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Enhancing situation-awareness, cognition and reasoning of ad-hoc 
network agents 

Abstract 

The role of embedded computers, which have been more widespread than 
conventional computers for decades already, is changing from being closed devices 
in dedicated applications to being open, networked components of larger systems. 
Cyber-Physical Systems is the term used for describing the systems that integrate 
physical processes and systems with networked computing systems.  

The formalisms used for describing Cyber-Physical Systems must accommodate 
projection of the physical and virtual properties of the world to the computing 
system in a generic way, thereby making the exchange of such data possible across 
systems.  

This thesis suggests that explicit introduction of the concept of situation awareness 
will help to describe and analyse the interactions and the behaviour of Cyber-
Physical Systems. A situation is described by a set of situation parameter values 
and each component in the system interprets the situation parameter values 
according to its own rules. The situation awareness concept allows the system’s 
components and the system as a whole to maintain a coherent view of the world 
(by exchanging situation parameter values) in order to harmonize the actions and 
responses of the components of the system, and help the system as a whole to 
behave appropriately in the current circumstances (situation).  

The thesis proposes that the situational information should be associated with 
validity information, starting for example in what area and for what period of time 
the situational information is valid. This approach allows dealing with the 
uncertainties inherent to Cyber-Physical Systems. The concept of a situational 
information mediator is introduced, which uses the validity information associated 
with situational information for acquiring and providing information relevant to 
system components. 

The thesis also presents a distributed system of systems concept that builds upon 
the notion of networked situation aware computing systems. A part of information, 
exchanged in a system of systems is in the form of situation parameter values, 
which are computed by individual sub-systems and shared with the other system’s 
components. 
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Spontaanvõrgu agentide situatsiooniteadlikkuse, taju ja  
arutlusvõime täiendamine 

Lühikokkuvõte 

Sardarvutid, mis on tavaarvutitest levinumad juba aastakümneid, on muutumas 
ühele rakendusele pühendatud suletud seadmetest avatud ning võrku ühendatud 
suurte süsteemide osaks. Süsteeme, mis seovad füüsilisi protsesse ja süsteeme 
võrku ühendatud arvutisüsteemidega, nimetatakse küber-füüsilisteks süsteemideks.  

Formaalsed vahendid, mida kasutatakse küber-füüsiliste süsteemide kirjeldamiseks, 
peavad võimaldama maailma füüsiliste ja virtuaalsete omaduste esitlemist ühtsel 
viisil, mis teeks võimalikuks seda tüüpi andmete vahetuse süsteemide vahel. 

Antud dissertatsioon käsitleb situatsiooniteadlikkuse kontseptsiooni kasutamist 
küber-füüsiliste süsteemide puhul, mis võimaldab kirjeldada ning analüüsida 
sellistes süsteemides toimuvaid interaktsioone ning samuti selliste süsteemide 
käitumist. Situatsiooni kirjeldatakse situatsiooniparameetrite kaudu, mida iga 
süsteemi komponent tõlgendab vastavalt kohalikele reeglitele. Situatsiooniteadlik-
kuse kontseptsioon võimaldab süsteemi komponentidel ja süsteemil tervikuna 
säilitada ühtset tõlgendust maailmast (vahetades situatsiooniparameetrite 
väärtuseid), ühtlustamaks süsteemi komponentide tegevusi ning samuti tagamaks 
süsteemi kui terviku sobivat käitumist kindlas situatsioonis. 

Samuti käsitleb antud töö situatsiooniinfo sidumist kehtivuse informatsiooniga, 
alates ajaintervallist ja piirkonnast, kus situatsiooniinfo kehtib. Selline lähenemine 
võimaldab hõlpsamini hakkama saada küber-füüsilisele süsteemile omaste tundma-
tute omadustega. Töös tutvustatakse ka situatsiooniinfo vahendaja kontseptsiooni, 
mis kasutab situatsiooniinfo kohta käivat kehtivusinfot, hankimaks ning pakku-
maks süsteemikomponentidele vajalikku informatsiooni. 

Töös kirjeldatakse ka hajutatud süsteemide süsteemi kontseptsiooni, mis põhineb 
võrgus töötaval situatsiooniteadlikul arvutisüsteemil. Osa informatsiooni, mida 
süsteemide süsteemis vahetatakse, on situatsiooniparameetrite väärtuste kujul, 
mida arvutavad välja üksikud alamsüsteemid ning mida jagatakse erinevate 
süsteemi komponentide vahel. 
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Introduction 
The ratio between embedded and general purpose computing processors was about 
one to a hundred (Turley, 1999) already more than a decade ago, which means that 
for every desktop or server processor there were about a hundred embedded 
processors built into devices we use daily. All of these embedded systems interact 
directly or indirectly (if they are part of a larger system) with the physical world. 
Up until recent years most of these embedded systems have been closed in terms of 
allowed interactions, performing the task they have been designed to do and not 
exposing the functionality or computing capability to the outside, except in cases 
where an embedded system is part of a larger system. In those cases the 
functionality exposed and processor usage scenarios are well defined and 
constrained to the set specified by the system designer. It has been predicted (Lee, 
2007) that a radical transformation in terms of communication (and therefore 
interactions that a system is subject to) will come in the near future from 
networking these devices.  

A new term has been coined to describe such networked systems: Cyber-Physical 
Systems (CPS). Cyber-Physical Systems integrate physical processes and systems 
with networked computing systems. While Cyber-Physical Systems cover also 
“classical” embedded computing systems (where the interactions with other 
computing systems are very constrained) the concept of embedded systems is 
extended by creating networked systems where the interaction with the physical 
world plays an important role. This new generation of systems use communicating 
computers deeply embedded into and interacting with the physical processes, 
adding thereby new capabilities to physical systems. The Cyber-Physical Systems 
range from very small (e.g. pace makers) systems with quite limited or no 
interactions to large-scale (e.g. the national power-grid) systems with complex and 
dynamic interactions. Creating robust systems that deal with and consist of both, 
parts of the physical world, and networked computing systems is relevant to a large 
class of applications, such as consumer electronics, energy efficient smart homes, 
homeland security, industrial automation, civic infrastructure, and mechanical 
systems, such as airplanes or automobiles.  

In case of Cyber-Physical Systems it is just as important to understand the cyber 
part (i.e. computing) of these systems as it is to understand the physical processes 
that the systems are involved in. If both aspects are not considered it is not possible 
to create systems with desired (and predictable) behaviour. So the methods and 
tools used for modelling and analyzing Cyber-Physical Systems must be able to 
accommodate both the cyber (computing) and physical aspects of the system. The 
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formalisms used for describing Cyber-Physical Systems must accommodate 
projection of the physical and virtual properties of the world to the computing 
system in a generic way, thereby making the exchange of such data possible across 
systems.  

While the computing systems are becoming more complex, the social endurance to 
system failures is decreasing.  It is hard to overestimate the potential importance of 
Cyber-Physical Systems to our everyday lives and economies, so every effort 
should be made to develop reliable and trustworthy systems. Therefore the 
designers’ capability to deal with the complexities, incomplete information about 
many system’s characteristics, rapidly changing environments, and dynamically 
changing computing systems becomes crucial for success. As part of this capability 
is the ability to validate and verify the computer application before it becomes 
operational.  

The prevailing practice in the validation of embedded software in the development 
process relies on testing for concurrency and timing properties. This approach has 
worked reasonably well, because programs have been relatively small, and because 
the interactions of the software have been strictly limited – the operational 
environment and the interaction patterns for the software are fixed at design time 
so that they cannot alter the behaviour of the software. However, the CPS 
applications demand various services in a networked environment, so testing only a 
limited set of the interactions that a system is permitted is not adequate. In a 
dynamic networked environment, it is not possible to test the system or parts of the 
system (that are interacting with the physical world) under all possible conditions 
(Lee, 2007). So as conventional testing has its limitations, it is therefore becoming 
less useful and alternative methods must be developed. In addition to verifying 
stationary properties of systems, the customer expects on-line behaviour 
verification as required in the self-organising systems and in systems which exhibit 
emergent behaviour.  

The temporal aspects of interactions in case of any system that is in direct 
interaction with the physical world cannot be abstracted away – the type of action 
that an entity in the physical world performs is just as important as the time instant 
when that action was performed. So temporal features are an integral part of any 
Cyber-Physical System. It must be noted, however, that not only timing, but also 
location is a critical aspect in Cyber-Physical Systems. It can be said that in case of 
conventional embedded systems timing catered for most unknowns as synchronous 
operation of the system was expected. In case the coherence of temporal 
relationships between data items generated by the system components was not 
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maintained problems were likely to arise. In CPS scenarios the temporal 
relationships are not fixed but in addition the location of system components may 
be (dynamically) changing. This means that neither the temporal nor the spatial 
relationships between embedded devices and therefore also data they generate can 
be fixed at the design time. Therefore Cyber-Physical Systems must be able to cope 
with variations of data both in time and space.  

The CPS technology is clearly one of the enabling technologies for realizing the 
ubiquitous computing (a.k.a. pervasive computing, invisible computing and calm 
computing) concept, first introduced by Weiser (Weiser, 1991). Consequently, in 
order to make any advances in that area, solving the problems related to Cyber-
Physical Systems is crucial.  

The conventional computer science and many formal models surveyed in the thesis 
enable to describe and analyse formally various atomic operations but are of very 
little use for analysing a collection of dynamic interactions of mobile units 
performing atomic operations. In case of complex Cyber-Physical Systems the 
designer must be able to express the computation proper, interactions between the 
peer computing entities and their environments, and the effect of interactions on 
the current and future computations and interactions.  

Using the existing conventional formalisms the algorithms and various aspects of 
systems’ behaviour can be described, but we are stuck on formally describing a 
deterministic selection of algorithms and trivial behaviours of separate algorithms. 
In CPS, for feasible selection of actions the state of the external world (including 
both the physical and virtual worlds), the state of the agent itself (including the 
results of past interactions which have influenced the state of the agent), and the 
state of the other agents must be considered.  

Sensor networks are one of the emerging technologies that can be classified as 
being an essential component of Cyber-Physical Systems that support the ability of 
computing systems to perceive the surrounding world (physical and virtual 
processes interacting with the computing system). Sensor networks are in close 
interaction with the physical world, having to react to the stimuli received from the 
physical world, while the computers in these systems are interacting with each 
other. As the configuration of systems is not known before the system is 
operational, these interactions cannot be specified beforehand. Hence the generic 
difficulties with new ubiquitous computing systems can also be observed in sensor 
networks. The computation in these systems depends on the current and past 
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interactions, it exhibit emergent behaviour, and is therefore different from that of 
classical deterministic computing systems.  

This thesis suggests that explicit introduction of the concept of situation awareness 
will help to describe and analyse the interactions and the behaviour of Cyber-
Physical Systems. A situation is described by a set of situation parameter values 
and each component in the system interprets the situation parameter values 
according to its own rules. The situation awareness concept allows the system’s 
components and the system as a whole to maintain a coherent view of the world 
(by exchanging situation parameter values) in order to harmonize the actions and 
responses of the components of the system, and help the system as a whole to 
behave appropriately in the current circumstances (situation). So (part of the) 
interactions between the system components cater for exchange of situation 
parameters. The behaviour of the system is described in relation to situations as 
defined by situation parameter values. Introduction of situations can be interpreted 
as a means for weakening the impact of incompletely known non-linear 
relationships between the parts of the systems and their environment and thus 
increases the probability of successful operation of those systems. The 
relationships are incompletely known and non-linear as a complete description of 
the environment does not exist. Neither is the behaviour of the system and its 
components completely known as the system specification is only an 
approximation of the actual implementation of the system. In addition the possible 
evolution of the environment and the system over time is not known and cannot be 
therefore considered in the system description.  

The thesis extends the concept of a mediator that operates as an arbiter of 
situational information. The channel in the Q model (Motus, et al., 1994) can be 
also viewed as a mediator of a kind but in the current thesis the mediator concept is 
extended so that it can consider other types of meta-information besides temporal. 
The mediator is also an active/proactive arbiter of information, acquiring and 
providing relevant information. 

The thesis also presents a distributed system of systems concept that builds upon 
the notion of networked situation aware computing systems. A part of information, 
exchanged in a system of systems is in the form of situation parameter values, 
which are computed by individual sub-systems and shared with the other system’s 
components. 
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The major contributions of the thesis are: 

• Introduction of situational information as a design and analysis concept for 
distributed systems; 

• Association of validity (including temporal and spatial) information with 
situational data; 

• Concept of a mediator as the arbiter of situational information; 

• Concept of system of systems that builds upon of the notion of situation 
aware computing system. 

Starting from the system’s view the thesis presents an overview of different types 
of systems, categorized by their type of behaviour. Then motivation for introducing 
situation awareness concept to the distributed systems domain is given. The thesis 
continues with an overview of situation awareness, firstly in the domain of human 
factors and then in the context of computing systems. The situation awareness 
concept is then developed further by introducing the concepts of situation 
parameters, hierarchies of situation parameters and discussing the validity of 
situation parameters. The thesis also presents some case studies that are related to 
situation awareness concept and that the author has been involved in within the 
past years. In the very end conclusions and some open problems are presented. 
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Abbreviations and definitions 
Computing system – an artificial system that contains one or more computing 
units; in one end of the spectrum a computing system may be a single-processor 
system with very limited interactions, in the other end of the spectrum a computing 
system  may be a multi-computer system (a network of systems) with complex 
interactions  

Context awareness – the ability of a system to act based on the state of the world 
around it 

CABP – communication area based positioning 

COP – common operational picture 

ISM band – industrial scientific medical band 

LOP – local operational picture 

MANET – (mobile) multi-hop ad-hoc network  

Mediator – arbiter of information 

MIM – multi-stream interaction machine 

POI – point of interest 

PTM – Persistent Turing Machine 

PWM – pulse width modulation 

RDF – Resource Description Framework 

RSSI – Received Signal Strength Indication 

SA – situation awareness 

SIM – sequential interaction machine 

Situation – the aggregate of biological, psychological, socio-cultural and 
environmental factors acting on an individual or group of agents to condition their 
behavioural patterns (Mir09) 
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Situation awareness – the perception of elements in the environment within a 
volume of time and space, the comprehension of their meaning, and the projection 
of their status in the near future (Endsley, 1988) 

TM – Turing Machine 

UAV – unmanned aerial vehicle 

UGV – unmanned ground vehicle 

UML – Unified Modelling Language 

WSN – wireless sensor network 
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1 Current state of the art and problem statement 
In 1936 Alan Turing proposed a universal computing machine which could be used 
to compute any computable sequence, provided the machine is supplied with a tape 
containing the description of the task – the algorithm and the input data (Turing, 
1936). Although the original objective of Turing’s work was to define what a 
computation is and also to be able to show if a computation is effectively solvable 
(whether the computation terminates) the practical result of the work was the 
concept of an automatic computing machine. Machines based on the Turing 
machine concept are suitable for replacing rooms full of people who solved 
mathematical equations manually – the algorithms used for solving the equations 
were well defined as well as the input data. In fact Turing in his paper (Turing, 
1936) explicitly depicts the model of his machine on a person doing manual 
calculations (the people who performed the calculations were called computers at 
the time). Soon after Turing had presented his ideas on the universal computing 
machine the development of automatic computing machines was started. The 
reason for the development of the first computers lay in the fact that the 
computational tasks at hand at the time were too big to be solved manually. The 
world’s first functional program controlled Turing complete computer (the Z3) 
came into existence in 1941 and it was developed by Konrad Zuse (Copeland, 
2006). The tasks of ENIAC, developed between 1943–1946 (Burks, et al., 1981), 
the first general purpose electronic computer were calculating artillery firing tables 
and solving computations required for the development of the hydrogen bomb. 
Naturally computers have evolved over time and as can be predicted modern 
computers solve the computing problems much faster than the original computers 
did as both the computing hardware and the corresponding software have 
developed substantially over the years. 

Gradually people also started using computers for tasks for which they were 
originally not designed – interacting with the real world, controlling real-world 
processes, interacting with people and other computers (via a network). The first 
purpose built industrial control computer system was developed for Texaco 
Company and installed at the Port Arthur, Texas refinery. The system achieved 
closed loop control on March 15, 1959 (Stout, et al.). The modern world presents 
us embedded systems, digital control systems and software intensive devices, all of 
which fall outside the class of systems that can be correctly modelled using a 
Turing machine. 

So we can conclude that modern computers are used for much more than just 
computing Turing computable functions (usually such functions are called injective 



21 

functions) – atomic computations where the output of a function is expected to be 
always the same given the same input values. The theory of computations 
stemming from the Turing machine prescribes that the computation runs from start 
to end without interruptions – once the input data is given and the computation is 
started the computation should run with no intrusions. 

In (Stepney, et al., 2005) the authors bring many examples (some of which are 
described below) on how the modern computing systems have departed from the 
classical Turing computing paradigm. The classical approach assumes that a 
program has a single well-defined output channel. While in real systems the output 
channel is not so well defined and we can choose to observe other aspects (as the 
internal state or the trajectory of the computation) of the physical system as it 
executes. A computing entity itself does not necessarily know if, where, and how 
the output is used. The Turing paradigm assumes that the computation is atomic, 
i.e. computation is discrete in time and space – the end state is preceded by the start 
state with operations that transform the input to an output between these states. 
This abstraction is not well applicable to modern systems as the intermediate states 
of the computation have relevance and the output can be also affected by input data 
received while computation is executed.  

In addition to the non-atomicity of the computations in modern systems they also 
depart from the von Neumann architecture (von Neumann, 1993) which prescribes 
a fetch-execute-store model of program execution. Parallel architectures and 
execution models (e.g. FPGAs, neural nets) are examples of such systems.  

A modern computing system is a collection of algorithmic computations, which 
are, cleverly, tied together, the output of one computation being the input to 
another one (e.g. superposition of functions in mathematics). At the moment we are 
not able to describe or construct modern computing systems in such a way – the 
general system architecture, the components and their interaction patterns must be 
known at design time in order to construct a complete system from individual parts. 
In case of many modern systems the components of the systems are not known at 
design time, neither are the interactions between the system components known. In 
many cases functions are used which are not Turing computable. For modern 
systems the algorithm is not the central part but instead interactions connecting 
algorithms are of importance (although quite often we can achieve practically the 
same result by applying different algorithms.). These features make the 
applicability of the compositional method very questionable. Of course systems are 
constructed also more loosely (without paying due attention to formal restrictions 
and constraints imposed by the theory based on Turing computable functions) but 
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there is no systematic way of constructing such systems and having any confidence 
that a given system will work as desired.  

The Turing paradigm is based on algorithms and programs (that are superposition 
of algorithms); however the concept of a program has many interpretations 
nowadays. A given problem may be solved by a single algorithm contained in a 
single program or a problem may be solved by a collection of algorithms contained 
in several programs that run on (non-algorithmically interacting) separate 
computers. Some of the functionality of a system may be also realized outside of 
the computer altogether, for example preliminary detection of signal energy can be 
implemented using analogue electronic circuitry with an output from that circuitry 
being an input to the computer (and to an algorithm). 

The interactive computation paradigm as proposed by (Wegner, 1997) extends 
further than the Turing paradigm and although there is no widely accepted and 
used formal model for describing interactive computation, conceptually the 
interactive computation paradigm can be used to describe and analyse the majority 
of recently emerged computing systems – e.g. networked embedded systems, 
networked pervasive computing systems, ad hoc networks. Unlike the Turing 
computable paradigm which only considers the case of a single computation or a 
well-specified sequence of computations, the interactive computation paradigm 
considers any interactions between the computing entities and ongoing 
computation within a computing entity (including stream computation). 

The complexity of interactive computing systems is much higher than the 
complexity of traditional (Turing) computing systems. In case of an interactive 
computing system a collection of computing entities interact persistently with each 
other and with the physical environment, they process streams instead of strings. 
The output of a single execution of a computing entity depends on its current state 
(which depends on its previous executions), on its current input from the physical 
world and on input from peers. So it is very complex if not impossible to design and 
control the behaviour of an interactive computing system. In addition, time and 
space are important factors that must be considered when reasoning about the 
behaviour of interactive computing systems that are directly linked to the physical 
world and (may be) to autonomously operating other interactive computing systems. 
In order to have a better understanding of computing systems and formalisms for 
describing such systems an overview of computing system types is given in the 
following section and an overview of formalisms is given in Appendix A.  
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1.1 Classifying computing systems  
This section suggests taxonomy of computing systems depending on strictness of 
requirements to the computing models applicable for analysis of their observable 
behaviour. Already well-established computing systems can be categorized into 
transformational and reactive, based on their essential behavioural aspects and 
methods required for their analysis. There is also a rapidly emerging class of 
computing systems, further named proactive systems (Tennenhouse, 2000) whose 
characteristics are discussed below.  

The models of computation used for describing those classes of computing systems 
can be categorized into “classical” algorithmic models (a.k.a. Turing computation 
models) applicable to transformational (and in many cases) to reactive systems, and 
into non-classical, non-algorithmic models, which have not yet matured, and are 
represented by interaction-centred models of computation (a.k.a. super-Turing 
models of computation) see, for instance (Wegner, et al., 2004) and (Motus, et al., 
1994). 

As stated in the introductory section the applications of computers have evolved 
from simple data processing systems, which are obviously transformational, to 
computers for creating virtual worlds, which are partly reactive, but also 
transformational systems. Computers have been also embedded into the real world, 
creating more complex reactive systems, embedded systems, self-X applications 
(Güdemann, et al., 2006) and finally pervasive computing systems, which in most 
cases are also proactive applications. When in the first steps of computer 
technology development the theory was well ahead of the applications then 
nowadays we can say that theory is lagging behind actual applications – the 
modern computer applications are far beyond what the current theory is able to 
describe, verify and validate. 

1.1.1 Transformational systems 
Transformational systems transform inputs into outputs and the designer of the 
system only has to specify the transformation function (this function should be 
Turing computable). Transformational systems (e.g. data processing systems) can 
be highly complex but all purely transformational systems can be decomposed 
fairly easily, while conserving all their properties, into sub-functions, each part 
having a well-defined input and output. Well established tools and theories exist 
for describing and designing transformational systems. The inputs are presented to 
a transformational system in an ordered manner and system transforms the 
presented inputs to outputs as it is able to. The main metrics for a transformational 
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system defines the order and correctness of implementing the transformations. If a 
system is functionally decomposable into smaller fragments then each fragment has 
a well defined input-output transformation, as does the whole system. The 
correctness of both the components of a transformational system and the whole 
system can be validated using, in principle, the same approach.  

In essence, each transformation in a transformational system realizes an algorithm 
and a transformational system as a whole realizes a superposition of algorithms. So 
the tools and methods based on algorithm theory are sufficient for describing and 
validating transformational systems. In practice, the interpretation of the notion of 
algorithms (and algorithm theory) is not very strict (as discussed in for example 
(Bass, et al., 2003)), since transformational computing systems are usually tolerant 
to reasonable approximations resulting from neglecting some actual features of 
applications, or from violating certain axioms of the theory.  

1.1.2 Reactive systems 
A reactive system must react to external stimuli; the word “external” may have 
here a different meaning to various parts of the system. From the high level point 
of view “external” includes everything that is outside the scope of a system and all 
stimuli generated outside of the system can be considered as external stimuli. In 
addition, different parts (or components) of a system (which by themselves cannot 
form an independent system) have to react to stimuli generated by other parts of the 
system. In this case “external” stimuli originate from the system itself.  

The behaviour of a reactive system is determined by the allowable (or desirable) 
sequences of input stimuli and output responses. During the design of a reactive 
system various preconditions, actions and timing constraints may be imposed upon 
the system’s inputs and outputs, since only the fact that a computer reacts to 
external stimuli does not necessarily suffice to provide the correct reaction in the 
context of a particular environment-computer interaction. 

Embedded systems form a separate subclass of reactive systems that implements a 
closed loop system with feedback through the environment, meaning that the actual 
system comprises (a part of) the environment and the embedded computer system. 
An embedded system is also expected to maintain an ongoing relationship with its 
environment, providing a persistent service (Harel, et al., 1985) in a timely manner, 
i.e. satisfying the constraints required by the environment and imposed upon the 
embedded system by its designer. 
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Harel and Pnueli state in (Harel, et al., 1985) that the structure of a program in the 
case of reactive systems (and of any computing system) need not, and cannot in 
many cases, reflect the true structure of the problem since in a general case one 
needs to simplify the computational structure of the system in order to be able to 
apply decomposition for partitioning the complex behaviour effectively among its 
components. However, decomposition cannot become a regular basis for design of 
reactive systems. For instance, in case of reactive systems a certain interaction may 
become a factor affecting systems’ behaviour. When decomposing a complex 
reactive system, quite often the desired behaviour cannot be guaranteed due to 
several neglected and/or heavily approximated interactions in the environment – in 
order to maintain composition-based design. Hence, decomposing complex 
behaviour is still, in the general case, an open research problem which is also 
tackled in this thesis. 

1.1.3 Proactive systems 
Proactive systems also react to external stimuli but, in addition to reactive systems, 
they have local (and/or global) goal function, plus the capability and authorization 
to apply self-X properties (Güdemann, et al., 2006) in order to modify their 
reaction – locally and/or globally – so as to (sub-) optimise the goal function(s). 
On-line application of self-X properties becomes possible only by providing 
autonomy to the systems’ components – so that on-line modification of system’s 
structure, or on-line modification of some of its functional components, or on-line 
modification of interactions between its components, etc. can be invoked by the 
system itself. Therefore, the behaviour of proactive systems is remarkably richer 
than that of reactive systems, and often requires more sophisticated models of 
computation (e.g. super-Turing models of computation) in order to monitor and 
control the self-X processes and the emergent behaviour that is characteristic to 
proactive systems. 

For instance, a proactive system has all the properties of a reactive system, plus a 
proactive system has the freedom to perform (or not to perform) a pre-specified 
action – depending on the state of its environment as perceived and interpreted by 
the proactive system (or parts of the proactive system). A system’s behaviour is 
often generated not only in direct response to stimuli from the environment (i.e. 
from both the physical world and the virtual world – e.g. peer computing systems, 
the other components of the system), but in most cases the generated behaviour 
depends also on the internal state of the computing system (i.e. in addition to 
depending on the system’s working memory the behaviour also depends on the 
system’s long-term memory). 
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Proactive systems are remarkably more exposed to uncertainties (mostly caused by 
incomplete information, and/or autonomous behaviour of its components) than 
reactive systems. Reactive systems (usually) implement a closed loop system with 
feedback through the environment, hence most of the uncertainties stem from 
incomplete knowledge regarding inner properties of the environment. The 
behavioural autonomy permitted to components of a proactive system, normally 
enabled in order to improve robustness and resilience of the system, and to satisfy 
better the components’ goal functions, introduces additional uncertainty in 
decision-making. The uncertainties may be introduced for instance: 

• Due to autonomous and partially asynchronous operation of components 
which may result in actions that are not perfectly orchestrated to be 
invoked – which may in turn remarkably complicate control of the 
system’s behaviour; additionally, one might need to consider the impact of: 

o On-line readjustment of (mediated) interactions between the 
system’s components, and/or between system and its environment, 
or 

o Substantial rearrangements of the systems due to on-line execution 
of self-X properties, e.g. substitution of components or changing 
their functionality, modifying the connectivity of components, or 
the permitted pattern of interactions between the components 

• The fact that the environment models used are not sufficiently precise (e.g. 
some essential interactions are neglected etc) may lead to situations where 
the in-system interaction patterns cannot match the requirements and 
constraints imposed by the environment and the goal functions of the 
system.  

 
In a nutshell, the above listed uncertainties foster the emergent behaviour (Stepney, 
et al., 2005) of a proactive system – emergent behaviour typically occurs in 
complex integrated and/or networked systems. It is called emergent behaviour 
because it occurs dynamically, during operation of the system and cannot be 
deduced a priori from the static structure of the system and from the behavioural 
properties of the components of that system; see also (Motus, et al., 2005).  

Emergent behaviour is usually a non-desirable property of transformational and 
reactive systems (although it may appear due to bad system design) since in case of 
these systems the behaviour of the system should be precisely predictable. Systems 
that are strictly based on Turing computable functions cannot exhibit emergent 
behaviour by definition – the underlying axioms and imposed restrictions disable 
emergent behaviour. 



27 

1.1.4 A shift from transformational to reactive to proactive systems 
Truly complex systems (e.g. natural systems, networked pervasive computing 
systems, cyber-physical systems etc.) cannot be adequately modelled by a 
superposition of Turing computable functions. This has been noted long time ago. 
There are other properties of system components that are important besides the 
input-output transformation of these components (be they computing nodes in a 
computing system, or cells in a living organism). For example, real world 
processes (e.g. human speech or physical processes) are usually temporally regular 
which means that the temporal aspects of these processes cannot be neglected when 
trying to monitor, interpret, and/or control those processes. Clearly the behaviour 
of computing systems which are immediately interacting with (or embedded into) 
the physical world is also dependent on the temporal (and/or spatial, and other) 
aspects of the applied interactions and evolution of the physical world.  

In the context of natural sciences P. Anderson (Anderson, 1972) makes a point that 
biologists, physicists, and others are able to decompose the world into small 
isolated components and describe the behaviour of each component in a 
“complete” way (at least in terms of properties observable in an isolated 
component). However, scientists have encountered serious obstacles when trying to 
synthesise larger functioning artefacts using the same isolated components and 
applying their properties and theories, developed in the “divide and rule” based 
research – meaning that the decomposition process is not always reversible. This 
claim is valid for example for any multi-cell organisms, recently similar obstacles 
have been also observed when integrating autonomous smart artefacts into a 
networked system. It is clear that there are properties of these cells, components, 
and/or building blocks that were not captured by static observations of isolated 
components. The aspects of (dynamic) interactions between the components are 
obviously controlled by these not captured properties. Decomposition into isolated 
components hides these emergent properties, consequently the higher-level 
behaviour and properties of the system cannot be deduced smoothly from the 
known properties and interactions of isolated simple components – partly due to 
the inbuilt approximation feature in popular “divide and rule” methodology. 
Anderson notes that "the main fallacy in this kind of thinking is that the 
reductionist hypothesis does not by any means imply the "constructionist" one: The 
ability to reduce everything to simple fundamental laws does not imply the ability 
to start from those laws and reconstruct the universe." (Anderson, 1972) 

By definition, any non-trivial system consists of several interacting components. 
The components interact with each other, the majority of modern systems also 
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interact with (parts of) the physical world. The algorithmic approach to describing 
a system as a superposition of Turing computable functions does not handle 
interactions explicitly – and thus leaves us with an approximate description of 
systems. Attempts to construct a complex system without considering all the 
essential interactions (including the temporal, spatial, etc aspects of these 
interactions) between the system components and the environment will almost 
certainly provide insufficiently precise match between system that is actually 
required and its model.  While applicable theory and extensive experience is 
available for designing isolated (transformational) components with well 
predictable behaviour, the same cannot be said about more complex systems – e.g. 
those systems comprising components whose interactions are non-transformational. 
Even when the behaviour of single, isolated (transformational) components is 
correct, the behaviour of an interacting collection of these components may not 
satisfy the requirements and expectations –  meaning that some other (e.g. non-
transformational) aspects of those components, that affect the behaviour of the 
integrated system, were not satisfactorily described or verified during the analysis 
of isolated components.  

So it can be concluded that we need to enhance the description and analysis power 
of our models of computation so that they can be used to verify static and dynamic 
(interactive) behaviour of (proactive) components and their ensemble. 

Turing machines serve as a basic model sufficient for describing and analysing 
transformational systems as the computation performed by a Turing machine 
implements a transformation– an output value is computed given an input value 
and a suitable algorithm (Turing computable function). Given a specific input value 
the output value is always the same – strictly speaking, Turing computable 
functions do not have a memory of its previous executions. Additional inputs, or 
any other data, are not accepted before the current computation has been completed 
(i.e. the Turing machine has reached its terminal state).  

The pedantic satisfaction of the above stated restrictions in the case of reactive 
systems may cause conflicts with the requirements imposed by the environment. 
Hence in practice those restrictions are satisfied approximately, and the constraints 
are stretched as long as robustness of computing system and of the environment 
permits.  However, we should not forget that most of the computation in reactive 
systems is time dependent, and the result of computation usually depends on the 
data that the system has previously processed. So, strictly speaking, different 
executions of an algorithm in reactive systems should produce non-identical output 
data values even if input data values were identical – because the external 
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environment could have memory, and could changing in time. Turing model of 
computation is applicable as long we can neglect the conflict between the 
behaviour of computing system and its surroundings (the environment) – as long as 
we can consider our system closed. Reactive computing systems require, in a 
general case, a more powerful model of computation – e.g. interaction-centred 
model of computation. 

It is clear that a reactive system is transformational (algorithmic) in certain isolated 
sections of the computation where an input value is transformed to an output value, 
however such sections tend to be interacting with each other and with the 
environment by non-transformational interactions (compare also with a 
synchronous programming paradigm, (Halbwachs, 1993)). Similarly to reactive 
systems being transformational in some sections, also proactive systems are 
reactive in certain isolated sections where an output must be generated in response 
to input stimuli. 

So the interactive computation paradigm (i.e. interaction-centred model of 
computation, see for instance (Wegner, 1997) (Motus, et al., 2005)) must be used 
in case of reactive and proactive systems in order to describe and analyse subtle 
details of their behaviour formally, not just by testing. In case of proactive systems, 
extending the interactive computation model to a situation aware interactive 
computation model should be sufficient for describing and analysis the subtle 
details of behaviour. Interactive models of computation capture the notion of 
performing a task or providing a service, rather than algorithmically producing 
outputs from inputs (Goldin, 2006) (Stepney, et al., 2004). 

This problem is also apparent in the concept of futures proposed in (Friedman, et 
al., 1976). The authors propose a concept where an executing program is 
partitioned into independent execution threads. The main thread initiates the other 
threads (as futures), they start running and are expected to be ready by the time the 
computation result is required. Since the exact behaviour (output values) of the 
futures is not known even when the futures are called the output of the computation 
cannot be predicted even when the computation is executed. Drawing parallels 
from the Turing machine (or from the Persistent Turing Machine) the contents of 
the working tape may change during the computation (the output data generated by 
the futures affects the contents of the working tape and it changes during the 
computation), also the state of the machine may change during the computation as 
the output of the future may change the state of the machine. In addition, since we 
do not know what exact algorithm is selected to compute a future, the machine 
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itself may change during the computation. The concept of futures can be also 
compared to distributed computation in an agent network.  

In case of complex systems employing the interactive computation model we face 
several distinct problems which are actually related: a system with many possible 
states and output combinations, and complex computation in the entities of that 
system depends on the past inputs to those entities. So the problem with interactive 
computational model is not whether we are able to compute the output(s) given we 
know the current state and the input data values, but whether we are able to limit 
the possible behaviours of the system to an acceptable subset and to what extent are 
we able to predict the behaviour of the system at a given time instant when we do 
not have complete information on the system. 

1.2 Do we have a model for interactive computation? 
Appendix A presents a superficial overview of computing formalisms, describing 
their expressive power and applicability in the context of different computing 
system types. Clearly none of the formal models presented in the appendix are 
suitable for formalizing interactive computation without substantial modifications. 
In case of interactive computation we need to model the computation itself, the 
interactions between computing entities, the interaction between a computing entity 
and its environment, indirect interaction via the incompletely known environment,  
and the effect of the interaction on the current and future computations and 
interactions. While we are able to describe the computation formally and also 
aspects of interactions formally (using various formalisms) we do not have a good 
method of explicitly expressing the dependency between the past interactions and 
the current state of the computing system. Some of this knowledge is actually 
available on lower levels of the hierarchy of models – where detailed descriptions 
of components are depicted. At the system’s level we can approximately describe 
the knowledge about the impact of the past on the presence and future (e.g. 
feedback) by defining situations which empirically integrate deep and shallow 
knowledge about the impact of feedback to the systems behaviour at this moment 
and in the future. 

The situations (and the hierarchy of situations) can be defined empirically and a set 
of “situational parameters“ can be selected that enable to detect the situations and 
to influence the occurrence or transition of situations.  The situation parameter 
values can be received from the other computing entities or computed locally. The 
situation parameter values can be combined to define higher level situations, if 
necessary. The situation parameter values can be used as input data for some 
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computations that occur in a computing system. We can say that situation 
awareness is a concept that assumes the ability to detect the situations, and to use 
the situational parameters for improving the functioning of a system, its design, on-
line behaviour verification in adaptive systems and/or in systems with self-X 
properties.  

1.3 Why and how situational information has become essential 
Modern computer applications comprise computing systems with ever increasing 
complexity directly interacting with complex environments whereas the cost of 
system failures or even small malfunctioning may be (depending on the 
application) remarkable. At the same time the social endurance to system failures is 
decreasing.  Therefore the designers’ capability to deal with the complexities, 
incomplete information about many system’s characteristics, rapidly changing 
environments and dynamically changing computing systems becomes crucial for 
success. As part of this capability is the ability to validate and verify the computer 
application before it becomes operational – conventional testing has its limitations 
and is therefore becoming less useful. In addition to verifying stationary properties 
of the system the customer expects on-line behaviour verification of the self-
organising if a system contains such features. 

At the same time the computer applications tend to become more integrated by 
networking (earlier) autonomous applications typically using ad-hoc networking 
technologies, which in turn means that the configuration of such systems is not 
fixed. Hence, on-line verification and validation is in many cases the only available 
alternative, in case, for instance, of systems of systems that exhibit proactive 
behaviour and possess very clearly self-X properties. It is known that the behaviour 
of those systems cannot be deduced from the behaviour of individual components 
due to the emergent behaviour inherent in these systems. Therefore we must be 
able to deal with the emerging behaviour in the form of interactions between the 
system components (which themselves may be systems with incompletely known 
properties). This presents us with one of the reasons why so we must look at ways 
of formalizing interactive computation, and at ways of learning explicit, although 
approximate, presentation of empirical experience for coping with the incompletely 
known features. In many practical cases observing and affecting a limited number 
of interactions in a system are the only ways to manage (or at least influence) 
system’s behaviour.  
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The conventional computer science and many formal models surveyed in the 
previous section enable to describe and analyse formally various atomic operations 
but are of very little use for analysing a collection of interacting atomic operations.  

In case of interactive computing we need to express the computation itself, the 
interaction between a computing entity and its environment or its peers, and the 
effect of the interaction on the current and future computations and interactions.  

Using the existing formalisms we are able to describe the data interpretation 
algorithms and various system behaviour but we are stuck on formally describing a 
deterministic selection of interpretation algorithms and trivial behaviours of 
separate algorithms. In the selection of actions the state of the external world 
(including both the physical and virtual worlds), the state of the agent itself 
(including the results of past interactions which are expressed in the state of the 
agent) and the state of the other agents must be considered. In a complex 
computing system which itself may be a system of systems there must be way for 
conveying the current state of the system (the state here having a wider meaning, 
i.e. the state encompasses the internal state of the system or parts of the system 
achieved through the normal computation and also the state of the system achieved 
via interactions with also the physical world) or parts of the system from a 
component to a component in order to achieve coordinated and desired behaviour 
of the system. 

The behaviour of a complex system (a system of systems) is the combined 
behaviour of all its components. If all the components also exhibit a certain level of 
autonomy then it is not possible to describe such a system using algorithmic 
approaches since a certain input is not guaranteed to produce always the same 
output, not at the system level and not even at the system component level. This 
means that the validation and verification of such systems is not possible using 
conventional methods – there is no desired output corresponding to a specific 
input, neither are there specific states of system components that is desirable or not 
allowed when a specific set of input values are presented to the system. The 
internal state space of the components forming a system may not be identical. Even 
if the state space overlaps in some sections the internal states of the system’s 
components are not necessarily synchronized but rather each component is 
responsible for maintaining its own state.  

Pervasive computing systems contain several non-terminating processes, where 
communication is time, selective. It is stated in (Motus, et al., 1994) that pervasive 
computing processes (comprising of repeatedly activated terminating algorithms 
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(with memory about the history of previous activations)) necessitate the 
introduction of time-selective inter-process communication. Such communication 
is not fully analysable in (first order) temporal logic or in timed Petri-nets. The 
approach suggested in (Motus, et al., 1994) – the Q model – allows describing and 
analyzing time-selective inter-process communication in stationary mode.  

Due to the introduction of mobile computing nodes to current and future computing 
systems the requirements have become higher: in addition to time selectiveness of 
inter-process communication it also requires validation of the spatial properties of 
data (i.e. in addition to the time when the data was generated the location where the 
data was generated is equally important). So the computing processes are 
temporally and spatially selective – they can select to consume data originating at 
desired time instances at desired locations. In addition the temporal and spatial 
requirements on the data may change dynamically. This is due to the fact the 
configuration of the system is not known beforehand (not even at the time of 
deployment, let alone the time of design) and it may change dynamically in an ad-
hoc manner during the lifetime of the system. Hence the interaction patterns (data 
producers and consumers) in the system are not known beforehand. This means 
that instead of (or in addition to) stationary description and checking (validating) 
the temporal and spatial properties of data, this must be done dynamically during 
system runtime, at certain intervals. As the requirements and constraints for data 
may change at runtime the validation must adapt to these changed requirements. 

In order to design a system of systems that behaves in a desirable manner (from the 
standpoint of the system designer) and also to validate the behaviour of that 
system, one has to have a concept that is universal within a system and across 
systems. This concept must be abstract enough to be used across the system, yet the 
concept should reflect the state of the world (both the physical and computing 
world) so that the components of a system can utilize the knowledge so as to select 
the appropriate internal state. 

This thesis suggests that the introduction of the concept of situation awareness will 
help to describe and analyse the interactions and the actions of Cyber-Physical 
Systems. A situation is an aggregate of factors relevant to a given agent and 
described by a set of situation parameter values, each component in the system 
interprets the situation parameter values according to its own processing rules. The 
situation awareness concept allows the system components and the system as a 
whole to maintain a coherent view of the world. This in turn allows harmonizing 
the actions and responses of the components of the system and the system as a 
whole to be appropriate in the current circumstances (situation). So (part of the) 
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interactions between the system components cater for exchange of situation 
parameters. The behaviour of the system is described in relation to situations and 
situation parameter values. 

If a system perceives a certain situation the behaviour (actions) of the system (or 
part of the system) will correspond to some specific patterns. In the same way 
some specific behaviours may not be allowed in some situations. So checking (and 
possibly stopping the undesired behaviour) the desired behaviour of the system 
against the allowed behaviour in the current situation enables the designer to ensure 
that incorrect behaviour will not occur. Hence this provides a certain additional 
level of security and quality control for the system’s behaviour. Of course the 
detailed behaviour of the system can not be predicted at a given moment in time 
but this is not always required in case of proactive systems as long as the system 
behaves in a way which is not disallowed. 

The concept of situation awareness essentially allows softly separating the non-
functional part of a system from the functional part. The system reaches a situation 
after some (temporally and spatially constrained) interactions have occurred. In a 
specific situation the system’s behaviour might have specific constraints 
corresponding to outside stimuli. In the context of verification and validation we 
can separate the task in two distinct parts – verifying that a system detects a 
specific situation correctly and verifying that a system behaves in a certain (pre-
specified and fine tuned during operation) way suitable for this specific situation. 

1.4 The Problem Statement 
This thesis suggests that the introduction of the concept of situation awareness will 
help to tackle the problems that arise in the design and development of Cyber-
Physical Systems. A situation is described by a set of situation parameter values, 
each component in the system interpreting the situation parameter values according 
to its own processing rules. The situation awareness concept allows the system 
components and the system as a whole to maintain a coherent view of the world in 
order to harmonize the actions and responses of the components of the system and 
the system as a whole to be appropriate in the current circumstances (situation). 
Inclusion of temporal and spatial meta-information to the situational information 
allows dealing with the fact that the temporal and spatial relations between entities 
and data items are not pre-fixed in a Cyber-Physical System. So (part of the) 
interactions between the system components cater for exchange of situation 
parameters. The behaviour of the system is described in relation to situations and 
situation parameter values.  
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The thesis focuses on defining and detection of situations, development of situation 
awareness concepts in the context of artificial systems, and on describing the 
experimental results.  
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2 Situation Awareness 
Research of context and situation awareness in computing systems has been 
gaining momentum in recent years. Research of situation awareness was originated 
in human factors research in the 1970s. But before the discussion on situation 
awareness can be continued in this thesis, the notions of context and situation 
awareness must be elaborated upon in order to bring some comparison and clarity 
to those concepts.  

2.1 Difference between context and situation 

2.1.1 Context and context awareness 
Some authors (Schmidt, 2002) (Dey, 2000) consider context to be the same as 
situation, assuming that the situation can be inferred directly from the (observable) 
context or in some cases vice versa (depending on the interpretation of these 
concepts by the authors). Since the deduction process seems often instantaneous for 
a person itself, humans generally do not pay attention to the deduction process and 
therefore they consider the result of a (sometimes long) reasoning process (based 
on the sensory input) as context. The context is usually the (raw or conditioned) 
sensory data itself (the state of the world as perceived by the available sensory 
equipment) about the state of the world.  

Humans are able to match basic sensory inputs with low-level situational 
interpretation without involving (seemingly) any reasoning process. In addition, 
humans are also able to combine the different situational properties, to infer higher 
level situations. Again in many cases humans believe that they are not involved in 
the reasoning process. Because the context and situational information 
identification is seamless for humans there is also a confusion in the definition and 
identification of context and situations. It seems to be reasonable to start the 
discussion on these topics with context and context awareness and from there to 
move to situation and situation awareness.  

Context is defined in the Merriam-Webster online dictionary (Mir09) as “the 
interrelated conditions in which something exists or occurs”, so loosely combining 
the term with awareness we can say that context awareness is awareness of the 
interrelated conditions in which something exists and anybody or anything that is 
context aware must be aware of the interrelated conditions in which it exists.  

The term “context awareness” was introduced in the context of ubiquitous 
computing systems in 1994 by Schilit et al (Schilit, 1994). As many other authors 
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later, Schilit et al view context mainly from the human user’s point of view, 
neglecting the other aspects of context that may be relevant from a computing 
system’s point of view. They describe computing applications which behaviour 
depends on the configuration and context of the combined computing and physical 
(the physical also including humans) system.  

In other literature many other (sometimes contradictory) definitions can be found 
for context. In (Dey, 2000) context is defined as “any information that can be used 
to characterize the situation of an entity. An entity is a person, place, or object that 
is considered relevant to the interaction between a user and an application, 
including the user and application themselves” and a context aware system is 
described as follows: “A system is context-aware if it uses context to provide 
relevant information and/or services to the user, where relevancy depends on the 
user’s task”.  

In (Yau, et al., 2002) the following definition for context is given: “Context is any 
instantaneous, detectable, and relevant condition of the environment or the 
device”. In (Dey, et al., 2002) the authors again view context only from the human 
user point of view and in the application described there the context recognition is 
required only to provide a better service from computing entities to humans. The 
context is specified as “information sensed about the environment’s mobile 
occupants and their activities” and an aware service is a service that is able to take 
the context into account in its operation. In this use case the set of contexts are 
unsurprisingly specified from the human user viewpoint and the computing system 
must be able to detect these contexts. In (Schmidt, 2002) context is defined using 
the concept of situation “A Context is identified by a name and includes a 
description of a type of situation by its characteristic features.” The reason for such 
a definition lies in the fact that Schmidt, similarly to other authors quoted above, 
views both the situation and the context only from the human observer’s point and 
he assumes that the situations are static states of the world from which contexts can 
be inferred.  

2.1.2 Situations and situation awareness 
Definitions of situations and situation awareness are even more contradictory than 
those of context. We can start again for the definition given in the Merriam-
Webster online dictionary (Mir09), which defines a situation as “relative position 
or combination of circumstances at a certain moment”.  

The earliest formal notion of situation (although not situation awareness) was 
introduced by Jon Barwise (Barwise, 1981) as a means of giving a more realistic 
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formal semantics for speech acts than what was then available. The discussion on 
situations by Barwise in (Barwise, 1981) offers an interesting perspective to 
situations and situation awareness, which is rather different from the one prevailing 
in the approach that most work on context and situation awareness related to 
computer science offers. Barwise claims, that one can deduce an infinite number of 
situations from a set of sensor data (regardless of the means of acquiring that data). 
The questions are, which situations are of interest to the observer, and can the 
relation between the sensor data and the situation be specified. 

Barwise could not find a good formal method (an appropriate logic) for specifying 
preconditions for a situation. Barwise correctly noted that identical sensor data 
(perception) can be generated in distinct situations so we must be able to identify 
what is unique about a certain situation that we want to identify. So we must 
specify how to distinguish a situation of interest from all the other situations, i.e. 
what are the characteristics of a situations of interest. In order to express these 
properties formally we need a formal method that allows us to express the required 
features.  

Barwise stresses that in the context of the study of natural languages (which was 
the motivation for Barwise’s work) we must distinguish between (not interpreted) 
sign and (interpreted) symbol more carefully than in the study of mathematical 
theories. This illustrates the point that the same set of data can be acquired in 
distinct situations and a specific set of data does not always mean that a situation is 
valid.  

Discussing these lower levels of situation awareness (actually acquisition of source 
data for situation valuation) we can look at the work done by Dretske. In (Dretske, 
1969) Dretske argues that what we see “is a function solely of what there is to see 
and what, given our visual apparatus and the conditions in which we employ them, 
we are capable of visually differentiating”, he also reasons that seeing is 
independent of “the subtleties if epistemology.” This reasoning illustrates well the 
point that perception and comprehension are two distinct functions and should not 
be mixed.  

A human typically “sees” an object, not the properties that make up the object 
(Barwise, 1981), he continues saying that “The most important problem about 
perception is the relationship between perception and knowledge”, The 
propositional  theories of perception argue that the epistemological and 
metaphysical questions are really the same – humans don’t see an object (say a 
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tree) but rather they see that an object is a tree – humans see generalised facts, not 
simple physical objects (Barwise, 1981). 

In (Hintikka, 1975) the author claims that “To specify what A perceives is to 
specify the set of all possible worlds compatible with his perception … [where] the 
notion ‘compatible with what A perceives’ is taken as not analyzable.”. So Hintikka 
supports the claim that there is not necessarily a one-to-one mapping between 
perception and the physical world, so when specifying such mappings one must 
understand that a specific mapping may be just one of the many possible mappings.  

Barwise in (Barwise, 1981) argues that a human “...cannot see a single thing-in-
itself, some sort of ideal physical object stripped of its properties and its relations 
with other objects.” Instead a human sees a scene, what is a combination of objects 
having properties and bearing relations to one another. The properties of objects 
and relations between the objects are as important as is the idealized thing-in-itself. 
In the same manner the perception of a specific object or property (that is not 
completely isolated from its environment) by an artificial agent is not possible, 
instead the property is perceived in the context of other, related properties. Also the 
sensory input is not without interferences, i.e. it can’t be expected that the 
perception of a property making up a situation is correct. 

Just the fact that an agent is not able to perceive a situation does not mean that the 
situation does not hold. Barwise distinguishes what a human (or an agent) 
perceives and what is really going on in the world by calling the (visually) 
perceived situation a scene. A scene may support the truth and it may not, but the 
fact that a scene does not support a fact does not necessarily invalidate the truth as 
the perception capabilities of a human (or an agent) may be limited.  

Moving from the conceptual situation awareness problems that were tackled 
several decades ago to more recent work we can see that the modern 
implementations take a more simplistic approach to situations and situation 
awareness.  

In (Wang, 2004) Wang specifies situation through contexts “Situation is a set of 
past contexts and/or actions of individual devices relevant to future device action”. 
Supplementing that definition is the definition of context given by Yau, Wang and 
Karim in (Yau, et al., 2002) “...any instantaneous, detectable, and relevant 
condition of the environment or the device.” Both of these definitions imply that a 
situation is a combination of several aspects (perceived by an observer). 
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2.1.3 Context and situation 
It can be summarized that context is an instantaneous condition of the environment 
as perceived by an observer by monitoring the observable properties of the world. 
It is clear that the term “context” carries only meaning when considering the 
observing entity. Depending on the sensory capabilities of the observer only a 
limited set of properties of the world can be monitored and therefore only a limited 
set of contexts recognized. As noted above, humans (being very egocentric) tend to 
interpret context from their personal point of view, however we must recognize 
that for each entity the concept of context is different, depending on the properties 
observable by the entity.  

Within the scope of the current thesis the term context is used for describing the 
aspects of the world external to an interpreting entity, not the background or 
circumstance of an object or phenomena in the world. This interpretation is chosen 
as the term “context awareness” makes more sense in the prior case.  

Within the scope of the thesis a situation is a combination of past and present 
observed contexts (taking into account the temporal and spatial relations between 
the contexts) and the state of the entity observing the situation is valid in a specific 
time interval in a specific location. 

Situation is an interpretation of the observable contexts, which again are dependent 
on the observable properties but also on the available interpretation methods. It 
must be noted that a change in the observable parameters of the world (the context) 
does not necessarily imply a change of situation. This is best explained by a simple 
example – a road safety system that (among other parameters) monitors the 
ambient temperature – a change of temperature from -10 degrees to -20 degrees in 
Celsius may be observable by the system but does not cause a change of the 
situation as perceived by the system – it is still freezing, whereas a change from +3 
to -2 is a change of situation as at +3 degrees the probability of ice on the road is 
extremely low, whereas at -2 the probability of ice on the road is quite high. 
Following a change of situation the system may have to perform some actions, for 
example notify any parties interested in the condition of the road. Elaborating the 
example we can consider an intelligent autonomous road safety system equipped 
with a smart road sign that is able to detect vehicles on the road in addition to the 
road conditions. So depending on the road condition situation – is the probability of 
ice on the road high and the situation of cars on the road – is there a car 
approaching the smart road sign will either display a warning to the driver of the 
oncoming car or not. 
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2.2 Human situation awareness 
In the following a short overview of work in the area of situation (context) 
awareness related to computing systems is given. Since a fair amount of work in 
that area has been done in the context of human situation awareness the overview is 
started from that area. The overview ends with review of previous work on context 
awareness of computing devices. It must be said that most of the work on context 
awareness of computing devices has been concerned with the context as observed 
by the human user of the computing system, not the context as perceived by the 
computing system itself. 

A human needs good SA in order to perform his tasks effectively. For most of 
history acquiring good SA has been a matter of experience for humans – what 
things to take into account in a specific situation in order to know what is going on. 
However with the advancement of technology the tasks humans had to perform 
have became far more complex and also the amount of information required for 
performing the tasks has increased and more information is being provided to the 
person performing the task.  

When in the past a person may have lacked information required to produce good 
SA, in the present the situation is the opposite – there is a huge amount of 
information and in many cases the problem is in incoherent or contradicting data, 
which cause degradation of situation awareness – which in turn may cause 
accidents. The reason for degradation of SA in the presence of contradicting data 
lies also in the fact that people are usually not trained for such occurrences and 
therefore are unable to cope with such situations. With the vast amount of 
information that modern systems are able to provide to operators the operator may 
be actually less informed than he was with less information. The reason for this lies 
in the fact that there is a gap between the amount of information disseminated and 
the operator’s ability to process the incoming information and combine the 
different bits of information for an objective assessment of the situation.  

Therefore the information provided to the operator must be carefully analyzed and 
foremost, only the information required in a specific situation should be provided 
to the operator. In order to achieve that some entity must identify the current 
situation and modify the operator interface so that only the information relevant in 
the current situation is presented to the human operator. The current state of the art 
allows to do the latter only offline, i.e. it must be manually specified what 
information and how to present it to the human user. As machines become more 
capable a trend that is becoming more prominent (when the legislation allows for 



42 

it) is that the human is left out of the loop, the human being just an observer and 
advisor. In this case the situational information provided to the human can be at a 
much higher level of abstractions since the information is not required for decision 
making.  

For a given operator, SA is defined in terms of goals and decision tasks for that job. 
An aircraft pilot for example does not need to know everything, but does need to 
know a great deal of information related to the goal – for instance, safely fly the 
aircraft in a given situation.  

The concept of situation awareness was originally introduced in the human-
machine interface research and the main motivation for pursuing research in that 
direction was the fact that user interfaces for complex systems that relied on 
computers were able to provide human operators with much more information than 
the operators were able to process. So in order to create systems that a human 
operator could operate safely and predictably a selection of information relevant to 
the human user in a given situation had to be made. The system would then only 
present the human user information relevant in the current situation in a way most 
suitable for the current situation. In (Endsley, 1988) the author gives the following 
definition for (human) situation awareness: “the perception of the elements in the 
environment within a volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future”.  

2.2.1 Three Mile Island accident 
In the following an example of a nuclear power plant accident is described to 
illustrate the importance of good situational information for operators of critical 
equipment. The Three Mile Island accident is a textbook example of how loss of 
SA can be the source of incorrect decisions which in safety critical applications can 
lead to catastrophes.  

Some consider the Three Mile Island nuclear power plant meltdown as one of the 
most important events to trigger research in the field of situation awareness. In the 
Three Mile Island meltdown incident in 1979 near the city of Harrisburg 
(Pennsylvania) one of the reactors in the Metropolitan Edison nuclear power plant 
was subject to overheating due to failure of main feed water pumps  (Nuclear 
Regulatory Commission, 2009). The high pressure was relieved automatically by a 
pressure relief valve which however malfunctioned and remained open. As a result 
the coolant level in the reactor began to drop. The coolant level drop was corrected 
automatically by emergency fill pumps which started pumping additional coolant 
into the primary pressure loop.  
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The experts claim that these automatic actions would have prevented reactor 
meltdown. Here was first point in the accident where the human factors and 
human-computer interface issues came into play. One of the operators in the 
control room at the time of the accident reported later that the control panel was “lit 
up like a Christmas tree”. Clearly too much information was provided to the 
operators – more information than was required to make an assessment on the 
current state (or situation) of the reactor. The design of the control/monitoring 
system of the reactor was inadequate since it was only possible to monitor the 
coolant level indirectly via a pressure gauge – a drop in the coolant level would 
result in a drop of the coolant pressure during normal operation. Since the reactor 
was not operating under normal operating conditions the pressure reading was not 
correlated directly to the coolant level in the primary loop since steam bubbles had 
formed in the primary loop which restricted coolant flow in the system.  

The operators were not aware of the open relief valve (since there was no feedback 
from the valve either) and from the elevated pressure reading they concluded that 
the coolant level in the primary loop was high enough so they shut off the 
emergency fill pumps to prevent (in their mind) excess coolant from entering the 
primary loop. Shutoff of the pumps resulted in even higher temperatures inside the 
reactor and eventually in meltdown of part of the reactor which everybody was 
unaware of. Only 16 hours after the incident had started were the designers of the 
reactor able to get their message through to the plant operators that additional 
coolant should be pumped to the reactor. Only three years after the accident people 
realized what had really happened: half of the reactor core had melted, about 20 
tons of uranium had melted to the bottom of the reactor vessel. 

The Three Mile Island accident is a textbook example of how both lack of 
information and excess information can lead to incorrect situation assessment. 
Naturally the US Nuclear Regulatory Commission introduced many changes 
following the analysis of the accident, motivated by the lessons learned from this 
accident. In addition to changes in the inspection and monitoring routines and 
changes in the mechanical design of the plants the new regulations also included 
improved instrumentation, improved instruction to avoid confusing signals and 
identifying human performance as a critical part of plant safety (Nuclear 
Regulatory Commission, 2009). In retrospect we can only say that it is a pity that 
research in some cases (such as this) is triggered by what might have turned into a 
tragic accident.  
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2.2.2 Pilot SA 
In order to provide the potentially huge amounts of information that a modern 
fighter aircraft can provide to pilots in a manageable manner, a need aroused for 
understanding how the pilots gathered, prioritized and interpreted the incoming 
data. In different situations pilots require a different set of information and 
similarly priorities of data change, depending on the situation. As can be seen from 
Figure 1 the potential amount of information available to a fighter pilot is really 
immense and there are also potentially many sources for providing that 
information. Some of these sources are independent systems and they may provide 
data that supplements data generated by other data sources. For example the 
sensory equipment on board the aircraft may supplement the information provided 
by the infrastructure-based positioning system (e.g. GPS). There may be a case 
when the information from these two sources is contradictory and it is up to the 
computers to determine the actual situation and provide the pilot with the correct 
situational information instead of (conflicting) sensor data. 

 

US Air Force operational rules define pilot SA as “a pilot’s continuous perception 
of self and aircraft in relation to the dynamic environment of flight, threats, and 
mission and the ability to forecast and then execute tasks based on that perception” 
(Carreta, 1996). Because in air combat the ability to obtain better SA could be a 

 

Figure 1 View of a SAAB JAS 39 Gripen Cockpit 
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question of life and death (not only for the given pilot), enhancement of pilot SA is 
of high interest and has been studied pretty thoroughly.  

In (Sulistyawati, et al., 2007) the air combat environment is characterized as 
follows:  

• The combat environment is highly dynamic, the pilots need to obtain and 
process vast amounts of information to develop and maintain awareness of 
many complex (simultaneous) events relevant for building SA. 

• The faster the environment changes the faster one’s SA must be updated. 
Developing and maintaining pilot’s SA means maintaining a 3D spatial 
relationship which is further complicated by the time dimension. Perfect 
SA at one time instance may be worthless at the next time instance if 
situational information is not updated with the same pace as the 
environment changes. 

• Air combat situation assessment is based on the following loop: “search – 
detect – perceive – interpret – project”, which is a more detailed version of 
the OODA (Observe – Orient – Decide – Act) cycle. The pilot must search 
for the contacts, based on a wide range of data detect the contact of 
interest, perceive the data from the given contact, analyze the information 
to obtain further information (relative contact status – speed, distance, 
closure rate – in relation to his own or friendly aircraft), predict contact 
intentions and actions. 

Although the above points are listed in the context of air combat they are valid for 
any dynamic situation where situation assessment is required. It can be summarized 
that in order to maintain good SA a human needs to obtain a vast amount of 
information, categorize that information based on the entities and phenomenon that 
the information characterizes and determine the state of every entity of interest. As 
the situation is changing at a high rate one must update the situational picture at the 
same rate which means that the steps described above must all be performed also at 
the same rate. The 3D nature of the air combat environment adds to the complexity 
as the entities are physically laid out in three dimensions. 

2.2.3 Human SA in other domains 
From airplane pilots the research in situation awareness has moved into other areas, 
such as air traffic control, medicine, control rooms, ground transportation, 
maintenance, space education. A common denominator for all these areas is the 
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requirement for humans to process great amounts of data which arrive at a high 
rate, which is uncontrollable by the receiver, i.e. data must be received and acted 
upon adequately in a timely manner, regardless of the state of the receiver.  

In (Rodgers, et al., 2000) a review on situation awareness of air traffic controllers 
is presented For air traffic controllers, situation awareness has been used to 
examine and decrease the number of air traffic control incidents. The use of 
situation awareness concepts has included for example the following assessments: 
knowledge of aircraft location, aircraft callsign/altitude/groundspeed/heading/next 
sector/ type/activity, determination of the aircraft that has been issued incomplete 
assignments and correct assignments, determination of the aircrafts that are 
conforming to their assignments, determination of aircrafts that are experiencing an 
emergency, and determination of aircrafts that are violating minimum 
requirements.  

In some fields of medicine, for example anaesthesiology, situation awareness has 
become a key component in providing optimal patient care (Gaba, et al., 1995). 
Situation awareness is being employed to improve the ability of anaesthesiologists 
to detect, diagnose, and make the correct decisions when treating critical incidents. 
Medical simulators and analysis of real cases have been used to investigate past 
cases and train future anaesthesiologists (the topic is discussed further in (Gaba, et 
al., 1995) (Drews, et al., 2006)). 

The authors in (Caserta, et al., 2007) claim that the basis of human situation 
awareness is conceptual representation, as it is vital to cognitive operations and is 
intricately tied to memory, perception, decision making, actions, and inductive 
inferences (Hampton, 2003). A concept in turn is constructed from an infinite set of 
representations from the environment. Instead of storing full-length recreations the 
conceptual system organizes a collection of categorical images representing 
individual components of the experience (Barsalou, 2003). This means that the 
human conceptual representation system is not storing information on how to 
detect full situations but instead it deals with components (or parameters) of a 
higher level situation, which in turn means that situations in the human mind form 
hierarchies. So although the conceptual system selectively attends to changes in the 
environment, the information is categorized into components, which are then stored 
in memory (Schyns, et al., 1998).  

The humans’ conceptual system’s ability to support perception of the situation 
allows humans to store countless aspects of situations in memory for future use in 
interactions (Caserta, et al., 2007). The human conceptual system goes beyond 
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representation of experienced events but instead it utilizes relevant components of 
stored events during unfamiliar, atypical situations. Conceptual representations 
become vital when heightened awareness of situations is required, because the 
mental prototype formed from the human conceptual system provides information 
used in all aspects of situation awareness.  

In addition the human perception also adjusts its operation depending on the 
current situation (Caserta, et al., 2007). The human perception attends selectively 
to relevant advanced cues, enabling the human to identify the relevant situations 
which in turn allows an individual to react accordingly. Driving is an example of 
such behaviour – quick responses are less important when driving a car on a 
desolate highway, however when driving car in a big city the human perceptive 
system behaves differently. Attempting to simultaneously attend to or become 
consumed by all the aspects of city traffic: traffic signs, traffic lights, cars, bikes 
and pedestrians would be ineffective and dangerous, especially when quick 
decisions must be made. So the perceptive system is constantly adjusting itself 
depending on the perceived situation which changes according to the information 
acquired via the perceptive system.  

The declined perceptive capabilities of older people inhibit the situation awareness 
more than other factors as the capabilities for situation identification do not decline 
substantially provided the correct data has been acquired from the environment. 
Whereas perception and comprehension of information can be trained the 
projection of future that follows from the comprehension can not be directly 
trained.  

2.3 Distributed human SA 
Stanton et al (Stanton, et al., 2006) developed a theory of Distributed Situation 
Awareness (DSA) which is based upon six basic propositions:  

• SA is maintained by both human and artificial agents. 
• Communication between the agents may also be in the form of non-verbal 

behaviour, customs and/or practice. 
• Application of non-overlapping or overlapping SA depends on the agent’s 

goals. 
• There are multiple facets of SA associated with the same scene as observed 

and interpreted by different agents. 
• One agent may compensate for degradation in another agent’s situation 

awareness. SA assists in holding loosely-coupled systems together. 
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This theory of DSA is applied in the context of a human-machine agent team 
operating on board of a RAF Boeing E3D Sentry AWACS (Airborne Warfare and 
Control System) aircraft (Stewart, et al., 2008). Researchers spent time on board of 
the Boeing E3D to collect data using the EAST (Event Analysis of Systematic 
Teamwork) methodology (Walker, et al., 2006). The collected data has been 
analyzed to produce three main representations of a system: a social network, a 
task network and a knowledge network. All of these representations offer different, 
but associated, aspects of systems representation. The social network represents the 
highest abstract level, representing the communication relations between people in 
the system. The task network expresses the relationships between the goals of 
different agents in the system and the knowledge network shows the relationships 
between classes of information in the system that are required to perform the tasks 
effectively. 

The model of DSA proposed by Stanton is extended by Stewart et al. with 
reference to Endsley’s conceptualisation of SA and the results show that some 
individuals, as part of the team, are engaged in perception tasks (such as the 
surveillance operators and surveillance controllers), some in both comprehension 
and in projection tasks (such as the tactical director of the mission and the fighter 
allocator). It is clear that in such a system it is not sensible for all agents to share all 
information – the agents involved with lower-level tasks in the SA hierarchy do not 
need all of the situational information generated at the higher levels. In (Perry, 
2003) it is asserted that complex problem-solving systems have their own cognitive 
properties (including SA) that cannot be identified by individual cognition, and 
studying a complex agent system at the individual agent level will fail to pick up 
on these system-level features. It is obvious that there are two aspects of SA for 
any agent: individual SA for performing the agent’s task, and a higher level ‘meta-
SA’ for forming the whole system’s DSA required to achieve the goals of the 
system. Observations made during the study also indicate that there is a lot of 
collaboration occurring during the mission although there is both an informational 
and organizational hierarchy in place.  

The Boeing E3D crew analysis example is concluded by Stewart et al “from the 
study of the crew of the E3D Sentry it can be seen that the proposed theory of DSA 
works equally well with a large multi-person human–machine system as it does 
with a single person–machine systems as DSA is concerned with how knowledge is 
used and parsed between agents when interacting with a system” (Stewart, et al., 
2008). There is no doubt that the performance of an agent system will be most 
effective when there is ‘good’ DSA throughout the system as a whole, so care must 
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be taken to ensure that system-level SA is generated correctly and exchanged in a 
timely manner.  

Distributed human SA can be also considered in the context of modelling 
distributed sociotechnical systems – complex systems that consist of people, 
devices and software agents in a changing environment. In general terms it can be 
said that sociotechnical system modelling combines aspects of cyber-physical 
systems with human aspects, resulting in a more or less complete system 
description. Sterling and Taveter in (Sterling, et al., 2009) propose the viewpoint 
framework for modelling distributed systems. The viewpoint framework proposes 
three views to a system, namely interaction, information and behaviour view. The 
information view of the viewpoint framework can be clearly associated with 
situational information generation and storage at agents in the context of 
distributed situation awareness. In the same manner can the interaction view be 
associated with the exchange of situational information while the behavioural view 
deals with the behaviour of agents in specific situations. As agent modelling 
frameworks, which the viewpoint framework is, tackle the problem of designing 
reliable and scalable agent systems the issues of situational data generation, 
representation and exchange are not addressed in detail. Nevertheless, as situational 
information is an important aspect of agent systems the problems related to agent 
system design must be understood when dealing with situational information 
generation, representation and exchange. 

2.3.1 Temporal and spatial aspects of human SA 
Temporal aspects of events perceived by the observer play an important role in 
forming SA. However in the domain of human SA the temporal aspects are viewed 
in a simplistic way. The temporal and spatial aspects of SA are not explicitly 
handled in the context of human SA as humans are believed to be able to make the 
temporal and spatial associations fairly easily. The challenge is mainly in providing 
the correct data to the human. The human cognitive processes have been analyzed 
to some extent in relation to temporal aspects of maintaining SA. The temporal 
aspects are mainly viewed from the standpoint of level 3 SA (projection) – what is 
the length of time interval until an event occurs and how soon will an element have 
an impact on the operator’s goals and tasks (Endsley, et al., 2000). In the context of 
human SA time is also part of level 2 SA (comprehension) as the temporal relations 
between events allow to understanding the situation from the observed events. The 
rate at which information changes is also part of SA as it allows to understand the 
nature of the situation and enables the future projection of situations (Endsley, 
1988).  
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Temporal aspects of SA are important in the context of the dynamics of the 
situations – as the situation changes over time the person’s SA must change 
accordingly or be rendered outdated and inaccurate. In highly dynamic 
environments the human must adapt many cognitive strategies for maintaining up 
to date SA (Adams, et al., 1995). 

2.3.2 General approach to human SA 
Although the elements of SA vary in different domains, the nature and mechanisms 
for achieving SA can be generalized (Endsley, et al., 2000). A general definition 
for SA is “the perception of the elements in the environment within a volume of 
time and space, the comprehension of the meaning and the projection of their status 
in the near future” (Endsley, 1988).  

The SA can be organized into several levels according to (Endsley, et al., 2000).  

Level 1 SA – perception. Perception of information is vital to achieving any SA. 
Without perception of relevant information it is very difficult, if not impossible to 
achieve a good SA. In (Jones, et al., 1996) the authors find that 76% of SA errors 
in case of aircraft pilots are due to problems in the perception of relevant 
information (which again are caused by problems with the system design or with 
the cognitive process of the pilot). 

Level 2 SA – comprehension. Perception alone is not sufficient for building good 
SA. Comprehension includes the process of combining, interpretation, storing and 
retaining information. Clearly this goes beyond perception – comprehension of 
information means that multiple pieces of information (received from multiple 
sources) must be integrated and relevance of the information must be evaluated 
within the scope of the current situation and the goals of the person (Goldin, 2006). 
According to (Jones, et al., 1996) 20% of pilot errors are related to level 2 SA. In 
(Flach, 1995) the author claims that “the construct of situation awareness demands 
that the problem of meaning be tackled head-on. Meaning must be considered both 
in the sense of subjective interpretation (awareness) and in the sense of objective 
significance or importance (situation).” In order to achieve level 2 SA the 
situational data collected at Level 1 must be processed and operationally relevant 
meaning and significance of the data must be extracted from it.  

Level 3 SA – projection to the future. The highest level of SA is the ability to 
foresee the future state of the significant factors and the dynamics of these factors. 
Essentially it is the ability to project future events from the available past and 
present data, which experienced operators do on a regular basis. 
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Figure 2 Model of SA in dynamic decision making (Endsley, 1995) 

Figure 2 depicts a general model of SA generation and application by Endsley 
(Endsley, 1995), outlining also the different levels of SA. Clearly both the task / 
system factors and the individual factors affect the generation of SA, the decision 
making process, and the evaluation of the performance of the actions. In that 
respect the situation awareness generation and application cannot be taken out of 
context, i.e. one must consider the individual and task/system factors when looking 
at different aspects of SA.  
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2.4 Situation awareness of computing system 
The research in situation awareness of computing systems originated from the 
research related to human aspects of computing and human computer interfaces. 
Therefore much work in the area of computer situation awareness is related to 
either aiding humans to achieve better situation awareness or adjusting behaviour 
of computers depending on the situation of the human user. Since the issues of 
human SA (and how human SA can be improved with the aid of computers) were 
discussed in the previous section, the overview of SA in this section focuses more 
on SA relevant to computers. This section starts with an overview of state of the art 
in computer SA and continues with a new approach proposed by the author. 

2.4.1 State of the art in computer SA 
 
As stated above much work in computer SA is related to humans so overview starts 
with human centric approaches. In (Intille, et al., 2004) the authors attempt to 
detect the human context with the aid of appropriate sensors and interpretation 
algorithms. The objective of detecting the human context is the desire to adjust the 
behaviour of the computing system according to the human user context. The 
authors claim (quite rightfully) that the research performed in the field of machine 
learning (computer vision, speech processing) can be utilized to recognize relevant 
contexts using automated methods. Researchers in many computational perception 
domains (such as computer vision, speech processing and machine learning) have 
developed supervised learning algorithms that are highly effective in recognizing 
complex activities by computer. These algorithms could be also employed in 
situation detection provided that the contexts of interest are specified suitably and 
the algorithms are trained appropriately. 

A human centric approach is also presented in (Abowd, et al., 2000), where the 
authors suggest that “Context-aware applications, however, can use sensors to 
infer a user’s activity to automatically determine good times and places to 
proactively present or request information“. The suggested approach of adjusting 
the presentation of information to the user depending on the context is certainly 
interesting. The suggested method for identifying user context relies on context 
identification based on data acquired via sensory input. The sensory input acquired 
at runtime is matched to data collected during training sessions. In order to perform 
such a matching sensor data is collected during training sessions and then 
associated with activity labels assigned by the users during the training session.  
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This is believed to be sufficient to construct computational models that capture the 
variability in the training examples and the uncertainty in the sensor measurements. 
It is expected that comparing new sensor readings with the models is sufficient for 
context classification using maximum likelihood reasoning or other statistically-
based matching techniques. Abowd et al (Abowd, et al., 2000) claim that with good 
training sets, supervised learning techniques can be significantly less brittle than 
context detectors that employ hand-constructed rule-based models. The authors 
also expect that supervised learning techniques can be used to create automatic 
context detection algorithms that can be customized to individual users in the field 
by training the algorithms on user specific datasets.  

In (Gellersen, et al., 2002) the authors attempt to bring some order to the different 
levels of context abstraction. The authors limit the context recognition only to the 
information inferred from data gathered from the physical surroundings of the 
system via sensors. They identify three levels of abstractions for context: 1) the real 
world surrounding the system, 2) an aspect of a situation and 3) a specific 
occurrence of an aspect, such as a specific place. The authors claim that they use 
the term situation in reference to the real world and the term context for a model of 
a situation acquired by means of sensing and sensor data processing. The authors 
fail to explain how the information about the real world is acquired, it seems that 
they assume a god-like view, assuming that their (or human in general) perception 
of the real world is correct and we should attempt to achieve the same with 
machines (computers). Gellersen et al (Gellersen, et al., 2002) do anticipate 
communication between computing systems where one system could obtain 
context information from another (via the infrastructure).  

However only two distinct cases are described – in one the computer acquires all 
the information required for context identification by sensors attached to it (direct 
context awareness), in the other case all the context information is acquired from 
the other computer(s) (indirect context awareness). For some reason the authors do 
not consider fusion of information collected locally and acquired from peer 
computers. The authors limit their research to autonomous computers (in terms of 
context awareness) as the dislocation of context acquisition from the context use is 
considered a disadvantage – in that case a computer relies on information acquired 
from external sources for determining its behaviour.  

The simplistic approach presented in (Yau, et al., 2003) assumes that a situation 
triggers an action directly. The authors represent a situation as an expression on 
previous computer-action record over a period of time and/or the variation of a set 
of contexts of the computer over a period of time with respect to the application 



54 

(Yau, et al., 2002). The process of evaluating a situation is a one-time operation – 
the situations are described in the form of rules and the validity of a rule can be 
evaluated at any point in time, the results of the evaluation are not stored.  

In (Matheus, et al., 2005) the authors attempt to tackle the situation awareness 
problem with semantic web technologies. Unfortunately the authors view the 
problem in a rather limited scope as a data fusion problem. The authors claim that 
“situation awareness is a fusion problem involving the identification and 
monitoring of higher-order relations among object-level objects”, assuming that a 
user is able to define the constraints on situations. This in turn means that the user 
must able to discretely specify situations, i.e. the mapping from the domain of the 
situation identification function to the co-domain of that function (i.e. the mapping 
from the input to the output values of the function). Although the authors claim that 
their approach has an emphasis on handling time the article does not illustrate that. 
The authors have conveniently neglected the temporal and spatial aspects of 
situational data. In the context of such oversimplifications the presented approach 
may even work.  

In (Matheus, et al., 2003) a formal framework for the SA is presented.  According 
to that definition SA is the knowledge of the following: 

• A specification of the Goal theory, Tg; 
• An ontology, i.e. a theory TO of the world; 
• A stream of measurements W1, W2… for time instances t1, t2,…; 

• At each time instance, the fused theory ( )1 2, ,...,t t t t
T nT T Tτ = ∇ that 

combines all the theories that are relevant to Goal Tg as well as the fused 
theory ( )1 1 1 1

1 2, ,...,t t t t
T nT T Tτ + + + += ∇ that combines all the theories that are 

relevant to the Goal Tg at some time t+1 in the future; 
• At each time instance t, the fused model 

( )1.1 1.2 2.1 2.2, ,..., , ,...t t t t t
MM = ∇ Μ Μ Μ Μ that combines all models relevant 

to the Goal Tg, as well as the fused model  
1tM +
at some time t +1 in the 

future and  

• Relations t t tR O O⊂ × relevant at time t, as well as at t + 1, 
1 1 1t t tR O O+ + +⊂ × among objects (here only binary relations are 

considered but the formalism can be extended to include relations of 
higher arity). 
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The definition supplied by Matheus et al has some rather substantial simplifications 
– the authors take a one shot, top-down view assuming that all information is 
available at the top level where the analysis is performed. The evolution of 
situations is not considered; rather each situation is evaluated as a standalone 
entity. In order to perform the situation assessment the authors propose the use of 
an ontology which describes the critical objects and relations between the objects 
from the situation assessment perspective.  

Probably because the presented approach is application driven the authors take the 
view that every situation must have a goal, which defines the objective of the 
situation and also identifies what is relevant in the current situation. The approach 
of situation specification being based on goals is applicable when the goals can be 
specified upfront, however the goals of individual computers in a larger system 
may be contradictory, and the addition of new computers to a system may also add 
new goals which the existing computers are not aware of. 

The authors conclude that while the proposed methodology provides a way for 
formally deriving higher-order relations in a situation, the applicability of the 
methodology for real life real-time problems is not clear. They state that “even 
modelling simplistic dynamics ... becomes a non-trivial task for large ensemble of 
objects.” Awkwardly the authors worry about the relevance of the generated data to 
the user after the data has been generated (although the main focus of the 
application they are targeting is improvement of human SA). Maybe starting the 
analysis from the end objective (i.e. relevance of data to the user) would have 
provided better results.  

Schmidt in his work (Schmidt, 2002) focuses on context awareness of computing 
systems in the realm of ubiquitous computing systems. Schmidt focuses mainly on 
recognizing human context, making the context awareness problem essentially a 
user interface design issue. The reason of identifying the context as perceived by 
humans automatically by a computer lies in the objective of adjusting the 
behaviour of a computing system based on the current context of the user and 
thereby providing a better service improving the user’s perception of his work and 
also ultimately making the process of using a computing system more effective and 
pleasurable.  

An interesting approach to achieving SA using agent in the context of urban threat 
evaluation is presented in (Lewis, et al., 2009). The authors use a hierarchical 
approach to attaining situation awareness with lower-level perception handled by 
event-correlation agents that share the information with situation assessment agents 
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that collectively identify potential threat situations. The authors propose an 
architecture where the event correlation agents post events inferred from the source 
data to the higher level situation assessment agents that, based on the received 
information, attempt to determine potential threats. Also information flow in the 
reverse direction is possible, in which case the high-level situation assessment 
agents guide the work of the low-level event correlation agents. This approach 
bears similarity to the hierarchical approach developed by the author of the thesis 
and presented in the following chapter.  
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3 Enhancing the Situation Awareness Concept for Cyber-
Physical Systems 

This chapter presents the author’s suggestions on how the situation awareness 
concept can be extended to be applicable in autonomous Cyber-Physical Systems. 
Partitioning situational data into situation parameters and supplementing situation 
parameters with validity information that makes it clear where and when a situation 
parameter value is valid makes it possible to construct system of systems that build 
upon this concept.  

3.1 Hierarchical Build-up of Situational Data 
As can be concluded from the overview presented in the previous chapters, 
situation awareness and situation management have been mostly viewed from the 
context of human requirements and processing capabilities. Traditionally 
computers have aided humans in achieving situation awareness. This has invoked 
systematic analysis and formalization of situation awareness since computing 
systems are capable to process and reason about large amounts of information that 
the humans cannot process.  

An approach inspired by the human factors research can be used to create the 
concept of situation awareness for artificial agents. In case of humans, situation 
assessment is achieved by processing incoming concurrent streams of data 
provided by the sensory equipment. The incoming data is processed using 
stationary knowledge and algorithms developed over time. In case of artificial 
agents the same principles can be applied for situation assessment.  

I propose the hierarchical build-up of situation parameter values from the lower 
level parameter values being more or less directly derived from sensor data. A 
situation parameter reflects a property of a parameter of interest, composing them 
allows to computing the values of higher level parameters of interest by using the 
values of lower level parameters and all the other relevant information. 

In case of an artificial agent the evaluation of situational parameters is performed 
by executing suitable algorithms. In order to guarantee the validity of the situation 
assessment, the constraints are specified on the source data that guarantee the 
coherence and validity of source data. In order to deliver the data that satisfies the 
specified constraints to the situation parameter computation algorithm, the concept 
of mediated interaction (Motus, et al., 2009) must be used. The mediator can be 
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compared to the channel function in the Q model (Motus, et al., 1994), as it 
transmits only data that satisfies the constraints set by the consumer (i.e. the 
situation evaluation algorithm) to the consumer (the situation evaluation 
algorithm). The concepts of the validity of situation parameters and the mediator 
are elaborated further below. 

Figure 3 illustrates the concept of hierarchical build-up of situation parameters with 
three computing nodes (agents) involved in situational information generation and 
processing. The black ovals denote the sources of raw data, in case of ovals that are 
out of the bounds a node the source data originates from the physical world, in case 
of ovals that are located within the bounds of a node the source data is generated 
within the node. Node A computes the value of Parameter 4 from three situation 
parameter values: Parameter 1, Parameter 2, Parameter 3 and Parameter 4. For 
Parameter 1 and Parameter 2 the source data is acquired from the physical world, 
for Parameter 3 the source data is acquired from within the node. As is illustrated 
in Figure 3 the parameter values can also be shared between the nodes, which do 
not change the logical build-up of the parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Hierarchy of situation parameters 
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The methods and hardware used for acquiring data that is the source information 
for situation parameter evaluation, and the algorithms used for situation parameter 
evaluation both have an effect on the validity intervals of the situation parameters. 
The specifications of sensors used, prescribes the accuracy and trustworthiness of 
the measurements, thereby having an effect on the properties of the situation 
parameter values derived from these readings. The algorithms used for processing 
the data have the same effect – depending on algorithms the validity of the output 
data may vary. 

A situation in general, as perceived by an entity or by an agent, in the case of 
computing systems can be characterized by many situation parameters. In order to 
elaborate on the usage and processing of situation parameters in a computing 
system the situation parameters, their properties and origins must be categorized. 
Naturally in every situational information category there exist numerous 
parameters that can be evaluated individually, each situation parameter expressing 
the state of a computing system or of a physical phenomenon. The partitioning of 
situation parameters can be made based by several properties – firstly, the 
partitioning could be accomplished by categorizing the situation parameters into 
virtual (computing) and physical situation parameters. 

Another partitioning can be made based on the validity area of a situation 
parameter. If a situation parameter characterizes the situation of an agent that is 
evaluating the situation the parameter can be considered local or internal, while all 
the other situation parameters can be called external. There may be both virtual and 
physical situation parameters in the internal as well as in the external parameters’ 
set. The question arises where is the border of an agent – which parameters can be 
considered internal and which are external. For the physical situation parameters 
the border could be the physical computing system where the agent resides and for 
the virtual situation parameters everything that is on the processor side of the 
network interface could be considered local. Of course in case of multiple agents 
on a single computing device and in case of agents that span several computing 
devices the border becomes blurry. 

The virtual situation parameters characterize properties that describe the features of 
computing agents. The values for virtual situation parameters are acquired by 
monitoring the properties of the virtual world. Generally these properties are 
hidden from the physical world (including human users), although in some cases 
the properties may be quite apparent – the existence and operation of computing 
nodes in the vicinity of an entity may be observable. The virtual situation 
parameters are, for example, the run times of functions on different computing 
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agents, the availability of services on computing agents, the ability to compute 
situation parameter values and evaluate situations by computing nodes, network 
delays, utilization of processor or memory of specific computing nodes, etc. The 
virtual situational information is obtained by the computing nodes themselves by 
observing their own behaviour, through monitoring the behaviour of other agents 
and through direct and indirect interaction between agents by forwarding the 
situation parameter values generated locally by an agent. 

The physical situation parameters reflect the state of physical phenomena in the 
real world. The physical phenomena include both inanimate and animate (including 
humans) objects, which in some situations may become subjects. The situation of a 
human user interacting with a computing system that many researchers consider 
important enough to be a separate category of situations (called the user context in 
some cases (Schmidt, 2002)) is essentially part of the physical world. Typically 
computing agents obtain information required for physical situation evaluation via 
sensors, but there may be other ways to attain such information. Agents can 
exchange physical situation parameter values and higher level physical situation 
parameters can be computed, based on lower-level situation parameter values 
acquired from other agents. 

The fact that the values of situation parameters in various groups may be correlated 
in some cases does not affect the overall partitioning of the parameters. For 
example a physical event that is reflected in the change of some physical situation 
parameter value may affect the total network traffic in a network which in turn may 
result in increased network delays, changing the values of one or more virtual 
situation parameters, thereby creating a correlation between the physical and 
computational context properties. 

Hence, the parameter values characterizing the basic situations should stem from 
the direct readings of sensors, direct observations or deductions made by humans, 
or from elementary data fusion operations. The set of basic situations (i.e. their 
parameters) forms the basis for constructing more abstract situations whose validity 
depends on the validity of basic situations. 

Two directions of data flow are possible for the situation assessment process, 
depending on the orientation of the hierarchy of situations either the top-down or 
bottom up approach can be used (instead of the terms bottom up / top down also 
the terms forward / backward chaining can be used). The (temporal and spatial) 
constraints on the source data used by a situation parameter evaluation algorithm 
must move from the top level down to the lowest level of the situation parameter 
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evaluation hierarchy. The situational data – situation parameter values that satisfy 
the constraints of a given situation parameter evaluation algorithm should, on the 
other hand, only move up in the hierarchy of situation parameters. The concept of 
data flows in the opposite directions can be viewed in Figure 4 where the source 
data for computing the situation parameter value moves from the left to the right 
(from the mediator to the evaluator) while the constraints on the source data move 
from the right to the left (from the evaluator to the mediator). 

Backward chaining (or the top-down method) of situation parameter value 
propagation would not be feasible in a distributed system because of the amount of 
information exchange that is required in case of this technique. In the backward 
chaining case the source data for a situation parameter evaluation would have to be 
collected when the parameter evaluation algorithm is executed which in case of a 
distributed system essentially means a request for data that is propagated backward 
(or down) through the logical tree of situation parameters. Responding to the 
request the data would then move forward (or up) through the logical tree of 
situation parameters with parameter evaluation functions being executed on the 
logical tree. 

Forward chaining (or the bottom up method) of situation parameter values is a 
more suitable approach to use for situation parameter evaluation. Using the 
constraint information propagated down from the top level the lowest level data 
acquisition is triggered and data on the low level is processed. The situation 
parameter values computed on the lower level are then communicated forward on 
the hierarchy of the situation parameter evaluation tree. Figure 4 depicts the lowest 
level situational data evaluation – the situation parameter evaluation function 
propagates the temporal constraint information to the mediator of the sensor data 
acquisition function, which then provides the situation parameter evaluation 
function with the data that satisfies the constraints. 
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Figure 4 Situation property evaluation based on sensor signal 

 

3.1.1 A systematic approach to hierarchical build up of situations 
As outlined in the previous chapter the situations can be built-up from elementary 
situations to higher level situations, the principles of situation evaluation (such as 
propagation of situation parameter values and constraints for the parameters) 
staying the same. Every situation parameter value has temporal and spatial validity 
values associated with it. The validity values depend on various aspects, for 
example the validity area depends on the location of the agent that acquires the data 
and on the properties of the phenomenon being observed, while the temporal 
validity interval depends both on the properties of the environment where the agent 
is located and on the phenomenon being observed. The consumer of the situation 
parameter values verifies that the validity values of the parameters do match the 
constraints set on the incoming data. The output of the situation assessment 
algorithm is the situation parameter value accompanied with the metadata. 

Situation parameter is a three-tuple ( ), ,p t lS S S S=  where pS  is the situation 

parameter value, tS is the situation property’s validity period and lS is the situation 

property’s validity area. The situation parameter value reflects the state of a virtual 
or physical property of interest while the validity period and validity area are 
metadata on the situation parameter assessment – what is the period for when and 
what is the area for which the situation parameter value holds.  For some situation 
parameters there is no metadata while for others there may be more metadata than 
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just the location and time. This topic of situation parameter validity is discussed in 
greater detail in section Validity of situation parameters. 

A situation parameter value is computed from other situation parameters or sensor 
data, both of which must be associated with metadata. ( )1 2, ,...,a nS f S S S= . The 

situation parameter values used for computing a higher-level situation parameter 
value may arrive at different times and at different rates. A specification of an 
algorithm that computes the situation parameter value must contain the type of 
input data – the incoming situation parameters. If a sensor reading is used to 
evaluate the situation it is expressed as follows: ( )1bS f s= which should be 

interpreted that the reading of sensor 1s is used to compute the value for situation 
parameter bS . 

The metadata (validity constraints) generation for a specific situation parameter 
may depend on other situation parameters – for example the location of the agent 
that is computing the situation parameter values may affect the computation result 
and the validity values of the situation parameter being computed. The data flow 
for different configurations for situation parameter composition is depicted in 
Figure 5 and Figure 6. 
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Figure 5 Situation parameter evaluation based on two situation parameters 
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Figure 6 Situation parameter evaluation based on a situation parameter and sensor signal 

For each situation parameter computation algorithm additional rules (algorithms) 
are specified for computing the metadata (validity) values associated with that 
situation parameter.  

A reverse transformation is also possible – if it is known that a situation parameter 
(e.g. parameter A) has to satisfy certain validity constraints, it must be possible to 
determine what the actual values of those constraints are.  
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So several distinct algorithms are required – one for situation parameter 
computation, one for computing each situation’s metadata item and also one for 
deriving each of the constraints on the situation metadata items. The situation 
metadata is derived from situation parameter values and the metadata (validity 
intervals) of the situation parameters in the input data stream to the given situation 
parameter computation algorithm. 

If data satisfying the constraints is not available the interaction mediator may adjust 
the data to satisfy the requirements of the situation parameter computation 
algorithm. The past values of a situation parameter can be utilized to predict the 
future values of situation parameters. Depending of the phenomenon that a 
situation parameter describes the methods for utilizing the situational history of the 
parameter for the prediction of future values of the situation parameter may be 
different. Even quite thin embedded nodes are able to perform the predictions on 
situation parameters based on observed situational histories (called context 
histories in (Helander, et al., 2005) and (Preden, et al., 2006)), since in (Helander, 
et al., 2005)  it is shown how even quite simple mathematical models suffice to 
predict the future values of situation parameters (context parameters in (Helander, 
et al., 2005)), such as execution times of scheduled functions, with quite good 
results. It has been suggested (Preden, et al., 2006) that relatively simple stochastic 
or statistical methods (when compared to formal mathematical analysis methods) 
similar to the methods of technical analysis used in economics (Mamaysky H., 
2000) should suffice for most cases of situation parameter prediction. 

For example interpolation or extrapolation can be used to compute situation 
parameter values that satisfy the constraints of a situation parameter computation 
algorithm. The mediator has to warn the data consumer if the constraints are not 
satisfied. More advanced algorithms can be used if available and required for 
coping with the problem of unsatisfactory situational information.  

 

3.2 Validity of situation parameters  
A critical issue of situation awareness is the validity of situations – when a 
situation parameter value is computed or when a situation is identified, it must be 
possible to estimate where and when that situation parameter is valid. This 
estimation must be performed based on the validity of the source data – starting 
from the raw sensor data a situation inferred from this sensor data is only valid in 
the region where the sensor data is valid and also for the period of time when the 
sensor data is valid. So the properties of the situational parameters (regardless of 
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whether these are parameters of the physical world or the virtual) that are 
monitored determine the validity of the situations inferred based on these 
parameter values. An example of this is weather monitoring – for most regions we 
are able to predict the dynamics of temperature change and the area where the 
temperature is homogeneous quite well, so based on temperature measured in one 
spot at one specific moment in time we can quite well estimate the temperature for 
the adjacent regions for some period of time.  

An important factor of situation parameter validity lies in the fact that the use of 
situation parameter values that are not valid (i.e. do not satisfy the temporal or 
spatial constraints of the consumer) is in some cases even worse than not having 
the data if the consumer of the situation parameter values is not notified. It can not 
be expected that situation parameter values that are computed based on lower-level 
situation parameter values that are not valid, are correct. If any of the constraints on 
the source data are not met for the computed situation parameter values should be 
associated with low confidence estimations. It is up to the consumer of the data to 
decide if the parameter value can be used or not. 

The temporal and spatial aspects of situation validity must be also considered from 
the perspective of actuation. If the computing system is able to exercise some 
control over the system that the computing system is part of then that control is 
exercised in order to change the state of the system (the situation). So there must be 
a separate class of higher-level (or super) situations that arise in combination with 
control – the super-situation changes after some control action has been exercised 
and when the observable situation does not change in the desired direction after 
some time has elapsed the super-situation changes again to reflect the possible 
failure of the control action. This actuation example illustrates the problem of 
synchronizing the internal state of the computing system with the actual state of the 
(physical) world that the computing system interacts with. Using the situation 
awareness concept to keep track of both states and describing the relations between 
these situation allows the designer (or the operator) of the system to manage the 
irregularities between these parts of a system. 

An aspect of situation parameter validity also originates from the fact that the 
measured values and the estimates stemming from observations originate from 
different network nodes, different sensors, and from variety of persons and need to 
be checked for consistency and validity. This can be done automatically only if the 
measurements and observations are equipped with attributes that foster the on-line 
validation procedure. 
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The data acquired from each sensor (or other source of information) forms a data 
stream, from which the situation parameter values are derived. The temporal (plus 
spatial and other characteristic) properties of each stream element are unique and 
determined by the phenomena being measured and/or monitored, by the 
requirements and/or constraints on the situation parameter, and by the constraints 
set by higher level situation parameter synthesis algorithms that use the given 
situation parameter as an input. Any algorithm computing parameter values for 
higher-level situation may use one or more data streams. 

It is intuitively obvious that for each situation its parameter values are valid only 
for a certain time interval, and/or in a specific location. Hence the temporal 
intervals, spatial areas, and may be some other attributes must be specified for 
cross-checking the integrity of parameter values, and thus assess the validity of 
obtained situational information. The temporal validity interval of the situation 
parameter specifies the time for which the situation parameter value is valid – the 
validity interval depends on the time when the situation parameter assessment was 
made and the known dynamics of the parameter (the property which state that the 
parameter expresses). The spatial validity interval specifies the area where the 
situation parameter is valid, which naturally depends on the spatial origin of the 
source data used for deriving the situation parameter value and the properties of the 
phenomena that the parameter characterizes. For example a temperature assessment 
of warm for a room can be typically considered to be valid only for that room not 
for example the back yard which can be viewed from the window of that room – 
the validity area of the temperature assessment may ends at the wall of a room. 

The validity area of situation parameters can be also characterized in terms of an 
agent – a situation parameter characterizing the (physical or computing) properties 
of an agent is only valid for or within that agent, regardless of the location of the 
agent itself. If a situation parameter characterizes the properties of an agent the 
parameter can be considered a local or an internal situation parameter while other 
situation parameters can be called external situation parameters. The internal 
situation parameters can characterize various aspects of an agent, for example the 
assessed quality of the measurements made by the agent (which may depend on 
sensor calibration for example), the accuracy of the algorithms used for data 
processing and so on. There may be both virtual and physical situation parameters 
in the internal as well as in the external set. In case of situation parameters internal 
to an agent the problem arises of what is the border of an agent – a multi-agent 
system might be viewed as one agent at a higher level of abstraction, so in this case 
the “internal” situation parameters are actually valid for a group of agents.  
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The parameter values determining the basic situations are measured or computed 
by agents in the network. The output information provided by each agent (a node in 
computer network, or a human) is considered to be a stream. Each element of this 
stream is to be tagged with the information enabling cross-checking and validity 
assessment of its value. This information enables the correct interpretation of the 
value of situation parameters, and properly to assess the impact of this situation on 
the behaviour of decision-makers.  

The tagged information accompanying situation parameter values is derived 
separately from the parameter value itself.  Specific sensors, additional supporting 
hardware, algorithms, and computing power – e.g. for time measurement and 
synchronization, for positioning, for estimating stress in humans, and for on-line 
estimation of communication delays – are often required. This part of computing 
system deserves more attention in practice.  

3.2.1.1 Situation Awareness Levels for Artificial Agents 
Now that the principles for the hierarchical build-up of situation parameters and 
also the basic mechanisms for generating, collecting, validating and exchanging 
situation parameter values have been outlined we can have a look at how these 
parameters could be classified. The multi-level approach introduced by Endsley for 
human situation awareness (Endsley, et al., 2000) can be also employed for 
classifying the situation parameter hierarchies of artificial agents. 

3.2.1.1.1 Level 1 Situation Awareness - perception 
Level 1 SA is about data acquisition and perception of the acquired data. 
Heisenberg has said (Heisenberg, 1958) “We have to remember that what we 
observe is not nature itself but nature exposed to our method of questioning”. The 
issue to note here lies in the fact that in order to perceive anything the right type of 
data must be acquired first and ultimately an artificial system can only perceive 
what it has been designed to perceive (even if the system does possess self learning 
capabilities, learning capabilities of artificial systems are more strictly limited than 
those of humans). In case of systems that possess learning capabilities the systems 
is only able to perceive the phenomena that is relevant to the system.  

Data from the physical world can be acquired basically from two sources: local 
sensors directly interfaced to an agent, data acquired via sensors at other agents. 
Besides the data acquired from the physical world there is data from the computing 
environment. In addition there is stationary data, which may be inserted into the 
agents at design time, or acquired at run time – the stationary data does not change 
over time. The level 1 situation parameter values that are computed by an agent 
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depend greatly on the sensor data that is acquired by that agent itself since 
communicating raw sensor readings over the network is bandwidth (and therefore 
also other resource) consuming. Although situation parameter values computed 
from data acquired from the sensors is communicated across the network, but 
usually not the raw sensor readings themselves. 

Acquisition and perception of data is also dependent on higher level situation 
parameter values. Depending on higher level situation parameter values and the 
requests for data from the higher levels specific types of (sensor) data may be 
acquired. Also different data processing algorithms for the perception level may be 
selected depending on the dynamically changing requirements. This means that the 
perception, perception or interpretation of sensor data is not necessarily stationary, 
i.e. the respective algorithms may be changed when higher level situations or 
required parameters change.  

As outlined in the beginning of the chapter the data generated at all levels of 
situational data processing must be accompanied with validity information, which 
specifies constraints on temporal, spatial and any other properties of the data.  

3.2.1.1.2 Level 2 Situation Awareness – comprehension 
Level 2 SA deals with the comprehension of the data generated/acquired at the 
lower level. The situation parameter values that are computed at level 2 reflect 
higher level concepts (as compared to situation parameter values computed at the 
perception level).  

The higher level situation parameters that are computed from lower level situation 
parameters by using specified algorithms, while the lower level situation 
parameters are computed from incoming raw sensor or other (not interpreted) data. 
The level 2 situation parameter values computed in an agent depend on the 
perceptive capabilities of that agent. The reason for this is economical 
(considering, for instance the price of consumed communication bandwidth), and 
any agent tries to make use of the situational parameter values where they are 
collected. This is not a strict rule – in some cases data perceived by the other agents 
can be used. 
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In Figure 7 the configuration of the situation parameter hierarchy and the data 
exchange required for realizing the hierarchy is depicted. As shown on the figure 
the agents can exchange situational data (situation parameter values) at different 
levels, i.e. an agent can send a level 1 situation parameter value to another agent 
which uses it to compute a level 2 situation parameter value. 

Regardless of the situation parameter level for every situation parameter 
computation algorithm the temporal and spatial constraints are specified. In 
addition, an algorithm for evaluating the temporal and spatial validity intervals 
computes validity values for the data in the incoming stream of situation parameter 
computation algorithm.  

It is clear that the situations that are relevant and detectable by an agent depend on 
the configuration (properties) of the agent. Some agents may not be able to detect 
some situations because of lack of sensory data, processing capabilities or 
processing algorithms. An agent should only try to identify situations relevant to its 
functionality. If the agent does not identify the required situations its functionality 
will be most likely impaired, if an agent detects more situations than required it is 
wasting resources. So for each agent it must be decided what are the relevant high-
level situations and what are the low-level situations required for identifying these 
high-level situations. Once this has been decided, the sensory requirements of the 
agent (hardware requirements), list of required capabilities for each agent, and the 
properties of the agent federation that the system needs can be specified. 

3.2.1.1.3 Level 3 Situation Awareness – projection  
Level 3 SA is about projecting the future state of the computing system and its 
environment based on the past and current states. It is clear that this kind of 

 

Figure 7 Situation awareness levels 
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reasoning is quite complex even for humans and to build such capability into 
artificial agents is even more complex. Clearly such capability is very useful and 
even required in some cases. Especially for systems that need to take proactive 
action i.e. they need to predict the future state of the world and act before that state 
is reached, or try to find actions that would result in the preferred future state. 
Research in this direction has only recently started and tangible results can be 
expected in the future. 

3.3 Realizing situation aware spatially distributed mobile 
computing systems 

3.3.1 Team situation awareness 
In many practical systems a loosely interacting team of humans and computers has 
to manage situations composed from a variety of spatio-temporally distributed 
natural and artificial components. Each entity in such a system can be viewed as an 
agent on a certain level of abstraction. Situation awareness of an agent, in the 
current context, comprises the confidence in the available situational information 
and the ability to use that information in the decision-making process of the agent. 
In a realistic system it can be assumed that global situations are defined for the 
whole system – e.g. common operating picture or local operating picture – whereas 
each agent may have derived its own situations, departing from its own goals.  

The existence of several types and levels of situations may be confusing, unless 
they are (at least partially) harmonized and prioritized. This leads us to the notion 
of “team situation awareness” (also called “distributed situation awareness”); see, 
for instance (Salmon, et al., 2007). Formation of team situation awareness needs 
specific tools, especially when dealing with a mixed team of humans and machines. 
The first step is to harmonize models of “individual situation awareness” of team 
members, followed by harmonization of individual decision-making procedures. 
Typically this process requires negotiations between decisive team members and 
can be remarkably accelerated by a suitable negotiation medium, such as a 
specially designed middleware for communication. 

The above definition matches with seminal interpretation, given by Endsley 
(Endsley, 1988), of situation awareness as a product resulting from a process of 
acquiring situational information and its assessment.   

Team situation awareness concept (Artman, et al., 1998) (Salmon, et al., 2007) fits 
perfectly the problem of creating and distributing COP and LOP at the group and 
intermediate level. In such complex collaborative environments the focus should be 
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on team situation awareness which comprises team members’ individual situation 
awareness and extends it by imposing rules for harmonizing and prioritizing the 
individual situations and goals.  

The emergence of team situation awareness can be fostered by elaborating the 
concept of proactive middleware that supports communication between team 
member-agents (humans, computers, software-intensive devices, smart sensors, 
etc.). At the same time the middleware should have several advanced features, such 
as automatic validation of the transferred information, personalizing messages so 
as to match the processing capability of the addressees, tracking the location of 
team members, remembering the interest points of team members.   

3.3.2 Situation-aware multi-agent system 
In case of a cooperative situation-aware multi-agent system the design of a single 
agent must encompass situation awareness both at the agent level and also at the 
multi-agent community level. Clearly just collecting arbitrary situation parameter 
values and determining some situation based on this data is not very beneficial – 
agent behaviour should be also dependent on perceived situation(s). In case of a 
mobile agent or a mobile multi-agent, the design of the agent combines several 
control and location aspects, in addition to usual aspects of situation awareness, so 
the design of such a system is non-trivial.   

It must be noted that there is no universal situation that would be interpreted by all 
agents in the same way and that would cause the same behavioural decisions in all 
agents. Two mobile agents can come up with two different assessments of a 
situation and respond differently to it, depending on their capabilities, goal 
functions and on their situation assessment algorithms.  

An example of this is the interpretation of terrain types by different mobile agents. 
A swamp may be interpreted as not a suitable terrain for a tracked vehicle while it 
is very suitable, even preferable (typically a swamp has less obstacles so the speed 
of movement is potentially higher) for a hovercraft. At the same time the swamp is 
a suitable terrain for a tracked vehicle if the temperature has been low enough for a 
long enough period so that it has been enough time for the swamp to freeze solid. 
Such a reasoning process is inherent for humans and it may seem too trivial for 
discussion. However, in case of an autonomous mobile agent that must be able to 
choose its course of action required for the achieving the mission objective 
autonomously such reasoning is non-trivial as the number of possible aspects that 
must be considered in the reasoning process may be quite high. The reasoning must 
take into account the tactical and strategic situation, the information on the mission 
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area available before the mission, the information on the mission area acquired 
during the mission such as the terrain and other conditions in the area, the past and 
current movement of adversaries, the movement of peers, etc. The design of such a 
system is quite complex and it is not possible to verify the behaviour of such a 
system formally.  

3.3.3 An architecture for a distributed situation aware system  
The principles for designing situation aware artificial agents was outlined in the in 
the previous sections. Although useful, the principles by themselves bear little 
value in terms of system specification and implementation. The concept of an 
architecture that builds upon the principles described in the preceding sections for a 
distributed situation-aware computing system is described in this section. This 
work was done in collaboration with Johannes Helander at Microsoft Research 
during my internship in the summer of 2006. 

In (Preden, et al., 2006) a general architecture for building situation aware 
computing systems is presented. An architecture that relies on the usage of 
metadata for describing (among other things) the set of functions involved in a 
computing scenario, the interactions between the nodes executing those functions 
and the approaches used for monitoring the execution of those functions has been 
suggested in order to be able to systematically monitor and predict various situation 
parameters.  The concept of a computing partiture (depicted in Figure 8), which is a 
collection of metadata about a computing scenario, is introduced as the source of 
information for the nodes executing the scenario. 
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In addition to describing a computing scenario the partiture also allows describing 
how the context information required for a computing scenario is collected and 
used.  

The partiture does not contain details of the implementation of the functions 
involved in the partiture – it only describes the functions that are involved and the 
metadata relevant to these functions. Neither does the partiture contain information 
on the specific nodes that should execute the partiture but it rather describes the 
functions that are executed as part of the partiture. The functions described in a 
partiture can run on one or more nodes depending of the details of the partiture and 
the availability of resources at the nodes in the given network.  

The partiture describes the interactions (messaging patterns) between the functions 
including the timing constraints of the individual interactions – intervals of 
execution, mean slack and jitter of the intervals. The partiture also contains 
information on the possible repetitions and repetition intervals of the partiture. 

 

Figure 8 General architecture of a distributed situation-aware computing system  
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In order to collect the computing situational information the partiture contains 
information on how the performance of the execution of the individual functions 
should be monitored at the nodes. The information describes how execution time of 
the functions is monitored, which allows a node to locally monitor the execution 
and later provide the performance information on the execution of functions. Based 
on the computing situational history the nodes can also make predictions on the 
future executions of functions on a node and provide these estimations to the nodes 
that they interact with. The partiture can also be modified according to the recorded 
situational history if such behaviour has been prescribed by the designer of the 
system. 

As is the case with computing situation parameters the partiture also contains 
information on how the values for physical situation parameters should be 
computed and what models (functions) should be used to predict the future values 
of the physical situation parameters. Formal mathematical analysis methods are 
most likely not required to predict future values of situation parameters with 
sufficient accuracy. In addition to being computationally intensive the generation 
of formal analysis methods requires good information on the physical domain and 
the creation of adaptive and situational history exploiting systems is much more 
complex using these methods. Instead stochastic, heuristic, physical models or 
technical analysis tools are used for predicting behaviour. 

As the nodes monitor the situation, add to the situational history and make some 
decisions based on the situational history they can also update accordingly the 
partiture of the computing scenario they are executing.  

The architecture outlined above allows measuring different phenomena according 
to predefined patterns and predicting the future values of situation parameters 
based on past measurements of phenomena. The predicted values are used either 
directly or indirectly in future computations to improve the efficiency and (user-
observable) quality of the systems. According to some sources (Motus, et al., 2005) 
these features – the ability to anticipate the evolution of its surrounding 
environment is one of the characteristics of proactive systems, which the invisible 
computing systems are expected to be. 

To execute the partiture every node contains a conductor that can execute a 
partiture. The conductor is responsible for selecting the nodes that are going to 
execute the functions described in the partiture and delivering the information 
required for the execution to the nodes. In addition to the function and interaction 
information the conductor is also responsible for delivering the information on 
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situation parameter collection and situational history utilization as described in the 
partiture. A conductor is also responsible for making agreements with conductors 
on other nodes to execute part of their partiture. 

As the conductor reads the partiture and monitors progress, the situation history is 
also used to update the partiture itself with additional details of the execution flow. 
For instance the instrumentation of an executed function might reveal that there are 
two temporally distinct phases in the operation, such as the initial partiture 
prescribing reading data from a disk, and the monitoring observing that there is 
some computation leading to the read, then a long pause while the disk is seeking, 
followed by more computation. Based on the observation the disk read phase can 
be split into two separate operations. The situational history is thus used to evolve 
the problem description, allowing the original human author to use rough terms of 
intent and letting the system discover the details. It seems fitting to call this type of 
a rough partiture a Jazz partiture, given that the learning and specialization process 
is akin to improvisation. 

The claim that even quite thin embedded nodes are able to perform the predictions 
on situation parameters is not unsubstantial, since in (Helander, et al., 2005) it is 
shown how quite simple mathematical models suffice to predict the future values 
of situation parameters, such as execution times of scheduled functions, with quite 
good results. In the cited work the authors apply normal distribution using a table 
based (i.e. pre-computed) approach to predict the future execution times of 
computations based on observed computation histories. 

3.4 Middleware dedicated to exchanging situational information 
The partiture concept laid out the principles for implementing situation aware 
distributed computing systems. Greatly motivated by the partiture concept and the 
underlying requirements that the partiture has on a computing system a study was 
initiated on proactive middleware for exchanging situational information. The work 
on middleware started (and is still continuing) on various aspects of the 
middleware which together will provide the required functionality. 

Middleware is usually understood as a specific software layer in computing system 
that connects applications, or software components and includes a set of services 
that allow multiple processes running on one or more computers to interact across a 
network. In the context of this thesis the middleware should be a proactive 
“mediator” of situational information and should provide services for forming team 
situation awareness. Here the team is formed by agents of mixed origin; they can 
be humans, computers, smart sensors, and/or software-intensive devices. 
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3.4.1 Concept of a proactive mediator 
Middleware is the mediator that supports formation of situation awareness and 
especially team situation awareness within a team of autonomous interacting 
agents. Conceptually, the middleware is a smart communication environment that 
provides services for filtering, partial validation, and distribution of information 
according to personal access rights of agents, and in preferable message formats for 
individual agents. 

A type of mediator is required even in case of a single agent which collects its 
situational data from a set of sensors for determining situation parameter values. It 
is preferable that the situational data is tagged with the information enabling cross-
checking and validity assessment of its value, and its consistency and integrity is 
validated (preferably) before, or at reaching the agent – this simplifies the 
substitution of the agent, or modification of its inner algorithms. The tagging of 
sensor readings can be done within a sensor or at the entry point to the mediator. 
The validity checks are performed by the mediator based on the constraints and 
requirements provided by the agent that subscribes to the data. In the case of 
distributed peers-agents the mediation problem is more complex since the mediator 
operates on multiple simultaneous streams of computation so as each of the 
interacting autonomous agents is trying to form its individual situation awareness, 
and after that harmonize it with the team situation awareness. 

All the agents are peers by their “social” status, but not by their processing 
capabilities, and not by their preferences for incoming and outgoing message 
formats. Hence the basic middleware problem is the flexibility of interfaces 
between the agents and the mediator. Interactive digital maps can be used as the 
flexible interface for a wide scope of applications – the information on maps can be 
represented as alpha-numeric data structure, as separate information layers of a 
map, and as a conventional digital map. 

3.5 Architecture of the middleware 
The middleware has service-oriented architecture and enables easy, self-adjusting 
communication between dynamic collections of interacting autonomous agents – 
those interactions are required to form individual situation awareness of agents and 
to develop the team situation awareness that is represented by a dynamically 
updated common operating picture. The interactions may be divided into multiple 
groups depending on tasks and goals of interacting partners – for instance, the 
middleware caters for communication required for sensor fusion, communication 
between clusters of software intensive devices (e.g. UAV-s, UGV-s, and weapon 
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systems) to coordinate activities, communication to reach decisions between 
human-human, human-machine and machine-machine groups), and others.  

Examples of application-oriented services provided by middleware are: 

• validation of information acquired from different sources, assigning tags to 
data items if necessary; 

• transformation (and compression) of validated (and fused, or otherwise 
processed) information into the interim format defined by the middleware, 
in our case linking the information with an interactive digital map; 

• tracking the position of agents that are linked to the middleware, and 
storing their position in the interim format; 

• keeping track of the access rights of all the agents linked to the middleware 
and checking the rights during any transaction; 

• remembering the preferred formats of messages, specific subscriptions for 
information from the agents, and processing capabilities of each involved 
agent; 

• delivering the subscribed information and satisfying all the constraints and 
requirements imposed by the agents. 

Another set of services in the middleware is for intrinsic use (for handling the 
interim data format), these services are required to create, maintain, update, and 
partition according to the subscriptions from, and position of the agents. In this 
paper we use interactive digital map as an interim data structure (see map server in 
Figure 9). This set of services is organized as a multi-agent system. Dedicated 
agents compose and decompose the designated area in a digital map into respective 
parts, extract specific layers from parts of the map, add and delete application 
oriented icons in the map as required, search and link background data about the 
objects and icons on the map, update the positions of mobile icons, etc.  

The peculiarity of this middleware is in its autonomous and smart operation that 
pays attention to individual properties and requirements of the clients, and in 
(situation sensitive) on-line validation of the outcome of its services. This becomes 
possible due to application of the “mediated interaction” concept (Motus, et al., 
2009). This concept is built on a situation-aware interactive model of computation 
(Motus, et al., 2005), with original ideas stemming from (Motus, et al., 1994), and 
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on a well-established message exchange paradigm where consumer has to 
subscribe to a message. During the subscription process the subscriber specifies the 
properties to be guaranteed in the message (e.g. time of computing the contents of 
the message, position of the message sender, validity time of the message, etc). 

3.5.1.1 Illustration of middleware functioning 
From the application point of view the middleware implements three roles – it 
serves as a unifying communication media for heterogeneous agents, it enables 
subscription-based message exchange between (mobile) agents with subscribers’ 
access rights control, and it validates the consistency and integrity of exchanged 
messages with the requirements and constraints provided by  the subscribers. 

For instance, if the evaluation of a given situation parameter value requires input 
data tagged with specific temporal and spatial values that should satisfy the 
constraints specified during subscription to that value, the middleware invokes the 
check by calling the respective service and referring to the constraints specified 
earlier. The middleware can propagate the constraints specified during subscription 
to any middleware related services. Questions about time counting and 
synchronization in loosely connected mobile distributed computing system are not 
trivial – quite often we have to deal with multiple independent metric times 
simultaneously. Some more information about time related problems see (Motus, 
2003). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Middleware for forming team situation awareness of agents 
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An example of this is the acquisition of the weather forecast for action planning. It 
is clear that weather forecast for last week is not used to plan the actions of 
tomorrow but instead the weather forecast for tomorrow is used. In addition 
weather forecast for the target operational area is used instead of using a weather 
forecast for some place several miles away. In many cases people take this kind of 
information filtering as naturally guaranteed, but the natural information mediation 
that occurs in the social network of humans does not occur naturally in the artificial 
social network. In artificial social network the mediation needs to be pre-specified 
in details. 

In the artificial social network the action planning agent requests weather forecast 
with fixed temporal and spatial constraints. Such a forecast is not readily available. 
Hence the agent tries to obtain that weather forecast from the peer agents. After the 
requested data arrives the validation indicates that data satisfying the constraints 
100% is not available but data “close enough” is available. The middleware will 
return the response to the subscriber of weather forecast with a tag commenting the 
approximate satisfaction of constraints. The subscriber then has to make a final 
decision – to be happy with the approximate data, or wait for the better result. 

In a multi-agent case the problem is more complex since mediation occurs in a 
simultaneous multi-stream computing system where multiple computing streams 
interact with each other during computation (violating thus basic rules of Turing 
computing). The middleware has to ensure that data exchanged during interactions 
satisfies temporal and spatial constraint sets defined by the situation parameter 
evaluation criteria. In order to ensure the above, middleware must provide for 
bidirectional propagation of situation parameter constraints – if an agent requires 
situation parameter value that satisfies specific constraints (i.e. a parameter is valid 
in a specific space area at a specific moment in time) the input data to the agent 
must also satisfy specific constraints. This, in its turn, means that the data providers 
for the agent must provide data that satisfies the constraints, and continuing along 
the chain of data providers, until we reach the data acquired from the environment 
(or from another independent sources). 

The process of introducing new agents to the middleware is initiated by agents 
themselves. An agent introduces itself, the situations of interest and their 
parameters, together with the constraints to be used for validation of situation 
parameter values during the current mission. Then middleware attempts to discover 
the data providers (agents) that are able to provide the situation parameter values 
satisfying the supplied constraints. Once the data providers have been discovered 
from the network, data is requested from those providers and when the data arrive 
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at the requesting agent, the validity of the arrived data is checked against the 
introduced constraints. If the data satisfies the constraints it is passed on to the 
agent. 
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4 Case studies of situation awareness of artificial systems 
This chapter describes some of the case studies that utilise the situation awareness 
concepts described in the previous chapter. The practical examples described in the 
case studies illustrate how the situation awareness concepts can be applied in 
various application domains as the case studies range from the interpretation of 
sensor signals to control of mobile vehicles. The chapter is divided into nine 
sections that describe different concepts and case studies. The first section 
illustrates how the situation awareness concepts can be applied in the ubiquitous 
computing domain, the second section describes a sensor signal acquisition and 
processing scenario, the third section describes the aspects of applying smart dust 
motes in monitoring applications, the fourth section proposes a method of how 
situational information can be encoded and propagated in various networks, the 
fifth section describes the problems related to indoor positioning and a set of 
positioning related case studies, the sixth section describes a positioning and 
navigation method developed by the author, the seventh and eighth sections 
describes two mobile vehicle related case studies.  

4.1 Distributed applications based on smart dust 
This case study presents the rationale for building distributed applications based on 
heterogeneous computers and some issues related to that topic. As wireless sensor 
networks serve as data providers for Cyber-Physical Systems and since the 
practical and theoretical problems in wireless sensor networks are very close to 
these in CPS-s the concepts outlined in the Enhancing the Situation Awareness 
Concept for Cyber-Physical Systems chapter are well applicable in the context of 
wireless sensor networks. 

4.1.1 Introduction to distributed applications 
Wireless sensor networks introduced in the beginning of the current century are 
networks of tiny embedded computers that are equipped with a wireless 
communication interface, some sensors and an autonomous power supply. These 
devices are also called smart dust motes, implying small size and “smartness” 
distinguishing them from mere sensing devices. The networks formed by smart 
dust motes are (mobile) multihop ad-hoc networks (also called MANET networks) 
where each node also performs the task of a router, forwarding messages from the 
other network nodes. In Figure 10 the layout of a multi-hop network is depicted. 
The black dots are the network nodes and the circles around the dots are 
communication areas of the nodes, the numbers next to the dots denote the 
identifier of the node. In order for two nodes to communicate the nodes must be 
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within each other’s communication areas. So in order for example to nodes one and 
six in Figure 10 to communicate, nodes three two and five must relay the messages 
between these nodes. 

 

While such a multi-hop mode of communication may seem complicated the 
MANET networking approach allows extending the network without increasing the 
communication range of individual network nodes. The required signal strength for 
a given distance in case of direct communication and a multi-hop scenario is 
illustrated in Figure 11. As radio signal strength attenuation is an exponential 
function of the distance, the power requirement is increased substantially when the 
distance increases. It is generally accepted that the attenuation exponent is 2 but 
due to multipath and other interferences the attenuation exponent can be up to 5. 
As it can be deduced from the figure the total power requirement can be more than 
three times smaller in case of a multi-hop architecture versus the power 
requirement in case of direct communication. 
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Figure 10 A sample multi-hop network 
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A commercial MicaZ smart dust node from Crossbow Technology is depicted in 
Figure 12. Small form factor, low price, simple installation procedure and the 
offered capabilities seem to call for large scale wireless sensor network 
installations and wireless sensor networks are used today in a range of monitoring 
solutions both as research prototypes and also increasingly in industrial 
applications. 

 

 

Figure 11 Required signal strength for a specific distance 
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However, the current use of wireless sensor networks is not as widespread as 
predictions a few years ago promised. There are several reasons for this, but no 
single one can be called a major one. Using wireless sensor networks only for 
monitoring applications is promising and useful; however in most cases the 
advantages of smart dust do not outweigh the shortcomings when compared to 
established technologies. It is clear that it will take at least a few more decades 
before ubiquitous computing environments will be established and available, so 
this field is not and will not be the driving force behind wireless sensor network 
development. Regardless of the slow development we can still look at the wireless 
sensor network technology and discuss what development is needed in order for 
this technology to enable ubiquitous computing as envisioned by Weiser (Weiser, 
1991). 

Ubiquitous computing (also pervasive computing, invisible computing) concept 
was first introduced by Weiser in 1991 (Weiser, 1991). Ubiquitous computing 
encompasses computing devices in the environment connected (typically via 
wireless communication interfaces) with each other. Software intensive devices 
whose functionality is enabled only by the use of appropriate embedded computing 
software and hardware are already common in our everyday life. Although devices 
with similar functionality existed before a computer (or several computers) were 
integrated into them, the non-computerized versions of such devices usually exhibit 
reduced functionality when compared to their modern counterparts (compare for 

 
Figure 12 Smart dust mote MicaZ from Crossbow Technology 
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example modern cars or washing machines to their counterparts thirty years ago). It 
is envisioned that computing devices will be even more ubiquitous, go far beyond 
the software intensive devices and personal computing devices in use today. The 
ubiquitous computing vision foresees that tiny, even invisible computers, 
embedded into the environment and everyday objects such as tools, appliances, 
clothing, even the human body, are able to interact directly with the environment 
and each other, maintaining up to date information on the environment. These 
smart devices will determine the current situation based on the collected 
information about their locations, human users in the vicinity, their peers. The 
devices will use pre-programmed algorithms and information collected via past 
interactions to determine optimal behaviour for the current situation. A ubiquitous 
computing system is expected to anticipate the needs and expectations of a human 
user and act accordingly.  

4.1.2 Distributed applications  
Most current wireless sensor networks use a many to one data flow model where 
all data collected by the sensor network nodes is transmitted to a single (or a few) 
sink nodes (data collection centres) with little or no data pre-processing by the 
wireless sensor network nodes. Stemming from this centralized approach many 
researchers still believe that queries are the most important application for sensor 
networks (Sheng, et al., 2006). Essentially these approaches use WSNs as mere 
data collection systems where wires have been replaced by wireless links. Such an 
approach is suitable for data collection systems but even in this application it is not 
very desirable in all cases since data is accessible only via the sink. Even some of 
the routing protocol implementations for wireless sensor networks are only able to 
transmit data to a single sink node. 

System architectures that rely heavily on the sink node may be beneficial in a 
setting where strict control over the data is required but it is quite inefficient in 
terms of network bandwidth utilization as all (or a very large amount of) the 
collected sensor data is transmitted from all the sources to a central data collection / 
data fusion centre via the sink node. The bandwidth usage may be optimized when 
nodes pre-process (the rules for data processing could be also supplied at runtime 
as shown in a later case study) the data locally and transmit only critical 
information to the sink node. 

In ubiquitous computing scenarios as suggested by Weiser in 1991 (Weiser, 1991) 
where the network nodes must realize a distributed application in-network data 
processing and data exchange between the network agents is clearly required. The 
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configuration of an application in a ubiquitous computing system is not predefined 
– the nodes and their configurations are not known at design time, nor is this 
information available at the time of deployment. All the distributed applications 
realized by a given system may not be known at the time when the computing 
system is deployed. Applications are formed at runtime and the application 
components are also discovered at runtime. 

A property of such ubiquitous computing systems relying on MANET type 
networks is that nodes can join and leave (or can be added to or removed from) the 
network and therefore the nodes (and the lower and higher level algorithms, 
including applications running in the network) must be also able to adapt to such 
changes. An example of a dynamically formed network is the deployment of motes 
from an airplane (which is realistic since motes are used in military monitoring 
applications for sensing various physical parameters that can be used for detecting 
phenomena of interest). 

The initial configuration of the network (the placement and density of nodes) is to a 
great extent determined by the way the motes fall to the ground, it can’t be even 
expected that all the deployed motes will be operational or that the deployed 
network is even fully connected. If the deployed nodes have different sensing 
modalities the specific sensor coverage of an area may also vary. The differences in 
sensor coverage stem from the fact that the area for which a specific sensor reading 
is valid is limited and not identical for various sensors. Because the sensing areas 
may be non-overlapping there may be areas for which there is no coverage from a 
specific sensor. As the configuration of the network is also dynamically changing 
(nodes may be destroyed, their power supplies depleted), the nodes must adapt to 
the changes in the configuration dynamically. No central coordinating entity or 
special nodes with special capabilities can be assumed (as all nodes are equally 
expendable) and therefore all the tasks in the network must be performed by the 
nodes themselves. 

Such a dynamic system can be also envisioned in the context of future ubiquitous 
computing systems, for example a smart house – devices built into the house must 
interact with the devices that the residents of the house introduce to the house, in 
addition, some of the existing devices are removed as they become obsolete or as 
the residents become bored with them. A smart house must also interact with 
computers embedded into or onto the people that live in the house. When the 
ubiquitous computing system is deployed a resident of the house may not have a 
cardiac pacemaker but after the pacemaker has been implanted no manual 
configuration steps should be required. A pacemaker should, if required, be able to 
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discover the coffeemaker in the kitchen and tell it to make weaker coffee because 
its owner’s heart rate is too high. 

4.1.3 Data origin 
The problem of data origin must also be addressed – if node deployment is not 
deterministic, exact locations of nodes cannot be known until after the deployment 
(after a mote has fallen to the ground or after a device has been placed in the house 
by a resident). Node positioning can be quite complex in situations where no 
convenient positioning infrastructure (such as GPS) exists, which typically is the 
case indoors and may be also outdoors in unfavourable or hostile environments.  

A common way to overcome these problems is to use some location aware anchor 
nodes (which location may be determined manually) that are able to position other 
nodes in the environment. Current positioning algorithms that rely on anchor nodes 
can be classified into three categories: algorithms that rely on the distance 
estimations, algorithms that use bearing information and algorithms that use both. 
The accuracy of the position estimate of all these approaches depends of the 
accuracy of the distance or bearing estimation. Given the fact that acquiring precise 
bearing or distance estimations is not possible with the limited hardware of current 
this is a problems that remains to be solved. A study performed on evaluating the 
use of received signal strength indication in described in (Pahtma, et al., 2009). 

4.1.4 Situation awareness of motes  
The premise for the work done involving smart dust motes in distributed 
applications lies in the belief that motes can be programmed to perform level 1 SA 
tasks and also limited level 2 SA tasks. This naturally assumes that the 
communication module architecture in the motes follows the approach suggested in 
section 3.4 Middleware dedicated to exchanging situational information of the 
Enhancing the Situation Awareness Concept for Cyber-Physical Systems chapter – 
the motes must be able to process and generate situational information and attach 
validity information to the computed situation parameters. Some of the aspects of 
making smart dust motes situation aware are discussed in the other sections of the 
current chapter – 4.2 Sensor signal interpretation and 4.4 Data representation for 
situational information propagation. 

4.1.5 System component lifecycle 
The lifecycle of embedded devices is another issue that must be considered in the 
design and implementation of ubiquitous computing systems. An embedded 
computer that functions as part of a physical object may have the same expected 
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lifetime as the physical object which may be significantly longer than the lifetime 
of an average computer. However the distributed applications that an embedded 
computer is part of may change during the lifetime of the embedded computer. 
Since the embedded devices interact directly with the physical world their actions 
are partially also dependent on the physical world. Hence it is not possible to 
reason about the precise behaviour (schedulability of functions, duty cycles, 
bandwidth allocation, etc) of a device before the device is installed and becomes 
part of the physical world. It is not possible to predict all the possible combinations 
of applications that a device is going to be part of, or the nature of the inputs from 
the physical world. We can consider a simple example from everyday life – when 
we design a wrench we have no way of predicting what bolts and nuts that wrench 
will interact with during the lifetime of the wrench and by whom and how often the 
wrench will be used. The same way we have no way of predicting what 
interactions an embedded computing device will be part of during its lifetime. 
Instead the device must be designed and implemented in a way that makes it 
possible to cope and interact with the changing environment. 

4.1.6 Smart space project 
The Research Laboratory for Proactive Technologies has participated in a smart 
space project, implementing a ubiquitous computing environment prototype. The 
Iris smart dust motes from Crossbow Technology are embedded into the 
environment at fixed positions. The smart dust motes are equipped with sensors, 
which allow them to collect information on the physical properties of the 
environment. The information is converted to situational parameter values to which 
any device connected to the network can subscribe. The situational information 
(which includes the environmental conditions) collected by the nodes is also stored 
in the network in a distributed manner. The network of motes also functions as a 
positioning system utilizing a modified distributed version of the CABP 
positioning algorithm presented in the Positioning section of the current chapter. 
The motes in the environment provide human users with information in a context 
sensitive manner, as specified by the user. Human users that are equipped with a 
portable computer are provided situational information of interest by the mote 
network based on the situation of the user, which is in turn determined by the mote 
network. A use case scenario contains a human user that via the graphical user 
interface on a computer subscribes to information from the mote network in a 
context sensitive manner, which means that the information delivered to the user 
depends (among other things) on the situation of the user. 
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4.2 Sensor signal interpretation 
The sensor signal interpretation case study deals with the interpretation of a sensor 
signal by a single processor. In the context of the situation awareness levels this 
case study deals with level 1 SA or perception – the process of computing a 
situation parameter value from the signal of a sensor that is interfaced to the 
physical world. As outlined in the Enhancing the Situation Awareness Concept for 
Cyber-Physical Systems chapter the sensor signal interpretation may comprise 
more than just an algorithmic transformation of the output of the sensor signal to a 
value used in higher level computations. The output of the perception step (sensor 
signal processing) may also depend on other factors which may be expressed in 
values of other situation parameters. Depending on the algorithm used in the 
perception step the output may also depend on the past situation parameter values, 
which in some cases are called context histories (Preden, et al., 2006). The history 
of the computation may be stored internally in the situation parameter computation 
function, i.e. it may not be accessible outside of the computation. The case study 
originated in the work done by the author of the thesis on wireless sensor networks. 
This work is described in greater detail in (Preden, et al., 2007). 

As the name implies, the sensor network nodes must process sensory input. Whilst 
digital systems that process data acquired from the physical world via sensor have 
been developed for decades already the approach based on situation awareness 
based presents a different abstract view on how the incoming sensor data could be 
processed. This approach also offers a way for solving dependencies in the data 
processing between data originating from various sensors and other data sources. 

The interpretation of an individual sensor input (for example the resistance of a 
thermistor) can be viewed as the processing of an input stream of data samples. 
The stream is characterized by a time-set, which defines the time instances when 
the samples in the stream arrive for processing. This view of data item processing 
in a stream is motivated by the Q model (Motus, et al., 1994). The time instances 
when the samples in the stream arrive for processing depend on the time instance 
when the sensor value is sampled but in addition there are some deterministic and 
some non-deterministic factors that delay the processing of the data (starting from 
the signal input to the analogue-digital converter and ending in the retrieval of the 
value from the memory). The individual data samples of the stream (that arrive at 
different time instances) are not necessarily processed the same way since the 
processing of the items in the stream may depend on previous values of data 
samples in the stream. In addition the processing of individual data samples in the 
stream may depend on the external situation (values of situation parameters 
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reflecting the state of the external world), which may change over time. For 
instance, the processing of the thermistor input may depend on the supply voltage 
when the resistance of the thermistor is measured with a voltage divider circuit and 
the reference voltage is not compensated for the voltage drop of the supply voltage. 
In this above case the voltage can be viewed as being part of the virtual 
(computing) situation for situation parameter computation function that processes 
the thermistor signal input. 

4.2.1 Sensor signals as a source of situational information 
For thermistor the input stream is the ADC (Analogue to Digital Converter) output 
from the ADC channel that is connected to the thermistor circuit and the output is 
the temperature. A notation similar to the Q-model (Motus, et al., 1994) can be 
used for denoting the interpretation of the data samples from a specific sensor: 

( )__t t S temp sensortemperature P T ADC Output= ×  

where ttemperature is the situation parameter value (the temperature estimation at 

time instance t), tP  is the stream function used to process the stream, ST is the 

stream timeset and __ temp sensorADC Output is the value of the data item (the output 

of the analogue-digital converter) corresponding to a specific time instance. 

As discussed in the beginning of the section the time it takes to process each data 
sample is also situation dependent – due to the fact that the interpreting functions 
may contain internal memory, the computation time may depend on the values of 
current and previous data samples (in some cases the intermediate results of a 
previous computation can be reused). 

The example can be expanded upon by considering a quite good, yet trivial 
example of processing the stream of data acquired from a resistive humidity sensor, 
where the resistance of the sensor depends (non-linearly) on humidity and 
temperature. The signal acquired from the sensor (typically in the form voltage 
which can be converted to sensor resistance) must be converted to engineering 
units, which in case of a relative humidity sensor is relative humidity in 
percentages. Since the relation between the resistance of the sensor and the 
engineering units (relative humidity) in non-linear the conversion may be quite 
resource consuming. For devices with low processing power it is common to use a 
table-based approach when a non-linear conversion is required. The values in the 
table closest to the actual sensor value are looked up and interpolation is performed 
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between these values (linearity of the function is assumed between the table values, 
which provides sufficient accuracy for most applications). Table 1 is a section of 
the sensor resistance table of a resistive humidity sensor H25K5A.  The table rows 
contain the resistance corresponding to a specific humidity and the columns 
contain the resistance corresponding to a specific temperature at a specific 
humidity.  

Humidity Temperature 

 20 25 

30 3300 2500 

35 1800 1300 

40 840 630 

45 216 166 

Table 1 Humidity sensor resistance 

In order to convert the resistance of a humidity sensor into relative humidity four 
look-ups must be made from the table based on the measured resistance and the 
current ambient temperature. When the four values have been acquired 
interpolations are performed to compute the relative humidity corresponding to the 
temperature and the resistance of the humidity sensor. To obtain the resistance of 
the sensor the ADC reading must be interpreted first - if a voltage divider is used 
this interpretation depends on the supply voltage (if the voltage drop of the supply 
voltage is not compensated).  

Thus it can be concluded that the conversion of the elements in the humidity sensor 
resistance input stream to a situation parameter value (which in this case may be 
the engineering units – the relative humidity value) depends on temporally and 
spatially matching elements in two other situation parameter streams - the 
temperature situation parameter and the supply voltage situation parameter. The 
voltage and temperature situation parameter values form the computing situation 
for computing the humidity situation parameter value. 

( )sup __t v S ply voltagevoltage P T ADC Output= ×  

( )__t t S temp sensortemperature P T ADC Output= ×   
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( )__
dependent

h t
h h humidity sensor dependent

h v

P P
humidity P T ADC Output

P P

⎧ ⎫⎯⎯⎯⎯→⎪ ⎪= × ⎨ ⎬
⎯⎯⎯⎯→⎪ ⎪⎩ ⎭

 

It may seem that there is a direct functional dependency between the relative 
humidity, the resistance of the humidity sensor, the resistance of the thermistor, 
and the supply voltage at a specific time instance. It is so when we neglect the 
temporal and spatial aspects of the data or we can guarantee that all the data that is 
used in the computation satisfies the temporal and spatial constraints. It is clear that 
we cannot neglect the temporal and spatial aspects since in this case the result is 
that the computed values do not reflect the real state of the physical world (a 
temperature reading obtained yesterday outdoors has little value when we need to 
evaluate the relative humidity in a room right now). Guaranteeing that the data 
satisfies the temporal and spatial constraints without attaching the temporal and 
spatial validity intervals explicitly to the data items turns out to be more difficult 
than it seems even in case of single processor devices. When the data arrives from 
different (physically dislocated) sources (agents) the problem becomes more acute 
since in this case guaranteeing temporal and spatial consistency is even more 
difficult if not impossible when no validity information is associated with the data.   

So the solution is to use the approach based on exchange of situation parameters, 
which makes it (with the help of appropriate middleware as outlined in section 3.4 
Middleware dedicated to exchanging situational information) easier to provide the 
situation parameter computation function with data that satisfies the temporal and 
spatial constraints of the function.  

Each situation parameter computation function contains the requirements for the 
input data, i.e. what situation parameters are required as input data for computing 
the given parameter value. Clearly the situation parameter computation functions 
are autonomous by themselves, i.e. the fact that another function uses the output of 
a given function should not affect the behaviour of a given function. As described 
in the Enhancing the Situation Awareness Concept for Cyber-Physical Systems 
chapter the constraints of situation parameter computation functions are propagated 
from the higher level functions down to the lower level functions.  

Sensor signal processing using the approach based on the exchange of situation 
parameter values is further explained via a diagram in Figure 13. 
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Figure 13 visualizes the sensor signal interpretation example. The temperature 
sensor is attached to Node A and the humidity sensor is attached to Node B. Both 
sensors are resistive, which means that the resistance of the sensors is measured via 
the change in the voltage of the circuit that contains the sensor. The supply 
(reference) voltage is also measured in order to compensate for the drop of the 
voltage when the supply voltage of the battery of the node drops. In the lower level 
the logical processing units (temperature signal processing, voltage signal 
processing and humidity signal processing) the ADC output is converted to the 
corresponding engineering units (voltage) and supplemented with metadata 
(timestamp). In the situation parameter (SP) computation block (the temperature 
SP computation block in Node A and the humidity SP computation block in Node 
B) the corresponding SP value is computed based on the situation parameter 
values. Since Node B is not equipped with a temperature sensor the temperature SP 
value is received from Node A. In case of SP values that are communicated 
between nodes the spatial validity information must accompany the parameter 
value.  

In addition to the situation parameter computation being situation dependent the 
time-set for the input data streams can also be situation dependent. From a real-
time system developer's viewpoint the approach is quite natural - if the dynamics of 
the system is known then sampling can be done at a lower rate when the parameter 
value is not close to critical, but a higher rate is required when the parameter value 

 

Figure 13 Sensor signal interpretation 
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is closer to the critical value. This approach is especially useful if the available 
power is limited and sensing is power intensive. The issues of power consumption 
are discussed in detail in the Applying smart dust motes in monitoring applications 
section. 

For ensuring the temporal consistency of the different input data either the 
approach outlined in the Realizing situation aware spatially distributed mobile 
computing systems section can be used or alternatively one could execute the 
situation parameter computation at the arrival of items in one of the data streams. 
The approach outlined in the Realizing situation aware spatially distributed mobile 
computing systems section assumes that the situation parameter computation 
function execution times set the temporal constraints (hence define the time-set) for 
the sensor signal acquisition. The middleware concept introduced in section 
Middleware dedicated to exchanging situational information enables the use of 
either concept assuming the middleware is capable of performing the required 
conditioning of data. 

Still it is preferred that the timesets of the streams of the different situation 
parameters match, which means that the temporal constraints of a high level 
situation parameter must be propagated down to the lower-level situation parameter 
computation functions. The matching of the parameter stream timesets means that 
the temporal validity intervals of the parameters should overlap, i.e. it should not 
be required to compute valid parameter values based on past values in the same 
stream (which are not valid any more). The temporal constraints are defined by the 
execution times of the high level situation parameter function and the temporal 
validity intervals of the source data. The lower level situation parameter values 
need not be computed every time a higher level situation parameter computation 
function is executed. The requirement is just that the lower level situation 
parameter values (the source data) must be valid during the computation of the 
higher-level situation parameter computation. Naturally the temporal validity 
interval of the higher-level situation parameter value depends on the validity of the 
source data. 

4.2.2 Situation parameter computation – a concrete example 
Below the sensor signal interpretation example is outlined using the semantics 
introduced in the Enhancing the Situation Awareness Concept for Cyber-Physical 
Systems chapter. Two high-level situation parameters are defined to illustrate the 
example better: relative comfort level for a human being and safe operating 
conditions for a piece of equipment. In both cases the situation parameter value is 
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computed using the relative humidity and ambient temperature situation parameters 
as input. The algorithms for computing the higher-level situation parameter values 
can be changed without any obligations to change the lower levels. For example 
the human comfort is very individual so a person could presumably define the 
setpoints for computing the comfort situation parameter himself. Typically in case 
of relative comfort for human in relation to humidity and temperature the following 
reasoning can be applied: most people find high temperature (e.g. above 25 degrees 
Celsius) combined with high relative humidity (e.g. above 80%) rather 
uncomfortable while low temperature (e.g. below -5 degrees Celsius) combined 
with high relative humidity is usually also considered uncomfortable. Anything in 
between can be considered comfortable at various levels.  

For a piece of equipment the safe operating conditions are usually quite well fixed: 
when the temperature and the relative humidity are in the allowed range the 
operating conditions are safe. Similarly to humans also for each piece of equipment 
the set-points for computing the safe operating conditions situation parameter 
values are different and depend on the specifications of the piece of equipment. 

The situation parameter tuples for human comfort and safe operating conditions for 
a piece of equipment can be expressed as follows. 

( )_ _ , ,Joe Comfort Joe comfort t lS SP S S= expresses the relative comfort for the human 

named Joe and ( )_ _ , ,safe deviceA safe deviceA t lS SP S S= expresses the safe operating 

conditions for deviceA. The function specifications for computing both of these 

situation parameter values are quite similar: ( )_ ,Joe comfort T HS f SP SP= and

( )_ ,Safe deviceA T HS f SP SP= . 

In order to compute these higher level situation parameter values the lower level 
situation parameters must be computed first. For temperature the situation 

parameter tuple is the following: ( ), ,T p t lS SP S S= where pSP  is the temperature 

situation parameter value (which may be temperature value in Celsius), tS  is the 

time period for which the temperature value holds and lS is the area for which the 

temperature value holds. The time period for which the temperature value holds is 
computed based on the properties of the environment. The area for which the 
temperature value holds is derived from the location of the temperature sensor. If 
the sensor is located outdoors the temperature value may hold for an area with a 
rather large radius while if the sensor is located in a room the temperature value 
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may only hold for that specific room. The dynamics of temperature depend on very 
many factors, For example in a room the rate of change of temperature depends on 
the volume of the room, the power of the heating system, the number of people in 
the room, the mode and power of the ventilation system and so on. Following the 
example outlined in the previous sections the temperature situation parameter value 
computation function uses the temperature sensor reading and the voltage as an 

input, which can be expressed as follows: ( ),T T VSP f s s= . The TSP  stands for 

the situation parameter value while the Ts and Vs stand respectively for the 

temperature and voltage sensor readings. 

A similar tuple is constructed for the humidity situation parameter

( ), ,H p t lS SP S S= . In case of the humidity situation parameter the computation of 

the situation parameter value is more complex since in order to compute the 
humidity situation parameter value the temperature situation parameter value, the 
reading of the humidity sensor and the voltage reading are used – 

( ), ,H T H VS f SP s s= . 

Both the relative human comfort and the safe operating condition for a piece of 
equipment situation parameter take as input the humidity and temperature situation 
parameters. In addition the temporal and spatial constraints for both situation 
parameters must be specified before the parameter value can be computed as 
otherwise the constraints for the source data are not known. 

4.3 Applying smart dust motes in monitoring applications  
Smart dust motes can be applied in various monitoring scenarios, one of them 
being industrial monitoring. Within the scope of this case study a monitoring 
system for industrial equipment was developed (Preden, et al., 2007). The case 
study is an exploratory one which provided good source information for further 
research in the direction of situation aware embedded systems.  

A monitoring system for industrial machinery was implemented based on Berkeley 
motes available from Crossbow, Inc. The motes used in the monitoring system 
were MPR2400CA MICAz motes which were chosen because of the ZigBee 
communication interface operating in the 2.4 GHz frequency band – this bans 
when used on these motes provides relatively high bandwidth and a higher 
resistance to EMC noise (when compared to, for example, Mica2 motes from the 
same provider) due to the availability of several (16) channels and an active 
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channel selection scheme (CSMA/CA) used by the IEEE802.15.4 protocol. The 
higher bandwidth (250 kbps) compared to some other wireless communication 
technologies allows for shorter transmission times, thereby possibly reducing the 
power consumption. 

The sensor boards used on the motes were MTS310CA and MDA100 available 
from Crossbow, Inc. The MDA100 was populated (in addition to the onboard 
thermistor YSI44006 and light sensor Clairex CL94L and ) with a Sencera 
humidity sensor H25K5A and four Rhopoint ACW-006 temperature sensors 
connected to the sensor board via a 2m cable, which allows placement of the 
sensors at desired locations on the monitored machine. The MTS310CA is 
equipped (among other sensors) with a MEMS acceleration sensor from Analog 
Devices – the ADXL202JE – and a microphone, which were used in the 
application.  

Sampling of sensor data should be done with the smallest feasible interval 
(naturally considering the characteristics of the system and the signal) to obtain as 
much information as possible. At the same time the smaller the sampling interval 
the more power is consumed – node cannot enter the sleep state and the appropriate 
sensors must be powered. Therefore it makes sense to increase the sampling 
interval to the greatest value acceptable by the application. Surprisingly test results 
show as justified by the data in the tables below, the reduction in power 
consumption from increasing the sampling interval is not linear and from a certain 
level there is no point in increasing the interval. As it can be seen from Table 2 the 
power consumption differs greatly between the different modes of the device. The 
current drawn by all the sensors connected to MDA100 is relatively small (<1 mA) 
but still substantial when compared to the current draw in sleep mode. 

Mode Current draw (mA) 

Sleep mode, with timer on ~0,02 

Processor running, radio off 12 

Processor running, all MDA100 sensors powered 13 

Processor running, radio in idle listening mode 32 

Processor running, radio transmit mode 30 
Table 2 Power consumption in different modes 

Motes interpret the sensor readings and transmit the interpretation results to the 
sink node, where the data is written to a database. The sensors are connected to the 
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ADC channels via a voltage divider circuit, which means that the interpretation of 
the ADC reading also depends of the supply voltage (which decreases over time 
since the battery voltage drops). The temperature values are transmitted to the sink 
node if the change was more than 10% of the current reading, or if the temperature 
reading is above a given threshold.  

Operation Execution time (ms) 

Data acquisition from a single ADC channel 0,26 

ADC output conversion to resistance 0,2 

Temperature sensor ADC input value conversion 
to engineering units using table 

0,4 – 0,9 

Computing the logarithm function 0,8 

Temperature sensor ADC output conversion to 
engineering units using the suggested function 

1,1 

One data packet send time (between calling the 
send function and send done) 

2 – 7 

Table 3 Operation execution times as measured on MICAz mote 

The tables Table 2 and Table 3 provide the source information for computing the 
average power consumption of a node at different sampling intervals. 

 

 

Figure 14 Current draw chart 
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The chart in Figure 14 illustrates average current draw with different sampling 
intervals when data is sampled from five ADC channels. It is assumed that between 
data sampling the node is at sleep. The chart shows that increasing the sampling 
interval to greater than 4 seconds has very little benefits in terms of power 
conservation as the average current drop after that is not very significant. The 
current consumption curve depends on the processor and computation times. The 
power consumption of the communication tasks is not considered on the chart as 
this was outside the scope of the case study. 

4.4 Data representation for situational information propagation 
A large amount of the practical work presented in this section was performed by 
Raido Pahtma in the context of the VõVõ project. Raido did the implementations of 
the concepts for the smart dust motes and also for the PC. The principles presented 
in this section allow propagation of situation parameter values together with 
validity information in sensor networks. This work is presented in greater detail in 
(Preden, et al., 2009). 

4.4.1 Distributed data processing 
Historically wireless sensor networks have been built around a single data 
collection and processing entity (a sink node) to which the sensor nodes delivered 
the collected data using a MANET type of network, which means that the sensor 
nodes were just used for data acquisition and forwarding (Intanagonwiwat, et al., 
2003). In the beginning of section Distributed applications based on smart dust the 
prevailing sensor network architectures were described in a bit more detail and 
some of the shortcomings of these architectures were explained. 

As in case of many applications the information required from the network is not 
the sensor data but instead the current state of the world (which may be reflected in 
the situation parameter values) in the monitored area (which of course is reflected 
in the sensor data). So the data could be interpreted locally to quite a high level of 
abstraction locally, fusing data from nearby nodes which would result in only high-
level concepts being transmitted over the network. 

In the following a short overview of related work in distributed data processing 
solutions in the area of wireless systems is given. 

In (Huebscher, et al., 2008) the authors come to the understanding that wireless 
embedded nodes must evolve from homogeneous devices running unsophisticated 
programs in environmental monitoring applications to complicated heterogeneous 
devices in ubiquitous computing (Weiser, 1991) realm. In-network data processing 
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and inter-node communication allows the reduction of bandwidth requirements, 
thereby prolonging the network lifetime, in addition the data generated by the 
network could be directly accessed by the network clients, eliminating the need for 
a sink node. Several approaches in that direction have been proposed.  The Milan 
middleware (Heinzelman, et al., 2004) allows for data fusion while using the 
quality of service values of sensors with respect to a specific property. As with 
other data aggregation solutions the temporal and spatial properties of data are not 
addressed explicitly and if these properties are relevant on the application layer 
(which is usually the case, support for these properties must be added separately).  

The concept of semantic information fusion, which is an in-network inference 
process where raw sensor data is processed, resulting in exchange of semantic 
interpretation of data between nodes, has been also explored in the context of 
sensor networks (Friedlander, et al., 2002), (Friedlander, 2005), (Whitehouse, 
2006). In (Whitehouse, 2006) a framework is presented that allows users to pose 
declarative queries over semantic interpretations of sensor data, however the 
presented framework assumes a centrally managed architecture and does not cater 
for in-network data processing, deviating from the objectives in ubiquitous 
computing solutions. The in-network data aggregation method which the authors 
call the directed diffusion paradigm (Intanagonwiwat, et al., 2003) is a simplistic 
data subscription method for sensor networks where the subscriber can specify the 
type of data and the spatial properties of data, however due to its rigidness it does 
not work well for highly dynamic networks or networks where there is more than 
one data consumer. 

The configuration requirements for the sensor networks pose also difficult 
problems as in most applications it is assumed that the placement of the sensors is 
well known (e.g. the Sustainable Bridges application (Marron, 2005)) and the 
application relies on the fixed placement of nodes.  

Architecture for distributed applications in sensor networks which minimizes 
configuration requirements and allows for in-network data aggregation is proposed 
in (Preden, et al., 2006). However a full implementation of the architecture was not 
completed and it is clear that the research ideas presented in that paper need further 
development before usable implementations are possible. 

4.4.2 Exchange of situational data 
In order to make use of the situational data generated by network nodes the 
situation parameters must be exchanged between the nodes. In addition to the 
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situation parameters that are exchanged also the metadata (such as validity area and 
temporal validity period) of the situation parameters must be communicated. 

It is clear that fixed packet formats are not suitable for this task – the set of 
situation parameters is quite large, the metadata of the situation parameters is not 
always fixed and there may be various representations for the metadata. 

In addition to the exchange of situational data also the data interpretation rules 
must be exchanged in cases when a situation parameter type is unknown but can be 
translated to a type known by an agent.  

In order to exchange the situation parameter values between agents a new data 
encoding format was developed for use in sensor networks. The objective of the 
development work was to come up with an encoding that allows for seamless 
transition of data from the lowest level up to the high level more powerful nodes. 
In case of the high-power nodes (e.g. PCs) the protocol of choice would be XML, 
so a direct transition of data from the low-level encoding to XML would be 
desirable without any need for converting the data itself.  

Due to the limitations of the more constrained network nodes (typically 8 bit 
processors with limited memory and computational power) and communication 
channels (maximum packet size is in the order of about a hundred bytes) the 
conventional methods for data encoding are not very well suited.  

4.4.3 Structuring data  
Structuring of situational data is based on object-subject-value expressions. For 
simplification the predicates in the expressions are omitted, the predicate “has” is 
applied to all subject-object relationships. The object field describes the situation 
parameter type while the value field contains the value of the situation parameter. 
In some respects the described approach is similar to the solution described in 
(Tammet, et al., 2008). However due to the different nature of data communicated 
for achieving situation awareness the approach described in (Tammet, et al., 2008) 
cannot be directly applied. Similarly to RDF expressions there is a possibility to 
build complex structures of expressions (via the subject field). Both the subject and 
value elements can be also omitted in case there is no need to associate the 
expression with another expression (via the subject field) or when the expression 
carries no value, e.g. when the expression is the top level of a complex expression 
(the value field is omitted). For instance when a query for a situation parameter 
with no constraints is made only the object type need to be transmitted.  
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The expressions are 3-tuples ( ), ,E object subject value=  containing an object, a 

subject and a value. The subject can refer to another expression in a set of 
expressions. The object types can be situation parameter types, metadata types or 
other object types (e.g. in case of a mathematical equation the mathematical 
operations are also objects). The metadata types are used for describing the 
properties of the situation parameter. Obviously the object type constants must be 
pre-specified at design time.  

The simplest expression is an object-value pair (the subject is omitted); an example 
of this in the natural language would be “the average temperature in Celsius has the 
value 5”. If the constant 0x0F is used with the situation parameter (object type) 
“average temperature in Celsius” the resulting expression will be ( )0 0 ,0,5E x F= . 

The subject field contains a 0 as the expression does not have a subject.  

It is clear that such an expression by itself has little value, but by associating some 
other expressions with the described expression we get a set of expressions that can 
convey information about a specific region. As the subject field in the expression 
can refer to any expression in a set of expressions it is possible to create complex 
expressions consisting of several atomic expressions. An example with four 
expressions is given below. 

( ),0,A A AE O V=  

( ), ,0B B AE O E=  

( ), ,C C B CE O E V=  

( ), ,D D B DE O E V=  

In expression AE a value for a situation parameter is given, there is no subject field 

as the situation parameter is not associated with any other expressions. Expression 

BE associates (via the subject field) a complex object ( BO ) with the expression AE
but no value is given as the data type is complex and the values are contained in the 
following expressions. Expressions CE and DE are both associated (via the subject 

field) with the expression (and thereby also the complex object BO ) BE and also 

values are included in both expressions.  
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4.4.4 Validity intervals 
In order to encode metadata that is associated with the situation parameters the 
encodings for both the spatial and temporal validity intervals should be specified. 
The temporal validity interval specifies the validity of a situation parameter value 
in the time domain and the spatial validity interval specifies the area where the 
situation parameter value holds.  

Temporal validity intervals can be expressed using any time representation model 
and format. Keeping in mind that several absolute or relative metric times as well 
as several time concepts (e.g. strictly increasing, reversible) can be used in a 
distributed system a set of temporal interval representation formats must be 
selected for a given system with an agreement on the expression formats. The 
absolute temporal interval can be for example expressed using the following set of 
expressions: 

( ),0,TS T sE O T=  

( ), ,TI TI TS IE O E T=  

where in TSE the object field specifies the object of type TO (absolute time) and the 

value contains ST which is the start time of the interval in absolute time (e.g. UNIX 

time). The expression TIE is associated with the expression TSE via the subject 

field, the object type TIO specifies a time interval and the value field iT contains the 

length of the temporal interval. 

The simplest form of expressing a spatial validity interval is via a circle as only the 
coordinates of the centre and the radius of the circle are required. This can be 
expressed as follows: 

( ),0,SR SRE O R=  

( ), ,coordX coordX SRE O E X=  

( ), ,coordY coordY SRE O E Y=  

In the first expression SRE  the identifier in the object field specifies the circle 

spatial validity area type SRO and the radius of the circle is contained in the value 
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field. The centre coordinates of the circle are in the expressions coordXE and coordYE
both of which are associated with the circular validity area via the subject.  

The spatial validity area can be also expressed using more complex shapes, such as 
polygons, in which case the number of points for which the coordinates must be 
specified is greater. As the same principles that are used for describing the circular 
validity area can be also used for the more complex area types, an example is not 
deemed necessary here.  

 

The hierarchy of expressions depicted in Figure 15 shows how the temperature 
situation parameter value can be associated with temporal and spatial validity 
intervals. The expression TC = 5 on the figure should be interpreted as the 
temperature object has the value 5. The expressions containing the temporal (TS) 
and spatial (SR) validity intervals are associated with the temperature expression. 
The temporal interval is of type absolute temporal interval which means that the 
absolute time when the validity interval starts (which is 01.01.2010 in this case) is 
specified. The expression containing the length of the interval (which is 100 time 
units in this case) is associated with the interval start time via the subject field. The 
spatial validity interval (or area) is specified by using three expressions – the first 
one specifies the type of interval used – a circle and the radius of the circle (SR = 
2) and the two other expressions that are associated with first one specify the x and 
y coordinates (which are 123 and 254 correspondingly). This means that the 
temperature value was 5 in the circle with a radius of 2 units and the centre 
coordinates of x=123 and y=254 starting at 01.01.2010 for 100 time units.  

In order to express the above example using expressions a few constant values 
must be fixed. 

 

 
 

Figure 15 Expression hierarchy for temperature example 
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Type Constant Description 

TC 0xD1 Temperature in Celsius 

SR 0xB0 Circular area 

CoordX 0xB1 X coordinate 

CoordY 0xB2 Y coordinate 

TS 0xB3 Start time of absolute temporal validity interval 

TI 0xB4 Length of the temporal validity interval 
Table 4 Value representation example constants 

Using the constant values from Table 4 the following expressions can be formed to 
represent the temperature value and its validity intervals. 

( )0 1,0,5AE xD=  

( )0 0, ,0B AE xB E=  

( )0 1, ,123C BE xB E=  

( )0 2, ,254D BE xB E=  

( )0 3, ,01.01.2010E AE xB E=  

( )0 4, ,100F EE xB E=  

The above expressions represent the same information that was encoded on the 
graph depicted on Figure 15 using the constants from Table 4. 

4.4.5 Situation parameter type conversion  
In case of situation parameter types that are unknown to a computing agent, 
conversion rules that allow for converting unknown situation parameter types to 
known situation parameter types need to be used. These conversions can be 
performed by a dedicated entity in the network or the conversion rules can be 
transmitted over the network to an agent that needs to perform the given 
conversion. 
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The rules for the conversions can be expressed using the same types of expressions 
as described in the previous sections. 

The concept is best explained via a trivial example. For converting temperature in 
Celsius to temperature in Fahrenheit the following equation can be used

1.8 32F CT T= × + , where FT is temperature in Fahrenheit and CT is temperature in 

Celsius. The graph of the hierarchy of expressions is depicted in Figure 16. 

 

 

In order to express the equation in the expression format outlined above a few 
constants must be fixed. The constants are listed in Table 5. The constants in the 
table are arbitrarily chosen for illustration purposes only. It is clear that the 
constants for mathematical symbols should be the same for all the equations. It is 
also beneficial to specify the constants for the situation parameter types in a 
separate range of constants in order to simplify the processing of data. 

 

 

 

 
 
 
Figure 16 Expression hierarchy for data conversion example 
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Type Constant Description 

TF 0xD0 Temperature in Fahrenheit 

TC 0xD1 Temperature in Celsius 

= 0xD2 Equal 

+ 0xD3 Addition 

* 0xD4 Multiplication 

Const 0xD5 Constant, value field contains a constant 

Divider 0xD6 Divider, value field contains a divider which is used 
to divide the value of the expression pointed to by the 
subject field. 

Table 5 Data conversion example constants 

Utilizing the constants from Table 5 the following expressions can be formed.  

( )0 0,0,0AE xD=  

( )0 2, ,0B AE xD E=  

( )0 3, ,0C BE xD E=  

( )0 5, ,0D CE xD E=  

( )0 4, ,0E CE xD E=  

( )0 1, ,0F EE xD E=  

( )0 5, ,18G EE xD E=  

( )0 6, ,10H GE xD E=  

As one can see the number of expressions is by one greater than the number of 
elements in the equation (including constants and mathematical operators). The 
reason for that lays on the fact that the data encoding format outlined in the 
following section only supports integer data types and for communicating real 
types a divider must be used. It is evident that the described expression format can 
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be used to describe almost any kind of expression, provided the constants 
representing the required operators are described.  

The conversion rules can be propagated only for higher-level situation parameter 
values. The relationships between low-level situation parameter types and 
hardware capabilities of a specific node are hard coded into the node as it can be 
assumed that its configuration is fixed during the node development and does not 
change at run time. An example of this is the conversion of a temperature sensor 
reading to a situation parameter value reflecting the temperature – this conversion 
is fixed as it is dependent on the hardware of the node (sensor type, ADC type, 
etc).  

4.4.6 Data Encoding 
In the previous sections the principles for structuring the data were outlined. In 
order to communicate the data from one agent to another, the data must be encoded 
in a format which is suitable for digital communication, expressive and compact in 
order to spare communication bandwidth and at the same time the encoding format 
should not be too demanding in terms of computational resources. 

In the conventional computing world the protocol of choice would be XML, which 
satisfies some of these requirements. Because of its good properties it also makes 
sense to use XML for communication between computers with sufficient 
computation power and communication bandwidth. However in the world of 
wireless sensor networks the use of XML is not desirable if the network nodes need 
to process and utilize the data themselves. 

XML is quite verbose, making it not suitable for use in case of nodes with very 
limited communication bandwidth and limited computational resources. For 
example in case of TinyOS, a popular operating system in the WSN world, the 
default packet payload length is 27 bytes which can be increased if required but 
communicating XML data over such links is not sensible. The fact that Crossbow’s 
MicaZ smart dust mote has a RAM size of 4 KBytes and ROM size of 128 Kbytes 
(Crossbow, 2010) also limits the applications that can be run on the hardware. It 
must be kept in mind that in addition to the application software and data, the 
operating system must also fit in the memory. Other encoding formats, such as 
Abstract Syntax Notation 1 (ASN.1) were also considered but deemed too complex 
and not suitable for the task. 

Instead an encoding format was developed that would include provisions for 
object-subject-value data encoding at the byte level. At the same time the encoding 
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format should allow for direct conversion to XML (with not data interpretation 
requirements) as there is no sense in using non-standard formats in case of more 
conventional computing devices. 

The developed encoding format allows for a very compact data representation 
which at the same time creates minimum overhead in terms of parsing as each 
expression can be parsed separately, and there are no complex predefined 
structures at the byte level. Data is encoded using pairs of tags and their values 
with an object tag followed by an object identifier (a pre-specified constant), 
subject tag followed by a subject reference, and value tag followed by a value. The 
object, subject and value tags also specify the length of the data following the tag. 
An example list of tags used for data encoding is listed in Table 6. 

 

Data Type Object Subject Value 

int8 0xA0 0xB0 0xC0 

int16 0xA1 0xB1 0xC1 

int32 0xA2 0xB2 0xC2 

uint32 0xA3 0xB3 0xC3 

Table 6 Sample Object, Subject, Value tags 

The temperature example “the average temperature in Celsius has the value 5” 
brought above would be encoded as follows: 

0xA0 object tag 
0x0f object constant 
0xC0 value tag 
0x05 value 

As one can observe the chosen data structuring and encoding format is compact 
and straightforward to parse, thus suitable for use in the context of devices with 
very limited computational resources. The same compact data format is also 
suitable for implementing a data store. 

4.4.7 Distributed data store 
Because the proposed universal data representation format can be used to express 
and encode any data generated and exchanged in a network, a distributed data store 
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for storing the exchanged data can be easily created. The advantage lying here in 
the fact that any node storing the data need not to be able to interpret the data, i.e. 
the object types used need not to be known to the node, the node can just store the 
3-tuples forming the expressions. No knowledge of the object types is required for 
responding to queries either – a node can just make a lookup in its data store for the 
queried object. If a query for an object type (a situation parameter) is made any 
node that has data with the queried object type in its data store (that also satisfies 
the constraints of the query if the query contained any constraints) can respond.  

4.4.8 Applications  
The outlined data exchange and encoding principles can be applied in the context 
of a distributed application. The application description needs to include the 
situation parameter types (object types) and constraints (temporal and spatial 
validity intervals) of the situation parameters that are required for running the 
application. A framework for describing applications in such a way is also 
described in (Preden, et al., 2006), although the work described there does not 
consider the exchange of situation parameters but instead describes generic 
distributed application architecture. The approach described in section 3.4 
Middleware dedicated to exchanging situational information which was motivated 
by the previous work has provisions for the exchange of situation parameters. The 
middleware takes care of the issues of providing the required situation parameters 
to the higher processing level, so at the higher level just the situation parameter 
values can be immediately processed. 

In case the provider of a situation parameter (that would also satisfy the required 
constraints) can’t be found on the network, the node that is trying to initiate the 
application will have to look for conversion rules or conversion providers that 
would allow to convert an available situation parameter value into the unavailable 
but required situation parameter value.  

4.4.9 Prototype implementation 
In order to validate the outlined approach a prototype implementation was done at 
the Research Laboratory for Proactive Technologies using Iris WSN nodes from 
Crossbow Technology Inc. In the prototype application the nodes monitor 
environmental conditions (such as ambient temperature or relative humidity), 
compute certain situation parameter values (such as average or current 
temperature) and store the data in the local data store. The data can be either 
queried from the nodes or a subscription can be made to receive regular updates of 
some situation parameter value. Both data value queries and subscriptions are 
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realized using the approach described above with special packet types for queries 
and subscriptions. In queries and subscriptions the situation parameter type 
constant is used for specifying the type of situation parameter that the client is 
interested in and the validity interval is used for specifying the constraints upon the 
situation parameter that the client is interested in. Agents involved in the prototype 
are location-aware, so queries can be made with constraints on the area for which 
the situation parameter should be valid. An example of this is a subscription to 
average temperature value from a specific room for a specific period of time. The 
nodes also implement a distributed data store, storing both the situation parameter 
values (together with validity intervals) computed locally and also transmitted by 
the peers. 

4.5 Positioning 
Since location is an important aspect of situational information, several case studies 
have been performed in the Research Laboratory for Proactive Technologies on 
that topic. In this section some of the aspects of mobile agent positioning are 
described, with focus on indoor positioning methods. The case studies focused on 
resource constrained nodes (smart dust motes), with wireless communication 
interfaces that are networked into an ad-hoc network. This work is presented in 
greater detail in (Preden, 2006) and (Pahtma, et al., 2009) and in a paper to be 
published in 2010. 

The physical position of an agent determines the spatial validity area of the data 
(and the situation parameters computed based on that data) collected by the agent. 
Certainly, the position of an agent should be determined only in systems where 
position is relevant (Meriste, et al., 2005). The position information can be used by 
several logical layers in such an agent – from low-level functions such as routing 
(in case of location aware routing protocols) to assigning spatial validity 
information to higher level situation parameters. Location awareness (knowledge 
of the current position of an agent) is easily achievable for well predefined systems 
in a context of limited deployment. However if the system configuration is not 
predefined, deployment occurs on an ad-hoc basis, the agents are mobile, the 
location of nodes must be determined dynamically. 

Any agent deployment (be it smart dust motes, RF ID tags or any other type of 
devices that could be subject to automated deployment over a target area) raises the 
problem of positioning the deployed agents. In case of mobile agents (or multi-
agents) the position of a sensor or an agent within a node may also be relevant – a 
single agent may be equipped with several sensors, or several agents may be 



114 

located on a single mobile platform, which at a higher level of abstraction can be 
viewed as a single agent.  

Agents can be positioned using the following techniques:  

1) agents are deployed at predefined known locations (depending on the 
application the location may be stored in the node or remotely) and the positions of 
agents are known based on that information;  

2) agents are positioned using some positioning hardware and an existing 
infrastructure. Examples of such infrastructure for (mainly) outdoors are satellite-
based positioning systems: GPS (McKee, 2003), Galileo and GLONASS. For 
indoor applications the following systems have been developed: Cricket (Nissanka, 
et al., 2000), RADAR (Bahl, et al., 2000) and Active Bat (Ward, et al., 1997), to 
mention a few. There are also numerous systems based on wireless LAN (WiFi) 
technology, some of which are also offered commercially. In wireless LAN based 
systems the access points are used as positioning infrastructure and each 
deployment needs to be calibrated to adapt it to the properties of the environment;  

3) some network nodes - anchor nodes - are location aware and other nodes are 
positioned utilizing the anchor nodes (Niculescu, et al., 2004). 

Deployment of network nodes in large quantities makes one assumption – the cost 
of the deployed nodes is relatively low, which means that the hardware of the 
nodes should be as simple and cheap as possible. Adding positioning hardware or 
complex positioning software features contradicts with the low cost principle. In 
case of nodes that are not mobile after deployment (in a scenario where the nodes 
have to be positioned only once after deployment) the built-in positioning 
capabilities of the node are used only once after deployment which is not very 
economical.  

In case of devices that cannot be positioned using merely device resources – such 
as very thin sensor network nodes or RF ID tags – some means of external 
positioning must be used. Such external positioning mechanism can be 
implemented by using anchor nodes that are able to communicate with each other, 
detect the network nodes and in a collaborative effort position the nodes. Same 
positioning principles apply when the positioning is realized by a mobile location 
aware node which determines its own location and the relative locations of the non-
mobile nodes. After the data has been collected from several locations the mobile 
node is able to compute the positions of the non-mobile nodes using the same 
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principles that are used by the anchor nodes to determine the nodes’ positions 
(Meriste, et al., 2005).  

Existing geometric positioning methods which yield a position estimate in a 
coordinate system based on location aware anchor nodes can be classified into four 
categories:  

• algorithms that employ network connectivity information,  

• algorithms that rely on the distance estimations,  

• algorithms that use bearing information and  

• algorithms that combine two or more or the above methods. 

The algorithms that make use of the connectivity information give a quite rough 
estimate for the node position, which can be refined using other methods. The 
accuracy of the position estimate of the other approaches depends of the precision 
of the distance or bearing estimations. The accuracy of these estimates depends of 
the hardware that is used, the environmental conditions (reflections, interferences, 
etc) and the algorithms used for determining the position using the distance or 
bearing estimates. The algorithms that rely on distance estimation utilize mainly 
various multilateration methods while the algorithms that rely on bearing 
information utilize triangulation methods. 

In case of network connectivity based approaches the position of a node is 
estimates based on the node’s connectivity to anchor nodes. Several variations exist 
even on this method.  

The approach described in (Bulusu, et al., 2000) allows estimating the node 
position locally based on locations of the anchor nodes. The anchor nodes transmit 
beacon signals and the node position is assumed to be the centroid of the 
coordinates of the anchor nodes to which a specific node is connected. The 
approach assumes that the anchor nodes are regularly spaced over the entire target 
area.  The algorithm makes no provisions for irregular anchor placement (which 
would seem a more realistic assumption in ad-hoc deployments) and gives clearly 
false results if there are obstructing objects which disable communication with 
some of the anchors in the target area. The algorithm returns a single point – the 
estimated node position – as the result, which even if it is accompanied by an error 
figure gives only a rough position estimate, considering the positioning method 
itself.  
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The localization algorithm based on multidimensional scaling (MDS) presented in 
(Shang, et al., 2004) relies also on connectivity information between the nodes but 
in order to give a position estimate to a node the algorithm involves the 
construction of the logical map of the entire network. The task of construction of 
such a map requires a substantial amount of communication which consumes a 
considerable amount of energy. In case of large networks and thin nodes the 
construction of the logical map of the network by the network nodes may be very 
difficult if not impossible due to computational and storage constraints (although 
the task is linearly complex in terms of the number of nodes in the network). The 
approach also assumes relatively high connectivity of the network – 12 for random 
networks and 6 for grid networks, which may not be achievable in case of all 
networks.  

In case of the multilateration method distance estimates to at least three known 
positions (anchor nodes) are used to compute the position of a fourth node. GPS is 
the most well known example of a system that uses multilateration (Parkinson, et 
al., 1996). There exist several possibilities for solving the equations involved in 
multilateration such as Taylor expansion (Niculescu, et al., 2004) or variations on 
the Least-Mean-Square method as the one presented in (Chintalapudi, et al., 2004). 

The triangulation algorithms use bearing information in relation to at least two 
anchor nodes to compute the position of a third node. The basic idea of 
triangulation can be expressed as follows: assuming that we know the positions of 
the vertices of a triangle and the angles between the lines connecting a point in the 
triangle and the triangle vertices we can calculate the coordinates of the point in the 
triangle.  

Naturally there exist variations and combinations of multilateration and 
triangulation based approaches but all of these algorithms rely on either distance or 
bearing estimations in relation to anchor nodes to compute a position estimate of a 
node. Using the distance or bearing estimates, nodes can use any of several 
distributed or local positioning techniques to determine their positions in the given 
coordinate system. It must be noted that the accuracy of the computed position 
estimate depends on the accuracy of the distance estimation which is the reason 
why methods based on multilateration and triangulation yield good results in 
principle, but problems exist in real applications with estimating node positions in 
a reliable and simple manner as the distance and bearing estimates are not very 
accurate in real systems.  



117 

Any reflections of the signal, no matter what type of signal is used will create 
substantial errors in the bearing information. In addition the detection of bearing 
may be quite cumbersome and complicated in case of thin sensor network nodes 
used in real applications. 

The errors created by reflections present a problem for all types of ranging based 
on RF and acoustic signals described below. RF-based ranging can be based on 
measuring the received signal strength or time of flight of the signal. Although time 
of flight is theoretically a precise method for measuring distance, using only time 
of flight information is not realistic because it requires the clocks of the nodes to be 
very precisely synchronized, which is very hard if not impossible to achieve in real 
deployments. 

Measuring the received signal strength at the receiver for the purpose of estimating 
the distance to the transmitter presents also several challenges. The RF propagation 
in an environment must be accurately characterized by a model that is simple 
enough to be used by the sensor network nodes. The environment must be quite 
homogeneous for a RF propagation model to be used successfully. Since the same 
RF propagation model cannot be used in all environments there is a need to create 
different models and load the appropriate models to the nodes before deployment 
or at runtime which is quite cumbersome. The applicability of received signal 
strength indication is evaluated in some of the case studies presented later in this 
chapter. 

There exists a group of ranging techniques that employ the time difference of 
arrival of simultaneously transmitted RF and acoustic signals for estimating the 
distance between the transmitter and receiver (Nissanka, et al., 2000), (Whitehouse, 
et al., 2002), (Savvides, et al., 2002). Taking into account the difference in the 
speed of light (RF) and the speed of sound and the measured interval, the distance 
to the anchor node can be computed. As all other ranging techniques this solution 
assumes a direct line of sight between the transmitter and the receiver which makes 
these approaches sensitive to reflections and unusable in environments with large 
interfering objects.  

It can be said that the common problem with multilateration and triangulation 
based solutions is acquiring accurate bearing and / or distance estimates in real 
applications. Problems with current connectivity based approaches are different – 
such algorithms provide either quite inaccurate position estimates or assume a grid-
like layout of the positioning beacons, which limit the usage of these algorithms in 
real applications.  
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4.5.1 Evaluation of Received Radio Signal Strength Indication 
A study on evaluating the use of the received signal strength indication (RSSI) 
value was conducted in the Research Laboratory for Proactive Technologies to 
evaluate the applicability of the method for distance estimations. The practical 
work involved in the case study was performed by Raido Pahtma, Priit Pikk and 
Romi Agar as part of the work on their master theses. 

Received (radio) signal strength indication (RSSI) is one tool that many researchers 
in the field deem to be applicable for distance estimations. Some even claim that 
the RSSI value can be used to determine the distance between two communicating 
nodes accurately (Halder, et al., 2008), (Shin, et al., 2008). It seems natural that 
since radio signal strength attenuates as a function of distance – the greater the 
distance the smaller the perceived RSSI value (assuming the transmitter power is 
constant) – the RSSI value could be also used to estimate the distance between two 
communicating nodes.  

However things turn out to be more complex in practice – RSSI is affected by the 
distance between the nodes but there are quite a few other factors that affect the 
radio signal propagation and hence the RSSI value that is perceived by a node. 
These factors include (but are not limited to) interference from other signal 
sources, reflection, diffraction, and presence and nature of objects in the path of the 
radio wave. In an ideal case the RSSI value perceived by receivers at an equal 
distance from a transmitter is equal, which in practice, as experiment results 
presented below is not always the case. 

Radio irregularity of a device can be divided into two main factors: 1) the 
heterogeneous properties of devices - antenna type (directional or omnidirectional), 
transmission power, antenna gains, receiver sensitivity, receiver threshold and the 
Signal-Noise Ratio (SNR) and 2) the non-isotropic properties of propagation - 
media properties include the media type, background noise and various other 
environmental factors (Zhou, 2004).  

The RSSI evaluation case study set out to evaluate the RSSI property of smart dust 
motes. It is clear that in a (near) perfect environment (anechoic chamber) the 
properties of a device can be determined quite well, a model of the antenna can be 
created and the function between the RSSI value and the distance can be 
determined. However such models have a limited use in real applications since the 
physical world ads a level of uncertainty to the RSSI value. Several case studies 
were performed in realistic deployment environments where the RSSI value 
perceived by motes was recorded in a fixed environment in order to determine how 
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the signal strength is actually perceived by the nodes themselves and if the RSSI 
values are consistent. 

A fair amount of work exists in the area, however no promising applicable results 
can be found from the literature that was surveyed before and during the case 
study. In (Halder, et al., 2008) the authors attempt to make use of the RSSI value 
for ranging by applying an adaptive filter to the acquired RSSI values. The 
proposed method improves the distance estimation based on RSSI values when 
compared to distance estimations based on unfiltered RSSI values but even when 
the proposed method is applied the error exceeds the estimated value in some 
cases. In (Shin, et al., 2008) another filtering method for acquired RSSI values is 
proposed. However, the obtained results are similar to the work presented in 
(Halder, et al., 2008) as the error is in the order of the evaluated value (distance) 
itself, which makes the distance estimation attempt rather futile.  

The study presented in (Yang, et al., 2007) points out that the radiation pattern of a 
typical 802.15.4 antenna is not perfectly omnidirectional, which explains some of 
the inconsistencies of the RSSI values. 

4.5.1.1 Hardware 
MicaZ wireless sensor network nodes from Crossbow Inc were used in the studies. 
The MicaZ motes were used as transmitters and receivers and the RSSI values 
recorded and evaluated during the study were obtained from the devices. 

MicaZ motes are equipped with a CC2420 radio from Texas Instruments which is 
IEEE 802.15.4/ZigBee compliant and it operates on the 2.4GHz unlicensed ISM 
(industrial, scientific and medical) frequency band (2400-2483.5 MHz). In the 
IEEE 802.15.4 standard (IEEE, 2006) the utilized frequency band is divided into 
16 channels each occupying 2 MHz with 5 MHz separation between channels. The 
channels are labelled 11 to 26. As the same ISM band is also used by a variety of 
commercial equipment – Bluetooth, WiFi, some cordless phones and car alarms, 
the probability of radio interference is quite high.  

The MicaZ motes are equipped with an external 1/4 wavelength monopole antenna 
as standard. In some studies the standard antenna was replaced with an external 
TP-LINK antenna with better characteristics. 

The software used on the motes in all the studies ran on the TinyOS 2.1 operating 
system and the operating system drivers and networking layer were used for 
achieving radio connectivity between nodes. 
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4.5.1.2 Obtaining RSSI 
The CC2420 radio used on the MicaZ motes features a built-in RSSI indicator. The 
RSSI value is always averaged over 8 symbol periods (128 µs) and has an offset of 
-45dBm. The latest RSSI value is obtained from the radio with the rest of the 
packet data and stored in the TinyOS message_t struct. The RSSI value has an 
accuracy of +/- 6 dBm.  

The CC2420 offers the possibility to adjust the power level used during 
transmission (output power) in 31 steps (in a logarithmic scale) with 31 
corresponding to 0dBm and 1 to approximately -35dBm.  

The experiments were carried out in the Tallinn University of Technology building 
that has a steel reinforced concrete floor (which is quite a realistic operating 
environment for wireless sensor networks). 

In the studies the specific motes were assigned with roles of transmitter and 
receiver and appropriate application software was loaded to the motes. The 
receiving motes obtained the RSSI value from the radio and transmitted the results 
to a PC where the data was stored for later analysis. 

4.5.1.3 RSSI Case Study 1 
All experiments in this study used the configuration of one transmitting mote and 
four receiver motes arranged in a linear configuration facing the transmitter. The 
transmitter was always stationary and the receivers were moved from 10cm to 
800cm from the transmitter in 25cm steps (15cm for the first step). Tests were 
carried out with two sets of motes – one set equipped with MicaZ standard 
antennas and another set equipped with TP-LINK 5dBi antennas (TL-ANT2405C) 
soldered permanently to the PCB. Two sets of experiments were performed – with 
motes placed on the floor and with motes placed on wooden frames 56cm above 
the floor. At each step (location) the transmitter transmitted 10 packets with all 
possible transmission strengths and the receivers reported the perceived RSSI 
values to a PC with a 100ms interval between the packets. The average of the 
received RSSI values is used on the graphs. In the interpretation of the RSSI values 
the -45 dBm offset of the CC2420 RSSI value is taken into account.  

Figure 17 shows the received signal strength indication on a distance of 3m – 6m 
from the transmitter as perceived by the MicaZ motes equipped with TP-LINK 
antennas. The horizontal axis represents the distance between the transmitter and 
receiver in centimetres and the vertical axis represents the received signal strength 
as perceived by the receiver in dBm. The transmitter used maximum transmission 
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power for transmitting the messages. Each line depicts the received signal strength 
as perceived by an individual mote – four motes were used as receivers, hence 
there are four lines on the graph. 

 
As it can be observed from Figure 17 the RSSI values perceived by individual 
motes are not identical although the distance between the transmitter and the four 
receivers was the same. It is possible that the variance in RSSI values is caused by 
the allowed error level of the RSSI indication (the specification promises accuracy 
in the range of +/- 6dBm) however since the RSSI values are averaged over several 
readings and since the individual readings were quite consistent this is not likely 
the case. The RSSI values fluctuate very little when measured by one mote for 
different messages from one transmitter, but differ greatly between different 
receivers in the same location. The specification of the radio chip (Texas 
Instruments, 2007) says that the RSSI value of the chip is linear with respect to 
distance which would allow the RSSI values to be used with confidence.  

The variance in the RSSI values between motes cannot be explained by only 
physical differences in the devices either, since values obtained from different 
devices cannot be correlated well. No correlation between measured RSSI values 
and battery voltage was recorded either, assuming that the supply voltage is 
sufficient for normal mote operation.  

 

Figure 17 RSSI measured by MicaZ motes equipped with TP-LINK antennas 

-60

-55

-50

-45

300 400 500 600



122 

 
 
Figure 18 depicts tests with various antennas on the floor and 56 cm from the floor 
on a wooden frame. The dotted line in the bottom depicts the signal strength 
recorded by a MicaZ with standard antenna placed on the floor; the dashed line in 
the middle depicts the signal strength measured by a MicaZ with standard antenna 
and placed 56 cm from the floor. The solid line in the middle depicts the received 
signal strength measured by a MicaZ with TP-Link antenna while placed on the 
floor, and the top dashed line depicts the signal strength recorded by a MicaZ 
equipped with a TP-Link antenna positioned 56 cm from the floor. 

It is clear that the proximity of the floor and the antenna type affect the RSSI 
reading but again it is difficult to find a correlation between the RSSI graphs. 

The RSSI values are similarly affected by environmental conditions at all output 
power levels. It can be observed that as output power increases, so does the RSSI 
value, but very little new information can be obtained about the distance between 
the transmitter and the receiver. It is clear that higher power levels increase the 
range of the transmission, but for indoor environments with a clear line-of-sight, 
the messages reach the received when the transmit power level is above 5. The 
occasional drops in RSSI levels are most likely caused by the metal in the 
reinforced concrete floor. The fluctuations are much less evident with larger 
antennas and when the motes are higher above ground. Over 130 000 packets were 
processed by the PC during this study.  

 

Figure 18 Received signal strength measured by MicaZ motes 
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4.5.1.4 RSSI Case Study 2  
The second RSSI case study was concerned with obtaining RSSI values at different 
frequencies with the configuration of the rest of the test setup being constant.  

Since the 2.4 GHz ISM band has many potential sources of interference, finding a 
good channel is essential for establishing a good communication link. Monitoring 
the RSSI value may provide a good means for selecting the optimal channel for 
communication.  

The tests were carried out in a typical office environment with two MicaZ motes 
equipped with standard antennas. The motes were placed on two separate office 
desks (80 cm from the ground) 2 meters apart with line of sight visibility between 
the motes and antennas in a vertical position. Three different test scenarios were 
studied, each with two different measuring strategies: 1) the transmission channel 
is changed after 100 packets 2) the transmission channel is changed after each 
packet.  In both cases the originating node transmitted 100 packets on each channel 
(altogether 1600 packets). 

 

 

 

 

 

 

 

 

 

 

Figure 19 shows the averaged RSSI values over time on different channels (every 
line shows the signal strength on an individual channel). The y-axis depicts the 
signal strength in decibels and the x-axis shows time from the start of the 
experiment. As it can be seen from the figure the signal strength on different 

 

Figure 19 RSSI values at different channels 
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channels differs quite much and the signal strength on individual channels also 
fluctuates over time.  

The RSSI readings were taken in an environment with no physical movement in 
the room. In this case both measuring strategies indicated similar results with 
minor signal strength fluctuations on the channels, with the average RSSI value for 
each channel changing not more than 1dBm in subsequent tests. It must be kept in 
mind that the CC2420 radio chip specification (Texas Instruments, 2007) states that 
the RSSI value has an accuracy of ±6 dBm. The observed RSSI values were 
between -55 and -69 dBm, which means that the perceived signal strength on 
different channels is not equal.  

4.5.1.5 Conclusions from the RSSI case studies 
As both case studies showed the RSSI values are related to the actual received 
signal strength (as can be expected), which in turn is effected by very many factors,  
among which are the transmission power, distance between the transmitter and 
receiver, angle of the devices, the channel in use and many other factors. As the 
RSSI value is affected by so many factors it cannot be expected that there is a good 
correlation between the distance to the transmitter and the RSSI value so using the 
RSSI value for obtaining distance estimations has limited applicability in real 
deployments.  

4.5.2 Communication area based positioning (CABP) 
Due to the difficulties associated with correlating the RSSI value to distance 
estimations and therefore of the applicability of positioning methods that rely on 
distance estimations, an alternative positioning method was developed at the 
Research Laboratory for Proactive Technologies by Jürgo Preden (Preden, 2006). 
The communication area based positioning method allows to position nodes using 
the estimated communication ranges of the nodes in a given environment, no 
distance or bearing estimations between anchor nodes and nodes being positioned 
are required.  

The algorithm allows to define the area where a node is located using the 
intersections of communication areas of the anchor nodes that are able to 
communicate with the given node. The algorithm also allows for iterative 
refinement of the area definition of a node, based on new anchor nodes that are 
able to communicate with the specific node. The involved computations are quite 
simple – at each step the intersection points of communication area borders are 
computed and added to the set of points that define the area where the node is 
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located. The algorithm can also utilize information from anchor nodes that are not 
able to communicate with a specific node to further refine the node’s position 
estimate.  

Although the algorithm was developed for positioning sensor network nodes and 
RF ID tags the algorithm can be used for localizing any kind of phenomena that is 
detectable by sensors and which detection area can be described by a geometric 
shape that can be formally presented such as a circle or an ellipse. 

The nodes are assumed to be equipped with omnidirectional antennas, which 
means that the communication radii of the nodes (in a homogeneous environment) 
can be represented by a circle. The radii itself could have different values, 
depending of the current transmission power. However the algorithm can be 
applied if the communication areas of the nodes can be described using fixed 
geometric shapes. In case of more complex shapes (as compared to circles or 
ellipses) the formulae involved in the computations will be also more complex and 
the criteria for creating the sets used in the algorithm become more complex.  

The proposed algorithm uses only communication ranges of location aware nodes 
(anchor nodes) at given locations and information if communication with a node, 
which position needs to be determined, is possible at a given position. It is assumed 
that the maximum communication range at a given transmission power is fairly 
consistent in the given physical environment.  

When the environmental conditions change to the extent that the communication 
range changes appropriate adjustments to the communication range value used in 
computations can be made at runtime by the anchor nodes based on the collected 
information. Coarse-grained adjustments to the estimated communication range of 
an anchor node can be made based on the coordinates of other anchor nodes that a 
specific anchor node is able to communicate with. If an anchor node is able to 
communicate with another anchor node, the distance between the anchor nodes can 
be computed and the communication range at the specific transmission power can 
be assumed to be at least that computed distance. If an anchor node is alive but no 
direct communication from a specific anchor node is possible with that node then 
the maximum communication radius can be assumed to be less than the distance to 
that anchor node (assuming of course that the communication range is consistent).  

When the algorithm is applied the result returned is the description of the area 
where the node, which position is being determined, is located. The algorithm 
allows for incremental refinement of that area definition as new anchor nodes 
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which are able or are not able to communicate with a node are added to the set of 
nodes that are used in the computations. The minimum number of anchor nodes 
required to compute area of a node using the proposed algorithm is two.  

Before a description of the algorithm can be given the following terms must be 
defined: 

• LA node – location aware node – a node which knows its position in a 
coordinate system and its communication range in the current environment. 
The LA node is able to communicate with other nodes in the environment. 

• NLA node – not a location aware node – a node, which is not aware of its 
location and which location needs to be determined. Any node for which 
there is a position estimate but which position estimation is being refined is 
also called a NLA node. The NLA node is able to communicate with other 
nodes in the environment. 

Node’s area – is used to denote the description of the area, where the node is 
located. 

4.5.2.1 Description of the algorithm  
When an LA node A is able to communicate with a NLA node, we can assume that 
the NLA node is located within the communication range of the LA node. This 
gives us an estimate on the location of the NLA node. If there is another LA node B 
which is also able to communicate with the NLA node the area description of the 
NLA node location can be created. 

 

In Figure 20 LA nodes A and B are both able to communicate with a NLA node C 
(not depicted on the figure), which means that NLA node C must be located in the 

 

Figure 20 Defining node area with two location aware nodes
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greyed-out region. The intersection of the communication radii of node A and node 
B describes the area where the node must be located. The centre of the area can be 
used as the estimated position of NLA node C and distance between the centre and 
the intersection point with the greatest distance to the centre of the area defines the 
radius of the area. 

If there are LA nodes which are not able to communicate with node C but which 
communication areas intersect with the current node C area, then the intersection of 
the two areas (the communication area of the LA node which is not able to 
communicate with C and the current node C area) must be subtracted from the 
current node C area. The result of the subtraction yields a new area description, 
which becomes the new description of the area where node C is located. The 
concept is explained below in more detail. 

 

In Figure 21 more LA nodes are added. When communication with node C is not 
possible by LA node D the intersection of the current C’s area and node D 
communication area must be subtracted from C’s current area.  If node e is able to 
communicate with node C then C’s area is redefined again, this time the 

 

Figure 21 Defining node area with four location aware nodes 
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intersection of the C’s area and E’s communication radius becomes the new C’s 
area.  

4.5.2.2 Simulation results 
Simulations were carried out using a custom application that implemented the 
proposed algorithm. The simulation data was generated by the same application in 
an additional step, separate from the simulation itself.  

All simulations were run on a test set of NLA nodes, the locations of the NLA 
nodes were generated by a pseudo random number generation algorithm, the 
average NLA node density was 0.01 nodes per one area unit (100 nodes distributed 
over an area of 100 x 100 units). 

The LA nodes were randomly distributed over the same simulation area. 
Simulations were run with different number of LA nodes, the number of randomly 
distributed LA nodes varying from 5 to 70. Simulations were also run with 
different communication radii of LA nodes, the communication radii ranging from 
5 to 30.  

The node degree (i.e. the number of LA nodes in a ranging neighbourhood, or 
communication range of a NLA node) that is achieved as a result of such a 
configuration may seem small – the average node degree in the simulations was 
about six – compared to other examples from literature (Chintalapudi, et al., 2004) 
but any algorithms should be evaluated under conditions which at least try to be 
close to realistic. As lower densities are deemed to be realistic, the author used 
lower densities in the simulations.  

The results of simulations were quite predictable in some respects – as it can be 
expected the average positioning error is greater when the communication radius of 
the LA nodes is greater. Naturally the positioning error is not always greater with 
greater communication radii but assuming nearly even distribution of LA and NLA 
nodes, and a smaller number of LA nodes in case of larger communication radii the 
positioning errors tend to be greater with greater communication radii.  

The positioning error was estimated by comparing the centre of the estimated NLA 
node position area to the actual position of the NLA node. The average position 
estimation error can be reduced if the number of LA nodes is increased. During the 
simulations a lower bound of the positioning error was encountered at which 
increasing the number of LA nodes (and placing the added nodes randomly into the 
area) had very little effect on the reduction of the position estimation error. Of 
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course the positioning error could be reduced by selecting the positions for the 
newly added nodes but this was not of interest in the context of the experiment. 
Figure 22 illustrates how increasing LA node density can have very little effect on 
decreasing the minimum NLA node position estimation error, the error was 6 for 
the given simulation.  

 

The minimum number of LA nodes required for all NLA nodes to receive a 
position estimate and the position estimation error with the given number of LA 
nodes with the given communication radius gives good reference points for 
comparison. The minimum required LA node densities are shown in Table 7. It 
must be noted that the average node degree in all the three cases in Table 7 is about 
6.6 LA nodes per each NLA node. The density of NLA nodes in the simulations 
was 0.01, the density of LA nodes varied as shown in column two. Column 3 
shows the average number of members in set P, i.e. the average number of points 
required to describe node areas.  

Communication 
radius 

Density of LA 
nodes 

Number of 
members in P 

Average position 
estimation error 

10 0.025 3.82 2.23 
20 0.007 3.63 5.32 
30 0.003 3.77 6.9 

Table 7 Communication Radius Relation to Position Estimation Error 

 
 
Figure 22 Relation between density of LA nodes and average error of node positioning 
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As it can be seen from Table 7 in case of larger communication radii the position 
estimates for all the nodes can be computed with a relatively small number of 
nodes taking into account the low density of the NLA nodes. In case of tests with 
smaller radii the number of required nodes was larger. The reason for that were the 
“outliers” in the NLA set which were near the border of the simulation area.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 22 illustrates how increasing LA node density has a greater affect on 
decreasing the number of NLA nodes with no position estimate when the density of 
LA nodes is lower. After LA node density has reached 0.003 and 10 % of the NLA 
nodes are without a position estimate the effect of adding more LA nodes is very 
small. This phenomenon can be contributed to the fact that the last 10% of the 
NLA nodes lie near the borders of the area where the LA node concentration is 
smaller.  

The simulations also showed that using members from set K in the area definition 
did not reduce the radius of the NLA area much, while the number of points used 
for the area definition was increased substantially It is clear that when the simplest 
area representation (the circle) is used for analysis, the steps in the algorithm 
involving members from set K can be skipped. However as including members 
from set K does reduce the total area of the NLA node these computations should 
be performed if more complex area representations are used. It can be seen from 

 

Figure 23 Member of set K may decrease the total area but
not the area radius 
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Figure 23 how including node D, which belongs to set K (all other LA nodes A, B 
and E belong to set L) does not decrease the area radius much but it does decrease 
the total area substantially. 

4.5.2.3 Test results 
An experimental test bed was set up in the Department of Computer Control in the 
Tallinn University of Technology.  An indoor positioning system consisting of 
Cricket beacons was placed in the environment with the beacons set up to give 
references for a Cartesian coordinate system defined in the test area. MICA2 
network nodes and RF ID tags were placed at known coordinates and a mobile 
node was moved around in the environment collecting data on positions where 
detection of a specific device was possible. The mobile node was equipped with a 
Cricket receiver, a PC, a MICA2 mote with a serial adapter and a RF ID tag 
receiver. The Cricket beacons developed at MIT and manufactured by Crossbow 
Technology, Inc. operated at 433 MHz. The MICA2 motes developed at UC 
Berkeley and also manufactured by Crossbow Technology, Inc. operated at 433 
MHz. RF ID receiver was a WJ Communications' MPR6000 module in PC card 
format which operated in the 902-988 MHz range. The mobile node positioned 
itself using Cricket beacons. The PC on the mobile platform was able to 
communicate with the MICA2 motes placed in the environment using the MICA2 
mote with the serial adapter attached to it.  

Before any positioning tests were run, initial experiments to determine the 
communication radius of the motes, and the detection radius of RF ID tags were 
conducted in the test environment. These radii were used when the test results were 
analyzed and the areas of the nodes and tags were determined.  

The MICA2 motes positioned in the target area transmitted packets at predefined 
intervals with variable transmission power, each packet containing the transmission 
power at which the packet was transmitted. The receiver received the transmitted 
packets and recorded the coordinates at which the packets were received together 
with the transmission power of the packets. The recorded data was analyzed using 
the same program which was used for the simulations.  

With RF ID tags the known directional sensitivity of RF ID tag reading became 
quite apparent during the tests – the tags could be read only if the orientation of the 
antenna was optimal for the tag. This means that the K set in the algorithm can’t be 
used for the RF ID tag positioning as even if a receiver is within the detection 
radius of the tag, the tag can’t be detected in case of incorrect antenna positioning.  
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The maximum reading range of RF ID tags was 3 meters and with selecting 
reading points closer to the edge of the communication area, the average 
positioning error using the circle representation of the node area was 80 cm. With 
random reading points the average positioning error was 1.8 meters. As the 
presented algorithm is insensitive to antenna positioning and reflections of the 
signal do not have a big effect on the precision of the algorithm (when the normal 
detection range of a tag is 3 meters and a tag is detected then it can be presumed 
quite safely that the tag is in the given radius) it can be used quite well for 
positioning RF ID tags by a location aware mobile RF ID reader. 

For motes the communication range was between 2 – 15 meters (depending on the 
transmission power used) and the average positioning error was 0.36 meters. The K 
set was not used in case of the motes either as there we enough readings in the L set. 

4.5.3 Comparison of multilateration and CABP method 
In order to evaluate the performance of the CABP positioning method, a case study 
was performed that allowed comparing the CABP method with established 
multilateration methods. The positioning system used in the case study is 
completely made up of smart dust nodes. The network consists of location aware 
(LA) nodes and not location aware (NLA) nodes that are worn by users. The LA 
nodes provide a positioning service to the NLA nodes. The practical part of the 
case study was conducted by Raido Pahtma. 

The case study used service based software architecture to cater for the dynamic 
nature of the positioning application. The service requires that the node interested 
in obtaining a position estimate transmits broadcast messages to the network (a 
service request), containing information about the transmission power of the 
messages. All the LA nodes estimate the distance to the NLA node based on the 
information provided in the message and the RSSI to distance function embedded 
in the node. Messages transmitted with higher power also travel to a greater 
distance and therefore the transmission power of the message must be taken into 
account when converting the RSSI value to distance. The RSSI to distance function 
could also be refined by monitoring normal network traffic, but regular messages 
usually do not contain information about the node and transmission properties 
(power, antenna/radio type). The service request messages also contain a unique 
identifier associating a tag with the physical location of the node at the time of the 
transmission. Essentially one service request message is enough, but if the node is 
relatively stationary, then several can be transmitted to take advantage of averaging 
and additional information provided by using different transmission power levels. 
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The location aware nodes store the information for a limited time and perform the 
distance estimation task, complementing it if additional information is obtained. 
The distance estimates are available to other nodes. The position estimate can be 
calculated by the NLA node being positioned by retrieving the distance 
information from LA nodes or by LA nodes in the network if the transmitter asks 
them to provide a position estimate. In the latter case a computation node selection 
process is initiated which results in the selection of the LA node that collects the 
distance estimations from other LA nodes and applies a positioning algorithm.  

The selection is performed using a simple election scheme where each node 
expresses its cost to fulfil the request as a comparable value and announces that 
value to the others, delaying the announcement if the cost is high (which may be 
the case when the node has fulfilled several requests recently). If a node hears that 
another has announced a lower cost, then it drops its own attempt, decreasing its 
cost for subsequent requests. A node that completed the calculation increases its 
cost value for future operations. This scheme could be extended to also take into 
account workloads from other services executed by the node and energy reserves 
available at the node. 

Querying the distance estimates can be done with several constraints to alleviate 
the potentially large number of responses to a broadcast query. For example, 
smaller estimates are queried first and larger ones are taken into account only if too 
few were initially obtained. This arrangement actually mostly benefits the 
multilateration algorithm, which is more severely affected by inaccurately long 
distance estimates; the CABP (Preden, 2006) algorithm naturally filters such 
estimations. The packets containing the distance estimates also contain the 
coordinates of the LA node that estimated the distance. 

The positioning algorithm component is started once a sufficient number of distance 
estimates have been acquired. Several algorithms can be used for computing the 
estimated position of the NLA node from the distance estimates. The current system 
uses two methods: CABP and multilateration (Lee, 1975). The test system runs both 
algorithms on the same dataset to evaluate the performance of the algorithms. 

As a first step in the CABP algorithm, the distance estimates are sorted in an 
increasing order to favour smaller areas, which define the location more precisely. 
The algorithm then works by incrementally refining the common area of the 
communication areas. This is done by examining the intersection of each new 
communication area with areas already used in defining the common area. New 
information is used to decrease the common area and areas that were made 
redundant are discarded. 
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It is normal for distance estimates to be greater than the actual distance, because 
the radio signal is weakened by any obstacles in its path. However, it is also 
entirely possible for the RSSI measurement to indicate a smaller distance. This can 
create a situation where the communication areas of some location aware nodes do 
not intersect, essentially indicating that the NLA node is in two places at once. In 
such cases the algorithm simply increases the conflicting areas proportionally until 
they do intersect. It is reasonable to expect the node to be somewhere between the 
areas, although it is not always the case either. 

The final common area description is formed once information from all the 
location aware nodes has been processed. At this step, the area is a set of 
intersection points and segments of circles connecting the intersection points. A 
representation like this is too detailed for most cases, so it is condensed down to a 
circle, described by the centre of the area and the distance to the furthest point from 
the centre. The more detailed description can certainly be used as well, but it is 
currently not practical due to the low accuracy of the input data. 

The CABP algorithm provides a result if it is given at least two input areas 
(actually it provides a result with one area, but then the result is the same area). 

The hyperbolic multilateration algorithm requires a minimum of three distance estimates 
to work, but will not provide a result if the reference points are on the same line. 

The software of the nodes also includes several optional components, which are 
used to gather data about RSSI measurements, estimated distances and the data that 
reached the positioning node. This data is retrieved by a PC after each positioning 
attempt for later analysis. 

The positioning software can be easily deployed on any smart dust node running the 
TinyOS 2.1 operating system that can provide a distance estimate to other nodes. 

4.5.3.1 Study 1 
The first study used standard Crossbow MicaZ motes. MicaZ motes have a 
CC2420 radio which has 31 different output power levels and enables the 
measurement of RSSI with a granularity of 1 dBm. The placement of nodes for the 
study was idealized as all the nodes were approximately 0.5 meters above the floor 
on wooden stands, including the NLA node. Such a setup was used in order to 
minimize the possible interferences from the steel reinforced concrete floor.  

The first configuration used 9 LA nodes in a grid with the distance between nodes 
1.5 meters in one direction and 2 meters in the other direction. The NLA node was 
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Figure 24 Anchor node placement in 
the case study 

moved to 54 different locations within the area. Later the centre nodes of each edge 
of the grid were removed and the measurements repeated. 

With all 9 nodes in place, the average positioning error for the centre of the 
estimated area was 88 cm using the CABP algorithm and the average positioning 
error was 152 cm using the multilateration algorithm. The multilateration result 
was generally just indicating that the node is somewhere near the centre of the area.  

With 5 nodes, the average positioning error for the centre of the CABP area 
increased to 132 cm and slightly decreased for multilateration, to 149 cm. The 
impact of the removal of some of the nodes on the performance of CABP is 
considerable, especially taking into account the small distances between the nodes. 

Finally, 14 nodes were distributed over three rooms and a portion of the corridor 
connecting the rooms. The NLA node was placed in 5 different locations in each 
room and in some additional locations between 
the rooms. The system worked reasonably well 
for CABP, with an average positioning error of 
115 cm. The multilateration algorithm showed 
however much poorer results, having an 
average error of 700 cm. 

While the system was able to perform 
reasonably well, the placement of nodes on 
special stands is clearly not very practical. 

4.5.3.2 Study 2 
The second study used custom Crossbow Iris 
OEM based motes with Antennafactor ANT-
2.4-WRT dome antennas. The Iris modules are 
equipped with AT86RF230 radio which has 16 
output power levels and can measure RSSI 
with a granularity of 3 dBm. The AT86RF230 
has better range than the CC2420 radio of the 
MicaZ motes. The study used 27 LA nodes, 
which were attached to the ceiling in the 
Department of Computer Control in Tallinn 
University of Technology, 4 in each of the two 
smaller rooms, 6 in the larger room and 13 in 
the long corridor connecting the rooms (Figure 
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24). This placement is much more practical, but makes distance estimation less 
accurate. The NLA nodes in this setup are planned as devices that can be stored in 
the users pocket and provide a link to the sensor network for a PDA or tablet PC, 
connected to the NLA node with a serial cable or a Bluetooth cable replacement 
module. For these experiments, the NLA node was attached to a stand, 
approximating the height that an average user might carry the device at. 

The system is able to take into account the z coordinates of the nodes if the NLA 
node provides its own z coordinate (height from the floor, which is the base for the 
z-axis). The multilateration algorithm can be expanded to three dimensions without 
a substantial increase in computational complexity, but CABP would become 
computationally far too complex to be practical on current smart dust motes. In 
practice though, the accuracy of the distance estimates is so low, that we can safely 
ignore the height difference altogether. 

 

In the first part of the study, 180 positioning attempts were analyzed from 54 
different locations. This covered several locations that were near walls or otherwise 
difficult for positioning. CABP gave an average error of 292 cm, multilateration 
however was unable to provide reasonable results. The multilateration result was 
usually corrupted by distance estimates created based on signals that had travelled 
though walls and therefore it was decided to use the shortest available distance 
estimates in case of the multilateration algorithm for positioning the node. The 

 

Figure 25 Positioning error for the Multilateration and CABP methods 
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system was complemented to find three of the shortest estimates from nodes that 
form a triangle and use those for positioning with multilateration. 

In the second part of the study, with the new multilateration configuration, the 
NLA node was moved to 46 different locations, trying to approximate a trajectory a 
human user might take. Multilateration now performed much better in some 
locations, but was still unable to provide good results in others. The average error 
for the CABP algorithm was 188 cm and around 500 cm for the multilateration 
algorithm, if some of the more unsuccessful positioning attempts are excluded.  

The results of the study show that a positioning system based on smart dust motes 
using received signal strength indication is usable (with limitations) for location 
aware applications that do not require very accurate positioning information.  

In the performed experiments the CABP algorithm showed better results when 
compared to the multilateration algorithm. The better performance of the CABP 
algorithm is due to the filtering capability that is inherent to the algorithm.  

The positioning accuracy of both algorithms can be improved by using better 
filtering and data conditioning algorithms for the distance estimations but this is 
subject to further study. 

4.6 Positioning & navigation by reference 
A novel positioning and navigation method developed within the scope of the 
Roboswarm project (EU project supported by Sixth Framework Programme for 
Research and Technological Development, contract number 045255) is discussed 
in the current section.  

The reason for development of a new positioning and navigation method lies in the 
fact that the target application does not have a fixed pre-deployed positioning 
infrastructure, i.e. there are no location aware beacons and there is no universal (in 
terms of the application) coordinate system that could be used. However the 
application specification foresaw the use of RFID tags, so the developed method 
relies on RFID tags placed in the environment for positioning and navigation.  

A factor that complicates the navigation and positioning system design lies in the 
fact that the distance and angle of a tag cannot be determined exactly by a mobile 
agent. However there was a need for a distributed positioning scheme, which 
would aid mobile agents in positioning and navigation. The agents in the 
application have to fulfil cleaning tasks and the positioning and navigation scheme 
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was required in order for the robots to be able to navigate from one cleaning area to 
the next and also navigate within the cleaning area.  

The agents can leave information in the environment by writing it to the RFID tags. 
The information written to the RFID tags can be again read by the other agents that 
move around in the environment. That way the agents are able to update (among 
other things) the positioning and navigation information on the RFID tags. Other 
types of situational information in the environment was related to the application 
specific tasks of the agents, e.g. the required cleaning frequency of areas, the last 
cleaning operation performed in an area (including the time when the operation 
was performed and the type of operation).  

The type of communication used in this application – indirect exchange of 
situational information (including both application specific and navigation related 
information) falls in the category of indirect interaction, where the provider of the 
information has no knowledge of by whom and when will consume the 
information. Neither can a consumer be sure that the information it requires is 
available when the information is needed.  

An interesting aspect of the application lies in the fact that the situational 
information is written to the RFID tags in the environment and the information on 
the RFID tags can be only read if the agent is in the proximity of the tag. That 
means that the agents must be able to operate with limited situational information 
and when better situational information is required the agent must move around to 
discover more information providers, i.e. RFID tags. So the functionality of the 
mediator as a provider of situational information is quite limited in this application.  

The developed scheme does not rely on a global map or any kind of global 
knowledge of the operation area. The following terms are used: 

• Base vector – a vector that is used as a base vector for describing the 
angles in a virtual space 

• Virtual space – a space that contains one base vector; one physical space 
(one room) may contain one or more virtual spaces, several physical spaces 
may be contained in one virtual space  

• Position pointer – information on an RFID tag on the location of another 
RFID tag, some object or another virtual space. The information is in the 
form of polar coordinates where the polar axis is identical to the base 
vector of the virtual space and the radial coordinate expresses the distance 
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between the RFID tag where the information is written to and the object 
that the pointer points to. (e.g. “virtual space A, 10m, bearing 10˚”). 

• POI – point of interest, an entity relevant to the agents, identified by an 
RFID tag, e.g. a cleaning area, a virtual space, an entity in a virtual area 
(table, bed, etc) 

• Tag – RFID tag that may or may not have rewriteable memory. 

The relevant objects and waypoints of the area are stored in a distributed manner 
on the RFID tags in the area. Each RFID tag contains information on its 
surroundings, enabling positioning (an agent can determine where it is) and 
navigation (a tag may contain information on what is the physical relation between 
the tag, POIs and virtual spaces). 

When a mobile agent enters a virtual space it establishes the direction of the base 
vector of the virtual space (and the relation of the mobile agent to the base vector) 
using a set of RFID tags that contain enough information to establish orientation. 

The proposed positioning scheme allows for iterative refinement of the navigation 
information. In addition the agents navigating in the environment need no 
information from outside – all the information required for positioning and 
navigation can be obtained from the environment.  

The information on the RFID tags could be extended to also contain some 
trajectory information in addition to line-of-sight information – e.g. pointers in a 
polar coordinate system. 

4.6.1.1 Virtual spaces 
A virtual space is a physical area identified during the deployment of the system as 
logically non-separable (e.g. a single room is usually a single virtual space, 
whereas a corridor and a room are separate virtual spaces). A virtual space is 
identified by RFID tags containing information on the virtual space. 

Within a virtual space there exists a set of tags that allows for the establishment of 
the base vector of the virtual space. There may be also RFID tags in a virtual space 
that contain information which allows positioning & navigation within the virtual 
space – the tags can be used to identify objects in a virtual space and information 
on the tags can be used to navigate from one object or tag to another. 
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4.6.1.2 Virtual Space Weight 
The static weight of each virtual space is specified during deployment. Dynamic 
weight parameters are computed based on situation parameter values that are 
written to RFID tags in the virtual space by the mobile agents and updated by the 
agents on a regular basis. This means that the agents compute the virtual space 
weight incrementally based on the information they obtain from the RFID tags they 
can communicate with. The virtual space weight situation parameter value 
computed by an agent is then compared to the weight that is written on a tag. If the 
situation parameter values are not equal the situation parameter value on the RFID 
tag is overwritten. The following aspects are considered in the computation of a 
virtual space weight: 

• The number of virtual spaces that are accessible from the given virtual 
space (the higher the number of accessible spaces the higher the weight) 

• The time interval from the current time to the time instance when the 
current virtual space was cleaned the last time (the longer the interval, the 
higher the weight) 

• The time interval from the current time to the time instance when the 
virtual spaces accessible from the current virtual space were last cleaned 
(the longer the interval that higher the weight) 

So the weight of a virtual space can be computed using the following formula: 
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weightα is the weight of virtual space α  

_static wα is the static weight of virtual space α assigned at deployment 

_ _next clean time is the next cleaning time of the virtual space 

_ _last clean time is the last cleaning time of the virtual space. 
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4.6.1.3 Position Pointers 
To make navigation between virtual spaces and also within a virtual space possible 
the RFID tags in a virtual space also contain pointers to neighbouring virtual 
spaces and to POIs within the current virtual space.  

If mobile agent needs to move to another virtual space it will select it based on the 
pointers available in the current virtual space that point to other virtual spaces. The 
next virtual space is selected based on the weight of the virtual space.  

4.6.1.4 Dynamic updating of navigational information 
The setup phase consists of the following steps: 

• RFID tags are placed in the environment. In each virtual space at least two 
tags must be placed for specifying the base vector. The reason why several 
tags are required for the base vector lies in the fact that there is no practical 
way to obtain universal orientation information in an artificial environment 
– compass cannot be used as due to the large metal objects in artificial 
environments the earth’s magnetic field is distorted. All the POIs must be 
also marked with an RFID tag. 

• Information on virtual locations and/or relations between tags is written to 
the RFID tags. The locations of the RFID tags and the relations of the tags 
in physical space can be determined either by either a location aware 
mobile agent (which determined its location using a map or other means)  
or by a human. The virtual space identifiers must be assigned by humans 
anyhow.  

• During the setup phase a location aware mobile agent must navigate 
through all the rooms and write information on the virtual spaces (and 
possibly navigational information on POIs) to the RFID tags. 

Agents moving in the environment can write navigational information on the 
environment to the RFID tags as they build routes and move past tags in the 
environment. 

Examples of the usage scenarios can be following:  

• An agent coming from one virtual space and arriving at another virtual 
space can write to an RFID tag the direction (and distance) of the virtual 
space it came from, once it has determined the base vector of the virtual 
space it arrived at. 
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• An agent moving around in a room, moving from one tag to another can 
write the direction (and distance) of the tag it came from to the tag it 
arrived at. That way the navigational information can be incrementally 
improved with agents moving around quite randomly initially and when 
the navigation information has been improved the agents can move around 
in a more deterministic manner. 

4.6.1.5 Sample use case 
A mobile agent enters a room, reads a tag in the room, which identifies the virtual 
space. The situational information on the virtual space is updated. The agent moves 
on, trying to locate the base vector tags in the room. Once the RFID tags that 
enable determining the base vector direction of the current virtual space the agent 
determines the base vector angle and updates the base vector situation parameter. 
Once the base vector situation parameter is valid (it contains the base vector angle 
for the room that the agent is in) the agent locates the tag, which points to the point 
where the cleaning in the room should be started. The agent moves to the point 
where the cleaning should be started by employing the situational information 
obtained from the RFID tags in the virtual space and starts cleaning the room.  

Once the cleaning has been finished, the agent re-establishes the base vector 
situation parameter value (during cleaning the base vector information may have 
become corrupt). Once the base vector has been re-established the agent locates the 
situational information on the virtual spaces accessible from the current virtual 
space. Based on the information acquired on the virtual spaces the agent selects a 
new virtual space, locates the navigational information to that virtual space and 
navigates to the next virtual space. 

The positioning algorithm 

The positioning and navigation algorithm is described in the form of Moore state 
machines, i.e. actions performed in each state depend only on the current state and 
state transitions are triggered by inputs. Some states have no actions and these 
states are introduced to simplify the understating of the algorithm.  

Acquiring base vector 

The base vector information is required to perform any navigation in a virtual 
space. Once an agent enters a new virtual space the first task of the agent is to 
update the agent’s base vector situation parameter value.  
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Figure 26 Acquiring base vector 

 

The base vector is a situation parameter that is acquired using the base vector tags. 
The mobile agent must constantly update the base vector situation parameter values 
as it rotates, as the angle of the base vector in relation to the orientation of the 
mobile agent changes. The base vector situation parameter value becomes invalid 
when the mobile agent leaves a virtual space. 
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Moving to POI 

In order to move to POI the situational information on POIs must be acquired first, 
and naturally the base vector situation parameter value must be valid.  

 

 

Figure 27 Moving to POI 

 

  



145 

4.7 Vehicle guidance systems in NEC context 
The main purpose of a Network Enables Capabilities system is to provide 
situational information to its components so the principles of situational 
information representation and propagation outlined in the Enhancing the Situation 
Awareness Concept for Cyber-Physical Systems chapter can be well applied in 
these systems. The work done by in this area that the author has been involved in is 
described in greater detail in (Meriste, et al., 2005), (Preden, et al., 2009) and 
(Motus, et al., 2009). 

4.7.1 Network enabled capabilities – NEC 
The term networked enabled capabilities (NEC) (Jonas, 2005) has become quite 
common but mostly it is used in a narrow sense – as a system enabling human 
users to gain greater situation awareness. However NEC can also be viewed in a 
wider sense as a source of information for both manned and unmanned 
collaborating entities (agents). Especially unmanned platforms can substantially 
benefit from the shared information available in the NEC system. In this context 
we can view a NEC system as a heterogeneous distributed computing system, the 
humans being part of the system, acting both as consumers and providers of data. 
In order to benefit from the information available in a NEC system the design of an 
autonomous system must facilitate the use of that information. A NEC system can 
be essentially viewed as a multi-agent system so the task at hand is how to make 
use of situation parameters in a multi-agent system. 

It must be noted that there is no situation that would be interpreted by all 
computing (or human) agents which are part of a NEC system in the same way, and 
that would cause the same behaviour in all agents. Vehicle guidance systems as a 
type of agents that are part of a NEC system can benefit from the situation 
awareness concepts. Vehicles can act as situational information providers to other 
agents (e.g. providing situational information derived from sensors attached to, or 
communicating with the vehicle), situational information consumers and vehicles 
can be also used for propagation of situational information.  

There are various types of situational information relevant to vehicles, examples of 
this are terrain type (affects the speed of movement), obstacles (obstacle 
avoidance), tactical and strategic situation, information on peers and adversaries. 
There can be also many sources of situational information, such as other vehicles 
(air & ground), stationary agents and remote sources. One source of situational 
information to agents (as part of a NEC system) can be smart dust motes. These 
devices, although very constrained in their computational power are capable of 
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computing lower level situation parameter values as illustrated in the previous case 
studies. Using appropriate software architecture these devices can be situation 
aware themselves, utilizing situation parameter values computed locally or by other 
agents. Vehicles are one source of situational information to such devices, 
providing for example location information to deployed motes. So smart dust 
motes can be consumers of situational information and they can be a source of 
situational information to other devices. If a smart dust mote is location-aware it is 
able to associate spatial validity information with the situation parameter values 
computed locally. 

A multi-layer architecture would be preferable for the design and implementation 
of a situation aware mobile agent. Combining all aspects of the mobile agent into 
one software layer would result in too complex design which is difficult to 
maintain. In order for the mobile agent to be situation aware they need to have at 
least two layers dealing with the situational information. The first one interprets the 
situational information available to the agent, and the second one selects a 
behaviour matching with the situation as perceived by the mobile agent and with 
the properties of the agent. 

4.8 Case study of situation aware mobile agents 

4.8.1 Mobile agent 
The first mobile agent case study was developed by Jürgo Preden utilizing the 
Mathworks Matlab models created by Andri Riid for researching the low level 
control aspects. The case study was developed within the scope of the ITEA project 
“Gene-Auto – Automatic Software Code generation for Real-time Embedded 
Systems”. The implementation of the physical agent (a mobile robot) was done by 
Raido Pahtma and Risto Serg. The results of the case study (including the 
navigation of the physical robot) were presented at the ITEA fair in Rotterdam in 
2008. 

The first case study is concerned with the control of a mobile agent. The mobile 
agent is equipped with proximity sensors for sensing obstacles and differential 
drive for controlling the direction and speed of the robot. The case study was 
performed in several steps, in each step the complexity of the software model of 
the mobile agent was increased, which also resulted in improved accuracy of 
control. The case study was initially implemented and simulated in Mathworks 
Matlab as a combined Simulink/Stateflow model. The model of the mobile agent, 
the low-level fuzzy logic based controller of the mobile agent and the simulation 
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environment was implemented by Andri Riid (Riid, et al., 2004) while the high 
level control of the mobile agent (including sensor signal interpretation and mobile 
agent path planning) was implemented by Jürgo Preden. The hardware abstraction 
layer of the physical robot was implemented by Risto Serg and the agent’s software 
environment including the integration of the code generated from high-level 
models was done by Raido Pahtma. 

As noted in the beginning of the section a multi-layered architecture would be 
preferable for the situation aware mobile agent as there are several aspects of the 
mobile agent that need to be addressed. The agent’s software consists of four 
layers, the two lower ones are responsible for control of the vehicle while the 
higher two layers are responsible for 1) interpreting the situational information and 
2) selecting appropriate course of action depending on the situation. The layered 
approach has the advantage of decoupling the control logic from the situational 
information processing which allows changing separately either one or the other 
part as desired. One can even replace the lower level control logic completely (for 
example with the control logic from another mobile platform) and still utilize the 
situational information handling layers (with appropriate modifications if required) 
from the original design.  

The low-level control is clearly best handled with more or less conventional control 
methods utilizing for example PID (proportional–integral–derivative) controller or 
fuzzy logic. However, in order for utilize the situational data the agent needs have 
at least two layers above the control algorithms. The higher levels acquire and 
interpret the situational information available to the agent and select a behaviour 
based on the situation as perceived by the mobile agent and the properties of the 
agent.  

The layered architecture was achieved by extending the control architecture 
presented in (Riid, et al., 2004) by adding a situation evaluation and a control 
layers on top of the existing two control layers. The situation evaluation layer 
interprets the situational information and is implemented as a set of state machines. 
In the current mobile agent case study the issue of acquiring and exchanging the 
situational information is set aside, this topic is covered in the Middleware 
dedicated to exchanging situational information section of the Enhancing the 
Situation Awareness Concept for Cyber-Physical Systems chapter. The situational 
information acquired from sources external to the vehicle is exchanged via shared 
memory store in the simulation environment. The issue of data exchange is a 
separate research topic which is not addressed in the current case study. 
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4.8.2 Mobile agent task and physical implementation 
The physical implementation of the mobile platform was a four-wheeled vehicle 
with differential steering equipped with four servo motors and proximity sensors in 
the front of the vehicle as depicted in Figure 29 Vehicle. The vehicle is capable of 
positioning itself in an indoor environment using an indoor positioning system 
based on Cricket positioning hardware from Crossbow Technology. The Cricket 
positioning system is based on special Cricket devices that are equipped with both 
ultrasonic and RF interfaces, enabling distance estimations based on time 
difference of arrival of RF and ultrasonic signals. The robot is equipped with 
several embedded computers and the task of the robot is to move from an arbitrary 
start position to a desired end position while avoiding obstacles. 

 

The front of the mobile platform is equipped with 2 SRF08 ultrasonic rangers for 
detecting obstacles in the range of 3 – 600cm. In the centre of the robot there is an 
electronic (MEMS) compass CMP2X from Mindsensors.com for determining the 
orientation of the robot. A Cricket MCS41CA positioning system receiver from 
Crossbow Technology enables positioning of the robot.  

The complexity of sensor interfaces and servomotor control is contained in the 
Hardware Abstraction Layer (HAL), which allows to apply generalized control 
algorithms on the mobile platform with minimum or no modifications when the 
hardware of the robot changes. HAL consists of Atmel AVR based Robostix board 
from Gumstix, Inc. and corresponding firmware that interfaces with actuators and 
sensors. The Robostix board provides PWM (pulse width modulation) signal to 
servo motors and I2C bus master service for ultrasonic rangers and compass.  The 
HAL allows for 4 speeds forward and 4 speeds backwards both for left and right 

Figure 29 Vehicle 
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side motors. This configuration gives flexible manoeuvring abilities the mobile 
platform. The HAL is interfaced to higher level hardware via a serial interface. 

All the layers of the agent software run on a Gumstix Connex 400 board based on a 
32bit Intel XScale processor running custom Linux OS. This board is interfaced to 
HAL and the positioning system node by serial interfaces. The agent software code 
generated from the Mathworks Matlab models is loaded to this sub-system and the 
messaging interface to the HAL layer is sufficiently high-level, leaving the lower-
level control issues to the HAL layer. 

4.8.3 Lower control layers 
On the lower control layers the control actions are computed based on the current 
state and the objectives of the vehicle. Vehicle position is determined by three state 
variables x, y and Φ = [-90°, 270°], where the latter is the angle between onward 
direction of the vehicle and the x-axis Figure 30 in an established coordinate 
system. The width and length of the vehicle are denoted by w and l, respectively. 

 

 

 

 

 

 

 

 

 

 

 

The problem for the low-level control is formulated as follows: the vehicle must 
arrive from the arbitrary initial position (xi, yi, Φi) to the predefined destination 
(xf, yf, Φf). The vehicle moves forward with the speed that is determined by speeds 

 

Figure 30 Vehicle and its main variables at the low level control layer 
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(tangential velocities) of front wheels, vL and vR. These two parameters also 
provide the means for controlling the vehicle and our task is to define appropriate 
profiles of vL and vR throughout the control cycle.  

For vehicle movement simulation, the following set of equations is implemented in 
MATLAB. 
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Implementation of the control task is based on the ideas of (Riid, et al., 2004), and 
is distributed between two units (Figure 31). The main component of the system is 
the fuzzy logic based trajectory mapping unit (TMU) that specifies the optimal 
vehicle angle (Φr) for the given point in input space determined by its current 
coordinates x and y. Computation of speeds vL and vR that would force the vehicle 
to take desired orientation is carried out by a separate steering block SB.  

  

 

 

 

 

 

While the TMU used in (Riid, et al., 2004) is used without modification in the 
current application, the steering block in (Riid, et al., 2004), however, originally 
consisted only of a PD controller because in this application the vehicle was 
controlled by a steering angle θ of front wheels. For differential steering control 
scheme in current application this is complemented by a calibration block that 
computes appropriate vR and vL based on θ from the PD controller output (Figure 
32) using the following equations  

 

Figure 31 Hierarchical low-level control system 
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It must be noted that the maximum forward speed of the vehicle is determined by 
vmax/2. 

The performance of the lower-layer control algorithms was validated via stand-
alone simulations in Mathworks Matlab without the higher situation-aware layer. 

 

Figure 32 Contents of the steering block 

 

Figure 33 Functions vR = f1(0) and vL = f2(0) 
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4.8.4 Situational information processing and control layers 
The task of the mobile agent is to navigate through a maze of obstacles. The 
situational information available to the agent locally is limited to the information 
on obstacles from the proximity sensors and the last actions that the agent had 
taken (including the results of these actions). The situational information 
processing and control layer are implemented as a set of state machines in 
Stateflow. 

The situational information available to the situational information processing layer 
(to the Stateflow state machines) can be acquired from the sensors attached to the 
agent (local situational information), or from the other agents that are part of the 
simulation (either mobile or non-mobile) in which case a shared memory store was 
used as interaction medium. Depending on the current situation and the situational 
information received, the appropriate course of action is chosen by the control 
layer and target set points are communicated to the lower level. The control layer 
that utilizes the situational information changes the destination for the mobile agent 
when an obstacle is encountered and once the agent has passed the obstacle the 
original destination is restored. The information on the current destination is 
propagated to the lower control layers that handle the control of the agent. 

 

 

 

 

 

 

 

 

 

 

 Figure 34 Obstacle avoidance visualization 
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A separate state machine is used for processing the value of each type of situation 
parameter so each situation parameter relevant to the agent can potentially change 
the internal state of the agent. From the states of these individual state machines the 
higher-level state of the agent is determined. The control action (e.g. the speed or 
desired destination) of the agent is selected based on the higher-level situation 
derived from the active states of the low-level state machines and the goal of the 
agent. The situation parameter interpretation and control layers were designed 
empirically based on system requirements. 

4.8.5 Case study results 
The case study showed the validity of the design approach as after the design of the 
agent had been validated in simulations the code was generated for the target 
platform from the Matlab model containing Simulink and Stateflow components, 
eliminating the manual coding step. The agent navigated to the destination set by 
the human user while avoiding the previously unknown obstacles on its way. The 
behaviour of the real vehicle was similar to the behaviour of the simulated vehicle 
after the problems arising from the peculiarities of the hardware of the vehicle were 
solved. 

4.9 Collaborating mobile agent case study 
The second mobile agent case study builds upon the architecture presented in the 
first mobile agent case study. The simulation was initially created by Jürgo Preden 
but later enhanced by an intern of the Research Laboratory for Proactive 
Technologies – Domenico Bianco in the summer of 2009 following to the 
instructions of Jürgo Preden.  

The exchange and utilization of situational information by mobile entities is 
enhanced in this case study (when compared to the first mobile agent case study) 
by explicitly separating local and global information. Instead of situational 
information being directly exchanged by the mobile agents, each agent has a 
situational information mediator that provides the relevant situational information 
to the control parts of the mobile agent when the mobile agent requires it.  

The architecture for exchanging situational information is similar to the 
architecture presented in section 3.4 Middleware dedicated to exchanging 
situational information. However, instead of the approach suggested in the 
referenced section, the mediators do not interact with each other directly but 
instead there is a central data store to which all the mediators provide information 
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and from where the mediators fetch the information required by the mobile agent 
they represent.  

This simplifies the design of the mediators as some of the features of mediators 
need not be implemented. For example, the discovery and negotiation phase 
between the mediators is not required – this however does not change the basic 
concept of situational information mediation. All the situational data generated by a 
mobile agent is written to the data out data store of the agent. The mediator selects 
the situational data relevant to other mobile agents (since the situational 
information subscription mechanism was not implemented the information relevant 
to other agents was hard-coded into the simulation), and writes it to the central 
situational data store from where the other mediators can fetch the data. In the 
same manner the mediator fetches only the data relevant to the mobile agent it 
represents, and writes data to the data in data store from where the agent is able to 
read the data, perform the reasoning process and select the optimum output action 
in the current situation. The relation between the agent and the mediator is depicted 
in Figure 35. 

 

 

 

 

 

 

 

 

The constraints on the information required by a mobile agent depend on the type 
of the mobile vehicle, the state of the vehicle and the current location of the vehicle 
so the mediator fetches only the information relevant to the mobile agent at the 
current time. For example depending on the location (the current coordinates) and 
the direction of the vehicle only the information valid in its proximity and in the 
path of the vehicle is fetched from the central situational data store.  

 

Figure 35 Agent and mediator structure 
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4.9.1 Simulation scenario 
The approach outlined above was validated in a case study involving autonomous 
collaborating vehicles. In the case study several vehicles had to follow a certain path 
to reach their objective – a destination specified by the human user running the 
simulation. The terrain type on the path changes and if the terrain type is 
unfavourable (e.g. loose sand or mud) the vehicle is slowed down by the 
environment after the vehicle has entered the unfavourable terrain at medium speed.  

If the vehicle enters the unfavourable terrain at high speed it is not slowed down 
but of course there are penalties introduced by the high speed in terms of vehicle 
covertness. For the reason of covertness the normal speed of movement for the 
vehicles is medium. In the scenario the information on the unfavourable terrain is 
not known to vehicles before the simulation is started so a vehicle that enters the 
unfavourable terrain at the normal speed of movement (medium) is slowed down. 
However when a vehicle detects the unfavourable terrain, it can share that 
situational information with other vehicles. If the vehicle obtains the information 
about the terrain type from another vehicle it is able to speed up before entering the 
unfavourable terrain and thereby avoid the slowdown.  

The simulation is further complicated by adversaries in the area, which may be 
mobile or non-mobile. If a vehicle is in the proximity of an adversary, and the 
speed of the mobile agent is above a certain threshold (above medium), the 
adversary “notices” the mobile agent and “kills it”. The situational information 
regarding the adversaries can be shared between the vehicles, giving the vehicles a 
chance to slow down before approaching the adversary.  

4.9.2 Simulation components 
Every vehicle in the simulation is implemented as an agent interfaced to a mediator 
as depicted in Figure 35. The agent is responsible for processing the situational 
information, and selection of agent actions, the agent mediator is responsible for 
providing situational information acquired from sensors and from other agents to 
its host agent and mediating the information generated by the host agent to the 
other agents. The agent utilizes the multilevel architecture introduced in the 
beginning of the section. This means that while the higher levels deal with 
processing of situational information and action selection the lower-levels are 
concerned with the control of the vehicle, and setting the control parameters for the 
vehicle, such as immediate destination and speed. 

As explained above, in order to reduce the complexity of the implementation the 
situational information generated by the agents is propagated to a central 
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situational data store by the agent mediators.  The layout of the agent mediators 
and the central data store is depicted on Figure 36. Each agent mediator can then 
select the data that is of interest to the agent it represents based on the type and 
validity information of the situational data. The central situational data store is 
essentially a database which the mediators can add information to and make 
queries from.  

   

Figure 36 Exchange of situational information via a central data store 



158 

The design foresees that the agent propagates the information on situation 
parameters and constraints imposed upon these parameters to the mediator and the 
mediator is responsible for acquiring and supplying the situational data that 
satisfies the constraints, to the agent. An interesting aspect of the case study lies in 
the fact that while the situational parameters relevant to the agent are fixed the 
constraints on some of these parameters change dynamically as the agent moves.  

For example the coordinates of an agent (which determine constraints to the 
situational data) are propagated to the agent mediator which then makes queries to 
the central situational data store, based on these changing constraints. Once the 
required data has been acquired it is placed in the data in data store from where the 
agent can fetch the data for processing. In the same manner the situational data 
generated by the agent is placed into the data out data store from where the agent 
mediator can fetch the data and provide it to mediators of other agents via the 
central situational data store if such data has been requested. 

Clearly the use of a central situational data store is a simplification but it does not 
affect the behaviour of the individual mediators much. If no central data store 
would be used, a mediator would have to discover the other mediators, identify if 
the discovered mediators are able to provide information of interest and then 
subscribe to that information. 

4.9.3 Simulation implementation and results 
The simulation is a combined Mathworks Matlab Simulink / Stateflow simulation 
with a visual user interface for validating the simulation results. The animation on 
the visual user interface of the simulation is depicted on Figure 37. A common 
coordinate system is used in the simulation which allows identifying objects by 
coordinates (among other parameters) and also enables to reconstruct the path of 
the vehicles from the coordinate’s log. 

 

 

 

 

 

 



159 

 

 

 

 

 

 

 

 

 

 

 

 

The following situation parameters are used in the simulation i.e. the mobile 
agents, detected, stored and used the following situation parameter values: 

• unfavourable terrain start and end  

• static enemy 

• mobile enemy 

The spatial and temporal validity information (coordinates for the situational data 
and timestamps) are stored for all the situational information items. Each mediator 
selects the situational data based on the spatial and temporal properties (where and 
when the parameter value is valid) of the data. The validity period of the data is 
evaluated by the consumer of the data, e.g. the agent mediator discards the 
situational data record if the timestamp of the record is too old. 

The information stored for different types of situational data varies depending on 
the data type. For example for the unfavourable terrain type both the start and end 
coordinates of the unfavourable terrain must be recorded, in addition to the 
timestamp. For an adversary the coordinates of the adversary, the type of the 

 

Figure 37 Mobile platform simulation animation 
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adversary and the timestamp should be recorded. Since the coordinates of the 
adversary cannot be determined by a vehicle, the coordinates of the vehicle that 
detected the adversary are recorded at the time instant when the adversary was 
detected (which is often the time instant when the friendly vehicle was “killed”). 
Of course the information must be interpreted accordingly as the indirect 
information on the location of the adversary adds uncertainty. 

The simulations showed that the exchange of situational information can improve 
the performance of the autonomous vehicles. The concept of situational 
information mediator demonstrated a potential to reduce the amount of information 
presented to (and processed by) the vehicle agent. Vehicle agents were able to 
make decisions based on situational information collected by the other vehicle 
agents and thereby improve the probability of mission success – e.g. to reach the 
desired destination. 
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5 Conclusions and open problems 
The major trend in modern computer applications is a move towards pervasive 
computing systems, which are inevitably interacting with the physical world. 
Consequently the concept of Cyber-Physical Systems will become increasingly 
influential in the future. While such systems are, to a great extent a reality already, 
we as system designers and implementers, still face great difficulties in 
demonstrating reliability and trustworthiness of the design of Cyber-Physical 
Systems. This thesis suggests that the introduction of the concept of situation 
awareness (and team situation awareness) will help to describe and analyse the 
interactions and the behaviour of future Cyber-Physical Systems, starting from the 
specification and design phase. Situation awareness is achieved via the use of 
situation parameters which are measured, or computed, and interpreted by the 
individual components of a system. Situation parameters are associated with 
validity (including temporal and spatial) information as some properties of the 
system are not known at design nor at deployment time, therefore the system must 
be able to dynamically cater for changes of these properties. This enables the 
system as a whole to maintain a coherent view on the world in order to harmonize 
the actions and responses of the components of the system and the system as a 
whole, as appropriate in the current situation. 

The thesis extends the concept of a mediator that operates as an arbiter of 
situational information. The mediator can consider other types of validity 
information besides temporal and in addition the mediator is an active arbitrator of 
information, acquiring and providing relevant information. 

The thesis also presents a distributed system of systems concept that builds upon 
the notion of situation awareness. The information exchanged in a distributed 
application is in the form of situation parameter values, which are computed and 
exchanged by and between the system components. 

5.1 Open problems 
The current thesis is just a starting point in the development of the concept of 
situation awareness in network of computing systems. Many aspects of those 
systems have been only mentioned in the thesis and many problems only 
referenced. Some of the higher-level problems that are still open are: 

• constraint propagation, calculation of situation parameter values, and their 
validity areas 
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• description, validation and verification of systems’ behaviour using 
situational information. 

Situation parameter constraints propagation entails the calculation of (spatial and 
temporal) validity areas for situation parameter values based on application 
requirements. When a situation parameter value with specific validity intervals is 
required at the application level the source data required for computing that 
situation parameter values must also satisfy some specific constraints. These 
constraint values must be computed and propagated all the way down to the lowest 
level situation parameters that are used as source data. 

System behaviour description based on situational information involves the 
specification of behaviour of system components (from which the system 
behaviour emerges) based on the situation parameter values. This task is non-trivial 
since one must consider the effects of the individual component behaviour to the 
behaviour to the system as a whole, i.e. the actions of the system components must 
be harmonized to be not orthogonal in the same high-level situation. One must also 
consider appropriate impact of system’s behaviour on a specific state of the world 
and how the state of the world is reflected in the situation parameter values.  

5.2 Future research challenges 
While the thesis opens the door for employing situational information in computing 
systems it also presents some new and exiting research challenges that the author 
hopes to tackle in the future. 

Some of these challenges are 

• On-line validation and verification of Cyber-Physical Systems by applying 
the situation awareness concept 

• Automated identification of new situations 

• Level 3 of situation awareness – projection, i.e. anticipating future trends, 
situations, etc and learning to influence the future by proactive interactions 
with the environment, and/or applying possible self-X features of the 
system 

The verification and validation of SA in interactive systems can be performed at 
several levels. At each level we are able to say how an entity behaves in a certain 
situation. We are also able to say how a situation is reached, or created by the 
computing system (what events must occur in the environment in order to enable 
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the computing system to reach a particular situation). However we should be able 
to detect the behaviour that is not allowed and be able to assure that such behaviour 
does not occur. 

Automated identification of new situations is a promising concept that could, when 
applied appropriately, ease the task of the system designer, as not all the situations 
(and actions in those situations) would have to be pre-specified by the system 
designer. Instead the system could, over time, infer the situations of interest and 
appropriate actions in these situations, by observing the world and the response of 
the world to specific actions of the system. 

A topic that is very challenging but at the same also very promising is the 
development of Level 3 situation awareness in computing systems. This entails 
projecting the future states of the world based on the situational history that a 
computing system possesses. 
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7 Appendix A: Formalisms for describing computation  
This appendix gives a superficial overview of some existing formalisms that have 
been, or can be used for describing computing systems. In no way is this appendix 
a complete review of existing formalisms, the aim of the appendix is more to 
review formalisms suitable to describing parts of interactive computing systems. 
Descriptions of formalisms include the properties that are of interest in the context 
of interactive computation. 

It must be noted here that the described formalisms are not directly comparable, 
their expressive power is not equivalent, and many of them are not meant for 
describing the same aspects of a computing system.  

7.1.1 Turing Machine 
A Turing Machine (TM) is an abstract device that transforms an input string into an 
output string via a sequence of operations applied in a prefixed order to an input 
string and interim results of computation until the output string is obtained as the 
result of the last operation, for short it can be said that a computation is expressed 
as a sequence of state transitions, starting from an initial state and terminating in an 
end state. A TM is a state transition machine ( )δ,,∑= SM , with a finite set of 

states S, tape symbols ∑  and a state transition relation ( )RLSS ,,: ∑×→∑×δ , 
where L is a shift to the left and R is a shift to the right. TMs transform finite input 
strings *∑∈x to output string )(xMy = by a finite sequence of steps, starting in a 
unique initial state and ending when a halting state has been reached. At each step 
M reads a tape symbol i, performs a state transition ( ) ( )osis ,, ′→ , writes a 
symbol o and/or moves the reading head one position left or right (Hopcroft, et al., 
1979). 

The class of functions computable by a TM are called Turing computable functions 
or computable functions since the concept of computability was in the middle of 
the 20th century mistakenly also coupled with Turing computability, i.e. anything 
that is computable can be expressed using a Turing machine. TM computes 
functions ( )xfy = from integers to integers (from strings to string). The 
computations of a TM are history independent, i.e. a given input always yields the 
same output. The reason for reproducibility is the fact that TMs always start at an 
initial state and obtains all their input prior to the start of the computation.  

The fact that early computation which occurred in the computers could be fully 
described using the Turing computable functions lead many computer scientists to 
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the incorrect conclusion that any computation that can be carried out in computers 
can be described using Turing computable functions. Turing machines are suitable 
for describing the computation that occurs in transformational systems and also 
parts of computation that occurs in reactive systems.  

The Turing machine concept presumes that the input is presented to the machine, 
which then processes the data and generates an output without any interference 
during the computation, which is the nature of the computation in a 
transformational system. This presumption of non- interference also holds for parts 
of computation in reactive systems. However TMs has very limited applicability in 
the context of proactive systems. TMs can be used to only describe computation of 
rather primitive functions required in proactive systems while the critical parts of 
computation occurring in a proactive system cannot be described using TMs. It 
could be envisioned that when applying Turing machine paradigm in this context 
of proactive systems, we would face a large number of primitive functions 
interacting via non-stationary mediated interactions. The result might be 
operational, but its behaviour cannot be verified, not even approximately predicted; 
especially if the application is situation-aware (e.g. time-dependable, location 
dependable, etc  

7.1.2 Persistent Turing Machine (PTM) 
Persistent Turing Machine is a minimal extension of Turing Machine that 
expresses sequential interactive behaviour (Goldin, 2000). Goldin and Wegner 
introduce in (Goldin, et al., 1998) Persistent Turing Machines (PTMs) concept that 
extends the Turing Machine (TM) with a persistent work tape whose content is 
preserved between successive TM computations, known as PTM computation 
macro-steps. The persistent work tape is the memory of the PTM and the contents 
of the memory before and after a single computation step express the state of the 
PTM. The set of PTM states is infinite as it is represented by strings of unbounded 
length (Goldin, 2000). The PTM is in essence a multi-tape TM, which behaviour is 
characterized by input-output streams instead of being characterized by input-
output strings as is the case with TMs. So PTMs are interactive systems where the 
output does not only depend of the current state and input but also on past 
interactions cannot be described with TMs. 

The work-tape contents of PTM are is not directly observable, unlike inputs or 
outputs. Although the work-tape affects the output, it does not participate directly 
in the notion of PTM behaviour, as the behaviour of a PTM is observation based. 
Any attempt to model PTM computations with TMs, by making the work-tape 
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contents an explicit part of the input, would thus fail. PTMs are sequential 
interaction machines (SIMs) inheriting from TMs the restriction that input tokens 
must be discrete and that any model of behaviour must ignore time-dependent 
aspects. They are therefore inappropriate for modelling real-time and embedded 
devices or physical control processes, whose expressiveness requires the full 
generality of SIMs. There are multi-stream interactive behaviours, such as 
distributed database systems or airline reservation systems, which cannot be 
modelled by SIMs at all, requiring a model with even more expressiveness – multi-
stream interaction machines MIMs (Goldin, 2000). 

Goldin and Wegner suggest in (Goldin, et al., 1999) that PTMs allow describing 
interaction machines since the work tape is not necessarily blank at the start of a 
computational step. The contents of the work tape have been generated during 
previous computation steps, the input to which is unknown at the current 
computation step (we assume that the input is generated by the outside world, 
which we cannot control). 

While the TM models algorithmic behaviour where output can be directly derived 
from the current input, the PTM models interactive behaviour where the output is a 
function of the current input and also of the past inputs. A PTM models sequential 
interactive behaviour (Goldin, 2000), where the computing device or agent evolves 
as it processes the inputs. The evolution is expressed in the change of the PTM 
work-tape contents, so the PTM output tokens are a function of both the input and 
the contents of the work-tape. 

While the PTM allows describing the change of the machine behaviour it does not 
allow to describe the aspects of the interactions that may be also relevant in terms 
of the behaviour of the machine – e.g. the temporal aspects of the interactions may 
influence the behaviour of the machine. Also the properties of data received via 
interactions (which cannot be described using PTMs) may affect the behaviour of 
the machine (i.e. the output).  

So PTMs can be used to describe computation in transformational systems and 
sections of computations in reactive and proactive systems. 

7.1.3 The π-calculus 
The π-calculus was introduced by Robin Milner (Milner, 1991) as a model of 
computation for concurrent systems. It was conceived for describing and analyzing 
systems that consist of computing agents interacting with each other in a dynamic 
setting. The π calculus allows representation of processes, parallel composition of 
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processes and communication of processes through channels. The π calculus uses 
the following denotation: 

P and Q denote a process,  

QP denotes a process composed of processes P and Q running in parallel  

( ) Pxa . denotes a process waiting to read a value x from channel a and after 
receiving the value, continues as P 

Pxa . denotes a process waiting to send value x to channel a and after x has been 

consumed by some input process, continues as P 
( )Paν ensures that a is a fresh channel in P. 

P! denotes an infinite number of copies of P running in parallel 
QP +  denotes a process that behaves like P or Q 

0 denotes an inert process that does nothing 

The π‐calculus can be used to describe a concurrent system in a top-down manner 
– it allows describing the structure of the system in terms of processes and their 
interactions. The π‐calculus cannot be used to describe the function that a process 
implements so essentially the formalism can be used for describing the interactions 
between processes. However more advanced properties of interactions, such as 
temporal and spatial selectiveness of processes cannot be described using π‐
calculus either. The formalism has applications in all types of computing systems 
on an abstract level, however it lacks the required detail to be applicable for 
analyzing the properties of interactions in proactive systems.  

7.1.4 Hoare logic 
Hoare logic, introduced in (Hoare, 1969) is a formal system for reasoning about the 
correctness of computer programs with the aid of mathematical logic. The central 

entities in Hoare logic are the Hoare triples { } { }P C Q where { }P and { }Q are 

assertions and C is a command. The { }P
 is the preconditions and { }Q is the post-

condition, when the precondition is met and the command is executed the post-
condition should be established. Hoare logic does not exceed the power of first 
order predicate logic. Since Hoare logic deals with the correctness of 
transformations it can be applied to compositional verification of transformational 
systems. It can be applied for describing and analyzing of Turing computable 
functions and the mathematical superposition of these functions. Hence Hoare 
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logic has limited applicability in the context or reactive and proactive systems 
(similar to Turing machine), namely in the transformational parts of these systems. 

7.1.5 Statecharts 
The Statecharts concept was originally introduced by David Harel in (Harel, 1984). 
The concept was put forward by Harel and Pnueli as formalism for describing the 
behaviour of complex reactive systems in a paper (Harel, et al., 1985). Statecharts 
extend conventional state-transition diagrams with notions of hierarchy, 
concurrency and communication (Harel, 1987). These properties make Statecharts 
more expressive when compared to Turing machine and help to keep the 
complexity of diagrams manageable. The reason for introducing Statecharts was 
that common state machines, which were believed to be the natural way for 
describing dynamic behaviour of complex systems, could not be used for 
describing reactive systems of realistic size. Harel claimed that the reason why 
complex systems cannot be described with common state machines is the 
unmanageable, exponentially growing multitude of states, all of which have to be 
arranged in a ‘flat’ not stratified fashion, resulting in an unstructured, unrealistic, 
and chaotic state diagram (Harel, 1987). Harel argues that to be useful a state/event 
approach must be modular, hierarchical and well-structured. 

States in a Statechart can be repeatedly combined into higher-level states using 
either disjunctive or conjunctive modes of clustering. The clustering of states 
creates levels of states where the state that contains a cluster of states is a higher-
level state. This in turn makes the states that are contained within higher-level state 
lower-level states. The hierarchy can have several levels and transitions in 
Statecharts are not level-restricted but can lead from a state on any level to a state 
on any other level. The graphical notation of statecharts has also been adapted by 
Mathworks in their tool called Stateflow, which allows describing the behaviour of 
complex systems using the statecharts semantics. 
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Figure 38 depicts a sample Statechart with one top level state containing four sub-
states. Two of the sub-states (TopState2 and TopState) contain sub-states 
themselves. The states that are contained in TopState1 are disjunctive, i.e. the 
system can either be in state TopState2, TopState, F or G.  

The Statechart concept is close to interactive computation in its expressive power, 
so statecharts can be used for describing transformational, reactive and also 
proactive systems to some extent. However due to the fact that the formalism can 
not be used to express the temporal and spatial aspects of data it cannot be used to 
describe all aspects of a proactive computing system. Also statecharts only allow 
describing communication in a non-directed manner as it is only possible to model 
broadcast communication. The fact that only broadcast communication is possible 
limits the applicability of the formalism in proactive systems where selective and 
directed interaction is a critical system feature. 

7.1.6 UML 
The Unified Modelling Language (UML) allows to model interactive systems, 
whose behaviours emerge from the interaction of their components with each other 
and the environment (Goldin, et al., 2001). While UML allows the modelling of 
such systems it does not allow detailed and complete specification of such systems. 

Figure 38 A sample statechart 
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UML allows for different view of an interactive system to be modelled but the 
associations between the different views are not synchronized. The UML uses the 
notion of a computing entity which is a finitely specifiable software system, 
component or object. Computing entities may contain sub-entities, or be part of a 
larger computing entity. The viewable behaviour of the computing entity is 
determined by the outputs of the entity it produces and the inputs it consumes – the 
service that it provides to the environment, i.e. the actors in the environment 
(which may be users or other systems). Staring from the viewable behaviour it can 
be said that the internal behaviour of the system emerges out of the internal 
interactions among its components.  

UML allows describing the viewable behaviour of the system and also specifying 
the internal structure and behaviour of the system (Goldin, et al., 2001). UML 
offers three views to the user: the static view, the dynamic view and the functional 
view. The static view describes the relations between the interactive components; it 
allows static description of objects, operations performed by the objects and the 
relations among objects. The diagrams that express the static view are class 
diagrams, object diagrams and component diagrams. The dynamic view allows 
describing the interactions within the system (between system components) and 
with the system (between the system and the environment) – the inter-object 
dynamics present in an interactive computing system. The diagrams that allow 
expressing the dynamic view are use case, sequence, collaboration and state 
transition diagrams. The functional view deals with the description of the 
behaviour of specific functions or methods, i.e. modelling transformational 
behaviour in an object. The functional view can be expressed using activity 
diagrams, state diagrams and narratives.  

So UML allows describing the internal behaviour of a system and also the external 
behaviour by describing the interactions with entities external to the system via for 
example use cases. A use case is an abstraction that can represent the input sources 
of a system. A use case is described as an interaction with an actor who is 
constrained to a specific role, limiting the messages that the actor can generate or 
consume. However since an actor is an outside entity in the use case view its 
internal structure is not specified but only the external view is used. The actors that 
are associated with a system behave as a non-deterministic source of inputs as only 
the types of messages are specified but not the temporal relation between the 
messages, nor the (possible) relations between the actors.  

UML supports modelling the system behaviour emerging from responding to (and 
interacting with) a stream of events with the next event of the stream not available 
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before the previous has been processed. Since the event stream is not limited but 
open ended instead the expressive power of UML is clearly beyond that of Turing 
machines. As explained above modelling interactions with multiple actors is 
possible which means that concurrent interaction streams (each representing 
interaction with a separate autonomous actor) can be modelled using UML.  

One of the main limiting factors of UML lies in the fact that linking the several 
descriptions of the system in a non ambiguous way is non-trivial, so one is able to 
describe the various aspects of an interactive computing system but it is not 
possible to create a complete and coherent description of such a system. 

7.1.7 Petri nets 
A Petri net is a formal, graphical, executable technique for the specification and 
analysis of concurrent, discrete event systems used for describing discrete 
distributed systems by focusing on visual representation. The visual representation 
of a Petri net is a bipartite graph.  

A Petri net is a 5-tuple ( )WMFTS ,,,, 0 , where S is a finite set of places, T is a 

finite set of transitions, F is a finite set of directed arcs known as flow relation. S 
and T are disjoint and F is subject to a constraint, which says that no arc may 
connect two places or transitions - ( ) ( )STTSF ×∪×⊆ . NSM →:0 is an 

initial marking, where for each place Ss∈ there are Nns ∈ tokens. Places are 

conditions which on the graphs are denoted by circles, transitions are discrete 
events which on the graphs, directed arcs express the flow which on the graphs are 
denoted by arrows. No arc may connect two places or transitions. The directed 
arcs, which express the flow relation in a Petri net, describe which places are pre- 
and post-conditions for which transitions. The places in the Petri net may contain a 
natural number of tokens, which control the firing of transitions in a net. A 
transition in a net may be executed whenever there is a token at the end of all input 
arcs to the transition. Whenever a transition is executed, all the tokens on the input 
arcs are consumed and tokens are placed on all the output arcs of the transition. 
When multiple transitions are enabled at the same time, the execution of a Petri net 
is nondeterministic, i.e. any of the enabled transitions may fire. 
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In the sample Petri net depicted in Figure 39 the set of places, S contains the 
elements a, b, c, d, e, f. The set of transitions, T contains the elements A, B, C, D, 
E. The set of arcs, F contains the elements 1, 2, 3, 4, 5, 6. 

Petri machines have the same expressive power as Turing machines, it can be said 
that a Petri net is a conjunction of Turing machines with the number of Turing 
machines that the Petri net models being equal to the number of tokens in the net.  

Figure 39 A sample Petri net 
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7.1.8 Attribute automata 
A finite attributed automaton augments finite automaton with a finite memory 
called attributes of states of the automaton. At any move of the automaton in 
attribute automata the information can be fetched from the attributes of the current 
state and stored into the attributes of the next state. The next state can be selected 
depending on the current state and the values of its attributes. Any move of the 
attribute automaton the contents of the memory can be finitely described. 

An attributed automaton is defined in (Penjam, et al., 1991) as tuple  

( )00 ,,,,,, msfvASIAA =  where  

I is a terminal alphabet,  
S is an alphabet of states,  

{ }SsAA ∈= , represents domains of attributes of states, each SA  is the domain of 

the attribute of state s,  
:v S A⎯⎯→ v is an attribute mapping,  

{ }( ) ( )( ) ( )( )f Sx I S A S S Aε⊆ ∪ × ⎯⎯→ × × ⎯⎯→  is a transition relation,  

0s S∈ is the initial state and  

0m is the initial value of the attribute of the initial state.  

A configuration of the finite attributed automaton AA is a triple 
( ) xS AAISlmws ×××∈ ∗,,, ,where Ss∈  is the current state of the automaton,  

w is the unused portion of the input string,  
m is the value of the attribute of the current state and  
l is the value of the attribute of the next symbol in the input string.  

An attributed automaton allows describing an automaton where both the states and 
the input strings can have attributes; therefore it allows describing the behaviour of 
a reactive system, except for the temporal aspects. The finite memory of the 
attribute automaton reflects the current situation which is preserved between the 
computation steps. Also some aspects of proactive systems can be described. 

7.1.9 The Q model 
The description of the Q model can be found in (Motus, 1995) and (Motus, et al., 
1994). The Q model was designed for describing and analysing timing properties 
of real-time embedded software, it comprises two types of components – processes 
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and channels (that describe unidirectional interaction of processes). It neglects 
deliberately the algorithmic details of software, concentrating instead on describing 
and analyzing the structural attributes of components – e.g. timing constraints, 
properties of channels, validity of information, and consistency of constraints 
imposed on the components. A process is defined as: “A process is an atomic unit 
of computation, whose terminal behaviour is specified but whose internal operation 
is unspecified and of no interest to a discussion. Depending on the application, a 
process can be a computer instruction, a procedure or even an entire (unitary or 
distributed) system.” The term process can be used even in a wider sense – it may 
denote a computational process or a process occurring in the physical world, 
whether performed by natural or artificial entities. The formal specification of a 
process in the context of the Q model is the following: 

A process (p) is considered to be a mapping (i.e. transformation) from its domain 
of definition (dom p) onto its value range (val p), the process time-set T(p) contains 
the activation instants of the mapping: 

( ):p T p dom p val p× →  

A process time-set is usually determined by the dynamic requirements of the 
environment, in some cases a process time-set may be in some cases also 
determined by the requirements of the computing system itself. Each process may 
have its own independent time-set, or may share it with the some of the other 
processes.  

Process interaction in the Q model is realized by channels, which takes care of the 
time-selective data transfer between processes – selects the desired outputs of the 
producer process and presents them to the consumer process. The usage of channel 
makes it possible to design and implement both the producer and the consumer 
process without any considerations for the other party. The producer process 
simply produces the outputs and the channel accepts the outputs and forms the 
input to the consumer. A channel implements point-to-point one-way 
communication between two processes. The formal definition of the channel is the 
following: a channel is a mapping of the producer process (pi) value range (output) 
to the consumer process (pj) domain of definition (input), which can be expressed 
formally as follows: 

( ) ( ):
i

ij i i j jval p
val p T p T p proj dom pσ × × →  
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where 
i

jval p
proj dom p denotes the projection of the domain of pj on the value 

range of pi. Projection is important because one producer need not define the entire 
domain of the consumer process; it is more likely that the producer defines only 
part of it. Time-sets are required to allow description of the time-selectivity of the 

channel, which is described by the channel function ( ),ijK tσ , which defines for 

each ( )jt T p∈  a subset of ( )iT p so that ( ) ( ) ( ), ,ij i jK t T p t T pσ ⊂ ∈ . A 

consumer process pj, activated at ( )jt T p∈  only has access to the outputs of 

producer process pi, resulting from activation at time instants ( ),ijt K tσ∈ . In 

practice the channel function is expressed as an interval in the relative time (with 
respect to the consumer process’s activation instant) for the associated pair of 
interacting processes.  

Three types of channels have been introduced in the Q model: synchronous, semi-
synchronous and asynchronous channels. In a synchronous channel 

( ) ( )i jT p T p= , which means that consumer’s and producer’s time-sets coincide.. 

In a semi-synchronous channel the producer time-set is given and it generates the 

time-set for the consumer process – ( ) ( )i jT p T p→ . In case of an asynchronous 

channel the time-sets for the producer and consumer processes are independent (at 
least from the system designer point of view). Only this channel performs in a truly 
asynchronous mode as the name implies. The Q model also introduces the concept 
of selector processes. A selector process is a mapping whose execution is 
influenced by explicitly defined conditions: it can select only some of the variables 
as input from its domain or it may have more than one value range. Selection 
between the value ranges during a particular execution can depend on input data 
and/or interim results.  

So the Q model allows describing process interaction where processes can select 
what they consume (including the data generation, i.e. the age of data). However 
the interactions between processes are predefined at system design-time.  

Q models differs from the Turing machine as the input data to a process is not fixed 
– process start times are not fixed and therefore we do not know which outputs of a 
producer process are used as inputs by another process. A process may accept input 
data during its execution, which directly relaxes the most restricting constraint of 
Turing computable functions. 
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7.1.10 Stream processing 
Stream processing is based on the concept of streams, stream functions and 
operations on them which model communication history in a computing system. A 
stream can be depicted as an ordered time series of data – such as readings from 
sensors, signals, messages, events, commands, etc.  

Streams model the temporal succession of messages. Stream functions enable the 
processing of streams of undefined finite length, essentially sections of interaction 
streams. Example of stream processing when applied to interactive computation is 
described in (Dosch, et al., 2007). Stream processing as a tool for designing 
distributed computing systems and analysing the input / output behaviour of its 
components has been discussed in a PhD thesis by A. Stümpel (Stümpel, 2003). 

A transformational is activated, takes in its input variable values (strings), 
processes the input variable values and terminates. A (stream processing) 
interactive computing system repeats this procedure (except for the termination) for 
each element of the input stream, with the difference that previously processed 
stream elements influence processing of the following stream elements.  A stream 
processing system, after starting processing the first element of the input stream 
never stops before completing processing of the last element of the input stream.   

Such behaviour is typical in pervasive computing systems which typically exhibit 
proactive behaviour and/or requirements for situation-aware behaviour.  Hence the 
stream processing seems to be a natural model for studying the behaviour of 
interactive computing systems, besides the expressive power of stream processing 
being greater than that of the Turing Machine. 

 

 

 

Figure 40 Stream Processing 
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In Figure 40 a sample stream processing function is depicted. The input stream X is 
converted to an output stream Y by the stream processing function. An important 
practical aspect of stream processing functions lays in the fact that a set of state 
machines that realize the stream processing functions can be generated 
automatically from a system of stream functions (Stümpel, 2003).  

  



194 

Curriculum Vitae 

Personal Data 
Name Jürgo-Sören Preden 
Date of birth 03.02.1978 
Citizenship Estonia 

Contact Data 
Address Department of Computer Control, TUT, Ehitajate tee 5, 12618, Tallinn 
Phone +3726202117 
E-mail jurgo.preden@ttu.ee 

 

Education 
2005 - 2010  Tallinn University of Technology, Phd studies 
2003 - 2005  Tallinn University of Technology, MSc 
1996 - 2003  Tallinn University of Technology, BSc 

 

Professional employment 
2006 - ...  TUT, Department of Computer Control; researcher 
2006 - ... Smartdust Solutions, CTO 
2006 - 2006 Internship at Microsoft Research, Redmond (06.2006 – 08.2006) 

 

Current research topics 
Computation and communication in ad-hoc networks, situation aware models of 
interactive computation. 

 

Supervised theses 
Rait Kapp, MSc, 2008, (supervisors) Leo Mõtus, Jürgo Preden, Comparison of code 
generated with the Gene-Auto code generator with hand written code, TUT, Department of 
Computer Control 

Priit Pikk, MSc, 2009, (supervisor) Jürgo Preden, Positioning stationary motes with a 
moving platform, TUT, Department of Computer Control 



195 

Raido Pahtma, MSc, 2009, (supervisor) Jürgo Preden, Smart Dust Location Awareness, 
TUT, Department of Computer Control 

Kaupo Vana, MSc, 2008, (supervisor) Jürgo Preden, Study of the ZigBee communication 
protocol, TUT, Department of Computer Control 

 

Languages 

Estonian – mother tongue  
English – fluent 
German – average 
Finnish – average  
Russian – poor 

  



196 

Elulookirjeldus 

Isikuandmed 
Nimi Jürgo-Sören Preden 
Sünniaeg 03.02.1978 
Kodakondsus Eesti 

 

Kontaktandmed 
Aadress TTÜ Automaatikainstituut, Ehitajate tee 5, 12618, Tallinn 
Telefon 6202117 
E-post jurgo.preden@ttu.ee 

 

Hariduskäik 
2005 - 2010  Tallinna Tehnikaülikool, doktoriõpe  
2003 - 2005  Tallinna Tehnikaülikool, magistrikraad  
1996 - 2003  Tallinna Tehnikaülikool, bakalaureusekraad 

 

Teenistuskäik 
2006 - ...  TTÜ, Infotehnoloogia teaduskond, Automaatikainstituut; teadur 
2006 - ... Smartdust Solutions, CTO 
2006 - 2006 Intern Microsoft Researchis Redmondis (06.2006 – 08.2006) 

 

Teadustöö põhisuunad 
Arvutused ja kommunikatsioon spontaanvõrkudes, situatsiooniteadlikud 
interaktiivse arvutuse mudelid  

 

Juhendatud väitekirjad 
Rait Kapp, magistrikraad (teaduskraad), 2008, (juh) Leo Mõtus, Jürgo Preden, Gene-Auto 
koodigeneraatoriga genereeritud koodi võrdlemine käsitsi kirjutatud koodiga, TTÜ, 
Infotehnoloogia teaduskond, Automaatikainstituut, 



197 

Priit Pikk, magistrikraad, 2009, (juh) Jürgo Preden, Positioning stationary motes with a 
moving platform (Statsionaarsete kübemete positsioneerimine liikuva platvormiga), TTÜ, 
Infotehnoloogia teaduskond, Automaatikainstituut  

Raido Pahtma, magistrikraad, 2009, (juh) Jürgo Preden, Smart Dust Location Awareness 
(Arupuru asukohateadlikkus), TTÜ, Infotehnoloogia teaduskond, Automaatikainstituut  

Kaupo Vana, magistrikraad, 2008, (juh) Jürgo Preden, ZigBee 
kommunikatsiooniprotokolli uurimine, TTÜ, Infotehnoloogia teaduskond, 
Automaatikainstituut 

 

Keelteoskus 

Eesti – emakeel  
Inglise – kõrgtase 
Saksa – kesktase 
Soome – kesktase 
Vene – algtase 

  



198 

DISSERTATIONS DEFENDED AT  
TALLINN UNIVERSITY OF TECHNOLOGY ON  

INFORMATICS AND SYSTEM ENGINEERING 

  1. Lea Elmik. Informational modelling of a communication office. 1992. 
  2. Kalle Tammemäe. Control intensive digital system synthesis. 1997. 
  3. Eerik Lossmann. Complex signal classification algorithms, based on the third-
order statistical models. 1999. 
  4. Kaido Kikkas. Using the Internet in rehabilitation of people with mobility 
impairments – case studies and views from Estonia. 1999. 
  5. Nazmun Nahar. Global electronic commerce process: business-to-business. 
1999. 
  6. Jevgeni Riipulk. Microwave radiometry for medical applications. 2000. 
  7. Alar Kuusik. Compact smart home systems: design and verification of cost 
effective hardware solutions. 2001. 
  8. Jaan Raik. Hierarchical test generation for digital circuits represented by 
decision diagrams. 2001. 
  9. Andri Riid. Transparent fuzzy systems: model and control. 2002. 
10. Marina Brik. Investigation and development of test generation methods for 
control part of digital systems. 2002. 
11. Raul Land. Synchronous approximation and processing of sampled data 
signals. 2002. 
12. Ants Ronk. An extended block-adaptive Fourier analyser for analysis and 
reproduction of periodic components of band-limited discrete-time signals. 2002. 
13. Toivo Paavle. System level modeling of the phase locked loops: behavioral 
analysis and parameterization. 2003. 
14. Irina Astrova. On integration of object-oriented applications with relational 
databases. 2003. 
15. Kuldar Taveter. A multi-perspective methodology for agent-oriented business 
modelling and simulation. 2004. 
16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004. 
17. Artur Jutman. Selected issues of modeling, verification and testing of digital 
systems. 2004. 
18. Ander Tenno. Simulation and estimation of electro-chemical processes in 
maintenance-free batteries with fixed electrolyte. 2004. 



199 

19. Oleg Korolkov. Formation of diffusion welded Al contacts to semiconductor 
silicon. 2004. 
20. Risto Vaarandi. Tools and techniques for event log analysis. 2005. 
21. Marko Koort. Transmitter power control in wireless communication systems. 
2005. 
22. Raul Savimaa. Modelling emergent behaviour of organizations. Time-aware, 
UML and agent based approach. 2005. 
23. Raido Kurel. Investigation of electrical characteristics of SiC based 
complementary JBS structures. 2005. 
24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja 
elementide disainimine ja optimeerimine. 2005. 
25. Pauli Lallo. Adaptive secure data transmission method for OSI level I. 2005. 
26. Deniss Kumlander. Some practical algorithms to solve the maximum clique 
problem. 2005. 
27. Tarmo Veskioja. Stable marriage problem and college admission. 2005. 
28. Elena Fomina. Low power finite state machine synthesis. 2005. 
29. Eero Ivask. Digital test in WEB-based environment 2006. 
30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы 
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом 
и изготовления диодов на их основе. 2006. 
31. Tanel Alumäe. Methods for Estonian large vocabulary speech recognition. 
2006. 
32. Erki Eessaar. Relational and object-relational database management systems 
as platforms for managing softwareengineering artefacts. 2006. 
33. Rauno Gordon. Modelling of cardiac dynamics and intracardiac bio-
impedance. 2007. 
34. Madis Listak. A task-oriented design of a biologically inspired underwater 
robot. 2007. 
35. Elmet Orasson. Hybrid built-in self-test. Methods and tools for analysis and 
optimization of BIST. 2007. 
36. Eduard Petlenkov. Neural networks based identification and control of 
nonlinear systems: ANARX model based approach. 2007. 
37. Toomas Kirt. Concept formation in exploratory data analysis: case studies of 
linguistic and banking data. 2007. 
38. Juhan-Peep Ernits. Two state space reduction techniques for explicit state 
model checking. 2007. 



200 

39. Innar Liiv. Pattern discovery using seriation and matrix reordering: A unified 
view, extensions and an application to inventory management. 2008. 
40. Andrei Pokatilov. Development of national standard for voltage unit based on 
solid-state references. 2008. 
41. Karin Lindroos. Mapping social structures by formal non-linear information 
processing methods: case studies of Estonian islands environments. 2008. 
42. Maksim Jenihhin. Simulation-based hardware verification with high-level 
decision diagrams. 2008.  
43. Ando Saabas. Logics for low-level code and proof-preserving program 
transformations. 2008. 
44. Ilja Tšahhirov. Security protocols analysis in the computational model – 
dependency flow graphs-based approach. 2008. 
45. Toomas Ruuben. Wideband digital beamforming in sonar systems. 2009. 
46. Sergei Devadze. Fault Simulation of Digital Systems. 2009. 
47. Andrei Krivošei. Model based method for adaptive decomposition of the 
thoracic bio-impedance variations into cardiac and respiratory components. 
48. Vineeth Govind. DfT-based external test and diagnosis of mesh-like networks 
on chips. 2009. 
49. Andres Kull. Model-based testing of reactive systems. 2009. 
50. Ants Torim. Formal concepts in the theory of monotone systems. 2009. 
51. Erika Matsak. Discovering logical constructs from Estonian children 
language. 2009. 
52. Paul Annus. Multichannel bioimpedance spectroscopy: instrumentation 
methods and design principles. 2009. 
53. Maris Tõnso. Computer algebra tools for modelling, analysis and synthesis for 
nonlinear control systems. 2010. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>







    /HEB (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


