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Abstract
In this thesis we introduce and investigate the theory of regular and context-free
languages of string diagrams, considered as morphisms in monoidal categories. The
former class includes regular languages of words, trees, and Mazurkiewicz traces.
We introduce a pumping lemma and investigate deterministic recognizability. The
example of trace languages leads to a refinement of string diagrams for effectful
categories, and a construction of their commuting tensor product. Context-free
languages of string diagrams include classical context-free languages of words, trees
and hypergraphs, when established over appropriate monoidal categories. We prove
a representation theorem that links the two classes of languages, inspired by the
Chomsky-Schützenberger representation theorem.

Kokkuvõte
Käesolevas doktoritöös toome sisse nöördiagrammide regulaarsete ja kontekstivabade
keelte teooria. Taolisi keeli käsitleme morfismidena monoidilistes kategooriates.
Regulaarsete nöördiagrammide keelte klassi kuuluvad regulaarsed sõnade, puude
ja Mazurkiewiczi jälgede keeled. Me tõestame pumpamislemma ja uurime deter-
ministlikku keeldekuuluvuse tuvastatavust. Jälgede keelte näide viib peenema
variandini nöördiagrammidest efektidega kategooriate jaoks. Kontekstivabade nöör-
diagrammide keelte klassis sisalduvad klassikalised sõnade, puude ja hüpergraafide
kontekstivabad keeled konstrueerituna sobivates monoidilistes kategooriates. Me
tõestame esitatavusteoreemi, mis seostab need kaks keelteklassi, ja on inspireeritud
Chomsky ja Schützenberger’ esitatavusteoreemist.
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Chapter 1
Introduction

What might a formal language theory of string diagrams look like, and what can it
do for us? This thesis finds its origins in these simple questions.

Formal language theory is a classical part of computer science that deals with
syntax ; typically the syntax of programming languages, but also of formal languages
more generally, such as they appear in mathematics and logic. It provides the tools
that enable us to specify formal languages, according to notions of grammar, and
to mechanically recognize given syntactic objects as well-formed or ill-formed, by
various notions of automata.

Words, i.e. finite sequences of symbols, are the classical unit of syntax in formal
language theory. In mathematical terms, words are fruitfully seen as elements of the
free monoid over an alphabet, and so monoids are the central algebraic structure
of the classical theory. With this step of algebraic abstraction taken, the methods
of language theory have spread over wider notions of syntax: infinite words [73],
rational sequences [6], trees [9, 38], graphs of bounded tree width [22], and traces
[26], to name a few, each corresponding to different algebraic structures.

Several works have endeavoured to take a further step of abstraction, unifying the
language theory of these various structures. Starting in the 1960s, the methods of
universal algebra were mobilized towards this end, such as in the work of Eilenberg
and Wright [33], and Thatcher and Wright [85]. More recently, a focus on monads
has taken this earlier work further [7, 10, 86]. For example, Bojańczyk, Klin
and Salamanca [10] have given sufficient conditions on Set-based monads for the
correspondence between regularity and definability in monadic second-order logic
to extend to languages over their algebras.

In this thesis, we strike out in another direction, continuing the exploration of
language theory in the context of more exotic syntactic objects than words, but
objects that do not fall under the umbrella of the aforementioned unifying methods.
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Chapter 1. Introduction

Instead of monoids, our focus is on languages living in 2-dimensional monoids,
better known as strict monoidal categories. Monoids can be seen as categories with
one object, in which morphisms are the elements of the monoid. Strict monoidal
categories can seen as 2-categories with one object: “higher” monoids in which there
are transformations between the elements.

The natural syntax of monoidal categories is 2-dimensional: these are the string
diagrams of our title. Accordingly, we call languages in monoidal categories languages
of string diagrams or monoidal languages. A monoidal language in this sense is
simply a subset of morphisms in a strict monoidal category, just as a classical formal
language is a subset of a monoid.

String diagrams resemble graphical languages commonly found in engineering and
science, and indeed, they allow us to reason about Markov kernels [36], linear algebra
[12], or quantum processes [1]. In computer science, they provide foundations for
visual programming [46, 51]. The use of string diagrams as a syntax in these various
domains is one source of inspiration for investigating string diagrams as a formal
language.

We start by introducing grammars and automata for languages of string diagrams,
defining the class of regular monoidal languages. We show how these include classical
and tree automata, but also open up a wilder world of string diagram languages. A
key example of such languages is given by languages of Mazurkiewicz traces, which
we show to have a natural string diagrammatic presentation. This leads us towards
the idea of seeing morphisms in premonoidal categories as a generalization of traces.
Finally, we introduce context-free grammars of string diagrams, which subsume
notions such as context-free hypergraph grammars, and prove a representation
theorem linking them to the regular monoidal languages.

1.1 Contributions
We summarize our main contributions.

• Definition 3.3.1 introduces regular monoidal grammars, which define the
regular languages of string diagrams.

• Theorem 3.4.1 proves a “pumping lemma” for regular languages of string
diagrams, giving a necessary condition for regularity.

• Definition 3.5.10 introduces monoidal automata, which are seen to include
classical notions of regular, tree and asynchronous automata as special cases.

• Definition 3.7.11 introduces the syntactic monoidal category of a language,
and Theorem 3.7.15 gives a necessary condition for regularity based on it.

• Theorem 3.8.11 provides a necessary condition for regular languages of string
diagrams to be deterministically recognizable.

12



1.2. Related work

• Theorem 3.9.9 shows that the subclass of convex monoidal automata is deter-
minizable by a powerset construction.

• Theorem 3.10.17 characterizes the recognizable trace languages amongst the
symmetric regular monoidal languages.

• Definition 4.2.9 defines a notion of presentation for effectful categories. Theo-
rem 4.6.5 uses this notion of presentation to present the commuting tensor
product of effectful categories.

• Definition 5.4.1 introduces context-free monoidal grammars, which define the
context-free languages of string diagrams.

• Theorem 5.5.6 establishes an adjunction between our notions of raw optics
and optical contours.

• Theorem 5.6.13 uses this adjunction to prove that every context-free language
of string diagrams is the image under a monoidal functor of a regular language
of string diagrams.

1.2 Related work

Regular languages of string diagrams

Bossut [13] studied rational languages of planar acyclic graphs and proved a Kleene
theorem for a class of such languages, which applies to connected languages. We
make explicit the fact the languages of graphs investigated by Bossut have an
underlying algebra, that of monoidal categories. We are then able to leverage this
algebra in our proofs and definitions. This leads us in quite different directions of
investigation from Bossut, mostly towards questions of deterministic recognizability.
The main difference between our languages of string diagrams and those of Bossut,
is that we do not allow the “boundaries” of our graphs to vary, that is, our languages
live in a particular hom-set of a (monoidal) category. One reason for this restriction
is that we do not have examples that compel us to investigate the broader class of
Bossut.

In the preprint [43], Heindel recasts Bossut’s approach using monoidal categories,
and this serves as a starting inspiration for ours, although our definitions and
direction of development differ. Unfortunately the purported Myhill-Nerode result
was incorrect, due to a flawed definition of syntactic congruence. We rectify this
definition in Definition 3.7.11, and prove one direction of the result, conjecturing
that the converse does not hold.

Winfree et al. [81] used DNA self-assembly to simulate cellular automata and
Wang tile models of computation. The kinds of two-dimensional languages obtained

13



Chapter 1. Introduction

in this way can be seen quite naturally as regular monoidal languages, as illustrated
in Example 3.3.8.

Walters’ note [88] on regular and context-free grammars served as a starting
point for our definition of regular monoidal grammar. Rosenthal [80], developing
some of the ideas of Walters, defined automata as relational presheaves, which
is similar in spirit to our functorial definition of monoidal automata. Functorial
treatments of (tree) automata go back at least to the work of Eilenberg and Wright
in the 1960s [33], inspired by Lawvere’s thesis. More recently, Colcombet and
Petrişan [21] have also considered automata as functors, using this perspective to
prove correctness of known minimization algorithms. However, all of these works
are directed towards questions involving classical word or tree languages, rather
than languages of diagrams. Bruggink and König’s investigation of recognizable
languages of arrows in a category [15] defines a notion of automaton functor, which
is a functor C → Rel equipped with the data of initial and final states. This is
similar to our notion of monoidal automaton, which is a strict monoidal functor into
a certain strict version of Rel. Our line of development is quite different however, as
we not concerned with the questions of monadic-second order logic and recognizable
graph languages investigated by Bruggink and König [15], but more with questions
of determinization, which is not always possible in our case.

In the introduction to Joyal & Street’s foundational work on string diagrams for
monoidal categories [49], it is suggested that string diagrams have a connection to
the heaps of Viennot [87]. Heaps are known to be equivalent to Mazurkiewicz trace
monoids (also known as partially commutative monoids) [50], but a precise formula-
tion of the suggested relation with string diagrams, as formulated in Section 3.10,
has not appeared in the literature previously.

The notion of dependence graph [45] has also been used to give a topological
presentation of Mazurkiewicz traces. Our use of the algebra of monoidal categories,
rather than graphs, has various advantages. For example, we can apply our language
theory for monoidal categories to traces, and we see notions such as asynchronous
automata arise naturally from this. It also suggests generalizations of trace languages,
in particular going beyond the case of atomic actions, an idea which we explore in
Chapter 4. Finally, it brings our work into proximity with the semantics of Petri
nets and other formalisms for concurrency based on monoidal categories [2, 67].

From atomic traces to resourceful traces

String diagrams for premonoidal categories were introduced by Jeffrey [47, 46],
with the theory later refined by Román [77, 78]. The extension of these diagrams
to include multiple distinguished strings was suggested by the author, motivated
by regular languages of Mazurkiewicz traces. These ideas were first elaborated in
the extended abstract joint with Nester and Román [28]. The commuting tensor

14



1.3. Synopsis

product of effectful categories was defined via universal property by Garner and
López Franco – here we use our string diagrams to give a simple presentation using
string diagrams. Similar string diagrams have recently appeared in the work of
Barrett, Heijltjes, and McCusker [4, 3], in the context of the functional machine
calculus, an effectful λ-calculus. We hope to elaborate the connection between these
ideas in future work.

Context-free languages of string diagrams
The representation of context-free grammars as certain morphisms of multigraphs
was introduced by Walters in a short paper [88]. A similar type-theoretical version
of this idea has been studied by De Groote [41]. As discussed more extensively
above, this idea was taken up and substantially refined by Melliès and Zeilberger,
in a conference paper [62] and later in an extended version [63].

A different notion of context-free families of string diagrams has been introduced
by Zamdzhiev [92]. There, string diagrams are defined combinatorially as string
graphs, and context-free families are then generated by B-edNCE graph grammars
[83]. Though similar, the resulting notion is not directly comparable to ours. Here,
we use the native algebra of monoidal categories and their multicategories of contexts
to define and investigate languages.

Finally, Heindel’s abstract [44] claims a proof of a Chomsky-Schützenberger
theorem for morphisms in symmetric monoidal categories, but the work described
in this abstract was never published. Our development is quite different from that
outlined in Heindel’s abstract. We prove a stronger representation theorem that
does not require an intersection of languages; we work without the assumption of
symmetry; and we generalize the categorical machinery of Melliès and Zeilberger.

1.3 Synopsis
Chapter 2 provides a reference on background material, assuming some familiarity
with basic notions of category theory. In particular, we define the notions of
monoidal category, multicategory and effectful category that shall be our central
algebraic ingredients. The main part of the thesis, comprising our original research,
is contained in Chapters 3 to 5, and each chapter is prefaced by a short summary
of its contents.

Chapter 3 introduces languages of string diagrams and in particular the regular
languages of string diagrams which are defined by a notion of regular monoidal
grammar and monoidal automaton. The main theoretical focus of this chapter is
on deterministic recognizability of languages. We provide a necessary condition
for deterministic recognizability, and identify a class of determinizable monoidal
automata. We also show in detail how asynchronous automata are an example of

15



Chapter 1. Introduction

monoidal automata, linking regular languages of string diagrams to languages of
Mazurkiewicz traces.

Chapter 4 takes a detour from language theory, elaborating the link between
trace languages, seen as languages of string diagrams, and the string diagrams for
effectful categories. Our string-diagrammatic view of trace languages suggests a
refinement of the latter, in which multiple distinguished strings (termed devices)
control the interchange of morphisms. As an application, we show how devices
facilitate a convenient presentation of the commuting tensor product of effectful
categories.

Chapter 5 introduces context-free languages of string diagrams via a notion of
grammar, formalizing the intuitive idea of rewrites of “holes” (contexts) into “string
diagrams with holes”. Examples include classical context-free languages, and context-
free languages of hypergraphs. We exhibit a splice-contour adjunction between
monoidal categories and multicategories, which is a variation of a similar adjunction
introduced by Melliès and Zeilberger. This allows us to prove a representation
theorem for context-free languages of string diagrams, which states that every such
language arises as the image under a monoidal functor of a regular language of
string diagrams.

Chapter 6 provides some concluding remarks and future directions.

16



Chapter 2
Background

In this chapter, we introduce the basic definitions and propositions concerning the
structures used in the following chapters. Specifically,

• Monoidal categories and string diagrams — Section 2.1

• Multicategories — Section 2.2

• Monoidal monads — Section 2.3

• Effectful categories and promonads — Section 2.4

2.1 Monoidal graphs and monoidal categories
In this thesis, we will largely be concerned with strict monoidal categories presented
by generators and equations, in fact in many cases with simply free monoidal
categories. The appropriate generating data for a monoidal category is a monoidal
graph: a graph whose edges, which we shall depict as boxes, have multiple input and
output strings. Monoidal graphs are also known as tensor schemes [49], monoidal
signatures [24], polygraphs [8] and pre-nets [2].

Definition 2.1.1. A monoidal graph G is given by a set SG of sorts, a set BG of
generators and functions s, t : BG ⇒ S∗

G assigning source and target (or input and
output) words of sorts to each generator. We denote the set of generators with a
given source and target by the notation

G(X1, ..., Xn;Y1, ..., Ym).

We depict a monoidal graph as a string diagram (Figure 2.1): the generators
are drawn as boxes, and their input and output sorts are drawn as labelled strings,
with inputs on the left and outputs on the right.

17



Background

α
B1

Bm

……

A1

An
β

D1

Dk

……

C1

Cj

Figure 2.1: A monoidal graph with two generators.

Definition 2.1.2. A morphism of monoidal graphs φ : G→ G′ is given by a function
φS : SG → SG′ on sorts and a function φG : BG → BG′ on generators, such that
φG # s′ = s # φ∗S and φG # t′ = t # φ∗S , or equivalently by a function φ : SG → SG′

on sorts and functions

G(A1, ..., An;B1, ..., Bm)→ G′(φ(A1), ..., φ(An);φ(B1), ..., φ(Bm))

between sets of generators.

The action of a morphism of monoidal graphs is depicted in Figure 2.2. Monoidal
graphs and their morphisms form a category MonGraph.

α
B1

Bm

……

A1

An
↦ φα

φB1

φBm

……

φA1

φAn

Figure 2.2: The action of a morphism of monoidal graphs.

Monoidal categories provide an algebra in which we can interpret certain diagrams
built from monoidal graphs. They are categories equipped with the structure of a
(coherently) associative and unital parallel composition, which abstracts classical
notions such as the cartesian product of sets, or the tensor product of vector
spaces. The composition structure of the underlying category gives us a recipe for
interpreting diagrams in which all the outputs of a diagram are connected to all
the inputs of another. The parallel composition gives us a recipe for interpreting
diagrams built from juxtaposition of diagrams. In this thesis, we shall largely be
concerned with strict monoidal categories: those for which the tensor product is
unital and associative on the nose.

Definition 2.1.3. A strict monoidal category C consists of a monoid of objects,
(Cobj ,⊗, I), and a collection of morphisms C(X;Y ), for every pair of objects
X,Y ∈ Cobj. A strict monoidal category is endowed with (families of) operations
for the sequential and parallel composition of morphisms, respectively

(#) : C(X;Y )× C(Y ;Z)→ C(X;Z), and
(⊗) : C(X;Y )× C(X ′;Y ′)→ C(X ⊗X ′;Y ⊗ Y ′),

18



2.1. Monoidal graphs and monoidal categories

and a family of identity morphisms, idX ∈ C(X;X). Strict monoidal categories
must satisfy the following axioms;

• sequential composition is unital, f # idY = f and idX # f = f ,

• sequential composition is associative, f # (g # h) = (f # g) # h,
• parallel composition is unital, f ⊗ idI = f and idI ⊗ f = f ,

• parallel composition is associative, f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h,

• parallel composition and identities interchange, idA ⊗ idB = idA⊗B , and

• parallel composition and sequential composition interchange,
(f # g)⊗ (f ′ # g′) = (f ⊗ f ′) # (g ⊗ g′).

Parallel composition is also called the tensor product or monoidal product.

In a general (non-strict) monoidal category, objects no longer form a monoid,
but only a pseudomonoid; that is, there are natural families of isomorphisms
(A⊗B)⊗ C ∼= A⊗ (B ⊗ C), I ∼= A⊗ I called associators and unitors respectively,
satisfying coherence conditions [59, Chapter VII].

Definition 2.1.4. A symmetric strict monoidal category is a strict monoidal category
equipped with a natural family of isomorphisms called symmetries

σX,Y : X ⊗ Y → Y ⊗X,

such that

• σX,Y # σY,X = idX⊗Y , and

• (σX,Y ⊗ idZ) # (idY ⊗ σX,Z = σX,Y⊗Z).

These equations have a natural string diagrammatic interpretation: they allow
us to cross strings without tangling them. We introduce this in the next section
(Figure 2.4).

Definition 2.1.5. A strict monoidal functor F : (C,⊗C, IC)→ (D,⊗D, ID) between
strict monoidal categories is a functor F : C→ D between the underlying categories,
such that F (X ⊗C Y ) = F (X) ⊗D F (Y ) for all pairs of objects X,Y ∈ Cobj, and
F (IC) = ID. A symmetric strict monoidal functor between symmetric monoidal
categories is a strict monoidal functor additionally preserving the symmetry maps,
F (σX⊗Y ) = σF (X)⊗F (Y ).

Strict monoidal categories with strict monoidal functors form a category MonCat.
In this thesis, we will mostly be concerned with those strict monoidal categories
having the property that their monoid of objects is a free monoid: such monoidal
categories are known as pros and props.
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Definition 2.1.6. A pro is a strict monoidal category whose monoid of objects is
the free monoid on a set (its set of sorts). A prop is a symmetric strict monoidal
category with this property. Denote by S(C) the set of sorts of a pro(p).

Definition 2.1.7. A morphism of pro(p)s F : (C,⊗C, IC)→ (D,⊗D, ID) is a function
f : S(C)→ S(D) between the underlying sorts, and a strict (symmetric) monoidal
functor whose action on objects is given by the monoid homomorphism freely
induced by the function f .

2.1.1 String diagrams and free monoidal categories
The free strict monoidal category over a monoidal graph can be conveniently
presented using string diagrams; the morphisms of a free monoidal category are
certain string diagrams built from the monoidal graph. String diagrams are often
more natural and convenient to work with than the term syntax of the previous
section, since axioms such as associativity of composition hold automatically.

Definition 2.1.8. The free strict monoidal category on a monoidal graph G, denoted
F⊗G, has objects given by lists of sorts over SG and morphisms given by string
diagrams built from the generators of G, as in Figure 2.3. A string diagram is an
equivalence class of the diagrams generated by Figure 2.3, up to planar isotopy,
keeping the left and right boundaries fixed.

∈ SG∈ SG

...... α

...... d1
... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2

...

α ∈ G(    )... ...;

Figure 2.3: The free strict monoidal category over a monoidal graph has morphisms
given by equivalence classes (up to planar isotopy) of diagrams inductively generated
as above. The leftmost rule denotes the empty diagram, the identity on the monoidal
unit I. We use colours here to indicate sorts.

=
=

f

f

g

g

( , ) ∈ SG

Figure 2.4: The free symmetric strict monoidal category has, as morphisms, string
diagrams in which strings may cross without tangling.
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2.2. Multigraphs and multicategories

Definition 2.1.9. The free symmetric strict monoidal category on a monoidal graph
G, denoted FχG, has objects given by lists of sorts over SG and morphisms given by
string diagrams built from the generators of G, as in Figure 2.3 with the addition
of the generators and equations of Figure 2.4.

Proposition 2.1.10. Every (strict) monoidal category has an underlying monoidal
graph, and this extends to a functor U : MonCat→ MonGraph.

Proof. We indicate the action on objects. The underlying monoidal graph U C has
the same objects as C and generators

U C(A1, ..., An;B1, ..., Bm) := C(A1 ⊗ ...⊗An;B1 ⊗ ...⊗Bm).

Proposition 2.1.11 (Joyal and Street [49]). F⊗ : MonGraph → MonCat is left
adjoint to the forgetful functor U : MonCat → MonGraph, and similarly for Fχ :
SymMonCat→ MonGraph.

2.2 Multigraphs and multicategories
Multicategories, and in particular multicategories freely generated by multigraphs,
will provide us with the appropriate algebra to introduce a suitably abstract
definition of context-free language of string diagrams. We recall the definitions
of multicategory, morphism of multicategories, symmetric multicategory and free
multicategory on a multigraph. For a more extensive reference, see for example
Leinster [54].

Definition 2.2.1. A multigraph M is given by a set SM of objects, and sets
M(X1, ..., Xn;Y ) of operations for every list of objects X1, ..., Xn ∈ SM and object
Y . A multigraph is finite just when all of its data are finite sets.

Multicategories formalize the idea of category-like gadgets in which morphisms
have lists of objects as their domains.

Definition 2.2.2. A morphism of multigraphs F : M → N is given by a function
F : SM → SN and functions

M(X1, ..., Xn;Y )→ N(FX1, ..., FXn;FY ).

Multigraphs and their morphisms form a category MultiGraph.

Definition 2.2.3. A multicategory M consists of

• A collection Mobj of objects,
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• collections of multimorphismM(X1, ..., Xn;Y ) for every list of objectsX1, ..., Xn

and object Y ,

• for each object X, an identity morphism idX ∈M(X;X),

• for each list of objects Γ,Γ1,Γ2 and objects X,Y , a composition function
#Y : M(Γ;Y )×M(Γ1, Y,Γ2;X)→M(Γ1,Γ,Γ2;X), such that

• composition is associative, f #X (g #Y h) = (f #X g) #Y h,

• and unital f #Y idY = f , idX #X f = f (whenever these equations are
well-typed).

Definition 2.2.4. A morphism of multicategories or multifunctor F : M→ N between
multicategories M,N is an assignment F : Mobj → Nobj on objects and assignments
M(X1, ..., Xn;Y )→ N(FX1, ..., FXn;FY ) preserving identities and composition.

Definition 2.2.5. The free multicategory on a multigraph G, denoted F▽G has
morphisms inductively generated by

X ∈ Gobj

idX ∈ F▽G(X,X)

f ∈ G(X1, ..., Xn;Y )

f ∈ F▽G(X1, ..., Xn;Y )

g ∈ F▽G(Y1, ..., Ym;Z) {fi ∈ F▽G(Xi1, ..., Xiki ;Yi)}mi=1

(f1, ..., fm) # g ∈ F▽G(X11, ..., X1k1 , ..., Xm1, ..., Xmkm ;Z),

quotiented by the least congruence identifying morphisms up to unitality and
associativity.

���
X1 X2 Xn

Y

���
FX1 FX2 FXn

FY

Fpp
↦

���

g

��� ���
f1 fn

Figure 2.5: Operations of a multigraph/multimorphisms in a multicategory may
be depicted as corollas. (Left) The action of a morphism of multigraphs F on an
operation p. (Right) Composition of multimorphisms, denoted (f1, ..., fn) # g.

Multicategories and multifunctors form a category MultiCat.

2.2.1 Symmetric multicategories
Many naturally occurring multicategories have the extra structure of symmetry,
which captures the possibility of coherently permuting the inputs to multimorphisms.
For example, in the multicategory M underlying a symmetric monoidal category,
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2.3. Some monoidal monads

the symmetry map σA,B : A ⊗ B → B ⊗ A induces a bijection M(A,B;C) ∼=
M(B,A;C), and more generally bijections between any two hom-sets whose inputs
are permutations of one another.

In Section 5.3, we shall introduce a symmetric multicategory of “string diagrams
with holes” or diagram contexts. The arities of the multimorphisms will list the
types of holes appearing in a string diagram. Just because there is no canonical
ordering on the holes in a diagram, this multicategory will be symmetric.

Definition 2.2.6. A symmetric multigraph is a multigraph G equipped with bijections

σ∗ : G(X1, ..., Xn;Y ) ∼= G(Xσ(1), ..., Xσ(n);Y )

for every list X1, ..., Xn of sorts and every permutation σ, satisfying (σ ·τ)∗ = σ∗ # τ∗
and id∗ = id. A morphism of symmetric multigraphs is a morphism of multigraphs
which commutes with the bijections.

Definition 2.2.7 (Leinster [54]). A symmetric multicategory is a multicategory
equipped with functions, − · σ : M(X1, ..., Xn;Y )→M(Xσ(1), ..., Xσ(n);Y ), where
σ ∈ Sn, satisfying (f · σ) · σ′ = f · (σσ′) and f = f · id, which implies that the
functions −·σ are bijections. These functions must be compatible with composition
in the expected way.

Remark 2.2.8. Every symmetric multicategory has an underlying symmetric multi-
graph, given by forgetting composition and identities.

Lemma 2.2.9. The inclusion of symmetric multigraphs into multigraphs has a left
adjoint, clique : MultiGraph→ SymMultiGraph. The symmetric multigraph clique(M)
has the same objects as M , and for each f ∈ M(X1, ..., Xn;Y ), one freely adds
elements

fσ ∈ clique(M)(Xσ(1), ..., Xσ(n);Y ),

for every σ ∈ Sn, and supplies the bijections σ∗ : fτ 7→ fσ·τ , identifying f with fid .

Proof. A morphism φ : clique(M) → N of symmetric multigraphs is completely
determined by its values on the elements of M , since φ must commute with the
symmetries, and vice-versa.

Proposition 2.2.10. A symmetric multigraph freely generates a symmetric multicat-
egory, as in Definition 2.2.5.

2.3 Some monoidal monads
Although we shall not work at the level of generality of arbitrary monads, we shall
find it beneficial to structure our definition of monoidal automata in terms of the
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powerset, non-empty powerset, and maybe monads, and the expression of the former
in terms of a distributive law between the latter two.

Not only will this make some proofs more straightforward, but it makes the
relevant conceptual structures explicit, and so the definitions more useful and
reusable. For example, while we only investigate deterministic and non-deterministic
monoidal automata, use of a probability monad would allow for the definition of
stochastic monoidal automata, following Burroni [16].

Definition 2.3.1. The maybe monad (−+⊥ : Set→ Set, µ : (−+⊥)2 → (−+⊥), η :
1→ (−+⊥)) has underlying functor X 7→ X +⊥, where ⊥ is a singleton set (with
element also denoted ⊥), multiplication µX = [id, inr] : (X +⊥) +⊥ → X +⊥, and
unit ηX = inl : X → X +⊥.

Definition 2.3.2. The powerset monad (P : Set → Set, µ : P2 → P, η : 1 → P)
has underlying functor X 7→ P(X), multiplication µX =

⋃
: P2(X) → P(X),

and unit ηX : X →P(X) : x 7→ {x}.
The non-empty powerset monad P+ is defined similarly, but with underlying

functor taking only the non-empty subsets.

Recall that for monads T and S on the same category, the composite of the
underlying endofunctors S ◦ T only has monad structure if we additionally have the
structure of a distributive law λ : T ◦ S → S ◦ T .

Definition 2.3.3. A distributive law from a monad (T, µT , ηT ) to a monad (S, µS , ηS)
is a natural transformation λ : T ◦ S → S ◦ T satisfying the equations (TηS) # λ =
ηST , (ηTS) # λ = SηT , (λS)#(Sλ)#(µST ) = (TµS)#λ, (Tλ)#(λT )#(SµT ) = (µTS)#λ.
These equations can be rendered as intuitive equations of string diagrams, as in
Goy [40].

Definition 2.3.4. A monoidal monad is a monad (T, η, µ) on a monoidal category
(C,⊗, I) such that T : C→ C has a lax monoidal structure and η, µ are monoidal
natural transformations with respect to it. Explicitly, we ask for morphisms

ϵ : I → TI

∇C,C : TC ⊗ TC ′ → T (C ⊗ C ′)

such that
ϵ = ηI

(ηC ⊗ ηC′)#∇C,C′ = ηC⊗C′ , and
(µC ⊗ µC′)#∇C,C′ = ∇TC,TC′ #T (∇C,C′)#µC⊗C′ .

Proposition 2.3.5. The powerset, non-empty powerset and maybe monads are mo-
noidal monads, considering Set with its cartesian monoidal structure.
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2.3. Some monoidal monads

Proof. We describe the structure maps: verification that they satisfy the equations
of Definition 2.3.4 is straightforward. For the powerset and non-empty powerset
monads, ϵ : 1→P(+)(1) picks out the set {•}, and ∇ is the cartesian product of
sets. For the maybe monad, ϵ : 1 → 1 + ⊥ is the left injection, and ∇ maps the
pair x, y to (x, y) only when both x ̸= ⊥ and y ̸= ⊥, and to ⊥ otherwise.

The monoidal structure of a monoidal monad lifts to its Kleisli category, which
is where the computations of our automata will run, in Section 3.5.

Proposition 2.3.6 (Day, §4 [23], Power and Robinson, Corollary 4.3 [74]). Let T be
a monoidal monad on a symmetric monoidal category C . Then the Kleisli category
kl(T ) has a symmetric monoidal structure.

Proof. Define the monoidal product on objects by that in C , and on morphisms
f : X → TA and g : Y → TB by X ⊗ Y f⊗g−−−→ TA⊗TB ∇−→ T (A⊗B). Symmetries
are given by the morphisms the σX,Y # ηY⊗X in C . In particular, when C is
symmetric strict monoidal, one easily checks that this data satisfies the axioms of
symmetric strict monoidal categories.

Definition 2.3.7 (cf. Wolff, Definition 2.1 [91]). A commutative distributive law
between monoidal monads is a distributive law λ : T ◦ S → S ◦ T such that the
following family of diagrams commutes

TA⊗ TSB T (A⊗ SB) T (SA⊗ SB) TS(A⊗B)

TA⊗ SB

STA⊗ SB S(TA⊗B) S(TA⊗ TB) ST (A⊗B)

∇T T (ηT⊗1) T (∇S)

λ

1⊗ηT

ηS⊗1

∇S S(1⊗ηB) S(∇T )

Remark 2.3.8. This definition is equivalent to the one given by Wolff [91, Definition
2.1], but expressed in terms of monoidal, rather than the equivalent commutative
structure.

Theorem 2.3.9 (Wolff, Theorem 2.6 [91]). If S and T are monoidal monads, and
λ : T ◦ S → S ◦ T is a distributive law then the composite monad S ◦ T is monoidal
if and only if λ is a commutative distributive law.

Proposition 2.3.10. The powerset monad may be decomposed as a distributive law
of the non-empty powerset monad over the maybe monad. The component functions
λX : (P+ ◦ ⊥)X → (⊥ ◦P+)X map all subsets containing only ⊥ to ⊥. This
distributive law is moreover a commutative distributive law.
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2.4 Effectful categories and strong promonads

In Chapter 4, we shall introduce a refinement of the known string diagrams for
effectful categories, introduced by Jeffrey [47, 46] and more recently taken up by
Román [77].

Effectful categories, also known as generalized Freyd categories [56, 37], refine
monoidal categories in two ways. Firstly, the interchange axiom is no longer required,
and secondly they are equipped with a specified subcategory of central morphisms.

That interchange no longer holds globally in an effectful category means that the
string diagrams of Figure 2.6 no longer have a univocal interpretation in a effectful
category.

print print“hello” “hello”

“world”“world” print print

Figure 2.6: These string diagrams are no longer equal in an effectful category. This
makes effectful categories suitable for the semantics of programming languages,
where the order of effectful processes (such as printing) matters.

We recall the definitions of (symmetric) strict premonoidal categories and their
functors. For more details, see Power and Robinson, or Román [74, 77].

Definition 2.4.1. A strict premonoidal category is a category C equipped with:

• for each pair of objects A,B ∈ C an object A⊗B,

• for each object A ∈ C a functor A◁− (“left-whiskering with A”) whose action
on objects sends B to A⊗B,

• for each object A ∈ C a functor − ▷ A (“right-whiskering with A”) whose
action on objects sends B to B ⊗A, and

• a unit object I,

such that, for all morphisms f and objects A,B,C the following equations hold:

• (A ◁ f) ▷ B = A ◁ (f ▷ B),

• (A⊗B) ◁ f = A ◁ (B ◁ f),

• f ▷ (A⊗B) = (f ▷ A) ▷ B,

• (I ◁ f) = f = (f ▷ I),

• I ⊗A = A = A⊗ I, and

• A⊗ (B ⊗ C) = (A⊗B)⊗ C.
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Definition 2.4.2. A morphism f : A → B in a premonoidal category is central if
and only if for every morphism g : C → D,

(A ◁ g)#(f ▷ D) = (f ▷ C)#(B ◁ g), and
(g ▷ A)#(D ◁ f) = (C ◁ f)#(g ▷ B).

Definition 2.4.3. The center of a premonoidal category is the wide subcategory of
central morphisms.

Definition 2.4.4. A symmetric strict premonoidal category is a strict premonoidal
category additionally equipped with a symmetry in the sense of Definition 2.1.4,
such that all the components σA,B are central.

Definition 2.4.5. A strict premonoidal functor F : X → Y between (strict) pre-
monoidal categories is a functor that is a monoid homomorphism on objects,
i.e. F (A ⊗ B) = F (A) ⊗ F (B) and F (I) = I, and preserves whiskerings, i.e.
F (A ◁ f) = F (A) ◁ F (f) and F (f ▷ A) = F (f) ▷ F (A).

Definition 2.4.6. A strict effectful category (over a strict monoidal category V)
is given by a strict premonoidal category C and an identity on objects, strict
premonoidal functor η : V→ C.

Note that the image of such a functor necessarily lies in the center of C. We think
of the category V as a subcategory of the center of C, and indeed every premonoidal
category is always an effectful category over its center.

The free (symmetric) premonoidal category on a monoidal graph was described
using string diagrams by Román [77]. The idea is simple: the string diagrams are
the same as for props, but an extra string (a “runtime” or “global effect”) threads
through each morphism of C, preventing interchange, as in Figure 2.7.

print print“hello” “hello”

“world”“world” print print

Figure 2.7: In an effectful category, morphisms of C are augmented by a string on
a new object (dashed red). This prevents interchange (cf. Figure 2.6).

In particular, the runtime string appears only once in each vertical slice through
the string diagram, reflecting the fact that premonoidal categories do not have a
tensor product on morphisms.

Definition 2.4.7. A strict effectful functor F : E → E′ between effectful categories
E : V → C and E′ : V → C′ over V is a functor F : C → C′ strictly preserving
premonoidal structure and satisfying E # F = E′.

27



Background

Effectful categories are equivalent to strong promonads. We shall find it helpful
to be able to switch between these two points of view in Chapter 4.

Definition 2.4.8. A profunctor P : C −7−→ D is a functor P : Dop × C→ Set.

Definition 2.4.9. A promonad (P, η, µ) on a category C is a profunctor P : C −7−→ C,
equipped with natural transformations η : HomC → P and µ : P ◦P → P satisfying
associativity and unit laws analogous to those in a monad.

Definition 2.4.10. A promonad morphism α : (P : C −7−→ C, ηP , µP ) → (Q : C −7−→
C, ηQ, µQ) between promonads over C is given by a natural transformation α : P →
Q such that the following diagrams, making α a monoid homomorphism, commute

HomC P P ◦ P Q ◦Q

Q P Q

ηP

ηQ
α

α⋆α

µP
µQ

α

(2.1)

Definition 2.4.11. The Kleisli category kl(P ) of a promonad (P : C −7−→ C, η, µ) has

• objects, those of C,

• morphisms, kl(P )(A;B) := P (A;B),

• identities given by ηA,A(idA),

• composition given by µA,C :
∫ B∈C

P (A;B)× P (B;C)→ P (A;C).

Definition 2.4.12. An identity-on-objects functor is a family of functions Fx,y

between categories C and D having the same family of objects,

Fx,y : C(x, y)→ D(x, y),

preserving identities and composition.

Remark 2.4.13. Note that an identity-on-objects functor is not a functor with a
special property since in general we do not have the requisite notion of object
equality. Rather, it is a collection of data that induces a functor.

It is folklore that promonads correspond to the same data as identity-on-objects
functors into the carrier (cf. Román [77, Theorem 3.9]). More than this, we have
an isomorphism of categories, as follows.

Proposition 2.4.14. The category of promonads on a category V and promonad
morphisms is isomorphic to the category of identity-on-objects functors out of V
and commuting triangles.
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2.4. Effectful categories and strong promonads

Proof. We first establish a bijection on objects. Let (P, η, µ) be a promonad on a
category V, then there is an identity-on-objects functor V → kl(T ) whose action
on hom-sets is given by the components ηA,B : V(A;B) → kl(T )(A;B). This is
functorial by the definition of kl(T ) (Definition 2.4.11).

Conversely, let F : V → C be an identity-on-objects functor. Then F ∗ #
F∗ : V → V is a profunctor, where F∗(c; d) := D(d;Fc) and F ∗(d; c) := D(Fc; d)
are the (co)representable profunctors determined by F , giving F ∗ # F∗(c; c′) =
C(Fc;Fc′). The components of the unit are given by the action of F on hom-sets,
and multiplication is given by composition in C.

Let α : (P, ηP , µP )→ (Q, ηQ, µQ) be a promonad morphism. Define the assign-
ment a : kl(P )→ kl(Q) to be identity on objects and act as the components of α
on hom-sets – functoriality of this assignment follows from the equations making α
a promonad morphism.

Conversely, let
V D

E

F

G
A

be a commutative triangle of identity-on-objects functors. F and G define two
promonads on V as above. Then the action of A on hom-sets defines the components
of a natural transformation α : F ∗ # F∗ → G∗ # G∗, which is moreover a morphism
of promonads. It is clear that these processes define bijections on objects and
morphisms and hence an isomorphism of categories.

Definition 2.4.15. A promonad (P : C → C, η, µ) on a monoidal category C is
left-strong if the profunctor P is equipped with a family of functions

ℓu,c,d : P (c; d)→ P (u⊗ c;u⊗ d)

natural in c and d and dinatural in u, and such that the strengths for u = I and
u = a⊗ b are coherent with the unitors and associators of C.

Similarly, a right-strong promonad is equipped with a family of functions

ru,c,d : P (c; d)→ P (c⊗ u; d⊗ u)

satisfying the analogous conditions.

Definition 2.4.16. A strong promonad (also known as bistrong promonad) is a
compatibly left- and right-strong promonad in the sense that the following family of
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diagrams commutes, where a is the associator of the underlying monoidal category.

P (u⊗ c;u⊗ d) P ((u⊗ c)⊗ v; (u⊗ d)⊗ v)

P (c; d)

P (c⊗ v; d⊗ v) P (u⊗ (c⊗ v);u⊗ (d⊗ v))

rv

P (a−1,a)

ℓu

rv

ℓu

Definition 2.4.17. A morphism of strong promonads is a morphism of promonads
α : (P : C→ C, ηP , µP )→ (Q : C→ C, ηQ, µQ) which is moreover compatible with
the strengths in the sense that the following family of diagrams commutes

P (c; d) P (u⊗ c;u⊗ d) P (c; d) P (c⊗ u; d⊗ u)

Q(c; d) Q(u⊗ c;u⊗ d) Q(c; d) Q(c⊗ u; d⊗ u)

ℓPu

αc,d αu⊗c,u⊗d

rPu

αc,d αc⊗u,d⊗u

ℓQu rQu

Compatible left- and right-strengths provide exactly the data needed to define
promonoidal whiskerings on the Kleisli category of a promonad. Conversely, promo-
noidal structure on the codomain of an identity-on-objects functor provides exactly
the data required to equip the induced promonad with compatible left- and right-
strengths.

Proposition 2.4.18. The category of strong promonads on a strict monoidal category
V and morphisms of strong promonads is isomorphic to the category of strict effectful
categories over V and strict effectful functors.

Proof. Following Proposition 2.4.14, it suffices to show that strength for a promonad
exactly determines a premonoidal structure on the Kleisli category, that compat-
ibility of morphisms of promonads with strengths corresponds to preservation of
premonoidal structure, and vice-versa. Let kl(T ) be the Kleisli category of a strong
promonad T : V −7−→ V. We have a strictly associative and unital tensor product
of objects given by that in V. Define the left whiskering by the left strength
u ◁ (f : c→ d) := ℓu,c,d(f), and similarly by the right strength for the right whisker-
ing. Functoriality is guaranteed by the naturality of strengths, and similarly for the
converse. Let α : T → T ′ be a morphism of strong promonads over V. Then the
naturality squares of Definition 2.4.17 correspond exactly to the condition that the
induced functor between Kleisli categories strictly preserves premonoidal structure,
and similarly for the converse.
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Chapter 3
Regular Languages of String
Diagrams

In this chapter, we introduce languages of string diagrams, and in particular the
regular class of these languages. In more detail,

• We recall the categorical formulation of regular languages. — Section 3.1

• We introduce languages of string diagrams. — Section 3.2

• We define regular languages of string diagrams via a notion of grammar. —
Section 3.3

• We prove a pumping lemma for regular languages of string diagrams. —
Section 3.4

• We introduce automata for regular languages of string diagrams. — Section 3.5

• We prove some closure properties of regular languages of string diagrams. —
Section 3.6

• We introduce the syntactic monoidal category of a language. — Section 3.7

• We investigate when languages are deterministically recognizable. — Sec-
tion 3.8

• We define a determinizable class of monoidal automata. — Section 3.9

• We show how Mazurkiewicz traces and asynchronous automata can be treated
as monoidal languages and monoidal automata. — Section 3.10

The results of this chapter have been published in the papers [30, 31, 32].
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3.1 Grammars as morphisms
Finite-state automata are often represented as finite directed graphs, whose vertices
are states and edges transitions, with the edges being labelled by an alphabet.

Definition 3.1.1. A directed graph is given by a set E of edges, V of vertices, and
two functions s, t : E ⇒ V giving the source and target of each edge. A graph is
finite just when E and V are finite sets.

It is convenient to view a labelled graph not as a graph with extra structure, but
rather as a particular morphism of graphs.

Definition 3.1.2. A morphism of (directed) graphs φ : (E, V, s, t) → (E′, V ′, s′, t′)
is given by functions φe : E → E′, φv : V → V ′ such that φe # s′ = s # φv and
φe # t′ = t # φv.

Definition 3.1.3. A Σ-labelled graph is a morphism of graphs φ : G→ Σ where Σ is
a graph with one vertex.

The idea is that such a morphism is trivial on vertices, and on edges assigns
labels, namely, the edges of Σ. Walters [88, 89], following ideas of Lawvere [52],
demonstrated that this idea elegantly captures classical notions of regular and
context-free grammar – we return to the latter in Chapter 5.

Definition 3.1.4 (Walters [88, 89]). A regular grammar (Σ, φ, i, f) over an alphabet Σ
is a Σ-labelled graph φ : G→ Σ, where G and Σ are finite, along with distinguished
vertices i, f of G.

To allow the possibility of labellings by the empty word ε, one can instead consider
morphisms of reflexive graphs – we return to this in Section 3.3.1. Following Walters,
we call such a morphism a grammar rather than an automaton, because Σ appears
in the codomain: when we consider Σ as a set of inputs for an automaton, it will
appear in the domain of a morphism. In other words, a grammar is fibered over the
alphabet, whereas in an automaton the alphabet indexes transitions.

There are various advantages to this reframing of grammars as morphisms of
graphs when it comes to language theory. Firstly, we can define the language of a
grammar in terms of the associated functor between free categories. The idea is
that a derivation in a regular grammar G→ Σ corresponds to a path in G, and the
accepted word is given by the labelling of the path. Paths in a directed graph are
precisely xfthe morphisms of the free category over that graph. In particular, the
free category on a single vertex graph Σ is the free monoid over the set of edges.
Furthermore, any morphism of graphs φ : G→ Σ gives rise to a functor between
the associated free categories. Given two chosen vertices i, f in G, the language of
the grammar is simply the image of the set of morphisms from i to f in FG under
the associated functor Fφ.
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3.1. Grammars as morphisms

We can also use this representation of grammars to neatly describe operations on
them, and so easily prove closure properties. For example, closure under morphisms
of alphabets Σ→ Σ′ is witnessed immediately by post-composition. Certain “dual”
closure properties are more easily addressed from the dual point of view of automata,
which we introduce in Section 3.5.

It also suggests various generalizations of regular languages, by replacing graphs
with other kinds of structure. Walters does this with multi-input, single-output
graphs, obtaining context-free languages using a similar construction, to which we
return in Chapter 5. In this chapter, starting in Section 3.3, we shall consider the
case of multi-input, multi-output graphs, which shall lead us to regular languages
of string diagrams.

We might also consider replacing Σ by a more general graph, such as the graph
underlying an arbitrary category. This has been explored in recent work by Melliès
and Zeilberger [62, 63], giving rise to regular languages over arbitrary categories.
We start by recalling some notions from this work, as they will be useful in our
later discussions.

3.1.1 Regular grammars over arbitrary categories

Melliès and Zeilberger [63] introduce various refinements of Walters’ ideas, including
extending Definition 3.1.4 to a notion of regular grammar of morphisms in an
arbitrary category. Naively, we might expect this to take the form of a morphism
of graphs Q → |C|, giving rise to a functor FQ → C into the underlying graph
of a category C. However, this is too general: we should also require that every
production sequence (or run of an automaton), i.e. arrow in FQ, whose labelling
factors as sequence of morphisms in C, itself factors uniquely as a sequence of
productions labelled by the factors. This property is axiomatized by functors having
the unique lifting of factorizations (ULF) property:

Definition 3.1.5 (Lawvere [53]). A functor p : D → C has the unique lifting of
factorizations (ULF) property if for every morphism f in D and factorization
p(f) = u # v, there exists a unique pair of morphisms g, h in D such that f = g # h,
p(g) = u and p(h) = v.

Moreover, we should ask for finitary functors, in the sense that the fibre over
every object and every morphism is finite, generalizing the condition that Q is finite
in the case of the one-object categories of the previous section.

Definition 3.1.6 (Melliès and Zeilberger [63]). A non-deterministic finite state
automaton (C,Q, p, i, f) over a category C is a finitary, ULF functor p : Q → C
and objects i, f of C. The regular language of arrows of a grammar is the image of
the hom-set of runs Q(i, f) under p.
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Regular Languages of String Diagrams

Note that we would rather call this a regular grammar over C, in line with the
terminology introduced in the previous section. Finitary ULF functors over free
categories are precisely those arising from morphisms of finite graphs.

Proposition 3.1.7 (Melliès and Zeilberger [63]). A functor φ : Q → FΣ is a
ULF functor if and only if Q = FG and φ = Fh for some morphism of graphs
h : G→ Σ.

Proof. The if direction follows by structural induction on the morphisms ofQ = FG.
For the only if direction, we construct the graph G by taking the morphisms q of
Q such that φ(q) = σ for some σ ∈ Σ and easily verify the ULF property.

3.2 Languages of string diagrams
Just as a classical word language is a subset of a (finitely generated, free) monoid,
a language of string diagrams or monoidal language is a subset of morphisms in a
strict monoidal category, which will be a finitely generated free monoidal category
in most of our examples. We shall investigate both planar and symmetric languages
of string diagrams, corresponding to whether or not we consider our monoidal
category to have symmetries: that is, whether or not we permit strings to cross.
In Chapter 5, we consider languages in further “doctrines” of monoidal categories,
such as cartesian and hypergraph monoidal categories.

Definition 3.2.1. A monoidal language or language of string diagrams is a subset L
of some hom-set C(X;Y ) in a strict monoidal category (C,⊗, I).

In this chapter, we will exclusively be concerned with the case that C is a
finitely generated, free monoidal category – we have not yet found it necessary to
investigate the more general notions in detail. However, we indicate in Appendix A
how the definitions of Section 3.1.1 generalize to the setting of arbitrary (strict)
monoidal categories. Let us introduce some terminology for the case of free monoidal
categories.

Definition 3.2.2. A monoidal alphabet is a finite monoidal graph, considered as the
alphabet for a monoidal language, and usually denoted by Γ.

In most of our examples, our monoidal alphabets will be single-sorted monoi-
dal graphs, with the important exception of Mazurkiewicz traces as treated in
Section 3.10.

Definition 3.2.3. A planar monoidal language L over a monoidal alphabet Γ is a
subset L of some hom-set F⊗Γ(X;Y ) in the free strict monoidal category generated
by Γ.
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3.3. Regular monoidal grammars

Definition 3.2.4. A symmetric monoidal language L over a monoidal alphabet Γ
is a subset L of some hom-set FχΓ(X;Y ) in the free symmetric strict monoidal
category generated by Γ.

We shall speak simply of monoidal languages over Γ to refer to both the planar
and symmetric cases, writing FΓ to indicate either the planar or symmetric case.
In the following sections, we will see many examples, in particular examples of
monoidal languages which we call regular (this chapter) and context-free (Chapter 5).
Let us introduce some terminology to refer to languages that live in particular
hom-sets.

Definition 3.2.5. A monoidal language is rooted if it is a subset of a hom-set from
the monoidal unit, L ⊆ C(I;X), co-rooted if it is a subset of a hom-set into the
monoidal unit, L ⊆ C(X; I), and scalar if it is a subset of the hom-set from the
monoidal unit to itself, L ⊆ C(I; I).

3.3 Regular monoidal grammars
Regular monoidal grammars specify a class of monoidal languages analogous to
regular languages. The idea is simple: a regular monoidal grammar is just like a
regular grammar in the sense of Definition 3.1.4, except we replace graphs with
monoidal graphs.

Definition 3.3.1. A regular monoidal grammar (M,Γ,Ψ, i, f) over a monoidal al-
phabet Γ is a morphism of monoidal graphs Ψ :M → Γ where M and Γ are finite
monoidal graphs, and i, f are objects of M . We write i ⊏ a to mean Ψ(i) = a.

A regular monoidal grammar is a labelling of the generators of a finite monoidal
graph M by the generators of Γ. We can represent regular monoidal grammars
diagrammatically by drawing the monoidal graph M as above, but labelling each
box b with Ψ(b). The resulting diagram is not in general a monoidal graph, since
it may contain boxes with the same label but different domain or codomain sorts.
When Γ has many sorts, we will use colours to indicate them, and colour the states
inM by their image under Ψ, as in Example 3.3.10. Consider the following monoidal
alphabet (Figure 3.1) comprising four generators: white and gray boxes, along with
start and end markers.

Figure 3.1: A monoidal alphabet Γ containing four generators.

A possible regular monoidal grammar over this alphabet is given in Figure 3.2,
with initial and final objects given by ε. The monoidal graph M for this grammar
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Regular Languages of String Diagrams

contains eight generators, of types ε → H1; ε → V1; H1, V1 → V0, H0; H0, V0 →
V0, H0; H0, V1 → V1, H1; H1, V0 → V1, H1; H1 → ε; V1 → ε. Their images under
the morphism Ψ are as suggested in Figure 3.2.

H1

H1
V1

V0
H0

H0
V0

V0
H0

H0
V1

V1
H1

H1
V0

V1
H1

V1

H1

V1

Figure 3.2: A regular monoidal grammar over the alphabet Γ of Figure 3.1, with
initial and final objects ε.

Informally, the language defined by a regular monoidal grammar is the set of all
string diagrams from the initial to the final object that can be built from the typed
generators of the grammar. Every grammar determines both a symmetric and a
planar monoidal language, depending on whether we allow our the strings in our
diagrams to cross or not. For example, Figure 3.3 shows an element of the language
determined by the grammar of Figure 3.2: this language contains the Sierpiński
triangles of arbitrary iteration depth.

Figure 3.3: An element of the planar regular monoidal language determined by the
grammar of Figure 3.2.

Formally, a regular monoidal grammar determines planar and symmetric monoi-
dal languages as follows:

Definition 3.3.2. The planar monoidal language L of a regular monoidal grammar
(Ψ : M → Γ,Γ, i, f) is the image under F⊗Ψ of the hom-set F⊗M(i, f), that is,
L := F⊗Ψ[F⊗M(i, f)] ⊆ F⊗Γ(Ψ(i),Ψ(f)). Similarly, by taking the free symmetric
monoidal functor FχΨ, we obtain the symmetric monoidal language of a grammar.
We call the class of languages determined by regular monoidal grammars the (planar
or symmetric) regular monoidal languages.

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of
string diagrams FΨ−1(s) as a set of possible “parsings” of that diagram. From
another perspective, we can think of a string diagram s ∈ FM as representing a
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3.3. Regular monoidal grammars

specification for the construction of the string diagram FΨ(s) ∈ FΓ to which the
grammar maps it: the specification is a decomposition of the desired diagram into
generators with typed boundaries that specify how they should be composed. Let
us see some more examples.

Example 3.3.3 (Regular languages of words). Let Γ be a monoidal alphabet contain-
ing only generators of type 1→ 1. Then regular monoidal languages L ⊆ F⊗Γ(1, 1)
over such an alphabet are exactly regular languages of words over the generators
1→ 1, and every regular language arises from a regular monoidal grammar of this
form.

Example 3.3.4 (Regular languages of trees). Let Γ be a monoidal alphabet containing
only generators of type 1 → n, for n ⩾ 0. Then (co-rooted) regular monoidal
languages L ⊆ F⊗Γ(1, 0) over such an alphabet are exactly regular languages
of trees. We investigate this and the previous example in more detail from the
perspective of automata in Examples 3.5.4 and 3.5.5.

Example 3.3.5 (Balanced parentheses). Recall that the Dyck language, the language
of balanced parentheses, is a paradigmatic example of a non-regular word language.
We can simulate recognition of the Dyck language using a regular monoidal grammar
over the following monoidal alphabet. Note that we do not obtain exactly the
classical Dyck language of words, since our “brackets” have arities 1→ 2 and 2→ 1:

( (

Figure 3.4: A monoidal alphabet of parentheses.

The regular monoidal grammar for balanced parentheses over this alphabet is
given in Figure 3.5, where i = f = A. An example of a morphism in the planar
language defined by this grammar is shown on the right in Figure 3.5.

( (A
B

A
B

A A ( ( ( (

Figure 3.5: A regular monoidal grammar for balanced parentheses (left), and a
morphism in the language (right).

This example illustrates how regular monoidal grammars permit unbounded
concurrency. As one scans from left to right, the (unbounded) size of the internal
boundary of the string diagram keeps track of the number of open left parentheses.

The following two examples (Examples 3.3.6 and 3.3.7) are introduced in order
to set up Example 3.3.8.
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Regular Languages of String Diagrams

Example 3.3.6 (Brick walls). We can define a two-colour variant of the “brick
wall” language introduced by Bossut [13] over the “brick” alphabet introduced
in Figure 3.1, as in Figure 3.6. An example of a morphism in the regular planar
monoidal language defined by this grammar is shown in Figure 3.7.

H H
V

V
H

H
V

V
H V

H
V

Figure 3.6: The grammar for two-coloured brick walls with i = f = ε.

Figure 3.7: An element of the language determined by Figure 3.6.

Example 3.3.7 (XOR). The following grammar over the two colour brick alphabet
is determined by computation of the XOR gate, based on the cellular automaton
appearing in the work of Rothemund, Papadakis, and Winfree [81] in the context of
self-assembly of DNA tiles. The output of each tile is the duplication of the XOR
of the inputs.

1
0
0

0
0

0
1

1
1

1
1
1

0
0

1
0

1
1

Figure 3.8: The XOR language grammar.

Example 3.3.8 (Sierpiński triangles). We already saw the grammar for Sierpiński
triangles above. This example is inspired by the cellular automaton introduced
by Rothemund, Papadakis, and Winfree [81], and arises as the intersection of
the languages generated by the grammars of Examples 3.3.6 and 3.3.7. The
corresponding monoidal grammar is given in Figure 3.2.

Example 3.3.9 (An inherently non-deterministic language). Consider the following
monoidal alphabet:

γ δ
β
α

38



3.3. Regular monoidal grammars

The grammar over this alphabet in Figure 3.9 has a language whose elements
with one connected component are exactly two (Figure 3.10). This grammar will
serve as a running counterexample in Sections 3.8 and 3.9, as it defines a language
that cannot be deterministically recognized (Figure 3.9). In particular it does not
satisfy the property of partial view closure, a necessary condition for deterministic
recognizability which we introduce in Section 3.8.

γ
A
B

A
C

γ
A
C

A
B δ

A

A

α

β

B

C

Figure 3.9: This grammar (with i = f = ε) is “non-deterministic”: there are two
possible transitions from the empty word when encountering γ.

γ α
β

γ
α
β

δ δ

Figure 3.10: The connected string diagrams in the language of Figure 3.9.

Example 3.3.10 (Mazurkiewicz traces). In the above examples, we are interested in
the planar languages of the grammars, and moreover all of the monoidal alphabets
are single-sorted. An important example of grammars over multi-sorted alphabets
and their symmetric languages is given by Mazurkiewicz traces [61]. We treat
this example in detail in Section 3.10, but introduce it briefly now. The sorts
are locations, and generators of the alphabet are atomic actions whose arities and
coarities are equal to the set of locations at which the action acts. Regular monoidal
grammars over alphabets of this form are regular languages of Mazurkiewicz traces.
Figures 3.11 and 3.12 show a small example.

γ

β

αA B B A

B AA B

Figure 3.11: Grammar for a language of Mazurkiewicz traces.

Remark 3.3.11. The proper two dimensional generalization of regular grammars
considered as graphs over single-vertex graphs (Definition 3.1.4) would appear at
first to be 2-graphs over single-region 2-graphs, where a 2-graph comprises a set of
regions, a set of arrows between any two regions, and a set of 2-arrows between any
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γ
β

α

Figure 3.12: Elements of the symmetric monoidal language defined by Figure 3.11
are Mazurkiewicz traces. Here, α and β are independent actions, and so can
commute, but both depend on γ.

two paths of arrows. Diagrammatically, a 2-graph is a monoidal graph in which
the blank regions may be coloured, and monoidal graphs coincide with 2-graphs
with a single colour of region, hence a 2-graph over a “one-colour” 2-graph defines
a monoidal language. However, this does not provide any extra generality over
monoidal graphs, since the types of the strings determine the types of the regions.

3.3.1 ε-productions

For classical regular grammars, we obtain virtually the same class of languages
whether we allow productions of the form A→ wB for w ∈ Σ∗, or only of the form
A→ aB for a ∈ Σ, the only difference being the possibility of languages containing
ε in the former case. In other words, whether we label the graph of a grammar
by words over the alphabet (including the empty word, giving rise to silent or
ε-productions), or by letters over the alphabet, we still obtain the same class of
languages, modulo the empty word ε. The proof idea is straightforward: any word-
labelling may be factored into a sequence of letter-labellings by the introduction of
new, intermediate states. Similarly, ε-labellings may be eliminated by the addition
of appropriate letter-labelled transitions.

Allowing ε-productions is particularly useful in language theory – for example, for
proving closure properties of languages. As such, we would like to consider regular
monoidal grammars with ε-productions, but here we must be more careful. In order
to add ε-productions, it might be tempting to consider morphisms of monoidal
graphs of the form M → |FΓ|, and thus the possibility of labelling transitions by
string diagrams over Γ. However, the languages obtained in this way, corresponding
to arbitrary monoidal functors FM → FΓ, are strictly more expressive. Let us call
a grammar of the form (φ :M → |FΓ|, i, f) quasiregular.

Proposition 3.3.12. Quasiregular monoidal grammars are strictly more expressive
than regular monoidal grammars.

Proof. Any regular monoidal grammar induces a quasiregular monoidal grammar
via the inclusion Γ ↪→ |FΓ|. For the converse, we give an explicit counterexample.
Consider the alphabet Γ = {a : ε→ ε, b : ε→ ε}, monoidal graph M = {t : ε→ ε}
and quasiregular grammar (φ :M → |FΓ|, ε, ε) with φ : t 7→ a⊗ b. It is clear that
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3.3. Regular monoidal grammars

the language obtained is {(a ⊗ b)n | n ⩾ 0}. However, it is also clear that any
regular monoidal grammar whose language contains this one, must also contain a
and b.

There are good reasons not to take quasiregular grammars as defining our class of
regular monoidal languages. We shall see later (Proposition 5.6.10) that quasiregular
monoidal grammars are at least as expressive as context-free monoidal grammars.
More fundamentally, just as regular grammars over free categories in the sense
of Melliès and Zeilberger are exactly the grammars coming from morphisms of
graphs (Proposition 3.1.7), and not arbitrary functors FG→ FΣ, arbitrary strict
monoidal functors FM → FΓ need not satisfy the generalized unique lifting of
factorizations property introduced in Appendix A. As witnessed by Lemma A.0.4,
it is precisely those that come from morphisms of monoidal graphs that do.

Instead then, we shall incorporate ε-productions by upgrading monoidal graphs
to certain reflexive monoidal graphs.

Definition 3.3.13. A reflexive monoidal graph is a monoidal graph s, t : E ⇒ V ∗

equipped with a function ε : V ∗ → E, satisfying ε # s = ε # t = 1V ∗ .

Definition 3.3.14. A morphism of reflexive monoidal graphs q : M → M ′ is a
morphism of the underlying monoidal graphs additionally satisfying εM # qE = q∗V #
εM ′ . Reflexive monoidal graphs and their morphisms form a category RMonGraph.

The function ε : V ∗ → E specifies an edge at each word which will act as an
ε-production. A reflexive monoidal graph cannot be a finite monoidal graph, since it
follows from the definition that E must be infinite. However, we can freely complete
any monoidal graph to a reflexive one, and such completions of finite monoidal
graphs will provide a suitable notion.

Proposition 3.3.15. The forgetful functor U : RMonGraph → MonGraph has a left
adjoint F : MonGraph→ RMonGraph.

Proof. For a monoidal graph G = (E, V, s, t), define

F (G) = (E + V ∗, V, [s, id], [t, id], ε = inr).

For a morphism of monoidal graphs, define F (φ) to have component functions
F (φ)E := φE + φ∗V and F (φ)V := φV , which is easily verified to be a morphism of
reflexive monoidal graphs. We need to show that morphisms of reflexive monoidal
graphs φ : F (G) → G′ are in natural bijection with morphisms of monoidal
graphs φ̂ : G → U(G′). The former comprises functions φE : E + V ∗ → E′ and
φV : V → V ′ satisfying the equations (ε = inr) # φE = φ∗V # ε′, φE # s′ = [s, id] # φ∗V ,
and φE # t′ = [t, id] # φ∗V while the latter comprises functions φ̂E : E → E′ and
φ̂V : V → V ′ satisfying equations s # φ̂∗V = φ̂E # s′ and t # φ̂∗V = φ̂E # t′. By the
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universal property of coproducts, φE is equivalently two functions p : E → E′ and
q : V ∗ → E′ satisfying inr # φE = q and inl # φE = p. We have that p satisfies the
equations for φ̂E , since p # s′ = inl # φE # s′ = inl # [s, id] # φ∗V = s # φ∗V and similarly
for the other equation. The converse reasoning is analogous.

Now instead of morphisms of finite monoidal graphs, we can ask for those
morphisms of reflexive monoidal graphs which arise from this process of free reflexive
completion.

Definition 3.3.16. A regular monoidal grammar with ε-productions is a morphism of
reflexive monoidal graphs φ :M → Γ, in the image of the functor FinMonGraph i

↪−→
MonGraph F−→ RMonGraph, along with two objects i, f of M .

Note that when i = f in a regular monoidal grammar φ, then the language of the
grammar contains the identity morphism idφ(i), and when i ̸= f but φ(i) = φ(f),
then the language cannot contain the identity. The only expressive difference of
regular monoidal grammars with ε-productions is that in the latter case, their
languages may indeed contain the identity.

Lemma 3.3.17. Let (φ : M → Γ, a, a) be a regular monoidal grammar with ε-
productions. Then there exists a regular monoidal grammar without ε-productions
having the same language.

Proof. This is essentially the usual ε-elimination procedure. For an ε-production
p

ε−→ q, and rules a t−→ p, we take a rule a t−→ q, etc. Note also that, by functoriality,
the language of any regular monoidal grammar with i = f = a contains idφ(a).

Lemma 3.3.18. Let (φ : M → Γ, i, f) be a regular monoidal grammar with ε-
productions, where i ̸= f . Then there exists a regular monoidal grammar (without
ε-productions) either with the same language, or differing only in that it does not
contain idφ(i).

Proof. In case the grammar φ does not actually make use of ε-productions, it is
clear that we can simply forget reflexiveness. Otherwise, we can apply the usual
strategy for ε-elimination, except for the case that we have t : i → f in M such
that φ(t) is some b→ b in the image of εΓ, i.e. a ε-production from i to f.

In the following, when speaking of regular monoidal grammars, we shall mean
regular monoidal grammars with ε-productions, unless indicated otherwise.

Note that for grammars over arbitrary categories as considered by Melliès and
Zeilberger (Section 3.1.1), accounting for ε-productions remains an open question,
since the ULF property implies that the only morphisms over identities are identities.
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3.4 Monoidal pumping lemma
The classical pumping lemmas for regular languages of words and trees are useful
for proving certain languages to be non-regular. For regular monoidal languages,
we can prove a pumping lemma which relies on an extra parameter related to the
width of factorizations of elements of the language. For this section, we consider
single-sorted monoidal alphabets, but the ideas could be adapted to arbitrary
monoidal alphabets.

Theorem 3.4.1 (Monoidal pumping lemma). Let L be a regular monoidal language.
Then ∀k ∈ N+,∃n > 0 such that for any ... γ ... ∈ L which may be factorized (as
follows) into m ⩾ n morphisms with boundaries (ki−1, ki) of width 1 ⩽ ki ⩽ k and
such that no ... γi ... is an identity morphism:

ki

... }...ki-1 } ...

...

km-1 }... ...γ0 ...

...
k1} ......... ...γi γm-1}k0 }km

there exists i < j such that ki = kj = ℓ and

ℓ

... }...ℓ }... ( ( ...

p

...... β δα ∈ L,∀p ⩾ 0

where (β)p in the diagram indicates sequential repetition of β, p times, and
α = γ0; ...; γi, β = γi+1; ...; γj, and δ = γj+1; ...; γm.

Proof. Let L be the language of the grammar ϕ :M → Γ. If L has a finite number of
connected elements, then for any k take n to be longer than the longest factorization
over all diagrams in L, then the lemma holds vacuously. Otherwise let k be given,
then take n =

∑k
i=0 |SM |i, where |SM | is the number of sorts in M . Let w ∈ L,

such that it has a factorization of the form above. The chosen n guarantees that
some vector of sorts (S1, ..., Ski) where Sl ∈ SM must be repeated when generating
w according to the grammar. That is, by the pigeonhole principle, we will have
i, j, ℓ as required in the lemma.

Corollary 3.4.2 (Contrapositive form). Let L be a monoidal language and suppose
that ∃k ∈ N+ such that ∀n > 0 there exists a morphism w ∈ L that factorizes as
above and for all i < j such that ki = kj = ℓ, there exists a p such that the pumped
morphism w′w′′pw′′′ /∈ L, then L is not regular monoidal.

Observation 3.4.3. This reduces to the usual pumping lemmas for words and trees [39,
Proposition 5.2], when ϕ is a regular word or regular tree grammar (Examples 3.3.3
and 3.3.4), taking k = 1.
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Let us use the monoidal pumping lemma to prove that languages of unbraids on
n strings, considered as planar monoidal languages, are not regular monoidal. The
“crossing” generators in the following are syntax for braidings: under- and over-
crossings of strings, allowing them to tangle.

Definition 3.4.4 (Unbraid languages). The language of unbraids on n ⩾ 2 strings is
a planar monoidal language Unbraidn ⊆ F⊗Γ(n;n) over the monoidal alphabet Γ
containing an under-braid and an over-braid generator (Figure 3.13). The elements

Figure 3.13: Monoidal alphabet for Unbraidn.

of Unbraidn are defined to be string diagrams n → n which could be unbraided
to give two parallel strings, by planar isotopy, while keeping the ends fixed. For
example, Figure 3.14 (left) is an element of Unbraid2 but Figure 3.14 (right) is not.

Figure 3.14: (Left) Example of an element in Unbraid2: it could be untangled by
planar deformations. (Right) An string diagram not in Unbraid2: we cannot uncross
the strings using only planar moves while keeping the ends fixed.

To prove that the languages Unbraidn are not regular monoidal, we will make
use of the following regular planar monoidal language:

Definition 3.4.5 (Over-under language). (O+U∗)n is the family of regular planar
monoidal languages (O+U∗)n ⊆ F⊗Γ(n;n) over the braid alphabet (Figure 3.13)
whose elements are one or more over-braidings of two strings followed by an arbitrary
number of under-braidings of two strings, in parallel with n−2 identities. A grammar
for this language is the following, with i = ABBn−2, f = CDBn−2,

A

B

A

B

A

B

C

D

C

D

C

D

Figure 3.15: A regular monoidal grammar for the monoidal languages (O+U∗)n.

Proposition 3.4.6. The languages Unbraidm (m ⩾ 2) are not regular monoidal.

Proof. Consider the intersection Unbraidm ∩ (O+U∗)m. An element of (O+U∗)m is
an unbraid just when it comprises p under-braidings followed by p over-braidings
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(in parallel with n−2 identities), and thus these are the elements of the intersection,
which we denote by (OpUp)m. Figure 3.15 witnesses the regularity of (O+U∗)m,
and the intersection of regular monoidal languages is regular (Lemma 3.6.2), thus it
will suffice to prove that (OpUp)m is not regular monoidal.

We use Corollary 3.4.2. Let k = m and n > 0 be given. Take p ⩾ n and let
γ ∈ (OpUp)m be the element having p over-braidings (O) followed by p under-
braidings (U), in parallel with m − 2 identities. Consider the decomposition
γ = (O ⊗ id)p # (U ⊗ id)p, which is of width m and sequential size

(2p+1
2
)
⩾ n.

We have the following cases for the sub-decompositions d : m → m: either it
consists of j − i Os, j − i Us, or some number of Os followed by some number of
Us. In the first two cases, pumping the section leads to a term with more Os than
Us or vice-versa, and in the last case it will no longer be that all Os come before
all Us.

In Chapter 5, we shall define the class of context-free monoidal languages, and
we shall see that unbraids fall into this class.

3.5 Monoidal automata

Monoidal automata give an alternative specification of the class of regular monoidal
languages: they are analogues of finite-state automata in which transitions now have
multiple inputs and multiple outputs. Instead of transition functions Q ∆a−−→P(Q),
we shall have transition functions Qn ∆γ−−→P(Qm), taking vectors of states to (sets
of) vectors of states.

In this section, we introduce monoidal automata over monoidal graphs and show
how these recognize monoidal languages. By specializing the shape of the monoidal
graph, we recover classical word and tree automata, as well as the asynchronous
automata of Zielonka [93] (Section 3.10).

Definition 3.5.1. A non-deterministic monoidal automaton comprises

• an input alphabet, given by a finite monoidal graph Γ,

• a family of finite sets Q := {Qc}c∈SΓ of states indexed by the sorts of Γ,

• for each generator γ : c1...cn → c′1...c
′
m in Γ, a transition function

∆γ :
n∏

i=0
Qci →P

(
m∏
j=0

Qc′
j

)

• initial and final words of states i, f in
(⋃

c∈SΓ
Qc

)∗
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Let us unpack this definition for the case in which Γ has a single sort, as it does
in many of our examples (with the notable exception of asynchronous automata). In
this case, in addition to the monoidal graph Γ, we have a finite set of states Q, and
for every generator γ : n → m we have a transition function ∆γ : Qn →P(Qm),
and initial and final words over Q∗. Note that in particular, the initial and final
words might be the empty word.

For classical NFAs, the assignment a ∈ Σ 7→ ∆a of letters to transition relations
extends uniquely to a functor Σ∗ → Rel, by the free-forgetful adjunction between
graphs and categories, giving the inductive extension of the transition structure
from letters to runs over words. Monoidal automata extend to string diagrams
in much the same way. Figure 3.16 provides some intuition for this, illustrating
an accepting run over a string diagram in the monoidal automaton corresponding
to the grammar of Example 3.3.5. The run starts with a word of states, whose
subwords are modified by transitions corresponding to generators. Identity strings
do not modify the states (in the absence of ε-transitions), and symmetries, if present,
permute adjacent states.

A
A
B

A
A

( A
A
B

( (
(

(
(( ( A

B

B

A
A

Figure 3.16: A run in the monoidal automaton for balanced parentheses.

A label next to a string indicates the state carried by that string. The accepted
term is what is left if we erase these labels. In this example, the state vector
undergoes the following transformations A→ (A,B)→ (A,B,B)→ (A,B)→ A.
First, we define the strict monoidal category RelQ that will serve as our codomain.

Definition 3.5.2. For a family of sets Q := {Qc}c∈SΓ indexed by the sorts of Γ then
RelQ is the pro with:

• set of objects S∗
Γ,

• morphisms c1...cn → c′1...c
′
m are functions

∏n
i=1Qci →P(

∏m
j=1Qcj ),

• composition is the Kleisli composition of relations, i.e. f ◦ g := µ ◦P(g) ◦ f ,

• ⊗ is given on objects by concatenation, and

• on morphisms f :
⊗

i ci →
⊗

j c
′
j and g :

⊗
k dk →

⊗
l d

′
l by f⊗g := ∇◦(f×g),

where ∇ is the cartesian product of sets.

Moreover, RelQ can be equipped with symmetries, making it a prop:

• symmetries σ : c1c2 → c2c1 are functions Qc1 × Qc2 → P(Qc2 × Qc1) :
(q, q′) 7→ {(q′, q)}.
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3.5. Monoidal automata

Note that a non-deterministic monoidal automaton amounts to a morphism of
monoidal graphs Γ → U (RelQ). In order to allow ε-transitions, we can just as
well consider a morphism of reflexive monoidal graphs. The adjunctions F ⊣ U

of Proposition 2.1.11 imply that this data extends uniquely to a strict monoidal
functor F⊗Γ→ RelQ and also to a symmetric strict monoidal functor FχΓ→ RelQ,
and indeed that such strict monoidal functors are in natural bijection with non-
deterministic monoidal automata. These functors map a string diagram (with or
without symmetries, respectively) to a relation. When this relation relates the
initial word to the final word, the string diagram is accepted:

Definition 3.5.3. Let ∆ : FΓ→ RelQ be a non-deterministic monoidal automaton
with initial and final states i, f ∈ (∪cQc)∗. Then the symmetric monoidal language
accepted by ∆ is the set of morphisms L(∆) := {α ∈ FΓ | f ∈ ∆(α)(i)}.

Classical non-deterministic finite-state automata and tree automata can be
seen as non-deterministic monoidal automata over alphabets of particular shapes
(Examples 3.5.4 and 3.5.5). This is also true of asynchronous automata, which we
treat in detail in Section 3.10.

Example 3.5.4. Non-deterministic monoidal automata over monoidal alphabets
having only generators of arity and coarity 1 (word monoidal alphabets) correspond
to classical non-deterministic finite state automata.

Let an NFA A = (Q,Σ,∆, i, F ) be given. We build a monoidal automaton as
follows. Form the monoidal alphabet Σ′ by taking generators σ for each σ ∈ Σ.
For each σ , take the transition function ∆σ := ∆(σ, –) : Q→P(Q). Finally,
we take ε-transitions from every f ∈ F to a fresh final state f ′ – the converse
construction is analogous.

There is another way to encode NFAs as monoidal automata that avoids the
use of ε-transitions. If, in addition to the generators σ , we take generators

and that mark the start and end of a word, then the corresponding relations
are exactly functions 1 → P(Q) picking a set of initial states, and Q → P(1)
defining a set of final states.

Example 3.5.5. Non-deterministic finite tree automata can be given either as bottom-
up or top-down recognizers, depending on whether they process a tree starting at
the leaves or at the root, respectively. A non-deterministic bottom-up finite tree
automaton is given by a finite set of states Q, a “ranked” alphabet (Σ, r : Σ→ N),
a set of final states F ⊆ Q, and for each σ ∈ Σ a transition function ∆σ : Qr(σ) →
P(Q). A non-deterministic top-down tree automaton, instead, has a set of initial
states I ⊆ Q and transition functions ∆σ : Q→P(Qr(σ)). We can recover these
as non-deterministic monoidal automata over tree monoidal alphabets:

Definition 3.5.6. A top-down tree monoidal alphabet is a monoidal alphabet having
only generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... . Analogously, a
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bottom-up tree monoidal alphabet is a monoidal alphabet having only generators
of coarity 1 (and arbitrary arities ⩾ 0).

As with the previous example, we have:

Observation 3.5.7. Bottom-up tree automata are exactly non-deterministic monoidal
automata over bottom-up tree monoidal alphabets, and likewise for top-down tree
automata.

There is an evident correspondence between non-deterministic monoidal automata
and regular monoidal grammars. The graphical representation of a grammar (such
as Figure 3.16) makes this most clear: it can also be thought of as the “transition
graph” of a non-deterministic monoidal automaton. More explicitly we have:

Proposition 3.5.8. Given a regular monoidal grammar (Ψ : M → Γ, i, f), define
a monoidal automaton with Q = SM , w(∆γ)w′ ⇔ ∃σ ∈ Ψ−1(γ) such that s(σ) =
w, t(σ) = w′ and initial and final states i, f . Conversely given a monoidal automaton
(Q,∆Γ), define a regular monoidal grammar with SM = Q and take an edge w → w′

over γ ⇔ w(∆γ)w′. This correspondence of grammars and automata preserves the
recognized language.

We can further abstract our definition of monoidal automaton by noting that
RelQ is exactly the endomorphism pro(p) for the family {Qc} in the Kleisli category
of the powerset monad.

Definition 3.5.9. Given a family {Qc}c∈X of objects in a monoidal category C
indexed by a set X, the endomorphism pro EndX(C) for this family has, as objects,
sequences of elements of X, and morphisms

EndX(C)(c1, ..., cn; d1, ..., dm) := C
(⊗

ci,
⊗

dj
)
.

If moreover C is a symmetric monoidal category, EndX(C) is a prop, with symmetries
corresponding to those of C.

Taking the endomorphism pro corresponding to the Kleisli category of any
monoidal monad and a family of objects in it, gives a suitable semantic universe for
interpreting computations of automata over string diagrams. For example, taking
the maybe monad instead of the powerset monad, we obtain deterministic monoidal
automata. Let us spell out the data of deterministic monoidal automata, and the
definition of the endomorphism pro of partial functions to which they extend.

Definition 3.5.10. A deterministic monoidal automaton comprises

• an input alphabet, given by a finite monoidal graph Γ,

• a family of finite sets Q := {Qc}c∈SΓ of states indexed by the sorts of Γ,
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3.6. Closure properties of regular monoidal languages

• for each generator γ : c1...cn → c′1...c
′
m in Γ, a transition function

∆γ :
n∏

i=0
Qci →

(
m∏
j=0

Qc′
j

)
+⊥

• initial and final words of states i, f in
(⋃

c∈SΓ
Qc

)∗
Deterministic monoidal automata amount to morphisms of monoidal graphs

Γ→ U (ParQ) where ParQ is defined as follows.

Definition 3.5.11. For a family of sets Q := {Qc}c∈SΓ indexed by the sorts of Γ
then ParQ is the pro with:

• set of objects S∗
Γ,

• morphisms c1...cn → c′1...c
′
m functions

∏n
i=1Qci → (

∏m
j=1Qcj ) +⊥,

• composition is the Kleisli composition of partial functions, i.e. f ◦ g :=
µ ◦ (g +⊥) ◦ f ,

• ⊗ is given on objects by concatenation,

• and on morphisms f :
⊗

i ci →
⊗

j c
′
j and g :

⊗
k dk →

⊗
l d

′
l by f ⊗ g :=

∇ ◦ (f × g), where ∇ is the monoidal multiplication of the maybe monad.

Moreover, ParQ can be equipped with symmetries, making it a prop:

• symmetries σ : c1c2 → c2c1 are functions Qc1 × Qc2 → (Qc2 × Qc1) + ⊥ :
(q, q′) 7→ (q′, q).

Once again, there is a natural bijection between deterministic monoidal automata
and strict monoidal functors F⊗Γ→ ParQ, and also symmetric strict monoidal func-
tors FχΓ→ ParQ, which determine the planar and symmetric monoidal languages
of an automaton:

Definition 3.5.12. Let ∆ : FΓ→ ParQ be a deterministic monoidal automaton with
initial and final states i, f ∈ (⊔cQc)∗. Then the (symmetric) monoidal language
accepted by ∆ is the set of morphisms L(∆) := {α ∈ FΓ | f ∈ ∆(α)(i)}.

3.6 Closure properties of regular monoidal languages
Regular languages are closed under operations such as union, concatenation and
Kleene star. Indeed, these closure properties can be used to characterize the class
of regular languages as such.

In this section, we record some closure properties of regular monoidal languages.
In some proofs the use of grammars is expedient, whereas in others the use of
automata is more natural. In this section, we work with single-sorted monoidal
alphabets, but the proof ideas hold more generally.
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Lemma 3.6.1 (Closure under union). Let L,L′ ⊆ FΓ(a, b) be regular monoidal
languages over Γ. Then L ∪ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be given by the regular monoidal grammars (Ψ : M →
Γ, i, f), (Ψ′ :M ′ → Γ, i′, f ′) respectively, where i, i′ ⊏ a,and f, f ′ ⊏ b. Let E be the
grammar over Γ with fresh sorts i′′ ⊏ a and f ′′ ⊏ b and four ε-labelled transitions
i′′ → i, i′′ → i′ and f → f ′′, f ′ → f ′′.

Define the grammar ([Ψ,Ψ′, E] :M +M ′ +E → Γ, i′′, f ′′), where the morphism
is the cotupling of Ψ and Ψ′ and E. Graphically, this is suspending the disjoint
union of two grammars between appropriate ε-productions unifying their initial
and final states, and it is clear that the language defined in this way is the union of
the languages defined by the two grammars.

Lemma 3.6.2 (Closure under intersection). Let L,L′ ⊆ FΓ(a, b) be regular monoidal
languages over Γ. Then L ∩ L′ is a regular monoidal language over Γ.

Proof. Let L,L′ ⊆ FΓ(a, b) be recognized by non-deterministic monoidal automata
(Q, {∆γ}γ∈Γ, i, f) and (Q′, {∆′

γ}γ∈Γ, i
′, f ′) respectively. Consider the product au-

tomaton (Q×Q′, {(∆×∆′)γ}γ∈Γ, (i, i′), (f, f ′)), with (∆×∆′)γ := ∇◦ (∆γ ×∆′
γ),

where ∇ maps pairs of subsets to their cartesian product. Then a morphism
is accepted by the product automaton just when it is accepted by both, so
L(∆×∆′) = L ∩ L′.

Remark 3.6.3. The Sierpiński triangle language (Example 3.3.8) is the intersection
of the brick wall language (Example 3.3.6) and the XOR language (Example 3.3.7):
this explains the origin of the states in the grammar shown in Example 3.3.8.

Lemma 3.6.4 (Closure under composition). Let L ⊆ FΓ(a, b) and L′ ⊆ FΓ(b, c) be
regular monoidal languages over Γ. Then the language L ·L′ = {f # g | f ∈ L, g ∈ L}
is a regular monoidal language.

Proof. Let L and L′ be given by the regular monoidal grammars (Ψ : M →
Γ, i, f), (Ψ′ :M ′ → Γ, i′, f ′) respectively. Similarly to Lemma 3.6.1, we can use an
ε-production f ε−→ i′ to compose the grammars.

Lemma 3.6.5 (Closure under sequential Kleene star). Let L ⊆ FΓ(a, a) be a regular
monoidal language on an object a. Then the language L∗ = {f # n... # f | f ∈ L, n ⩾
0} is a regular monoidal language.

Proof. Similarly to Lemma 3.6.4, if the boundaries of the grammar are i, f , we add
an ε-production f ε−→ i to the grammar.

Lemma 3.6.6 (Closure under images of alphabets). Let L ⊆ FΓ(a, b) be a regular
monoidal language over Γ, and Γ h−→ Γ′ be a morphism of monoidal alphabets. Then
(Fh)L ⊆ FΓ(ha, hb) is a regular monoidal language over Γ′.
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3.7. Syntactic monoidal category of a language

Proof. Let L be given by the regular monoidal grammar (Ψ :M → Γ, i, f). Consider
the grammar given by the composite h ◦Ψ :M → Γ′. Since F is a functor we have:
F(h ◦Ψ)[FM(i, f)] = (Fh ◦ FΨ)[FM(i, f)] = (Fh)L, thus h ◦Ψ is a grammar for
(Fh)L.

Lemma 3.6.7 (Closure under preimages of alphabets). Let L ⊆ FΓ(a, b) be a regular
monoidal language over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then
the inverse image of L, (Fh)−1(L) is a regular monoidal language over Γ′.

Proof. Let (Q, {∆γ}γ∈Γ, i, f) be a non-deterministic monoidal automaton rec-
ognizing L with inductive extension ∆ : FΓ → RelQ. Consider the monoi-
dal automaton given by the composite (∆ ◦ Fh : FΓ′ → RelQ, i, f). We have
L(∆ ◦ Fh) = (Fh)−1L(∆) = (Fh)−1(L), so the inverse image of L is regular.

Closure under complement is often held to be an important criterion for what
should count as a recognizable language. Indeed, for the abstract monadic second
order logic introduced by Bojańczyk, Klin, and Salamanca [10], it is a theorem
that the class of recognizable languages relative to a monad on Set is closed under
complement. However, given that every endomorphic regular monoidal language
contains the identity, we have that:

Observation 3.6.8. Regular monoidal languages are not closed under complement.

This suggests that there is no obvious account of regular monoidal languages
in terms of monadic second order logic. On the other hand, there is no reason
we should expect even the general account of monadic second order logic given by
Bojańczyk, Klin, and Salamanca [10] to extend to monoidal categories, since these
are not algebras for a monad on Set.

3.7 Syntactic monoidal category of a language
Every formal language of words L ⊆ Σ∗ gives rise to an invariant called its syntactic
monoid. The study of the connection between syntactic properties of a language
and algebraic properties of its syntactic monoid is the content of algebraic language
theory. In this section, we lift this idea to the setting of monoidal languages. Let us
first recall the basics of this theory – for more details, see for example Pin [72].

Definition 3.7.1 (Syntactic congruence). Given a language L ⊆ Σ∗, define the
relation ∼L on Σ∗ by

w ∼L w
′ := ∀x, y ∈ Σ∗, xwy ∈ L⇔ xw′y ∈ L

In other words, two words are equated if there is no context that distinguishes
them, in terms of membership of the language. It is easily verified that ∼L is an
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equivalence relation, and hence gives rise to the quotient Σ∗/ ∼L. Moreover, it is a
congruence for the monoid operation of Σ∗.

Proposition 3.7.2 (Syntactic monoid). Σ∗/ ∼L is a monoid with [w] · [v] := [w · v]
and unit [ε].

Proof. We show that the operation is well-defined. Let w ∼L w′ and v ∼L v′,
and let xwvy ∈ L for all x, y ∈ Σ∗. Then xw′vy ∈ L by the first equivalence and
xw′v′y ∈ L by the second equivalence. The converse follows the bi-implications in
reverse. Therefore [w · v] = [w′ · v′].

Definition 3.7.3 (Recognition by a monoid). A monoid M recognizes a language
L ⊆ Σ∗ just when there is a monoid homomorphism φ : Σ∗ → M and a subset
N ⊆M such that L = φ−1(N).

Proposition 3.7.4. The quotient map q : Σ∗ → Σ∗/ ∼L recognizes L, and every
other surjective recognizer factors through it.

Proof. We claim that L = q−1(q(L)). One inclusion is trivial, we show the other,
namely q−1(q(L)) ⊆ L. Let w ∈ q−1(q(L)), then qw ∈ q(L) and there exists w′ ∈ L
such that qw = qw′, i.e. w ∼L w

′. But then w ∈ L by taking x = y = ε. Now let
p : Σ∗ →M be another surjective monoid homomorphism recognizing L via some
subset N ⊆ M . Then pw = pw′ ⇒ w ∼L w

′, and so (using the surjectivity of N)
we have a function r :M → Σ∗/ ∼L such that q = r ◦ p, which is easily checked to
be a monoid homomorphism.

Theorem 3.7.5 (Myhill, Nerode [65, 66]). A language L ⊆ Σ∗ is regular if and only
if its syntactic monoid is finite.

Proof. Let L be regular and hence recognized by a DFA D. Let w, v ∈ Σ∗ induce the
same transition in D, that is, δ(i, w) = δ(i, v). Then w ∼L v follows immediately,
since D is deterministic. Therefore the number of equivalence classes of ∼L must
be at most the number of states of D and hence finite. Let L be a language with a
finite syntactic monoid. Then the equivalence classes of its syntactic monoid give
the states of a DFA with transitions [q] w−→ [qw], initial state [ε] and final states [w]
for each w ∈ L. It is clear this automaton accepts exactly L.

We can define a version of the syntactic congruence for monoidal languages,
using the following notion of string diagram context, generalizing the contexts “x_y”
for words.

Definition 3.7.6. A context p → q of type (a1 ⊗ ... ⊗ an, b1 ⊗ ... ⊗ bm) in a strict
monoidal category C where ai, bj ∈ C, is a scalar string diagram p→ q with a hole
of type (a1 ⊗ ...⊗ an, b1 ⊗ ...⊗ bm), as in Figure 3.17.
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α
a1

an
β

b1

bm

���

���p q

Figure 3.17: A context p→ q of type (a1 ⊗ ...⊗ an, b1 ⊗ ...⊗ bm). α and β stand
for arbitrary string diagrams arity and coarity p and q, respectively.

Given a context of type (a, b) in C, we can fill the hole with a string diagram
γ : a→ b in C. Write C[γ] for the resulting morphism of C. Note that the empty
diagram is a context 0→ 0, the empty context of type (0, 0), and more generally for
every pair of types (p, q) there is an identity context p→ q of type (p, q) in which
α = β = id. We shall treat contexts in more formal detail in Chapter 5, Section 5.3.
Contexts allow us to define contextual equivalence of string diagrams. Let us first
recall the definition of congruence on a monoidal category.

Definition 3.7.7. A congruence on a monoidal category C is an equivalence relation
f ∼ g on every hom-set C(x, x′) compatible with composition and monoidal product,
that is,

• f ∼ g ⇒ k ◦ f ◦ h ∼ k ◦ g ◦ h, whenever these composites are defined, and,

• f ∼ g ⇒ p⊗ f ⊗ q ∼ p⊗ g ⊗ q.

Proposition 3.7.8 (Syntactic congruence). Given a monoidal language L ⊆ FΓ(p, q)
there is a congruence ≡L defined as follows. Let γ, δ be morphisms in FΓ(r, s).
Then γ ≡L δ whenever C[γ] ∈ L⇔ C[δ] ∈ L, for all contexts C : p→ q in FΓ of
type (r, s).

Proof. Since ≡L is clearly an equivalence relation, we check its compatibility with
composition and monoidal product. Let γ ≡L δ and ϵ : r′ → r, ζ : s → s′ be
morphisms, such that C[ζ ◦ γ ◦ ϵ] ∈ L for an arbitrary context C : p → q of
type (r′, s′). By composing ζ and ϵ with the context, we obtain a new context
C ′ : p→ q of type (r, s) with C ′[γ] ∈ L, and so C ′[δ] ∈ L by assumption. But then
C[ζ ◦ δ ◦ ϵ] ∈ L, by moving ζ and ϵ out of the context, and a similar argument
applies for the tensor product.

Remark 3.7.9. Compared with the definition of congruence given by Heindel [43],
we only ask for equivalence relations on hom-sets, rather than the global set of
rmorphisms. This is necessary, since otherwise syntactic congruences need not exist
in general.

Proposition 3.7.10. Given a congruence on a strict monoidal category C, there is a
quotient monoidal category C/∼ with
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• objects those of C,

• hom-sets (C/∼)(x, x′) := C(x, x′)/∼, and

• composition, monoidal unit and monoidal product lifted from C.

The quotient map C→ C/∼ is a full, strict monoidal functor.

Definition 3.7.11. The syntactic monoidal category of a monoidal language L ⊆
FΓ(n,m) is the quotient monoidal category FΓ/≡L under the syntactic congruence.
The quotient functor SL : FΓ→ FΓ/≡L is the syntactic morphism of L.

Definition 3.7.12. A strict monoidal functor R : FΓ→ M recognizes a monoidal
language L ⊆ FΓ(i, f) if there exists a subset N ⊆ M(Ri,Rf) such that L =
R−1(N).

Definition 3.7.13. A monoidal language L ⊆ FΓ(i, f) is finitely recognizable (or
simply recognizable) if there exists a locally finite strict monoidal category M and
a strict monoidal functor R : FΓ→M recognizing L.

Proposition 3.7.14. The syntactic morphism S : FΓ → FΓ/ ≡L of a monoidal
language L ⊆ FΓ(n,m) recognizes that language.

Proof. We claim that L = S−1(S(L)). The left-to-right inclusion is trivial, we
show the converse inclusion. Let u ∈ S−1(S(L)), so Su ∈ S(L) and there exists
u′ : n → m ∈ L such that Su = Su′, that is, u≡Lu

′. Taking the identity context
n→ m of type (n,m), it follows that u ∈ L.

Theorem 3.7.15. If a monoidal language L is regular, then its syntactic monoidal
category FΓ/≡L is locally finite (i.e. has finite hom-sets).

Proof. It suffices to exhibit a full strict monoidal functor into FΓ/≡L from a
locally finite strict monoidal category. Let L be a regular monoidal language
recognized by (∆ : FΓ→ RelQ, i, f). ∆ induces a congruence ∼ on FΓ defined by
α ∼ β ⇔ ∆(α) = ∆(β), which implies that FΓ/∼ is locally finite, since RelQ is
locally finite. Define the strict monoidal functor FΓ/∼ → FΓ/≡L to be identity
on objects and [α]∼ 7→ [α]≡L on morphisms. This is well-defined since if α ∼ β and
C[α] ∈ L for some context C, then by the (monoidal) functoriality of ∆, C[β] ∈ L.
Clearly it is full, so FΓ/≡L is locally finite.

Recall that in the case of languages of words, the converse holds true (Theo-
rem 3.7.5), and the proof proceeds by taking the elements of the syntactic monoid
as states for a DFA. Here however, it is not clear how to do something similar.

In the case of series-parallel pomset languages accepted by branching automata,
the converse holds only when one restricts to languages whose terms have bounded
width [57]. We conjecture that the same is true for monoidal languages.
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3.8. Deterministically recognizable languages

Conjecture 3.7.16. Let L ⊆ FΓ(n,m) be a monoidal language whose elements have
bounded width. Then L is regular monoidal if and only if its syntactic monoidal
category is locally finite.

3.8 Deterministically recognizable languages

In this section, we provide a necessary condition for co-rooted regular monoidal
languages to be deterministically recognizable. The idea is to generalize the charac-
terization of top-down deterministically recognizable tree languages as those that
are closed under the operation of splitting a tree language into the set of possible
paths through the trees, and reconstituting trees by grafting compatible paths [38,
§2.11]. For string diagrams, we call the generalization of paths through a tree the
partial views of a diagram. Our result then says that if a co-rooted regular monoidal
language is deterministically recognizable then it is closed under grafting partial
views (Theorem 3.8.11).

First, we briefly recall the machinery of (cartesian) restriction categories [19]
that we shall use to define partial views. Restriction categories axiomatize the
category of sets and partial functions, and provide us with a diagrammatic calculus
for reasoning about deterministic recognition of regular monoidal languages.

3.8.1 Partial views via cartesian restriction categories

Definition 3.8.1 (Cockett and Lack, Theorem 5.2 [20]). A cartesian restriction
category is a symmetric monoidal category in which every object is equipped with a
commutative comonoid structure that is coherent, and for which the comultiplication
is natural. We write for the counit of the comonoid on an arbitrary object,

for the comultiplication of the comonoid on an arbitrary object, and for the
symmetry between two objects. Then to say that there is a commutative comonoid
structure on each object is to say that the following equations of string diagrams
hold (respectively: coassociativity, commutativity, and left unitality):

= = (3.1)

Note that “right unitality” may be derived from these. To say that these
comonoid structures are coherent is to say that for all objects X and Y we have the
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following equations of string diagrams:

X⊗Y

X⊗Y

X⊗Y

X

Y

X

X

Y

Y

= X⊗Y

X

Y= (3.2)

Finally to say that comultiplication natural is to say that we can move morphisms
through comultiplication as follows:

fX

Y

Y f

f

X

Y

Y= (3.3)

In particular then, any cartesian category is an example of a cartesian restriction
category, since the former ask for the additional property of the naturality of the
counit.

Definition 3.8.2. A cartesian restriction functor between cartesian restriction cate-
gories is a symmetric monoidal functor preserving commutative comonoids.

Proposition 3.8.3 (cf. Di Liberti, Loregian, Nester, Sobociński [24]). The free
cartesian restriction category on a monoidal graph M , denoted F↓M is given by
taking the free symmetric monoidal category on the monoidal graph M extended with
a comultiplication and counit generator for every object in VM , and then quotienting
the morphisms by Equations (3.1) to (3.3).

(Par,×, 1), the category of sets and partial functions, is the paradigmatic cartesian
restriction category, with on X given by the unique (total) function X → {•},
and given by the diagonal function q 7→ (q, q). ParQ inherits this structure
and so is also a cartesian restriction category. Therefore deterministic monoidal
automata (Q,Γ, {δγ}γ∈Γ, i, f) also extend uniquely to cartesian restriction functors,
δ↓

∗ : F↓Γ→ ParQ, and these have an obvious notion of associated language, defined
similarly to Definition 3.5.12. Runs in the automaton δ↓∗ can freely duplicate ( )
or delete ( ) an element in the state vector at any point in the run. The automata
δ∗ and δ↓

∗ are related by the following lemma, which follows from the universal
properties of FΓ and F↓Γ.

Lemma 3.8.4. Let δ∗ : FΓ → ParQ be the inductive extension of a deterministic
monoidal automaton (Q,Γ, {δγ}γ∈Γ, i, f). Since ParQ is a cartesian restriction
category, we can also inductively extend δ to a cartesian restriction functor δ↓∗ :
F↓Γ→ ParQ. This functor maps the counit to the function mapping every state
to ⊥, and the comultiplication to the function which duplicates every state.
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3.8. Deterministically recognizable languages

Then δ∗ factors uniquely as:

FΓ ParQ

F↓Γ

δ∗

[−] δ↓
∗

where [−] : FΓ → F↓Γ is the identity-on-objects quotient functor, sending string
diagrams to their equivalence class in F↓Γ.

We now introduce the notion of partial view of a string diagram. Recall that any
restriction category is poset-enriched: s ⩽ p if s is “less defined” than p, i.e. if s
coincides with p on s’s domain of definition [19, §2.1.4]. For string diagrams n→ 0,
this amounts to the following equation, with special case s = p⊗ s in case n = 0.

p

s
s =n n

Definition 3.8.5. Let γ be a string diagram in FΓ(n, 0). We call a string diagram p

in F↓Γ(n, 0) a partial view of γ if [γ] ⩽ p in F↓Γ(n, 0).

A partial view represents the possible causal influence of parts of a diagram on
generators appearing “later” in the diagram. For example, the five string diagrams
of Figure 3.18 are partial views of the rightmost string diagram below, taken from
the language introduced in Example 3.3.9. In particular, every diagram is a partial
view of itself.

γ δγ γ δ
β β

γ δ
α

γ δ
α

Figure 3.18: Partial views of the rightmost diagram.

In the case of tree languages, the partial views of a tree include in particular all
of its branches, obtained by discarding (via ) all but one child at each note.

Definition 3.8.6. The grafting p1 ⋉ p2 of two string diagrams p1, p2 ∈ F↓Γ(n, 0) is
the following string diagram in F↓Γ(n, 0), with special case p1 ⋉ p2 := p1 ⊗ p2 in
case n = 0.

p2

p1⋉p2 �=

p1
n nn
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For example, the leftmost diagram in Figure 3.19 depicts the grafting of two
partial views determined by the counterexample language of Example 3.3.9. By
the equational theory of cartesian restriction categories (Definition 3.8.1), this is
equal to the string diagrams in the center and on the right, where we first apply
the naturality of (for γ), then unitality (twice), then naturality of (for δ).

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

Figure 3.19: The grafting of two partial views of elements of the language from
Example 3.3.9 (left). This is equal to a string diagram (right) in the image of
the quotient functor [−] : FΓ→ F↓Γ (i.e. expressible without using the cartesian
restriction structure). This is an element of the partial view closure of the language.

Definition 3.8.7. The set G(L) of graftings of a monoidal language L ⊆ FΓ(n, 0) is
the set of all graftings of all partial views of the elements of L,

G(L) := {p1 ⋉ p2 | γ, γ′ ∈ L, [γ] ⩽ p1, [γ′] ⩽ p2} ⊆ F↓Γ(n, 0).

We are interested in those graftings of partial views that are equal to [γ] for
some γ in FΓ. For example, consider the grafting of partial views arising from
the language of Example 3.3.9 shown in Figure 3.19. The rightmost form of the
diagram exhibits this morphism as being in the image of the quotient functor; its
preimage under this functor is the same diagram in FΓ. Crucially, this diagram is
not in the original language: we say that the language is not closed under grafting
partial views.

Definition 3.8.8. The partial view closure of a co-rooted monoidal language L is
the preimage under [−] : FΓ→ F↓Γ of the set G(L) of graftings of partial views of
L (Definition 3.8.7). A monoidal language L is closed under partial views if and
only if it equals its partial view closure, i.e. [G(L)]−1 = L.

Lemma 3.8.9. Let (Q,Γ, δ, i, f) be a deterministic monoidal automaton. Then its
cartesian restriction extension, δ↓∗ : F↓Γ→ ParQ accepts the grafting p⋉ p′, if and
only if it accepts p and p′.

Proof. Let δ↓∗ accept p and p′. A run over p⋉ p′ amounts to a run over p and p′ in
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parallel, so p⋉ p′ is accepted. Conversely, let p⋉ p′ be accepted. Then it follows
from the monoidal functoriality of δ↓∗ that p and p′ must be accepted.

Lemma 3.8.10. Let (Q,Γ, δ, i, f) be a deterministic monoidal automaton. Then
its cartesian restriction extension, δ↓∗ : F↓Γ→ ParQ accepts every partial view of
elements of L(δ).

Proof. Let γ ∈ L(δ), and let pγ ∈ F↓Γ be a partial view of γ, that is, pγ ⋉ [γ] = [γ].
By Lemma 3.8.4, δ↓∗ accepts [γ], therefore δ↓∗ also accepts pγ by Lemma 3.8.9.

Theorem 3.8.11. Let L be a regular monoidal language. If L is deterministically
recognizable then it is closed under partial views.

Proof. Let L be recognized by a deterministic monoidal automaton δ∗ : FΓ→ ParQ.
This factorizes as δ∗ = δ↓

∗ ◦ [−] as in Lemma 3.8.4. We wish to show that
L = [G(L)]−1. We have that L ⊆ [G(L)]−1, by taking p1 = p2 = [x] for any given
x ∈ L. For the converse, it suffices to show that δ↓∗ accepts every [x] ∈ G(L), where
[x] = p1 ⋉ p2 and p1, p2 are partial views of elements of L. By Lemma 3.8.10, δ↓∗

accepts p1 and p2, and so by Lemma 3.8.9 it accepts [x].

3.9 Convex monoidal automata
In this section, we study a class of determinizable monoidal automata which we term
convex, and introduce a powerset construction for them. The classical powerset
construction is given conceptually by composition with the functor Rel → Set,
sending sets to their powersets and relations to their corresponding functions, right
adjoint to the inclusion Set ↪→ Rel. For this section, we work with single-sorted
monoidal automata for clarity, but this is not an essential restriction.

Both non-deterministic finite state automata for words and bottom-up trees
can be determinized via a form of powerset construction. However, top-down tree
automata cannot be determinized in general,

Proposition 3.9.1 (Gécseg and Steinby, §2.11 [38]). If a deterministic top-down
tree (monoidal) automaton accepts the trees σ(x, y) and σ(y, x) then it must accept
σ(x, x).

Proof. This is clear from inspecting all the ways to annotate the morphisms σ(x, y)
and σ(y, x) with states (i.e. checking possible runs in an automaton).

The problem is that a top-down tree automaton cannot synchronize its computa-
tions on different branches of an input tree. As a result of this, monoidal automata
also cannot be determinized in general (Example 3.5.5), and so we cannot hope
to obtain an analogue of the above functor. Nevertheless, there are interesting
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examples of deterministically recognizable monoidal languages that are not tree
languages, such as the monoidal Dyck language (Example 3.3.5) and Sierpiński
fractals (Example 3.3.8), and it is an intriguing theoretical challenge to characterize
such languages. Towards this end, we describe a suitable subcategory of RelQ for
which determinization is functorial, that of convex relations. Again, for simplicity
we work in this section with automata over single-sorted signatures, but there is no
essential obstacle to extending the ideas to the multi-sorted setting.

Definition 3.9.2. A relation ∆ : Qn →P(Qm) is convex if there is a morphism ∆∗

such that the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#
∇P ∇P

where ∆# is the Kleisli lift of ∆, and ∇P is the canonical map from tuples of
subsets to subsets of tuples given by cartesian product.

Remark 3.9.3. Such a lift ∆∗ is not necessarily unique, since ∇P is not injective: any
tuple containing the empty set is mapped to the empty set. Nevertheless, we shall
be able to use these lifts to implement a well-defined determinization procedure in
Lemma 3.9.8.

Example 3.9.4. The relation ∆γ : Q0 → P(Q4) induced by the grammar in
Example 3.3.9 is not convex, since (A,B,B,A) and (A,C,C,A), which we can think
of as “convex combinations” of the state vectors (A,B,C,A) and (A,C,B,A), are
not included in the image of the relation.

Definition 3.9.5 (Convex automaton). A non-deterministic monoidal automaton is
convex just when its transition relations are convex.

Lemma 3.9.6. Convex relations determine a monoidal sub-category CRelQ ↪→ RelQ.

Proof. It is clear that identity relations are convex. It remains to show that the
composite of convex relations is convex, and that the monoidal product of convex
relations is convex. For the former, take convex relations ∆α : Qa →P(Qb),∆β :
Qb →P(Qc), and take (∆β ⋄∆α)∗ = ∆∗

β ◦∆∗
α, where ⋄ is composition in Kl(P).
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Consider the following diagram:

(PQ)a (PQ)b (PQ)c

P(Qa) P(Qb) P(Qc)

P2(Qb) P2(Qc)

P3(Qc)

∆∗
α

∆#
α

∇ ∇

P(∆α) µ

∆∗
β

∆#
β

∇

P(∆β) µ

P(µ)P2(∆β)

We want to show that ∆#
β ◦∆

#
α = (∆β ⋄∆α)#, so that the pasting of the two

convexity squares at the top witnesses convexity of the composite. By definition of
Kleisli extension we have that:

∆#
β ◦∆

#
α = µ ◦P(∆β) ◦ µ ◦P(∆α)

by naturality of µ,

= µ ◦P(µ) ◦P2(∆β) ◦P(∆α)
= µ ◦P(µ ◦P(∆β) ◦∆α)
= µ ◦P(∆β ⋄∆α)
= (∆β ⋄∆α)#.

Now, take convex relations ∆γ : Qn1 → P(Qm1),∆ε : Qn2 → P(Qm2). Take
(∆γ ⊗∆ε)∗ = ∆∗

γ ×∆∗
ε. We have that:

P(Q)n1+n2
(∆γ⊗∆ε)∗−−−−−−−→P(Q)m1+m2 ∇−→P(Qm1+m2)

= P(Q)n1+n2
⟨∇◦∆∗

γ ,∇◦∆∗
ε⟩−−−−−−−−−→P(Qm1)×P(Qm2) ∇−→P(Qm1+m2)

by convexity of ∆γ ,∆ε,

= P(Q)n1+n2 ∇×∇−−−→P(Qn1)×P(Qn2) P(∆γ)×P(∆ε)−−−−−−−−−−→PP(Qm1)×PP(Qm2)
µ×µ−−−→P(Qm1)×P(Qm2) ∇−→P(Qm1+m2)

= P(Q)n1+n2 ∇−→P(Qn1+n2) P(∆γ×∆ε)−−−−−−−→P(P(Qm1)×P(Qm2))
P(∇)−−−−→PP(Qm1+m2) µ−→P(Qm1+m2)

= P(Q)n1+n2 ∇−→P(Qn1+n2) P(∆γ⊗∆ε)−−−−−−−→PP(Qm1+m2) µ−→P(Qm1+m2).
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Hence ∆γ ⊗∆ε is convex.

Lemma 3.9.7. The equation ∇P = ⊥∇P+ ◦ ∇⊥ holds between the monoidal multi-
plications of the monads P,P+, and ⊥.

Proof. Since the distributive law of P+ over ⊥ is commutative (Proposition 2.3.5),
this follows immediately from Wolff [91, Proposition 2.3].

We can now give the powerset construction on convex automata. We use the
non-empty powerset monad P+ to avoid duplication of the failure state, which is
∅ in RelQ, but ⊥ in ParP+(Q):

Lemma 3.9.8. For each set Q there is a strict monoidal functor DQ : CRelQ →
ParP+(Q) which is identity on objects and acts as follows on morphisms:

∆α : Qn →P(Qm)

P+(Q)n ηn

−−→ (⊥P+(Q))n ∆∗
α−−→ (⊥P+(Q))m ∇⊥−−→ ⊥(P+(Q)m)

where we elide the isomorphisms P(Q)n ∼= (⊥P+(Q))n. ⊥ is the maybe monad,
η is the unit of this monad, and ∇⊥ is its monoidal multiplication with respect to
the cartesian product, sending a tuple to ⊥ if ⊥ appears anywhere in the tuple. This
action is well-defined, since if there is more than one ∆∗

α witnessing the convexity
of ∆α, the resulting morphisms defined above are equal.

Proof. We first show that the action on morphisms is well-defined. It suffices to show
that if∆∗

α, ∆̂∗
α are distinct witnesses to the convexity of∆α, then∇⊥◦∆∗

α = ∇⊥◦∆̂∗
α.

From Lemma 3.9.7, ∇P = ⊥∇P+ ◦ ∇⊥. Furthermore, ⊥∇P+ is injective, so our
conclusion follows, using the definition of convexity: ∇P ◦∆∗ = ∆#◦∇P = ∇P ◦∆̂∗.

We need to show that this mapping is a strict monoidal functor. It is clear
that identities are preserved. It remains to show that composition and monoidal
product are preserved. Let ∆α : Qa → P(Qb),∆β : Qb → P(Qc). We require
DQ(∆β ⋄∆α) = DQ(∆β) ⋄ DQ(∆α). This follows from the commutativity of the
following diagram (naturality of ∇ and the naturality of η), and the unit law for
Kleisli composition in ParQ.

(⊥P+(Q))b (⊥⊥P+(Q))b

⊥P+(Q)b ⊥(⊥P+(Q))b
∇⊥

⊥ηb

η
∇⊥

ηb

Strict preservation of the monoidal product follows easily from the fact that
(∆γ ⊗∆ε)∗ = ∆∗

γ ×∆∗
ε.
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Determinization of a convex automaton (∆ : FΓ→ CRelQ, i⃗, f⃗) is now given by
post-composition with the functor DQ : CRelQ → ParP+(Q). The new initial state
becomes {i1}...{in}, and we add ε-transitions from every (F1, ...Fm) where fi ∈ Fi

to a fresh final state f⃗ ′.

Theorem 3.9.9. Determinization of convex automata preserves the accepted language:
let (∆ : FΓ→ CRelQ, i⃗, f⃗) be a convex automaton, then L(∆) = L(DQ ◦∆), with
the initial and final states described above.

Proof. Let α ∈ L(∆), i.e. f⃗ ∈ ∆α(⃗i). Then we must have∆∗
α({i1}...{in}) = F1...Fm,

with fi ∈ Fi and so (DQ ◦ ∆)α(⃗i) = f⃗ ′. Conversely let α ∈ L(DQ ◦∆), i.e.
(DQ◦∆)α({i1}...{in}) = f ′. Then we must have that ∆∗

α({i1}...{in}) = {f1}...{fm},
and so α ∈ L(∆).

Example 3.9.10. Non-deterministic monoidal automata over word monoidal alpha-
bets (Example 3.5.4) are convex: for a relation ∆ : Q → P(Q), ∆∗ = ∆# is the
Kleisli extension of ∆. Similarly, non-deterministic monoidal automata over bottom-
up tree monoidal alphabets (Definition 3.5.6) are convex, with ∆∗ := ∆# ◦ ∇P .
This reflects the well known determinizability of word and bottom-up tree automata.
For top-down tree monoidal alphabets, the general obstruction to convexity (and
thus determinizability) is seen as the inexistence of a left inverse of ∇P , viz. the
cartesian product.

3.10 Mazurkiewicz traces and asynchronous automata
The theory of Mazurkiewicz traces [26, 60, 64] provides a simple but powerful model
of concurrent systems. Traces are a generalization of words in which specified pairs
of letters can commute. If we think of letters as corresponding to atomic actions,
then commuting letters reflect the independence of those particular actions and so
their possible concurrent execution: ab is observationally indistinguishable from ba

if a and b are independent.
In this section, we show that trace languages are symmetric monoidal languages

over monoidal graphs of a particular form that we call monoidal distributed alphabets.
In Section 3.10.3 we turn to asynchronous automata [93], a well-known model
accepting exactly the recognizable trace languages, and show that these automata
are precisely symmetric monoidal automata over monoidal distributed alphabets.

3.10.1 Independence and distribution
We recall some definitions from Mazurkiewicz trace theory, before recasting them
in terms of monoidal languages. Fix a finite set Σ, an alphabet thought of as a set
of atomic actions.
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Definition 3.10.1. An independence relation on Σ is a symmetric, irreflexive relation
I. The induced dependence relation, DI , is the complement of I.

Definition 3.10.2. For I an independence relation, let ≡I be the least congruence on
Σ∗ such that ∀a, b: (a, b) ∈ I ⇒ ab ≡I ba. The quotient monoid T (Σ, I) := Σ∗/≡I

is the trace monoid.

Definition 3.10.3. A (Mazurkiewicz) trace language over (Σ, I) is a subset of the
trace monoid T (Σ, I).

An element of T (Σ, I) or trace over (Σ, I) is thus an equivalence class of words
up to commutation of independent letters. A trace language may be thought of
as the set of possible observations of a concurrent system’s behaviour, in which
independent letters stand for actions which may occur concurrently. Independence
relations correspond to distributions:

Definition 3.10.4 (Mukund [64]). A distribution of an alphabet Σ is a finite tuple of
non-empty alphabets (Σ1, ...,Σk) such that

⋃k
i=1 Σi = Σ.

Proposition 3.10.5 (Mukund [64]). A distribution of Σ corresponds to a function
loc : Σ→P+({1, ..., k}) : σ 7→ {i | σ ∈ Σi}.

Such a function gives the set of “locations” of each action σ ∈ Σ. In terms
of concurrency, we can consider this to be a set of memory locations, threads of
execution, or runtimes in which σ participates. In particular, every action has a
non-empty set of locations.

A well-known construction (see, e.g. Mukund [64, §9.6]) allows us to move
between independence relations and distributions: locations correspond to maximal
cliques in the graph of the dependence relation. We recall this construction in the
proof of Proposition 3.10.8, which refines this correspondence.

Definition 3.10.6. IndΣ is the poset of independence relations on Σ, with order the
inclusion of relations.

Definition 3.10.7. DistΣ is the preorder on distributions of Σ up to permutation,
with [(Σ1, ...,Σp)] ⩽ [(Σ′

1, ...,Σ′
q)] if and only if for each pair of distinct elements

a, b ∈ Σ, if there exists 1 ⩽ j ⩽ q such that Σ′
j contains both a and b, then there

exists an Σi containing both a and b.

Proposition 3.10.8. There is a Galois insertion IndΣ ↪→ DistΣ.

Proof. We construct an injective monotone function i : IndΣ → DistΣ. Let an
independence relation I over Σ be given, with induced dependence relation DI .
Construct the undirected dependence graph: vertices are elements of Σ and there
is an edge (a, b) for every (a, b) ∈ DI . Choose an ordering of maximal cliques of
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DI , and define a distributed alphabet by taking Σi to be the elements of Σ in the
maximal clique i. Different orderings give the same distribution up to permutation,
and so the same element of DistΣ. This is injective since distinct independence
relations induce distinct dependence graphs. It is monotone since if I ⊆ I ′ then
the dependence graph DI is at least as connected as DI′ , so if a, b both belong to a
maximal clique of DI′ then they will both belong to a maximal clique of DI .

We construct a monotone function r : DistΣ → IndΣ. Let (Σ1, ...,Σk) be a
distribution. Define a relation I by (a, b) ∈ I ⇔ loc(a) ∩ loc(b) = ∅. This is
irreflexive and symmetric, and so an independence relation. r is also clearly well-
defined and monotone. Finally, it is easy to check that r ◦ i : IndΣ → IndΣ is the
identity.

In other words, though the same independence relation may be induced by
many different distributions, independence relations correspond bijectively with
the distributions in the image of i ◦ r, that is, the distributions obtained via the
maximal clique construction.

3.10.2 Symmetric monoidal languages over monoidal distributed
alphabets

We now turn to the interpretation of these notions in terms of symmetric monoidal
languages. A distribution can be seen as a monoidal graph in which sorts are the
locations (runtimes).

Definition 3.10.9. A monoidal distributed alphabet is a finite monoidal graph Γ
with the following properties:

• Γ has set of sorts a finite ordinal SΓ = {1 < 2 < ... < k} for k ⩾ 1,

• sorts i ∈ SΓ appear in order in the sources and targets of each generator
γ ∈ BΓ,

• each sort i ∈ SΓ appears at most once in each source and target,

• for each generator γ ∈ BΓ, the sources and targets are non-empty and equal:
s(γ) = t(γ).

In brief, every generator in the alphabet is equipped with some set of runtimes,
which serve as its source and target, and the runtimes are conserved. Figure 3.20
gives an example.
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γ ε
β

δ

α

Figure 3.20: An example of a monoidal distributed alphabet. For example, γ and β
are independent but γ and α are not. We use colours to stand for sorts, here blue
= 1 < red = 2 < green = 3.

This gives us a way of representing distributions as monoidal graphs and vice-
versa, if the graph is a monoidal distributed alphabet. Following Proposition 3.10.5,
we will use loc( ... γ ...) to mean the arity (= coarity) of a generator ... γ .... Since we
choose a finite ordinal for the sorts, we have that:

Proposition 3.10.10. Distributions of alphabets are in bijection with monoidal dis-
tributed alphabets.

Since the ordering of the runtimes is ultimately not relevant to the structure
of a trace, we should allow them to freely cross each other in our string diagrams:
this is precisely what is enabled by taking the symmetric monoidal languages over
these alphabets. We also need each runtime to appear once in each element of these
languages, so we take the boundaries to be 1⊗ ...⊗ n, which we will write as 1...

n
.

Definition 3.10.11. A monoidal trace language is a symmetric monoidal language of
the form L ⊆ FχΓ

(1...
n
,
1...
n

)
where Γ is a monoidal distributed alphabet.

Figure 3.21 gives an example of an element in a monoidal trace language over the
monoidal distributed alphabet in Figure 3.20. We call such morphisms monoidal
traces, and indeed we shall see below that they are exactly Mazurkiewicz traces.
The corresponding string diagram gives an intuitive representation of traces as
topological objects.

α
δ

ε

β

γ

Figure 3.21: An example of a monoidal trace. β is independent of α and γ, but
not δ or ϵ. Thus αγβδε and βαγδε are two possible serializations of this trace,
corresponding to sliding β past α and γ in the string diagram. We use colours for
sorts, blue = 1 < red = 2 < green = 3.

We now show that monoidal trace languages correspond precisely to Mazurkiewicz
trace languages (Theorem 3.10.14), by establishing an isomorphism of monoids
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between trace monoids and monoids of string diagrams generated by monoidal
distributed alphabets. Fix a monoidal distributed alphabet Γ. Recall that endomor-
phism hom-sets in a category are monoids under composition, and that the hom-set
FχΓ

(1...
n
,
1...
n

)
has elements string diagrams 1...

n
→ 1...

n
over Γ.

Lemma 3.10.12. The hom-set FχΓ
(1...
n
,
1...
n

)
admits the following presentation as a

monoid:

• Generators: For each ... γ ... ∈ Γ, the string diagram N(γ) : 1 ⊗ ... ⊗ n →
1⊗ ...⊗ n built from symmetries, followed by ... γ ... tensored with identities,
followed by the inverse symmetry. See Figure 3.22 for an example.

• Equations: N(α) # N(β) = N(β) # N(α) ⇔ loc( ... α ...) ∩ loc( ... β ...) = ∅,
where # denotes composition of string diagrams in diagrammatic (left-to-right)
order.

Proof. We construct an isomorphism between the monoids. Let s ∈ FχΓ
(1...
n
,
1...
n

)
be

a string diagram. We can use interchange (Figure 2.6) to impose a linear order
of generators from left to right in the diagram, e.g. ... γ1 ..., ..., ... γn .... This is
called putting s in general position, by perturbing generators at the same horizontal
position [49]. We then split the string diagram into a sequence of slices, each
containing one generator. For a slice with right (or left) boundary

k1...
kn

, we can use

the permutation
k1...
kn

→ 1...
n
followed by its inverse (or vice-versa) to finally obtain s

as a sequence N(γ1) # ... # N(γn). Any other possible sequence of generators is
obtainable by repeatedly interchanging generators: this is possible if and only if
their locations are disjoint. Consequently, this defines a function from FχΓ

(1...
n
,
1...
n

)
to

the monoid presented above. Given that, as argued above, the slicing construction
is unique up to interchanging independent generators, this defines a homomorphism.
Conversely, given a generator N(γ) in the presentation, we map this to the same
string diagram in FχΓ

(1...
n
,
1...
n

)
. Again, it follows from interchange that this extends

to a homomorphism, inverse to that above.

γ
1

2

3

4

5

1

2

3

4

5

1 1

4

5

4

5

2

3

2

3

Figure 3.22: An example of a generator N(γ) as in Lemma 3.10.12.

We now show that trace monoids are isomorphic to the endomorphism monoids
FχΓ

(1...
n
,
1...
n

)
.
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Lemma 3.10.13. Let I be an independence relation on an alphabet Σ, and Γ the
monoidal distributed alphabet induced by the corresponding distribution (Proposi-
tion 3.10.10). Then there is an isomorphism of monoids,

T (Σ, I) ∼= FχΓ
(1...
n
,
1...
n

)
.

Proof. We use the presentation of the endomorphism monoid given in Lemma 3.10.12.
Define a homomorphism α : FχΓ

(1...
n
,
1...
n

)
→ T (Σ, I) by mapping generators N(γ) 7→

[γ]. Let N(γ) # N(γ′) = N(γ′) # N(γ), then it follows [γγ′] = [γ′γ] in T (Σ, I),
since the former holds if and only if loc(γ) ∩ loc(γ′) = ∅, and so this extends to
a homomorphism. Define a homomorphism β : T (Σ, I)→ FχΓ

(1...
n
,
1...
n

)
by mapping

generators [γ] 7→ N(γ). [γγ′] = [γ′γ] holds iff loc(γ) ∩ loc(γ′) = ∅, iff loc( ... γ ...) ∩
loc( ... γ′ ...) = ∅, iff N(γ) # N(γ′) = N(γ′) # N(γ). Finally it is clear that α and β
are inverses, and so witness an isomorphism of monoids.

Theorem 3.10.14. Monoidal trace languages are exactly Mazurkiewicz trace lan-
guages.

Proof. This is immediate from Lemma 3.10.13: given a monoidal trace language
L ⊆ FχΓ

(1...
n
,
1...
n

)
we obtain a trace language L′ ⊆ T (Σ, I) using one direction of the

isomorphism, and vice-versa.

Lemma 3.10.13 also shows that composition of traces corresponds simply to
concatenation of the corresponding monoidal traces. Diagrams like Figure 3.21 are
commonplace in the trace literature [25, 93]. Theorem 3.10.14 gives a formal basis
for these diagrams as elements of symmetric monoidal languages.

Remark 3.10.15. The monoidal category FχΓ for a monoidal distributed alphabet
Γ contains a number of other trace languages of interest, namely those obtained by
restricting the set of locations. In this way, one obtains the sub-languages of traces
in which only certain locations are involved.

Remark 3.10.16. Free props over monoidal distributed alphabets considered as
monoidal categories with multiple runtimes suggest a further generalization of string
diagrams for effectful categories. A similar proposal is sketched as a setting for
concurrency by Jeffrey [46, Section 9.4]. We return to this in Chapter 4.

3.10.3 Asynchronous automata as monoidal automata

Asynchronous automata were introduced by Zielonka [93] as a true-concurrent
operational model of recognizable trace languages, a well-behaved subclass of trace
languages analogous to regular languages. In this section, we show they are precisely
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monoidal automata over monoidal distributed alphabets, which leads to the following
theorem:

Theorem 3.10.17. Recognizable trace languages are exactly symmetric regular mo-
noidal languages over monoidal distributed alphabets.

We recall the definition of asynchronous automata, before turning to monoidal
automata.

Definition 3.10.18 (Asynchronous automaton [93]). Let (Σ1, ...,Σk) be a distribution
of an alphabet Σ. For each 1 ⩽ i ⩽ k, let Qi be a non-empty finite set of states,
and for each σ ∈ Σ take a transition relation

∆σ :
∏

i∈loc(σ)

Qi →P

 ∏
i∈loc(σ)

Qi

 .

This defines a global transition relation on the set Q :=
∏k

i=1Qi as follows:
(q1, ..., qk)

σ−→ (q′1, ...q′k)⇔ qi = q′i for i /∈ loc(σ) and (q′i1 , ..., q
′
ij
) ∈ ∆σ(qi1 , ..., qij )

where {i1, ..., ij} ∈ loc(σ). Finally let −→i ∈ Q,F ⊆ Q be initial and final words of
states.

The global transition relation for σ leaves unchanged those states at locations in
the complement of loc(σ), and otherwise acts according to the local transition ∆σ.
An asynchronous automaton has a language over Σ given by the extension of the
transition relation to words. Moreover, asynchronous automata have a language of
Mazurkiewicz traces over the distribution of Σ: a trace in T (Σ, I) is accepted when
all of its serializations are accepted, which happens when one of its serializations
is accepted [93, p. 109]. Recognizable trace languages are defined algebraically as
those whose syntactic congruence is of finite index [93]. Zielonka’s theorem says
that they also have an operational characterization:

Theorem 3.10.19 (Zielonka [93]). Asynchronous automata accept precisely the rec-
ognizable trace languages.

Definition 3.10.18 closely resembles that of monoidal automata. Indeed, asyn-
chronous automata are precisely monoidal automata over monoidal distributed
alphabets:

Proposition 3.10.20. For an asynchronous automaton A, there is a monoidal au-
tomaton over a monoidal distributed alphabet with the same trace language, and
vice-versa.

Proof. An asynchronous automaton with multiple final state words can be nor-
malized to a single final state word in the usual way by introducing a new final
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state word and modifying transitions appropriately. Then a monoidal automaton
can be constructed by taking the monoidal distributed alphabet associated to
the distribution of Σ (Proposition 3.10.10), the same transition relations, initial
and final state words. We show that the languages coincide. Let w ∈ L(A), and
consider the corresponding trace [w]. Using Lemma 3.10.13, we can produce the
corresponding monoidal trace. By construction, this is accepted by the monoidal
automaton defined above. The converse is analogous.

As a corollary, we can invoke Theorem 3.10.19 to obtain Theorem 3.10.17. In
contrast to asynchronous automata, the constructed monoidal automaton directly
accepts traces qua string diagrams, rather than a language of words corresponding
to a trace language.

Remark 3.10.21. Jesi, Pighizzini, and Sabadini [48] introduced probabilistic asyn-
chronous automata. Initial and final states, and transition relations are replaced by
initial and final distributions, and stochastic transitions. These are precisely what
are obtained if the powerset monad in our definition of non-deterministic monoidal
automaton is replaced with the distribution monad [71], whose Kleisli category has
morphisms stochastic matrices.

Remark 3.10.22. Melliès and Zeilberger have shown how to capture a related notion
of asynchronous automata, namely Bednarczyk’s asynchronous systems [5], in
the framework of regular grammars over arbitrary categories (Section 3.1.1) [63,
Example 2.14]. The idea is to take grammars in the sense of Definition 3.1.6 over
the trace monoid considered as a one-object category. Asynchronous systems are
simply finite state automata in which every path q1

a−→ q2
b−→ q3 completes to a

diamond via q1
b−→ q4

a−→ q3 whenever a and b are independent. Like asynchronous
automata, asynchronous systems also accept precisely the regular trace languages.

3.10.4 Serialization of traces via premonoidal categories

Trace theorists often consider trace languages to be word languages with the property
of trace-closure with respect to an independence relation [58]: if u ∈ L and u ≡I v

then v ∈ L. These languages arise as preimages of trace languages along the quotient
map qΣ,I : Σ∗ → T (Σ, I). For L ⊆ T (Σ, I) a trace language, q−1

Σ,I(L) ⊆ Σ∗ is its
flattening or serialization.

In this section, we show that the serialization of monoidal trace languages can
be carried out using the algebra and string diagrams of (symmetric) premonoidal
categories. Recall from Section 2.4 that premonoidal categories are like monoidal
categories, except interchange (Figure 2.6) does not hold in general.

We first define the runtime monoidal graph over a monoidal graph, which
augments the generators with a new wire:
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Definition 3.10.23. Let G be a monoidal graph. Let R be a sort disjoint from
SG . The runtime monoidal graph GR has sorts SG + {R} and for each generator
γ : S1...Sn → S′

1...S
′
m in G a generator γ : RS1...Sn → RS′

1...S
′
m.

Graphically we can depict GR as in Figure 3.23 (right):

α β α β

Figure 3.23: Left: A monoidal graph G. Right: the associated runtime monoidal
graph GR, where the new sort R is drawn as a dashed string.

Definition 3.10.24. The symmetric runtime monoidal category is the free prop FχGR
on GR.

Theorem 3.10.25. The free symmetric strict premonoidal category FpG on a mo-
noidal graph G has set of objects SG and a morphism S1 ⊗ ...⊗ Sn → S′

1 ⊗ ...⊗ S′
m

is a morphism R ⊗ S1 ⊗ ... ⊗ Sn → R ⊗ S′
1 ⊗ ... ⊗ S′

m in the symmetric runtime
monoidal category.

Proof. The proof follows Román [77, Theorem 2.14], in the case where V is empty,
and taking instead the free symmetric strict monoidal category.

Given a monoidal distributed alphabet Γ, the endomorphism monoid FpΓ
(1...
n
,
1...
n

)
in the free symmetric premonoidal category is now the free monoid over the boxes
of Γ, since the runtime prevents interchange:

Proposition 3.10.26. Let Γ be a monoidal distributed alphabet. Then FpΓ
(1...
n
,
1...
n

)
∼=

B∗
Γ, where BΓ is the set of boxes of Γ.

Proof. By augmenting the generators of Γ with a new runtime, we create a dis-
tributed monoidal alphabet in which every generator depends on every other, that
is, the independence relation is empty. Thus the corresponding trace monoid is
simply B∗

Γ. From here, we can follow the idea of Lemma 3.10.13.

We can define a morphism of monoids qΓ : FpΓ
(1...
n
,
1...
n

)
→ FχΓ

(1...
n
,
1...
n

)
by presenting

FpΓ
(1...
n
,
1...
n

)
as in Lemma 3.10.12, and defining qΓ on generators by erasing the runtime

string. Theorem 3.10.27 then follows immediately from the definitions along with
Lemma 3.10.13 and Proposition 3.10.26:
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Theorem 3.10.27. For every alphabet BΓ, the following square of monoid homomor-
phisms commutes, where q is the quotient monoid homomorphism.

B∗
Γ T (BΓ, I)

FpΓ
(1...
n
,
1...
n

)
FχΓ

(1...
n
,
1...
n

)∼=

q

∼=

qΓ

As a result, the preimage of a monoidal trace language under the morphism qΓ

corresponds to the serialization of that language.
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Chapter 4
From Mazurkiewicz Traces to
Resourceful Traces

In this chapter, we elaborate the link between the string-diagrammatic Mazurkiewicz
traces introduced in the previous chapter, and string diagrams for effectful categories.
This leads us to the idea of devices, which facilitate a convenient notion of presen-
tation for effectful categories, suited to their use in the semantics of programming
languages. In more detail,

• We revisit the account of trace languages from Section 3.10, showing how it
fits more naturally into the setting of effectful categories. — Section 4.1

• We introduce device presentations of effectful categories, which lets us see
their morphisms as resourceful traces. — Section 4.2

• We give an example of resourceful traces arising from the theory of message
passing concurrency. — Section 4.3

• We introduce the notion of centralizer of a set of morphisms in an effectful
category, relating it to device presentations. — Section 4.5

• We show how the commuting tensor product of effectful categories admits a
convenient presentation in terms of devices. — Section 4.6
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4.1 Mazurkiewicz traces are effectful scalars
In Section 3.10, we showed how Mazurkiewicz traces arise as string diagrams in
certain free symmetric monoidal categories. In general, we only cared about a small
part of these categories, namely a single endo-hom-set on the set of locations with
an arbitrary fixed ordering (although as mentioned in Remark 3.10.15, there are
languages that are natural to consider in other hom-sets of the category). The
crucial invariant of our string-diagrammatic Mazurkiewicz traces is the appearance
of each location string only once in each vertical slice through the diagram: this
was ensured by construction. In particular, monoidal product is not an operation
on traces, in the sense that what we obtain is no longer a trace.

This situation strongly resembles the properties of string diagrams for pre-
monoidal categories, or more generally, effectful categories, as recalled in Sections 2.4
and 3.10.4. There, the distinguished string, drawn as a dashed string, acts as a
“global location”. By construction, it can only appear once in every vertical slice
through a string diagram. There is no longer a monoidal product of morphisms,
but only a premonoidal product. In this chapter, we take this analogy seriously.

We start, in this section, by showing how effectful categories provide a setting
for Mazurkiewicz traces: given any alphabet with an independence relation, there
is a one-object effectful category whose hom-set is the set of Mazurkiewicz traces.
This is somewhat trivial: we know that traces form a monoid, and we can give this
monoid a trivial premonoidal structure. However, this is merely a warm-up for the
rest of the chapter; our intention is only to show the basic construction working
in a simple case, not to record a deep result. In the following sections, we shall
provide a more general construction of which this trivial one is a special case; the
construction of effectful categories by device presentations.

The idea is simple: we consider a variation of string diagrams for effectful
categories in which there are multiple distinguished strings: in this section these
will correspond to locations, but we later give them the more generic term of devices.
When there are no resource strings, but only devices, we have precisely Mazurkiewicz
traces.

For the rest of this section, let us fix an alphabet (Σ, I) equipped with an
independence relation I, whose induced distribution loc : Σ→P+({1, ..., k}) has
locations L = {1, ..., k}.

In Section 3.10, in order to obtain a monoid, we made a choice of ordering on
the set of locations. Thus for example, although the three traces in Figure 4.1 are
morally the same trace, by requiring a fixed ordering of locations, we are choosing
a particular representative.

To avoid this, we will take the object of our one-object effectful category to be
the clique of locations, which contains every permutation of the locations. This
idea follows the work of Román in the case of a single device (or runtime) [77, 78].
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α

αβ

β
γ γ

α
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γ

α

β
 γ

α

β
 γ

Figure 4.1: These traces are morally the same: we should not be concerned about
the order of the locations on the boundaries.

Indeed, Definitions 4.2.3 and 4.2.4 are straightforward generalizations of similar
constructions given by Román, from a single device to multiple devices.

Definition 4.1.1. Given a finite set L, the clique ClL on L is the groupoid whose
objects are all total orders of L and whose isomorphisms are the permutations.

Instead of asking for endomorphisms of the monoidal product of locations in a
chosen order (or indeed between two arbitrary orders), we take morphisms from the
clique of locations to itself to be families of traces differing only by permutations of
their boundaries, as in Figure 4.1: they take into account all of the permutations
at once. Readers familiar with the strictification of monoidal categories will note
that the idea here is very much in the same spirit. Note that a single element of
the family determines the rest, by pre-/post-composition with a permutation.

Proposition 4.1.2. There is a single-object strict premonoidal category Dev(Σ, I)
with object the clique of locations ClL and morphisms given by families of string-
diagrammatic traces over (Σ, I), commuting with the isomorphisms of the clique of
locations.

Proof. Identities are given by families of identity string diagrams. Composition is
induced by composition of string diagrams, and these are automatically associative
and unital. ClL is the unit object, and the left- and right- whiskering functors are
the identity functors.

Proposition 4.1.3. The monoid of morphisms of Dev(Σ, I) is isomorphic to the trace
monoid T (Σ, I).

Proof. This is essentially Lemma 3.10.13, along with the fact that one component
of each family comprising the morphisms of Dev(Σ, I) uniquely determines the rest
of the family.

In the next section, we place this construction in a more general setting, where
Dev(Σ, I) is seen to be the free effectful category on a scalar signature, in the sense
that the signature only has generators from the premonoidal unit to itself.
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4.2 Presenting effectful categories by devices

Monoidal categories can be presented by monoidal graphs of generators and equations
between string diagrams over the monoidal graph, as in Section 2.1. In this
section, we consider an augmentation of monoidal graphs by distinguished strings
which control the commutation of generators, and show how they present effectful
categories. In the context of traces we called these strings locations, but in the
following more general context we shall term these special strings devices. Devices
may be thought of as effects, and in particular (memory) locations can be thought
of as particular devices.

A device is nothing more than a string in a string diagram with the special
property that it may only appear once in every vertical slice through the diagram,
and it may appear at any position, that is, it may freely braid with other devices
and with other strings: we shall ensure these properties by construction.

Following the work of Jeffrey [46], Román [77, 78] has shown that free effectful
categories may be presented by string diagrams in which the (effectful) morphisms
are augmented by a single global device. However, as the case of traces makes
clear, the introduction of multiple devices allows us to capture, via the geometry of
string diagrams, certain families of equations that arise when particular families
of generators commute, such as independent actions in a trace, or more generally
commuting effects.

For example, consider a programming language with mutable memory cells.
We can picture the get and set actions associated to a cell as string diagrams
augmented with devices, again depicited as dashed strings. When we only have a
single global device for our effectful processes, certain equations that we would like
to hold no longer do so, as in Figure 4.2.

setA

setB setB

setA

Figure 4.2: set actions for two distinct memory cells, using the string diagrams for
effectful categories introduced by Jeffrey [46] and Román [77, 78]. We would like
these morphisms to be equal.

Instead, we can introduce a distinct device for each memory cell, giving the
following device graph,
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set get set get

which should be furthermore subject to equations expressing, for example, that
two sequential get operations on the same cell amount to copying the result of one
get operation.

Treating these diagrams as generators, we can build programs as string diagrams
over them. If we enforce the condition that every device appear at most once in
each vertical section through the diagram, then the independence of operations
on distinct cells is reflected topologically. For example, we can freely reorder set
operations on distinct cells, without changing the semantics of the program:

set

set set

set

Note that these actions are no longer scalars: they have resource strings that
carry a value of the type of the memory cell. It is in this sense that we consider
these morphisms as resourceful traces, that is, traces in which actions are not merely
atomic names, as in Mazurkiewicz traces, but also have input and output types, e.g.
set : X → I, for a memory cell storing data of type X.

We begin to formalize these pictures by introducing the following notion of
signature, device graphs. These are monoidal graphs equipped with a set of devices
and an assignment of a subset of devices to each process.

Definition 4.2.1. A device graph is given by

• a monoidal graph, s, t : P ⇒ R∗,

• a finite set of devices D, and

• a function d : P →P(D), specifying a set of devices used by each generator.

We shall speak of the sorts R of the monoidal graph as resources. Intuitively,
the effectful category generated by a device graph will have morphisms the string
diagrams built from the device graph, with the restriction that each device appears
exactly once in every slice of the diagram. Note also that, unlike the resources
in the source and target of a generator, devices, which occur both in the source
and target of the corresponding string diagrams, do not occur in any particular
order. In Definition 4.2.4, we will fix an order, in order to treat a device graph as
an ordinary monoidal graph. However, the use of cliques, as in the previous section,
will allow us to use diagrams in which devices occur in any order to reason about
the morphisms of effectful categories.
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The graphical representation of a generator α in a device graph is as for monoidal
graphs, but for every device used by the generator we add a dashed string entering
and exiting the box, corresponding to the device. We shall generally use colours to
represent distinct devices.

Definition 4.2.2. A morphism of device graphs f : (P,R,D, d) → (P ′, R′,D′, d′)
comprises

• a morphism of the underlying monoidal graphs (fS : R→ R′, fG : P → P ′),

• such that for all g, h ∈ P , if d(g) ∩ d(h) = ∅, then d′(fG(g)) ∩ d′(fG(h)) = ∅.

Device graphs and their morphisms form a category, DevGraph.

This definition of device graph morphism reflects an important property of strict
premonoidal functors, namely that they preserve interchanging morphisms.

Our construction of the effectful category freely generated by a device graph
will be very much along the lines of Section 4.1. We take as objects the following
cliques.

Definition 4.2.3. The device clique, ClD[X1, ..., Xn], on a list of resources X⃗ =
X1, ..., Xn ∈ R in a device graph with devices D is a full subcategory of a certain
freely generated monoidal category, which we describe first. This monoidal category
has the following generators, for every device Di, Dk and distinct resource Xj ∈ X⃗,

• σi,j : Di, Xj → Xj , Di

• σ−1
i,j : Xj , Di → Di, Xj

• σ′
i,k : Di, Dk → Dk, Di

• σ′−1
i,k : Dk, Di → Di, Dk

quotiented by the equations that witness σ−1 and σ′−1 as left- and right-inverses of
σ and σ′. In other words, we may swap any two resources and devices, and any two
devices, but we do not allow resources to swap. The set of objects on which we take
the full subcategory is the set of all the shufflings of the ordered list of resources
into permutations of the list of all devices,∐

σ∈Perm(D)

Shuf([X1, ..., Xn], σD).

An element of Shuf([X1, ..., Xn], σD) is a list of length n+ |D|, which contains all
the elements of each list exactly once, preserving their relative order.

For example, let D = {D1, D2}, then the clique ClD[X1, X2] has nine ob-
jects: D1D2X1X2; D1X1D2X2; D1X1X2D2; X1X2D1D2; X1X2D2D1;
X1D2X2D1; X1D2D1X2; D2X1D1X2; D2D1X1X2.
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For morphisms, we proceed in two stages. Firstly, we treat the device graph as a
monoidal graph, freely generating a monoidal category subject to braiding of device
strings over resource strings. Then, the morphisms of the effectful category freely
generated by a device graph will be families of certain morphisms of this category,
namely those in which each device appears exactly once.

α

B1
Bm

……A1
An
D1 D1
Dk

…

Dk

… …

=

=

=
=

α
α =

=

=
=

Figure 4.3: Generators and equations for the device monoidal category on a device
graph (Figure 4.3). Generators and equations with pairwise distinct devices are
implied to be taken over every pair of devices.

Definition 4.2.4. The device monoidal category on a device graph D is the free
monoidal category presented by the generators and equations of Figure 4.3. To
define the monoidal graph in Figure 4.3, we fix an order on the set of devices.
For each α with s(α) = A1...An, t(α) = B1...Bm and D = {D1, ...Dk}, we take a
generator α as above, where D1 < ... < Dk in the chosen order on devices. We
also take braidings of every device over every object, and braidings of every device
over every other device. We ask that whenever α does not use a certain device
that we can slide it past this device, that the braidings are symmetries, and that
Yang-Baxter equations hold (Figure 4.3, right).

Note that the extra complication of explicitly allowing device strings to braid
could be obviated by simply asking for the free symmetric monoidal category on the
generators α, as in the definition of the runtime monoidal graph in Section 3.10.4.
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However, this would also allow resources to braid. While this may be acceptable in
some cases, we choose to present the general case.

Definition 4.2.5. A device clique morphism ClD[X1, ..., Xn]→ ClD[Y1, ..., Ym] over
a device graph D is a family of morphisms in the device monoidal category on D
from each of the objects of the first clique, to each of the objects of the second,
which moreover commute with the isomorphisms of the braid cliques.

The requirement that each morphism of the family commutes with the isomor-
phisms of the device cliques, means that one component of the family determines
the others.

Proposition 4.2.6. There is a strict premonoidal category FpD with objects the
device cliques over D and morphisms the device clique morphisms.

Proof. Identities are determined by identity string diagrams, and composition
is induced by composition of string diagrams. The unit object is the device
clique on the empty list. For device cliques ClD[X1, ...Xn] and ClD[Y1, ..., Ym],
define ClD[X1, ...Xn]⊗ ClD[Y1, ..., Ym] := ClD[X1, ...Xn, Y1, ..., Ym]. Left- and right-
whiskerings are induced by the string diagrams of Figure 4.4.

α

B1
Bm

……A1
An
D1 D1
Dk

…

Dk

… …

C1
Cp

……C1
Cp α

B1
Bm

……A1
An

D1 D1
Dk

…

Dk

… C1
Cp

……

C1
Cp

Figure 4.4: Left- and right- whiskerings in FpD, denoted ClD[C1, ..., Cp] ◁ α, α ▷
ClD[C1, ..., Cp] respectively.

Proposition 4.2.7. A device graph D freely generates an effectful category

FeD : F⊗D∅ → FpD

where F⊗D∅ is free monoidal category on the generators of the device graph having
no devices, and FpD is the premonoidal category with objects the device cliques and
morphisms the device clique morphisms constructed in Proposition 4.2.6.

Proof. We define a functor FeD : F⊗D∅ → FpD strictly preserving the pre-
monoidal structure, and with central image. On objects, we define X1 ⊗ ...⊗Xn 7→
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4.3. Resourceful traces for message passing processes

ClD[X1, ..., Xn], and the action on morphisms is induced by the mapping in Fig-
ure 4.5, where D1, ..., Dk are all of the devices of D. By drawing the necessary
string diagrams, one easily sees that the image is central, using the equations of
Figure 4.3. Preservation of left whiskering is immediate, and preservation of right
whiskering follows from the symmetry equations of Figure 4.3.

α
B1
Bm

……A1
An
D1 D1
Dk

…
Dk

… …

α
B1
Bm

……A1
An

↦

Figure 4.5: Inclusion of central morphisms.

Remark 4.2.8. Although this construction is morally the free effectful category
over a device graph, more work is required to show that this construction extends
to a left adjoint functor. Since, as we shall see in Section 4.4, not every effectful
category has an underlying device graph (since the putative number of devices may
be infinite), this poses a challenge to the construction of the right adjoint, if we are
to use string diagrammatic syntax. We leave the extension of these constructions
to the case of an infinite number of devices to future work.

Definition 4.2.9. A device presentation of an effectful category is given by a device
graph, along with a set of equations between string diagrams over the device graph.

Since Mazurkiewicz traces – the actions of which are atomic, i.e. merely names –
are the morphisms of the free effectful category presented by device graphs having
no resources (Section 4.1), we can think of the morphisms of effectful categories
presented by devices as resourceful traces, that is traces in which actions are no
longer merely names, but also may transform resources. In the next section, we
look at an example arising from the theory of message passing concurrency.

4.3 Resourceful traces for message passing processes
In this section, we give an example of resourceful traces (i.e. an effectful category
presented by devices) arising from a model of communicating concurrent processes
based on the free cornering of a monoidal category. We only give a high-level
overview of the concepts involved – for more details on the free cornering, see Nester
[67, 68] (though note that our diagrams below swap the horizontal and vertical
dimensions).

The free cornering of a monoidal category is formally defined as a particular
(single object) double category, which can be given a convenient presentation using

81



From Mazurkiewicz Traces to Resourceful Traces

A A'α C C'γB'B β D D'δ

D

C

A

B

Figure 4.6: Shapes of cells in the free cornering of a monoidal category.

string diagrams in which morphisms (cells) additionally have strings entering from
the top and exiting from the bottom. Figure 4.6 shows the relevant four types of
cells present in a double category such as the free cornering of a monoidal category.

In the free cornering of a monoidal category, the objects labelling the strings
entering and exiting the top and bottom of a cell are polarizations of the objects
in the monoidal category: we indicate the polarization by annotating the strings
with arrow heads. This notation suggests the intended semantics of the cells: they
are processes which, in addition to transforming resources from left to right, may
also receive a resource from the top or bottom, or pass a resource to the top or
bottom. In a double category, we can compose cells horizontally, as in a monoidal
category, but also vertically. In the free cornering, vertical composition is precisely
synchronization of resource passing between two processes.

Importantly, cells of the free cornering do not interchange in general, as in
Figure 4.7.

α

P

φ

Q

α

P

φ

Q

≠

Figure 4.7: Cells in the free cornering do not interchange in general.

The left-hand cell of Figure 4.7 denotes a process that first receives a P and
later outputs a Q, whereas this is reversed in the other cell: the resource passing
protocols are different from the perspective of the actor on the top. On the other
hand, certain pairs of cells do commute, as in Figure 4.8.

The situation is summarized by the fact that the free cornering has an underlying
effectful category presented by two devices, one corresponding to the top, and one
to the bottom, which we might conceive of as the ends of a bidirectional channel.
This gives rise to a device graph as shown in Figure 4.9.

The effectful category presented by this device graph gives a simplified represen-
tation of the processes in the free cornering: it abstracts away from the message
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γ

β β

γ
=

Figure 4.8: We can interchange cells when it does not change the top and bottom
boundary protocols.

A A'α B'B β C C'γ D D'δ

Figure 4.9: Device graph corresponding to Figure 4.6.

passing protocols, recording only the transformations of resources from left to right,
but in a way that records topologically the independence between the actions in
the process.

A α

C'γ

B'β

P φ

A α B'β

C'γφP

Figure 4.10: A cell in the free cornering (left) and the corresponding resourceful
trace (right).

4.4 Independence and distribution for premonoidal cate-
gories

In this section, we show how a device presentation can be extracted from a pre-
monoidal category. We use a similar construction to that of Section 3.10.1, where
we obtained a distribution of an alphabet from an independence relation on it by
taking maximal cliques in the graph of the associated dependence relation. The
graph we consider here is the following.

Definition 4.4.1. The interference graph of a premonoidal category C has vertices
the morphisms of C, and an edge f ↔ g just when f and g do not interchange.

83



From Mazurkiewicz Traces to Resourceful Traces

The interference graph of a premonoidal category sometimes determines a device
presentation which we call its intrinsic device presentation.

g

f

h

ji

Figure 4.11: Illustrative interference graph of a premonoidal category.

hgf i j

Figure 4.12: The device graph corresponding to the interference graph of Figure 4.11.
Types of the resource strings are omitted.

Definition 4.4.2. When the interference graph of a premonoidal category C has a
finite number of non-trivial maximal cliques, it determines a device presentation
called the intrinsic device presentation, with set of devices equal to the set of
non-trivial maximal cliques, underlying monoidal graph given by the morphisms of
C, and assignment of devices to a morphism by the set of maximal cliques to which
it belongs. Finally, the equations are given by all those holding in C.

Example 4.4.3. Monoidal categories have intrinsic device presentations with no
devices: since every pair of morphisms interchanges, every maximal clique is trivial.

Proposition 4.4.4. Not every premonoidal category admits an intrinsic device pre-
sentation.

Proof. By presenting a premonoidal category with a countably infinite number of
morphisms N, in which 0 interferes with every i ∈ N ∖ {0} but all other pairs of
morphisms are independent, then 0 lies in an infinite number of maximal cliques
and so the putative set of devices is not finite.

4.5 Centralizers in effectful categories
Given an effectful morphism equipped with some set of devices, we can ask for all
the processes that interchange with it: intuitively, these are precisely the morphisms
not using any device from the set. More generally, for any set of morphisms in an
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4.5. Centralizers in effectful categories

effectful category, we obtain a subcategory of processes interchanging with every
morphism in the set.

When an effectful category admits an intrinsic device presentation (Section 4.4),
it stratifies into a partial order of centralizers, each of which models a subset of its
devices.

Definition 4.5.1. A morphism f : a→ b in a (strict) effectful category E : V→ C
interchanges or commutes with a morphism g : c → d just when the following
equations (Figure 4.13) hold in C.

A B

gC D
=

fA B

gC D

f

A
B

gC D=
fA

B

gC D

f

Figure 4.13: f and g interchange.

Proposition 4.5.2. Let E : V→ C be an effectful category, and D a set of morphisms
in C. Define the centralizer CD of C with respect to D to have objects those of
C and morphisms all those of C interchanging with every morphism of D. The
centralizer CD is an effectful subcategory over V.

Proof. Let f : a → b, g : b → c be morphisms in CD, then their composite in C
must also be in CD, as witnessed by the following string diagrams, using first the
interchanging property of g then f (with the same argument holding for morphisms
h tensored on the top),

fA g C

hB D
=

fA g C

hB D
=

fA g C

hB D

Furthermore, identities and structural isomorphisms of C are central and hence
give the identities and structural isomorphisms of CD. We can now define the
premonoidal structure on this category. The tensor product of objects is given by
that in C. Likewise we define left and right-whiskerings to be those of C. This is
well-defined, since as witnessed by the following string diagrams, if f is in CD then
so is a ◁ f , with a similar argument holding for right-whiskering.
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fB C

hD E

=
A A

fB C

hD E

A A

Definition 4.5.3. Let C be an effectful category presented by devices, and let D be a
subset of the devices. The device centralizer CD with respect to D is the centralizer
of C with respect to the set of morphisms whose devices are contained in D.

Intuitively, the device centralizer CD of a set of devices D contains all those
processes that do not use any of the devices in D, which leads to the following
proposition.

Proposition 4.5.4. Every effectful category C with an intrinsic device presentation
admits a poset of device centralizers, each corresponding to a subset of the devices
of C, with least element its center, greatest element C, and CD ⩽ CD′ just when
D ⊇ D′.

4.6 Commuting tensor product of effectful categories

In their wide-ranging analysis of the notion of commutativity, Garner and López-
Franco [37] introduced the commuting tensor product of categories enriched in
a duoidal category. In the case of one-object categories enriched in the duoidal
category of strong profunctors (with respect to composition and convolution), this
implies the existence of a notion of commuting tensor product of strong promonads,
i.e. of effectful categories (termed generalized Freyd categories by Garner and López-
Franco). We agree that this notion “may be of interest to computer scientists”; for
example, the commuting tensor product of the theory of a memory cell with itself is
precisely the theory of two non-interacting memory cells, as sketched in Section 4.2.
In this section we show how to construct the commuting tensor product in general,
and show that it satisfies the universal property of Garner and López-Franco.

We shall denote the effectful categories corresponding to strong promonads
A,B, ... by calligraphic letters A,B. We work with these notions over a fixed
monoidal base V.

Definition 4.6.1 (Garner and López Franco [37], Equation 9.6). A cospan of strong
promonads F : A → K ←− B : G over V is a commuting cospan when for each
f ∈ A(a, a′) and g ∈ B(b, b′), the following square commutes in the Kleisli category
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4.6. Commuting tensor product of effectful categories

of K.
a⊗ b a′ ⊗ b

a⊗ b′ a′ ⊗ b′

Ff▷b

a◁Gg a′◁Gg

Ff▷b′

(4.1)

Example 4.6.2. For disjoint sets of devicesD1, D2 of an effectful category C presented
by devices, the device centralizers CD1 and CD2 , with their inclusions, form a
commuting cospan over C.

Garner and López-Franco characterize the commuting tensor product of duoidally
enriched categories via the following universal property:

Definition 4.6.3 (Garner and López Franco [37]). The commuting tensor product
A⊙B of V-categories A and B is the object representing V-bifunctors from A and
B, when it exists. That is, there is a natural isomorphism

V-BiFun(A,B;−) ∼= V-Cat(A⊙B;−).

In the case of strong promonads considered as one object V = StrProf(V,V)
enriched categories, this reduces to the following.

Proposition 4.6.4. Let A,B be strong promonads over V. Their commuting tensor
product A ⊙ B is the apex of the initial commuting cospan over A and B in the
category of strong promonads over V.

A⊙B

A K B

ql

f

r

g

We denote the corresponding effectful category by A⊙ B.

Proof. It suffices to recognize that bifunctors from A and B are equivalent to
commuting cospans over A and B in the case of one object V-categories, as remarked
by Garner and López Franco [37, §4]. The diagram then follows from the natural
isomorphism of Definition 4.6.3.

4.6.1 Presenting the commuting tensor product by devices
In this section, we show how to construct the commuting tensor product of effectful
categories in a simple manner, using a device presentation, where each factor of the
tensor product is assigned a distinct device.

Theorem 4.6.5. The commuting tensor product A ⊙ B of two effectful categories
ηA : V→ A and ηB : V→ B over V admits the device presentation of Figure 4.14.
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From Mazurkiewicz Traces to Resourceful Traces

ν ∈ 𝕍(V1⊗…⊗Vn;V1'⊗…⊗Vm')

=  {         },

η•(ν)V V'=
νV V'

γ1 γ2 γ1;γ2 id ==
(1) (2)

α⊗Bα id⊗α=
α⊗Bα α⊗id=

(3) (4)

(5)

β ∈ 𝔹(B1⊗…⊗Bn;B1'⊗…⊗Bm')

β

……

ν

……

α ∈ 𝔸(A1⊗…⊗An;A1'⊗…⊗Am')

α
A1'
Am'

……A1
An

B1
Bn

B1'
Bm'

V1'
Vm'

V1
Vn

Figure 4.14: Presentation of the commuting tensor product of effectful categories
by devices: each effectful category becomes a distinct device.

Proof. We show that the strong promonad corresponding to the effectful category
presented by Figure 4.14 satisfies the universal property of Proposition 4.6.4. We
first describe the cospan l : A → A ⊙ B ←− B : r. It will suffice to describe the
left leg, as the right is analogous. l : A → A ⊙ B has components lv,v′ sending
morphisms v → v′ in A to the corresponding generator in A⊙B. These components
are natural as a result of equations (1), (2) and (5), since these allow us to prove
the equality in Figure 4.15.

η•(g);α;η•(f) = η•(g) η•(f)α
g α

=
f

Figure 4.15: Naturality of the canonical map l : A→ A⊙B, where α is a morphism
of A.

The unit law for promonad morphisms is satisfied as a result of equation (5). The
multiplication law for promonad morphisms is satisfied as a result of equations (1)
and (2). Equations (3) and (4) ensure that this morphism preserves the strengths.
Furthermore, this cospan is commuting (Definition 4.6.1), as witnessed by the
equality of string diagrams in Figure 4.16.

We now show that this cospan is the initial commuting cospan. Let F : A −→
K ←− B : G be another commuting cospan. We define the universal morphism of

88



4.6. Commuting tensor product of effectful categories

αA A'

B

A

BB'
=

β

α

β

A'

B'

Figure 4.16: Equation (4.1) holds for the universal cospan l : A→ A⊙B ←− B : r.

strong promonads q : A⊙B → K on generators as follows

α : a→ a′ 7→ Fa,a′(α)
β : b→ b′ 7→ Gb,b′(β),
ν : v → v′ 7→ Fv,v′(ηAv,v′(ν)) = Gv,v′(ηBv,v′(ν)) = ηKv,v′(ν)

where the last equalities holds by the unit law of promonad morphisms. We
need to show that images of these generators satisfy the corresponding equations
of Figure 4.14. Equation (1) follows from the multiplication laws of promonad
morphisms, and equation (2) follows from the naturality of the components of F and
G. Equations (3) and (4) follow from strength preservation laws of strong promonad
morphisms. Equation (5) follows from the unit law of promonad morphisms.
Therefore q is a well-defined morphism of strong promonads. The equations l # q = F

and r # q = G hold by definition, and q is easily checked to be the unique such
morphism making the diagram commute.

Remark 4.6.6. We expect that we can give a formal semantics to string diagrams
with devices via the monoidal category of pointed bimodular categories, following
the notion of collages of string diagrams introduced by Braithwaite and Román
[14]. The idea is that effectful categories over V can be seen as certain categories
equipped with compatible left- and right- actions of V, i.e. as certain bimodular
categories, as noted by Levy [55].
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Chapter 5
Context-Free Languages of String
Diagrams

In this chapter, we introduce context-free languages of string diagrams. These
include classical context-free languages, but also context-free languages of trees and
hypergraphs, when established over appropriate monoidal categories. In more detail,

• We recall the definition of context-free grammars over categories as morphisms
of multigraphs. — Section 5.1

• We recall the splice-contour adjunction for multicategories. — Section 5.2

• We introduce the symmetric multicategory of diagram contexts over a monoidal
category. — Section 5.3

• We introduce context-free grammars over monoidal categories along with their
key examples. — Section 5.4

• We introduce the construction of raw optics and its left adjoint, optical contour.
— Section 5.5

• We use this adjunction to prove a representation theorem for context-free
languages of string diagrams in terms of regular languages of string diagrams.
— Section 5.6

The results of this chapter appear in the preprint [29].
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5.1. Context-free grammars as morphisms of multigraphs

5.1 Context-free grammars as morphisms of multigraphs
In Chapter 3, we saw how regular grammars are fruitfully thought of as morphisms
of directed graphs. In this section, we see that by changing directed graphs to
multi-input, single-output multigraphs, we can obtain context-free grammars in
a similar fashion. This idea is not original to us; its roots go back to Walters
[88], with recent refinement and extension by Melliès and Zeilberger [62, 63]. This
point of view, as in the regular case, is simple and powerful. It suggests natural
generalizations of context-free grammars, such as we pursue in the central part of
this chapter (Section 5.4), and new conceptual tools for reasoning about them, such
as the splice-contour adjunction (Sections 5.2 and 5.5).

5.1.1 Context-free languages in monoids and other categories
A rule in a context-free grammar can always be written in the form

R→ w1R1w2...Rn−1wn,

where R,Ri are non-terminals, and wi are (possibly empty) words over an alphabet
Σ. Melliès and Zeilberger [63] noticed that this data may be arranged as an operation
R1, ..., Rn → R in a multigraph over an n-ary operation w1− ...−wn called a spliced
word: a word with n gaps, as in Figure 5.1.

More precisely, let us write |WΣ∗| for the multigraph with one object, and whose
n-ary operations are spliced words over Σ with n gaps. Context-free grammars over
Σ are exactly captured by morphisms of multigraphs R → |WΣ∗|, where R is a
finite multigraph, along with a start symbol S ∈ SR.

The multigraph |WΣ∗| is the underlying multigraph of the following multicate-
gory, which is defined over any category, not necessarily the free monoid Σ∗.

Definition 5.1.1 (Melliès and Zeilberger [63]). The multicategory of spliced arrows,
WC, over a category C, contains, as objects, pairs of objects of C, denoted as A

B.
Its multimorphisms are morphisms of the original category, but with n “gaps” or
“holes”, into which other morphisms (with holes) may be spliced. More precisely,
the multimorphisms of WC are given by:

WC(A1
B1
, . . . ,An

Bn
;XY ) := C(X;A1)×

n−1∏
i=1

C(Bi;Ai+1)× C(Bn;Y ).

As a special case, nullary multimorphisms are morphisms of C, that is WC(;XY ) :=
C(X;Y ). Identities are given by pairs of identities of the original category, multi-
categorical composition is derived from the composition of the original category.

We can now present a context-free grammar in terms of a morphism of multi-
graphs from a multigraph of non-terminals to the underlying multigraph of spliced
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↦

R

R1

R wnR1 Rn-1w1 w2
���

wnw1 w2
������

Rn-1

Figure 5.1: (Left) Generic form of a context-free rule. (Right) Context-free rules as
a morphism of multigraphs into spliced arrows; here, spliced arrows in a monoid.

arrows, as in Figure 5.1.

Definition 5.1.2 (Melliès and Zeilberger [63]). A context-free grammar of morphisms
in a category C is a morphism of multigraphs G→ |WC| and an object S in G (the
start symbol).

By the free-forgetful adjunction between multicategories and multigraphs, mor-
phisms φ : G → |WC| and multifunctors φ̂ : F▽G → WC are in bijection. This
allows for a slick definition of the language of a grammar, akin to Definition 3.3.2.

Definition 5.1.3 (Melliès and Zeilberger [63]). Let G = (φ : G → |WC|, S) be a
context-free grammar of morphisms in C. The language of G is given by the image
of the set of derivations F▽G(;S) under the multifunctor φ̂.

Remark 5.1.4. When C is a finitely generated free monoid considered as a one-object
category, then context-free grammars over C correspond precisely to the classical
context-free grammars.

5.2 The splice-contour adjunction: categories and multi-
categories

An important realization of Melliès and Zeilberger is that the operation of forming the
multicategory of spliced arrows in C has a left adjoint. That is, every multicategory
gives rise to a category called the contour of M, and this contouring operation is
left adjoint to splicing.

Definition 5.2.1 (Melliès and Zeilberger [63]). The contour category CM of a
multicategoryM is the category presented by the following generators and equations.

• Objects are polarized objects of M : XL and XR for every X ∈Mobj,

• morphisms are (p, i) : XR
i → XL

i+1 where 0 ⩽ i ⩽ n and p : X1, ..., Xn → X is
an operation of M , with XR

0 := XL, XL
i+1 := XR,

92
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quotiented by the equations

(f ◦i g, j) =



(f, j) j < i

(f, i) ◦ (g, 0) j = i

(g, j − i) i < j < i+m

(g,m) ◦ (f, i+ 1) j = i+m

(f, j −m+ 1) j > i+m

(f ◦i c, j) =


(f, j) j < i

(f, i) ◦ (c, 0) ◦ (f, i+ 1) j = i

(f, j + 1) j > i

whenever they are well-typed, where c is an operation of arity 0.

These equations simply say that contours of composites come from composites
of contours in the expected way.

Proposition 5.2.2 (Melliès and Zeilberger [63]). Contour and splice extend to functors
C : MultiCat→ Cat and W : Cat→ MultiCat, and contour is left adjoint to splice,
C ⊣ W.

Contours give a conceptual replacement for Dyck languages in the classical theory
of context-free languages: they linearize the shape of derivation trees.

In Section 5.5.2, we define a new contour of multicategories which we call the opti-
cal contour ; we shall use it to prove a representation theorem for languages of string
diagrams (Theorem 5.6.13), inspired by the generalized Chomsky-Schützenberger
representation theorem proved by Melliès and Zeilberger.

Remark 5.2.3. In work with Román and Hefford [27], we refined the contour-
splice adjunction from multicategories to promonoidal categories: the splice of a
category has the structure of a promonoidal category (which may be viewed as a
multicategory with the extra property of malleability [75]), and every promonoidal
category gives rise to a contour category, whose construction slightly simplifies that
of Definition 5.2.1.

Remark 5.2.4. Walters’ [88] representation of context-free grammars using multi-
graphs is slightly different from that of Melliès and Zeilberger, using instead the
free category with finite products on a multigraph, following his investigation of its
2-categorical universal property [90]. In particular, it forces grammars to be in a
normal form similar to Chomsky normal form.
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5.3 Diagram contexts
In order to lift Definition 5.1.2 to categories with monoidal structure, we need an
appropriate multicategory of spliced arrows in a monoidal category. Of course, the
multicategory of spliced arrows is defined for any category, regardless of whether
it may carry any monoidal structures. However, in a monoidal category it is
natural to consider more general kinds of holes than provided by the spliced arrows
construction.

Figure 5.2 illustrates this more general kind of hole, in which the hole may be
surrounded by strings. This kind of monoidal morphism with a hole has appeared
in the literature under various names, such as optics [18, 76], contexts, or wiring
diagrams [69].

Moreover, it becomes necessary to consider these more general holes in order to
naturally capture context-free languages of hypergraphs and trees as examples of
context-free monoidal languages.

Figure 5.2: (Left) A spliced arrow is a tuple of morphisms. (Right) In a monoidal
category, there is the possibility of more general holes, which do not split a morphism
into disjoint pieces.

Substituting another diagram context inside a hole induces a symmetric multi-
categorical structure on the diagrams: symmetry means that we do not distinguish
the specific order in which the holes appear. This allows us to avoid declaring a
particular ordering of holes when defining a context-free monoidal grammar. The
device that allows us to avoid declaring a particular ordering is shufflings; their use
in categorical logic is inspired by the work of Shulman [84]. As in Section 4.2, we
write Shuf(Γ,∆) for the set of shufflings of the context Γ into ∆, that is, the set of
lists of length |Γ|+ |∆|, containing the elements of each list while preserving their
relative orders.

For instance, if Γ = [ x , y , z ] and ∆ = [ u , v ], then [ x , u , y , z , v ], is an
element of Shuf(Γ,∆), but not [ y , u , z , x , v ]. The rules for diagram contexts
introduce a shuffling every time it mixes two contexts: this way, if a term was
derived by combining two contexts, we can always reorder these contexts by a
shuffling. For instance, the term u , v ⊢ u # v was derived from composing the
axioms u ⊢ u and v ⊢ v ; by choosing a different shuffling, we can also derive the
term v , u ⊢ u # v . Let us now formally introduce diagram contexts.

Definition 5.3.1. Diagram contexts P over a monoidal graph, P, are terms-in-
context given inductively by the following type theory. In these rules, the variables
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A,B,C, ... ∈ P∗
obj stand for lists of objects in the monoidal graph.

Identity

⊢ id : AA

Generator

⊢ f : X1,...,Xn

Y1,...,Ym

Hole

x : A
B ⊢ x : A

B

Sequential
Γ ⊢ t1 : A

B ∆ ⊢ t2 : BC Ψ ∈ Shuf(Γ;∆)

Ψ ⊢ t1 # t2 : A
C

Parallel
Γ ⊢ t1 : A1

B1
∆ ⊢ t2 : A2

B2
Ψ ∈ Shuf(Γ;∆)

Ψ ⊢ t1 ⊗ t2 : A1++A2
B1++B2

Every term in a given context has a unique derivation. We consider terms up to α-
equivalence and we impose the following equations over the terms whenever they are
constructed over the same context: (t1#t2)#t3 = t1#(t2#t3); t#id = t; t1⊗(t2⊗t3) =
(t1⊗t2)⊗t3; (t1#t2)⊗(t3#t4) = (t1⊗t3)#(t2⊗t4).
Proposition 5.3.2. Derivable sequents in P form a multicategory, which we also
denote by P . The objects of the multicategory are pairs A

B of objects P∗
obj, and

multimorphisms P (X1
Y1
, ...,Xn

Yn
; ST) are (equivalence classes) of terms in context,

x1 : X1
Y1
, ..., xn : Xn

Yn
⊢ t : S

T

and composition is given by substitution.

Proposition 5.3.3. The multicategory of derivable sequents in the theory of diagram
contexts is symmetric. In logical terms, exchange is admissible in the theory of
diagram contexts.

Proof. Assume we derived a term Γ, u , v ,∆ ⊢ t; let us show we could also derive
Γ, v , u ,∆ ⊢ t. We proceed by structural induction, recurring to the first term
where the variables u and v appeared at two sides of the rule: this rule must
have been of the form t1 # t2 or t1 ⊗ t2 for Γ1, u ,∆1 ⊢ t1 and Γ2, v ,∆2 ⊢ t2,
where Γ ∈ Shuf(Γ1; Γ2) and ∆ ∈ Shuf(∆1;∆2). In that case, we can deduce that
Γ, v , u ,∆ ∈ Shuf(Γ1, u ,∆1; Γ2, v ,∆2); as a consequence, Γ, v , u ,∆ ⊢ t can be
derived.

Proposition 5.3.4. Derivable sequents in the theory of diagram contexts over a
monoidal graph P form the free strict monoidal category over the monoidal graph
extended with special “hole” generators, P + {hA,B : A → B | A,B ∈ P∗

obj}.
Derivable sequents over the empty context form the free strict monoidal category
over the monoidal graph P. Moreover, there exists a symmetric multifunctor
i : |F⊗P| → P interpreting each monoidal term as its derivable sequent.
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Proof. We proceed by structural induction. We first note that the three axioms of
the logic correspond to terms of the free strict monoidal category over the monoidal
graph P + {hA,B | A,B ∈P∗

obj}. The first corresponds to identities, the second
corresponds to generators, and the third, when employed with types A and B,
corresponds to the additional generator hA,B. We then note that the two binary
rules correspond to sequential and parallel composition, thus obtaining the classical
algebraic theory of monoidal terms over the monoidal graph P + {hA,B | A,B ∈
P∗

obj}.
Quotienting over the equations of monoidal categories, as we do when we impose

the equations of the theory of diagram contexts, recovers the free strict monoidal
category: in a tautological sense, the free strict monoidal category is precisely
the one generated by the operations of a monoidal category quotiented by the
axioms of a monoidal category. This contrasts sharply with a much more interesting
description of the free strict monoidal category: that using string diagrams. As
both are exhibited as satisfying the same universal property, they are necessarily
equivalent.

As a particular case, a derivable sequent over the empty context must, by
structural induction, avoid any use of the holes. As a consequence of the previous
reasoning, it is generated from the monoidal graph P and it must be a morphism
of the free strict monoidal category.

Finally, the symmetric multifunctor can be described by structural induction: it
preserves identities, holes, sequential and parallel compositions, and it sends each
monoidal term with no holes h ∈ |F⊗P| to its derivation under the empty context,
h ∈ P .

Definition 5.3.5. The theory of diagram contexts over a finitely presented monoidal
category is the theory of diagram contexts over the generators of the monoidal
category, quotiented by the least congruence on terms generated by its equations.

Proposition 5.3.6. Taking diagram contexts in a monoidal category or monoidal graph
extends to functors : MonCat → MultiCat and : MonGraph → MultiGraph,
which moreover commute with the free multicategory F▽ and free monoidal category
functors F⊗.

Remark 5.3.7. This multicategory is similar to the operad of directed, acyclic
wiring diagrams introduced by Patterson, Spivak and Vagner [69], whose operations
are generic morphism shapes, rather than holes in a specific monoidal category.
Moreover, we expect that this multicategory should be recoverable as a canonical
underlying multicategory of the produoidal category of contexts introduced by
Hefford, Román and the present author [27].

At this point, the reader may doubt that the formation of diagram contexts has
a left adjoint similar to the contour functor for spliced arrows. Indeed, in order to
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recover a left adjoint, we shall need to introduce another multicategory of diagrams
which we call raw optics. This technical device will allow us to prove our main
theorem (Theorem 5.6.13). However, let us first see the definition of context-free
monoidal grammar, and some examples.

5.4 Context-free monoidal grammars
We now have the ingredients necessary to define context-free monoidal grammars.
Intuitively, such a grammar specifies a language of string diagrams via a collection
of rewrites between diagram contexts, where the non-terminals of a context-free
grammar are now (labelled) holes in a diagram (e.g. Figure 5.3). Our definition is
entirely analogous to Definition 5.1.2, but using our new symmetric multicategory
of diagram contexts in a monoidal category, instead of spliced arrows.

Definition 5.4.1. A context-free monoidal grammar over a strict monoidal category
(C,⊗, I) is a morphism of symmetric multigraphs Ψ : G → | C |, into the underlying
multigraph of diagram contexts in C, where G is finite, and a start object SX,Y ∈
Ψ−1(XY ).

We shall again use the notation S ⊏ A
B to indicate that Ψ(S) = A

B. A morphism
of symmetric multigraphs Ψ : G → | C | defining a grammar uniquely determines,
via the free-forgetful adjunction, a symmetric multifunctor Ψ̂ : F▽G → C , mapping
(closed) derivations to morphisms of C. The language of a grammar is then defined
analogously to Definition 5.1.3:

Definition 5.4.2. Let (Ψ : G → | C |, S ⊏ A
B) be a context-free monoidal grammar.

The language of Ψ is the set of morphisms in C(A;B) given by the image under
Ψ̂ of the set of derivations F▽G(;S). A set of morphisms L in C is a context-free
monoidal language if and only if there exists a context-free monoidal grammar
whose language is L.

Let us see some examples.

Example 5.4.3 (Classical context-free languages). Every context-free monoidal
grammar of the following form is equivalent to a classical context-free grammar of
words. Let Γ be a single-sorted finite monoidal graph whose generators are all of
arity and coarity 1. Then context-free monoidal grammars over F⊗Γ with a start
symbol φ(S) ⊏ 1

1 are context-free grammars of words over Γ. Figure 5.3 gives the
classical example of balanced parentheses. Similarly, every context-free grammar of
words may be encoded as a context-free monoidal grammar in this way.

Example 5.4.4 (Regular monoidal languages). Regular monoidal languages are
context-free monoidal languages: let R = (φ : G→ Γ, i, f) be a regular monoidal

97



Context-Free Languages of String Diagrams

( ( S ( (SS S SS

Figure 5.3: Balanced parentheses as a context-free monoidal grammar over the
monoidal graph Γ (left).

grammar. We lift this to a context-free monoidal grammar using the diagram
contexts functor (Proposition 5.3.6), giving φ : G → Γ . Now, G will not be
finite, since it has as objects pairs of lists of objects of G. However, it suffices to
replace it by the full submulticategory G

′ on (pairs of) lists of length less than
or equal to the maximum over the arities and coarities of Γ. Next, one takes the
free monoidal functor F⊗φ on this morphism of monoidal graphs, and finally we
commute F⊗ and (Proposition 5.3.6). The pair i

f provides the start symbol.
Note that, while it is straightforward to characterize the classical context-free

grammars whose languages are regular, namely the left- or right-linear grammars,
such a characterization is less clear for monoidal grammars.
Example 5.4.5 (Context-free tree grammars). Context-free tree grammars [39, 82]
are defined over ranked alphabets of terminals and non-terminals, which amount
to monoidal graphs in which the generators have arbitrary arity (the rank) and
coarity 1. Productions have the form A(x1, ..., xm) → t where the left hand side
is a non-terminal of rank m whose frontier is labelled by the variables xi in order,
and whose right hand side is a tree t built from terminals and non-terminals, and
whose frontier is labelled by variables from the set {x1, ..., xm}. Note that t may
use the variables non-linearly.

For example, let S be a non-terminal with arity 0, A a non-terminal with arity 2,
f a terminal of arity 2, and x a terminal of arity 0 (a leaf). Then a possible rule over
these generators is A(x1, x2)→ f(x1, A(x1, x2)), where x1 appears non-linearly. In
order to allow such non-linear use of variables in a context-free monoidal grammar,
we can consider the free cartesian category over Γ. In terms of string diagrams, this
amounts to introducing new generators for copying ( ) and deleting variables
( ), which are natural and coherent in the sense of Definition 3.8.1.

Let Γ be a monoidal graph in which generators have arbitrary arity, and coarity
1, as above. Context-free monoidal grammars over the free cartesian category on Γ,
with a start symbol S ⊏ 0

1 are context-free tree grammars. In Figure 5.4 we extend
the above data to a full example. Note that by allowing start symbols S ⊏ 0

n, we
can produce forests of n trees.

Example 5.4.6. A language of (directed) series-parallel graphs is given by the
context-free monoidal grammar of Figure 5.5.
Example 5.4.7 (Unbraids). We return to the language of unbraids suggested in
Definition 3.4.4. Take the grammar over the over- and under-braiding monoidal
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S A
x

x
A

A
f A f

x

x f
f

x

x f
f

x

=

Figure 5.4: Example of a context-free tree grammar as a context-free monoidal
grammar. The string diagrams at the bottom are equal in the free cartesian category
over the monoidal graph of terminals.

S
S

S S SS
S

Figure 5.5: A context-free monoidal grammar of series-parallel graphs, with start
symbol S, over the alphabet containing a “node”, “branch”, and “merge” generators.

graph depicted in Figure 5.6, with start symbol S ⊏ 2
2. The language of this

grammar consists of unbraids on two strings.

S S S S S S S S

Figure 5.6: A context-free monoidal grammar of unbraids, with start symbol S.

Example 5.4.8 (Hyperedge-replacement grammars). Hyperedge-replacement (HR)
grammars are a kind of context-free graph grammar [34]. We consider HR grammars
in normal form in the sense of Habel [42, Theorem 4.1]. A production N → R of
an HR grammar has N a non-terminal with arity and coarity, and R a hypergraph
with the same arity and coarity1, whose hyperedges are labelled by some finite set
of terminals and non-terminals.

Just as trees are morphisms in free cartesian monoidal categories (Example 5.4.5),
hypergraphs are the morphisms of monoidal categories equipped with extra structure,
known as hypergraph categories [79, 11, 35]. Generators in a monoidal graph are
exactly directed hyperedges. The extra structure in a hypergraph category (viz.
special commutative Frobenius monoids on every object) amounts to a combinatorial
encoding of patterns of wiring between nodes.

1A multi-pointed hypergraph in Habel’s terminology.
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A
A A AS A

Figure 5.7: A hypergraph grammar for simple control flow graphs with branching
and looping, as a context-free monoidal grammar. Based on Habel [42, Example
3.3].

Let Γ be a monoidal graph of terminal hyperedges, G a multigraph of non-
terminal rules, and S ∈ G a start symbol. Then context-free monoidal grammars
(G → |Hyp[Γ]|, S) over the free hypergraph category on Γ are exactly hyperedge
replacement grammars over Γ (e.g. Figure 5.7). A hole in a morphism in Hyp[Γ]
is a placeholder for an (n,m) hyperedge, the grammar labels these holes by non-
terminals, and composition corresponds to hyperedge replacement.

5.5 Optical contour: left adjoint to diagram contexts
Unlike the spliced arrow construction of Melliès and Zeilberger (Definition 5.1.1),
we do not expect the formation of diagram contexts to have a left adjoint. The
intuitive reason for this is the quotienting built into diagram contexts: they may be
seen as equivalence classes of tuples of monoidal morphisms under the quotienting
of a coend. On the other hand, like the contour operation of Melliès and Zeilberger,
we wish to describe our optical contour as being generated by tuples of morphisms.
We must therefore first conduct a dissection of diagram contexts into raw optics.

5.5.1 The multicategory of raw optics
A raw optic is a tuple of morphisms obtained by cutting a diagram context into a
sequence of disjoint pieces. In Section 5.5.2 we shall see that raw optics has a left
adjoint, the optical contour, and this will be enough to prove our representation
theorem (Theorem 5.6.13).

Definition 5.5.1. The multicategory of raw optics over a strict monoidal category C,
denoted ROpt[C], is defined to have, as objects, pairs A

B of objects of C, and, as its
set of multimorphisms, ROpt[C](A1

B1
, ...,An

Bn
; ST), the following set

∑
Mi,Ni∈C

C(S;M1A1N1)×
n−1∏
i=1

C(MiBiNi;Mi+1Ai+1Ni+1)× C(MnBnNn;T ).

As a special case, ROpt[C](; ST) := C(S;T ). In other words, a multimorphism,
from A1

B1
, ...,An

Bn
to S

T , consists of two families of objects, M1, . . . ,Mn and N1, ..., Nn,
and a family of functions, (f0, ..., fn), with types f0 : S →M1 ⊗A1 ⊗N1; with fi :
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Figure 5.8: Two raw optics (left, centre) in ROpt[C](AB; ST) which quotient to the
same diagram context. Note that a raw optic is not the same as a spliced arrow:
the types M,N must match.

Mi⊗Bi⊗Ni →Mi+1⊗Ai+1⊗Ni+1; for each 1 ≤ i ≤ n−1; and fn :Mn⊗Bn⊗Nn → T .
In the special nullary case, we have a single morphism f0 : S → T .

Identities are given by pairs (idA, idB). Given two raw optics f = (f0, ..., fn) and
g = (g0, ..., gm), their composition is defined by

f #i g := (g0, ..., gi # (id ⊗ f0 ⊗ id), ..., id ⊗ fi ⊗ id, ..., (id ⊗ fn ⊗ id) # gi+1, ..., gn).

Every raw optic can be glued into a diagram context, as illustrated in Figure 5.8.
More precisely we have,

Proposition 5.5.2. There is an identity on objects multifunctor q : ROpt[C]→ C
mapping each raw optic to its corresponding diagram context. Equivalently, there
is an identity-on-objects symmetric multifunctor q∗ : clique(ROpt[C]) → C ; this
symmetric multifunctor is full.

Proof. The multifunctor q maps a tuple (f1 : S → M1X1N1, f2 : M1Y1N1 →
M2X2N2, ..., fn :Mn−1Yn−1Nn−1 → T ) to the derivable sequent

x1 : X1
Y1
, ..., xn−1 : Xn−1

Yn−1
⊢ f1#(M1⊗x1 ⊗N1)#f2#...(Mn−1⊗xn−1 ⊗Nn−1)#fn : S

T .

Functoriality follows from the unitality, asssociativity and interchange equations of
strict monoidal categories.

Proposition 5.5.3. Raw optics extends to a functor ROpt : MonCat→ MultiCat.

5.5.2 Optical contour of a multicategory
We now introduce the left adjoint to the formation of raw optics, which we call
the optical contour of a multicategory. The difference from the contour recalled in
Definition 5.2.1 is that additional objects Mi, Ni are introduced which keep track of
strings that might surround holes, and this gives rise to a strict monoidal category:
the contour category of Definition 5.2.1 does not have a monoidal structure.

Definition 5.5.4. Let M be a multicategory. Its optical contour, CM, is the strict
monoidal category presented by a monoidal graph whose generators are given
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YL
p

Y

A
M1
AL
N1

M1
AR
N1

p,0 (p,1)

M2
BL
N2

YR

p,2

M2
BR
N2

B

Figure 5.9: A multimorphism p ∈M(A,B;Y ) and its three sectors given by optical
contour: (p, 0) : Y L →M1⊗AL⊗N1, (p, 1) :M1⊗AR⊗N1 →M2⊗BL⊗N2, (p, 2) :
M2 ⊗BR ⊗N2 → Y R.

by contouring multimorphisms in M. Each multimorphism gives rise to a set of
generators for the monoidal category CM – its set of sectors, as in Figure 5.9.

Explicitly, for each object A ∈M, the optical contour CM contains a left polarized,
AL, and a right polarized, AR, version of the object. Additionally, for each multimor-
phism f ∈M(X1, ..., Xn;Y ), there exists a family of objectsMf

1 , ...,M
f
n , N

f
1 , ..., N

f
n ,

whose superscripts we omit when they are clear from context. The morphisms are
given by the following generators. For each f ∈M(X1, ..., Xn;Y ), we consider the
following n+ 1 generators:

(f, 0) : Y L →Mf
1 ⊗XL

1 ⊗Nf
1 ,

(f, i) :Mf
i ⊗X

R
i ⊗N

f
i →Mf

i+1 ⊗X
L
i+1 ⊗N

f
i+1, for 1 ⩽ i ⩽ n− 1, and

(f, n) :Mf
n ⊗XR

n ⊗Nf
n → Y R.

In particular, for a nullary multimorphism f ∈ M(;Y ), we consider a generator
(f, 0) : Y L → Y R. Further, we ask for the following equations which ensure that
the optical contour preserves identities and composition: for all x ∈M, (idX , 0) =
idXL , (idX , 1) = idXR with M idX

1 = N idX
1 = I; and given any f ∈M(X1, ..., Xn;Yi)

and g ∈M(Y1, ..., Ym;Z),

(f #i g, j) =



(g, j) j < i, with Mf#g
j =Mg

j , N
f#g
j = Ng

j

(g, i) # (id ⊗ (f, 0)⊗ id) j = i, with Mf#g
i =Mg

j ⊗M
f
0

idMg
i
⊗ (f, j − i)⊗ idNg

i
i < j < i+ n, with Mf#g

j =Mg
i ⊗M

f
j−i

(id ⊗ (f, n)⊗ id) # (g, i+ 1) j = i+ n+ 1, with Mf#g
j =Mg

i ⊗M
f
n

(g, j − n) j > i+ n+ 1 with Mf#g
j =Mg

j−n.

In particular, when f ∈M(;Yi) is nullary, (f #i g, 0) = gi # f0 # gi+1.
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Proposition 5.5.5. Optical contour extends to a functor C : MultiCat→ MonCat.

Theorem 5.5.6. Optical contour is left adjoint to raw optics; there exists an adjunc-
tion (C ⊣ ROpt) : MonCat→ MultiCat.

Proof. Let C be a strict monoidal category and let M be a multicategory. We
will show that there is a bijection between strict monoidal functors CM→ C and
multifunctors M→ ROpt[C].

• The objects of ROpt[C] are pairs of objects. Mapping an object of the
multicategory X ∈M to a pair of objects is the same as mapping two objects,
XL and XR, to the objects of the category C.

• Mapping a multimorphism f ∈M(X1, ..., Xn;Y ) to the multicategory of raw
optics consists of choosing a family of functions (f0, ..., fn) together with two
families of objects M1, ..,Mn and N1, ..., Nn. This is the same choice we need
to map each one of the components of the contour of f ∈M(X1, ..., Xn;Y ) to
that exact family of functions.

That is, we have only checked that, by construction, the maps out of the contour
correspond with multifunctors to raw optics. The adjunction remains conceptually
interesting because it links two concepts that have different conceptual interpreta-
tions, even if, in essence, one has been defined as the adjoint to the other.

Lemma 5.5.7. The following square of adjunctions commutes up to isomorphism.

MonCat MultiCat

MonGraph MultiGraph

ROpt F▽F⊗

ROptG

U⊗

C

U▽
CG

⊣

⊣

⊣

⊣

Proof. It suffices to verify that U⊗ # ROptG = ROpt # U▽ by definition. The result
then follows from composition and uniqueness of adjunctions up to isomorphism.

5.6 Representation theorem for context-free monoidal
languages

5.6.1 Chomsky-Schützenberger representation theorem
The Chomsky-Schützenberger representation theorem (Theorem 5.6.2) says that
every classical context-free language can be obtained as the image under a homo-
morphism of the intersection of a Dyck language and a regular language [17]. The
significance of this theorem is that it tells us how to represent context-free languages
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in terms of algebraic combinations of simpler parts. It implies, for example, that in
order to parse a context-free language (for example, the syntax of a programming
language), it suffices to have a machine that can recognize languages of balanced
parentheses, and a finite state automaton.

Definition 5.6.1. The Dyck alphabet over an alphabetX is the set, PX = {px, qx}x∈X ,
that contains one “opening parenthesis”, px, and one “closing parenthesis”, qx, for
each element x ∈ X. The corresponding Dyck language, DX ⊆ P ∗

X , is the set of
well-parenthesized words over the Dyck alphabet.

Theorem 5.6.2 (Chomsky-Schützenberger [17]). A language, L ⊆ Σ∗, is context-free
if and only if there exists a Dyck language over some alphabet, DX ; a regular language
over its Dyck alphabet, R ⊆ P ∗

X ; and a monoid homomorphism, h : P ∗
X → Σ∗; such

that the language L is the image under h of the intersection between the parenthesis
language and the regular language, L = h(R ∩DX).

Proof sketch. The main idea is to substitute each one of the production rules of the
context-free grammar by a family of regular rules: each family of regular rules will
open and close parentheses appropriately so as to ensure that it is applied in the
correct order, having the same effect that the original primitive rule would have.

Melliès and Zeilberger [63] use their splicing-contour adjunction to give a novel
proof of this theorem for context-free languages over categories: the classical version
is recovered when the category is a free monoid. The role of the Dyck language,
providing linearizations of derivation trees, is taken over by contours of derivations.

Definition 5.6.3. A context-free grammar over C is said to be C-chromatic when its
non-terminals are given by pairs of objects of C.

Theorem 5.6.4 (Melliès and Zeilberger [62]). Every context-free language of mor-
phisms in a category C is the functorial image of the intersection of a C-chromatic
context-free contour language with a regular language.

For monoidal languages, we shall see that the Dyck language is not needed
because the information that parentheses encode can be carried instead by tensor
products. In this section, we show that a regular monoidal language of optical
contours is sufficient to reconstruct the original language. Our main theorem states
that every context-free monoidal language is the image under a monoidal functor of
a regular monoidal language (Theorem 5.6.13). In other words, monoidal automata
are sufficient to parse canonical encodings of context-free monoidal languages, where
the canonical encoding is given by optical contours.

This theorem has the flavour of the following two representation results for the
case of context-free languages over categories, which we make explicit in order to
contrast them with our result.
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Proposition 5.6.5. Every context-free language over a category is the functorial image
of a universal context-free language associated to its multigraph G of non-terminals.

Proof. Given a context-free grammar (F▽G→WC, S), we can factor it universally
through the unit of the splice-contour adjunction, giving F▽G

ηF▽G−−−→ WCF▽G→
WC. Note that the components of the unit are again context-free grammars, now
over the category of contours CF▽G.

Proposition 5.6.6. Every context-free language over a category is the image of a
regular tree language.

Proof. A regular tree language is specified by a morphism of free multicategories,
just as in Example 3.5.5. Now given a context-free grammar (F▽G→WC, S), the
trivial factorization F▽G

id−→ F▽G→WC witnesses the proposition.

In contrast, our representation theorem says that every context-free monoidal
language is the image of a regular monoidal language: unlike Proposition 5.6.6 there
is not a “level shift” from words (or morphisms) to trees.

To prove this theorem, our strategy will be to first choose a factoring of a grammar
through raw optics, corresponding to fixing a particular ordering of the holes in
a diagram. Next, we use the optical contour/raw optics adjunction to produce
the required monoidal functor. We must first establish that the aforementioned
factoring exists. We encourage the reader to refer to Example 5.6.14 in order to
gain a better understanding of some of the following constructions.

5.6.2 Raw representatives of a grammar

Given a morphism of symmetric multigraphs underlying a context-free monoidal
grammar, φ : G → | C |, our first step will be to seek a factorization G →
|ROpt[C]| → | C |. We call the first morphism in such a factorization a raw
representative of φ. It amounts to choosing, for each rule of the grammar, a
particular way of representing it in terms of raw optics. The following lemma tells
us that raw representatives exist.

Lemma 5.6.7. Any morphism of symmetric multigraphs underlying a context-free
monoidal grammar, φ : G→ |C |, factors (non-uniquely) through the quotienting
of raw optics (Proposition 5.5.2); meaning that there exists some multigraph G′

satisfying G = clique(G′), and some morphism φr : G′ → |ROpt[C]|, such that
φ = clique(φr) # q∗, where q∗ : clique(ROpt[C]) → C is the quotient map from
Proposition 5.5.2.

Proof. This is a consequence of the fact that q∗ is full. Given any diagram context,
we argue that we can obtain a (non-unique) diagram context of the form of a raw

105



Context-Free Languages of String Diagrams

optic

t1 # (idM1 ⊗ x1 ⊗ idN1) # t2 # (idM2 ⊗ x2 ⊗ idN2) # ... # (idMn
⊗ xn ⊗ idNn) # tn+1.

Indeed, by structural induction, if the diagram is formed by a hole or a generator, it
can be put in raw optic form by adding identities; if the diagram is a composition,
we can put both factors in raw optic form and check that their composition is again
in raw optic form; if the diagram is a tensoring of two diagrams in raw optic form,
we can always apply the interchange law and note that whiskering a raw optic by
an object returns again a raw optic.

It is the case that every map G→ clique(H) arises as a map G′ → H for some
multigraph G′ such that G = clique(G′). Combining both facts, we obtain the
desired result.

Call the factor φr : G′ → |ROpt[C]| a raw representative of φ. It amounts to
choosing a fixed ordering of the holes in a diagram context for each rule in the
grammar, and a particular splicing into a raw optic. We can also consider the
language of φr, which is exactly that of φ.

Lemma 5.6.8. Let G = (φ, S) be a context-free monoidal grammar. Then the
language of any raw representative φr of φ (with start symbol S) equals the language
of G. That is, φr[F▽G′(;S)] = φ[F▽G(;S)].

Proof sketch. A raw representative amounts to choosing a specific ordering of the
holes and generators in a diagram context. By definition (Lemma 5.6.7), these
quotient to the original diagram contexts. In particular, closed derivations quotient
to the same element of C.

The contour-splice adjunction now gives us that raw representatives are in natural
bijection with certain strict monoidal functors.

Lemma 5.6.9. A raw representative φr : G′ → |ROpt[C]| uniquely determines a
strict monoidal functor Iφ : F⊗(CG′)→ C.

Proof. Using the free-forgetful adjunction, the raw representative, φr, determines
a unique multifunctor F▽G′ → ROpt[C]. Using the adjunction of Theorem 5.5.6,
this in turn determines a unique monoidal functor C(F▽G′)→ C. Finally, using the
commutativity of C with F▽ (Lemma 5.5.7), we obtain Iφ : F⊗(CG′)→ C. Explicitly,
the action of Iφ on generators is given by: AL 7→ π1(φr(A)), AR 7→ π2(φr(A)),
(f, i) 7→ πi(φr(f)), where π are projections.

We shall see that this monoidal functor maps a certain regular monoidal language
over CG, introduced in the next section, to the language of the original context-
free monoidal grammar φ. Before doing so, we make good on our promise from
Section 3.3.1.
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Proposition 5.6.10. Quasiregular monoidal grammars are at least as expressive as
context-free monoidal grammars over free monoidal categories.

Proof. It suffices to observe that for C = F⊗Γ, the monoidal functor of Lemma 5.6.9
corresponds to a quasiregular monoidal grammar CG′ → |F⊗Γ|.

5.6.3 Regular representation of a grammar
Given a raw representative of a context-free monoidal grammar, we can consider
optical contours of its rules (the domain of the grammar). This gives rise to a
regular monoidal grammar which we call the regular representation: this is the
grammar whose image will give the language of the original context-free monoidal
grammar.

Definition 5.6.11. Let G = (φ : G→ | C |, S) be a context-free monoidal grammar,
and φr a raw representative with domain G′. Define a regular representation of
G to be the regular monoidal grammar R = (id : CG′ → CG′, SL, SR) over optical
contours of G′ whose morphism of monoidal graphs is the identity.

Lemma 5.6.12. Given a multigraph G, there is a bijection between derivations
rooted at an object S and optical contours from SL to SR, that is F▽G(;S) ∼=
F⊗(CG)(SL;SR).

Proof. Let d ∈ F▽G(;S) be a derivation. We define a family of functions {CX :
F▽G(;X)→ F⊗(CG)(XL, XR)}X∈G by structural recursion. There are two cases:
if d is a generating operation d ∈ G(;S), then CS(d) := (d, 0) : SL → SR. Otherwise,
d is a composite (p1, ..., pn) # g where g ∈ G(X1, ..., Xn;S) is a generating operation
and pi ∈ F▽G(;Xi), in which case CS(d) := (g, 0) # CX1(p1) # (g, 1) # ... # CXn(pn) #
(g, n).

We define functions C−1
S right-to-left in a similar fashion. Let

c ∈ F⊗(CG)(SL;SR)

be an optical contour. If c = (c′, 0) is a generating sector then C−1
S (c) := c′.

Otherwise c is a composite ((g, 0) : SL → M1 ⊗ XL
1 ⊗ N1) # c1 # ((g, 1) : M1 ⊗

XR
1 ⊗ N1 → M2 ⊗ XL

2 ⊗ N2) # ... # cn # ((g, n) : M1 ⊗ XR
1 ⊗ N1 → SR) where

(g, i) are generating sectors and ci ∈ F⊗(CG)(XL
i , X

R
i ), in which case C−1

S (c) :=
(C−1

X1
(c1), ..., C−1

Xn
(cn)) # g. It is clear that these functions are mutually inverse and

hence form a bijection.

5.6.4 Monoidal representation theorem
We are now ready to prove our main theorem.
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Theorem 5.6.13. The language of a context-free monoidal grammar G = (φ : G→
|C |, S) equals the image of a regular representation under the monoidal functor Iφ
of Lemma 5.6.9.

Proof. By Lemma 5.6.8, the languages L(G) and L((φr, S)) are equal for any raw
representative φr of φ, where L((φr,S)) = φr[F▽G′(;S)]. It therefore suffices to show
that φr[F▽G′(;S)] = Iφ[F⊗(CG′)(SL;SR)]. We show the inclusion left-to-right. Let
d ∈ F▽G′(;S) be a derivation, and let CS(d) be the corresponding optical contour
given by Lemma 5.6.12. Then by the definition of Iφ (Lemma 5.6.9) and CS , we have
Iφ(CS(d)) = φr(d). We show the inclusion right-to-left. Let g ∈ F⊗(CG′)(SL;SR)
be a contour from SL to SR, and let C−1

S (g) be the corresponding derivation given
by Lemma 5.6.12. Then just as before we have φr(C−1

S (g)) = Iφ(g).

Theorem 5.6.13 is at first quite surprising, since in comparison with the usual
Chomsky-Schützenberger theorem and its generalization to categories [63], one might
expect to see an intersection of a regular monoidal language and a context-free
monoidal language. Instead, this theorem tells us that regular monoidal languages
are powerful enough to encode context-free monoidal languages, even while the
latter is strictly more expressive than the former. Just as a context-free grammar
suffices to specify a programming language which may encode instructions for
arbitrary computations, regular monoidal languages can specify arbitrary context-
free monoidal languages, with a monoidal functor effecting the “compilation”. The
theorem is moreover distinct from the similar sounding Proposition 5.6.6, in which
the regular language is a language of trees.

Example 5.6.14 (Balanced parentheses). Consider the simplified context-free mo-
noidal grammar for balanced parantheses in Figure 5.10. Such a simple grammar
is essentially already given by a raw representative, since we have no choice of
ordering of the hole(s) on the right hand sides. The regular representation obtained,
i.e. the regular monoidal grammar given by taking optical contours of the rules of
the context-free monoidal grammar, is given in Figure 5.11. Finally, Figure 5.12
indicates the action of the strict monoidal functor obtained from the optical con-
tour/raw optics adjunction, whose image is the language of the original grammar.
Note the similarity of the regular representation with the grammar introduced in
Example 3.3.5. In a sense, this example explains the origin of that grammar.

S S S( (
P1 P2

Figure 5.10: Simplified grammar of balanced parentheses (allowing only one outer
pair).
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N
SL SL

M
SL SR

N
SRSR

M
P2
0 P2

1P1
0

Figure 5.11: Regular representation of the grammar in Figure 5.10.

↦

SL SR

(( ( (

P1
0P2

0P2
0 P2

1 P2
1

Figure 5.12: Action of the strict monoidal functor obtained from grammar
(Lemma 5.6.9).
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Chapter 6
Conclusion and Future Work

Classical regular languages are extremely robust, in the sense that they have
numerous equivalent definitions. In generalizing regularity to other classes of
structure, it is a common theme that analogues of these definitions bifurcate, giving
rise to distinct notions of regularity, rationality and (algebraic) recognizability. In
this thesis we have investigated both regularity (acceptance by finite-state machine)
and algebraic recognizability (acceptance via locally-finite monoidal category), but
conjecture that they only coincide for languages of bounded width. Establishing
this conjecture is an evident open problem. We have not touched on rationality,
that is the definition of monoidal languages by rational (regular) expressions. As
mentioned in the introduction, such a line of work exists in the papers of Bossut.
However, Bossut’s languages of graphs do not correspond to monoidal languages
living in a single hom-set, but rather a (possibly infinite) union of hom-sets, and
this is crucial to his account of rational expressions. We have refrained from pushing
our definition of monoidal languages to this level of generality for want of examples.

In contrast to regular languages of string diagrams, we have not discussed an
operational characterization of context-free languages of string diagrams. In fact,
the right notion of “pushdown automaton” accepting languages of morphisms in
a category remains an open question for the context-free languages of morphisms
defined by Melliès and Zeilberger [63], so this may be a good starting point.
Intuitively, one would expect multicategories to be replaced by a similar notion in
which composition may only happen at leftmost inputs. The challenge is to identify
a good formal account of such structures in relation to the grammars presented
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here, just as grammars and automata in the regular case are linked by the passage
between fibred and indexed perspectives. It should also be possible to refine the
use of multicategories in our definition of context-free monoidal grammars to a
notion of multicategory with duoidally structured input. This would allow for the
comparison of parsings according to their parallel/sequential cost.

Finally, there is much to be elaborated from the results of Chapter 4, particularly
the relation of the commuting tensor product to known tensor products of monads,
especially the tensor product of (finitary) monads corresponding to the commuting
tensor product of Lawvere theories. We also believe that many robust applications
of the notion of device can be found, particularly in the domain of computational
effects. Tightening the relation with the functional machine calculus [3, 4] is a
promising direction.
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Appendix A
Regular monoidal languages over
arbitrary strict monoidal categories

It is possible to generalize regular monoidal languages over free strict monoidal
categories, as in Section 3.3, to regular monoidal languages over arbitrary strict mo-
noidal categories. This follows Melliès and Zeilberger [63], who define an automaton
over a category as a finitary unique-lifting-of-factorizations functor, axiomatizing
properties of free functors Fφ : FQ→ FΣ on morphisms of finite graphs φ, where
Q is the transition graph, and Σ is a graph with one object.

Here we do the same for strict monoidal functors. We axiomatize properties
of regular monoidal grammars over free monoidal categories F⊗φ : F⊗M → F⊗Γ,
which leads us to a notion of regular grammar of morphisms over an arbitrary
monoidal category.

Proposition A.0.1. Strict monoidal functors φ : D → T are in bijection with lax
monoidal lax 2-functors φ̂ : T → Span(Set).

Proof. We recall the correspondence between functors and lax 2-functors into
Span(Set) [70, Section 2.2]. To construct the lax 2-functor φ̂, one treats the category
T as a 2-category whose only 2-cells are identities. We show that monoidal structures
on D and T , and a strict monoidal structure on φ further induces a lax monoidal
structure on φ̂ where T is considered as a monoidal 2-category whose only 2-cells
are identities, and Span(Set) is considered as a cartesian monoidal 2-category.

Consider (x, y) ∈ φ̂(t) ⊗ φ̂(t′), that is φ(x) = t, φ(y) = t′, then by strictness,
φ(x ⊗ y) = t ⊗ t′ and so x ⊗ y ∈ φ̂(t ⊗ t′) by definition. So we have a function
φ̂(t) ⊗ φ̂(t′) → φ̂(t ⊗ t′) given by ⊗ in D. Take this as the right leg of a span
φ̂(t)⊗ φ̂(t′)→ φ̂(t⊗ t′) with left leg the identity.

For the unit laxator, note that strictness implies φ̂(IT ) = φ−1(IT ) is inhabited
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by at least ID. Therefore take the span 1→ φ̂(IT ) whose apex is 1, left leg identity
and right leg picking out ID.

Conversely, let ψ : T → Span(Set) be a lax monoidal lax 2-functor, with laxators
denoted by spans µX,X′ : ψ(X) × ψ(X ′) → ψ(X ⊗X ′), η : 1 → ψ(IT ). We show
that this structure gives a strict monoidal structure on the corresponding functor
ψ̄ :
∫
ψ → T .

Recall that
∫
ψ is defined as the category with set of objects the disjoint union∑

X∈Tobj
ψ(X) and hom-sets∫

ψ(⟨X,x ∈ ψ(X)⟩, ⟨Y, y ∈ ψ(Y )⟩) =
∑

f∈T (X,Y )

(ψf)−1(x, y).

Note that
∫
ψ becomes monoidal via the monoidal structure of T and the

laxators of ψ with ⟨X,x⟩ ⊗ ⟨Y, y⟩ := ⟨X ⊗ Y, µX,Y (x, y) ∈ ψ(X ⊗ Y )⟩, and unit
⟨IT , η(•) ∈ ψ(IT )⟩.

The functor ψ̄ is the projection ⟨X,x⟩ 7→ X, ⟨f, p⟩ 7→ f . Then it is immediate
that ψ̄(⟨X,x⟩)⊗ ψ̄(⟨Y, y⟩) = ψ̄(⟨X,x⟩⊗⟨Y, y⟩) = X⊗Y and ψ̄(⟨IT , η(•)⟩) = IT .

Proposition A.0.2. A strict monoidal functor φ : D → T has the monoidal unique
lifting of factorizations (monoidal ULF) property if either of the following equivalent
conditions hold:

1. For any morphism α ∈ D such that φ(α) = β # γ, there exists a unique pair
of morphisms δ, ε ∈ D over β, γ respectively, such that α = δ # ε; and if
φ(α) = µ ⊗ ν, there exists a unique pair of morphisms ζ, η ∈ D over µ, ν
respectively such that α = ζ ⊗ η.

2. The associated lax monoidal lax 2-functor φ̂ : T → Span(Set) is a strong
monoidal pseudofunctor.

Proof. Let φ : D → T satisfy condition (1). Notice in particular, by considering
identity morphisms in D, that this implies: for any object P ∈ D such that
φ(P ) = X ⊗ Y , we have a unique pair P ′, P ′′ ∈ D over X and Y respectively such
that P = P ′ ⊗ P ′′.

Now φ̂(X) := φ−1(X), so φ̂(X) × φ̂(Y ) = φ−1(X) × φ−1(Y ) and φ̂(X ⊗ Y ) =
φ−1(X ⊗ Y ). We define a bijection between these sets.

Let (A,B) ∈ φ̂(X)×φ̂(Y ), i.e. φ(A) = X and φ(B) = Y . Then A⊗B ∈ φ̂(X⊗Y )
by strictness of φ. Let C ∈ φ̂(X⊗Y ), that is φ(C) = X⊗Y . Then by condition (1),
we have a unique pair (C ′, C ′′) ∈ φ̂(X)× φ̂(Y ), and it is clear that these functions
form a bijection.

Similarly 1 ∼= φ̂(IT ) follows from the fact that identities lift uniquely (take γ = id
in a factorization). The rest of this direction of the proof is the claim from Melliès
and Zeilberger [63, Proposition 2.2].
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Now let condition (2) hold. We first look at the constraints making φ̂ pseudo-
functorial, namely the natural families of isomorphisms φ̂(f) # φ̂(g) ∼= φ̂(f # g) and
idφ̂(X)

∼= φ̂(idX). The former says exactly that morphisms over f # g are in natural
bijection with pairs of morphisms over f and over g, giving the unique lifts of
composites. The latter says that elements over X are in bijection with morphisms
over idX . For each object over X, the identity on that object must be over idX by
functoriality. That we have a bijection says that these are the only morphisms over
idX , that is, φ has unique lifts of identities.

The constraints making φ̂ strong are the natural families of isomorphisms φ̂(X)×
φ̂(Y ) ∼= φ̂(X ⊗ Y ) and 1 ∼= φ̂(IT ). The former says that pairs of objects over X ⊗ Y
are in natural bijection with pairs of objects over X and over Y . Naturality here
means that we can uniquely lift morphisms over f ⊗ g to pairs of morphisms over f
and over g. The latter says that the fibre over IT contains only ID, which implies
reflection of the identity at IT .

Recall that a functor is finitary if the preimages of every object and every arrow
in the codomain are finite [63], or equivalently if the associated lax functor to
Span(Set) factors through Span(FinSet).

Definition A.0.3. A regular monoidal grammar over a strict monoidal category C is
a strict monoidal functor φ : G→ C that is finitary and satisfies the monoidal ULF
property, along with objects i, f of G.

Lemma A.0.4. Let φ :M→ F⊗Γ be a strict monoidal functor. Then φ is monoidal
ULF if and only if M = F⊗M for a monoidal graph M and φ = F⊗h for some
morphism of monoidal graphs h :M → Γ.

Proof. The if direction follows by structural induction on the morphisms of F⊗M .
For the only if direction, we construct the monoidal graph M by taking those
morphisms m of M such that φ(m) = γ for some γ ∈ Γ, and easily verify the
monoidal ULF property.
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1 Introduction

Classical formal language theory has been extended to various kinds of algebraic structures,
such as infinite words, rational sequences, trees, countable linear orders, graphs of bounded
tree width, etc. In recent years, the essential unity of the field has been better understood
[1, 16]. Such structures can often be seen as algebras for monads on the category of sets,
and sufficient conditions exist [1] for formal language theory to extend to their algebras.

In this paper, we make a first step into a programme of extending language theory to
higher-dimensional algebraic structures. Here we make the step from monoids to 2-monoids,
better known as monoidal categories.

We introduce a categorial framework for reasoning about languages of morphisms in strict
monoidal categories – including their associated grammars and automata. We show how
these include classical and tree automata, but also open up a wilder world of string diagram
languages. By investigating the morphisms in monoidal categories from the perspective of
language theory, this work contributes to research into the computational manipulation of
string diagrams, and so their usage in industrial strength applications. Omitted proofs can
be found in the full version [6].

2 Related work

Bossut [2] studied rational languages of planar acyclic graphs and proved a Kleene theorem
for a class of such languages. Bossut’s graph languages feature initial and final states, whereas
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56:2 Regular Monoidal Languages

our languages consist of scalar morphisms, which more neatly generalizes the theory of regular
string and tree languages. Bossut introduces a notion of automaton for these languages, but
these lack a state machine denotation – being more similar to our grammars.

In [10], Heindel recasts Bossut’s approach using monoidal categories. Unfortunately
the purported Myhill-Nerode result was incorrect, due to a flawed definition of syntactic
congruence. We rectify this in Section 5, but a Myhill-Nerode type theorem remains open.

Zamdzhiev [18] introduced context-free languages of string diagrams using the string
graph representation of string diagrams and the machinery of context-free graph grammars.
In contrast, our approach does not require an intermediate representation of string diagrams
as graphs: we work directly with morphisms in monoidal categories. This allows us to use
the algebra of monoidal categories to reason about properties of monoidal languages.

Winfree et al. [13] use DNA self-assembly to simulate cellular automata and Wang tile
models of computation. The kinds of two-dimensional languages obtained in this way can be
seen quite naturally as regular monoidal languages, as illustrated in Example 12.

Walters’ note [17] on regular and context-free grammars served as a starting point for
our definition of regular monoidal grammar. Rosenthal [12], developing some of the ideas
of Walters, defined automata as relational presheaves, which is similar in spirit to our
functorial definition of monoidal automata. The framework of Colcombet and Petrişan
[5] considering automata as functors is also close in spirit to our definition of monoidal
automata. However, all of these papers are directed towards questions involving classical
one-dimensional languages, rather than languages of diagrams as in the present paper.

Fahrenberg et al. [7] investigated languages of higher-dimensonal automata, a well-
established model of concurrency. We might expect that the investigations of the present
paper correspond to a detailed study of a particular low-dimensional case of such languages,
but the precise correspondence between these notions is unclear.

3 Regular monoidal grammars and regular monoidal languages

A monoidal grammar is a finite specification for the construction of string diagrams: i.e.
morphisms in free monoidal categories (more specifically, free pros). We introduce regular
monoidal grammars, an analogue of classical (right-) regular grammars, and their equivalent
representation as non-deterministic monoidal automata. We begin by recalling the notion of
monoidal graph and how they present free monoidal categories.

3.1 Monoidal graphs and free pros
▶ Definition 1. A monoidal graph G consists of sets EG , VG and functions dom, cod : EG ⇒ V ∗

G
where V ∗

G is the underlying set of the free monoid. The elements of EG are called generators,
and for a generator γ ∈ EG, dom(γ), cod(γ) are the domain, codomain (resp.) types of γ.

Diagrammatically, a monoidal graph can be pictured as a collection of boxes, labelled by
elements of EG with wires entering on the left and exiting on the right, labelled by types
given by the functions dom, cod. For example, the following depicts the monoidal graph G
with EG = {γ, γ′}, VG = {A, B}, dom(γ) = AB, cod(γ) = ABA, dom(γ′) = A, cod(γ′) = BB:

A
B

γ
A
B
A

A γ′ B
B

Given that we are interested in finite state machines over finite alphabets, we shall work
exclusively with finite monoidal graphs, i.e. those in which EG and VG are both finite sets.
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▶ Definition 2. A morphism Ψ : G′ → G of monoidal graphs is a pair of functions VΨ : VG →
VG′ , EΨ : EG → EG′ such that dom # V ∗

Ψ = EΨ # dom and cod # V ∗
Ψ = EΨ # cod.

Monoidal graphs and their morphisms form a category MonGraph. Recall that a (coloured)
pro is a strict monoidal category whose monoid of objects is free (on the set of “colours”).
There is a category Pro with objects pros and morphisms strict monoidal functors whose
action on objects is determined by a function between their sets of colours. We call these pro
morphisms. (Coloured) props are pros that are also symmetric (strict) monoidal categories.

Pros (and props) are monadic over monoidal graphs: the forgetful functor U : Pro →
MonGraph has a left adjoint F : MonGraph → Pro, and Pro is equivalent to the category of
algebras for the induced monad on MonGraph (see [8, §2.3]). F sends a monoidal graph G to
a pro FG whose set of objects is V ∗

G and whose morphisms are string diagrams (see [15]).

3.2 Monoidal languages and regular monoidal grammars
Classically, a language over an alphabet Σ is a subset of the free monoid Σ∗. A monoidal
language is defined similarly, replacing free monoids with free pros over a monoidal alphabet:

▶ Definition 3. A monoidal alphabet Γ is a finite monoidal graph where VΓ is a singleton.

For a generator γ of a monoidal alphabet, we refer to dom(γ), cod(γ) as the arity, coarity
(resp.) of γ, writing ar(γ), coar(γ). Such generators are drawn with “untyped” wires.

▶ Definition 4. A monoidal language L over a monoidal alphabet Γ is a subset L ⊆ FΓ(0, 0)
of morphisms with arity and coarity 0 in the free pro generated by Γ.

▶ Remark 5. The restriction to arity and coarity zero (i.e. scalar) morphisms may appear
arbitrary. However, we will see in Section 4 that this captures and explains the classical
definitions of finite-state automata over words and trees. It also leads to more concise
definitions in our theory.

Regular monoidal grammars specify monoidal languages that are an analogue of classical
regular languages. They can be obtained by taking Walters’ [17] definition of regular language
and replacing the adjunction between reflexive graphs and categories with that between
monoidal graphs and pros. As shown in Section 4, they include the classical definitions of
regular tree and word languages as grammars over monoidal alphabets of a particular shape.

▶ Definition 6. A regular monoidal grammar is a morphism of finite monoidal graphs
Ψ : M → Γ where Γ is a monoidal alphabet.

Intuitively, a regular monoidal grammar is a labelling of the edges of M by generators in
Γ. Indeed, the vertex function VΨ : VM → {•} is unique, so the grammar is determined by
its edge function EΨ : EM → EΓ, sending edges to their labels. In Section 3.4 we show that
this data determines a transition system with states words w ∈ V ∗

M.
▶ Remark 7. Every regular monoidal grammar determines a pro morphism between free pros,
FΨ : FM → FΓ, which we may also refer to as a regular monoidal grammar.

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of string
diagrams FΨ−1(s) as a set of possible “parsings” of that diagram.
▶ Remark 8. We represent regular monoidal grammars diagrammatically by drawing the
monoidal graph M as above, but labelling each box e ∈ EM with EΨ(e). The resulting
diagram is not in general a diagram of a monoidal graph, since it may contain boxes with
the same label but different domain or codomain types. Examples are given below.

MFCS 2022
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3.3 Regular monoidal languages
A regular monoidal grammar determines a monoidal language as follows:

▶ Definition 9. Given a regular monoidal grammar Ψ : M → Γ, the image under FΨ of the
endo-hom-set of the monoidal unit ε in FM is a monoidal language FΨ[FM(ε, ε)] ⊆ FΓ(0, 0).

We call the class of languages determined by regular monoidal grammars the regular
monoidal languages. We shall see that they are precisely the languages accepted by non-
deterministic monoidal automata (Section 3.4). The basic idea is that a “word” is a scalar
string diagram, i.e. one with no “dangling wires”. The language of a monoidal grammar
then consists of those scalar string diagrams that can be given a parsing. Parsings can be
visually explained using the graphical notation for grammars (Remark 8). A morphism in
the language defined by a grammar is any string diagram that can be built using the “typed”
building blocks, such that there are no dangling wires, and then erasing the types on the
wires. The following examples of regular monoidal grammars illustrate this idea:

▶ Example 10 (Balanced parentheses). Recall that the Dyck language, the language of
balanced parentheses, is a paradigmatic example of a non-regular word language. However,
we can recognize balanced parentheses using the regular monoidal grammar shown below left.
An example of a morphism in the language defined by this grammar is shown on the right.

A (A
A
B

) A
A
B

A (
( )

)

This illustrates how regular monoidal grammars permit unbounded concurrency. Here, as one
scans from left to right, the (unbounded) size of the internal boundary of a string diagram
keeps track of the number of open left parentheses.

▶ Example 11 (Brick walls). A variant on the “brick wall” language introduced by [2] is
given by the following grammar (left below). An example of a morphism in the language
defined by this grammar is shown on the right.

H

V

H

V

V

H

H

V

In Section 3.5 we will see how this language of “brick walls” allows us to construct the
following example as an intersection of two languages:

▶ Example 12 (Sierpiński gasket). In [13], self-assembly of DNA tiles was used to realize the
behaviour of a cellular automaton that computes the Sierpiński gasket fractal, based on the
computation of the XOR gate. [13] implicitly depicts a monoidal grammar, and so Sierpiński
gaskets of arbitrary iteration depth (e.g. right below) are in fact the monoidal language over
this grammar (left below, where we use colours for the alphabet):

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1
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▶ Example 13. We define a grammar (left below) that will serve as a running counterexample
in Section 7, as it defines a language that cannot be deterministically recognized. The
connected string diagrams in this language are exactly two (right below).

δ
α

β

A

A

B

C
γ

A

A

B

C
γ

A

A

C

B
γ δ

α

β
γ δ

α

β

▶ Remark 14. If the monoidal graph M has no edges whose domain is ε and no edges whose
codomain is ε, a regular monoidal grammar Ψ : M → Γ will define a language containing
only the identity on the monoidal unit, i.e. the empty string diagram (denoted ). In fact,
every monoidal language contains the empty string diagram.

3.4 Non-deterministic monoidal automata
Recall that a non-deterministic finite automaton (NFA) is given by a finite set Q of states,
an initial state i ∈ Q, a set of final states F ⊆ Q, and for each a ∈ Σ, a function Q

∆a−−→ P(Q).
Non-deterministic monoidal automata do not have initial and final states; string diagrams
are simply accepted or rejected depending on their shape. In Section 4, we will see that
initial and final states derive from this definition, when the alphabet is of a particular form.

▶ Definition 15. A non-deterministic monoidal automaton ∆ = (Q, ∆Γ) over a monoidal
alphabet Γ is given by a finite set Q, together with a set of transition functions indexed by
generators ∆Γ = {Qar(γ) ∆γ−−→ P(Qcoar(γ))}γ∈EΓ .

For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel,
the inductive extension of the transition structure from letters to words. We define the
inductive extension of monoidal automata from generators to string diagrams. First recall
the definition of the endomorphism pro of an object in a monoidal category:

▶ Definition 16. Let C be a monoidal category, and Q an object of C. The endomorphism pro
of Q, CQ, has natural numbers as objects, hom-sets CQ(n, m) := C(Qn, Qm), composition and
identities as in C. The monoidal product is addition on objects, and as in C on morphisms.

The codomains of our inductive extension will be endomorphism pros of finite sets Q in
Rel, considered as the Kleisli category of the powerset monad P. Since P is a commutative
monad (with respect to the cartesian product of sets, with PX × PY → P(X × Y ) given by
the product of subsets), the following lemma gives us the monoidal structure on Rel:
▶ Lemma 17 ([11], Corollary 4.3). Let T be a commutative monad on a symmetric monoidal
category C. Then the Kleisli category Kl(T ) has a canonical monoidal structure, which is
given on objects by the monoidal product in C, and on morphisms f : X → TA, g : Y → TB

by X ⊗ Y
f⊗g−−−→ TA ⊗ TB

∇−→ T (A ⊗ B), where ∇ is given by the commutativity of T .

▶ Remark 18. The maybe monad (–)⊥ is also commutative, so its Kleisli category, equivalent
to the category Par of sets and partial functions, also has a canonical monoidal structure, and
for each set Q there is an endomorphism pro ParQ. We will come back to ParQ in Section 6.

Now we can define the inductive extension of a non-deterministic monoidal automaton:

▶ Observation 19. The assignment of generators to transition functions γ 7→ ∆γ in Definition
15 determines a morphism of monoidal graphs Γ → |RelQ|. Such morphisms are in bijection
with pro morphisms ∆ : FΓ → RelQ. We will also refer to the inductive extension ∆ as a non-
deterministic monoidal automaton, and sometimes write ∆α for the relation ∆(α : n → m).

MFCS 2022
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A scalar string diagram is mapped to one of the two possible nullary relations {•} →
P({•}), which represent accepting or rejecting computations, and thus can be used to define
the language of the automaton:

▶ Definition 20. Let ∆ : FΓ → RelQ be a non-deterministic monoidal automaton. Then the
monoidal language accepted by ∆ is L(∆) := {α ∈ FΓ(0, 0) | ∆α(•) = {•}}.

There is an evident correspondence between regular monoidal grammars and non-
deterministic monoidal automata. The graphical representation of a grammar makes this
most clear: it can also be thought of as the “transition graph” of a non-deterministic monoidal
automaton. More explicitly we have:

▶ Proposition 21. Given a regular monoidal grammar Ψ : M → Γ, define a monoidal
automaton with Q = VM, w(∆γ)w′ ⇐⇒ ∃σ ∈ E−1

Ψ (γ) such that dom(σ) = w, cod(σ) = w′.
Conversely given a monoidal automaton (Q, ∆Γ), define a regular monoidal grammar with
VM = Q and take an edge w → w′ over γ ⇐⇒ w(∆γ)w′. This correspondence of grammars
and automata preserves the recognized language.

▶ Remark 22. In automata theory it is often convenient to consider automata with ε-
transitions, or word-labelled transitions more generally. As monoidal grammars, these
correspond to arbitrary functors FM → FΓ, that is (by the adjunction U ⊣ F), to morphisms
of finite monoidal graphs M → UFΓ. The corresponding generalization of monoidal automata
requires considering RelQ as a monoidal 2-category with 2-cells the inclusions. Identity on
objects, strict monoidal lax 2-functors FΓ → RelQ (where FΓ is considered as equipped with
identity 2-cells), then give the refined notion of monoidal automaton. Such a lax 2-functor
need no longer send the identity on n wires to the identity relation on Qn, but merely to a
relation that includes the identity; this corresponds to allowing silent transitions. Similarly,
lax preservation of composition corresponds to allowing “term-labelled” transitions.

3.5 Closure properties of regular monoidal languages
We record some closure properties of regular monoidal languages.

▶ Lemma 23 (Closure under union). Let L and L′ be regular monoidal languages over Γ.
Then L ∪ L′ is a regular monoidal language over Γ.

▶ Lemma 24 (Closure under intersection). Let L and L′ be regular monoidal languages over
Γ. Then L ∩ L′ is a regular monoidal language over Γ.

▶ Remark 25. The Sierpiński gasket language (Example 12) is the intersection of the brick
wall language (Example 11) and an “XOR gate” language: this explains the origin of the
states in the grammar shown in Example 12.

▶ Lemma 26 (Closure under monoidal product and factors). Let L be a regular monoidal
language. Then α, β ∈ L ⇐⇒ α ⊗ β ∈ L.

▶ Lemma 27 (Closure under images of alphabets). Let L a be regular monoidal language over
Γ, and Γ h−→ Γ′ be a morphism of monoidal alphabets. Then (Fh)L is a regular monoidal
language over Γ′.

▶ Lemma 28 (Closure under preimages of alphabets). Let L a regular monoidal language
over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then the inverse image of L,
(Fh)−1(L) is a regular monoidal language over Γ′.
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Closure under complement is often held to be an important criterion for what should count
as a recognizable language. Indeed, for the abstract monadic second order logic introduced
in [1], it is a theorem that the class of recognizable languages relative to a monad on Set is
closed under complement. However, given that every monoidal language contains the empty
string diagram, we obviously have that:

▶ Observation 29. Regular monoidal languages are not closed under complement.

This suggests that there is no obvious account of regular monoidal languages in terms of
monadic second order logic. On the other hand, there is no reason we should expect even the
general account of monadic second order logic given in [1] to extend to monoidal categories,
since these are not algebras for a monad on Set. Moreover, taking inspiration from classical
examples in Section 4, one could also refine what is meant by complement, for instance
focussing on the set of non-empty connected scalar diagrams – see below for more details.

4 Regular word and tree languages as regular monoidal languages

Classical non-deterministic finite-state automata and tree automata can be seen as non-
deterministic monoidal automata over alphabets of a particular shape.

To make the correspondence precise, in the following we restrict monoidal languages to
their connected string diagrams. Strictly speaking, the language of a monoidal automaton
always contains only the empty diagram or is countably infinite, because if α is accepted by
the automaton, so are arbitrary finite monoidal products α ⊗ · · · ⊗ α. However, it is of course
possible for a monoidal language to consist of a finite number of connected string diagrams.

From another perspective, without restricting to connected components, we can say that
the monoidal automata corresponding to finite-state and tree automata have the power of an
unbounded number of such classical automata running in parallel.

4.1 Finite-state automata
▶ Definition 30. A word monoidal alphabet is a monoidal alphabet having only generators of
arity and coarity 1, σ , along with a single “start” generator of arity 0 and coarity
1, and “end” generator of arity 1 and coarity 0.

▶ Observation 31. Non-deterministic monoidal automata over word monoidal alphabets
correspond to classical NFAs.

Let an NFA A = (Q, Σ, ∆, i, F ) be given. We build a monoidal automaton as follows. Form the
monoidal alphabet Σ′ by starting with generators , and adding generators σ for
each σ ∈ Σ. For each σ , take the transition function ∆σ := ∆(σ, –) : Q → P(Q).
For take the transition function Q → P(Q0) to be the characteristic function of F ⊆ Q,
sending elements of F to {•} and to ∅ otherwise, and for take the function Q0 → P(Q)
to pick out the singleton {i}. This defines a monoidal automaton A′ := (Q, ∆′

Σ′), and a
simple induction shows that L(A) = L(A′), if one restricts to connected string diagrams.

Conversely, the data of a monoidal automaton over a word monoidal alphabet corresponds
to the data of an NFA, the only difference being that the transition function associated
to picks out a set of initial states {•} → P(Q). We can always “normalize” such an
automaton into an equivalent NFA with one initial state (see [14, §2.3.1]). This shows how
NFA initial and final states are captured by this particular shape of monoidal alphabet.

MFCS 2022
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4.2 Tree automata
Recall that non-deterministic finite tree automata come in two flavours, bottom-up and
top-down, depending on whether they process a tree starting at the leaves or at the root,
respectively. A non-deterministic bottom-up finite tree automaton is given by a finite set of
states Q, a “ranked” alphabet (Σ, r : Σ → N), a set of final states F ⊆ Q, and for each σ ∈ Σ
a transition function ∆σ : Qr(σ) → P(Q). A non-deterministic top-down tree automaton,
instead, has a set of initial states I ⊆ Q and transition functions ∆σ : Q → P(Qr(σ)). We
can recover these as non-deterministic monoidal automata over tree monoidal alphabets:

▶ Definition 32. A top-down tree monoidal alphabet is a monoidal alphabet having only
generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... , along with a single “root”
generator . Analogously, a bottom-up tree monoidal alphabet is a monoidal alphabet
having only generators of coarity 1 (and arbitrary arities ⩾ 0), σ... , along with a single
“root” generator .

▶ Observation 33. Bottom-up tree automata are exactly non-deterministic monoidal au-
tomata over bottom-up tree monoidal alphabets, and likewise for top-down tree automata.

The idea is similar to that sketched above for NFAs. For example, consider the following
graph of a monoidal automaton over a bottom-up tree monoidal alphabet, recognizing trees
corresponding to terms of the inductive type of lists of boolean values (a list may be empty,
[], or be a boolean value “consed” onto a list via ::).

::
ft [] L LVV

L
V

L

Intuitively, the connected scalar string diagrams determined by this language are trees,
with leaves on the left, and the root on the right. Monoidal automata over top-down tree
monoidal alphabets have a similar form, but are mirrored horizontally, and thus morphisms
in the language have the root on the left, and leaves on the right, and monoidal automata
read the morphism starting at the root.

5 The syntactic pro of a monoidal language

In this section we introduce the syntactic congruence on monoidal languages and the cor-
responding syntactic pro, by analogy with the syntactic congruence on classical regular
languages and their associated syntactic monoid. In Section 7.2 we will give an algebraic
property of the syntactic pro sufficient for the language to be deterministically recognizable.

▶ Definition 34. A context of capacity (n, m), where n, m ⩾ 0, is a scalar string diagram
with a hole – as illustrated below – with zero or more additional wires exiting the first box
and entering the second (indicated by ellipses).

...

......α β}n m{

...

Given a context of capacity (n, m), we can fill the hole with a string diagram α : n → m.
Write C[α] for the resulting string diagram. Note that the empty diagram is a context, the
empty context. Contexts allow us to define contextual equivalence of string diagrams:
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▶ Definition 35 (Syntactic congruence). Given a monoidal language L ⊆ FΓ(0, 0) we define
its syntactic congruence ≡L as follows. Let α, β be morphisms in FΓ(n, m). Then α ≡L β

whenever C[α] ∈ L ⇐⇒ C[β] ∈ L, for all contexts C of capacity (n, m).

▶ Definition 36. The syntactic pro of a monoidal language L is the quotient pro FΓ/≡L.
The quotient functor SL : FΓ → FΓ/≡L is the syntactic morphism of L. For more details,
see the full version [6].

▶ Remark 37. The syntactic congruences for classical regular languages of words and trees
are also special cases of this congruence over word and tree monoidal alphabets.

▶ Lemma 38. L is the inverse image along the syntactic morphism of the equivalence class
of the empty diagram.

Proof. Let α ∈ L. Then α ≡L , since the empty diagram is in every language and if C

is a context of capacity (0, 0) distinguishing α and , then we have a contradiction by
Lemma 26. So α ∈ S−1

L (
[ ]

), and conversely. ◀

In the terminology of algebraic language theory, we say that the syntactic morphism
recognizes L. A full investigation of algebraic recognizability of monoidal languages is a topic
for future work. For now, we record the following lemma which is needed for Theorem 59:

▶ Lemma 39. If a monoidal language L is regular, then its syntactic pro FΓ/≡L is locally
finite (i.e. has finite hom-sets).

Proof. It suffices to exhibit a full pro morphism into FΓ/≡L from a locally finite pro. Let L

be a regular monoidal language recognized by ∆ : FΓ → RelQ. ∆ induces a congruence ∼ on
FΓ defined by α ∼ β ⇐⇒ ∆(α) = ∆(β), which implies that FΓ/∼ is locally finite, since
RelQ is locally finite. Define the pro morphism FΓ/∼ → FΓ/≡L to be identity on objects
and [α]∼ 7→ [α]≡L

on morphisms. This is well-defined since if α ∼ β and C[α] ∈ L for some
context C, then by functoriality C[β] ∈ L. Clearly it is full, so FΓ/≡L is locally finite. ◀

6 Deterministic monoidal automata

Classically, the expressive equivalence of deterministic and non-deterministic finite-state
automata for string languages is well known, but already for trees, top-down deterministic
tree automata are less expressive than bottom-up deterministic tree automata. Therefore
we cannot expect to determinize non-deterministic monoidal automata. However, we have
already seen monoidal languages that are deterministically recognizable (Examples 10, 11,
12, interpreted as the transition relations of monoidal automata, are functional relations).
Here we introduce deterministic monoidal automata and show that their languages enjoy the
property of causal closure. In Section 7 we consider the question of determinizability.

▶ Definition 40. A deterministic monoidal automaton δ = (Q, δΓ) over a monoidal alphabet
Γ is given by a finite set Q, together with transition functions δΓ = {Qar(γ) δγ−→ Q

coar(γ)
⊥ }γ∈Γ.

Recall the definition of the pro ParQ from Remark 18. Then as in Observation 19, such
assignments γ 7→ δγ uniquely extend to pro morphisms δ : FΓ → ParQ, and we will also refer
to such pro morphisms as deterministic monoidal automata. δ maps scalar string diagrams to
one of the two functions Q0 → Q0

⊥, and we use this to define the language of the automaton:

▶ Definition 41. Let δ : FΓ → ParQ be a deterministic monoidal automaton. Then the
language accepted by δ is L(δ) := {α ∈ FΓ(0, 0) | δα(•) = •}.

MFCS 2022
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We give a necessary condition for a monoidal language to be recognized by a deterministic
monoidal automaton. The idea is to generalize the characterization of top-down deterministi-
cally recognizable tree languages as those that are closed under the operation of splitting a
tree language into the set of possible paths through the trees, and reconstituting trees by
grafting compatible paths [9]. For string diagrams, we call the analogue of paths through a
tree the causal histories of a diagram (Definition 46).

First, we briefly recall the machinery of (cartesian) restriction categories [3], that will be
necessary in the following. Restriction categories are an abstraction of the category of partial
functions, and provide us with a diagrammatic calculus for reasoning about determinization
of monoidal languages.

▶ Definition 42 ([4]). A cartesian restriction prop is a prop in which every object is equipped
with a commutative comonoid structure (with the counit depicted by , comultiplication by

, and symmetry by ) that is coherent, and for which the comultiplication is natural
(for more details, see the full version [6]).

▶ Definition 43. The free cartesian restriction prop on a monoidal graph M, denoted F↓M
is given by taking the free prop on the monoidal graph M extended with a comultiplication
and counit generator for every object in VM, and quotienting the morphisms by the structural
equations of cartesian restriction categories (for more details, see the full version [6]).

▶ Remark 44. Par is the paradigmatic example of a cartesian restriction category, with on
X given by the relation X → {•, ⊥} sending every element to •, and given by the
diagonal relation. ParQ inherits this structure and so is a cartesian restriction prop. Therefore
deterministic monoidal automata (Q, δΓ) also have inductive extensions to morphisms of
cartesian restriction props, δ : F↓Γ → ParQ, and these have a obvious notion of associated
language, defined similarly to Definition 41. These are related by the following lemma, which
follows from the universal properties of FΓ and F↓Γ:

▶ Lemma 45. If (Q, δΓ) is a deterministic monoidal automaton, then δ factors through δ as
δ = HΓ # δ, where HΓ : FΓ → F↓Γ sends morphisms to their equivalence class in F↓Γ.

Recall that any restriction category is poset-enriched: f ⩽ g if f is “less defined” than g,
i.e. if f coincides with g on f ’s domain of definition. For the hom-set from the monoidal
unit to itself, we have f ⩽ g ⇐⇒ f ⊗ g = f . Now we can define causal histories:

▶ Definition 46. Let γ be a string diagram in FΓ(0, 0). We call a string diagram h in
F↓Γ(0, 0) a causal history of γ if HΓ(γ) ⩽ h in F↓Γ(0, 0). Let L ⊆ FΓ(0, 0) be a regular
monoidal language. The set of causal histories of L, denoted ch(L), is defined to be HΓ(L)↑,
the upwards closure of HΓ(L) in the poset F↓Γ(0, 0).

A causal history represents the possible causal influence of parts of a diagram on generators
appearing “later” in the diagram. For example, the following five string diagrams are causal
histories of the rightmost string diagram below (every diagram is a causal history of itself),
taken from the language introduced in Example 13:

γ δγ γ δ
β β

γ δ
α

γ δ
α

▶ Lemma 47. Let M = (Q, δΓ) be a deterministic monoidal automaton, with functors
δ : FΓ → ParQ, δ : F↓Γ → ParQ. Then if δ accepts γ, δ accepts all causal histories of γ.
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Proof. Since δ = HΓ # δ, if δ accepts γ, then δ accepts HΓ(γ). Let h be a causal history of γ.
Then δ(HΓ(γ)) = δ(h ⊗ HΓ(γ)) = δ(h) ⊗ δ(HΓ(γ)). But then δ accepts h by Lemma 26. ◀

▶ Definition 48 (Causal closure of a language). Let L be a monoidal language over a monoidal
alphabet Γ. Let

⊗
ch(L) denote the closure of the set of causal histories of L under monoidal

product. Then the causal closure of L is H−1
Γ

⊗
ch(L). A monoidal language is causally

closed if it is equal to its causal closure.

To illustrate causal closure, consider the following figure, which shows part of the derivation
of a morphism in the causal closure of the language of Example 13:

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

The leftmost diagram depicts the monoidal product of two causal histories determined by
the counterexample language. By the equational theory of cartesian restriction categories
(see the full version [6]), this is equal to the string diagrams in the center and on the right,
where we first apply the naturality of (for γ), then unitality (twice), then naturality

of (for δ). The rightmost form of the diagram exhibits this morphism as being in the
image of HΓ, and its preimage under HΓ is the same diagram in FΓ. Since this diagram is
not in the original language, the language is not causally closed.

▶ Theorem 49. If a monoidal language is recognized by a deterministic monoidal automaton,
then it is causally closed.

Proof. Let L be recognized by a deterministic monoidal automaton δ : FΓ → ParQ. We
have δ = HΓ # δ and from Lemma 47 that δ accepts causal histories of morphisms in L. Since
languages are closed under monoidal product (Lemma 26), then by definition of the causal
closure, δ must accept everything in the causal closure of L. ◀

7 Deterministically recognizable monoidal languages

Non-deterministic finite state automata for words and bottom-up trees can be determinized
via the well known powerset construction. However, top-down tree automata cannot be
determinized in general [9, §2.11], so general monoidal automata also cannot be determinized
(Observation 33). However, there are interesting examples of deterministically recognizable
monoidal languages that are not tree languages, such as the monoidal Dyck language (Example
10) and Sierpiński gaskets (Example 12), and it is an intriguing theoretical challenge to
characterize such languages.

In Section 7.1 we study a class of determinizable automata called convex automata. In
Section 7.2 we give a sufficient condition for a language to be deterministically recognizable.

7.1 Convex automata and the powerset construction
The classical powerset construction is given conceptually by composition with the functor
Rel → Set, right adjoint to the inclusion Set ↪→ Rel. As remarked above, we cannot hope
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to obtain an analogue of this functor for monoidal automata. Thus we describe a suitable
subcategory of RelQ for which determinization is functorial, that of convex relations.

▶ Definition 50. A relation ∆ : Qn → P(Qm) is convex if there is a morphism ∆∗ such that
the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#
∇ ∇

where ∆# is the Kleisli lift of ∆, and ∇ is the monoidal multiplication given by the
commutativity of the powerset monad.

▶ Observation 51. If ∆ is convex, the morphism ∆∗ is unique, since ∇ is a monomorphism.

▶ Example 52. The relation ∆γ : Q0 → P(Q4) induced by the grammar in Example 13 is not
convex, since (A, B, B, A) and (A, C, C, A), which we can think of as “convex combinations”
of the other state vectors, are not included in the image of the relation.

▶ Lemma 53. Convex relations determine a sub-pro CRelQ ↪→ RelQ.

▶ Definition 54. An automaton ∆ : FΓ → RelQ is convex if it factors through CRelQ.

The following lemma gives the powerset construction on convex automata. We use the
non-empty powerset P+ to avoid duplication of failure state (∅ in RelQ, but ⊥ in ParP+(Q)):

▶ Lemma 55. For each set Q there is a morphism of pros DQ : CRelQ → ParP+(Q) which is
identity on objects and acts as follows on morphisms:

∆α : Qn → P(Qm)

P+(Q)n ηn

−−→ (⊥P+(Q))n
∼=−→ P(Q)n ∆∗

α−−→ P(Q)m
∼=−→ (⊥P+(Q))m ∇−→ ⊥P+(Q)m

where ⊥ is the maybe monad, η is the unit of this monad, and ∇ is its monoidal
multiplication with respect to the cartesian product.

Determinization of a convex automaton ∆ : FΓ → CRelQ is now just given by post-
composition with the functor DQ. We show that this preserves the language:

▶ Theorem 56. Determinization of convex automata preserves the accepted language: let
∆ : FΓ → CRelQ be a convex automaton, then L(∆) = L(∆ #DQ).

Proof. Let α ∈ L(∆), i.e. ∆α(•) = {•}. Then we must have ∆∗
α(•) = •, and so

(∆ #DQ)α(•) = •. Conversely let α ∈ LD(∆ #DQ), i.e. (∆ #DQ)α(•) = •. Then we
must have that ∆∗

α(•) = •, and so ∆α(•) = {•}, that is α ∈ L(∆). ◀

▶ Example 57. Non-deterministic monoidal automata over word monoidal alphabets (Defi-
nition 30) are convex: for a relation ∆ : Q → P(Q), ∆∗ is given by the Kleisli extension of ∆.
This reflects the well known determinizability of classical finite-state automata.

▶ Example 58. Similarly, non-deterministic monoidal automata over bottom-up tree monoidal
alphabets (Definition 32) are convex, with ∆∗ := ∇ # ∆#. For top-down tree monoidal
alphabets, the general obstruction to convexity (and thus determinizability) is seen as the
non-existence of a left inverse of ∇.
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7.2 A sufficient condition for deterministic recognizability
▶ Theorem 59. If the syntactic pro of a regular monoidal language has the structure of
a cartesian restriction prop, then the language is recognizable by a deterministic monoidal
automaton.

Proof. Let L be a monoidal language such that FΓ/≡L has a cartesian restriction prop
structure. We exhibit a pro morphism FΓ/≡L

ϕ−→ ParQ such that FΓ SL−−→ FΓ/≡L
ϕ−→ ParQ is

a deterministic monoidal automaton accepting exactly L.
Let Q := FΓ/≡L(0, 1). By Lemma 39, this is a finite set. For m > 0 and [β] ∈

FΓ/≡L(n, m), define ϕ([β]) : n → m to be the following map from Qn → Qm
⊥ :

... ...
αₙ

...

α1 α1 α1

αn

β ...

...

...

αₙ

β

, ,

ϕ([β])( (( (↦

When m = 0 (i.e. [β] has coarity 0), let ϕ([β])([α1], ..., [αn]) = •, if [(α1 ⊗ ... ⊗ αn) # β] =[ ]
, and ϕ([β])([α1], ..., [αn]) = ⊥ otherwise. The proof that this defines a morphism

of pros is an exercise in diagrammatic reasoning using the equational theory of cartesian
restriction categories, see the full version [6]. To see that this automaton accepts exactly
L, let α ∈ L(SL # ϕ), then by definition we must have SL(α) =

[ ]
, and so α ∈ L (by

Lemma 38). Conversely let α ∈ L, then SL(α) =
[ ]

and by definition ϕ
([ ])

(•) = •,
so α ∈ L(SL # ϕ). Therefore SL # ϕ is a deterministic monoidal automaton recognizing L. ◀

▶ Example 60. A simple example is the language L of “bones” over the monoidal alphabet
Γ = { , }, having one connected component: . The syntactic pro FΓ/≡L has a
cartesian restriction prop structure, with the counit given by the equivalence class [ ],
comultiplication by [ ], and symmetry by [ ]. It is clear that FΓ/≡L(0, 1)
has one equivalence class, [ ], which becomes the state of the monoidal automaton. The
construction above then gives the obvious transition functions required for each generator.

8 Conclusion and future work

The most immediate open question is to determine necessary and sufficient conditions for
determinizability: causal closure is a promising candidate. Furthermore we would like to
understand the relation between convexity and Theorem 59. Classical topics in the theory
of regular languages such as a Myhill-Nerode theorem are also ripe for future investigation.
We also plan to investigate further applications of regular monoidal languages in computer
science, for example representing trace languages and look-ahead parsing.

Just as our definition of regular monoidal grammar was obtained from Walters’ definition
of regular grammar by replacing the adjunction Cat → Graph with the adjunction Pro →
MonGraph, we might consider other adjunctions and their corresponding notion of grammar.
In the first instance, our theory should smoothly generalize to languages in free props, but
perhaps also other (higher) categorical structures.

We plan to investigate a notion of context-free monoidal language, using a similar algebraic
approach to this paper. One candidate for the algebra of such languages, inspired again by
[17], are (monoidal) multicategories of n-hole contexts (in the sense of Definition 34).
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1 Introduction

Monoidal languages [12] generalize formal languages of words to formal languages of string
diagrams. String diagrams [16, 29] are a graphical representation of morphisms in monoidal
categories. Monoidal categories can be considered 2-dimensional monoids [6]: just as monoids
are categories with one object, whose morphisms are elements of the monoid, (strict) monoidal
categories can be defined as 2-categories with one object. Accordingly, monoidal languages
are subsets of morphisms in free monoidal categories, just as word languages are subsets
of free monoids. Regular monoidal languages are those specifiable by finitary grammars or
automata. Our paper [12] introduced these devices and examined properties of languages
in single-sorted, planar monoidal categories. These include regular languages of words and
trees, but also languages of planar string diagrams that are neither linear nor tree-like.

In this paper, motivated by concurrency theory, we extend this theory to coloured props:
multi-sorted monoidal categories with symmetries (Section 2). The resulting theory of
symmetric monoidal languages (Section 3) captures languages of diagrams having multiple
colours of string and in which strings may cross, permitting non-planar diagrams. In terms
of concurrency, colours represent different runtimes, or threads of execution.

Indeed, in Section 4 we show that Mazurkiewicz trace languages [21] are exactly symmetric
monoidal languages over alphabets of a particular shape called monoidal distributed alphabets.
In Section 5 we introduce automata for symmetric monoidal languages, defining the class of
regular symmetric monoidal languages. Then, in Section 6 we show that these are exactly
the asynchronous automata of Zielonka [32] when instantiated over monoidal distributed
alphabets. Finally, in Section 7 we use the algebra of symmetric premonoidal categories to
show how serialization of traces can be treated string-diagrammatically.
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Related work
Our previous work [12] introduced monoidal languages in the planar, single-sorted case; that
is, languages of morphisms in free pros. Similar languages of graphs were studied by Bossut
[5], but their underlying algebra was not made explicit. Here, we again leverage the algebraic
perspective, extending our theory to symmetric multi-sorted monoidal categories (props).

In the introduction to Joyal & Street’s foundational work on string diagrams for monoidal
categories [16], it is suggested that string diagrams have a connection to the heaps of Viennot
[30]. Heaps are known to be equivalent to Mazurkiewicz trace monoids (also known as
partially commutative monoids) [17], but a precise formulation of the suggested relation with
string diagrams has not appeared in the literature until now.

The notion of dependence graph [13] has also been used to give a topological presentation
of Mazurkiewicz traces. Our use of the algebra of monoidal categories, rather than graphs, has
various advantages. For example, we can apply our language theory for monoidal categories
to traces, and we see notions such as asynchronous automata arise naturally from this. It
also suggests generalizations of trace languages, in particular going beyond the case of atomic
actions (Remark 23). Finally, it brings our work into proximity with the semantics of Petri
nets and other formalisms for concurrency based on monoidal categories [2, 24].

2 Monoidal Graphs, Props and their String Diagrams

In this section we recall the basic definitions used in the following, including the specific
flavour of monoidal categories known as props [20], along with their string diagrams [16, 29].
Just as a category can be presented by a directed graph, (strict) monoidal categories can be
presented by monoidal graphs, a kind of multi-input, multi-output directed graph.

▶ Definition 1. A monoidal graph G is a set BG of boxes, a set SG of sorts, and functions
s, t : BG ⇒ SG

∗ to the free monoid over SG, giving source and target boundaries of each box.

The alphabets of monoidal languages will be finite monoidal graphs: those in which BG
and SG are both finite sets. In fact, since we are interested in finite state machines over
finite alphabets, we will work exclusively with finite monoidal graphs. Diagrammatically,
a (finite) monoidal graph can be pictured as a collection of boxes, labelled by elements of
BG with strings entering on the left and exiting on the right, labelled by sorts given by the
source and target functions. For example, the following depicts the monoidal graph G with
BG = {γ, γ′}, SG = {A, B}, s(γ) = AB, t(γ) = ABA, s(γ′) = A, t(γ′) = BB:

γ γ'A
B A

B
A

A
B
B

Sorts of a monoidal graph are sometimes called colours, since we could equally use
different colours of string to represent different sorts, and we shall do so in places below.
For a box γ ∈ BG we call s(γ) and t(γ) the arity and coarity of γ, respectively, and write
γ : s(γ) → t(γ). We will also call γ considered together with its arity and coarity a generator.

Monoidal graphs are generating data for monoidal categories. Recall that a strict monoidal
category is a category C, equipped with a functor ⊗ : C × C → C (the monoidal product) and
a unit object I ∈ C, such that ⊗ is associative and unital. A strict monoidal category is
symmetric if there is a natural family of symmetry morphisms σA,B : A ⊗ B → B ⊗ A, for
each pair of sorts, satisfying σB,A ◦ σA,B = 1A⊗B. The monoidal product turns the sets of
objects and morphisms in C into monoids. A prop is a symmetric strict monoidal category
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whose monoid of objects is a free monoid.1 While the above data can be intimidating to the
non-expert, the free prop F G on a monoidal graph G can be described in an intuitive and
straightforward way: its arrows are the string diagrams generated by G.
▶ Definition 2. The free prop F G on a monoidal graph G has monoid of objects S∗

G and
morphisms string diagrams inductively defined as follows:

(  ,  )∈S𝒢 ∈S𝒢 α ∈ B𝒢

...... α

...... d1
... ...d3

... d1
...d3

... d2
......... d1

...... d1

... d2

...

Left to right: the empty diagram is a diagram; for every sort, the string on that sort is a
diagram; for every pair of sorts, the symmetric braiding is a diagram; the diagram for every
generator α is a diagram; for any two diagrams their vertical juxtaposition is a diagram;
and for any two diagrams with matching right and left boundaries, the diagram obtained by
joining the matching wires is a diagram (their composition). The monoidal product is given
on objects by concatenation, on diagrams by juxtaposition, and the unit is the empty word.

The idea is simple: we treat generators like circuit components, and we have a supply of
wires (identity morphisms). We also have the ability to cross wires, without tangling them;
we do not distinguish over-crossings from under-crossings. A string diagram is then just any
(open) circuit that we can build. This notation is sound and complete: an equation between
morphisms of strict monoidal categories follows from their axioms if and only if it holds
between string diagrams up to planar isotopy [16]. Working with string diagrams rather than
the usual term syntax for morphisms is more intuitive, and leads to shorter proofs as the
structural equations hold automatically: for example, interchange of morphisms (Figure 1,
left), unbraiding of symmetries (centre), and sliding of morphisms past symmetries (right).

α

β

α

β
= = =

α

α

Figure 1 These pairs of string diagrams are equal, reflecting the functoriality of ⊗ (interchange),
inverses of symmetries, and naturality of symmetries, respectively.

▶ Definition 3. A morphism of monoidal graphs φ : H → G is given by functions Bφ : BH →
BG and Sφ : SH → SG compatible with source and target functions: S∗

φ ◦ s = s ◦ Bφ and
S∗

φ ◦ t = t ◦ Bφ, where S∗
φ is the unique monoid homomorphism determined by Sφ.

Morphisms of monoidal graphs freely generate morphisms of props: strict monoidal
functors preserving sorts. Every prop has an underlying monoidal graph whose boxes are all
the morphisms of the prop. This extends to an adjunction F ⊣ U between the categories
of monoidal graphs and props, where U takes the underlying monoidal graph of a prop [16].

Monoidal categories have been applied to the study of both computing and physical
processes [8, 9, 18, 25]. In these contexts, the monoidal product represents parallel composition
of processes, and interchange reflects the independence of processes running in parallel. This
is the main feature of monoidal categories that we will leverage in our representation of traces
(Section 4). The use of multi-sorted props will allow fine-grained control of interchange.

1 Some literature takes prop to mean that the monoid of objects is generated by a single object (and so
isomorphic to N), using the term coloured prop for the general case above.
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3 Symmetric Monoidal Languages

Our paper [12] treated the case of languages, grammars and automata over single-sorted pros
(strict monoidal categories without symmetries), corresponding to languages of planar string
diagrams with one string colour. In this section we introduce the multi-sorted (or “coloured”)
symmetric monoidal languages, which will be needed in the following to extend monoidal
language theory to trace theory. In Section 5 we introduce the corresponding automata.

Just as a classical formal language is a subset of a free monoid, a symmetric monoidal
language is a subset of morphisms in a free prop:

▶ Definition 4. Let Γ be a finite monoidal graph. A symmetric monoidal language over Γ is
a set of morphisms in the free prop F Γ over Γ.

A morphism of finite directed graphs G → Σ, where Σ is a graph with one vertex, amounts
to a labelling of the edges of G by edges of Σ. This is the starting point of Walters’ definition
of regular grammar [31], which inspires the following definition:

▶ Definition 5. A regular monoidal grammar is a morphism of finite monoidal graphs.

For a regular monoidal grammar M
φ→ Γ, the monoidal graph Γ is the alphabet, and the

generators of M , with their labelling by φ, correspond to production rules: see Example 7.
In the classical setting of word languages, a morphism of finite directed graphs G → Σ

determines a regular language over Σ once we specify initial and final state vertices in G.
In a regular monoidal grammar M → Γ, the “vertices” of M are words over SM , leading to
various natural choices of boundary condition (Remark 8). In this paper, we will take initial
and final words over S∗

M . Specifying these words defines the symmetric monoidal language
of the grammar (Definition 9), and we define the languages arising in this way to be the
regular symmetric monoidal languages.

We illustrate these definitions with some pedagogical toy examples. In the remaining
sections of this paper, we turn to our extended application in concurrency, and we shall see
that Mazurkiewicz trace languages are a natural example of symmetric monoidal languages.

▶ Example 6. Let φ : M → Γ be the regular monoidal grammar where M and Γ have a
single sort (•) and no boxes, with Sφ(•) = •, and initial and final states n ∈ S∗

M
∼= N. Then

the symmetric monoidal language of this grammar is the set of permutations of n wires:
morphisms consisting only of symmetries and identities.

Props have been used to give syntax and semantics for various kinds of signal flow graph
and circuit diagrams [1, 3, 4]. Intuitively, props are well suited for this purpose since wires
may freely cross in a circuit.

▶ Example 7. We give a regular monoidal grammar for the syntax of (open) circuits with
n ⩾ 0 capacitors in series with a single voltage source (Figure 2). The alphabet Γ has a
single sort, and boxes four circuit components (Figure 2, left). The monoidal graph M has
four sorts {S, A, B, C} and four boxes s : S → AB, c : A → A, v : B → C, s′ : AC → S. Sφ

maps the four sorts to the single sort of Γ, and Bφ maps each box to a circuit component.
We can draw the grammar φ : M → Γ in a single diagram by drawing the graph for M but
replacing each box b with its image under the grammar morphism Bφ(b) (Figure 2, centre).
The initial and final languages are the single state {S}. Intuitively, the symmetric monoidal
language determined by the grammar is all of the string diagrams S → S that can be built
using the “sorted” boxes of Γ, then forgetting the sorts.
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A

B

A

CB C

A A

S S

Figure 2 (Left) The alphabet Γ, giving syntax for circuits. (Centre) A regular monoidal grammar
over Γ. (Right) An element of the regular symmetric monoidal language determined by this grammar.

▶ Remark 8. As mentioned above, there are various possible choices for the “initial and final
states” of a monoidal grammar. In our previous paper [12], we took the empty word, giving
languages of scalar string diagrams (i.e. no “dangling wires”): this neatly generalizes tree
grammars. More generally, one can take initial and final regular languages of states over SM ,
as considered by Bossut [5].

The free prop construction can be used to concisely describe the symmetric monoidal
language of a regular monoidal grammar, defining the class of regular symmetric monoidal
languages:

▶ Definition 9. Let (φ : M → Γ, I, F ) be a regular monoidal grammar equipped with regular
languages I, F ⊆ S∗

M . This determines a symmetric monoidal language by taking the image
of the set of morphisms

⋃
i∈I,f∈F F M(i, f) under F φ, giving a set of morphisms in F Γ.

The languages arising in this way are defined to be the regular symmetric monoidal languages.

In this paper, we will only need the case where I, F consist of single words. The slogan
for the general case is that 2-dimensional regular languages have 1-dimensional regular
boundaries. In Section 5, we will see that regular symmetric monoidal languages may
equivalently be specified by non-deterministic monoidal automata.

▶ Remark 10. A regular monoidal grammar determines not only a regular symmetric monoidal
language, but also a language in any algebraic structure generated by monoidal graphs,
including planar monoidal categories (treated in [12]), and premonoidal categories (which
we will use in Section 7). This is analogous to the way in which a finite labelled directed
graph may generate both a subset of a free monoid, but also a subset of a free group, by
freely adding inverses to the graph. Moreover, many properties of planar regular monoidal
languages such as their closure properties proved in [12] only use grammars, and hence the
same proofs work for languages in these other algebras.

4 Mazurkiewicz Trace Languages as Symmetric Monoidal Languages

The theory of Mazurkiewicz traces [10, 21, 23] provides a simple but powerful model of
concurrent systems. Traces are a generalization of words in which specified pairs of letters
can commute. If we think of letters as corresponding to atomic actions, then commuting
letters reflect the independence of those particular actions and so their possible concurrent
execution: ab is observationally indistinguishable from ba if a and b are independent.

In this section, we show that trace languages are symmetric monoidal languages over
monoidal graphs of a particular form that we call monoidal distributed alphabets. In Section
5 we introduce symmetric monoidal automata, which operationally characterize the regular
symmetric monoidal languages. In Section 6 we turn to asynchronous automata [32], a
well-known model accepting exactly the recognizable trace languages, and show that these
automata are precisely symmetric monoidal automata over monoidal distributed alphabets.
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4.1 Independence and distribution
We recall some definitions from Mazurkiewicz trace theory, before recasting them in terms of
monoidal languages. Fix a finite set Σ, an alphabet thought of as a set of atomic actions.

▶ Definition 11. An independence relation on Σ is a symmetric, irreflexive relation I. The
induced dependence relation, DI is the complement of I.

▶ Definition 12. For I an independence relation, let ≡I be the least congruence on Σ∗ such
that ∀a, b: (a, b) ∈ I =⇒ ab ≡I ba. The quotient monoid T (Σ, I) := Σ∗/≡I is the trace
monoid.

▶ Definition 13. A (Mazurkiewicz) trace language over (Σ, I) is a subset of the trace monoid
T (Σ, I).

An element of T (Σ, I) or trace over (Σ, I) is thus an equivalence class of words up to
commutation of independent letters. A trace language may be thought of as the set of
possible observations of a concurrent system’s behaviour, in which independent letters stand
for actions which may occur concurrently. Independence relations correspond to distributions:

▶ Definition 14 ([23]). A distribution of an alphabet Σ is a finite tuple of non-empty alphabets
(Σ1, ..., Σk) such that

⋃k
i=1 Σi = Σ.

▶ Proposition 15 ([23]). A distribution of Σ corresponds to a function loc : Σ → P+({1, ..., k}) :
σ 7→ {i | σ ∈ Σi}.

Such a function gives the set of “locations” of each action σ ∈ Σ. In terms of concurrency,
we can consider this to be a set of memory locations, threads of execution, or runtimes in
which σ participates. In particular, every action has a non-empty set of locations.

A well-known construction [23] allows us to move between independence relations and
distributions: locations correspond to maximal cliques in the graph of the dependency relation.
We recall this construction in the proof of Proposition 16, which refines this correspondence.

Let IndΣ be the poset of independence relations on Σ, with order the inclusion of relations.
Similarly, define a preorder DistΣ on distributions by (Σ1, ..., Σp) ⩽ (Σ′

1, ..., Σ′
q) iff for each

pair of distinct elements a, b ∈ Σ, if there exists 1 ⩽ j ⩽ q such that Σ′
j contains both a and

b, then there exists an Σi containing both a and b. Finally, quotient this preorder by taking
distributions to be equal up to permutation.

▶ Proposition 16. There is a Galois insertion IndΣ ↪→ DistΣ.

Proof. We construct an injective monotone function i : IndΣ → DistΣ. Let an independence
relation I over Σ be given, with induced dependence relation DI . Construct the undirected
dependency graph: vertices are elements of Σ and there is an edge (a, b) for every (a, b) ∈ DI .
Choose an ordering of maximal cliques of DI , and define a distributed alphabet by taking
Σi to be the elements of Σ in the maximal clique i. Different orderings give the same
distribution up to permutation, and so the same element of DistΣ. This is injective since
distinct independence relations induce distinct dependency graphs. It is monotone since if
I ⊆ I ′ then the dependency graph DI is at least as connected as DI′ , so if a, b both belong
to a maximal clique of DI′ then they will both belong to a maximal clique of DI .

We construct a monotone function r : DistΣ → IndΣ. Let (Σ1, ..., Σk) be a distribution.
Define a relation I by (a, b) ∈ I ⇐⇒ loc(a) ∩ loc(b) = ∅. This is irreflexive and symmetric,
and so an independence relation. r is also clearly well-defined and monotone. Finally it is
easy to check that r ◦ i : IndΣ → IndΣ is the identity.

◀
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Put otherwise, though the same independence relation may be induced by many different
distributions, independence relations correspond bijectively with the distributions in the
image of i ◦ r, that is, the distributions obtained via the maximal clique construction.

4.2 Symmetric monoidal languages over monoidal distributed alphabets
We now turn to the interpretation of these notions in terms of symmetric monoidal languages.
A distribution can be seen as a monoidal graph in which sorts are the locations (runtimes).

▶ Definition 17. A monoidal distributed alphabet is a finite monoidal graph Γ with the
following properties:

Γ has set of sorts a finite ordinal SΓ = {1 < 2 < ... < k} for k ⩾ 1,
sorts i ∈ SΓ appear in order in the sources and targets of each generator γ ∈ BΓ,
each sort i ∈ SΓ appears at most once in each source and target,
for each generator γ ∈ BΓ, the sources and targets are non-empty and equal: s(γ) = t(γ).

In brief, every generator in the alphabet is equipped with some set of runtimes, which
serve as its source and target, and the runtimes are conserved. Figure 3 gives an example.

γ ε
β

δ

α

Figure 3 An example of a monoidal distributed alphabet. For example, δ and β are independent
but γ and α are not. We use colours for clarity, here blue = 1 < red = 2 < green = 3.

This gives us a way of representing distributions as monoidal graphs and vice-versa, if the
graph is a monoidal distributed alphabet. Following Proposition 15, we will use loc( ... γ ...)
to mean the arity (= coarity) of a generator ... γ .... Since we choose a finite ordinal for the
sorts, we have that:

▶ Proposition 18. Distributed alphabets are in bijection with monoidal distributed alphabets.

Since the ordering of the runtimes is ultimately not relevant to the structure of a trace,
we should allow them to freely cross each other in our string diagrams: this is precisely what
is enabled by taking the symmetric monoidal languages over these alphabets. We also need
each runtime to appear once in each element of these languages, so we take the boundaries
to be 1 ⊗ ... ⊗ n, which we will write as 1...

n
.

▶ Definition 19. A monoidal trace language is a symmetric monoidal language of the form
L ⊆ F Γ

(1...
n
,

1...
n

)
where Γ is a monoidal distributed alphabet.

Figure 4 gives an example of an element in a monoidal trace language over the monoidal
distributed alphabet in Figure 3. We call such morphisms monoidal traces, and indeed we
shall see below that they are exactly Mazurkiewicz traces. The corresponding string diagram
gives an intuitive representation of traces as topological objects.

We now show that monoidal trace languages correspond precisely to Mazurkiewicz trace
languages (Theorem 22), by establishing an isomorphism of monoids between trace monoids
and monoids of string diagrams generated by monoidal distributed alphabets. Fix a monoidal
distributed alphabet Γ. Recall that endomorphism hom-sets in a category are monoids under
composition, and that the hom-set F Γ

(1...
n
,

1...
n

)
has elements string diagrams 1...

n
→ 1...

n
over Γ.
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α
δ

ε

β

γ

Figure 4 An example of a monoidal trace. β is independent of α and γ, but not δ or ϵ. Thus
αγβδε and βαγδε are two possible serializations of this trace, corresponding to sliding β past α and
γ in the string diagram. We use colours for sorts, blue = 1 < red = 2 < green = 3.

▶ Lemma 20. The hom-set F Γ
(1...

n
,

1...
n

)
admits the following presentation as a monoid:

Generators: For each ... γ ... ∈ Γ, the string diagram N(γ) : 1 ⊗ ... ⊗ n → 1 ⊗ ... ⊗ n

built from symmetries, followed by ... γ ... tensored with identities, followed by the inverse
symmetry. See Figure 5 for an example.
Equations: N(α) # N(β) = N(β) # N(α) ⇐⇒ loc( ... α ...) ∩ loc( ... β ...) = ∅, where #
denotes composition of string diagrams in diagrammatic (left-to-right) order.

Proof. We construct an isomorphism between the monoids. Let s ∈ F Γ
(1...

n
,

1...
n

)
be a string

diagram. We can use interchange (Figure 1) to impose a linear order of generators from
left to right in the diagram, e.g. ... γ1 ..., ..., ... γn

.... This is called putting s in general
position, by perturbing generators at the same horizontal position [16]. We then split the
string diagram into a sequence of slices, each containing one generator. For a slice with
right (or left) boundary

k1...
kn

, we can use the permutation
k1...
kn

→ 1...
n

followed by its inverse (or
vice-versa) to finally obtain s as a sequence N(γ1) # ... # N(γn). Any other possible sequence
of generators is obtainable by repeatedly interchanging generators: this is possible if and
only if their locations are disjoint. Consequently, this defines a function from F Γ

(1...
n
,

1...
n

)
to

the monoid presented above. Given that, as argued above, the slicing construction is unique
up to interchanging independent generators, this defines a homomorphism. Conversely, given
a generator N(γ) in the presentation, we map this to the same string diagram in F Γ

(1...
n
,

1...
n

)
.

Again, it follows from interchange that this extends to a homomorphism, inverse to that
above. ◀

γ
1

2

3

4

5

1

2

3

4

5

1 1

4

5

4

5

2

3

2

3

Figure 5 An example of a generator N(γ) as in Lemma 20.

We now show that trace monoids are isomorphic to the endomorphism monoids F Γ
(1...

n
,

1...
n

)
.

▶ Lemma 21. Let I be an independence relation on an alphabet Σ, and Γ the monoidal
distributed alphabet induced by the corresponding distribution (Proposition 18). Then there is
an isomorphism of monoids T (Σ, I) ∼= F Γ

(1...
n
,

1...
n

)
.

Proof. We use the presentation of the endomorphism monoid given in Lemma 20. Define
a homomorphism α : F Γ

(1...
n
,

1...
n

)
→ T (Σ, I) by mapping generators N(γ) 7→ [γ]. Let

N(γ) # N(γ′) = N(γ′) # N(γ), then it follows [γγ′] = [γ′γ] in T (Σ, I), since the former holds
iff loc(γ) ∩ loc(γ′) = ∅, and so this extends to a homomorphism. Define a homomorphism



M. Earnshaw and P. Sobociński 9

β : T (Σ, I) → F Γ
(1...

n
,

1...
n

)
by mapping generators [γ] 7→ N(γ). [γγ′] = [γ′γ] holds iff

loc(γ) ∩ loc(γ′) = ∅, iff loc( ... γ ...) ∩ loc( ... γ′ ...) = ∅, iff N(γ) # N(γ′) = N(γ′) # N(γ).
Finally it is clear that α and β are inverses, and so witness an isomorphism of monoids.

◀

The following theorem is now immediate: given a monoidal trace language L ⊆ F Γ
(1...

n
,

1...
n

)

we obtain a trace language L′ ⊆ T (Σ, I) using the isomorphism, and vice-versa:

▶ Theorem 22. Monoidal trace languages are exactly Mazurkiewicz trace languages.

Lemma 21 also shows that composition of traces corresponds simply to concatenation
of the corresponding monoidal traces. Diagrams like Figure 4 are commonplace in the
trace literature [11, 32]. Theorem 22 gives a formal basis for these diagrams as elements of
symmetric monoidal languages.
▶ Remark 23. The idea of monoidal categories with a runtime is made precise by string
diagrams for the effectful categories of Román [28]. Free props over monoidal distributed
alphabets, considered as monoidal categories with multiple runtimes suggest a further
generalization of effectful categories, sketched as a setting for concurrency by Jeffrey [14,
Section 9.4]. We return to this in Section 7, where effectful (premonoidal) categories will be
used to equip a trace language with a new runtime that enforces a strict ordering of events.

5 Symmetric Monoidal Automata

Monoidal automata give an alternative specification of the class of regular monoidal languages:
they are analogues of finite-state automata in which transitions have multiple inputs and
multiple outputs. Our paper [12] introduced monoidal automata for single-sorted, planar
monoidal languages. However, the same data specifies an acceptor for single-sorted symmetric
monoidal languages, if we inductively extend to props, rather than planar monoidal categories.

In this section we introduce monoidal automata over multi-sorted monoidal graphs and
show how these recognize (multi-sorted) symmetric monoidal languages. In Section 6, we
will see that the asynchronous automata of Zielonka [32] are a natural class of symmetric
monoidal automata: those over monoidal distributed alphabets.

▶ Definition 24. A non-deterministic monoidal semi-automaton is:
an input alphabet, given by a finite monoidal graph Γ,
an family of non-empty, finite state sets {Qc}c∈SΓ indexed by the sorts of Γ,
for each γ : c1...cn → c′

1...c′
m in Γ, a transition function ∆γ :

∏n
i=0 Qci

→ P(
∏m

j=0 Qc′
j
).

As noted in Section 3, there are several candidates for a notion of initial/final state. In
the following, we take initial and final words i, f over

∏
Qc. A monoidal semi-automaton

equipped with initial and final words turns it into a (non-deterministic) monoidal automaton.
For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel, the

inductive extension of the transition structure from letters to words. We can similarly extend
monoidal automata to string diagrams. First, we define the codomain prop, RelΓ,Q:

▶ Definition 25. For a family of sets {Qc}c∈SΓ indexed by the sorts of Γ then RelΓ,Q is the
prop with:

set of objects S∗
Γ,

morphisms c1...cn → c′
1...c′

m functions
∏n

i=1 Qci
→ P(

∏m
j=1 Qcj

),
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composition is the usual composition of relations, i.e. f ◦ g := µ ◦ P(g) ◦ f , where µ is
the canonical map from sets of subsets to subsets,
⊗ is given on objects by concatenation,
and on morphisms f :

⊗
i ci → ⊗

j c′
j and g :

⊗
k dk → ⊗

l d′
l by f ⊗ g := ∇ ◦ (f × g),

where ∇ sends pairs of subsets to their cartesian product,
symmetries σ : c1c2 → c2c1 are functions Qc1 × Qc2 → P(Qc2 × Qc1) : (q, q′) 7→ {(q′, q)}.

Note that a non-deterministic monoidal semi-automaton amounts to a morphism of
monoidal graphs Γ → U RelΓ,Q. The adjunction F ⊣ U implies that there is a unique
extension to a strict monoidal functor F Γ → RelΓ,Q, which we call a non-deterministic
symmetric monoidal semi-automaton. This functor maps a string diagram to a relation.
When this relation relates the initial word to the final word, the string diagram is accepted:

▶ Definition 26. Let ∆ : F Γ → RelΓ,Q be a non-deterministic monoidal automaton with
initial and final states i, f ∈ (

∏
c Qc)∗. Then the symmetric monoidal language accepted by

∆ is the set of morphisms L (∆) := {α ∈ F Γ | f ∈ ∆(α)(i)}.

Intuitively, a run of a symmetric monoidal automaton starts with a word of states, whose
subwords are modified by transitions corresponding to generators. Identity wires do not
modify the states, and symmetries permute adjacent states.

▶ Observation 27. There is an evident correspondence between non-deterministic monoidal
automata and regular monoidal grammars. The graphical representation of a grammar (such
as Figure 2) makes this most clear: it can also be thought of as the “transition graph” of a
non-deterministic monoidal automaton.

▶ Remark 28. We can further abstract our definition of monoidal automaton by noting that
RelΓ,Q is a sub-prop of the Kleisli category of the powerset monad P, and that this monad
could be replaced by another commutative monad [27, Corollary 4.3]. For example, replacing
P with the maybe monad, we obtain deterministic monoidal automata.

6 Asynchronous Automata as Symmetric Monoidal Automata

Asynchronous automata were introduced by Zielonka [32] as a true-concurrent operational
model of recognizable trace languages, a well-behaved subclass of trace languages analogous
to regular languages. In this section we show they are precisely symmetric monoidal automata
over monoidal distributed alphabets, which leads to the following theorem:

▶ Theorem 29. Recognizable trace languages are exactly regular symmetric monoidal lan-
guages over monoidal distributed alphabets.

We recall the definition of asynchronous automata, before turning to monoidal automata.

▶ Definition 30 (Asynchronous automaton [32]). Let (Σ1, ..., Σk) be a distribution of an
alphabet Σ. For each 1 ⩽ i ⩽ k, let Qi be a non-empty finite set of states, and for each
σ ∈ Σ take a transition relation ∆σ :

∏
i∈loc(σ) Qi → P(

∏
i∈loc(σ) Qi). This defines a global

transition relation on the set Q :=
∏k

i=1 Qi as follows:
(q1, ..., qk) σ−→ (q′

1, ...q′
k) ⇐⇒ qi = q′

i for i /∈ loc(σ) and (q′
i1

, ..., q′
ij

) ∈ ∆σ(qi1 , ..., qij )
where {i1, ..., ij} ∈ loc(σ). Finally let −→

i ∈ Q, F ⊆ Q be initial and final words of states.

The global transition relation for σ leaves unchanged those states at locations in the
complement of loc(σ), and otherwise acts according to the local transition ∆σ. An asyn-
chronous automaton has a language over Σ given by the extension of the transition relation
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to words. Moreover, asynchronous automata have a language of Mazurkiewicz traces over
the distribution of Σ: a trace in T (Σ, I) is accepted when all of its serializations are accepted,
which happens when one of its serializations is accepted [32, p. 109]. Recognizable trace
languages are defined algebraically as those whose syntactic congruence is of finite index [32].
Zielonka’s theorem says that they also have an operational characterization:

▶ Theorem 31 (Zielonka [32]). Asynchronous automata accept precisely the recognizable
trace languages.

Definition 30 closely resembles that of symmetric monoidal automata. Indeed, asyn-
chronous automata are precisely symmetric monoidal automata over monoidal distributed
alphabets:

▶ Proposition 32. For an asynchronous automaton A, there is a symmetric monoidal
automaton over a monoidal distributed alphabet with the same trace language, and vice-versa.

Proof. An asynchronous automaton with multiple final state words can be normalized to a
single final state word in the usual way by introducing a new final state word and modifying
transitions appropriately. Then a symmetric monoidal automaton can be constructed by
taking the monoidal distributed alphabet associated to the distribution of Σ (Proposition 18),
the same transition relations, initial and final state words. We show that the languages
coincide. Let w ∈ L (A), and consider the corresponding trace [w]. Using Lemma 21, we
can produce the corresponding monoidal trace. By construction, this is accepted by the
symmetric monoidal automaton defined above. The converse is analogous. ◀

As a corollary, we can invoke Theorem 31 to obtain Theorem 29. In contrast to asyn-
chronous automata, the constructed symmetric monoidal automaton directly accepts traces
qua string diagrams, rather than a language of words corresponding to a trace language.

▶ Observation 33. Jesi, Pighizzini, and Sabadini [15] introduced probabilistic asynchronous
automata. Initial and final states, and transition relations are replaced by initial and final
distributions, and stochastic transitions. These are precisely what are obtained if the powerset
monad in our definition of non-deterministic monoidal automaton (Remark 28) is replaced
with the distribution monad [26], whose Kleisli category has morphisms stochastic matrices.

7 Serialization via Premonoidal Categories

Trace theorists often consider trace languages to be word languages with the property of trace-
closure with respect to an independence relation [19]: if u ∈ L and u ≡I v then v ∈ L. These
languages arise as preimages of trace languages along the quotient map qΣ,I : Σ∗ → T (Σ, I).
For L ⊆ T (Σ, I) a trace language, q−1

Σ,I(L) ⊆ Σ∗ is its flattening or serialization.
In this section we show that the serialization of monoidal trace languages can be carried

out using the algebra and string diagrams of symmetric premonoidal categories. Premonoidal
categories are like monoidal categories, except interchange (Figure 1) does not hold in general.
The free (symmetric) premonoidal category on a monoidal graph was described using string
diagrams by Román [28]. The idea is simple: the string diagrams are the same as for props,
but an extra string (the “runtime”) threads through each generator, preventing interchange.
Figure 6 shows two premonoidal morphisms • ⊗ • → • ⊗ • that are not equal:
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≠
α

β

α

β

Figure 6 In the free premonoidal category over a monoidal graph, generators are augmented by
a string on a new object called the runtime (dashed red). This prevents interchange (cf. Figure 1).

In Appendix A, we explain in more detail the construction of the free symmetric pre-
monoidal category FpΓ on a monoidal graph Γ using string diagrams. In particular, the
runtime string appears only once in each string diagram, reflecting that premonoidal cate-
gories do not have a tensor product on morphisms. The endomorphism monoid FpΓ

(1...
n
,

1...
n

)
is

now the free monoid over the boxes of Γ, since the runtime prevents interchange:

▶ Proposition 34. Let Γ be a monoidal distributed alphabet. Then FpΓ
(1...

n
,

1...
n

)
∼= B∗

Γ, where
BΓ is the set of boxes of Γ.

Proof. (Sketch) By augmenting the generators of Γ with a new runtime, we create a monoidal
distributed alphabet in which every generator depends on every other, that is, the indepen-
dence relation is empty. Thus the corresponding trace monoid is simply B∗

Γ. From here, we
can follow the idea of Lemma 21. ◀

We can define a morphism of monoids qΓ : FpΓ
(1...

n
,

1...
n

)
→ F Γ

(1...
n
,

1...
n

)
by presenting

FpΓ
(1...

n
,

1...
n

)
as in Lemma 20, and defining qΓ on generators by erasing the runtime string.

Theorem 35 then follows immediately from the definitions along with Lemma 21 and Propo-
sition 34:

▶ Theorem 35. For every alphabet BΓ, the following square of monoid homomorphisms
commutes, where q is the quotient monoid homomorphism.

B∗
Γ τ(BΓ, I)

FpΓ
(1...

n
,

1...
n

)
F Γ

(1...
n
,

1...
n

)
∼=

q

∼=

qΓ

As a result, the preimage of a monoidal trace language under the morphism qΓ corresponds
to the serialization of that language.

8 Conclusion

There are several directions in which our theory could be developed. A semi-independence
relation drops symmetry from an independence relation: it is simply an irreflexive relation.
This gives rise to the theory of semicommutations [7], in which directed commutations may
occur e.g. ab → ba, but not vice-versa. This allows for a more fine-grained specification
of concurrency. In terms of monoidal languages, it suggests consideration of monoidal
distributed alphabets in which the sources and targets of generators may differ.

As noted in Remark 23, our treatment of trace languages suggests a generalization of the
notion of effectful category [28] (which include premonoidal categories), in which there are
multiple runtimes. This would enable a semantics for concurrent systems in which we can
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consider not only atomic actions, but also actions with input and output types. We plan to
pursue this axiomatically in future work.

Mazurkiewicz originally introduced traces to give semantics to Petri nets, and showed
that this semantics is compositional with respect to synchronization of traces [21]. Petri nets
have been given semantics in monoidal categories [2, 22], and so the precise relationship of
our monoidal formulation of traces to Petri nets remains to be worked out. In particular,
this would involve understanding trace synchronization in terms of monoidal categories.

Finally, proofs of Zielonka’s theorem (Theorem 31, see [32] for details) remain highly
technical, despite several simplifications since Zielonka’s version. Investigation of whether the
algebra of monoidal categories might yield further simplifications is an intriguing direction.
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A Symmetric Strict Premonoidal Categories and Functors

We recall the definitions of (symmetric) strict premonoidal categories and their functors. For
more details, see the papers [27, 28].

▶ Definition 36. A strict premonoidal category is a category C equipped with:
for each pair of objects A, B ∈ C an object A ⊗ B,
for each object A ∈ C a functor A ◁ − whose action on objects sends B to A ⊗ B,
for each object A ∈ C a functor − ▷ A whose action on objects sends B to B ⊗ A, and
a unit object I,

such that,
for each A ∈ C, strict unitality I ⊗ A = A = A ⊗ I holds, and
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for each triple A, B, C ∈ C, strict associativity A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C holds.

The families of functors A◁−, −▷A are called the whiskerings with A: in a premonoidal
category we do not have a tensor product of morphisms in general, but we can put an identity
on either side of a morphism. A morphism f : A → B ∈ C is central if for every morphism
g : C → D, (B◁g)◦ (f ▷C) = (f ▷C)◦ (A◁g), in other words, f is central if it interchanges
with every other morphism g.

▶ Definition 37. A strict premonoidal category is symmetric if it is further equipped with
a natural isomorphism whose components cA,B : A ⊗ B → B ⊗ A are central and such that
cB,A ◦ cA,B = 1A⊗B.

▶ Definition 38. A strict premonoidal functor F : C → D is a functor sending central
morphisms to central morphisms and such that F (IC) = ID, F (X ⊗ Y ) = F (X) ⊗ F (Y ).

A.1 String Diagrams for Premonoidal Categories
We recall the construction of the free symmetric strict premonoidal category over a monoidal
graph. This is a special case of the construction of free effectful categories in [28, Section 2.3].

We first define the runtime monoidal graph over a monoidal graph, which augments the
generators with a new wire:

▶ Definition 39. Let G be a monoidal graph. Let R be a sort disjoint from SG. The runtime
monoidal graph GR has sorts SG + {R} and for each generator γ : S1...Sn → S′

1...S′
m in G a

generator γ : RS1...Sn → RS′
1...S′

m.

Graphically we can depict GR as in Figure 7 (right):

α β α β

Figure 7 Left: A monoidal graph G. Right: the associated runtime monoidal graph GR, where
the new sort R is drawn as a dashed string.

▶ Definition 40. The symmetric runtime monoidal category is the free prop F GR on GR.

▶ Theorem 41. The free symmetric strict premonoidal category FpG on a monoidal graph
G has set of objects SG and a morphism S1 ⊗ ... ⊗ Sn → S′

1 ⊗ ... ⊗ S′
m is a morphism

R ⊗ S1 ⊗ ... ⊗ Sn → R ⊗ S′
1 ⊗ ... ⊗ S′

m in the symmetric runtime monoidal category.

Proof. The proof follows [28, Theorem 2.14], in the case where V is empty, and taking
instead the free symmetric strict monoidal category. ◀

In particular note that we no longer have a tensor product of morphisms in FpG, since
the runtime must appear only once in each domain and codomain, but we do have whiskerings
for each object.

Consequently the string diagrams for morphisms A → B in FpG are just morphisms
R ⊗ A → R ⊗ B in the symmetric runtime monoidal category [28, Corollary 2.15].
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Regular Planar Monoidal Languages⋆

Matthew Earnshaw1, Pawe l Sobociński1
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Abstract

We introduce regular languages of morphisms in free monoidal categories, with
their associated grammars and automata. These subsume the classical theory
of regular languages of words and trees, but also open up a much wider class of
languages of planar string diagrams. We give a pumping lemma for monoidal
languages, generalizing the one for words and trees. We use the algebra of mo-
noidal and cartesian restriction categories to investigate the properties of regular
monoidal languages, and provide sufficient conditions for their recognizability
by deterministic monoidal automata.

Keywords: monoidal categories, string diagrams, formal language theory,
automata, cartesian restriction categories

1. Introduction

Free monoids play a central role in classical formal language theory, but
language theory has been extended to many algebraic structures, such as infinite
words [28], rational sequences [1], trees [20, 2], countable linear orders [7], graphs
of bounded tree width [11], etc. Recently, several works have appeared that aim
at unifying the language theory of these diverse structures [3, 37].

One approach to unification is to view these structures as algebras for mon-
ads on the category of sets, and then to develop language theory at the level of
monads. In this vein, Bojańczyk, Klin and Salamanca [3] have given sufficient
conditions on a monad for the correspondence between regularity and defin-
ability in monadic second-order logic to extend to languages over its algebras.
Previously, universal algebra has also been fruitfully applied to the problem of
giving a unified presentation of automata over diverse algebras, for example in
the classical work of Eilenberg and Wright [17], and Thatcher and Wright [36].

However, there are many algebraic structures arising neither as algebras for
monads on the category of sets, nor as structures in classical universal algebra.
In particular, this is true of many structures in category theory, such as monoidal
categories. At the same time, these structures can be considered as natural

⋆This research was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19- 0001) and Estonian Research Council grant PRG1210.

Preprint submitted to Elsevier May 4, 2023



generalizations of monoids to higher dimensions, and so offer promise for an
algebraic approach to higher-dimensional formal languages.

A natural first step, which we take in this paper, is to replace monoids with
2-monoids, better known as monoidal categories. Monoids can be seen as cat-
egories with one object, in which morphisms are the elements of the monoid.
Monoidal categories can be defined as 2-categories with one object: “higher”
monoids in which there are now additionally transformations between the ele-
ments. We call languages in these categories monoidal languages.

We introduce grammars and automata for monoidal languages, defining the
class of regular planar monoidal languages. We show how these include classical
and tree automata, but also open up a wilder world of string diagram languages.
In fact, our framework is flexible enough to treat any structures arising as al-
gebras for monads over multi-input, multi-output graphs known as monoidal
graphs. We indicate some future directions along these lines in our conclusion.

By investigating morphisms in monoidal categories from the perspective of
language theory, this work contributes to research into the computational ma-
nipulation of string diagrams, and so their usage in industrial strength applica-
tions.

Outline. In Section 3, we cover some preliminaries, recalling the basic algebraic
ingredients needed for the rest of the paper: monoidal graphs and monoidal cat-
egories, along with their string diagrams, a graphical formalism for representing
their morphisms. In Section 4, we introduce monoidal languages and regular mo-
noidal grammars, a finitary specification of monoidal languages defining the class
of regular monoidal languages. In Section 5, we introduce the pumping lemma
for regular monoidal languages, and use it to analyze a non-regular monoidal
language. In Section 6, we introduce non-deterministic monoidal automata and
their associated monoidal languages, which give an operational characterization
of regular monoidal languages. In Section 7, we show how regular word and tree
automata are special cases of monoidal automata. In Section 8, we give some
closure properties of regular monoidal languages. These are the usual closure
properties of regular languages, with the exception of complements. In Section
9, we introduce the syntactic pro of a monoidal language by analogy with the
syntactic monoid of a regular language. In Section 10, we introduce determin-
istic monoidal automata and the concept of causal history, which is used to
investigate deterministic recognizability and provide a necessary condition on a
language for it to be deterministically recognizable. We also give an algebraic
condition on a language sufficient for deterministic recognizability, using the
syntactic pro. In Section 11, we introduce convex relations and give a powerset
construction for a class of monoidal automata.

Comparison with the conference paper. This work is an extended version of the
conference paper [15]. Besides reorganization and additional examples, there are
several new sections, extensions of concepts, and corrections. In particular, we
introduce a pumping lemma for regular monoidal languages (Lemma 5.1), and
apply this to a new example of a monoidal language (Definition 5.4), showing
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that it is not regular (Proposition 5.6). We correct the details around convex
relations: the lift ∆∗ need not be unique, as claimed in [15]. Prerequisites are
covered in more detail, making the paper more self-contained. We also include
all proofs omitted in the conference version.

2. Related work

Bossut [4] studied rational languages of planar acyclic graphs and proved
a Kleene theorem for a class of such languages. Bossut introduced a notion
of automaton for these languages, but these lack a state machine denotation –
being more similar to our grammars. Bossut’s graph languages feature initial
and final states, whereas in this paper we do away with these by considering
scalar morphisms, which more neatly generalizes the theory of regular string and
tree languages. We make explicit the fact the languages of graphs investigated
by Bossut have an underlying algebra, that of monoidal categories, and hence
fully leverage this algebra in our proofs and definitions. This leads us in quite
different directions of investigation from Bossut.

In the preprint [21], Heindel recasts Bossut’s approach using monoidal cate-
gories, and this serves as a starting inspiration for ours, although our definitions
and direction of development differ. Unfortunately the purported Myhill-Nerode
result was incorrect, due to a flawed definition of syntactic congruence. We rec-
tify this in Section 9, but a Myhill-Nerode type theorem remains open.

Zamdzhiev [39] introduced context-free languages of string diagrams using
a combinatorial representation of string diagrams called string graphs, and the
machinery of context-free graph grammars. In contrast, our approach does
not require an intermediate representation of string diagrams as graphs: we
work directly with morphisms in monoidal categories. This allows us to use the
algebra of monoidal categories to reason about properties of monoidal languages.

Winfree et al. [32] used DNA self-assembly to simulate cellular automata
and Wang tile models of computation. The kinds of two-dimensional languages
obtained in this way can be seen quite naturally as regular monoidal languages,
as illustrated in Example 4.8.

Walters’ note [38] on regular and context-free grammars served as a starting
point for our definition of regular monoidal grammar. Rosenthal [31], devel-
oping some of the ideas of Walters, defined automata as relational presheaves,
which is similar in spirit to our functorial definition of monoidal automata. The
framework of Colcombet and Petrişan [10] considering automata as functors
is also close in spirit to our definition of monoidal automata. However, all of
these papers are directed towards questions involving classical one-dimensional
languages, rather than languages of diagrams as in the present paper.

Fahrenberg et al. [18] investigated languages of higher-dimensonal automata,
a well-established model of concurrency. We might expect that the investiga-
tions of the present paper correspond to a detailed study of a particular low-
dimensional case of such languages, but the precise correspondence between
these notions is unclear.
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3. Monoidal Graphs, Pros, and their String Diagrams

In this section we introduce the main algebraic structures including the kinds
of monoidal categories known as pros. Morphisms in monoidal categories can be
represented using string diagrams, a kind of “graph with interfaces”. Monoidal
graphs are intuitive to work with and often lead to shorter proofs [23, 34].
String diagrams can be used to present monoidal categories. The basic building
blocks for string diagrams are given by monoidal graphs, a kind of multi-input,
multi-output graph:

Definition 3.1. A monoidal graph G is a set BG of boxes, a set SG of sorts and
functions s, t : BG ⇒ SG

∗ to the free monoid over SG, giving source and target
boundaries of each box.

Diagrammatically, a monoidal graph can be pictured as a collection of boxes,
labelled by elements of BG with strings entering on the left and exiting on
the right, labelled by types given by the source and target functions s, t. For
example, Figure 1 depicts the monoidal graph G with BG = {γ, γ′}, SG =
{A,B}, s(γ) = AB, t(γ) = ABA, s(γ′) = A, t(γ′) = BB:

A

B
γ

A
B
A

A γ′ B

B

Figure 1: Example of a monoidal graph. Monoidal graphs form the building blocks of string
diagrams: a diagrammatic notation for morphisms in monoidal categories.

Given that we are interested in finite state machines over finite alphabets,
we shall work exclusively with finite monoidal graphs, i.e. those in which BG
and SG are both finite sets. We call s(γ) and t(γ) the arity and coarity of γ,
respectively, of a box γ. We will write γ : s(γ) → t(γ) when considering a
box along with its source and target types. These are the generators of (free)
monoidal categories, and so we also call them generators.

Definition 3.2. A strict monoidal category is a category C, equipped with a
functor ⊗ : C × C → C (the monoidal product) and a unit object I ∈ C, such
that ⊗ is associative and unital: A⊗(B⊗C) = (A⊗B)⊗C and A⊗I = A = I⊗A
for all objects A,B,C.

The monoidal product turns the sets of objects and morphisms in C into
monoids.

Definition 3.3. A pro is a strict monoidal category whose monoid of objects
is a free monoid (whose generators are sorts).

Although the data of a strict monoidal category can seem intimidating to the
non-expert, they admit an intuitive graphical calculus of string diagrams. Given
a monoidal graph, we can construct the free pro on it using string diagrams,
generated by the diagrammatic presentation of the monoidal graph:
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Definition 3.4. The free pro FG on a monoidal graph G has monoid of objects
S∗
G and morphisms string diagrams inductively defined as in Figure 3.4. The

monoidal product is given on objects by concatenation, on diagrams by juxtapo-
sition, and the unit is the empty word.

 A∈S𝒢

A A

α ∈ B𝒢

...... α
A0

An

B0

Bm

A1 B1

...... d2

C0

Cp

D0

Dq

C1 D1...... d1

A0

An

B0

Bm

A1 B1

...... d2

C0

Cp

D0

Dq

C1 D1
...... d1

A0

An

B0

Bm

A1 B1

...... d1

A0

An

B0

Bm

A1 B1 ...... d2

D0

Dq

D1d3

B0

Bm

B1

...... d1

A0

An

A1 ...d3

D0

Dq

D1

Figure 2: Inductive definition of morphisms in the free pro on a monoidal graph. Left to
right: the empty diagram is a diagram; for each sort, the identity string is a diagram; the
diagram for every generator α is a diagram; for any two diagrams their vertical juxtaposition
is a diagram; and for any two diagrams with matching right and left boundaries, the diagram
obtained by joining the matching wires is a diagram (their composition).

The basic idea is straightforward: we treat generators like circuit compo-
nents that we can plug together in series, or place in parallel. String diagrams
are topological objects: they are invariant up to planar isotopy. Furthermore,
they are sound and complete: an equation between morphisms of strict monoi-
dal categories follows from their axioms if and only if it holds between string
diagrams up to planar isotopy [23, 34]. The structural equations of strict mo-
noidal categories such as associativity and unitality of tensor hold automatically
in string diagrams, and this often leads to shorter, less bureaucratic proofs.

Since the monoidal unit is the empty word (denoted 0 when G is single
sorted, and by ε in general), morphisms from or to the monoidal unit are string
diagrams with no “dangling wires” on their left or right, respectively. Note that
when G is single-sorted, we do not need labels on the strings. Alphabets for
monoidal languages will be single-sorted finite monoidal graphs: we call such
monoidal graphs monoidal alphabets.

We will make extensive use of morphisms of monoidal graphs:

Definition 3.5. A morphism Ψ : G′ → G of monoidal graphs is a pair of
functions SΨ : SG → SG′ , BΨ : BG → BG′ such that S∗

Ψ ◦ s = s ◦ BΨ and
S∗
Ψ ◦ t = t ◦BΨ, where S∗

Ψ is the unique monoid homorphism determined by SΨ.

Monoidal graphs and their morphisms form a category MonGraph. Moreover,
just as a monoidal graph freely generates a pro, a morphism of monoidal graphs
freely generates a morphism of pros. Recall that a strict monoidal functor is a
functor F : C → D, where C and D are monoidal categories, and F (X ⊗ Y ) =
F (X) ⊗ F (Y ), F (IC) = ID. A morphism of a pros is simply a strict monoidal
functor whose action on objects is determined by a function between their sets
of generating sorts.

Any monoidal category has an underlying monoidal graph, given by forget-
ting composition and monoidal product:
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Definition 3.6. The underlying monoidal graph U M of a pro M is defined to
have SU M = Ob(M), the objects of M , and BU M =

⋃
Mor(M), the morphisms

of M with s, t : BU M ⇒ S∗
U M assign each morphism its source and target sorts.

There is a “free-forgetful” adjunction F ⊣ U : Pro → MonGraph (see for
example, [24, Proposition 6.1]). We will use this later in Section 6 to define
inductive extensions of monoidal automata.

Remark 3.7. In the introduction we remarked that strict monoidal categories
might also be seen as 2-dimensional monoids, and hence a natural candidate for
the algebra of higher-dimensional formal languages. In general we can define
n-monoid to mean strict n-category with one object, as in Burroni [5] who in-
troduced the word problem for n-monoids. Monoids are equivalent to one-object
categories, and moving up a dimension corresponds to introducing morphisms
between the elements of a monoid.

4. Planar Monoidal Languages and Regular Monoidal Grammars

Just as a classical word language is a subset of a finitely generated free
monoid, a monoidal language is a set of morphisms in a finitely generated free
pro. In particular, we are interested in the scalar morphisms: those from the
monoidal unit to itself, in other words, string diagrams with no dangling wires.
Recall that a monoidal alphabet is defined to be single-sorted finite monoidal
graph.

Definition 4.1. A planar monoidal language L over a monoidal alphabet Γ is
a subset L ⊆ FΓ(0, 0) of morphisms with arity and coarity 0 in the free pro
category generated by Γ.

The restriction to arity and coarity zero (i.e. scalar) morphisms may appear
arbitrary. However, we will see in Section 7 that this captures and explains the
classical definitions of finite-state automata over words and trees. It also leads to
more concise definitions in our theory. We will usually drop the qualifier planar,
since they are the main object of investigation. In Section 12 we highlight some
work in progress on symmetric monoidal languages, which permit non-planar
string diagrams.

Regular monoidal grammars specify a class of monoidal languages analogous
to regular languages. The starting point of our definition of regular monoidal
grammar and their associated monoidal languages is inspired by Walters [38],
so we briefly explain his elegant idea.

Walters [38] introduced an algebraic definition of regular grammars as mor-
phisms of finite graphs. It is commonplace to represent finite-state automata as
labelled directed graphs and this is the starting intuition. A labelled directed
graph can be seen as a morphism of graphs ϕ : G → Σ, from a graph Q whose
vertices are states and edges transitions to a graph Σ with one vertex whose
edges are labels. A morphism of graphs is a function on edges and a function on
vertices, commuting with source and target assigments. On vertices a morphism
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G → Σ is trivial: it must send every state to the single vertex of Σ. On edges
of G, it assigns labels, which are elements of the alphabet.

Following Walters, such a morphism is called a grammar rather than an
automaton, because Σ appears in the codomain: when we consider Σ as a set
of inputs for an automaton, it should (and will) appear in the domain of a
morphism. Roughly speaking, a grammar is fibered over the alphabet, whereas
in an automaton the alphabet indexes transitions.

There are many advantages to this innocent reframing of grammars as mor-
phisms of graphs when it comes to language theory. It allows us to neatly
describe operations on grammars, such as in proving closure operations in Sec-
tion 8. It suggests various generalizations, by replacing graphs with other kinds
of structure. Walters does this with multi-input, single-output graphs, obtain-
ing context-free languages using a similar construction. Using monoidal graphs
instead leads to definition of regular monoidal grammars:

Definition 4.2. A regular monoidal grammar is a morphism of monoidal
graphs Ψ : M → Γ where M is finite, and Γ is a monoidal alphabet.

Intuitively, a regular monoidal grammar is a labelling of the edges of M by
generators in Γ. Indeed, since Γ is single-sorted, the sort function Ψ : SM → {•}
is unique, and the grammar is determined by its box function BΨ : BM → BΓ,
sending boxes to their labels. In Section 6 we show that this data determines a
transition system with states words w ∈ S∗

M.
Walters’ definition also allows us to concisely describe the language asso-

ciated to a grammar. A derivation in a regular grammar or a run over an
automaton corresponds to a path in G, and the accepted word is given by the
labelling of the path. Formally, can use the fact that any directed graph G gen-
erates a free category FG, having objects the vertices and morphisms the paths.
In particular, the free category on a single vertex graph Σ is the free monoid
over the set of edges. Furthermore, any morphism of graphs generates a functor.
If i, f are chosen vertices of G, then the language of the grammar is simply the
image of the set of morphisms from i to f in FG under the associated functor
Fϕ, giving a subset of Σ∗.

Remark 4.3. Regular monoidal grammars determine morphisms between free
pro(p)s, FΨ : FM → FΓ. We may also refer to these morphisms as gram-
mars.

Pros are monadic over monoidal graphs: the forgetful functor U : Pro →
MonGraph has a left adjoint F : MonGraph → Pro, and Pro is equivalent to the
category of algebras for the induced monad on MonGraph (see [19, §2.3]). F
sends a monoidal graph G to a pro FG whose set of objects is V ∗

G and whose
morphisms are string diagrams (see [34]).

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of
string diagrams FΨ−1(s) as a set of possible “parsings” of that diagram. From
another perspective, we can think of a string diagram s ∈ FM as represent-
ing a specification for the construction of the string diagram FΨ(s) ∈ FΓ to
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which the grammar maps it: the specification is a decomposition of the desired
diagram into generators with typed boundaries that specify how they should be
composed.

Remark 4.4. We represent regular monoidal grammars diagrammatically by
drawing the monoidal graph M as above, but labelling each box b ∈ BM with
BΨ(e). The resulting diagram is not in general a diagram of a monoidal graph,
since it may contain boxes with the same label but different domain or codomain
types. Examples are given below.

4.1. Regular monoidal languages

Regular monoidal grammars specify monoidal languages that are an analogue
of classical regular languages. They can be obtained by taking Walters’ [38]
definition of regular language and replacing the adjunction between reflexive
graphs and categories with that between monoidal graphs and pros. As shown
in Section 7, they include the classical definitions of regular tree and word
languages as grammars over monoidal alphabets of a particular shape.

Regular monoidal grammars specify a subset of monoidal languages, which
specialize to the usual regular languages when M is free over a signature con-
taining 1 → 1 generators (Section 7).

A regular monoidal grammar determines a monoidal language as follows:

Definition 4.5. Given a regular monoidal grammar Ψ : M → Γ, the image un-
der FΨ of the endo-hom-set of the monoidal unit ε in FM is a planar monoidal
language FΨ[FM(ε, ε)] ⊆ FΓ(0, 0). We call the class of languages determined
by regular monoidal grammars the regular planar monoidal languages.

The basic idea is that a “word” is a scalar string diagram, i.e. one with
no “dangling strings”. The language of a monoidal grammar then consists
of those scalar string diagrams that can be given a parsing. Parsings can be
visually explained using the graphical notation for grammars (Remark 4.4). A
morphism in the language defined by a grammar is any string diagram that
can be built using the “typed” building blocks, such that there are no dangling
strings, and then erasing the types on the strings. The following examples of
regular monoidal grammars illustrate this idea:

Example 4.6 (Balanced parentheses). Recall that the Dyck language, the lan-
guage of balanced parentheses, is a paradigmatic example of a non-regular word
language. However, we can recognize balanced parentheses using the regular mo-
noidal grammar using the grammar in Figure 3. An example of a morphism in
the language defined by this grammar is shown on the right in Figure 3.

Figure 3: A regular monoidal grammar for balanced parentheses (left), and a morphism in
the language (right).
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This illustrates how regular monoidal grammars permit unbounded concur-
rency. Here, as one scans from left to right, the (unbounded) size of the internal
boundary of a string diagram keeps track of the number of open left parentheses.

Example 4.7 (Brick walls). A variant on the “brick wall” language introduced
by [4] is given by the following grammar (Figure 4). An example of a morphism
in the language defined by this grammar is shown on the right in Figure 4.

Figure 4: The grammar for the brick wall language (left), and a morphism in the language
(right).

In Section 8 we will see how this language of “brick walls” allows us to
construct the following example as an intersection of two languages:

Example 4.8 (Sierpiński triangles). Rothemund, Papadakis, and Winfree [32]
use self-assembly of DNA tiles to realize the behaviour of a cellular automaton
that computes the Sierpiński triangle fractal, based on the computation of the
XOR gate. [32] implicitly depicts a monoidal grammar, and so Sierpiński tri-
angles of arbitrary iteration depth (e.g. Figure 6) are contained in the monoidal
language over this grammar (Figure 5).

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1

Figure 5: The regular monoidal grammar of Sierpiński triangles.

Figure 6: An element of the regular monoidal language of Sierpiński triangles.

Example 4.9. We define a grammar that will serve as a running counterex-
ample in Sections 10 and 11, as it defines a language that cannot be determin-
istically recognized (Figure 7). In particular it does not satisfy the property of
causal closure, a necessary condition for deterministic recognizability which we
introduce in Section 10.
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δ
α

β

A

A

B

C
γ

A

A

B

C
γ

A

A

C

B

Figure 7: This grammar is “non-deterministic”: there are two possible transitions from the
empty word when encountering γ.

The connected string diagrams in this language are exactly two (Figure 8).

γ δ
α

β
γ δ

α

β

Figure 8: The connected string diagrams in the language of 7.

Again, in this paper we will often drop “planar” and just speak of regular
monoidal languages, since all of the languages treated here are planar. We shall
see in Section 6 that regular monoidal languages are precisely the languages
accepted by non-deterministic monoidal automata.

Remark 4.10. If the monoidal graph M has no edges whose domain is ε and no
edges whose codomain is ε, a regular monoidal grammar will define a language
containing only the identity on the monoidal unit, i.e. the empty string diagram
(denoted ). In fact, every monoidal language contains the empty string
diagram.

5. Pumping lemma for regular monoidal languages

In this section we prove a pumping lemma for regular monoidal languages
(Lemma 5.1). We use this lemma to show that the language of unbraids is a
monoidal language which is not regular monoidal.

Lemma 5.1 (Monoidal pumping lemma). Let L be a regular monoidal language.
Then ∀k ∈ N+,∃n > 0 such that for any w ∈ L where w may be factorized (as
follows) into m ⩾ n morphisms with boundaries (ki−1, ki) of width 1 ⩽ ki ⩽ k
and such that no wi is an identity morphism:

wmwi ki

... }...ki-1 } ...

...

km-1 }... ...w0 ...

...
k0} ......

there exists i < j such that ki = kj = ℓ and

w'''w'' ℓ

... }...ℓ }w'
... ( ( ...

p

∈ L,∀p ⩾ 0
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where (w′′)p in the diagram indicates sequential repetition of w′′, p times,
and w′ = w0; ...;wi, w

′′ = wi+1; ...;wj, and w′′′ = wj+1; ...;wm.

Proof. Let L be the language of the grammar φ : M → Γ. If L has a finite
number of connected elements, then for any k take n to be longer than the
longest factorization over all diagrams in L, then the lemma holds vacuously.
Otherwise let k be given, then take n =

∑k
i=0 |VM |i. Let w ∈ L, such that it

has a factorization of the form above. Then by the pigeonhole principle, we will
have i, j, ℓ as required in the lemma.

Corollary 5.2 (Contrapositive form). Let L be a monoidal language and sup-
pose that ∃k ∈ N+ such that ∀n > 0 there exists a morphism w ∈ L that
factorizes as above and for all i < j such that ki = kj = ℓ, there exists a p such
that the pumped morphism w′w′′pw′′′ /∈ L, then L is not regular monoidal.

Observation 5.3. This reduces to the usual pumping lemmas for words and
trees, when φ is a regular word or regular tree grammar (Example 7), taking
k = 1.

We can use the monoidal pumping lemma to prove that languages of “un-
braids” on n-strings, considered as monoidal languages, are not regular monoi-
dal. The “crossing” generators in the following are syntax for braidings: under-
and over- crossings of strings, allowing them to tangle.

Definition 5.4 (Unbraid languages). The language of unbraids on n ⩾ 2
strings, Unbraidn, is a monoidal language defined over a monoidal alphabet
with an under-braid, over-braid, and start, end generators with k prongs for
0 ⩽ k ⩽ n. For example, taking n = 4 we have the alphabet in Figure 9.

Figure 9: Monoidal alphabet for Unbraid4.

Connected elements of Unbraidn are defined to be string diagrams with one
start and one end generator, between which there is a configuration of n strings
which could be “unbraided” to give two parallel strings, by planar isotopy. For
example, Figure 10 (left) is an element of Unbraidn for all n ⩾ 2, but Figure 10
(right) is not.

Figure 10: (Left) Example of an element in Unbraidn: by it could be untangled by planar
deformations. (Right) An string diagram not in Unbraidn: we cannot uncross the strings
using only planar moves.
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To prove that Unbraidn is not regular monoidal, we will make use of the
following regular monoidal language:

Definition 5.5 (Over-under language on two strings). (O∗U∗ + U∗O∗)2 is the
regular monoidal language whose connected elements are an arbitrary number of
over-braidings of two strings followed by an arbitrary number of under-braidings
of two strings, or vice-versa. A grammar for this language is the following:

A

B

A

B

A

B

A

B

C

D

C

D

C

D

C

D

E

F

E

F

E

F

G

H

E

F

G

H

G

H

G

H

A

B

Figure 11: A regular monoidal grammar for the monoidal language (O∗U∗ + U∗O∗)2.

Proposition 5.6. The languages Unbraidn are not regular monoidal.

Proof. Consider the intersection Unbraidn ∩ (O∗U∗ + U∗O∗)2. An element of
(O∗U∗ + U∗O∗)2 is an unbraid just when it comprises n under-braidings fol-
lowed by n over-braidings, or vice-versa and thus these are the elements of the
intersection, which we denote by (OnUn+UnOn)2. Figure 11 witnesses the reg-
ularity of (O∗U∗ + U∗O∗)2, and the intersection of regular monoidal languages
is regular (Lemma 8.2), thus it will suffice to prove that L = (OnUn + UnOn)2
is not regular monoidal.

We use Corollary 5.2. Let k = 2 and n > 0 be given, and let w ∈ L be the
connected element having n over-braidings (O) followed by n under-braidings
(U), with factorization w = OnUn. Finally let i < j be given (all i, j satisfy
ki = kj = 2). Then we have three cases for the pumping section w′′: either it
consists of j − i Os, j − i Us, or some number of Os followed by some number
of Us. In the first two cases, pumping the section leads to a term with more Os
than Us or vice-versa, and in the last case it will no longer be that all Os come
before all Us.

Remark 5.7. Proposition 5.6 raises the question of whether context-free monoi-
dal languages could be defined. Alongside his algebraic definition of regular gram-
mar, Walters [38] introduced a similar definition of context-free grammar using
the notion of multicategory. This has been revisited in the recent work of Melliès
and Zeilberger [25], who gave a conceptual proof of the Chomsky-Schützenberger
representation theorem using the algebra of multicategories. Earnshaw, Hefford,
and Román [14] recently extended this algebra to the setting of monoidal cate-
gories, providing a foundation for a notion context-free monoidal grammar to
be pursued in future work.

6. Non-deterministic monoidal automata

Recall that a non-deterministic finite automaton (NFA) is given by a finite
set Q of states, an initial state i ∈ Q, a set of final states F ⊆ Q, and for each

a ∈ Σ, a function Q
∆a−−→ P(Q). Automata accepting monoidal languages, or
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monoidal automata are defined similarly, but the type of the transition function
will be different for each generator γ ∈ Γ. However, our monoidal automata do
not have initial and final states; string diagrams are simply accepted or rejected
depending on their shape. This corresponds to our languages consisting of scalar
string diagrams; those with no dangling wires. In Section 7, we will see that
initial and final states for regular and tree automata derive from this definition,
when the alphabet is of a particular shape.

Definition 6.1. A non-deterministic monoidal automaton over a monoidal al-
phabet Γ comprises:

• a finite set of states Q,

• for each generator γ : n → m in Γ, a transition function ∆γ : Qn →
P(Qm).

For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor
Σ∗ → Rel, the inductive extension of the transition structure from letters to
words. Similarly, every non-deterministic monoidal automaton determines a
monoidal language.

We define the inductive extension of monoidal automata from generators to
string diagrams. First recall the definition of the endomorphism pro of an object
in a monoidal category:

Definition 6.2. Let C be a monoidal category, and Q an object of C . The endo-
morphism pro of Q, CQ, has natural numbers as objects, hom-sets CQ(n,m) :=
C (Qn, Qm), composition and identities as in C . The monoidal product is addi-
tion on objects, and as in C on morphisms.

The codomains of our inductive extension will be endomorphism pros of
finite sets Q in Rel, the category of sets and relations, considered as the Kleisli
category of the powerset monad P. Since P is a commutative monad (with
respect to the cartesian product of sets, with PX × PY → P(X × Y ) given
by the product of subsets), the following lemma gives us the monoidal structure
on Rel:

Lemma 6.3 ([29], Corollary 4.3). Let T be a commutative monad on a sym-
metric monoidal category C . Then the Kleisli category Kl(T ) has a canonical
monoidal structure, which is given on objects by the monoidal product in C , and

on morphisms f : X → TA, g : Y → TB by X⊗Y
f⊗g−−−→ TA⊗TB

∇−→ T (A⊗B),
where ∇ is the monoidal multiplication given by the commutativity of T .

For the powerset monad, the monoidal product ⊗ is the cartesian product
of sets, and monoidal multiplication ∇ sends a pair (or more generally a tuple)
of subsets to a subset of tuples by taking the cartesian product.

Definition 6.1 amounts to a morphism of monoidal graphs from Γ, to the
underlying monoidal graph of the endomorphism pro RelQ, defined as follows:

Definition 6.4. Let Q be a set of states, then RelQ is the pro with:
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• set of objects N,

• morphisms n → m are functions Qn → P(Qm),

• composition is Kleisli composition, i.e. the usual composition of relations
f ◦ g := µ ◦ P(g) ◦ f , where µ is the canonical map from sets of subsets
to subsets,

• monoidal product of objects given by concatenation, and

• monoidal product of morphisms f : n → m and g : p → q by ∇ ◦ (f × g) :
n + p → m + q, where ∇ is the monoidal multiplication of P, i.e. the
canonical map from pairs of subsets to their cartesian product.

Remark 6.5. The maybe monad (–)⊥ is also commutative, so its Kleisli cat-
egory, equivalent to the category Par of sets and partial functions, also has a
canonical monoidal structure. We return to this in Section 10. Stochastic mo-
noidal automata could be obtained by use of the distribution monad [26], whose
Kleisli category has stochastic matrices as morphisms.

Now we can define the inductive extension of a non-deterministic monoidal
automaton:

Observation 6.6. The assignment of generators to transition functions γ 7→
∆γ in Definition 6.1 determines a morphism of monoidal graphs Γ → U (RelQ).
By the adjunction F ⊣ U , such morphisms are in bijection with pro morphisms
∆ : FΓ → RelQ. We will also refer to the inductive extension ∆ as a non-
deterministic monoidal automaton, and sometimes write ∆α for the relation
∆(α : n → m).

A scalar string diagram is mapped to one of the two possible nullary relations
{•} → P({•}), which represent accepting or rejecting computations, and thus
can be used to define the language of the automaton:

Definition 6.7. Let ∆ : FΓ → RelQ be a non-deterministic monoidal automa-
ton. Then the monoidal language accepted by ∆ is L (∆) := {α ∈ FΓ(0, 0) |
∆α(•) = {•}}.

There is an evident correspondence between non-deterministic monoidal au-
tomata and regular monoidal grammars. The graphical representation of a
grammar makes this most clear: it can also be thought of as the “transition
graph” of a non-deterministic monoidal automaton. More explicitly we have:

Proposition 6.8. Given a regular monoidal grammar Ψ : M → Γ, define a
monoidal automaton with Q = VM, w(∆γ)w′ ⇐⇒ ∃σ ∈ E−1

Ψ (γ) such that
s(σ) = w, t(σ) = w′. Conversely given a monoidal automaton (Q,∆Γ), define
a regular monoidal grammar with VM = Q and take an edge w → w′ over γ
⇐⇒ w(∆γ)w′. This correspondence of grammars and automata preserves the
recognized language.
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7. Regular word and tree languages as regular monoidal languages

Classical non-deterministic finite-state automata and tree automata can be
seen as non-deterministic monoidal automata over alphabets of a particular
shape.

To make the correspondence precise, in the following we restrict monoidal
languages to their connected string diagrams. Strictly speaking, the language
of a monoidal automaton always contains only the empty diagram or is count-
ably infinite, because if α is accepted by the automaton, so are arbitrary finite
monoidal products α⊗ · · · ⊗ α. However, it is of course possible for a monoidal
language to consist of a finite number of connected string diagrams.

From another perspective, without restricting to connected components, we
can say that the monoidal automata corresponding to finite-state and tree au-
tomata have the power of an unbounded number of such classical automata
running in parallel.

7.1. Finite-state automata

Definition 7.1. A word monoidal alphabet is a monoidal alphabet having only
generators of arity and coarity 1, σ , along with a single “start” generator

of arity 0 and coarity 1, and “end” generator of arity 1 and coarity 0.

Observation 7.2. Non-deterministic monoidal automata over word monoidal
alphabets correspond to classical NFAs.

Let an NFA A = (Q,Σ,∆, i, F ) be given. We build a monoidal automaton as
follows. Form the monoidal alphabet Σ′ by starting with generators , and
adding generators σ for each σ ∈ Σ. For each σ , take the transition
function ∆σ := ∆(σ, –) : Q → P(Q). For take the transition function
Q → P(Q0) to be the characteristic function of F ⊆ Q, sending elements of F
to {•} and to ∅ otherwise, and for take the function Q0 → P(Q) to pick
out the singleton {i}. This defines a monoidal automaton A′ := (Q,∆′

Σ′), and
a simple induction shows that L (A) = L (A′), if one restricts to connected
string diagrams.

Conversely, the data of a monoidal automaton over a word monoidal alpha-
bet corresponds to the data of an NFA, the only difference being that the tran-
sition function associated to picks out a set of initial states {•} → P(Q).
We can always “normalize” such an automaton into an equivalent NFA with
one initial state (see [33, §2.3.1]). This shows how NFA initial and final states
are captured by this particular shape of monoidal alphabet.

7.2. Tree automata as monoidal automata

Classical non-deterministic finite-state tree automata can be seen as non-
deterministic monoidal automata over alphabets of a particular shape.

To make the correspondence precise, in the following we restrict monoidal
languages to their connected string diagrams. Strictly speaking, the language
of a monoidal automaton always contains only the empty diagram or is count-
ably infinite, because if α is accepted by the automaton, so are arbitrary finite
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monoidal products α⊗ · · · ⊗ α. However, it is of course possible for a monoidal
language to consist of a finite number of connected string diagrams.

From another perspective, without restricting to connected components, we
can say that the monoidal automata corresponding to finite-state and tree au-
tomata have the power of an unbounded number of such classical automata
running in parallel.

Recall that non-deterministic finite tree automata come in two flavours,
bottom-up and top-down, depending on whether they process a tree starting
at the leaves or at the root, respectively. A non-deterministic bottom-up fi-
nite tree automaton is given by a finite set of states Q, a “ranked” alphabet
(Σ, r : Σ → N), a set of final states F ⊆ Q, and for each σ ∈ Σ a transi-
tion function ∆σ : Qr(σ) → P(Q). A non-deterministic top-down tree au-
tomaton, instead, has a set of initial states I ⊆ Q and transition functions
∆σ : Q → P(Qr(σ)). We can recover these as non-deterministic monoidal
automata over tree monoidal alphabets:

Definition 7.3. A top-down tree monoidal alphabet is a monoidal alphabet

having only generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... , along
with a single “root” generator . Analogously, a bottom-up tree monoidal
alphabet is a monoidal alphabet having only generators of coarity 1 (and arbitrary

arities ⩾ 0), σ... , along with a single “root” generator .

Observation 7.4. Bottom-up tree automata are exactly non-deterministic mo-
noidal automata over bottom-up tree monoidal alphabets, and likewise for top-
down tree automata.

Of course, when the coarities of the generators in a top-down tree alphabet
are all 1 (or likewise for the arities of a bottom-up tree alphabet), trees are just
words, and we obtain finite-state automata over words.

For example, consider the following graph of a monoidal automaton over a
bottom-up tree monoidal alphabet, recognizing trees corresponding to terms of
the inductive type of lists of boolean values (a list may be empty, [], or be a
boolean value “consed” onto a list via ::).

::
ft [] L LVV

L
V

L

Figure 12: Transition graph of a monoidal automata for a tree language, accepting trees
corresponding to lists of boolean values.

Intuitively, the connected scalar string diagrams determined by this language
are trees, with leaves on the left, and the root on the right. Monoidal automata
over top-down tree monoidal alphabets have a similar form, but are mirrored
horizontally. Thus morphisms in the language have the root on the left, leaves
on the right, and monoidal automata start at the root.
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8. Closure properties of regular monoidal languages

We record some closure properties of regular monoidal languages, making
use of their representation as grammars and as automata, where appropriate.

Lemma 8.1 (Closure under union). Let L and L′ be regular monoidal languages
over Γ. Then L ∪ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be given by the regular monoidal grammars Ψ : M →
Γ,Ψ′ : M′ → Γ respectively. Define the grammar Ψ + Ψ′ : M + M′ → Γ,
where EM+M′ := EM +EM′ , VM+M′ := VM +VM′ , and EΨ+Ψ′ := [Ψ,Ψ′] (the
copairing of Ψ and Ψ′). Graphically, this is just taking the disjoint union of two
grammars, and it is clear that the language defined in this way is the union of
the languages defined by the two grammars.

Lemma 8.2 (Closure under intersection). Let L and L′ be regular monoidal
languages over Γ. Then L ∩ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be recognized by non-deterministic automata (Q, {∆γ}γ∈Γ),
(Q′, {∆′

γ}γ∈Γ) respectively. Consider the product automaton (Q × Q′, {(∆ ×
∆′)γ}γ∈Γ, with (∆ × ∆′)γ := ∇ ◦ (∆γ × ∆′

γ), where ∇ maps pairs of subsets
to their cartesian product. Then α is accepted by the product automaton just
when it is accepted by both, so L (∆ × ∆′) = L ∩ L′.

Remark 8.3. The Sierpiński triangle language (Example 4.8) is the intersection
of the brick wall language (Example 4.7) and an “XOR gate” language: this
explains the origin of the states in the grammar shown in Example 4.8.

Lemma 8.4 (Closure under monoidal product and factors). Let L be a regular
monoidal language. Then α, β ∈ L ⇐⇒ α⊗ β ∈ L.

Proof. Let (Q, {∆γ}γ∈Γ) be an automaton accepting both α and β. Since the
inductive extension ∆ is a strict monoidal functor, ∆(α ⊗ β) = ∆(α) ⊗ ∆(β),
so we must have ∆(α⊗ β)(•) = {•}, and conversely.

Lemma 8.5 (Closure under images of alphabets). Let L be a regular monoidal

language over Γ, and Γ
h−→ Γ′ be a morphism of monoidal alphabets. Then

(Fh)L is a regular monoidal language over Γ′.

Proof. Let L be given by the regular monoidal grammar Ψ : M → Γ, that is L =
FΨ[FM(ε, ε)]. Consider the grammar given by the composite h◦Ψ : M → Γ′.
Since F is a functor we have: F (h ◦Ψ)[FM(ε, ε)] = (Fh ◦FΨ)[FM(ε, ε)] =
(Fh)L, thus h ◦ Ψ is a grammar for (Fh)L.

Lemma 8.6 (Closure under preimages of alphabets). Let L a regular monoidal

language over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then the
inverse image of L, (Fh)−1(L) is a regular monoidal language over Γ′.
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Proof. Let (Q, {∆γ}γ∈Γ) be an automaton recognizing L with inductive ex-
tension ∆ : FΓ → RelQ. Consider the automaton given by the composite
∆ ◦ Fh : FΓ′ → RelQ. We have L (∆ ◦ Fh) = (Fh)−1(L (∆)) = (Fh)−1(L),
so the inverse image of L is regular.

Closure under complement is often held to be an important criterion for
what should count as a recognizable language. Indeed, for the abstract monadic
second order logic introduced in [3], it is a theorem that the class of recogniz-
able languages relative to a monad on Set is closed under complement. However,
given that every monoidal language contains the empty string diagram, we ob-
viously have that:

Observation 8.7. Regular monoidal languages are not closed under comple-
ment.

This suggests that there is no obvious account of regular monoidal languages
in terms of monadic second order logic. On the other hand, there is no reason
we should expect even the general account of monadic second order logic given
in [3] to extend to monoidal categories, since these are not algebras for a monad
on Set. Moreover, taking inspiration from classical examples in Section 7, one
could also refine what is meant by complement, for instance focussing on the
set of non-empty connected scalar diagrams.

9. The syntactic pro of a monoidal language

In this section we introduce the syntactic congruence on monoidal languages
and their corresponding syntactic pros, by analogy with the syntactic congru-
ence on classical regular languages and their associated syntactic monoids. In
Section 10.1 we will give an algebraic property of the syntactic pro sufficient for
a monoidal language to be deterministically recognizable. The syntactic congru-
ence on a classical regular language is defined by examining words in contexts.
We start by introducing a notion of context for string diagrams.

Definition 9.1. A context of capacity (n,m), where n,m ⩾ 0, is a scalar string
diagram with a hole (Figure 13) with zero or more additional strings exiting the
first box and entering the second (indicated by ellipses in Figure 13).

...

......α β}n m{

...

Figure 13: A context of capacity (n,m). α and β stand for arbitrary string diagrams with
arity and coarity 0, respectively.

Contexts are not themselves string diagrams, but they can be given a precise
semantics as morphisms in the produoidal category of contexts of over the pro
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FΓ [14]. It will suffice here to consider them according to the more informal
definition above.

Given a context of capacity (n,m), we can fill the hole with a string diagram
γ : n → m. Write C[γ] for the resulting string diagram. Note that the empty
diagram is a context, the empty context of capacity (0, 0). Contexts allow us to
define contextual equivalence of string diagrams:

Definition 9.2 (Syntactic congruence). Given a monoidal language L we define
its syntactic congruence ≡L as follows. Let γ, δ be morphisms in FΓ(n,m).
Then γ ≡L δ whenever C[γ] ∈ L ⇐⇒ C[δ] ∈ L, for all contexts C of capacity
(n,m).

Definition 9.3. The syntactic pro of a monoidal language L is the quotient pro
FΓ/≡L. The quotient functor SL : FΓ → FΓ/≡L is the syntactic morphism
of L. See Appendix A for the definition of quotient pro and quotient functor.

Remark 9.4. The syntactic congruences for classical regular languages of words
and trees are also special cases of this congruence over word and tree monoidal
alphabets.

Lemma 9.5. L is the inverse image along the syntactic morphism of the equiv-
alence class of the empty diagram.

Proof. Let α ∈ L. Then α ≡L , since the empty diagram is in every language

and if C is a context of capacity (0, 0) distinguishing α and , then we have

a contradiction by Lemma 8.4. So α ∈ S−1
L (

[ ]
), and conversely.

In the terminology of algebraic language theory, we say that the syntactic
morphism recognizes L. A full investigation of algebraic recognizability of mo-
noidal languages is a topic for future work. For now, we record the following
lemma which is needed for Theorem 10.11:

Lemma 9.6. If a monoidal language L is regular, then its syntactic pro FΓ/≡L

is locally finite (i.e. has finite hom-sets).

Proof. It suffices to exhibit a full pro morphism into FΓ/≡L from a locally
finite pro. Let L be a regular monoidal language recognized by ∆ : FΓ → RelQ.
∆ induces a congruence ∼ on FΓ defined by α ∼ β ⇐⇒ ∆(α) = ∆(β), which
implies that FΓ/∼ is locally finite, since RelQ is locally finite. Define the pro
morphism FΓ/∼ → FΓ/≡L to be identity on objects and [α]∼ 7→ [α]≡L

on
morphisms. This is well-defined since if α ∼ β and C[α] ∈ L for some context C,
then by functoriality C[β] ∈ L. Clearly it is full, so FΓ/≡L is locally finite.

10. Deterministic monoidal automata

The expressive equivalence of deterministic and non-deterministic finite-state
automata for word languages is well-known, but already for trees, top-down de-
terministic tree automata are less expressive than bottom-up deterministic tree
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automata [20]. Therefore we cannot expect to determinize non-deterministic
monoidal automata. However, we have already seen monoidal languages that
are deterministically recognizable: Examples 4.7 and 4.8, interpreted as the
transition relations of monoidal automata, are functional relations. Here we
introduce deterministic monoidal automata and show that their languages en-
joy the property of causal closure. In Section 11 we consider the question of
determinizability.

Definition 10.1. A deterministic monoidal automaton δ = (Q, δΓ) over a mo-
noidal graph Γ is given by a finite set Q, together with transition functions

δΓ = {Qar(γ) δγ−→ Q
coar(γ)
⊥ }γ∈Γ, where Q⊥ denotes the set Q + {⊥}.

Recall the definition of the category ParQ from Remark 6.5. Then as in
Observation 6.6, such assignments γ 7→ δγ uniquely extend to morphisms of
pros δ : FΓ → ParQ, and we will also refer to such functors as deterministic
monoidal automata. δ maps scalar string diagrams to one of the two functions
Q0 → Q0

⊥, and we use this to define the language of the automaton:

Definition 10.2. Let δ : FΓ → ParQ be a deterministic monoidal automaton.
Then the language accepted by δ is L (δ) := {α ∈ FΓ(0, 0) | δα(•) = •}.

We give a necessary condition for a monoidal language to be recognized by
a deterministic monoidal automaton. The idea is to generalize the characteriza-
tion of top-down deterministically recognizable tree languages as those that are
closed under the operation of splitting a tree language into the set of possible
paths through the trees, and reconstituting trees by grafting compatible paths
[20]. For string diagrams, we call the analogue of paths through a tree the causal
histories of a diagram (Definition 10.7).

First, we briefly recall the machinery of (cartesian) restriction categories [8],
that will be necessary in the following. Restriction categories are an abstraction
of the category of partial functions, and provide us with a diagrammatic calculus
for reasoning about determinization of monoidal languages.

Definition 10.3 ([9]). A cartesian restriction prop is a prop in which every
object is equipped with a commutative comonoid structure (with the counit de-

picted by , comultiplication by , and symmetry by ) that is coherent,

and for which the comultiplication is natural (see Appendix B for details).

Definition 10.4. The free cartesian restriction prop on a monoidal graph M,
denoted F↓M is given by taking the free prop on the monoidal graph M ex-
tended with a comultiplication and counit generator for every object in VM, and
quotienting the morphisms by the structural equations of cartesian restriction
categories (Appendix B).

Remark 10.5. Par is the paradigmatic example of a cartesian restriction cate-
gory, with on X given by the function X → {•,⊥} sending every element to

•, and given by the diagonal function q 7→ (q, q). ParQ inherits this struc-

ture and so is a cartesian restriction prop. Therefore deterministic monoidal
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automata (Q, δΓ) also have inductive extensions to morphisms of cartesian re-
striction props, δ : F↓Γ → ParQ, and these have a obvious notion of associated
language, defined similarly to Definition 10.2. These are related by the following
lemma, which follows from the universal properties of FΓ and F↓Γ:

Lemma 10.6. If (Q, δΓ) is a deterministic monoidal automaton, then δ factors
through δ as δ = δ ◦ HΓ, where HΓ : FΓ → F↓Γ sends morphisms to their
equivalence class in F↓Γ.

The idea is that runs in the automaton F↓ can freely duplicate ( ) or

delete ( ) an element in the state vector at any point in the run.
Recall that any restriction category is poset-enriched: f ⩽ g if f is “less

defined” than g, i.e. if f coincides with g on f ’s domain of definition. For the
hom-set from the monoidal unit to itself, we have f ⩽ g ⇐⇒ f ⊗ g = f . Now
we can define causal histories:

Definition 10.7. Let γ be a string diagram in FΓ(0, 0). We call a string
diagram h in F↓Γ(0, 0) a causal history of γ if HΓ(γ) ⩽ h in F↓Γ(0, 0). Let
L ⊆ FΓ(0, 0) be a regular monoidal language. The set of causal histories of L,
denoted ch(L), is defined to be HΓ(L)↑, the upwards closure of HΓ(L) in the
poset F↓Γ(0, 0).

A causal history represents the possible causal influence of parts of a diagram
on generators appearing “later” in the diagram. For example, the following
five string diagrams are causal histories of the rightmost string diagram below
(every diagram is a causal history of itself), taken from the language introduced
in Example 4.9:

γ δγ γ δ
β β

γ δ
α

γ δ
α

Lemma 10.8. Let M = (Q, δΓ) be a deterministic monoidal automaton, with
functors δ : FΓ → ParQ, δ : F↓Γ → ParQ. Then if δ accepts γ, δ accepts all
causal histories of γ.

Proof. Since δ = δ ◦HΓ, if δ accepts γ, then δ accepts HΓ(γ). Let h be a causal
history of γ. Then δ(HΓ(γ)) = δ(h ⊗ HΓ(γ)) = δ(h) ⊗ δ(HΓ(γ)). But then δ
accepts h by Lemma 8.4.

Definition 10.9 (Causal closure of a language). Let L be a monoidal language
over a monoidal alphabet Γ. Let

⊗
ch(L) denote the closure of the set of causal

histories of L under monoidal product. Then the causal closure cl(L) of L is
H−1

Γ (
⊗

ch(L)). A monoidal language is causally closed if it is equal to its causal
closure.
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To illustrate causal closure, consider Figure 14, which shows part of the
derivation of a morphism in the causal closure of the language of Example 4.9.

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

Figure 14: These string diagrams are equal in the equational theory of cartesian restriction
categories. On the left, we have the monoidal product of two causal histories of elements of
the language from Example 4.9. This determines a string diagram in the image of HΓ (i.e.
expressible without using the cartesian restriction structure), which is an element of the causal
closure of the language.

The leftmost diagram in Figure 14 depicts the monoidal product of two
causal histories determined by the counterexample language. By the equational
theory of cartesian restriction categories (Appendix B), this is equal to the
string diagrams in the center and on the right, where we first apply the naturality

of (for γ), then unitality (twice), then naturality of (for δ). The

rightmost form of the diagram exhibits this morphism as being in the image of
HΓ, and its preimage under HΓ is the same diagram in FΓ. Since this diagram
is not in the original language, the language is not causally closed. The following
theorem tells us that this is enough to conclude that it is not recognizable by a
deterministic monoidal automaton:

Theorem 10.10. If a monoidal language is recognized by a deterministic mo-
noidal automaton, then it is causally closed.

Proof. Let L be recognized by a deterministic monoidal automaton δ : FΓ →
ParQ. We have δ = δ ◦HΓ and from Lemma 10.8 that δ accepts causal histories
of morphisms in L. Since languages are closed under monoidal product (Lemma
8.4), then by definition of the causal closure, δ must accept everything in the
causal closure of L.

10.1. An algebraic sufficient condition for deterministic recognizability

There are many interesting theorems linking properties of the syntactic
monoid of a classical language of words to properties of the language itself.
Lemma 9.6 is one result of this type for regular monoidal languages. Here we
give another, using Lemma 9.6 to characterize deterministic recognizability in
terms of the existence of extra algebraic structure on the syntactic pro:

Theorem 10.11. If the syntactic pro of a regular monoidal language has the
structure of a cartesian restriction prop, then the language is recognizable by a
deterministic monoidal automaton.
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Proof. Let L be a monoidal language such that FΓ/≡L has a cartesian restric-

tion prop structure. We exhibit a pro morphism FΓ/≡L
ϕ−→ ParQ such that

FΓ
SL−−→ FΓ/≡L

ϕ−→ ParQ is a deterministic monoidal automaton accepting
exactly L.

Let Q := FΓ/≡L(0, 1). By Lemma 9.6, this is a finite set. For m > 0
and [β] ∈ FΓ/≡L(n,m), define ϕ([β]) : n → m to be the following map from
Qn → Qm

⊥ :

... ...
αₙ

...

α1 α1 α1

αn

β ...

...

...

αₙ

β

, ,

ϕ([β])( (( (↦

When m = 0, let ϕ([β])([α1], ..., [αn]) = •, if [β ◦ (α1 ⊗ ...⊗ αn)] =
[ ]

, and

ϕ([β])([α1], ..., [αn]) = ⊥ otherwise. The proof that this defines a morphism of
pros is an exercise in diagrammatic reasoning using the equational theory of
cartesian restriction categories and can be found in Appendix C. To see that
this automaton accepts exactly L, let α ∈ L (ϕ ◦ SL), then by definition we

must have SL(α) =
[ ]

, and so α ∈ L (by Lemma 9.5). Conversely let α ∈ L,

then SL(α) =
[ ]

and by definition ϕ
([ ])

(•) = •, so α ∈ L (ϕ ◦ SL).

Therefore ϕ ◦ SL is a deterministic monoidal automaton recognizing L.

Example 10.12. A simple example is given by the language L of “bones” over
the monoidal alphabet Γ = { , }, having one connected component: .
The syntactic pro of this language has a cartesian restriction prop structure,
with the counit given by the equivalence class [ ], comultiplication by [ ],

and symmetry by [ ]. It is clear that FΓ/≡L(0, 1) has one equivalence class,

[ ], which becomes the state of the monoidal automaton. The construction
above then gives the obvious transition functions required for each generator.

11. Convex monoidal automata and the powerset construction

Non-deterministic finite state automata for words and bottom-up trees can
be determinized via the well known powerset construction. However, top-down
tree automata cannot be determinized in general [20, §2.11], so general monoidal
automata also cannot be determinized (Observation 7.4). However, there are
interesting examples of deterministically recognizable monoidal languages that
are not tree languages, such as the monoidal Dyck language (Example 4.6) and
Sierpiński triangles (Example 4.8), and it is an intriguing theoretical challenge
to characterize such languages.

In this section we study a class of determinizable automata called convex au-
tomata, and introduce a powerset construction for them. The classical powerset
construction is given conceptually by composition with the functor Rel → Set,
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sending sets to their powersets and relations to their corresponding functions,
right adjoint to the inclusion Set ↪→ Rel. As remarked above, we cannot hope
to obtain an analogue of this functor for monoidal automata. Thus we describe
a suitable subcategory of RelQ for which determinization is functorial, that of
convex relations.

Definition 11.1. A relation ∆ : Qn → P(Qm) is convex if there is a morphism
∆∗ such that the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#

∇P ∇P

where ∆# is the Kleisli lift of ∆, and ∇P is the canonical map from tuples
of subsets to subsets of tuples given by cartesian product.

Example 11.2. The relation ∆γ : Q0 → P(Q4) induced by the grammar
in Example 4.9 is not convex, since (A,B,B,A) and (A,C,C,A), which we
can think of as “convex combinations” of the state vectors (A,B,C,A) and
(A,C,B,A), are not included in the image of the relation.

Lemma 11.3. Convex relations determine a monoidal sub-category CRelQ ↪→
RelQ.

Proof. See Appendix C.

Definition 11.4. An automaton ∆ : FΓ → RelQ is convex if it factors through
CRelQ.

The following lemma gives the powerset construction on convex automata.
We use the non-empty powerset P+ to avoid duplication of failure state (∅ in
RelQ, but ⊥ in ParP+(Q)):

Lemma 11.5. For each set Q there is a strict monoidal functor DQ : CRelQ →
ParP+(Q) which is identity on objects and acts as follows on morphisms:

∆α : Qn → P(Qm)

P+(Q)n
ηn

−−→ (⊥P+(Q))n
∆∗

α−−→ (⊥P+(Q))m
∇⊥−−→ ⊥(P+(Q)m)

where we use elide the isomorphisms P(Q)n ∼= (⊥P+(Q))n. ⊥ is the maybe
monad, η is the unit of this monad, and ∇⊥ is its monoidal multiplication with
respect to the cartesian product, sending a tuple ⊥ if ⊥ appears anywhere in the
tuple. This action is well-defined, since if there is more than one ∆∗

α witnessing
the convexity of ∆α, the resulting morphisms defined above are equal.

Proof. See Appendix C.
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Determinization of a convex automaton ∆ : FΓ → CRelQ is now just given
by post-composition with the functor DQ : CRelQ → ParP+(Q). We show that
this preserves the language:

Theorem 11.6. Determinization of convex automata preserves the accepted
language: let ∆ : FΓ → CRelQ be a convex automaton, then L (∆) = L (DQ ◦
∆).

Proof. Let α ∈ L (∆), i.e. ∆α(•) = {•}. Then we must have ∆∗
α(•) = •, and so

(DQ ◦∆)α(•) = •. Conversely let α ∈ LD(DQ ◦∆), i.e. (DQ ◦∆)α(•) = •. Then
we must have that ∆∗

α(•) = •, and so ∆α(•) = {•}, that is α ∈ L (∆).

Example 11.7. Non-deterministic monoidal automata over bottom-up tree mo-
noidal alphabets (Definition 7.3) are convex, with ∆∗ := ∆# ◦∇P . This reflects
the well known determinizability of bottom-up tree automata. For top-down tree
monoidal alphabets, the general obstruction to convexity (and thus determiniz-
ability) is seen as the non-existence of a left inverse of ∇P , from sets of tuples
to tuples of sets.

12. Conclusion and future work

There are several classical topics in the theory of regular languages, such
as regular expressions, the Myhill-Nerode and Kleene theorems, that would
be interesting to investigate in the setting of monoidal languages. There is also
much room for further investigation of properties of the syntactic pro, paralleling
the algebraic theory of automata and languages [27] which links properties of
the syntactic monoid of word languages to properties of the language itself.
Classical language theory also has rich connections with logic [35]; lifting this
to the setting of monoidal categories is a intriguing theoretical challenge.

There are also many connections between the word problem for groups and
automata theory (see [6] for an overview). Following Burroni’s introduction
of the word problem for n-monoids [5], many special cases have been studied
in detail. In particular, Delpeuch and Vicary give an algorithm for solving
the word problem for the string diagrams of planar monoidal categories [13].
Investigation of the links between the theory presented here and the various
word problems for string diagrams [12] could enrich the understanding of both.

Monoidal categories can sometimes be equipped with natural symmetries,
which allows strings to cross: the corresponding string diagrams are non-planar.
Our framework can extend to these symmetric monoidal categories. In forth-
coming work [16], we show how the resulting symmetric monoidal languages are
related to Mazurkiewicz traces and asynchronous automata in concurrency the-
ory. Premonoidal categories also admit a string diagrammatic presentation over
monoidal graphs [30] in which an ordering on generators is defiend. We con-
jecture that context-free languages of words arise as a particular case of regular
premonoidal languages. Many results in this paper do not need the assumption
of planarity: for example we work at the level of grammars and automata in
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proving closure properties. Therefore these results should extend to these new
flavours of monoidal language.

We have investigated determinization of automata, but have not touched on
minimization: it would interesting to see whether the categorical approach to
minimization of Colcombet and Petrişan [10] can be lifted to our setting.

We also plan to investigate a notion of context-free monoidal language, us-
ing a similar algebraic approach to this paper. The candidate algebra for such
languages is the produoidal category of contexts in a monoidal category [14].
Following Melliès and Zeilberger [25], we expect that this should yield a monoi-
dal version of the Chomsky-Schützenberger representation theorem.
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[3] Miko laj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic monadic
second order logic, 2022. URL: https://arxiv.org/abs/2201.09969,
doi:10.48550/ARXIV.2201.09969.

[4] Francis Bossut, Max Dauchet, and Bruno Warin. A Kleene theorem for a
class of planar acyclic graphs. Inf. Comput., 117:251–265, 03 1995. doi:

10.1006/inco.1995.1043.

[5] Albert Burroni. Higher-dimensional word problems with applica-
tions to equational logic. Theoretical Computer Science, 115(1):43–62,
1993. URL: https://www.sciencedirect.com/science/article/pii/

030439759390054W, doi:10.1016/0304-3975(93)90054-W.

[6] J. W. Cannon, D. F. Holt, S. V. F Levy, Paterson M. S., and W. P.
Thurston. Word Processing in Groups. Jones and Bartlett, Sudbury, MA,
November 1992.

[7] Olivier Carton, Thomas Colcombet, and Gabriele Puppis. Regular lan-
guages of words over countable linear orderings. In Luca Aceto, Monika
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[25] Paul-André Melliès and Noam Zeilberger. Parsing as a lifting prob-
lem and the Chomsky-Schützenberger representation theorem. In MFPS
2022 - 38th conference on Mathematical Foundations for Programming
Semantics, Ithaca, NY, United States, July 2022. URL: https://hal.

archives-ouvertes.fr/hal-03702762.

[26] Paolo Perrone. Distribution monad (nlab entry), 2019. https://ncatlab.
org/nlab/show/distribution+monad, Last accessed 2023-03-13.
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[28] Jean-Éric Pin and Dominique Perrin. Infinite Words - Automata, Semi-
groups, Logic and Games. Pure and Applied Mathematics (Amsterdam).
Elsevier, 2004.

[29] John Power and Edmund Robinson. Premonoidal categories and notions
of computation. Mathematical Structures in Computer Science, 7(5), 1997.
doi:10.1017/S0960129597002375.

[30] Mario Román. Promonads and string diagrams for effectful categories.
In ACT ’22: Applied Category Theory, Glasgow, United Kingdom, 18 -
22 July, 2022, volume abs/2205.07664, 2022. arXiv:2205.07664, doi:

10.48550/arXiv.2205.07664.

28



[31] Kimmo I. Rosenthal. Quantaloids, enriched categories and automata the-
ory. Applied Categorical Structures, 3(3):279–301, 1995. doi:10.1007/

bf00878445.

[32] Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic
self-assembly of DNA Sierpinski triangles. PLOS Biology, 2(12), 12 2004.
doi:10.1371/journal.pbio.0020424.

[33] Jacques Sakarovitch. Elements of automata theory. Cambridge University
Press, Cambridge New York, 2009.

[34] P. Selinger. A survey of graphical languages for monoidal categories.
In B. Coecke, editor, New Structures for Physics, pages 289–355.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/

978-3-642-12821-9_4.

[35] Howard Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhauser Verlag AG, Basel,
Switzerland, December 1993.

[36] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
systems theory, 2(1):57–81, Mar 1968.
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Appendix A. Congruence on a monoidal category

Definition Appendix A.1. A congruence on a monoidal category C is an
equivalence relation f ∼ g on pairs of parallel morphisms f, g : x → x′ compat-
ible with composition and monoidal product:

• f ∼ g =⇒ k ◦ f ◦ h ∼ k ◦ g ◦ h whenever these composites are defined,
and,

• f ∼ g =⇒ p⊗ f ⊗ q ∼ p⊗ g ⊗ q.
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Given a congruence on a monoidal category C , we can define the quotient
monoidal category C /∼ as the category with objects those of C , and homsets
(C /∼)(x, x′) := C (x, x′)/∼, with composition and monoidal product defined in
the obvious way. The quotient functor C → C /∼ is monoidal, full and bijective
on objects (and strict when C is strict). When C is a pro, the quotient monoidal
category is a pro, and the quotient functor is a pro morphism. One can easily
verify with string diagrams that the syntactic congruence (Definition 9.2) is
indeed a congruence, and so the syntactic pro is well defined.

Appendix B. Cartesian restriction categories

A cartesian restriction category [9] can be defined as a symmetric monoi-
dal category in which every object is equipped with a coherent commutative
comonoid structure for which comultiplication is natural. The following equa-
tions spell out the details of this definition. We write for the counit of the

comonoid on an arbitrary object, for the comultiplication of the comonoid

on an arbitrary object, and for the symmetry between two objects. Then
to say that there is a commutative comonoid structure on each object is to
say that the following equations of string diagrams (CCM) hold (respectively:
coassociativity, commutativity, and left unitality):

= = =

(CCM)
Note that “right unitality” may be derived from these. To say that these

comonoid structures are coherent is to say that for all objects X and Y we have
the following equations of string diagrams:

X⊗Y

X⊗Y

X⊗Y

X

Y

X

X

Y

Y

= X⊗Y

X

Y

= (coherent)

Finally to say that comultiplication natural is to say that we can move
morphisms through comultiplication as follows:

fX

Y

Y f

f

X

Y

Y

= (natural)

Appendix C. Details for Section 11

Proof of Lemma 11.3. It is clear that identity relations are convex. It remains
to show that the composite of convex relations is convex, and that the monoidal
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product of convex relations is convex. For the former, take convex relations
∆α : Qa → P(Qb),∆β : Qb → P(Qc), and take (∆β ⋄ ∆α)∗ = ∆∗

β ◦ ∆∗
α, where

⋄ is composition in Kl(P). Consider the following diagram:

(PQ)a (PQ)b (PQ)c

P(Qa) P(Qb) P(Qc)

P2(Qb) P2(Qc)

P3(Qc)

∆∗
α

∆#
α

∇ ∇

P(∆α) µ

∆∗
β

∆#
β

∇

P(∆β) µ

P(µ)P2(∆β)

We want to show that ∆#
β ◦∆#

α = (∆β ⋄∆α)#, so that the pasting of the two
convexity squares at the top witnesses convexity of the composite. By definition
of Kleisli extension we have that:

∆#
β ◦ ∆#

α = µ ◦ P(∆β) ◦ µ ◦ P(∆α)

by naturality of µ,

= µ ◦ P(µ) ◦ P2(∆β) ◦ P(∆α)

= µ ◦ P(µ ◦ P(∆β) ◦ ∆α)

= µ ◦ P(∆β ⋄ ∆α)

= (∆β ⋄ ∆α)#

Now take convex relations ∆γ : Qn1 → P(Qm1),∆ε : Qn2 → P(Qm2).
Take (∆γ ⊗ ∆ε)

∗ = ∆∗
γ × ∆∗

ε. We have that:

P(Q)n1+n2
(∆γ⊗∆ε)

∗
−−−−−−−→ P(Q)m1+m2

∇−→ P(Qm1+m2)

= P(Q)n1+n2
⟨∇◦∆∗

γ ,∇◦∆∗
ε⟩−−−−−−−−−→ P(Qm1) × P(Qm2)

∇−→ P(Qm1+m2)

by convexity of ∆γ ,∆ε,

= P(Q)n1+n2
∇×∇−−−→ P(Qn1) × P(Qn2)

P(∆γ)×P(∆ε)−−−−−−−−−−→ PP(Qm1) × PP(Qm2)

µ×µ−−−→ P(Qm1) × P(Qm2)
∇−→ P(Qm1+m2)

= P(Q)n1+n2
∇−→ P(Qn1+n2)

P(∆γ×∆ε)−−−−−−−→ P(P(Qm1) × P(Qm2))

P(∇)−−−−→ PP(Qm1+m2)
µ−→ P(Qm1+m2)

= P(Q)n1+n2
∇−→ P(Qn1+n2)

P(∆γ⊗∆ε)−−−−−−−→ PP(Qm1+m2)
µ−→ P(Qm1+m2).

Hence ∆γ ⊗ ∆ε is convex.
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Lemma Appendix C.1. The following diagram commutes

(⊥P+(Q))n

⊥(P+(Q))n (⊥P+)(Qn)⊥∇P+

∇⊥
∇P

Proof. Reason by cases on elements of (⊥P+(Q))n, either no element of the n-
tuple is ⊥, or at least one is. In either case, the functions coincide by definition.

Proof of Lemma 11.5. We first show that the action on morphisms is well-
defined. It suffices to show that if ∆∗

α, ∆̂∗
α are distinct witnesses to the con-

vexity of ∆α, then ∇⊥ ◦ ∆∗
α = ∇⊥ ◦ ∆̂∗

α. From Lemma Appendix C.1,
∇P = ⊥∇P+ ◦∇⊥. Furthermore, ⊥∇P+ is injective, so our conclusion follows,
using the definition of convexity: ∇P∆∗ = ∆# ◦ ∇P = ∇P ◦ ∆̂∗.

We need to show that this mapping is a strict monoidal functor. It is clear
that identities are preserved. It remains to show that that composition and
monoidal product are preserved. Let ∆α : Qa → P(Qb),∆β : Qb → P(Qc).
We require DQ(∆β ⋄ ∆α) = DQ(∆β) ◦ DQ(∆α). This follows from the commu-
tativity of the following diagram (naturality of ∇ and the naturality of η), and
the unit law for Kleisli composition in Par.

(⊥P+(Q))b (⊥⊥P+(Q))b

⊥P+(Q)b ⊥(⊥P+(Q))b

∇⊥

⊥ηb

η
∇⊥

ηb

Strict preservation of the monoidal product follows easily from the fact that
(∆γ ⊗ ∆ε)

∗ = ∆∗
γ × ∆∗

ε.

Proof of Theorem 10.11. We show that the defined mapping is indeed a mor-
phism of pros. For composition, we need to show ϕ([γ] ◦ [β]) = ϕ([γ]) ◦ ϕ([β]).
The ith component of ϕ([γ] ◦ [β])([α1], ..., [αn]) is the equivalence class:

... ... ...
...

αₙ

α1

β γ i

where the ith output of γ is dangling on the right. The ith component of
(ϕ([γ]) ◦ ϕ([β]))([α1], ..., [αn]) is the equivalence class:
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γ

... ...

... ...

αₙ

α1

β

α1

... ...

αₙ

β

...
...

i

But since FΓ/≡L is a cartesian restriction prop, the representatives of these
equivalence classes are the same diagram (by repeated applications of the nat-

urality of and unitality). Hence this is the same equivalence class, and ϕ

preserves composition.
For identities, the ith component of ϕ([idn])([α1], ..., [αn]) is the equivalence

class:

...
...

�✁

�i

�1

For ϕ([idn]) to be the identity, this needs to be equal to the equivalence class
[αi]:

αi

But these must indeed be the same equivalence class, for if there were a con-
text that distinguished these morphisms, we would have a contradiction, since
languages are closed under monoidal products (Lemma 8.4). Similar diagrams
hold for the preservation of the monoidal product, and thus we have a morphism
of pros.
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1 Introduction

Monoids are the classical algebraic home of formal languages, but a long line of research
beginning in the 60s has sought to extend the tools and concepts of language theory to other
algebraic structures, such as trees [21, 41], traces [12], hypergraphs [10, 22, 42], models of
algebraic theories [17, 46], algebras for monads [3, 4], and categories [2, 47].

Categories are “monoids with many objects”, and passing from the theory of context-free
languages in monoids to the theory of context-free languages in categories has been the
subject of recent work by Melliès and Zeilberger [33, 34]. This novel structural point of
view suggests a natural generalization to categories with additional structure. Here, we
pursue this idea for monoidal categories. On the one hand, strict monoidal categories are
two-dimensional monoids, and so a natural step from their one-dimensional counterpart. On
the other hand, they have a natural graphical syntax, string diagrams, providing a fresh
approach to languages of graphs.

A vast literature has explored language theory in various algebras of graphs, culminating
in the celebrated results of Courcelle [10]. Our point of departure is the claim that many
graphical notions can be naturally viewed as morphisms in monoidal categories; that is,
monoidal categories provide a suitable algebraic framework for graphical formal languages.
This manuscript pursues this idea in the context of recent work in the foundations of language
theory which takes a structural approach to context-freeness. Ultimately, this line of work
seeks to unify the various generalizations of context-free languages, and identify reusable
tools for reasoning about them.

1.1 Languages of string diagrams
Monoidal categories have an intuitive, sound and complete graphical syntax: string diagrams.
String diagrams resemble graphical languages commonly found in engineering and science,
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and indeed, they allow us to reason about Markov kernels [20], linear algebra [6], or quantum
processes [1]. In computer science, they provide foundations for visual programming [27, 29].

The use of string diagrams as a syntax in these various domains suggests the need for a
corresponding theory of string diagrams as a formal language. This is one aim of recent work
on languages of string diagrams or monoidal languages, such as that elaborated by Sobociński
and the first author [14, 15], who introduced the class of regular monoidal languages. A
monoidal language in this sense is simply a subset of morphisms in a strict monoidal category,
just as a classical formal language is a subset of a monoid. In this work, we introduce a
natural class of context-free monoidal languages, which capture various extended notions of
context-free language found in the computer science literature.

1.2 Context-free languages over categories
Our main point of reference in this paper is the recent work of Melliès and Zeilberger
[33, 34]. This work is a thoroughgoing refashioning of the theory of context-free languages
from a “fibrational” point of view. Melliès and Zeilberger demonstrate that it is natural
and fruitful to consider context-free languages over arbitrary categories. They introduce
an adjunction between splicing (introducing gaps or contexts in terms) and contouring
(linearizing derivation trees), and use it to give a novel conceptual proof of the Chomsky-
Schützenberger representation theorem.

Melliès and Zeilberger provide an ample supply of examples of context-free languages
in categories, such as context-free languages of runs over an automaton, languages with
an explicit end-of-input marker, multiple context-free grammars [43] and a grammar of
series-parallel graphs. However, it is less clear how notions such as context-free grammars
of trees and hypergraphs fit into this framework. In this paper, we show how this can be
accomplished by adapting the machinery of Melliès and Zeilberger to the wider setting of
monoidal categories and their string diagrams. This generalization is non-trivial, and sheds
light on the intriguing differences between languages of string diagrams and classical languages.
In particular, our two-dimensional version of the Chomsky-Schützenberger representation
theorem says that every context-free language of string diagrams is the image under a
monoidal functor of a regular language of string diagrams: no intersection of context-free
and regular languages is necessary.

Related work

The representation of context-free grammars as certain morphisms of multigraphs was
introduced by Walters in a short paper [48]. A similar type-theoretical version of this idea
was also introduced by De Groote [11]. As discussed more extensively above, this idea was
taken up and substantially refined by Melliès and Zeilberger, first in a conference paper [33]
and later in an extended version [34].

A different notion of context-free families of string diagrams has been introduced by
Zamdzhiev [49]. There, string diagrams are defined combinatorially as string graphs, and
context-free families are then generated by B-edNCE graph grammars [42]. Though similar,
the resulting notion is not directly comparable to ours. Here, we use the native algebra of
monoidal categories and their multicategories of contexts to define and investigate languages.

Finally, Heindel’s abstract [23] claims a proof of a Chomsky-Schützenberger theorem
for morphisms in symmetric monoidal categories, but the work described in this abstract
was never published. Our development is quite different from that outlined in Heindel’s
abstract. We prove a stronger representation theorem that does not require an intersection of
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languages; we work without the assumption of symmetry; and we generalize the categorical
machinery of Melliès and Zeilberger.

Contributions

We introduce context-free languages of string diagrams (Definition 4.12) and show that they
include a wide variety of examples in the computer science literature including context-free
languages of trees and hypergraphs. We introduce the category of raw optics (Definition 5.1)
over a monoidal category, and its left adjoint, the optical contour (Definition 5.5 and Theo-
rem 5.6). We use this machinery to prove a representation theorem for context-free monoidal
languages (Theorem 6.6), also relating them to previous work on regular monoidal languages.

2 Preliminaries

In this paper, we define context-free grammars as particular morphisms. This point of view,
while perhaps unfamiliar, is simple and powerful. It suggests natural generalizations of
context-free grammars, such as we will pursue in the main body of the paper, and new
conceptual tools for reasoning about them. This idea is not original to us; its roots go back
to Walters [48], with recent refinement and extension by Melliès and Zeilberger [33, 34]. In
this section, we introduce these ideas. We also introduce some background on monoidal
categories and their string diagrams, which will be needed for our extension of context-free
grammars to this realm.

2.1 Context-free languages in free monoids and other categories
We introduce the definition of context-free grammar as a morphism of certain multigraphs.
Multigraphs (or species in the work of Melliès and Zeilberger [34]) are a kind of graph in
which edges have a list of sources and single target. It is often helpful to think of a multigraph
as a signature, specifying a set of typed operations. Note that this is a different use of the
term multigraph from that specifying graphs allowing multiple parallel edges.

▶ Definition 2.1. A multigraph M is a set S of sorts, and sets M(X1, ..., Xn;Y ) of generating
operations (or multimorphisms), for each pair of a list of sorts X1, ..., Xn and a sort Y .
A multigraph is finite if sorts and operations are finite sets. A morphism of multigraphs
is given by a function f on sorts and functions M(X1, ..., Xn;Y ) → M(fX1, ..., fXn; fY )
between sets of operations.

Multigraphs freely generate multicategories, also known as operads (though this term
sometimes refers only to the single-sorted, symmetric case). See Leinster [32] for a com-
prehensive reference on multicategories. The free multicategory F▽M over a multigraph
M has as multimorphisms F▽M(X1, ..., Xn;Y ) the “trees” rooted at Y , with open leaves
X1, ..., Xn, that one can build by “plugging together” operations in M . We call closed trees,
i.e. nullary multimorphisms d ∈ F▽M(;Y ), derivations. Every multicategory M has an
underlying multigraph, denoted |M|, given by forgetting identities and composition.

Every rule in a context-free grammar is of the form R → w1R1...Rnwn, where R,Ri are
non-terminals, and wi are (possibly empty) words over an alphabet Σ. The insight of Melliès
and Zeilberger [34] is that this data may be arranged as an operation R1, ..., Rn → R in a
multigraph over an n-ary operation w1 − ...− wn called a spliced word: a word with n gaps,
as in Figure 1. We introduce the multicategory of spliced arrows in a category.



4 Context-Free Languages of String Diagrams

↦ 

R

R1

R wnR1 Rn-1w1 w2
���

wnw1 w2
������

Rn-1

Figure 1 (Left) Generic form of a context-free rule. (Right) Context-free rules as a morphism of
multigraphs into spliced arrows; here, spliced arrows in a monoid.

▶ Definition 2.2 (Melliès and Zeilberger [34]). The multicategory of spliced arrows, W C, over
a category C, contains, as objects, pairs of objects of C, denoted as A

B. Its multimorphisms are
morphisms of the original category, but with n “gaps” or “holes”, into which other morphisms
(with holes) may be spliced. More precisely, the multimorphisms of W C are given by:

W C(A1
B1
, . . . ,An

Bn
; X

Y ) := C(X;A1) ×
n−1∏

i=1
C(Bi;Ai+1) × C(Bn;Y ).

By convention, nullary multimorphisms are morphisms of C, that is W C(; X
Y ) := C(X;Y ).

The identity is given by a pair of identities of the original category, multicategorical composition
is derived from the composition of the original category.

We can now present a context-free grammar in terms of a morphism of multigraphs from
a multigraph of non-terminals to the underlying multigraph of spliced arrows, as in Figure 1.

▶ Definition 2.3 (Melliès and Zeilberger [34]). A context-free grammar of morphisms in a
category C is a morphism of multigraphs G → |W C| and a sort S in G (the start symbol).

By the free-forgetful adjunction between multicategories and multigraphs, morphisms
ϕ : G → |W C| and morphisms of multicategories (or multifunctors) ϕ̂ : F▽G → W C are in
bijection. This allows for a slick definition of the language of a grammar.

▶ Definition 2.4 (Melliès and Zeilberger [34]). Let G = (ϕ : G → |W C|, S) be a context-free
grammar of morphisms in C. The language of G is given by the image of the set of derivations
F▽G(;S) under the multifunctor ϕ̂.

When C is a finitely generated free monoid considered as a one-object category, then
context-free grammars over C correspond precisely to the classical context-free grammars.

An important realization of Melliès and Zeilberger is that the operation of forming the
multicategory of spliced arrows in C has a left adjoint. That is, every multicategory gives
rise to a category called the contour of M, and this contouring operation is left adjoint
to splicing. We refer to their paper for more details [34, Section 3.2]. Contours give a
conceptual replacement for Dyck languages in the classical theory of context-free languages:
they linearize the shape of derivation trees.

In Section 5, we define a new contour of multicategories which we call the optical
contour ; we shall use it to prove a representation theorem for languages of string diagrams
(Theorem 6.6), inspired by generalized Chomsky-Schützenberger representation theorem
proved by Melliès and Zeilberger.

2.2 Monoidal categories, their string diagrams and languages
In this paper, we will mostly be concerned with monoidal categories presented by generators
and equations between the string diagrams built from these generators. Generators are given
by polygraphs.
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▶ Definition 2.5. A polygraph Γ is a set SΓ of sorts, and sets Γ(S1 ⊗ ...⊗Sn;T1 ⊗ ...⊗ Tm)
of generators for every pair of lists Si, Tj of sorts. A polygraph is finite if sorts and
generators are finite sets. A morphism of polygraphs is a function f on sorts and functions
Γ(S1 ⊗ ...⊗ Sn;T1 ⊗ ...⊗ Tm) → Γ(fS1 ⊗ ...⊗ fSn; fT1 ⊗ ...⊗ fTm) between generators.

∈ SΓ α ∈ Γ

...... α

...... d1
... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2

...
Figure 2 The free strict monoidal category over a polygraph Γ has set of objects S∗

Γ and
morphisms string diagrams given inductively over the generators of Γ as above, quotiented by isotopy.
The leftmost rule denotes the empty diagram. We use colours here to indicate sorts. In string
diagrammatic syntax, the usual equations required for term syntax, such as associativity of the
tensor product, hold automatically.

For a generator γ of arity S1 ⊗ ...⊗Sn and coarity T1 ⊗ ...⊗Tm we write γ : S1 ⊗ ...⊗Sn →
T1 ⊗ ...⊗ Tm. When S is single-sorted, we use natural numbers for the arities and coarities;
this case will cover most of the examples in the following. As a string diagrams, we depict
generators as boxes with strings on the left and right for their arities and coarities (Figure 2).

▶ Proposition 2.6. String diagrams with generators in a polygraph construct a monoidal
category (Figure 2). The monoidal category of string diagrams over a polygraph is the free
strict monoidal category over the polygraph [28, 44]. Every monoidal category is equivalent to
a strict one. In particular, string diagrams are sound and complete for monoidal categories.

We shall need to impose equations between string diagrams, such as in defining symmetric
monoidal categories, cartesian monoidal categories and hypergraph categories. To this end,
we introduce the following notion of presentation.

▶ Definition 2.7. A finite presentation of a strict monoidal category consists of a finite
polygraph of generators, P, and a finite polygraph of equations, E, with projections for the two
sides of each equation, l, r : E → |F⊗P|. The strict monoidal category presented by (P, E , l, r),
is defined as the free strict monoidal category generated by P and quotiented by the equations
in E; in other words, the equalizer of the two projections l∗, r∗ : F⊗E → F⊗P.

For the soundness and completeness of string diagrams, see Joyal and Street [28]. For a
survey of string diagrams for monoidal categories, see Selinger [44]. For an introduction to
the practical use of string diagrams, see Vicary and Heunen [25] or Hinze and Marsden [26].

▶ Definition 2.8. A monoidal language or language of string diagrams is a subset of
morphisms in a strict monoidal category.

3 Regular Monoidal Languages

Before introducing context-free monoidal languages, we introduce the regular case, which
shall play an important role in Section 6. Regular monoidal languages were introduced by
Sobociński and the first author [14, 15], following earlier work of Bossut and Heindel [7, 24].
They are defined by a simple automaton model, reminiscent of tree automata. In a regular
monoidal language, the alphabet is given by a finite polygraph.
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▶ Definition 3.1. A non-deterministic monoidal automaton comprises: a finite polygraph
Γ (the alphabet); a finite set of states Q; for each generator γ : n → m in Γ, a transition
function ∆γ : Qn → P(Qm); and initial and final state vectors i, f ∈ Q∗.

▶ Example 3.2. Classical non-deterministic finite state automata arise as monoidal automata
over single-sorted polygraphs in which every generator has arity and coarity 1. Bottom-
up regular tree automata [21] arise precisely from monoidal automata over single-sorted
polygraphs in which every generator has coarity 1 and arbitrary arity, with initial state the
empty word and final state a singleton.

A finite state automaton over an alphabet Σ accepts elements of the free monoid Σ∗. A
monoidal automaton over a polygraph Γ accepts morphisms in the free monoidal category
F⊗Γ over Γ. Let us see some examples before giving the formal definition of the accepted
language. We depict the transitions of a monoidal automaton as elements of a polygraph
with strings labelled by states, and generators labelled by the corresponding element of Γ.

▶ Example 3.3. Consider the following polygraph containing generators (left, below) for
an opening and closing parenthesis, and the monoidal automaton over this polygraph with
Q = {S,M}, i = f = S, and transitions shown below, centre. An accepting run over this
automaton is shown below, right. The string diagram accepted by this run is what we obtain
by erasing the states from this picture.

S
S
M

S
S

( S
S
M

( (
(

(
(( ( S

M

M

S
S

It is clear that the language accepted by this automaton is exactly the “balanced paren-
theses”, but note that this is not a language of words, since we use an extra string to keep
track of opening and closing parentheses. This principle will play an important role in our
representation theorem in Section 6. Roughly speaking, this extra wire arises from the optical
contour of a string language of balanced parentheses.

▶ Example 3.4. In the field of DNA computing, Rothemund, Papadakis and Winfree
demonstrated self-assembly of Sierpiński triangles from DNA tiles [40]. Sobociński and
the first author [14] showed how to recast the tile model as a regular monoidal language
over a polygraph containing two tile generators (white and grey), along with start and end
generators, as in Figure 3. Note that the start (end) generators have arity (coarity) 0, and
hence effect a transition from (to) the empty word of states.

H1

H1
V1

V0
H0

H0
V0

V0
H0

H0
V1

V1
H1

H1
V0

V1
H1

V1

H1

V1

Figure 3 Transitions for the Sierpiński monoidal automaton (left) and an element of the language
(right). The initial and final states are the empty word.

Transitions of a non-deterministic monoidal automaton over Γ extend inductively to
string diagrams in F⊗Γ, giving functions δ̂n,m : Qn × F⊗Γ(n,m) → P(Qm) (Definition F.1).
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▶ Definition 3.5. A string diagram s : n → m in the free monoidal category F⊗Γ over Γ is
in the language of a non-deterministic monoidal automaton ({∆γ}γ∈Γ, i, f) if and only if
f ∈ δ̂n,m(i, s).

▶ Definition 3.6. A monoidal language L is a regular monoidal language if and only if there
exists a non-deterministic monoidal automaton accepting L.

The data of a monoidal automaton is a equivalent to a morphism of finite polygraphs,
which we call a regular monoidal grammar, following Walters’ [48] use of the term grammar
when data is presented as fibered over an alphabet, and automata when the alphabet indexes
transitions as in Definition 3.1. We shall use this convenient presentation in the following.

▶ Definition 3.7. A regular monoidal grammar is a morphism of finite polygraphs ψ : Q → Γ,
equipped with finite initial and final sorts i, f ∈ S∗

Q. The morphisms in F⊗Q(i, f) are
derivations in the grammar, and their image under the free monoidal functor F⊗ψ gives the
language of the grammar; a subset of morphisms in F⊗Γ.

▶ Proposition 3.8. For every non-deterministic monoidal automaton there is a regular
monoidal grammar with the same language, and vice-versa.

Not every monoidal language is a regular monoidal language. The following is an example.

▶ Proposition 3.9. Let Γ be the polygraph containing two generators: one for “over-braiding”
and one for “under-braiding” . The language of unbraids on two strings over Γ, i.e.

diagrams equivalent under planar isotopy to untangled strings, is not a regular monoidal
language.

Proof sketch. We can use the pumping lemma for regular monoidal languages (Lemma B.1),
with k = 2. The argument is analogous to that for classical languages of balanced parentheses:
every over-braiding or under-braiding must be eventually balanced with its opposite.

In the next section, we introduce context-free monoidal languages and we shall see that
unbraids fall in this class. In Section 6 we prove a surprising representation theorem: every
context-free monoidal language is the image under a monoidal functor of a regular monoidal
language.
▶ Remark 3.10. There is a minor difference between the definition of regular monoidal
languages above, and those originally defined by Sobociński and the first author [14], which
were restricted to languages of scalar morphisms. In later work [15], initial and final state
finite languages were introduced. Bossut, Dauchet and Warin [7] allow these to be regular
languages; however, our applications require no more than a single initial and final word.
▶ Remark 3.11. As defined, regular monoidal languages are subsets of free strict monoidal
categories: we shall need only this case in order to prove our main theorem. Context-free
monoidal languages will be defined over arbitrary strict monoidal categories, so this raises the
question of extending the regular case to monoidal categories that are not free. We suggest
this can be done by a generalization of Melliès and Zeilberger’s definition of finite-state
automata over a category as finitary unique lifting of factorizations functors [34, Section 2].

4 Context-Free Monoidal Languages

We now turn our attention to context-free grammars over monoidal categories. The multicat-
egory of spliced arrows is defined for any category. However, for categories equipped with
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a monoidal structure, it is natural to consider more general kinds of holes than allowed by
the spliced arrows construction (Figure 4). Rather than tuples of disjoint pieces, we should
allow the possibility that a hole can be surrounded by strings. The necessity of considering
these more general holes is forced upon us by various examples that could not be captured
using spliced arrows (e.g. Examples 4.14 and 4.17). Proofs omitted from this section may be
found in Appendix G.

4.1 The symmetric multicategory of diagram contexts
Context-free monoidal grammars should contain productions from a variable to an incomplete
diagram containing multiple variables or “holes”. This section constructs diagram contexts
over an arbitrary polygraph. Diagram contexts represent the incomplete derivation of a
monoidal term: as such, they consist of string diagrams over which we add “holes”. We shall
notate these holes in string diagrams as pink boxes (e.g. Figure 4).

Figure 4 (Left) A spliced arrow is a tuple of morphisms. (Right) In a monoidal category, there
is the possibility of more general holes, which do not split a morphism into disjoint pieces.

Substituting another diagram context inside a hole induces a symmetric multicategorical
structure on the diagrams: symmetry means that we do not distinguish the specific order in
which the holes appear. This allows us to avoid declaring a particular ordering of holes when
defining a context-free monoidal grammar. The mathematical device that allows us to avoid
declaring a particular ordering is shufflings; their use in categorical logic is inspired by the
work of Shulman [45].

▶ Definition 4.1. A shuffling of two lists, Ψ ∈ Shuf(Γ,∆) is any list Ψ that contains the
elements of both Γ and ∆ in any order but preserving the relative orders of Γ and ∆.

For instance, if Γ = [ x , y , z ] and ∆ = [ u , v ], a shuffling is Ψ = [ x , u , y , z , v ],
but not [ y , u , z , x , v ]. The theory of diagram contexts will introduce a shuffling every
time it mixes two contexts: this way, if a term was derived by combining two contexts, we can
always reorder these contexts however we want. For instance, the term u , v ⊢ u # v was
derived from composing the axioms u ⊢ u and v ⊢ v ; by choosing a different shuffling,
we can also derive the term v , u ⊢ u # v . Let us now formally introduce the theory.

▶ Definition 4.2. The theory of diagram contexts P over a polygraph, P, is described by
the following logic. This logic contains objects (A,B,C, ... ∈ P∗

obj) that consist of lists of
types of the polygraph, X,Y, Z, ... ∈ Pobj; it also contains contexts (Γ,∆,Ψ, ...) that consist
of lists of pairs of objects. Apart from the single variables (x, y, z, ..) and the generators of
the polygraph (f, g, h, ...); we consider fully formed terms (t1, t2, ...).

Identity

⊢ id : X
X

Generator

⊢ f : X1,...,Xn

Y 1,...,Ym

Hole

x : A
B ⊢ x : A

B

Sequential
Γ ⊢ t1 : A

B ∆ ⊢ t2 : B
C

Shuf(Γ; ∆) ⊢ t1 # t2 : A
C

Parallel
Γ ⊢ t1 : A1

B1
∆ ⊢ t2 : A2

B2

Shuf(Γ; ∆) ⊢ t1 ⊗ t2 : A1++A2
B1++B2
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Every term in a given context has a unique derivation. We consider terms up to α-equivalence
and we impose the following equations over the terms whenever they are constructed over the
same context: (t1 # t2) # t3 = t1 # (t2 # t3); t # id = t; t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3; (t1 #
t2) ⊗ (t3 # t4) = (t1 ⊗ t3) # (t2 ⊗ t4).

▶ Proposition 4.3. The multicategory of derivable sequents in the theory of diagram contexts
is symmetric. In logical terms, exchange is admissible in the theory of diagram contexts.

▶ Proposition 4.4. Derivable sequents in the theory of diagram contexts over a polygraph
P form the free strict monoidal category over the polygraph extended with special “hole”
generators, P + {hA,B : A → B | A,B ∈ P∗

obj}. Derivable sequents over the empty context
form the free strict monoidal category over the polygraph P. Moreover, there exists a
symmetric multifunctor i : |F⊗P| → P interpreting each monoidal term as its derivable
sequent.

▶ Remark 4.5. Various notions of “holes in a monoidal category” exist in the literature,
under names such as optics, contexts, or wiring diagrams [36, 37]. Hefford and the authors
[38, 13] gave a universal characterization of the produoidal category of optics over a monoidal
category. This produoidal structure is useful for describing decompositions of diagrams.
The above logic generates a multicategory similar to the operad of directed, acyclic wiring
diagrams introduced by Patterson, Spivak and Vagner [36]; whose operations are generic
morphism shapes, rather than holes in a specific monoidal category.

▶ Definition 4.6. A symmetric multigraph is a multigraph G equipped with bijections
σ∗ : G(X1, ..., Xn;Y ) ∼= G(Xσ(1), ..., Xσ(n);Y ) for every list X1, ..., Xn of sorts and every
permutation σ, satisfying (σ · τ)∗ = σ∗ # τ∗ and id∗ = id. A morphism of symmetric
multigraphs is a morphism of multigraphs which commutes with the bijections.

▶ Definition 4.7. Every multigraph, M , freely induces a symmetric multigraph, clique(M),
with the same objects and, for each f ∈ M(X1, ..., Xn;Y ), a clique of elements

fσ ∈ clique(M)(Xσ(1), ..., Xσ(n);Y ),

connected by symmetries, meaning that σ∗(fτ ) = fσ·τ . This is the left adjoint to the inclusion
of symmetric multigraphs into multigraphs.

▶ Remark 4.8. Given any symmetric multigraph G, finding a multigraph M whose clique
recovers it, clique(M) = G, amounts to choosing a representative for each one of the cliques
of the multigraph. Any symmetric multigraph can be (non-uniquely) recovered in this
way: for each multimorphism f ∈ G(X1, ..., Xn;Y ), we can consider its orbit under the
action of the symmetric group, orb(f) = {σ∗(f) | σ ∈ Sn} – the orbits of different elements
may coincide, but each element does have one – and picking an element go for each orbit,
o ∈ {orb(f) | f ∈ G}, recovers a multigraph giving rise to the original symmetric multigraph.

▶ Definition 4.9. The theory of diagram contexts over a finitely presented monoidal category,
(P, E , l, r) (Definition 2.7), is the theory of diagram contexts over its generators, quotiented
by its equations; in other words, it is the equalizer of the two projections of each equation,
interpreted as derivable sequents ( l∗ # i), ( r∗ # i) : E → P .

▶ Proposition 4.10. The formation of diagram contexts in a monoidal category or polygraph
extends to functors : MonCat → MultiCat and : PolyGraph → MultiGraph, which
moreover commute with the free multicategory F▽ and free monoidal category functors F⊗.
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At this point, the reader may doubt that the formation of diagram contexts has a left
adjoint similar to the contour functor for spliced arrows. Indeed, in order to recover a
left adjoint, we shall need to introduce another multicategory of diagrams which we call
raw optics. This technical device will allow us to prove our main theorem (Theorem 6.6).
However, let us first see the definition of context-free monoidal grammar, and some examples.

4.2 Context-Free Monoidal Grammars
We now have the ingredients for our central definition. A context-free monoidal grammar
specifies a language of string diagrams by a collection of rewrites between diagram contexts,
where the non-terminals of a context-free grammar are now (labelled) holes in a diagram (e.g.
Figure 8). Our definition is entirely analogous to Definition 2.3, but using our new symmetric
multicategory of diagram contexts in a monoidal category, instead of spliced arrows.

▶ Definition 4.11. A context-free monoidal grammar over a strict monoidal category (C,⊗, I)
is a morphism of symmetric multigraphs Ψ : G → | C |, into the underlying multigraph of
diagram contexts in C, where G is finite, and a start sort SX,Y ∈ Ψ−1(X

Y ).

We shall use the notation S ⊏ A
B to indicate that Ψ(S) = A

B, following the convention in
the literature [34].

A morphism of symmetric multigraphs Ψ : G → | C | defining a grammar uniquely
determines, via the free-forgetful adjunction, a symmetric multifunctor Ψ̂ : F▽G → C ,
mapping (closed) derivations to morphisms of C. The language of a grammar is then defined
analogously to Definition 2.4:

▶ Definition 4.12. Let (Ψ : G → | C |, S ⊏ A
B) be a context-free monoidal grammar. The

language of Ψ is the set of morphisms in C(A;B) given by the image under Ψ̂ of the set of
derivations F▽G(;S). A set of morphisms L in C is a context-free monoidal language if and
only if there exists a context-free monoidal grammar whose language is L.

Let us see some examples.

▶ Example 4.13 (Classical context-free languages). Every context-free monoidal grammar
of the following form is equivalent to a classical context-free grammar of words. Let Γ
be a single-sorted finite polygraph whose generators are all of arity and coarity 1. Then
context-free monoidal grammars over F⊗Γ with a start symbol ϕ(S) ⊏ 1

1 are context-free
grammars of words over Γ. Figure 5 gives the classical example of balanced parentheses.
Similarly, every context-free grammar of words may be encoded as a context-free monoidal
grammar in this way.

( ( S ( (SS S SS

Figure 5 Balanced parentheses as a context-free monoidal grammar over the polygraph Γ (left).

▶ Example 4.14 (Context-free tree grammars). Context-free tree grammars [21, 41] are defined
over ranked alphabets of terminals and non-terminals, which amount to polygraphs in which
the generators have arbitrary arity (the rank) and coarity 1. Productions have the form
A(x1, ..., xm) → t where the left hand side is a non-terminal of rank m whose frontier is
labelled by the variables xi in order, and whose right hand side is a tree t built from terminals
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and non-terminals, and whose frontier is labelled by variables from the set {x1, ..., xm}. Note
that t may use the variables non-linearly.

For example, let S be a non-terminal with coarity 0, A a non-terminal with coarity 2, f a
terminal of coarity 2, and x a terminal of coarity 0 (a leaf). Then a possible rule over these
generators is A(x1, x2) → f(x1, A(x1, x2)), where x1 appears non-linearly. In order to allow
such non-linear use of variables in a context-free monoidal grammar, we can consider the
free cartesian category over Γ. In terms of string diagrams, this amounts to introducing new
generators for copying ( ) and deleting variables ( ), satisfying some equations which we
recall in Appendix D.

Let Γ be a polygraph in which generators have arbitrary arity, and coarity 1, as above.
Context-free monoidal grammars over the free cartesian category on Γ, with a start symbol
S ⊏ 0

1 are context-free tree grammars. In Figure 6 we extend the above data to a full example.
Note that by allowing start symbols S ⊏ 0

n, we can produce forests of n trees.

S A
x

x
A

A
f A f

x

x f
f

x

x f
f

x

=

Figure 6 Example of a context-free tree grammar as a context-free monoidal grammar. The string
diagrams at the bottom are equal in the free cartesian category over the polygraph of terminals.

▶ Example 4.15 (Regular monoidal languages). Regular monoidal languages are context-free
monoidal languages: let R = (ϕ : G → Γ, i, f) be a regular monoidal grammar. We lift this
to a context-free monoidal grammar using the diagram contexts functor (Proposition 4.10),
giving ϕ : G → Γ , taking the free monoidal functor F⊗ ϕ on this morphism of polygraphs,
and finally commuting F⊗ and (Proposition 4.10). The pair i

f provides the start symbol.

▶ Example 4.16 (Hyperedge-replacement grammars). Hyperedge-replacement (HR) grammars
are a kind of context-free graph grammar [18]. We consider HR grammars in normal form
in the sense of Habel [22, Theorem 4.1]. A production N → R of an HR grammar has N a
non-terminal with arity and coarity, and R a hypergraph with the same arity and coarity (a
multi-pointed hypergraph in Habel’s terminology), whose hyperedges are labelled by some
finite set of terminals and non-terminals.

Just as trees are morphisms in free cartesian monoidal categories (Example 4.14), hyper-
graphs are the morphisms of monoidal categories equipped with extra structure, known as
hypergraph categories [39, 5, 19]. Generators in a polygraph are exactly directed hyperedges.
The extra structure in a hypergraph category, which we recall in Appendix E, amounts to a
combinatorial encoding of patterns of wiring between nodes.

Let Γ be a polygraph of terminal hyperedges, G a multigraph of non-terminal rules, and
S ∈ G a start symbol. Then context-free monoidal grammars (G → |Hyp[Γ]|, S) over the
free hypergraph category on Γ are exactly hyperedge replacement grammars over Γ (e.g.
Figure 7). A hole in a morphism in Hyp[Γ] is a placeholder for an (n,m) hyperedge, the
grammar labels these holes by non-terminals, and composition corresponds to hyperedge
replacement.
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A
A A AS A

Figure 7 A hypergraph grammar for simple control flow graphs with branching and looping, as a
context-free monoidal grammar. Based on Habel [22, Example 3.3].

▶ Example 4.17 (Unbraids). We return to the language of unbraids suggested in Proposi-
tion 3.9. Take the grammar over the over- and under-braiding polygraph depicted in Figure 8,
with start symbol S ⊏ 2

2. The language of this grammar consists of unbraids on two strings.

S S S S S S S S

Figure 8 A context-free monoidal grammar of unbraids, with start symbol S.

Let us record some basic closure properties of context-free monoidal languages.

▶ Proposition 4.18. Context-free monoidal languages over C with start symbol S ⊏ X
Y are

closed under union. The underlying morphism is given by the copairing, and start symbols can
be unified by introducing a fresh symbol and productions where necessary, as in the classical
case. Context-free monoidal languages are also closed under images of strict monoidal
functors: the underlying morphism is given by postcomposition.

5 Optical Contour of a Multicategory

An important realization of Melliès and Zeilberger is that the formation of spliced arrows
in a category has a left adjoint, which they call the contour of a multicategory [34, Section
3.2]. This adjunction is a key conceptual tool in their generalized version of the Chomsky-
Schützenberger representation theorem, and is closely linked to the notion of item in LR
parsing [34]. In this section, we present a similar adjunction for the monoidal setting.
However, it is not clear that the formation of diagram contexts has a left adjoint. We must
therefore first conduct a dissection of diagram contexts into raw optics.

5.1 The multicategory of raw optics
A raw optic is a tuple of morphisms obtained by cutting a diagram context into a sequence
of disjoint pieces (cf. [9]). In Section 5 we shall see that raw optics has a left adjoint, the
optical contour, and this will be enough to prove our representation theorem (Theorem 6.6).

▶ Definition 5.1. The multicategory of raw optics over a strict monoidal category C,
denoted ROpt[C], is defined to have, as objects, pairs A

B of objects of C, and, as its set of
multimorphisms, ROpt[C](A1

B1
, ...,An

Bn
; S

T), the following set

∑

Mi,Ni∈C
C(S;M1 ⊗A1 ⊗N1) ×

n−1∏

i=1
C(Mi ⊗Bi ⊗Ni;Mi+1 ⊗Ai+1 ⊗Ni+1) × C(Mn ⊗Bn ⊗Nn;T ).

As a special case, ROpt[C](; S
T) := C(S;T ). In other words, a multimorphism, from A1

B1
, ...,An

Bn

to S
T , consists of two families of objects, M1,...,Mn and N1, ..., Nn, and a family of functions,

(f0, ..., fn), with types f0 : S → M1 ⊗A1 ⊗N1; with f i : Mi ⊗Bi ⊗Ni → Mi+1 ⊗Ai+1 ⊗Ni+1;
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M

N

f AS

h M

N

gB T f
AS

h

gB T

M'

N

f AS

h

N

gB T

M'

Figure 9 Two raw optics (left, centre) in ROpt[C](A
B; S

T) which quotient to the same diagram
context. Note that a raw optic is not the same as a spliced arrow: the types M, N must match.

for each 1 ≤ i ≤ n− 1; and fn : Mn ⊗ Bn ⊗ Nn → T . In the special nullary case, we have a
single morphism f0 : S → T .

Identities are given by pairs (idA, idB). Given two raw optics f = (f0, ..., fn) and g =
(g0, ..., gm), their composition is defined by

f #i g := (g0, ..., gi # (id ⊗ f0 ⊗ id), ..., id ⊗ fi ⊗ id, ..., (id ⊗ fn ⊗ id) # gi+1, ..., gn).

Every raw optic can be glued into a diagram context, as illustrated in Figure 9. More
precisely we have,

▶ Proposition 5.2. There is an identity on objects multifunctor q : ROpt[C] → C mapping
each raw optic to its corresponding diagram context. Equivalently, there is an identity on
objects symmetric multifunctor q∗ : clique(ROpt[C]) → C ; this symmetric multifunctor is
full.

▶ Proposition 5.3. The construction of raw optics extends to a functor ROpt : MonCat →
MultiCat between the categories of strict monoidal categories and strict monoidal functors,
and multicategories and multifunctors.

▶ Remark 5.4. We could have defined context-free monoidal grammars as morphisms into raw
optics, rather than diagram contexts, but this would require an arbitrary choice of raw optic
for each rule, as in Figure 9. In particular, this would force us to choose a particular ordering
of the holes, since raw optics do not form a symmetric multicategory. On the other hand,
that such a choice exists will be needed to prove our representation theorem (Section 6).

5.2 Optical contour
We now introduce the left adjoint to the formation of raw optics, which we call the optical
contour of a multicategory. The difference from the contour recalled in Section 2 is that
additional objects Mi, Ni are introduced which keep track of strings that might surround
holes, and this gives rise to a strict monoidal category.

YL
p

Y

A
M1
AL
N1

M1
AR
N1

p,0 (p,1)

M2
BL
N2

YR

p,2

M2
BR
N2

B

Figure 10 A multimorphism p ∈ M(A, B; Y ) and its three sectors given by optical contour:
(p, 0) : Y L → M1 ⊗ AL ⊗ N1, (p, 1) : M1 ⊗ AR ⊗ N1 → M2 ⊗ BL ⊗ N2, (p, 2) : M2 ⊗ BR ⊗ N2 → Y R.

▶ Definition 5.5. Let M be a multicategory. Its optical contour, CM, is the strict monoidal
category presented by a polygraph whose generators are given by contouring multimorphisms
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in M. Each multimorphism gives rise to a set of generators for the monoidal category CM –
its set of sectors, as in Figure 10.

Explicitly, for each object A ∈ M, the optical contour CM contains a left polarized, AL,
and a right polarized, AR, version of the object. Additionally, for each multimorphism f ∈
M(X1, ..., Xn;Y ), there exists a family of objects Mf

1 , ...,M
f
n , N

f
1 , ..., N

f
n , whose superscripts

we omit when they are clear from context. The morphisms are given by the following
generators. For each f ∈ M(X1, ..., Xn;Y ), we consider the following n+ 1 generators:

(f, 0) : Y L → Mf
1 ⊗ XL

1 ⊗ Nf
1 ,

(f, i) : Mf
i ⊗XR

i ⊗Nf
i → Mf

i+1 ⊗XL
i+1 ⊗Nf

i+1, for 1 ⩽ i ⩽ n− 1, and
(f, n) : Mf

n ⊗XR
n ⊗Nf

n → Y R.

In particular, for a nullary multimorphism f ∈ M(;Y ), we consider a generator (f, 0) :
Y L → Y R. Further, we ask for the following equations which ensure that the optical contour
preserves identities and composition: for all x ∈ M, (idX , 0) = idXL , (idX , 1) = idXR with
M idX

1 = N idX
1 = I; and given any f ∈ M(X1, ..., Xn;Yi) and g ∈ M(Y1, ..., Ym;Z),

(f #i g, j) =





(g, j) j < i, with Mf#g
j = Mg

j , N
f#g
j = Ng

j

(g, i) # (id ⊗ (f, 0) ⊗ id) j = i, with Mf#g
i = Mg

j ⊗Mf
0

idMg
i

⊗ (f, j − i) ⊗ idNg
i

i < j < i+ n, with Mf#g
j = Mg

i ⊗Mf
j−i

(id ⊗ (f, n) ⊗ id) # (g, i+ 1) j = i+ n+ 1, with Mf#g
j = Mg

i ⊗Mf
n

(g, j − n) j > i+ n+ 1 with Mf#g
j = Mg

j−n.

In particular, when f ∈ M(;Yi) is nullary, (f #i g, 0) = gi # f0 # gi+1.

▶ Theorem 5.6. Optical contour is left adjoint to raw optics; there exists an adjunction
(C ⊣ ROpt) : MonCat → MultiCat.

Proof. See Appendix C. ◀

6 A Monoidal Representation Theorem

The Chomsky-Schützenberger representation theorem says that every context-free language
can be obtained as the image under a homomorphism of the intersection of a Dyck language
and a regular language [8]. Melliès and Zeilberger [33] use their splicing-contour adjunction
to give a novel proof of this theorem for context-free languages in categories: the classical
version is recovered when the category is a free monoid. The role of the Dyck language,
providing linearizations of derivation trees, is taken over by contours of derivations.

Monoidal categories provide a more striking case: the Dyck language is not needed
because the information that parentheses encode can be carried instead by tensor products.
In this section, we show that a regular monoidal language of optical contours is sufficient
to reconstruct the original language. Theorem 6.6 states that every context-free monoidal
language is the image under a monoidal functor of a regular monoidal language.

Our strategy will be to first choose a factoring of a grammar into raw optics, then use the
optical contour/raw optics adjunction to produce the required monoidal functor. We must
first establish that such a factoring exists. Omitted proofs may be found in Appendix I.

▶ Lemma 6.1. Any morphism of symmetric multigraphs underlying a context-free monoidal
grammar, ϕ : G → | C |, factors (non-uniquely) through the quotienting of raw optics
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(Proposition 5.2); meaning that there exists some multigraph G′ satisfying G = clique(G′),
and some morphism ϕr : G′ → |ROpt[C]|, such that ϕ = clique(ϕr) # q∗.

Call the factor ϕr : G′ → |ROpt[C]| a raw representative of ϕ. It amounts to choosing a
fixed ordering of the holes in a diagram context for each rule in the grammar, and a particular
splicing into a raw optic.
▶ Lemma 6.2. Let G = (ϕ, S) be a context-free monoidal grammar. Then the language
of any raw representative ϕr of ϕ (with start symbol S) equals the language of G. That is,
ϕr[F▽G′(;S)] = ϕ[F▽G(;S)].

▶ Lemma 6.3. A raw representative ϕr : G′ → |ROpt[C]| uniquely determines a strict
monoidal functor Iϕ : F⊗(CG′) → C.

We shall see that this monoidal functor maps the following regular monoidal language
over CG to the language of the original context-free monoidal grammar ϕ.
▶ Definition 6.4. Let G = (ϕ : G → | C |, S) be a context-free monoidal grammar, and
ϕr a raw representative with domain G′. Define a regular representative of G to be the
regular monoidal grammar R = (id : CG′ → CG′, SL, SR) over optical contours of G′ whose
morphism of polygraphs is the identity.

▶ Lemma 6.5. Given a multigraph G, there is a bijection between derivations rooted at a
sort S and optical contours from SL to SR, that is F▽G(;S) ∼= F⊗(CG)(SL;SR).

▶ Theorem 6.6. The language of a context-free monoidal grammar G = (ϕ : G → | C |, S)
equals the image of a regular representative under the monoidal functor Iϕ of Lemma 6.3.

Theorem 6.6 is at first quite surprising, since in comparison with the usual Chomsky-
Schützenberger theorem and its generalization [34], one might expect to see an intersection
of a regular monoidal language and a context-free monoidal language. Instead, this theorem
tells us that regular monoidal languages are powerful enough to encode context-free monoidal
languages, even while the latter is strictly more expressive than the former. Just as a context-
free grammar suffices to specify a programming language which may encode instructions
for arbitrary computations, regular monoidal languages can specify arbitrary context-free
monoidal languages, with a monoidal functor effecting the “compilation”.

7 Conclusion

There are still many avenues to explore in this structural approach to context-free languages.
One obvious direction is to investigate a notion of pushdown automaton for context-free
monoidal languages. In fact, it still remains to be elaborated how pushdown automata emerge
for context-free languages over plain categories. Following the general principle of parsing as
a lifting problem [34], and the duality of grammars (fibered) and automata (indexed) may
provide some clue to characterizing such automata by a universal property.

The study of languages and the dependence relations that diagram contexts naturally
present may be useful to the study of complexity in monoidal categories, such as the notion
of “monoidal width” proposed by Di Lavore and Sobociński [30, 31]. Conversely, measures of
monoidal complexity may inform the cost of parsing different terms.

Finally, different types of string diagram exist for a variety of widely applied categorical
structures beyond monoidal categories, such as double categories [35]. There are many
opportunities to extend the general principle elaborated here to a notion of context-free
language in these structures.
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A Monoidal Categories

▶ Definition A.1. A strict monoidal category C consists of a monoid of objects, or resources,
(Cobj ,⊗, I), and a collection of morphisms, or processes, C(X;Y ), indexed by an input
X ∈ Cobj and an output Y ∈ Cobj. A strict monoidal category is endowed with operations
for the sequential and parallel composition of processes, respectively

(#) : C(X;Y ) × C(Y ;Z) → C(X;Z),
(⊗) : C(X;Y ) × C(X ′;Y ′) → C(X ⊗X ′;Y ⊗ Y ′),

and a family of identity morphisms, idX ∈ C(X;X). Strict monoidal categories must satisfy
the following axioms.
1. Sequencing is unital, f # idY = f and idX # f = f .
2. Sequencing is associative, f # (g # h) = (f # g) # h.
3. Tensoring is unital, f ⊗ idI = f and idI ⊗ f = f .
4. Tensoring is associative, f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h.
5. Tensoring and identities interchange, idA ⊗ idB = idA⊗B.
6. Tensoring and sequencing interchange,

(f # g) ⊗ (f ′ # g′) = (f ⊗ f ′) # (g ⊗ g′).

▶ Remark A.2. This definition, slightly different from that found in most references, is taken
from the thesis of Román [38].

▶ Definition A.3. A symmetric strict monoidal category is a monoidal category equipped
with a natural family of isomorphisms σX,Y : X ⊗ Y → Y ⊗X for every pair of objects X,Y .
We can extend string diagrams to express this structure, by allowing strings to cross without
tangling. That is, we introduce components (below, left) for every pair of sorts, and equations
(below, right) expressing that these are natural isomorphisms. Adding this structure to the
free monoidal category over a polygraph presents the free symmetric monoidal category over
that polygraph.

=
=

f

f

g

g

▶ Definition A.4. A strict monoidal functor, F : C → D, is a monoid homorphism between
their objects, Fobj : Cobj → Dobj , and an assignment of morphisms f ∈ C(X;Y ) to morphisms
F (f) ∈ D(FX;FY ). A functor must preserve sequential composition, F (f # g) = F (f) #F (g);
parallel composition, F (f ⊗ g) = F (f) ⊗ F (g); and identities, F (id) = id. Strict monoidal
categories with strict monoidal functors form a category, MonCat.

B Pumping lemma for regular monoidal languages

▶ Lemma B.1 ([16]). Let L be a regular monoidal language. Then ∀k ∈ N+,∃n such that for
any s ∈ L where s may be factorized into m ⩾ n non-identity morphisms s = s0 # ... #si # ... #sm

where si : ki → ki+1, with 1 ⩽ ki ⩽ k, there exists i, j, ℓ such that ki = kj = ℓ and
s′ # (s′′)a #s′′′ ∈ L for all a ⩾ 0, where s′ = s0 # ... #si, s′′ = si+1 # ... #sj , and s′′′ = sj+1 # ... #sm
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Proof. Let L be the language of a grammar (ϕ : M → Γ, I, F ). If L has a finite number of
connected string diagrams, then for any k take n be longer than the longest factorization
over all diagrams in L, then the lemma holds vacuously. Otherwise let k be given, then take
n =

∑k
i=0 |SM |i. Let s ∈ L, such that it has a factorization of the form above. Then by the

pigeonhole principle, we will have i, j, ℓ as required in the lemma. ◀

▶ Lemma B.2 (Contrapositive form). Let L be a language and suppose that ∃k ∈ N+ such
that ∀n there exists a morphism w ∈ L that factorizes as in Lemma B.1 and for all i, j, ℓ
such that ki = kj = ℓ, there exists an a such that the pumped morphism w′w′′aw′′′ /∈ L, then
L is not regular monoidal.

▶ Observation B.3. This reduces to the pumping lemma for words and trees, taking k = 1.

C Optical contour-splice adjunction

▶ Theorem 5.6. Optical contour is left adjoint to raw optics; there exists an adjunction
(C ⊣ ROpt) : MonCat → MultiCat.

Proof. Let C be a strict monoidal category and let M be a multicategory. We need first
to prove that the two constructions involved, C and ROpt, are indeed functors – this proof,
although tedious, proceeds as expected and we prefer to omit it here.

We will show that there is a bijection between strict monoidal functors CM → C and
multifunctors M → ROpt[C].

The objects of ROpt[C] are pairs of objects. Mapping an object of the multicategory
X ∈ M to a pair of objects is the same as mapping two objects, XL and XR, to the
objects of the category C.
Mapping a multimorphism f ∈ M(X1, ..., Xn;Y ) to the multicategory of raw optics
consists of choosing a family of functions (f0, ..., fn) together with two families of objects
M1, ..,Mn and N1, ..., Nn. This is the same choice we need to map each one of the
components of the contour of f ∈ M(X1, ..., Xn;Y ) to that exact family of functions.

That is, we have only checked that, by construction, the maps out of the contour correspond
with multifunctors to raw optics. The adjunction remains conceptually interesting because it
links two concepts that have different conceptual interpretations, even if it can be reduced to
note that one has been defined as the adjoint to the other. ◀

D Cartesian monoidal categories

The free cartesian category over a polygraph may be presented using string diagrams. As
with symmetric monoidal categories, we add some new generators and equations, to the
effect that every object is equipped with a natural and uniform counital comagma structure.
That is, in addition to symmetric structure, we add the following generators and equations.

f f
f

= = =

This structure must be uniform, in the sense that the structure on tensor products is
given by tensor products of structure. See [44, Section 4.1] for more details.
▶ Remark D.1. In most sources, cartesian categories are presented in terms of the presence
of cocommutative comonoid structure. However, Román has shown that counital comagmas
suffice [38].
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E Hypergraph categories

The free hypergraph category over a polygraph may be presented using string diagrams. As
with cartesian monoidal categories, we add some new generators and equations. This extra
structure amounts to equipping every object with the structure of a special commutative
frobenius algebra. That is, in addition to symmetry we ask for the following generators and
equations:

===

= = ==

==

Moreover, this structure must be uniform in the sense that the structure on tensor
products of objects is given by tensor products of the structure, see [19] for more details.

The morphisms of the free hypergraph category over a polygraph are in bijection with
multi-pointed hypergraphs in the sense of Habel [22, Definition 1.3], that is, hypergraphs
with “open” source and target boundaries [5]. Intuitively, string diagrams in a hypergraph
category are hypergraphs.

F Details for Section 3

▶ Proposition 3.8. For every non-deterministic monoidal automaton there is a regular
monoidal grammar with the same language, and vice-versa.

Proof sketch. From the transitions ∆γ ⊆ Qn × Qm of a monoidal automaton, we can
build a polygraph Q by taking a generator γi : q1 ⊗ ... ⊗ qn → q′

1 ⊗ ... ⊗ q′
m for each

((q1, ..., qn), (q′
1, ..., q

′
m)) ∈ ∆γ . The morphism of polygraphs ψ : Q → Γ simply maps γi to γ.

The reverse is analogous.

▶ Definition F.1. Given a non-deterministic monoidal automaton over a polygraph Γ, we
inductively define transition functions δ̂n,m : Qn ×F⊗Γ(n,m) → P(Qm) over string diagrams
in the free monoidal category over Γ with arity n and coarity m as follows:

For a generator γ ∈ Γ, δ̂n,m(q, γ) := δn,m(γ),
for identities, δ̂n,n(q, id) := {q},
for a tensor product s1⊗s2, where s1 : n1 → m1, s2 : n2 → m2 with n = n1+n2,m = m1+
m2 and q = q1++q2, δ̂n,m(q, s1 ⊗ s2) := {p++p′ | p ∈ δ̂n1,m1(q1, s1), p′ ∈ δ̂n2,m2(q2, s2)},
for a composite s; s′, where s : n → p, s′ : p → m, δ̂n,m(q, s; s′) := {δ̂p,m(q′, s′) | q′ ∈
δ̂n,m(q, s)}.

G Proofs omitted from Section 4

▶ Proposition 4.3. The multicategory of derivable sequents in the theory of diagram contexts
is symmetric. In logical terms, exchange is admissible in the theory of diagram contexts.
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Proof. Assume we derived a term Γ, u , v ,∆ ⊢ t; let us show we could also derive
Γ, v , u ,∆ ⊢ t. We proceed by structural induction, recurring to the first term where the vari-
ables u and v appeared at two sides of the rule: this rule must have been of the form t1 #t2 or
t1 ⊗ t2 for Γ1, u ,∆1 ⊢ t1 and Γ2, v ,∆2 ⊢ t2, where Γ ∈ Shuf(Γ1; Γ2) and ∆ ∈ Shuf(∆1; ∆2).
In that case, we can deduce that Γ, v , u ,∆ ∈ Shuf(Γ1, u ,∆1; Γ2, v ,∆2); as a consequence,
Γ, v , u ,∆ ⊢ t can be derived. ◀

▶ Proposition 4.4. Derivable sequents in the theory of diagram contexts over a polygraph
P form the free strict monoidal category over the polygraph extended with special “hole”
generators, P + {hA,B : A → B | A,B ∈ P∗

obj}. Derivable sequents over the empty context
form the free strict monoidal category over the polygraph P. Moreover, there exists a
symmetric multifunctor i : |F⊗P| → P interpreting each monoidal term as its derivable
sequent.

Proof. We proceed by structural induction. We first note that the three nullary rules
of the logic correspond to terms of the free strict monoidal category over the polygraph
P + {hA,B | A,B ∈ P∗

obj}. The first corresponds to identities, the second corresponds to
generators, and the third, when employed with types A and B, corresponds to the additional
generator hA,B. We then note that the two binary rules correspond to sequential and
parallel composition, thus obtaining the classical algebraic theory of monoidal terms over the
polygraph P + {hA,B | A,B ∈ P∗

obj}.
Quotienting over the equations of monoidal categories, as we do when we impose the

equations of the theory of diagram contexts, recovers the free strict monoidal category: in
a tautological sense, the free strict monoidal category is precisely the one generated by
the operations of a monoidal category quotiented by the axioms of a monoidal category.
This contrasts sharply with a much more interesting description of the free strict monoidal
category: that using string diagrams. As both are exhibited as satisfying the same universal
property, they are necessarily equivalent.

As a particular case, a derivable sequent over the empty context must, by structural
induction, avoid any use of the holes. As a consequence of the previous reasoning, it is
generated from the polygraph P and it must be a morphism of the free strict monoidal
category.

Finally, the symmetric multifunctor can be described by structural induction: it preserves
identities, holes, sequential and parallel compositions, and it sends each monoidal term with
no holes h ∈ |F⊗P| to its derivation under the empty context, h ∈ P . ◀

H Details from Section 5

▶ Proposition H.1. The following square of adjunctions commutes.

PolyGraph MultiGraph

MonCat MultiCat

ROpt
F▽F⊗

ROpt

U

C

U
C

⊣

⊣

⊣

⊣

Proof. This follows by unwinding definitions. ◀
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I Proofs omitted from Section 6

▶ Lemma 6.1. Any morphism of symmetric multigraphs underlying a context-free monoidal
grammar, ϕ : G → | C |, factors (non-uniquely) through the quotienting of raw optics
(Proposition 5.2); meaning that there exists some multigraph G′ satisfying G = clique(G′),
and some morphism ϕr : G′ → |ROpt[C]|, such that ϕ = clique(ϕr) # q∗.

Proof. This is a consequence of the fact that q∗ is full. Given any diagram context, we argue
that we can obtain a (non-unique) diagram context of the form of a raw optic

t1 # (idM1 ⊗ x1 ⊗ idN1) # t2 # (idM2 ⊗ x2 ⊗ idN2) # ... # (idMn
⊗ xn ⊗ idNn

) # tn+1.

Indeed, by structural induction, if the diagram is formed by a hole or a generator, it can
be put in raw optic form by adding identities; if the diagram is a composition, we can put
both factors in raw optic form and check that their composition is again in raw optic form;
if the diagram is a tensoring of two diagrams in raw optic form, we can always apply the
interchange law and note that whiskering a raw optic by an object returns again a raw optic.

It is the case that every map G → clique(H) arises as a map G′ → H for some multigraph
G′ such that G = clique(G′). Combining both facts, we obtain the desired result. ◀

▶ Lemma 6.2. Let G = (ϕ, S) be a context-free monoidal grammar. Then the language
of any raw representative ϕr of ϕ (with start symbol S) equals the language of G. That is,
ϕr[F▽G′(;S)] = ϕ[F▽G(;S)].

Proof sketch. A raw representative amounts to choosing a specific ordering of the holes and
generators in a diagram context. By definition (Lemma 6.1), these quotient to the original
diagram contexts. In particular, closed derivations quotient to the same element of C.

▶ Lemma 6.3. A raw representative ϕr : G′ → |ROpt[C]| uniquely determines a strict
monoidal functor Iϕ : F⊗(CG′) → C.

Proof. Using the free-forgetful adjunction, the raw representative, ϕr, determines a unique
multifunctor F▽G′ → ROpt[C]. Using the adjunction of Theorem 5.6, this in turn determines
a unique monoidal functor C(F▽G′) → C. Finally, using the commutativity of C with F▽
(Proposition H.1), we obtain Iϕ : F⊗(CG′) → C. Explicitly, the action of Iϕ on generators is
given by: AL 7→ π1(ϕr(A)), AR 7→ π2(ϕr(A)), (f, i) 7→ πi(ϕr(f)), where π are projections. ◀

▶ Lemma 6.5. Given a multigraph G, there is a bijection between derivations rooted at a
sort S and optical contours from SL to SR, that is F▽G(;S) ∼= F⊗(CG)(SL;SR).

Proof. Let d ∈ F▽G(;S) be a derivation. We define a family of functions {CX : F▽G(;X) →
F⊗(CG)(XL, XR)}X∈G by structural recursion. There are two cases: if d is a generating
operation d ∈ G(;S), then CS(d) := (d, 0) : SL → SR. Otherwise, d is a composite
(p1, ..., pn) # g where g ∈ G(X1, ..., Xn;S) is a generating operation and pi ∈ F▽G(;Xi), in
which case CS(d) := (g, 0) # CX1(p1) # (g, 1) # ... # CXn

(pn) # (g, n).
We define functions C−1

S right to left in a similar fashion. Let c ∈ F⊗(CG)(SL;SR) be
an optical contour. If c = (c′, 0) is a generating sector then C−1

S (c) := c′. Otherwise c is a
composite ((g, 0) : SL → M1 ⊗XL

1 ⊗N1) # c1 # ((g, 1) : M1 ⊗XR
1 ⊗N1 → M2 ⊗XL

2 ⊗N2) # ... # cn #
((g, n) : M1 ⊗XR

1 ⊗N1 → SR) where (g, i) are generating sectors and ci ∈ F⊗(CG)(XL
i , X

R
i ),

in which case C−1
S (c) := (C−1

X1
(c1), ..., C−1

Xn
(cn)) # g. It is clear that these functions are

mutually inverse and hence form a bijection. ◀
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▶ Theorem 6.6. The language of a context-free monoidal grammar G = (ϕ : G → | C |, S)
equals the image of a regular representative under the monoidal functor Iϕ of Lemma 6.3.

Proof. By Lemma 6.2, the languages L(G) and L((ϕr, S)) are equal for any raw representative
ϕr of ϕ, where L((ϕr,S)) = ϕr[F▽G′(;S)]. It therefore suffices to show that ϕr[F▽G′(;S)] =
Iϕ[F⊗(CG′)(SL;SR)]. We show the inclusion left to right. Let d ∈ F▽G′(;S) be a derivation,
and let CS(d) be the corresponding optical contour given by Lemma 6.5. Then by the
definition of Iϕ (Lemma 6.3) and CS , we have Iϕ(CS(d)) = ϕr(d). We show the inclusion
right to left. Let g ∈ F⊗(CG′)(SL;SR) be a contour from SL to SR, and let C−1

S (g) be the
corresponding derivation given by Lemma 6.5. Then just as before we have ϕr(C−1

S (g)) =
Iϕ(g). ◀
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