
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Gerlin Vainomäe 221346IAPM

BALANCING CLASSES WITH SYNTHETIC DATA FOR IOT
INTRUSION DETECTION SYSTEMS

Master’s Thesis

Supervisor: Zhe Deng
MSc

Co-supervisor: Ants Torim
PhD

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Gerlin Vainomäe 221346IAPM

KLASSIDE TASAKAALUSTAMINE SÜNTEETILISTE

ANDMETEGA IOT SISSETUNGI TUVASTAMISE

SÜSTEEMIDE JAOKS

Magistritöö

Juhendaja: Zhe Deng
MSc

Kaasjuhendaja: Ants Torim
PhD

Tallinn 2025

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Gerlin Vainomäe

06.01.2025

1

Abstract

This study addresses a critical challenge in cybersecurity related to class imbalance in
intrusion detection systems for IoT datasets. It explores how generative models, particularly
CTGAN, can be used to create synthetic data that helps balance class distributions, thereby
improving model performance. While the results show promise, the study identifies a
key issue: the synthetic data created tends to be too similar to the original, limiting its
effectiveness in enhancing model accuracy. The author suggests that future work should
focus on adding noise to synthetic data to mitigate this issue. Additionally, advancing
generative models and refining training techniques could help reduce data drift and ensure
the relevance of synthetic data over time.

The findings contribute not only to IoT cybersecurity but also to general intrusion detection
systems across various domains. This research highlights the significance of synthetic data
in improving intrusion detection systems and advancing cybersecurity solutions.

The thesis is written in English and is 49 pages long, including 5 chapters, 24 figures and
23 tables.

2

Annotatsioon

See lõputöö käsitleb olulist küsimust küberturbes, mis on seotud klasside tasakaalus-
tamisega rünnakutuvastussüsteemides IoT-andmestike kontekstis. See uurib, kuidas gen-
eratiivsed mudelid, täpsemalt CTGAN, saavad luua sünteetilisi andmeid, mis aitavad
tasakaalustada klasside jaotusi, parandades seeläbi mudeli jõudlust ning täpsust tuvastada
rünnakuid. Lõputöö käigus on avastatud ka probleeme: loodud sünteetilised andmed
on tihtipeale liiga sarnased algsetele andmetele, piirates seeläbi mudeli täpsuse paran-
damise efektiivsust. Autor pakub, et tulevikus tuleks keskenduda müra lisamisele mudeli
genereerimise või andmete töötlemise käigus, et seda probleemi leevendada. Lisaks võivad
generatiivsete mudelite arendamine ja treeningmeetodite täiendamine aidata saavutada
mudeli effektiivsemat toimimist.

Uuring ei puuduta mitte ainult IoT küberturvalisust, vaid ka üldises pildis rünnakutuvas-
tusüsteeme erinevates valdkondades, kus on võimalik seda sarnastel andmestikel rakendada.
Lõputöö rõhutab sünteetiliste andmete tähtsust rünnakutuvastusüsteemide parandamisel ja
küberjulgeoleku lahenduste edendamisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 5 peatükki, 24
joonist, 23 tabelit.

3

List of Abbreviations and Terms

AI Artificial Intelligence
GAN Generative Adversarial Network, a machine learning frame-

work consisting of two neural networks that compete against
each other to create and distinguish realistic data

IDS Intrusion Detection System, a cybersecurity tool designed to
monitor network or system activity for suspicious or mali-
cious behaviour

IoT Internet of Things
LLM Large Language Model
ML Machine Learning
PCA Principal Component Analysis
SMOTE Synthetic Minority Oversampling Technique, an oversam-

pling technique used in machine learning to address class
imbalance by generating synthetic examples of the minority
class

4

Table of Contents

1 Introduction . 9
1.1 Importance . 9
1.2 Research questions . 10
1.3 Goal of the work . 10
1.4 Methods . 10
1.5 Thesis structure . 11

2 Background and related work . 12
2.1 Internet of Things Intrusion Detection System 12

2.1.1 Evaluation . 13
2.2 Generative AI . 14

2.2.1 Generative Adversarial Network 14

3 Methods . 20
3.1 Work environment . 20

3.1.1 Software environment . 20
3.1.2 Development tools . 20

3.2 Dataset . 21
3.2.1 Machine Learning Algorithms 21

3.3 Feature engineering . 22
3.4 Experiments and results . 26

3.4.1 Experiments with PCA . 26
3.4.2 Experiments with synthetic data 28
3.4.3 Experiments with SMOTE, undersampling, oversampling 29
3.4.4 Experiments with neural network 31
3.4.5 Experiments with CTGAN . 31

4 Discussion . 46
4.1 Future work . 47

5 Conclusion . 48

References . 50

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 55

5

List of Figures

1 Feature correlations . 23
2 Version 5 density plot . 35
3 Version 5 data drift . 36
4 Version 5, 10% synthetic data, confusion matrix 37
5 Confusion matrix with synthetic data from separate class models 42
6 Confusion Matrix and Data Drift Analysis with Combined Classes, Boruta

V2 . 43
7 Confusion matrix with reduced Exploits samples, Boruta V2 44

8 Worms class, confusion matrix with 10000 added synthetic samples, Boruta
V2 . 56

9 Worms class, confusion matrix with 28000 synthetic samples, Boruta V2 . 57
10 Shellcode class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 58
11 Shellcode class, confusion matrix with 28000 synthetic samples, Boruta V2 59
12 Backdoor class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 60
13 Backdoor class, confusion matrix with 28000 synthetic samples, Boruta V2 61
14 Analysis class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 62
15 Analysis class, confusion matrix with 28000 synthetic samples, Boruta V2 63
16 Reconnaissance class, confusion matrix with 10000 added synthetic sam-

ples, Boruta V2 . 64
17 Reconnaissance class, confusion matrix with 28000 synthetic samples,

Boruta V2 . 65
18 DoS class, confusion matrix with 10000 added synthetic samples, Boruta V2 66
19 DoS class, confusion matrix with 28000 synthetic samples, Boruta V2 . . 67
20 Fuzzers class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 68
21 Fuzzers class, confusion matrix with 28000 synthetic samples, Boruta V2 69
22 Exploits class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 70
23 Generic class, confusion matrix with 10000 added synthetic samples,

Boruta V2 . 71

6

24 Normal class, confusion matrix with 10000 added synthetic samples,
Boruta V2 . 72

7

List of Tables

1 UNSW-NB15 dataset record distribution 21
2 Multiclass classification before feature engineering 22
3 Highest feature correlations . 22
4 Extra Trees Importance . 24
5 Chosen features . 25
6 Feature engineering PCA tests with Random Forest Classifier 27
7 Feature engineering PCA tests with Random Forest Classifier, binary

classification . 27
8 SMOTE testing (with SelectKBest) . 30
9 SMOTE testing (with Boruta V1) . 30
10 Results with Neural Network, Random Forest 31
11 Results with CTGAN, SelectKBest and PCA, Random Forest 32
12 CTGAN Training Configurations . 32
13 Results with CTGAN, Boruta V1, Random Forest 33
14 Results using CTGAN, Boruta V1, XGBoost 34
15 Results using CTGAN, Fisher score, Random Forest 34
16 Results using CTGAN, Fisher score, XGBoost 34
17 Mutual Information and Hellinger Distance for each feature 38
18 Category numbers . 39
19 Chosen class sizes Version 1 . 39
20 Chosen class sizes Version 2 . 40
21 Testing classes one by one, Boruta V2 41
22 Training Parameters for Each Class, Boruta V2 42
23 Results with CTGAN, Boruta V1, separate categories, Random Forest . . 45

8

1. Introduction

Imbalanced class distribution in training data poses a significant challenge to the effective
performance of AI (Artificial Intelligence) models. This issue is particularly pronounced
when dealing with IoT (Internet of Things) datasets intended for intrusion detection (classes
in this context are different attack types). Specifically, the problem arises from the presence
of minority classes, which lack sufficient data representation and thus the IDSs (Intrusion
Detection System) often struggle to accurately predict the presence and classification of
intrusions.

For instance, in the case of the Edge-IIoTset dataset [1], the minority classes, such as
fingerprinting and man-in-the-middle (MITM) attacks, are severely underrepresented with
only 1001 and 1214 samples, respectively, while the rest of the classes have around 10,000
samples each. Moreover, similar challenges may be encountered in other datasets like
TON_IoT [2], CICIoT2023 [3], and UNSW_NB15 [4].

1.1 Importance

Cybersecurity is a highly critical concern, and neglecting it can lead to a wide range of
issues, from minor inconveniences, for example, spam emails and slow network perfor-
mance, to severe crises, such as identity theft and ransomware attacks. Therefore, the
accuracy of IDSs is of major importance; increasing the accuracy by finding a way to
create high-quality synthetic data is the aim of the thesis.

Over the past years, numerous publications have explored methods for creating synthetic
data to tackle the problem of class imbalance amongst IoT datasets. However, given the
multitude of possibilities, there isn’t a single definitive solution yet, as there is ongoing
room for improvement. Moreover, several research papers have suggested alternative
solutions worth investigating [5] [6] [7] [8] [9] [10] [11]. In the context of the ever-
evolving field of ML, with the continuous publication of new technologies, there remains a
constant opportunity for bettering IDSs.

Class imbalance in IoT security datasets can significantly affect the performance of IDSs.
For instance, if an IDS is trained on a dataset where malicious activities are underrep-
resented, it may fail to detect real-world attacks effectively. This can lead to severe
consequences, such as undetected data breaches or unauthorized access to sensitive infor-

9

mation. Real-world examples include the Mirai botnet attack [12], which exploited IoT
devices to launch large-scale DDoS attacks, taking down a lot of websites and services, and
the Stuxnet worm [13], which targeted industrial control systems, more precisely Iran’s
nuclear program. Addressing class imbalance can help in creating more robust IDSs that
can detect such attacks more accurately, thereby mitigating potential threats.

The main beneficiaries of the given work are cybersecurity professionals, who rely on
accurate detection of malicious activities in IoT networks, and businesses that deploy IoT
devices.

1.2 Research questions

The research questions for this problem are the following:

1. What’s the current most effective way to create synthetic data for IoT intrusion
classifiers?

2. How to design a model that can generate high-quality synthetic IoT data?
3. How effective are GANs and LLMs in generating high-quality synthetic data for

minority classes in IoT intrusion detection datasets, and how do their results compare
with other data augmentation techniques like SMOTE?

1.3 Goal of the work

This thesis primarily focuses on enhancing the performance of multi-class IDSs, specifically
by addressing the prevalent issue of class imbalance in IoT datasets. The main goal is to
address class imbalance by introducing synthetic data into the minority classes. By doing
so the bias of ML models can be reduced and their overall performance would be improved.
The goal will be achieved by creating a GAN model. For the baseline some under- and
oversampling methods shall be used and later on the results will also be compared to other
developed GANs.

1.4 Methods

To accomplish the thesis objectives, the initial step involves a comprehensive analysis
of existing IoT datasets to precisely identify minority classes and address potential data
quality issues. Once the imbalance issues are thoroughly understood, various techniques
will be explored to determine the optimal approach for generating synthetic data.

10

Based on the findings of the analysis, a model will be developed. This model will generate
synthetic data, which will then be used to train classifiers. The accuracy of these classifiers
will be assessed to measure the quality and utility of the synthetic data created by the
model. Results will be compared against the baseline and other classifiers found in different
research papers. Furthermore, additional evaluation metrics are employed to assess the
quality of synthetic data by comparing it to real data. All the chosen metrics are specified
under chapter 2.1.3.

1.5 Thesis structure

In this chapter, the overall structure of the thesis is outlined. The thesis is structured into
different chapters, each of which plays a distinct role in the research narrative.

The first major part, background and related work, provides a solid foundation for the study
by reviewing relevant background literature and existing approaches to handling class
imbalance in IoT datasets, particularly focusing on GANs. This chapter also highlights
related works that have previously addressed the issue of data augmentation in the context
of IDSs.

The methods chapter is focused on the methodological aspects of the research. It outlines
the data source, more precisely the UNSW-NB15 dataset. The techniques employed for
assessing the data and synthetic data generation are presented. It contains information
about the training process, evaluation metrics, and experimental configurations. Following
the methodology, an overview of the experiments is conducted, relating back to the research
questions.

The findings are discussed and interpreted in the discussion chapter, contrasting them with
previous research outcomes. The chapter provides insights into the effectiveness of the
synthetic data generated by GANs and discusses the implications of these results for the
field of cybersecurity. It also analyzes the limitations encountered throughout the study
and proposes possibilities for future research.

11

2. Background and related work

2.1 Internet of Things Intrusion Detection System

The Internet of Things (IoT) is a network of physical objects embedded with sensors
and software, designed primarily to establish connections for the purpose of sharing and
collecting data with other internet-connected devices and systems. This extensive range of
devices spans from everyday household items, like smart thermostats, to highly advanced
industrial tools. [14]

As the number of IoT devices grows, our reliance on them increases, making security a
more pressing concern. To enhance the security of IoT, various solutions are being used
such as antivirus software, firewalls and intrusion detection systems (IDSs) [15]. The aim
of an IDS is to spot various forms of malicious network traffic and computer activities that
elude detection of firewalls, thus playing an important role in offering protection against
threats that put at risk the availability, integrity, or confidentiality of computer systems [16].
IDSs detect unauthorized activities, like access, replication, alteration, and destruction of
information systems and these breaches encompass both external (outside the organization)
and internal (within the organization) intrusions [15].

In the last decade, IDSs have been improved by using machine learning (ML) [16], but
ML is not flawless as it will not always detect attacks perfectly. One specific challenge is
dealing with imbalanced data, where some classes have less data compared to others.

When the training dataset contains imbalanced sample sizes for different classes, it often
leads to poorer performance. Therefore, it is essential to apply data or class-balancing
techniques to avoid biased results. [5]

Synthetic data is often employed to address the problem of minority classes. This approach
is adopted because acquiring real data can be costly, time-intensive, or simply because the
data is unavailable. At a conceptual level, synthetic data differs from real data in that it
is generated based on statistical properties derived from real data. The extent to which
a synthetic dataset faithfully represents real data is a measure of its utility. This process
of creating synthetic data is known as synthesis and can be categorized into three types:
the first type is generated using actual real datasets, the second type is independent of real
data, and the third type combines elements of both approaches. [17]

12

2.1.1 Evaluation

Evaluation will involve comparing the newly created classifiers with those previously
trained on the analysed datasets, requiring the selection of appropriate metrics. The current
chosen metrics, based on existing solutions [5] [6] [7] [8] [9] [10] [11], are the following:

1. Accuracy: The number of correct predictions, including true positive and true
negative predictions, divided by the total number of predictions.

2. Precision: The number of positive predictions divided by the total number of positive
class values predicted.

3. Recall: The number of positive predictions divided by the number of positive class
values in the test data.

4. F1-score: A weighted average of precision and recall.

For multi-class classification, the following metrics should additionally be considered [15]:

1. Overall accuracy: The percentage of exemplars correctly classified across all classes.
2. Class detection rate: The proportion of exemplars from a given class that are correctly

classified out of all exemplars in that class.
3. Class FAR (False Alarm Rate) or class FP (False Positive) rate: The proportion of

exemplars from a given class that are incorrectly classified out of all exemplars not
from that class.

To better assess the quality of the created synthetic data, comparing it to real data is
necessary. The following metrics are suggested for this evaluation:

1. Histogram similarity: Measures the resemblance of the marginal distributions of
individual features between the original and synthetic data. [14]

2. Hellinger distance: The difference in univariate distribution between each variable
in the real and synthetic data. [15]

3. Mutual information: The mutual dependence between features, revealing how much
information can be obtained from one feature by observing another. [14]

4. Pairwise correlation difference: The similarity between real and synthetic data in
terms of linear correlations across variables. Alternatively, pairwise correlation plots
(e.g., heat maps) could be used for measuring. [18]

5. Propensity score: The distinguishability between real and synthetic data, indicating
how difficult it is to tell them apart. [15]

13

2.2 Generative AI

Methodologies like under-sampling, over-sampling, Synthetic Minority Oversampling
Technique (SMOTE) and artificial intelligence (AI) techniques are often used to make
synthetic data for minority classes. For the past few years, the Generative Adversarial
Network (GAN) has been researched and used a lot. On the other hand, Large Language
Models (LLM) are also something that could be potentially used for tabular data creation,
however as it is a novel concept, it hasn’t been explored a lot. In this chapter, an overview
of GANs will be given.

2.2.1 Generative Adversarial Network

A GAN uses an adversarial approach to create a generative model and it consists of two
main parts: the generator and the discriminator. The generator is responsible for making
synthetic data from random noise, and it’s guided by the discriminator, which helps it learn
how to mimic the patterns of minority classes. The discriminator, often referred to as the
adversary network, assesses the likelihood of a data sample belonging to either the actual
training data or the data generated by the generator. This assessment is continuously given
to the generator until the loss either stops changing or shows minimal improvement over
iterations. After the generator has been trained, it can generate data that closely matches
the distribution of the training data, enabling the creation of data points not present in the
original set, which aids in the detection of previously unseen attacks. [6]

Generative Adversarial Network for Intrusion Detection Systems

There are quite a lot of different GANs. In this work, the focus will be on tabular data.
Even when drawing the boundary at GANs for tabular data, there are many different types
and there are plenty of different research papers written about those GANs. Hence to limit
the scope, in this chapter the focus will be on the most recent and best-performing GAN
models meant for tabular data and centralized systems.

The names of some of the most known tabular GANs that shall be introduced are the
following:

■ AC-GAN Auxiliary Classifier GAN
■ CGAN Conditional GAN
■ CTGAN Conditional Tabular GAN
■ DCGAN Deep Convolution GAN
■ WCGAN Wasserstein Conditional GAN

14

■ WCGAN-GP Wasserstein Conditional GAN with Gradient Penalty
■ WGAN Wasserstein GAN
■ WGAN-GP Wasserstein GAN with Gradient Penalty

Mostly used datasets in the below works are NSL-KDD, UNSW-NB15, CICIDS2017 and
BoT-IoT. Most used classifiers are XGBoost, Random Forest (RF), Decision Tree (DT),
Support Vector Machine (SVM).

AC-GAN stands for Auxiliary Classifier Generative Adversarial Network. It is a type
of generative adversarial network (GAN) that uses an auxiliary classifier to improve the
quality of the generated data. The auxiliary classifier is a separate neural network that is
trained to classify the generated data into different categories.

In (Jianyu Wang et al., 2021), they propose Def-IDS, an ensemble defence mechanism
specially designed for NIDS, against both known and unknown adversarial attacks. It
is a two-module training framework that integrates multi-class GANs and multi-source
adversarial retraining to improve model robustness. They propose a novel GAN framework
to learn the data distribution of all classes of traffic in one model. The trained MGAN is
able to generate new samples that could be regarded as the perturbed data but still belongs
to the original classes. In order to build a multi-class model, two variant techniques,
AC-GAN and SGAN, are integrated. [19])

In (Danni Yuan et al., 2020) they designed an IDS to be deployed on edge nodes. They
convert network traffic to images which are applied to train a CNN to classify the categories
of network traffic. Furthermore, AC-GAN is adopted to generate synthesized samples to
expand the intrusion detection dataset. To balance the number of data between the minor
classes and the major ones in the intrusion detection dataset, AC-GAN is used to generate
synthesized network traffic samples which would be used to train the classifier. [20]

CGAN stands for Conditional GAN. This means that the generator can be given some
additional information about the data that it is generating, such as the class labels or the
values of certain features.

In (Hasan A. et al., 2022) they introduce a three-level intrusion detection system conditional
generative adversarial network (3LIDS-CGAN) model. In third-level IDS, adversary
packets are detected using CGAN which automatically learns the adversarial environment
and detects adversary packets. [21]

(Ayesha S. D. et al., 2023) introduced a data generative model (DGM) to improve the

15

minority class presence in the anomaly detection domain. The approach is based on a
CGAN to generate synthetic samples for minority classes. Kullback-Leibler divergence
is used during the training stage. The quality of data generation is observed in case of
ADASYN, SMOTEENN, and Borderline-SMOTE for benchmark datasets. [22]

To enhance the IMIDS’s detection performance, (Kim-Hung Le et al., 2022) proposes a
novel attack data generator leveraging a conditional generative adversarial network. This
network is constituted of conditional generators that could learn the conditional distribution
of samples in the dataset. [23]

Anomaly detection methods suffer from unbalanced and missing sample data, thus causing
IDS training to be complicated. In (Hafsa Benaddi et al, 2022), they propose using CGANs
to enhance the training process by handling the unbalanced data and coping with the
lack of specific class samples, which may succeed in evading their Convolutional Neural
Network-Long Short-Term Memory (CNNLSTM) based IDS model. CGAN is employed
to learn the minority data class to balance the dataset and generate adversarial malware
examples. [24]

(Imtiaz Ullah and Qusay H. Mahmoud, 2021) proposes a novel framework for detecting
anomalies in IoT networks utilizing CGANs to build realistic distributions for a given
feature set to overcome the issue of data imbalance. [25]

CTGAN stands for Conditional Tabular GAN. This is a type of CGAN that is specifically
designed to generate synthetic tabular data. CTGAN can handle a variety of different data
types compared to CGAN, including numerical, categorical, and mixed data. It is better
able to capture the complex relationships between different features in the data compared
to CGAN.

Two critical problems are the limits of classical oversampling methods while generating
samples and the limits of understanding complex datasets and modelling real tabular
data by the existing GAN models. The aim of (Omar H. et al., 2023) is to implement
the CTGAN model, the state-of-the-art of GAN model in tabular data modelling and
generation, to overcome all previously mentioned limits. The results of this paper show
the highly quality of synthetic samples that can be generated using CTGAN. [26]

(Basim A. A. et al., 2023) proposes an IDS based on a CTGAN for detecting DDoS and
DoS attacks on IoT networks. The CGAN-based IDS utilizes a generator network to
produce synthetic traffic that mimics legitimate traffic patterns, while the discriminator
network learns to differentiate between legitimate and malicious traffic. Addressing the

16

issue of extreme class imbalance in the Bot-IoT dataset through the utilization of synthetic
data generation. [27]

DCGAN combines the original GANs and CNN. DCGAN is introduced in (Guosheng
Zhao et al., 2023). In DCGAN discriminator and generator, a convolutional neural network
(CNN) is used to replace the multilayer perceptron in GANs. The pooling layer in CNN is
removed. By using batch normalization (BN) in the layer, the generator can learn stably,
so that the model can learn the sample data distribution better. Both the generator and
the discriminator use the BN layer, and the full convolution layer is replaced by the full
connection layer. It is based on a Gated Recurrent Unit (GRU) and Residual Network
(ResNet). GRU extracts the time series features of the sample data, then using ResNet and
softmax functions for intrusion detection classification. [28]

The Wasserstein GAN, or WGAN, is a variant of a GAN which aims to improve the
stability of learning and get rid of problems like mode collapse, and provide meaningful
learning curves useful for debugging and hyperparameter searches. The WGAN uses
weight clipping to enforce the Lipschitz constraint and a different loss function than regular
GANs, which measures the Wasserstein distance between the real and generated data
distributions. This loss function is more stable and less prone to exploding gradients than
the traditional Jensen-Shannon divergence loss used in GANs.

In (Paulo Freitas de Araujo-Filho et al., 2023) it is talked about how while unsupervised
IDSs are required to detect zero-day attacks, they usually present high false positive rates.
Moreover, most existing IDSs rely on long short-term memory (LSTM) networks to con-
sider time-dependencies among data. In the paper, they investigate GANs, an unsupervised
approach to detecting attacks by implicitly modelling systems, and alternatives to LSTM
networks to consider temporal dependencies among data. They have proposed an unsuper-
vised GAN-based IDS that uses temporal convolutional networks (TCNs) and selfattention
to detect cyber-attacks. The GAN is used to detect both known and zero-day attacks. [29]

(Pradeepkumar Bhale et al., 2023) proposes a transparent, optimally placed, distributed IDS
solution, namely, OPTIMIST, which can handle both high-rate and low-rate DDoS attacks
with good accuracy. The placement problem is formulated as the weighted minimum vertex
cover problem of a K-uniform hypergraph and solved with an approximation algorithm.
The IDS module is based on a long short-term memory (LSTM) model where a novel
offline training method for LSTM is proposed using Wasserstein GAN-generated artificial
flows. A training method is proposed for OPTIMIST where WGAN-generated artificial
flows from the datasets are mixed with the original flows to reduce the biases of the datasets.
[30]

17

(Yalong Song et al., 2023) presents an intrusion detection model, SEW-MBiGD, which
integrates data processing and fusion neural networks to address data imbalance and
insufficient feature learning in existing models. Firstly, to balance the dataset and mitigate
the influence of edge data, the model employs SMOTE and Edited Nearest Neighbors
(ENN) algorithms for data preprocessing, while also utilizing WGAN to generate minority
class data. Additionally, the model employs the use of a transformer. [31]

(Cheolhee Park et al., 2023) focused on the reconstruction error and Wasserstein distance-
based generative adversarial networks and autoencoder-driven deep learning models. [32]

(Shuang Zhao et al., 2021) design a new loss function to achieve an effective attack
against the black-box intrusion detection system on the premise of ensuring network traffic
functionality. They proposed an improved adversarial attack model based on WGAN called
attackGAN. By adding the feedback of the intrusion detection system, it can effectively
evade the attack, and at the same time guarantee the functionality of network traffic. [33]

In (Mustafizur R. Shahid et al., 2020), first, the autoencoder is trained to learn to convert
sequences of packet sizes (sequences of categorical data) into a latent vector in a continuous
space. Then a WGAN is trained on the latent space to learn to generate latent vectors that
can be decoded into realistic sequences, through the decoder of the autoencoder. They also
show that the synthetic bidirectional flows are close enough to the real ones that they can
fool anomaly detectors into labelling them as legitimate. [34]

WCGAN (Wasserstein Conditional Generative Adversarial Network) is a type of WGAN
that uses additional conditional information to guide the generation process.

The model proposed by (Mustafizur R. Shahid et al., 2020) is compared with the DGM
technique which uses the CGAN model for its framework in contrast with WCGAN with
gradient penalty. The proposed framework shows improved performance over that of
DGM. This paper proposes an XGBoost stacked GAN approach using Auto-Encoder (AE)
as a feature extraction to enhance the performance of intrusion detection with an optimal
feature vector. At first, this approach implements a Deep Auto-Encoder (DAE) to derive
the subset of the most significant features. After that, different GAN models are trained to
synthesize the minority attack data samples. [6]

WGAN-GP is similar to WGAN, however it uses Gradient Penalty (GP). The gradient
penalty is a way to enforce Lipschitz continuity of the discriminator. This means that the
discriminator’s gradients should be bounded in a certain range. When the discriminator’s
gradients are bounded, it is less likely to learn a trivial mapping from real to generated

18

https://www.sciencedirect.com/topics/computer-science/extreme-gradient-boosting
https://www.sciencedirect.com/topics/computer-science/generative-adversarial-networks
https://www.sciencedirect.com/topics/computer-science/intrusion-detection

data.

(Shiming Li et al., 2023) proposes the evaluation of an IDS with function discarding
adversarial attacks in the IIoT (EIFDAA), a framework that can evaluate the defence
performance of machine learning-based IDSs against various adversarial attack algorithms.
This framework is composed of two main processes: adversarial evaluation and adver-
sarial training. Adversarial evaluation can diagnose IDS that is unfitting in adversarial
environments. Then, adversarial training is used to treat the weak IDS. In this framework,
five well-known adversarial attacks, the fast-gradient sign method (FGSM), basic iterative
method (BIM), projected gradient descent (PGD), DeepFool and WGAN-GP are used to
convert attack samples into adversarial samples to simulate the adversarial environment.
The WGAN was employed as a generation model for creating adversarial samples to attack
a target IDSprotecting SDN-enabled models. [35]

WCGAN-GP is essentially a mixture of the previously mentioned WGAN-GP and WC-
GAN. The suggested model in the paper (Arpita S., 2023) also has a GA (Genetic Al-
gorithm) attached to it, which is used for dimensionality reduction. It applies GA for
selecting optimal feature subsets by filtering out the irrelevant features for efficient and
accurate attack classification. [36]

19

3. Methods

3.1 Work environment

In this section, the work environment is detailed, encompassing the software environment
and development tools.

3.1.1 Software environment

The implementation was carried out using Python version 3.10. Python was chosen due to
its versatility, extensive library ecosystem, and overall widespread usage in data science
and machine learning tasks. The main packages and frameworks used include:

■ scikit-learn [37]: A machine learning library for implementing feature selection,
model training, and evaluation. It provides tools for handling data preprocessing and
performance metrics.

■ TensorFlow [38]: A deep learning framework which is used to design and train the
model for synthetic data generation.

■ Pandas [39]: A library for data manipulation and analysis, essential for preprocess-
ing the dataset.

■ NumPy [40]: A package for numerical computing, used for mathematical operations.
■ Matplotlib [41] and Seaborn [42]: Visualization libraries to create plots for data

analysis and results presentation.
■ CTGAN [43]: A library specifically designed for tabular GAN-based synthetic data

generation.

3.1.2 Development tools

The development process involved two primary tools:

■ Jupyter Notebook: Commonly used for machine learning tasks, it was utilized for
data analysis, synthetic data generation, and result visualization.

■ Visual Studio Code: A versatile code editor used for managing code and debugging,
was chosen due to familiarity with the tool.

20

3.2 Dataset

The main focus is on using the UNSW-NB15 dataset, which is a network security dataset
that is commonly used for research and evaluation of IDSs. It was created by the Network
Security Lab at the University of New South Wales (UNSW) in Australia in 2015. The
dataset is designed to simulate a real-world network environment and contains a variety
of normal and malicious network traffic. The dataset includes a diverse set of network
traffic, including normal traffic and nine types of attack families. The exact attack types
and number of records can be seen in table 1, where the dataset imbalance can also be
noticed. The dataset provides detailed information at the packet level. The training set
contains 175,341 records and the testing set has 82,332 records. [4] (Note: originally,
the dataset has more samples, namely 2,540,044 records, however on the UNSW-NB15
website, a partition of this dataset is available, which is also generally used in other works.)

Table 1. UNSW-NB15 dataset record distribution

Type Training subset Testing subset Total
Normal 56,000 37,000 93,000
Generic 40,000 18,871 58,871
Exploits 33,393 11,132 44,525
Fuzzers 18,184 6,062 24,246

DoS 12,264 4,089 16,353
Reconnaissance 10,491 3,496 13,987

Analysis 2,000 677 2,677
Backdoors 1,746 583 2,329
Shellcode 1,133 378 1,511

Worms 130 44 174

3.2.1 Machine Learning Algorithms

The algorithms selected for evaluation in this study are Random Forest and XGBoost
(eXtreme Gradient Boosting). These models have gained widespread popularity due to
their proven performance and robustness in various machine learning tasks, particularly in
classification and regression problems. Choosing widely-used models like Random Forest
and XGBoost, allows for straightforward comparisons with results from other research
papers.

21

3.3 Feature engineering

Feature engineering plays a crucial role in preparing data for machine learning models,
particularly when dealing with complex datasets like UNSW-NB15. A comprehensive
feature engineering has been employed to a pipeline to preprocess and transform the
UNSW-NB15 dataset, ensuring that the features are suitable for training effective intrusion
detection models.

To establish a baseline for comparison, the results of multiclass classification using the
Random Forest and XGBoost classifiers before applying any feature engineering are
presented in Table 2.

Table 2. Multiclass classification before feature engineering

Method Accuracy Precision Recall F1-score (micro) F1-score (macro)
Random Forest 0.755 0.84 0.76 0.78 0.47

XGBoost 0.712 0.82 0.71 0.74 0.49

The first step in the process was label encoding, which involved converting categorical
features into numerical values. The original dataset consists of a total of 45 different
columns, from which four of them are categorical and the rest numerical. The categorical
features are proto, service, state and attack_cat.

Next highly correlated features are removed because multicollinearity can otherwise
increase computation time and lead to overfitting models. Features are considered highly
correlated when their value is higher than 0.98. Keeping only one feature from a correlated
pair simplifies the model without significant loss of information. As a result, features like
sloss, dloss, dwin, ct_srv_dst and ct_ftp_cmd are dropped due to how closely they are
correlated.

Table 3. Highest feature correlations

Feature 1 Feature 2 Correlation coefficient
sbytes sloss 0.9961094729148002
dbytes dloss 0.9965035947623478
swin dwin 0.9901399299415929

ct_srv_src ct_srv_dst 0.9803230099911133
is_ftp_login ct_ftp_cmd 1.0

Table 3 provides a visual representation of the correlation between various features. Lighter

22

colours on the figure, indicating values closer to 1.0, signify a stronger similarity between
the features, while the darker colours, indicating values closer to 0.6, signify a lower
similarity.

Figure 1. Feature correlations

To further refine the feature set, an Extra Trees Classifier (sklearn.ensemble) was trained
on the training data and extracted feature importance scores. Features with importance
scores lower than 0.01 were considered less relevant and were subsequently removed from
the dataset. This step aimed to reduce the dimensionality of the feature space and focus on
the most informative features for the intrusion detection task.

23

Table 4. Extra Trees Importance

Feature Importance Score
sttl 0.111586
dttl 0.074821

ct_src_dport_ltm 0.067877
ct_srv_src 0.066188

service 0.060049
ct_dst_src_ltm 0.057570

ct_state_ttl 0.049908
smean 0.049526

ct_dst_ltm 0.047443
sbytes 0.033832
swin 0.032253

ct_dst_sport_ltm 0.031403
ct_src_ltm 0.026956

dmean 0.026436
dload 0.021061
proto 0.020687
sload 0.020438
rate 0.020216

stcpb 0.018474
state 0.016808

synack 0.013630
dur 0.012917

sinpkt 0.012859
dtcpb 0.011868
tcprtt 0.011505
sjit 0.010460

dbytes 0.010236
ackdat 0.009965
dpkts 0.009175
spkts 0.008444
djit 0.008185

dinpkt 0.008175
is_sm_ips_ports 0.006912

trans_depth 0.005125
ct_flw_http_mthd 0.004079

response_body_len 0.002356
is_ftp_login 0.000578

After dimensionality reduction through feature importance scores, different methods of
feature reduction were tested out, an additional feature selection step was implemented
using the SelectKBest method from scikit-learn. This method selects the top 20 features
based on their Analysis of Variance (ANOVA) F-value scores, which measure the degree

24

of separation between classes for each feature. By retaining only the top-ranked features,
the feature set was further optimized for improved model performance and interpretability.
[37] Additionally, Boruta and Fisher score were experimented with, which later showed
to yield better results compared to SelectKBest, though Boruta and Fisher score seemed
to perform similarly as the methods chose the same features. Since various ways to
incorporate Boruta were tested, there is Boruta V1 and V2, with one version having more
features and the other less.

Table 5. Chosen features

Feature SelectKBest Boruta V1 Boruta V2 Fisher score
sttl X X X X

ct_dst_src_ltm X X X X
dttl X X X X

ct_dst_sport_ltm X X X X
ct_srv_src X X X X

service X X X X
smean X X X

ct_state_ttl X X X X
ct_src_dport_ltm X X X X

sbytes X X X
ct_dst_ltm X X X X
ct_src_ltm X X X X

swin X X X
dmean X X X X
state X X X
proto X X X
sload X X X
rate X X X X

dtcpb X X X
stcpb X X X
tcprtt X X X X
sinpkt X X X
dload X X X X
dur X X X

synack X X X X
sjit X X X

dbytes X X X
ackdat X X X

For categorical features (such as proto, service, and state), one-hot encoding was applied.
This technique converts categorical variables into binary columns, representing the presence
or absence of each category.

25

Next, the feature variables were standardized by ensuring that they have a mean of 0 and a
standard deviation of 1. Standardization is an important step, as it helps to prevent features
with larger scales from dominating those with smaller scales.

Finally, Principal Component Analysis (PCA) was tried out to further reduce the dimen-
sionality of the feature space. PCA is a widely used technique for dimensionality reduction
that transforms the original features into a new set of uncorrelated variables called principal
components.

By applying this feature engineering pipeline, the aim was to enhance the quality and
suitability of the UNSW-NB15 dataset for training intrusion detection models. The combi-
nation of feature encoding, dimensionality reduction, feature selection, and standardization
techniques enabled the extraction of the most relevant and informative features while
mitigating potential issues such as multicollinearity and scale differences.

3.4 Experiments and results

This paragraph describes the experiments conducted to evaluate the effectiveness of various
techniques and methods for improving intrusion detection on the UNSW-NB15 dataset.
The experiments aim to assess the impact of feature selection, dimensionality reduction,
data balancing strategies, and synthetic data generation on model performance.

3.4.1 Experiments with PCA

Principal Component Analysis (PCA) is a dimensionality reduction technique. It is a
statistical procedure that transforms a high-dimensional dataset into a lower-dimensional
space while retaining the maximum possible variance from the original data. PCA can be
beneficial when working with the UNSW-NB15 dataset, as it can reduce computational
complexity and potentially improve the performance of machine learning models by
eliminating redundant or irrelevant features. [44]

Additionally, truncated Singular Value Decomposition (SVD) was evaluated. Unlike PCA,
SVD does not centre the data before performing decomposition, making it well-suited for
working with sparse matrices. This enables efficient dimensionality reduction in specific
scenarios, especially when the dataset’s structure contains many zero values. [37]

PCA and SVD were applied in conjunction with feature engineering methods such as
SelectKBest and one-hot encoding. The experiments were conducted using different

26

numbers of components, notably PCA with 3 and 6, as well as SVD with 3, 6, and 10
components. Tables 6 and 7 summarize the results across these scenarios, showing the
key metrics of accuracy, precision, recall, and F1-score.

Table 6. Feature engineering PCA tests with Random Forest Classifier

Method Accuracy Precision Recall F1-score
None 0.76 0.84 0.76 0.78

SelectKBest 0.72 0.81 0.72 0.74
SelectKBest + PCA(3) 0.61 0.66 0.61 0.62
SelectKBest + PCA(6) 0.52 0.71 0.53 0.55
SelectKBest + SVD(3) 0.56 0.66 0.56 0.59
SelectKBest + SVD(6) 0.53 0.70 0.53 0.55

One-Hot Encoding 0.76 0.81 0.77 0.77
One-Hot Encoding + PCA(3) 0.32 0.39 0.32 0.28
One-Hot Encoding + PCA(6) 0.35 0.46 0.35 0.28
One-Hot Encoding + SVD(3) 0.40 0.51 0.40 0.41
One-Hot Encoding + SVD(6) 0.32 0.34 0.32 0.26

One-Hot Encoding + SVD(10) 0.30 0.44 0.30 0.23

Table 7. Feature engineering PCA tests with Random Forest Classifier, binary classification

Method Accuracy Precision Recall F1-score Time (s)
Normal 1.0 1.0 1.0 1.0 18.61

Normal, PCA(3) 0.78 0.80 0.78 0.77 35.14
Generic 0.99 0.99 0.99 0.99 22.14

Generic, PCA(3) 0.98 0.98 0.98 0.98 26.38
Exploits 0.92 0.92 0.92 0.92 30.91

Exploits, PCA(3) 0.88 0.86 0.88 0.87 27.78
Fuzzers 0.88 0.90 0.88 0.89 29.03

Fuzzers, PCA(3) 0.87 0.89 0.87 0.88 28.50
DoS 0.95 0.94 0.95 0.93 28.94

DoS, PCA(3) 0.95 0.91 0.95 0.93 29.71
Reconnaissance 0.99 0.99 0.99 0.99 19.81

Reconnaissance, PCA(3) 0.95 0.93 0.95 0.94 26.22
Analysis 0.99 0.98 0.99 0.99 34.09

Analysis, PCA(3) 0.99 0.98 0.99 0.99 21.57
Backdoor 0.97 0.99 0.97 0.98 21.79

Backdoor, PCA(3) 0.99 0.99 0.99 0.99 26.55
Shellcode 1.0 1.0 1.0 1.0 20.81

Shellcode, PCA(3) 0.99 0.99 0.99 0.99 22.87
Worms 1.0 1.0 1.0 1.0 17.54

Worms, PCA(3) 1.0 1.0 1.0 1.0 21.54

27

As evident from the results, the application of PCA in conjunction with SelectKBest
and one-hot encoding yielded mixed outcomes. SVD in this case didn’t produce very
different results either. Not using any of the methods provided better results across all
metrics. However, this approach would significantly increase training time due to the
high dimensionality of the UNSW-NB15 dataset, and it can lead to overfitting. Therefore,
despite the current contradictory results, it remains necessary to select one of these methods
to balance performance and computational efficiency.

While SelectKBest alone achieved an accuracy of 0.72 and an F1-score of 0.74, incorpo-
rating PCA with SelectKBest led to a decrease in performance, with an accuracy of 0.61
and an F1-score of 0.62. Increasing the number of PCA components to 6 further reduced
performance, with accuracy and F1-scores of 0.52 and 0.55, respectively.

Similarly, one-hot encoding alone performed reasonably well, with an accuracy of 0.76
and an F1-score of 0.77, but the combination of one-hot encoding and PCA(3) resulted
in significant performance degradation, with an accuracy of 0.32 and an F1-score of 0.28,
with PCA(6) yielding similar outcomes.

These findings suggest that while PCA can be an effective dimensionality reduction
technique in certain scenarios, its application to the UNSW-NB15 dataset may not always
be beneficial, particularly when combined with specific feature engineering methods
like one-hot encoding. The high-dimensional nature of one-hot encoded features posed
significant challenges, leading to a preference for feature engineering approaches without
PCA in many scenarios. However, the use of PCA can still play a critical role in reducing
training time under specific circumstances. Further fine-tuning of the dimensionality
reduction parameters and preprocessing steps may yield more favourable results.

3.4.2 Experiments with synthetic data

In this section, the impact of synthetic data generated using the CTGAN is evaluated on the
performance of a machine learning-based intrusion detection model. This analysis aims to
understand how various configurations of synthetic data - generated with different sample
sizes and with or without dimensionality reduction techniques - affect model performance
across different dataset balancing strategies. The evaluation primarily focuses on assessing
the effectiveness of these methods in terms of accuracy, precision, recall, and F1-score.
Additionally, the impact on training time (computational efficiency) is examined, given the
potentially high computational costs associated with synthetic data generation and model
training.

28

To further enhance the analysis, different feature selection and dimensionality reduction
techniques were employed to observe their influence on model performance. When using
PCA with the Random Forest classifier, the training time increased notably compared
to scenarios without PCA. However, in the CTGAN training phase, incorporating PCA
preprocessed data led to a substantial reduction in computational time—reducing the
training duration to under an hour, compared to approximately three to four hours for data
without PCA preprocessing. Despite these computational gains, the results with PCA did
not meet the expected performance levels, suggesting that PCA might not capture the most
relevant features for intrusion detection in this context.

Further optimization using the Boruta algorithm demonstrated improved results over both
PCA and SelectKBest, showing higher accuracy and stability across synthetic datasets.
Given these outcomes, Boruta was selected as the preferred feature selection method for
subsequent training phases, as it demonstrated the most promising balance of computational
efficiency and performance.

It was decided to generate synthetic data with a size that is a fraction of the original dataset
size. For the UNSW-NB15 dataset, which contains 175,341 rows, synthetic datasets of the
following sizes were generated:

1. 10% of 175,341 rows = 17,534 synthetic rows
2. 20% of 175,341 rows = 35,068 synthetic rows
3. 30% of 175,341 rows = 52,602 synthetic rows

This systematic variation in synthetic dataset sizes allows us to assess how dataset size
influences model performance and to evaluate the balance between computational efficiency
and classification effectiveness.

3.4.3 Experiments with SMOTE, undersampling, oversampling

Tables 8 and 9 present a comparison of traditional balancing techniques, including SMOTE,
oversampling, and undersampling, evaluated using the SelectKBest and Boruta feature
selection methods. These techniques were assessed in terms of accuracy, precision, recall,
F1-score, and computational time.

When using SelectKBest, as shown in Table 8, all balancing methods performed similarly
across most metrics. However, the TOMEK undersampling technique turned out to
be the most balanced and efficient option. It achieved the highest values for accuracy,
precision, recall, and F1-score without compromising performance. Additionally, TOMEK

29

undersampling demonstrated significantly reduced computational time compared to other
techniques, completing in 25.63 seconds, which is substantially faster than oversampling
methods. This combination of stable performance and reduced processing time shows that
TOMEK undersampling is a highly effective technique when computational efficiency is a
priority.

Table 8. SMOTE testing (with SelectKBest)

Method Accuracy Precision Recall F1-score Time (s)
Oversampling 0.75 0.83 0.74 0.77 55.72

Oversampling (ADASYN) 0.75 0.83 0.74 0.77 54.71
Undersampling 0.62 0.83 0.62 0.68 187.92

Undersampling (ENN) 0.75 0.81 0.75 0.76 11.16
Undersampling (TOMEK) 0.75 0.83 0.75 0.77 25.63

When Boruta was employed for feature selection, the overall results improved compared
to those with SelectKBest. The results are brought out in Table 9. In this case, ENN
undersampling outperformed other techniques, achieving the best results in accuracy,
precision, recall, and F1 score. ENN also maintained an efficient runtime of only 7.49
seconds, further emphasizing its effectiveness for balancing while reducing computational
overhead.

Table 9. SMOTE testing (with Boruta V1)

Method Accuracy Precision Recall F1-score Time (s)
Oversampling 0.75 0.84 0.76 0.78 45.60

Oversampling (ADASYN) 0.75 0.84 0.76 0.78 54.71
Undersampling 0.64 0.84 0.64 0.70 0.25

Undersampling (ENN) 0.77 0.81 0.77 0.78 7.49
Undersampling (TOMEK) 0.76 0.84 0.76 0.78 29.56

The findings bring out the advantages of undersampling methods, particularly TOMEK
and ENN, in scenarios where training time is a consideration without sacrificing model
performance. TOMEK was most effective with SelectKBest, while ENN demonstrated
best performance with Boruta. These results suggest that the choice of balancing technique
and feature selection method should be aligned with the specific goals, whether prioritizing
model performance, computational efficiency, or both.

30

3.4.4 Experiments with neural network

For further analysis, neural network architectures were also tested, including Multilayer
Perceptron (MLP), Dense Neural Networks, GRU, LSTM, and a Bi-GRU CNN model
using Boruta feature selection. As shown in Table 10, the Bi-LSTM CNN model with
Boruta selection achieved the highest performance, reaching an accuracy of 79%, a recall
of 79%, and an F1-score of 78%, outperforming all other methods.

Interestingly, while the GRU and LSTM networks performed moderately, adding synthetic
data did not drastically improve their results, which suggests that certain architectures may
benefit differently from synthetic data augmentation. (Requires data to be added to the
tables)

Table 10. Results with Neural Network, Random Forest

Method Accuracy Precision Recall F1-score
MLP NN (SelectKBest) 0.732 0.81 0.73 0.74
Dense NN (SelectKBest) 0.714 0.78 0.71 0.72

GRU (SelectKBest) 0.607 0.65 0.60 0.61
LSTM (SelectKBest) 0.674 0.70 0.67 0.68

Bi-GRU CNN (Boruta) 0.757 0.81 0.76 0.76
Bi-LSTM CNN (Boruta) 0.790 0.81 0.79 0.78

3.4.5 Experiments with CTGAN

Categories trained together

The evaluation results suggest that synthetic data generated by CTGAN, particularly in
combination with Boruta feature selection, can improve model performance when used
to balance an imbalanced dataset. The primary advantage lies in enhancing accuracy and
F1-score without relying exclusively on oversampling techniques like SMOTE, which can
sometimes lead to overfitting.

However, a limitation of using synthetic data alone (without real data) is the potential
for diminished performance. This shows the importance of incorporating both real and
synthetic data to maintain predictive accuracy. Additionally, while increasing synthetic
data size beyond 10% did not produce better results, optimizing GAN parameters such as
embedding dimensions and batch sizes had a noticeable impact on training efficiency and
outcome consistency.

31

In Table 11, CTGAN, using the SDV library, was trained with SelectKBest and PCA,
running for 100 epochs.

Table 11. Results with CTGAN, SelectKBest and PCA, Random Forest

Method Accuracy Precision Recall F1-score
SelectKBest 0.72 0.81 0.72 0.74

SelectKBest, synthetic data only 0.65 0.77 0.65 0.67
SelectKBest, synthetic data 10% 0.70 0.81 0.70 0.73
SelectKBest, synthetic data 20% 0.71 0.81 0.71 0.73
SelectKBest, synthetic data 30% 0.70 0.80 0.70 0.72

SelectKBest + PCA 0.61 0.66 0.61 0.62
SelectKBest + PCA, synthetic data only 0.58 0.67 0.58 0.60
SelectKBest + PCA, synthetic data 10% 0.60 0.66 0.60 0.61
SelectKBest + PCA, synthetic data 20% 0.60 0.66 0.60 0.61
SelectKBest + PCA, synthetic data 30% 0.61 0.66 0.61 0.62

The performance of CTGAN was evaluated using several configurations, varying parame-
ters such as batch size, number of epochs, embedding dimensions, and generator/discrimi-
nator settings. Table 12 summarizes the key configurations tested.

Table 12. CTGAN Training Configurations

Version Training Time Batch Size Epochs Embedding Dim Additional Details
Version 1 90m49.7s 500 50 128 Sample size = 10,000
Version 2 18m27.1s 500 10 512 Sample size = 20,000
Version 3 25m15.2s 500 10 512 Increasing generator and discriminator

dimensions from (256, 256) to (512, 256, 128)
Version 4 156m44.8s 1,000 100 512 Generator LR = 1e-4, PAC = 10
Version 5 593m54.6s 2,000 150 512 GPU acceleration, PAC = 10

Each configuration was tailored to test specific aspects of the CTGAN model:

■ Version 1: Baseline configuration with minimal embedding dimensions and a smaller
sample size.

■ Version 2: Reduced training epochs to optimize runtime while increasing embedding
dimensions.

■ Version 3: Modified generator and discriminator dimensions for improved represen-
tation.

■ Version 4: Larger batch size and more advanced hyperparameters to enhance
generator stability.

■ Version 5: High computational power using GPU acceleration and extensive training
epochs.

32

Upon evaluating the synthetic data generated by the CTGAN model, no significant data
drift was observed, indicating reliable alignment with the original dataset. The best results
in terms of accuracy were achieved by ver3, as shown in Table 13 which trained CTGAN
for 10 epochs with optimized generator and discriminator dimensions (increasing from
(256, 256) to (512, 256, 128)). While this version yielded high accuracy when combining
real and synthetic data, the performance of the synthetic data alone was comparatively
lower than other versions.

Increasing the training epochs beyond 10 did not lead to noticeable improvements in
combined performance with real data. However, training for additional epochs did improve
evaluation metrics when assessing synthetic data independently. Even so, synthetic data
alone could not outperform the original data, with real data achieving an accuracy of 75.5%
and the highest synthetic-only accuracy reaching 64.1%. This indicates that synthetic data,
while useful in combination with real data, remains limited in its standalone performance.

Table 13. Results with CTGAN, Boruta V1, Random Forest

Method Accuracy Precision Recall F1-score
Boruta 0.755 0.83 0.76 0.78

Version 1
Boruta, synthetic data only 0.593 0.61 0.59 0.58
Boruta, synthetic data 10% 0.760 0.83 0.76 0.78
Boruta, synthetic data 20% 0.758 0.83 0.76 0.78
Boruta, synthetic data 30% 0.755 0.83 0.76 0.78

Version 2
Boruta, synthetic data only 0.557 0.56 0.56 0.54
Boruta, synthetic data 10% 0.758 0.83 0.76 0.78
Boruta, synthetic data 20% 0.759 0.83 0.76 0.78
Boruta, synthetic data 30% 0.759 0.83 0.76 0.78

Version 3
Boruta, synthetic data only 0.428 0.33 0.43 0.32
Boruta, synthetic data 10% 0.759 0.83 0.76 0.78
Boruta, synthetic data 20% 0.759 0.83 0.76 0.78

Boruta, synthetic data 30% 0.761 0.84 0.76 0.78
Version 4

Boruta, synthetic data only 0.641 0.80 0.64 0.66
Boruta, synthetic data 10% 0.756 0.84 0.76 0.78
Boruta, synthetic data 20% 0.755 0.84 0.75 0.78
Boruta, synthetic data 30% 0.755 0.84 0.76 0.78

Version 5
Boruta, synthetic data only 0.636 0.75 0.64 0.65
Boruta, synthetic data 10% 0.758 0.84 0.76 0.78
Boruta, synthetic data 20% 0.755 0.84 0.75 0.78
Boruta, synthetic data 30% 0.755 0.84 0.75 0.78

33

Testing Version 5 with XGBoost revealed that incorporating synthetic data significantly
boosts model accuracy. While the original data alone yields a lower accuracy in XGBoost
than in Random Forest, adding 10% synthetic data rows to the original dataset produced
the best results so far, achieving an accuracy of 77.7%. Additionally, the macro F1 score
is measured to see how the model performs in all classes. This is useful, particularly in
imbalanced datasets, where minority classes should not be ignored. (This metric should be
considered for other tests as well.)

Table 14. Results using CTGAN, Boruta V1, XGBoost

Method Accuracy Precision Recall F1-score, micro F1-score, macro
Boruta 0.732 0.83 0.73 0.75 0.50

Version 5
Boruta, synthetic data only 0.677 0.81 0.68 0.69 0.30
Boruta, synthetic data 10% 0.777 0.84 0.78 0.78 0.52
Boruta, synthetic data 20% 0.769 0.83 0.77 0.78 0.52
Boruta, synthetic data 30% 0.770 0.83 0.77 0.78 0.52

Additionally, Fisher score was briefly tested; however, it produced results that were similar
to those of Boruta, leading to it not being investigated in this study any further.

Table 15. Results using CTGAN, Fisher score, Random Forest

Method Accuracy Precision Recall F1-score, micro F1-score, macro
Only original data 0.651 0.76 0.65 0.67 0.27

Only synthetic data 0.677 0.81 0.68 0.69 0.30
Original data + synthetic data 10% 0.755 0.84 0.75 0.78 0.48
Original data + synthetic data 20% 0.755 0.84 0.76 0.78 0.47
Original data + synthetic data 30% 0.755 0.84 0.75 0.78 0.47

Table 16. Results using CTGAN, Fisher score, XGBoost

Method Accuracy Precision Recall F1-score, micro F1-score, macro
Only original data 0.732 0.83 0.73 0.75 0.50

Only synthetic data 0.672 0.79 0.67 0.68 0.29
Original data + synthetic data 10% 0.744 0.83 0.74 0.76 0.51
Original data + synthetic data 20% 0.783 0.83 0.78 0.79 0.50
Original data + synthetic data 30% 0.754 0.82 0.75 0.77 0.49

Analyzing Version 5 The density plot, shown in Figure 2, visualizes the distribution of
values for each feature in both the real and synthetic datasets. The overall high overlap in
the distributions suggests the two sets are very similar to each other. However, noticeable
differences can be observed in cases where the real data has a very low density. For instance,

34

features such as sbytes, sjit, and dbytes show distinct discrepancies, with the synthetic data
showing higher density in these areas. This could indicate that there are certain features
where the synthetic data might not fully capture the lower-density behaviour of the real
dataset.

Figure 2. Version 5 density plot

As illustrated in Figure 3, no data drift is detected when comparing the real data (after
feature engineering) with the synthetic data (which contains 20% of the real dataset’s
sample size). The distributions across the columns are largely similar. The highest drift
score is 0.070683 for the sjit column, while the lowest is 0.002727 for the cs_state_ttl
column. Since the drift threshold is set at 0.5, there is no significant drift between the two
sets.

35

Figure 3. Version 5 data drift

The confusion matrix in Figure 4 shows that while the model performs well in identifying
classes with a higher volume of data, it struggles with classes that are underrepresented.
Specifically, a significant number of samples from these minority classes are misclassified
as Exploits. This issue could be addressed by generating more targeted synthetic data for
the underperforming classes, namely DoS, Analysis, and Backdoor, to better balance the
dataset and improve model performance for these categories.

36

Figure 4. Version 5, 10% synthetic data, confusion matrix

■ Mutual information - near 0: The features are very different, with little shared
information. Higher: Features are more similar and share more information.

■ Hellinger distance - 0 indicates that the two distributions are identical, and 1 indicates
that they are completely dissimilar.

37

Table 17. Mutual Information and Hellinger Distance for each feature

Feature Mutual Information Hellinger Distance
sttl 0.4672 0.0042

ct_dst_src_ltm 0.4831 0.1966
dttl 0.4887 0.0499

ct_dst_sport_ltm 0.5195 0.3912
ct_srv_src 0.4785 0.1568

service 0.4831 0.4173
smean 0.9304 0.0630

ct_state_ttl 0.4893 0.0054
ct_src_dport_ltm 0.4707 0.1684

sbytes 1.1510 0.1808
ct_dst_ltm 0.4568 0.1633
ct_src_ltm 0.3889 0.2187

dmean 0.5497 0.0926
proto 0.4748 0.6083
sload 0.9053 0.3004
rate 0.5479 0.1861

tcprtt 0.3946 0.4023
sinpkt 0.4387 0.1353
dload 0.4787 0.1626
dur 0.5358 0.0635

synack 0.3964 0.3829
sjit 0.3927 0.9473

dbytes 0.6370 0.2506

Categories trained separately

In this section, CTGAN is trained separately on different categories, or in other words,
attack types, as opposed to training on all categories combined. For clarity, all categories
are assigned numbers, as detailed in Table 18, which maps each category number to its
corresponding attack type.

38

Table 18. Category numbers

Category number Attack type
0 Normal
1 Generic
2 Exploits
3 Fuzzers
4 DoS
5 Reconnaissance
6 Analysis
7 Backdoor
8 Shellcode
9 Worms

One approach is to ensure that at least half the volume of the most frequently sampled
class—in this case, ’Normal’ — is added to the dataset. The approach can be seen in
Table 19.

Table 19. Chosen class sizes Version 1

Class Current Size Target Size Deficit (Target - Current)
Normal 56000 28000 0
Generic 40000 28000 0
Exploits 33393 28000 0
Fuzzers 18184 28000 9816

DoS 12264 28000 15736
Reconnaissance 10491 28000 17509

Analysis 2000 28000 26000
Backdoor 1746 28000 26254
Shellcode 1133 28000 26867

Worms 130 28000 27870

Another strategy is to add 10,000 new samples to each minority class, as illustrated in
Table 20. This approach helps balance the class distribution while maintaining a reasonable
increase in the dataset size.

39

Table 20. Chosen class sizes Version 2

Class Current Size Added Samples Final Size
Normal 56000 0 56000
Generic 40000 0 40000
Exploits 33393 0 33393
Fuzzers 18184 10000 28184

DoS 12264 10000 22264
Reconnaissance 10491 10000 20491

Analysis 2000 10000 12000
Backdoor 1746 10000 11746
Shellcode 1133 10000 11133

Worms 130 10000 10130

In Table 21 it can be seen how classes perform by themselves when a different amount
of samples are taken from the synthesizer. Each class has been trained with a separate
CTGAN and personalized parameters based on the data amount, the exception being
Exploits, Generic and Normal, as they’re the majority classes, which have been sampled
from a model where all the data was trained together. The specific training parameters are
shown in Table 22 for each class and confusion matrices can be seen in Appendix 2.

40

Table 21. Testing classes one by one, Boruta V2

Class Current Size Accuracy Precision Recall F1-score (micro) F1-score (macro)
Worms, synthetic data only 10130 0.355 0.47 0.35 0.33 0.10

Worms, synthetic + real data 10130 0.753 0.83 0.75 0.77 0.47
Worms, synthetic data only 28000 0.372 0.51 0.37 0.35 0.10

Worms, synthetic + real data 28000 0.753 0.83 0.75 0.77 0.47
Shellcode, synthetic data only 11133 0.226 0.40 0.23 0.21 0.08

Shellcode, synthetic + real data 11133 0.759 0.84 0.76 0.78 0.49
Shellcode, synthetic data only 28000 0.263 0.47 0.26 0.25 0.11

Shellcode, synthetic + real data 28000 0.751 0.83 0.75 0.77 0.47
Backdoor, synthetic data only 11746 0.372 0.51 0.37 0.35 0.10

Backdoor, synthetic + real data 11746 0.759 0.84 0.76 0.78 0.47
Backdoor, synthetic data only 28000 0.460 0.46 0.46 0.44 0.15

Backdoor, synthetic + real data 28000 0.760 0.83 0.76 0.78 0.46
Analysis, synthetic data only 12000 0.370 0.48 0.38 0.37 0.13

Analysis, synthetic + real data 12000 0.753 0.83 0.75 0.77 0.47
Analysis, synthetic data only 28000 0.371 0.49 0.37 0.37 0.13

Analysis, synthetic + real data 28000 0.756 0.84 0.76 0.78 0.48
Reconnaissance, synthetic data only 20491 0.183 0.47 0.18 0.13 0.13

Reconnaissance, synthetic + real data 20491 0.748 0.84 0.75 0.77 0.47
Reconnaissance, synthetic data only 28000 0.219 0.49 0.22 0.20 0.14

Reconnaissance, synthetic + real data 28000 0.751 0.84 0.75 0.77 0.48
DoS, synthetic data only 22264 0.343 0.48 0.34 0.34 0.11

DoS, synthetic + real data 22264 0.753 0.84 0.75 0.77 0.48
DoS, synthetic data only 28000 0.375 0.48 0.38 0.37 0.12

DoS, synthetic + real data 28000 0.756 0.84 0.76 0.78 0.47
Fuzzers, synthetic data only 28184 0.222 0.47 0.22 0.20 0.09

Fuzzers, synthetic + real data 28184 0.754 0.84 0.75 0.78 0.48
Fuzzers, synthetic data only 28000 0.247 0.45 0.25 0.23 0.09

Fuzzers, synthetic + real data 28000 0.761 0.84 0.76 0.78 0.48
Exploits, synthetic data only 10000 0.368 0.50 0.37 0.37 0.14

Exploits, synthetic + real data 10000 0.745 0.84 0.75 0.77 0.46
Generic, synthetic data only 10000 0.653 0.63 0.65 0.59 0.22

Generic, synthetic + real data 10000 0.752 0.84 0.75 0.78 0.48
Normal, synthetic data only 10000 0.618 0.72 0.62 0.64 0.25

Normal, synthetic + real data 10000 0.758 0.83 0.76 0.78 0.48

As shown in Table 22, the training parameters for individual categories differ from those
used when training the model on the entire datase. These differences arise because
smaller datasets require adjustments to ensure effective training and prevent issues, such
as overfitting and instability. For instance, smaller batch sizes are used with limited
data to ensure the model can effectively utilize the available samples without overfitting.
Additionally, the dimensions of the generator and discriminator networks are reduced to
avoid over-parameterization, which can otherwise lead to training instability. Furthermore,
lower learning rates are employed for individual categories to allow the model to minimize
the risk of erratic updates caused by limited data variability. More training epochs are also
allocated, enabling the model to make updates for learning meaningful patterns.

41

Table 22. Training Parameters for Each Class, Boruta V2

Class Batch Size Epochs PAC Embedding Dim Generator LR Discriminator LR Generator Dim Discriminator Dim
Worms 4 100 4 64 2× 10−5 2× 10−5 (128, 64) (128, 64)
Shellcode 16 100 8 64 1× 10−4 1× 10−4 (128, 64) (128, 64)
Backdoor 16 100 8 64 1× 10−4 1× 10−4 (128, 64) (128, 64)
Analysis 16 100 8 64 1× 10−4 1× 10−4 (128, 64) (128, 64)
Reconnaissance 250 50 10 512 1× 10−4 1× 10−4 (1024, 512, 256) (1024, 512, 256)
DoS 250 50 10 512 1× 10−4 1× 10−4 (1024, 512, 256) (1024, 512, 256)
Fuzzers 250 50 10 512 1× 10−4 1× 10−4 (1024, 512, 256) (1024, 512, 256)

When combining synthetic data from different categories, although this approach alleviates
the issue of data imbalance, it does not significantly improve the model’s performance. As
shown in Figure 5, the model achieves an accuracy of 0.753, precision of 0.84, recall of
0.75, F1-score (micro) of 0.77, and F1-score (macro) of 0.45. These metrics highlight the
challenges of effectively integrating synthetic data across categories. To DoS class 15736
synthetic samples were added, to Analysis class 26000 samples were added, to Backdoor
26254 samples and to Worm 27870 samples.

Figure 5. Confusion matrix with synthetic data from separate class models

42

Additionally, this combined approach increases the likelihood of data drift, as demonstrated
in Figure 6. In this case, data drift was detected in 89.286% of the columns (25 out of
28), underscoring the difficulty of maintaining feature consistency when synthesizing data
across multiple classes.

Figure 6. Confusion Matrix and Data Drift Analysis with Combined Classes, Boruta V2

However, a notable improvement in model performance is observed when the sample size
of the Exploits class is reduced to 10,000. As shown in Figure 7, this adjustment yields an
accuracy of 0.763, precision of 0.84, recall of 0.76, F1-score (micro) of 0.79, and F1-score
(macro) of 0.50. Though in this case, a few classes start getting confused with the DoS

43

class.

Figure 7. Confusion matrix with reduced Exploits samples, Boruta V2

In Table 23, the training data is organized by categories, and CTGAN is trained on each
category separately. This approach allows for flexible customization, enabling selective
addition of synthetic data to specific categories based on performance or data availability.
Two main strategies were applied:

1. Performance-Based Augmentation: Synthetic samples were added only to the lowest-
performing categories, which is taken from Figure 4 (categories 2, 4, and 6).

2. Data Availability-Based Augmentation: Synthetic samples were added to categories
with lower data volumes (categories 4, 5, 6, 7, 8, and 9) compared to the larger
categories.

Each category’s dataset was trained individually for 10, 25, and 50 epochs. For the 25-
epoch training, certain parameters were modified to explore whether they could improve
accuracy. Results indicate that training each category independently for 10 epochs generally

44

suffices, as increasing the number of epochs tends to reduce accuracy.

However, training each category separately introduces some degree of data drift, especially
in categories with fewer samples. In smaller categories, data drift could be observed in all
columns (23 out of 23). Interestingly, while training for more epochs can decrease model
accuracy, it also appears to mitigate the extent of data drift. For instance, for the generic
category, data drift was observed across columns as follows:

1. 10 epochs: 52.17% of columns exhibited data drift,
2. 25 epochs (with adjusted parameters): 30.43% in the first instance, 39.13% in the

second,
3. 50 epochs: 21.79%.

These results suggest that although extended training can negatively affect accuracy, it may
help maintain the distribution of synthetic data closer to that of the original data, reducing
data drift for categories with limited samples.

Table 23. Results with CTGAN, Boruta V1, separate categories, Random Forest

Method Accuracy Precision Recall F1-score
cat epochs10

Added +10,000 to cat 2, 4, 6 0.758 0.84 0.76 0.78
Added +10,000 to cat 4, 5, 6, 7, 8, 9 0.759 0.83 0.76 0.78

cat epochs25 1
Added +10,000 to cat 2, 4, 6 0.756 0.83 0.76 0.78

Added +10,000 to cat 4, 5, 6, 7, 8, 9 0.757 0.83 0.76 0.78
cat epochs25 2

Added +10,000 to cat 2, 4, 6 0.758 0.83 0.76 0.78
Added +10,000 to cat 4, 5, 6, 7, 8, 9 0.758 0.83 0.76 0.78

cat epochs50
Added +10,000 to cat 2, 4, 6 0.757 0.83 0.76 0.78

Added +10,000 to cat 4, 5, 6, 7, 8, 9 0.756 0.83 0.76 0.78

45

4. Discussion

The experiments conducted in this work demonstrate the potential of using synthetic data
generated by CTGAN to enhance the performance of machine learning models tasked with
intrusion detection in imbalanced datasets. Notably, the addition of synthetic data provides
a viable alternative to traditional oversampling methods, such as SMOTE, mitigating
common pitfalls such as overfitting and class imbalance.

Throughout the experiments, it was observed that when synthetic data generation was
combined with feature selection methods like Boruta, the model performance in terms of
accuracy, precision, recall, and F1-score showed some improvement. The evaluation met-
rics indicated the possibility of combining synthetic and real data for better classification
performance, especially in underrepresented classes. The results show that tailored syn-
thetic data generation — targeting specific categories — can fix gaps in data representation,
particularly for less-represented attack types in intrusion detection scenarios.

Combining real and synthetic data consistently outperformed the use of synthetic data
alone, showing the importance of blending both data sources to retain predictive accuracy.
Although larger quantities of synthetic data beyond 10% offered minimal additional benefit,
tuning GAN parameters - such as embedding dimensions, batch sizes, and discriminator
steps - showed substantial improvements in both model consistency and training efficiency.
Additionally, training each category independently revealed that shorter training dura-
tions (10 epochs) yielded optimal accuracy, though it could lead to significant data drift,
especially in categories with smaller data samples.

Though the data showed to be similar to the original data, making it possible to say that
the synthetic data is high quality, there isn’t much variance and hence the synthetic data
doesn’t add much new that could benefit the model. To combat that, the author suggests,
it could be beneficial to try adding noise. Noise can be added in different stadiums - 1)
before training the GAN, injecting noise into real data, 2) by modifying the GAN directly
(for example, the discriminator), 3) after creating the synthetic data.

However, while CTGAN with Boruta significantly aids in managing imbalances, the
highest observed performance was achieved using a neural network approach, specifically
a Bi-LSTM CNN with Boruta feature selection. This model achieved an accuracy of 79%,
with a precision of 81%, recall of 76%, and F1-score of 78%, marking it as the preferred

46

method when the goal is maximum predictive accuracy.

4.1 Future work

There remains a critical need to enhance the generation process of synthetic data to better
capture the complexity and characteristics of real-world intrusion detection scenarios. Fu-
ture studies could focus on improving the training of GANs through more complicated loss
functions or augmenting existing data to minimize data drift. It would also be advantageous
to explore different configurations of GAN architectures and training strategies to reduce
epoch-based degradation effects on performance metrics.

A more extensive study about the detailed dynamics of data drift, employing a wider array
of metrics to quantify the drift accurately, could yield important insights. Adapting the
model based on feedback from the drift reports, informed by new metrics, would make it
possible to make the most out of generative data augmentation strategies.

As the current tested models create data that is too similar to the original data, it could be
beneficial to investigate introducing noise, either during feature engineering, training or
post-training.

To gain a more comprehensive understanding of the most efficient parameters, nested cross-
validation should be employed. However, due to time constraints and limited computational
resources, this approach was not pursued and remains as a potential area for future work.

To further enhance the validation process, experimenting with newer GAN variants or
integrating hybrid models could provide deeper insights into the optimal parameter config-
urations.

Additionally, it would be valuable to include comparative results using binary classifica-
tion, as well as explore the potential of creating new data using LLMs and transformer
architectures. Investigating these models could provide deeper insights and further enhance
the performance of IDSs.

47

5. Conclusion

This study addresses an important issue in the field of cybersecurity: class imbalance
in IDSs used with IoT datasets. When there exists class imbalance, machine learning
models struggle to accurately identify minority classes due to a lack of sufficient data.
This study explores how generative models, specifically CTGAN, can help improve model
performance by creating synthetic data to balance the classes.

Synthetic data of reasonable quality can be generated, though a key challenge identified
in this study is that the created data tends to be too similar to the original data, limiting
the model’s ability to demonstrate significant improvements. Despite this, it was observed
that even with less-than-ideal synthetic data, the model’s performance improved due
to increased data diversity. Therefore, the author suggests that future studies explore
methods to introduce noise into the synthetic data, reducing its similarity to the original
and enhancing its overall effectiveness.

Future studies could focus on exploring more advanced GAN setups, introducing new loss
functions, and refining training approaches to address challenges like data drift, ensuring
the synthetic data remains relevant and useful over time.

In conclusion, this work contributes to the understanding of synthetic data creation and
intrusion detection in IoT environments, highlighting the need for solutions to handle class
imbalance. While providing an overview of existing models and approaches, it also shows
the advantages of utilizing synthetic data.

Potential real-world applications of these findings include improving the resilience of
smart homes, industrial IoT systems, and healthcare IoT devices. For instance, in smart
homes, balanced IDSs can better detect unauthorized access attempts, protecting residents’
privacy and security. In industrial IoT systems, enhanced IDSs can prevent disruptions
caused by cyber-attacks, ensuring the continuous operation of critical infrastructure. In
healthcare IoT devices, accurate detection of malicious activities can safeguard sensitive
patient data and maintain the integrity of medical devices.

Beyond IoT, the broader impact of this work on cybersecurity includes its relevance
to general intrusion detection research. By addressing class imbalance, the techniques
explored in this study can improve the performance of IDSs across various domains, leading

48

to more reliable cybersecurity solutions. This highlights the importance of synthetic data
creation in enhancing the overall effectiveness of intrusion detection systems.

49

References

[1] Mohamed Amine Ferrag et al. “Edge-IIoTset: A New Comprehensive Realistic
Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated
Learning”. In: IEEE Access 10 (2022), pp. 40281–40306. DOI: 10.1109/ACCESS.
2022.3165809.

[2] Nour Moustafa. “A new distributed architecture for evaluating AI-based security
systems at the edge: Network TONIoTdatasets”. In: Sustainable Cities and Society

72 (2021), p. 102994. ISSN: 2210-6707. DOI: https://doi.org/10.1016/
j.scs.2021.102994. URL: https://www.sciencedirect.com/
science/article/pii/S2210670721002808.

[3] Euclides Carlos Pinto Neto et al. “CICIoT2023: A Real-Time Dataset and Bench-
mark for Large-Scale Attacks in IoT Environment”. In: Sensors 23.13 (2023). ISSN:
1424-8220. DOI: 10.3390/s23135941. URL: https://www.mdpi.com/
1424-8220/23/13/5941.

[4] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set)”. In: 2015 Military

Communications and Information Systems Conference (MilCIS). 2015, pp. 1–6. DOI:
10.1109/MilCIS.2015.7348942.

[5] KG Raghavendra Narayan et al. IIDS: Design of Intelligent Intrusion Detection

System for Internet-of-Things Applications. 2023. arXiv: 2308.00943 [cs.CR].

[6] Vikash Kumar and Ditipriya Sinha. “Synthetic attack data generation model applying
generative adversarial network for intrusion detection”. In: Computers Security

125 (2023), p. 103054. ISSN: 0167-4048. DOI: https://doi.org/10.1016/
j.cose.2022.103054. URL: https://www.sciencedirect.com/
science/article/pii/S0167404822004461.

[7] Tej Kiran Boppana and Priyanka Bagade. “GAN-AE: An unsupervised intrusion
detection system for MQTT networks”. In: Engineering Applications of Arti-

ficial Intelligence 119 (2023), p. 105805. ISSN: 0952-1976. DOI: https://
doi.org/10.1016/j.engappai.2022.105805. URL: https://www.
sciencedirect.com/science/article/pii/S0952197622007953.

[8] Ghada Abdelmoumin, Danda B. Rawat, and Abdul Rahman. “On the Performance
of Machine Learning Models for Anomaly-Based Intelligent Intrusion Detection
Systems for the Internet of Things”. In: IEEE Internet of Things Journal 9.6 (2022),
pp. 4280–4290. DOI: 10.1109/JIOT.2021.3103829.

50

https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/https://doi.org/10.1016/j.scs.2021.102994
https://doi.org/https://doi.org/10.1016/j.scs.2021.102994
https://www.sciencedirect.com/science/article/pii/S2210670721002808
https://www.sciencedirect.com/science/article/pii/S2210670721002808
https://doi.org/10.3390/s23135941
https://www.mdpi.com/1424-8220/23/13/5941
https://www.mdpi.com/1424-8220/23/13/5941
https://doi.org/10.1109/MilCIS.2015.7348942
https://arxiv.org/abs/2308.00943
https://doi.org/https://doi.org/10.1016/j.cose.2022.103054
https://doi.org/https://doi.org/10.1016/j.cose.2022.103054
https://www.sciencedirect.com/science/article/pii/S0167404822004461
https://www.sciencedirect.com/science/article/pii/S0167404822004461
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105805
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105805
https://www.sciencedirect.com/science/article/pii/S0952197622007953
https://www.sciencedirect.com/science/article/pii/S0952197622007953
https://doi.org/10.1109/JIOT.2021.3103829

[9] Jessica L. Purser. “Using Generative Adversarial Networks for Intrusion Detection
in Cyber-Physical Systems”. In: Naval Postgraduate School, 2020.

[10] Ying Zhang and Qiang Liu. “On IoT intrusion detection based on data aug-
mentation for enhancing learning on unbalanced samples”. In: Future Gen-

eration Computer Systems 133 (2022), pp. 213–227. ISSN: 0167-739X. DOI:
https : / / doi . org / 10 . 1016 / j . future . 2022 . 03 . 007. URL:
https : / / www . sciencedirect . com / science / article / pii /

S0167739X22000826.

[11] Hakan Can Altunay and Zafer Albayrak. “A hybrid CNN+LSTM-based intru-
sion detection system for industrial IoT networks”. In: Engineering Science and

Technology, an International Journal 38 (2023), p. 101322. ISSN: 2215-0986.
DOI: https://doi.org/10.1016/j.jestch.2022.101322. URL:
https : / / www . sciencedirect . com / science / article / pii /

S2215098622002312.

[12] Joel Margolis et al. “An In-Depth Analysis of the Mirai Botnet”. In: 2017 Interna-

tional Conference on Software Security and Assurance (ICSSA). 2017, pp. 6–12.
DOI: 10.1109/ICSSA.2017.12.

[13] David Kushner. The Real Story of Stuxnet. Published 26 Feb 2013. Accessed 24 May
2024. IEEE Spectrum. 2013. URL: https://spectrum.ieee.org/the-
real-story-of-stuxnet.

[14] IBM. “What is the internet of things?” In: URL: https://www.ibm.com/
topics/internet-of-things.

[15] Anna L. Buczak and Erhan Guven. “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection”. In: Commun. Surveys Tuts. 18.2
(Apr. 2016), pp. 1153–1176. ISSN: 1553-877X. DOI: 10.1109/COMST.2015.
2494502. URL: https://doi.org/10.1109/COMST.2015.2494502.

[16] Khraisat A. et al. “Survey of intrusion detection systems: techniques, datasets
and challenges”. In: Cybersecurity 2 (2019). ISSN: 2523-3246. DOI: 10.1186/
s42400-019-0038-7.

[17] Khaled El Emam, Lucy Mosquera, and Richard Hoptroff. In: Practical Synthetic

Data Generation. O’Reilly Media, Inc., 2020.

[18] Fida K. Dankar, Mahmoud K. Ibrahim, and Leila Ismail. “A Multi-Dimensional
Evaluation of Synthetic Data Generators”. In: IEEE Access 10 (2022), pp. 11147–
11158. DOI: 10.1109/ACCESS.2022.3144765.

51

https://doi.org/https://doi.org/10.1016/j.future.2022.03.007
https://www.sciencedirect.com/science/article/pii/S0167739X22000826
https://www.sciencedirect.com/science/article/pii/S0167739X22000826
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101322
https://www.sciencedirect.com/science/article/pii/S2215098622002312
https://www.sciencedirect.com/science/article/pii/S2215098622002312
https://doi.org/10.1109/ICSSA.2017.12
https://spectrum.ieee.org/the-real-story-of-stuxnet
https://spectrum.ieee.org/the-real-story-of-stuxnet
https://www.ibm.com/topics/internet-of-things
https://www.ibm.com/topics/internet-of-things
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1109/ACCESS.2022.3144765

[19] Jianyu Wang et al. “Def-IDS: An Ensemble Defense Mechanism Against Adver-
sarial Attacks for Deep Learning-based Network Intrusion Detection”. In: 2021

International Conference on Computer Communications and Networks (ICCCN).
2021, pp. 1–9. DOI: 10.1109/ICCCN52240.2021.9522215.

[20] Danni Yuan et al. “Intrusion Detection for Smart Home Security Based on Data
Augmentation with Edge Computing”. In: ICC 2020 - 2020 IEEE International

Conference on Communications (ICC). 2020, pp. 1–6. DOI: 10.1109/ICC40277.
2020.9148632.

[21] Hasan Abdulameer, Inam Musa, and Assis. Prof. Noora Salim. “Three level in-
trusion detection system based on conditional generative adversarial network”. In:
International Journal of Electrical and Computer Engineering 13 (Dec. 2022). DOI:
10.11591/ijece.v13i2.pp2240-2258.

[22] Ayesha S. Dina, A.B. Siddique, and D. Manivannan. “A deep learning approach
for intrusion detection in Internet of Things using focal loss function”. In: Internet

of Things 22 (2023), p. 100699. ISSN: 2542-6605. DOI: https://doi.org/
10.1016/j.iot.2023.100699. URL: https://www.sciencedirect.
com/science/article/pii/S2542660523000227.

[23] Kim-Hung Le et al. “IMIDS: An Intelligent Intrusion Detection System against
Cyber Threats in IoT”. In: Electronics 11.4 (2022). ISSN: 2079-9292. DOI: 10.
3390/electronics11040524. URL: https://www.mdpi.com/2079-
9292/11/4/524.

[24] Hafsa Benaddi et al. “Adversarial Attacks Against IoT Networks using Conditional
GAN based Learning”. In: GLOBECOM 2022 - 2022 IEEE Global Communications

Conference. 2022, pp. 2788–2793. DOI: 10.1109/GLOBECOM48099.2022.
10000726.

[25] Imtiaz Ullah and Qusay H. Mahmoud. “A Framework for Anomaly Detection in IoT
Networks Using Conditional Generative Adversarial Networks”. In: IEEE Access 9
(2021), pp. 165907–165931. DOI: 10.1109/ACCESS.2021.3132127.

[26] Omar Habibi, Mohammed Chemmakha, and Mohamed Lazaar. “Imbalanced tab-
ular data modelization using CTGAN and machine learning to improve IoT Bot-
net attacks detection”. In: Engineering Applications of Artificial Intelligence 118
(2023), p. 105669. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.
engappai.2022.105669. URL: https://www.sciencedirect.com/
science/article/pii/S0952197622006595.

52

https://doi.org/10.1109/ICCCN52240.2021.9522215
https://doi.org/10.1109/ICC40277.2020.9148632
https://doi.org/10.1109/ICC40277.2020.9148632
https://doi.org/10.11591/ijece.v13i2.pp2240-2258
https://doi.org/https://doi.org/10.1016/j.iot.2023.100699
https://doi.org/https://doi.org/10.1016/j.iot.2023.100699
https://www.sciencedirect.com/science/article/pii/S2542660523000227
https://www.sciencedirect.com/science/article/pii/S2542660523000227
https://doi.org/10.3390/electronics11040524
https://doi.org/10.3390/electronics11040524
https://www.mdpi.com/2079-9292/11/4/524
https://www.mdpi.com/2079-9292/11/4/524
https://doi.org/10.1109/GLOBECOM48099.2022.10000726
https://doi.org/10.1109/GLOBECOM48099.2022.10000726
https://doi.org/10.1109/ACCESS.2021.3132127
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105669
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105669
https://www.sciencedirect.com/science/article/pii/S0952197622006595
https://www.sciencedirect.com/science/article/pii/S0952197622006595

[27] Basim Ahmad Alabsi, Mohammed Anbar, and Shaza Dawood Ahmed Rihan. “Con-
ditional Tabular Generative Adversarial Based Intrusion Detection System for De-
tecting Ddos and Dos Attacks on the Internet of Things Networks”. In: Sensors

23.12 (2023), p. 5644. DOI: 10.3390/S23125644. URL: https://doi.
org/10.3390/s23125644.

[28] Guosheng Zhao et al. “IoT intrusion detection model based on gated recurrent unit
and residual network”. In: Peer-to-Peer Networking and Applications 16 (2023).
ISSN: 4.

[29] Paulo Freitas de Araujo-Filho et al. “Unsupervised GAN-Based Intrusion Detection
System Using Temporal Convolutional Networks and Self-Attention”. In: IEEE

Transactions on Network and Service Management 20.4 (2023), pp. 4951–4963.
DOI: 10.1109/TNSM.2023.3260039.

[30] Pradeepkumar Bhale et al. “OPTIMIST: Lightweight and Transparent IDS With
Optimum Placement Strategy to Mitigate Mixed-Rate DDoS Attacks in IoT Net-
works”. In: IEEE Internet of Things Journal 10.10 (2023), pp. 8357–8370. DOI:
10.1109/JIOT.2023.3234530.

[31] Yalong Song et al. “Intrusion Detection for Internet of Things Networks using
Attention Mechanism and BiGRU”. In: 2023 5th International Conference on

Electronic Engineering and Informatics (EEI). 2023, pp. 227–230. DOI: 10.1109/
EEI59236.2023.10212791.

[32] Cheolhee Park et al. “An Enhanced AI-Based Network Intrusion Detection System
Using Generative Adversarial Networks”. In: IEEE Internet of Things Journal 10.3
(2023), pp. 2330–2345. DOI: 10.1109/JIOT.2022.3211346.

[33] Shuang Zhao et al. “attackGAN: Adversarial Attack against Black-box IDS
using Generative Adversarial Networks”. In: Procedia Computer Science 187
(2021). 2020 International Conference on Identification, Information and Knowl-
edge in the Internet of Things, IIKI2020, pp. 128–133. ISSN: 1877-0509. DOI:
https : / / doi . org / 10 . 1016 / j . procs . 2021 . 04 . 118. URL:
https : / / www . sciencedirect . com / science / article / pii /

S1877050921009303.

[34] Mustafizur R. Shahid et al. “Generative Deep Learning for Internet of Things
Network Traffic Generation”. In: 2020 IEEE 25th Pacific Rim International Sym-

posium on Dependable Computing (PRDC). 2020, pp. 70–79. DOI: 10.1109/
PRDC50213.2020.00018.

53

https://doi.org/10.3390/S23125644
https://doi.org/10.3390/s23125644
https://doi.org/10.3390/s23125644
https://doi.org/10.1109/TNSM.2023.3260039
https://doi.org/10.1109/JIOT.2023.3234530
https://doi.org/10.1109/EEI59236.2023.10212791
https://doi.org/10.1109/EEI59236.2023.10212791
https://doi.org/10.1109/JIOT.2022.3211346
https://doi.org/https://doi.org/10.1016/j.procs.2021.04.118
https://www.sciencedirect.com/science/article/pii/S1877050921009303
https://www.sciencedirect.com/science/article/pii/S1877050921009303
https://doi.org/10.1109/PRDC50213.2020.00018
https://doi.org/10.1109/PRDC50213.2020.00018

[35] Shiming Li et al. “EIFDAA: Evaluation of an IDS with function-discarding ad-
versarial attacks in the IIoT”. In: Heliyon 9.2 (2023), e13520. ISSN: 2405-8440.
DOI: https : / / doi . org / 10 . 1016 / j . heliyon . 2023 . e13520.
URL: https://www.sciencedirect.com/science/article/pii/
S2405844023007272.

[36] Arpita Srivastava, Ditipriya Sinha, and Vikash Kumar. “WCGAN-GP based
synthetic attack data generation with GA based feature selection for IDS”. In:
Computers Security 134 (2023), p. 103432. ISSN: 0167-4048. DOI: https :
//doi.org/10.1016/j.cose.2023.103432. URL: https://www.
sciencedirect.com/science/article/pii/S0167404823003425.

[37] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[38] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[39] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[40] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL:
https://doi.org/10.1038/s41586-020-2649-2.

[41] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science

& Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[42] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open

Source Software 6.60 (2021), p. 3021. DOI: 10.21105/joss.03021. URL:
https://doi.org/10.21105/joss.03021.

[43] Lei Xu et al. “Modeling Tabular data using Conditional GAN”. In: Advances in

Neural Information Processing Systems. 2019.

[44] Andrzej Maćkiewicz and Waldemar Ratajczak. “Principal components analysis
(PCA)”. In: Computers Geosciences 19.3 (1993), pp. 303–342. ISSN: 0098-3004.
DOI: https://doi.org/10.1016/0098-3004(93)90090-R. URL:
https : / / www . sciencedirect . com / science / article / pii /

009830049390090R.

54

https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e13520
https://www.sciencedirect.com/science/article/pii/S2405844023007272
https://www.sciencedirect.com/science/article/pii/S2405844023007272
https://doi.org/https://doi.org/10.1016/j.cose.2023.103432
https://doi.org/https://doi.org/10.1016/j.cose.2023.103432
https://www.sciencedirect.com/science/article/pii/S0167404823003425
https://www.sciencedirect.com/science/article/pii/S0167404823003425
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/https://doi.org/10.1016/0098-3004(93)90090-R
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://www.sciencedirect.com/science/article/pii/009830049390090R

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Gerlin Vainomäe

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Balancing Classes with Synthetic Data for IoT Intrusion Detection Systems”,
supervised by Zhe Deng and Ants Torim
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

06.01.2025

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

55

Appendix 2 – Confusion Matrices of Categories

Figure 8. Worms class, confusion matrix with 10000 added synthetic samples, Boruta V2

56

Figure 9. Worms class, confusion matrix with 28000 synthetic samples, Boruta V2

57

Figure 10. Shellcode class, confusion matrix with 10000 added synthetic samples, Boruta
V2

58

Figure 11. Shellcode class, confusion matrix with 28000 synthetic samples, Boruta V2

59

Figure 12. Backdoor class, confusion matrix with 10000 added synthetic samples, Boruta
V2

60

Figure 13. Backdoor class, confusion matrix with 28000 synthetic samples, Boruta V2

61

Figure 14. Analysis class, confusion matrix with 10000 added synthetic samples, Boruta
V2

62

Figure 15. Analysis class, confusion matrix with 28000 synthetic samples, Boruta V2

63

Figure 16. Reconnaissance class, confusion matrix with 10000 added synthetic samples,
Boruta V2

64

Figure 17. Reconnaissance class, confusion matrix with 28000 synthetic samples, Boruta
V2

65

Figure 18. DoS class, confusion matrix with 10000 added synthetic samples, Boruta V2

66

Figure 19. DoS class, confusion matrix with 28000 synthetic samples, Boruta V2

67

Figure 20. Fuzzers class, confusion matrix with 10000 added synthetic samples, Boruta
V2

68

Figure 21. Fuzzers class, confusion matrix with 28000 synthetic samples, Boruta V2

69

Figure 22. Exploits class, confusion matrix with 10000 added synthetic samples, Boruta
V2

70

Figure 23. Generic class, confusion matrix with 10000 added synthetic samples, Boruta
V2

71

Figure 24. Normal class, confusion matrix with 10000 added synthetic samples, Boruta V2

72

	Introduction
	Importance
	Research questions
	Goal of the work
	Methods
	Thesis structure

	Background and related work
	Internet of Things Intrusion Detection System
	Evaluation

	Generative AI
	Generative Adversarial Network

	Methods
	Work environment
	Software environment
	Development tools

	Dataset
	Machine Learning Algorithms

	Feature engineering
	Experiments and results
	Experiments with PCA
	Experiments with synthetic data
	Experiments with SMOTE, undersampling, oversampling
	Experiments with neural network
	Experiments with CTGAN

	Discussion
	Future work

	Conclusion
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis

