ТАLLINNA POLÜTEHNILISE INSTITUUDI ТОІМЕТІЗЕД ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 130 1958

У. И. РАНДМЕР

ВОПРОСЫ РАСЧЕТА ЦЕПЕЙ ТЕМПЕРАТУРНОЙ Компенсации магнитоэлектрических милливольтметров высокого класса точности

ТАЛЛИН, 1958

8. d3 Ep. 2301 R37824 RESKBALMATUK9AU Feadurio Andoonu Eesti NSV

Вопросам расчета цепей температурной компенсации магнитоэлектрических милливольтметров в иностранной (Л1) ÷ (Л13) и отечественной (Л14) ÷ (Л19) литературе уделено много места.

Главным образом рассматривают последовательно-параллельную цепь температурной компенсации, предложенную в 1887 году И. Свиберном (Л1), а также симметричную мостовую цепь (Л11), (Л13), (Л18) и (Л19), предложенную в 1905 году А. Кэмпбеллом (Л2). Из этих работ самое строгое решение вопроса дается в работе Л. М. Закса (Л17) и в работе В. О. Арутюнова и М. М. Фетисова (Л19).

В настоящей работе делается попытка расширить имеющуюся методику расчета на некоторые новые цепи температурной компенсации, систематизировать и обобщить накопленный материал.

2. Температурная погрешность магнитоэлектрического милливольтметра

Если под температурной погрешностью прибора понимать изменение отклонения стрелки (под влиянием изменения температуры), отнесенное к данному, принятому за правильное показанию при неизменном значении входного напряжения, тогда получим ее выражение

$$\chi_{t} = \delta \propto = \frac{\Delta \alpha}{\alpha} = \frac{\delta B - \delta W - \delta r_{12} - \delta W \delta r_{12}}{(1 + \delta W)(1 + \delta r_{12})} .$$
(1)

Но в качестве температурной погрешности прибора можно также рассматривать требуемое относительное изменение входного напряжения для восстановления преж-

3

него показания прибора после изменения температуры, взятое с обратным знаком (Л20). В этом случае получим

$$\chi_{t} = -\delta U = -\frac{\Delta U}{U} = \frac{\delta B - \delta W - \delta r_{12} - \delta W \delta r_{12}}{1 + \delta B} \quad . \tag{2}$$

Практически членами малости высшего порядка можно пренебречь и

$$\chi_{t} = \delta B - \delta W - \delta r_{12} = \chi_{tM} + \chi_{tU} . \qquad (3)$$

В фомулах (1) ÷ (3):

- В магнитная индукция в воздушном зазоре;
- α отклонение стрелки;
 U напряжение на зажимах прибора;
- W удельный противодействующий момент; r₁₂ взаимное сопротивление входной ветви и ветви рамки;

$$\Delta \cup; \Delta \alpha$$
 — абсолютные изменения и

 $\delta U; \delta \alpha; \delta B; \delta W; \delta r_{12}$ — относительные изменения соответствующих величин, обусловленные изменением температуры;

 $\gamma_t; \gamma_{tM} = \delta B - \delta W H \gamma_{tu} = \delta r_{12} -$ температурные погрешности прибора, механизма и цепи.

Для некомпенсированного милливольтметра в интервале рабочих температур приняты линейные зависимости погрешностей от изменения температуры

$$\chi_{tM} = (\beta_{tB} - \beta_{tW})\Theta = \beta_{tM}\Theta$$
(4)

И

$$\chi_{tu} = \beta_{tu} \theta , \qquad (5)$$

где $\beta_{tB}, \beta_{tW}, \beta_{tM}$ и β_{tu} температурные коэффициенты магнитной индукции воздушного зазора, жесткости пружинок, механизма и цепи, и О — изменение температуры относительно градуировочной (обычно +20°С).

3. Уменьшение температурной погрешности

Уменьшение температурной погрешности электроизмерительного прибора осуществляется элиминацией (применением материалов менее подвергающихся влиянию температуры или созданием постоянной рабочей температуры прибора) или такой конструкцией и цепью прибора, температурные погрешности отдельных элементов которых друг друга взаимно компенсируют. В литературе обычно называют методы уменьшения температурной погрешности температурной компенсацией.

Если принять меры для компенсации температурной погрешности, тогда линейные зависимости (4) и (5) могут более или менее нарушаться. В данной работе рассматриваются только схемные способы температурной компенсации, влияющие на зависимость (5).

При принятых условиях выражение температурной погрешности всего прибора в общем виде в случае разложения в ряд по степеням изменения температуры

$$\begin{aligned} \chi_t &= k_1 \theta + k_2 \theta^2 + k_3 \theta^3 + \dots = \\ &= (\beta_{tM} - \beta_{tU}) \theta + k_2 \theta^2 + k_3 \theta^3 + \dots \end{aligned}$$
(6)

где β_{tц} — температурный коэффициент или удельная температурная погрешность цепи;

k₂; k₃... коэффициенты ряда, определяемые только температурными зависимостями и схемой соединений сопротивлений цепи температурной компенсации.

Таким образом все коэффициенты ряда (6) являются зависимыми друг от друга как функции общих аргументов. По (6) можно различать линейную, квадратичную, кубическую и т. д. температурные погрешности.

Ряд (6) обычно быстро сходится и поэтому для уменьшения общей температурной погрешности прибора нас интересуют такие значения параметров цепи и механизма, которые обеспечивают наименьшие (а иногда также заданные) значения коэффициентов ряда, в первую очередь у линейного члена. Если коэффициент у какого-нибудь члена превращается в' нуль, тогда говорят о полной компенсации соответствующей (линейной, квадратичной и т. д.) погрешности. В противном случае компенсация является частичной.

Математическое выражение, связывающее требуемые значения одного или нескольких коэффициентов ряда с значениями и схемой соединений элементов цепи, называется условием температурной компенсации. Одновременное получение заданных значений коэффициентов ряда, например их равенство нулю, может явиться невозможным, поскольку эти коэффициенты зависят друг от друга. Сумма членов ряда в случае $k_1 \neq 0$, $k_2 \neq 0$ и т. д. при температурах полной компенсации равняется нулю. Общее число точек полной компенсации зависит от числа учитываемых членов ряда (6), причем они могут частично оставаться вне пределов рабочего температурного интервала.

4. Добавочные условия для расчета цепей температурной компенсации

Часто при расчете цепей температурной компенсации механизм прибора — магнит, стрелка, каркас рамки (если последний имеется) является заданным, и изменению в соответствии с расчетом подвергаются только обмотка рамки и при необходимости также пружинки.

Из добавочных условий к цепи прибора мы принимаем заданное входное сопротивление и условие получения максимального коэффициента добротности. Последний характеризует хорошо приборы на кернах при неизменных условиях производства.

Для максимального коэффициента добротности¹) можем написать (Л18):

$$A_{max} = C \frac{BS}{pG_{\kappa}\sqrt{\gamma} \rho kym} \sqrt{\frac{U^2}{r_{11}}} \sqrt{\eta} , \quad (7)$$

где С — постоянный множитель; S — площадь рамки; p — периметр рамки;

G_к — конструктивный вес подвижной части;

¹) Такой вид коэффициента добротности иногда называется механическим коэффициентом добротности для отличия его от электромеханического коэффициента добротности (ЛЗ1).

- у; *q* удельный вес и удельное сопротивление материала обмотки рамки;
 - r₁₁ входное сопротивление прибора;

 $\eta = \frac{P_p}{P}$ — к. п. д. цепи прибора;

Р_р и Р — мощность рамки и мощность, приведенная к прибору.

При заданном механизме (B, S, p, G_к) и выбранном материале обмотки рамки (γ , φ , k_{yT}) и допустимой мощности Р, что для милливольтметра равносильно заданному значению r_{11} , изыскание максимального коэффициента добротности приводит к нахождению максимального к. п. д. цепи прибора.

Математически нахождение максимального к. п. д. цепи с соблюдением условия температурной компенсации может быть произведено двояко:

а) изысканием условного максимума методом постоянных множителей Лагранжа;

б) выражением одного параметра цепи из условия температурной компенсации с подстановкой в выражение к. п. д. цепи и нахождением абсолютного максимума обычным путем.

Первый метод применен Л. М. Заксом (Л17), второй В. О. Арутюновым (Л18, 19).

5. Варианты условия температурной компенсации

Температурная погрешность прибора всегда св'язана с рабочим температурным интервалом прибора.

При разработке методики расчета оптимальных параметров цепи температурной компенсации задача может быть сформулирована двояко:

1) заданы наибольшее допустимое значение удельной температурной погрешности (например, в соответствие с классом прибора по ГОСТ 1845-52) в определенном температурном интервале (например, в соответствии с группой прибора по ГОСТ 1845-52) и температура полной компенсации (совпадающая с принятой для электроизмерительных приборов температурой градуировки T₀=20°) (рис. 1а).

2) Максимальное значение температурной погрешности должно быть минимальным во всем температурном интервале при

а) оптимальной (свободной) точке полной компенсации (рис. 1в);

б) заданной точке полной компенсации (рис. 1б).

Рис. 1. Варианты расположения кривой температурной погрешности в рабочем температурном интервале.

8

По варианту со свободной точкой полной компенсации значение абсциссы последней получается из расчета, градуировать можно прибор при фиксированной градуировочной температуре (+20°С) с поправкой, или при получающейся из расчета температуры полной компенсации без поправки. Этот вариант не может быть рекомендован, так как создает некоторые неудобства при градуировке прибора.

По варианту с заданной точкой полной компенсации последняя совпадает с градуировочной температурой (+20°С).

Температурную погрешность прибора необходимо рассчитывать всегда с запасом. Если номинальную температурную погрешность прибора обозначить γ_{th} (ее можно также называть температурной погрешностью класса прибора), а γ_t — расчетной или допустимой температурной погрешностью, тогда

$$\chi_{\mathsf{tH}} = \chi_{\mathsf{t}} + \chi_{\mathsf{t}_{\mathsf{J}}} , \qquad (8)$$

где γ_{t_3} — запас температурной погрешности прибора, величина которого зависит от стабильности элементов прибора во времени и от гарантийного срока службы прибора без перерегулировки.

6. Расчет цепи температурной компенсации по удельной температурной погрешности

Если задано максимально допустимое значение удельной температурной погрешности, тогда кривая температурной погрешности должна располагаться между прямыми удельных допустимых температурных погрешностей (рис. 1a).

Для решения задачи могут быть приняты два пути:

а) параметры цепи определяются так, чтобы удельная температурная погрешность на той границе температурного интервала, где она больше для данной цепи, равнялась бы заданной, а на другой границе температурного интервала температурная погрешность автоматически получается меньше заданной.

б) Параметры цепи определяются так, чтобы коэффициент k₁ ряда (6) по абсолютному значению равнялся бы допустимой удельной температурной погрешности, или был бы несколько меньше ее. Первый путь предложен Л. М. Заксом (Л17), второй В. О. Арутюновым (Л18).

На рис. 2 .приведены кривые температурных погрешностей на краях температурного интервала (от —40°С до +60°С) в зависимости от параметра b²) при $\beta_3 = 0,004 \frac{1}{°C}$, полученные расчетом по Заксу для последовательнопараллельной цепи.

Рис. 2. Связь между параметром b ветви рамки и удельными температурными погрешностями последовательно-параллельной цепи на краях температурного интервала.

Температурные погрешности на краях температурного интервала пересчитаны на 10° изменения температуры. Из этих кривых видно, что для данного температурного интервала по абсолютному значению удельная температурная погрешность больше для верхнего предела до $\beta_t = 0.2\%$ на 10° изменения температуры, а дальше уменьшить удельную температурную погрешность в этом температурном интервале невозможно.

²) параметр b вводится в работе Л. М. Закса (Л17) и выражается формулой b = $\frac{(r_0 + r_1) \beta_3}{r_0 \beta_p}$; обозначения β_p r_0 , r_1 и β_3 приведены в таблице 3.

Варианты математического решения вопроса приведены в пункте 3.

Для упрощения хода решения сопротивление пружинок разлагают на две части:

а) одну, так называемую «медную часть» равную $\frac{\beta_n}{\beta_n} r_n$

прибавляют к сопротивлению рамки и рассматривают это как одно сопротивление рамки

$$\mathbf{r}_{\mathbf{p}} = \mathbf{r}_{\mathbf{p}} + \frac{\beta_{\mathbf{n}}}{\beta_{\mathbf{p}}} \mathbf{r}_{\mathbf{n}} , \qquad (9)$$

которое в формулах заменяет гр и б) вторую, «манганиновую часть» равную

$$r_{n}\left(1-\frac{\beta_{n}}{\beta_{p}}\right) \tag{10}$$

прибавляют к остальной части цепи.

Иногда можно пренебречь влиянием изменения сопротивления пружинок.

В (9) и (10) г_п и β, — сопротивление и температурный коэффициент сопротивления пружинок.

Для уменьшения числа неизвестных и для упрощения расчета удобно ввести в расчет вместо отдельных параметров цепи их относительные значения (например к сопротивлению го или гол), или же параметры, характеризующие отношения групп сопротивлений между собой. Поскольку значения максимума функции η и относительных параметров не зависят от выбора независимых переменных, необходимо постараться исключить по возможности высшие степени значений сопротивлений из расчета. Это понижает степень получаемых уравнений.

7. Расчет температурной погрешности цепи

Учитывая линейную зависимость между отклонением стрелки и током ветви рамки в магнитоэлектрическом приборе, можно в качестве температурной погрешности цепи рассчитать относительное изменение тока в ветви рамки или практически с ничтожной погрешностью как относительное изменение взаимного сопротивления ветвей входных зажимов и рамки.

Рис. 3. Цепь температурной компенсации как пассивный четырехполюсник.

Если цепь температурной компенсации изобразить в виде пассивного четырехполюсника (рис. 3), тогда для тока через рамку получим:

$$I_0 = \frac{U_1}{r_{12}} \tag{11}$$

и по разным определениям температурной погрешности цепи

$$\chi_{tu} = -\frac{\delta r_{12}}{1 + \delta r_{12}}$$
 (12)

или

$$\delta_{tu} = -\delta U = -\delta r_{12} . \qquad (13)$$

Условие линейной температурной компенсации пишется через постоянные четырехполюсника и их температурные коэффициенты

$$\frac{\underline{A}}{B}\Gamma_{0} = -\frac{\beta_{B}}{\beta_{A} + \beta_{P}}$$
(14)

или через сопротивления холостого хода и короткого замыкания и их температурные коэффициенты

$$\frac{P_{0}}{P_{2k}} = \frac{\beta_{2k}(k-1) - \beta_{10} + k}{\beta_{2k}(k-1) + \beta_{10} - k\beta_{1k} - 2\beta_{p}(k-1)} \cdot (15)$$

С учетом (14) и (15) получим для к. п. д. цепи как четырехполюсника

 $\eta = \frac{\beta_{B}(\beta_{A} + \beta_{P})}{(\beta_{A} + \beta_{P} - \beta_{B}) [CB\beta_{B} - AD(\beta_{A} + \beta_{P})]} =$ $\frac{[k(\beta_{2k}+\beta_{1k})-(\beta_{2k}+\beta_{10})][k(\beta_{2k}-\beta_{1k}-2\beta_{p})-\beta_{2k}+\beta_{10}+2\beta_{p}]}{[k(\beta_{2k}-\beta_{1k}-2\beta_{p})-\beta_{2k}+\beta_{10}+2\beta_{p}]}$ $\frac{2(\beta_{2k}-\beta_{p})(k-1)[k(\beta_{2k}-\beta_{1k}-2\beta_{p})+\beta_{2k}+\beta_{10}]}{2(\beta_{2k}-\beta_{p})(k-1)[k(\beta_{2k}-\beta_{1k}-2\beta_{p})+\beta_{2k}+\beta_{10}]}$ (16)

Работа четырехполюсника, содержащего термозависимые элементы, характеризуется при малых изменениях температуры кроме четырех постоянных[.] А, В, С и D еще их температурными коэффицентами.

Таблица 1

Связь между постоянными четырехполюсника и величинами холостого хода и короткого замыкания. $A = \sqrt{\frac{n_0 r_{2k}}{r_{2k}(r_0 - r_{2k})}}; B = \sqrt{\frac{n_0 r_{k} r_{2k}}{r_{10} - r_{2k}}}; C = \sqrt{\frac{n_k}{r_{00} r_{2k}(r_0 - r_{2k})}}; D = \sqrt{\frac{n_0 r_{2k}}{r_{2k}(r_0 - r_{2k})}}$ $\frac{AD}{BC} = \frac{r_{io}}{r_{ik}} = \frac{r_{io}}{r_{ik}} = \hat{K}$ $\beta_{a} = -\frac{1}{2}\beta_{2k} - \frac{1}{2}\frac{1}{k-1}\beta_{10} + \frac{1}{2}\frac{k}{k-1}\beta_{1k}$ $\beta_{B} = \frac{1}{2}\beta_{2k} - \frac{1}{2}\frac{1}{k-1}\beta_{40} + \frac{1}{2}\frac{k}{k-1}\beta_{4k}$ $\beta_{c} = -\frac{1}{2}\beta_{2k} - \frac{1}{2}\frac{2k-1}{k-1}\beta_{40} + \frac{1}{2}\frac{k}{k-1}\beta_{4k}$ $\beta_{\rm D} = \frac{1}{2}\beta_{2k} - \frac{1}{2}\frac{k}{k-1}\beta_{10} + \frac{1}{2}\frac{k-2}{k-1}\beta_{1k}$ $\beta_A - \beta_B - \beta_C + \beta_D = \beta_{10} - \beta_{1k} = \beta_{20} - \beta_{2k}$

Аналогично постоянным четырехполюсника благодаря дополнительной зависимости

$$\frac{1}{\beta_A} + \frac{1}{\beta_D} = \frac{1}{\beta_B} + \frac{1}{\beta_C}$$
(17)

только три из температурных коэффициентов' являются независимыми.

Температурные коэффициенты постоянных могут быть определены как сами постоянные расчетным путем из опытов холостого хода и короткого замыкания, или же, зная схему внутренних соединений четырехполюсника, через его элементы и их температурные коэффициенты.

Таблица 2

Связь между постоянными четырех-полюсника и элементоми Т-образной схемы замещения. $A = 1 + \frac{r_2}{r_3}; B = r_1 + r_2 + \frac{r_1 r_2}{r_3}; C = \frac{1}{r_3}; D = 1 + \frac{r_1}{r_3};$ $\beta_{3}; \beta_{B} = \frac{\beta_{1}(1+\frac{r_{3}}{r_{2}})+\beta_{2}(1+\frac{r_{3}}{r_{1}})-\beta_{3}}{r_{1}r_{2}+r_{3}(r_{1}+r_{2})}r_{1}r_{2};$ $\beta_A = \frac{\beta_1}{1}$ Сопротивления $\beta_{D} = \frac{\beta_{1} - \beta_{3}}{1 + \frac{r_{3}}{2}}$ $B_c = -\beta_3$;

В таблицах 1 и 2 прив'едены все эти зависимости.

Изыскания максимума формулы (16) в общем виде без схемы внутренних соединений четырехполюсника не дают правильных результатов потому, что постоянные четырехполюсника A, B, C и D, а также их температурные коэффициенты β_A , β_B , β_C и β_D кроме других факторов зависят еще от схемы внутренних соединений четырехполюсника.

На рис. 4 последов'ательно-параллельная цепь, рассчитанная по Арутюнову, разбита на две части — на четырехполюсник и на нагрузку — таким образом, чтобы относительно их было выполнено условие максимального к. п. д. четырехполюсника

$$R_{\pi} = \sqrt{R_{\pi 0} R_{\pi k}} , \qquad (18)$$

- где R_{II} входное сопротивление части цепи, которую можно рассматривать как нагрузку (содержит также рамку прибора);
 - R_{II0} сопротивление холостого хода четырехполюсника со стороны зажимов присоединения к нагрузке;
 - R_{IIк} сопротивление короткого замыкания четырехполюсника со стороны зажимов' присоединения к нагрузке.

Это разделение не совпадает с нашим исходным на сопротивление r_0 в качестве нагрузки и на цепь температурной компенсации в качестве четырехполюсника, так как максимальное значение η связано с условием температурной компенсации.

> $r_{2} = 2,618 \text{ ak}$ $r_{3} = 2,618 \text{ ak}$ $r_{3} = 4,236 \text{ ak}$ $R_{II0} = 4,236 \text{ ak}$ $R_{III} = 4,618 \text{ ak}$

$$R_{\pi} = \sqrt{R_{\pi 0} R_{\pi K}} = 2,618 \, \text{ok}$$

Рис. 4. Последовательно-параллельная цепь температурной компенсации как четырехполюсник.

Для расчета цепей температурной компенсации можно применить все методы расчета линейных электрических цепей. При определении изменений тока в в'етвях сложной электрической цепи удобно пользоваться принципами, которые изложены в работах К. М. Поливанова (Л21) и (Л22), М. И. Левина (Л23) и (Л24) и Н. А. Бразма (Л 25).

Очень просто получается выражение температурной погрешности цепи, если в качестве ее рассматрив'ать относительное изменение взаимного сопротивления ветвей «i» и «k» — ветвей входного напряжения и рамки. Для составления уравнения температурной погрешности цели выбираем систему независимых контуров так, чтобы отмеченные ветви явились главными ветвями двух из этих контуров «i» и «k».

Для тока в контуре «k» и в его главной ветви от приложенного напряжения к контуру «i» при принятых условиях можно написать

$$I_{k} = \bigcup_{i} \frac{d_{ik}}{D_{det}}, \qquad (19)$$

где U_i — напряжение контура «і» и вместе с тем напряжение его главной ветви;

$$D_{det} = \begin{bmatrix} R_{11}; R_{12}; \dots R_{1n} \\ R_{21}; R_{22}; \dots R_{2n} \\ \dots \\ R_{n1}; R_{n2}; \dots R_{nn} \end{bmatrix}, \quad (20)$$

- определитель выбранной системы независимых контуров;
- R_{ik} общее сопротивление двух контуров «i» и «k»;
- R_{...} собственное сопротивление контура «і»;

В выражении (19) можно отношение $\frac{a_{ik}}{D_{det}}$ рассматривать как взаимную проводимость ветвей «i» и «k» или

$$r_{ik} = \frac{D_{det}}{a_{ik}} \cdot$$
 (21)

Для температурной погрешности цепи получим:

$$\chi_{tu} \approx -\frac{\Delta \Gamma_{ik}}{\Gamma_{ik}} = -\frac{\alpha_{ik} \Delta D_{det} - \Delta \alpha_{ik} D_{det}}{D_{det} (\alpha_{ik} + \Delta \alpha_{ik})}, \quad (22)$$

где — ⊿D_{det} и ⊿а_{ik} — приращения определителя и его алгебраического дополнения под влиянием температурных изменений элементов цепи.

Выражение (22) обычно получается в виде дроби, гденеразделимы линейные, квадратичные и т. д. части. Для разделения погрешностей разных степеней необходимо привести выражение (22) к виду (6). Общим приемом является разложение выражения (22) в ряд Маклорена

$$\delta_{tu} = f(\theta) = f(0) + \frac{\theta}{1!} f'(0) + \frac{\theta^2}{2!} f''(0) + \frac{\theta^n}{n!} f'(0) + \frac{\theta^n}{n!} f'(0)$$
(23)

Если при градуировочной температуре ($\Theta=0$) погрешность цепи равняется нулю, т. е. точки градуировки и полной линейной компенсации совпадут, тогда первый член Маклорена равняется нулю.

Выражение для остаточной температурной погрешности получается вычитанием из общего выражения погрешности (22) выражения второго (линейного) члена ряда (23). С определенным приближением остаточная погрешность

С определенным приближением остаточная погрешность может быть рассчитана по выражению кв'адратичного члена ряда Маклорена.

8. Расчет цепи температурной компенсации с полупроводниковыми сопротивлениями

Коэффициент добротности милливольтметра заметно повышается, если применить вместо элиминации с термонезависимым последовательным сопротивлением последовательную ксмпенсацию с полупроводниковым сопротивлением, имеющим отрицательный температурный коэффициент сопротивления (сокращено TC). Такой метод температурной компенсации описывается уже в работе Свинберна (Л1) и рассматривается дальше в ряде работ (Л18),

Eesti NSV KESKRAAMATUKOBU Teaduste Akadeemia

(Л25÷35). Из этих работ самые ценные указания по расчету температурной компенсации содержат работы Л. М. Закса (Л31), И. Т. Шефтеля (Л32), В. О. Арутюнова (Л18)³ и Г. К. Нечаева (Л36).

Затруднение в применении полупроводниковых сопротивлений или термосопротивлений состоит в том, что зависимость сопротивления от температуры нелинейная. Для линеаризации температурной зависимости термосопротивления последнее шунтируют термонезависимым сопротивлением и получают таким образом термокомпенсатор. Последний рассматривается как линейное сопротивление с отрицательным температурным коэффициентом. От линеаризации температурной зависимости остается все-таки определенная остаточная температурная погрешность компенсатора, которая в свою очередь является причиной появления остаточной нелинейной погрешности прибора.

При расчете принято, что нет собственного нагрева элементов' цепи, который вызвал бы дополнительную погрешность. Относительно ТС это значит, что рабочая точка находится на восходящей левой части вольтамперной характеристики. Это допущение не всегда может быть принято [(Л34) и (Л35)].

За основу расчета принята схема цепи, приведенная в таблице Зг, для температурной погрешности которой получим:

$$y_{ty} = - \frac{\beta_p \theta + q \frac{(a-1)m}{(a+m)(1+m)}}{1+p+q \frac{1}{1+m}},$$
 (24)

где:

$$\mathbf{m} = \frac{\mathbf{P}_2}{\mathbf{P}_{TO}}; \qquad (25)$$

$$\mathbf{q} = \frac{\mathbf{r}_{\mathsf{T}}}{\mathbf{r}_{\mathsf{T0}}} = \frac{A e^{\frac{B}{\mathsf{T0}+\Theta}}}{A e^{\frac{B}{\mathsf{T0}}}} = e^{-B \frac{\Theta}{\mathsf{T0}(\mathsf{T0}+\Theta)}}$$
(26)

³) Методика расчета, изложенная в книге В. О. Арутюнова (Л 18). предложена П. Д. Пресняковым.

$$p = \frac{r_1}{r_0};$$

И

$$q_{r} = \frac{\Gamma_{2}}{\Gamma_{0}} \cdot$$
 (28)

(27)

В (26) А и В — постоянные, характеризующие термосопротивление;

> г_{то} и г_т — значения термосопротивления при градуировочной температуре T₀ и при температуре T₀+Θ.

Если выбрать точку перегиба кривой температурной погрешности в точке градуировки, тогда

$$m = \frac{B - 2T_0}{B + 2T_0}$$
 (29)

Для решения линейной задачи (полная компенсация)

$$\frac{\partial \chi_{tu}}{\partial \theta} = \frac{\beta_p - \frac{\beta_m}{(T_0 + \theta)^2}}{1 + p + q} \frac{\alpha q}{1 + m} = 0 \qquad (30)$$

откуда

$$q = \frac{\beta_p}{\frac{B}{T_0^2}} \frac{(1+m)^2}{m}.$$
 (31)

Из двух уравнений (22) и (31) могут быть определены m и q, а р остается неопределенной.

Из формулы для к. п. д. цепи

$$\eta = \frac{1}{1 + p + q \frac{1}{1 + m}}$$
(32)

явствует, что с уменьшением р к .п. д. цепи увеличивается.

Но р обычно не выбирают равным нулю, а определяют его значение по изображениям относительно подавления старения и уменьшения остаточной погрешности. В случае расчета прибора по средней характеристике термосопротивления р может быть рассчитано из условия подавления разброса характеристик.

Остаточная температурная погрешность цепи

9. Расчет многообмоточных цепей температурной компенсации

Для расчета оптимальных параметров многообмоточных цепей температурной компенсации, предложенных М. М. Фетисовым вместе с автором, в качестве критерия выбора рациональных параметров цепи обычный к. п. д. цепи прибора должен быть заменен условным к. п. д.

$$\eta' = \left(\frac{M_{\Sigma}}{M}\right)^2, \tag{34}$$

- где M₂ вращающий момент многообмоточного прибора;
 - М вращающий момент некомпенсиров'анного милливольтметра, имеющего электромеханический коэффициент добротности ⁴ и входную мощность равными соответствующим показателям компенсированного прибора.

⁴) Под электромеханическим коэффициентом добротности подразумевают часть выражения (7), определяемую полностью параметрами механизма.

Момент некомпенсированного милливольтметра

$$M = BS \sqrt{\frac{G_a}{p^2 \rho \ \text{g kym}}} \sqrt{\frac{U^2}{r_{11}}}$$
(35)

и компенсированного многообмоточного прибора

$$M_{\Sigma} = BS \sqrt{\frac{G_{a}}{p^{2} \rho}} \sqrt{\frac{U^{2}}{p_{11}}} \sum_{k=1}^{k=m} \sqrt{\gamma_{k}} \frac{G_{ak}}{G_{a}}$$
(36)

И

$$\eta' = \left(\sum_{k=1}^{k=m} \sqrt{\eta_k g_k}\right)^2. \tag{37}$$

В (35), (36) и (37)

- G_а актив'ный вес (вес обмоток рамки);
- k индекс обмотки многообмоточной рамки;
- т общее число обмоток рамки;
- η_к к. п. д. к-той обмотки рамки относительно входной мощности прибора;
- G_{ак} активный вес к-той обмотки;
- g_к отношение активного веса к-той обмотки к общему активному весу.

В качестве примера применяем развитую методику для расчета параллельной двухобмоточной цепи температурной компенсации.

Для отклонения двухобмоточного прибора можно написать:

$$\alpha = \frac{BS}{W} \left(I_0 w_0 + I_3 W_3 \right)$$
(38)

21

$$\chi_{tu_{tu}} = \frac{\Delta \alpha}{\alpha} = \frac{\delta I_0 + \delta I_3 \frac{I_3}{I_0} \frac{W_3}{W_0}}{1 + \frac{I_3}{I_0} \frac{W_3}{W_0}} .$$
(39)

Если \mathbf{r}_0 и \mathbf{r}_3 предполагаются из одного материала с температурным коэффициентом $\beta_p = \beta_8$, а \mathbf{r}_1 из манганина, и обозначая $\frac{\mathbf{w}_3}{\mathbf{w}_0} = \mathbf{m}$, получим из (39) для линейной по-грешности цепи

$$\chi_{\text{tu, Juh}} = -\frac{\frac{\Gamma_0}{\Gamma_0 + \Gamma_1} + m \frac{\Gamma_0 + \Gamma_1}{\Gamma_3}}{1 + \frac{\Gamma_0 + \Gamma_1}{\Gamma_3} m} \beta_p \theta .$$
(40)

Условие полной компенсации линейной температурной погрешности цепи пишется из (40)

$$m = -\frac{P_0 P_3}{(P_0 + P_1)^2}$$
 (41)

Выражая к. п. д. обмоток и их активные веса через сопротивления цепи, коэффициенты материала (γ , ϱ , q) и параметры обмоток (p, w) получим из (37)

$$\eta' = \frac{r_0 r_3 (r_0 + r_1) \left[(r_0 + r_1)^2 + 2 r_0 (r_0 + r_1) + r_0^2 \right]}{(r_0 + r_1 + r_3) \left[(r_0 + r_1)^4 + r_0^3 r_3 \right]} \cdot (42)$$

После введения относительных параметров

$$\frac{\mathbf{r_0} + \mathbf{r_1}}{\mathbf{r_0}} = \mathbf{x}$$
 и $\frac{\mathbf{r_8}}{\mathbf{r_0}} = \mathbf{s}$ (42) перепишется

$$\gamma' = \frac{s \times (x-1)^2}{(x+s)(x^4+s)} \cdot$$
(42a)

Данное выражение имеет максимум при

x=4; s=32 и m=−2.

Максимальное значение $\eta' = \frac{1}{9} = 0,111.$

Применяя ту же методику расчета, можно вывести расчетные формулы для двухобмоточной последовательной, а также для трехобмоточных симметричной мостовой и последовательно-параллельной цепей температурной компенсации.

Трехобмоточная симметричная мостовая цепь температурной компенсации дименсионируется так, чтобы через обмотку w_0 , являющуюся диагональю моста, при градуировочной температуре тока не проходит. Обмотки w_0 и w_3 должны быть намотаны таким образом, чтобы при изменении температуры изменение ампервитков $I_0 w_0$ компенсировал бы изменение ампервитков $2 I_3 w_3$.

Формулы для расчета многообмоточных цепей приведены вместе с формулами других цепей температурной компенсации в таблице 3. Введением коэффициента «k» в формулы этой таблицы начиная с условия температурной компенсации учитывается остаточная линейная температурная погрешность цепи. Если последняя равняется нулю (полная линейная компенсация), тогда k=l.

10. Расчет температурной компенсации по минимальной погрешности в заданном температурном интервале

Расчет температурной компенсации по минимальной погрешности в заданном температурном интервале (что можно также назвать расчетом в широком температурном интервале) отличается от расчета по удельной температурной погрешности (называемой также расчетом в узком температурном интервале) тем, что при определении оптимальных параметров цепи в первом случае нельзя рассматривать отдельно линейную и нелинейную погрешности цепи и погрешность механизма, а расчет необходимо вести по общей суммарной погрешности прибора. Л. М. Закс решает задачу без учета температурной погрешности механизма (Л17). Если учесть также и последнюю, что станет необходимым в приборах высокого класса точ-

Таблица За

КОМПЕНСАЦИОННАЯ ЦЕПЬ	1	ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНАЯ ЦЕПЬ						
Схема								
Режим заданного напряжения	1	Зажимы А-В						
Ток через обмотку що Іо	2	U 16+1016+61+65						
Ток через обмотку из Із	3	•						
Показание прибора при 8=0 🛛 🗠	4	BSUwp 3 W (6+5)+555						
Температурная погрешность цепи у	5	$-\frac{[r_{0}(r_{0}+r_{3})B_{p}-r_{3}(r_{0}+r_{3})B_{3}]\theta+r_{0}r_{0}B_{0}B_{0}\theta^{2}}{[r_{0}+r_{3})[r_{0}+r_{3}]+r_{0}r_{0}+r_{0}(r_{0}+r_{1})B_{3}]\theta+r_{0}r_{0}B_{3}B_{0}^{2}}$						
Относительные параметры цепи	6	$\frac{r_0+r_1}{r_1} = x; \frac{r_2}{r_2} = p_1; \frac{r_1}{r_2} = s; \frac{p_0}{r_1} = q$						
Температурная погрешность цепи	7	$-\frac{[\alpha(p+s)-px]\beta_3\theta+\alpha s\beta_3^2\theta^2}{(1+\beta_3\theta)[x(p+s)+0s]}$						
Линейная температирная погреш-	0	q(p+s) - px						
ность цепи	0	$-\frac{1}{x(p+s) \neq p_s} \beta_3 \theta$						
Нелинейная температирная по-		P(x-0) -2-2						
грешность цепи Уните	9	$\frac{1}{(1+\beta_3\theta)[x(p+s)+ps]}\beta_3^2\theta^2$						
Условие линейной температ, компенсации	10	$\frac{px}{p+s} = ak; \ p = \frac{aks}{s-ak}$						
Входное сопротибление цепи п.	11	$\frac{p+3}{(p+\frac{5x}{x+s})} = \frac{p+3}{6}$						
Knd yenu n	12	$\frac{s^2}{(x+s)/x(p+s)+ps)^2} = \frac{s(x-ak)}{(x+s)(sak+k^2)}$						
Параметры цепи с максимальном к.п.д.	13	x=2,618 ak; s=4,236 ak; p=2,618 ak; n=0,091 ak; r=4,236 aks						
Линейная темперотурная погреш- ность цепи (при b ² -1 для нногообноточных цепей)Уни кни	14	0236 $(1 - \frac{1}{K})\beta_3 \theta = 0,236 (1 - 11/1a_1)\beta_3 \theta$						
Нелинейная температурная по - грешность цепи (при В=1 для многообм цепей) Уршени	15	$-0.09(2.618 - \frac{1}{k})\frac{\beta_3^2\theta^2}{\beta_3\theta} = -0.09(2.618 - 14.1a_1)\frac{\beta_3^2\theta^2}{1-\beta_3\theta}$						
Отношения токов и напряжений	16	$I_{10} = \frac{x}{5} + 1; V_{10} = x(\frac{p}{5} + 1) + p$						
Режим заданного тока	17	Зажимы А-С						
Ток через обмотку що Іо	18	$I \frac{r_{3}^{\prime} + r_{7}^{\prime}}{r_{6}^{\prime} + r_{7}^{\prime} + r_{3}^{\prime}} = I \frac{r_{3} + r_{7} - r_{7}^{\prime}}{r_{6}^{\prime} + r_{7}^{\prime} + r_{3}^{\prime}}$						
Ток через обмотку из Із	19	a thinknessen and the second						
Покозание прибора при θ=0 α	20	<u>BS wo I. G-R-R'</u> W G-R-R-B						
Температурная погрешность цепи Уну	21	$\frac{s \times -\alpha (s + x - x')}{(x - x' + s) [x + s + (\alpha + s) \beta_3 \theta]} \beta_3 \theta$						
Относительные параметры цепц	22	$\frac{r_0 + r_s'}{r_0} = x'; \underbrace{\delta_{i_{i_j}} \text{ and }}_{\Theta} = \beta_{i_{i_j}}$						
Линейная температурная логреш- ность цепи Уценні	23	$\frac{s x' - a(s + x - x')}{(s + x - x')(x + s)} \beta_3 \theta$						
Нелинейная температурная, пог- решность цепи Унит	24	$\frac{[s x'-a (s + x - x')](a + s)}{(x-x'+s)(x+s)[x+s+(a+s)]\beta_3\theta}\beta_3^2\theta^2$						
Условие линейной температ компенсации	25	$x' = (x+s) \frac{\beta_{tu1} (x+s) + \alpha \beta_3}{\beta_{tu1} (x+s) + (a+s) \beta_3}$						
Входное сопротибление цепи, Ги	26	$\frac{x'(s+x-x')}{(x+s)}r_{0}$						
Отношения токов и напряжений	27	$\frac{1}{I_0} = \frac{x+s}{s+x-x'}; \frac{U}{U_0} = x'$						
Параметры цепи при Вни = Вни - О и а - В=1.	28	x=2,618; p=2,618; s=4,236; x=4,309						

Таблица 36

СИММЕТРИЧНИЯ МОСТОВАЯ ЦЕПЬ	1	ПАРАЛЛЕЛЬНИЯ ДВУХОБМОТОЧЕНА ЦЕПЬ
20° 0:63		
A Soi Api vo	5	
		Tiking
13:p3 2 80	1	Зажимы А-В
	2	
	3	U/rs
BSUWO B-B	4	$\frac{BSUw_{0}}{W_{0}}\left(1+\frac{w_{0}}{W_{0}}-\frac{w_{0}}{W_{0}}+\frac{w_{0}}{W_{0}}\right)$
$\frac{W B(D+D) + 2DB}{E(D-D)(D-D)(D-D)(D-D)(D-D)(D-D)(D-D)(D-D$	-	$W[r_0+r_1]^{-1} = W_0 = r_3$ $r_0 r_0 w_0 B_0 + (r_0+r_1)^2 w_0 B_3 (\theta + r_0) r_1 w_0 + (r_0+r_1) w_1 B_0 B_3 (\theta^2)$
$\frac{1}{(2-n)(n(n+1)+2n(n+1)+2n(n+1))\beta_{p}+n(n+2n)\beta_{3}(\theta+n(n,\beta_{p}\beta_{3},\theta^{2}))}$	5	$= \frac{[r_3 w_0 + (r_0 + r_1)w_3] \{r_0 + r_1 + [r_0 \beta_p + (r_0 + r_1)\beta_3] \theta + r_0 \beta_p \beta_3 \theta^2]}{[r_0 + r_0 + r_1 + r_1 + r_1 + r_2 + $
$\frac{n}{n} = p; \frac{n}{n} = q; \frac{\beta p}{\beta 3} = a; 1+q = x$	6	$\frac{f_0 + f_1}{f_0} = X; \frac{f_3}{f_0} = S; \frac{W_3}{W_0} = m; \frac{\beta_p}{\beta_3} = a; \frac{\gamma_3 \rho_3 k v m_3}{\gamma_0 \rho_0 k v m_0} = b^2$
$\frac{p(1-q^2)a + 2(pq+1)B_3\theta + (1-q)pqa\beta_3^2\theta^2}{p(1-q)pqa\beta_3^2\theta^2}$	7	$\frac{(so + mx^2)\beta_{2}\theta + (s + mx) o \beta_{1}^{2}\theta^{2}}{\gamma(s + mx)(s + mx) (s + mx)}$
$\frac{[p(l+q)+2][l-q(l+\beta_30)]}{[p(l+q)+2][l-q(l+\beta_30)]}$		x(5+mx+(5+0m))30)
$-\frac{p(1-q)p(1+2)p(q+1)}{(1-q)[p(1+q)+2]}\beta_{3}\theta$	8	$-\frac{(SU + III \times I)}{\chi(s + m\chi)}\beta_3\theta$
$(1-\alpha)n\alpha + (n\alpha + 1)$ (1-\alpha)		$Sm(x-a)^2$ gas^2
$-29 \frac{1}{[p[1+q]+2][1-q[1+p]](1-q)} \frac{1}{3} \theta^2}{[p[1+q]+2][1-q]}$	9	$\frac{1}{x(s+mx)[s+mx+(s+om)\beta_{g}\theta]} \beta_{g}\theta$
$\frac{2(pq+1)}{p(q^2-1)} = ak; p = \frac{2}{ak(q^2-1)-2q}$	10	$-\frac{mx^2}{s} = ak; m = -\frac{sak}{x^2}$
$\frac{D(1+q)+2}{D(1+q)+2}r_{0}$	11	x5 x+5 %
$\frac{p(q-1)^2}{(p(q+1)+2)(q+1+2)p(q)} = \frac{qkx(x-2)-2(x-1)}{(p(x+1)+2)(q+1+2)p(q)}$	12	$\frac{(s+xm)^2}{x(x+s)(m^2h^2+s)} = \frac{sk(x-ak)^2}{(x+s)(m^2k^2+b^2+s)}$
$F(x; ak) = (ak)^2 x^3 - 4ak (ak+1)x^2 + 2(5ak+2)x - \delta = 0$	13	$mb = \left[\sqrt[3]{\alpha k (b + \sqrt{b^2 - \alpha k})} + \sqrt[3]{\alpha k (b - \sqrt{b^2 - \alpha k})}\right]; x = m^2 b^2; s = -\frac{b^4 m^5}{\alpha k}$
$-(f-k)\frac{\alpha x}{(x-2)(\alpha kx-f)}\beta_3\theta$	14	$-a \frac{k-1}{ok-m^2} \beta_3 \theta$
$=\frac{(x-1)(2-kx)\alpha}{(x-2)(\alpha kx-1)[1-(x-1)(1+\beta_3\theta)]}\beta_3^2\theta^2$	15	$- o k \frac{(m^2 - o)^2 m^2}{(ok - m^2)[m^2(ok - m^2) + (a^2 k - m^{\dagger})\beta_3 \sigma]} \beta_3^2 \sigma^2$
$I_{I_{1}} = \frac{x+2p(x-1)}{2-x}; I_{I_{3}} = 1+2p\frac{x-1}{x}; U_{0} = \frac{px+2}{p(2-x)}; U_{0} = p + \frac{2}{x}$	16	$I_{1_0} = 1 + \frac{x}{5}; I_{1_3} = 1 + \frac{x}{x}; V_{1_0} = x; V_{1_3} = 1$
Зажимы С-D	17	Зажимы А-С
$I \frac{2\pi' - (n+3)}{2\pi + \beta + \beta}$	18	$I \frac{f_{3} + f_{4}}{f_{6} + f_{7} + f_{7}} = I \frac{f_{3} + f_{7} - f_{7}}{f_{6} + f_{6} + f_{7}}$
	19	$I \frac{\overline{6 + n}}{\overline{6} + \overline{6} + \overline{0}}$
$\frac{BSw_0I}{W} \frac{2n'-(r_2+r_3)}{2n+n+n}$	20	$\frac{BSIw_0}{W(r_0+r_1+r_3)} \left[r_3 + r_1 - r_1' + \frac{W_3}{W_0} (r_0+r_1') \right]$
2 - ro(r2+13-2r2) Ap-r3(r6+r2) B3 8	21	$\frac{[r_{3}(r_{0}+r_{1}')B_{3}-r_{0}(r_{3}+r_{1}-r_{1}')B_{p}+m[r_{0}(r_{3}+r_{1}-r_{1}')B_{p}-r_{0}(r_{0}+r_{1}')B_{3}]_{p}}{r_{0}(r_{0}+r_{1}')B_{1}(r_{0}+r_{1}')B_{1}(r_{0}+r_{1}')B_{1}(r_{0}+r_{1}')B_{1}(r_{0}+r_{1}')B_{2}(r_{0}+r_{1}')B_$
$(2r_2 - r_2 - r_3) [2r_0 + r_2 + r_3 + (2r_0 \beta_p + r_3 \beta_3)\theta]$	-	$\left[m(r_{0}+r_{1}) + r_{3} + r_{4} - r_{4}' \right] \left[r_{0} + r_{3} + r_{3} (r_{0} \beta_{p} + r_{3} \beta_{3}) \theta \right]$
$\frac{13}{72'} = 9'; \frac{4\pi (100)}{9} = \beta_{14}I$	22	$\frac{I_0 + I_4}{I_0} = \mathbf{x}'; \frac{Y_{iu,nunI}}{\Theta} = \beta_{huI}$
$2q \frac{ap(xq'-2q)-q(pq'+1)}{(2q-xq')(2pq+x)} \beta_3 \theta$	23	$\frac{(!-m)[sx'-a(s+x-x')]}{(x+s)[mx'+s+x-x']}\beta_{3}\theta$
$2q^{2}\frac{(2ap+1)[ap(xq'-2q]-q(pq'+1)]}{(xq'-2q)(2pq+x)[2pq+x+q(2ap+1)\beta_{3}\theta]}\beta_{3}^{2}\theta^{2}$	24	$-\frac{(1-m)[sx'-a(s+x-x')](a+s)\beta_3^2\partial^2}{(x+s)[mx'+s+x-x'][x+s+(a+s)\beta_3\partial]}$
$\frac{q}{q'} = \frac{x(2pq+x)\beta_{tu1}+2pq(ax-q)\beta_3}{2(2pq+x)\beta_{tu1}+2(2op+1)q\beta_3}$	25	$x = \frac{(x+s)}{(f-m)} \cdot \frac{(x+s)\beta_{H_2I} + (f-m)\alpha\beta_3}{(x+s)\beta_{H_2I} + (\sigma+s)\beta_3}$
$\frac{p \times q'^2 + 2(xq' - q)}{q'^2 p(2pq + x)} \mathcal{B}$	26	<u>X'(5+x-x')</u> x+s 6
$ \begin{array}{l} I = 2pq + x & q' \\ I_o & 2q - xq' \\ I_o & 2q - xq$	27	$\frac{1}{I_0} = \frac{s + x}{s + x - x'}; \frac{1}{I_3} = \frac{x + s}{x'}; \frac{U}{U_0} = x'; \frac{U}{U_3} = \frac{s + x - x'}{s}$
p-0,100, y-4,05; y=40,02	10	1-4; 0-52; m=-2; X=12/44

Таблица Зв

ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНАЯ ТРЕХОБМОТОЧНАЯ ЦЕПЬ ПОСЛЕДОВАТЕЛЬНАЯ ДВУХОБМОТОЧНАЯ ЦЕПЬ E BONNO FIN 410 A ~B 5:44 5 Bs h Зажимы А-В 1 Baxumbi A-B U nori Ta+G 2 3 BSU Wo+WI W To+Ti BSU (Wo+Wy + Ws W (To+Fi + To) 4 $\frac{[r_0r_3(w_0\cdot w_i)\beta_{\mathcal{B}} + (r_0\cdot r_i)^2 w_3\beta_3]\Theta + r_3[r_3(w_0\cdot w_i) + (r_0\cdot r_i)w_3]\beta_{\mathcal{B}}\beta_3\Theta^2}{[r_1(w_0\cdot w_i) + (r_0\cdot r_i)w_3]\{r_0\cdot r_i \cdot [r_{\mathcal{B}}\beta_{\mathcal{B}}(r_{\mathcal{B}}\cdot r_i)\beta_3]\Theta + r_0\beta_{\mathcal{B}}\beta_3\Theta^2\}}$ Tapp Tato 5 $\frac{\mathcal{L}_{e}\sigma_{1}}{\mathcal{L}_{p}} \times x_{i}\frac{\mathcal{L}_{e}}{\mathcal{L}_{e}} \lesssim \frac{\mathcal{W}_{e}}{\mathcal{W}_{e}} \times \frac{\mathcal{W}_{e}}{\mathcal{W}_{$ To = X; We=m; Sipikumi=b2 6 Beg 7 $x[sm_{o1} + xm_3 + (sm_{o1} + m_3 \alpha)\beta_3\theta]$ BRO $-\frac{Sm_{et} a + x^2 m_3}{x(Sm_{et} + Xm_3)} \beta_3 \theta$ 8 Smorm3(x-a)2 $x(sm_{e_1},m_{s_2}) \{ sm_{e_1},xm_{s_2}, [sm_{e_1},m_{s_2}]\beta_{s}\beta_{s}^{2} \beta_{s}^{2} \beta_{s}^{2}$ 9 0 X=- Boll $\frac{x^2 m_3}{s m_{01}} = -ak; \quad m_3 = -\frac{s m_{01}}{x^2}ak$ 10 XS ro 11 XTa $\frac{(x-1)(sm_{q_1}+xm_{s_1})^{t}}{x(x+s)[s(m_{q_1}Tb_{t}^{2}+s(x-1)+(x-1)m_{s_1}^{2}b_{t}^{2}]}(x+s)[x(m_{q_1}Tb_{t}^{2}+1]+sbm_{s_1}^{2}dx]$ $\frac{(1+m)^{2}(x-1)}{(b^{2}m^{2}+x-1)} = \frac{\chi_{tununu}(1-b^{2})+\beta_{p}\theta}{b^{2}\beta_{p}\theta}$ 12 $x(b^2m^2+x-1)$ $s^{2} \frac{b_{1}^{2} x^{3}}{b^{2} a^{2} k^{2} (x-1+b_{1}^{2})^{4} b^{2} a^{2} k^{2} (x-1+b_{1}^{2})^{\frac{4}{2}} b_{1}^{2} x_{1}^{2} 3 a k (1-b_{1}^{2}) x_{1}^{1+2} a k - b_{1}^{2}$ $m = \frac{x-1}{b^2}$ 13 - 1-k abs 0 Bp8 14 $ak(x-a)^2\beta_3^2\theta^2$ 0 15 $(x-ak)[x(x-ak)+(x^2-a^2k)\beta_3\theta]$ U. *X $\frac{U}{U_q} = \chi;$ $\frac{U}{U_{e}}=1$ 1 = 1+ ×; =1+5; 16 17 Зажимы А-С $I \frac{\Gamma_i - \Gamma_i' + \Gamma_j}{\Gamma_0 + \Gamma_j + \Gamma_j}$ 18 19 BSI 20 W 10+17+15 (Wo+WiXE-1;+15)+(W3+W,-WiXE+1;)] (wo+wills+5')5B3-56(5-5;+5)Bp/wy+w,-w;)[6(1,-5;+13)Bp-(6+5;)5B3] [(Wo+will5-5;+6;)+(Ws+W;-W;N6+15;)][6+5;+5;+(6Bp-5;By)0] 21 10+11'=x'; Wo+W1 = Mo1; Styrunt = Bigi 22 $\frac{[x's-(x-x'+s)a](m_{ot}-m_{3})}{(x+s)[m_{ot}'(x-x'+s)+(m_{3}+m_{ot}-m_{ot})x']}\beta\theta$ 23 [x's + (x-x'+s)a](m_s-mon) $\frac{[m'_{et}(x-x^{+}s)a](m_{s}-m_{et})}{[m'_{et}(x-x^{+}s)+(m_{s}+m_{et}-m'_{et})x'](x+s)[x+s+(a+s)\beta_{3}\theta]}\beta_{s}^{2}\theta^{2}$ (x+s)[m'_{et}(x+s)B] 24 $\begin{array}{l} (x+s)[m_{ot}(x+s)\beta_{tu,1}+(m_{ot}-m_s)\alpha\beta_3] \\ (2m_{ot}^{-}-m_{ot}-m_3)(x+s)\beta_{tu,1}+(m_{ot}-m_3)(\alpha+s)\beta_3 \end{array} \end{array}$ 25 x(5+x-x) 26 X+5 $\frac{\prod_{a} x \cdot s}{I_{a} \cdot s \cdot x^{*}}; \quad \frac{\prod_{a} x \cdot s}{I_{a} \cdot x^{*}}; \quad \frac{U}{U_{a}} = x; \quad \frac{U}{U_{a}} = \frac{s \cdot s}{s}; \quad \frac{U_{a}}{x^{*}} = \frac{s \cdot s}{s}; \quad \frac{U_{a}}{x^{$ $\frac{U}{U_1} = \frac{S + X - X}{S}$ 27 28

а вонноволици и Солонически спорт. Таблица Зг

	T	ПОСЛЕДОВАТЕЛЬНАЯ ЦЕПЬ
CATTE THESHA MOCTOBAR THE XODIUT UNHAR LETID	-	с термосопротивлением
		<u>A-A</u> = ⁰ /7 ₀ +8
		To Apr way 4
Rotting and the state	3	
		ل
ALW DO		
Зажимы А-В	1	Зажимы А-В
0	2	$U \frac{f_{70} + f_{2}}{(f_{9} + f_{9})(f_{70} + f_{2}) + f_{4} + f_{70}}$
U/2n	3	
BSUws	4	BSUWO Tro+M2
(aug+(a+2a)w+18, 8+12w+8, 8+8		$\frac{(r_{r}+r_{2})(r_{m}+r_{2})r_{r}B_{r}B_{r}B_{r}+(r_{r}-r_{r})\mu^{2}}{(r_{r}+r_{2})(r_{m}+r_{2})r_{r}B_{r}B_{r}B_{r}+(r_{r}-r_{r})\mu^{2}}$
12(ro.r.)+(2ro Bo+(ro+2r3)B3 0+6B0B30)W3	5	$-\frac{(I_1+I_2)(I_0+I_2)(I_0+I_4)+I_2I_7(I_{10}+I_2)+(I_{10}+I_2)(I_7+I_2)I_8\beta_p\theta}{(I_1+I_2)(I_0+I_2)(I_1+I_2)I_8\beta_p\theta}$
Y3 P3 Kym3 = 2 13 = 5; W3 = m; Bp = q.	6	$q = \frac{r_1}{r_2} = exp[-\frac{89}{T/T + 91}]; \frac{r_2}{r_2} = p; \frac{r_2}{r_2} = q; \frac{r_2}{r_2} = m$
$[5 + m(1 + 2s)]B_1B_1B_2B_2^2B_2^2$		$(a+m)(1+m)\beta_{p}A+a(a-1)m$
2m(1+s)+(2am-s)/3+0	7	$\frac{(a+m)[(1+p)(1+m)+q]}{(a+m)[(1+p)(1+m)+q]}$
s+m+2sm B.A	8	$(1+m)\beta_p - \frac{Qm}{1+m} \frac{B}{T^2} \rho$
2m(1+5)	0	(1+p)(1+m)+g
$-5 \frac{\{5+m[1+2s-2a(m+1)]\}\beta_3^2\theta^2}{2}$	0	$-am \frac{(1+m)(a-1) + \frac{B}{2}(a+m)\theta}{a}$
$2m(1+s)$ [$2m(1+s)+(2\alpha m-s)\beta_3\theta$]	10	(a+m)(l+m)[(l+p)(l+m)+q]
$s+m = -2ksm; m = -\frac{s}{1+2ks}$	10	$(I+m)^{2}\beta_{p}k = qm\frac{B}{To^{2}}; q=k\frac{(I+m)^{2}\beta_{p}}{mB/To^{2}}$
SR	#	$\frac{(1+p)(1+m)+q}{(1+m)}$
m ² s		1+m = 1 mB
$\overline{s+2m^2b^2} = (1+2ks)^2 + 2sb^2$	12	$(1+p)(1+m)+q m \frac{B}{T_{0}^{2}}(1+p)+k(1+m)\beta_{p} T_{0}^{2}$
$S = \frac{1}{2k}; m = -\frac{1}{4k}$	13	p=0
$-\frac{1-k}{1+2k}\beta_3\theta = -\frac{10\eta-1}{4\eta+2}\beta_3\theta$	14	$-\frac{m(1-k)\beta_{P}}{m\frac{B}{T_{0}^{2}}+k(1+m)\beta_{P}}\frac{B}{T_{0}^{2}}\partial=-\left[\eta\beta_{P}-\frac{m}{1+m}\cdot\frac{B}{T_{0}^{2}}(1-\eta)\right]\partial$
$\frac{\left[2(1-k)-\alpha(4k-1)\right]k\beta_{2}\theta^{2}}{\left(2k+1)^{2}k^{2}+2k(\alpha+1)\beta_{3}\theta\right]^{2}}\left[(7-\frac{1}{2})\frac{\left[(1-1)\alpha(1-2)-\alpha(4n-1)\right]\beta_{3}^{2}}{\left(1+2n^{2}(1-2)+\alpha(4n-1)\beta_{3}\theta\right)}\right]$	15	$-\frac{km\beta_p}{m\frac{\beta_{p+k}}{\beta_{p+k}}\left(\frac{1}{4}+m\right)\beta_p}\left[\frac{(\alpha-1)\left[\frac{1}{4}+m\right]}{\alpha+m}+\frac{\beta}{T_e^2}\theta\right]=\left(\eta-1\right)\left[\frac{m(\alpha-1)}{\alpha+m}+\frac{m}{T_e^2}\theta\right]$
1/1=2; H=2	16	$\frac{1}{1_{10}} = 1; \ \frac{1}{1_{10}} = \frac{11 + m/\beta p}{m B/T^2} k + 1$
Зажимы С-D	17	20 00 MD/ B-
$I \frac{P_2'-P_3'}{P_2-P_3'}$	18	
<u> </u>	-	
210-12'+13'	19	the state of the s
W(2r3+r3+r5) [(r2-r3)W0+2(r2+r3)W3]	20	Ale as the Ale Cart
$-2 \frac{(w_3 + w_0)[f_0(f_3' - r_3')\beta_p + r_3'(f_3 + r_3')\beta_3]\theta}{f_0(r_3' - r_3')}$	21	and the second
<u>r3B3</u> = R'. <u>r's</u> = 213-r's - c'. YtunuhI o		3
$\frac{2r_3 - r_2 - p_{31}}{r_2} = \frac{r_3}{r_6} = \frac{r_5}{r_6} $	22	and and a space it and it is a start of the
$-\frac{(m+1)[20(3-3')+3[1+22-5']]330}{2(3+1)[5-5'+m(1+25-5')]}$	23	
$\frac{[m+1)[2\alpha(5-5')+5'(1+25-5')](2\alpha+5)\beta_3^2\theta^2}{2(5+1)[5-5'+m(1+25-5')][2(5+1)+(2\alpha+5)\beta_3\theta^2]}$	24	
$s' = \frac{2(s+1)[s+m(2s+1)]\beta_{14}I + s(m+1)[2\alpha+1+2s)\beta_3}{(m+1)[2(s+1)\beta_{14}I + 2(\alpha+s)\beta_3]}$	25	States and a second
<u>5+5'(25-5')</u>	26	and the second se
$U = \frac{5+5'(25-5')}{2}, U = \frac{5+5'(25-5')}{2}$	10-	THE CARACTER STATE OF THE STATE
$\frac{U_0}{5-5!} = \frac{U_3}{5} = \frac$	21	
5=0,3;5=U8; m=-0,25	128	

ности, — тогда аналогично формуле (2), приведенной в (Л17), получим

$$\chi_{t} = \frac{\beta_{p}\beta_{3}r_{0}}{r_{12}(1+\beta_{3}\theta)} \left(1 - \frac{\beta_{tM}}{\beta_{p}} \frac{r_{12}}{r_{0}}\right) \left(\theta_{k}^{'} - \theta\right) \theta \quad , \quad (43)$$

где

$$\Theta_{k}^{'} = \frac{\frac{\Gamma_{2}}{\Gamma_{3}}(b-1) - 1 + \frac{\beta_{tM}}{\beta_{p}} \left[1 + \frac{\Gamma_{4}}{\Gamma_{0}} + \frac{\Gamma_{2}}{\Gamma_{0}} + \frac{\Gamma_{2}}{\Gamma_{3}} \left(1 + \frac{\Gamma_{4}}{\Gamma_{0}} \right) \right] }{\beta_{3} \left\{ 1 - \frac{\beta_{tM}}{\beta_{p}} \left[1 + \frac{\Gamma_{4}}{\Gamma_{0}} + \frac{\Gamma_{2}}{\Gamma_{0}} + \frac{\Gamma_{2}}{\Gamma_{3}} \left(1 + \frac{\Gamma_{4}}{\Gamma_{0}} \right) \right] \right\}$$
(44)

период компенсации (расстояние между точками полной компенсации), а b = $\frac{\beta_3}{\beta_{10}}$, где β_{01} — температурный коэффициент ветви рамки (сопротивлений r_0 и r_1).

Если теперь кривую суммарной температурной погрешности (43) рассматривать при определении максимальной погрешности Δ в первом приближении как параболу, тогда из (Л17) получим, что значение Δ в температурном интервале Т будет минимальным, если температурные погрешности в середине — γ_{tmax} — и на краях температурного интервала — γ_{ta} и γ_{tb} — по абсолютному значению равны и выражаются

$$|\chi_{tmax}| = |\chi_{ta}| = |\chi_{tb}| = |\Delta| = \frac{\beta_3(\beta_p r_0 - \beta_{tM} r_{12})}{r_{12}} \frac{T^2}{8}$$
(45)

Расстояние между точками полной компенсации $\Theta'_{k} = -\frac{T}{\sqrt{2}}$. За начало координат принята правая точка полной компенсации.

Исходя из формул (44) и (45), можно, применяя методику (Л17), вывести следующее выражение к. п. д. цепи для рассматриваемого случая:

$$\eta = \left(\frac{\delta \Delta}{\beta_p \beta_3 T^2} + m\right) \left[1 - \frac{\left(1 - \frac{\beta_3 T}{\sqrt{2}}\right) \left(1 - \frac{m \beta_p \beta_3 T^2}{\delta \Delta + \beta_p \beta_3 m T^2}\right)}{\left(\frac{\beta_{01} \beta_3 T^2}{\delta \Delta + m \beta_p \beta_3 T^2} - 1\right) \left(\frac{\beta_3}{\beta_{01}} - 1\right)}\right], \quad (46)$$

где m = $\frac{\beta_{tM}}{\beta_p}$.

Услов'ия максимума (46) определяют при заданных значениях Т, β_p , β_3 и m все параметры цепи через b. Последняя определяется графически из выражения

$$\beta_3 T = \sqrt{2} \left[1 - \frac{(b-1)^3}{(2b-1) - mb^3} \right].$$
 (47)

1 — кривая η в случае β₃==4.10⁻³ ^{−1}/_{◦C}.

2 — кривая η в случае $\beta_3 = 5.10^{-3} \frac{1}{\circ C}$.

29

На рис. 5 приведена такая зависимость между β_3 T и b для частного случая m = 0,05, $\beta_p = 0,004 \frac{1}{\circ C}$ и $\beta_{tM} = 0,0002 \frac{1}{\circ C}$.

Расчетные формулы для рассмотренного случая приведены в таблице 4 — в третьем столбце.

Если учесть и изменение температуры в знаменателе формулы (43), то кривая температурной погрешности имеет максимум не в' середине температурного интервала, а при температуре

$$\Theta_{\rm m} = \frac{1}{\beta_3} \left(\sqrt{1 + \beta_3 \Theta_{\rm k}^{\dagger}} - 1 \right) \,, \tag{48}$$

которая может быть выведена из условия $\frac{\partial \gamma_t}{\partial \Theta} = 0$ и где

$$\Theta_{k}^{'} = \frac{\frac{P_{2}}{P_{3}}(b-1) - 1 + \frac{P_{12}}{P_{0}}m}{\beta_{3}\left(1 - \frac{P_{12}}{P_{0}}m\right)}$$
(49)

Из (43), (48) и (49) можно получить при выполнении условия

$$\gamma_{ta} = \gamma_{tb} = -\gamma_{tmax} = \Delta$$

$$2\sqrt{(T-\Theta_b)\Theta_b} = (\Theta_b - T)(1+2\beta_3\Theta_b) + \Theta_b \qquad (50)$$

При заданных значениях β₃ и **T** Θ_b определяется из (50), а дальше расчет проводить аналогично методике, изложенной для случая заданной точки полной компенсации ниже.

Если предельные изменения температуры Θ_a и Θ_b являются заданными величинами, тогда с соблюдением, что $\Theta_a = \Theta_b - T$ и при условии $\varDelta = \gamma_{ta} = \gamma_{tb}^{}$ получим

⁵ Это условие соблюдается, если заданная точка полной компенсации находится ближе к середине температурного интервала, чем оптимальная, определяемая из (50), — что практически всегда выполняется.

$$\gamma = \left(\frac{\Delta}{\beta_{3}\beta_{p}\theta_{a}\theta_{b}} + m\right) \left\{ 1 - \frac{\left[1 + \beta_{3}(\theta_{a} + \theta_{b} + \beta_{3}\theta_{a}\theta_{b})\right] \left[1 - m\frac{\beta_{p}\beta_{3}\theta_{a}\theta_{b}}{\Delta + m\beta_{b}\beta_{3}\theta_{a}\theta_{b}}\right]}{\left(\frac{\beta_{01}\beta_{3}\theta_{a}\theta_{b}}{\Delta + m\theta_{a}\theta_{b}\beta_{p}\beta_{3}} - 1\right) \left(\frac{\beta_{3}}{\beta_{01}} - 1\right)}$$
(51)

Услов'ия максимума (51) находим в виде

$$1 + \beta_3 (\theta_a + \theta_b) + \beta_3^2 \theta_a \theta_b = \frac{(b-1)^3}{2b-1-mb^3} .$$
 (52)

Для решения (52) можно воспользоваться кривой на рис. 5, если вместо величины β₃ T по оси обсцисс отложить величину

$$-\sqrt{2}\,\beta_3(\Theta_a+\Theta_b+\beta_3\Theta_a\Theta_b).$$

Все расчетные формулы для случая с заданной точкой компенсации приведены в таблице 4 в четвертом столбце.

В первом и втором столбцах той же таблицы приведены расчетные формулы для упрощенных вариантов расчета, получаемых при m=0, т. е. без учета температурной погрешности механизма.

Кривые для решения этих вариантов приведены на рис. 6.

Рис. 6. Зависимость b, Δ и η от β₃ T при m=0.

31

Таблица 4

MMANDHON	י שווחברטועי	ности механизма	заданная точка компенсации	Ba+Bo+Bs BaBo	$\left(\frac{\Delta}{2\pi^{3}646}, n\right) \left(1 - \frac{1}{(1+2)86} + \frac{1}{640} + \frac{1}{62} + \frac{1}{640} + \frac{1}{640$	$\sqrt{\frac{\Delta}{\Theta_0}\Theta_0} + m\beta_0\beta_3$	$1 + B_0 + B_0 + \beta_0 B_0 B_0 = \frac{(b-1)^3}{2b-1-mb^3}$	$\frac{1-mab}{b^2} \theta_a \theta_b$	$\frac{t-mb}{ab(2b-t-mb^3)}$	<u>abr</u>	<u>&1-m61</u> 26-1-m63	$\frac{26-4-mb^3}{ab^3(1-mb^2)}$	$\frac{a\delta -ii(2\delta - t - m\delta^3)}{a\delta^3(t - m\delta)}$	1-9	26-1-mb ³ 816-11(1-mb ²)	<u>a</u> b - 1	<u>26-1-m61</u> 26-1-m63	$\frac{ab^2(1-mb^2)}{(b-1)(1-mb^2)}$
Trancontionor		d) c yuemon norpeur	ели свободная точка ина компенсации	θ_{k}^{\prime} - $\frac{T}{\sqrt{2}}$ -	$\left. \left. \left$	$\beta_{01} \sqrt{\frac{\delta}{7}z} \Delta + m\beta_{\rho}\beta_{3}$	$\beta_{\beta} \beta_{k}^{*} = \frac{1}{1 - \beta_{s} \sqrt{2}} = \frac{16 - 1)^{s}}{26 - 1 - m\delta^{s}}$	$\bigtriangleup \left[\begin{array}{c} 1 - mab^2 & \beta_3 \Gamma^2 \\ \delta^2 & \delta \end{array} \right]$	$\int_{MOXC} \frac{4 - mb}{0b(2b - 1 - mb^3)}$	r_{12}^{6} $\frac{l}{a b^{2}}$	$\frac{\Gamma_{44}}{\Gamma_{42}} = \frac{6(1-mb)}{2^{6}b^{-1}-mb^{3}}$	$\frac{\Gamma_6}{\Gamma_{tt}} = \frac{2\delta - f - m\delta^2}{a\delta^3(f - m\delta^2)}$	$\frac{P_{44}}{P_{44}}$ $(ab-t) - \frac{2-b-mb^{3}}{ab^{3}(t-mb)}$	$\frac{\Gamma_2}{\Gamma_{ul}}$ $\frac{b-t}{b}$	$\frac{\Gamma_3}{\Gamma_{44}} = \frac{26 - 4 - mb^3}{6(6 - 1)(1 - mb^2)}$	i/6 a8-1	$r_{0.}$ $26 - 1 - mb^{3}$	$\frac{f_3}{f_6} = \frac{ab^2(1-mb)}{(b-1)(1-mb^2)}$
TUPHAR KOMI	CIEND DU DUELT	ности механизма	заданная точка В компенсации	$\Theta_{a}+\Theta_{b}+\beta_{3}\Theta_{a}\Theta_{b}$	$\frac{\Delta}{\overline{\beta_{p}\beta_{3}}\mathcal{B}_{0}\mathcal{B}_{4}}\left[1-\frac{(+\beta_{3})(B_{0}+\Theta_{4}+\beta_{3},B_{0},\Theta_{3})}{(B_{m}\beta_{3},\Theta_{0},\Theta_{4}-1)}\right]^{\frac{1}{2}}$	V <u>Bo</u> Bi	$4 + \Theta_{0} + \Theta_{0} + \beta_{5} \Theta_{0} \Theta_{6} = \frac{(b-4)^{2}}{2b-4} + \frac{1}{2b}$	B\$ 8008	<u>ab(26-1)</u>	<u>a 6²</u>	26-1	<u>26-1</u> ab ³	<u>(b-1)(26-1).</u> ab ³	<u>6-1</u>	<u>26-1</u> 6(6-1)	<u>a</u> ⁶ - 1	26-1	$\frac{ab^2}{b-t}$
TEMITEPA	I SI LETTIO	a) des yuerna norpeur	свододная точка компенсации	- 4	$\frac{\delta \Delta}{\beta \rho \beta \delta T^2} \left[f - \frac{f - \frac{\beta \sigma T}{\sqrt{2}}}{\left(\rho \omega \beta \delta T^2 - f \right) \left(\beta \omega \sigma \delta T^2 - f \right) \left(\beta \omega \sigma \sigma T^2 - f \right)} \right]$	V 80	$1 - \frac{b_3 T}{\sqrt{2}} = \frac{(b - 4)^3}{2b - 4}$	$\frac{1}{8} \left(\frac{\beta_3 T}{\delta} \right)^2$	<u>1</u> <u>ab(26-1)</u>	<u>0 61</u>	26-1	<u>26-1</u> abs	<u>16-11(2.6-1)</u> ab	1-9	<u>26-1</u> 616-11	ab-1	<u>ab²(b-1)</u> 2b-1	$\frac{a\theta^2}{b}$
D Lin	142		Вели	B	2	Bar	4-B.G	0	Rmaxa	202	ra a	2/2	212	P41	13 P#	A/ro	40	2/2

32

Варианты расчета оптимальных параметров последовательно-параллельной цепи температурной компенсации, основанные на определении Δ с учетом Θ в знаменателе формулы (43) или по формуле (45) без учета Θ в знаменателе при одинаковых значениях β_p , β_3 , т и Т, приводят к одинаковым значениям оптимальных параметров, если не учитывать изменений температурных коэффициентов сопротивлений и механизма при разном расположении точек полной компенсации относительно граничных температур. Переход от одного варианта к другому вызывает перемещение кривой температурной погрешности относительно границ температурного интервала.

На рис. 7 приведены кривые температурных погрешностей в температурном интервале T=120° (от —60° до +60°С) для последовательно-параллельной цепи температурной компенсации при $\beta_p = \beta_3 = 0,004$ на 1°С. Из них кривая 1 относится к первому описанному варианту, а кривая 2 ко второму.

При заданной точке полной компенсации максимальное значение температурной погрешности Δ может иметь место как на краях температурного интервала, так и при $\Theta = \Theta'_m$. Последний вариант мало вероятен.

Примером первого случая на рис. 8 приведены кривые температурной погрешности последовательно-параллельной цепи в температурном интервале от -60° С до $+60^{\circ}$ С при заданной точке компенсации $T_0 = 20^{\circ}$ С для $\beta_3 = -0,004 \frac{1}{20}$ и m = 0,05.

Все описанные в настоящем пункте варианты расчета последовательно-параллельной цепи температурной компенсации при определении параметров цепи исходят из условия получения минимального значения максимальной температурной погрешности во всем температурном интервале. Для заданного температурного интервала можно также рассчитать прибор с удельными температурными погрешностями равными β_t для обеих крайних температурного интервала.

- 1 температурная погрешность механизма;
- 2 температурная погрешность цепи;
- 3 суммарная температурная погрешность.

Повторяя вышеприведенную методику для расчета к. п. д. цепи, получим:

$$\begin{bmatrix} \underline{\beta_{t}} \\ \underline{\beta_{p}\beta_{3}} \\ \underline{\beta_{b}-\theta_{a}} \\ \underline{\theta_{b}-\theta_{a}} \\ +m \end{bmatrix} \begin{bmatrix} 1 - \frac{1+\beta_{3} \frac{\theta_{a}+\theta_{b}+2\beta_{3}\theta_{a}\theta_{b}}{\beta_{3}(\theta_{a}+\theta_{b})+2}}{b-1} \\ \frac{1-\frac{m}{\beta_{t}} \frac{2+\beta_{3}(\theta_{a}+\theta_{b})}{\theta_{b}-\theta_{a}}}{\frac{\beta_{ot}}{\beta_{p}} -1} \end{bmatrix}$$

(53)

условия максимума которого выражаются:

$$\beta_{01} = \sqrt{\beta_t} \frac{2 + \beta_3 (\theta_a + \theta_b)}{\theta_b - \theta_a} + m \beta_p \beta_3$$
(54)

H

$$1+\beta_3 \frac{\theta_a+\theta_b+2\beta_3\theta_a\theta_b}{\beta_3(\theta_a+\theta_b)+2} = \frac{(b-1)^3}{2b-1-mb^3}.$$
 (55)

Заданные значения Θ_a , Θ_b , β_p , β_3 и m однозначно определяют β_{01} и β_t .

Удельную температурную погрешность можно рассчитать согласно формуле (54)

$$\beta_{t} = \left(\beta_{\sigma_{1}}^{2} - m \beta_{\rho} \beta_{3}\right) \frac{\theta_{b} - \theta_{a}}{2^{+}\beta_{3}(\theta_{a}^{+}\theta_{b})}.$$
 (56)

После определения b по кривой на рис. 5 расчет других параметров цепи производится по формулам четвертого столбца таблицы 4.

На рис. 9 приведены кривые температурной погрешности прибора с последовательно-параллельной цепью, рассчитанной по последнему варианту для $T_0=20^{\circ}$ С; $\Theta_a=-80^{\circ}$; $\Theta_b=+40^{\circ}$; $\beta_p=\beta_3=4\%$ на 10° изменения температуры и m=0,05. Получено $\beta_t=:0,132\%$ на 10° изменения температуры.

Рис. 9. Кривая температурной погрешности милливольтметра с равными удельными температурными погрешностями на краях температурного интервала T = 120°C при заданной точке компенсации.

11. Сравнение разных цепей температурной компенсации и методов их расчета

При сравнении разных цепей температурной компенсации необходимо учитывать величину к. п. д. цепи, остаточную температурную погрешность (в широком температурном интервале), технологичность цепи, возможность расположения всех термозависимых элементов в одинаковых температурных условиях и т. д.

В таблице 3 (а, б, в, г) приведены расчетные формулы для разных цепей температурной компенсации, выведенные на основе методики В. О. Арутюнова (Л18) и (Л19). Для цепей, которым присуща температурная погрешность цепи в случае приложения заданного тока к зажимам заданного напряжения, во второй части таблицы приведены формулы, которые позволяют определить место выводов для режима заданного тока в зависимости от допустимой температурной погрешности цепи.

Эти зажимы используются, если цепь служит для измерения тока без шунта или для измерения напряжения с

добавочным сопротивлением. На рис. 10 приведены кривые остаточных температурных погрешностей разных цепей температурной компенсации и относительные параметры цепей для случая $\gamma_{tq,лин} = 0.6$) По данным рисунка видно, что по к. п. д. последовательная цепь с термосопротивлением превосходит все другие, но из цепей с проволочными сопротивлениями наибольший к. п. д. имеет последовательно-параллельная трехобмоточная цепь и наименьшую остаточную погрешность обычная последовательно-параллельная цепь.

Характер остаточной погрешности последов'ательной цепи с термосопротивлением отличается от остаточных погрешностей других цепей. Она сравнительно мала и меньше других в узком температурном интервале около нулевой точки, но зато на краях температурного интервала быстро увеличивается и прев'осходит другие.

Однако цепи температурной компенсации в электроизмерительных приборах высокого класса точности обычно имеют определенную линейную отрицательную температурную погрешность для компенсации температурной погрешности механизма. Поскольку в узком температурной погрешности механизма. Поскольку в узком температурной интервале при заданной линейной температурной погрешности цепь компенсации характеризуется своим к. п. д., то на рис. 11 приведены кривые зависимости последней от допустимой отрицательной температурной погрешности на +10° изменения температуры. Пунктиром отмечено расположение кривой при учете остаточной погрешности.

Из этих кривых можно сделать следующие выводы:

1) Все другие цепи превосходит последовательная цепь с термосопротивлением.

2) Все рассмотренные цепи с проволочными сопротивлениями имеют более высокий к. п. д. цепи, чем обычная последовательная только при удельных температурных погрешностях, меньших 0,5—0,6% на 10° изменения температуры (по абсолютной величине).

3) Учет остаточной погрешности практически мало сказывается на ходе кривых.

4) Последовательность значений к. п. д. цепи при разных значениях удельной температурной погрешности может изменяться (кривые 1 и 4, также кривые 2 и 3).

37

⁶ Для последовательной цепи с термосопротивлением ради общности обозначений на этом рисунке принято, что г_т = г₃ и В = 2920 °С.

	Цепь	Режим заданного												
ŝΝ		A.	rtro	Liko	13	W.	W3 Wo	7%	-Fro	the	Fro a			
1	Последовотельно параллельная	4,24	1,62	2,62	4,24	-	-	9,1	1,06	Q31				
2	Симметричноя мостовая	2,56		1,34	6,45	0. <u>cr</u>	-	10,8	1,04	-	0,16			
3	Параялельноя двихобмоточноя	3,56	3,0	000	32,0	-	-2,0	11,1	1,06	0,09	0			
4	Симметричноя мосто box трехобмоточноя	0,5	-	1	0,5	<u></u>	- 0,25	10,0	0,44		0,2			
5	Последовательно-параллепь ная трехобмоточноя	415	3,6	-	42,3	Q15	-23	125	106	9.08	-			
6	Последовательная с тер- мосопротивлением	13	0	0,49	0,74	-	-	77	-	-	_			

Рис. 10. Цепи температурной компенсации при у_{тцлин} = 0.

Самой простой по технологичности изготовления является последовательная цепь, последовательная двухобмоточная цепь и последовательная цепь с термосопротивлением, если при этом не учесть побочных трудностей в массовом производстве (благодаря разбросу характеристики и старению). Последние обстоятельства сильно уменьшают преимущества последовательно-параллельной цепи перед другими. Расчет цепей температурной компенсации с термосопротивлением подлежит специальному исследованию.

Многообмоточные цепи, особенно те, которые уже в режиме заданного напряжения имеют увеличенное количество выводов (параллельная двухобмоточная, симметричная мостовая трехобмоточная) уступают другим по технологичности. Зато много бмоточные цепи наилучше отвечают требованиям по равенству температуры всех термозависимых элементов (собственный нагрев сравнительно мало влияет на работу этих цепей и т. д.).

Из методов расчета последовательно-параллельной цепи температурной компенсации самыми строгими являются метод Л. М. Закса (Л17) и метод В. О. Арутюнова (Л18) и (Л19). Про эти методы можно сказать:

1) Оба автора пользуются одинаковыми схемами замещения и равноточными формулами погрешности цепи температурной компенсации.

2) Основой первого метода является учет линейной и нелинейной температурных погрешностей, при изыскании максимума к. п. д. цепи, в то время как второй метод учитывает только линейную погрешность.

3) Оптимальные параметры цепи при одинаковых их температурных погрешностях будут различные.

4) Расчеты по обоим методам дают практически совпадающие результаты, если |_{7tцлин}| <0,2-0,3% на +10° изменения температуры (см. рис. 12). При бо́льших температурных погрешностях, цепи рассчитанные по Заксу имеют более высокие значения к. п. д., нежели цепи рассчитанные по Арутюнову. По первому методу последов'ательно-параллельная цепь имеет преимущество перед обычной последовательной в области

 $|\gamma_{t\mu}| \leqslant 0,25\beta_3\Theta,$

а по второму методу в области

 $|\gamma_{\rm tu}| \leq 0,146\beta_3\Theta.$

На основании анализа, сделанного в данной работе, можно рекомендов'ать применение метода В. О. Арутюнова из-за ее простоты и гибкости при расчете милливольтметров высокого класса точности ($\gamma_{tu} < 0,2$ —

1 — последовательная цепь;

- 2 последовательно-параллельная цепь, рассчитанная по Заксу $\beta_3 = 4.10^{-3} \frac{1}{2C}$.
- 2 последовательно-параллельная цепь, рассчитанная по Заксу $\beta_3 = 5.10^{-3} \frac{1}{2C}$.
- 3 последовательно-параллельная цепь, рассчитанная по Арутюнову $\beta_3{=}4.10^{-3}\,\frac{1}{^\circ C}$.
 - а линейная погрешность;
 - б суммарная погрешность.
- 3' последовательно-параллельная цепь, рассчитанная по Арунову $\beta_3 = 5.10^{-3} \frac{1}{\circ C}$.
 - а' линейная погрешность;
 - б' суммарная погрешность.

-0,3% на 10° изменения температуры), а также для исследования новых схем цепи температурной компенсации.

Поскольку метод Закса учитывает также нелинейную погрешность, его следует применять при более точных расчетах, а также при расчете в широком температурном интервале.

Автором данной работы применен метод Арутюнова для расчета новых схем цепи температурной компенсации. Дальше уточнены формулы Закса для расчета в широком температурном интервале введением температурной погрешности механизма и рассмотрением действительной кривой погрешности (вместо параболической) при определении ее максимального значения. По варианту с заданной точкой компенсации автором предложен еще случай расчета прибора с минимальной удельной погрешностью в'заданном температурном интервале.

В заключение автор выражает сердечную признательность профессору доктору технических наук В. О. Арутюнову, канд. техн. наук Х. Силламаа и М. М. Фетисову за ряд ценных указаний, принесших большую помощь в работе.

Über die Temperaturkompensation der Millivoltmeter höherer Genauigkeitsklassen.

Zur Kompensation des Temperaturfehlers von Drehspulmiflivoltmeter höherer Genauigkeit dient öfters eine Kunstschaltung nach Swinburne, seltener eine nach Campbell. Von vielen Veröffentlichungen über die Swinburne-Kompensationsschaltung sind die von L. Sachs (L. 17) und von V. Arutjunov (L. 18) zu erwähnen, in beiden die Kunstschaltung so dimensioniert wird, um möglichst den höchsten Wert des Keinath'schen Gütefaktors zu erhalten. Dabei geht V. Arutjunov aus linearer Kompensationsbedingungen aus, dawider berücksichtigt L. Sachs auch den nichtlinearen Restfehler.

Aus vorliegender Veröffentlichung ist sichtbar, dass die Dimensionierung der Kunstschaltung nach Arut unov nur für die Millivoltmeter der Klassen 0,1 und 0,2 in engen Temperaturbereichen zweckmässig ist, dagegen ist die Dimensionierung nach Sachs allgemeiner und auch in breiten Temperaturbereichen anwendbar. Ferner werden einige neue Mchrwicklung-Kompensationsschaltungen vorgeschlagen. Besonderheit dieser Kunstschaltung ist, dass einige oder sämtliche Widerstände der Kunstschaltung als Wicklungen auf den Rahmen der Drehspule gewickelt sind. So gelingt es den Gütefaktor ein wenig zu erhöhen. Die Analyse und die Dimensionierung dieser Kunstschaltungen ist nach der Methode von Arutjunov durchgeführt.

Die Rechnungsformeln von L. Sachs für die Dimensionierung der Swinburne-Schaltung werden in breiten Temperaturbereichen durch die Einführung des Remanenz-Elastizitätsfehlers ergänzt.

.

ЛИТЕРАТУРА

- 1. J. Swinburne, The Electrician, September, 16, 1887, p. 405-406.
- 2. A. Campbell, Journal of the Institution of Electrical Engineers, vol. 35, 1904-1905, p. 197-206.
- Heinrich und Bercowitz, Heinkes Handbuch der 3. Elektrotechnik, (1907) Bd, 2, Abt. 5, S. 34. J, Kollert, ETZ, Heft 48, Dezember 1910, S. 1219-1220,
- 4.
- 5. D. Bercowitz, ETZ Heft 12, März 1911, S 299.
- 6. J. Kollert, ETZ Heft 12, März 1911, S. 299.
- 7. E. Behne, ETZ Heft 19, Mai 1911, S 482.
- 8. D. Bercowitz, ETZ Heft 19, Mai 1911, S. 482.
- 9. O. Schöne, ETZ Heft 8, Januar 1912, S. 299.
- 10. E. Behne, ETZ Heft 8, Januar 1912, S. 300.
- 11. F. T. Chapman, A. T. Morris, The Electrician Review, vol. 87, Nr. 2, 232, September 3, 1920, p. 313-315.
- 12. H. B. Brooks, Journal of Research of the National Bureau of Standards, vol. 17, October 1936, p. 497-555.
- H. Reher. Archiv für Technisches Messen Nr. 94, S. 49-51 13. Nr. 95, S. 61-63, 1939.
- Я. С. Авербух, Известия электропромышленности слабого то-14. ка, № 4, 1939, стр. 39—46.
- 15. Я. С. Авербух, Диссертация. ЛПИ, 1940.
- 16. Р. Р. Харченко, Измерительная техника, № 1, 1941, стр. 46-49.
- Л. М. Закс, Электричество, № 2, 1953, стр. 62-68. 17.
- В. О. Арутюнов, Расчет и конструирование электроизмери-18. тельных приборов, ГЭИ, 1956.
- 19. В. О. Арутюнов, М. М. Фетисов, Электротехника, Труды ЛПИ № 184, ГЭИ, 1956, стр. 196—208.
- 20. В. О. Арутюнов, Электричество, № 8, 1949, стр. 54-58.
- 21. К. М. Поливанов, Электричество, № 2, 1946, стр. 60-62.
- 22. К. М. Поливанов, Электричество, № 7, 1947, стр. 41-46.
- 23. М. И. Левин, Электричество, № 2, 1946, стр. 63-65.
- 24. М. И. Левин, Электричество, № 7, 1947, стр. 32-40.
- 25. Н. А. Бразма, Доклады АН СССР, том 105, № 2, 1955, стр. 271 - 274.
- Б. С. Сотсков, Автоматика и телемеханика, № 1, 1948, стр. 29. 39-48.
- 30. Г. К. Нечаев, Электричество, № 10, 1951, стр. 55—58.
- 31. Л. М. Закс, Автореферат диссертации, Москва, 1954.
- 32. И. Т. Шефтель, Автоматика и телемеханика, № 2, 1953, стр. 215-230.
- 34. К. Б. Карандеев, Ф. Клисторин, Доклады Львовского политехнического института, том 1, выпуск 2, 1955, стр. 136-141.
- 35. Н. Г. Максимович, Электричество, № 8, 1956, стр. 58-60.
- 36. Г. К. Нечаев, Автоматика и телемеханика, том. XVIII, № 8, 1957, стр. 740-748.

СОДЕРЖАНИЕ

Стр

		The.
1.	Введение	3
2.	Температурная погрешность магнитоэлектрического милли-	2
	вольтметра	J.
3.	Уменьшение температурной погрешности	5.
4.	Добавочные условия для расчета цепей температурной компенсации	6
5.	Варианты условия температирной компенсации	7
6.	Расчет цепей температурной компенсации по удельной тем-	
	пературной погрешности	9
7.	Расчет температурной погрешности цепи	11
8.	Расчет цепи температурной компенсации с полупроводни-	
	ковыми сопротивлениями	17
9.	Расчет многообмоточных цепей температурной компенсации	20
10.	Расчет температурной компенсации по минимальной погреш-	
	ности в заданном температурном интервале	23
11.	Сравнение разных цепей температурной компенсации и ме-	
	тодов их расчета	36
	Литература	45
	Содержание	47

У. И. Рандмер

ВОПРОСЫ РАСЧЕТА ЦЕПЕЙ ТЕМПЕРАТУР-НОЙ КОМПЕНСАЦИИ МАГНИТОЭЛЕКТРИЧЕ-СКИХ МИЛЛИВОЛЬТМЕТРОВ ВЫСОКОГО КЛАССА ТОЧНОСТИ

Таллинский Политехнический Институт

Редактор Х. Силламаа Технический редактор А. Тамм Корректор Н. Шервинская

Сдано в набор 8. VIII 1958. Подписано к печати 9. IX 1958. Бумага 54×84 ¹/₁₆. Печатных листов 3,0. По формату 60×92 печатных листов 2,46. Учетно-издательских листов 2,02. Тираж 800. MB-06853. Заказ № 5830.

Типография «Коммунист», Таллин, ул. Пикк 2.

Цена 1 руб. 45 коп.

Цена 1 руб. 45 коп.