

Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Maksim Lind 153608IAPM

CLUSTERED SIP SESSION BORDER

CONTROLLER WITH TOPOLOGY HIDING

USING OPEN-SOURCE TECHNOLOGIES

Master’s Thesis

Supervisors: Margarita Spitšakova

 PhD

Tanel Vakker

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Maksim Lind 153608IAPM

TOPOLOOGIAT PEITEV KLASTERDATUD

SIP SESSIOONIPIIRIKONTROLLER

KASUTADES AVATUD LÄHTEKOODIGA

TEHNOLOOGIAID

Magistritöö

Juhendajad: Margarita Spitšakova

 PhD

Tanel Vakker

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Maksim Lind

04.01.2018

4

Abstract

SIP is a widely used signaling protocol in VoIP and instant messaging applications and

services. A SIP Session Border Controller is an element in the SIP network that is placed

on the border of two networks, providing security and quality of service features, as well

as exerting control over signaling and media. There are complex proprietary SBC

solutions that offer service with minimal downtime thanks to their clustered architecture.

However, using proprietary solutions implies maintenance and license costs as well as

risks associated with support policy at the end of product lifecycle. As an alternative, a

highly available SBC is developed in the scope of the current thesis relying on open-

source technologies. This thesis delivers system configuration files and the deployment

script that can be used to install the system in test or production environment. All the

scripts and configuration files are well commented, explained and addressed in current

thesis. Furthermore, a critical bug has been discovered in the open-source server software

used in the system setup. It was reported to the maintainers along with a suggestion for a

fix. Finally, test cases validating the system’s conformity to SBC and cluster requirements

are specified.

The result of the current thesis is available from https://github.com/maksiml2014/hasbc-

master-thesis.

The current thesis is written in English language and is 57 pages long, including 5

chapters, 21 figures and 2 tables.

5

Annotatsioon

Topoloogiat peitev klasterdatud SIP sessioonipiirikontroller

kasutades avatud lähtekoodiga tehnoloogiaid

SIP on signaaliprotokoll, mida kasutatakse laialdaselt internetikõnedes ja kiirsuhtluses.

SIP sessioonipiirikontroller on SIP võrgu element, mis asub kahe võrgu piiril ning tagab

turvalisust ja kvaliteeti ja saab mõjutada SIP kontrollsignaale ja ka saadetavat meediat.

Saadaval on keerulisi kommertslahendusi mis pakkuvad sessioonipiirikontrolleri

teenuseid minimaalse seisuajaga. Kasutades kommertslahendusi suurenevad aga serverite

ülalpidamis- ja litsentsikulud ning kaasneb kasutajatoe lõppemise risk. Käesoleva töö

raames arendati vabavaralistel tehnoloogiatel põhinev sessioonipiirikontroller

töökindlusklastris. Töö tulemusteks on konfiguratsioonifailid ja paigaldusskript, mida

saab kasutada testimis- või päris töökeskkonnas. Antud väitekiri kirjeldab ja

kommenteerib kõiki paigalduseks vajalikke seadeid ja faile. Samuti leiti kasutatud

vabavaralise serveri tarkvaras kriitiline viga. Vea kirjeldus ja parandamisettepanek esitati

projekti arendajatele. Töös kirjeldatud katsed näitavad tehtud süsteemi vastavust

sessioonipiirikontrolleri ja töökindlusklastri nõuetele.

Töö tulemus on kättesaadav aadressilt https://github.com/maksiml2014/hasbc-master-

thesis.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 5 peatükki, 21

joonist, 2 tabelit.

6

List of abbreviations and terms

SIP Session Initiation Protocol

IP Internet Protocol

UA User Agent

UAC User Agent Client

DoS Denial-of-Service

VRRP Virtual Router Redundancy Protocol

HA High Availability

LAN Local Area Network

SBC Session Border Controller

QoS Quality of Service

VIP or VIPA

PSTN

Virtual IP Address

Public Switched Telephone Network

UAS User Agent Server

VoIP Voice over IP

SDP Session Description Protocol

NIC Network Interface Controller

7

Table of contents

Introduction .. 11

Motivation .. 11

Problem Statement .. 12

Solution Design .. 12

Design Validation ... 13

1 Related Work ... 14

1.1 Session Initiation Protocol .. 14

1.2 Session Border Controller .. 14

1.3 Acme Packet Net-Net OS ... 14

1.4 Open-source in Communication Solutions ... 15

1.5 High Availability and Clustering .. 15

1.5.1 Virtual Router Redundancy Protocol .. 16

1.5.2 Clustering OpenSIPS for High Availability .. 17

1.6 Proxy Statefulness and Topology Hiding ... 18

1.6.1 SIP Messages ... 18

1.6.2 Sip Transaction and Dialog ... 19

2 System Design ... 20

2.1 Configuration and Deployment .. 20

2.2 Network Configuration ... 23

2.2.1 VRRP ... 24

2.2.2 Linux Policy Routing .. 25

2.3 SIP Proxy Server Configuration ... 27

2.3.1 Data Replication .. 28

2.3.2 Data Reinitialization During Failback ... 28

2.3.3 Topology Hiding ... 29

2.3.4 Data Replication with Topology Hiding ... 31

2.3.5 Load Balancing .. 31

2.3.6 Registration Rate Throttling .. 33

2.3.7 Flood Protection .. 34

8

2.4 Database Configuration .. 34

3 System Validation ... 35

3.1 Test Case: Call Flow... 36

3.2 Test Case: Call Flow After Failover ... 37

3.3 Test Case: Call Flow After Failback .. 37

3.4 Test Case: Topology Hiding – Internal Network ... 38

3.5 Test Case: Topology Hiding – External Network .. 38

3.6 Test Case: Register ... 39

3.7 Test Case: Register Throttling .. 39

3.8 Test Case: Register Dispatching ... 40

3.9 Test Case: Load Balancing ... 40

3.10 Test Case: Denial of Service Attack ... 41

3.11 Results .. 41

4 Conclusions ... 42

Appendix 1 – Ansible Playbook File .. 46

Appendix 2 – M4 Macro Definitions ... 50

Appendix 3 – OpenSIPS Node Configuration Template.. 50

Appendix 4 – Database Configuration Files .. 57

9

List of figures

Figure 1. HA cluster using VRRP with one backup node .. 17

Figure 2. Transactions and dialogs ... 19

Figure 3. System design .. 20

Figure 4. Initiating deployment with ansible .. 21

Figure 5. Ansible inventory file .. 21

Figure 6. HA cluster using VRRP .. 24

Figure 7. Keepalived configuration template ... 25

Figure 8. Allowing binding to nonlocal IP addresses ... 25

Figure 9. Two routing tables are specified by an ID and a name 26

Figure 10. Network configuration template ... 27

Figure 11. OpenSIPS cluster configuration .. 28

Figure 12. OpenSIPS script for state synchronization with a database 29

Figure 13. Topology hiding configuration ... 30

Figure 14. Forcing OpenSIPS to send messages from a specified socket 30

Figure 15. Load balancing .. 32

Figure 16. Mid-registrar configuration ... 33

Figure 17. Pike module configuration .. 34

Figure 18. Test setup .. 36

Figure 19. Opensipsctlrc file .. 57

Figure 20. Allow access to the database from localhost and the same network 57

Figure 21. Postgres populate script template .. 57

https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755613
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755614
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755616
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755617
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755618
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755619
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755620
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755621
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755622
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755623
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755624
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755625
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755626
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755627
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755628
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755629
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755630
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755631
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755632
https://d.docs.live.net/4c43ee51204b7260/Documents/master/lind_thesis.docx#_Toc502755633

10

List of tables

Table 1. Most common SIP messages .. 19

Table 2. Descriptions of macros ... 21

11

Introduction

Session Initialization Protocol (SIP) is a signaling protocol used to create, control and end

multimedia sessions in Internet Protocol (IP) based networks. SIP is widely used in Voice

Over IP (VoIP) applications and services. The media session, e.g. a voice call or instant

messaging session, is not part of SIP routing and is handled in Session Description

Protocol (SDP).

A SIP network usually consists of multiple components. Each component has a set of

rules that apply to the passing traffic to ensure that network packets reach their destination

and do not contain sensitive data. A User Agent Client (UAC) is a component that initiates

the signaling and a User Agent Server (UAS) is a component that responds to this

signaling. An IP phone or any other SIP terminal acts as UAC and UAS interchangeably.

Besides UAC and UAS, there are three more SIP components: proxy server, redirect

server and registrar server. These can be separate physical servers as well as logical units

of a server software. When a server combines multiple functions, it is called a SIP server.

A proxy server mediates the messages between UAC and UAS and can perform

accounting and security functions. A redirect server informs the caller that the callee has

changed its location. A registrar server or a location server receives, stores and provides

information about UAs’ SIP addresses.

This work is organized as follows: the current chapter contains the problem statement and

motivation for this work. Chapter 1 reviews the related work and explains the

technologies used. Chapter 2 describes the design of the implemented system. System

validation process is described in Chapter 3. In Chapter 4, a summary is given, and future

work is discussed.

Motivation

The motivation behind this work is to provide an open-source alternative for complex

proprietary solutions like Acme Packet Net-Net OS [1]. Independence from proprietary

12

hardware and software in communication solutions was proposed by Almeida and Cruz

to significantly reduce the maintenance and licensing costs [2]. Moreover, open-source

solution enables higher level of customization by providing access to the source code.

Another advantage of open-source software is that if the original maintainer deprecates

or abandons the product, it can be forked into a separate project and its development can

be taken over.

Problem Statement

The current work aims to describe a configuration of a SIP proxy server that would satisfy

the following requirements.

1. The proxy should have redundant backup elements. The elements should form a

cluster and exchange information in real time. When one of the cluster nodes fails

or is under maintenance, the other nodes should take over its works seamlessly

for the client.

2. Neither of the call sides should be aware of the clustered architecture of the proxy.

The UACs should only be aware of the public IP address of the clustered proxy.

The packets leaving the proxy cluster should not contain any information about

cluster topology.

3. The proxy should be able to route traffic to multiple SIP servers based on their

load.

4. The proxy should protect the network and other devices from Denial-of-Service

(DoS) attacks.

5. The proxy should accept UAC registration requests and subsequently provide the

means to locate it for peers on the network. The proxy should also lower the rate

of the registration traffic when redirecting it to the main SIP registration proxy.

The transmission of media streams is not in the scope of this solution.

Solution Design

The following steps will be performed to achieve the goals.

13

• OpenSIPS [3] server software will be installed on several machines.

• OpenSIPS clusterer [4] module will be used to enable multiple SIP proxies to

exchange real-time data.

• Keepalived [5] service will be used to implement Virtual Router Redundancy

Protocol (VRRP) to provide a single IP address known to the UAs and assign it

to the most suitable cluster node. OpenSIPS topology_hiding module [6] will

obfuscate the outgoing SIP packets.

• OpenSIPS load_balancer module [7] will route the traffic to SIP servers based on

their load.

• OpenSIPS pike module [8] will protect the network from DoS attacks.

Design Validation

Each requirement of the solution will be tested followingly:

• Redundancy and the capability for the call failover will be tested by disconnecting

the master node of the cluster in the middle of a SIP dialog. Subsequent requests

should be routed through one of the backup cluster nodes and reach the original

recipient.

• Inspecting the SIP packet headers on the UAC side will reveal if the topology

hiding and registration traffic rate decrease is working.

• SIPp [9] test tool can generate SIP traffic to test the load balancing and DoS

protection capabilities of the proxy server. Moreover, Stanek and Kencl [10] have

presented a modified version, capable of simulating a distributed DoS attack.

14

1 Related Work

1.1 Session Initiation Protocol

SIP’s purpose is to establish and end multimedia sessions between UAs. To do this, five

features are communicated.

• User location: allows locating UAs in the network.

• User parameters: determines parameters of the multimedia session, for example

the audio codec to use.

• User availability: determines if the desirable user is available for session initiation.

• Call establishment: exchanges the parameters between the end points and informs

them of the current call state, e.g. ringing, busy or OK.

• Call management: pauses, transfers or ends the session.

1.2 Session Border Controller

A Session Border Controller (SBC) is a type of a SIP proxy that is installed on the border

of SIP networks, e.g. between service provider and its private or enterprise users. Its main

purpose is to provide a secure and reliable connection between networks. Security is

enforced for example by protecting network segments from DoS attacks and hiding

information about network topology in the transmitted packets. An SBC is often used to

collect statistics and billing information, normalize the SIP message flow and perform

load balancing between multiple destinations.

1.3 Acme Packet Net-Net OS

Acme Packet is a company that produces network communication server solutions. One

of its products is a software platform called Acme Packet Net-Net OS. It operates on a

series of hardware platforms and offers an industry-leading SBC solution. According to

a fiscal year report of Acme Packet in 2008, their products have been purchased by ca

600 clients consisting of service providers and enterprises in 92 countries [11].

15

In 2013, Acme Packet was acquired by Oracle Corporation [12]. This lead to deprecation

of old services and now Oracle Communications Session Border Controller [13] is the

successor of Acme Packet Net-Net solutions. For existing Acme Packet clients this meant

that the support and updates for their servers were dropped and they were encouraged to

update to the Oracle SBC solution with new licensing and management fees. An

alternative to that is using an open-source SBC.

1.4 Open-source in Communication Solutions

Segec and Kovacikova [14] analyzed the existing protocols, technologies and services

and proposed an open SIP-based communication platform, which however is more

complex and converged than the one described in the current work. The current work

focuses on the signaling and gateway sections of such platform. One of the protocols they

suggest for improving service availability is Virtual Router Redundancy Protocol

(VRRP). They also state that real-time data synchronization between servers is an open

question and can be solved by an entity that would replicate SIP messages. For SIP

servers, two successors of OpenSER project are recommended: Kamailio [15] and

OpenSIPS.

Thompson et al. [16] designed and implemented a distributed telecommunication system

that connects VoIP devices over a Public Switched Telephone Network (PSTN). The

solution uses open-source SIP and focuses on de-centralizing the communication

systems. Kamailio is used as a SIP router implementation, operating in a stateless mode.

While allowing for a better performance, it also makes it impossible to perform topology

hiding. In their setup, the topology hiding is implemented by a FreeSWITCH [17] SBC

on the border of IP network and PSTN. They suggest introducing redundant components

to such systems to improve reliability.

1.5 High Availability and Clustering

In the context of computer systems, the availability metric shows the probability that a

system is ready to be used at any given time. A highly available system provides its

service even when a failure occurs within a component of this system.

16

A computer cluster is a set of computers that are connected to each other and appear to

its user as a single system. The separate computers in the cluster are called cluster nodes.

The nodes are redundant components – they do not have separate responsibilities, but all

perform the same task.

A high-availability cluster has active nodes that provide a service and backup nodes that

are activated when a failure occurs in an active node. Such event is called a failover. For

a failover to occur seamlessly for the user, the backup node must receive constant updates

relevant to the service provided. Another way to activate the backup node is to load the

relevant data from a shared database during the failover, which is slower than the first

method.

The process of restoring the system to the state before the failover is called failback. In

the process of a failback the failed node recovers and goes back to active state, while the

node that became active in the process of failover goes back to backup state.

1.5.1 Virtual Router Redundancy Protocol

VRRP is a protocol that enables connecting several IP hosts into a HA cluster by creating

a virtual router. Instead of configuring the machines that use the cluster to connect to

backup servers in case of the master server failure, the VRRP requires that the users

connect to a static virtual IP address. The master node assigns this IP address to itself and

process the traffic flow. The backup nodes monitor the state of the master node and assign

the virtual IP to the newly elected master node upon its failure. When the first server

recovers from the failure, it goes back to being the master node. Refer to Figure 1 for

VRRP illustration.

Yang et al. [18] analyze the VRRP and its applicability to SIP servers. They highlight a

problem of a SIP proxy requiring real-time synchronization to be a node in a cluster while

stateful (i.e. unable to relay a SIP message only based on the information contained). They

argue that synchronizing the SIP server state using a shared database is too time-

consuming in the context of a service with thousands or millions of users, and propose a

solution based on an in-memory database that replicates its state over the network using

Remote Procedure Protocol. This functionality has been implemented in OpenSIPS

clusterer module in 2016 [19] [20].

17

1.5.2 Clustering OpenSIPS for High Availability

Smartvox Limited [21] is a company that focuses on designing and delivering OpenSIPS

solutions for internet service providers. In 2010 they claim to have implemented a

clustered SIP proxy using OpenSIPS [22]. In addition, they describe the cluster

implementation using VRRP [23]. However, being a commercial software provider, they

fail to publish the source code of the solution [24]. Moreover, the described solution does

not implement topology hiding and operates only on stateless proxies.

In 2017, Smartvox Limited expanded their blogpost series on clustering OpenSIPS and

described a way to improve failover times of clustered OpenSIPS proxies [25] by using

Pacemaker [26] and Coro sync [27] resource management software. However, they admit

that this setup may in some circumstances drop the established calls during a failover. To

combat this, they configure binary replication provided by the clusterer module of newer

versions of OpenSIPS [28]. Compared to the current work, their solution does not

implement neither topology hiding, nor registration rate throttling.

Figure 1. HA cluster using VRRP with one backup node

Servers 1 and 2 are nodes in a cluster. Users in the external LAN are configured to use a virtual IP address

of the Logical Server. This address is assigned to the Server 1, which is currently active and provides a

service to the users in external LAN. It keeps Server 2 up to date by transmitting relevant data over LAN1

and LAN2 networks. Some of the data is also written to the shared disks. In case of a failure in Server 1,

Server 2 will be activated by virtual IP assignment, and all user requests will be routed to it [49].

18

1.6 Proxy Statefulness and Topology Hiding

A SIP server can be either stateful or stateless. A stateless proxy simply relays the

messages it receives. For a stateless proxy to operate, the relayed message must contain

all the necessary information about its destination. A cluster of stateless proxies is easy

to configure because any cluster node at any given time will be able to deliver a SIP

message.

Topology hiding is a security-enhancing functionality of a SIP server. It can hide sensitive

client information and information about the internal topology of the SIP proxies network

– e.g. IP addresses of cluster nodes. This is done by altering the relayed SIP messages.

However, a response to such altered message cannot be routed to its originator by a

stateless proxy since some of the information has been removed.

The removed or altered information is stored inside the proxy that performed the topology

hiding. The same proxy can restore necessary information and route the response.

Topology hiding can only be performed by a proxy that keeps track of ongoing dialogs –

a stateful proxy.

For stateful proxies to operate as cluster nodes, the state of the master node must be

replicated to backup nodes in real time. Without this, in the event of a failover new dialogs

could still be established without problems – new dialog states would be written to the

new master node. However, the messages of ongoing dialogs will not be relayed because

the dialog states were saved on the failed master node.

1.6.1 SIP Messages

SIP components relay information to other components via SIP messages. A SIP message

has a type, a header and a body. The type of the message indicates the function the

receiving end should carry out. The header contains the information necessary to deliver

the message to its destination. The body carries arguments or a payload necessary to carry

out the action indicated by message type. Refer to Table 1 for most common SIP message

types. A SIP response is in text format and contains a status code and a message, e.g. “200

OK”, “401 Unauthorized”.

19

SIP MESSAGE TYPE DESCRIPTION

INVITE Used to establish a session with a UA

BYE Terminates an ongoing session

REGISTER Registers user location in Registrar server

ACK Acknowledge to INVITE

1.6.2 Sip Transaction and Dialog

A transaction occurs between a UAC and UAS and consists of all messages starting with

the initial request of the UAC and ending with the final response of the UAS, including

all intermediate responses. A SIP dialog represents a relationship between two UAs that

persists for some time. It is identified by a dialog ID. Refer to Figure 2 [29] for an

illustration of transactions and dialogs.

Table 1. Most common SIP messages

Figure 2. Transactions and dialogs

20

2 System Design

An SBC acts like a firewall in a SIP network. In the topology described here it is

positioned between the client’s and service provider’s networks. From the service

provider side, the SBC connects to intermediate proxy servers and not to the internet. The

service provider network is guarded from the internet by a firewall or another SBC. For

this reason, the traffic that comes from the service provider network can be trusted and

this side of the network is called Internal. The client’s network is External: it is not

controlled by the service provider and therefore cannot be trusted (Figure 3). It is worth

noting, that the Internal and External networks are not necessary from different subnets.

This work describes a scenario where they are in the same subnet since it requires

additional configuration.

This chapter describes what technologies were employed to implement SBC features and

explains the configuration files and scripts used.

2.1 Configuration and Deployment

An open-source configuration management tool Ansible [30] is used in this work as

suggested by Singh et al [31] and Ebert et al [32]. It takes two configuration files as an

Figure 3. System design

A clustered SBC guards the service provider network (Internal) from the client’s network (External).

Internal network itself is usually guarded from the internet by a firewall or another SBC.

21

input: an inventory file, that names and groups all hosts to be configured, and a so-called

playbook file, which narrates what commands must be run and what files must be

deployed to certain hosts or group of hosts. The playbook file can be found in Appendix

1 – Ansible Playbook File. The deployment is initiated with a command in Figure 4,

where the arguments are the two aforementioned files. In the current setup the inventory

file defines three groups of hosts: proxyhosts – hosts that will run OpenSIPS proxy server

software, dbhosts – hosts that will run a database server, and all – all hosts from previous

two groups. Refer to the Figure 5 for inventory file code.

GNU M4 macro processor [33] is used when multiple configuration files share a common

part and only differ in a few key points. A set of keywords and the corresponding values

called macros must be defined in one file. Another file contains a configuration template

for some program, with specific macro keywords instead of specific values. M4 copies

an input file to the output and expands macros in the process. All M4 macros defined in

this work use capital letter to denote the keyword to make them distinguishable for the

reader. Table 2 lists and describes all macros used in current work and Appendix 2 – M4

Macro Definitions shows the actual values of these macros.

Table 2. Descriptions of macros

Macro keyword Description

DB_HOST Hostname of the database server

[proxyhosts]

w520opensips

w530opensips

[dbhosts]

dbhost

[all:children]

proxyhosts

dbhosts

Figure 5. Ansible inventory file

ansible-playbook -i hosts ansible_playbook.yaml

Figure 4. Initiating deployment with ansible

22

DEFAULT_SIP_PORT Default port used in SIP applications

GATEWAY IP address of network gateway in the lab

setup

INTERNAL_SOFTPHONE_IP IP address of a softphone located in internal

network

INTERNAL_SOFTPHONE2_IP IP address of a second softphone located in

internal network

NETMASK Length of the network mask

NETMASK_ADDR Netmask address in decimal notation

NETWORK IP address of the network

NODE1_CLUSTERER_ID Identification number of the first OpenSIPS

cluster node

NODE1_EXTERNAL_IFACE External-network-facing network interface

name of the first OpenSIPS cluster node

NODE1_EXTERNAL_IP External-network-facing network interface

IP address of the first OpenSIPS cluster

node

NODE1_INTERNAL_IFACE Internal-network-facing network interface

name of the first OpenSIPS cluster node

NODE1_INTERNAL_IP Internal-network-facing network interface

IP address of the first OpenSIPS cluster

node

NODE2_CLUSTERER_ID Identification number of the second

OpenSIPS cluster node

23

NODE2_EXTERNAL_IFACE External-network-facing network interface

name of the second OpenSIPS cluster node

NODE2_EXTERNAL_IP External-network-facing network interface

IP address of the second OpenSIPS cluster

node

NODE2_INTERNAL_IFACE Internal-network-facing network interface

name of the second OpenSIPS cluster node

NODE2_INTERNAL_IP Internal-network-facing network interface

IP address of the second OpenSIPS cluster

node

POSTGRES_U_AND_PWD Username and password of postgres user in

DBHOST

REGISTRAR_IP IP address of the dedicated Registrar server

REGISTRAR2_IP IP address of the second Registrar server

REGISTRAR_PORT Network port of the dedicated Registrar

server

VRRP_EXTERNAL_IP IP address of the external VIP

VRRP_INTERNAL_IP IP address of the internal VIP

2.2 Network Configuration

Each proxy host has two physical network interfaces that have static IP addresses.

Keepalived is used to route traffic from Virtual IP (VIP) addresses to the cluster nodes

and Linux policy routing is used to enforce the outgoing traffic to exit through the correct

Network Interface Controller (NIC).

24

2.2.1 VRRP

Keepalived Debian package is installed on each node in the clustered SBC to implement

the VRRP. Two VIP addresses are configured on each node: one facing the internal

network, another facing the external. The IP phones and other SIP devices in the external

network route all traffic to the external VIP. The devices from the internal network route

the traffic to the internal VIP (Figure 6).

Keepalived configuration template can be seen in Figure 7. This template will first be

used to create templates for each proxy host. All M4 macros except

VRRP_INTERNAL_IP and VRRP_EXTERNAL_IP will be substituted by a host-

specific macro.

Figure 6. HA cluster using VRRP

Nodes 1 and 2 bind their eth0 interfaces to the external virtual IP address, forming a HA cluster. Network

packets addressed to the External VIP will by default be forwarded to Node1, which has higher priority and

acts as a master node. In case of Node1 failure, Node2 will take over the master role until Node1 comes

back up. Internal VIP acts similarly.

25

Because Keepalived only installs the VIP on the active cluster node, the nodes that are

not active do not have the VIP assigned to them. OpenSIPS server software will quit with

a failure if it is set up to listen to an IP address that the machine does not have. To fix this,

a parameter allowing nonlocal IP binding must be forwarded to Linux kernel. Figure 8

shows the configuration line that must be placed into /etc/sysctl.conf file.

2.2.2 Linux Policy Routing

Keepalived allows the HA cluster act as one machine for incoming traffic. However, the

outgoing traffic must also appear to the destination users as if it is coming from one

source. For the clustered SBC, the machines in the Internal network must only see the

global_defs {

 enable_script_security

 script_user keepalived_script keepalived_script

}

vrrp_instance VI_1 {

 interface EXTERNAL_IFACE

 state STATE

 virtual_router_id 54

 priority PRIORITY

 advert_int 1

 virtual_ipaddress {

 VRRP_EXTERNAL_IP

 }

 notify /home/keepalived_script/notify-keepalived.sh

}

vrrp_instance VI_2 {

 interface INTERNAL_IFACE

 state STATE

 virtual_router_id 55

 priority PRIORITY

 advert_int 1

 virtual_ipaddress {

 VRRP_INTERNAL_IP

 }

 notify /home/keepalived_script/notify-keepalived.sh

}

Figure 7. Keepalived configuration template

Allow Keepalived service to run scripts as keepalived user, bind each physical interface of the machine to

a VIP address, specify a script that will run when the cluster node state changes.

net.ipv4.ip_nonlocal_bind=1

Figure 8. Allowing binding to nonlocal IP addresses

26

Internal VIP as the source, and the machines in the External network must only see the

External VIP.

In case where both External and Internal networks are in the same subnet, Linux kernel

will by default route the traffic through the first configured interface. Linux Policy

Routing allows to enforce the traffic originating from the internal VIP address to exit the

machine through the internal interface. This manipulation will set the source MAC

address of the outgoing packet to the MAC address of the Internal NIC. For this, a routing

table must be added to /etc/iproute2/rt_tables file as seen in Figure 9.

The rules to the routing tables are added to the network interface configuration file

/etc/network/interfaces (Figure 10). It is then the responsibility of the SIP Server

software to force the IP address of the correct VIP when sending messages.

200 fromInternal

201 fromExternal

Figure 9. Two routing tables are specified by an ID and a name

27

2.3 SIP Proxy Server Configuration

Each cluster node is running the Debian [34] operation system and the OpenSIPS server

software. OpenSIPS was chosen because it was claimed to offer out-of-the-box solutions

for topology hiding, load balancing and clustering. The main advantage of OpenSIPS

over the similar Kamailio software is that it offers more extensive documentation and

tutorials on its website. OpenSIPS is configured via a single configuration script and a

database. The configuration file contains global variables, a modules configuration

section and a routing script. The database is used to store real-time information and

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface

auto lo

iface lo inet loopback

auto EXTERNAL_IFACE

iface EXTERNAL_IFACE inet static

 address EXTERNAL_IP

 netmask NETMASK_ADDR

 gateway GATEWAY

 post-up ip rule add from VRRP_INTERNAL_IP lookup fromInternal

auto INTERNAL_IFACE

iface INTERNAL_IFACE inet static

 address INTERNAL_IP

 netmask NETMASK_ADDR

 gateway GATEWAY

 post-up ip rule add from VRRP_EXTERNAL_IP lookup fromExternal

post-up ip route add default via GATEWAY dev INTERNAL_IFACE table
fromInternal

post-up ip route add NETWORK/NETMASK dev INTERNAL_IFACE table fromInternal

post-up ip route add default via GATEWAY dev EXTERNAL_IFACE table
fromExternal

post-up ip route add NETWORK/NETMASK dev EXTERNAL_IFACE table fromExternal

Figure 10. Network configuration template

Static IP address is configured on both network interfaces. The additional rules instruct to route the packets

that arrive from the Internal VIP out through the external interface, and the packets that arrive from the

External VIP out through the internal interface.

28

additional information that is needed to configure OpenSIPS modules. The template for

full OpenSIPS configuration file used in this solution is attached in Appendix 3 –

OpenSIPS Node Configuration Template. Further subsections will cover important parts

of this configuration file.

2.3.1 Data Replication

As described in section 1.6, in case of an outage of a node inside the SBC cluster the new

connections will not be affected by it, while the existing connections will be dropped due

to the statefulness of the proxy. Data replication between cluster nodes is required to

prevent dropping the existing connections in case of an outage of one of the nodes. If the

state of the nodes is synchronized in real time, it does not matter which of the nodes

processes a request, hence any node can take over as master at any time.

The OpenSIPS clusterer module provides an interface that other modules can use to

exchange binary packets between cluster nodes. The other modules must be instructed in

the OpenSIPS configuration script to produce or accept data replicates. Figure 11 shows

how to configure an OpenSIPS cluster and provides an example of how to modify a

module to use this cluster.

2.3.2 Data Reinitialization During Failback

Real-time data replication between cluster nodes enables a seamless master failover

because the backup node is constantly aware of the currently running dialogs and able to

[…]

listen=bin:INTERNAL_IP:DEFAULT_SIP_PORT

[…]

loadmodule "clusterer.so"

modparam("clusterer", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("clusterer", "current_id", CLUSTERER_CURRENT_ID)

[…]

modparam("dialog", "accept_replicated_dialogs", 1)

modparam("dialog", "replicate_dialogs_to", 1)

modparam("dialog", "replicate_profiles_to", 1)

modparam("dialog", "accept_replicated_profiles", 1)

[…]

Figure 11. OpenSIPS cluster configuration

The OpenSIPS server software is configured to listen on the internal IP address for updates from another

node. The IP addresses of the cluster nodes are read from the shared database. The modules are instructed

to replicate their state to the other nodes and accept updates from them.

29

take over at any moment. However, in the event of a failback, the new master node must

sync the state with the old master node before activation. This functionality is not yet

supported by OpenSIPS [35] [36] and is implemented in the current work by using a

shared database. As suggested by the developers of OpenSIPS [37], before assigning the

VIP to the new master node, the Keepalived software triggers synchronization with the

database. The configuration that enables this trigger can be seen in Figure 7 and the script

that is run can be seen in Figure 12.

2.3.3 Topology Hiding

The topology hiding module of OpenSIPS is configured on both proxy cluster nodes,

which enables topology hiding to be applied for each initial request received. This means

that all sensitive information concerning the UAC and the route that the request followed

to the current proxy is either encoded or replaced by the proxy server contact information.

For each subsequent SIP request the proxy performs a lookup over the information stored

and tries to fix the request by restoring the initial fields (Figure 13).

The OpenSIPS cluster must also hide its internal topology. For this the server software

must force the IP address for outgoing packets. This will enable the Linux Policy Routing

to select the correct NIC for the packets to use. The relevant logic is in the RELAY function

in the OpenSIPS routing script and can be seen in Figure 14.

Figure 12. OpenSIPS script for state synchronization with a database

If the state that the node is currently transitioning to is called “MASTER”, then OpenSIPS synchronization

from the database must be triggered.

#!/bin/bash

TYPE=$1

NAME=$2

STATE=$3

if [$STATE="MASTER"]

 then opensipsctl fifo dlg_db_sync

fi

30

loadmodule "topology_hiding.so"

modparam("topology_hiding", "force_dialog", 1)

[…]

route{

[…]

 if (has_totag()) {

 if (topology_hiding_match()) {

 route(RELAY);

[…]

 topology_hiding("UC");

[…]

 route(RELAY);

}

route[RELAY] {

 if (is_method("INVITE|REGISTER")) {

 if ($Ri=="VRRP_EXTERNAL_IP" && $Rp=="DEFAULT_SIP_PORT") {

 route("ToInternal");

 } else if ($Ri=="VRRP_INTERNAL_IP" && $Rp=="DEFAULT_SIP_PORT") {

 route("ToExternal");

 }

 }

 if (!t_relay()) {

 sl_reply_error();

 };

 exit;

}

route[ToInternal] {

 force_send_socket(UDP:VRRP_INTERNAL_IP:DEFAULT_SIP_PORT);

}

route[ToExternal] {

 force_send_socket(UDP:VRRP_EXTERNAL_IP:DEFAULT_SIP_PORT);

}

Figure 13. Topology hiding configuration

The script loads topology hiding module and configures it to work on top of dialog module. If the request

has a TO tag (it is a subsequent request), then it tries to match the dialog to one of the stored dialogs and to

restore initial fields, then relays the request. Else the topology hiding, and request relay is performed.

Figure 14. Forcing OpenSIPS to send messages from a specified socket

The script checks if the message was received on External VIP. In this case the source IP in the message

header is set to Internal VIP and vice versa.

31

2.3.4 Data Replication with Topology Hiding

During the experimentation with the described setup, a bug in OpenSIPS was discovered:

if a failover occurs during an established call, then all subsequent messages do not reach

their destination because they are sent back to the proxy itself in a loop until the allowed

number of hops is exceeded. However, the dialog information stored is identical in the

failed master (where these messages were processed correctly) and the new master node.

A debugging session revealed that the problem lies in the dialog replication code of the

OpenSIPS software. Dialogs are stored as objects. When topology hiding is performed

and some the of the dialog information is scrambled, callback functions are stored in the

dialog object. These functions are called when processing a subsequent message

belonging to this dialog and they restore the scrambled information. However, when the

dialogs were replicated to the backup cluster node, the callback functions were not. This

led to a situation where although the stored dialogs appeared identical on master and

backup nodes, the backup node did not have the necessary information to process the

messages.

The bug was reported on the OpenSIPS GitHub page [38] along with a suggestion for a

fix. Shortly the bug was fixed by the OpenSIPS developers [39] [40]. Since the bugfix is

only available in the development branches of the project, the version available in the

Debian repositories will not work for this setup and the project must be compiled from

the source code.

2.3.5 Load Balancing

The OpenSIPS software is configured to distribute the outgoing messages amongst the

intermediate proxies in the internal network. The distribution algorithm of the

load_balancer module considers the load of the servers: if there is no available resource

in one of the servers, the message will be sent to another one. The amount of resources –

i.e. the number of concurrent dialogs – is configured beforehand by a database entry.

The OpenSIPS routing script also handles the case where the initial load balancing

selected a proxy that is not available anymore or answers with an error. In this case

another destination is picked from the set until a successful one is found, or the set has no

more available destinations. This is done by setting a failure route – a function called in

32

case of a failure – before attempting to relay the message. The load_balancer

configuration can be seen in Figure 15.

The REGISTRAR messages are handled separately and relayed to another set of servers

in the internal network – the registrar servers. Due to OpenSIPS limitations, the

load_balancer module cannot be used for REGISTRAR messages [41]. Distribution of

REGISTRAR messages is handled by the dispatcher module [42] and the distribution

[…]

loadmodule "load_balancer.so"

modparam("load_balancer", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("load_balancer", "probing_method", "OPTIONS")

modparam("load_balancer", "probing_interval", 30)

modparam("load_balancer", "replicate_status_to", 1)

modparam("load_balancer", "accept_replicated_status", 1)

[…]

INITIAL REQUESTS

 if (!load_balance("1","pstn")) {

 send_reply("500","No Destination available");

 exit;

 }

 t_on_failure("GW_FAILOVER");

 route(RELAY);

[…]

failure_route[GW_FAILOVER] {

 if (t_was_cancelled()) {

 exit;

 }

 # failure detection with redirect to next available trunk

 if (t_check_status("(408)|([56][0-9][0-9])")) {

 xlog("Failed trunk $rd/$du detected \n");

 if (lb_next()) {

 t_on_failure("GW_FAILOVER");

 t_relay();

 exit;

 }

 send_reply("500","All GW are down");

 }

}

Figure 15. Load balancing

The load balancer state is replicated to backup nodes. The script looks for suitable destinations from the

pre-configured destination set with id “1”. If the set is empty or some other error occurs, the 500-error

message is relayed; otherwise the initial message is relayed to the selected destination. If the relay is

unsuccessful, the GW_FAILOVER failure route is followed: load_balancer will keep trying the other

destinations in the set until it succeeds; otherwise a 500-error message is sent.

33

algorithm is set to random. The logic of the failover route is analogous to the one in

load_balancer – if the selected server failed to relay the message, next one is picked.

2.3.6 Registration Rate Throttling

The registration throttling is implemented by the mid_registrar OpenSIPS module

(Figure 16). It is configured to lower the rate of the REGISTER requests and increase

their expiration time. It forwards the initial REGISTER request to one of the main

registrar servers and performs a local lookup for subsequent requests until the registration

expires in the main registrar.

[…]

 if (is_method("REGISTER")) {

 mid_registrar_save("location");

 switch ($retcode) {

 case 1:

 xlog("forwarding REGISTER to main registrar ($$ci=$ci)\n");

 if (!ds_select_dst("1", "6")) { # setid=1, alg=6 random

 send_reply("500","Unable to route");

 exit;

 }

 xlog("Selected REG trunk $rd/$du \n");

 t_on_failure("REG_FAILOVER");

 route(RELAY);

 case 2:

 xlog("absorbing REGISTER! ($$ci=$ci)\n");

 break;

 default:

 xlog("failed to save registration! ($$ci=$ci)\n");

 }

 exit;

 }

 if (is_method("INVITE|MESSAGE") && ds_is_in_list("$si", "$sp", "1")) {

 xlog("looking up $ru!\n");

 if (!mid_registrar_lookup("location")) {

 t_reply("404", "Not Found");

 exit;

 }

 route(RELAY);

 exit;

 }

Figure 16. Mid-registrar configuration

The REGISTER message is absorbed if the contact is already registered in the main registrar and the

registration has not yet expired. Otherwise the expiration time of the request is increased and forwarded to

the main registrar. Requests from main registrars are forwarded to the intended destinations.

34

The requests from the main registrar to end-users are handled in a separate case. These

are looked up locally and forwarded to the intended destination.

2.3.7 Flood Protection

Flood protection of the SBC is implemented by configuring the OpenSIPS pike module

[43] (Figure 17). The automatic mode of the pike module detects when packets received

from some IP address exceeds some limit. The packet is then processed in a separate route

called check_route in the OpenSIPS configuration script – similarly to the failure route in

load_balancer.

In this configuration the check_route does not examine the packets that come either from

the destinations configured in load_balancer or from the dispatcher destinations. This

means that the intermediate proxies and registrar servers in the internal network are

trusted. If any other host exceeds the allowed threshold, it is blocked.

2.4 Database Configuration

A separate machine from the cluster nodes is set to host the shared database. The

OpenSIPS database control utility [44] is used to create the database by issuing the

opensipsdbctl create command, which must be run manually since it requires interactive

input. The database is configured to allow remote access by the OpenSIPS server software

from the cluster nodes. It is important to note, that the OpenSIPS versions on the cluster

loadmodule "pike.so"

modparam("pike", "check_route", "pike")

[…]

route[pike] {

 if ds_is_in_list("$si", "$sp", "1"){

 drop;

 }

 if lb_is_destination("$si","$sp"){

 drop;

 }

}

Figure 17. Pike module configuration

The Pike module is configured to automatically detect spikes in network traffic from any destination and

redirect the logic flow into a route called “pike”. The default behaviour is to block the violating source and

drop the packets. However, “drop” command in check_route instructs the module if this source IP does not

need monitoring.

35

nodes and the database host must match. The necessary database configuration files and

the populating script can be seen in Appendix 4 – Database Configuration Files.

3 System Validation

To validate that the system conforms to requirements of a clustered SBC several

modifications to the network were made. The load balancing of the REGISTER messages

was tested against two FreePBX [45] Registrar servers with Asterisk [46] backend. A

single machine with Debian OS and PostgreSQL database was used as a database server.

Two softphones were used as intermediate proxy servers and another one as an IP phone

in the external network, referred to as destination softphones and a source softphone,

respectively. The proxy and register server fields are set to Internal VIP in the destination

softphones and to external VIP in the source softphone.

This simplifies the test setup by eliminating the need to configure at least two more

intermediate SIP proxy servers. However, user authorization is not an SBC functionality

and should be implemented in the intermediate proxies. Hence, in the current setup it does

not matter what number the source softphone dials. Based on its load balancing

configuration, the SBC will relay all incoming calls to the destination softphones.

Several test cases were designed and manually executed to validate conformity to the

requirements introduced in the Problem Statement. Numeration of connections and names

of network elements used in the following test descriptions reference the Figure 18.

Network packets were captured and examined using the Wireshark [47] network protocol

analyzer. The OpenSIPS Management Interface [48] was used to examine the internal

state of OpenSIPS servers.

In all the test cases described the expected result was achieved. The “requirements

covered” section in the test case descriptions follows the requirement numbers in the

Problem Statement.

36

3.1 Test Case: Call Flow

Description: a new call can be established from the source softphone to one of the

destination softphones. The call can then be paused and ended.

Precondition: the test setup is not in a degraded state – all cluster nodes, registrar servers,

destination softphones and the database server are operating correctly, all network

connections are up.

Test steps: first, dial any number in the source softphone. Then, accept the call in the

ringing destination softphone. After that, pause the call either in source or destination

phone. Finally, end the call.

Expected results: one of the destination softphones rings. After accepting the call, a

media session starts. The OpenSIPS management interface command opensipsctl fifo

dlg_list shows the ongoing dialog in the node 1. The call is paused, then ended.

Figure 18. Test setup

Two machines form a HA cluster: their eth0 interfaces bind to a virtual IP address – External VIP. When

node 1 is the master, virtual connection 2 is active. Connection 4 is active when node 1 is down and node

2 is the master. A source softphone simulating a device in a client’s network is connected to External VIP

via connection 5. A DoS attacker machine that simulates a malicious user is connected to External VIP via

connection 11. The eth1 interfaces of cluster nodes bind to Internal VIP through connections 1 and 3.

Registration requests are routed to registrar server servers via connections 6 and 7. Other messages from

the external network are routed through connections 8 and 9 to the destination softphones based on their

load. The master node communicates its state to the database server using connection 10.

37

Requirements covered: 2

3.2 Test Case: Call Flow After Failover

Description: a new call can be established from the source softphone to one of the

destination softphones after a cluster failover has occurred. The call can then be paused

and ended.

Precondition: the test setup is in a degraded state – node 1 is disconnected, network

connections 1 and 2 are down, node 2 becomes the new master node.

Test steps: first, dial any number in the source softphone. Then, accept the call in the

ringing destination softphone. After that, pause the call either in source or destination

phone. Finally, end the call.

Expected results: one of the destination softphones rings. After accepting the call, a

media session starts. The command opensipsctl fifo dlg_list shows the ongoing dialog in

the node 2. The call is paused, then ended.

Requirements covered: 1, 2

3.3 Test Case: Call Flow After Failback

Description: a new call can be established from the source softphone to one of the

destination softphones after cluster a failback has occurred. The call can be then paused

and ended.

Precondition: the cluster failover and failback have occurred. The test setup is not in a

degraded state. Node 1 is currently the master node and node 2 has reverted to backup

state.

Test steps: first, dial any number in the source softphone. Then, accept the call in the

ringing destination softphone. After that, pause the call either in the source or destination

phone. Finally, end the call.

38

Expected results: one of the destination softphones rings. After accepting the call, a

media session starts. The command opensipsctl fifo dlg_list shows the ongoing dialog in

the node 1. The call is paused, then ended.

Requirements covered: 1, 2

3.4 Test Case: Topology Hiding – Internal Network

Description: the SIP packets arriving to the destination softphones should not contain

any information about the source softphone or cluster nodes, only about the VIPs.

Precondition: clustered SBC is operating.

Test steps: intercept the incoming and outgoing packets in the machine where the

destination softphone is installed. First, dial any number in the source softphone. Then,

accept the call in the ringing destination softphone. Finally, end call.

Expected results: the source and destination address of the incoming packets are the

Internal VIP and IP address of the current destination softphone correspondingly, and

vice versa for the outgoing packets. The SIP message headers do not contain the address

of the source softphone.

Requirements covered: 2

3.5 Test Case: Topology Hiding – External Network

Description: the SIP packets arriving to the source softphone should not contain any

information about the destination softphones or cluster nodes, only about the VIPs.

Precondition: clustered SBC is operating.

Test steps: intercept the incoming and outgoing packets in the machine where the source

softphone is installed. First, dial any number in the source softphone. Then, accept the

call in the ringing destination softphone. Finally, end call.

Expected results: the source and destination address of the incoming packets are the

External VIP and IP address of the source softphone correspondingly, and vice versa for

39

the outgoing packets. The SIP message headers do not contain the address of the

destination softphone.

Requirements covered: 2

3.6 Test Case: Register

Description: users authorized by the main registrar can register to the SBC. Unauthorized

users cannot.

Precondition: a test user account is registered in registrar servers.

Test steps: first, enter an incorrect user and password into any of the softphones. Then,

try to register to SBC. Finally, enter the correct user and password, try to register.

Expected results: the softphone fails to register with the incorrect user and password.

The Asterisk log in one of the registrar servers shows a failed registration attempt. The

softphone successfully registers with the correct user and password. The Asterisk log

shows a successful registration.

Requirements covered: 5

3.7 Test Case: Register Throttling

Description: high-rate incoming REGISTER requests is throttled by the SBC, while the

main registrar servers receive low-rate requests.

Precondition: clustered SBC is operating.

Test steps: first, configure all softphones to have the highest registration rate possible.

Then, examine the sip proxy logs and the main registrar logs.

Expected results: the softphones send out the high-rate REGISTER requests. OpenSIPS

log in the active cluster node shows that the requests are relayed at a lower rate, and the

high-rate requests are absorbed. The main registrar log shows the low-rate requests.

Requirements covered: 5

40

3.8 Test Case: Register Dispatching

Description: if one of the registrar servers is unresponsive, all the REGISTRAR requests

are routed to another one.

Precondition: one Registrar server is shut down.

Test steps: attempt registration with one of the softphones.

Expected results: registration is successful. The Asterisk log in the operating registrar

server shows the successful attempt.

Requirements covered: 3, 5

3.9 Test Case: Load Balancing

Description: calls are distributed among the destination softphones based on their load.

Precondition: command opensipsctl fifo dlg_list shows no active dialogs in the SBC

nodes. The softphone software is turned off in the destination and source softphone

machines. One destination is configured to handle ten concurrent calls, the other thirty-

two.

Test steps: first, run Sipp in the server scenario on both destination softphone machines

using command sipp -sn uas. Then, run Sipp in the client scenario in the source softphone

machine: start forty calls with a pause set to sixty seconds. Start each new call with one-

second delay to avoid triggering flood protection mechanism. For the client Sipp scenario

use the command sipp -sn uac EXTERNAL_VIP -m 40 -r 1 -d 60000 -I

SOURCE_SOFTPHONE_IP -p 5060.

Expected results: sipp in the source softphone machine shows forty successful calls.

Sipp-s in the destination softphone machines show at most ten and thirty-two successful

calls respectively.

Requirements covered: 3

41

3.10 Test Case: Denial of Service Attack

Description: a legitimate user can establish a call during a DoS attack.

Precondition: command opensipsctl fifo dlg_list shows no active dialogs in the SBC

nodes. The softphone software is turned off in the destination and source softphone

machines. Each destination is configured to handle 100 concurrent calls.

Test steps: first, run Sipp in the server scenario on both destination softphone machines

using command sipp -sn uas. Then, in the DoS attacker machine run a DoS simulation

with Sipp using command sipp -sn uac EXTERNAL_VIP -p 5060 -m 1000 -r 100 -d

60000, which tries to establish a thousand new one-minute calls, a hundred every second.

After a few seconds delay, in the source softphone machine run a legitimate user call with

Sipp utilizing the sipp -sn uac EXTERNAL_VIP -p 5060 -m 1 -d 60000 command, which

tries to establish one call lasting sixty seconds.

Expected results: a call is successfully established by the source softphone. The

OpenSIPS logs in the SBC master node shows the pike module blocking the DoS attacker.

Most of the requests sent by the DoS attacker do not reach the destination softphones.

Requirements covered: 4

3.11 Results

The system was configured using an approach inspired by test-driven development. First

a test case was designed and executed to validate a new feature. Then the feature was

configured until the new as well as previous tests passed. In the process some test cases

became obsolete or were merged with new tests. As a result, the final iteration of the

system meets the HA and SBC requirements by passing all tests.

42

4 Conclusions

SIP is a widely used protocol in VoIP applications. Although there are many

comprehensive proprietary SIP server solutions available, there is also a need and

motivation for open-source alternatives.

This work provides a background on SIP, SIP's security features, HA clusters and the

open-source technologies to implement them. Next, it describes an alternative solution to

the complex SIP SBC software based on open-source technologies. A customizable

deployment script is provided to ease the setup of the solution in production or test

environments, alongside with configuration scripts. Successful execution of a series of

test cases designed within the scope of this work shows the conformity of the solution to

the HA SBC requirements.

During experimentation stage, a bug was discovered that prevented topology hiding in an

OpenSIPS cluster. The bug was reported on GitHub along with a suggestion for the fix,

which has consequently been accepted by OpenSIPS developers.

As future work, the database server should be transformed into a separate cluster with

redundant connections to the SIP SBC to improve the availability of the shared storage.

Alternatively, implementing the high availability of the database within the SIP cluster

nodes will achieve the same goal. Moreover, testing under near-real-life circumstances

would help to reveal potential problems.

43

References

[1] Oracle Corporation, "Oracle and Acme Packet," [Online]. Available:

https://www.oracle.com/corporate/acquisitions/acmepacket/index.html. [Accessed

14 09 2017].

[2] F. Almeida and J. Cruz, "Open source unified communications: The new

paradigm to cut costs and extend productivity," in Proceedings of the Workshop

on Open Source and Design of Communication, Lisboa, 2012.

[3] "openSIPS," [Online]. Available: http://opensips.org/. [Accessed 14 09 2017].

[4] "CLUSTERER Module," [Online]. Available:

http://www.opensips.org/html/docs/modules/devel/clusterer.html. [Accessed 14 09

2017].

[5] "Keepalived for Linux," [Online]. Available: http://www.keepalived.org/.

[Accessed 14 09 2017].

[6] "topology_hiding Module," [Online]. Available:

http://www.opensips.org/html/docs/modules/devel/topology_hiding.html.

[Accessed 14 09 2017].

[7] "Load-Balancer Module," [Online]. Available:

http://www.opensips.org/html/docs/modules/devel/load_balancer.html. [Accessed

14 09 2017].

[8] "pike Module," [Online]. Available:

http://www.opensips.org/html/docs/modules/devel/pike.html. [Accessed 14 09

2017].

[9] "SIPp," [Online]. Available: http://sipp.sourceforge.net/. [Accessed 14 09 2017].

[10] J. Stanek and L. Kencl, "SIPp-DD: SIP DDoS Flood-Attack Simulation Tool," in

Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th

International Conference on, Maui, 2011.

[11] ACME PACKET, INC, "ANNUAL REPORT PURSUANT TO SECTION 13 OR

15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year

ended December 31, 2008," United States Securities And Exchange Comission,

Delaware, 2009.

[12] Oracle, "Oracle Buys Acme Packet," [Online]. Available:

http://www.oracle.com/us/corporate/press/1903221. [Accessed 13 11 2017].

[13] Oracle, "Trusted Communications across IP Network Borders," [Online].

Available: https://www.oracle.com/industries/communications/service-

providers/products/session-border-controller.html. [Accessed 13 11 2017].

[14] P. Segec and T. Kovacikova, "A Survey of Open Source Products for Building a

SIP Communication Platform," Advances in Multimedia, vol. 2011, no.

10.1155/2011/372591, 2011.

[15] The Kamailio SIP Server Project, "Kamailio SIP Server," [Online]. Available:

https://www.kamailio.org/w/. [Accessed 14 11 2017].

44

[16] C. A. Thompson, H. A. Latchman, N. Angelacos ja B. K. Pareek, „A Distributed

IP-Based Telecommunication System using SIP,“ International Journal of

Computer Networks & Communications (IJCNC), kd. 5, nr 6, 2013.

[17] FreeSWITCH.org, "FreeSWITCH," 2016. [Online]. Available:

https://freeswitch.org. [Accessed 14 11 2017].

[18] Q. Yang, Z.-K. Wei and J.-H. Kim, "A hot backup sip server system based on

VRRP," in Networked Computing and Advanced Information Management

(NCM), 2010 Sixth International Conference on, Seoul, 2010.

[19] OpenSIPS, "Available Versions," [Online]. Available:

https://www.opensips.org/About/AvailableVersions. [Accessed 15 11 2017].

[20] OpenSIPS, "Modules," [Online]. Available:

http://www.opensips.org/Documentation/Modules-2-2. [Accessed 15 11 2017].

[21] "The Smartvox Knowledgebase," [Online]. Available: http://kb.smartvox.co.uk/.

[Accessed 15 09 2017].

[22] Smartvox Limited, "Clustering OpenSIPS for High Availability – Part 1," 16 11

2010. [Online]. Available: http://kb.smartvox.co.uk/opensips/clustering-opensips-

part-1/. [Accessed 17 11 2017].

[23] Smartvox Limited, "Clustering OpenSIPS for High Availability – Part 2," 23 11

2010. [Online]. Available: http://kb.smartvox.co.uk/opensips/clustering-opensips-

part-2/. [Accessed 17 11 207].

[24] Smartvox Limited, "Clustering OpenSIPS for High Availability – Part 3,"

[Online]. Available: http://kb.smartvox.co.uk/opensips/clustering-opensips-part-

3/. [Accessed 15 09 2017].

[25] Smartvox Limited, "Using ClusterLabs Pacemaker with OpenSIPS," 08 06 2017.

[Online]. Available: http://kb.smartvox.co.uk/opensips/using-clusterlabs-

pacemaker-with-opensips/. [Accessed 17 11 2017].

[26] ClusterLabs, "Pacemaker," [Online]. Available:

http://clusterlabs.org/pacemaker.html. [Accessed 17 11 2017].

[27] ClusterLabs, "Corosync," [Online]. Available:

http://clusterlabs.org/corosync.html. [Accessed 17 11 2017].

[28] Smartvox Limited, "HA Scenarios and the OpenSIPS Clusterer Module," 28 06

2017. [Online]. Available: http://kb.smartvox.co.uk/opensips/ha-scenarios-and-

opensips-clusterer-module/. [Accessed 17 11 2017].

[29] K.Banerjee, "Relation among Call, Dialog, Transaction & Message," 12 04 2015.

[Online]. Available: http://www.siptutorial.net/SIP/relation.html. [Accessed 17 11

2017].

[30] "Asnible Automation For Everyone," Red Hat, Inc., [Online]. Available:

https://www.ansible.com. [Accessed 09 12 2017].

[31] N. K. Singh, S. Thakur, H. Chaurasiya and H. Nagdev§, "Automated Provisioning

of Application in IAAS Cloud using Ansible Configuration Management," in

International Conference on Next Generation Computing Technologies,

Dehradun, 2015.

[32] C. Ebert, J. Hernantes and N. Serrano, "DevOps," EEE Software, vol. 33, no. 3,

pp. 94-100, 2016.

[33] "GNU M4," Free Software Foundation, Inc., [Online]. Available:

https://www.gnu.org/software/m4/m4.html. [Accessed 09 12 2017].

45

[34] SPI and others, "debian The universal operating system," [Online]. Available:

https://www.debian.org. [Accessed 05 12 2017].

[35] "clusterer sync function," [Online]. Available:

https://github.com/OpenSIPS/opensips/issues/1194. [Accessed 14 12 2017].

[36] "rvlad-patrascu commented on Oct 18," [Online]. Available:

https://github.com/OpenSIPS/opensips/issues/1189#issuecomment-337665365.

[Accessed 14 12 2017].

[37] "rvlad-patrascu commented on Oct 26," [Online]. Available:

https://github.com/OpenSIPS/opensips/issues/1189#issuecomment-339612358.

[Accessed 14 12 2017].

[38] "Sequential topology hiding message not fixed after call failover to backup cluster

node," [Online]. Available: https://github.com/OpenSIPS/opensips/issues/1189.

[Accessed 16 12 2017].

[39] "dialog: fix a runtime bug with DLGCB_LOADED callbacks," [Online].

Available: https://github.com/OpenSIPS/opensips/commit/

8c8f27f6091289061f6aaf0d3c85ccd27db80a0d. [Accessed 20 12 2017].

[40] "dialog: also share module flags when replicating dialogs," [Online]. Available:

https://github.com/OpenSIPS/opensips/commit/

ad35e7cedc44efd90c58f26a853585ece5883bac. [Accessed 21 12 2017].

[41] "[OpenSIPS-Users] Load Balancer module for REGISTER as well as INVITE?,"

20 03 2013. [Online]. Available: http://lists.opensips.org/pipermail/users/2013-

March/025062.html. [Accessed 16 12 2017].

[42] "DISPATCHER module," [Online]. Available:

http://www.opensips.org/html/docs/modules/2.4.x/dispatcher.html. [Accessed 16

12 2017].

[43] "pike Module," [Online]. Available:

http://www.opensips.org/html/docs/modules/devel/pike.html. [Accessed 20 12

2017].

[44] "Database Deployment v2.4," [Online]. Available:

https://www.opensips.org/Documentation/Install-DBDeployment-2-4. [Accessed

17 12 2017].

[45] Sangoma Technologies, "FreePBX let freedom ring," [Online]. Available:

https://www.freepbx.org. [Accessed 18 12 2017].

[46] "Open Source Communication Software | Asterisk Official Site," [Online].

Available: https://www.asterisk.org. [Accessed 20 12 2017].

[47] "Wireshark - Go Deep.," [Online]. Available: https://www.wireshark.org.

[Accessed 12 19 2017].

[48] "openSIPS | Documentation / Management Interface - 2.4," [Online]. Available:

https://www.opensips.org/Documentation/Interface-MI-2-4. [Accessed 19 12

2017].

[49] "Graphic by Georgewilliamherbert at English Wikipedia," 10 02 2006. [Online].

Available: https://commons.wikimedia.org/wiki/File:2nodeHAcluster.png.

[Accessed 07 11 2017].

[50] Smatrvox Limited, "Using the Clusterer Module for contact replication," 16 11

2010. [Online]. Available: http://kb.smartvox.co.uk/opensips/using-the-clusterer-

module-for-contact-replication/. [Accessed 15 09 2017].

46

Appendix 1 – Ansible Playbook File

- name: build opensips

 hosts: all

 tasks:

 - name: "clone opensips"

 git:

 repo: https://github.com/OpenSIPS/opensips.git

 dest: /home/user/opensips

 - name: Install dependencies

 become: true

 apt: name={{item}} state=installed

 with_items:

 - build-essential

 - postgresql

 - postgresql-client

 - linux-headers*

 - flex

 - bison

 - libncurses5-dev

 - name: build OpenSIPS

 shell: TLS=1 make -j4 include_modules="db_postgres" modules

 args:

 chdir: /home/user/opensips

 - name: install opensips

 shell: TLS=1 make include_modules="db_postgres" install

 become: true

 args:

 chdir: /home/user/opensips

- name: Configure opensips proxies

 hosts: proxyhosts

 tasks:

 - name: "CLEANUP: ensure opensips is stopped (and disable it at boot)"

 service: name=opensips state=stopped enabled=no

 become: true

 - name: "VRRP: generate network interfaces config"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 interfaces-{{inventory_hostname}}.m4 >
../{{inventory_hostname}}-interfaces

 - name: "VRRP: configure network interfaces"

 template: src={{item.src}} dest={{item.dest}}

 become: true

 with_items:

47

 - {src: "opensips/{{inventory_hostname}}-interfaces", dest:
"/etc/network/interfaces"}

 - {src: "opensips/configs/rt_tables", dest:
"/etc/iproute2/rt_tables"}

 - name: "CLEANUP: ensure network-manager is stopped (and disable it at
boot)"

 service: name=network-manager state=stopped enabled=no

 become: true

 - name: "CLEANUP: kill opensips"

 shell: "pkill -9 opensips || true"

 become: true

 - name: install the latest version of keepalived

 become: true

 package:

 name: keepalived

 state: latest

 - name: "create group keepalived_script"

 become: true

 group:

 name: keepalived_script

 state: present

 - name: "create user keepalived_script"

 become: true

 user:

 name: keepalived_script

 group: keepalived_script

 - name: "VRRP: generate keepalived config"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 keepalived-{{inventory_hostname}}.m4 >
../{{inventory_hostname}}-keepalived.conf

 - name: "VRRP: deploy keepalived config"

 template: src={{item.src}} dest={{item.dest}}

 become: true

 with_items:

 - {src: "opensips/{{inventory_hostname}}-keepalived.conf", dest:
"/etc/keepalived/keepalived.conf"}

 - {src: "opensips/configs/notify-keepalived.sh", dest:
"/home/keepalived_script/notify-keepalived.sh"}

 - {src: "opensips/configs/sysctl.conf", dest:
"/etc/sysctl.d/vrrp.conf"}

 - name: "VRRP: chown keepalived script"

 become: true

 file:

 path: /home/keepalived_script/notify-keepalived.sh

 owner: keepalived_script

 group: keepalived_script

 mode: 755

 - name: "VRRP: allow binding to non-existent ip"

 shell: "sysctl -p /etc/sysctl.d/vrrp.conf"

 become: true

48

 - name: "VRRP: ensure keepalived is running "

 service: name=keepalived state=started enabled=yes masked=no

 become: true

 - name: "OPENSIPS: generate opensips config"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 opensips-{{inventory_hostname}}.m4 >
../{{inventory_hostname}}-opensips.conf

 - name : "OPENSIPS: deploy opensips conf"

 template: src={{item.src}} dest={{item.dest}}

 become: true

 with_items:

 - {src: "opensips/{{inventory_hostname}}-opensips.conf", dest:
"/etc/opensips/opensips.cfg"}

 - {src: "opensips/configs/opensipsctlrc", dest:
"/etc/opensips/opensipsctlrc"}

- name: Configure db host

 hosts: dbhosts

 tasks:

 - name: "DB: generate DB config pg_hba"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 pg_hba-template.m4 > ../pg_hba.conf

 - name: "DB: generate DB config populate"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 populate-template.m4 > ../populate.sql

 - name: "DB: generate DB config postgresql"

 local_action:

 module: shell

 chdir: opensips/templates

 _raw_params: m4 postgresql-template.m4 > ../postgresql.conf

 - name : "DB: deploy DB conf"

 template: src={{item.src}} dest={{item.dest}}

 become: true

 with_items:

 - {src: opensips/configs/opensipsctlrc, dest:
/etc/opensips/opensipsctlrc}

 - {src: "opensips/postgresql.conf", dest:
"/etc/postgresql/9.6/main/postgresql.conf"}

 - {src: "opensips/pg_hba.conf", dest:
"/etc/postgresql/9.6/main/pg_hba.conf"}

 - {src: "opensips/populate.sql", dest: "/home/user/populate.sql"}

#@db: opensipsdbctl create

 - name: "populate postgre tables"

 become: postgres

 shell: "psql -U postgres -f /home/user/populate.sql"

 - name: "DB: restart database"

 service: name=postgresql state=restarted

49

 become: true

#@registrar:

- freepbx iso

- add users and extensions

- name: Restart opensips

 hosts: proxyhosts

 tasks:

 - name: "VRRP: restart keepalived"

 service: name=keepalived state=restarted

 become: true

 - name: "OPENSIPS: start opensips"

 shell: "opensips -n 1 -f /etc/opensips/opensips.cfg"

 become: true

50

Appendix 2 – M4 Macro Definitions

Appendix 3 – OpenSIPS Node Configuration Template

####### Global Parameters #########

log_level=3

log_stderror=no

log_facility=LOG_LOCAL0

children=4

/* comment the next line to enable the auto discovery of local aliases

 based on revers DNS on IPs */

auto_aliases=no

listen=udp:VRRP_INTERNAL_IP:DEFAULT_SIP_PORT # CUSTOMIZE ME

listen=udp:VRRP_EXTERNAL_IP:DEFAULT_SIP_PORT

listen=bin:INTERNAL_IP:DEFAULT_SIP_PORT

####### Modules Section ########

#set module path

mpath="/usr/local/lib64/opensips/modules/"

loadmodule "topology_hiding.so"

define(`DB_HOST', `dbhost')dnl

define(`DEFAULT_SIP_PORT', `5060')dnl

define(`GATEWAY', `10.164.164.1')dnl

define(`INTERNAL_SOFTPHONE_IP', `10.164.164.250')dnl

define(`NETMASK', `23')dnl

define(`NETMASK_ADDR', `255.255.254.0')dnl

define(`NETWORK', `10.164.164.0')dnl

define(`NODE1_CLUSTERER_ID', `1')dnl

define(`NODE1_EXTERNAL_IFACE', `enp0s25')dnl

define(`NODE1_EXTERNAL_IP', `10.164.164.171')dnl

define(`NODE1_INTERNAL_IFACE', `enx00b56d0216c2')dnl

define(`NODE1_INTERNAL_IP', `10.164.165.124')dnl

define(`NODE2_CLUSTERER_ID', `2')dnl

define(`NODE2_EXTERNAL_IFACE', `eth0')dnl

define(`NODE2_EXTERNAL_IP', `10.164.165.118')dnl

define(`NODE2_INTERNAL_IFACE', `eth1')dnl

define(`NODE2_INTERNAL_IP', `10.164.164.75')dnl

define(`POSTGRES_U_AND_PWD', `postgres:12345')dnl

define(`POSTGRESQL_LISTEN_ADDRESS', `*')dnl

define(`REGISTRAR_IP', `10.164.165.145')dnl

define(`REGISTRAR_PORT', `5160')dnl

define(`VRRP_EXTERNAL_IP', `10.164.164.195')dnl

define(`VRRP_INTERNAL_IP', `10.164.164.190')dnl

51

modparam("topology_hiding", "force_dialog", 1)

SIGNALING module

loadmodule "signaling.so"

StateLess module

loadmodule "sl.so"

Transaction Module

loadmodule "tm.so"

modparam("tm", "fr_timeout", 5)

modparam("tm", "fr_inv_timeout", 30)

modparam("tm", "restart_fr_on_each_reply", 0)

modparam("tm", "onreply_avp_mode", 1)

Record Route Module

loadmodule "rr.so"

/* do not append from tag to the RR (no need for this script) */

modparam("rr", "append_fromtag", 0)

MAX ForWarD module

loadmodule "maxfwd.so"

SIP MSG OPerationS module

loadmodule "sipmsgops.so"

FIFO Management Interface

loadmodule "mi_fifo.so"

modparam("mi_fifo", "fifo_name", "/tmp/opensips_fifo")

modparam("mi_fifo", "fifo_mode", 0666)

URI module

loadmodule "uri.so"

modparam("uri", "use_uri_table", 0)

loadmodule "proto_bin.so"

modparam("proto_bin", "bin_port", 5062)

loadmodule "clusterer.so"

modparam("clusterer", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("clusterer", "current_id", CLUSTERER_CURRENT_ID)

loadmodule "db_postgres.so"

AVPOPS module

loadmodule "avpops.so"

ACCounting module

loadmodule "acc.so"

/* what special events should be accounted ? */

modparam("acc", "early_media", 0)

52

modparam("acc", "report_cancels", 0)

/* by default we do not adjust the direct of the sequential requests.

 if you enable this parameter, be sure the enable "append_fromtag"

 in "rr" module */

modparam("acc", "detect_direction", 0)

DIALOG module

loadmodule "dialog.so"

modparam("dialog", "dlg_match_mode", 1)

modparam("dialog", "default_timeout", 21600) # 6 hours timeout

modparam("dialog", "db_mode", 1)

modparam("dialog", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("dialog", "accept_replicated_dialogs", 1)

modparam("dialog", "replicate_dialogs_to", 1)

modparam("dialog", "replicate_profiles_to", 1)

modparam("dialog", "accept_replicated_profiles", 1)

LOAD BALANCER module

loadmodule "load_balancer.so"

modparam("load_balancer", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("load_balancer", "probing_method", "OPTIONS")

modparam("load_balancer", "probing_interval", 30)

modparam("load_balancer", "replicate_status_to", 1)

modparam("load_balancer", "accept_replicated_status", 1)

loadmodule "dispatcher.so"

modparam("dispatcher", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

loadmodule "proto_udp.so"

loadmodule "usrloc.so"

modparam("usrloc", "db_mode", 0)

modparam("usrloc", "db_url",
"postgres://POSTGRES_U_AND_PWD@DB_HOST/opensips")

modparam("usrloc", "accept_replicated_contacts", 1)

modparam("usrloc", "replicate_contacts_to", 1)

loadmodule "mid_registrar.so"

modparam("mid_registrar", "mode", 1) /* 0 = mirror / 1 = ct / 2 = AoR */

modparam("mid_registrar", "outgoing_expires", 7200)

modparam("mid_registrar", "insertion_mode", 0) /* 0 = contact; 1 = path */

loadmodule "pike.so"

modparam("pike", "check_route", "pike")

####### Routing Logic ########

main request routing logic

53

route{

 if (!mf_process_maxfwd_header("10")) {

 sl_send_reply("483","Too Many Hops");

 exit;

 }

 if (has_totag()) {

 if (topology_hiding_match()) {

xlog("===");

 xlog("Succesfully matched this request to a topology hiding
dialog. \n");

 xlog("Calller side callid is $ci \n");

 xlog("Callee side callid is $TH_callee_callid \n");

xlog("===");

 route(RELAY);

 }

 else {

 xlog("====TOPOLOGY HIDING DID NOT MATCH====================");

 if (is_method("ACK")) {

 xlog("L_ERR", "============ METHOD ACK ============");

 if (t_check_trans()) {

 # non loose-route, but stateful ACK; must be an ACK after

 # a 487 or e.g. 404 from upstream server

 t_relay();

 exit;

 } else {

 xlog("L_ERR", "ACK WITHOUT MATCHING TRANSACTION =====");

 # ACK without matching transaction ->

 # ignore and discard

 exit;

 }

 }

 sl_send_reply("404","Not here");

 }

 exit;

 }

 #### INITIAL REQUESTS

 if (is_method("REGISTER")) {

 xlog("INITIAL_REGISTER \n");

 mid_registrar_save("location");

 switch ($retcode) {

 case 1:

 xlog("forwarding REGISTER to main registrar ($$ci=$ci)\n");

 if (!ds_select_dst("1", "6")) { # setid=1, alg=6 random

 send_reply("500","Unable to route");

 exit;

 }

54

 xlog("Selected REG trunk $rd/$du \n");

 t_on_failure("REG_FAILOVER");

 route(RELAY);

 case 2:

 xlog("absorbing REGISTER! ($$ci=$ci)\n");

 break;

 default:

 xlog("failed to save registration! ($$ci=$ci)\n");

 }

 exit;

 }

 # initial requests from main registrar, need to look them up!

 if (is_method("INVITE|MESSAGE") && ds_is_in_list("$si", "$sp", "1")) {

 xlog("looking up $ru!\n");

 if (!mid_registrar_lookup("location")) {

 t_reply("404", "Not Found");

 exit;

 }

 route(RELAY);

 exit;

 }

 # CANCEL processing

 if (is_method("CANCEL")) {

 if (t_check_trans())

 route(RELAY);

 exit;

 }

 else if (!is_method("INVITE")) {

 send_reply("405","Method Not Allowed");

 exit;

 }

 else {

 create_dialog();

 }

 if ($rU==NULL) {

 # request with no Username in RURI

 sl_send_reply("484","Address Incomplete");

 exit;

 }

 t_check_trans();

 # preloaded route checking

 if (loose_route()) {

 xlog("L_ERR",

 "Attempt to route with preloaded Route's [$fu/$tu/$ru/$ci]");

 if (!is_method("ACK"))

 sl_send_reply("403","Preload Route denied");

 exit;

55

 }

 # record routing

 record_route();

 do_accounting("log");

 topology_hiding("UC");

 if (!load_balance("1","pstn")) {

 send_reply("500","No Destination available");

 exit;

 }

 t_on_failure("GW_FAILOVER");

 route(RELAY);

}

route[RELAY] {

 if (is_method("INVITE|REGISTER")) {

 if ($Ri=="VRRP_EXTERNAL_IP" && $Rp=="DEFAULT_SIP_PORT") {

 xlog("L_INFO","ToInternal message");

 route("ToInternal");

 } else if ($Ri=="VRRP_INTERNAL_IP" && $Rp=="DEFAULT_SIP_PORT") {

 xlog("L_INFO","ToExternal message");

 route("ToExternal");

 }

 }

 if (!t_relay()) {

 sl_reply_error();

 };

 exit;

}

route[ToInternal] {

 xlog("L_INFO","route(ToInternal)");

 force_send_socket(UDP:VRRP_INTERNAL_IP:DEFAULT_SIP_PORT);

}

route[ToExternal] {

 xlog("L_INFO","route(ToExternal)");

 force_send_socket(UDP:VRRP_EXTERNAL_IP:DEFAULT_SIP_PORT);

}

route[pike] {

 if ds_is_in_list("$si", "$sp", "1"){

 drop;

 }

 if lb_is_destination("$si","$sp"){

 drop;

 }

}

56

failure_route[GW_FAILOVER] {

 if (t_was_cancelled()) {

 exit;

 }

 # failure detection with redirect to next available trunk

 if (t_check_status("(408)|([56][0-9][0-9])")) {

 xlog("Failed trunk $rd/$du detected \n");

 if (lb_next()) {

 t_on_failure("GW_FAILOVER");

 t_relay();

 exit;

 }

 send_reply("500","All GW are down");

 }

}

failure_route[REG_FAILOVER] {

 xlog("REG_FAILOVER \n");

 if (t_was_cancelled()) {

 exit;

 }

 # failure detection with redirect to next available trunk

 if (t_check_status("(408)|([56][0-9][0-9])")) {

 xlog("REG server answered with a failure \n");

 if (ds_next_dst()) {

 t_on_failure("REG_FAILOVER");

 xlog("DS_NEXT_DST \n");

 t_relay();

 exit;

 }

 send_reply("500","All REG GW are down");

 }

}

local_route {

 if (is_method("BYE") && $DLG_dir=="UPSTREAM") {

 acc_log_request("200 Dialog Timeout");

 }

}

57

Appendix 4 – Database Configuration Files

DBENGINE=PGSQL

DBHOST=localhost

DBNAME=opensips

DBRWUSER=opensips

DBRWPW="opensipsrw"

Figure 19. Opensipsctlrc file

Specifies that Postgres database is by OpenSIPS used on current machine. Provides database name and

credentials to access it.

include(`defines.m4')dnl

host all all NETWORK/NETMASK trust

host all all 127.0.0.1/8 trust

local all all trust

Figure 20. Allow access to the database from localhost and the same network

include(`defines.m4')dnl

\c opensips

DELETE FROM load_balancer;

DELETE FROM clusterer;

DELETE FROM dispatcher;

INSERT INTO load_balancer (id, group_id, dst_uri, resources) VALUES (1, 1,
'sip:INTERNAL_SOFTPHONE_IP:DEFAULT_SIP_PORT', 'pstn=32');

INSERT INTO load_balancer (id, group_id, dst_uri, resources) VALUES (2, 1,
'sip:INTERNAL_SOFTPHONE2_IP:DEFAULT_SIP_PORT', 'pstn=32');

INSERT INTO clusterer (id, cluster_id, node_id, url, description) VALUES
(1, 1, NODE1_CLUSTERER_ID, 'NODE1_INTERNAL_IP:DEFAULT_SIP_PORT', 'Node
1');

INSERT INTO clusterer (id, cluster_id, node_id, url, description) VALUES
(2, 1, NODE2_CLUSTERER_ID, 'NODE2_INTERNAL_IP:DEFAULT_SIP_PORT', 'Node
2');

INSERT INTO dispatcher (setid, destination) VALUES (1,
'sip:REGISTRAR_IP:REGISTRAR_PORT');

INSERT INTO dispatcher (setid, destination) VALUES (1,
'sip:REGISTRAR2_IP:REGISTRAR_PORT');

Figure 21. Postgres populate script template

