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Abstract

Distributed Denial-of-Service attacks’ harm and traffic are at an all time high. Even though
it was more than 20 years ago when we observed the first instance of this broad attack
class, recent studies show that DDoS attacks have become more advanced and sophisti-
cated with time. There are reports of attack traffic in the Terabites and use of Amplifi-
cation techniques highlighting the utmost imporance of proper DDoS detection models.
Deep Learning and Signal Processing offer high precision modeling capability with Artifi-
cial Neural Networks that learn the latent space representaion and structure of network
flow instances and make for successful Network Intrusion Detection models. Moreover,
Software-Defined Networking has revolutionized network management and network pro-
grammiblity and promises the next generation Internet (5G). Hallmarks of SDN such as the
centralized architecture and network-wide visibility offer advantages in Intrusion Detec-
tion and alter the Cyber Threat Landscape at the same time. In this study, We Propose two
Deep Learning models for detection of DDoS attacks in the INSDN dataset that achieve re-
makrable scores of accuracy and precision in the 99th percentile. Furthermore, we ask the
question: "Is it possible to detect more DDoS attacks when IDS models cooperate?".To
answer this question, We demonstrate that the number of false negatives in our DDoS
detection scheme drops drastically when models cooperate.
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SDN
IDS
DDoS
NIDS
IXP
SPOF
SD-WAN
QoS
loT
BFA
LSTM

Software defined Networking
Intrusion Detection System
Distributed Denial-of-Service
Network Intrusion Detection System
Internet Exchange Point

Single Point of Failure
Software-Defined Wide Area Network
Quality of Service

Internet of Things

Brute-Force Attack
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1 Introduction

Future Internet promises better security and proposed models for future networks in-
clude elements of network programmibility and a centrally managed control plane at their
core. Software-Defined Networking has revolutionized network management through the
physical seperation of the control plane from forwarding devices and promises the next
generation Internet (5G). Through the decoupling of the control and data planes in the
SDN paradigm, all network intelligence and control logic is migrated from the network
devices to a logically centralized software-based entity known as the network controller.
The network controller resides in the control plane where centralized control and network
management functions instruct forwarding behavior to all the elements distributed in the
infrastructure. The centralized characteristic of SDN implies that the network controller
is always aware of the network state and that all traffic flows are passed to the controller
at least once in the network lifetime for the definition of forwarding behavior [12].

SDN nurtures the conception of network programmability, therefore network security
functions such as Intrusion Detection Systems are embedded as software applications that
can be either installed on top of the controller or deployed as independent data consumer
functions. The centralized SDN architecture and proactive packet processing alter IDS re-
search in SDN in the following ways, to name a few:

¢ the network controller and the IDS in turn, have full visibility into the network state
both in breadth and depth.

e The IDS, typically implemented at the network barrier in traditional networks, is
implemented as an application on top of the network controller which changes IDS’s
vantage point with respect to potential attack traffic.

¢ while highly suitable for security applications, SDN technology poses many vulner-
abilities and threats that are challenging to address [7].

Cyberattacks have become more frequent and devastating [2] [5] [20]. Among the
most popular cyberattacks are those that target online service. The first Distributed Denial-
of-Service attack was observed for the first time more than twenty years ago and yet re-
cent studies show that these attacks have become more advanced and sophisticated with
time. the response from the industry was to introduce DDoS detection and mitigation
platforms deployed at various locations in the internet [13, 14] . With the advent of SDN,
efficient DDoS detection solutions with low numbers of false negatives are ever more im-
portant in the cyber threat landscape in future Internet.

Network Intrusion Detection Systems (NIDS) use network traffic data to find anoma-
lies (abnormal activity). Whether they define intrusion(anomaly) as deviation from nor-
mal behavior or network traffic data is inspected against already-developed signatures to
spot anomalous behavior (a.k.a. misuse-based intrusion detection), developing a data-
driven approach is mandatory in solving this problem. Machine Learning methods, Deep
Neural Networks in particular, have proven to be an essential tool when processing loads
of network traffic data.

In order to detect intrusions over the network, We usually examine flows of traffic
rather than single packets. Even more so in the case of DDoS attacks because they occur
over consecutive periods of time with high traffic volume and increasingly high numbers
of packets per second. Typical DDoS attacks can generate large traffic volumes and involve
hundreds of reflectors. Assuming that it is unlikely for an Internet client to recieve traf-
fic from many sources with the same port number at a high traffic rate, [16] proposes a
filter method that has proven helpful in differantiating between attack and benign traffic
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from the vantage point of Internet Exchange Points (IXP). To characterize DDoS attacks in
network traffic, we consider coarse-grained properties like Flow Duration, Packet count,
and Packet rate as well as packet details such as distribution of port numbers, protocol
types, and packet size[18]. Moreover, we take advantage of spatial features and temporal
correlations of network flows that help identify DDoS from benign traffic.

In this thesis project, we analyze attack traffic vs normal traffic in Software-defined
networks to characterize DDoS attacks, propose efficient deep learning models for DDoS
detection and ultimately assess the potential benefits of cooperative DDoS detection in
SDN.

1.1 Motivation

SDN features like network-wide visibility, centralized network intelligence and network
programmability reshaped the way packet forwarding and basic network control duties
are performed in programmable networks. However, these features and the SDN archi-
tecture itself introduce new security risks and attack vectors that are not present in con-
ventional network deployments. Therefore, we can see that SDN security has a twofold
connotation: in the first place we can improve network security through SDN features
to protect, react and provide mitigation schemes against well-known security risks and
in second place, we ought to design a more secure SDN architecture that addresses the
new attack vectors [17]. The new attack surface introduced by SDN is due to the inherent
alterations to network components and the relationships between them. For example,
the Centralized architecture brings about a single point of failure (SPOF). In other words,
if the network controller is compromised by an adversary, the entire network may be in
jeopardy. Moreover, SDN elements themselves (like a DNS application) may be used as
reflectors in Amplification DDoS attacks.

Here, we go over important SDN features that can be leveraged to implement a variety
of security applications across the network.

e Dynamic Flow Control can benefit security by enforcing security middleboxes
as composition of different sets of flow control rules that are instructed throughout
the network [17]. Moreover, SDN dynamic flow control can be leveraged to install
security applications such as firewalls, access control lists, and Intrusion Detection
Systems on top of the network controller or bound to the controller through the
northbound interface.

e Network-wide Visibility means the network controller is aware of the state
of any network element deployed anywhere at any time. Network-wide Visibility
coupled with centralized flow control makes attack detection and prevention all the
more straight-forward in SDN.

e Network programmability supports the process of harvesting intelligence from
existing Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS).
This approach, followed by analysis and centralized reprogramming of the network
can render SDN more robust to malicious attack than traditional networks [24].

Security in Software=Defined Networks is paramount. B4 [5], [6] is Google's globally
deployed software-defined inter-datacenter wide area network. While datasets used by
most current research literature are variants of the KDD dataset [7], Network traffic data
from B4 can be of assistance in understanding security within SDN. Network traffic data
is perhaps the most salient source to monitor. This data can be used to effectively design
and train Machine Learning models in intrusion detection applications.
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In Recent years, Machine Learning methods, Deep Neural Networks in particular have
proven to be useful in solving networking problems. For Example, Pensieve [8] uses rein-
forcement learning techniques to generate adaptive bitrate connection latency by sending
data directly when establishing algorithms.

The Capabilities of SDN such as software-based traffic analysis and global view of the
network along with dynamic updating of forwarding rules facilitate detection of attacks in
SDN [27].

By some accounts, Google’s network delivers more than 25% of internet traffic. Googe
infrastructure is critical and its security is one of the top priorities. The motivation behind
this research project is to address security, intrusion detection in particular, within SD-
WANSs. SD-WANSs such as Google’s Espresso and B4 are in most cases important backbone
networks that the organization’s infrastructure relies on. In such a context, the virtue of
reliability, QoS, and security are paramount.

1.2 Research Objective and Questions

The aim of this research project to address questions and challenges on the subject of net-
work intrusion detection within SDNs. one of the most effective approaches in Network
Intrusion Detection is to adopt a data-driven approach. For our study, we leverage InSDN
[7]: a recent SDN attack-specific dataset. The InSDN dataset contains a total number of
343,939 network flow traces where normal traffic brings 68424 instances and attack traf-
ficis distributed across 5 different attack classes with DDoS and Probe attacks contributing
73529 and 61757 instances, respectively [7]. The remaining one percent of attack traffic is
made up of 1145 DoS attack instances, 295 instances of BFA attacks and only 17 instances
of U2R.

Our goal is to analyze the available data to characterize DDoS attacks, propose efficient
models for DDoS detection and ultimately assess the potential benefits of cooperative
DDoS detection in Software-defined networks.

Our research questions are:

e Is it possible to detect more DDoS attacks when IDS models in SDN cooperate?
e What vulnerabilites can be spotted through static analysis of the SDN security?

e Can Deep Neural Networks be effective in detecting intrusion over the software-
defined networks?

1.3 Scope and Goal

History of SDN attacks is uknown. this is mainly due to the fact that it is an evolving tech-
nology.the INSDN dataset is the most recent publicly available dataset to the Intrusion
detection problem. data collected from globally deployed SDNs such as Google B4 and
cloud computing infrastructres can reveal more about the signature characterstics of in-
trusion detection is software-defined Networks.

Network Intrusion Detection Systems (NIDS) spot attack traffic by finding anomalies
in network traffic data.Whether it defines intrusion as deviation from normal behavior
or it’s misuse-based where the network state is checked against already-developed sig-
natures.Network Intrusion Detection Systems are one of the industry’s main response to
the threat posed by high-impact cybersecurity attacks such as DDoS attacks.

Machine-learning is one of the most promising network intrusion detection techniques.
Moreover, Deep Learning techniques have shown remarkable results.The goal of this study
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is to propose deep learning models for the problem of DDoS detection in Software-defined
Networks and answer the question: "Is it possible to detect more DDoS attacks in SDN
when models cooperate ?"

1.4 Novelty

Deep Learning Models have been deployed for Intrusion Detection to understand the spa-
tial and temporal features of network traffic data. Even though Software-defined Net-
working is highly deployed in datacenters, it is still an evolving technology the research
community can benefit from more intrinsic data. These Deep Learning-based Intrusion
Detection models are composed of multiple layers of abstractions and deep neural con-
nections. Some studies use sequence modeling formulation and include elements of Long
Short-term Memory units that learn the temporal stucture of time-series network statis-
tics. While Results from simillar studies indicate an overall adequate performance. In
addition to the numerically superior performance metrics of our proposed models as
compared to similiar studies, we were able to significantly reduce the number of false
negatives through cooperation.
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2 Related Works

In the past, Statistical Approaches have been used for DDoS Attack Detection. This pa-
per [8] presents methods to identify DDoS attacks by computing entropy and frequency-
sorted distributions of selected packet attributes. The DDoS attacks show anomalies in
the characteristics of the selected packet attributes.

Machine learning algorithms are used to solve complex problems in many fields [112].
These algorithms are also applied for detection of DDoS attacks, and it has been found
that they are better than signature-based detection techniques[113].

Deep learning allows computational models composed of multiple layers to learn the
data structure with multiple levels of abstraction and improve the intelligence of intrusion
detection systems (IDS).

The history of software-defined networks is mostly uknown. InSDN [7] is the first-of-its
kind dataset on the subject of intrusin detection in SDN. while contributory to the research
community, it is a synthetic dataset generated by using an SDN testbed and self-initited
attacks.

The InSDN dataset is the most recent state-of-the-art Intrusion Detection dataset in
Software-Defined Networks. Authors of [26] propose a deep learning model based on an
Autoencoder and a Multi-Layer Perceptron to classify different kinds of intrusions in SDN.
Moreover, A recent study [1] employs elements of Long Short-term Memory Units as part
of their classification model to better learn the temporal features of the dataset.

Recent studies have demonstrated the high accuracy of deep learning methods in de-
tecting loT botnets. Authors of this paper [19] show that it is possible to induce high ac-
curate unsupervised learning models with reduced feature set sizes, enabling to decrease
the required computational resources. Training one common model for all l1oT devices,
instead of dedicated model for each device which is another design option that is evalu-
ated for resource optimization. The following paper [10] applies hybrid feature selection
method for Machine Learning-Based Botnet Detection in IoT Networks.

Moreover, Authors of this Paper [9] propose a distributed approach to defending against
distributed denial of service attacks by coordinating across the Internet. In this approach,
DDoS defence systems are deployed independently in the network to detect DDoS attacks
where information is exchanged between these nodes via a gossip based communication
mechanism.
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3 Dataset

Even though SDN is increasingly deployed in datacenters, cloud computing infrastructure,
and globally deployed WANSs, the history of SDN attacks in still unknown [7]. While classical
intrusion detection datasets such as KDD’99 [6], NSL-KDD [25] provide us with cases of
DDoS attacks vs normal traffic, they do not reflect the signature characteristics of SDN
such as the Centralized architecture and full visibility into the network state to name a
few. Actual Traffic data captured from datacenters and globally deployed WANSs such as
Google B4 [11] and Espresso [28] can shed a light on the specifics of DDoS detection in SDN.
To the best of our knowledge however, there are still no publicly available datasets of real
DDosS attacks in Software-defined Networks.The Booter [3] dataset provides the research
community with real instances of DNS Amplification DDoS attacks. Even though helpful
in understanding how to detect DDoS attacks in traditional networks, using a non-specific
SDN datast may cause compatibility problems as the attack vectors would not resonate
with the SDN architecture.

For our study, we leverage InSDN [7]: a recent SDN attack-specific dataset. The InSDN
dataset contains a total number of 343,939 network flow traces where normal traffic
brings 68424 instances and attack traffic is distributed across 5 different attack classes
with DDoS and Probe attacks contributing 73529 and 61757 instances, respectively [7].
The remaining one percent of attack traffic is made up of 1145 DoS attack instances, 295
instances of BFA attacks and only 17 instances of U2R. This dataset provides flow-level fea-
tures such as flow duration, inter-arrival time, number of packets, and number of bytes.

Our goal is to analyze the available data to characterize DDoS attacks, propose effec-
tive deep learning models for Intrusion detection (Detection of DDoS attacks as well as
instances of DoS, U2R, Probe, and Brute-Force attacks) and ultimately assess the poten-
tial benefits of cooperative DDoS detection in Software-defined networks.
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4 Problem Formulation
4.1 Network Architecture

Authors of InSDN [7] data set represent the network topology by creating four virtual
machines (VMs) using VMware Workstation on Windows 10.

SDN Controller

‘ ‘TelnetA
w e

Kali Linux

Apache Tomcat
server

Attack Network Metasploitable2 Server VM

Figure 1- InSDN [7] : Virtual SDN testbed network architecture

4.2 Data Generation Methodology

The centralized view of the SDN network and separation of the data plane from the con-
trol plane creates a new opportunity for the attacker to carry out various types of attacks
compared to the conventional network [7]. The attacker may launch an attack against the
SDN controller or even the communication links between the SDN controller and Open-
Flow switches.

The DDoS attack scenarios in the InSDN dataset are TCP-SYN Flood, UDP Flood, and
ICMP Flood attacks.

The remote exploitation and backdoor attacks represent the U2R scenario in the INSDN
dataset. These malicious activities can bring about serious damage to the network.

4.3 Limitations and Considerations

The InSDN dataset, while providing the first novel SDN intrusion detection dataset, only
includes synthetic attack traffic generated in the SDN testbed characterized by its authors.
We understand that the quality of a good model depends on the quality of the dataset and
how well it represents the phenomenon under study.

Many catastrophic real-world cases of DDoS attacks incorporate amplification attacks
and reflector elements across the network. for example, the attacker may take advantage
of the centralized SDN architecture and target a network service as reflector within a DDoS
amplification attack scheme.

The INSDN testbed was implemented using only ONOS SDN controller. However, au-
thorsin [15], [22] claim that the different controllers can have different security modeling,
and therefore, different countermeasures.
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SDN can be deployed in different network scales [7].

To generate more intrinsic data for SDN networks, the network topology should be
created using physical devices. A more intrinsic dataset can be generated using physical
topology with many connected devices.

Ideally, obtaining network traffic data from global SDN deployments such as Google
B4 and cloud computing infrastructures will make it possible for the research community
to examine the pecularities of Intrusion Detection reseach in SDN.
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5 Inference of DDoS Attacks

To identify DDoS attack traffic in the flow-level traces provided by the InSDN dataset, we
employ a deep learning approach.We also aim to perform denoising and dimensionality
reduction where appropriate.

5.1 Data Pre-Processing

Socket information such as Source IP, Destination IP, and flow ID are removed to avoid the
overfitting problem because these features are different from network to network. The
final dataset includes 77 various features, besides the traffic category (i.e. the Label as-
signed to each flow instance in our Supervised Learning model) [7]. In order to facilitate
binary classification, We use one-hot encoding on the label values where, the strings Nor-
mal and Attack are encoded into binary values of 0 and 1, respectively. The InSDN dataset
also includes as many as 8 zero variance features that do not contain any information use-
ful for classification purposes. These features such as 'Fwd Byts/b Avg’ have either one
unique value (zero variance) or a high ratio of the most common value to the next most
common value therefore are removed. Finally TCP flags are removed leaving us with a
total of 52 numerical features that have different ranges, hence standardized to the scale
of the values between -1and 1.

5.2 Data Analysis

Our featureset includes basic statistics like the duration of a flow and flow Inter-arrival
time as well as SDN-specific features such as Min, Max, and Standard deviation of these
statistics. First, we compute the pair-wise correlation matrix for all the features and ob-
serve where they approach thresholds of 0.7, 0.8, and 0.9. As indicated by Figure 2, the

Figure 2 - Pair-wise Correlation Matrix of the features.

correlation matrix reveals that time-related features such as Flow Duration,Flow Inter-
Arrival Time,ldle Std seem to be correlated. Moreover, it can be observed that SDN spe-
cific features such as maximum, minimum, mean, and standard deviation of time-based
network values are also correlated. These SDN features can be directly extracted from the
network controller through API queries. Next we reduce the dimensionality of the feature
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Figure 3 - Cumulative Explained Variance by Principal Components.

space by applying a principle component analysis (PCA). A PCA decomposition can be used
to project a high-dimentsional space to a lower-dimensional space by relying the on the
initial principal components. In effect, it converts a set of values of M possibly correlated
variables into a set of K uncorrelated variables, the PCAs. in that regard, PCA is a clustering
algorithim for high-dimensional data. we find that a significant number of our features are
correlated since the first 5 PCAs explain about 70% of the variance (refer to Figure 3) and
the first 12 more than 90%. Figure 4 shows the projection of our feature space into the
first 2 PCAs. We can see in Figure 4 that Attack and Normal traffic are to a certain extent
visually separable.
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6 Workflow, Training, and Testing

Deep learning allows computational models composed of many layers to learn the data
structure with many levels of abstraction. In this study, we seek to design, implement, and
evaluate neural network classifiers that learn the spatial and temporal structure of Attack
traffic as opposed to Normal traffic. We propose two different deep learning models that
achieve remarkable results and later demonstrate that the number of false negatives in
our detection scheme drops drastically when these models cooperate.

6.1 Experimental Setup

The experiments were carried out using Python and the Pytorch [21] library. Table 1 details
the system specifications.

Table 1 - System Specifications

Unit Description
Processor 2199.998 MHz
Memory 13G
L3 cache 56320K

6.2 Data Splitting

In machine learning, one of the main requirements is to build computational models with
high prediction and generalization capabilities. In the case of supervised learning, a com-
putational model is trained to predict outputs of an unknown target function. The target
function is represented by a finite training dataset T of examples of inputs and the cor-
responding desired outputs.At the end of the training process, the final model should
predict correct outputs for the input samples from T, but it should also be able to general-
ize well to previously unseen data [23]. We split the 141953 network flow traces provided
by the InSDN dataset for DDoS traffic classification into the training and test sets with a
80% train, 20% test ratio.

6.3 Classification with Raw Features

Fully Connected Neural Networks are great at classification. Our intention is to gain mul-
tiple layers of abstraction and we reckon that a 7 Layer Perceptron as depicted in Figure
5 with 52, 128, 512, 512, 128, 64, and 16 nodes in each layer can help us expand across
the data space and ultimately reduce the dimentionality. The rectified linear activation
function (ReLU) has been used at each layer to increase the non-linearity degree and set
all negative values in the feature set by zero. Finally, the output layer incorporates the
Sigmoid function to represent the probability of each input flow belonging to either class.
We use the Adam optimization algorithm for stochastic gradient descent where the learn-
ing rate set to 0.0001 and train the deep learning model. At each backpropagation step
during the training process, We calculate the reconstruction loss using the Binary Cross
Entropy criterion.

6.4 Denoising via Convolutional AutoEncoder

The Autoencoder, generally deployed as a generative model, is proficient at extracting
high-level features from the data by transforming it into a latent space. The latent space
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Figure 5 - Fully Connected Neural Network

view representation of the data lies at the bottleneck layer of the Autoencoder which is
later used to generate new data instances in image processing applications. Convolutional
Autoencoders have proven to be excellent at denoising data. For this reason, we set out
to design a Convolutional Autoencoder and train it over the INSDN dataset. The bottle-
neck representation of the dataset can reveal quite a bit about the spatial and temporal
structure of the dataset which we use as a feature extraction step in the deep learning
process.

Figure 6 - Convolutional Autoencoder

As a first pre-processing step, we reshape each flow instance of dimensions [1,52] into
an image-like structure of shape [8,8]. This transformation is carried out using a Linear
transformation from 52 to 64 features which are then cast to the (1,8,8) Tensor shape in
order to suit the input dimensions of the convolutional autoencoder. Generally speaking,
Autoencoders are made up of the encoder, the bottleneck, and the decoder. The archi-
tecture of the convolutional autoencoder (depicted in Figure 6) is composed of three con-
volutional layers taking in flow-level values through one input channel and expanding it
first to 8 and next to 16 and 32 channels. Each channel corresponds to a different filter ap-
plied throughout the convolution process. The output of the convolutional layers is then
flattened and linearly transformed into the bottleneck space dimension of [1,4]. The De-
coder has the same architecture as the encoder except in reverse order. throughout the
training process, the decoder reconstructs training data instances and we can measure
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and minimize loss.
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Figure 7 - t-Distributed Stochastic Neighbor embedding analysis with Raw features
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Figure 8 - t-Distributed Stochastic Neighbor embedding analysis with High-level features

The convolutional autoencoder is trained over the train set for a total of 200 epochs
leaving us with a latent space representation view of the network traffic data. In this
fashion, we can extract 4 high-level features and have the dimension of our featureset
reduced from 52 to 4. The choice to go with 4 high-level features was made after ex-
perimenting with other candidates such as 8, 16, and 32. Our experiment demonstrates
that 4 high-level features achieve the best classification results. As depicted in Figure ??,
our t-distributed stochastic neighbor embedding analysis reveals that the convolutional
autoencoder successfully denoises the flow data making it easier for a classifer to detect
outliers as DDoS instaces seem to be closer together.

6.5 Classification with High-Level Features

By extracting high-level features using a Convolutional Autoencoder in the previous sec-
tion, we were able to transform the data into four-dimensional space. Next, we design,
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train, and evaluate a fully connected neural network for classification. Therfore, we insert
4-dimensional output from the bottleneck of the convolutional autoencoder into a min-
imal classifer of 5 layers. Figure 9 shows the the architecture of fully connected classifer
consisting of four linear layers going from 4 -> 16 -> 32 -> 32 -> 16 -> 1 nodes at each layer
with the rectified linear unit as the activation function.

3

-

Figure 9 - Fully Connected Neural Network
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7 Experimenting with Other Attack Types

To further evaluate the performance of our classification models, we set out to experiment
with the entire InNSDN dataset that also includes instances of Probe and DoS attacks as
well as a few instances of BFA and U2R attacks. First, we formulate this experiment a
a binary classification problem where flow instances are classified into the Normal and
Intrusion classes. These labels have been encoded to 0 and 1, respectively. After splitting
the dataset into train and test sets with a 80% and 20% ratio, we train the Convolutional
Autoencoder ?? for a total of 200 epochs over train data.

Next, we calculate the latent space representation of the train data by feeding it through
the Autoencoder. Said high-level representation of data lies at the bottleneck layer of the
autoencoder and is measured in 4 dimensions. Figures 10 and 11 show the distribution of
Raw features vs high-level features in the data space. The comparison between these two
figures demonstrates that the Autoencoder was able to accomplish the denoising of the
data. It can be observed on the t-SNE plots that high-level features lie closer together with
respect to distances between them. The Relevant information is in the relative distances
between low dimensional points. t-SNE captures structure in the sense that neighboring
points in the input space will tend to be neighbors in the low dimensional space.

0
1

- -4 -2 0 2 a 6
tsne-2d-one

Figure 10 - t-SNE analysis of high-level features

Next, we train a fully connected classifier over the high-level features for a total of
4000 epochs. Figure 9 shows the architecture of the fully connected classifier.
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Figure 11 - t-SNE analysis of high-level features
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8 Evaluation Metrics

To evaluate the performance of our classifiers, we use the classification accuracy, preci-
sion, recall, and F1 score as performance metrics. In addition, we calculate the confusion
matrix where:

e True Positive (TP) indicates attack traffic correctly classified as malicious(DDoS).
e True Negative (TN) indicates normal traffic correctly classified as benign.
e False Positive (FP) indicates normal traffic incorrectly classified as malicious.

e False Negative (FN) indicates attack traffic incorrectly classified as normal.
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9 Results

9.1 Results for Classification with Raw features

The classifier is trained over the train set in the course of 200 epochs and demonstrates
aremarkable accuracy of 99.60% with the training loss dropping drastically a quarter into
the training process. Table 2 reports the Accuracy, Precision, Recall, and F1 metrics for
the performance of our classification network. Figure 12 shows the training loss at each
epoch. We can see that the training loss drops drastically half-way through the training
process and our model’s performance converges after that.

Table 2 - Classification Performance

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
99.60 99.27 99.97 99.62
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Figure 12 - Training Loss in Classification with Raw features

9.2 False Negatives

In the context of DDoS detection, a false negative means an attack instance was missed by
our classifier. While Our fully connected classifier performs remarkable in detecting DDoS
vs normal traffic, there are as many as 4 false negatives in the confusion matrix (Figure
13).

9.3 Results for Classification with High-level Features

we insert 4-dimensional output from the bottleneck of the convolutional autoencoder
into the fully connected classifer and train it over the train dataset for a total of 4000
epochs. Table 3 reports the remarkable performance metrics achieved by our classifer.

Table 3 - Classification Performance

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
99.28 99.22 99.40 99.31
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Figure 13 - Confusion Matrix

9.4 Results for Cooperative DDoS Detection

In the previous section, we proposed two models for DDoS detection in Software-Defined
Networks based on the InSDN dataset. Both models perform remarkably with accuracy
rates in the 99th percentile. we remark and here demonstrate that the number of false
negatives in DDoS detection drastically decreases when models cooperate.

In order to minimize the number of false negatives in our DDoS detection scheme,
we combine the proposed classification models in such a fasion that they share their de-
cisions on each flow instance. Table 4 reports the performance metrics of our proposed
cooperative DDoS detection scheme. As indicated by the Confusion Matrix (Figure 17), the
number of false negatives drops from 4 in the first model to 1in the cooperative model.

Table 4 - Performance of Cooperative DDoS Detection

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
99.57 99.18 99.99 99.58

Best results are achieved through cooperation of IDS applications whether they're in
different locations across the network as in the case of software-defined networks with
multiple controllers or placed on the same central point on top of the controller. It’'s when
these model cooperate and exchange data that we can ensure a better security posture
and threat mitigation strategies.
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Figure 14 - Training Loss for Classification with high-level features
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Figure 15 - Confusion Matrix for Classification with high-level features

9.5 Results for Cooperative Intrusion Detection

The performance metrics are reported in Table 5. Even though the proposed model acheives
a remarkable accuracy of 99.06%, the Confusion Matrix (Figure 18) begs the question:
"How can we drop the number of false negatives in this detection scheme ?". Moreover,
Figures 19, 20 and Table 6 show the misclassified ratios under their respective attack class.
It can be deduced from the class distribution of the misclassified instances that our pro-
posed deep learning model gravitates towards detection of minority classes as opposed
to majority classes such as DDoS and DoS.

Table 5 - Classification Performance ( with High-level Features )

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
99.06 99.15 99.45 99.30

Table 6 - Ratio of Misclassified Instances under their respective class

BFA  DDoS DoS Normal Probe U2R
0 0.0016 0.2026 0.0004 0.00004 0.0588

As discussed in the previous sections, The lesson learned from Cooperative DDoS de-
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Figure 16 - Training Loss of Cooperative DDoS Detection

tection was that the number of false negatives drop drastically when models cooperate.
By the same logic, We train a fully connected classifer (Figure 21) over raw features. The
performance results from this cooperative detection are reported in Table 7 . Figure 22
shows the confusion matrix. Our analysis tells us as many as 44 flow instances were de-
tected only through cooperation.

Table 7 - Classification Performance ( with Raw Features )

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
99.41 99.13 99.99 99.56
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Figure 17 - Confusion Matrix of Cooperative DDoS Detection
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Figure 22 - Confusion Matrix from Cooperative Intrusion Detection
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10 Discussion and Future Work

In this study, we walked through the specifics of DDoS attacks and how we can detect in-
stances of such attacks in network traffic data within an SDN enviroment. Morover, we laid
out the pecularities of cyber threat intelligence in software-defined networks and made
the assertion that these traits call for a fresh perspective on detection of DDoS attacks
in future networks. While this exemplary look into DDoS attacks in SDNs as provided by
the InSDN dataset reveals a lot about the scientific approach to the problem, there are
aspects to the subject that best be addressed:

e The InSDN dataset, while providing the first novel SDN intrusion detection dataset,
only includes synthetic DDoS attacks generated in the SDN testbed characterized
by its authors. We understand that the quality of a good model depends on the
quality of the dataset and how well it measures the phenomenon under study. with
this in mind, we need more data from software-defined networking deployments.
Google's b4 ,Espresso are good examples. cloud computing infrastructures can also
provide us with network data of real ddos instances versus normal traffic.

e Many catastrophic real-world cases of DDoS attacks incorporate amplification at-
tacks and reflector elements across the network. Therefore, a future study may
zero in on instances of DDoS Amplification attacks in SDN as they generate orders
of magnitude more traffic than mere flooding attacks. Moreover, the attacker may
take advantage of the centralized SDN architecture and target a network service as
reflector within a DDoS amplification attack scheme.

¢ In discussing how to detect attacks within network traffic data, one can measure
spatial features of network traffic data whereas it's equally important, if not more,
to take into account the temporal features of attacks. this notion is even more cru-
cial in the case of DDoS attackS where it’s usually not any one network flow that
helps identify an attack but sequences of them as DDoS attacks take place over the
course of consecutive periods. Therefore, a potential angle would be to formulate
the problem as a sequence modeling problem. LSTM units in Neural Networks are
a great choice of model for such an approach.

e Although SDN is deployed in different network environments, It is still evolving. The
previous history of SDN attacks is unknown. Therefore, the authors of [7] act like
the attacker and anticipate the weaknesses that he might be likely to strike.

36



11 Conclusion

DDoS attacks were first observed twenty years ago, but they are still one of the most se-
rious threats. The hallmarks of Software-defined networking call for a fresh perspective
on DDoS detection in SDN. The InSDN dataset paves the way for the research community
to take a fresh look at DDoS attacks in SDN. However, we need more data from SDN de-
ployments that shed a light on the pecularities of DDoS attacks in SDN. In this study, we
proposed two deep learning models that achieve excellent performance metrics. Next,
we demonstrated that a better DDoS detection scheme can be proposed when models
cooperate. Our results exhibit a drastic fall in the number of false negative when models
cooperate.
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