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Introduction
Driving has been an exclusively human function for more than a century. During the lastfew years, the automobile and technology industries have made substantial strides inbringing digital technology into what was previously an exclusively human activity. Ad-vanced Driver Assistance Systems (ADAS) technologies have reached the inflection pointand are ready to take control of almost all aspects of the driving task. A number of liveshave already been saved and injuries prevented by this system, improving driver and pas-senger safety and convenience. Several companies have taken one step beyond by de-veloping Autonomous Vehicles (AVs), known as self-driving vehicles, that can drive them-selves on conventional roads and maneuver in a variety of roadways and environmentswithout a human operator. These vehicles utilize a variety of sensors, such as cameras,radars, and LiDARs, to perceive their surroundings and make navigation decisions [1].

In light of the fact that these technologies can be found in the mass market and havebecome successful, AVs are capable of revolutionizing the transportation system [2]. Oneof the key drivers of this research is the potential benefits AVs could offer. These benefitsinclude improving safety, preventing fatal crashes, reducing traffic congestion, sustainabletransportation, and facilitating mobility for people who cannot drive. Numerous studies,conducted in different parts of the world, have shown that driver-related factors (i.e.,error, impairment, fatigue, and distraction) are responsible for almost 90% of reportedcrashes over the past two decades [3, 4, 5, 6]. In contrast, vehicle component failure ordegradation accounted for less than 10% of the crashes [7]. AVs have the potential to re-duce and even eliminate human error as a cause of accidents, thus substantially reducingthe hazards associated with motor vehicles.
With the rapid advancement of AVs, ensuring their safety and performance in real-world environments has become a critical challenge [8]. Simulation testing has emergedas a highly effective tool for evaluating AVs, allowing developers to assess their behaviorand capabilities in a controlled and repeatable virtual environment. In this study, a testingframework is developed to evaluate the safety andperformance of an autonomous shuttlethrough simulation testing. The framework provides users with a comprehensive toolkitthat leverages both low- and high-fidelity simulations, enabling effective assessment ofautonomous software in the loop of simulations. The developed toolkit offers several keyfeatures and capabilities. Combining low and high-fidelity simulations allows users to sim-ulate a wide range of scenarios and evaluate AV behavior under diverse conditions. Thetoolkit provides a customizable set of tools that facilitate the assessment of AV software,including perception, decision-making, and control algorithms. Users can recreate com-plex traffic scenarios, pedestrian interactions, and various environmental conditions tothoroughly evaluate AV’s responses. The benefits of the proposed framework are numer-ous. Firstly, it offers cost and time efficiency by reducing expensive, time-consuming, andlabor-intensive real-world testing. Simulation testing allows for rapid iterations and exten-sive testing coverage, accelerating validation. Additionally, the framework ensures sce-nario reproducibility, allowing for consistent assessment of critical scenarios, edge cases,and rare events that are challenging to encounter consistently in the real world. More-over, the framework prioritizes safety assurance, as simulation testing provides a safe en-vironment to identify and address potential system failures, software bugs, or hardwaremalfunctions before conducting real-world tests or deploying the vehicle on public roads.
The framework’s importance lies in its contribution to AV validation. Providing a reli-able and efficient tool for assessing AV safety and performance helps build public trust inthis emerging technology. Furthermore, it supports compliance with regulations by en-suring that the AV meets the required standards. The framework also facilitates iterative
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development, allowing developers to rapidly implement changes and improvements tovehicle algorithms, sensors, and behavior. Overall, the developed framework representsa significant step towards widespread AV adoption and deployment by providing an effec-tive and comprehensive simulation-based validation approach.
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1 Literature Review
Over the past decade, significant progress has been made in developing AV technologies[9, 10, 11], and there are now a number of companies and organizations working on bring-ing AVs to market [12, 13, 14]. For example, Waymo, a subsidiary of Alphabet (Google), hasbeen developing AV technology since 2009 and has conducted extensive testing of its self-driving cars on public roads [15]. Also, several start-up companies have been formed withthe aim of developing automated vehicles, including Zoox, EasyMile [16, 17], Navya [18],etc. Furthermore, this study focuses on an autonomous shuttle operating on the cam-pus of Tallinn University of Technology as a public last-mile vehicle. By developing AVs, weare contributing to the significant technological challenge of mastering an unprecedentedlevel of complexity not yet seen in the automotive industry [19]. Thus, there has been ex-tensive research into the V&V of AVs, among others, in several national and internationalresearch projects and several approaches to validation have been developed [20].

Figure 1.1: SAE J3016 levels of driving automation.

1.1 SAE’s Levels of Autonomy

According to the Society of Automotive Engineers (SAE) [21], there are six levels of au-tonomy for vehicles, ranging from no automation (driver in full control) to fully AVs thatrequire no human input at all (see Fig. 1.1). Intermediate levels are differentiated by thenumber of automated systems and the necessity of the driver to be available at all times.These levels are often referred to as SAE’s Levels of Autonomy or SAE J3016. By using thistaxonomy, we can easily distinguish AVs depending onwho is chargedwithmonitoring thedriving environment. Currently, many car manufacturers mass-produce vehicles featuringlevel 2 autonomy including Tesla, Volvo, and Volkswagen. As we move forward with thelevel of autonomy, there are still many challenges and concerns, especially with regard
14



to safety and performance. In order to address this issue, this study is dedicated to thedevelopment of testing tools for cars that feature levels 3 to 5 of autonomy.

1.2 AVs Verification and Validation

AV verification and validation (V&V) is the process of testing and verifying the safety, re-liability, and performance of AVs before they are deployed on public roads [22]. It is anessential step in ensuring the safety of AVs and building public trust in this technology. Asfollows, each term describes a specific aspect of the testing process:
Verification: Theprocess of providing objective evidence that a system, software, or hard-ware meets the requirements. “Did we build the right system?”
Validation: An evaluation process designed to demonstrate that a system, software, orhardware meets its intended use and meets the needs of its users. “Did we buildthe system right?”

Figure 1.2: V-model testing approach in ISO 26262

Various approaches and techniques exist for the V&V of conventional software sys-tems; however, autonomous systemsdiffer fromordinary systems in that they learn, adapt,and change as they encounter new challenges [23, 24]. The V&V process for AVs involvesa range of activities, including simulation, testing, and validation. These activities aredesigned to ensure that the AV operates as intended, is safe for passengers and otherroad users, and meets all regulatory requirements. Based on known system developmentmethodologies, including the V-model [25, 26], they identify the principal activities re-quired to ensure an acceptable safety level during the system development process. Fig-ure 1.2 illustrates a simplified version of the V-model development methodology adoptedby the Functional Safety Standard for Road Vehicles ISO 26262 [27]. The verification stepsare located on the left side of the process, while the validation steps are located on theright side. The following is a brief overview of the different stages involved in AV V&V:
Testing: Unit or system testing is one of the effectivemeasures to assess the performanceor safety of the Device Under Test (DUT). The following are the primary methods oftesting used in the automotive industry.
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• Simulation: Simulation testing involves creating virtual environments that sim-ulate real-world driving scenarios. AV software and sensors are tested in theseenvironments to verify that they perform as intended. Simulations are con-ducted in either a lower detail environment known as low-fidelity or a higherdetail environment known as high-fidelity. Simulation testing allowsmanufac-turers to test their vehicles in a safe and controlled environment and to collectdata for further analysis.
• Track testing: In track testing, AVs are tested in controlled environments, suchas test tracks or closed-off areas of public roads. This type of testing allowsmanufacturers to evaluate the performance of their vehicles under a varietyof conditions and to collect data on how the vehicle behaves in different situ-ations.
• On-road testing: On-road testing involves testing AVs on public roads, wherethey will eventually be deployed. This type of testing allows manufacturersto evaluate the performance of their vehicles in real-world situations and tocollect data on how the vehicle interacts with other road users.

Validation: Validation involves analyzing the data collected during simulation and testingto determine if the AV meets all safety and performance requirements. This step iscritical in ensuring that the vehicle is safe for passengers and other road users.
Certification: Once a manufacturer has completed the V&V process, the vehicle may becertified for use on public roads. Certification requirements vary by region andmayinvolve demonstrating compliance with local regulations and safety standards.

Overall, the AV V&V process is a complex and iterative process that involves multiplestages of testing and analysis. Through this process, manufacturers can ensure that theirvehicles are safe and reliable, and build public trust in this emerging technology.

1.3 Certification

There are several safety standards and certifications that AVs must meet to ensure theirsafety and compliance with regulations. Here are some of the most important ones:
ISO 26262: Road Vehicles—Functional Safety, The standard outlines functional safety re-quirements for road vehicles, including AVs [28]. Over the years, it has been up-graded to meet the needs of self-driving vehicles [29]. It covers the entire lifecycleof the vehicle, from concept through to decommissioning. As part of ISO 26262, theAutomotive Safety Integrity Level (ASIL), as a key component, is determined at thebeginning of the development process.
ISO 21448: RoadVehicles-Safety of the Intended Functionality (SOTIF), This standard aimsto address faults that can occur in an AV because of issues occurring in the percep-tion, classification, and path planning subsystems, which are not covered by theISO 26262 standard addressing the actuation subsystem. Originally published inJanuary 2019, this document provides guidance for SAE J3016 Levels 0-2; the guid-ance is applicable, but likely insufficient for higher levels of automation [28]. SOTIFprovides guidance on systemic failure analysis in AVs. Contrary to ISO 26262, whichfocuses on malfunctions, SOTIF employs a complexity approach that accounts for
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a wide range of possible hazards. Moreover, SOTIF recommends developing newstrategies for V&V involving statistical analysis.
ISO/SAE 21434: Road Vehicles - Cyber security Engineering, This standard, as a successorof SAE J3061 [30], is being developedby a jointworking groupof ISO and SAE in 2020to establish a set of high-level principles for cyber security. The purpose of the firststandard was to (a) provide a structure for ensuring cyber secure design, (b) thusreduce the potential for a successful attack and reduce the likelihood of losses, and(c) to ensure that cyber-security threats are dealt with consistently across globalindustries by providing clear guidelines [31].
SAE J3016: This is a set of guidelines developed by the Society of Automotive Engineers(SAE) that defines the six levels of automation for vehicles, from Level 0 (no au-tomation) to Level 5 (full automation) [21].
FMVSS: The FederalMotor Vehicle Safety Standards (FMVSS) are a set of safety standardsestablished by the US National Highway Traffic Safety Administration (NHTSA) thatall motor vehicles must meet. These standards cover a range of safety features,including crashworthiness, occupant protection, and safety systems [32].
UL 4600: This is a set of safety standards developed by Underwriters Laboratories (UL)specifically for AVs. It covers a range of topics, including cyber security, validationand verification, and safety case development [33].
NHTSA’s Automated Vehicle Safety Checklist: This is a voluntary guidance document de-veloped by the NHTSA that outlines a series of safety considerations for AVs, includ-ing data recording and sharing, cyber security, and crashworthiness [34]. In Febru-ary 2020, NHTSA released AV 4.0—Ensuring American Leadership in AutomatedVehicle Technologies: Automated Vehicles 4.0. There have been a large number ofvoluntary safety self-assessments developed by AV developers that provide themwith the opportunity to demonstrate their technology while demonstrating publicsafety [35].

It’s important to note that while these standards and certifications are essential, theydo not guarantee complete safety for AVs. A standard procedure or consensus has notyet been reached regarding how AVs should be tested and evaluated, to the best of theauthor’s knowledge. Although various AV developers, government agencies, professionalorganizations, and academic institutions have analyzed the problem of AV testing exten-sively over the past few years, the theory and methods to support such testing and eval-uation still remain undeveloped [36]. AV technology is still evolving, and new safety chal-lengesmay emerge over time. It will be critical to continuemonitoring and updating safetystandards and certifications to ensure the ongoing safety of AVs.

1.4 AV Testing Methods

Tests and evaluations are critical to AVdevelopment and deployment. There have been es-tablished procedures for testing human-driven vehicles formany years, such as the FMVSS[32]. Currently, however, automobile safety standards do not yet fully consider the driver’sperformance when performing driving tasks. It is essential to evaluate the intelligence ofan AV [37], similar to the driver’s license test, to determine whether an AV can function
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safely and efficiently without human involvement. Figure 1.3 displays three primary plat-forms used in AV testing and evaluation. there are pros and cons to each of the threeplatforms described as follows:

Figure 1.3: Three main AV testing platforms: a) On-road testing b) Track testing c) Simulation

a) On-road Test: The on-road test is the most realistic, however, it is extremelyinefficient and risky. To demonstrate the safety of an AV at the level of a human-driven vehicle, an AV must drive hundreds of millions of miles [38]. However, testmiles are not, by themselves, a good measure of AV safety. This is because moston-road scenarios do not present significant challenges for AV evaluation. As anexample, if we want to determine how safe an AV is by observing its reaction to redlight-running vehicles at intersections with traffic lights, it may be necessary for theAV to pass thousands of intersections before it reaches sufficient accident events,which is extremely difficult. In addition, on-road testing is a labor-intensive andhazardous process.
b) Track Test: Track testing, on the other hand, has a number of advantages. Incomparison to the on-road test platform, it is a more controlled and therefore saferenvironment for the testing of AVs. As well as this, track testing has the potential togreatly improve the efficiency of the testing process, i.e., obtaining the evaluationresults with the same accuracy with fewer tests. It should be noted, however, thatboth methods mentioned above are not time and cost-efficient.
c) Simulation: Simulation testing is an alternative to the previous two, as it is costand time-effective, scalable, and repeatable [39]. However, despite the enormousdevelopment of the past few years, challenges remain, including the accuracy ofvehicle models and dynamics, advanced virtual sensors, and virtual environments.

Even though simulation tests are advantageous, on-road and track testing remains in-dispensable before deployment. It is possible, however, to reduce the effort for on-roadtesting through the proper design of simulation scenarios and the track testing facility. Itis therefore essential to generate a testing scenario library for each operational design do-main (ODD) in order to maximize the benefits of both simulation and track testing. ODDrefers to the operating conditions underwhich an ADAS is specifically designed to function[4]. Depending on the parameters of an ODD, there can be millions of different scenar-ios (e.g., different behaviors of Non-Player Characters (NPCs)). Typically, a testing libraryconsists of a subset of scenarios that can be utilized to assess certain pre-defined per-formance criteria (e.g., safety). Since, the library contains more safety-critical scenarios,testing in a virtual environment is usually more efficient and safe than testing in a physicalenvironment [40].
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1.5 Scenario-based Validation

In this section, an overviewof the current state-of-the-art techniques related to scenarios-based assessments of AV safety [41, 42, 43, 44, 45, 46] is presented. Scenario-based testinginvolves testing the DUT in selected target scenarios. It is characterized by the partitioningof the driving space into individual traffic situations and testing them through the use ofvirtual simulation. A scenario may include, for example, overtaking an NPC car, or a red-light runner at an intersection who crosses the DUT’s path straight ahead. Currently, theGerman ordinance of regulations for automated driving requests that applications for AVoperating licenses include a catalog of test scenarios [41]. This shows that scenario-basedtesting is relevant even for the certification of AVs. It is also important to note that, dueto the high level of competition in this field across car companies and tech giants, it is notpossible to perform a comprehensive review of the state of the art.

1.5.1 Coverage-based methods

Methods that use coverage-based approaches work towards covering asmuch of the driv-ing space as possible. Assuming all scenarios have the same probability of occurrence,they generate new scenario samples either within input parameter ranges or from param-eter distributions that include the probability of occurrence of scenarios during testing.
Parameters Ranges:

Parameter ranges are standard techniques that consider all possible combinations ofscenario parameters. In the use case inputs, all continuous parameters such as positionand velocity of traffic vehicles are transformed into discrete parameters following a stepsize through coarse discretization, as demonstrated in the studies [47] and [48]. As a re-sult of turning the input parameters of the continuous space into a finite set of scenarios,any scenario that does not fall within this discrete set will not be addressed. A small stepsize will result in a large number of scenarios being simulated, requiring greater compu-tational resources. Consequently, the approach is to minimize the number of simulationsby increasing the step size as much as possible. The technique is capable of determiningdifferent failed scenarios across a broad range of inputs in a short period of time. Never-theless, if the step size is too large, many critical scenarios could be overlooked and notdetected. One of the key disadvantages of thesemethods is the need to tailor the step sizefor each use case. This resulted in other methods being developed to address this issue.Many studies have utilized regression testing [49], Signal Temporal Logic (STL) [50], ran-domization techniques [51], Scenario Importance strategy [52], and Design of Experiments(DoE) [53] to generate scenarios from a set of parameter ranges.
Parameters Distributions:

This method’s focus is on sampling with parameter ranges that are used in the sim-ulation software to determine the driving situation. In [54, 55, 56], alternative methodsthat employ parameter distributions are described. Methods based on acceleratedMonteCarlo are mainly used in these approaches. A Monte Carlo technique can be used to gen-erate new samples by estimating the probability of an event occurring, which is the failureprobability in our example. However, it can take a long time to execute if implemented ina basic random manner, making it inefficient.
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1.5.2 Falsification-based methods

These falsification-based approaches are designed to identify only edge case scenarios,which are the examples that cause the AVs to fail. It is possible to perform simulation-based falsification in combination with an optimizer in a feedback loop or to considermethods that do not involve simulation, such as accident databases or selection methodsbased on criticality and complexity.
Non-Simulation Based:

• Accident-database: In general, they are used to test ADAS. To enhance AV safety,scenarios in which human driver behavior results in a safety violation are collected.The German In-Depth Accident Study (GIDAS), for example, assesses the require-ments of ADAS in urban environments [57, 58] or in limited highways [59] to reducethe potential for accidents. However, accident data cannot be extensively used tovalidate AVs at levels 3 and higher. By mitigating accidents that have already oc-curred, the system can rely on them to be updated, but it is important to use differ-ent methods for preventing accidents that are not yet occurring [60].
• Criticality-based: This method is based on an optimization that tries to increase thecriticality of safe scenarios. The works in [61], [62], and [63] followed this method-ology based on an evolutionary optimization to maximize scenario criticality. How-ever, they did not examine the likelihood of an AV failure in the critical scenariosproposed.
• Complexity-based: This approach entails considering the parameter ranges of adriving situation and detecting critical scenarios by increasing the complexity ofit. As an example, in the Analytic Hierarchy Process, weights are assigned to eachscenario parameter, which then defines a complexity index that is combined withcombinatorial testing. Studies [64, 65, 66] show a correlation between scenariocomplexity and the number of system failures.

Simulation Based:Compared to previous approaches, simulation-based approaches require access to asimulator in order to suggest new edge-case scenarios. In that case, they need an op-timizer to generate the next scenario, and then forward it to the simulator for running.The optimizer monitors each simulation result in order to create the next simulation plan.The optimizer detectsmore critical scenarios throughout iterations depending on the costfunction considered. A number of approaches have been employed, which differmostly intheir optimizers and methodologies, including Reinforcement Learning (RL) [67], stochas-tic optimization [68], Bayesian optimization [69], and Simulated Annealing (SA) [70].

1.6 Simulation-based Validation

Studies that have been conducted on simulation-based validation for AD systems [71, 72,73] have produced numerous safety-critical scenarios, either through the use of scenariomodeling languages [74, 75] or from publicly available databases [76].There is awell-knownprobabilistic programming language knownas SCENIC [74], whichallows for the generation of scenarios for autonomous driving systems. The Paracosmsoftware system [75] also allows users to describe complex driving situations and gener-ate scenarios using a variety of parameter configurations. In many studies, search-based
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algorithms are utilized in order to generate scenarios that challenge AVs. As an example,AV-fuzzer [77] uses a Genetic Algorithm (GA) based search to detect situations in which anautonomous driving systemmay violate safety requirements. Based on vehicle dynamics,the search perturbs the driving maneuvers of traffic users and enhances the safety re-quirements. In [76], authors proposed MOSAT (Multi-Objective, Search-based Approachto Testing), a Multi-Objective Search-based GA that exposes ADS safety violations by cre-ating a diverse and adversarial driving environment.
Using broadcast modeling and Signal Temporal Logic (STL), a method is proposed [78]for controlling the generation of traffic. This method is capable of generating realistic traf-fic trajectories that mimic real traffic and meet the STL formulas’ desired objectives. Nev-ertheless, it does not address V&V issues. However, the effectiveness of the generatedtraffic trajectories in identifying potential safety concerns is not yet clear. Attempts arealsomade to generate scenarios based on the topology ofmaps. This work in [79] extractsa wide variety of road networks fromOpenStreetMap in order to facilitate the virtual test-ing of motion planners for automated vehicles. Using the traffic simulator SUMO [80], itgenerates traffic scenarios for these road networks. Nonlinear optimization is used toincrease the criticality of the scenarios. In [81], junction lanes are classified based on colli-sion avoidancemaneuvers of the DUT, and GA is applied to create scenarios based onmaptopology. Using zone graphs for behavior analysis, SOCA [82] abstracts traffic situations atjunctions into individual zones, where each zone graph represents the intentions of an in-dividual vehicle. Additionally, many works describe traffic rules and the safety propertiesof autonomous driving systems using linear temporal logic [83, 84, 85], or STL [78].
AV validation has also been conducted using various testing techniques, such as combi-natorial testing [86, 75], metamorphic testing [87, 88], and fuzz testing [77]. Combinatorialtesting is one of these techniques that can guarantee the coverage of the scenarios basedon the parameters given [86, 75]. The inconsistency between the outputs can be detectedwith the assistance ofmetamorphic relationships on the inputs, such as generating sceneswith differing weather conditions [87] or providing noise [88], which removes the need touse a test oracle. By mutating existing scenarios, fuzz testing can identify potential bugsor safety violations [77].
A general approach to scenario-based AV testing for safety validation is presented in[43]. Using this approach, scenario-based testing is divided into two phases: scenario ex-traction and testing. Scenarios can be categorized into three abstraction levels: functional,logical, and concrete [89]. The functional scenario is merely a vague description, whereasthe logical scenario includes some parameters with ranges, and the concrete scenario hasa specific value for the parameters.

1.7 AV Virtual Simulators

Many simulators are available for testing AV, each with its own advantages and disadvan-tages. Most of them are proprietary tools, including the Waymo simulator platform [90]and Nvidia Drive sim [91], however, there are many open-source simulators available aswell. Several open-source simulators are presented in the following. In terms of fidelity,AV simulations range from low- to high-fidelity, depending on the level of detail they rep-resent. Low-fidelity simulators mimic the actual scenario, but do not include detailed fac-tors, and are therefore useful for unit-level testing. In general, they are used to assessthe criticality of scenarios and algorithms for AV motion planning. Unlike low-fidelity sim-ulations, high-fidelity simulations are based on realistic characterizations of a validation
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scenario and include a large number of features suitable for system-level testing. Fig-ure 1.4 shows two different fidelity simulator platforms. In this study, both methods areutilized in a comprehensive validation toolchain.

Figure 1.4: Fidelity of AV simulation: a) Low-Fidelity SUMO simulator [80] b) High-Fidelity AWSIM
simulator [92]

1.7.1 Low-Fidelity Simulators

The following is a list of some of the most popular low-fidelity simulators. Nevertheless,many low-fidelity platforms have been deployed in various works [93, 94, 95], and men-tioning them is beyond the scope of this study.
MATLAB/Simulink: MATLAB provides an Automated Driving Tool-box™ [96], a set of toolsthat facilitate the design, simulation, and testing of advanced driver assistance sys-tems (ADAS) and automated driving systems. Users are able to test core functionssuch as perception, path planning, and vehicle control through this application. Ad-ditionally, it offers the RoadRunner interactive editor [97], which allows the creationof 3D scenes for testing and simulating automated driving systems. You can createroad signs andmarkings specific to a particular region to customize roadway scenes.The exported scenes can be used in various automated driving simulators and gameengines.
SUMO: Simulation of Urban Mobility (SUMO), is an open-source, highly portable, micro-scopic, and continuous multi-modal traffic simulation package designed to handlelarge networks [80]. In addition to modeling road traffic, SUMO allows pedestriansand public transportation to be included in themodel. SUMO includes a wide rangeof support tools that allow users to perform tasks such as route finding, visualiza-tion, network import, and emission calculations. With SUMO, custom models canbe created and the simulation can be controlled remotely via various APIs [98].
CommonRoad: It provides a benchmark collection for motion planning algorithms onroads. This platform specifies in depth the motion planning problem in terms of ini-tial state, goal region, road network, static and dynamic obstacles, and DUT model[99]. The company provides a scenario database containing a collection of natural-istic datasets, handcrafted scenarios, as well as automatically generated scenarios.These databases are provided in XML format [100].
Autoware Planning Simulator: As part of the Autoware software stack [101], this simula-tor allows users to simulate their motion planning algorithm in a simplified virtualenvironment based on a kinematic-based approach [102]. By using fake perceptiondata, the simulator bypasses the sensing component of the software and focusesexclusively on the planning component [103].
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1.7.2 High-Fidelity Simulators

This type of simulation attempts to simulate the scenario as closely as possible to reality.However, this requires highly detailed 3D virtual environments and very accurate calcu-lations at the lower levels of the vehicle, such as the vehicle dynamics. Listed below aresome of the top-notch game-engine-based simulators.

Figure 1.5: Popular AV simulators with different fidelity levels. Low-Fidelity: a) CommonRoad b)MAT-
LAB c) SUMO d) Autoware, High-Fidelity: e) AWSIM f) CARLA g) SVL

SVL: This is a multi-agent AV simulator developed by LG Electronics America R&D Cen-ter [104]. They provide a highly detailed virtual platform as a solution for V&V ofAV algorithms. It is integrated into some of the autonomous software stacks suchas Autoware [101] and Baidu Apollo [105], which make it easy to test and validatethe entire system. It is an open-source simulator that is developed using the Unitygame engine [106]. Several bridges are available to facilitate message passing be-tween the AV stack and the simulator backbone in SVL. This simulator fully supportsRobot Operating System (ROS) bridges to transfer sensor data. The simulator plat-form provides several functions, including traffic, physical environment, sensor, andvehicle dynamics simulation. It also provides a Python API to control different envi-ronment entities and generate various scenarios. This platform supports cameras,LiDAR, IMU, GPS, and radar sensors. The project, however, has been sunset since2022, and it has not been updated since then.
AWSIM: A newfound simulator platform [92] based on the Unity game engine that of-fers simulation services for "Autoware.universe" software stack. It is compatiblewith the ROS2 platform. However, it is significantly improved in terms of the virtualsensors engine as compared to the SVL. AWSIM uses Robotec GPU Lidar, an RTX-accelerated, CUDA/C++ library developed by Robotec.AI [107] to improve simulationperformance. The simulator team is currently updating its technical documentationto include more tutorials and walkthroughs for easier customization.
CARLA: CARLA [108, 109] is an open-source well-known simulator that contributes tomany research projects related to autonomous driving. It has been developed usingthe Unreal Engine [110]. With its modular and flexible design, this tool serves as apowerful tool that facilitates the training and validation of AV systems. Due to itshigh-fidelity characteristics, it is suitable for a variety of ADAS applications, includ-ing training algorithms for perception and planning. CARLA offers an API that can
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be customized by users and allows them to control the simulation. The API is basedon Python and C++, and it is constantly evolving in parallel with the project. Amongall simulators, CARLA has the largest community that constantly contributes to itsdevelopment.
Figure 1.5 displays different scenes simulated in the aforementioned simulators. The ma-jority of these simulators were used in the research included in this thesis. In Table 1.1, thesimulator type used in the research papers is listed. Further, a safety and performanceV&V toolchain is established based on these simulators.

Table 1.1: Simulators used in the included research papers.

Simulator Paper I Paper II Paper III Paper IV Paper V
MATLAB ✓SUMO ✓Autoware ✓SVL ✓ ✓ ✓CARLA ✓

✓Indicates the usage of the corresponding simulator

1.8 TalTech Autonomous Shuttle

Among all types of AVs, last-mile autonomous shuttles such as Zoox, EasyMile [16, 17], andNavya [18] have operated in many places. These shuttles operate in limited areas, suchas airports or large residential areas. Tallinn University of Technology (TalTech) success-fully demonstrated and implemented an autonomous shuttle, TalTech iseAuto™ 1, on itscampus (see Fig. 1.6). This shuttle was built by the TalTech autonomous system researchgroup in conjunctionwith AuVeTech company and ABB in Estonia. The objective of the Tal-Tech iseAuto project was to develop an open-source AV shuttle and establish a smart citytestbed on the university campus so that different types of urbanmobility and autonomy-related research could be conducted there [111, 112, 113]. Since 2018, there have been anumber of studies conducted on AVs with the help of this testbed, including [114], [115],and the current study. Additionally, one of the contributions of this study is the use of thisoperational autonomous shuttle as a testbed to assess the validity of the results obtained.
1.8.1 TalTech iseAuto Autonomous Software

TalTech iseAuto is controlled by an open-source software stack known as "Autoware.ai".This autonomous solution is ROS-based software that enables users to control mobilerobots including self-driving vehicles. An overview of this platform and its componentshas already been provided in [101, 114]. The following is a brief description of the Au-toware.ai system architecture. It is worth mentioning that Autoware is designed for theurban environment, but it can also be used on highways, although additional modules willbe required. Figure 1.7 illustrates the core modules of Autoware.ai’s architecture.
Perception: AVs must maintain a high level of safety. Therefore, the perception modulesmust be capable of calculating the position of the AV within a 3D map as well asidentifying objects in the environment and traffic signals. LiDAR scanners and cam-eras are primarily used by Autoware in order to identify road environments. LiDAR

1TalTech iseAuto is a trademark registered by Tallinn University of Technology.
24



Figure 1.6: Autonomous shuttle, TalTech iseAuto

Figure 1.7: Overview of Autoware.ai architecture

scanners measure the distance to objects by illuminating pulsed lasers at a targetand measuring the time at which the laser pulses are reflected. A digital 3D repre-sentation of scanned objects can be generated from the point cloud data producedby LiDAR scanners. The raw LiDAR point cloud data obtained from the scannersis filtered and pre-processed by Autoware in order to achieve real-time process-ing. Cameras are commonly used to recognize traffic signals and extract additionalfeatures of scanned objects. Localization, detection, and mapping can be refinedusing data from other sensors, including radars, GNSS (Global Navigation SatelliteSystem), and IMUs (Inertial Measurement Units).
Decision: Once obstacles and traffic signals have been detected, trajectories of othermoving objects can be calculated. These estimated results are used by the missionplanning and decision-making modules to determine the direction the AV shouldmove. Using an intelligent state machine, Autoware understands, forecasts, andresponds to the road’s status. Moreover, Autoware also allowsAVusers to superviseautomation, overwriting the state determined by this module.
Planning: Trajectories are generated based on the results of the decision-makingmodule.
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Path planning can be classified into mission andmotion planning. Using the currentlocation and the given destination, Autoware determines a global trajectory. Alter-natively, local trajectories are generated by the motion planning module along withglobal trajectories.
Control: AVs must follow local trajectories once determined. A control module, such aspure-pursuit or MPC, generates the actuation commands and adjusts the velocityfor the AV.
1.8.2 TalTech iseAuto Planner Algorithm

One of the most commonly used path-planner modules in AV software is OpenPlannerwhich is integrated inside Autoware.ai. This module has become significantly more ad-vanced in terms of supporting various high-definition map formats, predicting other ac-tors’ trajectories, and using a kinematics-based trajectory generator [102, 116].OpenPlanner integrates global and local planners to generate local waypoints basedon a global route and manage discrete behaviors, such as avoiding dynamic obstacles andfollowing traffic signals. Local planner modules generate tracks parallel to the main globalplanner path. The tracks are referred to as rollouts (see figure 1.8). Local planner modulesgenerate tracks parallel to the main global planner path. The tracks are referred to asrollouts. A trajectory evaluator considers all possible rollouts if an obstacle blocks thepath. After that, the behavior selector will lead the AV to the new safe rollout. Figure 1.8illustrates how open-planner selected rollout number 6 to pass the NPC. Furthermore, itdetects curb lines and avoids rollouts that intersect them.

Figure 1.8: OpenPlanner, local and global path planning

1.9 Motivation and research gaps

The development and deployment of AVs have the potential to revolutionize transporta-tion systems and make them safer, more efficient, and more sustainable. The reliabil-ity, speed, and ability of computers today to eliminate human driver vulnerabilities andprevent risks are undeniable. The assumption that their decisions will be flawless, how-ever, is naive [8]. Researchers are increasingly warning that when transitioning to AV,human-driven vehicles and AVs will have to coexist for considerable periods of time [117].It remains a critical challenge, however, to ensure the safety and performance of AVs.Testing in the real world alone is limited in its ability to comprehensively assess the vehi-cles’ performance under complex and unpredictable circumstances. It is expensive, time-consuming, and potentially risky. The use of simulation testing has emerged as a crucialstrategy for overcoming these limitations, providing a controlled and repeatable virtualenvironment in which AVs can be evaluated.The motivation behind this study lies in the need for an effective and efficient V&Vprocess specifically tailored for AVs. These vehicles operate in diverse urban environ-
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ments, interacting with pedestrians, cyclists, and other vehicles. Validating their safetyand performance becomes paramount to ensuring the well-being of passengers, otherroad users, and infrastructure. By leveraging simulation testing, the proposed frameworkaims to provide a comprehensive toolkit that enables users to assess the software in theloop of simulations, addressing critical aspects such as perception, decision-making, con-trol, and planning algorithms. Listed below are some of themotivations for the simulationtesting that supported this study:
Safety: AV safety is a primary concern, and simulation-based verification and validationassist in ensuring that AVs are capable of working safely in a variety of situations.
Cost-effectiveness: Conducting physical tests on AVs is expensive and time-consuming.Simulation-based verification and validation provide a cost-effective and efficientway to test and validate the performance of AVs.
Scalability: Simulation-based verification and validation enable the testing of AVs in awide range of scenarios and conditions, including extreme conditions that may bedifficult to replicate in real-world testing.
Flexibility: Simulation-based verification and validation also provide greater flexibility intesting different software and hardware configurations and enable testing of vari-ous scenarios before the actual deployment of the AV.

Furthermore, the motivation stems from the desire to advance AV development anddeployment. It is crucial to build public trust in this transformative technology in orderto ensure its widespread acceptance and integration into existing transportation systems.Through the framework, we aim to contribute to this trust-building process by provid-ing a reliable and robust validation approach. The framework’s scalability, scenario re-producibility, and safety assurance capabilities ensure a thorough evaluation of the AV’sbehavior, thereby enhancing its reliability, predictability, and performance.Overall, the study’s motivation lies in bridging the gap between real-world testing andcomprehensive AV validation. By harnessing the power of simulation testing, this researchaims to provide a valuable tool that not only accelerates the validation process but alsoenhances AV safety and performance. The framework’s benefits, such as cost and timeefficiency, scenario reproducibility, and iterative development support, align with the in-dustry’s motivation to bring AVs to the forefront of transportation innovation while main-taining the highest standards of safety and reliability.As with any cutting-edge technology, simulation V&V methods are still in develop-ment and require high levels of industry and academic contribution. According to thestate-of-the-art methodologies reviewed in this study, there are still a number of researchgaps in this area that need to be addressed to ensure the safety of AVs. These researchgaps include the need for improved data collection, testing, and evaluation of V&V meth-ods to ensure accuracy and reliability. Additionally, V&Vmethods need better integrationinto existing development processes. Finally, better tools and techniques are needed tostreamline the V&V process. Overall, this study is intended to contribute to the followingresearch gaps:
Uncertainty modeling: AVs operate in complex and uncertain environments, and there isstill a gap in how tomodel and simulate uncertainty in the verification and validationprocess.
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Realism: The accuracy and realism of the simulation models used in the verification andvalidation of AVs are critical to ensuring the validity of the results. There is a lackof attention given to improving simulation fidelity, including the incorporation ofreal-world data, which increases the realism of simulation models.
Metrics and standards: There is a research gap for standardized metrics and evaluationcriteria for simulation-based verification and validation of AVs. This helps ensureconsistency in testing and evaluation across different testing environments.
Integration: AVs are complex systems that rely on the integration of multiple subsystemsand components. There is a gap in research on how to effectively simulate and testthe integration of these subsystems and components in a virtual environment.

1.10 Objectives and research questions

So far the importance of the V&V method of AVs has been identified. Therefore, thisresearch aims to develop a comprehensive structure for evaluating the vehicle’s safety,performance, and behavior in various conditions by focusing on the following ResearchObjectives (ROs). It examines existing quality assurance approaches, identifies challenges,and proposes solutions. This study addresses the following primary research objectives.
Research Objectives :

• RO1: To provide a scenario-based assessment toolkit based on the simulation thatenables the evaluation of the AV’s performance in various scenarios representingreal-world driving conditions, such as heavy traffic, adverse weather, and unex-pected obstacles.
• RO2: To be able to test the AV’s decision-making and perceptions algorithms andidentify potential failure modes and safety hazards, at a system and unit level, invarious scenarios, and to validate that these algorithms produce safe and efficientbehavior in different driving situations.
• RO3: To be able to modify the fidelity of the proposed toolkit based on the evalua-tion requirements. Moreover, to compare the results of different fidelity levels.
• RO4: To evaluate the system against advanced cyber threats, specifically those tar-geting sensors and controllers.
• RO5: To compare the simulation results with real-world testing data and field expe-rience, and to validate the accuracy and relevance of the simulation approach forverifying and validating the AV’s behavior.
Overall, the objective of this study can be summarized as providing a systematic toolkitthat allows a comprehensive evaluation of the vehicle’s safety, performance, and behaviorin different scenarios, and to validate that the vehicle meets the required standards andregulations for autonomous driving. This research addresses the following questions inparticular:

Research Questions :

• RQ1: What are the main challenges in performing software V&V of safe AVs?
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• RQ2: What are the open issues and opportunities in software V&V of safe AVs?
• RQ3: What are the key factors that affect the accuracy and reliability of simulation-based V&V of AVs, and how can these factors be addressed to improve the simula-tion results?
• RQ4: How can simulation be integratedwith other verification and validationmeth-ods, such as physical testing and field trials, to provide a more comprehensive eval-uation of AVs?
• RQ5: How can the proposed approach be used to verify and validate the resilienceand cyber security of AVs against potential cyber threats and attacks?

Scientific ContributionsTable 1.2 maps how the included papers contribute to the research questions and doc-ument the scientific contributions.
Table 1.2: Relationship between the research questions and the included papers.

RQ Paper I Paper II Paper III Paper IV Paper V
RQ1 ✓ ✓ ✓RQ2 ✓ ✓ ✓RQ3 ✓ ✓ ✓ ✓RQ4 ✓ ✓RQ5 ✓

✓Indicates the relevance of the corresponding research question.
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2 The Validation Toolkit
In this section, a brief but comprehensive description of the evaluation methodology pro-posed in this study is presented. This methodology as a toolkit can be used to evaluatethe safety, security, and performance of a DUT (refer to RO1). In this toolkit, three mainsteps are included: (A) scenario generation, (B) Software in Loop (SiL) or Hardware in Loop(HiL) simulation, and (C) results analysis. Figure 2.1 illustrates themain steps of the toolkit,indicating different platforms that are capable of being used at each stage. The toolkit ishighly flexible and allows users to conduct low- and high-fidelity simulations with SiL orHiL configurations. A detailed discussion of these steps will follow.

Figure 2.1: Three main steps of the evaluation toolkit

2.1 Scenario Generation

A scenario is the main plan for testing, whether it is a road test or a simulation. As dis-cussed earlier, designing an appropriate scenario will have a significant impact on the effi-ciency and validity of testing. Having an adequate scenario planwill facilitate the detectionof failuresmore quickly. Our proposed toolkit begins with the generation of scenarios (seeFig. 2.1 [A]). There are three levels of abstraction used to generate scenarios: Functional,
Logical, and Concrete. In this study, scenarios in which a cyber attack has happened (referto RO4) are also considered. In Paper IV [118] included in this thesis, several cyber attackswere simulated with the help of the proposed regime.A functional scenario is described using natural language at the highest level of ab-straction. After formalizing a functional scenario, a logical scenario L can be expressedby a state space and its interrelations. The set of m logical scenarios is denoted by L =
L1, ...,Lm, ∀m ∈ N. Lm includes a list of essential parameters AL = (α1, ...,αn) and theirvalue rangesRL =(V1, ...,Vn)where∀n∈N :Vi ⊆R. The state space ofL canbedescribedby VL =V1 × ...×Vn ⊆ Rn. A correlation between parameters and numerical constraintsmay also be included as an option. Next, a concrete scenario C requires a single value foreach parameter. Therefore, for a logical scenario Lm, m ∈ N concrete scenarios Ci, i ∈ Ncan be derived by instantiating all parameters αi ∈AL with some vi ∈Vi, for instance se-lecting a v ∈ VL. A set of concrete scenarios is denoted by C. Accordingly, Cm is the set ofall concrete scenarios derived from the logical scenario Lm.Several scenario description languages (SDLs) can be used based on the testing objec-tives to generate and translate human-readable plans into machine-readable scenarios.Users can generate meaningful simulation scenarios using platforms such as Scenic, M-SDL (introduced by Foretify™ [119]), OpenSCENARIO (by ASAM [120]), and CARLA leader-board (ScenarioRunner) [121]. In this research, CARLA ScenarioRunner has been used toconfigure our concrete scenarios for simulations. In the final stage, generated scenarios
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are exported as a CSV or JSON file format for further processing.
2.2 SiL/HiL Simulations

Once the concrete scenarios have been prepared, it is time to conduct the test. This stepis the foundation of the proposed evaluation method (see Fig. 2.1 [B]). Depending on thetest objectives, users will choose whether to conduct a SiL simulation or a HiL simulation.Furthermore, the level of testing, whether it is at the unit or system level, serves as ameasure of the simulator’s fidelity (refer to RO3). In the current study, SUMO, AutowareSimulator, SVL, and CARLA have been utilized as simulators to demonstrate the efficiencyof the approach. An in-depth discussion of these simulators can be found in section 1. Thefollowing sections examine simulations in low- and high-fidelity configurations.
2.2.1 Low-Fidelity Simulations

In this type of simulation, the focus is on a specific unit of the system (e.g. motion planneralgorithms) and sacrifice unnecessary details to achieve faster evaluation speeds and, asa result, analyze a larger number of scenarios. It should be noted that in some cases,this may affect the accuracy of the results. This type of simulation, however, has beenshown to be useful for identifying critical scenarios and optimizing planning algorithms,according to the literature.A low-fidelity MATLAB test setup was used in Paper I [122] to look for critical scenar-ios. MATLAB Automated Driving Toolbox was used to simulate the TalTech campus trackdesignated for TalTech iseAuto (see figure 2.2). This test setup is integrated into a closed-loop simulation where the AV is controlled by the TalTech iseAuto autonomous controller.Figure 2.3 illustrates the workflow for identifying critical scenarios and improving the per-formance of the motion planner by means of a closed-loop simulation (refer to RO2).

Figure 2.2: MATLAB Automated Driving Toolbox, simulated TalTech campus track

In [123], the Autoware low-fidelity simulator, a ROS-based testing platform, is used totest a cyberattack on the planning algorithm of the Autoware.ai autonomous software.Figure 2.4 illustrates the simulator setup used in the tests. A kinematic simulator engineand a fake perception node are the main components of the Autoware simulator (referto RO2). The fake perception provides data for localization and detection of other actorsadded to the scenario setup during the simulation. Autoware’s main perception nodesare bypassed during simulation.
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Figure 2.3: Workflow of the MATLAB closed-loop simulation to identify corner case scenarios.

Figure 2.4: Autoware planning simulator configuration

2.2.2 High-Fidelity Simulations

The term "end-to-end" or "high fidelity" refers to the simulation of scenarios in a realis-tic virtual environment. Nowadays, with the emergence of giant computer game engineslike Unity and Unreal, users have greater access to realistic simulation. Common userscan now develop a virtual copy of any object or environment, known as a digital twin,and integrate them into their simulated environment. Simulators of this type are alreadydiscussed in detail in section 1. SVL and CARLA were used in this study to validate an au-tonomous shuttle’s safety, security, and performance. Figure 2.5 displays the coremoduleof the high-fidelity simulation conducted by the CARLA simulator. This figure representsa SiL/HiL simulation setup. There has already been an implementation of this simulationsetup in a study investigating sensor-based cyberattacks on a public autonomous shuttle(see Paper IV included in this document).CARLA is based on the Unreal engine communicating through a ROS bridge with au-tonomous software, Autoware.ai, which is based on the ROS platform. With this setup,Autoware.ai receives the data from the virtual sensors, and all of its core modules, in-cluding perception, decision, planning, and control, are engaged in the testing process.
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Figure 2.5: CARLA high-fidelity simulation architecture

It then sends the actuation command back to the simulator, closing the simulation loop.CARLA has a built-in module called ScenarioRunner that generates custom scenario plans.Through ScenarioRunner, users candefineobjects, roadusers, traffic systems, andweatherconditions within a virtual environment. Additionally, it is capable of importing scenariosfrom other platforms, such as SUMO, OpenSCENARIO, etc. For a more realistic result,this platform allows users to customize their vehicle and environment models. Followingis a brief description of the steps involved in building a digital twin of a vehicle and itsenvironment:
Vehicle Model: Initially, a mesh file must be created for the vehicle in order to build itsdigital twin. Next, the tires, steering axis, and a simplified collision body should bedefined in accordance with the simulator instructions. This can be accomplishedusing 3D modeling software such as Blender [124]. Unreal needs an additional sim-plified mesh called "ray cast sensor mesh" that sets up the vehicle’s shape that willbe detected by the ray cast sensors (RADAR, LiDAR, and Semantic LiDAR). Afterward,these FBX files should be imported into the Unreal CARLA project in order to config-ure all textures, materials, and vehicle dynamics. Vehicle sensor configurations canbe stored in a JSON file and loaded by the agent-wrapper module. Figure 2.6 dis-plays the 3D graphical model of the TalTech iseAuto inside the CARLA environment.

Figure 2.6: 3D model of TalTech iseAuto integrated into CARLA virtual environment.

Environment Model: Creating new environments allows users to test more diverse sce-
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narios. Test locations such as complex urban environments can challenge AVs tohandle difficult situations. In particular, the corresponding virtual environment canbe used to test an AV before implementation in a real-world environment. Thereare two main ways to create a realistic graphical environment. The first method in-volves processing aerial imagery and converting it to terrain. The steps are shownin figure 2.7. A description of these steps can be found in Paper II [125]. The secondmethod is using a high-definitionmap (e.g. "xodr" OpenDrive) of a desired area andconverting it to a graphical virtual environment. MATLAB RoadRunner, for example,is one of the toolboxes that uses the OpenDRIVE format to convert a map into agraphical virtual environment.

Figure 2.7: Steps to build a virtual environment from aerial imagery

2.3 Results Analysis

Analyzing the simulation report is the last chain of the proposed toolkit. To maximize theeffectiveness of simulation analysis, it is also essential to define appropriate metrics forevaluating the analysis results. Particularly with large numbers of runs, it is almost im-possible to check the results manually. For this reason, metrics are expected to detectcriticalities and violations during simulation. Several criticality metrics can be used basedon the type and priority of the analysis, including time, distance, intensity, and velocitymetrics described in detail in [126, 127]. A variety of metrics based on acceleration, veloc-ity, distance, and intensity have been used in this study. Table 2.1 lists some of the metricsused in the research. The listed metrics are deployed in the next section for differentstudies.
Table 2.1: Safety and Performance Evaluation Criteria

Safety Criteria Label Description Metric
Collision Col AV collides with NPC Pass/Fail
Distance-to-Collision DTC Violation of the safe distance between AV and NPC AV within 0.5m of other vehicle
Deceleration Acc Sharp deceleration Greater than 6 (m/s2)
Break on Driving Lane BrD AV initiates emergency break on driving lane Pass/Fail
Break on Passing Lane BrP AV initiates emergency break on passing lane Pass/Fail
Performance Criteria Label Description Metric
Succeed Suce AV Successful complete the mission Pass/Fail
Not Finished NotF Failure to finish the mission Pass/Fail
Localization NDT AV lost its localization NDT score greater than 100
Long Pass LoPa DUT passes the NPC but does not return the lane Distance away > 25 m

It is necessary to record all the necessary data in order to observe any criteria viola-
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tions. This data is monitored during the simulation (online) to identify metrics violationsand after the simulation (offline) to investigate the cause of the violation. The onlineobserver is a Python script whereas the offline analyzer is MATLAB software. It should benoted that, in case of any accident in simulation, the analyzer produces an accident sketchand analyzes the crash intensity to categorize crashes based on their criticality. Log filesare recorded in CSV format for ease of use. A large set of scenarios, however, require theuse of an SQL database, particularly if the data will be shared with other researchers.
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3 Case Studies and Results

In this section, the results obtained from the comprehensive scenario-based SiL/HiL sim-ulation toolkit for the safety, security, and performance evaluation of AVs are presented.The SiL/HiL simulation technique enables us to assess the effectiveness and reliability ofthe software under realistic scenarios while minimizing risks and costs associated withphysical testing. By executing a series of carefully designed scenarios, the system’s behav-ior and overall performance are evaluated, shedding light on its capabilities and potentialareas for improvement. The aim of this section is to provide an overview of the imple-mentation of our toolkit and highlight the significance of the results obtained, setting thestage for a detailed analysis of the findings to follow. The findings of this study are derivedbased on simulations and real-world experiments. In the following subsections, simula-tion results are categorized according to the level of simulator fidelity.

3.1 Study Used-Case Scenario

One of the most challenging maneuvers for AVs is passing and overtaking. To improve thesafety and performance of the TalTech iseAuto, this issue was used as the main scenarioplan to showcase the implementation of the evaluation toolkit. Here, a brief review of theovertaking scenario primarily used in the research is presented. Figure 3.1 illustrates theovertaking process, including the cut-out, passing of the NPC, and cut-in maneuvers.

Figure 3.1: Overtaking scenario sketch and its parameters

For simplicity, two parameters were chosen to describe the scenario. Dx and SNPCrepresent the initial longitudinal relative distance between DUT and NPC and the NPCconstant speed respectively. A brief definition of the parameters and actors’ task is listedin Table 3.1. Each study will identify parameter ranges at a later stage.
Table 3.1: Target scenarios definition

Actor Speed (m/s) Dx (m) Goal
DUT [0 : 6] 0 overtake the NPC safelyNPC [0 : Smax] [Dmin : Dmax] drive straight

3.2 Low-Fidelity Testing Setup

It has already been discussed that this type of simulation is useful for finding critical sce-narios and for unit testing (e.g. planning algorithms). In the following, the findings ofsome of the studies conducted with a low-fidelity simulator will be presented. This sec-tion covers RO2,3,4.
36



3.2.1 Optimization of Low-level Planning Parameters

As part of another study [115], authors used theMATLABAutomatedDriving Toolbox to op-timize algorithms for smothermission andmotion planning. After 500 simulation runs, us-ing a Genetic Algorithm optimization solution, the optimal parameters for sigmoid-basedtrajectory generation and accurate path tracking were determined. Figure 3.2 illustratestwo different passing simulations (a and b) performed by the AV employing the defaultand optimal parameters values respectively. In each run, the figure displays the desiredpath defined by the mission planner besides the path that the DUT traveled. Based onthe lowest steering effort and least trajectory following error, optimization reached theperformance presented in the inset of Figure 3.2.(b).

Figure 3.2: Optimization carried out bymeans ofMATLAB low-fidelity simulation on s trajectory gen-
erator and following algorithm (a) simulation with default values and (b) simulation with optimized
values for algorithm parameters

Additionally, two different experiments were conducted in that study to demonstratethe efficiency of the algorithms after optimization (see figure 3.3). First, with the defaultnon-optimized Astar planner, and then with the proposed optimized Sigmoid planner. Ac-cording to the figure, steering output command efficiency and smoothness have signifi-cantly improved.

Figure 3.3: Steering angle recorded from two experiments with differentmission planners in an over-
taking maneuver; Non-optimized Astar and Optimized Sigmoid algorithms

3.2.2 Security Evaluation

Low-fidelity platforms are useful for simulating cyberattacks on the low level of the au-tonomous system (e.g. GPS and IMU sensors). Different attack models including positionoffset and message time-delay were observed during an overtaking mission in [123]. Anovertaking maneuver is illustrated in Figure 3.4 through three sequences captured dur-ing simulation from Rviz. Findings suggested the planner’s vulnerabilities against cyberat-tacks. According to Figure 3.5, different types of attacks have caused AV to violate safetycriteria (b,c,d), whereas in the non-cyber case, it succeeded in overtaking (a).Figure 3.6 shows the study’s metric evaluation results derived from simulation testson a simple overtaking mission. Simulations are performed to observe metrics violations
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Figure 3.4: Three sequences of an overtakingmission simulated in the low-fidelity simulator, a) start-
ing the mission b) passing the NPC c) AV cuts in

in pure safety, attack model 1 (position offset), and attack model 2 (message time-delay)cases. In pure safety cases, 300 repetitions are conducted to reach ameaningful statisticalpopulation. According to the pure-safety experiments bar, almost half of the experimentswere completely successful in completing the target mission. However, other safety vio-lations are observed as follows: 15% collisions, 10% DTC violations, about 20% emergencybrake in the passing lane, and 5% in the driving lane. Each attack case is repeated 100times with different sensitivity deviations for the target attack parameter. A conclusioncan be drawn from the attack case experiment bars regarding how those attacks affectedthe safety of the target shuttle. There were cases in which the attack resulted in morebrake on passing lane violations significantly (1a, 1b, 1c) and other cases in which it re-sulted in more collisions (1d, 1e, 1f). As well, time-delay attacks (2a,2b,2c) demonstratethat they are less effective than position offset attacks in reducing the success rate in thetests. The 2c attack configuration, however, leads to a doubled collision rate. Overall, thisfigure shows how different cyber attack models can alter AV safety evaluation results.

Figure 3.5: 2D representation of an overtaking simulation under different situations. a) a successful
overtaking safety simulation, b-d) under a cyber attack that led to a safety violation (collision). The
vertical lines identify the start and stop point of the attack
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Figure 3.6: All simulation results with different cyberattack models based on the proposed safety
criteria

3.3 High-Fidelity Testing Setup

A high level of detail in simulation allows users to achieve more realistic and reliable re-sults. There is, however, a cost associated with setting up the virtual environment and theutilization of computing resources. Described in this section are some of the implementa-tions of the high-fidelity proposed toolkit for the evaluation of autonomous shuttle safetyand security. This section covers RO2,3,4,5.
3.3.1 Scenario Definition

As discussed in Section 2, creating a scenario plan is the first step in the proposed eval-uation toolkit. A third-party platform and software can be used to accomplish this. Aspart of this study [128], authors contributed to the development of an open-source val-idation and verification framework, PolyVerif, by implementing it on the TalTech iseAutotestbed. Scenic was used to generate probabilistic scenarios for the TalTech test track andthe SVL simulator to create high-fidelity simulations based on those plans (see figure 3.7).A domain-specific language is used in Scenic to describe scenarios that are distributedover scenes and the behaviors of actors over time.
3.3.2 Safety and Performance Improvements

Perception is one of the most important components of an autonomous system. It in-terprets the working environment for AVs. Testing the perception module which deploysadvanced sensors including RGB cameras, Radars, and LiDARs requires a high-fidelity sim-ulator. In Paper III [129], a high-fidelity simulation platform for testing and developing AVsis proposed. For this study, the AVmodel was built within the simulator platform and con-figuredwith all LiDAR sensors as shown in Figure 3.8. There is a Velodyne VLP-32mountedat the top of the shuttle’s front, and a Velodyne VLP-16mounted at the top of the shuttle’sback. They are primarily responsible for scanning road objects and determining the loca-tion of the vehicle. Then, both the left and right sides of the vehicle are equipped withBpearl sensors from Robosense which cover the sides of the vehicle for maneuvers.For perception, this LiDAR configuration creates an adequate point-cloud coverage
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Figure 3.7: Different scenario plans generated by scenic over the TalTech track map and simulated
in SVL

Figure 3.8: Digital twin of the TalTech iseAuto and its LiDAR sensor configuration

around the shuttle as shown in Figure 3.9. The simulator enabled us to observe the qual-ity of LiDAR’s perception and how other objects are seen in the autonomous software.Moreover, it is examined how point-cloud filtration affects the AV’s ability to detect ob-jects. Finally, improvementswere examinedby anovertakingmaneuverwith an additionalvehicle (NPC2) trying to overtake AV and NPC1. First, it was expected to detect both NPCswith its LiDAR sensors and secondly, to overtake NPC1 considering the approaching vehi-cle (NPC2). Figure 3.10 shows simulation frames that validate the detection of both NPCsand safe maneuvers.
3.3.3 Security Evaluation

The advent of virtual sensor modules in high-fidelity simulator engines allows the simu-lation of advanced sensor cyberattacks. One of the most common cyberattacks on LiDARsensors is point spoofing. In this research, Paper IV [118], the aimwas to develop amethodof evaluating system-to-system interactions in developmental AD algorithms by combin-ing safety and cyber security testing. As part of the study, cyber-attack simulations wereconducted based on the proposed combinedmethodology and examined how they affectAD algorithms. The LiDAR spoofing attack was chosen since it is a realistic attack that cantake place in the TalTech shuttle’s driving environment. As the shuttle’s main perceptionsystem is based on LiDAR sensors, spoofing attacks can affect driving behavior and resultin collisions, emergency braking, and lane change violations.A spoofing attack scenario was set up as shown in Figure 3.11. As soon as the AV begins
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Figure 3.9: Virtual sensors provided by the high-fidelity simulator perceive the virtual environment

to overtake anNPC, an attacker on the other side of the road starts to expose theAV’s frontLiDAR sensor with an external laser beam. As a result of this laser light, spoof points arecreated in the direction of exposure. An attack commences from a position relative tothe NPC and continues for a specific period of time. During the study, parameters such asdensity, frequency, duration, and position of the AV were considered to create differentattack experiments.Simulations were conducted using the CARLA high-fidelity simulator. Figure 3.12 illus-trates how the combined testing methodology was set up for simulating the spoof pointsattack. In addition to the main virtual sensor data stream, attack false points (FPs) areentered into the main perception algorithms. Mission and motion planning nodes aredirectly influenced by perception outputs as shown in the figure.Figure 3.13 graphs simulation outcomes for cyber and non-cyber scenarios. With theproposed combined approach, at first 15 non-cyber overtaking scenarios were simulatedto examine the safety assurance condition of the current operating AD algorithm. For asufficient statistical population, all simulation scenarios were repeated 50 times. After re-viewing the safety violation graph (see Figure 3.13.a), two different spoofing attacks wereconducted on scenario 2 (the least safe one scenario based on the result from Figure 3.13(a)) and scenario 10 (the safest scenario). Figure 3.13.b and Figure 3.13.c represent cybersimulations for scenario 2 and scenario 10 respectively.In each cyber test scenario, the influence of four proposed attack parameters includingthe FPs density, the FPs frequency, the attack duration, and the attack location was quan-tified using the Taguchi design of experiment (DOE) [130]. A total of nine experimentswere designed with three different levels for each of the four attack factors. As a result,the Taguchi L9 matrix was suggested.A significant drop can be seen in the safety assurance level for scenario 10 cases thatreveal a noticeable impact of the cyber attack. In particular, the LiDAR spoofing attackincreases the number of collisions and emergency brakings in the passing lane, as well asthe number of safety violations. This can also be seen in cyber scenario 2. It is observedthat the Euclidean clustering and kf_countour nodes detected the spoofed LiDAR injec-tion as an object in the safety violation cases. Due to this false positive detection, thelocal planning is affected, thereby forcing the AV to make the cut-in during the overtakingmaneuver. In particular, as the adversarial LiDAR device is placed to the left of the AV, the
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Figure 3.10: 5 sequence frames of simulation of an overtaking maneuver while another car (NPC2)
approaches from behind inside the high-fidelity simulator

Figure 3.11: Attack scheme of the LiDAR sensor spoofing

trajectory evaluator blocks the roll-outs on the left side. As a result, the AV is forced to veerright and attempt the cut-in procedure, which results in safety violations, predominantlycollisions or DTC.

3.4 Combined Low and High-Fidelity Testing

Different fidelity-level simulations offer various benefits, including fast evaluation and de-tailed analysis. In the validation process, they can, however, be combined to generatemore accurate and quicker results. The following two studies were conducted employ-ing two different levels of fidelity simulations to investigate the validation process perfor-mance.
3.4.1 Two-Layer Validation Regime

In the study presented in Paper V, scenarios of a passingmaneuver for the TalTech iseAutoshuttlewere simulated in a two-layer approach. A simplified representation of this processcan be found in Figure 3.14. Fortify ™ [119] and MSDL were utilized to describe distributedscenarios in the defined scenario domain. The resulting scenarios were then simulatedby SUMO, a 2D low-fidelity microscopic simulator. In this step, the DUT was controlledbased on the criteria defined in the scenario setup without using autonomous software.
42



Figure 3.12: Combined safety and security testing methodology architecture

The simulated scenarios were then analyzed, and parts of them were selected for high-fidelity simulations. SVL was used to perform high-fidelity simulations. As opposed to theprevious step, these tests involved autonomous software (Autoware.ai) controlling theDUT within the simulation.Figure 3.15 illustrates each of the aforementioned steps in detail. The test scenario de-scription is transformed from functional to logical and then to amore concrete abstractionlevel. Each actor in the scenario is described using the minimum number of parametersnecessary. These sub-steps are shown in the (see Figure 3.15, step-A, scenario descriptionlanguage box).According to the target scenario, the DUT intended to pass the immobile NPC. Thelogical scenario is described by defining two relative parameter ranges, the longitudinaldistance between the DUT and NPC and the NPC lateral shift, Dx and Dy respectively asdepicted in Figure 3.16. Table 3.2 reports the scenario’s required parameter ranges at thelogical level.The speed range for theDUT is 0 to 6m/swhich is controlled by autonomous software.There is an NPC parked along the road, immobile, and initially located between 5 and 50
m from the DUT. The scenario generator also defines a small lateral shift, Dy. In order toproceed down the road, the DUT must maneuver safely around the NPC that is parked.

Table 3.2: Target scenarios definition

Actor Speed (m/s) [Dx,Dy] (m) Goal
DUT [0 - 6] [0, 0] To overtake the NPC safelyNPC 0 [5:50, -0.4:0.4] To stay immobile

120 concrete scenarios were generated and simulated by the low-fidelity platform (seeFigure 3.15, step-B, SUMO simulations) to begin a case study using the proposed platform.As illustrated in Figure 3.17, each point represents theNPC location. The results are dividedinto "Failure" and "Success" groups based on crash criteria. According to the figure, thefailure probability is examined in three different regions.Table 3.3 summarizes the number of scenarios in the subdivided areas in two maincategories. The table indicates that almost 95% of the scenarios generated in the [5-10] mregion failed. The failure likelihood decreased to near 46% for the [10-20] m interval. Aswell, 47% and 28% of all failures occurred in [5-10] m and [10-20] m, respectively. 87 sce-narios in the range of [5-20]m have been selected for the next step. There are two reasonsfor this: first, there are more failures seen before 20 m, and second, it is impractical for
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Figure 3.13: Violation results derived from simulations of 15 distinct overtaking scenarios in CARLA
high-fidelity simulator; (a) Pure safety tests (b) and (c) Scenario no. 2 and 10, respectively, under
spoofing attack with different values for attack parameters. All 9 attack experiments were designed
by the Taguchi method.

Figure 3.14: Three main steps of the two-layer validation method. The data format transferred be-
tween the layers is annotated.

Table 3.3: Failure and Success scenarios in the three regions of Dx

[5-10] m [10-20] m [20-50] m sum
Success 2 26 13 41Failure 37 22 20 79
All 39 48 33 120

the shuttle to initiate its passing operation over a distance of 20 m.Table 3.4 reports a summary of the results for the 87 low-fidelity simulations. It in-cludes the duration of simulations in seconds, the difference in lateral and longitudinaldistances between the NPC and the DUT, the average speed of the DUT in meters per sec-ond, and the closest distance between actors at any given point in the simulation (DTC).Using the SiL high-fidelity platform, the selected scenarios were simulated. As part ofthe evaluation process, we gather and store all the corresponding data of the evaluationmetrics in a Rosbag file, along with a general tabular report. The data includes DUT speed,normalized braking intensity, localization score (NDT-score), and the closest distance tothe NPC from the DUT during the simulation.According to Figure 3.18, a spaghetti diagram shows all trajectories traveled by theDUT (curves) next to the location of the NPC (squares) in each scenario. Depending on
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Figure 3.15: High-level architecture of the Two-layer validation regime including scenario generation
(Step-A), low-fidelity simulation (Step-B), and high-fidelity simulation with the control software in
the loop (Step-C).

Figure 3.16: Describing a passing scenario by the two relative distance parameters, Dx, and Dy.

Table 3.4: Summary over the 87 runs in the low-fidelity simulator.

duration Dy Dx max(s) min(s) DTC
(sec) (m) (m) (m/s) (m/s) (m)

mean 36.21 0.15 8.19 1.80 1.61 4.88std 35.69 0.09 5.82 0.82 0.62 1.49min 2.72 0.01 0.41 1.01 0.71 2.97max 98.48 0.37 19.92 4.16 3.81 11.00

the progress of the mission, the results were divided into three groups as follows:
• Not startedmissions (group 1): This refers to situations in which the DUTwas unableto begin the passing maneuver and remained behind the NPC.
• Completed missions (group 2): DUT completes the missions.
• Aborted missions (group 3): The scenarios in which the DUT started the maneuver
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Figure 3.17: Points representing all initial relative NPC locations in 120 scenarios that are marked
based on their simulation result.

but could not complete it. If localization is lost, for instance, uncontrolled move-ments can lead to the failure of the mission.

Figure 3.18: All traveled routes in the 87 selected scenarios are shown in the three described groups.

To assess the mission’s progress and the probability of an accident, each scenario wasshown in Figure 3.19 with the corresponding distance traveled and the minimum DTC dur-ing the run. A color was assigned to each scenario (circle) based on its average speed, andthree groups were identified. According to the Figure each group can be identified basedon a specific DUT average speed range; 50 scenarios with a speed less than 0.05 m/s (G1),36 scenarios with less than 1.35 m/s (G2), and one with more than 1.7 m/s (G3).

Figure 3.19: High-fidelity simulation results are presented in terms of the traveled distance and the
minimum distance to collision (DTC) along with the mean speed of the DUT in the mission. G1, G2,
and G3 represent the groups.

To analyze the safe performance of the DUT during operation and check how far theDUT can reach the NPC, each scenario Dx was plotted against the minimum DTC (see Fig.3.20). Moreover, the color bar indicates how many sharp brakes were applied during themission which explains the relative safety and comfort of the ride. According to the fig-ure, the DUT did not move during the G1 scenarios with an initial longitudinal distanceof less than 12 m, although there were a few scenarios where there was negligible move-
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ment. A straight line represents the correlation and trend. Two of the remaining groupsare boxed, indicating that the DUT reached the NPC closer than the originally specifieddistance, indicating that the DUT moved and attempted to pass the NPC. In the G2,3 box,all scenarios in which the DUT succeeded in passing the NPC are included, except for theone with the highest number of emergency brakes. As a result, scenarios where the DUTwas more than 12 m behind the NPC were successful. Another interesting finding is thegradual increase of the DTC from 0.36 to 1.5 m, while we increased the initial distancefrom 12 to 16 m. There was no significant change in the minimum DTC between 16 and20 m, remaining at approximately 1.7 m. Thus, when the DUT starts the mission from adistance greater than 16 m, the planning algorithms generate a path with a safe distancefor the maneuver. Furthermore, to identify edge case scenarios and evaluate the algo-rithms under critical conditions, it is needed to focus on the range of DTCs that are aboutto collide (for 12< Dx<16m). Furthermore, software developers should consider makingthe DUT capable of passing objects less than 12 meters in front of the DUT.

Figure 3.20: Results are represented by the Dx and the minimum DTC during the simulation. The
color bar displays the normalized brake magnitude for each scenario.

Table 3.5 provides information about some key aspects of the high-fidelity simulationresults, including duration (sec), initial distance to the NPC (lateral and longitudinal) (m),maximum and average speed (m/s), minimumDTC (m), and themaximumNDT score. Thehigh-fidelity platform, on average, took almost twice as long to simulate the same scenarioas the low-fidelity one. In the high-fidelity setting, no scenario was completed in less than46 seconds, while the shortest simulation was completed in less than 3 seconds. It canbe seen clearly in this example that the use of low-fidelity simulations can avoid unnec-essary simulation computations and thus generate significant time savings. Furthermore,the speed of the DUT in the high-fidelity tests was lower than that of the similar DUT inthe low-fidelity simulation, since the vehicle speed is automatically adjusted by the soft-ware controlling the DUT (Pure Pursuit Controller[131]). Similarly, none of the high-fidelitysimulations produced collisions compared to low-fidelity ones.
Table 3.5: Summary over 87 scenarios runs in the high-fidelity simulator.

duration Dy Dx max(s) s DTC NDT-s
(sec) (m) (m) (m

s ) (m
s ) (m)

mean 69.98 0.15 11.53 1.07 0.51 2.45 158.4std 18.02 0.09 3.75 1.84 0.6 1.56 1434.4min 46.89 0.01 6.72 0.01 0.00 0.36 2.39max 108.51 0.37 19.57 15.80 1.71 6.02 13461.8

The results confirm that simulations based on low-fidelity were faster but likely to be
47



less reliable. This is because of the sacrifice of details and system simplification in thesesimulations. However, in these simulations, the AV was controlled by the rules specifiedfor the scenario rather than by AV software. Simulators with high fidelity are able to eval-uate the autonomous features of AV software simultaneously. Based on the high-fidelityresults, developers can explore the algorithms’ performance and behavior in the targetscenarios without requiring real-life experiments. There is no doubt that the limited num-ber of tests doesn’t ensure complete safety, but they can be used to identify more criticaland corner cases.
3.4.2 Evaluation with Different Fidelity Levels

Differentiating between low-fidelity (LF) and high-fidelity (HF) simulations and their func-tionalities is essential. As a part of this study [132], 15000 simulation runs were con-ducted to compare the evaluation outcome derived from a low- and high-fidelity simu-lation setup. The study was performed on a DUT overtaking a constant-speed NPC. TheAutoware.ai simulator is used for the low-fidelity setup and CARLA for the high-fidelitysetup. In both setups, autonomous software is involved in the simulation loops. The focusof this work was on the planning part of the system, which was controlled by OpenPlan-ner. Two parameters define the scenario domain, the initial relative distance between theDUT and NPC (Dx) and the constant speed of the NPC (Snpc). Table 3.6 provides a de-tailed description of the parameters used in the study to describe logical scenarios. Theconcrete scenario was selected from the 2D domain represented by the scenario param-eters. The domain was divided into 5X5 tiles (totaling 25 distinct scenarios), with a centricpoint indicating parameter values.
Table 3.6: Scenario parameters description

Actor Speed (m/s) ACC (m/s2) Dx (m) Goal
DUT [0 : 6] [-8 : 5] 0 overtake the NPC safelyNPC [0 : 5] 0 [10 : 25] drive straight

Table 3.7: Safety Evaluation Criteria

Safety Metrics Lable Description
Collision Col DUT collides with NPC
Distance-to-Collision DTC Violation of the safe distancebetween DUT and NPC (<40cm)
Deceleration ACC Violation of a sharp brake (ACC<−6 m/s2)
Performance Metrics Lable Description
Succeed Suce DUT Successful complete the mission
Long Pass LoPa DUT has passed the NPC for 25 m butdid not return the main path
Time Time DUT did not make progress in the allotted time

Table 3.7 presents the metrics that were considered in the evaluation of the simula-tions. Collision, DTC, and Deceleration relate to safety concerns, and Long Pass and Timerelate to algorithm performance.
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Low-Fidelity (LF) Simulations:
Testing begins with low-fidelity simulations. Each scenario was repeated to achieve rea-sonable statistical reliability. Four different repetitions were carried out to ensure consis-tency, given that a large number of repetitions would increase simulation time.

Figure 3.21: Low-Fidelity (LF) simulation results over the scenario domain; each column represents
a different repeat number, and each row represents the result of an evaluation metrics.

These four samples are summarized in Figure 3.21. According to the figure, each col-umn represents a simulation set with a specific number of repetitions, each row describesa safety criterion, and each tile indicates the probability of an event occurring within thescenario. In this instance, each safety criterion has almost the same likelihood betweenLF30 and LF50. The first row in the figure indicates the likelihood that the DUT will suc-cessfully complete themission without committing any safety violations. According to thefigure, as the NPC drives faster (vertical axis), there is an increased risk of the DUT failingmissions (vertical axis). Taking over the NPC faster than 2.5m/s was almost impossible forthe DUT.The following row (Col) in the figure indicates which scenarios are most likely to resultin a collision. When the NPC was immobile, no crashes were observed, however, whenthe NPC was moving at 2.5 m/s, the risk of collision grew significantly. In more than 85percent of the observed collisions, the DUT took a sharp cut-in and the NPC collided withthe right side of the DUT. The non-optimized planner and the prediction module, whichdo not consider the passing NPC, are responsible for these collisions. However, at speedsexceeding 2.5 m/s, the collision rate dropped as the DUT was unable to accelerate suf-ficiently to capture the NPC. Instead, DTC violations occurred (see third row), indicatingthat the distance between the DUT and the NPC was unsafe.Furthermore, othermetrics includingACC, LoPa, and Timewere considered in the eval-uation of the LF30 sample. As shown in Figure 3.22, sharp decelerations are more likelyto occur when the DUT violates the DTC. Long pass violations occur when the DUT is inthe opposing lane 25 meters ahead of the NPC and does not return to the main route.
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Figure 3.22: Result of the LF#30 simulation evaluation over the scenario domain for ACC, LoPa, and
Time metrics.

The LoPa metric results show that the DUT only violates long passes at speeds below 2.5
m/s. By analyzing time metrics, it can be concluded that the probability of an NPC notcompleting a mission increases as the speed of the NPC exceeds 2.5 m/s.

Using the same platform, GA optimization was conducted to establish optimal val-ues for 10 planner parameters to improve the evaluation outcome. The best planner pa-rameters were selected after 1700 attempts with five repetitions of each. A new set ofsimulations with 30 repetitions was conducted in the scenario domain using the optimalparameters (marked as LF(a)). Figure 3.23 shows the promising results of the evaluationof the metrics.

Figure 3.23: Simulation result with optimal planner parameters repeated #30 (marked as LF(a)).
Different metrics evaluations are shown separately.

By comparing the "Suce" metric of the optimized set with that of the non-optimized(LF#30) sample, it is evident that the optimized setup was more successful in completingthemission safely. It was observed thatmore collisions, DTCs, and ACC violations occurredat speeds higher than 2.5m/s, indicating that the DUT is capable of overtaking fast-drivingNPCs at speeds closer to its own. In spite of this, the rate of DTC and ACC violations hasbeen reduced across the entire scenario domain. While long passing has remained thesame with a small increase, time violations have dramatically decreased, indicating moremissions have been completed.
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High-Fidelity (HF) Simulations:
In the same scenario domain, high-fidelity simulations were conducted to observe per-formance compared to LF simulations. In this setup, DUT software modules includinglocalization, detection, and planning were completely in the simulation loop. Three setsof HF simulations were conducted. In the first set of simulations, the default planningparameters (HF30) are used. In the second set, previously optimized parameters derivedfrom LF simulations are used (HF(a)), and in the third set, optimized parameters are usedfrom HF simulations (HF(b)).

Figure 3.24: HF simulation result for three different sets; Non-Optimized HF30 is the simulations
with default planning parameters, Optimized-HF(a) is the simulations with planning parameters op-
timized by LF simulations, Optimized-HF(b) is the simulations with optimized parameters suggested
by HF platform.

Figure 3.24 presents the metric evaluation results for the mentioned sets. Accordingto the figure, optimization efforts increased success rates in the scenario domain (a and b).The comparison of the two optimized cases indicates that the parameters optimized withthe lower-fidelity platform are not optimal for the higher-fidelity case, which is more real-istic. The results shown in the last row of the figure are more promising when optimizedusing the HF platform. Another interesting observation is the occurrence of collisions atlow speeds for NPCs in the optimized case HF(a). There were almost full collision rates forscenarios [10, 1.25] and [13.75, 1.25] inside the domain.
The crash plots of the scenes revealed that the optimized prediction and trajectoryevaluator did not take into account the moving NPC when performing the safe cut-in ma-neuver. It is important to note that the LF simulation’s detectionmodule considers theNPCas a whole cube, which is why the planner always has a full picture of it. Inside the HF,however, detection relies on LiDAR sensors that detect the NPC’s face when it is exposedto laser light. As a result, the size of the objects is constantly changing and occasionallydisappears, resulting in a loss of the object in the prediction module (see Figure 3.25).
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Thus, the optimized case (a) using the LF optimal parameters could not demonstrate sat-isfactory results when simulated in HF.

Figure 3.25: Sample plot of a crash in simulation scenarios. It shows (a) how NPC was seen in LF
simulations and (b) how it is seen in HF simulations.

Table 3.8 provides details for 15000 simulations conducted in this study, including thenumber of simulation runs, the duration of each set, and the performance of the DUTwithin the overall scenario domain described by the three main criteria. The table con-tains LF with different repetitions, optimization trials with low- and high-fidelity platforms(gaLF and gaHF), LF simulation with optimum parameters (LF(a)), HF simulations in notoptimized cases (HF30), and optimized cases (HF(a) and (b)).
Table 3.8: Summary of all simulation tries

LF10 LF20 LF30 LF50 gaLF LF(a) HF30 gaHF HF(a) HF(b)
#Runs 250 500 750 1250 8750 750 750 455 750 750Time(h:m) 1:37 3:25 5:00 8:30 50 4:15 22:30 14 23:00 24:00
Suce 30% 27% 29% 28% - 52% 27% - 27% 28%Col 25% 20% 22% 21% - 24% 12% - 17% 4%DTC 61% 60% 59% 60% - 29% 34% - 27% 12%

Based on the information, HF simulations took almost 4.5 times longer than LF sim-ulations (comparing LF30 with HF30). It is particularly important to consider this whenoptimizing. The gaLF case is an example of the optimization process with the LF platforminvolving 1700 attempts and 8750 simulations over a period of 50 hours. In contrast, 91simulation attempts comprising 455 simulations took 14 hours using the HF platform (seegaHF case). With the optimal values suggested by these attempts, we ran three simulationsets including LF(a), HF(a), andHF(b). The two (a) cases utilized gaLF optimumvalueswhilecase (b) utilized gaHF optimal values. As can be seen from the violation rates, althoughgaLF optimization improved the safety condition in LF(a) (comparing LF30 with LF(a)), itcould not do the same in HF(a) (comparison of HF30with HF(a)). HF(b), which inherits theoptimum value from the gaHF attempts, provides superior safety performance (compareHF30 with HF(b)). As a result, optimization based on LF platforms may not be appropriatefor evaluating a unit (e.g. planner) within a system (e.g. autonomous software). However,they provide better time performance and are ideal for separate unit testing.

3.5 Real-World Experiments

TalTech iseAuto has been utilized in a number of real-life experiments to evaluate and ex-amine the AD algorithm’s performance and behavior in certain situations. Furthermore,it is used to investigate the results derived from the simulation test bed (refer to RO5).
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However, as it has been noted, track testing is a time-consuming and labor-intensive pro-cess. Following is a description of some real-life experiments that are conducted as partof this research in order to justify the findings.
3.5.1 Safety and Performance Evaluation Tests

Figure 3.26: A Real-world experiment on iseAuto autonomous shuttle; AV shuttle behaviour evalu-
ated during a passing maneuver

These real-world experiments were conducted in order to validate the shuttle’s be-havior in certain planned maneuvers. In the TalTech track testing area, scenarios includ-ing pedestrian and traffic light interactions, object passing, and overtaking missions aretested. The tests have enabled the shuttle to identify and interpret objects and other ac-tors detected by its sensors. Figure 3.26 shows drone images taken during an NPC passingmission from the campus testbed. There is also a visual representation of perception andplanning algorithms in Rviz software in addition to real-world pictures. Themission endedsuccessfully, with no collisions or other safety issues. The results of this test suggest thatthe perception and planning algorithms are reliable.
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Figure 3.27: Steering angle output from the TalTech iseAuto in an overtaking maneuver conducted
in a real-life experiment and a simulation

A comparison was also conducted between the steering output of the DUT in this ex-periment and that derived from the corresponding simulation to validate the simulationresults (see Figure 3.27). Even though there were not enough tests to come to a definitiveconclusion, the comparison reflects a reasonablematch between the two results. Overall,the results are promising and indicate that the virtual environment is sufficiently accurateto simulate real models. Further real-life experiments are needed to evaluate the simula-tion results.
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Figure 3.28: A Real-world experiment on iseAuto autonomous shuttle; The DUT experienced a LiDAR
spoofing attack while overtaking an NPC

3.5.2 Cyber Security Evaluation Tests

The TalTech testbed also makes it possible for cyber-physical attacks to be conducted onthe same testing track as safety experiments. In this way, it is possible to analyze theimpact of cyberattacks and the effectiveness of existing countermeasures, as well as theimpact of proposed security solutions on the safety of AV software. The implementationof attack scenarios and the identification of potential vulnerabilities are also possible. Fi-nally, field tests can be used to verify the accuracy of simulation results. As part of thePaper IV study, a LiDAR FPs injection attack was performed on the shuttle during a pass-ing maneuver. Figure 3.28 shows the frames captured during the experiments. Spoofpoints can be seen inside the second frame in the set of Figure 3.28. In the field tests,however, simulation of failed cyber scenarios was not practical due to safety concerns.Therefore, real experiments are limited to successful scenarios. In spite of this, the imple-mentation of the cyber attack on a real AV with real sensors led to the discovery of newparameters and value ranges that made the attack more effective. Detailed explanationsof these parameters are given in Paper IV.As a whole, real-life track testing is a very useful tool for crediting simulation find-ings’ reliability and assessing AV reliability and safety. Before the AV is deployed in thereal world, it can be used to identify and address safety issues that cannot be detected insimulations. However, these benefits come with costs, such as the time and resources re-quired for track testing. Additionally, track testing can be dangerous if not done correctly,putting both the AV and the human testers at risk.
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4 Discussion
In recent years, scenario-based evaluation methods using simulation techniques havegained significant attention in the fields of safety, security, and performance analysis ofAVs. One prominent approach involves utilizing SiL and HiL simulations with varying levelsof fidelity. This discussion will delve into the methodology’s benefits, highlight its limita-tions, and explore potential avenues for future research and development.Scenario-based evaluation using SiL/HiL simulation offers numerous advantages in as-sessing AV system safety, security, and performance. By creating virtual environmentsthat mimic real-world conditions, this method allows for comprehensive testing withoutincurring the risks and costs associated with physical prototypes. Furthermore, it enablesthe evaluation of critical scenarios that may be challenging or impossible to replicate inreal life, such as extreme weather conditions or rare security breaches.

4.1 Low-Fidelity Simulation

Low-fidelity SiL simulations serve as a starting point in scenario-based evaluation. Theyprovide a cost- and time-effective means of analyzing system behavior under various sce-narios. In Paper I, a study based on the MATLAB low-fidelity simulator was conducted.The results suggested the potential of low-fidelity SiL simulations as a tool for validatingAD software. This motivated us to further explore the use of SiL simulations in a varietyof scenarios including overtaking and cyber security attacks (see Paper V).However, due to the low-fidelity simplified representation of real-world dynamics,these simulations may fail to capture the nuances and complexities of complex systemsaccurately. Limitations of low-fidelity SiL simulations include:
Lack of Realism: Low-fidelity AV simulations often simplify the underlying physics, en-vironment, and system interactions, potentially leading to inaccurate results. Forinstance, a lack of advanced sensors and poor dynamic models can contribute toinaccurate predictions of AV performance under complex conditions. This can alsolead to a false sense of safety when evaluating an AV system’s safety.
Limited Scope: Low-fidelity simulationsmaynot consider all relevant systemcomponents,leading to incomplete evaluation. This can hinder the identification of potentialsafety or security vulnerabilities from interdependent subsystems. It is discussed indetail in Paper V.

4.2 High-Fidelity SiL/HiL Simulation

Addressing the limitations of low-fidelity SiL simulations, high-fidelity SiL/HiL simulationsoffer a more accurate representation of AV system behavior. By incorporating actual soft-ware/hardware components in addition to providing a realistic virtual environment thatsimulates advanced sensor data, these simulations provide a comprehensive evaluationof system performance, safety, and security. However, they come with their own set ofchallenges and limitations:
Cost and Complexity: Implementing SiL/HiL simulations requires significant investmentsin computational hardware resources, interfaces, and software tools. The complex-
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ity of integrating real hardware components with simulation models can also posechallenges, requiring specialized expertise and resources.
Scalability: As system complexity increases, it becomes more challenging to maintainreal-time performance in SiL/HiL simulations. The computational demands of exe-cuting large-scale scenarios with numerous interacting components may strain ex-isting hardware resources. A timing comparison between low- and high-fidelity sim-ulations in Paper V shows that higher-detail simulations take longer to execute andmay raise time synchronizing issues.

4.3 Limitations and Future Work

While scenario-based evaluation using SiL/HiL simulations offers substantial benefits, thereare several areas that require further attention:
Model Fidelity Improvement: Enhancing simulation models’ fidelity is crucial to bridgethe gap between simulated and real-world behavior. Advancements in modelingtechniques, such as multi-physics simulations, real-time data integration, and in-creased accuracy in cyber-physical interactions, will improve simulation accuracyand reliability.
Realism in Virtual Environments: Developing realistic virtual environments that accuratelyrepresent complex real-world scenarios is a key research direction. This includes in-corporating dynamic weather patterns, traffic simulations, sensor models, and re-alistic human behavior to create a more comprehensive evaluation environment. Apreliminary attempt is presented to create a realistic digital twin of the AV workingenvironment in Paper II.

Future Work: Future research can concentrate on improving the fidelity of sim-ulation models. This may involve integrating more accurate and detailed modelsof subsystems, capturing complex dynamics, and incorporating real-time data fromthe actual system to enhance realism. Leveragingmachine learning and data-driventechniques can also help in automatically calibrating and updating simulation mod-els based on real-world observations.
Uncertainty and Variability: Real-world autonomous systems often face various uncer-tainties and variations, including environmental conditions, human factors, and com-ponent failures. Capturing and incorporating these uncertainties and variations inthe simulation environment can be challenging.

Future Work: Developing techniques to effectively model and simulate uncertain-ties and variations is an important area for future work. This may involve stochas-tic modeling, probabilistic analysis, and incorporating probabilistic models for envi-ronmental conditions, human behavior, and component reliability. These advance-ments would enablemore robust evaluations that account for real-world variability.
Cyber security Assessment: As systems become increasingly connected and reliant ondata exchange, evaluating security aspects of scenarios is of paramount importance.The cyberattack effectiveness on the AV shuttle has been investigated in two differ-ent studies using the proposed evaluation platform (see Paper IV and [123]).
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Future Work: Future work should focus on integrating comprehensive cyber secu-rity evaluation frameworks into scenario-based simulations to identify vulnerabili-ties and potential threats.
Integration with Physical Testing: SiL/HiL simulations primarily focus on virtual testing,and there can be limitations in replicating all aspects of the physical system accu-rately. The integration of virtual simulations with physical testing is crucial to vali-date the simulation results and ensure their reliability.

Future Work: Future research should explore methods to seamlessly integrateSiL/HiL simulations with physical testing. This can involve developing hybrid testingapproaches that combine virtual simulations and physical testbeds, enabling morecomprehensive evaluations and verification of the system’s performance.
System Adaptation and Learning: Traditional SiL/HiL simulations often assume a staticsystem model and do not account for adaptive and learning capabilities. However,many modern AD systems incorporate adaptive algorithms, machine learning, andartificial intelligence techniques, which necessitate evaluating the system’s perfor-mance under dynamic conditions.

FutureWork: Future work can focus on extending SiL/HiL simulation approaches toaccommodate adaptive and learning systems. This may involve incorporating adap-tivemodels, reinforcement learning algorithms, and online adaptationmechanismsinto the simulation framework to evaluate the system’s performance in dynamic en-vironments.
Scalable Simulation Platforms: One limitation is the challenge of scaling up the simula-tions to larger and more complex systems. As the size and complexity of the sys-tem increase, the computational requirements and simulation runtime also esca-late. This can hinder the feasibility of conducting comprehensive evaluations forlarge-scale systems.

Future Work: Research efforts can focus on developing efficient algorithms andtechniques to handle scalability challenges. Thismay involve exploring parallel com-puting, distributed simulation frameworks, or model abstraction techniques to re-duce computational burden while maintaining sufficient accuracy.
By addressing these limitations and pursuing future research, scenario-based safety,security, and performance evaluation using SiL/HiL simulations can continue to evolve,providing more accurate, comprehensive, and reliable assessments of AV systems in di-verse ODDs.
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5 Conclusion and future research
In this study, according to its primary research objective (RO1), a scenario-based eval-uation toolkit using SiL/HiL simulations in low- and high-fidelity setups was developed.Results showed that the proposed toolkit is a valuable and systematic methodology forevaluating AD systems’ safety, security, and performance. This approach can be used toperform low-fidelity and high-fidelity simulations, depending on the level of testing andthe requirements (as sketched in RO3).It has been observed that, by creating simplified virtual environments, engineers canconduct early-stage assessments of vehicle performance andbehaviorwithout costly phys-ical prototypes or real-world testing. These simulations aim to replicate various drivingscenarios, including different road conditions, traffic patterns, and unexpected events.They aim to assess the vehicle’s ability to make informed decisions and react appropri-ately. While low-fidelity simulations may lack some real-world intricacies, they provide avaluable initial platform for identifying potential flaws, refining algorithms, and optimiz-ing vehicle responses. This cost-effective and time-efficient approach enables researchersand developers to iterate and enhance autonomous systems, ultimately advancing thesafe and reliable integration of self-driving cars into our transportation ecosystem. RO2 isaddressed by integrating low-fidelity simulation into the proposed toolkit.Alternatively, high-fidelity simulations, due to providing a more realistic environment,can be employed to detect, analyze, and address system-level issues and investigate com-ponents’ interactions. Further, they can be used for the development, testing, and evalu-ation of control algorithms and logic. They can analyze the system’s performance, identifypotential failure points, and generate system-level recommendations. Furthermore, thisapproach provides a controlled and repeatable way to evaluate the safety, security, andperformance of the AV by creating a virtual environment that mimics real-world condi-tions. Various advanced cyber threats can be evaluated without posing any risk to thesystem which is aligned with RO4. As part of RO5, real-life tests were also conducted toverify simulation fidelity results. As a result, high-fidelity simulations can reduce the de-velopment time and cost of autonomous driving systems, making them more accessibleto a wider audience.This evaluation toolkit has several advantages including the ability to test systems ina safe environment, identify weak points and areas for improvement, and provide quan-titative performance assessments. Businesses can use this toolkit to provide evaluationservices to other institutions and industries. In addition, standard organizations can ben-efit from benchmarking their systems against those of other institutes. It is imperative,however, to acknowledge the limitations of this approach. These limitations include thechallenge of accurately representing real-world conditions and the potential for incom-plete capture of complex subsystem interactions.Overall, the proposed toolkit offers significant benefits in assessing AV system safety,security, and performance. Taking into account the limitations and conducting furtherresearch (as mentioned in the discussion), this evaluation toolkit has the potential to con-tribute to the development of safer, more secure, and higher-performing AVs.

5.1 Future Work

To overcome the aforementioned limitations and further enhance the effectiveness of thisevaluation method, the following future works are suggested:
• Improving the accuracy and reliability of simulation models including the digital
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twin of the environments and road users.
• Developing more advanced virtual sensors, including ray-cast LiDARs.
• Improving the simulation clock synchronization regarding utilizing high-fidelity sim-ulators.
• Research efforts should also be directed towards developing more sophisticatedsimulations able to capture more subsystem interaction details.
• The establishment of standardized evaluation protocols would also promote con-sistency and comparability of results across different systems and industries.
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Abstract
Scenario-based Validation of Safety and Performance of an Au-
tonomous Vehicle by a Software in Loop Simulation Method
AV technology requires robust and reliable validation methods to ensure their safety andoptimize their performance. This thesis is based on five research papers that focus on thescenario-based validation of an AV through the implementation of a Software-in-Loop(SiL) simulation method. The SiL approach allows for extensive testing in virtual envi-ronments, replicating real-world scenarios, and evaluating AV responses. The proposedmethodology has been implemented on an autonomous shuttle currently operating onthe TalTech campus.The research begins with a comprehensive review of existing validation techniques,emphasizing the need for scenario-oriented testing to cover a wide range of critical sit-uations. Traditional validation methods, such as track-based testing and real-world roadtrials, are limited in their ability to systematically explore a vast number of scenarios dueto cost, time, and safety constraints. Scenario-based evaluation offers amore efficient andcost-effective approach, enabling engineers to assess AV performance and safety undervarious challenging circumstances.The thesis then presents the design and implementation of the SiL/HiL low- and high-fidelity simulation platform, which involves integrating AV control software with the vir-tual testbed. The software control system, including perception, decision-making, andcontrol modules, is connected to the virtual environment to create a closed-loop simula-tion. AV responses to simulated scenarios are evaluated based on safety metrics, perfor-mance indicators, and adherence to predefined rules and regulations.To demonstrate the efficiency and validity of the proposed evaluation toolkit, a widerange of studies have been conducted. These studies include low- and high-fidelity sim-ulations of an AV shuttle to examine its performance, and safety in addition to validatingthe reliability of the simulation result with real-life experiments. The thesis also highlightsthe importance of selecting representative scenarios that cover critical edge cases andchallenging driving situations to ensure thorough validation.The thesis concludes by highlighting the advantages of the proposed methodology.The cost-effectiveness and repeatability of this toolkit allow for extensive scenario cover-age and early identification of potential issues. By conducting rigorous simulations, de-velopers can enhance AVs’ safety and performance, minimizing the risks associated withreal-world testing. Furthermore, the findings contribute to the advancement of scenario-based validation techniques and pave the way for safe and reliable AV integration into ourtransportation ecosystem.In summary, this work presents a comprehensive toolkit for scenario-based evaluationof AVs using a low- and high-fidelity SiL simulation method. The results obtained from ex-tensive simulations demonstrate the efficacy of the proposed methodology in identifyingvulnerabilities, optimizing decision-making algorithms, and validating AV’s functionalityunder diverse scenarios. This research contributes to the development of robust valida-tion techniques and facilitates the realization of safe and reliable autonomous transporta-tion systems.
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Kokkuvõte
Autonoomse sõiduki ohutuse ja jõudluse stsenaariumipõhine
valideerimine tsüklisimulatsiooni meetodi abil
Autonoomse sõiduki (AV) tehnoloogia nõuab tugevaid ja usaldusväärseid valideerimis-meetodeid, et tagada nende ohutus ja optimeerida nende jõudlust. See lõputöö põhinebviiel uurimistööl, mis keskenduvad AV stsenaariumipõhisele valideerimisele tarkvara-in-loopi (SiL) simulatsioonimeetodi rakendamise kaudu. SiL-lähenemine võimaldab ulatus-likku testimist virtuaalses keskkonnas, kopeerida reaalmaailma stsenaariume ja hinnataAV-vastuseid. Kavandatav metoodika on rakendatud praegu TalTechi ülikoolilinnakus töö-taval autonoomsel süstikul.Uurimistöö algab olemasolevate valideerimistehnikate põhjaliku ülevaatega, rõhuta-des vajadust stsenaariumipõhise testimise järele, et hõlmata paljusid kriitilisi olukordi. Tra-ditsioonilised valideerimismeetodid, nagu rajal põhinev testimine ja tegelikud maantee-katsetused, on piiratud kulude, aja ja ohutuspiirangute tõttu suure hulga stsenaariumidesüstemaatilise uurimisega. Stsenaariumipõhine hindamine pakub tõhusamat ja kulutõhu-samat lähenemisviisi, võimaldades inseneridel hinnata AV jõudlust ja ohutust erinevateskeerulistes olukordades.Seejärel tutvustatakse lõputöös SiL/HiL madala ja kõrge täpsusega simulatsiooniplat-vormi disaini ja juurutamist, mis hõlmab autonoomse sõidukijuhtimistarkvara integreeri-mist virtuaalse katsealusega. Tarkvara juhtimissüsteem, sealhulgas taju-, otsustus- ja juh-timismoodulid, on ühendatud virtuaalse keskkonnaga, et luua suletud ahela simulatsioon.AV-vastuseid simuleeritud stsenaariumitele hinnatakse ohutusmõõdikute, jõudlusnäitaja-te ning etteantud reeglite ja eeskirjade järgimise põhjal.Kavandatava hindamisvahendite komplekti tõhususe ja kehtivuse demonstreerimisekson läbi viidud palju erinevaid uuringuid. Need uuringud hõlmavad AV-süstiku madala jakõrge täpsusega simulatsioone, et uurida selle jõudlust ja ohutust, lisaks simulatsioonitu-lemuste usaldusväärsuse kinnitamisele reaalsete katsetega. Lõputöö rõhutab ka seda, kuioluline on valida esinduslikud stsenaariumid, mis katavad kriitilisi äärejuhtumeid ja välja-kutseid pakkuvaid sõiduolukordi, et tagada põhjalik valideerimine.Lõputöö lõpetuseks tuuakse välja pakutudmetoodika eelised. Selle tööriistakomplektikulutõhusus ja korratavus võimaldavad ulatuslikku stsenaariumi katvust ja võimalike prob-leemide varajast tuvastamist. Rangete simulatsioonide abil saavad arendajad parandadaAV-de ohutust ja jõudlust, minimeerides reaalmaailma testimisega seotud riske. Lisaks ai-tavad leiud kaasa stsenaariumipõhiste valideerimistehnikate edasiarendamisele ja silluta-vad teed ohutule ja usaldusväärsele AV-integratsioonile meie transpordiökosüsteemi.Kokkuvõttes esitab see töö põhjaliku tööriistakomplekti AV-de stsenaariumipõhisekshindamiseks, kasutades madala ja kõrge täpsusega SiL-i simulatsioonimeetodit. Ulatuslikesimulatsioonidega saadud tulemused näitavad pakutud metoodika tõhusust haavatavus-te tuvastamisel, otsustusalgoritmide optimeerimisel ja AV funktsionaalsuse valideerimiselerinevate stsenaariumide korral. See uurimus aitab kaasa tugevate valideerimistehnikateväljatöötamisele ning hõlbustab ohutute ja usaldusväärsete autonoomsete transpordisüs-teemide realiseerimist.
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driven to provide some indication of validation [2]. However,
no fundamental structure has been offered to demonstrate the
robustness of the solutions. In fact, there is no assurance even
for the safety impact of various software updates. The use of
“real world” testing through the most common “shadow driv-
ing” method has various disadvantages both from the point-
of-view of verification convergence and also public safety [1].

In our previous work [3], [4], we presented our testing and
validation approach for AVs. A center point of this approach
is a model for a “scenario”, which allows a semantic language
to specify the AV test environment. Using these scenarios, we
build an environment to provide a model for completeness, a
flow for constant update from physical feedback, and drive the
test generation process for “edge” test cases.

This paper presents the utilization of this methodology for
an autonomous campus shuttle at Tallinn University of Tech-
nology (TalTech), Estonia (See Fig. 1). TalTech Autonomous
vehicles research group is well-known for its AV shuttle
- ISEAUTO [5], [6] that is operational in the campus for
demonstration purposes. Because of the slower speeds and
relatively low complexity of the campus AV path (See Fig. 2),
TalTech offers an ideal starting point to hash out and prove the
utility of our testing and validation methodology. Additionally,
it is complementary for the efforts of the TalTech Autonomous
vehicles research group working on the development of AV
shuttle.

The overall research project is planned to be executed in
three stages. First, the TalTech route and environment is mod-
eled in the validation flow to build a framework for coverage
and generate representative “edge” test cases. Second, these
scenarios are going to be fed into software-in-the-loop (SiL)
simulation to test the decision making system of the shuttle.
The progress towards these two phases are given in this paper.
The final stage will be a physical demonstration in the TalTech
campus. Beyond verifying functionality, key aspects of this
demonstration will be to instrument the shuttle in a manner to
detect test conditions which were not examined in simulation.
This very critical feedback process creates a situation to debug
the test and validation system. The most important result
of this project will be to prove an AV test and verification
methodology which can then be subsequently scaled to other

Abstract—The autonomous vehicles need to be validated with a 
reliable and repeatable methodology to be accepted by the public. 
In this paper, we present our methodology to develop a validation 
regime for the decision making system of an autonomous vehicle 
operating in a certain road network. The methodology starts with 
the thorough analysis of the selected roads. Then these roads are 
divided into atomic units, each of which is unique for testing 
purposes. The atomic units are modeled in simulation using our 
existing scenario generation framework, which allows for the 
stress testing and edge scenario discovery. Then the decision 
making software of the vehicle under test is taken in the loop to 
execute the tests. The methodology is applied to the autonomous 
campus shuttle currently operating at the Tallinn University of 
Technology campus. The shuttle’s route is analyzed and modeled 
in simulation to create the testing scenarios. The methodology 
will be a complete validation scheme as the shuttle is tested in 
the field with a  variety of the corner test cases discovered by our 
methodology.

Index Terms—Autonomous Vehicles, Validation, Verification, 
Simulation, Testing, Scenario Testing

I. INTRODUCTION

Autonomous Vehicle (AV) technology has the potential to
have a fundamental impact on various fields such as the trans-
portation, automotive, farming, and so on. There have been
significant a dvances i n t he a rtificial in telligence (A I) engines
and perception systems, which form the core technologies of
AVs. On the other hand, there are still unsettled challenges in
the testing and validation of AVs [1]. The full potential of AV
technology cannot be realized and regulators cannot have the
tools to install the needed safety regime for broad-based AV
proliferation unless these challenges are resolved.

The critical features of a test and validation regime must be
based on a clear model upon which the operation of the tested
system can be reasoned. Further, this model must be able to
receive feedback from the physical world through accidents
or physical tests and the state space for the tests must be
understood sufficiently to get to a  notion of completeness. All
of these must follow a procedure that maximizes safety and
builds confidence i n t he public.

We observe that the current AV testing space has none
of the aforementioned critical characteristics. The current
commercial solutions are using ad-hoc methods such as miles
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Fig. 1. TalTech autonomous campus shuttle.

environments.
The remainder of this paper is organized as follows. Related

work is given in Section II. The validation approach and
the scenario generation process are given in Section III. We
present the implementation details and examples in Section IV
and conclude in Section V.

II. RELATED WORK

According to the annual reports by the National Highway
Traffic Safety Administration (NHTSA), number of traffic
fatalities are close to 40,000 every year and an overwhelming
portion of these (more than 90% for 2017) are due to hu-
man error [7]. AVs are expected to take the responsibilities
of perception and decision making of driving from human
drivers and it is hoped that this transition will reduce the
number of crashes related to human error. Despite the foreseen
advantages, the major barrier for wide-scale adoption of AVs
is the validation and verification regime to assure safety. To
address this barrier, a process, which builds an engineering
argument for assuring safety, must be developed. In this pro-
cess, typically first a conceptual understanding of the problem
is built and supported through virtual models. Then using the
conceptual model, a test regime is built to test the model and
build an argument for correctness. The state space of tests is
examined within the modeling environment to develop metrics
for completeness. A structure is constructed where field testing
feeds back into this flow such that safety is always rising. The
classic V paradigm model intertwined with this methodology
is used as a mechanism to enable concurrent design and
test. In this paradigm, mathematical models, which have been
correlated with a bottom-up component level characterization
stage, are used early in the design stage. As the design is
refined, physical components can be substituted to a point
when system level tests can be performed on the whole
physical design. Modeling issues are often corrected with a
virtual to physical diagnostics flow.

The combination of the conceptual safety regime and the V
design process have been effectively used to build robust safe
systems in automotive industry. However, the addition of the

perception and decision making has increased the complexity
in the safety problem. The conceptual models for the AV
operation, test regime to build confidence, completeness and
coverage of the validation regime and accumulative learning
through validation remain to be open research areas with no
current solution. Without the solutions to these challenges,
regulators have no means to address safety issues.

The current commercial solutions are mostly using shadow
driving [8] with ad-hoc measures to provide some indication of
safety. There are also testing approaches focusing on modeling
and simulation to verify that newly learned maneuvers are
tested until they can be performed at a satisfactory rate. For
instance, SiL and Hardware-in-the-loop (HiL) testing methods
bring the vehicle features into tests. Others use simulations
based on scenarios that their vehicles in the real world
encountered [9]. Each important scenario from real life is
fuzzed into generating more scenarios based on the original to
strengthen the coverage. There are also several initiatives for
the AV validation by integrating different techniques such as
the Intelligent Testing Framework [10] and PEGASUS [11].
Recently, there have been approaches to standardize the AV
validation approaches. UL 4600 is a draft standard based on
setting scope requirements for an overarching safety case,
planned to evolve with the accumulated experience [12]. Open
Measurable Scenario Description Language (M-SDL) [13] is
another initiative originated in industry to create a high level
language that aims to simplify the capture, reuse and sharing
of scenarios. Such standardization efforts have the potential to
be instrumental in the extension of our approach.

Most of the existing validation solutions try to test the
whole vehicle stack, starting from scene perception and un-
derstanding all the way to performing the decided action. Our
approach follows the ‘separation of concerns’ principle, where
we divide the validation into several phases. In this paper,
we use our validation approach to test the decision making
of an operational AV and demonstrate the application of the
approach with SiL testing.

III. DEVELOPMENT OF THE VALIDATION REGIME

In this section, we present the methodology to apply the
abstract scenario generation system for addressing the criti-
cal issues of AV validation and verification of the TalTech
autonomous campus shuttle. It is important to note that we
separate the concerns for perception and decision making.
Therefore, the scenario generation of our system focuses on
the test and evaluation of the decision making system of the
shuttle independent of the perception components.

In our approach, we use a semantic language for describing
driving scenarios that can take random values as inputs and
then convert them into a logical driving scenario in simulation
[3]. For instance, a road segment can be described by the
function of the line that it follows as well as the width at each
point. The goal in defining different road pieces is to easily
constrain the generated scenario to realistic road networks and
situations. We use geometric primitives to generate roadways
with every possible curve and number of lanes in the road
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Fig. 2. Autonomous shuttle operating on its route at TalTech campus.

topology. By exploring all inputs to these pieces and to this
language in general, the behavior of an AV can be tested in
any situation.

A. Validation Approach

The goal of the AV shuttle at TalTech campus is to demon-
strate the capabilities of the developed vehicle and develop
an operational AV shuttle system, which can co-exist with
other traffic participants. The biggest concern to operate an
AV shuttle system in any environment is safety. In the example
of a crowded campus day, many students are populating the
university, which has the potential to cause high density of
spontaneous road crossings of pedestrians over both marked
and unmarked sections.

Although the TalTech campus road stretches over a larger
area, the AV shuttle pilot route is around 2 miles with dedi-
cated beginning and end locations (See Fig. 2). Our approach
is designed to study in detail the AV interaction scenarios from
a safety perspective as well as the traffic impact of using an
AV along a campus.

Given the specific circumstances of the pilot validation
system, the simulation system will fully model the relevant
pieces. These include the following:

• Definition of relevant driving scenarios in the interaction
between the AV shuttle and its environment along the
route.

• Analysis of sections along the pilot route for safety.
• Simulation of critical safety risk scenarios and identifica-

tion of improvement options (vehicle side, infrastructure
side) with simulated data.

• Software-in-the-loop (SiL) testing of the vehicle using the
generated scenarios.

• Use of collected data through a physical AV test vehicle
along the specified route to validate safety simulations
and to validate suggested improvement measures.

Based on the findings of the simulation and the validation
of the simulation model through physical experiments, it

should be possible to build an enhanced model to address the
operation of AV vehicles on campus in mixed traffic and its
impact on traffic flow as well as operational safety risk.

It is important to note that along the suggested TalTech
AV shuttle pilot route, a single low speed lane integrated in
a shared space with bicycles and pedestrians is experimented
before and demonstrated to be feasible.

The validation approach will include use cases that will
be considered for both the simulated as well as the actual
experiments and some main examples can be listed as follows:

• People movement:
– Use case 1: Drop-off and pick-up of people at

dedicated AV shuttle stations
– Use case 2: Impact of different vehicle dynamics

scenarios (e.g. hard braking) on people inside the
shuttle while AV shuttle is moving at different speed
levels, both considering normal operation as well as
emergency maneuvers.

– Use case 3: Impact of different AV vehicle driving
scenarios on other traffic participants (reaction pat-
tern analysis, e.g. interaction with bicycles drivers or
golf karts)

• Goods movement:
– Use case 1: Loading and unloading of goods into the

vehicle at dedicated AV shuttle stations
– Use case 2: Point to point movement of goods along

fixed route without intermediate stops
From a safety perspective, all segments of the AV route

need to be carefully explored in terms of potential road layout
configurations and vehicle/bicycle/pedestrian configurations. It
needs to be determined how a low-speed AV shuttle operation
can be implemented both in the existing road configuration and
lane layouts as well as how future road modifications and lane
configurations should look like. Ultimately a solution needs to
be found with the lowest safety risk level. Long term goal is to
shift the purpose of the shuttle from demonstration to shared
use on campus. For efficient transportation, it is desirable to
shift the student movement to AV shuttles as much as possible.

B. Scenario Generation for TalTech AV Route

The focus of this section is breaking down the main road
crossing TalTech’s campus into major segments and describing
the development process. This process is used to generate the
segments to be used in our scenario generation framework.
The segments define what road pieces would be needed to
compose the campus path in the simulation for testing and
validation. Since our focus is validating the decision making
without the consideration of other factors such as environmen-
tal conditions, we utilize MATLAB AD toolbox [14] with its
cuboid and low-fidelity simulation capability.

To conduct a thorough verification of an AV that will be
operating within the campus, it is important to define road
pieces and their properties and be able to alter and randomize
the scenarios occurring on them. The process with which the
pieces are defined and used to build the validation framework
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Fig. 3. The unique segments identified on AV shuttle route for modeling.

Fig. 4. Side Lot Enter as found in TalTech path

for a vehicle operating there can then be extrapolated to any
other location until enough pieces and scenarios are defined
to achieve Level 5 Autonomous validation and verification.

We define all of the unique segments found along the
TalTech path after analyzing driving footage and Google
Maps as given in Fig. 3. Most of the path on the campus
can be described as a generic bidirectional road with no set
boundaries or lane marker. The parts of the path with no
new additions will be constructed using the already existing
Multilane Road model. The entire main road has two lanes
wide with some extra room and no lane markers. Areas
with sidewalk or sidewalk path entries are also described the
same way and have higher pedestrian crossing probability. In
this section, we describe how our framework is extended to
include the segments defined for the TalTech path in terms
of updates to parameters, current pieces and new pieces with
new parameters.

Fig. 5. Single Pedestrian Crosswalk as found in TalTech path

1) Side Lot Enter: The side lot entrance shows up once on
the path and is a way for vehicles driving in either direction
of the road to enter and exit neighboring parking lot. Along
the path, the side lot enter is where most other traffic drives
to. Going into the parking lot, there is a divider with specific
signage and barriers. In the center of the main path, right next
to the lot entrance, is an open area splitting the medians on
either side of the road for left turning vehicles.

Since the side lot entrance is an important piece for develop-
ing scenarios, it is analyzed thoroughly to model it accurately
for TalTech campus. For this piece, the number of lanes
in the road and side lot are modeled as attributes so that
their properties can be varied. The width of the medians also
determine the geometry of the central turning space and it is
added as an attribute. The length of the medians follows the
length of the road, keeping the current road length parameter
functioning as is.

It is important to note that in the test scenarios including this
road segment, the emphasis will be put on vehicles entering
and leaving whichever end is not connected to the rest of the
road network to simulate the traffic a vehicle at this point is
dealing with.

2) Single Pedestrian Crosswalk: This piece shows up three
times along the path, all with the same design and signage.
However, one of the pieces appears to be built before the
others due to its wear. All of the crosswalks are elevated to
serve as speed bumps as well, causing vehicles to slow down
significantly. These will represent a high frequency pedestrian
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Fig. 6. Simulation model of Single Pedestrian Crosswalk

Fig. 7. Three-Way Intersection as found in TalTech path.

crossing area, so they are expected to be more active than the
pedestrian path entries.

Some parameters to consider in this piece are the width of
the walkway, which should be at least two meters and go up to
five meters representing just about all walkways of this kind.
In terms of actors, the number, type (groups or solo) and rate
of people crossing are also added attributes to be varied.

Fig. 8. Simulation model of Three-Way Intersection.

3) Three-Way Intersection with Barrier: At the beginning
of the shuttle route, there are two areas where a road exits the
main path perpendicularly like a three-way intersection. One
of these goes into a parking lot while the other goes into the
area surrounding a building with a barrier. The logic that a
car follows when arriving at a barrier can be critical for some
test scenarios. Hence, by including the barrier as a part of the
3-way intersection, the road piece becomes more versatile.

Parameters for this segment includes the number of lanes,
following a similar format for the already implemented four-
way intersection of the framework. Other parameters are
boolean, representing whether the main road is bidirectional
and whether the outgoing road is bidirectional. The properties
of the road that connects to the barrier would resemble that
of the multi-lane road.

4) Extra Road Area: The shuttle route has an extra stretch
of road next to a group of dumpsters. This piece is on the
same asphalt plane as the road next to it and not above some
curb. Both the dumpster area and this extra area extending
from it are separated from the main road simply by a lane
marker. This area is distinguished from the dumpster areas for
accurate representation, and its geometry and separating lane
marker are its varied properties.

5) Open Area: Once the path arrives at the end, it reaches
an open area surrounded by TalTech buildings, some parking
spaces, and pedestrian pathways. There is an actual road on
the other side beneath a sky bridge connecting two of the
buildings.

This piece will have the most stochastic properties, as there
is no defined path for vehicles to travel and no defined path
for people to walk through. With high activity, vehicles will be
moving around and parking; and pedestrians will be walking
around the space.

6) Garbage Truck Entry: At two points along the path,
the road provides some connection to an area where garbage
trucks can pick up the dumpsters. On one of the areas, the
curb drops as seen above for the garbage truck to drive in,
and in the other, the road is simply extended to the side with
a lane marker between the road and the area for dumpsters.

Unless the logic for garbage trucks is going to be imple-
mented in some format, either as the ego vehicle or as an
actor that the ego vehicle interacts with, this will be part of
the previously mentioned extra area (which will be tagged onto
the multilane road in the simulation model).

7) New Road Piece Attributes:
a) Median: The median is a unique part of the road

pieces that needs to be added to he models. The ‘median’
shows up in the west half of the path and splits the nonspecific
lanes going in either direction. At the start of the median on
either side, a sign points to which side the driver should go
to.

In the simulation, the median is modeled so that it can be
varied in terms of its width, length, as well as how fast it
tapers off on either end. The height may or may not be an
important metric for the ‘median’ piece in general as most
medians use no walls to split lanes of the same road, and they
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Fig. 9. Median as found in TalTech path.

Fig. 10. MATLAB implementation of Median as Attribute.

are not pertinent to how a car should act in a scenario. Rather
than creating a separate road piece, median is appended to
the current model’s multi-lane road to take advantage of the
existing logic for creating unique geometries.

b) Outlet: In the TalTech shuttle, there are two outlets
that do not go anywhere surrounding the median and leaving
empty asphalt rectangles extending from the road. The second
outlet goes into a larger area but is blocked off, and therefore
serves essentially the same purpose.

In the simulation, if the outlet is pertinent to scenarios, then
its width and horizontal height will be varied, determining
the size of the rectangle. The position along the road and
whether it is on the right or left side will also be set up as
a parameter. Rather than make this a unique piece, this will
also be supplemented to the multilane road.

c) ‘AV Only’ Segment: The campus AV path previously
had two posts along with a no entry sign mark a point along
the road that blocks access. However, the signage changed

recently and now an “AV only” sign sits there with no posts.
Scenarios that are meant to replicate the real TalTech path
will not have other vehicle actors beyond this point, only the
vehicle under test (or more AVs).

8) Sidewalk Entry: At a few points along the path, a small
sidewalk reaches the road without arriving at a pedestrian
walkway. This implies people are crossing through here, but
not enough to justify building another walkway.

This is implemented as an extension of the multilane road
to mark a place of higher frequency pedestrian crossing. Since
there is no walkway, it is important to note that the path the
pedestrian takes might not always be straight across, but rather
going out at some angle from the starting point. To define the
probability, either any pedestrians placed are placed on one
of these or the distribution of starting points for pedestrians
lean in favor of these points. A high probability of pedestrian
crossing must be defined at these points.

a) Grass Path Entry: Same as the sidewalk path entry,
these grass paths were identified due to their obvious wear
from use when crossing. These may have an equal or smaller
amount of people crossing than the sidewalk equivalent.

The grass path entry exists as an extension/property of the
multilane road and will be placed in the same category as the
sidewalk path entry. Because it shares all properties except
visual with the previous piece, there’s no real need to also
account for it except for differing the frequency of pedestrian
crossings, which will be accounted for by making that property
variable. See previous entry for frequency definitions.

C. Software-in-the-Loop Testing with Generated Scenarios

It is time-consuming, costly and risky to use an untested
control algorithm directly in a road test of an AV. Accordingly,
sufficient and reliable simulation tests should be performed to
examine the reaction of the algorithms in different scenarios
before deploying them to the real vehicle. Therefore, SiL
has become a critical and indispensable part of self-driving
technology development.

ISEAUTO design and development process follows early
stage design approach [15] supported by SysML technique
[16] developed jointly by Estonian-Finnish research offering
high modularity and fast interface creation process. The au-
tonomy is achieved by running Autoware [17], a ROS based
open-source software, enabling the self-driving functionality.
Autoware platform provides an environment to associate all
sensor data such as cameras and lidars for creating a unified
observation and then make decisions based on this information
by its control algorithms.

In our aprroach, MATLAB AD toolbox is used as the
simulation software to create a virtual scene based on the
real specified path in TalTech campus. On the other hand, the
decision-maker algorithm, which runs on the vehicle side in
the Autoware software, was applied to control the velocity and
steering of the simulated vehicle. However, using the control
and lane follower algorithms standalone needs some modifica-
tion in the Autoware software. All necessary information that
is provided by real sensors for the control algorithms must be
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replaced by new virtual sensor data from the simulation side.
Additionally, actuation command issued by Autoware that was
sent to the motor controller hardware must be sent to the
MATLAB side. In this simulation, a two way communication
is established between ROS and MATLAB to subscribe and
publish data to and from specific nodes. Fig. 11 shows the
simulation loop, which is now complete as the Autoware is
connected to MATLAB.

Fig. 11. Schematic view of the SiL testing with simulation loop.

MATLAB scenario generation enables the examination of
the TalTech AV shuttle’s decision-making algorithm in dif-
ferent cases and interaction with other vehicles, bicycles and
pedestrians. Fig. 12 demonstrates how control algorithms are
developed through simulation of different scenarios. When the
algorithms successfully pass a test, the next scenario is created.
The algorithms are modified according to the results of simu-
lation scenarios that the AV fails. This process continues until
an adequate number of cases are examined. These modified
algorithms are then deployed to the real vehicle to perform a
test ride.

Fig. 12. SiL is used with scenario generation to develop control algorithms.

IV. IMPLEMENTATION

The first step in our work flow is analyzing the path that the
AV operates on and breaking it down into the types of atomic

Fig. 13. Overview of the scenario generation workflow

Fig. 14. Entrance to a parking lot at TalTech AV route

pieces that make up the path. These pieces are then modeled in
MATLAB to be able to generate scenarios that directly reflect
the analyzed path as well as variations on it. The developed
pieces are also collected in a database to be able to generalize
the methodology to all paths that AVs operate on. An overview
of the workflow is given in Fig. 14.

The first AV path that our methodology is applied on is the
AV testing path at TalTech. The route includes turns, medians,
pedestrian crossings, and roads that connect it to parking
lots, each of which had to be integrated into the scenario
generation either as an individual road piece or as a property
of theirs. Once the segmentation and programming process
was complete, each section of the AV path could be tested
with, adjusting its properties as necessary using our existing
validation language [3].

An important implementation example from the main seg-
ments of the TalTech path that we focused on programming
into our scenario generator as an individual piece was one
of their buildings’ entrances which led into its parking lot.
This entrance (See Fig. 14) included a barrier leading to the
parking lot and medians going either way into the main road.
On top of cars entering and exiting the parking lot, there is
a high frequency of pedestrian traffic, making this a complex
interaction for an AV.

Once it was decided that this segment would become a
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Fig. 15. ’Side Lot Enter’ road piece in the scenario generator

piece, all of its attributes that could affect a logical scenario
would have to be parameterized, allowing for testing in the
space around the case this piece was based on. Each of these
parameters exists as a column in our matrix-based language for
describing road networks. Each row defines an individual road
piece that is stitched to the piece described by the row before it
if it does not break the scenario, and so the space around what
type of road piece one of them comes from or continues to
can be tested as well. For each of the new parameters defined
during the analysis and design process, a new parameter is
created and consequently a new column is added into the road
matrix unless a previous parameter covers it directly or gives
us the same type of a usable value such as a floating point
number that intersections use.

The new road piece that we dubbed ’sideLotEnter’ now
exists as a possible road type that can be generated, with each
of its properties able to be varied (See Fig. 15). This way,
the same basic logic navigating this road can be tested with a
different number of lanes, a different sized median, a different
sized road, more or less pedestrians, and so on.

The same process is conducted for each of the segments
discovered during the path analysis. This enables us to do
stress testing and edge case finding by randomly generating
matrices to be explored by the ego vehicle. The implemen-
tation process is dynamic, which allows implementation of
different segments as needed and ensuring each of them has
complete coverage over all the logical variations possible.
In this paper, we focused on showing those that are already
implemented.

The next phase of our research will be to implement SiL
with TalTech’s AV program to run through the randomly
generated scenarios, and also to identify critical scenarios
along the way. This phase takes advantage of computation
power by running as many scenarios as possible in parallel
and consecutively for stress testing.

We also work on a technique to identify corner cases. The
rare, corner cases will be identified and stored in a database.
Since the matrices used to in the scenes generate the scenarios
in a deterministic manner, the tests are repeatable. Therefore,
the corner cases can be reused exactly as when they were
caught. These scenarios make it to the final phase as we

perform testing using HiL and ViL.

V. CONCLUSION

The testing and validation of an AV is critical for its deploy-
ment in the transportation system. The validation approach in
this paper takes the real problem of AV validation at TalTech
campus and builds a workflow for it. This paper presents the
completed phases of the project, where simulation approach
is integrated with test generation methodology. The overall
project combines simulation with SiL testing and finally
a physical demonstration. The successful operation of this
testing scheme will enable the generalization of the approach
and removal of current ad-hoc and ineffective methods of
validation.
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ABSTRACT 
One of the primary verification criteria of the autonomous 

vehicle is safe interaction with other road users. Based on 
studies, real-road testing is not practical for safety validation 

due to its time and cost consuming. Therefore, simulating miles 

driven is the only feasible way to overcome this limitation. The 

primary goal of the related research project is to develop 

advanced techniques in the human-robot interaction (HRI) 

safety validation area by usage of immersive simulation 

technologies. Developing methods for the creation of the 

simulation environment will enable us to do experiments in a 

digital environment rather than real. The main aim of the paper 

is to develop an effective method of creating a virtual 

environment for performing simulations on industrial robots, 
mobile robots, and autonomous vehicles (AGV-s) from the safety 

perspective for humans. A mid-size drone was used for aerial 

imagery as the first step in creating a virtual environment. Then 

all the photos were processed in several steps to build the final 

3D map. Next, this mapping method was used to create a high 

detail simulation environment for testing an autonomous shuttle. 

Developing efficient methods for mapping real environments and 

simulating their variables is crucial for the testing and 

development of control algorithms of autonomous vehicles.  

Keywords: Virtual environment, interaction, simulations, 

safety, Autonomous Vehicle 

1. INTRODUCTION
Geospatial data has an essential role in an estimated 80% of

our daily decisions [1] and various urban planning activities. 

Aerial or satellite imagery collected through remote sensing or 

earth observation is used as a data source for many base map 

activities and creating virtual environments for different 

purposes. Previous research has demonstrated the use of satellite 

and aerial imagery as a way of extracting information for 

creating and updating maps [2], [3] as well as to provide input 

for urban models [4]. Essential features of the urban 

environment, such as roads and buildings, may then be digitized 

in the imagery either by experts [5] or in participatory mapping 

projects by a wider public [6]. 

During the last two decades, substantial work has also 
centered on automatic feature extraction from high-resolution 

satellite and aerial photos [7], [8], [9]. However, the temporal 

resolution of standard sensors is limited by the restricted 

availability of aircraft platforms and the orbit characteristics of 

satellites [10]. Another drawback is the cloud cover, which 

prevents the acquisition of images via these platforms. These 

restrictions hinder the use of satellites or manned aircraft for map 

updating purposes, as this may increase the cost and time. To 

provide the high-quality and up-to-date information required to 

support urban governance and informed decision-making, Van 

der Molen [11] calls for land surveyors to make use of the 
potential of new affordable, geospatial technologies. 

Unmanned Aerial Vehicles (UAVs), which are proving to be 

a successful data acquisition tool designed to operate without a 

human pilot onboard, are an appropriate example of such 

emerging technology. The term UAV is commonly used, but 

other terms, such as drones, Unmanned Aerial Systems (UAS), 

Remotely Piloted Aircraft (RPA) or Remotely Piloted Aerial 

Systems (RPAS), have also been frequently used in the 

geomatics community [12].  

The primary aim of the research project is to use gathered 

from real-world terrain point-cloud data and Virtual Reality (VR) 

technologies to develop the Digital Twins (DT) for robotics 
simulation [13].  The central hypothesis of the project is that the 

test method and metrics for human-robot teaming should be 

developed first in DT to increase the safety level of physical 

industrial robotic systems. However, the first step toward it is the 

creation of a feasible environmental model for this task, which is 

being aimed at the related paper. 

The main aim of the paper is to develop an effective method 

of creating a virtual environment for performing simulations on 

industrial robots, mobile robots, and autonomous vehicles from 

the safety perspective for humans.  
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2. MATERIALS AND METHODS
The advancement of drone technology made it possible to

take sensors into new heights. LiDAR equipped drones, aerial 

imagery have all become mainstream. Today, the capabilities of 

these machines are used in a vast spectrum from crop assessment 
to archeological discoveries. Now, more than ever, there is a need 

to map and digitalize a physical environment. The mapping of an 

environment can be performed for various reasons. It could be 

performed to enter places such as caves where it was not possible 

before, or it could be performed for simulation purposes. 

In this research, the map was created based on the aerial 

images taken by a mid-size drone from the real specified path for 

running an autonomous shuttle in the Tallinn University of 

Technology campus. This process was carried out in three main 

steps. Fig. 1 shows these steps, which started from capturing 

images by the drone, then processing the data, and classifying 

them into different objects and finally created in the Unity 
environment.  

FIGURE 1: THREE MAIN STEPS TO CREATE A MAP BASED 

ON CAPTURING PHOTOS 

2.1 MAPPING STEPS WITH UAV-S 
In the photogrammetric approach of mapping, the data is 

captured by a camera-equipped drone, flying over the area to be 

mapped. Images are captured in a grid-patterned flight path in 

different camera angles at a determined altitude to ensure most 

coverage of the area. Capturing images is one of the most 
challenging steps in the mapping process due to the significant 

effect of the pictures on the final work. On the other hand, the 

weather conditions and the sunlight made it a little harder to get 

decent photos for processing. The taken images are geotagged 

thanks to the onboard Global Positioning System (GPS) module, 

and their orientation is determined by the drone’s Inertial 

Measurement Unit (IMU). If both the orientation and the 

position of the images are known, they can be stitched together 

to form a 3D representation of the area. Fig. 2 shows a real 

captured picture and the corresponding object in the created map. 

FIGURE 2: (LEFT): DRONE CAPTURED PHOTO, (RIGHT): 3D 

CREATED OBJECT 

The taken pictures can be processed with photogrammetric 

software to generate a rough point cloud (see Figure 3). 

FIGURE 3: DENSE POINT CLOUD CREATED BY METASHAPE 

PRO 

FIGURE 4: CLASSIFIED POINT CLOUD 

Depending on the application, in complicated data sets, 

there can be some imperfections in the point cloud, such as 

power transition lines, trees, moving objects, etc. These may be 

classified or removed from the point cloud to ensure a clean and 

segmented end model of the area. The classified map was shown 

in figure 4. Segmentation is useful to label different objects and 

can be used to train self-driving vehicles in a simulated 

environment. Segmentation is also useful when generating 

details back on the terrain in unity (see Fig.6). Classified points 
can be read individually and turned into a grayscale mask to act 

as a template for where to generate terrain details such as trees, 

grass, etc. The classification can also be used in order to ignore 

and remove imperfections while creating the terrain in unity. 

Fig.5 shows a terrain created from the classified point cloud with 

vegetation and buildings removed. This approach is fast and 

cost-effective compared to other ones, as the drone does not have 

to carry significant payloads in order to complete its missions. It 

is also worth mentioning the convenience of RGB color data 

provided by the drone’s camera (see Fig. 2). 
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FIGURE 5: UNITY TERRAIN 

The digitalization of an environment proves to be very 

useful in many scenarios. It can be applied to the construction 

industry to analyze ground characteristics to agricultural fields 

to optimize crop growth, and among many other things, it can be 

used in the development of autonomous vehicles to simulate and 

test the characteristics of a vehicle on a determined terrain. Not 

only would this make testing of sensory behaviors and control 
algorithms easy, but it can also reduce the risk of error to a 

minimum and reduce the costs of equipment. For an autonomous 

vehicle to be approved and certified for general operation, its 

software must be tested and validated as safe or more stable than 

a human equivalent. This requirement can be quantified 

statistically. Research by RAND [14] showed that it would 

require between 8 billion and 11 billion miles of road testing over 

a span of 400 to 500 years to show the reliability of autonomous 

cars to adequate levels of statistical trust in typical cases. Clearly, 

this is not practical. The only realistic way to overcome this 

constraint is simulating miles driven in virtual environments that 
were created based on the real ones. 

FIGURE 6: UNITY TERRAIN WITH DETAILS 

2.1 SIMULATION - USE CASE WITH SELF-DRIVING 
CARS 

Safety verification and validation of AGVs (autonomous 

ground vehicles) are performed based on two main approaches. 

One is the online test, which refers to testing real self-driving 
vehicles in real scenes. On the contrary, simulations were used 

to perform tests in virtual scenarios, which is known as an offline 

test. Due to the fast development of AVs, exploring a structure 

for testing and verifying algorithms that can be applied quickly 

and safely is essential. It is expensive, time-consuming, and risky 

to use the untested algorithm directly on a real automated vehicle 

to make a road test. Accordingly, sufficient reliable offline tests 

should be performed to examine the algorithms and the HRI 

system before deploying them to the real vehicle. 

FIGURE 7: ISEAUTO AUTONOMOUS SHUTTLE 

This phase has become a critical and indispensable part of 
self-driving technology development. Mapping the environment 

is one of the first steps to define various scenarios as similar as 

possible to real terrains. This study is based on an experimental 

platform ISEAUTO that is an autonomous shuttle as a last-mile 

vehicle [15] (see Fig. 7). ISEAUTO is controlled by Autoware, 

an open source framework which is based on the Robotic 

Operating System (ROS).  

Autoware software has many features, from processing raw 

data of sensors to creating motion commands. In addition to 

working with hardware in the loop processes, Autoware supports 

simulations. Simulation enables us to assess the control 
algorithms and new custom features before deploying them on 

the hardware, such as interactions with other road users or 

reaction of the vehicle on different scenarios. Maps play a vital 

role in Autoware operation, especially in navigation and 

localization, and should be considered carefully. Autoware itself 

can work with LiDAR point-cloud maps to navigate the vehicle. 

However, for utilizing the 3D graphical map like Fig. 6, 

Autoware needs to be connected with another simulator that 

works based on a graphical engine like unity. Fig. 8 shows the 

difference between these two maps, which are used in the 

simulations. In this figure, the left picture is a vector map merged 

with a LiDAR point-cloud map that is used in the Autoware 
software. The right one is the same area but in a 3D game engine, 
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which is created by the method described. In the game engine 

terrain, we have more options to customize. 

FIGURE 8: TWO DIFFERENT MAPS USED FOR SIMULATION 

IN DIFFERENT ENVIRONMENTS 

In our simulation, LGSVL simulator was utilized in order to 

use the created unity map. it is a simulator that facilitates the 

testing and development of autonomous driving software 

systems. It enables developers to simulate billions of miles and 

arbitrary edge case scenarios to speed up algorithm development 

and system integration. This simulator gives us the ability to get 

virtual sensor data from the simulated environment, such as 

LiDAR point-cloud or cameras and receive the vehicle 

commands from the vehicle control software to navigate the 

vehicle inside the virtual environment. It is also fully compatible 
with our self-driving vehicle software that increases the 

simulations validity. 

 To validate the safety and develop the control algorithms, 

our simulation follows the diagram, which is shown in Fig. 9. 

Different scenarios, including high potential risk situations, will 

be examined through this method, such as overtaking, pedestrian 

crossing, and mix conditions.  

Figure 9: PROCEDURE OF THE SIMULATIONS THAT 

EVALUATE DIFFERENT SCENARIOS. 

In the top layer of the simulation, the map and desired 

scenarios were generated. The base layer is where the 
simulations were performed by connecting Autoware to the 

LGSVL simulator. Autoware uses its features like navigation and 

object detection in the process, while the LGSVL simulator 

creates a virtual environment with virtual sensors. Virtual 

LiDAR and camera perception provide all the required data for 

Autoware control algorithms, such as localization and 
navigation, to operate in the simulation environment like the real 

one. 

Through these simulations, algorithms will be modified and 

developed according to the test result of the simulated scenarios. 

If they meet the safety requirements, then a new scenario will be 

created, and the process continues until adequate cases are 

examined. These simulations also led to adding new HRI 

systems to the shuttle, such as LED displays, which results in 

increased safety and reliable interaction approaches [15]. 

3. RESULTS AND DISCUSSION
Now, it is clear that with a low-cost UAV and

photogrammetric techniques, it is possible to obtain high-quality 

virtual environments which are adequate to use in different 

simulation scenarios. Compared to the time and cost of 

traditional photogrammetric surveys, this strategy represents a 

promising alternative. Creating maps from places, which can be 

the edge cases for HRI system scenarios in the AGV-s 

simulation, helps us to understand what is going on under our 

autonomous shuttle control software in the high-risk scenario of 

interactions. Furthermore, creating a virtual environment in a 

game engine like unity enables us to customize the environment 

and set any external variable (such as, weather simulation, 
friction on the road surface, etc.) to create realistic test scenarios. 

Although, mapping with UAVs is an interesting undertaking 

but not without challenges. Most of them are related to weather 

conditions, battery management, and logistics. For capturing 

high-quality pictures, the amount of sunlight that is related to 

cloud cover is a key factor because of the reflection effect on 

them. Also, wind speed, rainy or snowy weather can affect the 

flight and photos quality. It is normal in some areas to wait for a 

good flight and data capturing condition for several months.  In 

large-scale mapping projects, computer processing requirements 

are one of the main challenges faced by the application; however, 

there are some technological developments, such as GPU 
processing that are continuously reducing the computational 

bottleneck. However, with a little planning, these issues can be 

solved. 

Another big challenge was, places where there were no 

point-cloud data which would cause holes in the generated 

terrain. This may happen due to dense vegetation in the area or 

poor coverage of the scanned terrain. It can also arise during post 

processing of the point-cloud, especially when ground points are 

separated from the rest. In order to mitigate these issues, the 

simplest solution is to interpolate the nearby pixels of the holes 

when creating necessary textures and images.   
This research makes use of an RGB camera for creating a 

map based on real terrains. The obtained map is accurate enough 

to use as a virtual environment for our simulation purposes. 

However, a LiDAR sensor can be utilized to scan from the 

ground as well to improve the quality of the produced result. 
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The main future objectives of the related research: 

1) To develop test methods, and Key Performance Indicators

(KPIs) developed for HRI to evaluate autonomous robotic 

systems in regards to collaboration with the human in a 

standardized approach. 
2) Import those test methods and metrics, to the Virtual test

bench for various autonomous robotic systems that are enabled 

with the Virtual Reality (VR) toolkit for the human presence 

simulations. 

3) Perform experiments with integrated metrics, UAV

models integrated into a digital, realistic environment, and recap 

results for the optimization of the physical AGV-s. 

4. CONCLUSION
Prototype Virtual Environment for safety experiment

simulations was developed by usage of point cloud data of the 

real physical environments. This data was obtained by 

employing a surveyor UAV on a specific area. Moreover, 

simulations of the AGV safety concept were introduced for 

future development. In these simulations, the edge case scenarios 

which have more potential to cause errors in the HRI system will 

be reviewed. Future research will address mainly the integration 

of the HRI metrics and the AGV simulation model to the virtual 
environment for efficient and safe for human being's 

experimental work. 
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1. INTRODUCTION 
 
Development of autonomous vehicles is one of the top 
trends in the automotive industry and the technology 
has been evolved to make them safer. Thus, engineers 
are facing new challenges, especially in moving toward 
Levels 4 and 5 of the Society of Automotive Engineers 
(SAE). To place autonomous vehicles (AVs) on roads and 
evaluate the reliability of their technologies, they have to 
be driven billions of miles [1]. It would take a long time 
to achieve this, unless with the help of simulation. 
Furthermore, due to the past real crash cases of AVs, a 
high-fidelity simulator has become an efficient and alter -
native approach to provide different testing scenarios for 

controlling these vehicles, also enabling safety validation 
before real-road driving [2–5]. Different high-resolution 
virtual environments can be developed for simulators by 
using cameras or lidars to simulate the scenarios as close 
to the real world as possible [6]. Also, virtual environment 
development enables us to customize and create various 
urban backgrounds for testing the vehicle. Creating a 
virtual copy of an existing intelligent system is a common 
approach nowadays, called a digital twin [7,8]. Extensive 
research and development, such as in [9,10] or [11], has 
been performed on AVs in recent years involving simu -
lation. However, most of that has employed a low-fidelity 
simulator that cannot be a reliable reference for safety 
validations. 

In this paper, we focus on the utilization of a high-
fidelity simulator for an AV shuttle at Tallinn University 
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Abstract. The autonomous vehicle (AV) industry aims to design strategic plans to ensure the safety of the developed systems before 
their mass deployment. Real-road testing is shown to be impractical for validating these systems as it requires many years if not 
decades of testing in different environmental conditions. For solving this issue, the method should be complemented with simulation. 
The primary goal of this research was to develop advanced techniques in the safety validation area by using end-to-end simulation 
technologies. In this study, we present a simulation approach for safety evaluation of an AV shuttle, iseAuto, currently operating at 
the Tallinn University of Technology campus. We created a virtual environment by using geospatial data from the specified path on 
the university campus that includes all relevant features. Then, we converted the map to a 3D format applicable for the SVL simulator. 
Also, we provided the AV 3D model to use in the simulation and equipped it with the SVL virtual sensors to provide data for the 
Autoware perception algorithms, which is the control software of the shuttle. To show the efficiency of the proposed method, we 
designed two overtaking scenarios and observed the AV behaviour under the test. Finally, we demonstrate how the system enables 
us to evaluate AVʼs decision-making performance and safety in different situations. 
 
Key words: autonomous vehicle, simulation, safety validation, high-fidelity simulator.
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of Technology (TalTech), Estonia. The TalTech AV re -
search group is well known for its AV shuttle, iseAuto 
[12], which is operational on the campus for experimental 
research purposes (Fig. 1). The vehicle was designed and 
developed from scratch by implementing the previously 
proposed mechatronic design methodology [13–15] with 
a special focus on early design stages. The first prototype 
development was a joint venture with TalTech and the 
local industry Silberauto [16]. This shuttle is controlled 
by Autoware [17], a Robotic Operating System (ROS) 
based platform for self-driving vehicles. 

The overall research project was planned to be 
executed in two stages. First, the virtual environment was 
built based on the campus AV road area, where most of 
our real experiments take place, to create the simulation 
framework. We used geospatial images to generate the 
environment as a Unity terrain. Among different modern 
AV simulators such as CARLA [18], LGSVL (in 2021 the 
name was changed to SVL) [19] and Gazebo, we opted 
for SVL to be our simulator due to its compatibility with 
our control software (Autoware) and our terrain gen -
eration platform Unity. Another reason was to create 
different scenarios and perform software-in-the-loop (SIL) 
simulation by connecting Autoware with SVL. This en -
ables us to find a better sensor configuration and settings 
in addition to the verification of the decision-making 
system that leads to safety assessment.  

2. SIMULATOR 
 
Simulation has been widely used in vehicle manu -
facturing, particularly for mechanical behaviour and dy - 
namical analysis. However, AVs demand more due to their 
specific nature. Simulation in various complex environ -
ments and scenarios involving other road users with 
different sensor combinations and configurations enables 
us to verify their decision-making algorithms. One of the 
most popular robotic simulator platforms is Gazebo. It is 
based on ROS and utilizes physics engines and various 
sensor modules suitable for autonomous systems. Never -
t heless, Gazebo lacks modern game engine features such 
as Unreal and Unity, which give the power to create a 
complex virtual environment and realistic rendering. 

CARLA and SVL, on the other hand, are modern open-
source simulators based on these game engines, Unreal 
and Unity respectively, which also have good compati -
bility with our AV stack Autoware. However, comparing 
these two is beyond the scope of our dis cussion, but we 
selected SVL as our simulator mainly because of its 
compatibility with our terrain generator Unity. 

Figure 2 shows a full map of the simulation work -
flow and different layers in the simulator as well as the 
control software (Autoware). Vehicle 3D model and the 
virtual environment, which were built inside Unity, were 
imported to the simulator. The simulator allows cus -
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Fig. 1. TalTech iseAuto – an AV shuttle. 



tomizing the environment to create different scenarios 
such as adding/removing other road users, inserting traffic 
systems, adjusting the time of day and the weather of the 
scene. There is a scenario generator API that connects to 
the simulator and creates various scenarios according to 
the user definition. Then, the virtual sensors used in the 
AV provide information for the perception of the environ -
ment. This information is transferred via a ROS bridge to 
our control software platform to use in the perception 
algorithms for the localization and detection. Perception 
results are used in the Autoware planning section which 
makes the control commands for the AV. These control 
commands are sent back to the simulator via the ROS 

bridge to navigate the vehicle inside the simulator. Further -
more, in the case of any failure in any scenario, some 
sensor data and vehicle navigation commands are re -
corded for further study. 

The iseAuto 3D model and its lidar sensors are 
illustrated in Fig. 3. A Velodyne VLP-32 was installed at 
the top front of the shuttle and a VLP-16 at the top back. 
Two Robosense Bpearl were installed at the left and right 
sides of the vehicle. Furthermore, to cover the blind zone 
in front of the vehicle, a RS-LiDAR-16 was installed in 
the front bumper. This lidar configuration creates a good 
point-cloud coverage around the vehicle for perception 
purposes. 
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Fig. 2. High-level architecture of the simulation and the AV system. 

Fig. 3. iseAuto simulated model with different lidars installed. 



3. VIRTUAL  ENVIRONMENT  CREATION  
 
The fierce competition in the gaming industry nowadays 
has generated many features for game engines. These 
engines can simulate physics and thus be exploited as 
simulators aside from game development. SVL and others 
have already taken advantage of the aforesaid engines and 
created a framework for testing autonomous vehicles 
within such physics simulators. Even though these simu -
lators provide some basic tools and assets to get started, 
it is still not sufficient. To make it more realistic, we need 
to have real-world terrains simulated. 
 
3.1. Workflow 
 
In order to create a terrain for simulation, the area to be 
simulated has to be mapped. There are certain steps to 
follow: 
● Data Collection and Processing; 
● Terrain Generation. 
Data is collected by aerial photography and processed 
further to obtain a dense point-cloud of the area to be 
mapped. The point-cloud is then processed through a 
process called segmentation. Lastly, it is fed into Unity as 
an input for terrain generation. 
 
3.2. Data  collection  and  processing 
 
Aerial imagery of the area to be mapped has to be 
captured with a camera drone. The images are captured at 
a grid flight path, which ensures that the captured images 
cover different sides of a subject. In order to make sure 
that the images have maximum coverage, the flight path 
is followed three times from different camera angles but 
at a constant altitude. Taking aerial photos is one of the 
most important steps in the mapping process as it will 
significantly affect the outcome of the process and the 
amount of work to be done to process those images. There 
are also external factors that may affect the quality of the 
pictures taken off the ground. Weather conditions and 

scene lighting may create artifacts on the pictures, which 
may disturb the photogrammetric process. The images 
taken are georeferenced by the drone and if necessary, a 
stationary Real Time Kinematic (RTK) device can be 
utilized to mitigate errors and shift the positioning data 
stamped on the pictures. The onboard IMU provides the 
pictures with orientation, so that later they can be stitched 
together and used for photogrammetric processing. Third 
party software aligns and creates the dense point-cloud 
from the pictures that were captured. Once the dense 
point-cloud is created, the segmentation and classification 
of the points is needed in order to separate unwanted 
objects and vegetation from the point-cloud data. How -
ever, removing is not to be performed in the point-cloud 
as the positional information they provide for their 
respective objects will aid terrain generation to spawn 
details. Figure 4 shows the three main steps to generate 
the Unity train from geospatial data. 
 
3.3. Terrain  generation 
 
Digitalization of a real-life environment can be used for 
simulating AVs in countless different scenarios without 
taking the vehicle out for once. Terrain generation from 
point-cloud is performed right in Unity. In-house de -
veloped plugin reads a pre-classified point-cloud file, and 
based on chosen parameters it creates a normal map, a 
heightmap and a colour map to utilize in conjunction 
with the Unity’s terrain engine to create realistic environ -
ments. 
 
 
4. SIMULATION  AND  SAFETY  ASSESSMENTS  
 
Based on the simulation architecture illustrated in Fig. 2, 
the AV can be run inside the virtual environment. In 
collaboration with Florida Polytechnic University and 
Embry-Riddle Aeronautical University, we developed a 
regime for creating edge-case scenarios for safety 
validation of the shuttle working on our campus pilot road 
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[20]. Now, by using a high-fidelity simulator we can 
simulate different scenarios close to real life in order to 
evaluate the control algorithm performance and safety. In 
terms of defining these scenarios, SVL provides a Python 
API for spawning different objects such as cars and 
pedestrians inside the virtual environment with different 
motion plans. 

Figure 5 shows iseAuto facing a stopped Non-Player 
Character (NPC) vehicle that is spawned in front of the AV. 
Picture (a) is inside the SVL environment while picture (b) 
illustrates the lidar perception of the environ ment in RViz 
visualization tool. There is no filtering applied on this 
point-cloud; therefore, everything is mixed together and it 
is hard to distinguish objects for later processing. One of 
the challenging topics of self-driving development is 
overtaking. The way that the AV should decide for this 
mission and the risks that it faces are under study. Our 
experience with the vehicle trying to pass a stopped NPC 
or an object has led us to focus on this topic more. In this 
way, simulations can help first to improve our perception 
and detection system, and then to improve the mission and 

motion planning for a safe overtake. The first steps for 
detection are filtering and clustering the point-cloud. 
Autoware has some predefined features for them. One 
common point-cloud filtering is ground removal, in which 
some part of the point-cloud defined as ground will be 
separated. Each lidar point-cloud can be filtered separately 
or once after concatenation with other lidars. Filtering 
parameters have an intensive effect on the detection result. 
Sometimes losing 10 to 20 points due to the improper 
filtering will result in the object not to be detected. 

Filtering and clustering are illustrated in Fig. 6. 
Filtering was applied to Fig. 5b. As a result, the ground, 
which can be seen in the figure, is almost removed from 
the point-cloud (see Fig. 6a). However, the NPC points 
remained and they were clustered as an object in Fig. 6b. 
Filtering accuracy results in high-performance object 
detection and safe decision making [21]. Figure 7 il lus -
trates how different ground filtering parameters can 
change maximum distance for detecting a stopped NPC 
in front of the AV shuttle, although both cases have similar 
clustering parameters. Figure 7b shows that the NPC is 
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Fig. 5. (a) SVL environment versus (b) Rviz point-cloud visualization. 

Fig. 6. (a) The ground filtering of the point-cloud and (b) applying of Euclidean clustering. 



detected by the AV shuttle from the distance of 32 metres 
but picture (c) demonstrates that the maximum distance 
enabling to detect an object has decreased to 18 metres. 
The more distance we have for detection, the more time 
we have for making a smooth control decision. In AVs 
with multiple lidars, filtering accuracy can be improved 
by performing it before point-cloud concatenation. 

 
4.1. Scenario  definition 
 
Scenarios are plans for studying simulations effectively. 
A good scenario generator can help to validate the whole 
control system faster in a more reliable way, guaranteeing 
to cover all the corner cases that might cause failure in the 
system. There are several methods for generating the 
scenarios such as human designed, grid search and opti -
mized searching. For example, in [22], the authors imple - 
mented a learning method to find safety-critical scenarios 
for specific tasks. In this paper, for showing the simulation 
workflow, two main and simple overtaking scenarios were 
studied. Figure 8 demonstrates two different situations in 
overtaking: scenario A shows a stopped car that is over -
taken by our shuttle while scenario B shows the same 
mission with an additional car, already starting to overtake 
the two others. 

4.2. Running  simulation 
 
In this section, the two described scenarios are simu - 
lated inside the simulator and shuttle behaviour is moni -
tored. 
● Scenario A 
In this scenario, the shuttle is passing a stopped vehicle 
by generating an alternative local waypoint. The over -
taking algorithm is enabled after the shuttle has detected 
an obstacle in its path. Five different frames of this 
scenario simulation are shown in Fig. 9. First, the AV 
follows the way and detects the obstacle (step 1), then 
stops 15 metres before the object (step 2) and generates a 
new waypoint (step 3). Then, it starts to follow the new 
waypoint, and finally, after passing the obstacle, it changes 
the lane back to the initial path (step 4) and continues its 
former route (step 5). 

By simulating scenario A several times in different 
areas, the overtaking algorithm for passing a static object 
was initially evaluated and verified. But to investigate 
more challenging situations, various road users such as 
other vehicles and pedestrians should be involved in the 
scenario. For this, another scenario was designed by 
adding another vehicle driving forward from behind in the 
opposite lane. 
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Fig. 7. Maximum distance for detecting a stopped NPC after filtration with different filtering parameters. 

Fig. 8. Two different scenarios for overtaking. 



● Scenario B 
Figure 8 shows the scenario B scheme, that a third vehicle 
is overtaking the shuttle and the stopped vehicle. It is 
expected that the shuttle prevents collision and considers 
the opposite lane traffic. Similar to the former scenario, 
five steps of scenario B are recorded in Fig. 10. As seen 
in the simulation, the AV reaches the static object and 

stops to prepare for overtaking (step 1). The moving 
vehicle is visible in the Rviz software (frame 1 image 
below) as a red point-cloud cluster. It is expected that the 
shuttle prevents collision and considers the opposite lane 
traffic while overtaking. In step 2 the shuttle starts to 
overtake and the new path is generated. Before the shuttle 
changes the lane, it meets the moving vehicle in the green 
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Fig. 9. Five different steps of the scenario A simulation in the SVL simulator (top) and in the Rviz (bottom). 

Fig. 10. Different steps of an overtaking process. 



area (collision area, any object inside it is an obstacle), 
then the shuttle stops before the collision happens. Finally, 
after the moving vehicle drives more than 15 metres along 
the green area, the shuttle starts to follow the route and 
changes the lane back to its initial path. 

This scenario was simulated with a different value for 
variables such as the speed of the moving vehicle and the 
lateral position of each vehicle on the road. The results 
recorded collision in some cases and investigations 
showed that due to the limited size of the green area and 
lack of an efficient motion prediction while shifting lanes, 
the AV can collide with other road users that are not 
considered. Therefore, using the current overtaking algo -
rithm without any added prediction feature is rejected and 
it is not safe to be implemented in the real shuttle. 
 
 
5. CONCLUSIONS 
 
Safety validation is crucial for most of the AV develop -
ments and deployments. The simulation as a validation 
approach presented in this paper offers a practical and 
effective way to evaluate the safety in different levels. 
This paper provides the simulation architecture of iseAuto 
with SIL testing, which shows how the virtual environ -
ment and vehicle model are used in combination with 
Autoware to simulate different scenarios. As an illus -
tration, two overtaking scenarios were studied and the 
control algorithm was examined based on its safe per -
formance. In conclusion, the development and utilization 
of this testing scheme will enable the development of 
safety improvement and autonomous vehicle perfor -
mance. 
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Autonoomse  sõiduki  turvalisuse  hindamise  suure  täpsusega  simulatsiooni  meetod 
 

Mohsen Malayjerdi, Barış Cem Baykara, Raivo Sell ja Ehsan Malayjerdi 
 

Autonoomsete sõidukite tööstus planeerib strateegilisi lahendusi, et kindlustada turvalisus enne, kui autonoomsed 
sõidukid viiakse masstootmisse. Turvalisuse saavutamiseks on vajalik läbi viia väga erinevaid teste. Kõikide testide 
tegemine reaalse sõidukiga reaalses linnaruumis on pigem ebapraktiline ja võtaks aega aastaid. Selle probleemi 
vältimiseks kasutatakse simulatsioone. Antud artikli eesmärgiks on välja pakkuda metoodika ja tehnoloogia turvalisuse 
valideerimise simulatsioonideks autonoomsete sõidukite testimisel. Artiklis on välja pakutud turvalisuse hindamise 
meetod, mis on realiseeritud TalTechi linnakus tegutseva TalTechi iseauto autonoomse sõiduki platvormil. On loodud 
virtuaalne mudel linnaku testalast, mis sisaldab eri objekte ja mis on konverteeritud 3D-kaardiks Unity keskkonnas. 
Loodud virtuaalne mudel on omakorda sisendiks SVL-simulaatorile, mis ühendab endas virtuaalsete andurite 
simulatsiooni ning Autoware algoritmid, mis juhivad TalTechi iseautot. Demonstratsioonlahendusena on kirjeldatud 
simulatsioonijuhtu, kui isejuhtiv sõiduk peab tegema möödasõidu seisvast autost, mis blokeerib sõidurea. Lõpuks on 
näidatud, kuidas antud lahendus võimaldab hinnata isejuhtiva sõiduki otsuste tegemise võimekust ja turvalisust eri 
situatsioonides.
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ABSTRACT
Combined safety and cybersecurity testing are critical for assess-
ing the reliability and optimisation of autonomous driving (AD)
algorithms. However, safety and cybersecurity testing is often con-
ducted in isolation, leading to a lack of evaluation of the complex
system-of-system interactions which impact the reliability and op-
timisation of the AD algorithm. Concurrently, practical limitations
of testing include resource usage and time. This paper proposes a
methodology for combined safety and cybersecurity testing and
applies it to a real-world AV shuttle using digital twin, software-
in-the-loop (SiL) simulation and a real-world Autonomous Vehicle
(AV) test environment. The results of the safety and cybersecurity
tests and feedback from the AD algorithm designers demonstrate
that the methodology developed is useful for assessing the reliabil-
ity and optimisation of an AD algorithm in the development phase.
Furthermore, from the observed system-of-system interactions, key
relationships such as speed and attack parameters can be used to
optimise testing.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Testing autonomous driving (AD) algorithms for performance un-
der safety test cases is a predominant focus for developers to assess
the reliability of the algorithm and for optimisation. AD algorithms
are also susceptible to manipulation from cyber threats which target
the advanced hardware technologies sensor telemetry which serves
as an essential input for perception, detection, and control deci-
sions [2, 12, 20]. Existing methods [3, 8] for testing are challenged
by the complexity of evaluating system-of-system interactions to
identify key relationships and parameters, and limitations of test-
ing inherent to real-world AV programs, resource usage and time.
The main idea of this paper is to establish a method for combined
safety and cybersecurity testing of developmental AD algorithms to
evaluate system-of-system interactions to identify and investigate
parameters that impact safety and the effect of cyber attacks, and to
develop future ideas for optimisation of testing. To this end, the pa-
per focuses on three research questions aligned with the challenges
of combined safety and cybersecurity for AD algorithms.

RQ1 How can AD algorithm designers evaluate the reliability
and optimisation of the AD algorithm to both safety and
cybersecurity test cases?

RQ2 Cybersecurity testing is predominantly conducted on well-
established AD algorithms. How can combined safety and
cybersecurity testing be conducted on a developing AD al-
gorithm?

RQ3 What key relations and parameters can we identify that can
optimise safety and cybersecurity testing?

To evaluate these research questions, we apply our methodology
to a developing AD algorithm in a digital twin, software-in-the-loop
(SiL) simulator and real-world AV testing environment. Cyberse-
curity testing and safety testing are often conducted separately,
reducing our understanding of the relationship between failures of
the algorithm caused under normal safety scenarios and failures
caused by the impact of cyber attacks. For AD algorithms in the
development stage, where the reliability and optimisation of the
AD algorithm to safety scenarios have not been established, this ex-
ploration of the relationship between safety and cybersecurity can
offer novel insights to improve the awareness of the AD algorithm
designer to shortcomings in the algorithm.
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The major contributions of this paper are the following:
• Methodology for combined safety and cybersecurity testing
• Safety and cybersecurity test cases conducted on an AD
algorithm under development, and with feedback from the
AD algorithm designer

• An analysis of the combined safety and cybersecurity test
cases that identifies key relations and the sensitivity of pa-
rameters.

• All the code, our AV simulation configurations and research
data used in the combined safety and security testing will
be available for the research community on GitHub.

2 TARGET SYSTEM
2.1 Low-Speed AV Shuttle for Public

Transportation
The target AV for this study, iseAuto (see Fig. 1), is a real-world
AV shuttle for public transportation, operating in numerous EU
countries.

Figure 1: iseAuto autonomous shuttle

The shuttle was developed as part of a project at Tallinn Uni-
versity of Technology’s AV research group. The objective of this
project is to build an open-source AV shuttle that provides a smart
city test bed within the university campus, enabling different types
of urban mobility research. Currently, this SAE level 4 and 5 shuttle
is operating on the campus for experimental and study purposes.
iseAuto uses a multi-LiDAR sensor system for perception and locali-
sation. Two Velodyne LiDARs are mounted at the top front (VLP-32)
and the back (VLP-16) of the vehicle, in addition to two Robosense
RS-Bpearl at both sides (left and right), to decrease the sensor blind
zone around the car.

2.2 Autonomous Driving Algorithm
The AV uses Autoware.ai [11] autonomous software stack which is
an open-source AD software. This software enables us to employ
different algorithms for each main part of the autonomous system
including localization, sensing, detection, and navigation. Open-
Planner navigation planning algorithm.

In this study, we focused on OpenPlanner as one of the most
widely used path-planner modules in the AD software. In the latest
version of this algorithm, which is currently 2.5, the module has
become noticeably more advanced in terms of supporting various
high-definition map formats, predicting the trajectories of other
actors, and using a kinematics-based trajectory generator [5]. This

version is compatible with Autoware.ai 1.15. Open-planner com-
bines global and local planners that jointly utilize the road network
map to generate local waypoints based on a global route and man-
age discrete behaviours such as avoiding dynamic obstacles and
following traffic lights.

The local planner module generates tracks parallel to the main
path defined by the global planner. These tracks are named rollouts
(see Fig. 2). The trajectory evaluator assesses all possible rollouts
in case an obstacle blocks the path. Then, the behaviour selector
will lead the AV to the new safe rollout. Figure 2 shows how open-
planner selected rollout number 6 in order to pass the non-player
character (NPC). It also detects the curb lines and avoids those
rollouts which intersect the curbs.

The algorithm uses the output of the kf_contour_track algo-
rithms to consider all the perceived objects based on the LiDARs
point cloud in its local path planning. Earlier, the euclidean cluster-
ing algorithm received the filtered point cloud data and prepared
point clusters, which is the input of the kf_contour_track. This com-
bination of cluster and contour tracking is done in each sequence
for the open-planner to evaluate possible trajectories and create
the behaviour based on that. Figure 3 shows the diagram of how
the open-planner module works under the AD software package.

Figure 2: How open-planner generates different trajectory to
pass an object

3 COMBINED SAFETY AND CYBERSECURITY
TESTING METHODOLOGY FOR AD
ALGORITHMS

The architecture of the proposed combined testing methodology is
presented in Figure 3. Thismethod takes advantage of a high-fidelity
software in the loop (SiL) simulation [16] approach to validate
and verify the performance of a AD software under critical cyber
security conditions. This method consists of three main following
elements:

• Attack script: which simulates a critical security condition.
• High-fidelity simulator: It is a game engine environment that
provides the physics for modeling sensors and motion.

• AD software: It is the autonomous driving software that
controls the AV.

The combined safety and cybersecurity methodology consisted
of the following iterative steps:

• Scenario Selection
• Analysis of the scenario to extrapolate the safety eval-
uation criterion applicable

• Safety Test Case Setup
– Initialisation of the SiL high-fidelity simulator and config-
uration to the real-world AV
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Figure 3: Architecture of the testing platform

– Initial scenario testing using the safety test cases to assess
the reliability of the algorithm and the quality of the test
data

– Optimisation of the safety test cases to select a subset of
the scenario tests to assess the reliability of the algorithm

– Run of the safety test case scenarios
– Selection of distinct safety test case scenarios which pro-
vide most stable results in terms of success of mission and
safety violation

• Cybersecurity Test Case Setup
– Analysis of the scenario to determine cyber attack strategy
for test cases

– Development of the code for adversary generation in the
SITL high-fidelity simulator

– Selection of attack parameters
– Optimised the cybersecurity test cases
– Evaluate cybersecurity test cases in SiL high-fidelity sim-
ulator

– Real-World AV Testing for safety and cybersecurity
• Results Analysis
– Analysis of the performance of AD algorithm to safety
criteria

– Analysis of sensitivity of attack parameters and driving
parameters

3.1 Testing Environment
All tests are conducted in a virtual environment powered by the
“Unreal game engine” (Unreal) [4]. Carla simulator [6] is one of the
open-source high-fidelity vehicle simulators capable of connecting
to different AD software and scenario generator applications. In
this study, we use Carla 0.9.13 as the high-fidelity simulator. Fig-
ure 3 illustrates the requirements for the high-fidelity simulator to
conduct simulation testing which are two components, the digital
twin of our AV and the virtual replication of our target environment.
These replicated components help us to gain more accurate results
of the proposed platform [14]. The AV digital twin is a 3D model of
our real-world world AV shuttle, designed in Blender, a graphical
3d modelling software, and imported and built in Unreal for de-
ployment in Carla. This model uses the same dimension and sensor
configuration (model, position, and orientation) from the real AV
shuttle. The environment digital twin, in our case, is identical to
the location where we are testing and operating our shuttle, this

includes the urban details and vegetation. The next module in the
simulator is a scenario generator that produces the desired scenario
based on the user input specification. Finally, the simulator engine
generates sensor data from sensors, including LiDARs, cameras and
others and publishes it for other blocks (see Fig. 3 the simulator
block). Then, the AD software receives this data as raw LiDAR
point-cloud information and processes the data as mentioned in
the diagram (Figure 3).

This simulation setup was implemented on a desktop computer
with the following configuration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB

3.2 Scenario Selection
To evaluate the combined safety and cybersecurity testing, we chose
a simple overtaking maneuver, which is one of the most safety
challenging operations [13]. Figure 4 shows the functional level of
the planned scenario. To generate a variety of distinct scenarios,
we opt for the initial relative distance to the NPC 𝐷𝑥 and the NPC
constant speed 𝑆𝑁𝑃𝐶 as the distinct scenario parameters.

Figure 4: 𝐷𝑥 and 𝑆𝑁𝑃𝐶 , define the initial relative distance to
the NPC and the constant NPC speed in each scenario

Table 1: Target scenarios definition

Actor Speed 𝐷𝑥 Goal
AV [0:6]𝑚/𝑠 0 (m) overtake the NPC safely
NPC [1 1.4 1.8 2.1 2.5] [15 20 25](m) keep moving

3.3 Safety Evaluation Criteria
In determining the evaluation criteria for AV safety we consid-
ered two conditions, 1) mission success and 2) safety violations. A
safety violation consists of a collision and dangerous driving be-
haviour. In determining which criteria to apply, we considered the
EuroNCAP [1] and ISO26262 [10] standards as well those used in
composite studies [3, 7, 8]. We derived that the safety goal of the AD
algorithm is to execute the overtaking mission without colliding or
interfering with other ego vehicles or objects and without exhibit-
ing driving behaviour which is dangerous to the AV passengers.
Table 2 details the safety criteria applied in our experiments.

3.4 Safety Test Case Setup
To evaluate the reliability and optimisation of the AD algorithm
for the overtaking manoeuvre, we, firstly, initiated a run of 50
distinct scenarios in the high-fidelity simulator, repeating 6 times.
Each scenario was repeated 6 times to ensure the reproducibility
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Table 2: Safety Evaluation Criteria

Safety
Condition

Data
Label

Description Metric

Succeed Suce AV Successful complete
the mission

Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to
-Collision

DTC Violation of the safe distance
between AV and NPC

AV within 0.5m
of other vehicle

Break on
Driving Lane

BrD AV initiates emergency break
on driving lane

Pass/Fail

Break on
Passing Lane

BrP AV initiates emergency break
on passing lane

Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Violation V Safety Violation

of the outcome. With the mentioned desktop configuration, it took
approximately 100 𝑠𝑒𝑐 for each scenario and, in total, 8.3 hours for
300 runs. The purpose of the first scenario run was to provide a
general overview of the performance of the algorithm. We targeted
a range of 1 to 3𝑚/𝑠 for the NPC speed and 15 to 30𝑚 for the initial
relative distance to the NPC for selecting the 50 distinct scenario
parameters. The results showed that the AD algorithm could not
safely overtake the NPC at an NPC speed higher than 2.5𝑚/𝑠 and
a distance (𝐷𝑥 ) of more than 25𝑚.

Although a high number of scenario variations shows better
coverage in the scenario space to find corner cases, it will lead
to an increase in the time duration of the runs. Furthermore, the
number of each scenario repetitions was not sufficient to statis-
tically explain the occurrence of each safety violation. Finally, it
is worth mentioning that, as our primary study focus is not just
the validation of the AV performance, we need to use an optimum
number of trials for both safety and cyber test cases. Due to this,
we limited the scenario parameters space to the intervals listed
in Table 1 that regressed the test set to 15 distinct cases in a full
factorial setup. This enabled us to repeat the simulation of these
test cases 50 times and apply the full set of safety criteria: collision,
DTC, break in passing lane, break in driving lane, failure to finish,
and mission success.

Each scenario is generated by the Carla scenario runner utilizing
the Python behaviour trees to handle series and parallel events in
the scenario. Figure 5 depicts the scenario scheme starting with
the main sequence behaviour. This series begins with transforming
the actors into the environment and finishes by destroying the
actor block. A parallel behaviour (Driving Toward Intersection) is
defined to run the attack and the scenario stop block while the NPC
follows the defined waypoint. For safety test case scenarios, the
attack block is skipped, and the scenario waits till the stop criteria
are satisfied.

3.5 Cyber Test Case Setup
To determine the cyber attack strategy for implementation in this
test scenario, we analysed the overtaking scenario and its appli-
cability to state-of-the-art attacks on AD algorithms. We selected

Figure 5: Flow-graph of how each scenario is processed in
the simulation platform

LiDAR spoofing as it is a realistic attack in the driving environ-
ment of our real-world AV shuttle [3] and its impact is relevant to
safety outcomes due to the likelihood that the manipulated driv-
ing behaviour will result in collisions, emergency breaking, and
lane violations [20]. Attacks on LiDAR perception predominantly
focus on spoofing LiDAR 3D point-clouds through the following
means: 1) injection of adversarial LiDAR 3D point cloud data to
add adversarial objects to the driving environment inducing a false
positive result of the AD perception [3, 17] 2) removal of LiDAR
3D point cloud data to perturb the ability of the perception algo-
rithm to detect objects in the driving environment, also known as
a false negative result [8, 9] 3) manipulating LiDAR 3D point cloud
data to obfuscate the true distance of environmental objects (Other
road vehicles, pedestrians, other road objects) from the AV, causing
the perception to fail translation 4) implementation of adversarial
mesh in the driving environment to introduce manipulated points
into the LiDAR 3D point cloud and create unpredictable percep-
tion events [19]. The aim of the attacker, in adversarial LiDAR
threat models, is to induce the victim AV to perform dangerous
driving maneuvers, which include; emergency breaking, collisions,
and exceeding the limits of the driving lanes. Variables that have
been shown to influence attack success include; angle of attack of
the adversarial point cloud vector, density of the spoofed points,
duration of the broadcast of spoofed points, distance of the point
cloud to the target [3, 8, 17, 20]. We implemented a variation of the
attack suggested by Yang et al. [20], where the adversary creates
an adversarial roadside object to inject spoofed, malicious LiDAR
point clouds into the target AV LiDAR. In our attack, an adversary
has configured a LiDAR on the roadside to inject malicious point
cloud data into the AV as it is conducting the overtaking manoeuvre.
Figure 6 demonstrates the implementation of our attack.

Using the knowledge gained from literature [8, 17, 20], the pa-
rameters we chose to generate our attack are: density of the LiDAR
point clouds, frequency (the publishing rate of the fake points), du-
ration of the adversarial point cloud broadcast, and location, which
is the relative location between the target vehicle and NPC. As
an infinite number in the range of each of the parameters can be
chosen, we decided to limit our testing to parameter values that
had demonstrated utility to investigate the impact of cyberattacks
on AD algorithms. For example, Hallyburton et al. [8] found that
the success of cyber attacks increased when spoofed point density
were over 80. Therefore we chose a range for spoof point density
from 50 to 300.
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3.5.1 Taguchi Analysis. In this study, we use the Taguchi method
for statistical evaluation [18] of the attack parameters effect on
each safety criterion. The number of tests with four parameters and
3 levels for each in full factorial mode would become unrealistic
to perform, noting that each experiment should repeat 50 times
(81x50 = 4050 distinct scenarios). A design of the experiment is
recommended in order to avoid full factorial tests and reduce the
number of tests without compromising accuracy [18].

A Taguchi design of experiment (DOE) technique [18] was ap-
plied to quantify the influence of four proposed attack parameters;
the false points (FP) density, the FP frequency, the attack duration,
and the attack location. In total, 9 experiments were designed with 3
different values for the four parameters. The analyses hence possess
four factors and three levels for the Taguchi L9 matrix. Table 3 lists
the configuration for each run conducted for cybersecurity tests.

Table 3: Taguchi L’9 matrix for study of factor influence

Num. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

1 50 5 3 3
2 50 7 6 6
3 50 10 9 9
4 150 5 6 9
5 150 7 9 3
6 150 10 3 6
7 300 5 9 6
8 300 7 3 9
9 300 10 6 3

[50 150 300] [5 7 10] [3 6 9] [3 6 9]

Figure 6 demonstrates the cyber attack setup within the overtak-
ing scenario (Please note, the Figure only depicts the overtaking
frame and not the entire overtaking sequence.). The proposed attack
model will start by generating spoof points from the designated
place on the roadside. At the starting point, 𝑃1, the AV has relative
distance to NPC that defines the attack location. After a specific
duration (Attack Duration), the AV reaches, 𝑃2. While the attacker
keeps the malicious LiDAR pointing toward the AVs front LiDAR.
Overall, the spoofed point direction changes from 𝜃1 to 𝜃2.

Figure 6: Attack scheme

Code was created for the generation of the adversarial LiDAR
fake points to be run in the digital twin, high-fidelity simulation
environment. This is available on the GitHub site [15].

4 RESULTS AND ANALYSIS
In this section, we present the results of the safety and cybersecurity
testing of the end-to-end AD algorithm. The purpose of the safety

test case results is to evaluate the reliability and optimisation of the
algorithm.

4.1 Safety Test Case
The aim of the testing is to assess the utility of the methodology to
evaluate the relationship between the reliability of the AD algorithm
to safety and the impact of cybersecurity. As the testing is based
on a real-world AV, we were motivated to establish what results
could be gained from an amount of tests that took into account the
requirements for CPU and GPU resources and the time involved in
running high-fidelity simulations. For instance, 50 distinct scenarios
run 3 times expends x amount of resources, and takes x amount
of time. Therefore, we, firstly, performed a baseline evaluation test
where we ran 50 distinct scenarios of the overtaking manoeuvre,
3 times. Each scenario is distinct based on changes to parameters
such as NPC speed and initial distance to NPC.

In our proposed simulation platform, we perform 15 distinct sce-
narios, run 50 times; in total, 750 consecutive simulation runs were
conducted. Table 4 shows the parameters of the distinct scenarios
evaluated against the safety criteria. Using our configuration for
testing, the AD algorithm shows the performance for the overtaking
manoeuvre with a success rate of 43.9% of the simulated scenarios,
whilst, 66.1% are safety violations.

In Figure 7 is the performance of the AD algorithm.

Table 4: Summary of the safety simulation

𝐷x 𝑆NPC 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 15 1 18% 22% 0% 10% 24% 26%
2 20 1 18% 40% 8% 6% 18% 10%
3 25 1 4% 20% 32% 8% 20% 16%
4 15 1.4 6% 32% 16% 2% 12% 32%
5 20 1.4 22% 26% 14% 6% 2% 30%
6 25 1.4 4% 12% 22% 8% 0% 54%
7 15 1.8 36% 34% 8% 2% 6% 14%
8 20 1.8 22% 12% 2% 2% 0% 62%
9 25 1.8 18% 6% 0% 4% 0% 72%
10 15 2.1 4% 0% 4% 2% 4% 86%
11 20 2.1 8% 10% 0% 0% 0% 82%
12 25 2.1 24% 0% 0% 4% 0% 72%
13 15 2.5 14% 6% 0% 6% 2% 72%
14 20 2.5 44% 22% 14% 0% 2% 18%
15 25 2.5 64% 18% 0% 0% 6% 12%

mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%
STD 16.8% 2.3% 9.8% 3.2% 8.1% 28.3%
min 4% 0% 0% 0% 0% 10%
max 64% 40% 32% 10% 24% 86%

NPC speed is an important parameter as it influences the decision
control for the critical cut-in manoeuvre of the overtaking mission.
In the context of the results of the simulations, we can see that NPC
speed impacts certain safety criteria.

The first such relation that can be seen, is that more collisions
are caused at high speeds, > 2.1 𝑚/𝑠 . This can be the effect of a
poor trajectory evaluator that doesn’t consider the prediction of the
other actors motions in the process of the waypoint generation. In
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Figure 7: The 15 distinct scenarios

most collision cases the AV tried to perform a cut-in while the NPC
collided from the right side. The probability of this safety violation
will be increased as the NPC speed increases.

NPC speed also impacts the likelihood of a DTC safety violation.
In the range of the NPC speed parameter, 1𝑚/𝑠 to 1.8𝑚/𝑠 , it can be
observed that AV Shuttle violates the safe distance to the NPC. This
can be due to the AV speed adjusting relative to the NPC speed and
the cut-in is attempted at low-speed, whilst acceleration is required
to safely attempt the cut-in. This low-speed cut-in firstly causes a
DTC violation and if the overtaking manoeuvre progresses it causes
a collision. DTC and collision correlate based on the relative speed.
A low-speed NPC will likely result in a DTC violation, whilst in a
higher-speed scenario, a collision is more likely to happen.

In the lowest speed range, 1 𝑚/𝑠 to 1.4 𝑚/𝑠 , it is more likely
that the AV will initiate an emergency break in the passing lane.
This is due to the relationship of the NPC speed to the AV Shuttle
speed. The emergency break on the passing lane at low speeds
is caused by a failure of the open-planner trajectory evaluator to
effectively plan the overtaking trajectory. Figure 8 demonstrates
the AV emergency break in the passing lane, for a scenario with an
NPC Speed of 1𝑚/𝑠 . The upper rectangle represents the AV and the
lower rectangle is the NPC. The two rectangles closest to the left
represent the frame that the first emergency break on the passing
lane safety violation occurs. The most right rectangles represent
the end of the mission. The AV speed and the acceleration verify
two hard brakes in the mission while it was in the passing lane. The
failure of the trajectory planning of the open-planner algorithm is
apparent.

The failure to finish the overtaking mission is most prominent
at the lowest speed, 1𝑚/𝑠 , this is due to the time the AV Shuttle
is taking to perform the cut-in process and therefore cannot enact
the overtaking manoeuvre within the simulation timeout which
is 40 𝑠 . It was observed that for the proposed configuration, for
the lower speed of the NPC, the open-planner trajectory evaluator
is not reliable as it suggests waypoints that are not within safe
navigation and this is due to the lack of firm decision-making of
which roll-out to choose. Ultimately, this causes collision and DTC
safety violations. Furthermore, the failure to finish the simulation

Figure 8: A Brake on Passing Lane safety violation

results, we see the low-speed delays in the overtaking manoeuvre
decision making which results in the breach of the 40 𝑠 time-out.

The success rate of the safety test cases increases as the NPC
drives from 1.4 to 2.1𝑚/𝑠 speed. This focal success point around
scenario 10 with an NPC speed of 2.1𝑚/𝑠 can be a sign of matching
the current configuration of perception and open-planner with the
scenario situation.

The safety metrics results are shown in Figure 10 based on the
initial relative distance from the AV to NPC. It shows that the rate
of collision safety violations for longer initial distances from NPC
slightly increased while the success rate decreased. This is the only
trend that can be identified from results for initial relative distance,
so it can be concluded that speed is a more determining parameter
for the safety testing of our AV.

Overall, the results in Figure 7 indicate that speed is a critical
parameter for our AV safety testing platform.

Figure 9: Test Results based on NPC Speed
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Figure 10: Results based on Initial Relative Distance to NPC

4.2 Cybersecurity Test Case
For the cybersecurity test cases we chose 2 of the 15 distinct sce-
narios (Figure 7). This was to allow a greater scale of testing to
be conducted on a select number of relevant scenarios. Scenario
10 was chosen as it demonstrated the most reliable performance,
in terms of the most successful overtaking manoeuvres. Scenario
2 was chosen as it demonstrated the least successful results for
overtaking. These two scenarios were run 50 times each, as had
been conducted with the safety scenario runs. Figure 11 shows the
performance of cybersecurity testing, conducted on scenario 2 and
scenario 10, in comparison to safety test cases.

Scenario 10 results reveal a discernible impact of the cyber attack.
The LiDAR spoofing attack causes an increase in safety violations,
prominently, in collisions and emergency breaking in the passing
lane. This is also a concurrent result of the Scenario 2 test cases.
Figure 3 shows the control level view, that incorporates sensor per-
ception and mission and motion-planning. In the safety violation
cases, we noticed that the euclidean clustering and kf_countour de-
tect the spoofed LiDAR injection as an object and this false positive
detection impacts the local-planning to force the AV to make the
cut-in, in the overtaking manoeuvre process. Specifically, as the
placement of the adversarial LiDAR device is on the left of the AV,
the roll-outs of the left-side are blocked by the trajectory-evaluator.
This forces the AV to veer right and attempt the cut-in process that
causes predominantly collision, DTC safety violations.

Cao et al. [3] and Hallyburton et al. [8] identify density of the
spoofed points to be one of the key variables affecting cyber attack
success rate. Figure 12 and figure 13 present the sensitivity of each
attack parameter according to the cyber attack test cases. From
evaluating the raw data of the test sets, and the sensitivity analysis
for the cyber attack test cases of scenario 10, we concur with these
assessments. We find the rate of collisions is influenced by the
density of the point cloud and the location of the attack. We can
also see the influence the point of attack and duration have on
causing a break on passing lane safety violation. As the duration of
transmitting of the LiDAR point clouds increases and the location
of the attack is further from the NPC, the likelihood of the AV
initiating its breaks is higher.

In comparison, Scenario 2 cyber attack test case results show that
safety violations are less sensitive to attack parameters. This can
be due to the difficulty in interpreting the impact of cybersecurity

on this scenario due to the already high rate of safety violations of
the algorithms exhibited in the safety test case.

Table 5: Results of Cyber Attack applied to Scenario 10

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 54% 20% 2% 0% 6% 18%
2 38% 38% 6% 2% 6% 10%
3 30% 28% 22% 2% 4% 14%
4 24% 28% 16% 6% 2% 24%
5 26% 16% 12% 6% 4% 36%
6 4% 4% 6% 4% 0% 82%
7 32% 14% 14% 6% 0% 34%
8 50% 24% 8% 2% 0% 16%
9 50% 30% 2% 2% 0% 16%

mean 34.2% 22.4% 9.8% 3.3% 2.4% 27.8%
std 15.9% 10.1% 6.7% 2.2% 2.6% 22.2%
min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%
max 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%

Table 6: Results of Cyber Attack applied to Scenario 2

Num. 𝑉Col 𝑉DTC 𝑉BrP 𝑉BrD 𝑉NotF 𝑉Suce

1 16% 34% 28% 8% 14% 0%
2 26% 34% 20% 0% 8% 12%
3 20% 42% 20% 4% 6% 8%
4 26% 34% 16% 0% 14% 10%
5 22% 36% 16% 0% 20% 6%
6 22% 32% 20% 0% 18% 8%
7 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0%

mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%
std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%
min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
max 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%

4.3 Real-World AV Testing
The real-world AV testing was conducted on a private road en-
vironment using our AV Shuttle, and an NPC vehicle (turquoise
Mitsubishi iMIEV). The NPC vehicle is stationary during the tests
as a safety assessment deemed it was too dangerous to conduct the
experiment with a moving vehicle. This is due to the experiment
being within a road environment where pedestrians and other ve-
hicles are present. We conducted 3 test cases; a safety test case,
cybersecurity test case and an optimised cybersecurity test case.
The first test was an overtaking safety scenario. Two repetitions
of the safety test case were conducted. The first test demonstrated
a successful execution of the overtaking mission. The second test
resulted in a DTC safety violation. The AV motioned to within
0.42𝑚 of the NPC. The DTC violation is evident in Frame 3 of Fig-
ure 14, which details the second overtaking safety test case. Frame 4
demonstrates the eventual overtake after the DTC safety violation.
Whilst the number of repetitions in the real-world pale in com-
parison to those conducted in the simulator, the real-world results



CSCS ’22, December 8, 2022, Ingolstadt, Germany Mohsen Malayjerdi, Andrew Roberts, Olaf Maennel and Ehsan Malayjerdi

Figure 11: Performance Results Comparing Cyber Vs Safety Test Cases

Figure 12: Scenario 10 - Cyber Attack Test Cases - Parameter
Sensitivity

Table 7: Result of the 3 real-world test cases

Test Type Num. of repeats success Safety Violations
Safety Tests 2 1 1 DTC=0.42𝑚
Cyber Tests 2 1 1 DTC=0.38𝑚
Optimised Cyber Tests 1 0 1 DTC=0.32𝑚

concur with simulation results, that the AD algorithm does not
have enough reliability for the deployment in real-world missions.

The cybersecurity test was conducted 3 times. Table 7 lists all the
real-word experiments and their results. The first cybersecurity test
demonstrated no impact from the spoofed LiDAR points and the
overtaking manoeuvre was successful. The second cybersecurity
test resulted in a DTC violation, the AV motioned to within 0.38𝑚
of the NPC. After these two tests, we optimised the target angle of
the spoofed points in relation to the attack scheme in Figure 6, to
reduce the attack starting angle of 𝜃1. We did this because during the
real-world test we observed that the reduced angle would provide

Figure 13: Scenario 2 - Cyber Attack Test Cases - Parameter
Sensitivity

assist the spoofed points to be closer to the AV trajectory and would
cause the AV to detour from its intended route. It can be seen that
this did work as the DTC decreased to 0.32𝑚. Figure 15 depicts the
real-world cybersecurity test. Frame 2 represents the moment the
attack was generated and perceived by the AD algorithm.

The videos and images related to the real-world tests are found
on GitHub site.

5 DISCUSSION
From the analysis of the results we interpreted that different safety
violations are connected to different modules of the AD algorithm.

Perception Module) We interpreted the cause of safety violations
of the emergency break in the passing lane and emergency break in
the driving lane to be related to the quality of the ground filtration.
As we observed, ground filtering outcome changes during the AV
maneuvers (turns) because the shuttle body is tilted because of
suspension and this results in the lidar reference frame orientation
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Figure 14: Real-World AV Test - Safety Test Case

Figure 15: Real-World AV Test - Cyber Attack Test Case

changing. Then some part of the ground point cloud as an unfiltered
perception can be seen in the detection algorithms as an obstacle.
This fake sudden obstacle might stop the AV during the motion.
The spoofed LiDAR point cloud threat model is likely to make this
condition worse. Optimisations for this: New body designs to rectify
or limit the issues of LiDAR with the physics of the AV Shuttle are
being developed. To focus specifically on these corner and edge
cases and look at optimisation of the filtering of the perception
algorithm. The latter recommendation is complicated by the fact
it may include trade-offs; if the LiDAR perception algorithm is
specifically tuned for this corner/edge case it could lead to over-
filtration in normal driving scenarios, therefore this is one of the
optimisation options to resolve the perception for the algorithm.

Open-Planner Module)We interpret the cause of safety violations
for DTC and collision as due to an issue of the open-planner in
predicting the trajectory of the NPC during the process of perform-
ing a cut-in, in front of the NPC. The optimisation would involve
incorporation of features that would enable the prediction of the
trajectory of the NPC and for perception improve the perception
of the side-lidar to accurately perceive the NPC. We found that
optimising all the perception and open-planner parameters for our
shuttle model would significantly improve the reliability of the AD
algorithm.

5.1 Open-Planner Developer Feedback
We sent a presentation of our results to the developers of the open-
planner AD algorithm. In response, they acknowledged that it
is a developing algorithm and we are engaged in more detailed
discussions with them on how to optimise the algorithm. They
also announced they are transitioning from Autoware.ai to Auto-
ware.universe which is a more developed and advanced platform.
Amongst their responses, they also pointed to the novelty of re-
ceiving feedback on the reliability of cybersecurity test cases in
addition to safety test cases.

6 RELATEDWORK
The closest contributions to our work are Yang et al. [20], Hally-
burton et al. [8], Cao et al. [3] and Zhu et al. [21]. Each of these
papers utilises a LiDAR spoofing threat model that varies based
on the method for delivering the attack, adversarial generation
and the type AD algorithm. Hallyburton et al. [8] target camera
and LiDAR sensor fusion. They identify a blind spot between the
camera and LiDAR sensor at the rear of the target AV. They use a
malicious, 3D LiDAR point cloud array to inject malicious spoof
points into the rear angle of the target AV. The attack was tested in a
high-fidelity simulation and real-world against multiple perception
algorithms. The results revealed a high rate of success utilising this
attack. Cao et al [3], Yang et al [20], and Zhu et al [21] developed
LiDAR spoofing attacks based on a threat model of a malicious
LiDAR 3D point cloud injection in the road environment and by
the roadside. Each of these contributions demonstrated that cyber
attack results from AV simulation testing can be used to identify
key parameters such as point cloud density, attack location and
duration and that these parameters can be optimised to test the
robustness of perception algorithms. We chose to extend from the
related literature, in our work, in three areas; simulation testing
configuration, safety criteria evaluation and target AD algorithm
is in the developmental phase and is used within a real-world AV
program. A feature of the selected work is that simulation testing
often selected only one frame or a limited amount of frames and
therefore the full driving mission was not observed. Whilst this is
useful for reducing testing resource usage, running massive scale
of tests and applicable to the scope of their work, as our study eval-
uates the end-to-end AD algorithm and combines safety, our study
focused on conducting simulation testing for the entire driving
mission. Secondly, the evaluation of cyber attacks focused on attack
success rate and attack parameters whilst the safety impact on the
AV as a result of cyber attacks was not as clearly elaborated. In our
study, we evaluate the cyber attack test cases with the same criteria
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as the safety case to derive the category of safety violation. Lastly,
most of the simulations use default AV configurations and evaluate
well-established algorithms. Our study uses a simulator configured
for a real-world AV and evaluates an AD algorithm in the devel-
opmental stage where reliability and optimisation are required to
be assessed under safety, non-cyber test cases before the impact of
cyber attacks can be understood.

7 CONCLUSION
We developed a combined methodology for safety and cybersecu-
rity utilising a digital twin, high-fidelity simulation environment
and a real-world AV shuttle for public transportation. We evaluated
our approach on a developing AD algorithm consisting of open-
planner, as the mission and motion-planning module. We evaluated
the reliability of the AD algorithm on an overtaking scenario using
test cases for safety and cybersecurity based on a LiDAR spoofing
attack. The combined safety and cybersecurity testing enabled us
to assess the outcome of the cyber attack in comparison to the
ground truth of the reliability of the AD algorithm established in
the safety testing. This clearly demonstrated the effect of cyber-
attacks regardless of the reliability of the algorithm. We were also
able to assess, from the performance of the AD algorithm, that the
algorithm is not optimised for the overtaking manoeuvre. In our
research, we discovered several sensitive parameters that play a
significant role in the safety outcome of the AV and the success
rate of the cyber attack. Furthermore, we provided the results of
our testing platform to the designer of the open-planner algorithm.
Based on their feedback a process has been initiated to optimise the
AD algorithm. All test scripts and software resources including our
AV simulation configurations and research data used in the com-
bined safety and security testing will be available for the research
community on GitHub.

7.1 Future Work
Future work consists of diversifying the safety scenarios to include a
more complex and broader range of scenarios. Cybersecurity testing
will be evolved to develop black-box testing models. Furthermore,
we will continue to develop methods for optimising testing to factor
in real-world limitations such as resource usage and time.
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ABSTRACT To embrace safety while bringing autonomous vehicles (AVs) to public roads, AV manufac-
turers need to validate and verify the functionality and reliability of the control software. Real-road testing
is time-consuming, tedious, costly, and unsafe for validation. Hence, simulation testing has been playing an
important role in the market as a viable solution. This paper presents an approach that exploits both methods
to find edge case scenarios and evaluates the software reliability of an existing AV shuttle, iseAuto, currently
operating at the Tallinn University of Technology campus. To show the method’s effectiveness, a range of
scenarios are generated and simulated for avoidance maneuvers by means of a low-fidelity simulator. Then,
the scenarios that are found to be jeopardizing the AV are filtered and simulated by a high-fidelity simulator
with the AV control software in the loop. Finally, to investigate the methodology and simulation reliability,
a real study case is proposed using the AV shuttle. Results of the study suggest that the proposed toolchain
is capable of tuning simulation models for automated driving development as well as validating safe AV
operations.

INDEX TERMS Autonomous vehicles, scenario testing, safety validation, SiL testing, simulation.

I. INTRODUCTION
Autonomous vehicles (AVs) are expected to reduce traffic
jams, boost mobility, and produce more sustainable and safer
transportation. Despite the studies on considerable uncertain-
ties towards AVs adoption [1], [2], various novel technologies
have been in development for AVs in recent years to ensure
safety and gain public trust [3], [4], [5]. However, themethods
and tools for evaluating and validating such evolution still
need more attention. Studying all incidents in which AVs
are involved [6], [7], including the death of a pedestrian in
2018 [8], reminds us that the testing in different conditions
cannot be ignored if the goal is the pervasive deployment of
AVs on public roads [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jesus Felez .

One of the best examples of AVs in the public transporta-
tion sector is autonomous shuttles that have been in operation
in restricted areas for the past few years. These shuttles are
effective and clean mobility solutions. However, researchers
and engineers are trying to find and eliminate these vehicles’
vulnerabilities in operations and maneuvers by putting them
under the test. Using an innovative and effective valida-
tion and development toolchain, this research evaluates the
safe passing maneuver of an operational autonomous shuttle,
iseAuto, developed by the AV research group at the Tallinn
University of Technology (TalTech), Estonia (see Fig. 1). The
iseAuto project’s objective is to build an open-source AV
shuttle and establish a smart city testbed [10], [11], [12] in
the TalTech campus so that different types of projects on the
future of urban mobility can be conducted in this environ-
ment. Currently, this SAE level 4 and 5 shuttle is operating
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on the campus for experimental and study purposes [13].
The passing maenuver is the basis of overtaking; one of
the challenging operations that low-speed shuttles face [14].
To demonstrate the effectiveness of the proposed validation
regime, this maneuver was chosen as a use case and a sample
for implementing other testing scenarios.

FIGURE 1. TalTech iseAuto - an AV shuttle.

Open-road, closed-track testing, and simulation are the
three main strategies for examining AVs. However, the first
two are considerably costly, slow, labor-intensive to orga-
nize [15], [16] and are far too broad to test comprehen-
sively [17]. Furthermore, in real-world testing, the conditions
are not always easy to repeat and, in some cases, the safety of
the involved actors can be jeopardized. On the other hand, the
simulation strategy accelerates experimentation and enables
us to test highly regulated scenarios without any safety con-
cerns. It is fast, repeatable, and scalable [18], [19], [20]. For
safety assessments and ‘‘stress testing’’ of autonomous algo-
rithms, simulations can generate comprehensive databases
and achieve the statistical power required [17]. Despite
the advantages of simulations, Open-road and closed-track
remain indispensable before deployment. To utilize these
advantages of the simulation and digital testing, iseAuto and
the testing environment are connected to its digital twin,
which enables running all developed features first in simula-
tion. The simulation environments, interfaces, and concepts
are described in detail in [21] and [22].
There are various simulators available for AVs includ-

ing commercial and open-source tools [18] that can execute
low and high-fidelity simulations. Low-fidelity simulation,
which imitates the actual scenario but leaves out detailed
factors, is useful for the primary evaluation for quick pro-
cessing. In contrast, high-fidelity simulation attempts to be
realistic for chosen characteristics of a validation scenario
and includes many features suitable for software-in-the-loop
(SiL) testing. The scope of this paper lies in utilizing both
methods in series as a comprehensive validation toolchain.
Microscopic simulators have been designed and developed

to model traffic and handle large networks with an optimal
speed [23]. These open-source platforms enable us to create
various scenarios including actors configured with different
properties for low-fidelity simulation purposes. However,
they suffer from a lack of abilities that would make them
eligible to be used as a standalone AV validation platform.
There are well-known and powerful end-to-end simulators

based on game engines among the open-source platforms
including SVL by LG and CARLA [24], [25]. Highly detailed
3D environments, various virtual sensor types, and realistic
vehicle dynamics allow these tools to be used in reliable
validations. Still, there are some basic challenges to be over-
come, including defining precise validation metrics for the
AV evaluation and developing efficient tools to generate test
scenarios [26]. The proposed method in this study creates
a platform to generate scenarios in a passing mission and
then evaluates the AV control algorithms’ performance in that
mission by utilizing a state-of-the-art simulator.
The contributions of this paper are as follows:
• The integration of the scenario-based low and high-
fidelity simulation into the overall field of safety
assessment.

• A scalable and efficient methodology to identify
low-priority and impractical scenarios before perform-
ing time-consuming simulations (high-fidelity).

• A software-in-the-loop (SiL) demonstration of the
methodology featuring TalTech’s IseAuto AV shuttle.

• Implementing the proposed methodology in a highly
safety-critical maneuver to investigate the performance.

• Testing the fidelity of the proposed methodology with a
real-world experiment involving the highly autonomous
shuttle.

The remainder of the paper is organized as follows. Related
work is presented in Section II, then our approach is described
in detail in Section III. In Section IV, the methodology is
demonstrated by a simulation study, and results are provided.
Following this, we present an experimental case study in
Section V. We also discuss the results, limitations, and future
work of the study in Section VI and conclude in Section VII.

II. RELATED WORK
The complexities of AVs as a Cyber-Physical System (CPS)
render them crash-prone and vulnerable [27]. However,
validation and verification of AI-controlled AVs is a crit-
ical challenge, and considerable effort has been directed
towards providing safe autonomous systems [28], [29].
Thus far, mainly real-life experiments and simulations have
been utilized to find safety flaws and performance limi-
tations [30], [31]. It is important to note that despite the
advantages of simulation, it is not feasible to conduct all
tests purely in a virtual environment. For instance, virtual
sensor technology still needs to be developed and has not
matured [32]. AI-based driving algorithms constitute a core
area of development for autonomous driving, for additional
information about the topic the reader might refer to [33]
and [34].
Kalra and Paddock [9] suggested that over 11 billion miles

will have to be driven by AVs to verify that they are safer
than human drivers. Test miles are not, by themselves, a good
measure of AV’s safety. In the future, it may also be necessary
to repeat these drivingmiles due to software changes. Instead,
the types of tests that they undergo during testing are deter-
minant. There are currently several safety standards for the
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automotive industry including ISO 26262 [35] and ISO/PAS
21448 ‘‘Safety of the Intended Functionality’’ (SOTIF) [36].
As of yet, there is neither a consensus nor a standard proce-
dure for testing and evaluating AVs [37]. Koopman et al. [38]
introduced a safety standard approach for highly autonomous
vehicles based on setting scope requirements for a safety case.
Furthermore, Koopman and Fratrik [39] listed factors that
should be addressed in the area of operational design domain
(ODD, e.g. scenarios) and vehicle maneuvers to validate the
system. These papers, alongwithmany others [40], [41] in the
field of AVs, underscore the importance of rigorous testing,
simulation, and real-world validation to ensure the safety and
reliability of AVs before they can be deployed on public
roads.
In [42], authors implemented Hazard Based Testing (HBT)

by exploiting Systems Theoretic Process Analysis (STPA) to
create test scenarios for the Unsafe Control Actions (UCA)
of an automated driving system. Although they did not test
or simulate the resulting 3000 test scenarios to investigate
the failures and flaws of the system, they argued that their
systematic STPA approach is more effective in finding test
scenarios that would reveal actual weaknesses or flaws in the
system compared to the random scenario generation method.
In [43], Gelder et al. stated that employing only real-world
road traffic scenarios for the AV examination is not ade-
quate. Instead, they suggested a technique for determining the
parameters that characterize the real-life originated scenarios
to a sufficient extent reliable for evaluation, at the same time
relying less on strong assumptions on the parameters that
characterize the scenarios in the first place.
Hallerbach et al. [44] introduced a generic simulation-

based toolchain to determine and verify critical scenarios
for AVs. They utilized a traffic simulator coupled with a
vehicle dynamics simulator to flag safety-critical cases and
exploit the test results for automation functions development
of an SAE level 3 car. However, their method finds cases
randomly to evaluate the criticality, and this can be inefficient
in the case of high-fidelity simulators. Similarly, 17 industrial
and academic partners worked together in the PEGASUS
project to find new standards and validation methods for
the highly self-driving functions [32]. The project partners
developed a scenario generation regime that produces sce-
narios in different levels of abstraction. Then, these scenarios
were tested in the simulation (SiL and HiL), and verified and
validated on test grounds and in field tests. By deploying
naturalistic driving data and introducing adversarial behavior
into NPCs, Feng et al. [37] presented a novel testing method-
ology. They concluded that this initiative would accelerate
the evaluation process significantly. The authors, however,
did not consider any other criteria reflecting the performance
of the AV algorithms, settling only on crash-based critical
violations as a measure of criticality. Further, no real-world
tests were conducted to determine the validity of their pro-
posed method. In a review study [45], Rosique et al. explored
perception systems and their simulations. They described
different types of simulators including model-based, game

engine-based, robotics field-oriented, and ones designed
specifically for AVs.
This study [6] extracted the specific features of traffic

accidents with AVs. Even though their sample of traffic acci-
dents was limited, the summarized report should be taken into
consideration, especially when creating scenarios to prevent
such failures in the future. In [46], authors proposed a method
to generate concrete AV validation scenarios based on histor-
ical fatal accident data. First, they filtered and removed the
redundant scenario components, and then the pruned cases
were prioritized by severity levels according to the fatality
ratio. As a continuation, they improved the validation effort
efficiency by significantly reducing the sample space of the
utilized datasets [5], [47]. Also, in [48], they exploited the
current AV crash records and formulated them into modular
and measurable scenario units by employing the Measur-
able Scenario Description Language (M-SDL). The proposed
technique produces modular scenario units with coverage
analysis and identifies edge scenarios using AV evaluation
metrics.
Overall, our approach differs from previous efforts by

introducing a state-of-the-art toolchain that evaluates a real
AV shuttle’s safety in desired ODD and maneuver scenar-
ios. While most of the earlier work focused on using a
single low-fidelity simulation method or multiple methods
separately as their evaluation tools, we take the initiative in
exploiting both low and high-fidelity simulation platforms
and coupling them in a progressive approach to increase
efficiency and reliability.

III. DEVELOPMENT OF THE VALIDATION REGIME
Our proposed approach can be summarized in three main
hierarchical steps as shown in Figure 2. It starts with a
scenario description block (step-A) to prepare concrete sce-
narios for testing. In the next step, those scenarios defined
in a JSON format are simulated within a low-fidelity traffic
simulator (SUMO, step-B). During step B, the device under
test (DUT) is controlled according to the rules defined in
the scenario setup without considering other non-player char-
acters (NPCs). The simulated scenarios are then analyzed,
filtered, and translated into a CSV format for an end-to-
end high-fidelity simulation (SVL, step-C). In the last step,
the DUT is tested within a naturalistic simulated driving
environment while being controlled by the exact software
(Autoware.ai) used on a real operational autonomous shuttle.
A more detailed description of the method can be found
in Figure 3. The ‘‘AV Black Box’’ block inside step C is

FIGURE 2. Three main steps of the proposed validation method. The
format of each signal passing among these steps is annotated.
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FIGURE 3. High-level architecture of the scenario generation, simulator, and AV control system. The low-fidelity simulation is
represented by the SUMO block, while the SVL simulator and the Autoware control system can be considered as one
high-fidelity simulation block. Please refer to Section III for further details.

designed to record all the necessary data for validation later
based on desired metrics.

A. SCENARIO PLANNING AND FORMALIZATION
The cycle of an AV validation scenario begins with scenario
planning. The plan is typically described using a scenario
description language such as SCENIC [49] or MSDL [50].
With the help of the scenario description language, desirable
ODDs, such as scenarios, maneuvers, and road and weather
conditions, can be formally defined.
Its description is transformed from functional to logical

and then to a more concrete abstraction level with the mini-
mum required parameters to describe the actions of each actor
in the scenario (see Figure 3, step-A, scenario description
language box).
To start, the plan is constructed without considering the

limitations or quirks of simulation in a human-readable
form. The goal of the scenario and its requirements are
discussed between the low-fidelity simulation group and the
high-fidelity simulation group which results in the creation
of a functional description. In our implementation, we use
MSDL and Foretify™ [51] to describe scenarios. Once the
functional description of the scenario is created, both groups
begin preparing their simulators and the desired parameters,
and then the safety evaluation metrics are determined. Based

on these metrics, parameter ranges are selected and a logical
scenario with parameter ranges is produced.
The generated logical scenario is used as the template

in which concrete values are selected from each parameter
range. Selecting unique combinations of parameters produces
unique concrete scenarios.
Scenario description languages allow AV validation sce-

narios to be formalized in a way which is reproducible and
shareable. These formalized scenario descriptions are ideal
for storing and sharing abstract and logical scenarios. A sce-
nario description language may also share configurations of
concrete scenarios, but the structure of the testing environ-
ment and results must be tailored to the application. For this
approach, the set of concrete scenarios, their configurations,
and testing results are formalized in equation notation. This
is an adaptation of the scenario formalization used in the
survey from Mullins et al. [52], which correlates a scenario
configuration→result of black box unmanned underwater
vehicle tests in order to visualize boundaries and objectives of
the physical scenario space. In the architecture of this paper,
AV black box testing is performed at two levels of low and
high-fidelity simulation. In order to evaluate and compare
the low and high-fidelity simulations, the scenario limits and
input–state→score relation are described formally.
The scenario configuration space X n

= [X1, . . . ,Xn]
is composed of n elements. Each element in the state space
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vector represents a parameter with a range in the plan of the
scenario. For example, if a logical scenario contains five (5)
parameter ranges, then X is composed of five (5) elements
which are the limits of each parameter range.
The scenario input state is defined as a vector X =

[x1, . . . , xn] where ∀i ∈ n : xi ∈ Xi. Each input state is one
scenario configuration where concrete values are sampled
from the parameter ranges in the plan. A sample set of N
states is defined as XN = [X1, . . . ,XN ]. Each element of X
is a concrete value and the size of X is the same as X .
The score space Ym has m parameters where each output

score is defined as the vector Y = [y1, . . . , ym]. Each element
in the score vector is a metric where the system is evaluated.
A sample set of N states is defined as YN = [Y1, . . . ,YN ].
For example, if two (2)metrics are used to evaluate a scenario,
then Y is comprised of two (2) elements. Y is the same size
as Y .
A DUT function for the iseAuto is F(XN ) = YN which

accepts a set of N input states XN and returns a sample set
of N score vectors YN . For example, if 100 scenario tests are
performed then N = 100, and both X and Y would contain
100 elements ([X1, . . . ,X100] and [Y1, . . . ,Y100]) which cor-
respond to the 100 tests.
Table 1 reports an example of a scenario’s required param-

eters at the functional level. Dx and Dy, respectively, are
the longitudinal and lateral initial relative distances between
DUT and NPC in each scenario. The requirements are
selected based on our testbed limitations.

TABLE 1. Target scenarios definition.

Each row of the table indicates an actor playing in the
scene, the TalTech AV shuttle which is the DUT, and a
passenger car, i.e. an NPC. The speed range for the DUT
is 1-15 kilometers per hour (km/h). The NPC is parked and
immobile at the front of the DUT. At the start of the scenario,
the NPC is between 5 to 50 m far from the DUT along the
road. In addition, there is a small lateral shift, Dy, which is
defined by the scenario generator. The goal of the DUT is to
safely maneuver around the parked NPC and continue along
the road. A simulation is successful when the DUT safely
passes the parked NPC and is back in the original lane.

B. LOW FIDELITY SIMULATION
The first level of abstraction in our approach is the low-
fidelity simulation. The concrete scenarios are run in these
simulations, while information about the scenarios is col-
lected at runtime and consolidated after scenario completion.
In this step, we use the SUMO traffic simulator to run con-
crete scenarios (see Fig 3, step-B). SUMO is selected as the
low-fidelity simulator for the following reasons:

• The street network-based approach allows for high per-
formance, even at a very large scale [53].

• The default ‘‘no-collision’’ vehicle control requires no
configuration.

• The ability to define a new vehicle control logic, i.e. one
controlled by foretify™.

• An optional and minimal graphical user interface that is
useful for debugging and presentation.

• Actors obey the network rules.
The low-fidelity simulations are fast and scalable. One impor-
tant purpose of them is to identify, and filter out, the scenarios
which are obvious failures. This results in more efficient
utilization of the high-fidelity simulation, which is more
computationally demanding compared to abstract simulation.
The scenario is described at a logical abstraction level

with parameter ranges for the relative position of the DUT
from the NPC at the start and end of the scene, and the
speed of the DUT. Figure 4 describes the relative positional
measurements of the scenarios.

FIGURE 4. Two relative positions are given, Dx1 and Dx2, define the NPC
position in each scenario. Dy is determined by Foretify.

The distances Dx1 and Dx2 are provided as parameter
ranges. There is a warm-up period of the simulation, as such
some measurements are taken after simulation time 0 such
as measurement Dy, which is calculated when the sce-
nario begins. Parameter ranges and descriptions are listed
in Table 2.

TABLE 2. Low-fidelity scenarios parameters.

A suitable straight path for the mission is selected in the
street network map, shown in Figure 5, when the concrete
scenario is generated.
Then values are selected from the parameter ranges (see

Table 1) to generate the concrete scenarios. The low-fidelity
tests are defined as follows: A scenario input state for a single
test isX = [s,Dx1,Dx2]. The score vector for a configuration
is Y = [ Pose(x, y), Collision], which includes two metrics:

• The position of the DUT during the simulation.
• Whether or not a collision is observed.
Once all abstract simulations are complete, the result is

exported and analyzed. The low-fidelity simulations provide
rapid testing and debugging, allowing for quick turnaround
when the scenario is edited at the functional or logical
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FIGURE 5. The street network.

abstraction stage as AV testing requirements change. When
actors behave as intended in the low-fidelity simulations and
the decisions of the actors are logical, they can be exported
and converted for the iseAuto simulations with more diversity
and complexity involved in a realistic SiL simulation.

C. HIGH-FIDELITY SIMULATION
Understanding the environment that AVs operate in has
been one of the biggest challenges of their development
and deployment [54]. In this context, end-to-end simulations
provide a platform to investigate these challenges in detail.
In this step, we deployed a high-fidelity simulator to analyze
the DUT behavior in the pre-simulated scenarios while the
AV software controls the DUT (see Fig. 3, step-C, SVL
simulator box).
Selected scenarios assessed by the previous step are the pri-

mary input imported into the SVL scenario builder. Figure 6
shows the parameters needed to define the position of the
NPC relative to the DUT, resulting in different scenarios in
the high-fidelity platform. Dx and Dy represent the longitu-
dinal and transverse distances relative to the DUT, which are
Dx1 and Dy in the low-fidelity scenario configuration.

FIGURE 6. Two relative coordinates, Dx and Dy , define the NPC position
in each scenario.

A Python script reads the scenarios list, then imports
them to the simulator and executes them one after another.
To increase the fidelity of the simulation, we deploy the
digital copy of both the real AV and a similar environment
to the area of the operations. We created a virtual copy of
the iseAuto and defined the same sensor configuration as
shown in Figure 7. The shuttle kinematics and dynamics
are mimicked inside the simulation for more accurate and
reliable evaluation results. It is worth mentioning that iseAuto
utilizes a LiDAR-based perception. Two Velodyne LiDARs
are installed at the top front (VLP-32) and back (VLP-16) of
the vehicle, in addition to two Robosense RS-Bpearl at both
sides (left and right), to decrease the sensor blind zone around
the car. Furthermore, one RS-LiDAR-16 is installed at the
front bumper to detect small objects in front of the vehicle that

FIGURE 7. iseAuto simulated model with different LiDARs installed.

is not in the other LiDARs’ field of view. Processes such as
calibration, filtration, and concatenation are performed on the
LiDARs’ point cloud for a better and optimized perception.
A realistic virtual environment containing urban details

and vegetation is one of the required elements for a
high-fidelity and accurate evaluation. We demonstrated how
to build the 3D virtual environment for the AV simulator by
utilizing aerial drone images in [21]. In this study, we use a
similar virtual environment to the real world where the AV
operates.
Once these elements are initialized, the test platform is

ready to run a simulation. This provides virtual sensor data
to the perception algorithms and, conversely, receives control
commands from the control algorithms (see Fig. 3, step-
C, ROS Bridge). The high-level software architecture of
the shuttle is based on the Robot Operating System (ROS).
Perception, detection, and planning are performed by Auto-
ware.ai [55] (Fig. 3 ROS box), an open-source ROS-based
stack for autonomous driving, in which many advanced algo-
rithms are present, including, but not limited to, lane tracking,
obstacle avoidance, traffic light detection, and lane detection.
All virtual sensor data is transmitted to the software side via
a ROS bridge connection. In the perception algorithms, the
data is processed, and after the result is processed by planning
algorithms, control commands are issued and sent back to the
simulator for actuation. The path planning algorithm used in
this work is a modified sigmoid planner developed in [14].
Another important element on this platform is the recorder.

During each run, the information needed for later analysis is
recorded, e.g., speed, position, orientation of the actors, etc.
This also allows us to monitor and verify the performance of
each algorithm in the control software, e.g., localization and
detection. We then review this data against the safety criteria
to find safety breaches.
The high-fidelity tests are defined as follows: A scenario

input state for a single test is X = [Dx,Dy]. The score
vector for a configuration is Y = [EgoSpeed, Brake intensity,
DTC, NDTscore, Collision]. These metrics are explained
in table 3.
Algorithm 1 illustrates the process of importing, running,

and recording the required data. A list of desired scores, Yi,
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TABLE 3. Safety and Performance metrics utilized to evaluate the
maneuver.

was recorded while using the SVL simulator to run scenarios,
Xi, selected after the low-fidelity simulations. This vector
contains both safety and performance metrics including col-
lision occurrence, distance to the NPC, normalized brake
intensity, localization score, ego speed, DUT traveling dis-
tance, and DUT steering command (see Table 3). Distance to
collision (DTC) is the minimum distance in meters between
actors’ bodies at any point in the scenario. The normalized
braking magnitude in each mission expresses the driving
comfort. Hard brakes result in discomfort for passengers and
increase the likelihood of an accident during an operation.
The NDT score is a result of a 3-dimensional normal dis-
tribution function, implemented in the Point Cloud Library,
calculating alignment error between the input laser scan and
the reference point cloud map [56]. In terms of performance,
the travel distance is an indicator of how far the DUT has pro-
gressed in its mission. Finally, the steering command reflects
the smoothness of the navigation and steering equipment.

Algorithm 1 Importing and Running the Filtered Scenarios

1: input: Selected Scenarios Input XN = [X1, . . . ,XN ]
2: output: Score Vector YN = [Y1, . . . ,YN ]
3: procedure RunScenarios(XN ) do
4: for ∀i ∈ n : Xi ∈ XN run SiL Simulation(F)
5: F(Xi) = Yi = [EgoSpeed, Brake%, DTC, NDT-score,

Collision]
6: end
7: return YN

8: end procedure

Figure 8 shows the SVL simulation (top images), while the
AV software data including the map, trajectory, and perceived
point cloud are displayed in the RViz visualization software
(bottom images).

IV. SIMULATION RESULTS
In this section, we present a quantitative analysis by applying
the proposed platform to the validation of the AV shuttle
in a passing maneuver. First, we present the result of the
low-fidelity simulation performed with the scenarios pro-
posed by Fortify. We then nominate some of the scenarios
for the high-fidelity simulation to evaluate the AV software’s
behavior by monitoring the proposed metrics.

FIGURE 8. One simulated scenario shown in different frames. The top
frames represent the SVL simulator and the below one displays the RViz
visualization software receiving simulated data.

A. LOW FIDELITY
The platform generated 120 unique scenarios represented by
the NPC location in Figure 9 which displays each simulation
result in the ‘‘Failure’’ and ‘‘Success’’ groups. The scenarios
are divided into three ranges by their longitudinal NPC posi-
tion to show the probability of failure in different areas.

FIGURE 9. Points representing all initial relative NPC locations in
120 scenarios that are marked based on their simulation result.

Table 4 summarizes the number of scenarios in two main
groups in the subdivided areas. According to the table, almost
95% of the scenarios generated in the [5-10] m region
failed. The failure likelihood decreased to near 46% for the
[10-20] m interval. In addition, 47% and 28% of all failures
occurred in [5-10] m and [10-20] m, respectively.

TABLE 4. Number of Failure and Success scenarios in different Dx
distance.

At this point, we select 87 scenarios in the range
of [5-20] m for further investigation. The reasons for this are:
first, more failures are observed before 20 m, and second,
it is impractical for the shuttle to begin the passing operation
over 20 m distance from the NPC.
Figure 10 shows the paths of the DUT in the low-fidelity

simulations. The simulations are separated into two groups:
1) Simulations where a collision between actors occurs,

causing the simulation to end.
2) Simulations where the passing scenario completes

successfully.
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FIGURE 10. All routes traveled in the Foretify simulation.

The collisions occur during lane-change maneuvers where
there is an insufficient distance for the DUT to safely traverse
around the NPC. The two simulations in group 1 with a
distance x > 30 m, observe collisions where the DUT travels
some distance while decelerating after the collision.

FIGURE 11. Results of the low-fidelity simulations.

Figure 11 uses the same simulation grouping as in
Figure 10. The color of the marker shows the mean speed of
the DUT. The minimummean speed is 0.713ms or 1 kilometer
per hour. The average mean speed in the scenarios is 1.610ms .
DTC near 3.00 m means that the actors are side-by-side in
adjacent lanes.

TABLE 5. Summary over 87 runs in a low-fidelity simulator.

Table 5 gives a summary of the results for the 87 low-
fidelity simulations. These include the duration of simu-
lations in seconds, the difference in lateral distance and
longitudinal distance of the NPC to the DUT on the road in
meters, the average speed of the DUT in meters per second,
and the closest distance between actors at any point in the
simulation.

FIGURE 12. The result of a filtered scenario simulation; (a) Speed of the
DUT, (b) normalized braking pressure, (c) NDT score for localization
performance, and (d) distance measured from Ego to NPC.

B. HIGH-FIDELITY
In this step, we simulate the 87 scenarios in the SiL high-
fidelity platform. During the process, we observe all the
corresponding data of the evaluation metrics and store them
in a rosbag file in addition to a general tabular report.
Figures 12 and 13 represent the values of the metrics
(see Table 3) recorded during the simulation of an example
scenario. Fig. 12 shows (a) the DUT speed, (b) normalized
braking intensity, (c) localization score (NDT-score), and
(d) the closest distance to the NPC from Ego during the
simulation.
The speed chart in the inset of Fig. 12(a) explains how fast

the shuttle traveled the route and where it stopped, acceler-
ated, or decelerated. In this case, Ego had an average speed
of 1.15m/s and reached a 1.96m/smaximum speed. The nor-
malized braking intensity displayed in the inset of Fig. 12(b)
shows themoment that the DUT took intense brake during the
mission. In the 8th second of the operation, the DUT took an
intense brake that made it stop. The effect of the brake can be
clearly seen in the changes in speed. The inset of Fig. 12(c)
displays the NDT matching score during the mission. This
number indicates the accuracy of localization during driving.
The higher the numbers, the less accurate the localization
is. Loss of vehicle localization may result in unpredictable
behavior. Finally, the distance to collision (DTC), which is
one of the main parameters monitored during the simulations
(see the inset of the Fig. 12(d)), shows how close the Ego
vehicle was to the NPC (body to body) in the mission. Among
all scenarios, the nearest distance was 0.36 m, while the
farthest one was 6.02 m measured from the DUT body to the
NPC body.
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FIGURE 13. Simple representation of the Ego traveling route and the NPC
position during the scenario.

It was also necessary to record the trajectory followed by
the DUT in each scenario to study the performance of the
passing operation and to track the behavior of theDUT in case
of a violation of the safety metrics. To this end, we created a
track graph for each simulation, as shown in Fig. 13. In this
figure, the circle markers represent the track that the DUT
follows on the road, and the rectangle shows the position of
the NPC.
In the next figure (Fig. 14), a spaghetti diagram shows all

trajectories traveled by the DUT (curves) next to the location
of the NPC (squares) in each scenario. Depending on the
progress of the mission, the results were divided into three
groups as follows:

• Not started missions (group 1): The scenarios in which
the DUT could not start the passing maneuver, and
stayed behind the NPC.

• Completed missions (group 2): The missions are fin-
ished by the DUT as expected in scenarios.

• Aborted missions (group 3): scenarios that the DUT has
started the maneuver but could not finish it. For instance,
losing localization can cause uncontrolled movements
that fail the mission.

FIGURE 14. All traveled routes in the 87 selected scenarios are shown
and divided into three groups as described.

According to the diagram, the scenarios in which the NPC
was closer than 12 m belong to the first group. The DUT
control software couldn’t generate a safe trajectory, as shown
by the traveled tracks in group 1. In the other cases, it passed
the NPC (group 2), except for the case in which the DUT lost
its localization (group 3) and the mission was aborted as the
DUT hit the sidewalk.
To check the mission progress and safety, we marked

each scenario in Figure 15 with the corresponding distance
traveled and the minimum DTC. We then assigned a color
to each circle (scenario) based on its average speed and
clustered all 87 scenarios. Overall, they were divided into
three groups based on their DUT average speed and distance
traveled: 50 scenarios with a speed less than 0.05 m/s (G1),
36 scenarios with less than 1.35m/s (G2), and one with more
than 1.7 m/s (G3).

FIGURE 15. Result recorded from the high-fidelity simulation of selected
scenarios. Each point on the chart represents the traveled distance and
the minimum distance to collision (DTC). The color bar also shows the
mean speed of the DUT in the mission. G1, G2, and G3 represent each
group’s scenarios.

TABLE 6. Simulations result of the scenarios classified in three groups.

In group 1 scenarios, the DUT has traveled less than 5m
in total. This means that the DUT control software could not
find any safe trajectory for the vehicle to follow. The second
group cases, on the other hand, resulted in a minimum DTC
between 0.36 and 1.95 m and a distance traveled between
47 and 91 m. Since the distance is greater than Dx, it implies
that the DUT has successfully passed the NPC. Finally, there
is an unexpected traveled distance in the third group as a
result of the loss of localization. From the group 2 scenarios,
it is evident that situations, where lower traveled distances
combined with lower mean speeds, had smaller DTCs. This is
indicative of a riskier trajectory being generated for passing.
In addition, we also discovered from the data that as we
increased the distance of the initial scenarioDx, the distances
traveled increased as well. Table 6 provides more details for
each group. The last column contains the mean NDT value,
which indicates the localization accuracy during the mission.
As one can see, the score of group 3 is higher than the others,
indicating a non-localized situation. Furthermore, the average
velocity of the scenario, which was about 1.7 m/s, confirms
that the DUT was not under control.

FIGURE 16. Scenarios represented by DTC and NDT score. The color bar
also shows the mean speed of the DUT in the mission. G1, G2, and G3
represent each group’s scenarios.
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Figure 16 shows the maximum NDT scores, minimum
DTC, and average speed of the DUT for each scenario. From
the graph, it can be seen that group 1 has the lowest average
NDT score due to less mobility. Nevertheless, there is one
case with a high NDT score which may reflect poor initial
localization. Group 2, on the other hand, has an average
NDT score of 8.5, which is higher than that of group 1.
This is because of the DUT turning motions during the pass-
ing maneuver, which reduce localization accuracy. A single
scenario with a high significant NDT score indicates that
localization of the DUT is lost in the maneuver. Figure 14
shows this scenario trace in group 3. It can be seen that the
DUT almost passed the NPC and then lost localization and
deviated from the path. Generally speaking, DUT motion
makes the NDT matching algorithm for localization more
challenging, as our NDT score rises as a result. Unexpectedly
high NDT scores are indicative of a system failure and are
reflected in the same level of crash severity.

FIGURE 17. Scenarios represented by the initial longitudinal distance to
the NPC and the minimum DTC reached during the simulation. Also, the
color bar demonstrates the normalized brakes magnitude through each
scenario.

To evaluate the safe performance of the DUT during opera-
tion, we plotted each scenario Dx against the minimum DTC
to check how far the DUT can reach the NPC (see Fig. 17).
Also, the color bar shows the total number of emergency
braking during the mission, which explains the relative ride
comfort and safety. According to the figure, the DUT did not
move in the scenarios (G1) with an initial longitudinal dis-
tance of less than 12 m, although there were a few scenarios
where negligible motion was recorded. The correlation and
trend are represented by a straight line.
The next two groups are boxed and show that the DUT

reaches the NPC closer than the originally specified distance,
indicating that the DUT moved and attempted to pass the
NPC. The G2,3 box contains all scenarios in which the DUT
succeeded in passing the NPC, except for the one with the
highest number of emergency brakes. Thus, the scenarios in
which the shuttle was farther than 12 m from the NPC were
successful.
Another interesting finding is the gradual increase of the

DTC from 0.36 to 1.5 m, while we increased the initial
distance from 12 to 16m. Between 16 and 20m, the minimum
DTC did not change significantly and remained around 1.7m.
This means that the planning algorithms generate a path with
a safer distance for the passingmaneuverwhen theDUT starts

to pass from a distance greater than 16 m instead of 12 to
16 m. In addition, to find edge case scenarios and evaluate
the algorithms under critical conditions, we need to focus on
the range where the DTC is about to collide (12 to 16 m).
Moreover, DUT control software developers should consider
making the DUT capable of passing objects that are less than
12 meters behind it.

TABLE 7. Summary over 87 scenarios simulated by the high-fidelity
simulator.

Table 7 reports some essential statistical features of the
high-fidelity simulation results, including duration (sec), lat-
eral and longitudinal initial distance to the NPC (m), max and
average speed (m/s), minimum DTC (m), and the maximum
NDT score. On average, it took almost twice as long to sim-
ulate the same scenario with the high-fidelity platform com-
pared to the low-fidelity one (see Table 5). No scenario has
been completed in less than 46 seconds in the high-fidelity
setting, while the shortest simulation has been completed in
less than three seconds in the low-fidelity simulation. In this
example, we clearly see the importance of using low-fidelity
simulations to avoid unnecessary simulation computation and
thus generate high time savings.
Besides, the speed of the DUT in the high-fidelity tests was

lower than the similar one in the low-fidelity simulation as the
software controlling the DUT (Pure Pursuit Controller [57])
automatically adjusts the vehicle speed. For the same reason,
none of the SVL simulations produced collisions as com-
pared to the low-fidelity simulations. DTC values are smaller
in high-fidelity cases, according to the data. It is because,
in high-fidelity cases, DTC is measured from body to body,
while in low-fidelity cases, it is measured from center to
center.

V. EXPERIMENT
The purpose of this section is to present results from the
practical application of the real DUT, iseAuto, in support
of the simulation results. Figure 18 shows the setup and
environment for conducting the experiment. The test was
conducted on a straight two-lane road with passing capability
in a private area designated for experiments. During the test,
an intersection on the left side of the road was blocked to
prevent any conflict. Based on Figure 17, an initial relative
longitudinal distance of 18 meters was set in this setup to
operate the shuttle in the safest possible range (max DTC).
Furthermore, the vehicle was controlled using the same con-
trol algorithms used in the simulation to pass the NPC.
The experiment was recorded using a drone while record-

ing all the sensors’ data as a rosbag file. Figure 19 displays
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FIGURE 18. Passing scenario setup. The entrance to the T intersection
was blocked to avoid interruption.

FIGURE 19. Four different time frames of the passing experiment are
shown in the real test environment beside the RViz visualizer. The
T intersection entrance was closed during the test.

four consecutive time frames captured by the drone (left
images) and recorded from the RViz screen (right images)
during the passing. In the RViz images, all detected objects
defined by a green contour have a number that indicates the
distance to the AV. In Fig 19, frame 1 shows the initial setup of
the mission, where the AV (DUT) was following its straight
route, and detected the NPC via the point cloud retrieved from
sensors. At this point, the control algorithms drew a red line
on the road to stop the AV and plan for passing.
In the next frame, the shuttle starts to follow the passing

trajectory generated by its software while keeping a safe
distance from the NPC. Then, frame 3 shows that the DUT
almost passes the NPC while it was within its 2 m distance
range as expected from simulations. Finally, in the fourth
frame, the AV tried to change the lane and follow its original
path.
The controller’s steering commands were observed in both

experiment and simulation (see Fig. 20). This was done to
determine if we could estimate the control software behavior
accurately. A number of factors are involved in getting a
closer result to the real-world experiment, including vehicle
dynamics and kinematics, sensor performance, and the qual-
ity of the virtual environment. It is evident from the figure that

FIGURE 20. Values of Steering angle on the wheels recorded during the
same scenario in the high-fidelity simulation and real experiment.

the high-fidelity simulation was able to predict the steering
motion with a reasonable degree of accuracy. Although the
high-fidelity simulation environment and the performance of
the virtual sensors are not completely identical to the real-life
ones, experimental results show that they can be considered
valid for validation and evaluation. It is worth noting that the
time and additional measures required to create such a simple
scenario with a static actor are not comparable to simulation,
which can be done easily and quickly, especially in complex
and life-threatening situations.

VI. DISCUSSION
Nowadays, car manufacturers perceive safety and reliability
as strongly related to the hardware components. For instance,
the engine should not fail, the axles must be robust, the brakes
must work, etc. However, in these items, the (human) driver
seems to be seen as a passive component only relying on the
hardware being working properly, and having no connection
to the vehicle itself. However, most accidents are caused, to a
certain extent, by human error. Manufacturers can provide
safe hardware and safety devices (belts, airbags, etc.), but
there is little control over the driver and its behaviour. In an
autonomous driving paradigm, however, the driving agent
is an active component and can, therefore, be controlled by
developers and manufacturers to ensure passenger safety.
In this frame, autonomous driving is seen, already, as safer

than non-autonomous driving, and the intent of this work
is to equip researchers with a tool to improve safety and
perform tests, verification, and validation for autonomous
vehicles. Validation and verification are used to ensure that
any AV meets the desired safety and performance criteria.
This iterative process can lead to continuous improvement of
AVs performance over time.
The presented approach provides a safe environment to test

vehicle capabilities and identify potential flaws at zero risk.
It allows researchers and developers to test AVs in a virtual
environment, which reduces testing time and cost. Besides,
repeatability and scalability enable AV experts to evaluate
and optimize intended performance in a variety of scenarios.
This two-layered validation approach integrates low-fidelity
and high-fidelity simulations, commonly used in autonomous
vehicle validation, to make the most of the advantages of each
type of simulation. Users benefit from low-fidelity simula-
tions since they are more accessible, faster to execute, and
offer a broader range of scenarios to explore. As opposed to
low-fidelity simulations, high-fidelity ones provide a highly
realistic virtual environment that closely resembles the real
world. It also provides more accurate results and can be
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used to validate low-fidelity simulations or real-world tests.
According to [58], this platform not only supports AV safety
evaluation, but also enables experts to simulate advanced
cyberattacks, such as sensor spoofing.
In low-fidelity simulations, the focus is typically on the

planning part of the algorithm, excluding the other critical
components of the autonomous feature, such as localization
and perception that require sensor input. As a result, it is dif-
ficult to determine the reliability of the outcome derived from
these types of simulations with a limited number of test cases.
As mentioned previously, their rapid response and broader
scenario coverage make them an appropriate tool for identi-
fying more practical and critical scenarios for the next level
of testing. By using this type of simulator, a comprehensive
set of simulations can be conducted covering a wide range of
ODDs and then the riskiest cases can be identified through
search strategies (e.g. eagle strategy) for further analysis [5].
This initiative was taken, and the low-fidelity simulation was
used, to nominate scenarios for the high-fidelity simulator to
save time and explore vulnerabilities in AV control software
efficiently.
This paper showcased an implementation of the proposed

method on a passing maneuver. Findings confirm that the
simulations based on low-fidelity were faster, but likely to
have a lower reliability. This is due to the sacrifice of details
in these simulations and the simplification of the system.
It is acknowledged that, however, in these simulations, the
AV was controlled by the rules defined for the scenario and
not by AV software. While high-fidelity simulations are able
to evaluate all autonomous features integrated into the AV
software at once. The high-fidelity results corroborate that in
a small batch of runs, developers can explore the algorithms’
performance and behavior in the target scenarios without
having to conduct experiments in real life. Obviously, this
does not mean that the limited number of tests provides full
safety assurance, but it can be used as a tool to identify more
critical and corner cases.
In order to conduct a successful analysis, it is also imper-

ative to define proper metrics to evaluate simulation results.
Particularly in large numbers of runs, it is almost impossible
to manually check the results, for this reason, metrics are
expected to detect criticalities and errors during the sim-
ulation. Based on the analysis type and priority, several
criticalitymetrics can be used, including time, distance, inten-
sity, and velocity-based metrics described in detail in [59].
We have employed acceleration, velocity, distance, as well
as intensity-based metrics in the current study. Even though
no critical-safety cases were observed in the limited tests,
we reported performance issues and corner cases that could
pose a safety risk. It is notable that unexpected failures may
occur during the testing process that has an adverse effect
on the entire system, such as localization loss due to sharp
maneuvers. These failures might not be observed while test-
ing individual parts of the system in a low-fidelity setup.
In this study, we carried out a real-life experiment to check the
validity of the simulation results. Although the comparison

test is limited and not enough to make a strong conclusion,
the findings suggest a reasonable correlation. It should be
admitted that implementing real-world experiments requires
considerable effort and time due to the requirements and
considerations involved.
We have discussed the advantages of simulation thus

far, but they also have some limitations that may result in
complications in the future. It is still necessary, however,
to evaluate the reliability and naturalistic level of high-fidelity
simulations. This can be accomplished by carrying out a
high number of real-life experiments that are very labor-
intensive, time-consuming, and in some cases potentially haz-
ardous. Furthermore, high-fidelity simulations suffer from
a number of limitations including costly hardware, time
consumption, and synchronization. High-fidelity simulators,
especially those based on game engines, require powerful
CPUs and GPUs based on the simulator configuration. It is
often the case that results are inaccurate and not well syn-
chronized as a result of insufficient computational resources.
Furthermore, due to the computational burden to simulate the
sensors and the physics of the environment, the simulation
time is different from the system time(real). Typically, this
is the case particularly when there are multiple sensors on
the AV (LiDARs and cameras). For instance, for simulating a
scenario that lasts t seconds in the simulator, it takes n × t
where (n ∈ R+, n > 1). It is expected that high-fidelity
simulators will overcome these limitations in the near future
with the advancement of game engines and GPUs.
In the future, research should be devoted to develop-

ing low-fidelity simulations that incorporate AV software
to increase their reliability and accuracy for the first step
of scenario evaluation. This can bring two benefits. First,
it enables users to eliminate as many unnecessary scenarios
as possible for time-consuming simulations. Secondly, it pro-
vides an agile platform for optimizing the motion algorithms
parameters without taking into account other autonomous
components. In addition, future research should investigate
more challenging maneuvers with many actors involved
and possibly using stochastic agents (featuring unpredictable
behavior). It is then necessary to test a large number of
scenarios in simulation and real-life environments to provide
adequate evidence of the method’s reliability.

VII. CONCLUSION
In recent years, autonomous driving technology has seen
rapid development. However, to the best of the authors’
knowledge, to date, there are still no agile, flexible, and
comprehensive validation methods for such safety-critical
systems. In our work, we presented an efficient and inno-
vative technique for evaluating AV control software safety
and performance on a target mission. This method combines
a low-fidelity simulator with a highly detailed simulator to
achieve fast and reliable validation results. This combination
enables us to identify the corner case scenarios in an AV
shuttle maneuver that may pose critical challenges to the
control software.We found, in a small sample of runs, that we
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could generate and nominate a limited number of scenarios
for naturalistic simulations, which are generally more time-
consuming. Further, high-fidelity simulation results suggest
promising evidence for in-depth analysis of autonomous soft-
ware that will shed new light on future developments.
To examine the simulation results, we implemented one of

the proposed scenarios in a real experimental setup. Despite
the fact that the real-life scanty results cannot be used to
draw a strong conclusion, they do suggest that the proposed
approach was successful in predicting vehicle performance
and behavior. The results of this study will provide a basis
for further research into the reliability of the AV simulation
by conducting more empirical tests in the real world.
In the future, engineers and researchers can utilize this

approach as a prerequisite for real experiments to increase
evaluation efficiency and reduce safety-critical problems. The
proposed approach could also be used to investigate and target
various operational design domains and complex maneuvers
in a large number of simulations in the future.
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