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Abstract
Distributed Denial-of-Service attacks’ harm and traffic are at an all time high. Even thoughit was more than 20 years ago when we observed the first instance of this broad attackclass, recent studies show that DDoS attacks have become more advanced and sophisti-cated with time. There are reports of attack traffic in the Terabites and use of Amplifi-cation techniques highlighting the utmost imporance of proper DDoS detection models.Deep Learning and Signal Processing offer high precision modeling capability with Artifi-cial Neural Networks that learn the latent space representaion and structure of networkflow instances and make for successful Network Intrusion Detection models. Moreover,Software-Defined Networking has revolutionized networkmanagement and network pro-grammiblity and promises the next generation Internet (5G). Hallmarks of SDN such as thecentralized architecture and network-wide visibility offer advantages in Intrusion Detec-tion and alter the Cyber Threat Landscape at the same time. In this study,We Propose twoDeep Learning models for detection of DDoS attacks in the InSDN dataset that achieve re-makrable scores of accuracy and precision in the 99th percentile. Furthermore, we ask thequestion: "Is it possible to detect more DDoS attacks when IDS models cooperate?".Toanswer this question, We demonstrate that the number of false negatives in our DDoSdetection scheme drops drastically when models cooperate.
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1 Introduction
Future Internet promises better security and proposed models for future networks in-clude elements of network programmibility and a centrallymanaged control plane at theircore. Software-DefinedNetworking has revolutionized networkmanagement through thephysical seperation of the control plane from forwarding devices and promises the nextgeneration Internet (5G). Through the decoupling of the control and data planes in theSDN paradigm, all network intelligence and control logic is migrated from the networkdevices to a logically centralized software-based entity known as the network controller.The network controller resides in the control planewhere centralized control and networkmanagement functions instruct forwarding behavior to all the elements distributed in theinfrastructure. The centralized characteristic of SDN implies that the network controlleris always aware of the network state and that all traffic flows are passed to the controllerat least once in the network lifetime for the definition of forwarding behavior [12].SDN nurtures the conception of network programmability, therefore network securityfunctions such as IntrusionDetection Systems are embedded as software applications thatcan be either installed on top of the controller or deployed as independent data consumerfunctions. The centralized SDN architecture and proactive packet processing alter IDS re-search in SDN in the following ways, to name a few:

• the network controller and the IDS in turn, have full visibility into the network stateboth in breadth and depth.
• The IDS, typically implemented at the network barrier in traditional networks, isimplemented as an application on top of the network controller which changes IDS’svantage point with respect to potential attack traffic.
• while highly suitable for security applications, SDN technology poses many vulner-abilities and threats that are challenging to address [7].
Cyberattacks have become more frequent and devastating [2] [5] [20]. Among themost popular cyberattacks are those that target online service. Thefirst DistributedDenial-of-Service attack was observed for the first time more than twenty years ago and yet re-cent studies show that these attacks have becomemore advanced and sophisticated withtime. the response from the industry was to introduce DDoS detection and mitigationplatforms deployed at various locations in the internet [13, 14] . With the advent of SDN,efficient DDoS detection solutions with low numbers of false negatives are ever more im-portant in the cyber threat landscape in future Internet.Network Intrusion Detection Systems (NIDS) use network traffic data to find anoma-lies (abnormal activity). Whether they define intrusion(anomaly) as deviation from nor-mal behavior or network traffic data is inspected against already-developed signatures tospot anomalous behavior (a.k.a. misuse-based intrusion detection), developing a data-driven approach is mandatory in solving this problem. Machine Learning methods, DeepNeural Networks in particular, have proven to be an essential tool when processing loadsof network traffic data.In order to detect intrusions over the network, We usually examine flows of trafficrather than single packets. Even more so in the case of DDoS attacks because they occurover consecutive periods of time with high traffic volume and increasingly high numbersof packets per second. Typical DDoS attacks can generate large traffic volumes and involvehundreds of reflectors. Assuming that it is unlikely for an Internet client to recieve traf-fic from many sources with the same port number at a high traffic rate, [16] proposes afilter method that has proven helpful in differantiating between attack and benign traffic
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from the vantage point of Internet Exchange Points (IXP). To characterize DDoS attacks innetwork traffic, we consider coarse-grained properties like Flow Duration, Packet count,and Packet rate as well as packet details such as distribution of port numbers, protocoltypes, and packet size[18]. Moreover, we take advantage of spatial features and temporalcorrelations of network flows that help identify DDoS from benign traffic.In this thesis project, we analyze attack traffic vs normal traffic in Software-definednetworks to characterize DDoS attacks, propose efficient deep learning models for DDoSdetection and ultimately assess the potential benefits of cooperative DDoS detection inSDN.
1.1 Motivation
SDN features like network-wide visibility, centralized network intelligence and networkprogrammability reshaped the way packet forwarding and basic network control dutiesare performed in programmable networks. However, these features and the SDN archi-tecture itself introduce new security risks and attack vectors that are not present in con-ventional network deployments. Therefore, we can see that SDN security has a twofoldconnotation: in the first place we can improve network security through SDN featuresto protect, react and provide mitigation schemes against well-known security risks andin second place, we ought to design a more secure SDN architecture that addresses thenew attack vectors [17]. The new attack surface introduced by SDN is due to the inherentalterations to network components and the relationships between them. For example,the Centralized architecture brings about a single point of failure (SPOF). In other words,if the network controller is compromised by an adversary, the entire network may be injeopardy. Moreover, SDN elements themselves (like a DNS application) may be used asreflectors in Amplification DDoS attacks.Here, we go over important SDN features that can be leveraged to implement a varietyof security applications across the network.

• Dynamic Flow Control can benefit security by enforcing security middleboxesas composition of different sets of flow control rules that are instructed throughoutthe network [17]. Moreover, SDN dynamic flow control can be leveraged to installsecurity applications such as firewalls, access control lists, and Intrusion DetectionSystems on top of the network controller or bound to the controller through thenorthbound interface.
• Network-wide Visibility means the network controller is aware of the stateof any network element deployed anywhere at any time. Network-wide Visibilitycoupled with centralized flow control makes attack detection and prevention all themore straight-forward in SDN.
• Network programmability supports the process of harvesting intelligence fromexisting Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS).This approach, followed by analysis and centralized reprogramming of the networkcan render SDN more robust to malicious attack than traditional networks [24].
Security in Software=Defined Networks is paramount. B4 [5], [6] is Google’s globallydeployed software-defined inter-datacenter wide area network. While datasets used bymost current research literature are variants of the KDD dataset [7], Network traffic datafrom B4 can be of assistance in understanding security within SDN. Network traffic datais perhaps the most salient source to monitor. This data can be used to effectively designand train Machine Learning models in intrusion detection applications.
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In Recent years, Machine Learning methods, Deep Neural Networks in particular haveproven to be useful in solving networking problems. For Example, Pensieve [8] uses rein-forcement learning techniques to generate adaptive bitrate connection latency by sendingdata directly when establishing algorithms.The Capabilities of SDN such as software-based traffic analysis and global view of thenetwork along with dynamic updating of forwarding rules facilitate detection of attacks inSDN [27].By some accounts, Google’s network delivers more than 25% of internet traffic. Googeinfrastructure is critical and its security is one of the top priorities. The motivation behindthis research project is to address security, intrusion detection in particular, within SD-WANs. SD-WANs such as Google’s Espresso and B4 are in most cases important backbonenetworks that the organization’s infrastructure relies on. In such a context, the virtue ofreliability, QoS, and security are paramount.
1.2 Research Objective and Questions
The aim of this research project to address questions and challenges on the subject of net-work intrusion detection within SDNs. one of the most effective approaches in NetworkIntrusion Detection is to adopt a data-driven approach. For our study, we leverage InSDN[7]: a recent SDN attack-specific dataset. The InSDN dataset contains a total number of343,939 network flow traces where normal traffic brings 68424 instances and attack traf-fic is distributed across 5 different attack classes with DDoS and Probe attacks contributing73529 and 61757 instances, respectively [7]. The remaining one percent of attack traffic ismade up of 1145 DoS attack instances, 295 instances of BFA attacks and only 17 instancesof U2R.Our goal is to analyze the available data to characterize DDoS attacks, propose efficientmodels for DDoS detection and ultimately assess the potential benefits of cooperativeDDoS detection in Software-defined networks.Our research questions are:

• Is it possible to detect more DDoS attacks when IDS models in SDN cooperate?
• What vulnerabilites can be spotted through static analysis of the SDN security?
• Can Deep Neural Networks be effective in detecting intrusion over the software-defined networks?

1.3 Scope and Goal
History of SDN attacks is uknown. this is mainly due to the fact that it is an evolving tech-nology.the InSDN dataset is the most recent publicly available dataset to the Intrusiondetection problem. data collected from globally deployed SDNs such as Google B4 andcloud computing infrastructres can reveal more about the signature characterstics of in-trusion detection is software-defined Networks.Network Intrusion Detection Systems (NIDS) spot attack traffic by finding anomaliesin network traffic data.Whether it defines intrusion as deviation from normal behavioror it’s misuse-based where the network state is checked against already-developed sig-natures.Network Intrusion Detection Systems are one of the industry’s main response tothe threat posed by high-impact cybersecurity attacks such as DDoS attacks.Machine-learning is oneof themost promising network intrusion detection techniques.Moreover, Deep Learning techniques have shown remarkable results.The goal of this study
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is to propose deep learningmodels for the problemofDDoS detection in Software-definedNetworks and answer the question: "Is it possible to detect more DDoS attacks in SDNwhen models cooperate ?"
1.4 Novelty
Deep LearningModels have been deployed for Intrusion Detection to understand the spa-tial and temporal features of network traffic data. Even though Software-defined Net-working is highly deployed in datacenters, it is still an evolving technology the researchcommunity can benefit from more intrinsic data. These Deep Learning-based IntrusionDetection models are composed of multiple layers of abstractions and deep neural con-nections. Some studies use sequencemodeling formulation and include elements of LongShort-term Memory units that learn the temporal stucture of time-series network statis-tics. While Results from simillar studies indicate an overall adequate performance. Inaddition to the numerically superior performance metrics of our proposed models ascompared to similiar studies, we were able to significantly reduce the number of falsenegatives through cooperation.
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2 Related Works
In the past, Statistical Approaches have been used for DDoS Attack Detection. This pa-per [8] presents methods to identify DDoS attacks by computing entropy and frequency-sorted distributions of selected packet attributes. The DDoS attacks show anomalies inthe characteristics of the selected packet attributes.Machine learning algorithms are used to solve complex problems in many fields [112].These algorithms are also applied for detection of DDoS attacks, and it has been foundthat they are better than signature-based detection techniques[113].Deep learning allows computational models composed of multiple layers to learn thedata structure withmultiple levels of abstraction and improve the intelligence of intrusiondetection systems (IDS).The history of software-defined networks is mostly uknown. InSDN [7] is the first-of-itskind dataset on the subject of intrusin detection in SDN.while contributory to the researchcommunity, it is a synthetic dataset generated by using an SDN testbed and self-inititedattacks.The InSDN dataset is the most recent state-of-the-art Intrusion Detection dataset inSoftware-Defined Networks. Authors of [26] propose a deep learning model based on anAutoencoder and a Multi-Layer Perceptron to classify different kinds of intrusions in SDN.Moreover, A recent study [1] employs elements of Long Short-termMemory Units as partof their classification model to better learn the temporal features of the dataset.Recent studies have demonstrated the high accuracy of deep learning methods in de-tecting IoT botnets. Authors of this paper [19] show that it is possible to induce high ac-curate unsupervised learning models with reduced feature set sizes, enabling to decreasethe required computational resources. Training one common model for all IoT devices,instead of dedicated model for each device which is another design option that is evalu-ated for resource optimization. The following paper [10] applies hybrid feature selectionmethod for Machine Learning-Based Botnet Detection in IoT Networks.Moreover, Authors of this Paper [9] propose a distributed approach to defending againstdistributed denial of service attacks by coordinating across the Internet. In this approach,DDoS defence systems are deployed independently in the network to detect DDoS attackswhere information is exchanged between these nodes via a gossip based communicationmechanism.
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3 Dataset
Even though SDN is increasingly deployed in datacenters, cloud computing infrastructure,and globally deployedWANs, the history of SDNattacks in still unknown [7]. While classicalintrusion detection datasets such as KDD’99 [6], NSL-KDD [25] provide us with cases ofDDoS attacks vs normal traffic, they do not reflect the signature characteristics of SDNsuch as the Centralized architecture and full visibility into the network state to name afew. Actual Traffic data captured from datacenters and globally deployed WANs such asGoogle B4 [11] and Espresso [28] can shed a light on the specifics of DDoS detection in SDN.To the best of our knowledge however, there are still no publicly available datasets of realDDoS attacks in Software-defined Networks.The Booter [3] dataset provides the researchcommunity with real instances of DNS Amplification DDoS attacks. Even though helpfulin understanding how to detect DDoS attacks in traditional networks, using a non-specificSDN datast may cause compatibility problems as the attack vectors would not resonatewith the SDN architecture.For our study, we leverage InSDN [7]: a recent SDN attack-specific dataset. The InSDNdataset contains a total number of 343,939 network flow traces where normal trafficbrings 68424 instances and attack traffic is distributed across 5 different attack classeswith DDoS and Probe attacks contributing 73529 and 61757 instances, respectively [7].The remaining one percent of attack traffic is made up of 1145 DoS attack instances, 295instances of BFA attacks and only 17 instances of U2R. This dataset provides flow-level fea-tures such as flow duration, inter-arrival time, number of packets, and number of bytes.Our goal is to analyze the available data to characterize DDoS attacks, propose effec-tive deep learning models for Intrusion detection (Detection of DDoS attacks as well asinstances of DoS, U2R, Probe, and Brute-Force attacks) and ultimately assess the poten-tial benefits of cooperative DDoS detection in Software-defined networks.
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4 Problem Formulation
4.1 Network Architecture
Authors of InSDN [7] data set represent the network topology by creating four virtualmachines (VMs) using VMware Workstation on Windows 10.

Figure 1 – InSDN [7] : Virtual SDN testbed network architecture

4.2 Data Generation Methodology
The centralized view of the SDN network and separation of the data plane from the con-trol plane creates a new opportunity for the attacker to carry out various types of attackscompared to the conventional network [7]. The attacker may launch an attack against theSDN controller or even the communication links between the SDN controller and Open-Flow switches.The DDoS attack scenarios in the InSDN dataset are TCP-SYN Flood, UDP Flood, andICMP Flood attacks.The remote exploitation and backdoor attacks represent theU2R scenario in the InSDNdataset. These malicious activities can bring about serious damage to the network.
4.3 Limitations and Considerations
The InSDN dataset, while providing the first novel SDN intrusion detection dataset, onlyincludes synthetic attack traffic generated in the SDN testbed characterized by its authors.We understand that the quality of a goodmodel depends on the quality of the dataset andhow well it represents the phenomenon under study.Many catastrophic real-world cases of DDoS attacks incorporate amplification attacksand reflector elements across the network. for example, the attacker may take advantageof the centralized SDN architecture and target a network service as reflectorwithin a DDoSamplification attack scheme.The InSDN testbed was implemented using only ONOS SDN controller. However, au-thors in [15] , [22] claim that the different controllers can have different security modeling,and therefore, different countermeasures.
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SDN can be deployed in different network scales [7].To generate more intrinsic data for SDN networks, the network topology should becreated using physical devices. A more intrinsic dataset can be generated using physicaltopology with many connected devices.Ideally, obtaining network traffic data from global SDN deployments such as GoogleB4 and cloud computing infrastructures will make it possible for the research communityto examine the pecularities of Intrusion Detection reseach in SDN.
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5 Inference of DDoS Attacks
To identify DDoS attack traffic in the flow-level traces provided by the InSDN dataset, weemploy a deep learning approach.We also aim to perform denoising and dimensionalityreduction where appropriate.
5.1 Data Pre-Processing
Socket information such as Source IP, Destination IP, and flow ID are removed to avoid theoverfitting problem because these features are different from network to network. Thefinal dataset includes 77 various features, besides the traffic category (i.e. the Label as-signed to each flow instance in our Supervised Learning model) [7]. In order to facilitatebinary classification, We use one-hot encoding on the label values where, the strings Nor-mal and Attack are encoded into binary values of 0 and 1, respectively. The InSDN datasetalso includes as many as 8 zero variance features that do not contain any information use-ful for classification purposes. These features such as ’Fwd Byts/b Avg’ have either oneunique value (zero variance) or a high ratio of the most common value to the next mostcommon value therefore are removed. Finally TCP flags are removed leaving us with atotal of 52 numerical features that have different ranges, hence standardized to the scaleof the values between -1 and 1.
5.2 Data Analysis
Our featureset includes basic statistics like the duration of a flow and flow Inter-arrivaltime as well as SDN-specific features such as Min, Max, and Standard deviation of thesestatistics. First, we compute the pair-wise correlation matrix for all the features and ob-serve where they approach thresholds of 0.7, 0.8, and 0.9. As indicated by Figure 2, the

Figure 2 – Pair-wise Correlation Matrix of the features.

correlation matrix reveals that time-related features such as Flow Duration,Flow Inter-Arrival Time,Idle Std seem to be correlated. Moreover, it can be observed that SDN spe-cific features such as maximum, minimum, mean, and standard deviation of time-basednetwork values are also correlated. These SDN features can be directly extracted from thenetwork controller through API queries. Next we reduce the dimensionality of the feature
19



Figure 3 – Cumulative Explained Variance by Principal Components.

space by applying a principle component analysis (PCA). A PCA decomposition can be usedto project a high-dimentsional space to a lower-dimensional space by relying the on theinitial principal components. In effect, it converts a set of values of M possibly correlatedvariables into a set of K uncorrelated variables, the PCAs. in that regard, PCA is a clusteringalgorithim for high-dimensional data. we find that a significant number of our features arecorrelated since the first 5 PCAs explain about 70% of the variance (refer to Figure 3 ) andthe first 12 more than 90%. Figure 4 shows the projection of our feature space into thefirst 2 PCAs. We can see in Figure 4 that Attack and Normal traffic are to a certain extentvisually separable.
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Figure 4 – projection of feature space to the first 2 PCAs.
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6 Workflow, Training, and Testing
Deep learning allows computational models composed of many layers to learn the datastructurewithmany levels of abstraction. In this study, we seek to design, implement, andevaluate neural network classifiers that learn the spatial and temporal structure of Attacktraffic as opposed to Normal traffic. We propose two different deep learning models thatachieve remarkable results and later demonstrate that the number of false negatives inour detection scheme drops drastically when these models cooperate.
6.1 Experimental Setup
The experiments were carried out using Python and the Pytorch [21] library. Table 1 detailsthe system specifications.

Table 1 – System Specifications

Unit DescriptionProcessor 2199.998 MHzMemory 13GL3 cache 56320K

6.2 Data Splitting
In machine learning, one of the main requirements is to build computational models withhigh prediction and generalization capabilities. In the case of supervised learning, a com-putational model is trained to predict outputs of an unknown target function. The targetfunction is represented by a finite training dataset T of examples of inputs and the cor-responding desired outputs.At the end of the training process, the final model shouldpredict correct outputs for the input samples from T, but it should also be able to general-ize well to previously unseen data [23]. We split the 141953 network flow traces providedby the InSDN dataset for DDoS traffic classification into the training and test sets with a80% train, 20% test ratio.
6.3 Classification with Raw Features
Fully Connected Neural Networks are great at classification. Our intention is to gain mul-tiple layers of abstraction and we reckon that a 7 Layer Perceptron as depicted in Figure5 with 52, 128, 512, 512, 128, 64, and 16 nodes in each layer can help us expand acrossthe data space and ultimately reduce the dimentionality. The rectified linear activationfunction (ReLU) has been used at each layer to increase the non-linearity degree and setall negative values in the feature set by zero. Finally, the output layer incorporates theSigmoid function to represent the probability of each input flow belonging to either class.We use the Adam optimization algorithm for stochastic gradient descent where the learn-ing rate set to 0.0001 and train the deep learning model. At each backpropagation stepduring the training process, We calculate the reconstruction loss using the Binary CrossEntropy criterion.
6.4 Denoising via Convolutional AutoEncoder
The Autoencoder, generally deployed as a generative model, is proficient at extractinghigh-level features from the data by transforming it into a latent space. The latent space
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Figure 5 – Fully Connected Neural Network

view representation of the data lies at the bottleneck layer of the Autoencoder which islater used to generate new data instances in image processing applications. ConvolutionalAutoencoders have proven to be excellent at denoising data. For this reason, we set outto design a Convolutional Autoencoder and train it over the InSDN dataset. The bottle-neck representation of the dataset can reveal quite a bit about the spatial and temporalstructure of the dataset which we use as a feature extraction step in the deep learningprocess.

Figure 6 – Convolutional Autoencoder

As a first pre-processing step, we reshape each flow instance of dimensions [1,52] intoan image-like structure of shape [8,8]. This transformation is carried out using a Lineartransformation from 52 to 64 features which are then cast to the (1,8,8) Tensor shape inorder to suit the input dimensions of the convolutional autoencoder. Generally speaking,Autoencoders are made up of the encoder, the bottleneck, and the decoder. The archi-tecture of the convolutional autoencoder (depicted in Figure 6) is composed of three con-volutional layers taking in flow-level values through one input channel and expanding itfirst to 8 and next to 16 and 32 channels. Each channel corresponds to a different filter ap-plied throughout the convolution process. The output of the convolutional layers is thenflattened and linearly transformed into the bottleneck space dimension of [1,4]. The De-coder has the same architecture as the encoder except in reverse order. throughout thetraining process, the decoder reconstructs training data instances and we can measure
23



and minimize loss.

Figure 7 – t-Distributed Stochastic Neighbor embedding analysis with Raw features

Figure 8 – t-Distributed Stochastic Neighbor embedding analysis with High-level features

The convolutional autoencoder is trained over the train set for a total of 200 epochsleaving us with a latent space representation view of the network traffic data. In thisfashion, we can extract 4 high-level features and have the dimension of our featuresetreduced from 52 to 4. The choice to go with 4 high-level features was made after ex-perimenting with other candidates such as 8, 16, and 32. Our experiment demonstratesthat 4 high-level features achieve the best classification results. As depicted in Figure ??,our t-distributed stochastic neighbor embedding analysis reveals that the convolutionalautoencoder successfully denoises the flow data making it easier for a classifer to detectoutliers as DDoS instaces seem to be closer together.
6.5 Classification with High-Level Features
By extracting high-level features using a Convolutional Autoencoder in the previous sec-tion, we were able to transform the data into four-dimensional space. Next, we design,
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train, and evaluate a fully connected neural network for classification. Therfore, we insert4-dimensional output from the bottleneck of the convolutional autoencoder into a min-imal classifer of 5 layers. Figure 9 shows the the architecture of fully connected classiferconsisting of four linear layers going from 4 -> 16 -> 32 -> 32 -> 16 -> 1 nodes at each layerwith the rectified linear unit as the activation function.

Figure 9 – Fully Connected Neural Network
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7 Experimenting with Other Attack Types
To further evaluate the performance of our classificationmodels, we set out to experimentwith the entire InSDN dataset that also includes instances of Probe and DoS attacks aswell as a few instances of BFA and U2R attacks. First, we formulate this experiment aa binary classification problem where flow instances are classified into the Normal andIntrusion classes. These labels have been encoded to 0 and 1, respectively. After splittingthe dataset into train and test sets with a 80% and 20% ratio, we train the ConvolutionalAutoencoder ?? for a total of 200 epochs over train data.Next, we calculate the latent space representation of the train data by feeding it throughthe Autoencoder. Said high-level representation of data lies at the bottleneck layer of theautoencoder and is measured in 4 dimensions. Figures 10 and 11 show the distribution ofRaw features vs high-level features in the data space. The comparison between these twofigures demonstrates that the Autoencoder was able to accomplish the denoising of thedata. It can be observed on the t-SNE plots that high-level features lie closer together withrespect to distances between them. The Relevant information is in the relative distancesbetween low dimensional points. t-SNE captures structure in the sense that neighboringpoints in the input space will tend to be neighbors in the low dimensional space.

Figure 10 – t-SNE analysis of high-level features

Next, we train a fully connected classifier over the high-level features for a total of4000 epochs. Figure 9 shows the architecture of the fully connected classifier.
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Figure 11 – t-SNE analysis of high-level features
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8 Evaluation Metrics
To evaluate the performance of our classifiers, we use the classification accuracy, preci-sion, recall, and F1 score as performance metrics. In addition, we calculate the confusionmatrix where:

• True Positive (TP) indicates attack traffic correctly classified asmalicious(DDoS).
• True Negative (TN) indicates normal traffic correctly classified as benign.
• False Positive (FP) indicates normal traffic incorrectly classified as malicious.
• False Negative (FN) indicates attack traffic incorrectly classified as normal.
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9 Results
9.1 Results for Classification with Raw features

The classifier is trained over the train set in the course of 200 epochs and demonstratesa remarkable accuracy of 99.60% with the training loss dropping drastically a quarter intothe training process. Table 2 reports the Accuracy, Precision, Recall, and F1 metrics forthe performance of our classification network. Figure 12 shows the training loss at eachepoch. We can see that the training loss drops drastically half-way through the trainingprocess and our model’s performance converges after that.
Table 2 – Classification Performance

Accuracy(%) Precision(%) Recall(%) F1-Score(%)99.60 99.27 99.97 99.62

Figure 12 – Training Loss in Classification with Raw features

9.2 False Negatives

In the context of DDoS detection, a false negativemeans an attack instance wasmissed byour classifier. While Our fully connected classifier performs remarkable in detecting DDoSvs normal traffic, there are as many as 4 false negatives in the confusion matrix (Figure13).
9.3 Results for Classification with High-level Features

we insert 4-dimensional output from the bottleneck of the convolutional autoencoderinto the fully connected classifer and train it over the train dataset for a total of 4000epochs. Table 3 reports the remarkable performance metrics achieved by our classifer.
Table 3 – Classification Performance

Accuracy(%) Precision(%) Recall(%) F1-Score(%)99.28 99.22 99.40 99.31
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Figure 13 – Confusion Matrix

9.4 Results for Cooperative DDoS Detection
In the previous section, we proposed twomodels for DDoS detection in Software-DefinedNetworks based on the InSDN dataset. Both models perform remarkably with accuracyrates in the 99th percentile. we remark and here demonstrate that the number of falsenegatives in DDoS detection drastically decreases when models cooperate.In order to minimize the number of false negatives in our DDoS detection scheme,we combine the proposed classification models in such a fasion that they share their de-cisions on each flow instance. Table 4 reports the performance metrics of our proposedcooperative DDoS detection scheme. As indicated by the ConfusionMatrix (Figure 17), thenumber of false negatives drops from 4 in the first model to 1 in the cooperative model.

Table 4 – Performance of Cooperative DDoS Detection

Accuracy(%) Precision(%) Recall(%) F1-Score(%)99.57 99.18 99.99 99.58
Best results are achieved through cooperation of IDS applications whether they’re indifferent locations across the network as in the case of software-defined networks withmultiple controllers or placed on the same central point on top of the controller. It’s whenthese model cooperate and exchange data that we can ensure a better security postureand threat mitigation strategies.
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Figure 14 – Training Loss for Classification with high-level features

Figure 15 – Confusion Matrix for Classification with high-level features

9.5 Results for Cooperative Intrusion Detection
Theperformancemetrics are reported in Table 5. Even though theproposedmodel acheivesa remarkable accuracy of 99.06%, the Confusion Matrix (Figure 18) begs the question:"How can we drop the number of false negatives in this detection scheme ?". Moreover,Figures 19 , 20 and Table 6 show themisclassified ratios under their respective attack class.It can be deduced from the class distribution of the misclassified instances that our pro-posed deep learning model gravitates towards detection of minority classes as opposedto majority classes such as DDoS and DoS.

Table 5 – Classification Performance ( with High-level Features )

Accuracy(%) Precision(%) Recall(%) F1-Score(%)99.06 99.15 99.45 99.30

Table 6 – Ratio of Misclassified Instances under their respective class

BFA DDoS DoS Normal Probe U2R0 0.0016 0.2026 0.0004 0.00004 0.0588
As discussed in the previous sections, The lesson learned from Cooperative DDoS de-
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Figure 16 – Training Loss of Cooperative DDoS Detection

tection was that the number of false negatives drop drastically when models cooperate.By the same logic, We train a fully connected classifer (Figure 21) over raw features. Theperformance results from this cooperative detection are reported in Table 7 . Figure 22shows the confusion matrix. Our analysis tells us as many as 44 flow instances were de-tected only through cooperation.
Table 7 – Classification Performance ( with Raw Features )

Accuracy(%) Precision(%) Recall(%) F1-Score(%)99.41 99.13 99.99 99.56
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Figure 17 – Confusion Matrix of Cooperative DDoS Detection
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Figure 18 – Confusion Matrix (Classification with High-level features)

Figure 19 – Misclassified Flow Instances under their respective classes)
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Figure 20 – Ratio of Misclassified Instances under their respective class

Figure 21 – Fully Connected Classifier

Figure 22 – Confusion Matrix from Cooperative Intrusion Detection
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10 Discussion and Future Work
In this study, we walked through the specifics of DDoS attacks and how we can detect in-stances of such attacks in network traffic datawithin an SDN enviroment. Morover, we laidout the pecularities of cyber threat intelligence in software-defined networks and madethe assertion that these traits call for a fresh perspective on detection of DDoS attacksin future networks. While this exemplary look into DDoS attacks in SDNs as provided bythe InSDN dataset reveals a lot about the scientific approach to the problem, there areaspects to the subject that best be addressed:

• The InSDN dataset, while providing the first novel SDN intrusion detection dataset,only includes synthetic DDoS attacks generated in the SDN testbed characterizedby its authors. We understand that the quality of a good model depends on thequality of the dataset and howwell it measures the phenomenon under study. withthis in mind, we need more data from software-defined networking deployments.Google’s b4 ,Espresso are good examples. cloud computing infrastructures can alsoprovide us with network data of real ddos instances versus normal traffic.
• Many catastrophic real-world cases of DDoS attacks incorporate amplification at-tacks and reflector elements across the network. Therefore, a future study mayzero in on instances of DDoS Amplification attacks in SDN as they generate ordersof magnitude more traffic than mere flooding attacks. Moreover, the attacker maytake advantage of the centralized SDN architecture and target a network service asreflector within a DDoS amplification attack scheme.
• In discussing how to detect attacks within network traffic data, one can measurespatial features of network traffic data whereas it’s equally important, if not more,to take into account the temporal features of attacks. this notion is even more cru-cial in the case of DDoS attackS where it’s usually not any one network flow thathelps identify an attack but sequences of them as DDoS attacks take place over thecourse of consecutive periods. Therefore, a potential angle would be to formulatethe problem as a sequence modeling problem. LSTM units in Neural Networks area great choice of model for such an approach.
• Although SDN is deployed in different network environments, It is still evolving. Theprevious history of SDN attacks is unknown. Therefore, the authors of [7] act likethe attacker and anticipate the weaknesses that he might be likely to strike.
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11 Conclusion
DDoS attacks were first observed twenty years ago, but they are still one of the most se-rious threats. The hallmarks of Software-defined networking call for a fresh perspectiveon DDoS detection in SDN. The InSDN dataset paves the way for the research communityto take a fresh look at DDoS attacks in SDN. However, we need more data from SDN de-ployments that shed a light on the pecularities of DDoS attacks in SDN. In this study, weproposed two deep learning models that achieve excellent performance metrics. Next,we demonstrated that a better DDoS detection scheme can be proposed when modelscooperate. Our results exhibit a drastic fall in the number of false negative when modelscooperate.
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