
TALLINN UNIVERSITY OF TECHNOLOGY
SCHOOL OF ENGINEERING
Department of Electrical Power Engineering and Mechatronics

MULTI-CAMERA VISION-BASED INVENTORY

MANAGEMENT SYSTEM

MITME KAAMERAGA NÄGEMISPÕHINE VARUDE

HALDAMISE SÜSTEEM

MASTER THESIS

Student: Celia Ramos López-Contreras

Student code: 214184MAHM

Supervisor: Dhanushka Liyanage, PhD

Co-supervisor:

Daniil Valme, Early Stage

Researcher

Tallinn, 2023

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20.…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20.….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20.… .

Chairman of theses defence commission: ...

 /name and signature/

Non-exclusive licence for reproduction and publication of a
graduation thesis1

I, Celia Ramos López-Contreras

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

“Multi-camera vision-based inventory management system.”

supervised by Dhanushka Liyanage

co-supervised by Daniil Valme

1.1 to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in

the digital collection of the library of Tallinn University of Technology until expiry of the

term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the
student's application for restriction on access to the graduation thesis that has been signed by the
school's dean, except in case of the university's right to reproduce the thesis for preservation purposes
only. If a graduation thesis is based on the joint creative activity of two or more persons and the co-
author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis

consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the
non-exclusive licence, the non-exclusive license shall not be valid for the period.

ABSTRACT

Author: Celia Ramos López-Contreras Type of the work: Master Thesis

Title: Multi-camera vision-based inventory management system

Date: 18.05.2023 90 pages (the number of thesis pages

including appendices)

University: Tallinn University of Technology

School: School of Engineering

Department: Department of Electrical Power Engineering and Mechatronics

Supervisor(s) of the thesis: Dhanushka Liyanage, PhD; Daniil Valme, Early Stage

Researcher

Consultant(s):

Abstract:

The purpose of this thesis is to develop a multi-camera vision-based inventory

management system, that is simple and suitable for smaller companies with a low number

of resources. The approach to the development of this project appeared to meet the

department’s need for a system to control and monitor the available materials and the

resulting system creates a registry keeping a record of the users’ use of such equipment.

For that purpose, four goals were initially set, corresponding to the main sections

implemented in the project: development of a face recognition application to detect the

user, development of two object recognition systems for the lab equipment and the

camera kits, and finally, implementation of a program that combines all the previous

solutions and provides the information collected by the inventory system.

The final implementation consists of: tool detection by YOLOv8 small algorithm trained

with a batch size of 16 and for 150 epochs; boxes (camera equipment) detection using

ArUco markers of 5x5 bits and image size of 150 pixels; and face detection and recognition

using a Haar feature-based cascade classifier and LPBH respectively. Finally, the

functioning of the whole system was tested by the simulation of different scenarios after

which, it is shown that the different objectives have been met and the results are

satisfactory, with the system being able to keep the inventory managed and updated.

Keywords: Inventory management, object detection, YOLOv8, ArUco markers, facial

recognition.

LÕPUTÖÖ LÜHIKOKKUVÕTE

Autor: Celia Ramos López-Contreras Lõputöö liik: Magistritöö

Töö pealkiri: Mitme kaameraga nägemispõhine varude haldamise süsteem

Kuupäev: 18.05.2023 90 lk (lõputöö lehekülgede arv koos lisadega)

Ülikool: Tallinna Tehnikaülikool

Teaduskond: Inseneriteaduskond

Instituut: Elektroenergeetika ja mehhatroonika instituut

Töö juhendaja(d): Dhanushka Liyanage, PhD; Daniil Valme, Early Stage Researcher

Töö konsultant (konsultandid):

Sisu kirjeldus:

Lõputöö eesmärgiks on välja töötada mitme kaameraga visioonil põhinev

laohaldussüsteem, mis on lihtne ja sobilik väikese ressursiga väiksematele ettevõtetele.

Selle projekti arendamise lähenemisviis näis vastavat osakonna vajadusele

olemasolevate materjalide kontrollimise ja jälgimise süsteemi järele ning sellest tulenev

süsteem loob registri, mis hoiab arvestust selliste seadmete kasutajate kasutamise

kohta. Selleks seati algselt neli eesmärki, mis vastavad projekti põhiosadele:

näotuvastusrakenduse väljatöötamine kasutaja tuvastamiseks, kahe

objektituvastussüsteemi väljatöötamine laboriseadmete ja kaamerakomplektide jaoks

ning lõpuks juurutamine. programmi, mis ühendab kõik varasemad lahendused ja annab

inventuurisüsteemi kogutud teabe.

Lõplik teostus koosneb: tööriista tuvastamisest YOLOv8 väikese algoritmi abil, mis on

koolitatud partii suurusega 16 ja 150 epohhi jaoks; kastide (kaameraseadmete)

tuvastamine, kasutades ArUco markereid suurusega 5x5 bitti ja pildi suurust 150 pikslit;

ning näotuvastus ja tuvastamine, kasutades vastavalt Haari funktsioonipõhist

kaskaadiklassifikaatorit ja LPBH-d. Lõpuks testiti kogu süsteemi toimimist erinevate

stsenaariumide simuleerimisega, mille järel on näidatud, et erinevad eesmärgid on

täidetud ja tulemused on rahuldavad ning süsteem suudab hoida laoseisu hallatuna ja

ajakohasena.

Märksõnad: Varude haldamine, objektide tuvastamine, YOLOv8, ArUco markerid,

näotuvastus.

THESIS TASK

Thesis title in English:

Thesis title in Estonian:

Multi-camera vision-based inventory management

system.

Mitme kaameraga nägemispõhine varude haldamise

süsteem.

Student: Celia Ramos López-Contreras, 214181MAHM

Programme:

Type of the work:

Supervisor of the thesis:

Co-supervisor of the thesis:

(company, position and contact)

Validity period of the thesis

task:

MAHM, Mechatronics

Master Thesis

Dhanushka Liyanage, PhD

Daniil Valme, Early Stage Researcher

Validity period is given by supervisor

Choose an item. Choose an item.

Submission deadline of the

thesis:

18.05.23

__________________ __________________ ____________________

Supervisor (signature) Student (signature) Head of programme (signature)

Co-supervisor (signature)

1. Reasons for choosing the topic

An inventory system is the process by which you track and keep record at all times of the

materials or goods owned any entity, be it an individual or a group or company. Being able

to access this information is crucial to implement an organized system and is nowadays

used in numerous industrial manufacturers applications, commercial solutions, and

warehouses of many companies.

The operation or methodology used in these systems varies from the basic concept of

keeping a list manually updated by a user, to the use of modern technologies that are still

under development to keep track of the owned objects. Among some renown examples,

Amazon Go is a checkout-free shopping system that uses a complex system combining

computer vision, sensor fusion and deep learning to be able to detect when a product is

taken from or returned to the shelves [3]. Walmart’s inventory system uses a Radio-

Frequency Identification (RFID) technology to identify the items taken using radio waves

[5], [6]. R-Kiosk Go, the first unmanned stored in Estonia, uses a combination of artificial

intelligence, several sensors (specially weight sensors) and cameras to control the items

taken by each customer [7].

Using a combination of different technologies results in complex and expensive systems.

The goal to reach with the development of the system presented in this document is to

achieve a performance similar to that developed by large companies, using only machine

vision methods, and therefore avoiding the use of additional hardware that increases the

price and complexity of the system, making the system accessible for smaller businesses

or companies.

2. Thesis objective

The goal is to create a multi-camera vision-based inventory management system, that will

create a registry using as data the users with access to the available material and the

material itself and keeps a record of its use.

3. List of sub-questions:

1. Development of face recognition technology, that will detect the specific person

borrowing an item, from a limited database of personnel allowed to use the

equipment in the department.

2. Development of an object recognition system for the lab equipment available.

3. Development of an object recognition system for the camera kits available, which

are placed in boxes of similar appearance.

4. Implementation of a user-friendly interface that allows easy access to the

information collected by the inventory system.

4. Basic data:

For the implementation of the thesis work several datasets will be collected. First, the

user’s database would be needed, for the implementation of the face recognition system.

Secondly, an image dataset of the selection of lab equipment available in the department

as well as the camera equipment, which in this particular case, will be recognised from a

personalized tag placed on each box, therefore needing the tag’s information recollection.

Both of the last elements will be obtained from the machine vision’s department, according

to the material available.

5. Research methods

In order to achieve the best possible implementation of the system proposed first, a

comprehensive literature review will be carried out to study existing technologies and

products and perform their comparison, with the objective of choosing the best possible

methodology. Such literature review will be divided into different sections, each of them

focusing in one specific related topic: inventory management systems, face recognition

technologies and object detection methods, concluding with a summary of the results

obtained and a consequent selection of the project’s methodology.

When analysing the results from the different sections implemented for the system, data

from the image database (used for both training and testing of the model) as well as real

time images from the camera system will be used for each section.

6. Graphical material

A number of graphical elements will be included throughout the document, although it is

not yet possible to determine whether they will be mostly in the body of the document or

in the appendixes.

Among other things, it’ll be found different tables with technical requirements or

characteristics, workflow diagrams, schemes of the hardware set up implemented as well

as pictures of the prototype and set up environment.

7. Thesis structure

The document will be structured in the following way:

1. Introduction

2. Literature review

2.1. Inventory management

2.2. Machine vision-based methods

2.3. Fiducial marker detection

2.4. Face recognition technologies

2.5. Literature review conclusion

2.6. Aim of the work

3. Creating the solution

3.1. Collection of data

3.2. Implementation of methodology

3.3. Validation

3.4. Testing the results

4. Conclusion

8. References

The type of sources used are mostly research articles, reports and books. Some examples

of such are:

T. Diwan, G. Anirudh, and J. v. Tembhurne, “Object detection using YOLO: challenges,

architectural successors, datasets and applications,” Multimed Tools Appl, 2022, doi:

10.1007/S11042-022-13644-Y.

Z. Zhang, Y. Hu, G. Yu, and J. Dai, “DeepTag: A General Framework for Fiducial Marker

Design and Detection,” IEEE Trans Pattern Anal Mach Intell, no. 01, pp. 1–1, May 2022,

doi: 10.1109/TPAMI.2022.3174603.

B. Li, J. Wu, X. Tan, and B. Wang, “ArUco Marker Detection under Occlusion Using

Convolutional Neural Network,” Proceedings - 5th International Conference on

Automation, Control and Robotics Engineering, CACRE 2020, pp. 706–711, Sep. 2020, doi:

10.1109/CACRE50138.2020.9230250.

P. A. Harsha Vardhini, S. P. R. D. Reddy, and V. P. Parapatla, “Facial Recognition using

OpenCV and Python on Raspberry Pi,” 2022 International Mobile and Embedded

Technology Conference, MECON 2022, pp. 480–485, 2022, doi:

10.1109/MECON53876.2022.9751867.

9. Thesis consultants

10. Work stages and schedule

No. Task description Deadline

1. Introduction and literature review chapters 02.12.22

2. Thesis extended proposal submission 21.02.23

3. Selection of object and face recognition methods 15.01.23

4. Implementation of lab equipment recognition

system

20.02.23

5. Implementation of camera’s equipment

recognition system

05.03.23

6. Implementation of face recognition system 26.03.23

No. Task description Deadline

7. Combination of technologies for prototype and

design of user-friendly interface

09.04.23

8. Testing the prototype, optimization 20.04.23

9. Summarizing results and writing report 18.05.23

10. Submission thesis document 26.05.23

11. Thesis defences 01.-05.06.23

11

CONTENTS

CONTENTS ... 11

List of figures .. 13

List of tables ... 15

PREFACE .. 16

List of abbreviations .. 17

1 INTRODUCTION .. 18

2 LITERATURE REVIEW ... 20

2.1 Inventory management ... 20

2.2 Machine vision-based methods for object recognition 22

2.2.1 Machine learning methodology ... 23

2.2.2 Deep learning methodology .. 24

2.2.3 Evaluation metrics and benchmarking ... 27

2.3 Fiducial marker detection ... 31

2.4 Face recognition technologies ... 32

2.5 Influencing factors in machine vision technology ... 34

2.6 Conclusion on literature review ... 35

3 DESIGN CONCEPT ... 37

3.1 Hardware set up ... 38

3.1.1 Camera equipment .. 38

3.1.2 Computer equipment ... 40

3.1.3 Inventory elements ... 40

3.2 Software architecture .. 42

3.2.1 Object detection (tools) ... 42

3.2.2 ArUco marker detection (boxes) ... 46

3.2.3 Face recognition (users) .. 47

3.2.4 Programme functioning.. 49

4 EXPERIMENTATION AND RESULTS .. 54

12

4.1 Results of object detection (tools) ... 54

4.2 Results of ArUco detection (boxes) .. 62

4.3 Results of face recognition (users) .. 65

4.4 Results of inventory management system .. 70

5 SUMMARY .. 74

5.1 Conclusions .. 74

5.2 Future works .. 75

KOKKUVÕTE ... 77

LIST OF REFERENCES .. 78

APPENDICES... 84

13

List of figures

Figure 2.1 Machine learning general procedure [12] .. 23

Figure 2.2 Deep learning general procedure [12] .. 24

Figure 2.3 R-CNN general procedure [19] ... 25

Figure 2.4 YOLO's bounding box parameters [21] .. 26

Figure 2.5 SSD general procedure [31] .. 27

Figure 2.6 Comparison of R-CNN family algorithms (non-real-time deep learning

methods) [33] .. 30

Figure 2.7 Comparison of real-time deep learning methods [26], [33], [38], [39] 30

Figure 2.8 Examples of fiducial markers [40] .. 31

Figure 2.9 Face recognition stages [47] ... 32

Figure 2.10 Influencing factors in machine vision technology 34

Figure 3.1 Sketch of the design of the system, implemented using SketchUp 37

Figure 3.2 Logitech C615 webcam [59] .. 38

Figure 3.3 Field of View (FOV) of the camera assembly .. 39

Figure 3.4 Logitech C615 webcam movement design ... 39

Figure 3.5 Possible arrangement of the tools (implemented using SketchUp) 41

Figure 3.6 Camera equipment with ArUco tags .. 41

Figure 3.7 Comparison of YOLOv8 versions: YOLOv8n (n), YOLOv8s (s), YOLOv8m (m),

YOLOv8l (l) and YOLOv8x (x).. 42

Figure 3.8 Dataset images example ... 43

Figure 3.9 Example of labelling of images ... 43

Figure 3.10 Examples of data augmentation techniques ... 44

Figure 3.11 ArUco markers IDs linked to each box ... 46

Figure 3.12 Steps in face recognition implementation .. 47

Figure 3.13 Haar-like features [60] ... 48

Figure 3.14 LBPH feature extraction method [61] .. 48

Figure 3.15 Division of frames .. 50

Figure 3.16 Summary of program's classes .. 50

Figure 3.17 Structure of inventory dictionary variable .. 51

Figure 3.18 Flowchart of functionality choice and addition of new user 52

Figure 3.19 Flowchart of general logic behind inventory management 53

Figure 4.1 Gantt chart of the system's implementation .. 54

Figure 4.2 Machine vision's project mAP results .. 55

Figure 4.3 Inference runs of Machine Vision's project ... 55

Figure 4.4 mAP results for an unbalanced model of training and validation data 56

Figure 4.5 Inference detections for batch size 16 .. 59

14

Figure 4.6 Inference detections for batch size 32 .. 59

Figure 4.7 Metrics results for batch 16 and 150 epochs .. 60

Figure 4.8 Confusion matrix for class classification (batch 16, 150 epochs) 61

Figure 4.9 Training and validation losses (batch 16, 150 epochs) 62

Figure 4.10 Testing of marker dictionary size 4x4 .. 63

Figure 4.11 Testing of marker dictionary size 5x5 .. 63

Figure 4.12 Testing of marker dictionary 6x6 .. 64

Figure 4.13 Testing of marker dictionary 7x7 .. 64

Figure 4.14 Detection of 5x5 bits markers .. 65

Figure 4.15 Detection of 6x6 bits markers .. 65

Figure 4.16 A - Rotation of the user's head, B - Example images from dataset 66

Figure 4.17 User's recognition in a normal position .. 66

Figure 4.18 Face recognition in different conditions ... 68

Figure 4.19 Face recognition in user's different appearance 69

Figure 4.20 Face recognition with a different light condition 70

Figure 4.21 Final testing set up ... 71

Figure 4.22 Full inventory detection ... 71

Figure 4.23 Inventory information displayed when all equipment is available 72

Figure 4.24 User's face recognition when borrowing equipment 72

Figure 4.25 Detection of available equipment.. 72

Figure 4.26 Inventory information displayed when equipment is borrowed 73

Figure 5.1 Outline of the proposed future structure ... 75

Figure A1.1 Precision results for batch selection trainings ... 84

Figure A1.2 Recall results for batch selection trainings ... 84

Figure A1.3 mAP 0,5 results for batch selection trainings ... 85

Figure A1.4 mAP 0,5:0,95 for batch selection trainings .. 85

Figure A1.5 Training losses for batch selection trainings ... 86

Figure A1.6 Validation losses for batch selection trainings .. 87

Figure A1.7 Confusion matrices for batch selection trainings 88

Figure A1.8 Metrics results (batch 32, 250 epochs) ... 88

Figure A1.9 Training and validation losses (batch 32, 250 epochs) 89

Figure A1.10 Confusion matrix (batch 32, 250 epochs) .. 90

15

List of tables

Table 2.1 Comparison of related existing products [3]–[7] 21

Table 2.2 Differences between machine learning and deep learning [11] 22

Table 3.1 Computer equipment specifications ... 40

Table 4.1 Metrics results of batch selection trainings.. 57

Table 4.2 Metrics results for epochs selection ... 58

16

PREFACE

The present master thesis describes the development of a multi-camera vision-based

inventory management system, that allows to control the available materials borrowed by

the users in the department.

I would like to express my gratitude to Dhanushka Liyanage, Engineer, and Daniil Valme,

Early Stage Researcher, for the mentoring during the whole process, and to my family

and friends for the constant support and encouragement.

17

List of abbreviations

2D 2 dimensional

AI Artificial Intelligence

CLI Command-Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DFL Detection Loss Function

FN False Negative

FOV Field of View

FP False Positive

FPS Frame Per Second

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

HOG Histograms of Oriented Gradient

IoU Intersection over Union

JWO Just Walk Out

LBP Local Binary Pattern

LBPH Local Binary Patterns Histograms

LFW Labelled Faces in the Wild

mAP mean Average Precision

MS COCO Microsoft Common Object in Context

OpenCV Open-Source Computer Vision

PASCAL VOC PASCAL Visual Object Classes

R-CNN Region-based Convolutional Neural Network

RFID Radio-Frequency Identification

SIFT Scale-Invariant Feature Transform

SSD Single Shot Detector

SVM Support Machine Vector

TN True Negative

TP True Positive

YOLO You Only Look Once

18

1 INTRODUCTION

Inventory management systems are fundamental for industry manufacturing facilities,

warehouses, or companies of any size. By controlling or managing a company’s inventory,

including all kinds of elements from raw materials to finished products or assets, reliability,

security, and efficiency are added to the system. Some of the solutions already developed

use different combinations of technologies, like artificial intelligence, sensory systems,

computer vision, deep learning, or Radio-Frequency Identification (RFID), among others.

The resulting systems are usually complex and expensive, only reachable for large

companies with extensive funding and many means or access to huge databases, usually

necessary for this type of developments.

The approach to the development of this project appeared as a response to the demand

from the department to have a system to control the available materials. Therefore, the

goal is to implement a multi-camera vision-based inventory management system that will

create a registry using as data the users with access to the available material and the

material itself and keeps a record of its use. Although there exist numerous technologies

with which inventory management systems can be implemented, through the use of only

vision-based technologies, the system is greatly simplified, and the same functionalities

can be obtained at a lower price.

For the purpose of reaching such goal, several sections are implemented within the

system:

▪ Development of face recognition technology, that will detect the specific person

borrowing an item from a limited database of personnel allowed to use the

equipment in the department.

▪ Development of an object recognition system for the lab equipment available.

▪ Development of an object recognition system for the camera kits available, which

are placed in boxes of similar appearance.

▪ Implementation of a program that combines all the previous solutions creating the

inventory management system’s logic, and providing the information collected by

such system.

The implementation of the system described requires the collection of several datasets. A

user’s dataset is needed for the face recognition system, as well as image datasets of both

objects and fiducial markers, for the detection of the material available, and that must be

included in the inventory management system.

Since the system implemented is oriented towards small and medium size companies that

don’t have access to large resources, and although the collection of several datasets is

19

essential, these would be limited. The implementation of the system with these limitations

can be considered as the second main objective of the project. Usual systems that require

facial recognition or object detection algorithms regularly require at least hundreds of

images of each object or user to be detected, while the described system is aimed to

perform the same actions with a considerably smaller number of images.

However, consequently, this has repercussions on the functioning of the system, limiting

its flexibility. A minimum number of conditions have to be met in order for the system to

work correctly and variations in the environment may have an influence on the system’s

performance.

In chapter 2, the literature review is introduced, with a comparative analysis of the already

existing similar solutions and the different methodologies available to implement the

described system as well as the final choice. In chapter 3, the design concept is explained

and is divided into two sections corresponding to the hardware set up and software

architecture. In chapter 4, the different experiments and system’s results are analysed

and finally, in chapter 5, the conclusions and possible future works are stated.

20

2 LITERATURE REVIEW

2.1 Inventory management

Inventory management or control is the process of managing a company’s inventory,

which includes management of elements from raw materials to finished products, as well

as tools or materials used by such company. This control or management is essential to

run a business efficiently since both a shortage and an abundance of a company’s

inventory can be detrimental. Nowadays, inventory management systems are used in

numerous industrial manufacturing facilities and warehouses. Therefore, inventory

management is fundamental for companies of any size in order to keep track of all the

assets belonging to such company, and to base complex decisions regarding when to

restock inventory, what product amounts to purchase or produce, or what price to pay for

such products [1].

The process or methodology followed in these systems varies from the basic concept of

keeping a list manually updated by a user (manual tracking) to the use of modern

technologies that are still under development to keep track of the owned objects. The

number of methods that can be implemented for tracking inventory is very numerous, and

the goal of such implementation is to avoid the tedious, repetitive, and lengthy process

that simpler and more basic methods imply. Another reason for the implementation of

more complex technologies for inventory tracking is to provide a security factor for these

systems and avoid misplacement of both the inventory register and the inventories

themselves. With further developed systems, we are adding reliability, security, and

efficiency to the system [2].

Within the technologies used to implement inventory management systems, or other

services that include in their structure similar working processes, we can find artificial

intelligence, sensory systems, and machine vision techniques, among others. In 2018,

Amazon opened the first store in Seattle with Just Walk Out (JWO) technology, Amazon

Go, a checkout-free shopping system in which the customers can directly exit the store

and the items taken are automatically charged to the user’s account. With a complex

system combining computer vision, sensor fusion and deep learning, JWO technology is

capable of detecting when a product is taken from or returned to the shelves, therefore

creating a virtual shopping cart [3]. This JWO technology is not only available at Amazon’s

own stores but also provided to third-party environments. As for the customer

identification system used, there are two options available: one can be identified with a

personal card that must be scanned at the entrance of the store, or an individual is

recognised by the scan of their palm, with the new developed technology Amazon One [4].

21

Using computer vision algorithms, Amazon has developed a way to capture each’s

individual’s palm, that can differentiate it from others by recognising the distinct features

on and below the surface and it uses the information linked to each palm to provide a

contactless service for the customers. Walmart Inc.’s inventory system uses RFID

technology to identify the items taken using radio waves. A tag is attached to each product

for its tracking, which is later scanned at the checkout registers, automatically updating

the inventory left at the store [5][6]. Finally, in 2022, the first unmanned store is Estonia,

R-Kiosk Go, was opened at Tallinn University of Technology. This store, with a similar

operation to that used in Amazon Go, uses a combination of artificial intelligence, several

sensors, and cameras, focussing on the use of weight sensors to control the items taken

and without storing biometrics of the customers, therefore avoiding non-compliance with

data protection regulations [7]. In the following table 2.1, the main characteristics of the

three systems described above are listed:

Table 2.1 Comparison of related existing products [3]–[7]

 AMAZON GO
WALMART

INVENTORY
MANAGEMENT

R-KIOSK GO

Tracking of items

Just Walk Out (JWO)
technology - computer

vision, sensor fusion and
deep learning

Radio-Frequency
Identification (RFID)

Artificial intelligence,
cameras, and sensors
(focussing on weight

sensors)

Personal
identification

Palm scanner (Amazon

One)

Scan of credit or debit
card

App-based entry

No

App-based entry

Scan of credit or debit
card

Technology’s
purpose

Multiple product
unmanned physical store

Inventory system on
physical stores

Multiple product
unmanned physical

store

However, the use of combined technologies results in complex and expensive systems,

unattainable for small businesses or individual users. Amazon, Walmart and R-kiosk are

all medium to large companies, which have extensive funding for the development of these

systems, and which have many means to obtain the huge databases necessary in many

cases for these systems.

The goal to reach with the development of the system presented in this document is to

achieve a performance similar to that developed by large companies, using only machine

vision methods which can provide the necessary information for the implementation of an

inventory management system, and therefore avoiding the use of additional hardware that

increases the price and complexity of the system.

22

2.2 Machine vision-based methods for object recognition

Object recognition is a computer technology whose concept is based on the detection of

objects of a specific class in digital images or videos. The main goal of the development of

object recognition technologies is to imitate the human ability or intelligence to recognise

and locate objects in a matter of moments, using a computer [8].

It is important to differentiate between detection and recognition. Detection is the process

of finding relevant objects, of any class, within an image or video, while recognition has

the additional task of classifying such objects within a determined class, previously defined

[9]. However, the use of these concepts is not so differentiated nowadays, constantly

referring to object detection as the recognition of certain objects within a class. Therefore,

we can define object detection or recognition as the process that involves both locating

the object within the image, usually rounding it with a bounding box, and classifies such

object, predicting its class [10].

These technologies are in constant development and it’s a highly researched area in recent

times; there is a wide amount of uses, among which we can find face recognition and

detection, a topic that will be further studied in the following sections, driving assistance,

image retrieval, video surveillance and many others.

The methodology used in the implementation of object recognition systems can be divided

into two main groups: neural network-based approaches, also referred to as deep learning,

and non-neural approaches. Machine learning is an Artificial Intelligence (AI)

encompassing parts of both groups, which is defined as the capability of a machine to

imitate intelligent human behaviour, with minimal human interference. Deep learning is a

subset of machine learning, which implies it is also an AI, that uses artificial neural

networks to mimic the human learning process [11]. In spite of being similar technologies,

the have a series of key differences that are summarized in the table below:

Table 2.2 Differences between machine learning and deep learning [11]

Conventional machine learning Deep learning

Can train on smaller data sets Needs large amounts of data

Correction and learning require human
intervention

Self-learning from the environment and past data
or mistakes

Shorter training and lower accuracy Longer training and higher accuracy

Simple and linear correlations Non-linear and complex correlations

Training on a CPU (Central Processing
Unit)

Training requires a specialized GPU (Graphics
Processing Unit)

23

2.2.1 Machine learning methodology

Machine learning or non-neural approaches for object recognition require first the use of

a method for feature definition and extraction, called feature detection algorithms,

followed by a classification method.

Figure 2.1 Machine learning general procedure [12]

The aim of feature extraction is to extract and represent features in a form adequate for

the classification stage [13] and there are several methods for feature definition purposes,

being Histograms of Oriented Gradient (HOG), Viola-Jones object detection framework

(oriented towards face recognition technologies) and Scale-Invariant Feature Transform

(SIFT) some of the most popular options.

HOG uses a feature extractor to identify objects from an image. The procedure is based

on the extraction of the most necessary information, disregarding any non-important

information, by the use of gradient orientation. Then, it converts the overall size of the

image into the form of an array or feature vector. Among its advantages, we can consider

its simplicity, easy to understand the information and the fact that it can be used to detect

small-scaled images with less computational power. However, its accuracy might be

ineffective in certain object detection scenarios with tighter space and is very time-

consuming for complex pixel computation in large images [14].

SIFT is also a feature detection algorithm that locates local features in an image known as

‘keypoints’ with a similar approach as the HOG algorithm, with the main difference and

advantage that the features extracted are not affected by the size or orientation of the

image, in other words, they are scale and rotation invariant, which is its main advantage.

However, the mathematical computations are complex, which makes this algorithm

computationally heavy and ineffective in low-powered devices [15].

As previously mentioned, these feature extraction methods require a secondary step

known as a classification method and the most popular is Support Machine Vector (SVM),

a supervised learning algorithm used for automated object detection and characterization.

24

It classifies data into different classes by creating a decision boundary (hyperplane)

between any two classes to separate them and classify the object [16].

Although these technologies still provide accurate results and have several advantages,

like requiring less data and less computing power, with the ongoing development of deep

learning methods, machine learning has become an obsolete technology unable to solve

complex AI problems and which require ongoing human intervention.

2.2.2 Deep learning methodology

As previously stated, deep learning is a subset of machine learning that uses artificial

neural networks to mimic the human learning process and it can perform classification

processes form images, text, or sound. It is the key technology behind many current

products in constant development, like autonomous driving or voice control in-home

devices [12].

Although deep learning is the most accurate in recognition tasks and was first theorized

in the 1980s, it has two main limitations, which are the main reasons why this technology

is now at its peak development and has recently become useful:

1. Requires a large database of labelled data.

2. Requires a lot of computing power since it performs non-linear and complex

correlations; therefore, it needs high-performance GPUs.

The procedure followed to train deep learning models first uses large databases of labelled

data and neural network architectures that allow the learning of features from the images

without the need to manually extract such features, as was required in machine

algorithms.

Figure 2.2 Deep learning general procedure [12]

When referring to the use of deep learning techniques for object detection, we can divide

the possible methodology into two groups, according to the procedure followed in each of

them: two-stage algorithms, in which we can find Region-based Convolutional Neural

25

Network (R-CNN) and its variations, and one-stage algorithms, which include You Only

Look Once (YOLO) family and Single Shot Detector (SSD) algorithms.

In two-stage detectors, first, it’s needed an object region proposal method followed by the

object classification based on the features extracted from such regions of interest. The

results usually have a high accuracy; however, having a two-step process means they are

typically slower than other methods [17].

R-CNN is an object detection algorithm whose key concept is region proposals, used to

locate objects within an image. Therefore, we first need to extract a region of interest or

region proposal using a chosen algorithm and resize the extracted regions, before passing

the image through the neural network to classify the object in each region[18][19].

Figure 2.3 R-CNN general procedure [19]

There are different variants of R-CNN, each of them attempting to improve, optimize or

speed up the result of the processes within the algorithms.

Fast R-CNN also uses an algorithm to extract region proposals, but instead of processing

such regions by cropping or resizing them, it processes the whole image. In R-CNN, each

region must be classified individually, whereas Fast R-CNN gathers the features extracted

from each region, creating a convolutional feature map. Since the algorithm isn’t fed with

all the region proposals but only the feature map, it results in a faster and more efficient

detection [19][20].

Faster R-CNN replaces the use of an external algorithm with a region proposal network

(RPN) to generate region proposals directly in the network. Eliminating the additional

algorithm results in a faster and better performance process [19][20].

On the other hand, we have the YOLO family and SSD, one-stage object detection

algorithms. The main difference with R-CNN algorithms is that there are no region

proposals extractions: it predicts and classifies objects in the image directly. This is the

reason why they are often faster, which makes them suitable for real-time applications.

However, they also have a main disadvantage, usually unable or having difficulties to

recognise irregular shaped objects or a group of small objects [17].

26

YOLO is based on a convolutional neural network that predicts not only the bounding

boxes of the objects, but also the class probabilities for all the objects found in the image

[21]. The image is divided into grid cells and each grid predicts bounding boxes and the

parameters shown in figure 2.4 for each of the bounding boxes created are calculated,

where pc represents the probability of an object being within the grid, (bx, by, bw, bh) stand

for the center of the bounding box as well as its width and height and p(ci) represents the

probability of the object belonging to the ith class for the given pc, where n is the number

of classes.

Figure 2.4 YOLO's bounding box parameters [21]

Furthermore, the confidence score value (cs) is computed for each bounding box, which

reflects how likely the box contains an object and how accurate is the bounding box. Next,

class-specific scores (css) are computed for each bounding box which reflects the

probability of the object belonging to a specific class and how accurately the box encloses

the object. Finally, after disregarding some boxes with the help of a threshold set on the

confidence score values, non-max suppression is applied to discard less relevant bounding

boxes from all those overlapping, selecting the one with higher correlation or similarity.

From the initial YOLO algorithm, several variants were developed, introducing different

changes or innovations in each of them:

1. YOLOv2 introduces multi-scale training, which allows the algorithm to detect

objects in images with varying input sizes, which results in better accuracy and

higher speed [22].

2. YOLOv3 introduces a new network architecture (Darknet-53), bigger, more

accurate and faster than previous versions [23].

3. YOLOv4 introduces several novel techniques that improve the CNN accuracy and

speed, focusing on the introduction of universal features [24].

4. YOLOv5, developed by Ultralytics, eliminates Darknet’s limitations (based on C

language) by being implemented in PyTorch, which made it easier for developers

to implement different architectures.

The latest releases in the YOLO algorithms family are YOLOR, YOLOv7 and YOLOv8

released in 2021, 2022 and 2023 respectively. YOLOR stands for You Only Learn One

Representation and it is proposed as a combination of implicit (based on past experience)

and explicit knowledge (based on given data) in a unified network. This new architecture

is implemented in three steps: kernel space alignment, prediction refinement and a CNN

27

with multi-tasking learning [25]. YOLOv7 surpasses all previous YOLO algorithms as well

as most other object detection methods, improving in both speed and accuracy. It also

implies the use of cheaper equipment, faster training and with smaller databases, which

is a usual limitation or challenge when using deep learning methodology. It provides a

stronger network architecture with a more effective method for feature integration and

introduces what is called a trainable Bag of Freebies which increases the accuracy without

producing losses in speed in real-time object detection [26].

Lastly, YOLOv8 is the newest state-of-the-art YOLO algorithm, developed by Ultralytics

(who also developed YOLOv5), and is considered the highest-performing model and one

of the easiest YOLO models to train and deploy in different platforms, from CPUs to GPUs

[27]. Furthermore, it supports all previous YOLO versions, making it a flexible solution; it

has a high accuracy; provides different developer-convenience features, from a command-

line interface (CLI) to a Python package; and there already exists an extensive community

around this newly released model, providing access to different resources in case of

needed guidance [28], [29].

Finally, also a one-stage object detection algorithm, SSD is a network that merges

detections predicted from multiscale features. First, it runs a deep learning convolutional

neural network (CNN) on the image used as input to produce network predictions from

several feature maps, and then, the algorithm uses such predictions to generate the

resulting bounding boxes [30].

Figure 2.5 SSD general procedure [31]

2.2.3 Evaluation metrics and benchmarking

There are several metrics that help to evaluate the performance of the developed object

detection algorithm models, with the goal of selecting the one with the most appropriate

features for the particular case required.

28

Among the most common metrics for evaluation, with which the speed and accuracy can

be assessed, we can find Frame Per Second (FPS) and mean Average Precision (mAP).

FPS expresses how fast an algorithm or model is in processing an input video and

generating the desired output. On the other hand, the most common metric used is mAP

and in order to understand how it assesses the chosen approach, a few terms or helper

metrics have to be previously defined [32], [33]:

▪ True Positive (TP) is a correct detection of the annotated bounding box.

▪ False Positive (FP) is an incorrect detection of the annotated bounding box.

▪ False Negative (FN) is an annotated bounding box missed or not detected.

▪ True Negative (TN) is a detection of an incorrect bounding box or negative class,

though is not used as an object detection metric.

▪ Intersection over Union (IoU) represents the degree of overlap between the

annotated bounding box (ground truth) and the prediction made, showing the

accuracy of the predicted bounding boxes.

From these terms, firstly, we can obtain the precision, defined as the capability of the

model to identify only significant objects (percentage of predictions that are correct over

all detections made), and is calculated using the following equation [33]:

 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2.1)

where P – precision,

TP – true positives,

FP – false positives.

Secondly, the recall is defined as the capability of the model to detect all annotated

bounding boxes or ground truths, and is calculated using the following equation [33]:

 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2.2)

where R – recall,

TP – true positive,

FN – false negative.

Finally, the Average Precision (AP) is calculated using both the precision and recall and is

defined as the area under the precision-recall curve (PRC). Consequently, the mean

Average Precision (mAP) is computed using all the values of the AP for the different classes

as it’s shown in the equation number 2.3, and it represents the model’s accuracy to detect

all the classes [33]. Usually, this parameter is evaluated over IoU thresholds, having two

usual metrics, mAP 0,5, with an IoU of 50% and mAP 0,5:0,95 with an IoU between 50%

and 95%.

29

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=0 (2.3)

where mAP – mean average precision,

N – number of classes,

APi – average precision for each ith class.

A benchmark is used to assess how an object detection model performs and evaluate the

results for the metrics previously explained. The process is named benchmarking and it is

defined as the process of evaluating the performance of a product or process by comparing

it against those considered to be the best in the industry. In order to do so, there are

several benchmark datasets already available, that contain a large variety of labelled

images, with which we can train our model and analyse the results to choose the most

accurate or appropriate algorithm for the needed use. The most popular and widely used

datasets for benchmarking object detection algorithms are Microsoft Common Object in

Context (MS COCO), PASCAL Visual Object Classes (PASCAL VOC), and ImageNet.

MS COCO is the most used dataset containing over 300 thousand images from everyday

scenes, with over 90 different types of objects or classes and with a total of 2,5 million

labelled instances. The dataset is available to be explored through an online interface or

to be downloaded and used in the platform of the user’s preference [34], [35].

PASCAL VOC contains 20 classes of different object categories and each image on the

dataset has pixel-level segmentation, object class annotations and bounding box

annotations. The dataset is already divided into three sections: training, validation, and

testing sets [36].

Lastly, ImageNet is the largest out of the mentioned benchmarking datasets, with over 14

million images. The dataset was publicly released, dividing its contents into manually

labelled training images and testing images without any annotations on them [37].

Using the aforementioned benchmarks and observing the values obtained for the

evaluation metrics, a comparison between the most relevant deep learning methods for

object detection is performed. The methods compared are divided into those capable of

providing a real-time application, with an FPS value higher than 20, and those with lower

speeds that don’t allow to perform inference on real-time video input.

First, the R-CNN family is compared as deep learning methods with low speed, not able to

provide real-time applications. They are assessed on the PASCAL VOC benchmark, with

different versions from 2007, 2010 and 2012, and the results can be observed in figure

2.6 below:

30

Figure 2.6 Comparison of R-CNN family algorithms (non-real-time deep learning methods) [33]

On the other hand, with an FPS value high enough as to be considered suitable for real-

time applications, SSD and different versions of the YOLO family are compared on the

benchmark MS COCO. As it can be observed in figure 2.7, the values of the mAP

significantly decrease when dealing with real-time performances.

Figure 2.7 Comparison of real-time deep learning methods [26], [33], [38], [39]

62.9

66

70

68.8

68.4

73.2

70.4

PASCAL VOC 2010

PASCAL VOC 2007

PASCAL VOC 2007

PASCAL VOC 2010

PASCAL VOC 2012

PASCAL VOC 2007

PASCAL VOC 2012

R
C
N

N
F
A
S
T
 R

C
N

N
F
A
S
T
E
R

R
C
N

N
mAP (%) of non-real-time deep learning methods

53.1

23.3

28

37.4

45.4

49

50.7

37.3

44.9

50.2

52.9

53.9

YOLOV7

SSD

YOLOV5n

YOLOV5s

YOLOV5m

YOLOV5l

YOLOV5x

YOLOV8n

YOLOV8s

YOLOV8m

YOLOV8l

YOLOV8x

Y
O

L
O

V
5

Y
O

L
O

V
8

mAP (%) of real-time deep learning methods, evaluated on

MS COCO benchmark

31

2.3 Fiducial marker detection

Fiducial markers are 2D artificial landmarks used to extract pose estimation of an object.

Some examples of fiducial markers can be observed in figure 2.6 below:

Figure 2.8 Examples of fiducial markers [40]

A fiducial marker system usually is composed of the markers, a detection algorithm, and

a coding system. Since the color and shape of the used markers are defined beforehand

and stored in a library, fiducial markers can be easily and stably extracted from an input

image or video [40][41]. The most used fiducial markers are square-based, whose main

advantage is that the corners of the markers can be easily used to extract the pose and

location of the object, while the inner region is used for identification. This inner region

can be a binary code or an arbitrary pattern [42].

ARToolKit is an open-source project based on square-based fiducial markers with an

arbitrary pattern inside, which has been extensively used. The markers have a black

border, and it is the inner region that is stored in the database of the system. Its main

drawback is that by using template matching approaches for identification of the inner

region, the amount of false positives obtained is very high and it’s very sensitive to lighting

conditions when detecting the outer squares [42].

ArUco markers are one of the most popular and most used fiducial markers nowadays.

ArUco markers are square-based fiducial markers and each of them is formed by a seven-

by-seven binary grid, each cell called a bit, and a collection of markers is defined as a

dictionary of ArUco markers. There are several open-source implementations of ArUco

marker detection on OpenCV and Python [43], and it can also be implemented in

combination with a deep learning method using a convolutional neural network in order to

acquire a more reliable and accurate system [44].

32

2.4 Face recognition technologies

Face recognition is a subset of object recognition, which consists of, through artificial

intelligence, processing the input face image, extracting the facial features and comparing

the results with the existing face database to obtain an identification of the individual [45].

Since face recognition technologies began in the 1960s, it’s been in constant development

and their procedure has varied from being based on face structure features (1970-1990),

to statistical features (1991-2000) to the current and developing technology based on big

data and complex algorithms (2001-present). It has extensive use in daily applications,

mostly related to biometric identification technologies, in numerous fields such as politics,

military, economy and culture [46].

All face recognition systems involve three key steps or stages: face detection, feature

extraction and identification. Sometimes these tasks aren’t completely separated from

each other, performing several tasks at once, but all of them have to be present to

successfully achieve a working system [47].

Figure 2.9 Face recognition stages [47]

Furthermore, there is a very important aspect to be taken into account when developing

a face recognition system, which is the security and user privacy, needed in any biometric

software implemented. According to the General Data Protection Regulation (GDPR) that

came into effect in 2018, the processing of biometric data such as face images for

identification purposes is prohibited unless there exists an explicit consent of the relevant

person. Therefore, face images are classified as sensitive data and need to be protected

to ensure the protection of privacy [48].

Among the most relevant and recent technologies developed in this field, we can find

Amazon Rekognition. It was first released in 2016 as a cloud-based software as service

33

computer vision platform capable of recognising both objects and faces using deep

learning. It provides a series of pre-trained algorithms on data collected by Amazon, such

as celebrity recognition, facial attribute detection, text detection and classification in

images, among others. It also allows user to train their own pre-labelled data set for face

search and verification [49]. Due to the large amount of data amazon has access to, the

algorithms are able to correctly learn and identify the required object or person, however,

if a user desires to create a customized recognition system importing and labelling

numerous images is required, which is a disadvantage of this product as its price depends

on its use and therefore on the number of images to be processed.

DeepFace is an open-sourced face recognition and facial attribute analysis library for

Python, released in 2014 by Facebook. They developed a deep learning system, creating

a CNN trained on 4 M images of over 4000 individuals, that approaches human

performance in face recognition [50][51].

These systems are state-of-the-art in face recognition methodology; however, as stated

before, the resources needed in both datasets and computational power are very

extensive, reason why they are often unattainable to smaller companies or smaller

projects. On the other hand, there exist numerous projects [52], [53] using the same

principles, such as convolutional neural networks, implemented in accessible software like

OpenCV and Python to implement and train a face recognition system with a limited

database of images and using more reachable hardware [54].

The main method for testing the effectiveness and performance of the implemented facial

recognition system is by means of benchmarking. For that goal, in the specific case of face

recognition, there are several popular training datasets with which the system can be

trained in order to compare the results with other implementations. The most used

datasets in the last four years are LFW (Labeled Faces in the Wild) and VGGFace2. LFW

contains over 13000 images of faces collected from the web, forming over 5000 identities

with almost 2000 people with two or more images in the dataset [55]. VGGFace2 is formed

by around 3,3 million images, divided into classes, representing over 9000 identities. The

dataset is already divided into data for training and testing [56].

34

2.5 Influencing factors in machine vision technology

When developing a machine vision-based system, there are several factors that must be

taken into consideration, and that might affect the end results of the implemented system.

These factors can come from the specific component being used in the system, like the

camera, or from environmental factors in the location, that may or may not be modified.

Logically, these factors are divers and might affect the overall system differently whether

its location is outdoor or indoor. In order to reflect in this chapter the information relevant

to the system to be implemented, only those factors that affect a system in an indoor

location are specified. In figure 2.10, the factors later explained are summarized:

Figure 2.10 Influencing factors in machine vision technology

First, regarding those factors that may arise from the specific selection of the camera used

and its location within the system:

▪ Resolution: this specific characteristic of the camera used may affect the detection

and recognition of different items, depending on their type, size and features.

▪ Angle: the angle at which the camera is placed facing the items that have to be

detected or recognised can influence enormously in the outcoming result. At an

incorrect angle, the items’ shape may be distorted, making it very difficult for the

algorithm to recognise them.

▪ Position: the location of the camera must also be taken into account. An optimal

position must be found in order to avoid obstructions from other items in the

environment.

▪ Distance: the placement of the camera at an adequate distance from the detected

items is fundamental. If the items are too far from the camera, the colour or details

might be faded, making it harder to be recognised. In the opposite case, if the

camera is too close, the items might be too large to fit on the frame, and if there

35

are several items, some of them might be undetected. The whole area in which the

items are placed must be within the frame.

On the other hand, the main external factor that can affect the performance of the

implemented system is lighting [57], [58]. Lighting is one of the most critical aspects of a

machine vision-based system. Inadequate lighting can lead to glares, reflections, shadows

and/or low contrast images, which cause problems like the saturation of the camera,

undetected features, and distortion inferences (items might appear of different sizes or

colour to the camera). Most of these effects can be corrected by the use of a proper source

of lighting, and even the position of such source can lead to a better result. Furthermore,

changes in the environment, like the background of the setup, can influence and reduce

such effects.

However, although the changes in these factors can lead to better results, sometimes the

situation doesn’t allow for more or any modifications. In that case, image post-processing

might be needed, through which the negative effects can be corrected before performing

the detection or recognition of the items, facilitating the task for the algorithm.

2.6 Conclusion on literature review

Inventory management systems are an indispensable part of industrial manufacturing

facilities and warehouses, that add reliability, security, and efficiency. The methodology or

technologies used for their implementation are very extensive. Large companies with great

development potential often use combinations of several technologies like artificial

intelligence, sensory systems, computer vision methods, Radio-Frequency Identification

(RFID) technology or computer vision with deep learning. Such implementations result in

complex and expensive systems, unattainable for smaller companies.

However, the functionalities implemented in those complex systems can be achieved by

the use of only vison-based approaches. Such an implementation would result in a simpler

and cheaper system, as we would eliminate the need for any additional hardware, relying

only on a multi-camera system.

As the literature is organized, the system is divided into three different sections, each one

of them with a different goal and oriented to a certain type of recognition:

▪ For objects that can vary in position and orientation, as well as other set up

parameters like lighting or background, the implementation of an object detection

36

algorithm based on deep learning methodology is the best approach. This

implementation allows the system to work on the detection in real-time, allowing

variances in the placement and orientation of the required object to be detected.

The specific algorithm is to be chosen, depending on the precision and accuracy

needed as well as the speed, a very important characteristic when dealing with

real-time systems.

▪ When there exist further limitations on the objects to be recognised, like very

similar appearance or difficult visibility of the entire item, the use of fiducial marker

detection gives you the advantage of a simpler recognition in spite of the

limitations. ArUco markers are the most popular option nowadays for such

implementations, allowing the creation of as many markers as needed and the

following recognition by the creation of a library that contains them.

▪ Face recognition is probably the most complicated choice as it’s a developing

technology, with new advances being discovered daily and there’s an important

limitation to be taken into account, which is the limited dataset that the system has

to be implemented with. Due to the complexity of face recognition, deep learning

solutions tend to show better results.

The validation and evaluation of the system implemented will be done with real-time

camera input to test the system in real life and benchmarking for the object and face

recognition implementations, with web-available datasets, typically used in these

developments.

37

3 DESIGN CONCEPT

The implemented system consists of an inventory management application that keeps

track of the available material, constantly updating a registry list that informs for each of

the items present in the inventory system, if they have been borrowed or they are

available, and in the first case, the user that borrowed them. The material available

consists of two different groups: the lab equipment and the camera kits, each of them

with a tag displaying a unique fiducial marker.

With the use of two different external cameras, one dedicated to facial recognition of users

and the other for the detection of available items from both sets of material, the general

logic of the system consists of the following: while a user is detected, the system stores

the name or ID of that user, and the inventory is not updated until the facial detection is

negative, giving the necessary time for the user to make any necessary changes or

returns. Once the user is out of the camera frame, the inventory starts to update,

registering any changes in the available material and assigning the corresponding user as

the borrower. Furthermore, at the initialization of the system, the user is asked to choose

one from the two available functionalities:

1. Registration of a new user into the inventory management application.

2. Visualization of the inventory information (normal functioning of the system).

In figure 3.1, a rough outline of the design of the implemented system can be observed:

Figure 3.1 Sketch of the design of the system, implemented using SketchUp

38

3.1 Hardware set up

There are different hardware components involved in the development of the project and,

as it was mentioned in the introduction, the approach to this project appeared as a

response to the demand from the department to have a system to control the available

materials and, therefore, most of the elements used were already available and there was

no need for any purchases. The components are divided into camera and computer

equipment used for the implementation of the detection methodology, and the elements

to be detected, which together constitute the inventory of the department to be managed

by the system.

3.1.1 Camera equipment

Due to the objective of implementing the system in the simplest and most accessible way

for all types of companies, it was decided to use as video input for both the detection of

tools and boxes and for the recognition of users the Logitech C615 model, a portable

external webcam with autofocus that is connected via USB. This module has a frame rate

of 30 FPS with a resolution up to 1920 x 1080 pixels, considered high definition, a diagonal

field of view of 78º and autofocus and auto light correction features, that allow for the

procurement of better-quality images even if the environment conditions are slightly

modified due to external variations.

Figure 3.2 Logitech C615 webcam [59]

The camera used for object detection is placed on a tripod of the model PrimaPhoto

PHTRBBK Gear, in which each leg uses a twist lock configuration to extend its length,

providing a maximum height of 140 cm. The camera and tripod assembly with its

dimensions and the field of view at the distance at which it is placed from the inventory

equipment can be seen in figure 3.3.

39

Figure 3.3 Field of View (FOV) of the camera assembly

The second camera, whose purpose is the face recognition of the users, is placed between

the shelf containing the camera equipment boxes and the metallic rack in which the tools

are placed. It is placed at a height of 190 cm, just above the height of the tool rack. This

means that the camera is tilted slightly downwards to focus on approaching users, an

action that is made possible by the fold-and-go design of the Logitech C615 webcam,

which allows 360-degree rotation to position the camera at the best angle and different

inclinations.

Figure 3.4 Logitech C615 webcam movement design

The communication between the cameras and the computer device in which the system is

running is done via USB-type connectors, with the help of an extension cord for easy reach

from the position in which they are both placed.

40

3.1.2 Computer equipment

Two different devices were used in the development of the system. A portable computer

that can be easily positioned in different locations, making the system more flexible

according to the structure of the environment or if the usual place of its position is

temporarily occupied by another element. A secondary desktop computer with a GPU was

initially intended to be used for the training of the YOLOv8 object detection model, since

the training of object detection algorithms is a computationally intensive task and,

therefore, can take a long time to be executed on a computer with only a traditional CPU.

With the use of a GPU, the advantage of parallel processing can accelerate the training

process and the ability to select a larger batch size results in an improvement of the

accuracy of the model. However, the secondary computer had a GPU NVIDIA Quadro

P4000, which is designed for professional graphics and visualization, not for machine

learning and AI processes and therefore did not result in such a considerable improvement

in training time. On the other hand, Google Colab, a cloud-based platform for running and

developing machine learning models, provides with a Tesla T4 GPU, which is designed

primarily for machine learning applications and, therefore, a more suitable choice for

algorithm training. In the following table 3.1, the specifications of each device are listed

and the resources available in Google Collab are listed:

Table 3.1 Computer equipment specifications

 Processor RAM GPU

Portable

computer

Intel(R) Core(TM) i7-8550U

CPU @ 1,80GHz 1,99 GHz
8,00 GB -

Desktop

computer

Intel(R) Xeon(R) W-2123

CPU @ 3,60GHz 3,6 GHz
32,00 GB

NVIDIA Quadro

P4000

Google Colab - 32,00 GB Tesla T4

3.1.3 Inventory elements

The last elements of the hardware set up are those objects that form part of the inventory

that the system is managing. These are divided into two groups: the tools and the camera

equipment, which is stored inside boxes.

Among the tools can be found wrenches, hammers, pliers, different colour tapes, etc. All

tools are placed in a metallic blue rack placed on the wall, using adjustable hooks that can

be moved within the rack to place the tools at the desired location. Figure 3.5 shows a

possible arrangement of the tools within the rack and its dimensions.

41

Figure 3.5 Possible arrangement of the tools (implemented using SketchUp)

On the other hand, the camera equipment available in the laboratory is stored in black

plastic boxes of similar appearance. The ArUco tags are attached to the top of the box,

where the opening system is located, since they are placed horizontally on their side on

the shelf, as it is shown in figure 3.6.

Figure 3.6 Camera equipment with ArUco tags

42

3.2 Software architecture

The development of the software architecture of the system implemented is divided into

three different sections that correspond to the three types of detections, which are then

combined into one program, in which the overall functioning of the inventory management

system is achieved.

3.2.1 Object detection (tools)

The tools available in the laboratory are items that can vary in position and orientation,

therefore, the optimal method for their detection is using an object detection algorithm

based on deep learning. As stated in chapter 2, the YOLO family algorithms are among the

most innovative with promising results, proven by renowned benchmarks such as the

COCO dataset. The newest state-of-the-art YOLO model and the chosen method for the

detection of tools, is YOLOv8, developed by Ultralytics and launched in January of 2023.

YOLOv8 counts with five different versions of different sizes which make each of them

optimal for specific applications. These are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and

YOLOv8x, sorted from smallest to largest. As it is shown in figure 3.7, the precision and

accuracy of the versions increases as the size of the model increases; however, at the

same time, the speed of each version decreases. The larger models take longer times for

both training and inference speeds.

Figure 3.7 Comparison of YOLOv8 versions: YOLOv8n (n), YOLOv8s (s), YOLOv8m (m), YOLOv8l
(l) and YOLOv8x (x)
A – Size comparison (mAP vs. parameters); B – Speed comparison (mAP vs. latency) [39]

Therefore, for an application in which real-time detection of the objects is needed, the

suitable versions would be YOLOv8n and YOLOv8s, corresponding to the nano and small

sizes, and in this project, the small version is used. The process of preparing and training

43

the algorithm on a custom dataset it’s carried out in different steps, whose results will be

later analysed in chapter 4.

Image dataset generation: the first step consists of the recollection of several images

of each tool to be detected by the system, in different orientations and positions. In deep

learning object detection methods, a larger number of images guarantees better results.

However, since the system is aimed to be developed with limited resources, the number

of images per object is set to 15-20 plus a few additional ones of the metallic rack with all

the available tools placed on it. With 10 different tools, the total number of images in the

dataset is 226. In figure 3.8, a few examples of images from the dataset, of a specific tool

and of the full rack can be observed:

Figure 3.8 Dataset images example

A – Tool at system’s set up distance; B – close-up tool; C – all tools at system’s set up distance

Labelling of images: once the dataset is completed, the images have to labelled to

indicate the presence of the objects of each class in the images. All objects have to be

labelled, as precisely as possible. This step is performed with the help of the platform

Roboflow, a cloud-based computer vision platform that allows users to manage datasets,

train models and deploy them, among other features. Figure 3.9 shows a labelling example

where all the tools are present in the metallic rack:

Figure 3.9 Example of labelling of images

44

Pre-processing: the first technique applied to the images it’s its resizing to a smaller

size, which results in smaller size files and, therefore, faster training. The images should

maintain their aspect ratio, and since initially they have a size of 1920x1080 pixels, with

an aspect ratio of 16/9, the final resize value is set to 640x360 pixels.

Data augmentation: is a technique used to increase the size and variety of an image

dataset by the creation of new instances out of existing data samples. There are several

techniques that can be performed, among which, the ones used for the tool’s dataset are

flip (horizontal, vertical), 90º rotation (clockwise, counterclockwise), brightness (between

-30% and +30% for brighten and darken modifications), and blur (up to 1,5 pixels). The

free version of the Roboflow platform supports the growth of the dataset up to 3 times its

original size after applying data augmentation, with a final dataset size of 586 images.

Figure 3.10 shows examples of brightness and blurriness data augmentation techniques:

Figure 3.10 Examples of data augmentation techniques
A – original image; B – 30% darken image; C – 30% brighten image; D – 1.5 pixels blur

Dataset exportation: once the dataset is labelled and the data augmentation applied, it

can be exported into different formats available in Roboflow. YOLOv8 format consists of a

text file for each image that has an object (if no object is labelled in an image, there isn’t

a text file), that contains the class and bounding box data of the labelled objects.

Furthermore, an additional data file is included that specifies the location of the training

and validation data (both images and labels) and the number of classes and their

corresponding names.

Training: the next step is the training of a YOLOv8 model on a custom dataset using the

specified hyperparameters. This process involves adjusting those parameters to improve

the model’s ability to precisely identify the categories and positions of the objects within

the frame, since the setting and tuning of the different values can affect the model’s

45

performance, speed, and accuracy. The most important hyperparameters, those that have

been analysed for the optimal implementation of the system are:

▪ Model: it is the path to the model file, in this case, the small version YOLOv8s.

▪ Data: path to the data file that is included when the dataset is exported.

▪ Epochs: it is the number of iterations a dataset is trained for. If the number of

iterations is too low, the model may not be able to learn the important features of

the dataset and result in underfitting. On the other hand, if the number of epochs

is too high, the model can develop the ability to memorize the training data and

incorrectly perform on unseen data, resulting in overfitting.

▪ Batch: the batch size is the number of images that are processed in a single pass

during training. A larger batch size means that more images are processed in

parallel and, therefore, it can lead to faster training; however, it also requires more

memory, which the system might not be able to provide, and may result in

overfitting. The choice of the right size after experimenting with different batch

sizes and evaluating the performance of the model can improve the stability of the

model.

▪ Device: it is the device to run the training on, where it should be specified if a GPU,

and which one, if there are multiple available, is being used during the training of

the model.

▪ Patience: it is the number of epochs without any observable improvement to wait

before early stopping the training of the model. This parameter helps to set the

right number of epochs, since if the specified number of patience value is reached,

it means that the number of epochs set is too high and might result in overfitting.

Validation: the validation data is a subset of the training data that is used to evaluate

the performance of the model being trained and therefore, the correct election and tuning

of the training hyperparameters. After each training epoch, the model’s performance is

assessed by using the validation data as unseen data for the model. The validation data

must be independent of the training data and is obtained by dividing the final dataset

version from Roboflow, after labelling and performing data augmentation. The division

percentage depends on the number of images available, and as in this project the dataset

is limited, the training and validation data is divided into 80% and 20% respectively, to

have a bigger training dataset, resulting in 540 images for training and 46 for validation.

The training experimentation to set and tune the values of the hyperparameters, along

with the result analysis and testing of the real-time detection of tools of the trained

YOLOv8s model, are analysed in chapter 4.

46

3.2.2 ArUco marker detection (boxes)

The camera equipment available in the laboratory is stored in boxes of similar appearance

and size, therefore making the process of their detection more challenging. The chosen

methodology for this task is the detection of ArUco markers placed in each of the boxes

as unique tags, each of them linked to the material available inside the container.

An ArUco marker is a square fiducial marker composed of a black border, that allows a

fast detection of the marker within an image, and a binary matrix inside, whose codification

allows the identification of each marker. The markers used for a specific application are

called a dictionary of markers, which consists of a list of the ArUco markers and their

codifications. There are two parameters to consider when choosing or generating a

dictionary of markers: dictionary size, which is the number of markers in the dictionary,

and marker size, which is the number of bits in each marker. When choosing the dictionary

to use in the present application, both parameters were analysed as they influence the

performance of the detection. First, as the maximum number of boxes in the inventory

system is set to 10, the dictionary size was set to 50, which is the lowest number of

markers present in a predefined dictionary. A choice of a dictionary with a higher number

of markers would slow down the system since it has to find a match for each binary matrix

detected from all the markers present in the dictionary. Secondly, the marker size was set

to 4x4 bits, which along with the size of the image, set to 125 pixels, allows for the system

to recognize the marker at the distance and resolution that the set up provides. In chapter

4, the different experiments performed in order to find the most suitable marker dictionary

are shown. In figure 3.11, the markers printed and used for the identification of each box

can be observed:

Figure 3.11 ArUco markers IDs linked to each box

47

The detection process of ArUco markers within an image return a list of detected markers,

and for each of them, the position of its four corners in the image and the id of the marker,

that allows its identification. This detection process is divided into two different steps:

1. Detection of potential markers: the image is analysed in order to find square shapes

that have the potential to be an ArUco marker.

2. Detection of correct markers: by analysing the codification of the binary matrix,

the real markers are selected.

3.2.3 Face recognition (users)

As it was mentioned in chapter 2, face recognition is one of the most challenging tasks,

especially in view of the limited dataset condition, which makes it difficult to correctly train

an object detection algorithm adapted to the users. Therefore, the methodology

implemented is based on traditional computer vision techniques which require fewer

resources for their development but still produce a satisfactory end result which fulfils the

necessary tasks. The implementation of this section relies on the development of two main

elements: a face detector and a face recognizer, that are used in the process as shown in

figure 3.12:

Figure 3.12 Steps in face recognition implementation

Both of the mentioned tools are available in the computer vision library OpenCV (Open

Source Computer Vision). There are several algorithms or methods available in the library

for both the detector and recognizer, and the selected methodology consists of face

detection using Haar Cascades and face recognition using Local Binary Patterns

Histograms.

Face detector

Haar feature-based cascade classifiers are an object detection method that can be adapted

for face detection, which was first introduced by Paul Viola and Michael Jones in 2001. A

Haar-like feature involves evaluating neighbouring rectangular regions within a detection

window, where the intensities of pixels in each region are summed, and the difference

between these sums is calculated. This value indicates a certain characteristic in that

particular area of the image.

Face detection Face database
Training of the

recognizer
Face

recognition

48

Figure 3.13 Haar-like features [60]

Then, the cascade classifier is trained on several positive and negative images and later

used to detect the desired object in other images. OpenCV contains many pre-trained

classifiers, among which we can find classifiers for faces, eyes, or smiles.

This approach is based on machine learning, where a cascade function is trained on several

positive and negative images and later used to detect the desired object in other images.

Face recognizer

Local Binary Patterns Histograms (LBPH) is a feature extraction method that focuses on

local regions of an image to avoid the high amount of input data and obtain a more robust

recognizer. The main functioning of Local Binary Pattern (LBP) consists of summarizing

the local structure of an image by labelling the pixels, examining the surrounding pixels

and determining if they surpass a specific threshold. The resulting binary value is used as

a label for that pixel. When it is combined with histograms, the images can be represented

with a simple data vector.

Figure 3.14 LBPH feature extraction method [61]

There are different steps taken in the use of the algorithm:

1. Set parameters. The LBPH employs four parameters, namely: radius, neighbours,

grid X and grid Y. Radius is the distance from the central pixel used to create the

circular local binary pattern. Neighbours refer to the number of sample points

considered in such pattern. Grid X and grid Y represent the number of cells in the

horizontal and vertical directions (the higher the number of cells, the finer the grid

and therefore, a resulting feature vector with higher dimensions).

49

2. Training the algorithm. The next step consists of the collection of a dataset of the

user that we want to recognize and the assignment of an identifier to each image

(a number of a name). All images of the same person must have the same

identifier.

3. Application of the LBPH operation. The binary value of the pixels is obtained for

each of the images and the histograms are extracted, resulting in data vectors that

represent the characteristics of the image.

4. Face recognition. For each input image or frame, the same process is applied to

obtain an individual histogram which is later compared to the pre-trained algorithm

in order to find the closer match, that returns the identification of the user.

3.2.4 Programme functioning

The implemented program is based on object-oriented programming and is written in

Python. The set is formed by four different classes and a main program where the general

logic of the system is developed. The classes correspond to the three types of detections

already mentioned, corresponding to the tools, boxes, and users of the inventory system,

and an additional supporting class. Each of the classes is next described, with the main

attributes and methods needed for the correct understanding of the functioning of the

program.

The class for tool detection has two main attributes corresponding to the YOLOv8 model

loaded (already pre-trained) and an empty tools list that will contain the objects detected

by the algorithm and used later in the main program. The only method that this class

contains, obtains the detections made by the algorithm and filters them by only adding to

the tools list the object with the highest confidence score of each class detected. Therefore,

if multiple objects of the same class are detected, only the one with the highest probability

of belonging to such class with be forwarded as a tool detected to the main program.

The class for ArUco detection has four important attributes: the ArUco dictionary used

in the application, the parameters for the detection of the fiducial markers, a list

corresponding to the boxes of camera equipment that each marker identifier is linked to,

and an empty list where the detected boxes are stored for their later use in the main

program. The class contains two methods, one for the detection of the markers in which

the identifiers of the present markers within the frame are linked with the box they

correspond to and stored in the list, and a secondary method that allows for the graphical

visualization of the detection of the markers.

50

The class for face recognition has three main attributes: the Haar cascade classifier

that acts as the face detector, already pre-trained with the frontal face feature detector

available from OpenCV; the face recognizer based on Local Binary Patterns Histograms

(LBPH) and a list with the user’s names that are being used in the system, so that each

face recognized identifier can be linked with the name of the user. The three methods

correspond to the recollection of the user’s images for the creation of a dataset, the

training of the LBPH recognizer using the dataset previously created and finally, the face

recognition method, in which using the pre-trained detector and recognizer, the system

returns the name of the user present in the frame.

Finally, an additional class for frame configuration is created, that aims to set the

frames that are used in each of the above detections: for face recognition, the whole frame

is used (as the user can move along the whole field of view of the camera) while for tool

and box detection, the input is divided into two different areas to avoid the unnecessary

search for a certain type of objects where they cannot be found. Figure 3.15 shows the

division of the frames for tools and boxes:

Figure 3.15 Division of frames

In figure 3.16, a summary of the different classes, their attributes and methods, can be

observed:

Figure 3.16 Summary of program's classes

51

The main program is first initialized by the creation of four different objects of the different

classes previously explained, capturing the input video from both webcams, and creating

an inventory dictionary variable. This dictionary has three different keys corresponding to

the tools, boxes, and users of the system. For each of the tools and boxes, there are two

variables that indicate the availability of the object within the inventory system and, if not

available, the name of the user that borrowed the item. The third key corresponds to the

users registered in the system and, for each of them, the items in their possession at the

time.

Figure 3.17 Structure of inventory dictionary variable

Then, the user is asked to choose between the functionalities available in the program,

first one being the registration of a new user into the inventory management system,

second one, the normal functioning of the system that allows obtaining the information

about the items available or not, and third one, normal functioning to obtain the

information and the additional visualization of the detections or recognitions. In figure

3.18, the flowchart or this first section of the program is shown, including the steps

involved when choosing the first functionality, the addition of a new user to the system:

52

Figure 3.18 Flowchart of functionality choice and addition of new user

On the other hand, if the user chooses option number two, the normal functioning of the

inventory management system is set into motion. As briefly stated at the beginning of the

present chapter, the logic implemented consists of updating the inventory registry only

when the user is no longer in the camera frame, therefore giving the necessary time for

the user to make any necessary changes or returns. As long as a face is detected, the

system will only save the identification of the user, to later be set as the borrower of the

tool or box that is no longer being detected. The updating of the inventory is done in a

very similar way for both the tools and the boxes: by detecting these objects, two different

lists are obtained, the objects detected in the image and those that are not detected and

for each of the items in this list the correct values of the availability and the person

borrowing the item are assigned. At the same time, the user’s key of the inventory

dictionary is filled with the items that each user is borrowing at the time. In figure 3.19 it

is shown the flowchart of the general logic behind the inventory management program:

53

Figure 3.19 Flowchart of general logic behind inventory management

54

4 EXPERIMENTATION AND RESULTS

The development of this project was initially considered as a response to the demand from

the department to have a system to control the available materials, and a first basic

approach was implemented during the Machine Vision course as the final project of the

subject. This project consisted in the detection of different tools using the YOLOv5 model

in a different set up than the one implemented in the present system and allowed the

familiarisation with the algorithms of the YOLO family.

The overall workflow and approximate time periods of each section’s implementation of

the system can be observed in the following figure 4.1:

Figure 4.1 Gantt chart of the system's implementation

This chapter is divided into the results and analysis of each section of the system’s

implementation, finalising with an overall analysis of the complete system’s functioning.

4.1 Results of object detection (tools)

This section of the project was started earlier, during the development of the Machine

Vision course final project, and such implementation can be considered a first prototype.

As previously stated, the object detection algorithm used was YOLOv5, another version of

the YOLO family, also developed by Ultralytics as the finally used YOLOv8. Even though

there are some significant differences between the two algorithms, the realization of this

project served to become familiar with the object detection algorithms, being the first

approach to this methodology, and facilitated the future implementation of the system

proposed in this document. The Machine Vision project had the same functionality as the

tool detection section of this system, although smaller in size, as only 3 tools were trained

55

to be detected and with less system flexibility, as almost no variation in the environment

was allowed for the system to function correctly.

The training results of the system reached a mAP for an IoU between 0,5 and 0,95 of

0,963 for the hacksaw, 0,908 for the pliers, 0,951 for the wrench and an overall value for

all classes of 0,941. The training process observing the changes in the mAP 0,5:0,95

parameter over the training iterations can be observed in figure 4.2:

Figure 4.2 Machine vision's project mAP results

Although numerically the results are satisfactory, as the system was trained very strictly

in terms of variations within the positions and orientations of the tools, the visual results

when testing the system in real-time using the webcam, show the existing limitations.

Figure 4.3 shows the result of running inference of the model when the tools are placed in

the same positions as the training dataset (picture A) and the misdetections when the

tools are placed in different positions or partially hidden (pictures B and C).

Figure 4.3 Inference runs of Machine Vision's project
A – correct detection; B, C – misdetections

56

The training and validation process for the new object detection algorithm using YOLOv8

was studied and analysed more extensively, and numerous tests were carried out until the

optimal model was found. As previously stated, the implementation of the object detection

used for tools using the YOLOv8 algorithm requires a series of steps. The preparation of

the dataset was already explained and analysed in chapter three, however, although the

final result of the balance between training data and validation data is 80% and 20%

respectively, since the system is being implemented with a limited and relatively small

dataset, as an initial approach, the division of 90% and 10% was attempted, in order to

have a higher number of images used for training. After starting the training experiments

with this balance of data, it became clear that the amount allocated for validation was

insufficient as the results showed that the model did not converge at any time to a

relatively stable value (even if it was low) and thus it is not possible to assess the

performance of the model, in order to choose the optimal hyperparameters for the final

training. Furthermore, initially, the amount of data augmentation techniques introduced

was higher, which resulted in overfitting, as the model became too specialized to the

augmented data and lost the ability to function correctly when new unseen data was

assessed. Figure 4.4 shows the mAP results for an example of the previously explained

case, using a batch size of 16:

Figure 4.4 mAP results for an unbalanced model of training and validation data

Once the new and final version of the dataset was prepared, with fewer data augmentation

techniques and a training-validation balance of 90% and 10% respectively, a series of

training attempts were made to determine the optimal values for the hyperparameters of

the batch size and epochs. First, to conclude on the batch size to be used, the model was

trained with a low number of iterations (50) and the batch size was increased gradually,

resulting in four different training with batch values of 8, 16, 32 and 64. After each training,

the model’s performance was assessed to determine the optimal value, comparing the

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

m
A

P
 0

.5
:0

.9
5

Iterations

mAP 0.9:0.95 for batch size 16, unbalanced data

57

values of different parameters: training time, mAP 0,5, mAP 0,5:0,95 precision and recall.

In table 4.1, a summary of the training results for batch selection is shown:

Table 4.1 Metrics results of batch selection trainings

Batch Epochs
Time

(mins)
mAP 0,5

mAP

0,5:0,95
P R

8 50 14,04 0,995 0,921 0,973 0,996

16 50 14,04 0,995 0,931 0,973 0,999

32 50 14,7 0,995 0,938 0,985 1

64 50 16,2 0,995 0,932 0,98 1

The first value discarded for use corresponds to the highest one, with a batch size of 64.

As already mentioned, a larger batch size requires more memory to be processed, and in

this case, with a batch size of 64, the system, although capable of performing the set

number of iterations and obtaining the highest mAP value, is at the limit of its memory

capacity and will have trouble or even not be able to complete a higher number of

iterations. A higher number of samples in each pass means that the model requires more

memory to store the larger batch which slows down the training process, as it can also be

seen in the time results, being the slowest training. The lowest value corresponding to a

batch size of 8, although being one of the two fastest in training, obtains the worse results

in mAP, precision, and recall. Furthermore, the graphs showing the training process show

a slow and unsteady convergence into the final values of the parameters and is therefore

also discarded for the final training. For the last two values of 16 and 32, the results in all

parameters are slightly better in the second case but nevertheless, it was decided that

both batch sizes would be further analysed in the process of choosing the optimal number

of iterations, and asses which one results on the best performance model.

For the selection of the number of epochs, the model was attempted to be trained with

1000 iterations, and with the use of the patience parameter (number of epochs to monitor

for lack of progress before stopping the training early) the optimal value could be

determined. The initial value of 1000 iterations is chosen since when training with a limited

dataset, it is suggested to train for a large number of epochs. If the training is stopped

early because the patience value is reached, which is set to 50, the model can be retrained

with a lower number, using as a reference the iteration at which the initial training was

stopped. If, on the other hand, the training reaches its end, concluding the 1000 iterations,

and the performance of the model is still showing gradual improvement, the model needs

to be retrained with an even higher number of epochs. This process is to be repeated until

the optimal performance of the model is found. In table 4.2, a summary of the training

results for iteration selection is shown, using both of the batch sizes chosen:

58

Table 4.2 Metrics results for epochs selection

Batch Epochs
Time

(mins)
mAP 0,5

mAP

0,5:0,95
P R

16 1000 45,36 0,995 0,932 0,964 1

16 150 41,94 0,995 0,945 0,989 1

32 1000 79,5 0,995 0,936 0,987 1

32 250 70,98 0,995 0,946 0,982 1

The first try was carried out with a batch size of 16, and after 169 iterations, with a training

time of 45 mins and 21 seconds, it was stopped early since the patience value was reached.

The best results were obtained at epoch 119 and therefore the model was retrained once

again with an iteration value of 150 epochs. For the batch size of 32, the same situation

occurred, and the training was stopped early at 283 epochs, obtaining the best results at

iteration number 233. It was therefore retrained with 250 epochs. The final training for

both batch sizes obtains the same results in recall and very similar results in mAP 0,5:0,95,

with a very small advantage when using a batch size of 32. However, the precision value

was notably better for the smaller bath size, which means the model is more likely to

correctly identify true positives and less likely to generate false positives. Nevertheless,

as the obtained metrics are very similar for both models, they were both further tested,

checking their performance when running inference on the trained tools, using a real-time

video feed from the set up’s camera. Although the camera was placed at the usual distance

from the equipment, and the frame included the ArUco marker’s area to simulate the

normal use of the system, the pictures have been cropped to avoid unnecessary content

that does not contain any relevant information. Figure 4.5 contains four examples of

detections using the model with batch size 16. As it can be observed in pictures A, B and

C the model is able to detect the tools in different positions and placements within the

rack, and picture D shows that the addition of untrained tools into the rack doesn’t disturb

the results and no detection failures occur.

59

Figure 4.5 Inference detections for batch size 16
A – normal placement; B, C – different orientations and positions; D – additional tools placed

On the other hand, figure 4.6 shows the results for the detection results for the bigger

batch of size 32, and in this case, a few misdetections can be observed. Pictures A and B

show that the model is able to detect the tools in their usual orientations, even with a few

minor changes, and doesn’t perform any misdetections when untrained tools of very

different structures are placed in the rack. However, picture C shows that when introducing

a similar-looking object (red tape), a wrong detection is produced, labelling it as yellow

tape as well. Furthermore, some misdetections are produced, not being able to detect the

wrench when it is placed horizontally instead of its usual orientation.

Figure 4.6 Inference detections for batch size 32
A – normal placement; B – additional different tools; C – additional similar tool

60

Even though the smaller batch size model already showed better performance results, a

final test was carried out, calculating the average inference speed for 150 detections for

both models. The model with batch 16 resulted in an average speed inference of 301,69

ms and the model with batch 32 had a slower average speed inference with a value of

304,93 ms. For this and all the previous reasons already explained, the final model chosen

corresponds to a batch size of 16, trained for 150 epochs. In the following figure 4.7, the

evolution of the different metrics during training for such model are shown:

Figure 4.7 Metrics results for batch 16 and 150 epochs

Furthermore, when the training is completed, we can obtain other information about the

training results, obtained using the validation dataset. Figure 4.8 shows the confusion

matrix of the classification model, where the columns represent the actual classes and the

columns the predicted classes of the objects. Each cell represents the amount of times an

object of a particular class was correctly or incorrectly classified by the model. As it can

be observed, the confusion matrix shows a perfect result for the trained model.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

P
,

R
,

m
A

P
 0

,5
,

m
A

P
 0

,5
;0

,9
5

Epochs

Metrics results (batch 16, 150 epochs)

Precision Recall mAP 0,5 mAP 0,5:0,95

61

Figure 4.8 Confusion matrix for class classification (batch 16, 150 epochs)

Finally, the training and validation losses can be analysed. There are three types of losses

calculated: box losses, class losses and Detection Loss Function (DFL). The box losses

assess how well the model predicts the bounding box for the detected objects, the class

losses measure how well the model predicts the class of the object within the bounding

box and the detection loss function is the total loss of the model, calculated using the two

previous losses. The model’s losses are calculated for both the training and validation

dataset, and the optimal fit is that both losses decrease over time with a small or no

difference between them, which means the model is achieving a good fit to the training

data, and also working correctly when new unseen data is introduced. Figure 4.9 shows

the comparison of the three different losses for training and validation:

62

Figure 4.9 Training and validation losses (batch 16, 150 epochs)
A – box loss; B – class loss; C – DFL loss

The box loss shows a bigger difference between the validation and training (picture A);

however, the class losses are very similar to each other (picture B) and therefore, the total

losses or DFL have quite similar values, with a small difference between training and

validation, and the model’s losses analysis concludes with a good result.

It should be noted that although the results are generally satisfactory, and the model

works correctly when real-time video inference is performed, it is trained and, above all,

validated with a very limited dataset of only 46 images. Since one of the main objectives

of this project is the use of a limited dataset, and that the tool detection system works

correctly, it is a very satisfactory result. However, it is important to consider that the

performance results of the trained YOLOv8 model may not generalize well to larger

datasets or different use cases.

In appendix 1, the metrics and losses result graphs for all the different trainings are shown,

along with the confusion matrices.

4.2 Results of ArUco detection (boxes)

The experimentation performed using ArUco markers is divided into two different steps:

first, the choice of a marker dictionary, suitable for the needed application at the given

conditions; and secondly, the correct detection of such markers when they are placed

within the system's set up.

63

For the first step, a series of marker’s dictionary examples were printed, of different

marker size and image size, measured in pixels, to determine which one is the most

suitable with the camera’s resolution, lighting conditions, and geometrical characteristics

present in the real system set up. Equal to the number of markers that can be used in the

system, sets of 10 markers were printed. From the beginning, considering the distance

from the camera to the placement of the boxes and the camera’s resolution, it was

determined that the image size of the markers had to be equal to 150 pixels, as any

smaller size would not be recognisable for the system at such given conditions, and as any

larger size image could not be placed correctly in the boxes. Therefore, the testing was

performed with images of 150 pixels, and the marker size (number of bits in each marker)

varies from 4x4 to 7x7 bits. Figures 4.10, 4.11, 4.12 and 4.13 show the results for the

marker dictionaries for the marker size of 4x4, 5x5, 6x6 and 7x7 respectively, placed at

different locations within the system’s working frame, and where the misdetections have

been marked in a red bounding box.

Figure 4.10 Testing of marker dictionary size 4x4

The 4x4 bits markers were detected in most of the occasions, however, a there were a

few misdetections as it can be seen in pictures A and B. Having only 16 bits of information,

the 4x4 markers have less redundancy. If a part of the markers is undetected, the system

doesn’t have enough information to conclude the ID of the marker using only the remaining

bits, therefore, it’s not robust enough to correctly detect all of the markers.

Figure 4.11 Testing of marker dictionary size 5x5

64

Figure 4.12 Testing of marker dictionary 6x6

The marker dictionaries with 5x5 and 6x6 bits resulted in perfect detections, with all of

the markers being detected in both cases and placed in different positions within the frame.

Having 25 and 36 bits of information respectively, they have higher redundancy and error

correction capabilities in case some parts of the markers aren’t correctly seen. Both of

them are further tested below to select the final marker dictionary used.

Figure 4.13 Testing of marker dictionary 7x7

Finally, the 7x7 markers, although they should result in higher redundancy and error

correction capabilities, showed the most misdetections out of the tested markers. This is

due to the resolution of the camera that is not able to distinguish the different patterns,

being the size of the bits smaller and therefore resulting in a blurrier image.

The markers dictionaries of 5x5 and 6x6 bits are then tested using separated markers

placed in different locations in the frame, and checking if once a marker is removed, it is

no longer detected, and the rest of the markers still are. Figure 4.14 shows the detection

for 5x5 markers and figure 4.15 shows the detection for 6x6 markers:

65

Figure 4.14 Detection of 5x5 bits markers

Figure 4.15 Detection of 6x6 bits markers

As it can be seen in the figures above, the 5x5 markers result in a perfect performance of

the system with no misdetections and the 6x6 markers, although detecting correctly in

most of the cases, still have some misdetections. Therefore, the markers of size 5x5 bits

are the final used for the inventory management system, having a good combination

between the number of bits of information (that provides more redundancy and error

detection capabilities) and having the right bit size for the resolution of the camera used.

4.3 Results of face recognition (users)

As stated in the previous chapter, the face recognition task of the system is performed in

three different steps: recollection of an image dataset of the user, training of the

recognizer and lastly, detection of faces within the frame and its recognition to perform

the identification of the user.

66

The recollection of the image dataset consists of first, transforming the image into

grayscale and using the face detector, only the portion of the image that contains the face

of the user is saved. Once the user has entered the identifier number through the terminal,

the system captures a certain number of images. This number can be configured, and in

the system is set to 50, which although it may seem a high number, it only takes the

system 12 seconds to capture that number of images. The user is asked to slowly rotate

the head to capture different angles of the face, to add more flexibility to the recognition

system. Figure 4.16 shows the head rotation performed by the user and a few examples

of images from a user’s dataset, in different positions.

Figure 4.16 A - Rotation of the user's head, B - Example images from dataset

Once the dataset is completed, the recognizer is trained with such images, and the user’s

identification can be performed through face recognition. In figure 4.17 the recognition of

the same previous user can be observed, in a normal position as the user approaches to

borrow an item:

Figure 4.17 User's recognition in a normal position

67

Different scenarios were tried out, in order to test the flexibility and performance of the

system, and to be able to identify its limitations, when slight changes are introduced like

light variations, different appearances of the user or the orientation of the user’s head and

the position within the frame. In all cases, the user is looking at the objects that can be

borrowed, instead of looking at the camera, to simulate the situation that would occur in

the real system.

In figure 4.18, the results with the same light adjustment but different head orientations

and positions within the frame are shown. Pictures A through D show the user in the center

of the frame looking at different sides. As it can be observed, in both cases looking left

and right, if the head is rotated at a slight angle, the recognition is still successful (pictures

A and C). However, if the angle is more severe, both the recognition and detection of the

face fail, with the system no longer being able to identify the user (pictures B and D). On

the other hand, when the user is located at the edges of the frame, shown in pictures E

through H, the results are successful, with the system being able to correctly identify the

user, only if the user's head is slightly oriented towards the centre, closer to the origin of

the image (pictures E and G). If the user is positioned with the head facing toward the

edges of the frame, the system isn’t able to perform the user’s identification (pictures F

and H).

68

Figure 4.18 Face recognition in different conditions
A, B, C, D – user’s head rotations; E, F, G, H – user’s position in the edges of the frame

In figure 4.19, the same light conditions are applied, but the user’s appearance is changed.

The detections are in most cases satisfactory but as it can be observed in picture B, in

some cases with even a small rotation of the user’s head, the recognition fails. On the

edges of the frame (pictures E and F) the system works correctly, as before if the user is

facing slightly toward the camera.

69

Figure 4.19 Face recognition in user's different appearance
A, B, C, D - user's head rotations; E, D - user's position in the edges of the frame

Lastly, the system’s performance was tried with the lowest light condition available at the

place of the system’s set up. As it can be observed in figure 4.20, the results are mostly

unsatisfactory, with the system having major problems in recognising facial features

(pictures B and C) unless the user is facing toward the middle of the frame (picture A) in

which case, the system identifies the user correctly. Furthermore, with these conditions,

the system in certain cases is able to detect that a face is found in the frame, but it is

classified as unknown, as it cannot relate the features to those based on the dataset with

which the recogniser is trained (picture D).

70

Figure 4.20 Face recognition with a different light condition

Overall, the results of the face recognition implementation are considered satisfactory

when the lights conditions are appropriate and as long as the user is in a minimum part

facing towards the centre of the frame, which is the usual situation that occurs when the

user is picking up items from the available area. Although it may not recognise the user

continuously at all times, due to the structure of the designed code, the system will store

the name of the user once it is recognised for the first time and will be assigned as the

borrower of the items that are no longer within the frame after the user’s action is done.

4.4 Results of inventory management system

The final implementation of the inventory management system consists of: tool detection

by YOLOv8 small algorithm trained with a batch size of 16 and for 150 epochs; boxes

detection using ArUco markers of 5x5 bits and image size of 150 pixels; and face detection

and recognition using a Haar feature-based cascade classifier and LPBH respectively. Once

each section was correctly implemented and tested and using the program logic previously

explained in chapter 3, the functioning of the whole system was tested. To that end, the

set up shown in figure 4.21 was implemented and several scenarios were simulated

consisting of the following:

71

1. The whole inventory is available.

2. A user borrows two tools (screwdriver and wrench) and a box of camera equipment

(box 0).

3. The user returns one of the tools (wrench).

4. The user returns the remaining items in her possession.

Figure 4.21 Final testing set up

At the beginning, the inventory equipment is all accounted for, and both all of the tools

and boxes are within the working frame and detected. Figure 4.22 shows the real-life

detection of the inventory equipment, both tools and boxes in pictures A and B

respectively:

Figure 4.22 Full inventory detection

For the given scenario, and as no face is detected with the second camera, the inventory

system is updating and shows the following information:

72

Figure 4.23 Inventory information displayed when all equipment is available

Once a user enters the frame of the second camera, the updating of the inventory is

stopped, and the message “User detected. Waiting for user to finish” is displayed. At the

same time, the system performs face recognition on the face detected and saves the name

to be set as the borrower for any tools or boxes that might be missing after the user leaves

the frame. Figure 4.24 shows the user’s recognition when borrowing the tools:

Figure 4.24 User's face recognition when borrowing equipment

Once the user is no longer within the frame, the message “User has left the system.” is

displayed, and the updating of the inventory list is resumed. In this scenario, the user

takes a tool (screwdriver) and a box (number 0) as it can be seen in the corresponding

detections in the following figure 4.25:

Figure 4.25 Detection of available equipment

73

And once the update is restored, the information shown in the system is the following:

Figure 4.26 Inventory information displayed when equipment is borrowed

After that, the user is placed once more within the frame, the updating is stopped while

the tools and box are returned, and the system starts updating and shows a full inventory

available as in figure 4.23 when the user leaves the system’s frame.

74

5 SUMMARY

5.1 Conclusions

Inventory management systems are of great importance for industrial manufacturing

facilities, warehouses and companies of any size. Inventory management plays a critical

role in adding reliability, security and efficiency to the system, controlling all elements

present, from raw elements to finished products or assets used and produced by the

company. Current solutions use combinations of different technologies such as artificial

intelligence, sensory systems, computer vision, deep learning or RFID, among others.

These solutions result in complex and expensive systems, which are only suitable for

companies with extensive resources, and are unaffordable for smaller companies.

In this thesis, a multi-camera vision-based inventory management system of greater

simplicity and therefore, suitable for smaller companies with fewer resources has been

implemented. The approach to the development of this project appeared to meet the

department’s need for a system to control and monitor the available materials and the

resulting system creates a registry keeping a record of the users’ use of such equipment.

For that purpose, four goals were initially set, corresponding to the main sections

implemented in the project: development of a face recognition application to detect the

user, development of two object recognition systems for the lab equipment and the camera

kits, and finally, implementation of a program that combines all the previous solutions and

provides the information collected by the inventory system.

Each section was researched, analysed, and tested in order to find the most suitable

methodology, considering the particular conditions of the system’s environment as well as

the material available for its implementation. The final implementation of the inventory

management system consists of: tool detection by YOLOv8 small algorithm trained with a

batch size of 16 and for 150 epochs; boxes (camera equipment) detection using ArUco

markers of 5x5 bits and image size of 150 pixels; and face detection and recognition using

a Haar feature-based cascade classifier and LPBH respectively. Finally, the functioning of

the whole system was tested. Several scenarios were simulated in which, starting with a

full inventory, a user borrows certain equipment, and it is later returned.

After the different tests carried out both in each section separately and in the system as a

whole, and as it is shown in this work, the different objectives have been met and the

results are satisfactory, with the system being able to keep the inventory managed and

updated. Logically, the scope of the project is limited and moreover, this project has been

developed as a concept idea. Therefore, further implementations would need to be made

in order to be used in real life on a regular basis. Furthermore, since one of the main

75

objectives was to keep the developed system as simple as possible, the resources are

limited and the results, although satisfactory, are bounded by the conditions of the

environment. In this sense, in the following section, some future works are proposed to

enhance the capabilities and give more flexibility to the system that has been developed.

5.2 Future works

As previously stated, the current system is bounded by its limited flexibility, and therefore

a series of future implementations are proposed for its further development. Firstly, the

current set up is not the most convenient for the department and the working area where

the equipment is available, as it is in the middle of user movement zones and secondly,

the use of a tripod means that it can be accidentally moved at any time, which would affect

the functioning of the system. Hence, a rough idea for a structure to hold the camera

monitoring the equipment is proposed, attached to the roof of the laboratory as it counts

with metal bars already installed, where it could be easily placed. In this way, the material

could be monitored continuously without the risk of the camera disturbing users or being

displaced and unable to perform its function. Figure 5.1 shows an approximate outline of

the proposed structure:

Figure 5.1 Outline of the proposed future structure

Also related to hardware material, the use of a camera with higher resolution would greatly

facilitate the object’s detection and user’s recognition. Furthermore, if the camera can be

connected to the system without the need for any physical connections to the computer,

an independent system could be obtained, and the inventory could be managed remotely

from different locations.

On the other hand, as future implementations related to the software, different ideas are

proposed for each developed section. The implementations for tool detection and user

76

recognition are both constrained by the goal of using limited resources, which means only

a certain number of images are used for each section. The accuracy and performance of

the system would notably improve only with an increase in the number of images used,

training each corresponding algorithm in a more flexible manner. However, if this objective

is to continue to be met, different detection or recognition methods could be combined to

determine with greater certainty the classification of an object or the identification of a

user. The detection of ArUco markers used in the boxes of camera equipment is the most

accurate implementation, whose greatest weakness is the reflections caused by both

artificial and natural lighting. As a future implementation to improve this situation, two

methods are proposed: the use of a coverage of the markers with an anti-reflective

material or image processing to reduce said reflections to a minimum.

Finally, the addition of a user-friendly interface as well as the implementation of the

program with a reliable memory to store the information gathered by the inventory

management system, would make it more interactive and appropriate for use in real life

and on a regular basis.

77

KOKKUVÕTE

Varude haldamise süsteemid on väga olulised tööstuslikes tootmisrajatistes, ladudes ja

igas suuruses ettevõtetes. Varude haldamine mängib kriitilist rolli süsteemi töökindluse,

turvalisuse ja tõhususe lisamisel, kontrollides kõiki olemasolevaid elemente alates

toorelementidest kuni valmistoodete või ettevõtte poolt kasutatavate ja toodetud

varadeni. Praegused lahendused kasutavad erinevate tehnoloogiate kombinatsioone, nagu

tehisintellekt, sensoorsed süsteemid, arvutinägemine, süvaõpe või RFID. Nende

lahenduste tulemusel valmivad keerulised ja kallid süsteemid, mis sobivad vaid suurte

ressurssidega ettevõtetele, väiksematele ettevõtetele pole need aga jõukohased.

Käesolevas lõputöös on kasutatud mitme kaameraga visioonipõhist laohaldussüsteemi,

mis on lihtsam ja seetõttu sobilik väiksematele ja väiksemate ressurssidega ettevõtetele.

Selle projekti arendamise lähenemisviis vastas osakonna vajadusele olemasolevate

materjalide kontrollimise ja jälgimise süsteemi järele. Sellest tulenev süsteem loob

registri, mis hoiab arvestust selliste seadmete kasutajate kasutustegevuste kohta. Selleks

seati algselt neli eesmärki, mis vastavad projekti põhiosadele: näotuvastusrakenduse

väljatöötamine kasutaja tuvastamiseks, kahe objektituvastussüsteemi väljatöötamine

laboriseadmete ja kaamerakomplektide jaoks ning lõpuks programmi kasutusele võtmine,

mis ühendab kõik varasemad lahendused ja annab inventuurisüsteemi kogutud teabe.

Iga sektsiooni uuriti, analüüsiti ja testiti, et leida kõige sobivam metoodika, arvestades nii

süsteemi keskkonna eritingimusi kui ka selle rakendamiseks saadaolevat materjali. Varude

haldamise süsteemi lõplik juurutamine koosneb tööriista tuvastamisest YOLOv8 väikese

algoritmi abil, mis on koolitatud partii suurusega 16 ja 150 epohhi jaoks; kastide

(kaameraseadmete) tuvastamisest, kasutades ArUco markereid suurusega 5x5 bitti ja pildi

suurust 150 pikslit; ning näotuvastusest ja tuvastamisest, kasutades vastavalt Haari

funktsioonipõhist kaskaadiklassifikaatorit ja LPBH-d. Lõpuks testiti kogu süsteemi

toimimist. Simuleeriti mitmeid stsenaariume, mille puhul kasutaja laenab alates täielikust

laoseisust teatud seadmed ja tagastab need hiljem.

Pärast erinevaid teste, mis on viidi läbi nii igas jaotises eraldi kui ka süsteemis tervikuna

ja nagu käesolevas töös on näidatud, on erinevad eesmärgid täidetud ja tulemused

rahuldavad, kuna süsteem suudab hoida laoseisu hallatuna ja ajakohasena. Loogiliselt

võttes on projekti maht piiratud ja pealegi on see projekt välja töötatud ideeideena.

Seetõttu tuleks reaalses elus regulaarseks kasutamiseks teha täiendavaid rakendusi.

Lisaks, kuna üks peamisi eesmärke oli hoida väljatöötatav süsteem võimalikult lihtsana,

on ressursid piiratud ja tulemused, kuigi rahuldavad, on piiratud keskkonnatingimustega.

Selles mõttes pakutakse järgmises jaotises välja mõned tulevased tööd, et täiustada

võimalusi ja anda väljatöötatud süsteemile rohkem paindlikkust.

78

LIST OF REFERENCES

[1] “Inventory Management Defined Plus Methods and Techniques.”

https://www.investopedia.com/terms/i/inventory-management.asp (accessed Nov.

27, 2022).

[2] “Inventory Tracking Simplified: Steps, Methods and Efficiency Tips | NetSuite.”

https://www.netsuite.com/portal/resource/articles/inventory-

management/inventory-tracking.shtml (accessed Nov. 27, 2022).

[3] “Amazon.com: Amazon Go.”

https://www.amazon.com/b?ie=UTF8&node=16008589011 (accessed Nov. 27,

2022).

[4] “Amazon One.” https://one.amazon.com/ (accessed Feb. 21, 2023).

[5] R. Lin, “The Importance of Successful Inventory Management to Enterprises-A Case

Study of Wal-Mart,” 2019, doi: 10.25236/mfssr.2019.154.

[6] “How Does Walmart Inventory Management System Works?”

https://www.urtasker.com/walmart-inventory-management-system/ (accessed

Nov. 27, 2022).

[7] “The first unmanned store in Estonia was opened.” https://taltech.ee/en/news/first-

unmanned-store-estonia-was-opened (accessed Nov. 27, 2022).

[8] “What Is Object Detection? - MATLAB & Simulink.”

https://se.mathworks.com/discovery/object-detection.html (accessed Nov. 27,

2022).

[9] “Detection, Recognition, Identification Ranges FAQ - HGH Infrared.” https://hgh-

infrared.com/detection-recognition-identification-ranges-faq/ (accessed Nov. 27,

2022).

[10] “A Gentle Introduction to Object Recognition With Deep Learning -

MachineLearningMastery.com.” https://machinelearningmastery.com/object-

recognition-with-deep-learning/ (accessed Nov. 27, 2022).

[11] “Deep Learning vs. Machine Learning: Beginner’s Guide | Coursera.”

https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-

beginners-guide (accessed Nov. 27, 2022).

79

[12] “What Is Deep Learning? | How It Works, Techniques & Applications - MATLAB &

Simulink.” https://se.mathworks.com/discovery/deep-learning.html (accessed Nov.

27, 2022).

[13] A. S. Jubair, A. J. Mahna, and H. I. Wahhab, “Scale Invariant Feature Transform

Based Method for Objects Matching,” Proceedings - 2019 International Russian

Automation Conference, RusAutoCon 2019, Sep. 2019, doi:

10.1109/RUSAUTOCON.2019.8867657.

[14] “HOG (Histogram of Oriented Gradients): An Overview | by Mrinal Tyagi | Towards

Data Science.” https://towardsdatascience.com/hog-histogram-of-oriented-

gradients-67ecd887675f (accessed Nov. 27, 2022).

[15] “SIFT | How To Use SIFT For Image Matching In Python.”

https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-

technique-image-matching-python/ (accessed Nov. 27, 2022).

[16] P. D. Wardaya, “Support vector machine as a binary classifier for automated object

detection in remotely sensed data,” IOP Conf Ser Earth Environ Sci, vol. 18, no. 1,

2014, doi: 10.1088/1755-1315/18/1/012014.

[17] “Object Detection in 2022: The Definitive Guide - viso.ai.” https://viso.ai/deep-

learning/object-detection/ (accessed Nov. 27, 2022).

[18] “Object Detection Explained: R-CNN | by Ching (Chingis) | Towards Data Science.”

https://towardsdatascience.com/object-detection-explained-r-cnn-a6c813937a76

(accessed Nov. 27, 2022).

[19] “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN - MATLAB & Simulink

- MathWorks Nordic.” https://se.mathworks.com/help/vision/ug/getting-started-

with-r-cnn-fast-r-cnn-and-faster-r-cnn.html (accessed Nov. 27, 2022).

[20] “R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms | by

Rohith Gandhi | Towards Data Science.” https://towardsdatascience.com/r-cnn-

fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e (accessed

Nov. 27, 2022).

[21] T. Diwan, G. Anirudh, and J. v. Tembhurne, “Object detection using YOLO:

challenges, architectural successors, datasets and applications,” Multimed Tools

Appl, 2022, doi: 10.1007/S11042-022-13644-Y.

[22] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol.

2017-January, pp. 6517–6525, Nov. 2017, doi: 10.1109/CVPR.2017.690.

80

[23] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr. 2018, doi:

10.48550/arxiv.1804.02767.

[24] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and

Accuracy of Object Detection,” Apr. 2020, doi: 10.48550/arxiv.2004.10934.

[25] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You Only Learn One Representation:

Unified Network for Multiple Tasks,” May 2021, doi: 10.48550/arxiv.2105.04206.

[26] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors,” Jul. 2022, doi:

10.48550/arxiv.2207.02696.

[27] “Ultralytics YOLOv8 Docs,” 2023. https://docs.ultralytics.com/ (accessed Feb. 09,

2023).

[28] “What is YOLOv8? The Ultimate Guide.” https://blog.roboflow.com/whats-new-in-

yolov8/ (accessed Feb. 09, 2023).

[29] “YOLOv8 - Ultralytics | Revolutionizing the World of Vision AI.”

https://ultralytics.com/yolov8 (accessed Feb. 09, 2023).

[30] W. Liu et al., “SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37, Dec. 2015, doi: 10.1007/978-

3-319-46448-0_2.

[31] “Getting Started with SSD Multibox Detection - MATLAB & Simulink - MathWorks

Nordic.” https://se.mathworks.com/help/vision/ug/getting-started-with-ssd.html

(accessed Nov. 27, 2022).

[32] “Object Detection Metrics With Worked Example | by Kiprono Elijah Koech | Towards

Data Science.” https://towardsdatascience.com/on-object-detection-metrics-with-

worked-example-216f173ed31e (accessed Feb. 13, 2023).

[33] J. Kaur and W. Singh, “Tools, techniques, datasets and application areas for object

detection in an image: a review,” Multimedia Tools and Applications 2022 81:27,

vol. 81, no. 27, pp. 38297–38351, Apr. 2022, doi: 10.1007/S11042-022-13153-Y.

[34] “COCO - Common Objects in Context.” https://cocodataset.org/#home (accessed

Feb. 14, 2023).

[35] T.-Y. Lin et al., “LNCS 8693 - Microsoft COCO: Common Objects in Context,” 2014.

81

[36] “PASCAL VOC Dataset | Papers With Code.”

https://paperswithcode.com/dataset/pascal-voc (accessed Feb. 14, 2023).

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” pp. 248–255, Mar. 2010, doi:

10.1109/CVPR.2009.5206848.

[38] “ultralytics/yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite.”

https://github.com/ultralytics/yolov5 (accessed Feb. 17, 2023).

[39] “ultralytics/ultralytics: YOLOv8 in PyTorch > ONNX > CoreML > TFLite.”

https://github.com/ultralytics/ultralytics (accessed Feb. 17, 2023).

[40] Z. Zhang, Y. Hu, G. Yu, and J. Dai, “DeepTag: A General Framework for Fiducial

Marker Design and Detection,” IEEE Trans Pattern Anal Mach Intell, no. 01, pp. 1–

1, May 2022, doi: 10.1109/TPAMI.2022.3174603.

[41] H. Uchiyama and E. Marchand, “Object Detection and Pose Tracking for Augmented

Reality: Recent Approaches”, Accessed: Nov. 27, 2022. [Online]. Available:

https://hal.inria.fr/hal-00751704

[42] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez,

“Automatic generation and detection of highly reliable fiducial markers under

occlusion,” Pattern Recognit, vol. 47, no. 6, pp. 2280–2292, Jun. 2014, doi:

10.1016/J.PATCOG.2014.01.005.

[43] “OpenCV: Detection of ArUco Markers.”

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html (accessed Nov.

27, 2022).

[44] B. Li, J. Wu, X. Tan, and B. Wang, “ArUco Marker Detection under Occlusion Using

Convolutional Neural Network,” Proceedings - 5th International Conference on

Automation, Control and Robotics Engineering, CACRE 2020, pp. 706–711, Sep.

2020, doi: 10.1109/CACRE50138.2020.9230250.

[45] M. J. Wu, Y. C. Chen, Y. S. Liao, J. A. Chen, and H. H. Lin, “Face-recognition System

Design and Manufacture,” Proceedings - 22nd IEEE/ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing, SNPD 2021-Fall, pp. 158–161, 2021, doi:

10.1109/SNPD51163.2021.9705014.

[46] E. Jiang, “A review of the comparative studies on traditional and intelligent face

recognition methods,” Proceedings - 2020 International Conference on Computer

82

Vision, Image and Deep Learning, CVIDL 2020, pp. 11–15, Jul. 2020, doi:

10.1109/CVIDL51233.2020.00010.

[47] ZhaoW., ChellappaR., PhillipsP. J., and RosenfeldA., “Face recognition,” ACM

Computing Surveys (CSUR), vol. 5, pp. V-305-V–308, Dec. 2003, doi:

10.1145/954339.954342.

[48] “General Data Protection Regulation (GDPR) – Official Legal Text.” https://gdpr-

info.eu/ (accessed Nov. 27, 2022).

[49] “The Facts on Facial Recognition with Artificial Intelligence.”

https://aws.amazon.com/rekognition/the-facts-on-facial-recognition-with-

artificial-intelligence/ (accessed Nov. 27, 2022).

[50] M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol.

429, pp. 215–244, Mar. 2021, doi: 10.1016/J.NEUCOM.2020.10.081.

[51] Y. Taigman, M. Y. Marc’, A. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to

Human-Level Performance in Face Verification”.

[52] P. Chandrakala MTech, Bs. Assistant Professor, and Ma. Kumar Professor, “Real

Time Face Detection and Face Recognition using OpenCV and Python,” vol. 13,

2022, Accessed: Dec. 02, 2022. [Online]. Available: www.jespublication.com

[53] M. G. Galety, F. H. al Mukthar, R. J. Maaroof, F. Rofoo, and S. Arun, “Marking

Attendance using Modern Face Recognition (FR): Deep Learning using the OpenCV

Method,” 8th International Conference on Smart Structures and Systems, ICSSS

2022, 2022, doi: 10.1109/ICSSS54381.2022.9782265.

[54] P. A. Harsha Vardhini, S. P. R. D. Reddy, and V. P. Parapatla, “Facial Recognition

using OpenCV and Python on Raspberry Pi,” 2022 International Mobile and

Embedded Technology Conference, MECON 2022, pp. 480–485, 2022, doi:

10.1109/MECON53876.2022.9751867.

[55] “LFW Dataset | Papers With Code.” https://paperswithcode.com/dataset/lfw

(accessed Dec. 02, 2022).

[56] “VGGFace2 Dataset | Papers With Code.”

https://paperswithcode.com/dataset/vggface2-1 (accessed Dec. 02, 2022).

[57] B. G. Batchelor, “Machine vision handbook,” Machine Vision Handbook, pp. 1–2272,

Jan. 2012, doi: 10.1007/978-1-84996-169-1/COVER.

83

[58] “Environmental factors for object detection - IBM Documentation.”

https://www.ibm.com/docs/en/video-analytics/1.0.6?topic=analytics-

environmental-factors-object-detection (accessed Feb. 22, 2023).

[59] “Logitech C615 Full HD Webcam.” https://www.logitech.com/en-

us/products/webcams/c615-webcam.960-000733.html (accessed Apr. 14, 2023).

[60] “Cascade Classifier.” https://apmonitor.com/pds/index.php/Main/CascadeClassifier

(accessed Apr. 14, 2023).

[61] A. Ahmed, J. Guo, F. Ali, F. Deeba, and A. Ahmed, “LBPH based improved face

recognition at low resolution,” 2018 International Conference on Artificial

Intelligence and Big Data, ICAIBD 2018, pp. 144–147, Jun. 2018, doi:

10.1109/ICAIBD.2018.8396183.

84

APPENDICES

Appendix 1 Metric’s results for YOLOv8 trainings

A1.1 Results for batch selection trainings

Figure A1.1 Precision results for batch selection trainings

Figure A1.2 Recall results for batch selection trainings

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

P

Epochs

Batch selection results -Precision

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

R

Epochs

Batch selection results - Recall

batch8 batch16 batch32 batch64

85

Figure A1.3 mAP 0,5 results for batch selection trainings

Figure A1.4 mAP 0,5:0,95 for batch selection trainings

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

m
A

P
 0

,5

Epochs

Batch selection results - mAP 0,5

batch8 batch16 batch32 batch64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

m
A

P
 0

,5
:0

,9
5

Epochs

Batch selection results - mAP 0,5:0,95

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

B
o

x
 l
o

s
s

Epochs

Batch selection results -Train/box loss

batch8 batch16 batch32 batch64

A

86

Figure A1.5 Training losses for batch selection trainings
A – Box loss; B – class loss; C – DFL loss

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

C
la

s
s
 l
o

s
s

Epochs

Batch selection results -Train/class loss

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

D
F
L
 l
o

s
s

Epochs

Batch selection results -Train/DFL loss

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

B
o

x
 l
o

s
s

Epochs

Batch selection results -Val/box loss

batch8 batch16 batch32 batch64

B

C

A

87

Figure A1.6 Validation losses for batch selection trainings
A – Box loss; B – class loss; C – DFL loss

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

C
la

s
s
 l
o

s
s

Epochs

Batch selection results -Val/class loss

batch8 batch16 batch32 batch64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

D
F
L
 l
o

s
s

Epochs

Batch selection results -Val/DFL loss

batch8 batch16 batch32 batch64

B

C

88

Figure A1.7 Confusion matrices for batch selection trainings
A – Batch 8; B – batch 16; C – batch 32; D – batch 64

A1.2 Results for batch size 32 and 250 epochs

Figure A1.8 Metrics results (batch 32, 250 epochs)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

P
,

R
,

m
A

P
 0

,5
,

m
A

P
 0

,5
:0

,9
5

Epochs

Metrics results (batch 32, 250 epochs)

Precision Recall mAP 0,5 mAP 0,5:0,95

A B

C D

89

Figure A1.9 Training and validation losses (batch 32, 250 epochs)

A – box loss; B – class loss; C – DFL loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250

B
o

x
 l
o

s
s

Epochs

Box loss

Training Validation

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250

C
la

s
s
 l
o

s
s

Epochs

Class loss

Training Validation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

D
F
L
 l
o

s
s

Epochs

DFL loss

Training Validation

C

B

A

90

Figure A1.10 Confusion matrix (batch 32, 250 epochs)

	CONTENTS
	List of figures
	List of tables
	PREFACE
	List of abbreviations
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Inventory management
	2.2 Machine vision-based methods for object recognition
	2.2.1 Machine learning methodology
	2.2.2 Deep learning methodology
	2.2.3 Evaluation metrics and benchmarking

	2.3 Fiducial marker detection
	2.4 Face recognition technologies
	2.5 Influencing factors in machine vision technology
	2.6 Conclusion on literature review

	3 DESIGN CONCEPT
	3.1 Hardware set up
	3.1.1 Camera equipment
	3.1.2 Computer equipment
	3.1.3 Inventory elements

	3.2 Software architecture
	3.2.1 Object detection (tools)
	3.2.2 ArUco marker detection (boxes)
	3.2.3 Face recognition (users)
	3.2.4 Programme functioning

	4 EXPERIMENTATION AND RESULTS
	4.1 Results of object detection (tools)
	4.2 Results of ArUco detection (boxes)
	4.3 Results of face recognition (users)
	4.4 Results of inventory management system

	5 SUMMARY
	5.1 Conclusions
	5.2 Future works

	KOKKUVÕTE
	LIST OF REFERENCES
	APPENDICES

