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ABSTRACT 
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Researcher 
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Abstract:  

The purpose of this thesis is to develop a multi-camera vision-based inventory 

management system, that is simple and suitable for smaller companies with a low number 

of resources. The approach to the development of this project appeared to meet the 

department’s need for a system to control and monitor the available materials and the 

resulting system creates a registry keeping a record of the users’ use of such equipment. 

For that purpose, four goals were initially set, corresponding to the main sections 

implemented in the project: development of a face recognition application to detect the 

user, development of two object recognition systems for the lab equipment and the 

camera kits, and finally, implementation of a program that combines all the previous 

solutions and provides the information collected by the inventory system.  

The final implementation consists of: tool detection by YOLOv8 small algorithm trained 

with a batch size of 16 and for 150 epochs; boxes (camera equipment) detection using 

ArUco markers of 5x5 bits and image size of 150 pixels; and face detection and recognition 

using a Haar feature-based cascade classifier and LPBH respectively. Finally, the 

functioning of the whole system was tested by the simulation of different scenarios after 

which, it is shown that the different objectives have been met and the results are 

satisfactory, with the system being able to keep the inventory managed and updated. 

 

Keywords: Inventory management, object detection, YOLOv8, ArUco markers, facial 

recognition. 
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1. Reasons for choosing the topic 

An inventory system is the process by which you track and keep record at all times of the 

materials or goods owned any entity, be it an individual or a group or company. Being able 

to access this information is crucial to implement an organized system and is nowadays 

used in numerous industrial manufacturers applications, commercial solutions, and 

warehouses of many companies.  

The operation or methodology used in these systems varies from the basic concept of 

keeping a list manually updated by a user, to the use of modern technologies that are still 

under development to keep track of the owned objects. Among some renown examples, 

Amazon Go is a checkout-free shopping system that uses a complex system combining 

computer vision, sensor fusion and deep learning to be able to detect when a product is 

taken from or returned to the shelves [3]. Walmart’s inventory system uses a Radio-

Frequency Identification (RFID) technology to identify the items taken using radio waves 

[5], [6]. R-Kiosk Go, the first unmanned stored in Estonia, uses a combination of artificial 



 

intelligence, several sensors (specially weight sensors) and cameras to control the items 

taken by each customer [7]. 

Using a combination of different technologies results in complex and expensive systems. 

The goal to reach with the development of the system presented in this document is to 

achieve a performance similar to that developed by large companies, using only machine 

vision methods, and therefore avoiding the use of additional hardware that increases the 

price and complexity of the system, making the system accessible for smaller businesses 

or companies. 

 

2. Thesis objective 

The goal is to create a multi-camera vision-based inventory management system, that will 

create a registry using as data the users with access to the available material and the 

material itself and keeps a record of its use. 

 

 

3. List of sub-questions: 

1. Development of face recognition technology, that will detect the specific person 

borrowing an item, from a limited database of personnel allowed to use the 

equipment in the department. 

2. Development of an object recognition system for the lab equipment available.  

3. Development of an object recognition system for the camera kits available, which 

are placed in boxes of similar appearance. 

4. Implementation of a user-friendly interface that allows easy access to the 

information collected by the inventory system. 

 

 

4. Basic data: 

For the implementation of the thesis work several datasets will be collected. First, the 

user’s database would be needed, for the implementation of the face recognition system.  

Secondly, an image dataset of the selection of lab equipment available in the department 

as well as the camera equipment, which in this particular case, will be recognised from a 

personalized tag placed on each box, therefore needing the tag’s information recollection. 

Both of the last elements will be obtained from the machine vision’s department, according 

to the material available. 

  



 

5. Research methods 

In order to achieve the best possible implementation of the system proposed first, a 

comprehensive literature review will be carried out to study existing technologies and 

products and perform their comparison, with the objective of choosing the best possible 

methodology. Such literature review will be divided into different sections, each of them 

focusing in one specific related topic: inventory management systems, face recognition 

technologies and object detection methods, concluding with a summary of the results 

obtained and a consequent selection of the project’s methodology. 

When analysing the results from the different sections implemented for the system, data 

from the image database (used for both training and testing of the model) as well as real 

time images from the camera system will be used for each section.  

 

6. Graphical material 

A number of graphical elements will be included throughout the document, although it is 

not yet possible to determine whether they will be mostly in the body of the document or 

in the appendixes. 

Among other things, it’ll be found different tables with technical requirements or 

characteristics, workflow diagrams, schemes of the hardware set up implemented as well 

as pictures of the prototype and set up environment. 

 

7. Thesis structure 

The document will be structured in the following way: 

1. Introduction 

2. Literature review 

2.1. Inventory management 

2.2. Machine vision-based methods 

2.3. Fiducial marker detection 

2.4. Face recognition technologies 

2.5. Literature review conclusion 

2.6. Aim of the work 

3. Creating the solution 

3.1. Collection of data 

3.2. Implementation of methodology 

3.3. Validation 

3.4. Testing the results 

4. Conclusion 
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PREFACE 

The present master thesis describes the development of a multi-camera vision-based 

inventory management system, that allows to control the available materials borrowed by 

the users in the department. 

 

I would like to express my gratitude to Dhanushka Liyanage, Engineer, and Daniil Valme, 

Early Stage Researcher, for the mentoring during the whole process, and to my family 

and friends for the constant support and encouragement.   
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1 INTRODUCTION 

Inventory management systems are fundamental for industry manufacturing facilities, 

warehouses, or companies of any size. By controlling or managing a company’s inventory, 

including all kinds of elements from raw materials to finished products or assets, reliability, 

security, and efficiency are added to the system. Some of the solutions already developed 

use different combinations of technologies, like artificial intelligence, sensory systems, 

computer vision, deep learning, or Radio-Frequency Identification (RFID), among others. 

The resulting systems are usually complex and expensive, only reachable for large 

companies with extensive funding and many means or access to huge databases, usually 

necessary for this type of developments. 

The approach to the development of this project appeared as a response to the demand 

from the department to have a system to control the available materials. Therefore, the 

goal is to implement a multi-camera vision-based inventory management system that will 

create a registry using as data the users with access to the available material and the 

material itself and keeps a record of its use. Although there exist numerous technologies 

with which inventory management systems can be implemented, through the use of only 

vision-based technologies, the system is greatly simplified, and the same functionalities 

can be obtained at a lower price. 

For the purpose of reaching such goal, several sections are implemented within the 

system: 

▪ Development of face recognition technology, that will detect the specific person 

borrowing an item from a limited database of personnel allowed to use the 

equipment in the department. 

▪ Development of an object recognition system for the lab equipment available.  

▪ Development of an object recognition system for the camera kits available, which 

are placed in boxes of similar appearance. 

▪ Implementation of a program that combines all the previous solutions creating the 

inventory management system’s logic, and providing the information collected by 

such system. 

The implementation of the system described requires the collection of several datasets. A 

user’s dataset is needed for the face recognition system, as well as image datasets of both 

objects and fiducial markers, for the detection of the material available, and that must be 

included in the inventory management system. 

Since the system implemented is oriented towards small and medium size companies that 

don’t have access to large resources, and although the collection of several datasets is 
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essential, these would be limited. The implementation of the system with these limitations 

can be considered as the second main objective of the project. Usual systems that require 

facial recognition or object detection algorithms regularly require at least hundreds of 

images of each object or user to be detected, while the described system is aimed to 

perform the same actions with a considerably smaller number of images. 

However, consequently, this has repercussions on the functioning of the system, limiting 

its flexibility. A minimum number of conditions have to be met in order for the system to 

work correctly and variations in the environment may have an influence on the system’s 

performance. 

In chapter 2, the literature review is introduced, with a comparative analysis of the already 

existing similar solutions and the different methodologies available to implement the 

described system as well as the final choice. In chapter 3, the design concept is explained 

and is divided into two sections corresponding to the hardware set up and software 

architecture. In chapter 4, the different experiments and system’s results are analysed 

and finally, in chapter 5, the conclusions and possible future works are stated. 
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2 LITERATURE REVIEW 

2.1 Inventory management 

Inventory management or control is the process of managing a company’s inventory, 

which includes management of elements from raw materials to finished products, as well 

as tools or materials used by such company. This control or management is essential to 

run a business efficiently since both a shortage and an abundance of a company’s 

inventory can be detrimental. Nowadays, inventory management systems are used in 

numerous industrial manufacturing facilities and warehouses. Therefore, inventory 

management is fundamental for companies of any size in order to keep track of all the 

assets belonging to such company, and to base complex decisions regarding when to 

restock inventory, what product amounts to purchase or produce, or what price to pay for 

such products [1]. 

The process or methodology followed in these systems varies from the basic concept of 

keeping a list manually updated by a user (manual tracking) to the use of modern 

technologies that are still under development to keep track of the owned objects. The 

number of methods that can be implemented for tracking inventory is very numerous, and 

the goal of such implementation is to avoid the tedious, repetitive, and lengthy process 

that simpler and more basic methods imply. Another reason for the implementation of 

more complex technologies for inventory tracking is to provide a security factor for these 

systems and avoid misplacement of both the inventory register and the inventories 

themselves. With further developed systems, we are adding reliability, security, and 

efficiency to the system [2].  

Within the technologies used to implement inventory management systems, or other 

services that include in their structure similar working processes, we can find artificial 

intelligence, sensory systems, and machine vision techniques, among others. In 2018, 

Amazon opened the first store in Seattle with Just Walk Out (JWO) technology, Amazon 

Go, a checkout-free shopping system in which the customers can directly exit the store 

and the items taken are automatically charged to the user’s account. With a complex 

system combining computer vision, sensor fusion and deep learning, JWO technology is 

capable of detecting when a product is taken from or returned to the shelves, therefore 

creating a virtual shopping cart [3]. This JWO technology is not only available at Amazon’s 

own stores but also provided to third-party environments. As for the customer 

identification system used, there are two options available: one can be identified with a 

personal card that must be scanned at the entrance of the store, or an individual is 

recognised by the scan of their palm, with the new developed technology Amazon One [4]. 
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Using computer vision algorithms, Amazon has developed a way to capture each’s 

individual’s palm, that can differentiate it from others by recognising the distinct features 

on and below the surface and it uses the information linked to each palm to provide a 

contactless service for the customers. Walmart Inc.’s inventory system uses RFID 

technology to identify the items taken using radio waves. A tag is attached to each product 

for its tracking, which is later scanned at the checkout registers, automatically updating 

the inventory left at the store [5][6]. Finally, in 2022, the first unmanned store is Estonia, 

R-Kiosk Go, was opened at Tallinn University of Technology. This store, with a similar 

operation to that used in Amazon Go, uses a combination of artificial intelligence, several 

sensors, and cameras, focussing on the use of weight sensors to control the items taken 

and without storing biometrics of the customers, therefore avoiding non-compliance with 

data protection regulations [7]. In the following table 2.1, the main characteristics of the 

three systems described above are listed: 

Table 2.1 Comparison of related existing products [3]–[7] 

 AMAZON GO 
WALMART 

INVENTORY 
MANAGEMENT 

R-KIOSK GO 

Tracking of items 

Just Walk Out (JWO) 
technology - computer 

vision, sensor fusion and 
deep learning 

Radio-Frequency 
Identification (RFID) 

Artificial intelligence, 
cameras, and sensors 
(focussing on weight 

sensors) 

Personal 
identification 

Palm scanner (Amazon 

One) 

Scan of credit or debit 
card 

App-based entry 

No 

App-based entry 

Scan of credit or debit 
card 

Technology’s 
purpose 

Multiple product 
unmanned physical store 

Inventory system on 
physical stores 

Multiple product 
unmanned physical 

store 

 

However, the use of combined technologies results in complex and expensive systems, 

unattainable for small businesses or individual users. Amazon, Walmart and R-kiosk are 

all medium to large companies, which have extensive funding for the development of these 

systems, and which have many means to obtain the huge databases necessary in many 

cases for these systems.  

The goal to reach with the development of the system presented in this document is to 

achieve a performance similar to that developed by large companies, using only machine 

vision methods which can provide the necessary information for the implementation of an 

inventory management system, and therefore avoiding the use of additional hardware that 

increases the price and complexity of the system. 
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2.2 Machine vision-based methods for object recognition 

Object recognition is a computer technology whose concept is based on the detection of 

objects of a specific class in digital images or videos. The main goal of the development of 

object recognition technologies is to imitate the human ability or intelligence to recognise 

and locate objects in a matter of moments, using a computer [8].  

It is important to differentiate between detection and recognition. Detection is the process 

of finding relevant objects, of any class, within an image or video, while recognition has 

the additional task of classifying such objects within a determined class, previously defined 

[9]. However, the use of these concepts is not so differentiated nowadays, constantly 

referring to object detection as the recognition of certain objects within a class. Therefore, 

we can define object detection or recognition as the process that involves both locating 

the object within the image, usually rounding it with a bounding box, and classifies such 

object, predicting its class [10]. 

These technologies are in constant development and it’s a highly researched area in recent 

times; there is a wide amount of uses, among which we can find face recognition and 

detection, a topic that will be further studied in the following sections, driving assistance, 

image retrieval, video surveillance and many others. 

The methodology used in the implementation of object recognition systems can be divided 

into two main groups: neural network-based approaches, also referred to as deep learning, 

and non-neural approaches. Machine learning is an Artificial Intelligence (AI) 

encompassing parts of both groups, which is defined as the capability of a machine to 

imitate intelligent human behaviour, with minimal human interference. Deep learning is a 

subset of machine learning, which implies it is also an AI, that uses artificial neural 

networks to mimic the human learning process [11]. In spite of being similar technologies, 

the have a series of key differences that are summarized in the table below: 

Table 2.2 Differences between machine learning and deep learning [11] 

Conventional machine learning Deep learning 

Can train on smaller data sets Needs large amounts of data 

Correction and learning require human 
intervention 

Self-learning from the environment and past data 
or mistakes 

Shorter training and lower accuracy Longer training and higher accuracy 

Simple and linear correlations Non-linear and complex correlations 

Training on a CPU (Central Processing 
Unit) 

Training requires a specialized GPU (Graphics 
Processing Unit) 
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2.2.1  Machine learning methodology 

Machine learning or non-neural approaches for object recognition require first the use of 

a method for feature definition and extraction, called feature detection algorithms, 

followed by a classification method.  

 

Figure 2.1 Machine learning general procedure [12] 

The aim of feature extraction is to extract and represent features in a form adequate for 

the classification stage [13] and there are several methods for feature definition purposes, 

being Histograms of Oriented Gradient (HOG), Viola-Jones object detection framework 

(oriented towards face recognition technologies) and Scale-Invariant Feature Transform 

(SIFT) some of the most popular options.  

HOG uses a feature extractor to identify objects from an image. The procedure is based 

on the extraction of the most necessary information, disregarding any non-important 

information, by the use of gradient orientation. Then, it converts the overall size of the 

image into the form of an array or feature vector. Among its advantages, we can consider 

its simplicity, easy to understand the information and the fact that it can be used to detect 

small-scaled images with less computational power. However, its accuracy might be 

ineffective in certain object detection scenarios with tighter space and is very time-

consuming for complex pixel computation in large images [14]. 

SIFT is also a feature detection algorithm that locates local features in an image known as 

‘keypoints’ with a similar approach as the HOG algorithm, with the main difference and 

advantage that the features extracted are not affected by the size or orientation of the 

image, in other words, they are scale and rotation invariant, which is its main advantage. 

However, the mathematical computations are complex, which makes this algorithm 

computationally heavy and ineffective in low-powered devices [15]. 

As previously mentioned, these feature extraction methods require a secondary step 

known as a classification method and the most popular is Support Machine Vector (SVM), 

a supervised learning algorithm used for automated object detection and characterization. 
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It classifies data into different classes by creating a decision boundary (hyperplane) 

between any two classes to separate them and classify the object [16].  

Although these technologies still provide accurate results and have several advantages, 

like requiring less data and less computing power, with the ongoing development of deep 

learning methods, machine learning has become an obsolete technology unable to solve 

complex AI problems and which require ongoing human intervention. 

 

 

2.2.2  Deep learning methodology 

As previously stated, deep learning is a subset of machine learning that uses artificial 

neural networks to mimic the human learning process and it can perform classification 

processes form images, text, or sound. It is the key technology behind many current 

products in constant development, like autonomous driving or voice control in-home 

devices [12].  

Although deep learning is the most accurate in recognition tasks and was first theorized 

in the 1980s, it has two main limitations, which are the main reasons why this technology 

is now at its peak development and has recently become useful: 

1. Requires a large database of labelled data. 

2. Requires a lot of computing power since it performs non-linear and complex 

correlations; therefore, it needs high-performance GPUs. 

The procedure followed to train deep learning models first uses large databases of labelled 

data and neural network architectures that allow the learning of features from the images 

without the need to manually extract such features, as was required in machine 

algorithms.  

 

Figure 2.2 Deep learning general procedure [12] 

When referring to the use of deep learning techniques for object detection, we can divide 

the possible methodology into two groups, according to the procedure followed in each of 

them: two-stage algorithms, in which we can find Region-based Convolutional Neural 
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Network (R-CNN) and its variations, and one-stage algorithms, which include You Only 

Look Once (YOLO) family and Single Shot Detector (SSD) algorithms.  

In two-stage detectors, first, it’s needed an object region proposal method followed by the 

object classification based on the features extracted from such regions of interest. The 

results usually have a high accuracy; however, having a two-step process means they are 

typically slower than other methods [17]. 

R-CNN is an object detection algorithm whose key concept is region proposals, used to 

locate objects within an image. Therefore, we first need to extract a region of interest or 

region proposal using a chosen algorithm and resize the extracted regions, before passing 

the image through the neural network to classify the object in each region[18][19].  

 

Figure 2.3 R-CNN general procedure [19] 

There are different variants of R-CNN, each of them attempting to improve, optimize or 

speed up the result of the processes within the algorithms.  

Fast R-CNN also uses an algorithm to extract region proposals, but instead of processing 

such regions by cropping or resizing them, it processes the whole image. In R-CNN, each 

region must be classified individually, whereas Fast R-CNN gathers the features extracted 

from each region, creating a convolutional feature map. Since the algorithm isn’t fed with 

all the region proposals but only the feature map, it results in a faster and more efficient 

detection [19][20].  

Faster R-CNN replaces the use of an external algorithm with a region proposal network 

(RPN) to generate region proposals directly in the network. Eliminating the additional 

algorithm results in a faster and better performance process [19][20]. 

On the other hand, we have the YOLO family and SSD, one-stage object detection 

algorithms. The main difference with R-CNN algorithms is that there are no region 

proposals extractions: it predicts and classifies objects in the image directly. This is the 

reason why they are often faster, which makes them suitable for real-time applications. 

However, they also have a main disadvantage, usually unable or having difficulties to 

recognise irregular shaped objects or a group of small objects [17].   
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YOLO is based on a convolutional neural network that predicts not only the bounding 

boxes of the objects, but also the class probabilities for all the objects found in the image 

[21]. The image is divided into grid cells and each grid predicts bounding boxes and the 

parameters shown in figure 2.4 for each of the bounding boxes created are calculated, 

where pc represents the probability of an object being within the grid, (bx, by, bw, bh) stand 

for the center of the bounding box as well as its width and height and p(ci) represents the 

probability of the object belonging to the ith class for the given pc, where n is the number 

of classes. 

 

Figure 2.4 YOLO's bounding box parameters [21] 

Furthermore, the confidence score value (cs) is computed for each bounding box, which 

reflects how likely the box contains an object and how accurate is the bounding box. Next, 

class-specific scores (css) are computed for each bounding box which reflects the 

probability of the object belonging to a specific class and how accurately the box encloses 

the object. Finally, after disregarding some boxes with the help of a threshold set on the 

confidence score values, non-max suppression is applied to discard less relevant bounding 

boxes from all those overlapping, selecting the one with higher correlation or similarity.  

From the initial YOLO algorithm, several variants were developed, introducing different 

changes or innovations in each of them: 

1. YOLOv2 introduces multi-scale training, which allows the algorithm to detect 

objects in images with varying input sizes, which results in better accuracy and 

higher speed [22].  

2. YOLOv3 introduces a new network architecture (Darknet-53), bigger, more 

accurate and faster than previous versions [23].  

3. YOLOv4 introduces several novel techniques that improve the CNN accuracy and 

speed, focusing on the introduction of universal features [24].  

4. YOLOv5, developed by Ultralytics, eliminates Darknet’s limitations (based on C 

language) by being implemented in PyTorch, which made it easier for developers 

to implement different architectures. 

The latest releases in the YOLO algorithms family are YOLOR, YOLOv7 and YOLOv8 

released in 2021, 2022 and 2023 respectively. YOLOR stands for You Only Learn One 

Representation and it is proposed as a combination of implicit (based on past experience) 

and explicit knowledge (based on given data) in a unified network. This new architecture 

is implemented in three steps: kernel space alignment, prediction refinement and a CNN 
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with multi-tasking learning [25]. YOLOv7 surpasses all previous YOLO algorithms as well 

as most other object detection methods, improving in both speed and accuracy. It also 

implies the use of cheaper equipment, faster training and with smaller databases, which 

is a usual limitation or challenge when using deep learning methodology. It provides a 

stronger network architecture with a more effective method for feature integration and 

introduces what is called a trainable Bag of Freebies which increases the accuracy without 

producing losses in speed in real-time object detection [26]. 

Lastly, YOLOv8 is the newest state-of-the-art YOLO algorithm, developed by Ultralytics 

(who also developed YOLOv5), and is considered the highest-performing model and one 

of the easiest YOLO models to train and deploy in different platforms, from CPUs to GPUs 

[27]. Furthermore, it supports all previous YOLO versions, making it a flexible solution; it 

has a high accuracy; provides different developer-convenience features, from a command-

line interface (CLI) to a Python package; and there already exists an extensive community 

around this newly released model, providing access to different resources in case of 

needed guidance [28], [29].  

Finally, also a one-stage object detection algorithm, SSD is a network that merges 

detections predicted from multiscale features. First, it runs a deep learning convolutional 

neural network (CNN) on the image used as input to produce network predictions from 

several feature maps, and then, the algorithm uses such predictions to generate the 

resulting bounding boxes [30].  

 

Figure 2.5 SSD general procedure [31] 

 

 

2.2.3  Evaluation metrics and benchmarking 

There are several metrics that help to evaluate the performance of the developed object 

detection algorithm models, with the goal of selecting the one with the most appropriate 

features for the particular case required. 
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Among the most common metrics for evaluation, with which the speed and accuracy can 

be assessed, we can find Frame Per Second (FPS) and mean Average Precision (mAP). 

FPS expresses how fast an algorithm or model is in processing an input video and 

generating the desired output. On the other hand, the most common metric used is mAP 

and in order to understand how it assesses the chosen approach, a few terms or helper 

metrics have to be previously defined [32], [33]: 

▪ True Positive (TP) is a correct detection of the annotated bounding box. 

▪ False Positive (FP) is an incorrect detection of the annotated bounding box. 

▪ False Negative (FN) is an annotated bounding box missed or not detected. 

▪ True Negative (TN) is a detection of an incorrect bounding box or negative class, 

though is not used as an object detection metric. 

▪ Intersection over Union (IoU) represents the degree of overlap between the 

annotated bounding box (ground truth) and the prediction made, showing the 

accuracy of the predicted bounding boxes. 

From these terms, firstly, we can obtain the precision, defined as the capability of the 

model to identify only significant objects (percentage of predictions that are correct over 

all detections made), and is calculated using the following equation [33]: 

 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2.1) 

where P – precision,  

TP – true positives, 

FP – false positives. 

Secondly, the recall is defined as the capability of the model to detect all annotated 

bounding boxes or ground truths, and is calculated using the following equation [33]: 

 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2.2) 

where R – recall,  

TP – true positive, 

FN – false negative. 

Finally, the Average Precision (AP) is calculated using both the precision and recall and is 

defined as the area under the precision-recall curve (PRC). Consequently, the mean 

Average Precision (mAP) is computed using all the values of the AP for the different classes 

as it’s shown in the equation number 2.3, and it represents the model’s accuracy to detect 

all the classes [33]. Usually, this parameter is evaluated over IoU thresholds, having two 

usual metrics, mAP 0,5, with an IoU of 50% and mAP 0,5:0,95 with an IoU between 50% 

and 95%. 
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 𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=0  (2.3) 

where mAP – mean average precision,  

N – number of classes, 

APi – average precision for each ith class. 

A benchmark is used to assess how an object detection model performs and evaluate the 

results for the metrics previously explained. The process is named benchmarking and it is 

defined as the process of evaluating the performance of a product or process by comparing 

it against those considered to be the best in the industry. In order to do so, there are 

several benchmark datasets already available, that contain a large variety of labelled 

images, with which we can train our model and analyse the results to choose the most 

accurate or appropriate algorithm for the needed use. The most popular and widely used 

datasets for benchmarking object detection algorithms are Microsoft Common Object in 

Context (MS COCO), PASCAL Visual Object Classes (PASCAL VOC), and ImageNet. 

MS COCO is the most used dataset containing over 300 thousand images from everyday 

scenes, with over 90 different types of objects or classes and with a total of 2,5 million 

labelled instances. The dataset is available to be explored through an online interface or 

to be downloaded and used in the platform of the user’s preference [34], [35]. 

PASCAL VOC contains 20 classes of different object categories and each image on the 

dataset has pixel-level segmentation, object class annotations and bounding box 

annotations. The dataset is already divided into three sections: training, validation, and 

testing sets [36]. 

Lastly, ImageNet is the largest out of the mentioned benchmarking datasets, with over 14 

million images. The dataset was publicly released, dividing its contents into manually 

labelled training images and testing images without any annotations on them [37]. 

Using the aforementioned benchmarks and observing the values obtained for the 

evaluation metrics, a comparison between the most relevant deep learning methods for 

object detection is performed. The methods compared are divided into those capable of 

providing a real-time application, with an FPS value higher than 20, and those with lower 

speeds that don’t allow to perform inference on real-time video input. 

First, the R-CNN family is compared as deep learning methods with low speed, not able to 

provide real-time applications. They are assessed on the PASCAL VOC benchmark, with 

different versions from 2007, 2010 and 2012, and the results can be observed in figure 

2.6 below: 
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Figure 2.6 Comparison of R-CNN family algorithms (non-real-time deep learning methods) [33] 

On the other hand, with an FPS value high enough as to be considered suitable for real-

time applications, SSD and different versions of the YOLO family are compared on the 

benchmark MS COCO. As it can be observed in figure 2.7, the values of the mAP 

significantly decrease when dealing with real-time performances. 

 

Figure 2.7 Comparison of real-time deep learning methods [26], [33], [38], [39]  
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2.3 Fiducial marker detection 

Fiducial markers are 2D artificial landmarks used to extract pose estimation of an object. 

Some examples of fiducial markers can be observed in figure 2.6 below: 

 

Figure 2.8 Examples of fiducial markers [40] 

A fiducial marker system usually is composed of the markers, a detection algorithm, and 

a coding system. Since the color and shape of the used markers are defined beforehand 

and stored in a library, fiducial markers can be easily and stably extracted from an input 

image or video [40][41]. The most used fiducial markers are square-based, whose main 

advantage is that the corners of the markers can be easily used to extract the pose and 

location of the object, while the inner region is used for identification. This inner region 

can be a binary code or an arbitrary pattern [42].  

ARToolKit is an open-source project based on square-based fiducial markers with an 

arbitrary pattern inside, which has been extensively used. The markers have a black 

border, and it is the inner region that is stored in the database of the system. Its main 

drawback is that by using template matching approaches for identification of the inner 

region, the amount of false positives obtained is very high and it’s very sensitive to lighting 

conditions when detecting the outer squares [42].  

ArUco markers are one of the most popular and most used fiducial markers nowadays. 

ArUco markers are square-based fiducial markers and each of them is formed by a seven-

by-seven binary grid, each cell called a bit, and a collection of markers is defined as a 

dictionary of ArUco markers. There are several open-source implementations of ArUco 

marker detection on OpenCV and Python [43], and it can also be implemented in 

combination with a deep learning method using a convolutional neural network in order to 

acquire a more reliable and accurate system [44].  
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2.4 Face recognition technologies 

Face recognition is a subset of object recognition, which consists of, through artificial 

intelligence, processing the input face image, extracting the facial features and comparing 

the results with the existing face database to obtain an identification of the individual [45]. 

Since face recognition technologies began in the 1960s, it’s been in constant development 

and their procedure has varied from being based on face structure features (1970-1990), 

to statistical features (1991-2000) to the current and developing technology based on big 

data and complex algorithms (2001-present). It has extensive use in daily applications, 

mostly related to biometric identification technologies, in numerous fields such as politics, 

military, economy and culture [46].   

All face recognition systems involve three key steps or stages: face detection, feature 

extraction and identification. Sometimes these tasks aren’t completely separated from 

each other, performing several tasks at once, but all of them have to be present to 

successfully achieve a working system [47]. 

 

Figure 2.9 Face recognition stages [47] 

Furthermore, there is a very important aspect to be taken into account when developing 

a face recognition system, which is the security and user privacy, needed in any biometric 

software implemented. According to the General Data Protection Regulation (GDPR) that 

came into effect in 2018, the processing of biometric data such as face images for 

identification purposes is prohibited unless there exists an explicit consent of the relevant 

person. Therefore, face images are classified as sensitive data and need to be protected 

to ensure the protection of privacy [48]. 

Among the most relevant and recent technologies developed in this field, we can find 

Amazon Rekognition. It was first released in 2016 as a cloud-based software as service 
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computer vision platform capable of recognising both objects and faces using deep 

learning. It provides a series of pre-trained algorithms on data collected by Amazon, such 

as celebrity recognition, facial attribute detection, text detection and classification in 

images, among others. It also allows user to train their own pre-labelled data set for face 

search and verification [49]. Due to the large amount of data amazon has access to, the 

algorithms are able to correctly learn and identify the required object or person, however, 

if a user desires to create a customized recognition system importing and labelling 

numerous images is required, which is a disadvantage of this product as its price depends 

on its use and therefore on the number of images to be processed. 

DeepFace is an open-sourced face recognition and facial attribute analysis library for 

Python, released in 2014 by Facebook. They developed a deep learning system, creating 

a CNN trained on 4 M images of over 4000 individuals, that approaches human 

performance in face recognition [50][51].  

These systems are state-of-the-art in face recognition methodology; however, as stated 

before, the resources needed in both datasets and computational power are very 

extensive, reason why they are often unattainable to smaller companies or smaller 

projects. On the other hand, there exist numerous projects [52], [53] using the same 

principles, such as convolutional neural networks, implemented in accessible software like 

OpenCV and Python to implement and train a face recognition system with a limited 

database of images and using more reachable hardware [54]. 

The main method for testing the effectiveness and performance of the implemented facial 

recognition system is by means of benchmarking. For that goal, in the specific case of face 

recognition, there are several popular training datasets with which the system can be 

trained in order to compare the results with other implementations. The most used 

datasets in the last four years are LFW (Labeled Faces in the Wild) and VGGFace2. LFW 

contains over 13000 images of faces collected from the web, forming over 5000 identities 

with almost 2000 people with two or more images in the dataset [55]. VGGFace2 is formed 

by around 3,3 million images, divided into classes, representing over 9000 identities. The 

dataset is already divided into data for training and testing [56]. 
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2.5 Influencing factors in machine vision technology 

When developing a machine vision-based system, there are several factors that must be 

taken into consideration, and that might affect the end results of the implemented system. 

These factors can come from the specific component being used in the system, like the 

camera, or from environmental factors in the location, that may or may not be modified. 

Logically, these factors are divers and might affect the overall system differently whether 

its location is outdoor or indoor. In order to reflect in this chapter the information relevant 

to the system to be implemented, only those factors that affect a system in an indoor 

location are specified. In figure 2.10, the factors later explained are summarized: 

 

Figure 2.10 Influencing factors in machine vision technology 

First, regarding those factors that may arise from the specific selection of the camera used 

and its location within the system: 

▪ Resolution: this specific characteristic of the camera used may affect the detection 

and recognition of different items, depending on their type, size and features. 

▪ Angle: the angle at which the camera is placed facing the items that have to be 

detected or recognised can influence enormously in the outcoming result. At an 

incorrect angle, the items’ shape may be distorted, making it very difficult for the 

algorithm to recognise them.  

▪ Position: the location of the camera must also be taken into account. An optimal 

position must be found in order to avoid obstructions from other items in the 

environment. 

▪ Distance: the placement of the camera at an adequate distance from the detected 

items is fundamental. If the items are too far from the camera, the colour or details 

might be faded, making it harder to be recognised. In the opposite case, if the 

camera is too close, the items might be too large to fit on the frame, and if there 
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are several items, some of them might be undetected. The whole area in which the 

items are placed must be within the frame. 

On the other hand, the main external factor that can affect the performance of the 

implemented system is lighting [57], [58]. Lighting is one of the most critical aspects of a 

machine vision-based system. Inadequate lighting can lead to glares, reflections, shadows 

and/or low contrast images, which cause problems like the saturation of the camera, 

undetected features, and distortion inferences (items might appear of different sizes or 

colour to the camera). Most of these effects can be corrected by the use of a proper source 

of lighting, and even the position of such source can lead to a better result. Furthermore, 

changes in the environment, like the background of the setup, can influence and reduce 

such effects. 

However, although the changes in these factors can lead to better results, sometimes the 

situation doesn’t allow for more or any modifications. In that case, image post-processing 

might be needed, through which the negative effects can be corrected before performing 

the detection or recognition of the items, facilitating the task for the algorithm. 

 

 

 

2.6 Conclusion on literature review 

Inventory management systems are an indispensable part of industrial manufacturing 

facilities and warehouses, that add reliability, security, and efficiency. The methodology or 

technologies used for their implementation are very extensive. Large companies with great 

development potential often use combinations of several technologies like artificial 

intelligence, sensory systems, computer vision methods, Radio-Frequency Identification 

(RFID) technology or computer vision with deep learning. Such implementations result in 

complex and expensive systems, unattainable for smaller companies. 

However, the functionalities implemented in those complex systems can be achieved by 

the use of only vison-based approaches. Such an implementation would result in a simpler 

and cheaper system, as we would eliminate the need for any additional hardware, relying 

only on a multi-camera system. 

As the literature is organized, the system is divided into three different sections, each one 

of them with a different goal and oriented to a certain type of recognition: 

▪ For objects that can vary in position and orientation, as well as other set up 

parameters like lighting or background, the implementation of an object detection 
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algorithm based on deep learning methodology is the best approach. This 

implementation allows the system to work on the detection in real-time, allowing 

variances in the placement and orientation of the required object to be detected. 

The specific algorithm is to be chosen, depending on the precision and accuracy 

needed as well as the speed, a very important characteristic when dealing with 

real-time systems. 

▪ When there exist further limitations on the objects to be recognised, like very 

similar appearance or difficult visibility of the entire item, the use of fiducial marker 

detection gives you the advantage of a simpler recognition in spite of the 

limitations. ArUco markers are the most popular option nowadays for such 

implementations, allowing the creation of as many markers as needed and the 

following recognition by the creation of a library that contains them. 

▪ Face recognition is probably the most complicated choice as it’s a developing 

technology, with new advances being discovered daily and there’s an important 

limitation to be taken into account, which is the limited dataset that the system has 

to be implemented with. Due to the complexity of face recognition, deep learning 

solutions tend to show better results. 

The validation and evaluation of the system implemented will be done with real-time 

camera input to test the system in real life and benchmarking for the object and face 

recognition implementations, with web-available datasets, typically used in these 

developments. 
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3 DESIGN CONCEPT 

The implemented system consists of an inventory management application that keeps 

track of the available material, constantly updating a registry list that informs for each of 

the items present in the inventory system, if they have been borrowed or they are 

available, and in the first case, the user that borrowed them. The material available 

consists of two different groups: the lab equipment and the camera kits, each of them 

with a tag displaying a unique fiducial marker. 

With the use of two different external cameras, one dedicated to facial recognition of users 

and the other for the detection of available items from both sets of material, the general 

logic of the system consists of the following: while a user is detected, the system stores 

the name or ID of that user, and the inventory is not updated until the facial detection is 

negative, giving the necessary time for the user to make any necessary changes or 

returns. Once the user is out of the camera frame, the inventory starts to update, 

registering any changes in the available material and assigning the corresponding user as 

the borrower. Furthermore, at the initialization of the system, the user is asked to choose 

one from the two available functionalities: 

1. Registration of a new user into the inventory management application. 

2. Visualization of the inventory information (normal functioning of the system). 

In figure 3.1, a rough outline of the design of the implemented system can be observed: 

 

Figure 3.1 Sketch of the design of the system, implemented using SketchUp 
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3.1 Hardware set up 

There are different hardware components involved in the development of the project and, 

as it was mentioned in the introduction, the approach to this project appeared as a 

response to the demand from the department to have a system to control the available 

materials and, therefore, most of the elements used were already available and there was 

no need for any purchases. The components are divided into camera and computer 

equipment used for the implementation of the detection methodology, and the elements 

to be detected, which together constitute the inventory of the department to be managed 

by the system. 

 

 

3.1.1  Camera equipment 

Due to the objective of implementing the system in the simplest and most accessible way 

for all types of companies, it was decided to use as video input for both the detection of 

tools and boxes and for the recognition of users the Logitech C615 model, a portable 

external webcam with autofocus that is connected via USB. This module has a frame rate 

of 30 FPS with a resolution up to 1920 x 1080 pixels, considered high definition, a diagonal 

field of view of 78º and autofocus and auto light correction features, that allow for the 

procurement of better-quality images even if the environment conditions are slightly 

modified due to external variations.  

 

Figure 3.2 Logitech C615 webcam [59] 

The camera used for object detection is placed on a tripod of the model PrimaPhoto 

PHTRBBK Gear, in which each leg uses a twist lock configuration to extend its length, 

providing a maximum height of 140 cm. The camera and tripod assembly with its 

dimensions and the field of view at the distance at which it is placed from the inventory 

equipment can be seen in figure 3.3. 
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Figure 3.3 Field of View (FOV) of the camera assembly 

The second camera, whose purpose is the face recognition of the users, is placed between 

the shelf containing the camera equipment boxes and the metallic rack in which the tools 

are placed. It is placed at a height of 190 cm, just above the height of the tool rack. This 

means that the camera is tilted slightly downwards to focus on approaching users, an 

action that is made possible by the fold-and-go design of the Logitech C615 webcam, 

which allows 360-degree rotation to position the camera at the best angle and different 

inclinations. 

 

Figure 3.4 Logitech C615 webcam movement design 

The communication between the cameras and the computer device in which the system is 

running is done via USB-type connectors, with the help of an extension cord for easy reach 

from the position in which they are both placed. 
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3.1.2  Computer equipment 

Two different devices were used in the development of the system. A portable computer 

that can be easily positioned in different locations, making the system more flexible 

according to the structure of the environment or if the usual place of its position is 

temporarily occupied by another element. A secondary desktop computer with a GPU was 

initially intended to be used for the training of the YOLOv8 object detection model, since 

the training of object detection algorithms is a computationally intensive task and, 

therefore, can take a long time to be executed on a computer with only a traditional CPU. 

With the use of a GPU, the advantage of parallel processing can accelerate the training 

process and the ability to select a larger batch size results in an improvement of the 

accuracy of the model. However, the secondary computer had a GPU NVIDIA Quadro 

P4000, which is designed for professional graphics and visualization, not for machine 

learning and AI processes and therefore did not result in such a considerable improvement 

in training time. On the other hand, Google Colab, a cloud-based platform for running and 

developing machine learning models, provides with a Tesla T4 GPU, which is designed 

primarily for machine learning applications and, therefore, a more suitable choice for 

algorithm training. In the following table 3.1, the specifications of each device are listed 

and the resources available in Google Collab are listed: 

Table 3.1 Computer equipment specifications 

 Processor RAM GPU 

Portable 

computer 

Intel(R) Core(TM) i7-8550U 

CPU @ 1,80GHz   1,99 GHz 
8,00 GB - 

Desktop 

computer 

Intel(R) Xeon(R) W-2123 

CPU @ 3,60GHz 3,6 GHz 
32,00 GB 

NVIDIA Quadro 

P4000 

Google Colab - 32,00 GB Tesla T4 

 

 

3.1.3  Inventory elements 

The last elements of the hardware set up are those objects that form part of the inventory 

that the system is managing. These are divided into two groups: the tools and the camera 

equipment, which is stored inside boxes. 

Among the tools can be found wrenches, hammers, pliers, different colour tapes, etc. All 

tools are placed in a metallic blue rack placed on the wall, using adjustable hooks that can 

be moved within the rack to place the tools at the desired location. Figure 3.5 shows a 

possible arrangement of the tools within the rack and its dimensions. 
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Figure 3.5 Possible arrangement of the tools (implemented using SketchUp) 

On the other hand, the camera equipment available in the laboratory is stored in black 

plastic boxes of similar appearance. The ArUco tags are attached to the top of the box, 

where the opening system is located, since they are placed horizontally on their side on 

the shelf, as it is shown in figure 3.6. 

 

Figure 3.6 Camera equipment with ArUco tags 
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3.2 Software architecture 

The development of the software architecture of the system implemented is divided into 

three different sections that correspond to the three types of detections, which are then 

combined into one program, in which the overall functioning of the inventory management 

system is achieved. 

 

 

3.2.1  Object detection (tools) 

The tools available in the laboratory are items that can vary in position and orientation, 

therefore, the optimal method for their detection is using an object detection algorithm 

based on deep learning. As stated in chapter 2, the YOLO family algorithms are among the 

most innovative with promising results, proven by renowned benchmarks such as the 

COCO dataset. The newest state-of-the-art YOLO model and the chosen method for the 

detection of tools, is YOLOv8, developed by Ultralytics and launched in January of 2023.  

YOLOv8 counts with five different versions of different sizes which make each of them 

optimal for specific applications. These are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and 

YOLOv8x, sorted from smallest to largest. As it is shown in figure 3.7, the precision and 

accuracy of the versions increases as the size of the model increases; however, at the 

same time, the speed of each version decreases. The larger models take longer times for 

both training and inference speeds. 

          

 

Figure 3.7 Comparison of YOLOv8 versions: YOLOv8n (n), YOLOv8s (s), YOLOv8m (m), YOLOv8l 
(l) and YOLOv8x (x) 
A – Size comparison (mAP vs. parameters); B – Speed comparison (mAP vs. latency) [39] 

Therefore, for an application in which real-time detection of the objects is needed, the 

suitable versions would be YOLOv8n and YOLOv8s, corresponding to the nano and small 

sizes, and in this project, the small version is used. The process of preparing and training 
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the algorithm on a custom dataset it’s carried out in different steps, whose results will be 

later analysed in chapter 4. 

Image dataset generation: the first step consists of the recollection of several images 

of each tool to be detected by the system, in different orientations and positions. In deep 

learning object detection methods, a larger number of images guarantees better results. 

However, since the system is aimed to be developed with limited resources, the number 

of images per object is set to 15-20 plus a few additional ones of the metallic rack with all 

the available tools placed on it. With 10 different tools, the total number of images in the 

dataset is 226. In figure 3.8, a few examples of images from the dataset, of a specific tool 

and of the full rack can be observed: 

 

Figure 3.8 Dataset images example 

A – Tool at system’s set up distance; B – close-up tool; C – all tools at system’s set up distance 

Labelling of images: once the dataset is completed, the images have to labelled to 

indicate the presence of the objects of each class in the images. All objects have to be 

labelled, as precisely as possible. This step is performed with the help of the platform 

Roboflow, a cloud-based computer vision platform that allows users to manage datasets, 

train models and deploy them, among other features. Figure 3.9 shows a labelling example 

where all the tools are present in the metallic rack: 

 

Figure 3.9 Example of labelling of images 
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Pre-processing: the first technique applied to the images it’s its resizing to a smaller 

size, which results in smaller size files and, therefore, faster training. The images should 

maintain their aspect ratio, and since initially they have a size of 1920x1080 pixels, with 

an aspect ratio of 16/9, the final resize value is set to 640x360 pixels. 

Data augmentation: is a technique used to increase the size and variety of an image 

dataset by the creation of new instances out of existing data samples. There are several 

techniques that can be performed, among which, the ones used for the tool’s dataset are 

flip (horizontal, vertical), 90º rotation (clockwise, counterclockwise), brightness (between 

-30% and +30% for brighten and darken modifications), and blur (up to 1,5 pixels). The 

free version of the Roboflow platform supports the growth of the dataset up to 3 times its 

original size after applying data augmentation, with a final dataset size of 586 images. 

Figure 3.10 shows examples of brightness and blurriness data augmentation techniques: 

 

Figure 3.10 Examples of data augmentation techniques 
A – original image; B – 30% darken image; C – 30% brighten image; D – 1.5 pixels blur 

Dataset exportation: once the dataset is labelled and the data augmentation applied, it 

can be exported into different formats available in Roboflow. YOLOv8 format consists of a 

text file for each image that has an object (if no object is labelled in an image, there isn’t 

a text file), that contains the class and bounding box data of the labelled objects. 

Furthermore, an additional data file is included that specifies the location of the training 

and validation data (both images and labels) and the number of classes and their 

corresponding names.  

Training: the next step is the training of a YOLOv8 model on a custom dataset using the 

specified hyperparameters. This process involves adjusting those parameters to improve 

the model’s ability to precisely identify the categories and positions of the objects within 

the frame, since the setting and tuning of the different values can affect the model’s 
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performance, speed, and accuracy. The most important hyperparameters, those that have 

been analysed for the optimal implementation of the system are: 

▪ Model: it is the path to the model file, in this case, the small version YOLOv8s. 

▪ Data: path to the data file that is included when the dataset is exported. 

▪ Epochs: it is the number of iterations a dataset is trained for. If the number of 

iterations is too low, the model may not be able to learn the important features of 

the dataset and result in underfitting. On the other hand, if the number of epochs 

is too high, the model can develop the ability to memorize the training data and 

incorrectly perform on unseen data, resulting in overfitting. 

▪ Batch: the batch size is the number of images that are processed in a single pass 

during training.  A larger batch size means that more images are processed in 

parallel and, therefore, it can lead to faster training; however, it also requires more 

memory, which the system might not be able to provide, and may result in 

overfitting. The choice of the right size after experimenting with different batch 

sizes and evaluating the performance of the model can improve the stability of the 

model. 

▪ Device: it is the device to run the training on, where it should be specified if a GPU, 

and which one, if there are multiple available, is being used during the training of 

the model. 

▪ Patience: it is the number of epochs without any observable improvement to wait 

before early stopping the training of the model.  This parameter helps to set the 

right number of epochs, since if the specified number of patience value is reached, 

it means that the number of epochs set is too high and might result in overfitting. 

Validation: the validation data is a subset of the training data that is used to evaluate 

the performance of the model being trained and therefore, the correct election and tuning 

of the training hyperparameters. After each training epoch, the model’s performance is 

assessed by using the validation data as unseen data for the model. The validation data 

must be independent of the training data and is obtained by dividing the final dataset 

version from Roboflow, after labelling and performing data augmentation. The division 

percentage depends on the number of images available,  and as in this project the dataset 

is limited, the training and validation data is divided into 80% and 20% respectively, to 

have a bigger training dataset, resulting in 540 images for training and 46 for validation.  

The training experimentation to set and tune the values of the hyperparameters, along 

with the result analysis and testing of the real-time detection of tools of the trained 

YOLOv8s model, are analysed in chapter 4. 
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3.2.2  ArUco marker detection (boxes) 

The camera equipment available in the laboratory is stored in boxes of similar appearance 

and size, therefore making the process of their detection more challenging. The chosen 

methodology for this task is the detection of ArUco markers placed in each of the boxes 

as unique tags, each of them linked to the material available inside the container.  

An ArUco marker is a square fiducial marker composed of a black border, that allows a 

fast detection of the marker within an image, and a binary matrix inside, whose codification 

allows the identification of each marker. The markers used for a specific application are 

called a dictionary of markers, which consists of a list of the ArUco markers and their 

codifications. There are two parameters to consider when choosing or generating a 

dictionary of markers: dictionary size, which is the number of markers in the dictionary, 

and marker size, which is the number of bits in each marker. When choosing the dictionary 

to use in the present application, both parameters were analysed as they influence the 

performance of the detection. First, as the maximum number of boxes in the inventory 

system is set to 10, the dictionary size was set to 50, which is the lowest number of 

markers present in a predefined dictionary. A choice of a dictionary with a higher number 

of markers would slow down the system since it has to find a match for each binary matrix 

detected from all the markers present in the dictionary. Secondly, the marker size was set 

to 4x4 bits, which along with the size of the image, set to 125 pixels, allows for the system 

to recognize the marker at the distance and resolution that the set up provides. In chapter 

4, the different experiments performed in order to find the most suitable marker dictionary 

are shown. In figure 3.11, the markers printed and used for the identification of each box 

can be observed: 

 

Figure 3.11 ArUco markers IDs linked to each box 
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The detection process of ArUco markers within an image return a list of detected markers, 

and for each of them, the position of its four corners in the image and the id of the marker, 

that allows its identification. This detection process is divided into two different steps: 

1. Detection of potential markers: the image is analysed in order to find square shapes 

that have the potential to be an ArUco marker. 

2. Detection of correct markers: by analysing the codification of the binary matrix, 

the real markers are selected. 

 

 

3.2.3  Face recognition (users) 

As it was mentioned in chapter 2, face recognition is one of the most challenging tasks, 

especially in view of the limited dataset condition, which makes it difficult to correctly train 

an object detection algorithm adapted to the users. Therefore, the methodology 

implemented is based on traditional computer vision techniques which require fewer 

resources for their development but still produce a satisfactory end result which fulfils the 

necessary tasks. The implementation of this section relies on the development of two main 

elements: a face detector and a face recognizer, that are used in the process as shown in 

figure 3.12: 

 

Figure 3.12 Steps in face recognition implementation 

Both of the mentioned tools are available in the computer vision library OpenCV (Open 

Source Computer Vision). There are several algorithms or methods available in the library 

for both the detector and recognizer, and the selected methodology consists of face 

detection using Haar Cascades and face recognition using Local Binary Patterns 

Histograms. 

Face detector 

Haar feature-based cascade classifiers are an object detection method that can be adapted 

for face detection, which was first introduced by Paul Viola and Michael Jones in 2001.  A 

Haar-like feature involves evaluating neighbouring rectangular regions within a detection 

window, where the intensities of pixels in each region are summed, and the difference 

between these sums is calculated. This value indicates a certain characteristic in that 

particular area of the image. 

Face detection Face database
Training of the 

recognizer
Face 

recognition
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Figure 3.13 Haar-like features [60] 

Then, the cascade classifier is trained on several positive and negative images and later 

used to detect the desired object in other images. OpenCV contains many pre-trained 

classifiers, among which we can find classifiers for faces, eyes, or smiles. 

This approach is based on machine learning, where a cascade function is trained on several 

positive and negative images and later used to detect the desired object in other images. 

Face recognizer 

Local Binary Patterns Histograms (LBPH) is a feature extraction method that focuses on 

local regions of an image to avoid the high amount of input data and obtain a more robust 

recognizer. The main functioning of Local Binary Pattern (LBP) consists of summarizing 

the local structure of an image by labelling the pixels, examining the surrounding pixels 

and determining if they surpass a specific threshold. The resulting binary value is used as 

a label for that pixel. When it is combined with histograms, the images can be represented 

with a simple data vector. 

 

Figure 3.14 LBPH feature extraction method [61] 

There are different steps taken in the use of the algorithm: 

1. Set parameters. The LBPH employs four parameters, namely: radius, neighbours, 

grid X and grid Y. Radius is the distance from the central pixel used to create the 

circular local binary pattern. Neighbours refer to the number of sample points 

considered in such pattern. Grid X and grid Y represent the number of cells in the 

horizontal and vertical directions (the higher the number of cells, the finer the grid 

and therefore, a resulting feature vector with higher dimensions). 



49 

2. Training the algorithm. The next step consists of the collection of a dataset of the 

user that we want to recognize and the assignment of an identifier to each image 

(a number of a name). All images of the same person must have the same 

identifier.  

3. Application of the LBPH operation. The binary value of the pixels is obtained for 

each of the images and the histograms are extracted, resulting in data vectors that 

represent the characteristics of the image. 

4. Face recognition. For each input image or frame, the same process is applied to 

obtain an individual histogram which is later compared to the pre-trained algorithm 

in order to find the closer match, that returns the identification of the user. 

 

 

3.2.4  Programme functioning 

The implemented program is based on object-oriented programming and is written in 

Python. The set is formed by four different classes and a main program where the general 

logic of the system is developed. The classes correspond to the three types of detections 

already mentioned, corresponding to the tools, boxes, and users of the inventory system, 

and an additional supporting class. Each of the classes is next described, with the main 

attributes and methods needed for the correct understanding of the functioning of the 

program. 

The class for tool detection has two main attributes corresponding to the YOLOv8 model 

loaded (already pre-trained) and an empty tools list that will contain the objects detected 

by the algorithm and used later in the main program. The only method that this class 

contains, obtains the detections made by the algorithm and filters them by only adding to 

the tools list the object with the highest confidence score of each class detected. Therefore, 

if multiple objects of the same class are detected, only the one with the highest probability 

of belonging to such class with be forwarded as a tool detected to the main program. 

The class for ArUco detection has four important attributes: the ArUco dictionary used 

in the application, the parameters for the detection of the fiducial markers, a list 

corresponding to the boxes of camera equipment that each marker identifier is linked to, 

and an empty list where the detected boxes are stored for their later use in the main 

program. The class contains two methods, one for the detection of the markers in which 

the identifiers of the present markers within the frame are linked with the box they 

correspond to and stored in the list, and a secondary method that allows for the graphical 

visualization of the detection of the markers. 
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The class for face recognition has three main attributes: the Haar cascade classifier 

that acts as the face detector, already pre-trained with the frontal face feature detector 

available from OpenCV; the face recognizer based on Local Binary Patterns Histograms 

(LBPH) and a list with the user’s names that are being used in the system, so that each 

face recognized identifier can be linked with the name of the user. The three methods 

correspond to the recollection of the user’s images for the creation of a dataset, the 

training of the LBPH recognizer using the dataset previously created and finally, the face 

recognition method, in which using the pre-trained detector and recognizer, the system 

returns the name of the user present in the frame. 

Finally, an additional class for frame configuration is created, that aims to set the 

frames that are used in each of the above detections: for face recognition, the whole frame 

is used (as the user can move along the whole field of view of the camera) while for tool 

and box detection, the input is divided into two different areas to avoid the unnecessary 

search for a certain type of objects where they cannot be found. Figure 3.15 shows the 

division of the frames for tools and boxes: 

 

Figure 3.15 Division of frames 

In figure 3.16, a summary of the different classes, their attributes and methods, can be 

observed: 

 

Figure 3.16 Summary of program's classes 
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The main program is first initialized by the creation of four different objects of the different 

classes previously explained, capturing the input video from both webcams, and creating 

an inventory dictionary variable. This dictionary has three different keys corresponding to 

the tools, boxes, and users of the system. For each of the tools and boxes, there are two 

variables that indicate the availability of the object within the inventory system and, if not 

available, the name of the user that borrowed the item. The third key corresponds to the 

users registered in the system and, for each of them, the items in their possession at the 

time. 

 

Figure 3.17 Structure of inventory dictionary variable 

Then, the user is asked to choose between the functionalities available in the program, 

first one being the registration of a new user into the inventory management system, 

second one, the normal functioning of the system that allows obtaining the information 

about the items available or not, and third one, normal functioning to obtain the 

information and the additional visualization of the detections or recognitions. In figure 

3.18, the flowchart or this first section of the program is shown, including the steps 

involved when choosing the first functionality, the addition of a new user to the system: 



52 

 

Figure 3.18 Flowchart of functionality choice and addition of new user 

On the other hand, if the user chooses option number two, the normal functioning of the 

inventory management system is set into motion. As briefly stated at the beginning of the 

present chapter, the logic implemented consists of updating the inventory registry only 

when the user is no longer in the camera frame, therefore giving the necessary time for 

the user to make any necessary changes or returns. As long as a face is detected, the 

system will only save the identification of the user, to later be set as the borrower of the 

tool or box that is no longer being detected. The updating of the inventory is done in a 

very similar way for both the tools and the boxes: by detecting these objects, two different 

lists are obtained, the objects detected in the image and those that are not detected and 

for each of the items in this list the correct values of the availability and the person 

borrowing the item are assigned. At the same time, the user’s key of the inventory 

dictionary is filled with the items that each user is borrowing at the time. In figure 3.19 it 

is shown the flowchart of the general logic behind the inventory management program: 



53 

 

Figure 3.19 Flowchart of general logic behind inventory management  
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4 EXPERIMENTATION AND RESULTS 

The development of this project was initially considered as a response to the demand from 

the department to have a system to control the available materials, and a first basic 

approach was implemented during the Machine Vision course as the final project of the 

subject. This project consisted in the detection of different tools using the YOLOv5 model 

in a different set up than the one implemented in the present system and allowed the 

familiarisation with the algorithms of the YOLO family. 

The overall workflow and approximate time periods of each section’s implementation of 

the system can be observed in the following figure 4.1: 

 

Figure 4.1 Gantt chart of the system's implementation 

This chapter is divided into the results and analysis of each section of the system’s 

implementation, finalising with an overall analysis of the complete system’s functioning. 

 

 

 

4.1 Results of object detection (tools) 

This section of the project was started earlier, during the development of the Machine 

Vision course final project, and such implementation can be considered a first prototype. 

As previously stated, the object detection algorithm used was YOLOv5, another version of 

the YOLO family, also developed by Ultralytics as the finally used YOLOv8. Even though 

there are some significant differences between the two algorithms, the realization of this 

project served to become familiar with the object detection algorithms, being the first 

approach to this methodology, and facilitated the future implementation of the system 

proposed in this document. The Machine Vision project had the same functionality as the 

tool detection section of this system, although smaller in size, as only 3 tools were trained 
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to be detected and with less system flexibility, as almost no variation in the environment 

was allowed for the system to function correctly. 

The training results of the system reached a mAP for an IoU between 0,5 and 0,95 of 

0,963 for the hacksaw, 0,908 for the pliers, 0,951 for the wrench and an overall value for 

all classes of 0,941. The training process observing the changes in the mAP 0,5:0,95 

parameter over the training iterations can be observed in figure 4.2: 

 

Figure 4.2 Machine vision's project mAP results 

Although numerically the results are satisfactory, as the system was trained very strictly 

in terms of variations within the positions and orientations of the tools, the visual results 

when testing the system in real-time using the webcam, show the existing limitations. 

Figure 4.3 shows the result of running inference of the model when the tools are placed in 

the same positions as the training dataset (picture A) and the misdetections when the 

tools are placed in different positions or partially hidden (pictures B and C). 

  

Figure 4.3 Inference runs of Machine Vision's project 
A – correct detection; B, C – misdetections 
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The training and validation process for the new object detection algorithm using YOLOv8 

was studied and analysed more extensively, and numerous tests were carried out until the 

optimal model was found. As previously stated, the implementation of the object detection 

used for tools using the YOLOv8 algorithm requires a series of steps. The preparation of 

the dataset was already explained and analysed in chapter three, however, although the 

final result of the balance between training data and validation data is 80% and 20% 

respectively, since the system is being implemented with a limited and relatively small 

dataset, as an initial approach, the division of 90% and 10% was attempted, in order to 

have a higher number of images used for training. After starting the training experiments 

with this balance of data, it became clear that the amount allocated for validation was 

insufficient as the results showed that the model did not converge at any time to a 

relatively stable value (even if it was low) and thus it is not possible to assess the 

performance of the model, in order to choose the optimal hyperparameters for the final 

training. Furthermore, initially, the amount of data augmentation techniques introduced 

was higher, which resulted in overfitting, as the model became too specialized to the 

augmented data and lost the ability to function correctly when new unseen data was 

assessed. Figure 4.4 shows the mAP results for an example of the previously explained 

case, using a batch size of 16: 

  

Figure 4.4 mAP results for an unbalanced model of training and validation data 

Once the new and final version of the dataset was prepared, with fewer data augmentation 

techniques and a training-validation balance of 90% and 10% respectively, a series of 

training attempts were made to determine the optimal values for the hyperparameters of 

the batch size and epochs. First, to conclude on the batch size to be used, the model was 

trained with a low number of iterations (50) and the batch size was increased gradually, 

resulting in four different training with batch values of 8, 16, 32 and 64. After each training, 

the model’s performance was assessed to determine the optimal value, comparing the 
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values of different parameters: training time, mAP 0,5, mAP 0,5:0,95 precision and recall. 

In table 4.1, a summary of the training results for batch selection is shown: 

Table 4.1 Metrics results of batch selection trainings 

Batch Epochs 
Time 

(mins) 
mAP 0,5 

mAP 

0,5:0,95 
P R 

8 50 14,04 0,995 0,921 0,973 0,996 

16 50 14,04 0,995 0,931 0,973 0,999 

32 50 14,7 0,995 0,938 0,985 1 

64 50 16,2 0,995 0,932 0,98 1 

 

The first value discarded for use corresponds to the highest one, with a batch size of 64. 

As already mentioned, a larger batch size requires more memory to be processed, and in 

this case, with a batch size of 64, the system, although capable of performing the set 

number of iterations and obtaining the highest mAP value, is at the limit of its memory 

capacity and will have trouble or even not be able to complete a higher number of 

iterations. A higher number of samples in each pass means that the model requires more 

memory to store the larger batch which slows down the training process, as it can also be 

seen in the time results, being the slowest training. The lowest value corresponding to a 

batch size of 8, although being one of the two fastest in training, obtains the worse results 

in mAP, precision, and recall. Furthermore, the graphs showing the training process show 

a slow and unsteady convergence into the final values of the parameters and is therefore 

also discarded for the final training. For the last two values of 16 and 32, the results in all 

parameters are slightly better in the second case but nevertheless, it was decided that 

both batch sizes would be further analysed in the process of choosing the optimal number 

of iterations, and asses which one results on the best performance model.  

For the selection of the number of epochs, the model was attempted to be trained with 

1000 iterations, and with the use of the patience parameter (number of epochs to monitor 

for lack of progress before stopping the training early) the optimal value could be 

determined. The initial value of 1000 iterations is chosen since when training with a limited 

dataset, it is suggested to train for a large number of epochs. If the training is stopped 

early because the patience value is reached, which is set to 50, the model can be retrained 

with a lower number, using as a reference the iteration at which the initial training was 

stopped. If, on the other hand, the training reaches its end, concluding the 1000 iterations, 

and the performance of the model is still showing gradual improvement, the model needs 

to be retrained with an even higher number of epochs. This process is to be repeated until 

the optimal performance of the model is found. In table 4.2, a summary of the training 

results for iteration selection is shown, using both of the batch sizes chosen: 
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Table 4.2 Metrics results for epochs selection 

Batch Epochs 
Time 

(mins) 
mAP 0,5 

mAP 

0,5:0,95 
P R 

16 1000 45,36 0,995 0,932 0,964 1 

16 150 41,94 0,995 0,945 0,989 1 

32 1000 79,5 0,995 0,936 0,987 1 

32 250 70,98 0,995 0,946 0,982 1 

 

The first try was carried out with a batch size of 16, and after 169 iterations, with a training 

time of 45 mins and 21 seconds, it was stopped early since the patience value was reached. 

The best results were obtained at epoch 119 and therefore the model was retrained once 

again with an iteration value of 150 epochs. For the batch size of 32, the same situation 

occurred, and the training was stopped early at 283 epochs, obtaining the best results at 

iteration number 233. It was therefore retrained with 250 epochs. The final training for 

both batch sizes obtains the same results in recall and very similar results in mAP 0,5:0,95, 

with a very small advantage when using a batch size of 32. However, the precision value 

was notably better for the smaller bath size, which means the model is more likely to 

correctly identify true positives and less likely to generate false positives. Nevertheless, 

as the obtained metrics are very similar for both models, they were both further tested, 

checking their performance when running inference on the trained tools, using a real-time 

video feed from the set up’s camera. Although the camera was placed at the usual distance 

from the equipment, and the frame included the ArUco marker’s area to simulate the 

normal use of the system, the pictures have been cropped to avoid unnecessary content 

that does not contain any relevant information. Figure 4.5 contains four examples of 

detections using the model with batch size 16. As it can be observed in pictures A, B and 

C the model is able to detect the tools in different positions and placements within the 

rack, and picture D shows that the addition of untrained tools into the rack doesn’t disturb 

the results and no detection failures occur.  
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Figure 4.5 Inference detections for batch size 16 
A – normal placement; B, C – different orientations and positions; D – additional tools placed 

On the other hand, figure 4.6 shows the results for the detection results for the bigger 

batch of size 32, and in this case, a few misdetections can be observed. Pictures A and B 

show that the model is able to detect the tools in their usual orientations, even with a few 

minor changes, and doesn’t perform any misdetections when untrained tools of very 

different structures are placed in the rack. However, picture C shows that when introducing 

a similar-looking object (red tape), a wrong detection is produced, labelling it as yellow 

tape as well. Furthermore, some misdetections are produced, not being able to detect the 

wrench when it is placed horizontally instead of its usual orientation. 

 

Figure 4.6 Inference detections for batch size 32 
A – normal placement; B – additional different tools; C – additional similar tool 
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Even though the smaller batch size model already showed better performance results, a 

final test was carried out, calculating the average inference speed for 150 detections for 

both models. The model with batch 16 resulted in an average speed inference of 301,69 

ms and the model with batch 32 had a slower average speed inference with a value of 

304,93 ms. For this and all the previous reasons already explained, the final model chosen 

corresponds to a batch size of 16, trained for 150 epochs. In the following figure 4.7, the 

evolution of the different metrics during training for such model are shown: 

 

Figure 4.7 Metrics results for batch 16 and 150 epochs 

Furthermore, when the training is completed, we can obtain other information about the 

training results, obtained using the validation dataset. Figure 4.8 shows the confusion 

matrix of the classification model, where the columns represent the actual classes and the 

columns the predicted classes of the objects. Each cell represents the amount of times an 

object of a particular class was correctly or incorrectly classified by the model. As it can 

be observed, the confusion matrix shows a perfect result for the trained model.  
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Figure 4.8 Confusion matrix for class classification (batch 16, 150 epochs) 

Finally, the training and validation losses can be analysed. There are three types of losses 

calculated: box losses, class losses and Detection Loss Function (DFL). The box losses 

assess how well the model predicts the bounding box for the detected objects, the class 

losses measure how well the model predicts the class of the object within the bounding 

box and the detection loss function is the total loss of the model, calculated using the two 

previous losses. The model’s losses are calculated for both the training and validation 

dataset, and the optimal fit is that both losses decrease over time with a small or no 

difference between them, which means the model is achieving a good fit to the training 

data, and also working correctly when new unseen data is introduced. Figure 4.9 shows 

the comparison of the three different losses for training and validation: 
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Figure 4.9 Training and validation losses (batch 16, 150 epochs) 
A – box loss; B – class loss; C – DFL loss 

The box loss shows a bigger difference between the validation and training (picture A); 

however, the class losses are very similar to each other (picture B) and therefore, the total 

losses or DFL have quite similar values, with a small difference between training and 

validation, and the model’s losses analysis concludes with a good result. 

It should be noted that although the results are generally satisfactory, and the model 

works correctly when real-time video inference is performed, it is trained and, above all, 

validated with a very limited dataset of only 46 images. Since one of the main objectives 

of this project is the use of a limited dataset, and that the tool detection system works 

correctly, it is a very satisfactory result. However, it is important to consider that the 

performance results of the trained YOLOv8 model may not generalize well to larger 

datasets or different use cases. 

In appendix 1, the metrics and losses result graphs for all the different trainings are shown, 

along with the confusion matrices. 

 

 

 

4.2 Results of ArUco detection (boxes) 

The experimentation performed using ArUco markers is divided into two different steps: 

first, the choice of a marker dictionary, suitable for the needed application at the given 

conditions; and secondly, the correct detection of such markers when they are placed 

within the system's set up. 
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For the first step, a series of marker’s dictionary examples were printed, of different 

marker size and image size, measured in pixels, to determine which one is the most 

suitable with the camera’s resolution, lighting conditions, and geometrical characteristics 

present in the real system set up. Equal to the number of markers that can be used in the 

system, sets of 10 markers were printed. From the beginning, considering the distance 

from the camera to the placement of the boxes and the camera’s resolution, it was 

determined that the image size of the markers had to be equal to 150 pixels, as any 

smaller size would not be recognisable for the system at such given conditions, and as any 

larger size image could not be placed correctly in the boxes. Therefore, the testing was 

performed with images of 150 pixels, and the marker size (number of bits in each marker) 

varies from 4x4 to 7x7 bits. Figures 4.10, 4.11, 4.12 and 4.13 show the results for the 

marker dictionaries for the marker size of 4x4, 5x5, 6x6 and 7x7 respectively, placed at 

different locations within the system’s working frame, and where the misdetections have 

been marked in a red bounding box. 

 

Figure 4.10 Testing of marker dictionary size 4x4 

The 4x4 bits markers were detected in most of the occasions, however, a there were a 

few misdetections as it can be seen in pictures A and B. Having only 16 bits of information, 

the 4x4 markers have less redundancy. If a part of the markers is undetected, the system 

doesn’t have enough information to conclude the ID of the marker using only the remaining 

bits, therefore, it’s not robust enough to correctly detect all of the markers.  

 

Figure 4.11 Testing of marker dictionary size 5x5 
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Figure 4.12 Testing of marker dictionary 6x6 

The marker dictionaries with 5x5 and 6x6 bits resulted in perfect detections, with all of 

the markers being detected in both cases and placed in different positions within the frame. 

Having 25 and 36 bits of information respectively, they have higher redundancy and error 

correction capabilities in case some parts of the markers aren’t correctly seen. Both of 

them are further tested below to select the final marker dictionary used. 

 

Figure 4.13 Testing of marker dictionary 7x7 

Finally, the 7x7 markers, although they should result in higher redundancy and error 

correction capabilities, showed the most misdetections out of the tested markers. This is 

due to the resolution of the camera that is not able to distinguish the different patterns, 

being the size of the bits smaller and therefore resulting in a blurrier image. 

The markers dictionaries of 5x5 and 6x6 bits are then tested using separated markers 

placed in different locations in the frame, and checking if once a marker is removed, it is 

no longer detected, and the rest of the markers still are. Figure 4.14 shows the detection 

for 5x5 markers and figure 4.15 shows the detection for 6x6 markers: 
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Figure 4.14 Detection of 5x5 bits markers 

 

Figure 4.15 Detection of 6x6 bits markers 

As it can be seen in the figures above, the 5x5 markers result in a perfect performance of 

the system with no misdetections and the 6x6 markers, although detecting correctly in 

most of the cases, still have some misdetections. Therefore, the markers of size 5x5 bits 

are the final used for the inventory management system, having a good combination 

between the number of bits of information (that provides more redundancy and error 

detection capabilities) and having the right bit size for the resolution of the camera used. 

 

 

 

 

 

4.3 Results of face recognition (users) 

As stated in the previous chapter, the face recognition task of the system is performed in 

three different steps: recollection of an image dataset of the user, training of the 

recognizer and lastly, detection of faces within the frame and its recognition to perform 

the identification of the user.  
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The recollection of the image dataset consists of first, transforming the image into 

grayscale and using the face detector, only the portion of the image that contains the face 

of the user is saved. Once the user has entered the identifier number through the terminal, 

the system captures a certain number of images. This number can be configured, and in 

the system is set to 50, which although it may seem a high number, it only takes the 

system 12 seconds to capture that number of images. The user is asked to slowly rotate 

the head to capture different angles of the face, to add more flexibility to the recognition 

system. Figure 4.16 shows the head rotation performed by the user and a few examples 

of images from a user’s dataset, in different positions. 

 

Figure 4.16 A - Rotation of the user's head, B - Example images from dataset 

Once the dataset is completed, the recognizer is trained with such images, and the user’s 

identification can be performed through face recognition. In figure 4.17 the recognition of 

the same previous user can be observed, in a normal position as the user approaches to 

borrow an item: 

 

Figure 4.17 User's recognition in a normal position 
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Different scenarios were tried out, in order to test the flexibility and performance of the 

system, and to be able to identify its limitations, when slight changes are introduced like 

light variations, different appearances of the user or the orientation of the user’s head and 

the position within the frame. In all cases, the user is looking at the objects that can be 

borrowed, instead of looking at the camera, to simulate the situation that would occur in 

the real system.  

In figure 4.18, the results with the same light adjustment but different head orientations 

and positions within the frame are shown. Pictures A through D show the user in the center 

of the frame looking at different sides. As it can be observed, in both cases looking left 

and right, if the head is rotated at a slight angle, the recognition is still successful (pictures 

A and C). However, if the angle is more severe, both the recognition and detection of the 

face fail, with the system no longer being able to identify the user (pictures B and D). On 

the other hand, when the user is located at the edges of the frame, shown in pictures E 

through H, the results are successful, with the system being able to correctly identify the 

user, only if the user's head is slightly oriented towards the centre, closer to the origin of 

the image (pictures E and G). If the user is positioned with the head facing toward the 

edges of the frame, the system isn’t able to perform the user’s identification (pictures F 

and H). 
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Figure 4.18 Face recognition in different conditions  
A, B, C, D – user’s head rotations; E, F, G, H – user’s position in the edges of the frame 

In figure 4.19, the same light conditions are applied, but the user’s appearance is changed. 

The detections are in most cases satisfactory but as it can be observed in picture B, in 

some cases with even a small rotation of the user’s head, the recognition fails. On the 

edges of the frame (pictures E and F) the system works correctly, as before if the user is 

facing slightly toward the camera. 
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Figure 4.19 Face recognition in user's different appearance  
A, B, C, D - user's head rotations; E, D - user's position in the edges of the frame 

Lastly, the system’s performance was tried with the lowest light condition available at the 

place of the system’s set up. As it can be observed in figure 4.20, the results are mostly 

unsatisfactory, with the system having major problems in recognising facial features 

(pictures B and C) unless the user is facing toward the middle of the frame (picture A) in 

which case, the system identifies the user correctly. Furthermore, with these conditions, 

the system in certain cases is able to detect that a face is found in the frame, but it is 

classified as unknown, as it cannot relate the features to those based on the dataset with 

which the recogniser is trained (picture D). 
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Figure 4.20 Face recognition with a different light condition 

Overall, the results of the face recognition implementation are considered satisfactory 

when the lights conditions are appropriate and as long as the user is in a minimum part 

facing towards the centre of the frame, which is the usual situation that occurs when the 

user is picking up items from the available area. Although it may not recognise the user 

continuously at all times, due to the structure of the designed code, the system will store 

the name of the user once it is recognised for the first time and will be assigned as the 

borrower of the items that are no longer within the frame after the user’s action is done. 

 

 

 

 

4.4 Results of inventory management system 

The final implementation of the inventory management system consists of: tool detection 

by YOLOv8 small algorithm trained with a batch size of 16 and for 150 epochs; boxes 

detection using ArUco markers of 5x5 bits and image size of 150 pixels; and face detection 

and recognition using a Haar feature-based cascade classifier and LPBH respectively. Once 

each section was correctly implemented and tested and using the program logic previously 

explained in chapter 3, the functioning of the whole system was tested. To that end, the 

set up shown in figure 4.21 was implemented and several scenarios were simulated 

consisting of the following: 
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1. The whole inventory is available. 

2. A user borrows two tools (screwdriver and wrench) and a box of camera equipment 

(box 0). 

3. The user returns one of the tools (wrench). 

4. The user returns the remaining items in her possession. 

 

Figure 4.21 Final testing set up 

At the beginning, the inventory equipment is all accounted for, and both all of the tools 

and boxes are within the working frame and detected. Figure 4.22 shows the real-life 

detection of the inventory equipment, both tools and boxes in pictures A and B 

respectively: 

 

Figure 4.22 Full inventory detection 

For the given scenario, and as no face is detected with the second camera, the inventory 

system is updating and shows the following information: 
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Figure 4.23 Inventory information displayed when all equipment is available 

Once a user enters the frame of the second camera, the updating of the inventory is 

stopped, and the message “User detected. Waiting for user to finish” is displayed. At the 

same time, the system performs face recognition on the face detected and saves the name 

to be set as the borrower for any tools or boxes that might be missing after the user leaves 

the frame. Figure 4.24 shows the user’s recognition when borrowing the tools: 

 

Figure 4.24 User's face recognition when borrowing equipment 

Once the user is no longer within the frame, the message “User has left the system.” is 

displayed, and the updating of the inventory list is resumed. In this scenario, the user 

takes a tool (screwdriver) and a box (number 0) as it can be seen in the corresponding 

detections in the following figure 4.25: 

 

Figure 4.25 Detection of available equipment 
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And once the update is restored, the information shown in the system is the following: 

 

Figure 4.26 Inventory information displayed when equipment is borrowed 

After that, the user is placed once more within the frame, the updating is stopped while 

the tools and box are returned, and the system starts updating and shows a full inventory 

available as in figure 4.23 when the user leaves the system’s frame. 
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5 SUMMARY 

5.1 Conclusions 

Inventory management systems are of great importance for industrial manufacturing 

facilities, warehouses and companies of any size. Inventory management plays a critical 

role in adding reliability, security and efficiency to the system, controlling all elements 

present, from raw elements to finished products or assets used and produced by the 

company. Current solutions use combinations of different technologies such as artificial 

intelligence, sensory systems, computer vision, deep learning or RFID, among others. 

These solutions result in complex and expensive systems, which are only suitable for 

companies with extensive resources, and are unaffordable for smaller companies. 

In this thesis, a multi-camera vision-based inventory management system of greater 

simplicity and therefore, suitable for smaller companies with fewer resources has been 

implemented. The approach to the development of this project appeared to meet the 

department’s need for a system to control and monitor the available materials and the 

resulting system creates a registry keeping a record of the users’ use of such equipment. 

For that purpose, four goals were initially set, corresponding to the main sections 

implemented in the project: development of a face recognition application to detect the 

user, development of two object recognition systems for the lab equipment and the camera 

kits, and finally, implementation of a program that combines all the previous solutions and 

provides the information collected by the inventory system.  

Each section was researched, analysed, and tested in order to find the most suitable 

methodology, considering the particular conditions of the system’s environment as well as 

the material available for its implementation. The final implementation of the inventory 

management system consists of: tool detection by YOLOv8 small algorithm trained with a 

batch size of 16 and for 150 epochs; boxes (camera equipment) detection using ArUco 

markers of 5x5 bits and image size of 150 pixels; and face detection and recognition using 

a Haar feature-based cascade classifier and LPBH respectively. Finally, the functioning of 

the whole system was tested. Several scenarios were simulated in which, starting with a 

full inventory, a user borrows certain equipment, and it is later returned.  

After the different tests carried out both in each section separately and in the system as a 

whole, and as it is shown in this work, the different objectives have been met and the 

results are satisfactory, with the system being able to keep the inventory managed and 

updated. Logically, the scope of the project is limited and moreover, this project has been 

developed as a concept idea. Therefore, further implementations would need to be made 

in order to be used in real life on a regular basis. Furthermore, since one of the main 
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objectives was to keep the developed system as simple as possible, the resources are 

limited and the results, although satisfactory, are bounded by the conditions of the 

environment. In this sense, in the following section, some future works are proposed to 

enhance the capabilities and give more flexibility to the system that has been developed. 

 

 

 

5.2 Future works 

As previously stated, the current system is bounded by its limited flexibility, and therefore 

a series of future implementations are proposed for its further development. Firstly, the 

current set up is not the most convenient for the department and the working area where 

the equipment is available, as it is in the middle of user movement zones and secondly, 

the use of a tripod means that it can be accidentally moved at any time, which would affect 

the functioning of the system. Hence, a rough idea for a structure to hold the camera 

monitoring the equipment is proposed, attached to the roof of the laboratory as it counts 

with metal bars already installed, where it could be easily placed. In this way, the material 

could be monitored continuously without the risk of the camera disturbing users or being 

displaced and unable to perform its function. Figure 5.1 shows an approximate outline of 

the proposed structure: 

 

Figure 5.1 Outline of the proposed future structure 

Also related to hardware material, the use of a camera with higher resolution would greatly 

facilitate the object’s detection and user’s recognition. Furthermore, if the camera can be 

connected to the system without the need for any physical connections to the computer, 

an independent system could be obtained, and the inventory could be managed remotely 

from different locations.  

On the other hand, as future implementations related to the software, different ideas are 

proposed for each developed section. The implementations for tool detection and user 
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recognition are both constrained by the goal of using limited resources, which means only 

a certain number of images are used for each section. The accuracy and performance of 

the system would notably improve only with an increase in the number of images used, 

training each corresponding algorithm in a more flexible manner. However, if this objective 

is to continue to be met, different detection or recognition methods could be combined to 

determine with greater certainty the classification of an object or the identification of a 

user. The detection of ArUco markers used in the boxes of camera equipment is the most 

accurate implementation, whose greatest weakness is the reflections caused by both 

artificial and natural lighting. As a future implementation to improve this situation, two 

methods are proposed: the use of a coverage of the markers with an anti-reflective 

material or image processing to reduce said reflections to a minimum. 

Finally, the addition of a user-friendly interface as well as the implementation of the 

program with a reliable memory to store the information gathered by the inventory 

management system, would make it more interactive and appropriate for use in real life 

and on a regular basis.  
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KOKKUVÕTE 

Varude haldamise süsteemid on väga olulised tööstuslikes tootmisrajatistes, ladudes ja 

igas suuruses ettevõtetes. Varude haldamine mängib kriitilist rolli süsteemi töökindluse, 

turvalisuse ja tõhususe lisamisel, kontrollides kõiki olemasolevaid elemente alates 

toorelementidest kuni valmistoodete või ettevõtte poolt kasutatavate ja toodetud 

varadeni. Praegused lahendused kasutavad erinevate tehnoloogiate kombinatsioone, nagu 

tehisintellekt, sensoorsed süsteemid, arvutinägemine, süvaõpe või RFID. Nende 

lahenduste tulemusel valmivad keerulised ja kallid süsteemid, mis sobivad vaid suurte 

ressurssidega ettevõtetele, väiksematele ettevõtetele pole need aga jõukohased. 

Käesolevas lõputöös on kasutatud mitme kaameraga visioonipõhist laohaldussüsteemi, 

mis on lihtsam ja seetõttu sobilik väiksematele ja väiksemate ressurssidega ettevõtetele. 

Selle projekti arendamise lähenemisviis vastas osakonna vajadusele olemasolevate 

materjalide kontrollimise ja jälgimise süsteemi järele. Sellest tulenev süsteem loob 

registri, mis hoiab arvestust selliste seadmete kasutajate kasutustegevuste kohta. Selleks 

seati algselt neli eesmärki, mis vastavad projekti põhiosadele: näotuvastusrakenduse 

väljatöötamine kasutaja tuvastamiseks, kahe objektituvastussüsteemi väljatöötamine 

laboriseadmete ja kaamerakomplektide jaoks ning lõpuks programmi kasutusele võtmine, 

mis ühendab kõik varasemad lahendused ja annab inventuurisüsteemi kogutud teabe. 

Iga sektsiooni uuriti, analüüsiti ja testiti, et leida kõige sobivam metoodika, arvestades nii 

süsteemi keskkonna eritingimusi kui ka selle rakendamiseks saadaolevat materjali. Varude 

haldamise süsteemi lõplik juurutamine koosneb tööriista tuvastamisest YOLOv8 väikese 

algoritmi abil, mis on koolitatud partii suurusega 16 ja 150 epohhi jaoks; kastide 

(kaameraseadmete) tuvastamisest, kasutades ArUco markereid suurusega 5x5 bitti ja pildi 

suurust 150 pikslit; ning näotuvastusest ja tuvastamisest, kasutades vastavalt Haari 

funktsioonipõhist kaskaadiklassifikaatorit ja LPBH-d. Lõpuks testiti kogu süsteemi 

toimimist. Simuleeriti mitmeid stsenaariume, mille puhul kasutaja laenab alates täielikust 

laoseisust teatud seadmed ja tagastab need hiljem. 

Pärast erinevaid teste, mis on viidi läbi nii igas jaotises eraldi kui ka süsteemis tervikuna 

ja nagu käesolevas töös on näidatud, on erinevad eesmärgid täidetud ja tulemused 

rahuldavad, kuna süsteem suudab hoida laoseisu hallatuna ja ajakohasena. Loogiliselt 

võttes on projekti maht piiratud ja pealegi on see projekt välja töötatud ideeideena. 

Seetõttu tuleks reaalses elus regulaarseks kasutamiseks teha täiendavaid rakendusi. 

Lisaks, kuna üks peamisi eesmärke oli hoida väljatöötatav süsteem võimalikult lihtsana, 

on ressursid piiratud ja tulemused, kuigi rahuldavad, on piiratud keskkonnatingimustega. 

Selles mõttes pakutakse järgmises jaotises välja mõned tulevased tööd, et täiustada 

võimalusi ja anda väljatöötatud süsteemile rohkem paindlikkust.  
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APPENDICES 

Appendix 1 Metric’s results for YOLOv8 trainings 

A1.1 Results for batch selection trainings 

 

Figure A1.1 Precision results for batch selection trainings 

 

Figure A1.2 Recall results for batch selection trainings 
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Figure A1.3 mAP 0,5 results for batch selection trainings 

 

Figure A1.4 mAP 0,5:0,95 for batch selection trainings 
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Figure A1.5 Training losses for batch selection trainings 
A – Box loss; B – class loss; C – DFL loss 
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Figure A1.6 Validation losses for batch selection trainings 
A – Box loss; B – class loss; C – DFL loss 

 

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

C
la

s
s
 l
o

s
s

Epochs

Batch selection results -Val/class loss

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

D
F
L
 l
o

s
s

Epochs

Batch selection results -Val/DFL loss

batch8 batch16 batch32 batch64

B

 

C 



88 

      

      
Figure A1.7 Confusion matrices for batch selection trainings 
A – Batch 8; B – batch 16; C – batch 32; D – batch 64 

 

 

A1.2 Results for batch size 32 and 250 epochs 

 

Figure A1.8 Metrics results (batch 32, 250 epochs) 
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Figure A1.9 Training and validation losses (batch 32, 250 epochs) 

A – box loss; B – class loss; C – DFL loss 
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Figure A1.10 Confusion matrix (batch 32, 250 epochs) 
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