrofoil in a vortex street. The model predicted the highest efficiency
and thrust for the destructive interaction mode with phase angles from 0° to 90°,
where 0° means the maximum lateral displacement of the hydrofoil towards the
vortex in the same streamwise position. These results for the most efficient
phase shift angle were later confirmed by Alben [29], [30]. That is however
opposite to the phase angle that is used by Karman gaiting fish [18] and a freely
heaving and pitching hydrofoil [25]. Beal et al. [25] have explained that Kdrman
gaiting fish can’t use destructive interaction mode for Kdrman gaiting because it
would have to act against the hydrodynamic forces in the flow.

1.2 Flow sensing

Similarly to robots operating on the ground or in the air, underwater robots use
vision, sonars and inertial measurement units to gather information about their
surroundings and self-motion. However, in the underwater environment these
sensor can be less useful for providing sufficient data for accurate positioning.
With low visibility it is easy to get into a situation where there is not much to
benefit from cameras and the sonar feedback can be useless because of the lack
of landmarks in the vicinity. The situation is even worse when there are currents
disturbing the navigation.

1.2.1 Biological lateral line

Fish have learned to cope with difficulties in the underwater environment as
they can sense the flow field around them using their lateral line. The sense of
flow comes from neuromasts that are the functional elements of the lateral line.
A neuromast itself consists of mechanosensory hair cells that are covered with a
gelatinous cupula. The cupula interacts with flow and the drag induced
deflection is transmitted to the hair cells. The hair cell’s deflection is converted
into electrochemical signals that are forwarded to the brain through nerve fibers
[8].

There are two types of neuromasts. Superficial neuromasts can be found on
the surface of the skin, usually from tens to thousands, depending on the species
of the fish. An illustration of lateral line sub-modalities of goldfish (Carassius
auratus) is shown in Figure 1.4(a), where the placement of superficial
neuromasts is marked with black dots. Superficial neuromasts (Figure 1.4(b))
have an elongated shape. Therefore they reach further through the boundary
layer, which increases their sensitivity [31]. These neuromasts are mainly
sensitive to bulk flow speed and can respond to very gentle flows with speed 1-
10 um s [32]. Neuromasts have their maximum sensitivity along one axis [33].
So in addition to sensing of flow speed, superficial neuromasts with different
polarization axis are grouped together to provide sense of flow direction for fish
[34].

The second type of neuromasts are called subepidermal or canal neuromasts
(Figure 1.4(c)). These are responsible for the name of the lateral line as the
subepidermal canals along the midline and in the head region of the fish are
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more visible and were noticed first. In Figure 1.4(a) the canals are shown with
brown lines that are covered with white dots, representing canal neuromasts.
These neuromasts are situated in the canals below the skin, and each of them
measure pressure difference between adjacent points where the canal emerges to
the surface of the skin. Canal neuromasts have more hair cells, up to thousand
while for superficial neuromasts the number is typically around ten [32]. Being
more sensitive they can measure pressure difference with the accuracy in orders
of 0.1-1 mPa [32].

e B UG RE T
) toy YA A ) Y y
feciecy cfiy Sblokcp gkt 0!'.'4.“(*‘_; o

Figure 1.4. (a) Diagram of the lateral line organ of goldfish (Carassius auratus),
adapted from [35]. Superficial neuromasts are indicated with black dots and canal
neuromasts with white dots on brown lines that represent canals. (b) Schematic of
superficial neuromasts and (c) schematic of a subepidermal neuromast in a canal,
adapted from [32]. The top half of the canal along with the covering skin is not shown.
The thick arrows in (b) and (c) indicate the direction of sensitivity of neuromasts.

The two sub-modalities are often used together coupled with vision and
inner ear sensing to maximize the perception of the flow field. Fish have found
variety of usages where lateral line has a vital role for making decisions or
bringing out complex behavioral responses. In order to find out how much the
lateral line is being used, biologists have compared fish behaviors in different
situations while disabling some of the sensor modalities. For example the
rheotactic behavior (behavioral orientation to water currents) is found to be
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mediated mainly by the superficial lateral line [36], [37] but with elevated flow
velocity these sensors get saturated and lose their ability to sense other
hydrodynamic stimuli [38]. The subepidermal neuromasts, however, are not
influenced by bulk flow in such a way and preserve their ability to detect a
vibration source even with a flow induced background noise [39]. The
subepitermal lateral line modality is more sensitive to detecting prey or
predators but to complete either of those behaviors fish still needs information
about the speed and direction of flow [40]. Other behaviors like schooling [41],
object entraining [42], [43] or distant touch mapping of the surroundings [44—
48] are similarly making use of both sub-modalities. Disabling either of them
will effectively damage the natural behavioral response of the fish.

Fish have different behaviors and they vary even between closely related
species. For a more coherent picture fish’s behavior needs to be observed in the
context of their natural habitation. It has been noticed that the sensitivity of
lateral line sub-modalities differ across fish species depending mainly on the
conditions of their habitation [49], [50]. Fish that are slow swimmers living in
still waters have more superficial neuromasts compared to the closely related
species that occupy running waters. High speed swimmers, on the other hand,
have more sophisticated canal lateral line system to ensure the survival in
running or turbulent waters [49-51].

Another mechanism improving the selective sensitivity is the ability to
suppress signals induced by bulk flow or self-motion [52], [53]. Montgomery
and Bodznick [54] suggest that fish use adaptive filtering on lateral line sensory
signals to cancel sensor stimuli that is coupled with fish’s movements to
improve their sensitivity to external stimuli.

1.2.2 Artificial flow sensors

The effectiveness of the biological lateral line used by fish has inspired the
development of artificial lateral lines with a motivation to give underwater
robots an opportunity to tap into the wealth of information available in flow.
Several methods like hot-wire anemometry, turbine flow meters, acoustic
Doppler-shift velocimetry and particle image velocimetry have been available
for a few decades for flow measurements. But sensors for these conventional
methods are usually too big and insensitive to be useful on underwater robots
[55]. Recent developments in microelectromechanical systems (MEMS) show
promise for producing flow sensors comparable with neuromasts, both in size
and sensitivity.

Researchers have found several different solutions for producing sensors that
either are sensitive to the flow velocity or can measure flow field indirectly
through pressure. Some of these sensing methods are mechanically very similar
to the hair cells found in a biological lateral line. These are usually flow sensing
sensors measuring the change of an electrical resistance in the material that
deforms when a cantilever attached to it is deflected by flow [55-57]. An
example of a cantilever based resistive flow sensor is shown in Figure 1.5(a).
These sensors have been reported to achieve ~7 mV mm™ s sensitivity to water
flow but they suffer from the lack of repeatability and robustness. To reinforce
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this type of sensors Peleshanko et al. [1] have covered the cantilever structure
with a hydrogel cupula. In addition to improved mechanical strength and
working range, the sensitivity of the sensor increased due to the suppression of
elastic resonance and an extended reach through the boundary layer. Sensitivity
threshold of 2.5 um s’ was reported by McConney et al. [2] for a bending
cantilever flow sensor covered with a cupula. This sensitivity is in the same
order with the sensitivity of biological lateral line sensors.

Similar to piezo-resistive sensors there are also cantilever based strain
sensors that measure change in capacity (Figure 1.5(b)). The deflection of the
cantilever changes the distance of electrodes on the membrane from the
common electrode [58—61]. An advantage of these sensors is that they can be
manufactured in densely packed arrays and have a potential to be equally
sensitive to tangential flow from any direction. In comparison, the piezo-
resistive cantilever based flow sensors are uniaxial and need cluster of multiple
sensors to sense directionality [4], [35], [56].

(b)

membrane top electrode

gis|spot| HV |[mag| WD | HPW | det 100 ym
*| 2.0 | 5.00 kV 381 x/10.4 mm| 413 ym |ETD CNR NNL

Gold radial
resistors

4
Gold spiral

Figure 1.5. MEMS lateral line sensors. (a) Piezo-resistive cantilever-based flow sensor,
adapted from [57]. (b) Schematic of the working principle of a capacitive cantilever-
based flow sensor, adapted from [62]. (c) Schematic of a hot-wire flow sensor, adapted
from [63]. (d) Piezo-resistive membrane based pressure sensor, adapted from [64].

MEMS technology has also advanced hot-wire anemometry sensors
reducing the size of a sensing unit (Figure 1.5(c)) and also making it possible to

19



manufacture them in arrays. For operation of the sensor the hot wire is heated
by feeding constant current through it. When the hot-wire element is introduced
to the flow it cools the wire down depending on the flow rate and it can be
measured as the change of resistance in the heated wire. To measure flow
velocity the hot-wire element needs to extend through the boundary layer,
making them similar to cantilever based sensors as they are afflicted by the
same problems: a complex manufacturing process and a fragile structure [4],
[63], [65].

There is another type of sensor that do not need structures extending above
the surface and can also be manufactured using MEMS technology. These
sensors are based on a piezo-resistive membrane that is deformed under
pressure (Figure 1.5(d)). Flow is not affecting these sensors directly as they are
level with the surface but the flow field can be estimated from the pressure
field. Pressure sensors relate to canal neuromasts on fish but instead of
measuring pressure gradient between two points on the surface they can
measure pressure with respect to vacuum or an ambient pressure [64], [66].

Pressure sensitive piezo-resistive sensors are also commercially available
[67]. These are the sensors we chose for our research, more thorough
description of them is given in Chapter 2.2. Although they are less sensitive and
they are larger compared to the sensors described above, we chose them
because of their robustness and consistent performance between different
exemplars. Another feature of these sensors is the standard packaging that made
the waterproofing process of an artificial lateral line easier.

1.2.3  Artificial lateral line sensing

With so many different groups putting effort into developing flow sensors, they
are making great progress and have demonstrated their achievements by putting
their flow sensors through different performance tests. Most of these tests are
biologically relevant and the results are often comparable with the performance
of the lateral line of marine animals.

The most common benchmark used by sensor developers is the dipole source
detection and localization which is similar to fish behavior when they are
tracking a prey or hiding from a predator. Pressure waves created by undulating
fins of swimming fish can be mimicked well enough with a vibrating sphere to
call forth a lateral line mediated feeding response on different fishes [39], [68].

Chen et al. [56] and Peleshako et al. [1] have used a dipole source to
quantify a threshold level of sensitivity of a lateral line sensor. Yang et al. [63]
demonstrated that a dipole source causes a “Mexican hat” shaped excitation
profile over an one-dimensional array of flow sensors. The same result was
confirmed later by Yang et al. [35] in 3D when they used cross shape
distribution of flow sensors mounted on a cylinder.

Another common biologically relevant test for artificial lateral line sensors is
the flow speed measurement [3], [4]. It relates with rheotactic behavior on
fishes which has been mimicked in work of Salumie et al. [69] with a robotic
fish that aligns itself with the flow direction based on the feedback from an
artificial lateral line. However, usually research groups, developing lateral line
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sensors, do not try to implement the biological behavior and show only the
response of a single sensor to the flow velocity. These tests may be enough to
quantify the sensor’s sensitivity but they neglect problems that arise when the
sensors are mounted on a moving craft.

An object detection test is another benchmark for flow sensors that has been
oversimplified to show if artificial lateral line sensors can detect some object.
This test relates to the environment mapping behavior observed in blind
Mexican cavefish [70], [71]. This species have no visual sensation but have a
well-developed lateral line organ that is used to create a 3D image of its
surroundings. For an artificial lateral line, this complex behavior is simplified
and approximated with a situation where an object is dragged past an array of
sensors that show sequential impulses in their signals [5], [64]. Bouffanais et al.
[72] have approached this problem analytically and have suggested a method
for building a map of flow environment with a multi-point sensor device.

Another challenge for flow sensing is the detection of turbulent flows and
providing information for navigation in them. The task is slightly easier for a
Karman vortex street as it is a periodically turbulent flow regime and thus has
predictable features. This phenomenon has been studied thoroughly [73], [74],
[75], but little is known about the flow field from the perspective of a fish or an
underwater vehicle. Artificial lateral line developers have shown that flow
sensors are sensitive enough to detect fluctuations created by alternating
vortices [63], [76] but to be able to navigate in a Karman vortex street the flow
sensor measurements need to be related with the structure of the flow regime.
First steps in interpreting flow sensor data about a vortex street in the earth
frame of reference are presented in [77]. The analysis there is done on particle
image velocimetry flow field data to suggest methods for onboard flow
characterization.

1.3 Novelty beyond the related work

In this thesis we present the research done with fish inspired artificial lateral
line platforms and thus we have described findings and achievements of both
biological and artificial lateral lines. In our research we used commercially
available miniature pressure sensors because none of the flow sensors in
development were ready for use on underwater robots. For more detailed
description of these sensors refer to Chapter 2.2. The other flow sensors
described in Chapter 1.2.2 may excel with higher sensitivity and smaller size
but for underwater robots it is required that they also are reliable and robust in
order to get satisfactory results from experiments.

Using these commercially available pressure sensors we investigated three
research problems. First we looked how different flows are perceived from the
perspective of an underwater robot. This work is extending the research of [77]
that estimated fish’s sense of flow based on particle image velocimetry data
whereas in this thesis we gather flow information by using an underwater
sensing platform. In this study we compare Karman vortex streets with steady
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flows and look how different data processing tools can be used to distinguish
these flows.

Secondly we investigate how craft’s motion data can be used to estimate
influence of motion to flow sensor signals. Some behaviors of fish suggest that
they use selective filtering on their lateral line signals to cancel out the stimuli
that is coupled with self-motion [54]. In our effort to build a similar filter for
artificial lateral lines we make use of an analytical model derived in [78] that
estimates pressure differences across the front part of a moving streamlined
body. Using pressure and motion measurements a model is built that can be
used to cancel out the self-motion stimuli in flow sensors data.

Finally we investigate if pressure sensors can be used to synchronize the tail
beat of a fishlike robot with vortices in Kérman vortex streets and measure how
the synchronization of the tail beat influence thrust and efficiency of the tail fin
propulsion. The phenomenon of fish that can save energy with Karman gaiting
swimming mode have been studied thoroughly for past decade [79] but there is
still some uncertainty about the role of the lateral line for a Karman gaiting fish
[23]. Meanwhile, it has been shown with hydrofoils that proper timing between
a hydrofoil and vortices is essential for increasing efficiency of the propulsion
[27]. In previous studies the interaction timing has been tuned by an oscillating
cylinder that creates the Karman vortex street [26]. In our research the vortex
synchronization is achieved through artificial lateral line sensing, providing a
new method that can be used on underwater robots to increase their swimming
efficiency.
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2 Materials and methods

This chapter gives an overview of experimental setups, procedures and
equipment used for artificial lateral line measurements in steady and turbulent
flows. While the research is about fishlike sensing and swimming we decided to
use flow tunnels instead of natural waters, as in a flow tunnel the environment is
more controllable for data gathering. Altogether three different flow tunnels
were used for experiments with lateral line sensors. Two of them are located in
University of Bath in UK and one in Centre for Biorobotics in Tallinn
University of Technology in Estonia. Henceforth they will be referred as UBI,
UB?2 and CBI.

We also developed three different artificial lateral line platforms. The first
lateral line platform (Platform 1) was a simple craft incorporating two sensing
arrays. This platform was made to advance the research of [77] by
characterizing Karman vortex streets from the perspective of a fish. The second
platform (Platform 2) is an advancement of the first with its fusiform fishlike
body and 3D positioned sensors, covering the head of the platform. The 3D
positioning of the sensors on the platform allows to research different flow
sensing problems and one of them, presented in this thesis, is a self-motion
estimation that can be used to enhance signals of external flow stimuli. The
third platform (Platform 3) is an even closer imitation of a fish and in addition
to the sensing ability, it can use flow information to control the movement of its
tail. This robotic fish was developed to research mechanisms of tail beat
synchronization in a Karman vortex street.

2.1 Requirements for sensing platforms

When we started this research we had little knowledge about different flow
features and how they would be felt with artificial lateral line sensors. Thus
choosing flow sensors for this research was an experimental procedure driven
by task requirements, mostly sensitivity that was required to be sufficient to
detect vortices in Karman vortex streets. When we had found commercial
pressure sensors that met this criterion we chose to continue our research with
them but at the same time started with development of our own flow sensitive
sensors [80] that would supplement or replace the commercial sensors in future.
Unfortunately these flow sensitive sensors are still in development as their
robustness needs to be improved for the use on underwater robots.

As for flow sensors, there were not many requirements for the lateral line
platforms in the beginning and the requirements developed and changed as the
work proceeded. Because of that our first artificial lateral line had a modular
design, consisting of two pressure sensor arrays that could be assembled into
different configurations, allowing us to test different hypothesis and see what
improvements this platform needed. In this thesis we present research with one
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of the configurations of this artificial lateral line (Platform 1), for detailed
description of it refer to Chapter 2.3.

From experiments with Platform 1 we saw that in the electronics design
more elaborate methods for the noise suppression were needed as more subtle
flow stimuli was often masked with noise from the environment. Secondly we
needed to improve the acquisition rate as it would improve accuracy of data
processing methods such as frequency analysis and turbulence intensity
analysis. From hydrodynamic perspective next sensing platforms needed to be
more streamlined to acquire results that are more comparable with the lateral
line of a fish. These requirements were fulfilled in the design of Platform 2
described in Chapter 2.4.

After test results with Platform 1 we started to develop another sensing
platform (Platform 3) that would also be capable of fin propulsion. While the
electronics design of Platform 3 is same as in Platform 1, the improvement is
mainly in its shape and actuation. Platform 3 has been designed to research
improvement of tailfin propulsion through vortex synchronization in Kérman
vortex streets. Before designing Platform 3 we experimented with different
compliant tails [81], [82] and saw that in order to use vortices, they need to
survive till they have reached to tailfin of the sensing platform. So it was
required that the surface of the sensing platform’s body would be smooth and
continuous even when the tail of the platform is actuated. Secondly it was
required that the tailfin of the platform would be flexible enough to react to the
forces created by vortices. A detailed description of the sensing platform that
meets these criteria is given in Chapter 2.5.

2.2 Lateral line sensors

(a)

Figure 2.1. (a) MS54XX-AM pressure sensor, adapted from [67]. (b) MS5401-AM
pressure sensors mounted on a data acquisition board, assembled for Platform 2.

In all three sensing platforms we used the same kind of pressure sensors. When
we started with this research we had to find sensors that were small and
sensitive enough to be suitable for lateral line sensing. Measurement Specialties
TM has developed a series of commercial pressure sensors that are meant to be
used in diving watches and other similar devices. These sensors are much
bigger than biological neuromasts but for the time being they were the best that
could be found to mimic a lateral line mounted on an underwater craft. We
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discussed pros and cons of different flow sensors that are developed, including
some that are very similar to biological lateral line sensors, but being under
development, they all need to be improved before they can be effectively used
on an underwater craft. Instead we chose robust and properly packaged
commercial pressure sensors, models MS5407-AM and MS5401-AM [67].

These pressure sensors have a sensing unit that is micromachined from
silicon and is mounted on a 6.2 mm X 6.4 mm ceramic carrier. Figure 2.1(a)
shows a picture of the pressure sensors used in this research. On the ceramic
carrier a stainless steel ring is mounted around the sensing unit to make
watertight mounting easier. The ring is filled with silicone gel to protect the
sensing unit from humidity and water while being easily deformable to mediate
pressure changes from the surrounding environment.

The two models of this sensor are identical in terms of packaging but the
difference between them is in the measurement range. MS5407-AM is suitable
of measuring pressure in the range of 0 to 7 bar and MS5401-AM in the range
of 0 to 1 bar. When measuring pressure in water with MS5401-AM there is a
risk of going out of the linear measurement range. It is reasonable therefore to
use MS5401-AM sensors for low depth experiments as they have 240 mV bar’
sensitivity over sensitivity of 56 mV bar’ for the 7 bar model. The higher
sensitivity of a sensor results in less noise in the digitalized signal. These
sensors were used with acquisition electronics and were mounted on the sensing
platforms to form artificial lateral lines.

2.3 Platform 1

(a) Sensor platform (b) Snapshot from an experiment

Figure 2.2. (a) A diagram of Platform 1 accommodating two laterally positioned
pressure arrays. Below is a cross-section of an array, showing a mounted pressure
sensor and a pore that connects it to the environment. (b) A snapshot of the sensor
platform tested in a Kdrman vortex street

The design of Platform 1 is very simple (Figure 2.2). It consist of two watertight
boxes that were mounted on a rectangular aluminum plate. A U-shaped
polystyrene section was mounted in the snout of the platform to make it more
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streamlined for flow sensing. A 6 mm steel rod, fixed in the middle of the
platform, was used to harness the platform in the middle of the water column.

In this design the watertight boxes function as sides of the artificial lateral
line. Each of them contains ten pressure sensors along with data acquisition
electronics. On one facet, the box has 2 mm pores, one for each pressure sensor
to connect them to the surrounding pressure field (Figure 2.2(a)). The boxes
were CNC machined to make precise mounting slots for pressure sensors that
were tightened in place with silicone grease.

On this platform the MS5407-AM pressure sensors were used. The signal
from the sensor’s Wheatstone bridge was digitalized without any amplification.
Analogue to digital conversion was implemented by using a 22 bit AD
converter MCP3553 by Microchip Technology Inc. With the reference voltage
124.5 mV it was possible to achieve an accuracy of ~0.1 Pa for the least
significant bit. However, the high noise rate made it irrelevant as the minimum
pressure change detectable through the ambient noise was around 1 to 10 Pa.
MCP3553 AD converter was chosen because of its small footprint and
convenient voltage range but it also limited the digitalized data reading rate to
50 Hz. On the other hand, for quite low data rate this device employs a third
order Delta-Sigma modulator and a fourth-order digital decimation filter that
along with high oversampling rate minimized the need for any external anti-
aliasing filter. To maximize the signal-to-noise ratio, the AD converter was
soldered directly on the other side of the PCB opposite to the pressure sensor to
achieve the shortest possible wiring for the analog signal. After digitalization,
the signal was transmitted over a serial peripheral interface bus to a
microcontroller ATmega324 by Atmel Corporation. Data storing was
implemented in an external computer coded in LabVIEW (National
Instruments, Austin, TX).

2.3.1 Experiments with Platform 1

Platform 1 was meant for stationary pressure field monitoring in both steady
and unsteady flows. The experiments were conducted in University of Bath in
the flow tunnel UB1. This flow tunnel has a working section with dimensions
100 x 30 x 30 cm’ (length x width x height). The upper boundary of the
working section is open and inflow and outflow are bounded with collimators.
This flow tunnel was built for experiments with live fish but it is also suitable
for smaller crafts. The flow tunnel was built to function with a digital particle
image velocimetry (DPIV) system. The pictures of flow field are captured using
a front-silvered mirror placed at 45° angle to look through the acrylic glass
bottom of the tunnel. The DPIV system used in University of Bath consists of a
continuous green-light laser (532 nm, Laser Quantum, TSI ™), a high speed
PCO 1200 hs 177 CCD camera and a synchronizer (TSI ™), The DPIV data
was used along with pressure measurements from the sensing platform to relate
the pressure data with an overhead picture of the flow.

In the experiments we tested 12 different scenarios with Platform 1 in steady
and unsteady flow (illustrations of the scenarios are shown in Figure 3.2). With
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these experiments we compare Karman vortex street flow with steady flow to
identify how steady flows can be distinguished from Karman vortex streets.

The flow speed in UB1 flow tunnel was kept at 20 cm s for both the steady
flow and the Karman vortex street experiments. The Karman vortex street was
created using a circular cylinder with 4.5 cm diameter. We tested the effect of
yaw angle change of the platform with respect to flow orientation. The
experiments with clockwise angles 0°, 15°, 30° and 45° were carried out in
steady flow and in the Kédrmén vortex street. In the Kérman vortex street we
also tested the effect of the lateral offset from the center of the street with 0 cm,
1 cm, 3 cm, 5 cm and 7 cm offsets to the right. Each of these experiments was
performed separately and lasted 4 minutes. During the first and the last minute
the platform was kept in still water. The still water pressure level was later used
as a reference in pressure data analysis.

2.4 Platform 2

Platform 2 is the more advanced version of Platform 1. An artificial lateral line
is mounted on a fish-shaped craft (Figure 2.3) to ensure that the flow fields
detected by fish and its replica are similar. Platform 2 can be divided into 3
sections: a sensing head, a watertight middle section and a rigid tail. The most
important section is the watertight compartment in the middle, containing 16
pressure sensors and the acquisition electronics. The compartment is machined
out of aluminum to shield the acquisition electronics from electromagnetic noise
of the environment. The front side of the casing has 2 mm pressure sensing
conduits that are connected to pressure taps on the surface of the head with
silicone tubing. There are 33 taps that can be either used to be connected to the
pressure sensors or left empty. This permits testing lateral lines in different
configurations. The head part itself is just a streamlined shell for covering the
silicone tubing (Figure 2.3(c)). The cover is manufactured out of polyamide
powder, using rapid prototyping, and then finished with a lacquer coating.
Rapid prototyping was also used to create a rigid tail that completes the
streamlined body.

This lateral line platform was designed for low depth experiments, making it
possible to use the MS5401-AM pressure sensors that are meant for 0 to 1 bar
measurements. To ensure linear behavior in water, comparative tests against
MS5407-AM sensors were carried out, showing 1.2 bar upper limit for the
linear working range for MS5401-AM pressure sensors.

When designing the acquisition electronics the noise suppression was taken
much more seriously into consideration than in the design of Platform 1. In
addition to the electrically shielded case, the PCBs were designed to have
shielding layers to separate the digital electronics from the analogue part.
Special care was taken when designing the power circuit to provide low noise
supply voltage for pressure sensors. An assembled electronics board is shown in
Figure 2.1(b).
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Figure 2.3. (a) A CAD model of Platform 2. (b) An exploded view of Platform 2 where
1 is the left panel of the pressure tapped head, 2 is the right panel of the pressure tapped
head, 3 is the front panel of the waterproof housing for the pressure sensors and the
electronics, 4 is the circuit boards and 5 is the rear panel of the waterproof housing. (c)
A photograph of the inner tubing reaching out from the sensors to the pressure taps. (d)
The top view of the fusiform head. (e) A schematic of the cross-section of the pressure
tapped head. It shows the tap positions of sensors 1-9.

A diagram of the acquisition process is shown in Figure 2.4. The pressure
sensors give out a differential signal that is filtered with a ceramic capacitor
between the differential lines, reducing the high frequency noise before
transmitting the signal to the amplifier. The signal is amplified 13.67 times with
an instrumental amplifier AD8226ARMZ developed by Analog Devices Inc. A
single ended signal from the output of the amplifier is sent through a RC filter
with the 1 ms time constant before sending it for the digitalization. The signal is
digitalized using a 16 bit accurate analogue to digital converter
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ADSS8332IBRGET from Texas Instruments Inc. The digital signal is then
passed to microcontroller AT32UC3B1128-AUT (Atmel Corporation) over a
serial peripheral interface bus with a sample rate of 10 ksps. Within the
microcontroller the data was oversampled 50 times and sent to the computer
over the RS-232 serial bus with a sample rate of 200 sps. The data was gathered
using a custom built code in C#. The amplification and the digitalization of the
signal resulted in an accuracy of =2 Pa per least significant bit and the shielding
reduced the ambient noise level below that.

At first the amplification stage of the acquisition electronics was designed to
shift the measurement range of the pressure sensors in use. The problem with
these sensors is that for both 7 bar and 1 bar model the measurement range
below 1 bar is never used and thus it reduces the accuracy of digitalization
process. However, with some instrumental amplifiers the acquisition range can
be shifted so that only a signal in range of 1 bar to 1.2 bar is digitalized, making
the resolution of measurements much greater. Unfortunately, the instrumental
amplifier chosen couldn’t support such feature, resulting with about 6 times
smaller accuracy than planned.

[i AD SPI MC RS-232 P C
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Figure 2.4. A diagram of the pressure data acquisition process in the lateral line
electronics of Platform 2.

2.4.1 Experiments with Platform 2

Experiments with the sensor Platform 2 were carried out in the flow tunnel UB2
located in University of Bath. It is similar to UBI1, as it has the upper boundary
open to the air and also the collimators at the inlet and the outlet of the working
section. The size of the working section in UB2 is 93 x 40 x 36 cm’ (length x
width x height). The same DPIV system that was used with UB1 was also used
with UB2, capturing flow images through the acrylic glass wall from below
with help of a front silvered mirror.

Platform 2 is suitable for a wider range of research scenarios of
hydrodynamic effects but in this thesis we present only the self-motion study.
Experiments for this study were conducted to show how the crafts velocity and
acceleration affect pressure field around the craft. To move Platform 2 we
conducted experiments with a linear motor rig MT480P (Aerotech Inc.). The
linear motor rig was mounted above the working section of the UB2 flow tunnel
and a manual adjustment of the motion rig’s angle in the horizontal plane
allowed to choose the movement direction of the motor with respect to the flow
direction. The sensing platform was fastened to the motion rig with a 6 mm
stainless steel rod to reduce flow-induced disturbances. However, the choice of
long movement arm resulted in 8 Hz small amplitude oscillations of the sensor
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platform, but these oscillations, felt by pressure sensors, were filtered out before
analyzing the data.

The motor was controlled with a Soloist Motion Controller 3.02 (Aerotech
Inc.) that had a computer interface, allowing precision movements along a
single translational axis. The controller was capable of recording the position
and the velocity data with sample rate 200 sps. So the sensing platform didn’t
swim itself but was moved externally in water. We chose to use oscillatory
motion for the experiments as it incorporates both changing speed and
acceleration (Figure 2.5). The sensing platform was moved with 12.5 cm
amplitude and with 0.16 Hz frequency in still water and also in steady flows
with speeds of 9.2 cm s/, 14.7 cm s, 18.6 cm s, 24.1 cm s/, 28 cm s7'. Each
experiment lasted less than 5 minutes with about 2 minutes of flow data
recorded for reference purpose before and after the oscillatory movement. The
platform’s motion lasted 18.75 s in which time it was moved 3 times forward
and backward. The oscillation was started by moving the craft forward from the
middle position. The pressure data, the DPIV recordings and the motion data
were synchronized with a switch that turned on a LED light for the DPIV
capture and gave a digital signal to the sensing platform and to the linear motor
controller. The synchronization enabled us to find out the relation between the
self-motion and the pressure field while the DPIV provided overhead view of
the flow structure.
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Figure 2.5. The motion data from the linear motor controller. Less than 3 periods of data
was used in analysis as we excluded the data that had disturbances in the beginning and
in the end of the movement.

2.5 Platform 3

Platform 3 is a fishlike robot (Figure 2.6), designed with a special purpose to
test a hypothesis about swimming in Kéarman vortex streets. The inspiration for
the design of the platform originated from the shape and the swimming
kinematics of rainbow trout. Trout was chosen to be an example because of its
high swimming speed and acceleration that are characteristic to the body and
caudal fin swimmers, especially to the group using the subcarangiform
locomotion mode [7], [83], [84]. Subcarangiform swimmers use muscles of the
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2/3 of their posterior body to create an undulating wave that is traveling with the
speed greater than the resulting swimming speed in the opposite direction.

Instead of using the serial change kinematics to actuate the caudal fin, we
decided to imitate the subcarangiform swimming kinematics with the use of a
compliant tail that is actuated with a single external motor placed at the 1/3
body length from the nose. The compliant tail reduces the complexity of control
algorithms that actuate the tail as opposed to the multi-link design that gives
more control over the tail but needs precise manipulation of each link to achieve
the desired smooth motion. The robot’s compliant tail was casted into a tail-
shaped mold using a two-component silicone Dragon Skin (Smooth-On, Inc.).
The viscoelastic properties of the tail were tuned to mimic the corresponding
properties of rainbow trout by adding 6.2% of Slacker Tactile Mutator additive
(Smooth-On, Inc.) into the casting mixture [81], [82]. A backbone of a thin
plastic sheet that extended out of the tail to form the rays for tail fin, was casted
into the tail. The fin itself was casted separately as a thin membrane from a two-
component silicone Elite Double 8 (The Zhermack Group). The design of this
compliant tail is a result of a spiral development process that aimed at
maximizing the benefit of vortices in a Karman vortex street.

0 10 20 30 40 cm

2l

1

Figure 2.6. Platform 3 for vortex synchronization. 1 — pressure tapped head, pressure
sensor positions are shown on a schematic of the cross-section; 2 — compliant tail;
3 — actuator; 4 — force plate.

The propulsive movements were localized at the tail part of Platform 3 by
harnessing the head of the robot to the motor’s static base. The coupling
between the head and the tail was resolved by using stretchable silicon
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connection that formed a skin that allowed a fusiform transition between the
parts. Performance of the tail fin propulsion was measured with a force
measurement system that harnessed the robot to the flow tunnel’s floor. The
force measurement system is a custom built device that can measure streamwise
and transverse forces on the horizontal plane and also torque around the motor’s
axis. The force plate has been calibrated with a force gauge LG-5000A
developed by Lutron Electronic Enterprise CO., LTD.

The head part of the robot is rapid prototyped out of polyamide powder and
then finished with lacquer coating. The head is assembled from two sides that
has a seal in between to create a watertight compartment for pressure sensors
and an acquisition electronics. There are 14 pressure sensors in this
compartment that are connected to the surrounding environment through taps,
arranged in straight lines on both cheeks of the head. The pressure acquisition
electronics is similar to the one described in Chapter 2.3, utilizing the MS5407-
AM pressure sensors.

2.5.1 Experiments with Platform 3
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Figure 2.7. A schematic of the CB1 flow tunnel and the experimental setup.

Platform 3 was designed to be used in Karmén vortex streets to enhance the
thrust production by synchronizing the tail beat with vortices. The experiments
for vortex synchronization were carried out in a flow tunnel located in Centre
for Biorobotics in Tallinn University of Technology. The flow tunnel CB1 has a
working section with dimensions 150 x 50 x 50 cm’ (length x width x height), a
schematic of the flow tunnel along with other experimental equipment is shown
in Figure 2.7. The flow tunnel has the upper boundary closed with a sheet of
transparent acrylic glass that allows to capture DPIV pictures from the above.
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The DPIV system used with the tunnel is custom built, using red 808 nm
wavelength laser diode with 200 mW output power [85]. The laser beam is
dissipated with a cylindrical lens into a sheet of light that illuminates particles in
the flow. The flow images are captured using UI5240HE-M camera developed
by IDS Imaging Development Systems GMBH.

The experiments were conducted in a Karman vortex street that was created
with a D-shaped cylinder with a 10 ¢m diameter. The cylinder was placed
vertically in the middle of the left and the right wall and 30 cm downstream
from the collimator at the inlet of the working section. Platform 3 was
positioned in the wake of the cylinder, 30 cm downstream from the back-side of
the cylinder.

The experiments with Platform 3 can be divided into three stages. First, we
needed a simple way to prove that the synchronization is affecting the trust
production. The robot’s tail was moved with a frequency different from the
vortex shedding frequency to show that thrust oscillates with a frequency that
corresponds to the difference between the tail beat and the vortex shedding
frequency. We used 30 c¢m s flow speed to create a vortex street with 0.64 Hz
shedding frequency and actuated the robot’s tail with 0.74 Hz frequency to
make the thrust production oscillate with 0.1 Hz frequency. The same effect can
be seen with other frequencies but we chose the tail beat and the shedding
frequency close together to produce a low frequency component that can be
well distinguished in the frequency analysis.

The next stage was to find the best and the worst phase, in terms of thrust
production, between the tail beat and vortices. The experiment was carried out
with the same Karman street conditions as before but the tail beat phase was
varied with 30° steps along the entire range from 0° to 360°. Each 3 minutes step
of tail movement was preceded by 2 minutes of data gathering with a stationary
tail in the neutral position. The data with the stationary tail was used for
reference in the thrust calculation.

The last stage consisted of series of experiments for comparison between the
trust production in steady flow and in a Karman vortex street. We started by
measuring the platform’s drag in steady flow and used it as a benchmark for the
vortex synchronized thrust production. The drag was measured with flow
speeds 20 cm s, 25 cm s, 30 ecm s, 35 ¢cm s and 40 cm 5. The thrust
production experiments were done with the same flow speeds both in steady
flows and in Karman vortex streets. In steady flows the tail was actuated with
the same frequencies as in Karman vortex streets, where the tail beat frequency
was dictated by the vortex shedding frequency. In the Karman vortex streets
there were separate experiments for the best and the worst phase angle (in terms
of thrust production). Each phase shift and steady flow experiment at a different
flow speed were carried out separately. And to get statistically more relevant
results we conducted them in sequences, repeating the same flow speed and
phase configuration 5 times. We recorded 4 minutes of data with the tail
movement and 4 minutes without at each repetition. Again the data with the
stationary tail was used as a reference in the thrust calculations.
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2.6 Artificial lateral line calibration and testing

Although the sensors we used are commercially available and have been
characterized on the datasheet [67], they still need calibration for the lateral line
sensing experiments. From the specification it can be found that in addition to
the pressure sensitivity these sensors are subject to light and temperature
changes. While the light sensitivity can be overcome simply by covering
sensors, the temperature sensitivity is a bigger problem.

2.6.1 Sensitivity to pressure

In the scope of this thesis we have used two different designs of acquisition
electronics. The sensing platforms 1 and 3 had their theoretical accuracy ~0.1
Pa per least significant bit and Platform 2 had the corresponding value about 2
Pa. Although the electronics is different, the calibration procedure is the same
for all sensing platforms. To find the exact value-unit conversion factor for each
sensor we used a change of hydrostatic pressure ,p caused by the change of
depth s/ in still water.

AP = pgah. 2.1)

Here p is the density of fresh water at the measured temperature and g is the
gravitational acceleration.

The lateral lines were calibrated by alternating between depths that were 10
cm apart and measuring the resulting pressure change. The measurements on the
both depths were repeated 5 times. The data was recorded in the single sequence
with 5 minutes of data for each change of depth. The value-unit conversion
factor was then calculated by dividing the calculated pressure change with the
average change in sensor readings.

2.6.2  Sensitivity to temperature

There are two options to handle temperature influence in pressure data. The
more elegant option is to design lateral line electronics to accommodate
temperature sensors in the close proximity to every pressure sensor, as done in
the work of Salumée et al. [86]. We decided to neglect the temperature effect by
letting the sensing platform to stabilize its temperature before every experiment.
Unfortunately with this approach the artificial lateral lines still experienced
some temperature influence when the flow speed was changed during an
experiment. Although the temperature effect was weak as the pressure sensors
were not exposed to the flow, it is better to incorporate temperature sensors into
a lateral line design to eliminate this problem. It should be considered for any
lateral line sensor that uses a resistive sensing element.

2.6.3 Effect of air bubbles in canals

In addition to effects that were stated in the specification of these pressure
sensors, we found another one that was caused by the mechanical design of our
lateral line systems. The pressure sensors were mounted on all sensing
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platforms using the same principle — the sensors were positioned away from the
surface to shield them from flow and light, and the pressure around the craft
was conveyed to the sensors through canals. However, these canals, having only
one open end, do not fill with water when the crafts are submerged and as the
air in the canals is compressible, it affects how the pressure changes are
perceived from the surface of the craft.
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Figure 2.8. (a) Dampened sensitivity of an artificial lateral line sensor, caused by air in
the pressure conduit canals. The dampened measurements are compared with an
experiment with the conduit canals filled with water. (b) Dampened sensitivity shown in
the frequency domain.

Comparative experiments with and without air in the conduit canals show
that air in the canals dampens the pressure sensitivity. Figure 2.8 shows
pressure measurements from the experiments of a pressure sensing craft that
was kicked, creating abating lateral vibrations. The dampened sense of vibration
is evident when comparing the sensors readings from canals with and without
air bubbles. The canals filled with air reduce sensitivity to pressure fluctuations
over 2 times, depending on the frequency of the signal. Thus the experiments
presented in the following chapters have been done with the pressure conduits
filled with water, ensuring the maximum sensitivity to the pressure field. The
canals can be filled using syringe or if the canal system can be taken apart like
in case of Platform 2, the air can be removed by assembling the canals while the
platform is submerged.

2.7 Flow speed estimation with pressure sensors

As discussed before, fish lateral line organ consists of two sub-modalities. One
is mainly responsible for measuring bulk flow speed and the other measures
pressure gradient. An artificial lateral line sensing method presented in this
thesis is based on pressure sensors which are suitable for sensing flow
acceleration and external stimuli like the canal lateral line sensors on fish.
However, this artificial lateral line system lacks the flow speed measurement
capability so here we present methods to estimate the flow speed based on
pressure sensors’ data.
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2.7.1 Flow speed estimation in steady flow

In irrotational flow, Bernoulli’s law ties together pressure and the flow speed,
making it possible to predict one through another.
2
v

p+ PT — pgh = const. (2.2)
Here p is static pressure that can be measured with pressure sensors while v, in
the dynamic pressure term, is the flow velocity at the same measurement point.
The third term represents hydrostatic pressure caused by the height /4 of the
fluid column. Bernoulli’s law states that the sum of static and dynamic pressure
remains constant when measured at the same level of elevation. Writing the
Equation (2.2) for two points that are at the same depth gives us:

2 2
P4 PV,
Pt =Pt —— (2.3)

If one of those points is a stagnation point, the dynamic pressure term
disappears as the flow velocity is close to zero at that location, resulting in an
Equation (2.4) that makes it possible to estimate the flow velocity from pressure
difference between the stagnation point and some freestream location.

V.2
Dstag — Pfs = P ;S . 24
Objects in flow change the flow around them so it is hard to design an
underwater vehicle that can measure freestream pressure directly, however, it
can be predicted indirectly based on the pressure profile on a streamlined body.
At the most upstream point of the body the flow velocity is zero and when
moving along the body the flow velocity increases until at the widest part of the
body it is accelerated to maximum, which is higher than the freestream velocity.
Because of this continuity, it can be assumed that there is a point between the
nose and the widest part of the body where the flow velocity equals with the
freestream velocity. Pressure measurements at a location on the body where the
flow velocity is equal to the freestream velocity can provide the freestream
pressure for use in Equation (2.4) for calculation of the freesteam flow speed.
To illustrate it, we have measured pressure with 9 sensors on Platform 2
(Chapter 2.4) in steady flow at 5 different flow speeds. In Figure 2.9(a) the
pressure distribution over the streamlined body is shown. We see that for
different flow speeds the trend is always the same. Nose sensor senses the
highest pressure and the pressure difference with side sensors readings increases
as the flow speed grows. It is clearer from Figure 2.9(b) which shows the
pressure with respect to the nose sensor’s (Sensor 5) value at different flow
speeds. Plotting these measurements against the flow speed (Figure 2.9(c))
show that the relationship between the flow speed and the pressure difference is
quadratic, as predicted by Bernoulli’s law. Figure 2.9(c) shows also the
relationship of Equation (2.4) and it is a close match with pressure difference
between sensors 5 and 4.
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Sensor 4 is not the only sensor that can be used with this method, others that
are not in the location of the freestream pressure are just as useful. But for other
pressure sensors the pressure difference needs to be compensated. Equation (2.5)
shows the compensation for pressure difference where p; represents any of the
side sensor readings and C; is a constant balancing the equation. In Equation (2.5)
p1 can also be an average pressure of all the side sensors. The use of multiple
sensors increases accuracy and reliability of this flow speed estimation method.

pvfs2
2

This method is universal for any steady flow but has one weakness. In order
to estimate the flow speed the craft has to be orientated against the flow, as the
method requires the nose sensor to measure the stagnation pressure. To get
around this restriction, we use another method that does not rely on the pressure
measurements at the stagnation point.

(2.5)
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Figure 2.9. (a) Pressure profile measured around the head of the streamlined craft at
different flow speeds. (b) The pressure profile presented with respect to the nose
sensor’s value to eliminate the hydrostatic pressure in the measurements. (c) The
relationship between the flow velocity and the pressure difference for different sensors,
along with the theoretical prediction from Bernoulli’s principle.

We can find the constant in Equation (2.2) experimentally by mapping the
relationship between the pressure and the flow speed. Figure 2.10 presents the
pressure with respect to the flow speed measured in CB1 flow tunnel as an
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average over the side sensors on Platform 3 (Chapter 2.5). Averaging over both
sides cancels out the pressure changes that are caused by the change of the
orientation in flow. In Figure 2.10 is visible that the relationship between the
pressure and the flow speed is quadratic but it is not what we had expected
based on Equation (2.2). It is because in a flow tunnel the circulation creates
hydrostatic pressure that depends of the flow speed and the relationship is
determined by the design of the flow tunnel.
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Figure 2.10. The relationship between the flow speed and the hydrostatic pressure in
CB1 flow tunnel. The measurements in steady flow and the corresponding trend line is
given in blue. The same measurements in a Karman vortex street are given in red.

This mapping method has both positive and negative aspects. Comparing the
pressure changes in Figure 2.9(c) and in Figure 2.10 we see that in the latter
case the changes are over 2 times bigger, making the flow speed estimation
more accurate. The method doesn’t require a pressure reading at the stagnation
point and can still give an adequate estimate of the flow speed when the craft is
not orientated directly to the flow direction. However, it is also subject to the
depth changes that alter the hydrostatic pressure. It is hard to keep a constant
depth in natural waters where this extra effort makes the first method more
attractive. Thus this mapping method suits better for use in flow tunnels. We are
not too concerned about the limits of the method as it is a temporary solution
until the miniature flow field sensors are reliable enough to provide the flow
sensitive sub-modality for artificial lateral lines.

2.7.2  Flow speed estimation in Karman vortex street

Bernoulli’s law cannot be used for unsteady flows such as Karman vortex street
as the vortices introduce the rotational component in flow. The method using
the stagnation pressure is futile in a Karman vortex street because the vortices
are constantly changing the flow and along with it the location of the stagnation
point. However, the method, mapping of the flow speeds to pressure change,
works also in a Karman vortex street as shown in Figure 2.10 with red triangles.
The hydrostatic pressure is not affected by vortices and the average pressure
over several pressure sensors on the both sides of a craft smoothen the local
extremes in the signal. However, the mapping method in a Karman vortex street
has the same problems as in steady flow, in a new environment it has to be
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recalibrated and the hydrostatic pressure caused by depth needs to be known or
kept constant. The effort to make a new mapping for the method can be reduced
with an automatic calibration when there is some other method that provides the
reference data.

Conveniently, a flow speed estimation method is provided with the periodic
nature of a Karman vortex street. An object in a vortex street is affected by the
vortices that change the pressure on the surface of the immersed body
periodically. These periodic patterns can be felt with pressure sensors and as the
vortices travel downstream the pattern is repeated successively in the signals of
the pressure sensors arranged into an array. The vortex traveling velocity can be
calculated by dividing the distance between the sensors, given by the lateral line
specification, by the traveling time that can be found as a lag between the sensor
signals by cross-correlating them [87].

There are several methods to increase the reliability and the accuracy of this
method. One option is to add more sensors to the array so that the delay in the
signals can be averaged over a higher number of combinations between the
sensors. The accuracy of the signal delay measurement increases also with
longer distances between the sensors and with a higher sampling rate of the
pressure sensors. However, too long intervals between the sensors can also give
worse results as the vortices can get distorted over this distance, making the
cross-correlation algorithm inaccurate. There is no such problem with
increasing the sampling rate of the sensors. The pressure signals can be
correlated at smaller time increments, providing more accuracy for the speed
calculation while the small intervals between the sensors minimize the vortex
distortion.

Conclusion

In this chapter we have discussed how the lateral line platforms were designed
and built. We have described this process separately for each platform but
actually the development process have been continuous and every new platform
supplements the last in order to produce better results.

As we designed new equipment for experiments the requirements for
experiments also grew. Experiments had to accommodate different
measurement systems and synchronize data between them. Another source for
complexity of experiments was the need for reference data acquisition for force
and pressure measurements. The reference data was later used in signal analysis
to ground the measurements to appropriate levels.

In this chapter we described a method for calibrating the pressure sensors in
sensing platforms and discussed measures that needed to be adopted to acquire
better flow data. We also describe methods for acquiring flow speed
information with an artificial lateral line system that is based on pressure
Sensors.

In a result we have 3 sensing platforms that allow us to measure flow
features from fish perspective. The sensor configurations vary on these
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platforms from simple arrays on Platform 1 to 3D sensory system that covers
the front part of the fusiform body of Platform 2. Platform 3, however, has been
designed to use the flow information as it can move its tail and control its
propulsion based on flow features.
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3 Pressure sensing lateral line in steady and unsteady
flows

Kérman vortex street is a flow condition that is turbulent but at the same time
periodic and predictable. Learning to recognize its features by comparing it with
steady flow helps the development of control strategies for underwater robots. It
is also a suitable condition for learning about biological fish and their flow
sensing capabilities. Behaviors of live fish can be very complex and hard to
produce in a consistent way but a flow sensing robot mimicking their behaviors
could provide useful information about fish.

Karman vortex street itself has been studied before [73] and it is quite well
characterized with velocity field showing vortices as they appear in the
horizontal plane from the perspective of an overhead camera. Such images are
shown in Figure 3.1, where on the left is steady flow and on the right a Karman
vortex street. It is less known how the vortices are felt by a fish or an
underwater vehicle situated in flow.
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Figure 3.1. DPIV pictures of steady flow (a) and vortex street (b). The vorticity field is
shown with a color mapping where blue indicates the clockwise and red the counter-
clockwise rotation of the flow. The vorticity field is superimposed with arrows showing
the velocity vector field.

The research presented in this chapter is based on results published in [87].
With Platform 1 (Chapter 2.3) we show how a Karman vortex street is sensed
with arrays of pressure sensors while situated in flow. The data about Karman
vortex streets is gathered from 8 scenarios (Figure 3.2(5-12)) which include
several lateral offsets and different yaw angles in the wake of a 4.5 c¢m diameter
cylinder. It is compared with data from steady flow at the same 20 cm s flow
speed (Figure 3.2(1-4)). Using methods that showed promise in analysis of
DPIV data [77] we show that spatio-temporal pressure average, average
standard deviation over sensor signals and spectral frequency analysis are data
processing tools that can achieve following tasks:

e Distinguish between steady flows and Karman vortex streets.
e Determine sensing platforms orientation with respect to incoming flow.
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e Determine sensing platforms lateral deviation from center axis of
Karman vortex street.

Figure 3.2. Investigated scenarios in steady flow (1-4) and in a Karman vortex street
(5-12). In all experiments the flow speed was 20 cm s™/. A vortex street was generated
by placing a 4.5 ¢m diameter cylinder in the flow. Experiments: 1 - sensor platform
aligned parallel to flow (steady flow), 2 - rotated by 15°, 3 - rotated by 30°, 4 - rotated
by 45°, 5 - sensor platform aligned parallel to flow (Karman vortex street), 6 - rotated
by 15°, 7 - rotated by 30°, 8 - rotated by 45°, 9 - sensor platform shifted to the right
from the center of the Karman vortex street by 1 c¢m, 10 - shifted by 3 ¢m, 11 - shifted
by 5 ¢m and 12 - shifted by 7 c¢m.

3.1 Characterization of Karman vortex street

We start with comparison of Experiments 1 and 5 that both have the craft in the
default position in the middle of the working section with no lateral or angular
offset. The Karman vortex street is generated with a 4.5 cm cylinder positioned
20 c¢m upstream from the snout of the craft. In Figure 3.3 the data from the
Kérman street experiment and the steady flow experiment has been cascaded.
Graph (a) shows the pressure signal from Sensor 5 located in the middle of the
right side of the craft. Data is filtered with band-pass filter that removed DC
offset and high frequency noise from the signal. The light blue color shows the
intervals during the experiments when flow was turned on. In Graph (b) the
spatio-temporal average of pressure sensor signals is plotted, the left array is
represented by blue circles and the right array by green crosses. The graph
shows that flow produces a pressure drop, about 30 Pa, registered both in a
Kéarman vortex street and in steady flow. The pressure change is caused by the
flow circulation and its magnitude is characteristic to the particular flow tunnel
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UBIL. It is the same hydrostatic pressure dependency that we used before in
Chapter 2.7 to predict the flow speed. Unfortunately it cannot be used to
differentiate between steady and turbulent flows as it is dependent on the flow
speed.
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Figure 3.3. Analysis of the pressure readings in a Kdrman vortex street (60 s <t < 180 s)
and in steady flow (240 s <t < 360 s). Data were cascaded from Experiments 1 and 5
for illustration purposes. In both flow regimes, the sensor platform was oriented against
the flow. (a)—(e): (a) Pressure readings from Sensor 5 (band-pass filtered). (b) Spatio-
temporal pressure averages of the right (green) and the left (blue) sensor array. (c)
Standard deviation of the pressure signal. (d) Frequency that was sensed dominantly by
each sensor. The frequency represented by each color is shown in the key. Green at 1.2
Hz is the dominant color/frequency in a vortex street which matched the theoretical
vortex shedding frequency. (¢) Maximum number of sensors that measured the same
frequency. Each data point in (b)—(e) was computed by analyzing the readings over a
period of 5 s.
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Returning to the graph (a), there is a noticeable difference in oscillation
amplitudes of pressure signals between a Karman vortex street and steady flow.
It is even more evident in Figure 3.3(c), showing the standard deviation with 5 s
window, averaged over 10 sensors in each array. In a Karman vortex street the
measurements are about 30% higher than in steady flow, indicating the
turbulence of flow. A similar indicator, the turbulence intensity, is used in the
velocity field analysis. In calculation of the turbulence intensity the standard
deviation is divided by the average flow speed to make the indicator
independent of flow speed. The experiments presented in this chapter were all
conducted at the same flow speed, therefore the compensation was unnecessary
and we used the standard deviation, averaged over sensors in one array, to
measure the turbulence of flows.

Using the standard deviation to characterize flows, we saw that in a Karman
vortex street there are fluctuations in the pressure signal. When analyzed further
with the Fourier’ transform we found that the fluctuations are periodic. Figure
3.3(d) shows color coded dominant frequencies for each pressure sensor and
Figure 3.3(e) indicates the number of sensors agreeing on the same dominant
frequency. In steady flow the dominant frequencies were very different and in
constant flux while in a Karman vortex street most of the sensors were in
consensus at 1.2+0.3 Hz frequency which is the vortex shedding frequency of a
Karman vortex street.

This analysis resulted in definition of empirical thresholds for the standard
deviation and the frequency analysis that distinguish a Karman vortex street
from steady flow in our experiments. Flow is classified as turbulent when the
standard deviation is over 3.2 and steady when below, but this particular level is
appropriate only for the given experimental setup. For the frequency analysis
we determined that the sensor platform is in a Karman vortex street when most
of the sensors (more than 50%) detect the same dominant frequency.

3.1.1 Yaw angle offset in a vortex street and in steady flow

Continuing with the comparison of a vortex street and steady flow, we
investigate how a change of a yaw angle affect the pressure signal, the standard
deviation and the consensus on the dominant frequency by using data from the
experiments 1-8. Each data point in following figures represent data from one of
these experiments, using 120 s of data to average over an array of 10 pressure
Sensors.

Figure 3.4(a) and (b) plot the spatio-temporal pressure averages of the left
and the right array from the experiments with different yaw angles of the
platform in steady flow and in a vortex street. First, the platform was facing
towards the flow (0° angle) and the angle was increased by turning the platform
clockwise with 15° increments up to 45° angle. Blue circles in the graphs
represent the left array and green crosses the right array while the pressure
difference between the arrays is shown with black squares.

With the increase in the yaw angle the pressure difference in both flow
regimes increased and was slightly larger in a vortex street. Looking at the
average pressures on the arrays separately reveals a better distinction between
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steady flow and a vortex street. In steady flow the side that was turned towards
the flow (the left array) experienced the increase of pressure as the stagnation
point was shifted towards the left side. Pressure on the other side (the right
array) of the craft stayed unchanged as the flow separation occurred
downstream from the pressure sensors. In a Karman vortex street the pressure
was changing on the downstream side of the craft (the right array), decreasing
while the yaw angle was increased, and the average pressure on the left array
(facing upstream) remained constant.

This result is hard to use for differencing between the flow regimes as it
would require a reference measurement to know if the pressure increases on one
side or drops on the opposite side. However, the knowledge that in both regimes
the pressure is higher on the side that is turned against the flow gives assurance
that simple rheotactic controller can be used both in steady flow and in a
Karman vortex street to get a bearing with respect to flow direction.

20 1 20 Q
© ©
€ 10 € 10
& 7 & B
', 0 Q ', 0 8
[oX [oX
-10 -10
20 ¢ 20
e | 1 b ¢ < I
o-30r © L 0-30r © o) o) 0]
=] 1 =] 1 3
[} [}
§-40 §-40
o o
-50 O LeftA Right A -50 O LeftA Right A
0 15 30 45 0 15 30 45
Angle (deg) Angle (deg)
(a) Steady flow (b) Vortex street

Figure 3.4. Spatio-temporal pressure averages of the right (pr)/left (prL) sensor array,
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from experiments 1 to 8.

8 : ‘ ‘ 8
O LeftA Right A O LeftA Right A
c f
26 26
8 kS
> >
[0} [0}
© ©
<l ° x U
< <
ko) © 1
g4 g4 +
» »
,,,,,,,,,,,,,,,,,,,,,,,, o _ I A
I Q ()]
2 : ; 2 - :
0 15 30 45 0 15 30 45
Angle (deg) Angle (deg)
(a) Steady flow (b) Vortex street
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line marks an empirical threshold level that distinguishes steady flow from turbulent
flow.
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In Figure 3.3(c) we saw that the standard deviation is minimal in steady flow
when the craft is oriented against the flow. In Figure 3.5(a) we see that it
changes little even when the craft is at an angle with respect to the flow axis, the
increase of the standard deviation of the pressure signal of the left array is
barely noticeable at the 45° yaw angle. Changes of the standard deviation are
more extreme in a Karman vortex street where it increases over two times for
the left array at the 45° angle with respect to the flow direction (Figure 3.5(b)).
It suggests that turbulence can be detected better with pressure sensors that are
positioned on the surface perpendicular to the flow direction.
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Figure 3.6. Number of sensors detecting the vortex shedding frequency as a function of
yaw angle

Pressure sensors’ positioning at steeper angles with respect to the flow
direction also enhances the detection of the vortex shedding frequency. Figure
3.6 shows that over 80% of sensors in the left array detected the same dominant
frequency when the craft’s yaw angle was turned to 45° with respect to flow.

Data from experiment with 0° angle suggest that the platform had a lateral
offset with the cylinder, causing some imbalance between the left and the right
sensor array. On account of which the sensors in the right array had the
maximum agreement when the platform was aligned with the flow direction.
The increase of the angle decreased the consensus of the right array about 20
percent points, while still maintaining the above 50% agreement when facing
downstream with the platform’s angle turned to 45°.

3.1.2 Lateral offset in KaArman vortex street

Now that we know how to distinguish a K&drman vortex street from steady flow
we investigate how the average pressure, the standard deviation and the
detection of vortex shedding frequency behave in the transition zone between
the two. The experiments 5 and 9-12 with increasing offsets from the center of
the Karman vortex street are analyzed. The spatio-temporal average of pressure,
the standard deviation and the detection of the vortex shedding frequency is
shown accordingly in Figure 3.7(a), (b) and (¢).

Previously we had steady flow and Karman vortex street data from separate
experiments and when comparing the average pressures we saw that the
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pressure dropped 30 Pa in both flow regimes, compared to the pressure in still
water (Figure 3.3(b)). Now we investigate data from the same Karman vortex
street but with the sensing platform moved incrementally away from the center
of the Karman vortex street. In Figure 3.7(a) the pressure drops another 30 Pa
when the craft is moved into the steady flow region near the right wall of the
flow tunnel. This pressure drop comes from accelerated flow on the sides of a
Karman street. The difference between steady flow, we had before, and the
steady region at the edge of the Karman vortex street is that the cylinder reduces
the cross-section of the flow tunnel and makes the flow on both sides of it to go
faster than the freestream flow. The effect continues downstream, balancing the
slower flow region in the wake of the cylinder. It is more noticeable in flow
tunnels where a cylinder can block a considerable area from the cross-section of
a working section. But even in open waters we can expect a pressure drop just
before entering a Karman vortex street.
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Figure 3.7. Lateral offsets in a Karman vortex street. (a) Spatio-temporal pressure

averages of the sensor arrays, including pressure differences (pr — pr) on top. 0 Pa line

indicate the pressure in still water. (b) Standard deviation of the pressure data. The red-

dashed line marks an empirical threshold level that is used to distinguish steady flow

from turbulent flow. (c¢) Number of sensors detecting the vortex shedding frequency.

The standard deviation of the pressure readings, plotted in Figure 3.7(b),
show that the offset of 3 ¢m was enough to have the right sensor array out of the
vortex street. The further increase of the offset had no effect to the standard

47



deviation that remained near the threshold level of steady flow. However, the
standard deviation of the left array first increased and then declined, indicating
the center of the Karman vortex street with a peak at the offset of 3 cm. With
offsets 5 cm and 7 cm the standard deviation decreased but stayed above the
threshold level, indicating the influence of turbulence.

A quite similar behavior can be noticed with the detection of the vortex
shedding frequency. In Figure 3.7(c) the number of sensors agreeing on the
same dominant frequency decreases below 50% with a lateral offset of 3 cm.
Here the value continues falling with an increase of the lateral offset, resulting
in only 2 sensors detecting the same frequency at 7 cm offset. The dominant
frequency detection of the left array first climbed and then fell with greater
offsets, just like the standard deviation in Figure 3.7(b). The maximum
agreement between the sensors of the left array was almost 80% with offsets 3
cm and 5 cm.

The data analysis shows that the transition between steady and turbulent
flows is continuous and that the side closer to a Karman vortex street detects the
cues of it earlier. In that respect, it is reasonable to pay more attention to sensors
that are on the side that leads when making transverse movements.

Conclusion

Typically, flows are visualized in the earth frame of reference but autonomous
robots can’t perceive flow from that perspective. Instead they can be equipped
with an artificial lateral line that gives information about the immediate flow
field around them. In this chapter we used the spatio-temporal pressure average,
the standard deviation and the agreement on dominant frequency between the
sensors to investigate differences between steady flows and Kérman vortex
streets.

We discovered that the spatio-temporal pressure average over the sensors on
the sides of the craft is not very useful for distinguishing a Karméan vortex street
from steady flows. However, the experiments with the craft’s yaw angle at 45°
with respect to the flow direction indicated that sensors in positions where the
crafts surface is more perpendicular to the flow can detect the difference. A
pressure sensor positioned in such a way would experience an increase of
pressure in steady flows and a decrease of pressure in Karman vortex streets,
when compared to the pressure in still water. It shows that an underwater robot
should also have pressure sensors positioned in the snout of the craft to take
advantage of this simple indicator.

The standard deviation was effective in detecting turbulent flows even when
used on sensors positioned on the sides of a craft. However, with a steeper angle
with respect to flow the value of the standard deviation increased, suggesting
that sensors positioned in the snout of a craft can be more sensitive for
turbulence.

The standard deviation indicates fluctuations in the flow but it does not
conclusively determine that the surrounding flow is a Karman vortex street.
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Kérméan vortex streets are periodic and to be sure that the surrounding flow is
not just any turbulence, a frequency analysis should be conducted. We have
determined that there is a high probability for a Karman vortex street when over
50% of sensors agree upon the same dominant frequency.

Using the spatio-temporal pressure average, the spatial average of standard
deviation and the sensor agreement on dominant frequency we were able to
distinguish between steady flow and a Karman vortex street, determine sensor
platforms orientation with respect to incoming flow and estimate sensor
platform’s lateral deviation in a Karman vortex street. Although the data
analysis was done on offline data the data processing tools we presented can
also be adjusted for the online usage. The standard deviation and the frequency
analysis lose their accuracy with a reduction of the sample size but they are still
useful for the first estimation in search for flow features. In a real time data
processing a more elaborate and time consuming analysis should be done only
when less expensive tools give positive results.
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4 Sensing self-motion with artificial lateral line

As the flow sensors are developed their performance is measured based on
hydrodynamic test that show sensors sensitivity, but those tests in controlled
environments are still a long way from situations fish experience in natural
environments in terms of their complexity. One of the modifiers that make the
extraction of the flow information harder is self-motion sensed by an artificial
lateral line. Motion alters the flow field by superimposing external flow signals
with the signals mediated by the velocity and acceleration of the vehicle.
Artificial lateral lines are usually tested in a controlled environment with a
stationary sensor platform exposed to external stimuli. However, before
underwater vehicles can rely on flow sensors a method is needed that can
separate the self-induced signals from external stimuli.

The research presented in this chapter is based on results published in [88].
Here we investigate how an artificial pressure sensing lateral line is affected by
the movement of the sensing platform. The fusiform sensing platform described
in Chapter 2.4 was moved externally forward and backward in a sinusoidal
pattern. The effect of motion on pressure sensor signals was recorded both in
still water and in steady flow. We used data from 9 pressure sensors along with
movement data to build a model describing their relationship. The model was
then used to predict the pressure changes caused by the platform’s velocity and
acceleration.

4.1 Forward and backward motion of the craft

In this section we concentrate on the relationship between pressure field and the
velocity field around the fusiform craft (Figure 2.3) that is moved harmonically
in x-direction with a frequency of 0.16 Hz and with an amplitude of 12.5 cm.
The same movement sequence was repeated in still water and in steady flow
with 18.6 ¢cm s flow velocity. As the x position of the craft was changed as a
sinusoidal function of time, the velocity and acceleration were also sinusoidal
functions with 90° phase shift (Figure 4.1(a)).

In still water experiments the pressure field changed in phase with
acceleration. Vertical lines in Figure 4.1-left help to notice the phase match
between the acceleration and pressure signals. In Figure 4.1-left(b) it is visible
that the acceleration of the craft is felt strongest by the Sensor 5 positioned in
the nose of the craft. The influence to the pressure field decreases with the
distance from the nose as the surface of the fusiform platform curves and is
almost parallel with the direction of motion in locations of Sensor 1 and Sensor
9 (the sensors furthest away from the nose). The amplitude of the pressure
differences between the adjacent sensors in Figure 4.1-left (d) is the same for
every sensor pair along the sides, suggesting that the pressure dependency from
the acceleration decreases gradually along the surface of the fusiform head.
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Figure 4.1. Forward —backward motion in still water (left) and in 18.6 c¢m s7/ steady flow
(right). In both diagrams (a) shows crafts motion data, (b) displays pressure data
captured with 9 pressure sensors synchronized with motion data. (c) shows the pressure
difference with respect to Sensor 5 in the nose, and (d) is the pressure difference
between adjacent sensors (pressure gradient). (e) is the pressure difference between
sensors on the opposite sides of the fusiform head.

In steady flow (Figure 4.1-right) the effect of the acceleration to the pressure
field is minimal and pressure sensor signals change more in phase with the
velocity of the craft. Again the motion is felt strongest by the sensor in the nose
but in steady flow the pressure gradient from the nose decreases much more
rapidly (Figure 4.1-right (d)). The amplitude of the pressure differences ps-ps
and pe-p7 are much smaller compared to the pressure differences between
Sensor 5 in the nose and Sensor 4 and Sensor 6 adjacent to it.

Both in still water and in steady flow the pressure differences between the
sides resulted in minimal oscillation and no offset (Figure 4.1(e)), which was
expected as the craft and the flow moved only in the x-direction.

To get a better understanding of the flow field around the moving craft, the
experiments were recorded with a DPIV setup. Images were captured with long
exposure time settings, so that the illuminated particles left tracks, indicating the
velocity of the fluid. Figure 4.2(a)—(c) shows the craft movement in still water.
In Figure 4.2(a) the craft is moved forward and the streaklines show how the
fluid is pushed forward and sideways. In Figure 4.2(b) the craft has stopped and
is reversing the motion. Particles on the side of the craft indicate that the fluid
carried within the boundary layer still has some momentum and is moving
forward, creating a pressure drop. In Figure 4.2(c) the craft is moving
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backwards, sucking the fluid in to fill the volume left void in the wake of the
retreating craft.

(a) Forward motion in still water

Figure 4.2. Flow visualization of the craft moving forward and backward in still water
(a)—(c) and in the steady flow (d).

In Figure 4.2(d), craft’s motion in steady flow is shown. The flow speed
(U =18.6 cm s™') was over 2 times higher compared to the highest speed of the
craft. Even though Figure 4.1-right indicated that the pressure changes were
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caused by velocity oscillations, the craft’s forward and backward motion could
not be distinguished from the streaklines.

4.2 Theoretical model

As the movement of the sensor platform was limited to only one dimension
along the x-direction, the velocity of the craft U can be defined as the rate of
change in position along the x direction,

_dx
S odt’
Lighthill discussed in [78] that in irrotational flow and with no boundary layer

effects, the pressure distribution on the surface of a streamlined body can be
approximated by the Bernoulli’s equation,

4.1

op 1 )
— _Z 4.2
P = 3t 2p|grad¢)| , (4.2)

where P is the pressure distribution without the hydrostatic pressure component.
p is the density of water and ¢ is the velocity potential that can be given by

b =Udy(x —x0,Y — ¥0,2) (4.3)

where ¢, is the velocity potential in terms of position relative to (xs, o),
associated with the sensing platform’s movement at unit velocity in the x-
direction (Figure 4.3).

sensor |x(mm) | y(mm) |7 (mm) | 8 (rad)
p1 0 -20.6 | 206 |-157
P2 19.7 | -187 |272 |-0.76
D3 387 | -153 | 416 |-038
P4 55.8 9.5 56.6 | -0.17
Ds 68.6 0 68.6 0
pe 558 9.5 56.6 | 0.17
P71 387 153 416 | 038
P38 19.7 18.7 272 | 0.76
P9 0 20.6 20.5 | 1.57

Figure 4.3. Distribution of nine pressure sensors around the head. U is the velocity of
the craft in the x direction, with positive value indicating forward motion. The position
of each sensor both in the Cartesian and polar coordinates is given in the table.

To derive Z—f in the first term of Equation (4.2) both velocity U and its rate of
change need to be accounted, which gives us
dp dU 0Py
— =—¢, —U>—. 44
at  dt x dx 44

Deriving also the velocity field gradient through ¢, we get
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Now Equation (4.2) together with Equation (4.4) and (4.5) gives
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Equation (4.6) can be represented in the form of
dUu
P=C—+CU?+ (4 (4.7)
dt
where
C1 = —pdx, (4.8)
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The first term characterizes the acceleration of the craft and the second term is
related to the square of the relative velocity of the flow and the craft. The
coefficients C/ and C2 depend on the geometry of the craft and the term C3 is
incorporated into the model to account for any other relations which we were
unaware of. An analytical solution for this equation can be very complex
depending of the shape of the craft, so we decided to find the coefficients by
using experimental measurements from artificial lateral line sensors.

4.3 Mapping motion to pressure sensing
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Figure 4.4. (a) Comparison of the forward model with the measured pressure data. (b)
Comparison of the reverse model with the measured flow velocity. In both graphs data
is cascaded from experiments with 6 different flow speeds, where the leftmost dataset is
from still water and the rightmost dataset from 28 c¢m s/ flow. The real measurements
are overlaid with the predictions generated by the forward model detailed in Equation
(4.10) and the reverse model detailed in Equation (4.13). The difference between the
real and modelled data is plotted below them in black.
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For the system identification each of the pressure sensor signals were subtracted
from the signal of Sensor 5 in the nose, thus removing the hydrostatic
component from the data. The sensor positions were converted into polar
coordinates resulting in each sensor being represented by i (7;, sin(6;)), where i =
(1,---,9). The position of each sensor along with the crafts motion data (position,
velocity and acceleration) were fed into the NARMAX method to produce a
model for pressure terms ps — p;. For detailed description of how the NARMAX
method was used refer to [88]. In the system identification process the radius 7;
was removed from the system as a nonessential parameter and as there was also
a symmetry between the sides of the platform’s head, |¢;| was used instead of ;.

To train and validate the model, the data from different flow speeds were
divided into two parts. The training data was used to estimate the parameters of
the model witch were then evaluated using the validation data. The coefficient
of determination (R?) and the mean absolute error (MAE) between real and
predicted pressures — were computed to measure the performance. The resultant
model is a second-order polynomial

du
ps — p; = (20.4sin(|6;]) + 4.7) =t 68.9U2

(4.10)
+ (21.1sin(]6;]) — 18.0)U + 2.7 sin(|6;]) — 1.6..

Figure 4.4(a) shows the experimental pressure data and the pressure data
predicted by the forward model. Close match between the two is indicated by R’
= 0.84 and MAE = 7.71 £+ 0.03 Pa. The difference between experimental and
predicted data is shown with black and it indicates that the model performed
well but is less accurate when turbulent noise or high acceleration create peaks
in pressure readings.

We analyzed the sensitivity of the forward model to get a better
understanding of the relationship between the motion parameters and the
pressure signals. We defined the sensitivity as a derivative of the pressure

. . . . au
differences with respect to the velocity U and to the acceleration e

a — 1.
% = 137.8U + 21.1sin(|6;]) — 18.0. (4.11)
d(ps — pi) .
——— = 20.4sin(|6;]) + 4.7 . (4.12)
o

In Equation (4.11) and Equation (4.12), sin(|#i]) can be determined by
choosing a sensor. It is apparent that the sensitivity coefficient of the velocity in
Equation (4.11) increases proportionally with the increasing velocity, whereas
the coefficient of acceleration in Equation (4.12) remains constant. It shows
again that at low flow speeds the acceleration of the craft is dominating the
pressure changes around the craft, but when the flow speed is increased the
effect of acceleration diminishes compared to that of the flow speed. With the
constant flow speed, however, the pressure level also remains constant so it
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would not affect detection of external stimuli if it were not for turbulence that
increases proportionally with flow speed. Unfortunately, turbulence causes
unpredictable changes in pressure sensor signal and our model can’t help with
them.

U = 0.01(ps — p1) = 0.09(ps — p3) + 0.04(ps — ps)
+0.03(ps — pg) + 0.03(ps — py) — 0.06. (4.13)

We used the NARMAX method also to obtain a reverse model, linking the
pressure readings to the velocity of the craft. The resultant model is given in
Equation (4.13). Figure 4.4(b) illustrates the measured and predicted velocities
as well as their difference with R = 0.92 and MAE = 2.16 + 0.027 c¢m s . The
model performed well for higher flow speed but lacked the accuracy when the
resultant velocity was below 5.4 cm s, In chapter 4.1 we saw that the pressure
changes from the experiment in still water were mostly related to the
acceleration of the craft. However, for simplicity the reverse model was
designed to describe a linear relationship between the pressure sensor signals
and the flow velocity. The model can also accommodate the relationship with
the acceleration but it requires time lagged pressure terms, making the model
much more complex.

Conclusion

We have created the forward model that can predict self-movement signals for
pressure sensors and the reverse model, predicting relative swimming speed
based on pressure measurements. With the forward model a craft equipped with
an accelerometer can use the model to generate a signal from acceleration
measurements and subtract it from signals of lateral line sensors, enhancing the
lateral line sensitivity to external stimulation sources. The reverse model can be
used the other way around, it can predict craft’s relative speed with respect to
flow.

Both the forward and reverse model was derived using the pressure sensor
position in the head of the craft as one of the parameters. This measure helped
to make the model more accurate but also made it unusable on crafts with a
different shape or sensor positioning. For other fusiform crafts, a similar model
can be built based on their pressure sensor and movement data.

While creating these models we found that with low flow speeds the self-
movement signal in pressure sensors was mostly created by the acceleration of
the craft but as the flow speed increased the sensitivity to it also increased.
Whereas flow speed itself is not disturbing detection of external stimuli, it
creates turbulence that increases noise and therefore makes signal detection
harder. These results suggest that moving at low and constant velocity is
preferable as a sensing strategy to focus on external stimuli when it is not
possible to suppress the self-motion signal.

This observation has also a biological relevance, helping to explain why fish
tend to swim quietly using burst and coast swimming when watching out for
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predators. It can be interpreted as an effort to minimize self-motion effects and
increase the sensitivity of the lateral line to external stimuli. Some sources
however suggest that fish are capable of reducing the influence of self-
movement to lateral line signals while processing flow field information [52—
54]. So quiet swimming is either used to reduce turbulence created with higher
speeds or by fish who try to reduce their signature in the flow field to stay less
detectable by other fish.
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5 Improving efficiency of tail fin propulsion

In previous chapters we described data processing tools for flow data and how
to predict self-motion signals in artificial lateral line sensors, but the
information was not used for anything other than analysis. As flow sensors and
methods of flow sensing are still in the early stage of development, using them
for vehicle control is very rare. Few examples [86] show that this noisy and
complex flow information can be useful for choosing between swimming
strategies and implementing them.

One very complex swimming mode known from biology is Karman gaiting.
Fish Kérméan gait to reduce their energy consumption in vortex streets. The gait
is known by its increased lateral movement and reduced tail beat frequency that
match the frequency of a vortex street. For further details about Karman gaiting
refer back to Chapter 1.1. Most of the studies about Karman gaiting suggest that
thrust generation in Kdrman gaiting is mostly passive and that fish’s control
over the process is minimal, using lateral line sensing only for stabilization [23].

The research presented in this chapter is based on results published in [89].
In this chapter we look what kind of flow information is necessary and
sufficient to synchronize the tail beat of a robotic fish (Chapter 2.5) with
vortices. Though the lateral movement is characteristic to a Karman gaiting fish,
we here investigate only one component of this motion pattern — the tail beat
synchronization with vortices. The lateral movement and the change of yaw
angle were restrained by harnessing the robotic fish on a force plate to measure
the performance of the tail propulsion. The performance of the vortex
synchronized propulsion is compared with the propulsion in steady flow
showing the thrust and efficiency of the fishlike robot.

5.1 Swimming in Karman vortex street

As described in Chapter 1.1, fish use their body as a hydrofoil to generate thrust
in laterally alternating flows. Forces generated on the fish’s body make it slalom
between the vortices, resulting in the 180° interaction phase for center of the
mass of the fish. The 180° phase angle means that a laterally oscillating fish’s
body is in maximum displacement away from the vortex that is in the same
streamwise position.

In our experiments of vortex synchronized propulsion we used a fishlike
robot (Platform 3) described in Chapter 2.5. The robot is harnessed to the floor
of the flow tunnel and can move its tail. When compared to Karman gaiting
fish, the robot can’t move laterally or change its angle and thus the passive
thrust production used by fish is not working on this robot’s body. However, if
we look only at the tail fin we see that the fin can be considered as a hydrofoil
that is moved laterally and is changing also its yaw angle. The thrust production
by the fin can be seen as analogous to thrust production in experiments of
Gopalkrishnan et al. [26] and in the model of Streitlien et al. [28] that predicted
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highest thrust and efficiency when the hydrofoil is actuated with the interaction
phase between 0° to 90° with respect to vortices. In Figure 5.1 we have an
illustration of Platform 3 propulsion with 0° phase in the picture above and 180°
phase in the picture below.

Figure 5.1. Platform 3 propulsive movements in a Kdrman vortex street. Here the vortex
street is taken as a frame of reference and clockwise vortices are represented as blue
circular arrows while counter-clockwise vortices are represented with orange circular
arrows. Green lines represent the center line of the robot’s tail as it is moving with
respect to vortices. The picture on top illustrates the interaction phase 0°, where the tail
sweeps closer to vortices in their streamwise positions. The picture below illustrates an
opposite phase angle, where the tail is moved furthest away from vortices.

5.2 Vortex synchronization

In the experiment of [26] the hydrofoil’s synchronization with vortices was
achieved through vortex shedding manipulation with an oscillating cylinder.
However, the manipulation of an environment is not an option when the
purpose of vortex synchronization is to make underwater robots swim more
efficiently by using alternating flow regimes. A swimming robot does not have
control over the oncoming flow but it can be equipped with sensors that provide
the information necessary for synchronization.

In Chapter 3.1 we showed that the pressure sensors could sense vortices of a
Kérman street as oscillations in their signal. We have also demonstrated that the
vortex shedding frequency can be derived from pressure fluctuations. But as
discussed in [27], the frequency matching is not enough to make the swimming
in a Karmén vortex street efficient. Instead, the crucial part is the timing of the
interaction with vortices.
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In our study we confirmed the importance of the tail beat timing with a
simple experiment where the tail of the robotic fish was actuated with a
frequency slightly different from the vortex shedding frequency. This way the
interaction timing was changing continuously and the effect could be seen as
low frequency oscillations in thrust production. It is similar to the aliasing effect
known to occur in a sampling process of a signal. The frequency analysis from
the force signal shows that there is a strong frequency component matching the
difference between the vortex shedding frequency and the tail beat frequency
(Figure 5.2(a)). The measurement suggest that when the frequencies are
different the trust production oscillates and is highest whenever the tail is in a
proper phase with respect to vortices and lowest when opposite. Having proved
that the timing of interactions between the tail beat and vortices influences the
thrust production of our robotic fish, we set ourselves to find the timing that is
most efficient.

In order to do that, the robot needs to know where the vortices are. In a
regular Karman street behind a cylinder, vortices create a high pressure zone on
an object in a Karman vortex street. It precedes each vortex as it moves past an
object in the flow. These fluctuations of pressure can be identified in pressure
sensor signals and enhanced by subtracting signals of sensors that are at the
same position along the robot’s length but on the opposite sides. In the
enhanced signal the maximums and minimums can be used to predict the arrival
of the vortex to the streamwise position next to the tailfin. An algorithm finding
the extremes in the signal can be made reliable by filtering the signal with an
appropriate low pass filter, chosen to suppress noise above the vortex shedding
frequency (Figure 5.2(b)).
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Figure 5.2. (a) Thrust of the tail beat shown in the frequency domain indicating the
aliasing frequency at 0.1 Hz that is produced by the actuation of the tail with frequency
0.73 Hz in a vortex street with the vortex shedding frequency 0.63 Hz. The dominant
frequency in thrust is twice the frequency of the tail beat as the thrust is produced by
each tail sweep. Energy in the frequency components that represents the tail beat
frequency and the vortex shedding frequency is much smaller. (b) Enhanced pressure
signal produced by subtracting signals of sensors on opposite sides of Platform 3. The
actual signal in blue is superimposed with its low pass filtered signal in red.

60



Knowing the time when a vortex created a pressure maximum on a pressure
sensor enables finding the time delay at which the tail beat gives the best thrust.
But to adjust with the change in the flow speed, the delay is divided into two
parts. The first part is the time it takes for a vortex to travel from the nose to the
tailfin and the second part is for adjusting the phase shift with respect to the
vortex shedding period, allowing to make observations with different phase
shifts that are comparable between different flow speeds.

The control of the tail beat is accomplished through sinusoidal half-period
sweeps that move the tail from one maximum deflection angle to the opposite.
Each sweep is determined by its start and end. A new sweep begins at the end of
the last one, determining its starting time. The end of a new sweep is calculated
from the time of the detection of a maximum in the pressure signal by adding
appropriate delays. This method eliminates the need for frequency matching as
it happens anyway when the sweeps match the pressure maximums. It also
gives freedom to change the phase shift angle during an experiment, resulting in
smooth transitions without fast movements of the tail that could affect the thrust
measurements.

5.3 Performance of the vortex synchronized tail beat

In Figure 5.2(a) the aliasing frequency component indicated that our robot’s
thrust production depends on the interaction phase between the tail beat and the
vortices. To determine the best interaction phase we conducted an experiment,
measuring thrust for different interaction phases. The phase was changed with
30° increments, where in each increment we recorded 2 minutes of reference
data without tail movement and 3 minutes of data with movement. In the
experiment the change of phase covered the whole 0° to 360° sweep.

Drag and thrust are not separable at swimming so we chose a reference force
for thrust measurements. The reference force was measured in a Karman vortex
street while the tail of the robot was straight and stationary. The thrust force was
calculated by subtracting the reference force from the force that was measured
while the tail was actuated. To make the results comparable with other studies
we calculated the thrust coefficient Cy that compensates thrust force Fy with
fluid density p, flow speed U and the robot’s projection area 4 on the plane
perpendicular to the flow direction (Equation (5.1)).

2F;,
th = —pUZA 5.1

The change of thrust coefficient with respect to the phase between the tail
beat and vortices is plotted in Figure 5.3(a). Each data point on that graph
represents the average value of thrust calculated over 120 seconds of data. Only
2 minutes of data from each 3 minute phase step was used to avoid using data
from the transitions between the steps. In the graph the thrust coefficient
changed from -0.03 to 0.34 with the maximum at 0° for the tail’s tip of the robot
and the minimum at 180° phase shift angle. These measurements are not
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directly relatable to other studies such as [27], [28], [30] because the phase of
the tail of our robot is shown with respect to the high pressure zone that can be
detected with pressure sensors, while the studies mentioned above measure the
phase with respect to the vortex core. Converting the results would shift the
curve in the graph, making the peak of the maximum thrust appear between 45°
and 90°.
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Figure 5.3. (a) Thrust coefficient C;; with respect to the interaction phase. Error bars
show the standard deviation of Cy. (b) Propulsion efficiency n with respect to the
interaction phase. Error bars show the standard deviation of #.

The results in Figure 5.3(b) need the same treatment to be comparable to
other studies of propulsion in alternating flows. Figure 5.3(b) shows the
efficiency of the tail beat propulsion. The efficiency is calculated by dividing
the useful power Py that creates thrust with total power Pi,. Using angular
feedback from the motor, the total power is calculated as a product of torque ¢
and angular speed w of the tail. The corresponding equation of efficiency is the
following:

Py FepxU

Piot TH*xw

(5.2)

The peak and the trough of the efficiency appear at the same phase angles as
for the thrust coefficient. Changing the phase resulted in the 45 percent point
difference between the maximum efficiency at 38.5% and the minimum
efficiency at -6.5%. The difference of 45 percent points in efficiency is
considerable even if the maximum efficiency is quite low compared to Karman
gaiting fish.

In these experiments we noticed that the increase of propulsion efficiency
comes from reducing the lateral forces acting on the tail. To show this, we
conducted experiments at five flow speeds in a Karman vortex street and for
each flow speed we measured the thrust and the lateral force at two opposite
interaction phase angles between the tail beat and vortices: one for minimum
thrust and the other for maximum thrust.

Figure 5.4(a) shows how the average thrust force changed with respect to the
flow speed for both phase shift angles. It can be seen that the thrust force
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generated with the best interaction phase increase linearly with the flow speed.
The increase can be explained with vortices that grow stronger at higher speeds.
In the same figure, however, the worst interaction phase produces constantly
low thrust irrespective of the flow speed. Exactly the opposite can be seen in
Figure 5.4(b) that shows the average lateral forces acting on Platform 3. The
experiments with the interaction phase, that produced low thrust on the previous
graph, have also a higher lateral force production and it increases linearly with
flow speed. On the other hand the experiments with high thrust production show
only minimal lateral forces.
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Figure 5.4. (a) Thrust force with respect to the flow speed for the interaction phases that
produce minimum and maximum thrust. (b) An absolute value of the lateral force with
respect to the flow speed for the same interaction phases. Each data point represents an
average value calculated from 5 minutes of data and the error bars show the standard
deviation over these datasets.

It means that with only little change in the total power consumption most of
the efficiency increase comes from using the energy that is otherwise wasted for
the production of lateral forces. When the tail is actuated the largest lateral
forces act on the tail when the tail is in the edge position and the motor is
reversing its movement. The reduction of lateral forces can be explained with
the tail beat timing. Pressure forces created by vortices can reduce the motor’s
effort by slowing down the tail when it reaches to the edge position, allowing to
increase the speed of the tail faster for the next sweep. The forces reducing the
momentum of the tail also act on the tail fin, bending it to a steeper angle and
increasing the trust force generated on it. The difference in tail fin angles is
visible in Figure 5.1 where the green midlines in the picture on top are more
bent than in the picture below.

Using the results from the experiments with 5 different flow speeds we
calculated thrust coefficients and efficiencies and compare them with the
corresponding results in steady flows. In the steady flow experiments the tail
was actuated with the same frequency as in the Karman vortex street with the
corresponding flow speed. In Figure 5.5(a) it is shown how the thrust
coefficient changes with the flow speed. The red line in the graph represent the
magnitude of the drag coefficient of Platform 3 in steady flows. The figure
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shows that the tail beat frequency, dictated by the vortex shedding frequency of
the Karman vortex street, would not be enough for a free swimming robot to
hold station in steady flows. However, the vortex synchronization maximizing
the thrust manage to cross that threshold. As the magnitude of the drag
coefficient is measured in steady flows, the robot would need even less power to
hold station in a Karman vortex street, making the vortex synchronization an
even more attractive choice over swimming in steady flow.

Under the same Karman street conditions the minimum thrust
synchronization shows very poor performance, well below the thrust
coefficients from steady flows. Considering that the arbitrary tail beat frequency
would result in average thrust between the best thrust (green line) and the worst
thrust (blue line) shown in this graph, the resulting thrust production would give
about the same amount of the thrust as the same tail beat frequency in steady
flows.
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Figure 5.5. (a) Thrust coefficient with respect to the flow speed. The red line represents
the magnitude of the drag coefficient in steady flows. (b) Efficiency of the tail beat
propulsion with respect to the flow speed. The interaction phases for minimum and
maximum thrust experiments correspond respectively to 180° and 0° as found from the
results presented in Figure 5.3(a).

Efficiency for the tail beat propulsion is shown in Figure 5.5(b). Here we see
that at a low speed the vortices are week and the vortex synchronization does
not improve the propulsion efficiency when compared to the results in steady
flow. Again, the reduced drag in the Karman vortex street is not shown here and
that aspect may have a considerable effect when choosing between these flow
regimes. At higher speeds, however, the decision is obvious as the maximum
thrust synchronization surpasses the efficiency in steady flows with about 10
percent points.

Conclusion
In this chapter we described our results from experiments where we harnessed a

robotic fish, longer than wavelength of Karman vortex street, into a flow tunnel
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and measured thrust production of the robot with different interaction phases
between the tail fin and vortices. We synchronized the tail beat with vortices by
using flow information gathered with pressure sensors mounted inside the head
of a robotic fish. Even though it is believed that fish don’t need lateral line for
Kérméan gaiting [23], [25], it helps robots, incapable of Karman gaiting, to
synchronize with vortices in a Kdrman vortex street.

The performance measurements of our robotic fish show that a correct
timing between the tail beat and vortices increase thrust considerably compared
to the steady flow swimming. When comparing the performances of the best
and the worst interaction phase propulsion in a Karman vortex street, a
difference of 45 percent points in efficiency was measured between the two.
Further experiments showed that with a correct timing the robot reduces its
lateral forces so that more power is spent for thrust production, while in the
opposite phase of the tail beat, most of power is wasted for production of lateral
forces. It shows that without flow information a fin based robot uses only half
of its potential in a K&rman vortex street.

We have noticed that fish that choose to Karman gait have usually the body
length below the wavelength of a Karméan vortex street [18]. One reason for
why a specimen, too large compared to the wavelength of a Kérman vortex
street, choose not to Karman gait may be the reduced efficiency of the passive
thrust production. In our experiments the robotic fish was harnessed to the flow
tunnel but regardless of that the results should apply also for free swimming
robots that are oversized for the vortex street they are swimming in. In that case
the mass of the robot acts as a harness and the tail of the robot can use the
vortices to increase its thrust production. In that light an underwater robot needs
to choose how it behaves in alternating flows. If it is small compared to the flow
features it may want to implement swimming strategy similar to Karman gaiting
and let the flow produce the thrust passively. However, a larger craft that can
ignore the lateral forces may want to implement the tail beat control that has
been shown here.
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Conclusions and future work

While artificial flow sensors for lateral line systems are still in development and
need some maturing for improved accuracy and durability, we have decided to
start developing tools for analysis and interpretation of flow data. Flow sensing
in this thesis have been performed with 3 different lateral line platforms. The
artificial lateral lines were built using commercially available miniature
pressure sensors. One of these platforms is capable of sampling pressure field in
three dimensions around the head of a fishlike body while the other one is
capable of using information from its artificial lateral line to adjust its fin
propulsion.

Along with descriptions of sensing platforms this thesis also provides
experimental results from pressure field analysis. We show that by using
pressure sensitive artificial lateral line it is possible to distinguish Kérman
vortex streets from steady flows, determine craft’s orientation with respect to
incoming flow and measure craft’s lateral deviation from center axis of a
Kérman vortex street. We demonstrate that the standard deviation of pressure
sensor signals and the agreement on dominant frequency between the pressure
sensors are valuable methods for detecting Karman vortex streets. Both of them
may seem time consuming and more suitable for offline analysis, however, we
suggest that the response time for these methods can be reduced by sacrificing
some of the accuracy. The data processing methods that help distinguish
between flows and can determine underwater robot’s orientation and position
with respect to flow features are valuable tools in making underwater robots
more efficient and successful in their missions. By using artificial lateral lines
future marine vehicles will be able to modify their propulsion strategy based on
the flow information.

While an underwater robot measures its surrounding flow field it can’t stay
motionless with respect to the flow. At the same time, the robot’s motion makes
the detection of external stimuli harder as it affects the flow field around the
craft. To suppress these self-induced signals we suggest a method that can be
used to train a model that can predict the influence of motion on the pressure
signal. The model accounts for the shape of the craft and pressure sensor
positions to predict self-induced signals for pressure sensor data. The method
presented in this thesis is a part of the self-motion research, taking into account
only forward-backward movement of the craft. In future work we plan to
supplement the model to account for lateral and rotational movements. Using
this kind of model with onboard accelerometers would be very useful for
example for a free swimming robot in a Karman vortex street as it would allow
the craft to separate flow mediated oscillations from the oscillations created
with the undulating body.

In the last chapter of this thesis we presented a study of vortex
synchronization for fin propelled robots. We took Kéarman gaiting fish that
match their tail beat with the vortex shedding frequency as an example to save
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energy in Karman vortex streets. In this study we have considered only the tail
beat component of Karman gaiting, neglecting the lateral motion and yaw angle
change that are also characteristic to fish swimming in a Karman vortex street.
With this study we showed that a pressure sensing lateral line can provide
enough information for tail beat synchronization with vortices. The relation
between thrust and vortex interaction phase has been shown before by
Gopalkrishnan et al. [26], they did it with a rigid 2 dimensional hydrofoil and
synchronized it by manipulating a vortex street with an oscillating cylinder. The
synchronization method using information from an artificial lateral line has an
advantage here, as it can be used on autonomous underwater vehicles. With
flow characterization methods and adaptive self-motion filtering on artificial
lateral line, new flow negotiation methods can be developed for underwater
robots, making them able to manage energy rich turbulent flows.

For now we suggest the tail fin synchronization method for fishlike robots
that swim in vortex streets with the wavelength below their body length. With a
robotic fish harnessed in flow we have shown that for a big enough robot that
can use its mass as an anchor, it is beneficial to choose a synchronized Karman
vortex street swimming over a steady flow swimming. The swimming method
is not as efficient as Karman gaiting as it creates the propulsion with an active
tail beat, but it enables to save energy compared to the steady flow swimming.
Development of robotic Karman gaiting is still our future goal as passive
propulsion is most efficient for fishlike crafts with the body length below the
wavelength of a Karman vortex street.
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Abstract

With the overall goal being a better understanding of the sensing environment from the local
perspective of a situated agent, we studied uniform flows and Kdrman vortex streets in a frame
of reference relevant to a fish or swimming robot. We visualized each flow regime with digital
particle image velocimetry and then took local measurements using a rigid body with laterally
distributed parallel pressure sensor arrays. Time and frequency domain methods were used to
characterize hydrodynamically relevant scenarios in steady and unsteady flows for control
applications. Here we report that a distributed pressure sensing mechanism has the capability
to discriminate Karman vortex streets from uniform flows, and determine the orientation and
position of the platform with respect to the incoming flow and the centre axis of the Kdrman
vortex street. It also enables the computation of hydrodynamic features which may be relevant
for a robot while interacting with the flow, such as vortex shedding frequency, vortex travelling
speed and downstream distance between vortices. A Kdrmdn vortex street was distinguished in
this study from uniform flows by analysing the magnitude of fluctuations present in the sensor
measurements and the number of sensors detecting the same dominant frequency. In the
Karman vortex street the turbulence intensity was 30% higher than that in the uniform flow
and the sensors collectively sensed the vortex shedding frequency as the dominant frequency.
The position and orientation of the sensor platform were determined via a comparative
analysis between laterally distributed sensor arrays; the vortex travelling speed was estimated
via a cross-correlation analysis among the sensors.

(Some figures may appear in colour only in the online journal)

1. Introduction rotational direction). In underwater locomotion studies, vortex

streets offer benchmark hydrodynamic challenges as they
In nature, Karman vortex streets often occur in running water
when a steady flow is obstructed by obstacles such as stones
and pillars. They appear as a columnar array of vortices,
shed alternately in a periodic fashion which is quantified by
the vortex shedding frequency (number of vortices shed per
unit time) and wake wavelength (the average downstream
distance between two consecutive vortices with the same hand, roboticists are keen to apply these principles to develop

provide energy-saving opportunities for fish [1-3] and they
can be realized in laboratory conditions [4]. On the one
hand, biologists are interested in understanding the underlying
principles that enable fish to utilize the oncoming vortices to
possibly minimize their energy consumption [1]. On the other
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underwater technologies with higher propulsion efficiency and
stability in the presence of turbulent flows [5-7].

When a bluff cylinder is placed in the flow, a base
suction region develops directly downstream, where the flow
recirculates towards the object, thereby forming a favourable
region for entraining fish [8, 9]. It has been reported that fish
expend less energy when swimming near obstructions [2].
Further downstream the vortex formation region occurs, in
which the vortices are generated and then detached at the
vortex shedding point forming a ‘street’ of alternately rotating
vortices.

The pioneering work of Liao et al [10] showed that the
behaviour of a rainbow trout in the Kdrman vortex street
differed from steady swimming in uniform flows, when the size
of the vortices was comparable with the size of the fish. Trout
matched their tail beat frequency with the vortex shedding
frequency and slalomed between the vortices in such a way that
their centre of mass was moving in anti-phase with the vortices
[11]. This correlated with a reduction in oxygen consumption
[12].

With the purpose of developing low-drag energy
harvesting devices, Anderson demonstrated that an oscillated
rigid high aspect-ratio foil actively used less power when
its motion was synchronized with the incoming vortices
[13]. Beal et al [3] showed that a dead fish, before rigour
mortis had set in, could still maintain its position in the
vortex street, at least for a short period of time before being
sucked into the suction zone. In the same work, subsequent
experiments with a flexibly mounted hydrofoil—passively
moving upstream through interaction with the available
vortices without requiring any mechanical input—confirmed
that the passive motion induced by the flow could produce
self-propulsion.

Building on previous studies, a fish-like robot is being
developed which is capable of recognizing and characterizing
Karman vortex streets through flow sensing, and of adapting its
tail beat to synchronize. The mechanical design of the robot is
given in [14]. On the grounds that adaptation to environmental
changes is the key for autonomy, it is expected that an
underwater robot should change its control strategy to enhance
effective swimming with reference to the surrounding flow
regime. It could possibly reduce drag by orienting itself
towards the incoming flow and staying behind an obstructing
object. It would also be able to adjust its control parameters,
such as the tail beat frequency and amplitude, based on the
detected flow speed, vortex shedding frequency and wake
wavelength.

The flow-sensing capabilities of animals provide a wealth
of inspiration for adaptive strategies to unsteady flow. Natural
hydrodynamic receptors have an operating range of 1-150 Hz
[15]. The main flow-sensing mechanism on a fish is the lateral
line organ. It is composed of an array of mechano receptors,
called neuromasts. These neuromasts are arranged on the
surface of the fish as superficial neuromasts and in subsurface
networks as canal neuromasts; they exist on both the anterior
and posterior regions of the fish [16]. The combination of
velocity detection by the superficial neuromasts and pressure
difference by the canal neuromasts allows the animal to detect a

range of water flows. This is an interesting biological capability
whose potential is worth investigating to aid the navigation
systems of underwater vehicles.

In this work we focus on a flow-sensing mechanism
that can be relevant to our underwater robot in unsteady
flows. We present off-line methods for the analysis of the
surrounding steady and unsteady flows to extract control-
related information. The methods are tested by deploying off-
the-shelf pressure sensors in two parallel arrays, to provide a
simplistic mimic of the fish’s posterior lateral line organ. The
overall goal is to better understand the sensing environment
from the local perspective of a situated agent. Four sensing
tasks are investigated, in particular:

e Task 1: differentiating between steady and unsteady flows
in particular the Kdrmén vortex street,

e Task 2: determining the orientation of the robot with
respect to the incoming flow,

e Task 3: determining the lateral deviation of the robot from
the centre axis of the Karman vortex street and

e Task 4: computing hydrodynamically relevant features of
the vortex street: the vortex travelling speed, the shedding
frequency and the wake wavelength.

Inspired by the lateral line organ of fish, flow and pressure
sensor technology is progressing rapidly to be able to measure
flow-related information [17-21]. With the maturation of
artificial lateral line technology, navigation in turbulent flows
may become easier. In this context, what we present here
is a first step towards developing on-line methods to guide
underwater vehicles in unsteady flows, such as the Karman
vortex street.

2. Material and methods

2.1. Pressure sensors

The off-the-shelf pressure sensors MS5407-AM [22]
developed by Measurement Specialties TM were adapted for
use in our experiments. They have a sensing unit that is
micromachined from silicon, mounted on a 0.62 cm x 0.64 cm
ceramic carrier and protected with a metal cap. The sensor is
gel protected against humidity and water. The sensing unit
is connected as a Wheatstone bridge that provides pressure
readings within the range of 07 bar full scale and a sensitivity
of 56 mV/bar. We used a 22 bit analogue to digital (AD)
converter MCP3553 of Microchip Technology Inc. because
of the small footprint. This choice limited the sampling rate
of the sensor readings to 50 Hz. The reference voltage was
124.5 mV corresponding to ~0.1 Pa for the least significant
bit. This device employs a third-order Delta—Sigma modulator
and a fourth-order digital decimation filter. High oversampling
frequency of the modulator minimizes the need for any external
anti-aliasing filter. To increase the signal-to-noise ratio, the
AD converter was soldered directly on the printed circuit
board holding the sensor without an amplification. The digital
signal was carried from the AD converter to a microcontroller
(ATmega324) over a serial peripheral interface bus. Data
acquisition was performed using code written in LabVIEW
(National Instruments, Austin, TX).
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Figure 1. (@) A schematic diagram of the sensor platform. It accommodated two pressure arrays laterally distributed. Each array had ten
pressure sensors measuring absolute pressure. The sensors were not interconnected; every sensor had a separate compartment with a
corresponding hole. (b) A snapshot when the sensor platform was tested in the Karman vortex street.

The sensor platform. Ten sensors were mounted in a
watertight box to form a pressure array. The sensors interacted
with the flow through 0.2 cm diameter holes on the side
of the box which were 1 cm apart. The sensors were
not interconnected; each sensor was placed in a separate
compartment. To ensure water tightness, the steel rim of the
sensor was pressed tightly into a machined hole in the plastic
case of the array and was sealed with silicon grease. The
arrays were mounted on a thin plastic plate. A U-shaped
polystyrene section was mounted on the front section of the
platform to achieve a more streamlined body. Figure 1 shows
the experimental sensor platform and the cross section of the
watertight box which contains one sensor and its electronics.

2.2. Sensor calibration

We performed a series of calibration tests in still water to
estimate the value—unit (pascal) conversion factor for each
sensor. We took recordings from the sensor platform at 5 and
15 cm below the water surface and measured the conversion
factor by relating the theoretical pressure difference to the
difference in the sensor readings at the two levels. We repeated
the same set of experiments five times and obtained consistent
results. For all sensors, the factor was ~ 0.1.

The recordings taken in still water were used as a control
reference for each experimental data set. We computed the
mean and the standard deviation of each sensor signal and
subtracted the mean from the readings to remove the offset. In
this way all pressure readings were relative to the readings
in still water. By multiplying the standard deviation with
the value—unit conversion factor, we estimated the pressure
variance of each sensor to be around 1 Pa, a similar value to that
reported by Fernandez [18]. In some experiments we observed
a slight drift in the sensor readings (20.05 Pas~!). This
might be due to the electronics or environmental changes, for
example temperature or atmospheric pressure. To ensure that
the amount of drift between the start and end of the experiment
was tolerable, we checked whether the sensor readings at the
beginning were consistent with the readings at the end (both

in still water conditions). If there was a discrepancy of more
than 5%, we repeated the experiments.

2.3. Experimental setup

The experiments were carried out in a flow channel (open to
air) with a working section of 100 x 30 x 30 cm? (length x
width x height). The flow was driven in a recirculating tank by
a propeller with diffusers before and after the working section
to generate a uniform, steady flow. A Nylatron cylinder with
a diameter of 4.5 cm was placed 30 cm downstream from the
diffuser that was placed at the start of the working section to
generate a Karman vortex street. In all experiments the flow

speed was fixed at 20 cms™!.

Investigated  scenarios. Twelve test scenarios were
considered, four in the uniform flow and eight in the Karman
vortex street (figure 2). In all experiments the sensor platform
was harnessed with a vertical rod and its position and
orientation were adjusted manually. The depth of operation
was 12 cm below the water surface at the centre of the water
column. During the Karman vortex street experiments, the
nose of the sensor platform was placed 20 cm downstream
from the cylinder, beyond the vortex shedding point.

Pressure readings were logged every 0.02 s (sampling rate
of 50 Hz). Each experiment started with data acquisition in still
water (60 s). It continued with recordings in the chosen flow
regime (120 s), and after switching off the water pump, an
extra minute of data was recorded to provide background and
noise data.

3. Flow characterization

Before the experiments with the sensor platform, we visualized
each flow regime in the Earth frame of reference using digital
particle image velocimetry (DPIV). The DPIV setup has been
described previously in [23], but for these experiments the
field of view was 30 x 25 cm? and a frame rate of 200 Hz was
used. In the Karman vortex street setup the cylinder was at a
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Figure 2. Investigated scenarios in the uniform flow (1-4) and in the
Karman vortex street (5-12). In all experiments the flow speed was
20 cms~!. Vortex streets were generated by placing a 4.5 cm
diameter cylinder in the flow. Experiments: 1. sensor platform
aligned parallel with the flow (uniform flow), 2. rotated by 15°, 3.
rotated by 30°, 4. rotated by 45°, 5. sensor platform aligned parallel
with the flow (Karman vortex street), 6. rotated by 15°, 7. rotated by
30°, 8. rotated by 45°, 9. sensor platform deviated to the right from
the centre by 1 cm, 10. deviated by 3 cm, 11. deviated by 5 cm and
12. deviated by 7 cm.

distance of 10 cm upstream from the leading edge of the field of
view. This global analysis was useful to reveal the differences
between the uniform flow and the Karman vortex street.
Furthermore, it highlighted the hydrodynamically significant
features which, on the one hand, allowed us to determine
a possible placement of the sensor platform (to ensure its
placement downstream of the vortex shedding point), and
on the other hand, offered benchmark data to evaluate the
performance of the pressure sensing as presented in section 5.
Figures 3(a) and (b) present a sample flow field in the
uniform flow and the Karman vortex street from the DPIV
measurements.

Each flow regime was studied using a post-DPIV analysis
toolbox [24]. The vorticity was minimal (observed only in
5% of the total area of the field of view) in the uniform flow.
However, well-formed vortices travelling downstream were
observed in the Karmén vortex street. Table | summarizes the
characterization outcome.

N
8
°
3
&

4.5cm

R

Tm

29.7cm
(a) uniform flow

Table 1. The flow features describing the Kdrman vortex street
through the DPIV flow analysis. The theoretical vortex shedding
frequency was computed as in [25]. The spacing ratio was computed
by dividing the width of the street to the average wake wavelength
[26].

Setup
Flow speed 20 cms™!
Cylinder diameter 4.5cm
Vortex shedding frequency (theoretical) 1.1 Hz

Investigated hydrodynamic features

Base suction length
Vortex formation length
Vortex shedding point

(5.3+04)cm
(10.5 £ 0.4) cm
(16.8 £0.4) cm

Karman vortex street width (6.3+0.8) cm
Average downstream flow speed

Inside Kdrman vortex street (16 1) cms™!

Outside Kdarman vortex street 23+ 1)cms™!
Average vortex travelling speed 20+ 1) cms™!
Min/Max average vorticity —80/80 s~!
Vortex shedding frequency (1.2£0.2) Hz
Average wake wavelength (18 £4) cm
Spacing ratio 0.35+0.12
Strouhal number 0.22+£0.05

3.1. Recognizing a Kdrmdn vortex street through analysis of
the flow field

We propose that a Karman vortex street can initially be
distinguished from a uniform flow by analysing how the flow
changes over time. We used a measure called turbulence
intensity, computed as the standard deviation of the flow
velocity divided by the mean flow velocity at each point [27].
The spatial distribution of the turbulence intensity is illustrated
for the uniform flow in figure 4(a) and the Kirman vortex
street in figure 4(b). The degree of turbulence was very low in
the uniform flow, whereas in the Karman vortex street it was
high, reaching a maximum at the vortex formation point. It
decayed quadratically with the distance from this point. The
flow outside the Kdrman vortex street was steady, as in the
uniform flow.

Turbulence intensity provides information on the presence
of a turbulent wake. Further information is required to
distinguish the Kdrman vortex street from other wakes. This

80.0

60.0
140.0
20,0

23.8cm

-20.0
-40.0
-60.0
-80.0

Vorticity intensity (1/s)

b -
k >

29.7 cm
(b) Karman vortex street

Figure 3. The velocity vector field superimposed on the vorticity field. The colour bar illustrates the vorticity where blue tones indicate the
clockwise rotation and red tones the counter-clockwise rotation. (a) The flow is steady in the uniform flow. (») Two vortex rows are visible

in the Karman vortex street.
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Figure 4. Turbulence intensity calculated from DPIV vectors highlights the spatial distribution of an unsteady versus a steady flow. The
colour bar encodes the magnitude of the turbulence. (a) There was negligible turbulence in the uniform flow. (b) A significant amount of
turbulence was detected in the Kdrmdn vortex street, reaching a maximum at the vortex formation point. Key locations obtained by the
DPIV analysis are highlighted: A. end of the base suction zone, B. vortex formation point, C. vortex shedding point and D. downstream

position of the sensor platform.
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Figure 5. Regions in which the temporal behaviour of the flow was characterized by a single frequency. The colour bar specifies the
frequency value of each region. The green regions with 1.2 Hz occupied the largest area. This value matched the expected vortex shedding
frequency. In blue regions we still detected the vortex shedding frequency but it was not as strong as the low-frequency component. This
could be due to the short observation window of the DPIV analysis in time. In white areas no dominant frequency was detected.

can be resolved using the frequency domain. The distinctive
feature of the Kdrman vortex street is the repeating pattern
of the flow which is characterized by the vortex shedding
frequency. If the temporal behaviour of the flow at a certain
location can be represented by a periodic function, the
probability is high for that location being a part of the Karman
vortex street. Figure 5 shows the frequency spectrum analysis
performed in the Karméan vortex street. The time window
for fast-Fourier-transform (FFT) analysis was 3 s. Locations
in which the temporal behaviour of flow agreed with the
vortex shedding frequency are highlighted in green. A Kdrman
corridor is clearly visible.

Overall, we can see that an approximate flow regime
classification would be possible on the basis of turbulence
intensity and frequency analysis; if the turbulence intensity of
the flow is above a certain threshold and its temporal behaviour
can be characterized by a distinct frequency, it can be labelled
as a Karman vortex street.

4. Methods to process pressure signals

In the previous section the flow features were detected and
described in the Earth coordinate system. In this section we
now turn to the local frame and use the onboard sensors.
In each experiment, we segmented the recorded signals into
5 s observation intervals using a running window. For each
observation window, we analysed the following features:

Pressure difference across sides. We computed spatio-
temporal pressure averages for each pressure array. We
compared the averages of the two arrays to evaluate whether
the sensor platform was aligned against the flow stream and
whether it was positioned at the centre of the Karman vortex
street. We postulated that when symmetry was broken either
by turning or deviating from the centre, the pressure readings
from the two arrays would differ.

Turbulence intensity. The turbulence intensity of the flow was
estimated by looking at the fluctuations in the sensor readings.
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We expected that the higher the fluctuations, the more turbulent
the flow would be. For each sensor, the turbulence intensity
was computed as the ratio of standard deviation of the sensor
reading to the mean value over a 5 s period. We used the mean
turbulence intensity on each array as the final measure. The
orientation and position of the sensor platform were deduced
by comparing the averages from the two pressure arrays.

Frequency spectrum analysis. The pressure signals in the
frequency domain were analysed using FFT (normal bin
distribution, bin size 0.2 Hz). In our preliminary investigations,
it was observed that the vortex shedding frequency dominated
the pressure readings obtained in the Karman vortex street. The
harmonics of the vortex shedding frequency did not appear
in the frequency spectrum. We therefore proposed a method
to classify the sensor signal as periodic when the frequency
component with the maximum amplitude contained at least
40% of the energy of the whole signal. Here the percentage
40% was chosen intuitively depending on the strength of
the Kdrman vortex street and the signal-to-noise ratio of the
sensors. We determined that the sensor platform was in the
vortex street if the majority of sensors (more than 50%) agreed
on the same frequency; this dominant frequency was then
regarded as the vortex shedding frequency.

Two factors interfered with the spectral analysis; high-
frequency components (around 8 Hz and its harmonics)
originated from the water pump and low-frequency
components (0-0.5 Hz) due to the bulk water movements.
To remove these frequencies we filtered each sensor signal
using a band-pass filter with the cutoff frequencies 0.5 and
5 Hz. The vortex shedding frequency was in the pass frequency
range.

We note that there was a trade-off between narrow
frequency selectivity and responsiveness of the frequency
detection method. As the duration of the signal used in the FFT
analysis increased, the frequency resolution increased enabling
us to distinguish between neighbouring frequencies. However,
observing a signal for longer periods increased the reaction
time. We therefore chose the minimum observation window
(5 s) as three periods of the lowest frequency component in
our range (0.6 Hz).

Cross-correlation analysis. We evaluated a cross-correlation
among sensors (a measure of the similarity of two waveforms
as a function of time lag applied to one of them) to estimate
the vortex travelling speed. We chose two sensors along the
same pressure array and computed the time difference from
the first to the second sensor that provided the maximum
correlation. We assumed that the difference would represent
the time needed for a vortex to travel from one sensor to the
other. The ratio between the spacing of the sensors and the
time delay would provide an estimate of the travelling speed.
For statistical verification, we repeated the same procedure for
all the combinations of sensor pairs with spacing bigger than
3 cm. The average speed and its confidence intervals were
evaluated based on the histogram analysis.

The choice of sensor spacing depended on the interaction
between the sampling rate of the sensors and the range of
flow speeds. In the range of 15-30 cms™' with 0.02 s time

resolution, working with the sensors less than 3 cm apart
would introduce errors greater than 20%. The speed estimation
improved with increasing distance between the pairs. We
explored the whole range varying from 3 to 9 cm (maximum
available distance between the first and the last sensor in
each array). The maximum distance was acceptable for the
correlation analysis as it remained smaller than the wake
wavelength and so prevented spatial aliasing.

Wake wavelength. After evaluating the flow speed and
the vortex shedding frequency, the wake wavelength was
computed by dividing the travelling speed by the vortex
shedding frequency. It was estimated at 30 cm downstream
from the cylinder.

5. Results

This section presents the analysis of pressure signals obtained
by the two sensor arrays.

5.1. Task 1: comparison between the Kdarmdn vortex street
and uniform flow

We first qualitatively highlight the differences between the
uniform flow and the Karman vortex street by comparing the
spacetime representation of the pressure signals as perceived
by the sensor platform (figure 6). In both circumstances the
sensor platform was oriented towards the flow.

For both pressure arrays, large irregular patterns were
detected in the uniform flow. The patterns, on the contrary,
were more organized in the Karman vortex street; low-
and high-pressure regions alternated sequentially, as inclined
regions. For each sensor, the horizontal distance between
the two consecutive regions indicated the recurrence period,
which was in accordance with the vortex shedding frequency
(~1.2 Hz; see table 1). Also, each region had a negative
gradient suggesting that an event, presumably associated with
an oncoming vortex, was first felt by the sensors at the anterior
parts (s; and s1;). Subsequently, it was detected by the other
sensors in an orderly fashion as it travelled along the array. The
delay in the detection time was related to the travelling speed.
It was computed from the gradient as 20 cm s~! matching the
incoming flow speed.

Hydrodynamic  features—spatio-temporal  pressure
average, turbulence intensity and dominant frequency—were
compared in figure 7. The data sets of the uniform flow
and the Kdrmdn vortex street were cascaded for illustration
purposes. The average pressure readings in both flow regimes
were 30 Pa lower than the ones in still water. In either case no
pressure difference was observed between the right and left
arrays (figure 7(b)).

The turbulence intensity measured in the Karman vortex
street was ~30% higher than that measured in the uniform
flow (figure 7(c)). This favours turbulence intensity as a valid
marker to differentiate steady from unsteady flow. In general,
the average flow fluctuations on both sides of the sensing
platform were similar except during the period of 100s < 1 <
140 s where the turbulence intensity measured by the right
pressure array was significantly higher.
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Figure 6. Snapshots of the pressure readings as they were observed in a 5 s interval: the vortex street and the uniform flow. The readings
were band-pass filtered. The red tones highlight the regions where the instantaneous pressure was positive and the blue tones highlight the
regions where the instantaneous pressure was negative. The colour bar shows the encoding between the colour and the pressure. One can
recognize the vortex street as low- and high-pressure regions arranged in an order, alternating slightly quicker than every second.

Figure 7(d) shows the colour-encoded dominant
frequency measured by each sensor. Green, corresponding to
1.240.3 Hz, was the dominant colour/frequency in the Karman
vortex street which matched the vortex shedding frequency.
The number of sensors detecting the vortex shedding frequency
at a time was usually higher than 10 (more than 50%, 17/24
times of 5 s observation windows, figure 7(e)). The colour
distributions, on the other hand, were quite random in the
still water and the uniform flow (figure 7(d)). No established
sensor consensus over time was observed in either flow regime.
The number of sensors in agreement was usually less than
10 (<50%) (figure 7(e)). The results validate the method of
dominant frequency analysis to recognize the Karman vortex
street.

Yet, when the flow was in a transient state (changing from
still water to a vortex street/uniform flow and vice versa),
there were occasions in which the sensors measured 0.6 Hz as
the dominant frequency. This is due to the gradual change in
the magnitude of the sensor measurements as the flow regime
was changed from one to another.

5.2. Task 2: turning the sensor platform away from the flow
axis

Pressure difference.  Figures 8(a) and (b) compare the
pressure averages of the right and left pressure arrays in the
uniform flow and the Kdrman vortex street, as the sensor
platform was turned away from the flow axis. The rotations
were clockwise from an angle of 0° (oriented towards the flow)
to 45° with a step of 15°.

In the uniform flow the pressure difference increased as
the platform was rotated through an increased angle. With
the assumption that the flow around the platform remained

uniform, the flow velocity and pressure, in the boundary layer,
were inversely related (Bernoulli’s law). When the platform
was facing the flow, the flow streamlines around the body
were symmetric and the pressure on both sides of the body was
equal. By turning the platform, the streamlines of the flow were
forced to curve around the body by differing amounts for each
side. This curving of the streamlines gave faster flow on the
right side of the body, and slower flow on the left side of the
body, leading to higher pressure on the left-hand side. This
resulted in the pressure difference across the two sides of the
platform (figure 8(a)). The higher the turning angle, the bigger
the pressure difference. The difference was around 10 Pa at an
angle of 45°.

In the Karman vortex street the pressure difference on
the platform increased with the turning angle (figure 8(b)).
However, this time at every angle the difference was twice as
large as that in the uniform flow (i.e. 20 Pa at an angle of 45°).

Turbulence intensity. Figures 9(a) and (b) show the average
turbulence intensity measured by the pressure arrays in both
of the flow regimes with respect to the turning angle. In the
uniform flow, the degree of turbulence did not change with the
orientation of the platform; it was always lower than 3.8 x
1073, which was recognized as an empirical threshold. There
was also no difference in the measured turbulence by the right
and left pressure arrays. In contrast, the turbulence intensity in
the Karman vortex street was consistently above 3.8 x 1075,
allowing us to distinguish between the two flow regimes. At the
same time, more turbulence was detected by the pressure array
on the left-hand side. The difference in turbulence increased
proportionally with the rotation angle. The higher turbulence
on the left-hand side can be explained by having sensors on
the left which were more exposed to the oncoming vortices.
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Figure 7. Analysis of pressure readings in the Kdrman vortex street (60 s < ¢ < 180 s) and in the uniform flow (240 s < ¢ < 360 s). The data
were cascaded from experiments 1 and 5 for illustration purposes. In both flow regimes, the sensor platform was oriented against the flow.
(a)—(e): (a) Pressure readings from sensor 5 (band-pass filtered). (b) Spatio-temporal pressure averages of right (green) and left (blue) sensor
arrays. (c) Turbulence intensity. (d) Frequency that was sensed most by each sensor. The frequency represented by each colour is shown in
the key. Green at 1.2 Hz is the dominant colour/frequency in the vortex street which matched the theoretical vortex shedding frequency.

(e) Maximum number of sensors that measured the same frequency. Usually, more than 10 sensors detected the vortex shedding frequency at
the same time. Each data point in (b)—(e) was computed by analysing the readings over a period of 5 s.
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Number of sensors detecting the vortex shedding frequency. rotation (after an angle of 15°). An increase in both the
The number of sensors detecting the vortex shedding frequency  turbulence intensity and sensor agreement suggests that the
also changed as the platform rotated (figure 10(a)). The number  sensors of the left pressure array detected the vortex street
on the left increased gradually depending on the angle of more intensely as the platform was rotated.
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Figure 11. (a) Turbulence intensity and (b) pressure response of the arrays as a platform moved to the right from the centre axis of the
vortex street. The red-dashed line points to an empirical threshold to differentiate the uniform flow from the vortex street.

5.3. Task 3: moving the sensor platform away from the centre  agreement on the right-hand side decreased with the distance.
line of the Karmdn vortex street When the centre of the platform was 3 cm away, the number

We investigated the number of sensors detecting the vortex ~Was already less than half suggesting an exit from the vortex

shedding frequency as the sensor platform deviated from the ~street. After this point the degree of turbulence also dropped
centre axis of the vortex street (figure 10(b)). The sensor into the uniform flow range (figure 11(a)). Overall, the width
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Figure 12. Vortex shedding frequency, vortex travelling speed and wake wavelength estimations over the course of the Karman vortex street
(60s < t < 180s, experiment 5). The sensor platform was oriented parallel with the flow stream. Each data point was estimated over a 5 s
observation window. The measurements corresponded to the part of the Kdrman vortex street between 20-30 cm away from the cylinder.

of the Kdrmdan vortex street was roughly estimated as 6 cm,
which agreed with the DPIV measurement.

The trend for the left sensors was parabolic, both for the
number of sensors detecting the vortex shedding frequency
and the turbulence intensity. In both figures 10(b) and 11(a),
the maximum values were measured when the sensor platform
was 3 to 5 cm away from the centre. In this range, the position
of the sensors on the left-hand side corresponded to the middle
of the street.

Figure 11(b) shows the average pressure measured by
the pressure arrays. Both arrays sensed lower pressure as
the platform was deviated from the centre. After a deviation
distance of 3 cm, the pressure dropped faster on the right side.
This could be related to the faster flow in the free-stream flow
outside the Karman vortex street.

5.4. Task 4: estimating the vortex shedding frequency, the
travelling speed and the wake wavelength

Previously in task 1, we demonstrated that the vortex shedding
frequency can be measured via the dominant frequency
analysis using FFT and the value was 1.2 £ 0.3 Hz. In this
section, we focused on estimating the vortex travelling speed
and the wake wavelength. The vortex travelling speed was
computed by the cross-correlation analysis between the sensor
pairs. The wake wavelength was determined by dividing the
estimated travelling speed by the vortex shedding frequency.
Figure 12 shows the vortex shedding frequency, the travelling
speed and the wake wavelength over the course of the entire
data set, when the sensor platform was in the middle of the
Karmén vortex street. For each data point, we used a 5 s time
window to calculate the correlations. Both arrays estimated
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a similar speed with an average of 21 + 5 cms™'. This
resulted in an average wavelength of 18 = 5 cm. Both values
matched the results from the DPIV analysis (table 1). When
we rotated the sensor platform, we were still able to calculate
the aforementioned features accurately, especially on the left
side where the fluctuations were still high.

6. Discussion

Typically, flow is visualized in the Earth frame of reference (as
for example in figure 3). A robot, fish or other agent operating
within the flow does not have access to this perspective, and so
it requires a system which converts local information (onboard
sensing) into a global understanding in order to facilitate active
control. Developing the capability of an underwater vehicle
to navigate in a wake is motivated in part by the following:
drafting in the wakes of objects provides a shelter from the
bulk flow and positions the craft to potentially exploit any
useful hydrodynamic features.

In a previous study [23], we showed how a linear array
of virtual sensors could be used as a local proxy for the
global DPIV-derived velocity vector field. In this paper we
implemented a real sensor array. Inspired by the lateral
line of fish, we built a simple artificial lateral line using a
bilateral linear array of low-cost pressure sensors. These were
distributed laterally on the sides of a streamlined rigid body
to sample the hydrodynamic environment. Using this device,
and comparing its readings to the velocity vector field of the
same flow, we have investigated the pressure fluctuations for
sensing information. We have demonstrated that it is possible
to detect complex flow structures, and specifically to detect
the presence of the Karman vortex street within the bulk flow
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(task 1), recover the position and orientation of the sensor
platform (tasks 2 and 3) and compute the vortex shedding
frequency, travelling speed and average downstream distance
between two consecutive vortices of the same rotation
(task 4).

The method used here to identify the Kdrméan vortex
street is based on measures of turbulence intensity and sensor
consensus on the dominant frequency. Estimated from the
pressure data, the average turbulence intensity in the Karman
vortex street was 30% higher than its counterpart in the uniform
flow and at least 50% of the sensors were simultaneously
detecting the vortex shedding frequency as the dominant
frequency.

We can determine the orientation of the sensor platform
relative to the oncoming flow by analysing the pressure
difference across the sides. This is possible as the physical
presence of the sensor platform itself reconfigures the flow
around the sensors. When the platform was aligned into the
flow, the spatio-temporal pressure averages measured by each
array were equal. When we turned the platform in a clockwise
direction, a pressure difference proportional to the turning
angle was observed. In both flow regimes the larger the angle,
the larger the pressure difference.

Finally, we determined the vortex travelling speed by
analysing cross-correlations among the sensors on each array.
A similar technique was proposed in biological studies to
analyse lateral line afferent signals with the purpose of
estimating the flow speed [28]. The average downstream
distance between the vortices was then calculated by dividing
the estimated speed by the vortex shedding frequency. We
see that even though the key hydrodynamic features exhibit
changes over the entire observation window (the vortex
shedding frequency and travelling speed change by 24% and
the wake wavelength changes by 33%), they can still be
identified using our bilateral pressure sensing array.

This study has certain limitations. The analysis was
narrowed to specific flow conditions in order to accommodate
the low resolution, sampling rate and the signal-to-noise ratio
of the sensors. The methods presented are off-line methods
requiring a certain amount of processing time, which can be
an issue in real-time applications.

Furthermore, there are other periodic, single frequency
wakes available to sense in the underwater environment. For
example, dipole sources and reverse Kdrman vortex streets
would be identified using the same markers. Although we
can detect a wake and the bulk flow movement, the ability
to discriminate local directionality in the flow is limited with
only a pressure array. Our information processing provides us
with the knowledge about the flow features, but our ability to
discriminate between different types of events is restricted. In
the biological lateral line this may be achieved through their
combined velocity and pressure gradient sensing capability
[29]. The lateral line organ is organized with many hundreds
to thousands of sensors that are distributed in a specific
pattern providing directional sensitivity [30]. Some of these
shortcomings could be overcome in future by the development
of a better biomimetic artificial lateral line using velocity
detection flow sensors (e.g. [17, 19, 20]) coupled with the
pressure sensor array.
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The term ‘distant touch’ [16] has been used to describe
the role of the lateral lines of fish and its ability to
localize hydrodynamic stimulus sources [29, 31]. Previous
researchers have deployed flow-sensing, artificial lateral line
arrays to realize this sensing mechanism. Surface flow
sensors in a single array have been shown to be capable of
locating an underwater vibrating source in the near field and
hydrodynamic wakes further afield [32]. A bilateral artificial
lateral line canal with optical sensors inside has been proven
to be sufficient to detect objects passing by, bulk flow velocity
and vortices caused by an upstream cylinder [21], while
a linear pressure array has been shown to be capable of
object identification and vortex tracking [18]. The bilateral
arrangement used in this study, coupled with the sensor
consensus and signal processing, expands on this and provides
information on the sensor platform orientation relative to the
wake, and on the absolute and changing pressure distribution
over the body as it is rotated in both steady and unsteady flows.

Complementary to the obvious engineering applications,
the results we present here provide a tool for testing hypotheses
about how a fish might use its lateral line to sense the features of
its environment. One of the challenges that has been identified
in lateral line research is the perception of signal in noise [29].
We have shown here that frequency patterns in the wake of
an object can be detected by pressure sensors alone and it
is possible to detect these patterns even in noisy real-world
flows. We also show that consensus between multiple parallel
sensors aids in the identification of the hydrodynamic signal
in the fluid noise. Further research into these two aspects of
our artificial sensor system may help to explain the complex
distribution and abundance of neuromasts in the fish lateral
line system.

‘We demonstrate here that our device, based on robust
pressure sensors, is able to extract features from the flow
such as the vortex shedding frequency, travelling speed and
wake wavelength, even in a real-world, particle-laden, flowing
water environment, which are useful for identifying objects
upstream. This was partially realized on a free-swimming
fish-like robot composed of a head and actuated flexible tail.
A closed-loop controller was built into the robot which used
the pressure difference across the head as sensor feedback
to orient the robot towards the incoming uniform flow [33].
By using two of our modified pressure sensors, distributed
either side of the head, an orientating response to the flow was
achieved. The preliminary results are encouraging and they
favour Montgomery’s assertion that the lateral line organ can
mediate rheotaxis in fish [34].

We conclude that a spatially distributed sensing system is
advantageous for underwater robot navigation. Compared to
measurements from a single sensor, collective sensing reduces
the amount of computational uncertainty. Moreover, we find
that spatial and temporal analysis of pressure measurements
leads to accurate estimation of flow speed and vortex shedding
frequency. Comparative analysis, especially between laterally
distributed sensors, provides useful information to determine
the position and orientation of the platform.
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Abstract

In underwater locomotion, extracting meaningful information from local flows is as desirable
as it is challenging, due to complex fluid-structure interaction. Sensing and motion are tightly
interconnected; hydrodynamic signals generated by the external stimuli are modified by the
self-generated flow signals. Given that very little is known about self-generated signals, we
used onboard pressure sensors to measure the pressure profiles over the head of a
fusiform-shape craft while moving forward and backward harmonically. From these
measurements we obtained a second-order polynomial model which incorporates the velocity
and acceleration of the craft to estimate the surface pressure within the swimming range up to
one body length/second (L s™'). The analysis of the model reveals valuable insights into the
temporal and spatial changes of the pressure intensity as a function of craft’s velocity. At low
swimming velocities (< 0.2 Ls™") the pressure signals are more sensitive to the acceleration of
the craft than its velocity. However, the inertial effects gradually become less important as the
velocity increases. The sensors on the front part of the craft are more sensitive to its
movements than the sensors on the sides. With respect to the hydrostatic pressure measured in
still water, the pressure detected by the foremost sensor reaches values up to 300 Paat 1 Ls™!
swimming velocity, whereas the pressure difference between the foremost sensor and the next
one is less than 50 Pa. Our results suggest that distributed pressure sensing can be used in a
bimodal sensing strategy. The first mode detects external hydrodynamic events taking place
around the craft, which requires minimal sensitivity to the self-motion of the craft. This can be
accomplished by moving slowly with a constant velocity and by analyzing the pressure
gradient as opposed to absolute pressure recordings. The second mode monitors the
self-motion of the craft. It is shown here that distributed pressure sensing can be used as a
speedometer to measure the craft’s velocity.

(Some figures may appear in colour only in the online journal)

1. Introduction to pick up control related information embedded in the

surrounding fluid, which is usually invisible to other
For upcoming underwater autonomous vehicles, the sensor modalities such as vision and sonar. Its biological
hydrodynamic flow and pressure sensing offer great potential —equivalent is the lateral line organ composed of modified

1748-3182/13/026001+10$33.00 1 © 2013 IOP Publishing Ltd  Printed in the UK & the USA
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hair cells distributed across and along the body of fish and
some invertebrates making up the acoustico-lateralis system
[1]. Vibrations are detected by the mechanoreceptors and
transmitted as electrical signals to the brain, providing the
animal with flow velocity and pressure difference signals [2].

Desired information from this sensor array may refer
to detection of nearby objects, recognition of flow regimes
and their hydrodynamic features or assessment of self-motion,
which can all be incorporated into a general control method to
achieve enhanced swimming performances.

Extrapolating contextual cues from local flow and
pressure profiles, however, is challenging due to the dynamic
interaction of fluids and structures. Flow sensors do not
only sense external stimuli but they are also sensitive to the
perturbations caused by the self-motion of the vehicle. These
perturbations would alter the flow around the body and could
disguise the desired stimuli.

The ability to moderate self-generated sensor signals has
been discussed in fish [3—-6]. Yet within engineering, little is
known on how to single out the desired control information
from superimposed flow sensor readings. Experiments are
usually conducted in a controlled environment, where the
sensing platform is held stationary in the presence of a single
stimulus. Dipole source localization [7], object recognition [8]
and tracking [9], detection of flow velocity and vortex shedding
frequency [10] and local analysis of steady flows and Karman
vortex streets [11] are some of the major studies reported in
the literature.

The mentioned studies are important to progressively
characterize the hydrodynamic signatures coming from
external sources in terms of intensity and temporal/spatial
profiles. However, to better understand the effects of these
signals, we also need to know the background sensing picture
of our vehicle generated by its own motion.

Our understanding of self-generated pressures is limited
to steady, forward motion. With the assumption that the flow
around an object is streamlined, the relationship between
flow velocity and pressure is described by the Bernoulli law;
the pressure is inversely proportional to the square of the
magnitude of velocity. The highest pressure point (stagnation
point) is where the velocity approaches zero on an intercepting
surface and is expected to be at the foremost point of the object.
The pressure profile decreases toward the sides of the object
due to the accelerated flow. These arguments are supported by
Dubois’ pioneering work described in [12], where he actually
measured the pressure distribution on the body of upstream
swimming fish using pressure taps.

In theoretical studies, the stagnation point is taken as
a reference to compute the velocity and pressure profiles
over the object. These profiles strictly depend on the shape
of the object and its orientation into the flow. One way
is to start with the potential flow solution for a circular
cylinder in an ideal fluid and modify it using conformal map
projections such as the Joukowsky transform. This approach
has been widely applied in a range of aerodynamic applications
[13, 14]. Hassan’s mathematical model in [15] looked at the
fluid-structure interaction for a three-dimensional fish shaped
object. Flow field based pressure estimations were studied in
[16, 17].

The focus of this paper is to analyze how pressure
distribution over the head of a fusiform-shape craft is
influenced while moving in an unsteady manner. We oscillate
the craft forward and backward in still water and in steady
flows. The geometry of the craft, with L = 27 cm,
was inspired from a rainbow trout. On-board, miniature
sensors, distributed laterally around the head, were used to
measure the local pressure. The relationship between motion
and pressure signals was obtained empirically through the
NARMAX (nonlinear auto-regressive moving average models
with eXogenous inputs) system identification process. Starting
with the general Bernoulli equation, the NARMAX process
was used to identify the important model terms and estimate
their coefficients based on the experimental data.

The resultant model is a second order polynomial which
incorporates the position of sensors, swimming velocity and
acceleration of the craft to predict the local pressure readings.
A transparent model such as this reveals the relationship
between the craft’s motion and pressure signals across varying
swimming speeds. It also provides a tool to quantitatively
investigate sensor spacing to focus on external or self-
generated flow.

2. Materials and methods

2.1. Flow tank

The experiments were conducted in the flow tank of
Ocean Technologies Laboratory, University Bath. An open-
air channel, with a working section of 93 x 40 x 36 cm?,
was bounded by collimators at either end to generate steady
flow. The flow was re-circulated using a propeller. The flow
within the working section was characterized using digital
particle image velocimetry, which showed that steady flow
was produced with negligible turbulence [11]. All testing in
the flow tank was carried out in the center of the working
section.

2.2. Sensing platform

The experimental craft had a fusiform-shape with an ellipsoid
cross-section and geometry as detailed in figure 1. It has a
passive rigid tail and pressure tapped head made of polyamide
powder, manufactured using rapid prototyping and lacquer
coated. The aspect ratio of the craft excluding the caudal fin,
is 1 : 1.8 : 4.5. Inside the head section there are 33 holes
where pressure sensors can be connected via silicon tubing.
The diameter of the holes is 2 mm. The pressure sensors
are sealed into a watertight box along with the electronics
necessary to acquire the data.

Pressure data were recorded from nine holes distributed
laterally on the horizontal plane intersecting the tip of the craft.
Figure 2 shows the distribution of the holes as seen from the
top and their position in polar coordinates (r, 6) with respect
to the reference coordinate (xy, yo), which is a point midway
between the sensors p; and py. Sensor ps is found on the
most anterior point. Sensors p; and py are, respectively, on the
rightmost and leftmost sides of the craft.



Bioinspir. Biomim. 8 (2013) 026001

O Akanyeti et al

Figure 1. Schema of the sensing platform (craft). The craft’s total body length was 27 cm when its components were assembled.
Components: 1—head and the pressure holes; 2—silicon tube connectors; 3—pressure sensors and electronics; 4—head-tail-rod connector;

5—rigid rod; 6—rigid tail.

r(L) | 0 (rad) | sensor (Pa)
0.07 | -1.57 p1
0.09 | -0.76 P2
0.14 | -0.38 p3
0.19 | -0.17 P4
0.23 0 ps
0.19 | 0.17 Do
0.14 | 038 p7
0.09 | 0.76 P8
0.07 | 1.57 P9

Figure 2. Distribution of nine pressure sensors around the head.
U is the velocity of the craft in the x direction, with positive value
indicating forward motion. The position of each sensor in polar
coordinates is given on the right-hand side.

2.3. Pressure sensors and data acquisition

The pressure sensors and their circuitry were designed to fit in
the craft for onboard sensing. Commercial pressure sensors
MS5401-AM from Measurement Specialties”™ were used.
These pressure sensors have a 240 mV bar~! sensitivity and
0-1 bar full scale range. The sensing unit in the MS5401-
AM is connected as a Wheatstone bridge. The differential
signal from each pressure sensor was filtered with a simple C
filter to eliminate high frequency noise before amplification.
The signal was amplified with a gain of 13.67 using an
amplifier AD8226ARMZ developed by Analog Devices Inc.
The single-ended signal from the amplifier was then passed
through a RC filter that has a time constant of 1 ms. The
filtered signal was digitalized using a 16 bit accurate AD
converter ADS8332IBRGET from Texas Instruments Inc. This
AD convertor was chosen because of its small packaging, but
it limited the resolution of each sensor to 2 Pa. Even though
2 Pa is considerably low, especially while detecting weak
stimuli or moving at low Reynolds numbers (Re), this was not
a major issue for the purpose of the presented research. Digital
readings from the AD converter were sent over serial peripheral
interface to the micro controller AT32UC3B1128-AUT from
Atmel. Within the micro controller, data was oversampled

50 times and forwarded to the computer using a RS-232 with
a 200 Hz sample rate.

Before experiments, the sensors were tested for variation
in depth, temperature and sensitivity to background noise.
When the craft was set in motion, sensors showed nonlinear
dependence to a rising temperature of the sensors themselves.
Temperature-induced drifts were significant in recordings
longer than a minute. To minimize the temperature effects, the
duration of each experiment was kept short (less than a minute)
and long breaks between experiments were given. During post-
processing, each motion cycle was analyzed separately and the
results were checked for consistency.

2.4. Motion rig and movement

The craft was actuated externally using a motion rig. The

movement was one-dimensional along the x direction. The

velocity of the craft U is therefore defined as the rate of change
in position along the x direction,
dxo

U= T (€))

A linear motor rig (MT480P Aerotech Inc.) was mounted
above the flow tank and controlled by Soloist Motion
Controller 3.02 (Aerotech Inc.). The position and speed of
the craft was logged at 200 Hz. A mounting arm connected the
linear motor to the craft behind the pressure array, suspending
it in the middle of the working section. A harmonic motion
with a forward-backward oscillation at 0.16 Hz was chosen.
Peak to peak traveling distance was 0.45 L. The motion began
at the center position and then moved forward to begin the
oscillation which was repeated three times. Figure 3 illustrates
the position, velocity and acceleration graphs of the craft while
in motion.

Pressure readings were logged during motion; the initial
and the final 2 s of data were excluded from the analysis due
to a complex starting and ending motion. Characterization of
the motion rig was performed before the actual experiments.
The rod holding the craft had a resonant frequency around



Bioinspir. Biomim. 8 (2013) 026001

O Akanyeti et al

L —— position (L)
0.4 velocity (L/s)
acceleration (L/sz)
0.2
c
2
5 0
€
0.2
I pressure recordings analysis interval I
-0.4F I 1
20 25 30 35 40
time (s)

Figure 3. Position, velocity and acceleration profile of harmonic
motion. Positive direction corresponds to forward motion.

Table 1. Steady motion swimming range (U) and Re = %, defined
in terms of the craft’s body length (L) and kinematic viscosity (v).

0.96
61633

ULs™") 034
Re 21809

0.54 0.69
34846 44091

0.89
57129

4 Hz whose amplitude was small compared to the desired
harmonic motion. Even though flow visualization around the
craft showed no indication of subsidiary motion effects, 4 Hz
and its harmonics were picked up by the sensors. These
frequencies were filtered out using a low pass filter with 3
Hz cut-off frequency.

2.5. Experiments

Two set of experiments were performed. In the first set,
pressure readings were recorded when the craft was held still
against a steady flow, to represent steady forward motion.
Table 1 lists the investigated flow speeds.

In the latter experiments, harmonic motion as described in
figure 3 was applied in still water and steady flows. The relative
speed of the craft with respect to the oncoming flow was varied
40.2 Ls™! (12800 Re). In still water, the ratio between the
magnitudes of the swimming velocity and acceleration of the
craftwas 1 : 1 whereasatU = 1 Ls™!itwas5: 1, enabling the
analysis of self-generated pressures over varying swimming
conditions.

Before each experiment sensor readings were recorded in
still water for 20 s. These data were used as a background
reference to analyze pressure readings.

2.6. Flow visualization

Flow visualization was used to observe the fluid-craft
interaction. It was carried out using a continuous green-light
laser (532 nm, Laser Quantum, TSI”™), a high speed PCO
1200 hs CCD camera and a synchronizer (TSI”™). Polyamide
particles, (average diameter 100 um), were used to seed the
flow (Vestosint 1101, Evonik Industries). Images of laser-
illuminated particles were captured, through a front-silvered
mirror set at 45° below the flow tank using Insight 3G software
(TSI™™),

3. Theoretical framework

The presented relationship between motion and sensing is valid
only for the pressure tapped head and cannot be used to predict
the pressure distribution for the rest of the body. Lighthill
discussed in [18] that with the assumptions of irrotational flow
and no boundary layer effects, the pressure distribution on
the surface of the head can be approximated by the Bernoulli
equation,
aip 1 2.

P=—p = 5rleraddl’; @
P represents the pressure difference between the actual
distribution of the fluid pressure and purely hydrostatic
pressure. p is the density of the water, which is taken as a
constant, and ¢ is the velocity potential. With the assumption
of a two-dimensional potential flow, the velocity potential
associated with the head movement in the x direction (all lateral
and rotational motions are excluded) is given by

¢ =Ugy(r,0), 3)
where (7, 0) is defined with respect to origin (xo, yo) (figure 2).

3.1. Steady motion

In steady, forward motion, time derivatives of the velocity
potential vanish (% — 0) leading to a well-known case,

P=—3pU? @)
where the pressure is inversely proportional to the square of
velocity magnitude. At the nose (forward most point) of the
craft the velocity is assumed to be 0, resulting in the highest

pressure point (stagnation point). At the widest part of the head
the pressure drops to a minimum due to the accelerated flow.

3.2. Forward acceleration

In case of forward, accelerated motion, equation (3) simplifies
to

ap dU 20y
—=—¢,=U . 5
ot dr ¢ ox ©)
Now equation (2) together with equation (5) gives
e dUu #
BT
1 0p; 0 0. B9y Oy
L (P00 9000000 o
2 ox ox dy dy 0x
Equation (6) can be represented in the form
du
P=C15+C2U2+C3, @)
where
C=— Pdx
1 (0¢y0¢x  0hx 04y 09
C=—-= -2 . 8
2 2p<8x ox Ty oy Cox ®)

The first term is an inertial term related to the acceleration
of the craft and the second term is related to the square of
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its swimming velocity. The coefficients of C; and C, depend
on the geometry of the craft. The term Cs is incorporated
in the model to account for any other relations which we
were unaware of. It is difficult to derive these coefficients
theoretically; we therefore follow a data-driven approach
which builds and validates the model using experimental
measurements.

3.3. NARMAX system identification

The relations given in equation (7) were identified using
NARMAX system identification [19], which produces the
most parsimonious model to capture the relationship between
self-motion and pressure sensing based on the experimental
data (input—output measurements). NARMAX system
identification is a well-established parameter estimation toolkit
which has been used in many disciplines [20,21]. ANARMAX
model can be in various forms such as polynomials, multi-
resolution wavelets [22], Bernstein coefficients and radial basis
function expansions [23]. A polynomial expression was the
most appropriate to represent the equation (7).

For a multiple input, single output noiseless system the
model terms are constructed based on all the linear and
nonlinear combinations of

y(n) = fn(n), -, ug(n), -, uy(n — N,),
yn—1),---, ' (n—Ny)) + Co,

where u(n) and y(n) are sampled input and output signals at
discrete time n, N, and N, are the regression orders (maximum
number of time lags) of the input and output, d is the dimension
of the input vector and / is the degree of the polynomial. Cy
is a constant number. The modeling parameters N,, N,, d and
[ are chosen manually depending on the nature of the system
under investigation.

Coefficients of the model terms are estimated using an
orthogonal parameter estimation (OPE) algorithm [24]. First
an auxiliary model is defined such that the terms in the model
are orthogonal over the training data set. The coefficient of
each term in the auxiliary model is then estimated in the least-
squares manner. The individual contribution of each term to the
desired output variance is measured using an error reduction
ratio. The terms with contributions less than a determined
threshold are removed from the model and the coefficients
of the remaining terms are re-computed. This is an iterative
process until the model passes the model validity test [25].
Finally, the coefficients of the NARMAX model are calculated
from the resultant auxiliary model.

One decisive advantage of OPE compared to classical
least-squares parameter estimation methods is that OPE
provides an indication to the significance of model terms
allowing the removal of insignificant ones, which yields to
more parsimonious models. In this way, the real structure of
the system can be detected.

During modeling, sensor ps on the tip of the craft (highest
pressure point) was used as a reference to the ground the
other pressure sensors (ps — p;, where i = (1,---,9)). The
data recorded from experiments were divided into two parts:
(i) training data and (ii) validation data. The training data

Table 2. NARMAX model which relates the pressure difference
between nose and lateral sensors to the flow speed.

ps_1 = 0.05U2 + 0.80U + 1.86, (R? =0.90, MAE = %4 + 2 Pa)
Ps_o = 0.05U2 + 0.78U + 1.35, (R? =0.96, MAE = %3 + 1 Pa)

was used to estimate the parameters of the model and the
validation data was used to evaluate the obtained models.
Statistical measures—coefficient of determination (R2?) and
mean absolute error (MAE) between real and predicted
pressure—were computed to measure the performance.

4. Results

4.1. Experiment 1. Craft fixed in steady flow

We first analyzed pressure distribution (py, ..., py, mean £
standard deviation) when the craft was held still facing toward
the incoming flow. The flow speed was equivalent to the
forward velocity of the craft. The pressure measurements were
averaged over a 20 s window. The measurements in still water
were taken as a reference (0 Pa).

Figure 4(a) shows that the absolute pressures increased
with the flow speed. The foremost sensor (ps) always measured
the highest pressure (stagnation point). The pressure decreased
gradually toward the sides. The pressure profile was symmetric
across the head; sensors on the right and left sides had similar
values. The lowest pressure was detected by the most lateral
sensors (p; and py). At two extreme flow speeds (U =
034 Ls™' and U = 0.96 Ls™"), ps = 97.6 + 6.1 Pa and
305.7 £ 8.5 Pa, p; = 88.0+5.3 Paand 222.0 & 5.7 Pa and
po = 86.3 £ 6.3 Paand 227.1 £ 5.5 Pa.

Figure 4(b) shows the pressure gradient (pressure
difference across sensors). The highest pressure difference was
detected around the tip of the craft by ps — ps (3.0 = 1.1 Pa
at U = 034 Ls™! and 43.9 £ 6.0 Paat U = 0.96 Ls™})
and ps — pg (2.1 £ 0.7 Pa and 42.5 £ 6.4 Pa). The minimum
pressure difference was detected by p3 — p» (1.0 £ 0.5 Pa and
6.3+£0.7Pa) and p7 — ps (1.0£0.4 Paand 9.1 0.6 Pa). The
minimum pressure points were at 6 = 7.

Figure 4(c) presents how the pressure distribution was
changed with respect to the stagnation point (sensor ps). The
relationship between ps — p;, ps — po and flow velocity
was identified through NARMAX modeling (table 2). The
pressure difference was proportional to the square of the flow
speed. Figure 4(d) shows the experimentally measured and
model predicted data points that matched closely (R> > 0.90,
MAE < %5).

4.2. Experiment 2. Moving the craft forward and backward

We next analyzed the pressure measurements when the craft
was exposed to the harmonic forward—backward motion (at
0.16 Hz), where the velocity and acceleration of the craft
changed sinusoidally with 90° phase difference.

Figure 5 shows the effect of motion on the pressure
measurements when the craft was moving in still water. The
pressure readings oscillated around 0 Pa with the frequency of
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Figure 4. Five flow velocities (listed in table 2) were tested against the rigidly held craft. (@) Mean pressure recordings. (b) Mean pressure
gradient. (c) Mean pressure referenced to the sensor on the nose ps. (d) Mean pressure difference between nose and lateral sensors versus

flow speed. Second degree polynomial fits are presented in table 3.

the harmonic motion (figure 5(b)). The foremost sensors pa,
ps and pe measured higher pressure values than the sensors on
the sides. The maximum peak to peak pressure was detected
by the sensor ps (£10 Pa) and the minimum peak to peak
pressure was detected by the most lateral sensors p; and po
(£2 Pa). We observed high correlation between the pressure
readings and the acceleration of the craft; the extremum points
of pressure signals matched the ones of acceleration vertically
along the time axis.

Figure 5(c) shows the pressure readings referenced to the
sensor ps. The maximum pressure difference was detected by
the most apart sensors ps — p; and ps — pg. Both values were
around £6 Pa.

Figure 5(d) shows the local pressure difference across the
sensors. They were also correlated with the acceleration of
the craft. Their oscillation amplitude was less than 42 Pa °.
There was no significant pressure difference across the head
of the craft (figure 5(e)).

Figure 6 shows the sensor recordings when the craft was
moving in steady flow (U = 0.7 Ls™!). Compared to the

3 In this particular experiment, the resolution of sensors was not high enough
to investigate the pressure gradient as a function of the location of sensors.

motion in still water, the acceleration of the craft remained
the same, but its relative velocity with respect to the incoming
flow increased from [—0.2,0.2] Ls™! to [0.4, 0.8] Ls~'.

The offset of the absolute pressure detected by the
sensor ps increased by 250 Pa. It’s oscillation amplitude
also increased from 19 to 47 Pa (figure 6(b)). The offset of
the pressure difference ps — p; increased by 44 Pa and its
oscillation amplitude increased from 13 to 38 Pa (figure 6(c)).
The pressure gradient on the front part of the craft was
significantly larger than the pressure gradient on the sides
(figure 6(d)). The oscillation amplitudes of ps — p4 and p, — p;
were 31 and 8 Pa, respectively. The pressure readings were
more sensitive to the craft’s velocity than to its acceleration.
Again, no pressure difference across the head was detected
(figure 6(e)).

4.3. Flow visualization around the craft

Flow visualization was used during the motion of the pressure
head to highlight the surrounding fluid motion. The craft
was illuminated by the laser sheet from one side, so the
shadow cast behind the object remains black. Figure 7(a—c)
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Figure 5. Pressure recordings when craft was moving in still water.
(a)—Craft’s motion data, (b)—absolute pressure recordings from
each sensor, (c)—pressure recordings referenced to ps,
(d)—pressure gradient, e—pressure difference across the head. The
numbers on the right shows the range of maximum peak to peak
signal in each class.

shows the movement of the fluid caused solely by the motion
of the craft in still water. The fluid was pushed forward and
sideways when the craft was accelerating forward (figure 7(a)).
The entrained fluid along the body continued to move forward
once the craft was reversing the motion path (figure 7(b)),
visualized as a region of decelerated flow largest just after
the widest section of the craft. The flow direction was
then reversed as surrounding fluid was sucked in behind
the nose and from the sides as the craft moved backward
(figure 7(c)).

When moving in a steady flow (U = 0.7 Ls™!), the
relative velocity of the craft changed compared with that
of its environment. However the fluid overcame any effects
from the movement of the craft that were seen in still water.
Figure 7(d) shows the streakline patterns suggesting very little
fluid separation over the accelerating body that can be seen
at this resolution. Flow visualization and pressure recordings
were in agreement that inertial effects of the craft were more
tangible at low swimming velocities (U < 0.2 Ls™!). These
effects diminished to a great extent at higher swimming
velocities (U > 0.7 Ls™").

Forward — backward motion in steady flow (U = 0.7 L/s)

pos. ™S _— T~ _— T~__

<~ — — —09Lls

t ++3 t+6 ++9
time (s)

L L
t+12 t+15

Figure 6. Pressure recordings when the craft was moving in steady
flow (U = 0.7 Ls™!). (a) Craft’s motion data, (b) absolute pressure
recordings from each sensor, (c) pressure recordings referenced to
ps, (d) pressure gradient, (e) pressure difference across the head.
The numbers on the right show the range of maximum peak to peak
signal in each class.

Table 3. The NARMAX model which estimates the pressure
distribution around the craft based on its motion. The units of U, ‘3—‘,’
and r are represented in terms of L. The unit of € is in radian.

U
ps — pi = (20.4sin(|6;]) + 4'7)3 +68.9U°
+ (21.1sin(|6;]) — 18.0)U + 2.7 sin(|6;]) — 1.6 9)

5. Mapping motion to pressure sensing

Next, the relationship between the motion and pressure
distribution over the craft was identified. Motion parameters
(position, velocity and acceleration) and position of each
sensor i (r;, sin(#;)) were fed into the NARMAX method to
model pressure readings in terms of ps — p;. Due to lateral
symmetry across the head, |6;| was used instead of 6;. The
training and validation data sets were formed from all the data
recorded at different flow speeds when the craft was in motion.
The resultant model is a second-order polynomial (table 3).
Figure 8 shows the experimental and model predicted pressure,
which match closely (R*> = 0.84 and MAE = 7.71 + 0.03
Pa).
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(a) forward motion in still water

(b) in between forward and backward
motion in still water

(d) forward - backward motion in steady flow (0.7 L/s)

Figure 7. Flow visualization of the craft moving forward and
backward in still water (a)—(c) and in steady flow (d). (@) Forward
motion in still water, (b) in between forward and backward motion
in still water, (c) backward motion in still water, (d)
forward—backward motion in steady flow (0.7 Ls™').

Table 4. Sensitivity of the NARMAX model of table 4 to the
velocity, acceleration and position of the sensors.

d(ps — pi .
s =P _ 13780 + 21.15in(6}) — 18.0
A(ps = pi .
% = 15.4sin(|6,]) +4.7
&
aps L p, au
% = 204¢05(16/) - +21.1 cos()U +2.7 cos(1fi)

5.1. Sensitivity of the NARMAX model to the craft’s velocity,
acceleration and sensor position

The model’s partial derivatives with respect to the craft’s

velocity, acceleration and sensor position were analyzed to

measure the model’s sensitivity to these variables (table 4).
We defined sensitivity as the change in pressure as a

function of the change in U, %’, 6;; the higher the pressure

120

— Measurements
—— NARMAX Model

100 ___ pifference

il |

401 “‘ ‘ i

Pressure (Pa)

data points

Figure 8. The real pressure measurements (blue) are overlaid with
the predictions generated by the NARMAX model detailed in table
4 (red). The difference between the two is plotted in black.

change, the more sensitive the model is. For a given sensor
where sin(]6;]) is known, the sensitivity coefficient of velocity
(W) increases proportionally with increasing velocity,

whereas the coefficient of acceleration (2Z5) remains

constant. Figure 9(a) shows the behavior of these coefficients
as a function of swimming velocity for ps — p;. When U <
0.2L s~ !, the model is more sensitive to the craft’s acceleration
(a(’;ﬂ%) > 2s-p)) This relationship changes in favor of

velocity at higher swimming velocities. When U = 1 Ls™!,
the model is almost five times more sensitive to the velocity
than the acceleration.

Figure 9(b) shows the model’s sensitivity to the position
of the sensors when %j = 0.1 Ls™'2. The sensitivity decrease
as the angle 6; increases indicates that the sensors on the sides
are less sensitive to the forward motion than the sensors on the
front. The slope of the curves gets steeper at higher swimming
velocities suggesting that the difference between the sensitivity
of the front and side sensors increases.

6. Discussion

The navigation of complex aquatic environments requires an
increased sensitivity to external signals, which can come from
static objects, moving objects or hydrodynamic features in the
flow such as eddies and vortices. In real life scenarios detection
of peripheral stimuli is challenged by the self-motion of the
craft.

The purpose of this study is to analyze the self-motion
effects on the surface pressure of the fish-shape craft.
The investigated motion, an harmonic forward—backward
movement in still and in flowing water, was unexplored
before, and it provided a rich repertoire of unsteady,
accelerated/decelerated motions at different swimming speeds.
A second-order polynomial (table 3) obtained via the
NARMAX process shows that the pressure distribution across
the head can be anticipated successfully using the velocity
and acceleration of the craft. Within the swimming range
up to 1 Ls™!, the model predictions closely matched the
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Figure 9. (@) The NARMAX model sensitivity to both velocity (black) and acceleration (red) are plotted across the swimming range. The
profiles are computed based on the equations given in table 5. Acceleration dominates the signal response below 0.2 Ls~!. (b) The
NARMAX model sensitivity to sensor position. The front sensors (small 6) are more sensitive to the self-motion than the sensors on the side.

experimental data with an error margin of 20% and an average
error less than 10%.

6.1. Effects of swimming speed

The analysis of both the experimental data and the
NARMAX model revealed that the pressure increased
quadratically with increasing swimming velocities. When U <
0.2 Ls™! the sensors were more sensitive to the craft’s inertia
than its velocity. The pressure profiles matched closely the
acceleration profile of the craft. On the other hand, the
inertial effects decreased proportionally at higher swimming
velocities; the pressure signals were correlated with the
velocity of the craft rather than its inertia. These results suggest
that moving at a low, constant velocity is preferential as a
sensing strategy to focus on external stimuli.

Our results also have direct relevance to biology, in
particular lateral line sensing. When fish forage or watch out
for predators, their tendency to swim quietly using burst and
coast swimming can be interpreted as an effort to minimize
self-motion effects and increase the sensitivity of lateral line
to external stimuli. While swimming at higher velocities, the
self-generated pressures increase to high levels, which can
easily mask the hydrodynamic stimuli. For instance, when
the craft is moved at 1 Ls™! the pressure detected by the
foremost sensors reach values up to 300 Pa. This value is at
least an order of magnitude higher than the vortex-induced
pressure detected in Karman vortex streets [11]. We speculate
that at higher swimming velocities fish may rely on other
sensor modalities more to monitor the environment. In the
mean time, the information sensed by the lateral line can be
used for supervising swimming such as rheotaxis behavior
[26].

The self-motion effects are minimized in the domain of
pressure gradient, local pressure differences among sensors.
The pressure difference between ps — p4 was at least an order
of magnitude smaller than the individual pressure readings
ps and p4. It is assumed that the canal neuromasts in fishes
are sensitive to the pressure difference across the canal pores,
which is similar to the pressure gradient measured in this study.

Table 5. Reverse NARMAX model which maps pressure readings
to the craft’s velocity.

U =0.01(ps — p1) — 0.09(ps — p3) + 0.04(ps — ps)

+0.03(ps — ps) + 0.03(ps — po) — 0.06 (10)

Our results suggest that this sensing arrangement can improve
the signal-to-noise ratio, especially to detect the information
related to external stimuli.

We loosely divide the pressure sensors into two groups
in terms of their location: the sensors on the front and
the sensors on the sides. The first group is more sensitive
to the self-motion and the sensitivity increases at higher
swimming velocities. Windsor previously reported that certain
fish heading toward the wall could detect the wall at shorter
distances with increasing speed [16]. This was contrary to the
initial hypothesis of fish swimming at higher speeds would
generate a stronger bow wake enabling the fish to detect the
wall earlier at longer distances. However, our findings suggest
that the self-generated pressures of faster fish can lower the
signal-to-noise ratio and prevent early detection of the wall.

6.2. Speedometer via distributed pressure sensing

Finally we used the NARMAX process to obtain a reverse
model which links the pressure readings to the velocity of our
craft. The resultant model is given in table 5 with R> = 0.92
and MAE = 0.08 £ 0.001 Ls~'. Figure 10 illustrates the
measured and predicted velocities as well as their difference.
Predictably the linear model did not perform well when
U < 0.2Ls™!, asin this swimming range the pressure readings
were more sensitive to the craft’s acceleration. Higher order
polynomials, including time lagged pressure readings, can
address this problem straight away.

‘We conclude that distributed pressure sensing can be used
as a speedometer to estimate the relative velocity of the craft.
Sensor feedback on swimming velocity can be used to stabilize
the cruising speed or to estimate the traveling distance like
an odometer. Overall, our results emphasize that distributed
pressure sensing can be used to evaluate the motion of the
craft as well as to predict the hydrodynamic conditions around
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Figure 10. Performance of the reverse NARMAX model of table 5
to estimate the craft’s velocity.

the craft, enabling us to develop more efficient navigation
strategies.
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Sensing oscillations in unsteady flow for better robotic swimming
efficiency

Jaas Jezov, Otar Akanyeti, Lily D. Chambers, Maarja Kruusmaa

Abstract—Turbulent flows are often treated as a noisy
environment by control algorithms of underwater robots.
However, aquatic animals such as fish have learned to take
advantage of certain unsteady flow. Periodic complex flow,
such as that found in the wake of cylinders has been shown to
offer energy saving opportunities to fish. We built a fish-like
robot with an integrated pressure sensor array housed in the
head. The robot can control its tail beat synchronization with
respect to the periodic oscillationsin the flowbehind a cylinder.
We show that vortices, represented here by pressure maxima,
can be detected and exploited to increase the swimming
efficiency of the robot fish while it remains rigidly mounted to a
force plate. Force measurements show an efficiency gain of
23% when the tail beat of the robotic fish is synchronized at a
particular phase lag.

I. INTRODUCTION

The swimming efficiencies of fish and sea mammals are
investigated by many researchers in various disciplines as
understanding the principles of their control and locomotion
is interesting both for biologists and engineers. Fin
locomotion is mostly investigated in steady flows. But as in
a real world, flow is seldom steady, it is therefore
interesting to investigate how fish negotiate turbulence to
minimize their energy consumption.

Studies show that fish prefer swimming in predictably
oscillating flows [1-4], like the Karman vortex street
generated in the wake of a cylinder at particular flow speeds.
In the Karman vortex street, fish can adapt their tail beat to
the vortex shedding frequency and slalom between vortices.
The tail beat frequency of fish drops considerably compared
to swimming in a steady flow [5], also the muscle activity of
fish swimming in periodic turbulence is much lower than it
would be suggested by the reduced flow behind a bluff body
[6]. This suggests that fish can potentially utilize energy
from the flow.

Energy harvesting is an interesting topic for underwater
robotics because it permits the design and build of vehicles
that can survive longer missions. The energetics of finned
propulsion has been previously investigated in periodic
turbulence and it was found that the efficiency depends on
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the timing of'the tail beat.

Gopalkrishnan et al. [7] found that the efficiency of an
actuated hydrofoil in a controlled turbulence depends on the
phase of the hydrofoil interaction with the vortices shed
from behind a cylinder. They showed that there are 3
different interaction modes that leave visually distinctive
vortex patterns in the wake of the hydrofoil. The mode of
interaction depends on the phase of the foil flapping with
respect to the vortex location. Triantafyllou et al [8]
highlights that the most thrust is produced with a destructive
vortex merging mode. In this mode a vortex produced by the
hydrofoil is merging with a vortex from the cylinder rotating
in the opposite direction. These vortices destroy each other
producing a pattern of weaker vortices in the wake of the
hydrofoil. This mode is less efficient than a vortex pairing
mode as it requires more power. In the vortex pairing mode
a pattern of mushroom like double vortices is produced. The
most inefficient is a constructive vortex merging mode
where vortices from the cylinder and the hydrofoil are
rotating in the same direction at the time of merging. In the
vortex pairing mode hydrofoils and fishlike three-
dimensional bodies can be actuated even with efficiency
over 100% [7-8]. In their studies the controlled turbulence
was achieved by oscillating the cylinder laterally in the flow.
The angle of the hydrofoil was changed periodically while
the pivot point of the hydrofoil was oscillated laterally. The
phase difference was measured between the oscillations of
the cylinder and the hydrofoil.
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In the above mentioned studies the body interaction with
the turbulence was controlled experimentally, which, from
robotics applications point of view, is not a realistic
precondition. In robotics, the control problem is the reverse,
instead of controlling the turbulence, the tail beat of the fin
should be controlled to gain better efficiency.

The hydrofoils in those experiments were also moving in
a lateral direction, which is similar to the biological fish
kinematics in the wake of a cylinder [5]. Fish-like robots are
usually not directly controlled in the lateral direction. Since
we do not have the control over the hydrodynamic
environment and the lateral translation, two questions can be
asked when investigating swimming efficiency in the



periodic turbulence generated in the wake of a cylinder:

1. Is it possible to synchronize a fishlike robot with a
periodically turbulent flow by sensing and measuring
flow features?

2. Does the dependency between the tail beat timing and
swimming efficiency still exist when a lateral
translation of a fish-like robot is not possible?

To investigate these questions we built a robotic fish that

is harnessed rigidly in the flow and can only move its tail. A
control algorithm of the robotic fish uses a signal from
distributed pressure sensors in the robot’s head to identify
periodic features in the flow. The hydrodynamic presence of
a vortex is sensed here by the presence of a pressure
maximum on the most forward reaching sensor. When this
signal is sensed, an appropriate delay is applied to allow the
tail of the robotic fish to interact with the vortex We show
that by controlling the tail beat phase with respect to a
periodic turbulence pressure cue, tail efficiency can be
considerably increased without the lateral or angular
movement of the robotic fish.

II. MATERIALS AND METHODS
A. The flow tunnel

Experiments for this study were conducted in a flow tank
located in the Centre for Biorobotics in the Tallinn
University of Technology. A flow tunnel is assembled into
the tank with 4 m x 1.3 m x 1.45 m dimensions (Figure 1).
The tunnel has a 150 cm x 50 cm x 50 cm working section
with Plexiglas for the side, bottom and top boundaries. A
propeller circulates the flow that pass through two
collimators before entering the working section. The
collimators insure steady flow for speeds up to 50 cmvs.
Periodic turbulence is created in the flow tunnel with a D-
shape cylinder that has the flat surface facing downstream.
The cylinder has a 10 cm diameter and a length of 48 cmand
it is positioned 30 cm downstream from the collimators in
the centre of the working section. The robotic fish is
fastened to a force gauge so that it is facing upstream. The
distance between the flat surface of the cylinder and the nose

ofthe fish is 30 cm.
4m
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Figure 1. Schematic of the experimental setup.
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B. The force gauge

The force gauge was custom made for underwater
measurements. It can measure the drag/thrust, the lateral
force and the torque around the vertical axis. The force
gauge is calibrated with a force gauge LG-5000A developed
by Lutron Electronic Enterprise CO., LTD. The custom
made force gauge is used with a DC motor that can actuate
around the vertical axis. The DC motor is controlled with a
PID controller with a position feedback from a Hall Effect
sensor AS5304A developed by Austriamicrosystems AG. In
these experiments we used motor angle oscillations of 15
degrees.

C. The robotic fish

The robotic fish has a fish-like body with a length of 47.5
cm (Figure 2). The largest cross-section area perpendicular
to the flow direction is 34.69 cn. The head of the robotic
fish is printed out of polyamide powder while the tail is cast
from silicon Dragon Skin (Smooth-On, Inc.). A flexible 0.5
mm thick plastic backbone is cast into the tail. The backbone
material extends outside the tail to support the tail fin. It
forms the upper and lower edge of the tail fin. The fin
membrane between the edges is cast from silicon Elite
Double 8 (The Zhermack Group). The shape and stiffness
profile of the tail is manufactured according to a bio-inspired
approach reported in [10]. The tail is treated as a compliant
body and is actuated about a single point. In these
experiments, the actuator of the tail is an external DC motor
fixed to the force gauge. When the tail moves, the head of
the robotic fish is fixed with a support fastened to the base of
the motor. The gap between the head and the tail is removed
by extending the silicon skin from the tail to the edge of the
head.

D. Flow sensing

The fish robot senses flow with an artificial lateral line
consisting of an array of pressure sensors in the head. The
pressure sensing array is connected to the surface of the
robot fish head by 14 holes with 2 mm diameter. These holes
are positioned on the horizontal plane crossing the tip of the
nose. There are 7 holes on either side with 2 cm
displacement. The first holes are 2 cm away from the nose
tip, measured along the surface of the head.

Each hole leads to a watertight compartment for the
MS5407-AM pressure sensors (Measurement Specialties
TM) and for data acquisition electronics [9]. In the current
study we use only the two pressure sensors closest to the
nose. We label the sensor on the left side pl and the sensor
on the right side p2. The signals from the pressure sensors
are sampled 50 times per second with an accuracy of 0.1 Pa
for the least significant bit.

Digitalized signals from the pressure sensors, the force
gauge and the motor position sensor are transferred to a PC
over a RS-232 serial connection. In the PC the signals are
processed with a program written in LabVIEW (National
Instruments). The same program transmits an analog control
signal through a data acquisition card PCle-6363 (National



Instruments) to a motor controller that drives the motor of
the tail.

40 cm

Figure 2. The robotic fish with a compliant tail attached to the force gauge.

To record the experiments we use an overhead camera
UI5240HE-M developed by IDS Imaging Development
Systems GMBH. For the flow visualization, a laser with a
cylindrical lens is used to illuminate particles added to the
flow.

E. Aperiodically turbulent flow

Placing a bluff body into a steady flow will not only slow
down the flow because of the shadowing effect but vortices
will appear at a certain Reynolds number range. The effect is
easiest to understand when the bluff body in the flow has a
simple geometrical shape like a cylinder. Shear stress
between the low speed flow behind the cylinder and the high
speed flow around it encourage vortices to form. First, two
stable vortices will form behind the cylinder. This condition
will remain stable with low Reynolds number flows; at
higher Reynolds numbers, vortices are shed from the
cylinder as they grow out of the shadow region of the
cylinder.

Figure 3. Schematic of the circulation within a Kdrman vortex street
generated behind a cylinder in flow.

There are always asymmetric events in the flow so that
the vortices are never carried away in pairs. Instead a
periodical vortex shedding can be observed when vortices
are shed intermittently from either side of the cylinder. An
illustration of the vortex shedding can be seen in Figure 3.
As these vortices travel downstream, they form a pattern of
two rows of vortices. This pattern is known as von Karman
vortex street (KVS). In Figure 4 is a streakline capture of a
Karman vortex street created in our test tank for our
experiments. In these experiments, the vortex street is not
controlled but is measured and characterized beforehand.

93

The experiments are carried out with a free stream flow
speed of 30 cnv/s. In the vortex street created with a 10 cm
D-shape cylinder the vortex shedding frequency of 0.65 Hz
was measured from the pressure data using Fast Fourier
Transform. The average wake wavelength of 40 cm and the
vortex traveling speed of 26 cm/s was measured from flow
visualization captures.

Introducing a fusiform body (such as our robotic fish) in
the middle of the vortex street will disturb the flow. Vortices
at the side of the robotic fish could get weaker or even be
destroyed. However, some regions of vorticity that travel
downstream with the vortex shedding periodicity, always
remain.

— e —— S—— — -
Figure 4. A flowvisualization of illuminated particle trajectories withinthe
recirculating wake, with the vortex wake wavelength highlighted, behind a
D-shaped cylinder. Theleft edge of the field of view is approximately 25
cm downstream from the flat side of the D-shape cylinder.

F. Pressure sensing with a fusiform agent

High pressure

Figure 5. A flowvisualization of the robotic fish within a Karmén vortex
street. The left edge of the field of view is approximately 25 cm
downstream from the flat side of the D-shape cylinder.

It has been experimentally shown that pressure sensors
can sense the periodicity of a vortex street [9]. We assume
that the pressure sensors sense a relatively higher pressure in



front of the turbulent flow feature, such as a vortex, and a
lower pressure behind it. In Figure 5 is a streakline capture
of the vortex street with the robotic fish. In the picture the
flow is hitting the nose at an angle that makes the stagnation
point appear at the location marked by an arrow. This is the
high pressure condition preceding the vortex. As the location
marked by the arrow is also the location of the pressure
sensor, the pressure data synchronized with camera footage
shows that there is a pressure maximum at the moment this
frame was captured.

Figure 6 illustrates our observations as the oncoming
wake interacts with the robotic fish. Arrows in the diagram
indicate the flow direction and grey circles represent vortices
or areas of vorticity that have survived the collision with the
body of the robot fish. On the surface of the robotic fish
there is a high pressure at the locations where the arrows are
pointing towards the body and low pressure at the locations
where arrows are pointing away from the body.
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Figure 6. The vortex street with the robotic fish. (t =0 s) A moment when
the first pressure sensor on the left side senses the vortex marked by number
1; (t=0.3 s) amoment when the control algorithm detected the maximum
that was produced by vortex 1; (t=1.54s) one period (of vortex street) later
fromt=0s, vortex | isapplying force on the tail fin of the robotic fish.

t=154s

We propose that in order to achieve the maximum thrust
the robotic fish should synchronize its tail beat so as to take
advantage of the high pressure regions when the tail pushes
away from them. In this case the pressure difference on both
sides of the tail helps to push the tail in the forward
direction.

In Figure 6 (t = 0 s), vortex number 3 is pressing on the
tail and at the same time vortex 1 is creating high pressure
on the left side of the head at the location of the sensor pl.
This is further highlighted in Figure 5 where the tail is
slightly bent upwards due to the hydrodynamic forces
created by the pressure differences. According to this theory
the control algorithm should move the tail with a delay of
approximately one period from the moment when the
pressure sensor at the head senses the pressure maximum.
The movement should be towards the same side of the
robotic fish as where the maximum pressure was first
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detected.

G. Control algorithm
1) Detection of the vortex street

It is possible to measure the vortex shedding frequency
from the pressure sensor signal on runtime but we did not
use it as the Fast Fourier Transform would need at leasta 5's
time window to give sufficiently accurate results [9]. Instead
we decided to find extremums from the pressure signal. For
that purpose our fish control algorithm first subtracts the
signals of the sensors pl and p2. These sensors measure the
pressure changes caused by the vortex street in an opposite
phase and the subtraction helps to raise the signal to noise

ratio without losing any useful information [9].
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Figure 7. A pressure signal difference between the sensors closest to the
nose and the corresponding filtered signal. The signal p1 — p2 is grounded
to zero by subtracting the mean value of the signal. The filtered signal is
delayed by 0.28 s because of the phase shift the filter introduces.

The result is filtered with a low-pass Infinite Impulse
Response 3" order filter with a 0.75 Hz pass band. The filter
introduces a 280 ms delay into the signal. The extremums
were found with the 2" order central difference equation by
looking for 2 sequential derivatives with a different sign. We
were interested in the large scale vortices only so some of
the false positives were filtered with an amplitude constraint.
A typical pressure signal along with the filtered signal is
shown in Figure 7.

2) Phase shift

By the time our algorithm has found an extremum 300 ms
has already passed from the time the pressure sensoractually
sensed this condition (Figure 6.t=0.3 s). So considering the
theory previously proposed in section F. Pressure sensing
with a fusiform agent we should use adelay d =7- 0.3 s to
interact with the vortex for the maximum thrust. In this
equation 7T is the period of the vortexstreet. The delay d also
represents a zero phase shift in this study. An additional
delay for the phase shift is calculated as a fraction phase/180
from 772, the half-period of the vortex street. Instead of
increasing this delay over half of the period for a phase shift
bigger than 180 degrees, the direction of the motor
movement is modified as explained in the following
algorithm:



phase
q, = floor( 180 )
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q, = floor (?)
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where ¢ is the quotient of the floor function and r is the
remainder. A total delay (which is from the time a vortex
was detected as the maximum in the pressure signal by the
first pressure sensor to the moment when the tail of the robot
fish has to interact with it) can be calculated with the
following formula:

Delay ;o = d + (T * phase) mod 360

where d is the delay for the zero phase, 7'is the period of the
vortex street and phase is the desired phase shift of tail-
vortex interaction.

3) Motor control signal

When an extremum is found, Delayr,.; is added to the
present time. This timestamp marks the time when the motor
controlling the tail should reach its maximum deflection.
The timestamp is then added to the First In First Out array.

The motor is controlled with sinusoidal actuation signals
that are divided into half-periods. During one cycle, the
motor is driven from one extreme position to the opposite
which both correspond to the opposite maximum deflections
of the tail. When the current half-period of the command
signal is finished, a new interaction time for the next half-
period is taken from the array of timestamps and a sinusoidal
half-period is fitted between the current time and the
interaction time. The direction of the motor is read from a
similar array which is filled with directions that correspond
to the interaction times. This kind of a control insures that
we have a continuous control signal even when the phase of
the tail movement is changed.

II. RESULTS

TABLE 1. THE EXPERIMENTAL SEQUENCE

Time Flow Actuation Phase

5 min Still off -

5 min KVS off -

2 min KVS on Odeg

2 min KVS on 30 deg
2 min KVS on 60 deg
2 min KVS on 330 deg
2 min KVS on 360 deg
5 min KVS off -

5 min Still off -
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To test the control algorithm the experiments were carried
out in sequence described in Table 1. There are 5 minute
data recording periods, with no actuation, for still water and
Karman vortex street at the beginning and at the end of the
experiment. In between the data for the different phase shifts
are recorded starting with 0 degrees and ending with 360
degrees. The phase shift is changed with 30 degree
increments with 2 minutes of data recording for every step
of the phase shift. From this data an average thrust
coefficient C, and average efficiency # can be calculated for

every phase with the following equations:
B 2 x F,
Tpxv2x A

Ce

F v

=T

where F; is the thrust force, p is the fluid density, v is the
swimming speed (or in our case the speed of vortex
traveling), 4 is the cross-section area of the fish, 7 is the
torque of'the tail and w is the angular velocity of'the motor.

Figure 8 plots the thrust coefficient C, with respect to the
phase and Figure 9 shows the efficiency with respect to the
phase. Phases 0 degrees and 360 degrees correspond to the
same time delay 7 when measured from the time the
pressure maximum was sensed by the nose. Each data point
on the plots is an average taken over a 60 second time period
with standard deviations plotted as error bars. C, = 0
represents the average drag force that acts upon the robotic
fish when the actuation is switched off and the tail is parallel
with the free stream flow.

In Figure 8 the maximum thrust coefficient 0.44 is
achieved at the phase shift angle 330 degrees and the
minimum thrust coefficient 0.1 at 90 degrees. The efficiency
graph is slightly shifted compared to the thrust showing that
the maximum thrust does not necessarily lead to maximum
efficiency. The maximum efficiency 0.345 on Figure 9 is at
the phase shift angle 360 degrees and the minimum 0.114 at
180 degrees.
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Figure 8. Thrust coefficient C; with respect to the phase. Error bars show
standard deviation of C..



The efficiency of the robotic fish does not reach 100% but
that was expected as the robotic fish was fixed to the force
gauge. With no lateral movement the efficiency difference of
23% was still achieved between the phases 360 (0) degrees
and 180 degrees.
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Figure 9. The efficiency # with respect to the phase. Error bars show

standard deviation of 7.

Since the flow conditions are never prefect, the standard
deviations for those measurements are high. We associate
these errors with strength and speed of the vortices that vary
over time as they imping on the robot. Fluctuations in
strength of the vortex can affect how well the robotic fish
can use these to harvest energy while changes in vortex
traveling speed can cause the actual phase shift with respect
to vortex to be different from the desired phase shift.

IV. DISCUSSION

Our results show that the energy harvesting with a robotic
fish can be achieved using flow sensing without the
necessity to control the turbulence. The timing of the tail
beat with respect to an oncoming vortex is important and
pressure difference across the head can be used to analyse
the flow online for vortex synchronization.

Fish harvesting energy in Karman vortex streets have
been documented in [5]. It was also shown that a hydrofoil
that is controlled laterally and angularly can benefit fromthe
synchronicity with the Karman vortex street [7-8]. However,
so far very little is understood about the strategies of fluid-
structure interaction which take advantage of readily
available vortices. For instance, the kinematics of a Karman
gaiting fish has components of translation, head movement,
body bending and tail beat. The contribution of each one of
these components to the resultant behaviour still needs to be
addressed.

In this study, we single out the tail beat motion by
hamessing the robot (no lateral or rotational motion) and
demonstrate that an increase of 23% in efficiency can still be
generated with a particular phase between tail beat
interacting with a wake. The timing is controlled in real time
by detecting the pressure maximum on the head and
anticipating its arrival time to the tail.

Given that an unharnessed robot has little control over the
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lateral translation and rotation, we understand that more
sophisticated control algorithms are needed to control the
free swimming robot in turbulent flow, even if it is
predictable like Karman vortex streets, where force profiles
over the robot are complex and subject to unpredictable
changes. However, low-level control methods for vortex
exploitation, such as the one presented here, can be key to
increase power efficiency or generate high acceleration.
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Abstract

Pressure sensitive lateral line for underwater robot

In order to use different flow regimes, underwater robots need to have sensors
that can detect them. Fish can sense flow with their lateral line organ that
consists of hundreds of flow and pressure sensitive sensors covering their body.
By example of those, artificial lateral line sensors are being developed for use
on underwater robots.

In this thesis we have used miniature pressure sensors assembled into arrays
for artificial lateral lines, designed for different sensing platforms. We have
developed these sensing platforms for different tasks relating to the flow feature
recognition. The overall objective of this research is to advance the use of flow
information for control of underwater vehicles.

To do that, we have studied how to recognize different flow regimes and
present a comparison of steady flow and periodically turbulent flow from the
perspective of underwater robots. With different scenarios we investigate how
the flow regimes would be felt from different angles and positions. By
comparing the flow regimes we also demonstrate which data processing tools
are suitable for flow data analysis, as the data from the hydrodynamic
environment is noisy and hard to interpret.

It is a common problem with any sensory system to pick up noise and other
stimuli that interfere with useful signals. When a flow sensing system is
mounted on an underwater vehicle, it should be taken into consideration that
this system also provides information about the craft’s movements that modify
the surrounding flow field. To separate the self-motion information from the
rest of the flow stimuli we have developed a model that can estimate motion
mediated signals in lateral line sensors. The model is built based on
experimental data, containing craft’s movement information and signals sensed
by the pressure sensing lateral line. This way an underwater robot equipped
with an accelerometer can enhance its sense of external stimuli that would be
otherwise masked by disturbances created by the robot’s own motion.

This kind of selective filtering could be very useful for fishlike robots, trying
to sense flow features while undulating in periodically turbulent flows. We
show that the flow information in periodic turbulence can be used for control of
the robot to increase its swimming performance. Matching only the frequency
of flow features is not enough to enhance propulsion of the tail while a proper
timing of the tail beat with respect to the vortices results in more thrust and
makes the propulsion more efficient compared to that in steady flows. With
correct synchronization the power used to move the tail is directed from
producing lateral forces to thrust, making the underwater robot’s movement in
turbulent flows more stable.
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Liihikokkuvote

Rohutundliku kiiljejoone kasutamine allveerobotil

Allveekeskkonnas on robotitel raske toime tulla, kuna neil puuduvad andurid
vedelikuvoolu tunnetamiseks. Kaladel on selleks eraldi meeleelund, kiiljejoon,
mille voolu- ja réhutundlikud andurid katavad kogu nende keha. Bioloogiliste
vooluandurite niditel on hakatud vilja arendama ka tehis kiiljejooneandureid,
mida saab kasutada allveerobotitel.

Kéesolevas viitekirjas on kasutatud miniatuurseid réhuandureid, millest on
koostatud tehiskiiljejooned erinevate vooluvilja mdotvate platvormide jaoks.
Need andurite platvormid on arendatud vedelikuvoolus katsete tegemiseks, et
selgitada vilja, kuidas allveerobotid saaksid eristada voolureziime. Antud uurin-
gu peamiseks eesmirgiks on arendada vedeliku voolust saadava teabe kasutata-
vust allveerobotite juhtimises.

Selle saavutamiseks oleme uurinud erinevate voolureziimide tuvastamist
allveeroboti perspektiivist vaadatuna. Mitmeid stsenaariumeid katsetades vaat-
lesime, kuidas allveerobot tunnetab voolu erinevate nurkade alt ja erinevates
asukohtades vedelikuvoolu suhtes. Vooluvélja modtmiste pohjal niitasime, mil-
lised andmetdotluse viisid on kasulikud vedelikuvoolu andmete analiilisimiseks
ja tolgendamiseks, et eraldada miirastest moStmistest allveeroboti juhtimiseks
vajalik teave.

Andurisiisteemidaga on tavaline probleem, et lisaks kasulikule signaalile
mododavad need ka miira ja muid ebavajalikke signaale. Nii on ka tehiskiiljejoon
tundlik allveeroboti enda liigutustele, kuna need mojutavad vooluvilja roboti
iimber. Roboti liigutustest tingitud muutuste eemaldamiseks vooluandurite
mootmistest arendasime vélja meetodi, millega saab hinnata neid muutusi
liikkumisanduritelt saadava teabe pohjal. Antud meetod kasutab eksperimen-
taalselt kogutud liikumise ja vedelikuvoolu andmeid, et luua konkreetsele
robotile spetsiifiline mudel, mis arvestab roboti kuju ja kiiljejooneandurite
asetusega. Sellist mudelit kasutades saab kiirendusanduritega varustatud
allveerobot suurendada oma kiiljejoone tundlikkust vilistele allikatele, mille
pohjustatud vedelikuvoolu muutused oleks muidu kaetud roboti enda liiku-
misest tulenevate muutustega.

Seda laadi valikuline filtreerimine on véga kasulik uimede abil liikuvatele
robotitele, mis tahavad ujudes ka vooluvilja modta. Antud situatsioonis on
nditeks robot, mis kasutab voolust saadavat teavet, et ajastada oma uimet66d
perioodilise vooluga. Me oleme ndidanud, et perioodiliselt turbulentses voolus
ujudes on Oige ajastusega vOimalik tOsta roboti ujumise joudlust. Sabauime
korrektne siinkroniseerimine perioodiliselt turbulentses voolus leiduvate keeris-
tega suurendab roboti poolt edasiliitkumiseks tekitatud joudu ja muudab selle
tekitamise efektiivsemaks vorreldes iihtlases voolus ujumisega. Oige ajastusega
tekitatakse ka vdhem kiilgsuunalisi joude, muutes allveeroboti liikumise
turbulentses voolus stabiilsemaks.
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