
P R E S S

Discovering Logical Constructs from

Estonian Children Language

ERIKA MATSAK

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C51

Faculty of Information Technology
Department of Computer Engineering

Chair of Digital Systems Design
TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation was accepted for the defense of the degree of Doctor of Philosophy in Engineering on
November 24, 2009.

Supervisor: Prof. Peeter Lorents. Research and Development Branch Chief, Cooperative Cyber

Defence Centre of Excellence

Dots. Margus Kruus. Department of Computer Engineering, Tallinn University of
Technology

Opponents: Dr. Gabriel Jakobson. Altusys Corporation, USA

Dr. Risto Vaarandi. Department of IT Security Analysis, SEB Estonia

Defense of the thesis: January 8, 2010

Declaration
Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted
for the doctoral degree at Tallinn University of Technology has not been submitted for any
academic degree or examination at any other university.

Copyright: Erika Matsak, 2009
ISSN 1406-4731
ISBN 978-9985-59-961-7

ERIKA MATSAK

INFORMAATIKA JA S STEEMITEHNIKA C51Ü

Loogiliste konstruktsioonide avastamine
eesti laste keelest

To my daughter Julia

FOREWORD

This thesis provides an overview about Erika Matsak’s doctoral research,
defining the field of study and the problems researched, explaining methods used
to solve these problems and describing the results of the work. The field of study is
narrowed down to the capability of intelligent systems to arrive to logically
founded (correct!) conclusions based on knowledge that is present in natural
language texts. In case of intelligent IT systems this requires the capability to
transform the arguments in natural language texts into logic formulas, as well as
the capability to extract logical inference steps from natural language reasoning.
According to well known results from algorithm theory and mathematical logic
(Church, 1936) it can be assumed that “fully automatic tools” cannot be relied
upon. Therefore, a dialogue system was developed to solve the problem.

The core of this doctoral thesis is the development of a prototype dialogue
system DST and its application to identify logical constructs used by children, who
by definition are (natural) self-evolving intelligent systems. Identifying these
constructs (including logic operations, formulas, inference rules and inferences)
enables us to map the use of logical instruments by children of various ages. This,
in turn, supports researchers who wish to study the development and perfecting
mechanisms of logical instrument complexes in self-evolving intelligent systems.

The thesis consists of the introduction, conclusion and chapters providing an
overview of:

‐ The nature of the field of study and related work

‐ The DST (Dialog System for Transforming Natural Language Texts)
dialogue system and its improved version, as well as using DST for
identifying logic constructs in natural language texts

‐ Results from implementing the DST dialogue system and its improved
version to transform texts from children of various age groups, including
the surprisingly diverse arsenal of logic instruments identified.

vii

EESSÕNA

Käesolevas töös antakse ülevaade Erika Matsaki doktoritöö sooritamise vältel
uuritud valdkonnast, selles käsitletud probleemidest, nende lahendamiseks kasu-
tatud meetoditest ning saadud tulemustest. Nimetatud doktoritöö uurimisvaldkond
seostub intelligentsete süsteemide suutlikkusega jõuda loogiliselt põhjendatud
(õigete!) otsusteni lähtuvalt neist teadmistest, mida esitatakse loomuliku keele
tekstide abil. Intelligentsete IT-süsteemide korral eeldab see võimekust transfor-
meerida loomuliku keele tekstides esitatud väited loogikavalemiteks. Ja samuti veel
võimekust ekstraheerida loomuliku keele tekstides esitatud põhjendustest loogilisi
tuletussamme. Algoritmiteooria ning matemaatilise loogika hästi tuntud tulemus-
tele (vt nt Church 1936) tuginedes võib eeldada, et nii valemite kui ka tuletus-
sammude välja eraldamisel pole võimalik tugineda „täisautomaatsetele vahendi-
tele“. Seetõttu tuleb paratamatult piirduda vastava dialoogsüsteemiga.

Antud doktoritöö tuumaks ongi sobiva dialoogsüsteemi DST prototüübi
loomine ning selle rakendamine laste kui (looduslike) isearenevate intelligentsete
süsteemide poolt kasutatavate loogiliste konstruktsioonide esiletoomiseks. Nime-
tatud konstruktsioonide (sh loogilised operatsioonid, valemid, tuletusreeglid ja
tuletused) esiletoomine võimaldab luua ülevaate sellest, millistel arenguetappidel,
milliseid loogilisi vahendeid (juba) omatakse ning rakendatakse. See omakorda
toetab uurijaid, kes soovivad selgusele jõuda isearenevates intelligentsetes
süsteemides vajalike loogiliste vahendite komplekside kujunemise ja täiustumise
mehhanismides.

Käesolev doktoritöö koosneb sissejuhatusest, kokkuvõttest ning osadest, mis
annavad ülevaate

‐ antud uurimisvaldkonna loomusest ning sellega seonduvatest töödest

‐ dialoogsüsteemi DST ja selle edasiarenduste ülesehitusest ning selle raken-
damisest loomuliku keele tekstides sisalduvate loogiliste konstruktsioonide
väljatoomiseks

‐ dialoogsüsteemi DST ja selle edasiarenduste rakendamisel saadud tulemus-
test mitmetest vanuserühmadest pärit laste loodud tekstide transformee-
rimisel esile tulnud ootamatult mitmekesistest loogilistest instrumentidest.

viii

ACKNOWLEDGEMENTS

The author would like to express her gratitude towards her teachers and advisors
– CCD COE R&D Branch Chief and Chair of EBS IT Department, professor
Peeter Lorents and Director of TUT Computer Engineering Institute, Dr Margus
Kruus. In addition, the author is grateful for valuable advice and support from CCD
COE Scientist and leading research scientist of TUT Cybernetics Institute,
professor Enn Tõugu. For his assistance with the translation of this work, many
thanks go to Rain Ottis from CCD COE.

ix

TABLE OF CONTENTS

1. Introduction... 1
2. A system for mapping natural language into logic language............................ 7
3. Transforming texts. Formula level.. 11

3.1. The various roles of the word “siis“ (then) ... 12
3.2. Assessments .. 13
3.3. Modality complexes.. 15
3.4. Ownership ... 15
3.5. On hidden equivalence.. 16

4. Transforming texts. Inference level .. 17
4.1. Identifying constructs from texts using the DST dialogue system.......... 19
4.2. Problems with algorithmic insolvability ... 19
4.3. Improved DST dialogue system. Formula level. 20

4.3.1. Training the dialogue system .. 21
4.3.2. Automatic sentence transformation... 22
4.3.3. Full text transformation... 23

4.4. Improved DST dialogue system. Inference level. 25
4.4.1. Customizing the Lorents’ method for searching inference rules 26
4.4.2. Inference step identification module... 27

4.5. The general layout of the program.. 29
5. Logic constructs identified with DST from children’s texts. 31

5.1. Formula level .. 32
5.2. Inference level... 37

Summary ... 40
References... 42
APENDIX A: Algorithms... 45
APPENDIX B: Curriculum Vitae ... 53

CURRICULUM VITAE in English... 55
CURRICULUM VITAE Eesti keeles .. 58

Research papers .. 61

x

LIST OF PUBLICATIONS

 Matsak E. (2005). Dialogue system for extracting Logic constructions in
natural language texts. Proceedings of the International Conference on
Artificial Intelligence. IC – AI’2005. Volume II p. 791 – 797. Las Vegas,
Nevada, USA

 Matsak E. (2006). Using Natural Language Dialog System DST for
Discovery of Logical Constructions of Children's Speech. The 2006
International Conference on Artificial Intelligence IC-AI 2006. Volume I
p. 325 – 331. Las Vegas, Nevada, USA

 Matsak E. (2006). System DST for Transforming Natural Language Texts,
Representing Estimates and Higher Order Predicates and Functionals. The
3rd International Conference on Cybernetics and Information
Technologies, Systems and Applications: CITSA 2006. Volume III p. 79 –
84. Orlando, Florida, USA

 Matsak E. (2007). The prototype of system for discovering of inference
rules. Proceedings of the International Conference on Artificial
Intelligence. IC – AI’2007. Volume II p. 489 – 492. Las Vegas, Nevada,
USA

 Matsak E. (2008). Improved version of the natural language dialog system
DST and its application for discovery of logical constructions in children’s
speech. Proceedings of the International Conference on Artificial
Intelligence. IC – AI’2008. Volume II p. 332 – 338. Las Vegas, Nevada,
USA

 Matsak E. (2009). Representing logical inference steps with digital circuits.
Lecture Notes in Computer Science: HCI International 2009. 5618
Springer Berlin, p. 178 – 184.

 Matsak E. (2009). On the logic module in intelligent systems. Proceedings
of the International Conference on Artificial Intelligence. IC – AI’2009.
Volume II p. 594 – 599. Las Vegas, Nevada, USA

xi

xii

1. INTRODUCTION

The ability to apply logic is an important capability of intelligent systems. This
is important in order to get correct conclusions from correct descriptions of
situations. Correct conclusions, in turn, are necessary to make correct decisions,
which are often required in a very short amount of time. For example, in case of a
cyber attack the ”survival” of a system often depends on very quickly choosing and
applying countermeasures. Therefore, the decision making process (drawing
correct conclusions from available information) must be as quick as possible. This
is only reasonable, if the following two capabilities are present among others:

‐ representing descriptions of situations and the resulting conclusions with
language based constructs or arguments that are clearly defined and

‐ applying only clearly defined transformations from one set of arguments to
the next.

Using the terminology of mathematical logic, the preceding can be formulated
as having the capability to

‐ construct logic formulas and

‐ apply only those (regular) inference steps that belong to a set of defined
inference rules.

This brings us to an important realization: in order to qualitatively assess the
ability of an intelligent system to make correct decisions based on correct
inferences of correctly described situations, one must have an overview of the
system’s capability to construct logic formulas and to apply inference steps.

It is important, however, not to ignore the fact that humans and the technical
systems created by humans use many different logic systems. For example, lawyers
use the classical bi-valued logic that uses two truth values. In order to describe
some micro-level physics phenomena J. von Neuman and G. Birkhoff proposed a
tri-valent logic system that uses three truth values (Birkhoff, von Neumann, 1936).
The intuitionistic logic system (Mints, Tyugu, 1982) is useful when handling
computerised synthesis of programs using E. Tõugu’s structural synthesis tools
(Tyugu, 1988). It is known that the scale of truth values in intuitive logic is infinite
(Dragalin, 1979).

1

Another important aspect of note is that the exact scientific form of various
logic systems (which is a prerequisite for creating reliable technical applications)
comes from two closely related sources:

‐ the area of study that requires the logic system (for example, quantum
mechanics)

‐ the instruments that humans use to describe this area of study and to infer
new knowledge about it (for example, structural synthesis formulas and
rules).

Unfortunately, in most cases only the completed system of instruments is
“visible”. How this system was developed typically remains hidden. One of the
notable exceptions here is the work of G. Gentzen, especially his 1936 study on
non-contradiction in arithmetic (Gentzen, 1936). In this study he analyzes the
Euclidean theorem on the infinite amount of prime numbers. By replacing the
textual parts in the theorem and the proof with logic symbols and logic formulas
that they form, Gentzen creates a set of formulas that represent the theorem.

For example, the argument “z is a prime number that is greater than a” is
replaced with the formula Prim z & z > a.

Next, Gentzen explains how and why some arguments can be associated to
others in a concrete fashion. This brings Gentzen to inference rules or relationships
between formulas. An inference rule allows “well-founded” arguments to form a
foundation, or a predicate, for the logically following argument that must therefore
also be “well-founded”.

For example, an arbitrary formula F(z), where z is a symbol representing some
object, is associated to the formula (∃z)F(z). In such cases specific formulas are
associated with a “general association.” More specifically, the formula Prim z & z
> a is associated with the formula (∃z)(Prim z & z > a), because the argument
“there exists an z, where z is a prime number and z is greater than a” follows from
the already known argument that for some z “z is a prime number and z is greater
than a”. Based on this fact, all formulas of the type F(z) can be associated with the
formula (∃z)F(z).

At the same time, Gentzen’s work does not explain how the text in a natural
language is transformed into a formula. In other words, what are the steps and how
should they be implemented in order to transform the text “there exists such an z
that is a prime number and that is greater than a” into the formula (∃z)(Prim z & z

2

> a)? The process of forming “general associations” or “general rules” from a set
of specific formulas is also unclear. For example, how to form a general rule about
getting one formula (Prim z & z > a) from some other formulas (formula Prim z
and formula z > a)?

Transforming text into formal language and understanding the text became
important in the middle of the 20th century. This was mostly due to the creation of
programs that were meant to answer questions posed by a human. The first
program of this type was able to answer baseball-related questions (Green, Wolf,
Chomsky, Laughery, 1961). The program consisted of two parts. The linguistic
part read questions from punched cards, performed syntax analysis and ascertained
information about the data in question. The execution part was tasked with
selecting the necessary information and presenting the answers. Syntax analysis
was used to identify verbs, nouns, preposition groups and adverbs. The result was
not in the form of a logic (predicate calculus) formula, but information mirroring
the grammatical structure of texts, which was later used to access the dictionary,
add attributes to word types, and finally to find suitable answers.

A similar approach was used in the program “Student”, which could solve
textual assignments based on elementary algebra (Bobrow, 1964).

At this point we should mention some Prolog-related works, specifically, the
formalism created by Pereira and Warren. This formalism allowed constructing a
grammatical tree of the sentences in a text. On the other hand, it allowed generating
corresponding texts based on predicate calculus formulas (Pereira, Warre, 1980).
With the help of the grammatical tree it was possible to identify information sets
that are linked not only to individuals (concepts), but also to modalities, time,
location, goals, reasons, results etc. Once again, it should be noted that (natural)
texts were not transformed into logic (predicate calculus) formulas. However, texts
in use conformed to quite strict restrictions, which matched the formalism (Osugi,
Saeki, 1990).

Various tools have been created to operate with mathematical texts, including
ones that applied certain algebraic constructs (for example see Atayan, 1986). The
goal of these works was to develop and implement a formalism that relied on the
„subordination relation” of some concepts (or a situation, where some concepts
could be viewed as „subordinated” to other concepts). Describing and solving tasks
was based on concepts and relations between concepts. Semantic webs were
created to present situations for arguments from a specific text. A set {Ui, Si} of
textual elements was created for an argument Ui that was present in a text Si. The

3

relations between parts of texts were studied in situations where one text is a part
of the other. The formal language used was actually quite close to natural language.
In this language, only fixed types of arguments were used to form the language
products with specific templates. In the work process the lexical parts were
identified and „wrapped” into the necessary format. Syntax analysis was also used
to form the necessary grammatical tree. However, like in previous examples,
(natural language) texts were not transformed into logic (predicate calculus)
formulas.

In order to identify logic constructs that are present in natural language texts we
rely on the natural language text transformation procedure (Lorents, 2000) and the
predicate mining procedure (see Lorents 1993, 2002) developed by Lorents.

Lorents’ procedures are mainly used in the context of this work in order to
observe step by step how the formulas and the necessary rules for deriving
formulas are created. This, in turn, allows us to understand how reliable (and
usable, in a controlled manner) instruments are formed. These instruments can be
applied in intelligent systems to describe situations and to generate correct
decisions based on this description.

There are several other approaches to describing situations and making correct
decisions. Keyword here is reasoning, which is well covered by an article of L.
Chittaro and A. Montanari in 2000 (Chittaro, Montanari, 2000). To some extent,
many of the well-known reasoning instruments can be handled as fragments of
predicate calculus. Depending on the nature of the area of interest, these fragments
use only language that is “essential” and has very specific meaning (including a
relatively limited set of symbols and formulas). The same is also more or less true
for the selection of axioms. It is important to note that in addition to the theoretical
approaches to this problem, there are also several practical software applications in
use in the control systems of robots and the production process (Levesque, Reiter,
Lesperance, Lin, Scherl, 1997).

In addition to the “relatives of predicate calculus” a totally different approach is
also available: algebraic systems. For example, Allen’s interval algebra IA, which
is used in reasoning about temporal constraints (Allen, 1983).

A separate approach to note is the use of various graphs and graph-like
constructs to describe situations and reasoning methods (Golumbik, Shamir, 1993).
Best known in this field are conceptual graphs and semantic networks, as well as
neural networks. These approaches can be used to perform the relevant

4

calculations. Tõugu’s computational models, designed to describe the structural
synthesis of programs, are a good example. These models are basically bi-partite
graphs where the first type of nodes represents relations, the second type represent
variables and edges associate relations with variables. Over time, various (logic)
calculations with their specific alphabets, formulas and inference rules have been
developed to handle the structural synthesis of programs (Tyugu, 1970, 1972,
1988, 2007).

There is no question that many interesting approaches have been developed to
research and create one of the most important capabilities of an intelligent system:
to describe situations and make correct decisions. Unfortunately, the detailed
description of this field would require substantial work that falls outside the limits
of this study.

In the following paragraphs we will define the area of study and the problems
that will be examined.

Let us start with the above mentioned fact that many of the instruments for
describing situations and making decisions are “copied” from the human intellect.
A substantial part of these instruments can be related to some form of logic.
However, it has not been possible to “acquire”, study and apply the mechanisms
that create or shape these capabilities. A special case - how human intellect works,
is not well known at present. Does it evolve (or is it acquired) smoothly over time
in small steps or are there significant jumps in capability? At what stage of the
human development do various logic instruments appear (including logic
operations for creating non-atomic formulas and inference steps or rules for
constructing proofs)?

One way to start answering the questions above is to study the texts collected at
fixed times in human development. Or more precisely:

‐ acquire texts that seem to contain logic constructs and for which the age of
the author (at the time of recording) is known

‐ transform the texts in order to identify the logic constructs present in the
text

‐ by relating the age of the text creators with logic constructs present in the
text, we can explain, when various logic constructs emerge in the
development of human intellect.

5

Knowing when various logic constructs emerge will enable much more detailed
research in the field of human intellect development, to the level where it becomes
possible to model the creation mechanisms of logic instruments and capabilities in
humans. This allows self-learning and self-improving intelligent systems to be
created and an appropriate logic system applied, instead of applying logic befitting
to describe quantum effects to the field of automatic synthesis of new programs.

6

2. A SYSTEM FOR MAPPING NATURAL LANGUAGE
INTO LOGIC LANGUAGE

In this chapter we consider a specific mapping system that allows the

transformation of arguments from a natural language to logic formulas. The system
is based on author’s research on Estonian language text transformation, which
directly influenced the choice of symbols and their meanings as described below.
The texts in question are transcripts from the conversations of children of various
age groups that were taped using a dictaphone. The transformation of these texts
identified the need for the following symbols (Matsak, 2005):

‐ Individual symbols to represent (related or unrelated) individual objects.
Let us use the symbols x1, ..., xn and q1, ..., qn

‐ Individual symbols to represent time. Let us use the symbols t1, ..., tn
‐ Individual symbols to represent the value of assessments. Let us use the

symbols γ1, ..., γn and τ1, ..., τn
‐ Individual symbols to represent natural numbers
‐ Predicate symbols to represent first order predicates. Let us use the

symbols P1, ..., Pn and A1, ..., An

‐ Second order predicate symbol “ “ to represent the correctness of
formulas

‐ Second order functional symbol “Val” to assess predicates
‐ Logic operation symbols: “¬“ – negation, “&“ – conjunction, “∨“ –

disjunction, “⊃“ – implication, “⇔“ equivalence
‐ Quantifiers: “∀“ – universal quantifier, “∃“ – existential quantifier
‐ Modalities: “◊“ – maybe and “�“ – definitely
‐ Various useful symbols for describing order etc. (brackets, comma, semi-

colon etc.)

Note. In principle, the functional symbol “Val” can be replaced with as many
second order predicate constants as we have symbols for assessment values. For
example, if the assessments are “somewhat” and “very” and the first order single
element predicate is “tall”, then instead of “Val(tall(boy))=somewhat” and
“Val(tall(boy))=very” we could write “somewhat(tall(boy))” and “very(tall(boy))”.

7

Table 1. Logical roles with semantic sets

Type Examples Symbol(s)
1. Negation Ei, pole, vale [no, not, false] ¬
2. Conjunction Ja, ning, ka, samuti

[and, also, too, as well]
&

3. Disjunction Või, ehk [or] ∨
4. Implication Siis, seega, järelikult

[then, thus, therefore, consequently]
⊃

5. Equivalence Sama, samaväärne, ekvivalentne, samalaadne,
ühesugune, seesama, toosama [same as, equal,
equivalent, identical, the same]

⇔

6. Universal
quantifier

Kõik, kogu, terve, igaüks, iga, igamees,
viimseni, igaüks
[all, whole, total, entire, every]

∀

7. Existential
quantifier

Leidub, on olemas, juhtub, sattub, on, esineb,
eksisteerib, ette tuleb
[there is, there exists, it happens, is]

∃

Kindlasti, kahtlemata, raudselt
ilmtingimata, tingimata, igatahes, surmkindlalt
[for sure, absolutely, definitely, inevitably, by
all means]

� 8. Modality

Võib-olla [maybe, perhaps, possibly] ◊
9. Belonging to a
set

Minu, ema oma (sõnad semantikaga kuuluvus
või omandamine) [mine, mother’s (words with
the semantics of ownership or belonging]

∈

10. Time symbols Eile, täna, homme, hiljem, pärast, enne, praegu
jne. [yesterday, today, tomorrow, later,
afterwards, before, now, etc.]

t1, t2, ti, ti+n

11. Assessments
on the individual,
predicate or
amount of time

Natuke, liiga, palju, hästi palju
[a little, too much/many, many, very
much/many]

Val(x)=γ,
Val(P)=γ,
Val(t)=γ,

12. Assessments
on the time
interval

Nüüd, kaua, kohe, asj
[at present, long time, now, at the moment]

Val(t)=τ

13. Correctness Ongi [it is so]
14. Complexes of
modality

Võib teha midagi, Saab teha midagi
[may/can do something]

In the following table we present the mapping between the symbols described
and the appropriate phrases from Estonian language. The mapping draws upon the

8

work of D. Lorents (Lorents D., 1992). This work defines the necessary
foundation for identifying predicates and individual symbols in the grammatical
form of a word, as well as maps the classical logic operators and quantifiers with
their equivalents in Estonian language. From here we can continue to formulate
new rules and further narrow down the roles of logic operators and quantifiers.
This requires the use of opposites (by meaning) of a word and the base word forms
(as the various language cases must not interfere with establishing the meaning of
the word). However, in case of natural languages we must also deal with elements
of non-classical logic. Therefore, we will use the results of author’s prior research
(Matsak, 2004) to decide what roles are definitely necessary in order to transform
the sentences of a “young” human (6 year old child). These roles are assigned to
semantic sets that will best represent all the synonyms within a group (Table1):

Table 2. Logical roles detectable by morphological roles

Predicates Morphological
symbols

Individual
symbols

Morphological
symbols

Adjective
Verb
Superlative
Ole (be) forms + adjective
Ole (be) + superlative
Ole (be) + verb, or many
verbs, in case of having the
same role of a predicate
Ole (be) + noun in nominative
case

A
V
U
ole+ ... _A_
ole+ ... _U_
ole+ ... _V_

ole+... _S_ sg n
ole+... _S_ pl n

Noun
Pronoun
Real name
Adverb

S
P
H
D

Note. During the course of the work it became clear that a separate set needs to
be formed from words (and the corresponding morphological roles) that do not
have a logical role.

In order to determine a match for predicates we must specify the morphological
forms and their syntactic roles (Table 2).

Having the alphabet of fixed symbols we can form formulas. Defining formulas
begins as usual:

‐ first we assemble (atomic) formulas where terms (in our case only
individual symbols) are in the place of predicates that have one or many
elements

9

‐ new formulas are assembled by adding logic operations, modality and
quantifier prefixes (while avoiding quantifier collisions) to the existing
formulas

‐ by putting parentheses around an existing formula we (essentially) get the
same formula

In this case we add another way of creating formulas:

‐ If Pi and Ai are predicate symbols while γi and τi are symbols for the (value
of) assessments, then Val W=γi and Val W=τi are also formulas

‐ If W is an existing formula, then Val W and W are also formulas.

Formulas correspond to arguments in natural language texts.

Finally we observe inference rules. In logic, an inference rule is some k+1-
element relation T between formulas. If formulas A0, A1, ... Ak, Ak+1 are in a
relation T, then we have an inference step that is based on T. The formula Ak+1 is in
this case a direct result (conclusion) of applying the inference step. Formulas A0,
A1, ... Ak are the direct prerequisites (premise).

The inference step corresponds to a part in natural language text, where some
argument (corresponding to formula Ak+1) is “derived” or “reached” from other
arguments (corresponding to formulas A0, A1, ... Ak).

This chapter presented the necessary basis to get from the grammatical
(morphological) role of a natural language word to its logical role. This is essential
for creating a system that can extract logic constructs from natural language texts,
including logic operations, quantifiers, modalities, formulas, inference steps
(inference rules) and derivations.

10

3. TRANSFORMING TEXTS. FORMULA LEVEL

In this chapter we review the theoretical aspects of the natural language text
transformation procedure. We also handle various problems related to implication,
assessments, modalities, ownership and so-called hidden equivalence. The
corresponding results of the author have been presented and published in several
international conferences (Matsak, 2005, 2006, 2008)

By transforming texts we understand a step-by-step modification of the original
text into logic formulas. The procedure by P. Lorents (see introduction) consists of
applying the steps listed below, while the order and the amount of use of the steps
is not important. It follows that in some cases it is sensible to use the same step
many times in many parts of the text. The steps are:

‐ complementing or adding necessary parts to the text.
‐ withdrawing or removing unnecessary parts from the text.
‐ repositioning or changing the relative positions of arguments within the

text.
‐ replacing or substituting some parts of the text with some other

(equivalent) texts.
‐ identifying symbols or finding parts of the text that can be represented as

individual symbols (fully representing individual objects), predicate
symbols (fully representing properties of objects or relationships between
objects), logic operation symbols (negation, conjunction, disjunction,
implication or equivalence), functional symbols (fully representing
functional relationships, including logic operations), quantifiers (fully
representing some part or all objects under observation) or modality
symbols (characterizing the “validity” of some argument about an object,
for example definitely or possibly).

‐ categorizing symbols or determining whether a symbol belongs to
individual, predicate, functional, logic operation, quantifier or modality
category.

‐ positioning symbols or reshuffling the symbols according to the rules of
creating formulas.

Note 1. The part of text that is in the role of a logic symbol may not be in “one
chunk”. Instead, it may be scattered. Typical examples are parts of text like
...if...then...; ...from...follows... , which have the role of implication.

11

Note 2. Two steps (of the seven listed) may be applied at the same time, if the
applier is sufficiently experienced to notice, which role a part of the text plays.
Separating steps may be useful if the logic role is not clear. For example, the word
“or” that can have the role of disjunction or conjunction, depending on the situation
(Consider the possible interpretations of the text: Which bus goes to the city
centre? Bus 2, or bus 5, or bus 9).

Next we will describe some semantic problems in transforming sentences. Of

special note are the cases on assessments, modality and their complexes, hidden
equivalence and ownership (Matsak, 2006).

3.1. The various roles of the word “siis“ (then)

The traditional role for the word “siis” [then] is implication.

Examples:

Kui tahad raha tagasi saada, siis saad (If you want to get money back, then you
will)
P1(x1, x2) ⊃ P2(x1, x2)

Kui see dinosaurus tuleb, siis ta pistab sind kõhtu (If this dinosaur comes, then it
will eat you) P1(x1) ⊃ P2(x1, x2, x3)

However, while transforming texts, many other roles emerged for the word

“siis”. First, the role of determining time, both the time of occurrence of a single
event and establishing the order of occurrence of multiple events.

Examples:

Siis, kui mitte keegi ei taha kuulata (Then, when no one wants to listen) ¬(∃x)P(x,
t)

12

Ja siis me läksime lehma lauta rattaga ja siis andsime neile süüa, ja siis tegime pai
neile. (And then we went to the barn with a bike and then we fed them and then we
stroked their fur) P1(x1, x2, x3, t1)&P2(x1, x4, x5,t2)&P3(x1, x4, x6,t3)

The third role of the word “siis” is in performing as logic conjunction or
disjunction.

Example:

Meeldib mängida ja siis magada, hästi mõnus on magada (Like to play and then
sleep, sleeping is enjoyable) P1(x1, x2)&P1(x1,x3)&P2(x3)&[Val(x3)= ε]

3.2. Assessments

The transforming of texts identified several operational constructs that may use
predicates as operands. Let us analyze sentences like “Ta ei saa üldse käia” (She
can’t walk at all), ”Ma tahan natukene lennata” (I want to fly a little). It is clear
that finding the truth value in these texts does not depend on just the predicates
{käia [to walk]), tahan lennata [want to fly]}, individual symbols {ta [she], ma [I]}
and negation. It is important to understand what role do the parts of the text like
{üldse(käia) [at all(to walk)], natuke(lennata) [a little(to fly)]}, which basically
represent one-element “predicates applied on predicates”. In such cases it makes
sense to introduce a suitable second order functional symbol that in essence
represents giving an assessment: Val(P)=γ. These symbols are also necessary if we
wish to assess or measure individuals or time.

An interesting aspect of assessments is related to viewing assessments as
elements in a somehow ordered set. Namely, the assessments belong to a partially
ordered structure where it is not always possible to tell, which one of any two
assessments is “greater” (Figure 1, 2).

13

natuke
(a little, somewhat)

väga
(very) üldse (at all)

täiesti (totally,
completely)

ainult
(only)

liiga
(too) kaugelt (by far)

palju
(many) eriti (especially)

F

E

h
(

F

igure 1. Assessments in partial order
xample:

Mul äsja oli sünnipäev [I recently had a birthday] → There exists a time when I
ad a birthday and the assessment (value) for this time is ”recently”.
∃t)P(x1, x2, t)&[Val(t)= τ]

varsti
(soon) äsja

(recently)
praegu
(now)

ammu
(long ago) kohe (immediately)

just
(just now)

nüüd (now)

pärast
(after,
later)

enne
(before)

igure 2. Example of time assessments in partial order
14

3.3. Modality complexes

While transforming children’s texts, the “traditional modality” emerged with the
words võibolla [maybe/possibly] and vist [maybe/guess]. For example, in
sentences like “Võib-olla need autod parkisid ette“ [Maybe these cars parked in
front] ◊P(x1, x2), “Aga see on sinu oma, vist“ [But this is yours, maybe] ◊P(x).

The words “võin”, “saan” [I can] have a more difficult context. The first
meaning is “võib-olla on võimalik teha midagi ning see on reaalne võimalus“
[maybe it is possible to do something and that is the real chance]. The second
meaning is the fact that the promised event will definitely occur, if someone asks
for it. In many languages there are specific words to indicate this. For example, in
English there are the words “may” and “can”.

Examples:

Ma võin alla kukkuda, (I may fall down) ╞ [◊P(x1, x2)]

Aga mina võin ainult silmadega lugeda, (But I can read with only eyes)
╞ [� ◊ P(x1, x2, t)]

3.4. Ownership

There are at least two possible approaches to transform the words meaning
“omada” [to own] into the language of logic. First approach involves using a
predicate, since a predicate in essence represents a subset of elements that possess
the relevant property. The second approach involves using the concept of
ownership. For example, we can transform the sentence “These are doctor’s
things” into “These things belong to the doctor”, which in turn leads to the formula
(∃x)(∃H)(x∈H) where “x” marks things and “H” marks the set of doctor’s things.

15

3.5. On hidden equivalence

While analyzing the results of transforming children’s texts, the texts that
contained the word “muidu” (or else) revealed the use of hidden equivalence
(Matsak, 2008).

Example:

Siia sa ei tohi tulla, muidu see onu hakkab pahandama [You can’t come here,
or else that man gets upset] → Kui sa tuled siia, siis onu hakkab pahandama ja kui
sa ei tule siia, siis toimub sündmus X [If you come here, then that man gets upset
and if you do not come here, then event X happens] (in many cases event X equates
to “see onu ei hakka pahandama“ [that man will not get upset]). →
(A⊃B)&(¬A⊃¬B). It is easy to ascertain that this formula represents equivalence
A⇔B.

In this chapter we have explained how it is possible to get from logical roles of
the components of natural language text to the corresponding logic formulas. This
process is the foundation for the creation and development of the dialogue system
described in the follofing chapters.

16

4. TRANSFORMING TEXTS. INFERENCE LEVEL

In this chapter we describe how the logic formulas present in natural language
text can lead to the logical inference steps and inference rules in the text. The
relevant results of the author have been presented and published in international
conferences (Matsak, 2007, 2008).

If a text is transformed into a formal shape and each argument is turned into a
predicate calculus formula, then it is possible to investigate whether there are
inference steps in those formulas or not.

Let us take a look at some well known inference steps, which are the basis of
inference rules [table 3]:

Table 3. Examples of well-known inference rules

1.
CA

CBBA
⊃

⊃⊃

(Getzen’s cutting rule)

4.
)()(BVDBVA

DA
⊃
⊃

(The rule of a sum from the Heyting
system of arithmetic rules)

2. [] [
[]

]
)()(

)()()()(
xExOx

xIxOxxExIx
⊃∀

⊃∀⊃∀

(Aristotelian syllogism)

5.
...)(...

...)(...
xxA

bA
∀

(GN rule from the classical first order
predicate calculus system of inference
rules)

3.
...)(...

...)1(......)(... ...)0(...
xA

xAxAA +⊃

(Rule of complete induction)

Note: According to the definition, “an inference rule is any set of inference

steps, which consists of all pairwise similar inference steps. Every inference step
belongs to some inference rule”. (Lorents, 2000)

Let us consider that each inference step must contain at least one atomic
formula, which is present both in the premise and in the conclusion. Such an
atomic formula corresponds to a one or multiple variable predicate with one or
multiple individual symbols, respectively. In natural language the same word or
phrase can correspond to several different individuals or predicates. Therefore, in
order to find an inference step from a sentence, a single word must be used in the
roles of individuals and predicates that represent the same object or concept. This

17

word must also cover all synonyms and pronouns. Analogous to text
transformation, some parts in identifying inference steps may be hidden. In this
case, the text needs to be complemented.

Example:

Andres on võtnud endale koera. Kui talle poleks koduloomad meeldinud, siis ta
poleks endale koera võtnud. Andresele meeldivad koduloomad. [Andres likes pets.
If he would not have liked pets, then he would not have taken a dog.]

The hidden argument in this text is “Andres has taken a dog”. A synonym in
this case is “he”. By complementing the text and replacing the synonyms, we get
the following line of reasoning:

Andres has taken a dog. If he would not have liked pets, then he would not have
taken the dog. Andres likes pets.

),(
),(),(),(

paM
daVpaMdaV ¬⊃¬

Applying the procedure also reveals other interesting aspects and questions.
Namely, can some part of reasoning be considered an “element” or are some
inference steps “hidden” between premises and conclusions? Secondly, is the
inference step in question correct (in case of every interpretation, if the truth value
of the premise formulas is 1, then the resulting formula’s truth value is also 1)?

The whole procedure for identifying inference steps involves the following phases:

‐ Complementing or including hidden arguments

‐ Repositioning or rearranging the parts of the text

‐ Withdrawing or removing an unnecessary part of text

‐ Replacing all synonyms and antonyms with a single word

‐ Transforming the text into formulas (see text transformation procedure
above)

‐ Searching for matching formulas, displaying results

18

‐ Consecutive analysis of formulas. (It is often not enough to consider just a
pair of sentences, but also “closely” preceding ones, because the premise
may consist of multiple arguments)

Note: Unfortunately, the need for complementing, repositioning, withdrawing
or replacing may emerge after the formula is created. But this formula does not suit
us. For example, the meaning of the text may be lost in the process. This means
that it must be possible to repeat some part of the transformation process. The first
four transformations listed above can be repeated as many times as is needed. NB!
The remaining three (transformation into formulas, searching formulas and
analyzing them), however, must take place in exactly the order that they are listed.

In this chapter we described a method for finding logical (but not always
correct) inference steps and implementations of inference rules from reasoning in
natural language texts.

4.1. Identifying constructs from texts using the DST
dialogue system

In this chapter we begin with the question: is the transformation procedure an
algorithmic procedure (according to algorithm theory) or not. Then we explain the
main principles and structure of the DST dialogue system. Finally we will discuss
problems with DST development and ways to overcome these problems. The
chapter identifies the problems and the corresponding solutions that emerged
during the creation and development of the self-learning and –improving dialogue
system DST. This system communicates from a distance with the morfanalyzer
software. The system uses novel methods, developed by the author, to extract
logical inference steps (and rules) from natural language texts. The relevant results
have been presented and published at international conferences (Matsak, 2005,
2006, 2007, 2008).

4.2. Problems with algorithmic insolvability

The author has continued her research based on the dialogue system that she
developed for her Master’s thesis (Matsak, 2004). The system transforms natural

19

language texts into logic formulas. Next we will explain why this has to take the
form of a dialogue (which does not exclude that sometimes the role of the user
may be limited to inserting the text and receiving the formula from the computer).

Natural language texts are expressions (words, phrases etc.) that consist of
symbols. Adding mathematical logic symbols to natural language symbols does not
change this. We still have an expression that is written down using a specific
alphabet. However, we can handle text transformation as some kind of a
replacement system (for example some Thue system (Мальцев А., 1965)). At the
same time it is known that even with “very modest” replacement systems the
problem of word equivalence becomes algorithmically unsolvable. One
requirement in the text transformation was that the output text had the same
meaning as the input text (certain equivalence!). Based on this, it is easy to see that
in some cases the transformation is impossible with a single algorithm. The
algorithmic solvability of some problem, however, means that a single algorithm
must guarantee that all solutions to that particular problem can be found. Therefore,
the possibility of finding a single algorithm for text transformation is “close to
zero”. As a result, an “oracle” is required to do transformation (this term is also
used by Rogers in his book “Theory of recursive functions and effective
computability”), or in other words a user who interacts with the program in a
dialogue, providing “advice” to the program. (Rogers, 1967), (Успенский,
Семенов, 1987)

4.3. Improved DST dialogue system. Formula level.

The first version of the DST dialogue system was completed as part of the
author’s Master’s thesis (Matsak, 2004). In order to determine the logical role of
words (according to the list in chapter 2) it was necessary to start with the sets of
words and their grammatical roles. A web based morphologic analyzer developed
by FILOSOFT [www.filosoft.ee] was used to create a system for identifying word
categories. In the improved version DST turns to the analyzer to categorize the
words in logic groups. During the process of transformation the user must confirm
the morphological and logical roles that DST offers. One problem that has emerged
from this process is that withdrawing, repositioning and replacing text requires
almost constant “manual labour” from the user.

20

It turns out that if two sentences have the same structure (in terms of logic
components and morphological forms having the same position in the sentences),
then the sentences correspond to the same formula. This relationship allowed us to
train the program to use the existing transformation scheme to identify similar
sentences.

4.3.1. Training the dialogue system

The principle of training the dialogue system has remained the same during the
DST development process. According to this principle, when a (structurally) new
sentence is inserted into the system, the preliminary morphological scheme and the
transformed sentence morphological scheme are stored.

Table 4. The meaning of morphological symbols

Symbol Meaning

P+sg+#n# Pronoun, e.g. it
singular: nominative

V+#n# verb, e.g. to read
declarative, present, 1st person, active, positive - e.g. I am
reading

A+sg+g# adjective, positive, both declinable and indeclinable, e.g. dear
singular: genitive

S+sg+kom# noun (substantive), e.g. thing
singular: comitative

S+sg+#n# noun (substantive), e.g. thing
singular: nominative

V+#b#! verb, e.g. to read
declarative, present, 3rd person, singular, active positive
the relevant form of the verb “olema” [to be]

A+sg+#n# adjective, positive, both declinable and indeclinable, e.g. dear
singular: nominative

In addition, information about how the order of words has changed is stored. If
a new word is introduced during the transformation process, then this is marked in
the file that contains information about the order.

Example: [Matsak 2004]:

Let us train the program (to transform) with the sentence “Mina mängin ilusa
nukuga” [I play with a pretty doll]. As a result of the training process we get the
scheme of morphological symbols:

21

= _P_+sg+#n# _V_+#n# _A_+sg+g# _S_+sg+kom# = _P_+sg+#n# _V_+#n#
S+sg+kom# & _S_+sg+#n# _V_+#b#! _A_+sg+#n# =

(Morphological symbols are explained in Table 4)

and the order scheme: 0 1 2 3 =0 1 3 uus& 3 uus_V_+#b#! 2 =

In the original sentence the words are numbered 0 (Mina [I]), 1 (mängin [play]),
2 (ilusa [pretty]), 3 (nukuga [with doll]). In the transformed sentence the order of
words has changed. For example, the word in the third position must be number 3
(nukuga), not 2 (pretty). In addition, two new words have appeared: uus& (ja)
[and] and uus_V_+#b#! (on) [is].

The comparison between words is done based on the original words and the
order scheme. The form of the word in the original sentence and the transformed
sentence is not important. In the end, the formula P1(x1)&P2(x1) is stored.

Categorizing word roles by logic roles raises several problems. The feedback
from the morphologic analyzer is often not unique. For example, the word “tee”
[road, tea, do] can be categorized as a noun or a verb. As a result, the logical role
would be an individual or a predicate. In case of nouns it is also important to
determine the nominative case of the word, because it is necessary for forming a
predicate according to the scheme “on+nimisõna nimetavas käänes“ [is+noun in
the relevant case]. In order to solve this problem, a step-by-step morphological role
confirmation took place for every word in the original system. The improved
version uses by default the first available variant. Once the analysis is complete, a
summary is presented, allowing the user to manually change morphological roles
and restart the formula creation. The second problem was with categorizing words
as logic operators and quantifiers. The system employs prepared word sets (in files)
for purpose. These sets may need to be updated during the transformation process.
This problem was solved by creating special software modules that provided the
required capability.

4.3.2. Automatic sentence transformation

How does the automatic sentence transformation find the formulas that match
original sentences? The system does not consider semantics and works as follows.
Let us assume that the computer is trained with the sentence “Mina mängin ilusa
nukuga” [I play with the pretty doll]. Upon entering the new sentence “Mina
jalutan vallatu koeraga” [I walk with a cheerful dog] the dialogue-system
recognizes a matching morphological pattern. The “original words” are identified

22

by the same morphanalyzer: mina jaluta vallatu koer [I walk cheerful dog]. We
also know which order these words must have in the transformed sentence: mina
jaluta koer uus& koer uus_V_+#b#! vallatu. By discovering a logic operator
symbol in one of the new words, it is replaced with the corresponding “ja” [and].
Since the symbol “!” is tied to the word “olema” [to be] in the program, we can
return the correct meaning. In addition, the required morphological form of the
words in the new sentence is sent to the language synthesizer (FILOSOFT), which
returns the words in their correct form. Thus, the transformed sentence “Mina
jalutan koeraga ja koer on vallatu” [I walk with a dog and the dog is cheerful] is
formed. The formula for this sentence is the same as the formula for the original
training sentence: P1(x1)&P2(x1).

Note: As a result of the transformation process, empty fields often appear for
words that were not present in the original sentence. The user is asked to provide
the (new) words that fit in the empty fields. In principle, if there is no reason to fear
misunderstandings of the created formula, then representation of the new formula
in natural language is not required. The 2009 version of DST, however, works by
finding the morphological scheme, generating a formula based on the training and
asking whether or not the sentence should also be transformed in natural language.

4.3.3. Full text transformation

Transforming the full text (Matsak, 2008) is associated with several problems.
While transforming in this mode we get formulas where predicates and individuals
get the same symbols. In order to transform texts so that repeating words get the
same symbol we developed some extra modules:

‐ A module that searches for repeating words (with lemmas of words) in the
whole text, and assigns corresponding symbols to them. Symbols x1, ..., xn
are assigned to repeating individuals and A1, ..., An are assigned to
repeating predicates (see chapter 2).

‐ A module, which first tries to locate a match to the logic role in the file that
stores individuals and predicates. If that fails, the module searches a
database for a matching sentence structure (for automatic transformation).
If that also fails, the module proceeds with the logic role identification
process.

Unfortunately for the text transformation, every natural language also possesses
pronouns and synonyms. In order to transform a text, it must first be “cleaned up”.
In other words, all pronouns and synonyms must be replaced with a single (base)

23

word. In order to minimize glitches and manual dialogue correction during
transformation, these replacements should be carried out before starting the
formula creation.

In the current version of DST the replacement of synonyms is handled
manually. Future development may include a module, which will make the text
clean-up easier by using the FILOSOFT synonym database in addition to the
dialogue with the user. (Appendix A: figure 1).

In this module the inserted text is segmented into words and the cycles will be
started based on the number of words. The text is processed by words. If the word
is a pronoun, then the user must replace it with a concrete noun (individual). Words
that share the same meaning (except pronouns) are replaced with just one
synonym. In order to achieve this, a database of synonyms is used and every
word’s synonyms are compared to the words that have already been processed.

While doing full text transformation we meet with already familiar difficulties:
it is often necessary to complement some parts of the sentence or to replace some
words, regardless of the fact that the pronouns and synonyms have already been
replaced in the previous step. If the module for replacing synonyms in Figure 3 is
implemented, then for every added or replaced word we must generate synonyms
and check whether one of them already exists in the symbol-meaning relationship
file. If a match is found, then it is used in the place of the added or replaced word.
Otherwise a new symbol is assigned. The user must make sure that the vocabulary
remains suitable.

The synonyms, however, are only a part of the problem. During the
transformation process, for example, a transformation (including replacements) of
the third sentence may generate a new word, which happens to be a synonym for a
word in the first sentence. The latter word already has an assigned symbol and the
formula for the first sentence is determined. Therefore, a situation may develop
where synonyms of the same word correspond to different symbols in the formulas.
This, in turn, may unnecessarily produce different formulas for texts that in reality
have the same meaning. In order to cope with this problem, we added a module to
DST that, upon discovering this situation, generates a new symbol xi või Ai (let us
remember that repeating individuals and predicates are assigned with symbols x1,
..., xn and A1, ..., An, while non-repeating ones are assigned with symbols q1, ..., qn
and P1, ..., Pn) and also makes the necessary replacements in the first sentence. This
is implemented by adding a line in the corresponding file, which contains words,

24

symbols and the formula for each sentence. Once the full text is transformed, the
file is emptied.

4.4. Improved DST dialogue system. Inference level.

In this section we view aspects of creating a software solution for identifying
inference steps in natural language texts.

Firstly, let us reiterate again and again that one of the most important
capabilities of an intelligent system is the capability to apply instruments of logic.
At the formula level this means the ability to construct formulas (using logic
symbols like predicates and operators in a certain way). The next important level is
the inference level, which deals with the capability to infer the conclusions of one
formula based on other formulas (by using inference rules or relations between
formulas in a certain way). In the human intellect, the formula level is manifested
in our ability to formulate clear arguments, whereas the inference level can be seen
in our ability to logically justify our arguments.

A large fraction of the systems that are researched and implemented today have
been “mined” from texts representing human thought. This includes the concept of
forming formulas and the rules for inferring new formulas. On the other hand, two
important aspects have remained in the background:

How and with what “technology” natural language texts should be processed, in
order to identify the logic constructs within

How and with what “technology” these logic constructs have (been) developed
(including inference in various logic systems, which differ amongst themselves in
terms of inference rules and their application).

A natural question is how to implement these concepts in information
technology. Therefore, we will continue by exploring the aspects related to
inference rules and how they can be extracted from natural language texts. We will
start with a short description of the customized Lorents’ method (Lorents, 1993,
2002) (also see introduction chapter), which helps to explain in a theoretical level
some approaches of the author for creating a practical software implementation.

25

4.4.1. Customizing the Lorents’ method for searching inference rules

Let us begin with the fact that inference rules represent multiple figure relations
between formulas. k-tuple relations between the elements of some set H are,
however, k-th Cartesian power subsets of H(k)=H×…×H. We can rely on Lorents’
procedure (Lorents, 1993, 2002) for forming k-tuples by using two meta-
predicates: R the meta-predicate of relatedness and S the meta-predicate of
similarity.

The meta-predicate of relatedness expresses that some objects in a tuple are all
related to each other in the same way. For example, the numbers in the triples
〈0,0,0〉, …, 〈2,2,4〉, …, 〈4,2,6〉, … , 〈3,5,8〉, …, 〈5,5,10〉, … are clearly related to
each other. It is also true for the numbers in the following triples: 〈0,0,0〉, …,
〈2,2,4〉, …, 〈4,2,8〉, … , 〈3,5,15〉, …, 〈5,5,25〉, … .

The meta-predicate of similarity expresses that some same-level tuples are
similar in a certain way. For example, the triples 〈0,0,0〉, …, 〈2,2,4〉, …, 〈4,2,6〉, …
, 〈3,5,8〉, …, 〈5,5,10〉, … are similar in some way. The same is true for the triples
〈0,0,0〉, …, 〈2,2,4〉, …, 〈4,2,8〉, … , 〈3,5,15〉, …, 〈5,5,25〉, … . On the other hand,
we can agree that the triples 〈4,2,6〉 and 〈3,5,15〉 are definitely not similar in “the
same way”.

Lorents proved (Lorents 1993) that the following procedure will identify all
relations that can be characterised by meta-predicates R and S that are “acting
upon” some set H. Two cycles need to be started. One cycle finds only tuples
where the objects in the tuple are related with each other. For every tuple identified
by the first cycle the other cycle collects all tuples that are similar to it and each
other. Every such “collection” represents a specific relation between the elements
of H.

If, for example, H is a set of formulas extracted (by transformation) from a text,
then the procedure will identify any inference rules that connect them.

By applying this procedure on natural language texts created by children of a
certain age (age recorded at the time of creating the text), for example, it is possible
to find out:

26

‐ Which inference rules are actually used (Is it just Aristotelian syllogism,
Gentzen’s sequential computing, Heyting’s arithmetic etc. or are there
more rules?)

‐ At what stage of development certain inference rules “appear”.

4.4.2. Inference step identification module

The first version of DST, capable of identifying inference steps, was created in
2008 (Matsak, 2008). In order to achieve this, a full text transformation capability
had to be developed. In chapter 4 we reviewed the theory behind the procedure of
identifying inference steps and observed the need to prepare the text with
complementing, repositioning, withdrawing, as well as replacing synonyms and
antonyms.

Example:

Let us assume that we must transform the following sentences: “If the sun is
shining, then it is warm. If the sun is not shining, then it is cold.” The user must
replace the word “cold” with the phrase “not warm”.

In the current version of DST these steps must be (initially manually) completed
by the user before the logic formula creation process is started. In the future, a
separate module can be used to query a database of synonyms and antonyms to
assist the user in this task. All replacements must be made in order to be able to do
full text transformation (see 5.2.3).

Let us recall that when transforming text as a “single full entity” (in the
corresponding mode) we get formulas where repeating predicates and individuals
are marked with the same symbols.

Next, an array is formed out of these formulas and all elements in the array are
then compared in order to find common characteristics. For example, repeating
individuals and predicates, as well as repeating atomic formulas that they form.

To some extent we can say that we are applying the meta-predicate R, since we
are searching for formulas that are related to the same inference rule. Then we form
doubles, triples, etc. out of the formulas identified during transformation, while
making sure that each inference rule must contain at least one premise and one
conclusion. By forming various doubles and triples (or higher level tuples) we can
identify, which of these possess common parts of formulas, or in this case – atomic
formulas (Matsak, 2007). This is somewhat similar to the application of the meta-

27

predicate S, with the distinction that similarity is sought on the basis of the
presence of the same atomic formulas. As a result we get pairs that contain
equivalent components and are at the same time related to each other. Such
collections can represent inference steps or even inference rules with one or more
premises. Unfortunately, pairs and triples that “look” similar, but are not logically
correct may also surface. Or some necessary formulas may be absent in the
identified pairs, which should exclude these pairs from logical inference steps.
Often the premises and conclusions may be represented in mixed order. Despite
these “interfering circumstances” the application of the algorithm in question
enables us to perform the search for inference steps much quicker, more convenient
and accurate than a human doing the same “manually” (the human may not notice
necessary parts of the texts or the similarity between parts of text).

There exists an algorithm that can be used to perform the above described tasks.
It works partly due to the fact that we have assigned different symbols to repeating
and non-repeating words. In other words, we must only analyze the formulas that
contain the symbols x1, ..., xn and A1, ..., An (from now on “A and x-type”
symbols).

The identified formulas and the corresponding sentences are formed into new
matrices (Appendix A: figure 1a). According to the number of selected formulas
the data is prepared for identifying inference steps (Appendix A: figure 2b). Each
formula is split by spaces in the written text. The result is the matrix @cons, which
corresponds to the formula. Every component of the matrix is then processed. First,
the parentheses are removed. Second, if the component contains the symbols x or
A, then it will be added to the table where each row corresponds to a formula and
the slots in a row contain the parts of the formula that include the symbols x or A.
Then the longest row is found. According to the maximum number of rows and
slots the cycles are started and every slot is compared to every following slot
(Appendix A: figure 2c). By default the existence of a predicate or an individual is
false. However, if a slot is found that matches the contents of a following slot, then
the “full formulas” of the corresponding rows are noted as a pair of formulas. If it
turns out that a pair already existed, then it is not stored in memory. In addition, the
slot in question is examined to see if it contains an individual (x) or a predicate (A).
If at the same row, both a slot with an individual and a slot with a predicate is
found, then the corresponding “full formula” pair is output as a potential (single
predicate) inference step.

This approach simplifies the search by several times (Matsak, 2008).

28

Example:

If we have identified a pair of formulas 〈P3(x2)&A4(x1), A4(x1)〉, then we see
that the formulas in the positions of premise and conclusion contain “A and x-type”
symbols. We see that the atomic formula is repeating in both the premise
and the conclusion. Based on this we can handle the formula as resulting from an
inference rule (that means, an inference step, which can be represented as

)(14 xA

).
)(

)(&)(

14

1423

xA
xAxP

The module that searches for pairs can be easily modified to search for triples.
As before, the similarity can be ascertained by searching for common atomic
formulas (although, several iterations may be necessary).

Note: The tuples or presumably “well-formed” inference steps received in this
fashion may not always be the “true” inference steps. For example, the identified
steps could be logically incorrect. Another example is when a necessary argument
is missing in the text, because the author of the text has not explained the reasoning
in sufficient detail.

The identified steps are stored in a database and a sheet with sentence
information is created for each step. These sheets can be reviewed in order to see
how many times a certain step has been used. In case of the records in the database,

it is important that DST finds equivalent formulas like
)(

)(&)(

410

41011

xA
xAxP

 and

)(
)(&)(

14

1423

xA
xAxP

 equal.

More detailed examples of inference step identification can be found in the
author’s relevant publication (Matsak 2008).

4.5. The general layout of the program

In this section we review shortly the latest version of DST dialogue system. The
algorithm for the first version of DST was presented in 2005 (Matsak, 2005). The
first update to this version followed in 2006 (Matsak, 2006). Over the following
years several improvements were made to the system by adding new modules and
by modifying the existing system.

29

The latest version of DST is oriented towards transforming “simpler” sentences,
which do not result in higher order formulas where an atomic formula is in the
place of an individual in a predicate. An example of a “not simple” sentence is Ta
ütles, et me läheme külla [He says that we are going to visit (someone)], which can
be represented by the formula P1(q1, P2(q2 q3)). When transforming “complex”
sentences the user must provide more complements and corrections, possibly at
every step of the transformation process, since DST is a dialogue system, not a
fully automatic transformer. In order to correct formulas, a special editing feature
has been included that makes adding missing symbols much easier.

The development process of the dialogue system, including the changes and
additions to the modules, is covered by the author’s publications between 2005 and
2008. The figure 3 (Appendix A) represents the layout of the latest version of DST.

30

5. LOGIC CONSTRUCTS IDENTIFIED WITH DST
FROM CHILDREN’S TEXTS.

In this section we provide an overview of the logic constructs that emerged
from children’s texts after the transformation with DST, whereby we consider two
different levels: formulas and inference steps.

The aim of this transformation was to find out at what age certain logic
constructs may be present in humans. In other words, at how early age may
children display capability to operate with certain logic constructs? Specifically,
we are interested in both the “first appearance”, as well as “intensity” of these
constructs.

The age groups under study are:

First age group consisted of children between the ages of 1,2 and 2,8 years.
The data came from two sources:

‐ recordings of Estonian children talking

‐ CHILDES database (see Child Language Data Exchange System).

The files in the CHILDES database are recordings of children from many
countries and the corresponding texts. For the Estonian recordings a group of
children of appropriate age were selected and interviewed twice a month over a
period of several months.

The youngest children provided a few single word answers. Over time (moths)
it is possible to see how the answers change into sentences. The results of
transforming these texts show, which logic constructs appear at what age. This
thesis does not draw statistical generalizations for all children, as the focus of the
work is on developing DST and researching ways to use it. The children’s texts
serve as a very useful material, because they are not too complex for DST in this
phase of development. In addition, they provide an initial overview of the set of
logic constructs used by self-evolving intelligent systems and “traces” of the
development of the capability to use them.

31

5.1. Formula level

The results of transforming the children’s texts (figures 3,4) brought out some
unexpected aspects (Matsak 2009):

(A) The negation operator was observed already at an age of 1,2 years

(B) Most of the rest of the logic operators, quantifiers, as well as some
modalities are present in two year olds. The values in the figure below
have been calculated based on the use of an operator or quantifier
compared to the total amount of children observed.

(C) Zero values are not indicated on the figure. Lack of plot points before 1,7
years means that the corresponding logic operators or quantifiers did not
emerge in the transformation process. Lack of plot points for older children
is due to lack of recordings, as this age group was not studied. It is
important to note that the presence of logic operators at a very early age is
not only a factor of age, but the general development of the child’s ability
to express her thoughts. Identifying negation in such an early age (1,2
years) was due to a single child who could talk much better than other
children of that age. Earliest use of implication was detected in 2,1 year
olds.

The development of such a logical arsenal over time and in that order can be
explained as follows: when an intellectual system (in this case the logical tool set
of a human) forms, a knowledge base must be created and truth values must be
assigned to the atomic formulas that correspond to knowledge (let us remember
that knowledge is an ordered pair 〈X,Y〉, where X∫Y, or X and Y are related to
each other with the notation-denotation relation ∫) (Lorents, 2001). Knowledge
〈X,Y〉 is considered correct, if the corresponding formula X∫Y is correct. It is
“technically easiest” to recognize correct and incorrect knowledge by using the
negation operator. This illustrates the need to operate with non-atomic formulas.
Even more complex non-atomic formulas are necessary in order to get from
existing correct pieces of knowledge to a new correct knowledge item. Primarily,
formulas containing one or more conjunctions (and negations) are needed. The
reason for this is that aside from knowledge about objects that have a certain
property (for example, the cake is sweet) we also need knowledge about objects
with multiple different properties (the cake is sweet and the cake is big). Next,

32

quantifiers are needed to indicate belonging to a set (these are all my toys; some of
these toys are mine).

Figure 3. Classical logic operators and quantifiers at age 1,2 to 2,8

Without these operators we are unable to draw even the most general conclusions.
In order to replace ever more complex knowledge with equivalent, but possibly
simpler formulas, we need to use logical equivalence. Even in hidden form,
equivalence prepares a system for substitutions. For example, substituting a group
of simultaneously applicable properties with a new property that is basically a
conjunction of the individual properties. With the necessary components present in
the form of formulas, we can start to use implication, which takes us from simple
if-then statements to inference steps and inference rules (for example, if you take
my candy, then you are naughty; you took my candy : you are naughty).

33

Figure 4. Non-classical operators and complexes at age 1,2 to 2,8

Next we explain the use of non-classical modalities (and sets of modalities) in
the early stages of the development of a child’s intellect. The modality “ongi” [is
so] is used to verify, check and defend the existing knowledge in arguments.
Modalities can also be used as a support tool for ascertaining the correctness of
knowledge in situations where it is not yet clear or may never become clear
whether the knowledge is correct or incorrect. Modalities “maybe” and “can” allow
the assignment of truth values depending on the situation. Sometimes, however,
they provide alternatives that in essence are equivalent to disjunction. For example,
the statement “may-be yes and may-be no” is essentially very similar to the
statement “exists or not”. The lack of classical disjunction in a “young” intellectual
system may be explained with real and complex processes at the neuron level of
the human brain. Assessments are also important for verifying some knowledge as
correct or incorrect. In later stages of development, modalities, including
assessments, are used in probabilistic models and risk assessment. The childrens
text studied by the author confirm the existence of a logical arsenal containing
quantifiers and modalities as early as (NB!) two and a half years of age, which

34

were followed by first tries of applying inference rules (at first, including incorrect
rules) (table 5).

Figure 5. Classical logic operators and quantifiers at age 2,8 to 6,8

The second age group consisted of children between the ages of 2,7 and 6,8.
The recordings for this group were a part of this doctoral research and were
collected with the help of primary school pedagogy university students and
kindergarten teachers.

The figures (5, 6) show the increase of use of logic operators and quantifiers
over time. It is interesting that disjunction was very rare in both CHILDES and
Estonian texts (Only two children, ages 5 and 6, used this operator). The results
also show that the use of conjunction and negation grows much faster compared to
other operators. Assessment and modality “can” are also often used, while

35

quantifiers and implication are not as common. It should be noted that implication
is required for using inference steps in justifying arguments.

Figure 6. Non-classical operators and complexes at age 2,8 to 6,8

In 2007 the texts of 10 and 11 year old children’s essays was analyzed (Matsak,
2007). These essays were collected by K. Pata for the project “Seostatud
kontseptuaalse arusaamise kujunemine keskkonnaalastest probleemteemadest“
[The development of related conceptual understanding of environmental problem
topics], which consists of 387 sentences from 175 children. The analysis was not
aimed at transforming the text into formulas (the sentences were often complex,
requiring additional modules for DST), but on categorizing the words in the
sentences as logic operators and quantifiers. The texts were also analyzed to find
inference steps in the justification of arguments.

The following figure (7) represents the average frequency of logic operators,
quantifiers and assessments per sentence. If you compare the data to the age groups
in the previous figures, then the first notable change is the increase of the use of
conjunction (specifically, explicit conjunction) and the second one is the jump in
the use of disjunction.

36

Figure 7. Logic operators and quantifiers at age 10 to 11

An interesting fact is that for some reason no modality was detected in the texts.
This does not mean, however, that modality should not or cannot occur. There may
be a very simple reason for this situation: children answered previously fixed
questions, which possibly did not require modality in the answer.

5.2. Inference level

The development of the DST prototype has revealed a relatively diverse arsenal
of inference instruments that is used by very young children to justify their
arguments. Like many adults, the children also try to construct necessary
justifications for their arguments with logically correct, as well as seemingly
correct (but actually incorrect!) inference steps. (Matsak, 2009) Table 5 represents
the inference steps that the author identified in the analyzed texts.

37

Table 5. Inference steps identified in children’s texts

1. A (2y 9m)
 A

5. A & B (3y 1m)
 A

9 . A ⊃ ¬B (5y 11m)
 B ⊃ ¬A

2. A ⊃ ¬B (2y 6m)
 ¬A ⊃ B

6. (∃ t)A(x, t) (3y 1m)
 A(x, t)

10. A A ⊃ B (10-11)
 B

3. A ⊃ B (2y 6m)
 ¬A ⊃ ¬B

7. (5-6)
S(x) ⊃ (∀x)A(x)
¬S(q)
¬A(q)

11. (10-11)
¬K ⊃ X ¬X
 K

4. (2y 6m)
(∃α A(α) & ∃β A(β))
 ∀x A(x)

8. ¬(∃t A(t,x)) (5y 9m)
 (∀t)¬A(x)

12. (10-11)
¬K ⊃ ¬S
 S ⊃ K

The texts recorded from younger age groups were not directly related to
justification of arguments. Therefore, it was not possible to gain a reliable
overview on what types of transitions, inference steps and inference rules children
use. However, some interesting logical transitions were discovered in the
justification process. Some of them were logically correct while some were
incorrect, but “looking” very similar to correct transitions. In here, logically correct
means that if the formulas in the premise of the transition are correct, then the
resulting conclusion formula must also be correct (see Lorents 2000, “Keel ja
loogika“, §10).

At this point we will review the structure of the rules of contra-position, Modus
Ponens and syllogism. Table 5 shows that these rules represent the most frequent
correct and incorrect inference rules that surfaced in the studies. First we show that
in contra-position, the premise and conclusion is basically the same formula.

A⊃B⇔¬A∨B

¬B⊃¬A⇔¬A∨B

This gives cause to assume that the mechanism that „technically” executes both
implications is actually the same in both cases. The mechanism lets you read the

38

formula in the „other way”, if the truth value of the conclusion is the opposite of
the truth value of the premise.

If we view the implication as a digital circuit, then it is easy to understant the
simple human mistakes in applying the rule. In order to get the correct result, the
signals that have the inverse values of the premise signals must be sent to
„inverted” inputs (premise signal one goes to port two and vice versa). If the
inversion is not implemented we will get a circuit that corresponds to an incorrect

inference rule, such as .
BA

BA
¬⊃¬

⊃

In the case of Modus Ponens a human must operate with an extra formula in the
premise, compared to the contra-position. The verification of suitable inputs is
more complicated: one signal (formula) of the two must be input twice (as an
atomic formula and as a signal for the implication part). The result is the signal
(formula) that was input once. In the classical case the truth value for the double
signal must be the same and it must be the signal of the first input (in relation to the
implication inputs). From the texts of 10-11 year olds we could also find examples
of the use of Modus Tollens (which is basically a combination of Modus Ponens
and contra-position), where the second input signal of the above example was used.
This may refer to children „experimenting” with different inputs and outputs to the
inference rules. It seems very probable that a human would not be able to use
Modus Ponens if she could not use implication and conjunction. The use of Modus
Tollens, in turn, seems to require the skill to use contra-position. At ages 5-6 an
incorrect transition emerged that was similar to a syllogism:

)(
)(

)()()(

qA
qS

xAxxS

¬
¬

∀⊃

In classical Aristotelian syllogisms the third statement should be derived from the
two implications in the premise. In here, however, the child has used something
between the contra-position rule and the syllogism rule, which may be one possible
sign of the development of the ability to use logic rules. Table 5 shows attempts to
use quantifiers and related incorrect (at first) inference steps, which at the same
time look very similar to the inference steps of correct inference rules.

39

SUMMARY

When building intelligent systems it is crucial to ensure that they are able to
form correct decisions based on the described situation.

This, in turn, requires the capability to operate with logic constructs. In a special
case, when the systems are designed to be self-evolving (learning), we must also
consider the nature of the mechanisms that drives the learning process. One way to
research this is to study existing self-evolving systems – humans (in their
development phase), in order to explain the development and adoption of logic
instruments. More precisely, at what age various logic instruments first develop in
children.

One of the best ways to study this is to analyze the natural language texts,
finding “explicit” and “hidden” logic constructs (for example, arguments represent
logic formulas, while reasoning represents inference). A necessary prerequisite for
such an analysis is the transformation of natural language texts into the
corresponding logic constructs.

The main results of Erika Matsak’s PhD thesis are as follows:

- Based on the author’s theoretical studies, research results and software,
novel methods have been developed for creating a dialogue system for
extracting logic construcs (including formulas, inference steps and
inference rules) from natural language texts

- The development of a working prototype of the DST dialogue system
and its improvements that performs the transformation process at the
logic formula level, which allows the extraction of individuals,
predicates, quantifiers, modalities, logic operations and logic formulas
that are represented (for example, as words) in natural language texts

- The development of the next level of the DST prototype, which
operates at the logical inference level to identify logical inference steps
and rules from natural language texts

- The dialogue system DST has been used to study children of different
age groups using various logic constructs, which confirm a surprisingly
diverse arsenal of logic instruments at a very early age.

40

Actually knowing the nature of logic instruments available for children of a
certain age enables us to better analyse, plan and execute future research in the
field of the development of the human thought process.

Identifying logic constructs from natural language texts also creates other
possibilities aside from understanding and supporting children’s development. For
example, identified “personalised” inference steps (inference rules) can be used to
“game” through potential actions and decisions of an intelligent system (e.g. person
or group) based on the descriptions of certain situations (for example, see
“modelling Bismarck”). This enables us to predict future actions, allowing systems
that are “aware” of this to more effectively plan their own actions.

The system, which is theoretically justified and developed as a software
prototype by the author, is unique in Estonia as well as the rest of the world. The
technological solutions presented here provide new opportunities to study the
development of children as natural self-evolving intelligent systems, including the
study of the development of logical tools in humans. This, in turn, presents new
opportunities as well as new and interesting problems (in software and hardware
(see Matsak 2009)) for researching the human made decision support systems and
(self-evolving) intelligent systems that use natural language and logical tools.

41

REFERENCES

Allen J.F. (1983). Maintaining knowledge about temporal intervals,
Communications of the ACM 26(11) 832–843.

Birkhoff G., von Neumann J. (1936). The logic of quantum mechanics. Ann. Math.
37, 823–842.

Chittaro L., Montanari A. (2000). Temporal representation and reasoning in
artificial intelligence: Issues and approaches, Annals of Mathematics and Artificial
Intelligence 28, 47–106

Church A. (1936). A note on the Entscheidungs-problem, J. Symbolic Logic 1. 40-
41 (Correction, ibid., pp. 101-102

D. G. Bobrow. (1964) Natural Language Input for a Computer Problem Solving
System. Ph.D. Thesis, Mathematics Department, M.I.T., Cambridge, Mass.

Dragalin A. G. (1979). Математический интуитсионизм. Введение в теорию
доказательств. [Mathematical intuitionism. Introduction to proof theory] “Наука”.
Москва.

Gentzen G. (1936). Die Widerpruchsfreiheit der reinen Zahlentheorie. [The
consistency proof of pure number theory] Math. Ann. 112, No 4, 493 – 565

Golumbik M.C, Shamir R. (1993). Complexity and algorithms for reasoning about
time: a graphtheoretic approach, Journal of ACM 40(5) 1108–1133.

Green B. F., Wolf A.K , Chomsky C, Laughery K. (1961) Baseball: an automatic
question-answerer. Western joint IRE-AIEE-ACM computer conference, May 09-
11, 1961, Los Angeles, California

Levesque H.J, Reiter R., Lesperance Y., Lin F., Scherl R. (1997). GOLOG: a Logic
Programming Language for Dynamic Domains, in [155] pp. 59–83.

Lorents D. (1992). Loogilised konstruktsioonid eesti keele tekstides. Valemite tase.
[Logic constructs in Estonian language texts. Formula level] Lõputöö, Tallinn 1994

Lorents P. (1993). Algebraic Framework for Knowledge Acquisition. Royal
Institute of Technology. Departement of Teleinformatics. ISRN KTH/IT/R –
93/10-SE.

42

Lorents P. (2000). Keel ja loogika. [Language and logic] Tallinn: Estonian
Business School.

Lorents P. (2001). Formalization of data and knowledge based on the fundamental
notation-denotation relation”. Proceedings of the International Conference on
Artificial Intelligence. IC – AI’ 2001. Volume III. p. 1297 – 1301

Lorents P. (2002). A system mining framework. The 6-th World Multiconference
on Systemics, Cybernetics and Informatics. SCI – 2002. Proceedings. Volume I. p.
195 – 200.

Matsak E. (2004). Eestikeelsetes tekstides sisalduvate loogiliste konstruktsioonide
väljaeraldamise süsteem. Valemite tase. Magistritöö [A system for identifying
logic constructs in Estonian Language texts. Formula level. Master's thesis.] TPÜ,
Tallinn

Matsak E. (2005). Dialogue system for extracting Logic constructions in natural
language texts. Proceedings of the International Conference on Artificial
Intelligence. IC – AI’2005. Volume II p. 791 – 797. Las Vegas, Nevada, USA

Matsak E. (2006). System DST for Transforming Natural Language Texts,
Representing Estimates and Higher Order Predicates and Functionals. The 3rd
International Conference on Cybernetics and Information Technologies, Systems
and Applications: CITSA 2006. Orlando, Florida, USA.

Matsak E. (2006). Using Natural Language Dialog System DST for Discovery of
Logical Constructions of Children's Speech. The 2006 International Conference on
Artificial Intelligence IC-AI 2006. Las Vegas, Nevada, USA

Matsak E. (2007). The prototype of system for discovering of inference rules.
Proceedings of the International Conference on Artificial Intelligence. IC –
AI’2007. Volume II p. 489 – 492. Las Vegas, Nevada, USA

Matsak E. (2008). Improved version of the natural language dialog system DST
and its application for discovery of logical constructions in children’s speech.
Proceedings of the International Conference on Artificial Intelligence. IC –
AI’2008. Volume II p. 332 – 338. Las Vegas, Nevada, USA

Matsak E. (2009a). Representing logical inference steps with digital circuits.
Lecture Notes in Artificial Intelligence: HCI International 2009. Springer
[submitted]

43

Matsak E. (2009b). On the logic module in intelligent systems. Proceedings of the
International Conference on Artificial Intelligence. IC – AI’2009 Las Vegas,
Nevada, USA [submitted]

Mints G., Tyugu E. (1982). Justification of the Structural Synthesis of Programs.
Science of Computer Programming. v. 2. No. 3. 1982. 215 - 240

Pereira F.C.N., Warren D.H.D (1980). Definite Clause Grammer for Language
Analysis, Artif. Intell., 13, 3, pp. 231-278

Rogers H. (1967). Theory of recursive functions and effective computability.
McGraw-Hill, New York. [Теория рекурсивных функций и эффективная
вычислимость. Издательство «МИР» Москва 1972]

S. Osugi U. Saeki (1990). Приобретение знаний / под редакцией С. Осуги, Ю.
Саэки ; перевод с японского Ю.Н. Чернышова . Москва : Мир. [Knowledge
acquisition: translation from Japanese, Mir, Moscow]

Tyugu E. (1970). Решение задач на вычислительных моделях. [Solving
problems with computation models] ЖВМ и МФ, т. 11, Nr 5

Tyugu E. (1972). A data base and problem solver for computer-aided design.
Information Processing, 71. pp 1046 – 1049. North-Holland. Amsterdam.

Tyugu E. (1988). Knowledge - Based Programming. Addison-Wesley

Tyugu E. (2007). Algorithms and Architectures of Artificial Intelligence. IOS
Press. Amsterdam. Berlin. Oxford. Tokyo. Washington, DC.

Атаян В.В. (1986). Использование алгебраических конструкций в алгоритмах
анализа математического текста. Сборник научных трудов, Методы
алгоритмизации и реализиции процессов решения интеллектуальных задач.
Академия наук Украинской ССР. Киев.

Мальцев А. (1965). Алгоритмы и рекурсивные функции. [Algorithms and
recursive functions] Издательство «Наука» Москва

Успенский В. А, Семенов А. Л. (1987). Теория алгоритмов: основные
открытия и приложения. [Theory of algorithms: main discoveries and
applications] Москва, Наука

44

APENDIX A: ALGORITHMS

45

46

false

 false

false true

true

true

For i=0;
i<=synonyms.length(); i++

For j=row;
j<=text.length();
j++

Dividing text into
words

Replacing pronouns with
specific nouns (user)

For row=0; row<=text.length();row++

Pronoun?

Query to the synonym
database

Receiving set of potential
synonyms

falsetrue

Word[j]=Word[row]
User determines cases

Does the word lemma e
to the synonym lemma

qual
?

true

false

Text entry

F

igure 1. Replacing synonyms in text
47

Figure 2a. Algorithm for identifying inference steps. Part I, Selecting necessary
sentences

for $i=0; $i<=$n;$ i++

Count the number of sentences
$n=count of formulas

Add the found formulas to the array
@formulae and the corresponding
sentences to the array @sentence

If formula contains x or A

Number of found formulas
$count_n ++

Selecting necessary sentences
1

true

false

Assign initial
values to
variables

true false

2

48

2
3

for $n=0; $n<=$g; $n++

Split @formulae using spaces, Name as @const

$g= number of elements in the array @cons

Remove potential brackets in
each element @cons

Fill corresponding space in table
row
$table[$i][$n_V]=$const[$n]

$max=$n_V
$n_V=0

for $i=0; $i<=$count_n; $i++
Data preparation false

true

false

If formula contains x or A

true

false
true

$max <$n_Vtrue

false

F

49

igure 2b. Algorithm for identifying inference steps. Part II, Data preparation

If $table[$i][$j] eq $table[$i2][$j2] and
$i ne $i2 and $table[$i][$j] ne ""

true
false

Case $table[$i][$j =~ /A/:
$predicate=true
Case $table[$i][$j =~ /x/: $individual=true

Check if the found part is a predicate

true
false

for $j=0; $j<=$max;

true

false

true

false

for $i=0; $i<=$count_n; $i++

for $i2=0; $i2<=$count_n; $i2++

for $j2=0; $j2<=$max; $j2++

If pairs found in rows $i and $i2
do not appear in the set of found
pairs

$predicate=false
$individual=false

If $predicate=true and
$individual=true

Add pair to set of
potential inference steps

true false

3

false

true

false

true

F

igure 2c. Algorithm for identifying inference steps. Part III, inference steps
50

51

Case 1: Dialogue transformation
Case 2: Program complement
Case 3: Next sentence
Case 4: Front page

Consider synonyms
Text entry

Select sentence

Morphological analysis
Is the morphological scheme in the
database?

Use formula from
database and reassign
predicate and individual
indexes

true

false
true

Categorize morphological
roles based on
morphological symbols

Output formula and
morphological analysis for
user inspection

Complement,
reposition,
withdraw

Case 1: Review content of semantic sets
Case 2: Add new word into the
corresponding semantic set

All sentences analyzed

Case 0: Fix morphological
roles+

Turn on indexing

Start

false

1 2

Until all sentences are reviewed
true

false

Figure 3. Layout of the latest version of DST

Case 1: Front page
Case 2: Exit
Case 3: Add to database

1 2

Case 1: Store
Case 2: Show content
Case 3: Front page
Case 3: Add table

Inference step
inspection by user

Case 1: View data
Case 2: Delete data
Case 3: Front page
Case 4: Exit

Adding inference
steps to database

Case 1: Back
Case 2: Delete table
Case 3: Inference steps
Case 4: Front page
Case 5: Exit

Continue of Figure 3. Layout of the latest version of DST

52

APPENDIX B: CURRICULUM VITAE

53

54

CURRICULUM VITAE
in English

1. Personal data

 Name: Erika Matsak

 Date and place of birth: 19.04.72, Sankt-Peterburg, Russia

2. Contact information

 Address: Vormsi 6-45, Tallinn, 13913

 Phone: +372 56656537

 E-mail: erika.matsak@tlu.ee

3. Education

Educational institution Graduation year Education
(field of study/degree)

St. Petersburg Technology
Institute (Technical

University)
Санкт-Петербургский
государственный
технологический

институт (технический
университет)

1997 Automation Engineer
(инженер по
автоматизации)

Tallinn Pedagogical
University

2004 MS in Multimedia and
learning systems

4. Language competence/skills (fluent; average, basic skills)

Language Level
Russian Native
Estonian Fluent
English Fluent
French Basic skills

55

5. Special Courses

Period Educational or other organisation
2000 Economic Accounting (Tallinn Higher School of

Commerce)
2000 NT administration (Microsoft Certified Technical

Education Center)
2000 "Teachers' Functions" (Merlecons), "Tutoring,

Cooperation with Colleagues, pupils and
parents", "Teacher in Lead of Learning Process"

2002 Teacher Management in Changing Environment

6. Professional Employment

Period Organisation Position
1996–1998 Computer company

ERIMEX
(Master Distributor Acer,
CLR, etc) St. Peterburg.

Advertising, marketing

1998–2002 Kuressaare Gymnasium Teacher of Informatics.
Head of ICT

1998–2002 Training Center OSILIA Teacher of Informatics
2002–2004 Kuressaare Trade School Teacher of Informatics
2002–2004 TPÜ Open University In-

service Training
Teaching „Subjects in the

Computer Class“
2002–2005 Co-ed.Gymnasium of

Saaremaa
Teacher of Informatics

2005–2008 Tallinn University Research worker
2006–... Tallinn University of

Technology
External lecturer

2008–... Tallinn University Lecturer

56

7. Defended theses

Пневмоимпульсное дозирование сыпучих матеориалов. [Pneumo-impulse

dosing of scatter-materials] St. Peterburg Technology Institute

A system for identifying logic constructs in Estonian Language texts. Formula

level. Master's thesis, Tallinn Pedagogical University, Tallinn.

8. Main areas of scientific work/Current research topics:

 Artificial intelligence, Language formalization, Language technology

9. Other research projects

2005–2007 Concept mapping

2008–2010 Development of language software and language technology

resources for the Estonian interlanguage corpus

57

CURRICULUM VITAE
Eesti keeles

1. Isikuandmed
 Ees- ja perekonnanimi: Erika Matsak

 Sünniaeg ja -koht: 19.04.72, Sankt-Peterburg, Venemaa

 Kodakondsus: Eesti

2. Kontaktandmed
 Aadress: Vormsi 6-45, Tallinn, 13913

 Telefon: +372 56656537

 E-posti aadress: erika.matsak@tlu.ee

3. Hariduskäik

Õppeasutus
(nimetus lõpetamise ajal)

Lõpetamise aeg Haridus
(eriala/kraad)

Sankt-Peterburgi
Tehnoloogia Instituut

(Tehnika Ülikool)
Санкт-Петербургский
государственный
технологический

институт (технический
университет)

1997 Automaatika insener (инженер
по автоматизации)

Tallinna
Pedagoogikaülikool

2004 Magister. Informaatika
(multimeedium ja
õpisüsteemid)

58

4. Keelteoskus (alg-, kesk- või kõrgtase)
Keel Tase

Vene keel Emakeel
Eesti keel Vaba
Inglise keel Vaba
Pransuse keel Algtase

5. Täiendusõpe
Õppimise aeg Täiendusõppe läbiviija nimetus

2000 majandusarvestus (Tallinna Kõrgem Kommertskool)
2000 NT administreerimine (Microsoft Certified Technical

Education Center)
2000 "Õpetaja põhifunktsioonid" (Merlecons),

"Klassijuhataja koostöö kolleegide, õpilaste ja
lapsevanematega", "Õpetaja kui õppeprotsessi juht"

2002 "Toimetulek õpetaja rolliga pidevalt muutuvas
keskkonnas"

6. Teenistuskäik
Töötamise aeg Tööandja nimetus Ametikoht

1996–1998 Arvutifirma ERIMEX
(Master Distributor Acer,
CLR, etc) St. Peterburg.

Reklaam, marketing.

1998–2002 Kuressaare Gümnaasium Informaatika õpetaja. IT suuna
juht

1998–2002 Koolituskeskus OSILIA Informaatika õpetaja
2002–2004 Kuressaare Ametikool Informaatika õpetaja
2002–2004 TPÜ Avatud Ülikooli

Täiendõppekeskus.
Informaatika õpetaja

"Ainetunnid arvutiklassis"
2002–2005 Saaremaa

Ühisgümnaasium
Informaatika õpetaja

2005–2008 Tallinna Ülikool Teadur
2006–... Tallinna Tehnikaülikool Välisõppejõud
2008–... Tallinna Ülikool Lektor

59

7. Kaitstud lõputööd

Пневмоимпульсное дозирование сыпучих матеориалов. Sankt-Peterburgi

Tehnoloogia Instituut

Eestikeelsetes tekstides sisalduvate loogiliste konstruktsioonide väljaeraldamise

süsteem. Valemite tase. Magistritöö, TPÜ, Tallinn

8. Teadustöö põhisuunad

Tehisintellekt, Keele fomaliseerimine, Keele tehnoloogia

9. Teised uurimisprojektid

2005–2007 Concept mapping

2008–2010 VAKO – Eesti vahekeele korpuse keeletarkvara ja

keeletehnoloogilise ressursi arendamine

60

RESEARCH PAPERS

61

DIALOGUE SYSTEM FOR EXTRACTING LOGIC
CONSTRUCTIONS IN NATURAL LANGUAGE TEXTS

Erika Matsak

Reprinted with permission, from Proceedings of the International Conference on
Artificial Intelligence. IC – AI’2005. Volume II p. 791 – 797 Las Vegas, Nevada, USA

63

Dialogue System For Extracting Logic
Constructions In Natural Language Texts

Erika Matsak

Department of Computer Science
Tallinn University

25 Narva Road, 10120 Tallinn, Estonia
E-mail: erika.matsak@tu.ee

Abstract: Different areas on intellectual activity
and methodology require different logic. One way to
extract logical constructions in natural language is
to process the presented texts correspondingly. It is
possible to apply special transformation procedure
of texts, which enables to transform a statement in
the natural language source text into a logic
formula. We can find justification why such a
problem cannot be generally solved by using
algorithms (from the aspect of algorithm theory). A
corresponding and functioning dialogue system for
transforming texts in the Estonian language may be
created.

Keywords. Natural language texts. Logical
constructions. Terms and formulas.
Transformation procedure of texts. Description
of algorithms.

1. Introduction

Research work in human and artificial intellect
and its application has brought along the
knowledge that different logic is applied in
corresponding fields and in certain task
categories. For example, intuitive logic is
appropriate for the structural synthesis of
programs (see [Tyugu 1988], [Mints, Tyugu
1982]), the synthesis of programs with sub-
tasks is related to the modal logic system S4.
For describing and analyzing the time-limited
interactive process systems we find the
classical � the so-called weak secondary
predicative calculation appropriate (see
[Lorents, Motus, Tekko 1986] and [Lorents,
Motus 1986]).

The choice of the logic means in the above
described examples are basically based on one
and the same phase, during which we agreed
what kind of natural language texts to use and
after that we found the formal equivalents to

these texts (and as it turned out later) within
one or some other kind of logic.

The aim of this paper is to research this phase,
during which the natural language texts obtain a
strict presentation within one or some other
type of logic frame. Hereinafter we agree to
confide ourselves to the so-called formula level
and not to consider the deduction
device/contrivance/apparatus.

2. Lorents�s Procedure Of Texts

Transformation

Next we would view the procedure, first
described and applied in the book by P. Lorents
(see Lorents 2000]). The procedure is divided
into seven phases, which application sequence
and number is unregulated. The basic
requirement for performing each phase is to
guarantee the same meaning or thought of the
source text and the final text. During the
mentioned phases the following processes
practically take place in the parts of the texts:
- relocating
- supplementing (or adding new parts)
- reducing (or removing the parts)
- replacing (or replacing some part by a new

text)
- extracting symbols (or extracting the parts

of texts, which have a role of some logic
alphabet symbol)

- categorizing the symbols (specifying the
role of extracted parts of the text e.g. if we
deal with a symbol identifying an object,
the object�s characteristic feature or the
relationship between objects or even a
symbol identifying a logic operation, etc.)

- positioning symbols (placing symbols in
their appropriate places in logical
contractions).

Examples:

- �Are together.� → Supplementing →

�We are together� → P1(q1),
where P1 � are together, q1 � we.

- �Yes, the cat eats fish.� → Reducing →

�The cat eats fish� →
P1(q1, q2), where P1 � eating, q1 − cat, q2
� fish.

- �Finally the kitten has found a friend� →

Supplementing → �Before the kitten did
not have a friend, but now the kitten has
finally found a friend.� → Replacing →
�Before the kitten did not have a friend, but
now the kitten has found a friend.� →
¬A1(x1, x2, t0)& A1(x1, x2, t1), where A1 −
have, x1 � kitten, x2 � friend, t0 − at first
time moment (before), t1 − at final time
moment (now).

As mentioned above, in every phase it is
required that the meaning of the initial text and
final texts at the end of the phase had the same
meaning. And it is the transformers decision to
decide if it is so or not. Consequently we may
state that transformation procedure cannot be
fully/completely automatic which at the same
time does not exclude the possibility of
corresponding dialogue system in itself. The
necessity of dialogue is relevant also because of
certain algorithmic-theoretical aspects, which
we would like to characterize briefly in the
following part.

Namely, natural language texts are formations
consisting of symbols (words, expressions,
etc.). If we supplement the natural language
texts with mathematical-logical symbols, we
actually do not change the situation. We still
have a certain construction, written down in
some alphabet. We may view the
transformation phases of texts as changes in
some replacement system as for example in the
so-called Thue system (see e.g. [Maltsev 1986],
chapter VI, §14.1). We certainly know that
even in case of a �very modest� replacement
system the problem of replacing words with
equal equivalents has no algorithmical solution.
So we need an �oracle� (see e.g. [Rogers H.
1976]) or a user working with a program in the
dialogue mode.

3. General Characterization Of
The Dialogue System

The observed dialogue system was possible
thanks to the software created by the company
FILOSOFT �HTML morph analyzer of the
Estonian language� and �The synthesizer of the
Estonian language�, located at www.filosoft.ee
and enable to get morphological signs of words
and vica versa � formation of words in required
morphological form using the basic form.

At this point we may point out that basically the
above-mentioned dialogue system algorithm
can be applied also in other languages, which
have corresponding linguistic programs,
enabling to perform automatic inquiry and
getting feedback about the morphological types
and programs, which enable synthesis. Besides
it is necessary to carry out a research to
establish the connections between the logical
roles and morphological classes in a certain
language.

 In the discussed dialogue system we have two
modes to transform the sentences.
The first mode so to say is teaching the
program. The user transforms the sentence
phase after phase and writes the intermediate
variants of the text into the text fields.
Each sentence is analyzed morphologically and
the outcome is a saved scheme of
morphological signs. In each sentence the
change of word order and when adding new
words the morphological form of the sign (the
order of the scheme) is memorized.

Example:

We teach transformation to the program with
the following sentence �I play with a beautiful
doll�. In the learning process the following
scheme of morphological signs is created:

= _PP+#sg+#1# _V_+#pr#+#s# _Pre
_A +#i# _Adj+#sin# _N+#sin# =
__PP+#sg#+#1# _V_+#pr#+#s# _Pre _A+#i#
_N+#sin# new(&) new (_A+#d#) _N+#sin#
new(_V+#pr#+#s#!) _Adj+#sin# =

(Morphological signs are explained in the table
below)

Table 1
Morphological signs Explanation
_PP+#sg+#1# Pronoun, single, first

form
V+#pr#+#s# Verb, present, single
_Pre Preposition
_Pre _A +#i# Article, individual
_Adj+#sin# Adjective, single
_N+#sin# Noun, single
new(&) New word - and
new (_A+#d#) New word: article - the
new(_V+#pr#+#s#!) New word: verb,

present, single, �are�
verb form - is

and the scheme of the order:

0 1 2 3 4 5 =0 1 2 3 5 new(&) new (_A+ #i#) 5
new(_V+#pr#+#s#!) 4

In the initial sentence the words are enumerated
as follows: 0 (I), 1 (play), 2 (with), 3 (a), 4
(beautiful), 5 (doll). In the transformed
sentence the order of words is changed, e.g. in
the fifth position there should be a word with
number 5 (doll), not 4 (beautiful). In addition
three new words are created:
new & (and), new _A+#d# (the) and new
_V+#pr#+#s#! (is).
The comparison of words is organized with the
help of initial words and via the way of creating
the ordering scheme and it is not important,
which is the form of the word in the first
sentence and which is the form in the
transformed sentence.

The second mode is the automatic
transformation according to the corresponding
morphological scheme found prior. The mode
is based on principle that the morphological
schemes are equal and we obtain the results in
the formal image of equal logical constructions.

Examples:

 �I play with a beautiful doll� → �I play
with a doll and the doll is beautiful� →
P1(q1, x1)& P2(x1).

�I talk with a new friend�→ �I talk with a
friend and the friend is new�→
P1(q1, x1)&P2(x1).

�At my home I have an aquarium, where fish
swim� → �The home is mine and at home I
have an aquarium and fish swim in the
aquarium� → P1(x1,)& P2(x1, x2)& P3(x1, q1).

�At my school I have an auditorium, where
teachers give presentation� → �The school is
mine and at school I have an auditorium and
teachers give presentation in the auditorium.�
→ P1(x1,)& P2(x1, x2)& P3(x1, q1).

4. Description Of The Algorithm in
general

index.html. Authorization (users need special
codes)

index.pl. Text typing. Sentences must be typed
grammatically correctly and at the end of
sentences there must be a period.

e1.pl. Errors controls. Sentences and words
separated from the text. Truth-value existence
check in sentences (if the sentence including
the verb is not in the form of imperative or
question, the software defines the truth-value
existence).

If the user disagree of the software choice, he
can change it to the opposite. All sentences,
which truth-value existence is not present, are
extruded from the next analyze.

e2.pl. Sentence analyze, which includes
morphological analyze and logical operators
searching.

All necessary synonyms for each group of
operators or symbols are kept in corresponding
files, written and saved in accordance with
special research.

Detecting time symbols is divided into two
main blocks. First (tense keyword search) is
implemented in e2.pl, second (tense form
analysis of the verb) in e3.pl.

The user must confirm software-processing
choices. As result script creates morphological
scheme of sentence.

The software detects the next operators and
symbols (table 2):

Table 2
denotate Some words examples sign
Negotiation no, not, false, wrong,

incorrect, improper
¬

Conjunction and &
Disjunction or ∨
Implication then ⊃
Equivalence same, equivalent ⇔
Universal
quantifier

all, any, anyone,
anybody, every,
everything, everybody

∀

Existential
quantifier

exist, existent, existing ∃

always, certainly,
surely

 Modals

maybe, possible,
possibly, probable

◊

Time
symbols

tomorrow, after,
afterward, later, now,
current, earlier,
sooner, previously,
yesterday, previous

t1, t2,
ti, ti+n

e3.pl. Sentence part extracting (an according to
logical operators existence). Logical roles
definition. Formula creation.

Individuals (in Estonian language)
automatically separated by the software are:
nouns, pronouns, proper nouns, adverbs.
Predicates are described in table 3 below.

Table 3. The Estonian language predicates
automatically separated by the software

1.adjective

2. verb

3. superlative

4. verb �are�
forms+ adjective
(example: are
blue)

5. two or more verbs as
one (example: are
going)

6. verb �are� forms+
noun in nominative
(example: is teacher)

7. verb �are� forms+
superlative (example:
will best)

All of individuals and predicates may be
presented in the sentence for a few times. A
special module separates such words and the
index correctly in the formula.

Individual are marked as q1, q2, qi, qi+1, and in
case of any repetition of some individual they
are marked as � x1. x2, xi, xi+n.

Drawing 1. Formula creation.

Predicates are marked as P1, P2, Pi, Pi+n and in
case of any repetition of some predicate then �
A1, A2, Ai, Ai+n

The script also analyzes verb tense forms for
time symbols excluding. If the sentence
consists of two or more parts and each part
includes verbs or verb combination, the
software compares those forms. If they are not
equal (the meaning of the tense), then time
symbols indexation.

At the screenshot (drawing 1), the software
creates the formula for the sentence: �Maybe
the weather will be beautiful tomorrow�.

In the previous script it was defined that maybe
is modal, tomorrow is time symbol.

Here the user must confirm, that:

− This event will happened at moment t0
− Will be beautiful is a predicate
− Weather is an individual

If the software suggestion is not right, the user
can choose the logical role manually.

 If sentence needs transformation, the users
may use two kinds of modes.
transform.pl. This script checks the saved
schemes and advice of the transformation
mode.

If the scheme is found, the dialog-system shows
to user the initial sentence, which has been used
for software teaching. It is also possible to
ignore the suggestion of transformation mode
and teach step by step.

study.pl. This mode teaches the dialog-system
step by step.

The user types each transformation step as a
sentence and the script executes the
morphologic analysis. The software saves all
steps in necessary files.

Studying is protected by password. It is very
important that the person, who teaches
software, knows enough of sentence
transformation.

 v1.pl. Reports of transformation and necessary
schemes creation (morphological scheme and
order scheme).

Drawing 2. Automatic Transformation.
Initial sentence: �I drive by a new car�. After transformation we have: �I drive by car and the car is new�

Next mode gives an opportunity to use
transformation automatically.

autotransform.pl This script uses �The
synthesizer of the Estonian language� and gives
words in requested forms an according with
morphological scheme and order scheme saved
before.

The dialog-system only shows the initial and
final sentence, all other steps (if exist) the script
executes automatically.

The user must confirm some words in the
transformation result sentence (synthesizer
gives a few output for any word).

Each word is displayed in the textbox and the
user, if necessary, can correct the words. As a
matter of fact, testing has proved that such
necessity occurs very seldom.

e4.pl. Text and formula addition to the user
database.

It is possible to select the date of the sentence
transformation and use two databases: personal
and research.

The database may be copied as a table in the
Microsoft Office and other programs (for
example MS Excel, SPSS) for the next analysis
or for creating a report.

e5.pl. Shows all sentences typed before, in
index.pl. User may select one of them and go
back to index.pl. It is also possible to delete
sentences or finish work.

Software interruption as an exit button is added
to most of scripts (except for study.pl, v1.pl),
but formula creation finishes in e3.pl.

The general scheme of connections between
scripts is shown in drawing 3.

About the software

The program is realized via perl and javascript.
If you want to use the program the computer
must have the installed Microsoft Internet
Explorer beginning with version 6 and with
Java support.

As far as we open the program in a new pop-up
window, the installed firewall must allow it.

For using logical signs/markers you need the
support of charset=iso-10646-1.

About the hardware

The computer has to be connected to the
Internet. The monitor resolution � at least
800X600, processor � at least 400MHz,
memory � at least 64MB, speed of the network
(or the modem) � at least 56KB/sek.

The software may be used also with lower
parametric computer, but in this case the
process will be slower and the results may be
displeasing.

Pluses/Advantages

The described dialog-system is created first and
foremost for logical research, but it may be
applied in higher education, if students study
the human language transformation into logical
formula.

− Without software, transformation is
going to use many time recourses.

− Without software, people use in

transformation procedure its
imagination and formula result may be
different for the same sentence.

Using the dialog-system makes the
transformation process faster (the user must
only confirm all necessaries steps). If the
sentence is serious or abstruse, then the high-
knowledge users teach the software and
hereafter automatically solutions are suggested.

5. Summary

Logical thinking is one of the attributes of
human intellect. It plays an important role in
the formation of people and education
processes. It is necessary to point out that
teaching different constructions to an
inappropriate age group will probably prove to
be ineffective.

The most important sphere of life where the
logic manifests itself is the usage of human
language.
Therefore this dialog-system, which transforms
the Estonian language sentences into logic
constructions, gives us the possibility to

analyze human thinking and adjust literature for
educational purposes.

There are very many languages in the world
and the language groups differ a lot from each
other, but we can observe certain structural
similarities in them. Thus, at some point of time
we may be able to find a universal formal
language, which would present logic
constructions from every language.

Reference

1. Lorents P., Motus L., Tekko J. 1986. A

language and calculus for distributed
computer control systems description and
analysis. 4th IFAC/IFIP Symposium on
Software for Computer Control, Graz,
Austria May 20 � 23.

2. Lorents, P. , Motus, L. 1986. Logical tools
to describe and analyze the interactive
system of processes with prescribed time
limiters. IV conference of the USSR
�Application of methods of mathematical
logic.� Theses of the presentations. Institute
of Cybernetics of Estonian Academy of
Science. Tallinn.

3. Lorents P. 2000. The language and the

logic. EBS-PRINT. Tallinn.

4. Maltsev A. I. 1986. Algorithms and

recursive functions. �Science�. Мoscow.

5. Mints G., Tyugu E. 1982. Justification of

the structural synthesis of programs.
Science of computer programming 2(3),
215-240

6. Mints G., Tyugu E. 1987. The

programming system PRIZ. Journal of
Symbolic Computation, (4).

7. Rogers H. 1967. Theory of Recursive

Functions and Effective Computability.
McGraw-Hill Book Company. New York.
St Louis. San Francisco. Toronto. London.
Sydney.

8. Tyugu E. 1988. Knowledge - Based

Programming. Addison-Wesley.

USING NATURAL LANGUAGE DIALOG SYSTEM DST
FOR DISCOVERY OF LOGICAL CONSTRUCTIONS OF

CHILDREN'S SPEECH

Erika Matsak

Reprinted with permission, from Proceedings of the International Conference on
Artificial Intelligence. IC-AI 2006. Volume I p. 325 – 331 Las Vegas, Nevada, USA

73

USING NATURAL LANGUAGE DIALOG SYSTEM DST
FOR DISCOVERY OF LOGICAL CONSTRUCTIONS OF

CHILDREN’S SPEECH

Erika Matsak
Faculty of Information Technology
Tallinn University of Technology

15 Raja, 12617 Tallinn, Estonia
E-mail: erika.matsak@tlu.ee

Abstract: Logical constructions in
speech of 4-6 years old children are
investigated by using the dialog system
DST for transformation of the natural
language texts. The research has brought
up the point, that children are able to
operate both on the first-level (predicate)
calculus, and higher-level predicate
calculus – that means formulas creation.
It is remarkable how the constructs of
making conclusions are used in texts:
they occur in representation of inference,
ordering of time moments, and in the role
of conjunction and disjunction operator.

Keywords: dialog system for extracting
logical constructions from natural
language text, hight-level logic
constructions, modalities, gradation for
assessment as structures in the 4-6 years
old children texts.

Introduction:
The present paper describes shortly the
results of implementation of the dialog
system for extracting the logical
constructions from natural language text,
created by author.
[Matsak 2005]

The aim of system creation and
development is infotechnological
assistance for researches, which helps to
understand the formation of logical
means and implementation in children’s
evolution.

The similar research has been planned by
prof. Lorents at about 15 years ago with
scientists of Estonian Academy of

Science, Cybernetic Institute, Technical University of
Tallinn and University of Tartu. Unfortunately, the project
was stoped because of financial problems. And now, years
later, the mentioned research is continued by Tallinn
University, Technical University of Tallinn and Estonian
Business School.

The one of the main phase is the collection of children text
and transformation in a form, which is able to bring up the
logical constructions: primarily logical formulas and
inference rules.

The dictaphone recording of children speech has been done
thanks to student’s help, who had a practise in pre-school
institutions. The speech has been typed into computer as text
and transformed by DST system into logical formulas.

Because of organisational reasons, it has been decided, at
first to collect and analyse the 4-6 year old children speech-
texts. The initial results are described in this paper.

The analysis of children’s texts indicates the existence of
quite complicated logical constructions. On the formulas
level it is as follow:

•Children use all components of first-level predicate
calculus, including:

-sorts of individuals
-time moment and time related symbols
-unary and n-ary predicates
-all logical operators (¬, &,∨,⊃)
-quantifiers (∃,∀)
-modalities (◊, ÿ)

Remark: operator of equivalence ⇔ did not appear in texts.

•Children use linguistic constructions for implication for the
following events:

-for logical implication
-for ordering of time moments

-in the role of conjunction and
disjunction

•Children use constructions related to
higher-level (at least 2-level) logic
•Children operate with many different
gradations, applying the second-level
predicates and functionals.

All findings mentioned above brought up
the necessity to improve the DST dialog
system by adding new modules.

1. The dialog system for
extracting logical
constructions in natural
language text.

1.1 Lorents´s Procedure of Text
Transformation

The procedure of text transformation was
first described and applied in the book by
P. Lorents (see Lorents 2000]). It is
divided into seven phases, where the
order of usage and number of steps is
inesential.
The main requirement for performing
each phase is to save the meaning of the
source text in the final text. The steps of
the procedure are as follows:
- relocating
- supplementing (or adding new parts)
- reducing (or removing the parts)
- replacing (or replacing some part by a
new text)
- extracting symbols (or extracting the
parts of texts, which have a role of some
logic alphabet symbol)
- categorizing the symbols (specifying the
role of extracted parts of the text e.g. if
we deal with a symbol identifying an
object, the object’s characteristic feature
or the relationship between objects or
even a symbol identifying a logic
operation, etc.)
- positioning symbols (placing symbols in
their appropriate places in logical
contractions).

 Examples:
 Maybe we play something interesting. →
supplementing → Somebody may play

something interesting. → replacing → Exist a person, who
may play something interesting. → supplementing → Exist a
person, who may play something and this something is
interesting. → positioning → Exist a person and exist
something, the person may play and this something is
interesting. → replacing → Exist a person and exist a thing,
the person may play a thing and the thing is interesting. →
categorizing the symbols →
(∃x1) (∃x2)P1(x1 x2)& P2(x2)

1.2. The DST dialog system

The dialog system for extracting the logical constructions
from Estonian text uses the HTML morph analyzer and the
synthesizer of the Estonian language, located at
http://www.filosoft.ee. Dialog system automatically executes
the query to Filosoft company software for receiving
necessary morphological signs and visa versa for creation of
words in required morphological forms using the basic form.
The discussed dialogue system has two modes to transform
the sentences. The first mode is teaching the program. The
user transforms a sentence phase after phase and writes the
intermediate variants of the text into the text fields. Each
sentence is analyzed morphologically and the outcome is a
saved scheme of morphological signs. The change of word
order and adding new words and the morphological form of
the sign (the order of the scheme) in each sentence is
memorized. The second mode is the automatic
transformation according to the corresponding
morphological scheme found prior. The mode is based on
principle that the equal morphological schemes give the
equal logical constructions.

2. Detected logical constructions

2.1 Meanings and roles of “then”
The traditional role of “then” is logical implication.
Whereby, one of the “pure” roles is the possibility to
represent “if … then” sentence as “from … follows that”.

Examples ∗:

If you want to get money back, then you get it.
(Kui tahad raha tagasi saada, siis saad)
P1(x1, x2)⊃P2(x, x2)

If this dinosaur comes, then it eats you.
(Kui see dinosaurus tuleb, siis ta pistab sind kõhtu)
P1(x1) ⊃P2(x1, x2, x3)

 All examples in this paper are created from children’s text. The
age group of children is 4-6 year old.

http://www.filosoft.ee/

If he does not come to visit me, then I
can’t marry him.
(Kui ta ei tule mulle külla, siis ma ei
saagi temaga abielluda)
¬P1(x1, x2, x2) ⊃¬P2(x1,x2)

The second role of “then” is a time
instance allocation, which may be present
as a simple moment and as several
moments, which are ordered in more
complicate sentences. If the premiss does
not have a predicate, the role and
meaning of “then” is a time moment of
the action. In a situation, when a sentence
with “then” includes more than two parts
with own predicates, there will be several
time instances, that are ordered according
to sentence grammatical scheme. If the
number of predicates is more than the
number of time moments, it means, that
some parts of sentence describe the
situations, that have happened at the
same moment.

Examples:

When nobody wants to listen.
(Siis, kui mitte keegi ei taha kuulata)
¬(∃x)P(x, t)

And then we went to cow-house by
bicycle and then gave them to eat and
then caressed them.
(Ja siis me läksime lehma lauta rattaga
ja siis andsime neile süüa, ja siis tegime
pai neile.)
P1(x1, x2, x3, t1)&P2(x1, x4, x5,t2)&
&P3(x1, x4, x6,t3)

Third role of “then” could be defined by
logical operator, which is positioned
before, it may be present as conjunction
or disjunction.

Example:

I like to play and then to sleep, sleeping
is very nice.*

* We changed the verbs, which answer to the
question “what is doing” by combination of
nouns with verb “commit”. For example, “I
like to sleep” is replaced by “I like commit to
the sleeping”.

(Meeldib mängida ja siis magada, hästi mõnus on magada)
P1(x1, x2)&P1(x1,x3)&P2(x3)&
&[Val(x3)= ε]

2.2 The second level predicate calculation in children’s
text

The children’s text transformation experience showed the
appearance of the second level predicate calculation. The
situation when predicates may be used as variables, belong
to the second level predicate calculation.

In particular, children in the age group of 4-6 year use many
kinds of assessment for individuals, predicates and time
amount.
For example, in the sentence “The sleeping is very
pleasant”, the text transformation gives: The sleeping is
pleasant and the value of pleasant is “very”.→
P(x)&[Val(P(x))=ε]. Here we use the symbol of binary
relation ∫ for categorization the text as notation and
denotation presented by P. Lorents in 2001. We read
A∫B as the meaning of A is B, or A is a name or a symbol
for B.

x ∫ sleeping
P∫ is pleasant
Val(P(x))=ε ∫ value of pleasant is “very” (see also p2.2)

Remark. Probably here would be conventional to use “very
pleasant” instead of “very” as the assessment. In this case
we need to consider such things as, for example “a little bit
sweet”, “quite salty”, “too hot” etc. It is more simple to use
as assessment “A little bit”, “quite”, “too” etc., which is
possible to implement for predicates and formulas. For
instance, the “sweet is good” (Val(P)=ε) or “it is good, that
cake is sweet” (Val(P(x))=ε)

The logical constructions, which children use include the
assessments of predicates.
For example in the sentences “He can not walk at all (Ta ei
saa üldse käia.)” or “I want to fly a little (Ma tahan
natukene lennata.)” it is clear, that the truth-value
calculation depends not only on construction with predicates
{“walk”, “fly”}, individuals {“ he”, “I”} and logical operator
“¬”, which belong to first level calculation alphabet. It is
also necessary to understand what roles play such elements
like:
{“at all (of walk), “a little (of want)”}. It is brought out the
predicate type’s relation, where the variable is another
predicate.

It may be necessary to use a second-order
predicate, which is denoted by Val and
which means the assessments process.
[See also 3.]

The sentences, which include such part as
“really do, really have etc”, have special
semantics. It means that some argument
is controlled and the result is “true”. A
second-level predicate may be used with
sign ╞ , which means, that statement
interpretation is true.

╞(P(x)) ∫ ϕ(P(x))=1, where the ϕ is the
formula interpretation.

Examples:

It is really my star. (See ongi minu täht.)
╞ (P(x))

I have not found a name for them yet,
really. (Ma ei olegi neile veel nime välja
mõelnud)
¬ [╞ (P(x1, x2))]

2.3 Modalities in the children text

Modality symbols point at states, whose
probability is “definitely” or “may-be”.

Examples:
Everything is red, maybe. (Kõik on
punane võib-olla.) ◊[(∀x)P(x)]

Maybe these cars parked at front. (Võib-
olla need autod parkisid ette) ◊P(x1, x2)

But this is yours, perhaps. (Aga see on
sinu oma, vist) ◊P(x)

More difficult logical constructions are
associated with semantic of words “can”
and “may”.

Here is one of possibility to interpret the
sentences like “I can do something” and
“I may do something”:

•The statement that somebody may do
something means that may-be is the
possibility to do something and it is real:

╞ [◊P(x1, x2)]

Example: I may fall down (Ma võin alla kukkuda)

•The statement that somebody can do something means that
if somebody asks to do something then this really will
happen, if somebody really performs this.

╞ [ÿ ◊ P(x1, x2, t)]

Example: But I can read only with eyes (Aga mina võin
ainult silmadega lugeda)

2.4. About having and belonging

There are different ways for understanding the words, that
mean “be possessed by”. For example the sentence “This is
doctor's article” could be transformed to “This article
belongs to doctor”. In the first case, the formula can be
written as P(x1, x2), where
P ∫ be doctor's thing
x1 ∫ this
x2 ∫ article

The second case could be (∃x)(∃H)(x∈H), where
x ∫ article
H ∫ the set of doctor's things

It is difficult to create the formulas for such sentences as “I
take your dog away (Ma võtan sinu koera ära)” . → At the
first moment the dog belongs to you and in the next moment
I commit the getting proccess and in the third moment the
dog does not belong to you:
 (∃x1)(∃H)[(x∈H, t1)&P(x1, x2)& ¬(x∈H,t2)]

3. The assessment gradation

3. Structures for assessments

The structure 〈H;G〉 is the gradation of assessment if it has
been agreed to call the elements of set H as assessments and
it is decided to use the relations of G between the
assessments and theirs properties.
 [P. Lorents 2005]

Assessment is a process, where the aim is to assign a value
to a “thing”.

3.2 Values of property, quantity, activity and time
amount

The values of property, quantity, activity and time amount
can be graphically represented as a partially-ordered
structure, where some element cannot be ordered in

principal without additional parameters.
For example, it is impossible to decide
whether “a little” is more than “not
much” if it is not defined earlier (drawing
1).

The illustrated graph uses the words
extracted from the children texts, and all
synonyms are not shown.

The dialog system denotes the values of
property, quantity, activity and time
amount as ε and the assessment process
as Val(P(x))=ε in predicate case, Val(x)=
ε in quantity and Val(t)=ε in time amount
case.

3.3 Values of time

The time symbols are used in the
following events:

•If the sentence consists of two or more
parts, where verbs are in different time
forms.
•If time-related words are used, like
tomorrow, now, later etc.

•If the sentence includes the partially-
ordered time moments.

When somebody specifies the time
moment by time-related word, it may be
interpreted as time moment determined

by concrete value. Whereat the structure of time values, like
the structure of values of assessments is partially-ordered
(drawing 2). That’s why it is impossible always to say,
whether an event happened before or later.

The dialog system denotes such values as τ and the process,
when somebody defines this value, as Val(t)=τ.

Example:

I had lately the birthday. (Mul äsja oli sünnipäev)→ Exist a
time moment, when I had birthday and the value of time
moment is lately.

(∃t)P(x1, x2, t)&[Val(t)= τ], where

x1 ∫ I
x2 ∫ birthday
P ∫ had
t ∫ the time moment
τ ∫ lately
Val(t)= τ ∫ the value of
time moment is lately.

Drawing 3 shows how the DST system detects the
morphological construction of this sentence. User must
conform all suggested forms. Red font draws the attention to
the partially-ordered time symbol in this example.

4. New developed modules of DST dialog system

Module e2.pl. Sentence analysis, that includes
morphological analysis and searching of logical operators.

In accordance with the main scheme, the
user must confirm software-processing
choices and as the result, the script creates
morphological scheme of sentence.
A new module has been created for
extracting values, which uses saved files
with synonyms for measure values, which
includes the words, collected from
children texts. There are two groups of
values. The first includes the values of
property, quality, activity and time

intervals. The second presents the values of time amount. If
an existence of a value is detected, user has to choose also
the type of variable: individual, predicate or time amount.

Drawing 1

Drawing 2

Values of
property,
quantity,
activity

and time
amount

Values of time
intervals

Most, a
little, a bit,
a few, not
much, not
many,
very, ever,
so, only,
whole,
many, too,
great

Anymore, now, first
of all, first off, never,
ever, sometime,
immediately, after,
yet, just, before, not
ever, long ago, right
now, currently,
presently, soon, soon
enough, early, at
first, in the
beginning, already

The module extracting time symbols
identified items only in ordered gradation
in the previous version of dialog system.
New release includes the possibilities to
use the partially ordered gradation with
values of time intervals (Drawing 3).

In new version of DST the present time moments are saved
in a separate file. It gives a better possibility to order the
moments.

Implication module is complemented with time symbol
choice and possibility to ignore it, if it is consolidated with
disjunction or conjunction.

If morphological analyser has detected the verbs with
“really” semantics (this construction in Estonian language is
a bit different), the DSP dialog system suggest the usage of
symbol ╞ in logical formulas.

The special module has been added for processing the words
“can” and “may”. At first e2.pl requests the conformation of
words and then keeps them in memory. Next script (e3.pl),
which creates the logical formulas according to previous
script results, adds necessary logical symbols, such as ÿ , ◊,
╞, parenthesis and time moments.

A new module seaded.pl has been added, that gives an
opportunity to insert new words in files, which makes
available conjunctions, disjunctions, negotiations, universal
quantifiers, existential quantifiers, modals, implications,
assessments, time symbols in past, present and future
(Drawing 4). User may also see the file contents, if it is

Drawing 3

necessary. Program does not add the
same words twice in the file.

5. Remark (about next stage).
In order to extract from the natural
language those constructions which
follow the applications of some
derivation rules, the system should
operate not only with some single
sentences but also with the passage
consisting of several sentences. For that
purpose an additional choice should be
realized in the first script “Analyze
totally” and with it repeated individuals,
predicates etc. will be indexed on their
first appearance on the basis of the given
index. To extracting formulas, a new
function will be applied, which will offer
logical signs to the parts of the text being
transformed depending on the fact
whether those words appeared earlier or
not.

6. Conclusions
Logical constructions, which appeared in
texts of 4-6 years old children has been
investigated in the present paper. Here it
is limited to level of formulas (inference
rules have not been studied).
Logical constructions, which appeared in
texts have been extracted by DST dialog
system, which is created by author in
2005.
It has been demonstrated that children
use quite complicated logical
instruments, including multisorts object
symbols, modalities, higher-order

predicates and functionals. Also the application of many
different gradations of assessment (as partially-ordered
stuctures) has been demonstrated.

6. References

Curry H. B. 1963. Foundation of Mathematical Logic.
McGraw-Hill Book Company. New-York, San Francisco,
Toronto, London.

Feys R. 1965. Modal Logics. Gauthier-Villars. Paris.

Frege G. 1892. Über Sinn und Bedeutung. Zeitschrift für
Philosophie und philosophische Kritik. Nr 100. p. 25 -50.

Lorents P. 2001. Formalization of data and knowlwdge
based on the fundamental notation-denotation relation.
Proceedings of the International Conference on Artificial
Intelligence. IC – AI’ 2001. Volume III. p. 1297 – 1301.

Lorents P. 2004. Knowledge and understanding.
Proceedings of the International Conference on Artificial
Intelligence. IC – AI’ 2004. Volume I p. 333 – 337.

Lorents P. 2001a. Süsteemse käsitluse alused. (in Estonian)
EBS Print. Tallinn.

Matsak E. 2005. Dialogue system for extracting Logic
constructions in natural language texts. Proceedings of the
International Conference on Artificial Intelligence. IC – AI’
2005. Volume II p. 791 – 797.

Drawing 4

SYSTEM DST FOR TRANSFORMING NATURAL
LANGUAGE TEXTS, REPRESENTING ESTIMATES AND

HIGHER ORDER PREDICATES AND FUNCTIONALS

Erika Matsak

Reprinted with permission, from Proceedings of the 3rd International Conference on
Cybernetics and Information Technologies, Systems and Applications: CITSA 2006.
Volume III p. 79 – 84. Orlando, Florida, USA

83

���������	�
���	���
��������������������	�������������������

�������������������������������������� ���������!

���"�#$	�$%

����������	
�	����������	���	�������	��������
�������	����������

��	�����	�
���	�����	��������	 ��
���
 !����"	���#�$�����#%���$��

$&�	�$'	

&
'����	�
��������
���	(��	��	��������	��	�������	���'��'�	��)��	
��	�)�������	*�	���	����
'	�������	(��	��	�������	*�	��	���
�	
��	����$	+��	�������'	���	��	��������'	�
'����	�
��������
��	��	
����� 	
� 	 ������� 	
� 	 �'� 	 , 	 - 	 .� 	 (� 	 ����
����� 	 � 	 ���� 	 �
�	
�)�����
�	
�	��	������	!	�����	
�	����	�
	�	���	�
	������
��	��	
��)��	���	�)�����	�
���������	���������	/�������	
�	��������
��0	
���	�'��	
����	����������	���	������
����$

%��(����) ��� 	���	����
'�� 	������	�
� 	 ������
����' 	�������	
���'��'� 	 ��)��$ 	 1����� 	
� 	 ��
������ 	 2������� 	 �������� 	 ��� 	 ����	
����������	������	
�	����	��
���$

*!�+�	���,'	+��

3��	���	���	���	(
�#��'	��	���������	��
*���	�
�����	�������	
���������	�
'��$	4
�	�)������	��	�
�����	�������	�
	��(�	
��	����	
*�������� 	 �� 	����� 	#�
(�	 ��
�	5����
���6� 	 ����$ 	 7� 	 ����������	
��������	
�	��
'�����	
��	�����	�������
������	�
'��	/�8�'�	�9::;	
�8�'��	�����	�9:��	�9:<0$	��	�
'���	���	����	*�	����*���	/�
�	
��������� 	 ��� 	��� 	 ��� 	
� 	 ��� 	 ��� 	 �
 	 ��������� 	 �����*����	
�
��������	���$0� 	*�	����!�������	 ������������
���	���������	������	
�)�
�� 	 ���$ 	 4
� 	 �)������ 	 � 	 ������ 	
� 	 �
'���� 	 �����������	
�����
��� 	 �
� 	 ������� 	
� 	 ����������� 	 ��
������ 	 (�� 	 ����!
�
��������� 	 /&
������ 	 �8���� 	 ��##
 	 �9:.0 	 ������� 	 ��
� 	 ��	
���������	�����	
����	���������	���������	�����	
�	����	��	��	�
��
(��'"	
��	
�������	(��	�����*���	�
�	������	��2������	
�	��*������	���'��	
��������'	��2������	
�	��*������	���'�	
�	�����	
�	����	�
�����	

�	
�	����	���������$

7� 	
���� 	 �
 	����������	(��	 �
'�� 	
� 	(��	������	
� 	 �
'����	
�����������	��	*���'	����	��	
��	
�	��
���	���������
�	�
�����	

�� 	 ���� 	 ������
�� 	 ������� 	 ���'��'� 	 ��)�� 	
�������' 	 �� 	 ��	
���������
�	�
����	���
	��	���'��'�	
�	�����������	�
'��$	5�	
�)������� 	 �)����� 	 ��� 	 ��� 	 *� 	 � 	 ���� 	
� 	 ����� 	(������ 	 *� 	=$	
=���>��	/=���>��	�9?.0	(���	�	�����	�
������
���	/���
�'	�	
�����������0 	 ��)�	(��	�
�������	����!*�!����	 ���
 	�
������	
�	
�����!
����	���������	��������$	���	(
�#	���	
*��
����	*�	�����	
�
�������� 	 ���
�����$ 	 5� 	 �� 	 ���� 	 ����� 	 �����*�� 	 ����
'��	
�������	���	*�	�����
���	���	�������$	��	���	������	/�����#	
����0	�����
���	*�	��	���
�	��	
��	
�	��	�������	
�	���	#���$	
7�	��	*����	
�	��	�����!����	�
������
�	��
������	������*��	*�	
&
�����	/&
�����	�����	�����#	����0$

+��	�������'	���	��	��������'	�
'����	�
��������
��	��	�����	

�	�������	
�	�'�	,	-	.�	(�	����
�����	�	����	
�	�)�����
�	
�	��	
������$	4����	
�	����	�
	�	���	�
	������
��	��	��)��	���	�)�����
@	�
��������
@	 ��������	/�������	
�	��������
��0
@	A�'��	
����	����������	���	������
����$
7� 	 �� 	������� 	(
�# 	(�	������*� 	 �� 	 ���������� 	�)�����
�� 	���	
�
���*�������	
�	����	���������
�$

-!�����	�'�$�$'	��+.$	+���� �	��

��	��+$��/,���0�	�#

�������� 	 ������
�����
� 	 �
 	 �� 	 �
'�� 	 �
����� 	 *���� 	
� 	 ��	
'����������	�����>��	(��	
�������	�$'$	��	�
���	���	��''���	
���	��	 ������������ 	���*�	��	����������	���$ 	���	'����������!
�
'���� 	 ������
� 	 �� 	 �
�������� 	 ������*�� 	 �� 	 �� 	 ���� 	 ����	
��*������
�$	B�����#�	����C$	4
�	'����������	�����>�	��	�������	
�
��(���	 ��	������� 	(��	���	�
��������� 	(�� 	�
��(���	�
�	
�
'���� 	 �
����� 	 ������
�$ 	 �� 	 ��� 	 ����
' 	 ������ 	 ���� 	 ��	
47&3�34� 	1�	#�����������2����
 ���������������3��

�
�����	��	���"DD((($���
�
��$��D$

7� 	 �� 	 �
���*�� 	 /�$'$ 	 �
� 	
��� 	 ���'��'� 	 ����
���0 	 �
 	 ��� 	 ��	
����
'
�� 	�
�� 	 �����>��� 	 �
� 	
��� 	 ���'��'�$ 	 7� 	 ����� 	 �
��	
�
������'	
�	��	��E	�������	*��	��	����	����	���	��'
����	
(���	�����	*�	��	����$	��	��*��	�	'����	�
��	�)������	�
�	
���	
���'��'�	�
��(���$

�� 	 ��E 	 ����
'�� 	 ������ 	 �� 	 �(
 	 �
��� 	 �
 	 ������
�� 	 ��	
���������$ 	��	����� 	�
��	��	�
	 �
	���	F������'G	��	��
'���$	
 ���� 	 ��������� 	 (�� 	 ����� 	 ���� 	 �
� 	 �
����� 	 ������
�� 	 ��	
�����
��� 	 *��
��� 	 �� 	 � 	 �
��
�
'���� 	 ������ 	 (��� 	 ��	
�������� 	 ��'�� 	 (�� 	 ������� 	 ���*
��$ 	 �
��(��� 	 ����� 	 ����	
������	��	��	�������	F���
��G	����$	��	������
�����
�	��
����	
���	�������	��	��)�	�����	B&
�����	����C"	!	���
�����'

!	������������'	/
�	�����'	��(�����0
!	�������'	/
�	���
���'	��	�����0
!	��������'	/
�	��������'	�
��	����	*�	�	��(��)�0
!	�)�������'	���*
��	
!	����'
��>��'	��	���*
��	
!	�
����
���'	���*
��	

 ����	����	���	*���'	��	�
��
�
'����	�����	����������$	

	

���6�	(�	��	��	���
�����	�
	����	���	����6�	�����$	��	(
���	
�
����
��	���	*�	���'��	�

�	���	�����	����	�
���'	��	�����	�
	
���������	F���
��G	����$

��	���
��	�
��	��	��	���
�����	������
�����
�	���
����'	�
	��	
�
�����
����'	�
��
�
'����	�����	�
���	���
�$ 	���	�
��	��	
*����	�
	 ��	���������� 	 ���	 ��	(�	���	��	�2���	�
��
�
'����	
������	
�	���������	���	�
'����	�
������	���	�2���	�

$	���(��'	
�	������*��	��	�)������	
(�(
	���������	/
�	����0	���������	
��� 	 ��� 	 �� 	 �2��� 	 �
��
�
'���� 	 ������ 	 ���� 	 ������
����	
���������	����	����	��	�������	������'�	���	��	������	�
�����	�
�	
*
�	��	��	����$

4!�/����$�����'�+�	+���� �	���$�/��+	�#

4
�	���
��>���
�	�����	����	�������	�
���$	/���(��'	�0

�� 	 ��������� 	���� 	 *� 	(������ 	 '������������ 	 �
������� 	 �� 	 ��	
�����'	*�
�#	���	��	��	���	
�	���������	����	����	*�	�	����
�$

�����'	���
�	������'�	��	�
��(���	�)������	���
	��	������	(���	
�� 	 ��E 	 ������ 	 �)������ 	 (
��� 	 ��� 	 ��������� 	 ��
� 	 �� 	 ��)��	
���#�	����!�����	�)�������	/��	��	��������	��������'	��	���*	��	
�
�	��	�	�
��	
�	����������	
�	2�����
��	��	�
��(���	�������	��	
����!����� 	 �)�������0$ 	5�(���� 	 ��� 	 ���� 	 �
�� 	 �
� 	 �'��� 	(��	
�
��(���	�
����	�	��	��	
��
�������	�
	���'�	��	�
	
��
����$	

3��'����	
��������		
��	�

������
������	
��������	��	�

3��'����	
��������		
��	�

������
������	
��������	��	�

���	*�		≠
��������� ������'

����	������'����	������'

���	*�	≠
��������� ������'

 2���	�
��
�
'����	�����

 2���	�
'����	�
�����

�
��
�
'���� 	 ��� 	 3��
'�����	
�

��	�
�	 �'���

���"DD((($���
�������$���)$��$�#D�������D���D����
��D�
��$���

4����"	�
��
�
'����	5�������	����'	
��	7�4&	5����>��

���"DD���������$�����'
$���D
�'�D5��4&D�
���H������D�����>�$2����$���

������	�
��
�
'����	5����>��	 ���"DD((($���$���$��DI�����D���������
�$���
�
��
�
'���� 	 �������� 	
� 	 J��'�����	
��������

���"DD((($���!��
����$*'D���D�
���$��

�
��
�
'���� 	5������� 	 �
� 	 7��������	
=���#	+
���

���"DD((($�������$�����$���D�'�!*��D�
������)

A����	�
��
�
'����	��''�� ���"DD����$���$�����$���D���D�����(�*D����$���

��*��	�

���(��'	�

���(��'	�

5�� 	 ���������� 	 (�� 	 ����!����� 	 �)������� 	 �� 	 �
� 	 �������� 	 ���	
�)������	��
�	��	��)�	��������$

+��	��	����	�����	��	(
���	(��	�
���	*�	��	�
'����	
�����
�	

�	���*
�	�
���	*��	�
��(���	(
���	�
�	������	���	��	��	�
���*��	�
	
'
	�
	��	�
��(���	�����	*�
�#	/�0	���	������	��	��((
��	��	��	
F�
'����	�
��G	����$	���	*�
�#	��	��
������	*�	����(
��	���	
���	
�)�����	���	������	�
	���$	B���	���
	�$,C

������� �����(����

�������

����

��'
�����
� �
�	�
��	������
(�
�'�
���
������
����
���

5

K
�L�����
� ��� M

���L�����
�
� ∨

7��������
� ��� ⊃

 2��������� �����
�2��������

⇔

���������
2���������

����	����
���
���
���*
���
������
��������'�
�����*
��

∀

)���������
2���������

�)����	�)�������
�)�����'

∃

�
���� ��(����
����������
������

�

���*��
�
���*���
�
���*���
��
���

◊

����	���*
�� �
�
��
(�
������
�����(����
������	�
(�

���	���
���	��N�

1�����	
�
��
������
2��������
��������	���	
����
��
���

�
���	�	�������	�
*���	�	��(�	�
�
����	�
�	�����
�����	�����	�
�

����	(
���
�����	�

�	'����

1��/)0O	γ	
�	
1��/E0O	γ	
�	
1��/�0O	γ	

1�����	
�	����
���������

5���
���	�
(�	�����

�	����	�����	
���
������	�����
�
�������
������������	������
����	L����	

1��/�0O	P

J��
�'�	�
	��� �
���6��	�
��
�6��	���	
/(
���	(��	������'	��	
*��
�'��'	
�	����'

∈

K
��������� ������ Q

��	�
��(���	�������	��	��)�	
�����
��	���	���*
��	/��*��	�0$
��������	����	�)�������'	��	��
������'	��	���
����'	(��	�
'����	

�����
�	�)��������	��������	��	�����
��	*�
�#	/,0$	7�	���	�������	
(�	������	��	��������	����	��	���	��)��	(��

!	��	�	����	
�	��������
!	���������	��	��
����	�
�����	��	���
����'	�
	��	�
'��	
�����$

���	
�����
���	(��	������	��������	�
	��	��������	������	���	
�$'$ 	 �� 	 �
�L�����
�� 	 ���L�����
�� 	 ���������
�$ 	5�� 	 ����� 	 ��� 	 �	
����
���	���������	(��	�������	�����������$	
7����������	/��	 ��
����	���'��'�0	���
���������	���������	*�	��	
�
��(���	���"	�
����	��
�
����	��
���	�
����	�����*�$	E���������	
���	������*��	��	��*��	?	*��
($

�$��L������

�$	���*

?$	�����������

,$	���*	$���$
�
���N	��L������
/�)�����"	���	*���0

�$	�(
	
�	�
��	���*�
��	
��	/�)�����"	���
'
��'0

.$	���*	$���$	�
���N
�
��	��	�
��������
/�)�����"	��	������0

<$	���*	$���$	�
���N
�����������	/�)�����"
(���	*���0

7�	���������	(��	�(
	
�	�
��	������	��	����	����������	
�D���	
�����������	���	�������	��(�����	��	���������	�����$	4
�	�)�����	
��	��	��������	FF���������	
�������������������	���������	
�������������������	GG	��	����������	F�G	
��	�������	�(���$	

7�	�
�����	������
�	*�
�#	�����������	���	���#��	��	2��	2��	2��	
2�N��	���	��	����	
�	���	��������
�	
�	�
��	����������	���	���	
���#��	��)�$)��)��)�N�$	E���������	���	���#��	��	E��	E��	E��	
E�N�	���	��	����	
�	���	��������
�	
�	�
��	���������	���	5��	5��	
5��	5�N�

����	���*
��	���	������*��	��	��������	���	�(
	
�	�
��	�����	
�	
���	�	����	�
����	
�	����	��
���	�����������$	B���	���
	�$,C	7�	
��	������	(���	���	����	��������	���*�	
�	���*	�
�*�����
��	��	
�
��(���	�
������	�
��	�
���$	7�	���	���	�
�	�2���	/��	������'	

�	��	�����0�	���	��E	������	���������	����	���*
��$

4
� 	��� 	 �
'���� 	
�����
�� 	���	���*
��� 	 �� 	���� 	���	�

��	 ��	
�
'����	�
��	���������	��	��	��E	��''����
�	��	�
�	��'�$

��������	��	���	*�
�#	��	(���	������	���	��	��������	��	�
��������	
���	�����	������
�����
�$	4
�	�)������	��
���	���	��	�
��	��#�	
������ � ��� � �� � ���������� � ��� � �� � ����� 	 *�� 	 �
� 	 �
����� 	 ������
� 	 (� 	 ���� 	 ��	
������
�����
�	�
	��

��E	������	��	�	�(
	(��	�
�	������
�����
�"	���������	����	*�	
���� 	 ��� 	 ���
��������� 	 �
��$ 	 B��� 	 ���
 	 �$�C 	 �� 	 (�� 	 �
�	
������
�����
�	���	*�	�������	*�	�������	*�
�#�	(��	���#�	��	
����� 	 ������ 	 ��� 	 ������ 	
� 	 �� 	 ������
�����
� 	�
��$ 	 7� 	 ��	
����� 	 �� 	 �
���� 	 �� 	 ����
' 	 ������ 	 �
(� 	 �
 	 ���� 	 �� 	 �������	
��������� 	(��	��	*���	����	�
�	�
��(���	 ������'	/��0$ 	7� 	 ��	
���
	�
���*��	�
	�'�
��	��	��''����
�	
�	������
�����
�	�
��	���	
����	����!	*�!	����$

��*��	?

��*��	�

4����	������
�����
�	�
��	/��0	������	��	����
'	������	����!*�!
����$	��	����	�����	���	������
�����
�	����	��	�	��������	���	��	
������	�)������	��	�
��
�
'��	��������$	��	�
��(���	�����	���	
�����	��	���������	�����$	�������'	��	��
������	*�	����(
��$	7�	��	
���� 	 ���
����� 	 ��� 	 �� 	 ����
�� 	(
 	 ������ 	 �
��(���� 	 #�
(�	
��
�'	
�	��������	������
�����
�$

���
��� 	
� 	 ������
�����
�	���	���������	������	������
�	'���	
��	�
��
�
'����	�����	���	
����	�����$	/���(��'	?0$

��	���
��	������
�����
�	�
��	'����	��	
��
�������	�
	���	��	
��E 	 ������ 	 ���
����� 	 ������
�����
�$ 	 ��� 	 *�
�# 	 ���� 	 F��	
�������>��	
�	��	 ��
����	���'��'�G	���
'����	(
���	��	��2������	�
���	��	���
����'	(��	�
��
�
'����	
�����	���	
����	�����	�����	*��
��$	��	����
'	������	
���	
�
(�	��	�������	���	�����	���������	��	������	�)������	���	
���	
�����	/��	���	�)���0	���
���������$	 ��	(
��	��	���������	��	��	
��)�*
)	���	��	�����	��	����������	���	�
�����	��	(
���	
�	��	��	��	
���������	���'�	�
	
���$	5�	�	������	
�	�����	������'	��	��
���	
���	���	���������	
�����	����	����
�$	J��	�
�������	��	����	
����	�
�����	(
���	��	��	������
�����
�	������	���������	(��	
�������>��	'����	�	��(
������	�
�	���	(
��$

��E	������	'���	��	
��
�������	�
	����	��	�������	�
	��	����*���$	
4
�	��������	����	���	�(
	����*����"	����
���	���	�������$	��	
����*���	���	*�	�
����	��	�	 ��*��	��	 ��	����
�
�� 	3�����	���	

��� 	 ��
'���� 	 /�
� 	 �)����� 	��)���� 	 �E��0 	 �
� 	 �� 	 ��)�	
��������	
�	�
�	�������'	�	���
��$

5�	���	��	��	��	�����'	*�
�#	/�0	����	���	�����	��	�
��	���	
��	
��������	���	��	��	����	����		������
��	
���	��	
��	
�	����	���	

���	���������	���	#���	��	�������	����$	��)�	*�
�#	/��0	'����	��	

��
������� 	 �
 	 �

��	 ��������� 	 ����� 	*��
�� 	���	�
������	 ��	
(
�#$	7�	��	���
	�
���*��	�
	������	���������	
�	�����	(
�#$
�
��(���	����������
�	��	��	�)��	*���
�	��	�����	�
	�
��	
�	*�
�#��	
*�� 	 �
����� 	 ������
� 	 (��� 	 ����� 	 �� 	 �
����� 	 ������
� 	 *�
�#	
/���(��'	�0

6!���7���8�������#��,����

� ���	��+$��/��0�	�#

�� 	�
�� 	 ���
����� 	 ���'�� 	 ��� 	 ��
����� 	 �� 	 *�
�# 	 F��	����
����������
��
�������������
�������������������������
����� �

�������������	���$G

4��� 	
� 	 ���	 �� 	 ������� 	 �
 	 ���� 	 ���*
�� 	 �)������
�$ 	�
(�� 	 ��	
�
���*��	�
	���	����	���*
��	��	��	������	���������	�

	/(��	
��	
��������	����0$	5	��(�
����	��	*���	���
	�������	�
�	�)�������'	
�������	(��	����	�����	�����	(��	���
����	�
�	������	
�	����	
�
������	����	��
�����	(��	��������	��	(
����	�
�������	��
�	
�������R� 	 ��)��$ 	����	 ��)�� 	
�������	����	���������� 	 �� 	(��	
���� 	 �
����� 	 ��� 	 ��������� 	
������$ 	 7� 	 ����� 	 ��� 	 ���� 	 ���	
�������
�� 	 (�� 	 (� 	 ���6� 	 ������ 	 �)����� 	 (�� 	 ��
���� 	 ��	
������� 	*��
�� 	 ��� 	(�� 	 �����$ 	 /���(��' 	,0$ 	5� 	 ��� 	 �� 	(�	
�
�������	����	�
	�����>�	�
�	
���	��������	����������	*��	����	
�	
����	��)��	��	��	���������	�
	���	��	��	�
������	��	�����������	
�	
������$

��������������)

										5��"											5��"	�������	�
���	
�����������
����������������
���	
��������	�
���	
�����������
����������������
���	
� ��

�������������
��������������
�

�
�"	�
�"	 ��	������
����!��	�����
���	
�����
� ��	������
����!��	�����
���	
�����
�

5��"	BE�/)��)��	��0M	1��/��0O	P�C	M	
									M	BE�/)��)?�	��0M	1��/��0O	P	�C

�
�"	BE�/),�)?�	�?0M	1��/�?0O	P	?C

+���"
E�	S	��	(�����'
)�	S	5��

���(��'	?

7������	��������	�
��
�
'����	�����

5����	������
�����
�	
�	��������

	����������������
����������)�

"���������	�
������

"�	��#��	������������
�����	��
������

���(��'	,

)�	S	�1
1��/��0O	P�	S	��	�����	
�	����	�
����	��	F�
(G

E�	S	���	�������
)?	S	����
1��/��0O	P	�	S	��	�����	
�	����	�
����	��	F�������G

),	S	�
�
1��/�?0O	P	?	S	��	�����	
�	����	�
����	��	FL���G

/A���	��	���������	�
	���	(��	
��	��	*���	�������	������	*��	(�	
���	��������	����	�
�����0$

A���	(�	���	��	���*
�	
�	*�����	������
�	S	�
�	����'
��>���
�	��	
��)�	��	�
����
�	���	���
����
�	���������	*�	E$	&
�����	��	����$	
+�	����	5SJ	�� 	 ��	������'	
�	5	 ��	J� 	
� 	5	�� 	� 	����	
� 	�	
���*
�	�
�	J$

�
�	
���	����	�
�����	���	���	��	���������	
������	���������$	
7�	��	�������	���
	�
�	��	������	
�	��
������	2�������	���	��������$	
A���	��	������	�)������	
�	��	�������R�	��)��	(��	��	��E	
�)�����	(��	����������	
�	������"

������
�	����������		���������
�	����������		���$	/��	 ��
����	���'��'�"	F$	/��	 ��
����	���'��'�"	F ��	�
���	�$���	�
���	�$�� ��

���	�����	��0	0	
E/)�0M1��/E0OE/)�0M1��/E0O	T0�	0�	

(���	
E	S	(��	�
	���
)�	S	7	
1��/E0OT	S	�����	
�	���������	�	������

�
���������������		����������	
���������
���������������		����������	
��������/��	 ��
����	���'��'�"/��	 ��
����	���'��'�"		
%&$���$$���$�����	��	�$��������'��%&$���$$���$�����	��	�$��������'��E/)��)�0	M1��/E0OE/)��)�0	M1��/E0O	T0�0�

(���	
E	S	��	*�''��
)�	S	�(���
)�	S	�����
1��/E0OT	S	�����	
�	���������	�	������

3���	���'��	���	��	�������	�
	
����
��	��#�	��	����������	(��	
������� 	 ��� 	���� 	 �� 	 F������ 	�
� 	 ������ 	��� 	���G� 	��� 	 �������	
���������$ 	 7� 	����� 	 ��� 	 �
�� 	 ��'����� 	 �� 	 �
���
���� 	 ��� 	 ��	
������	��	F����G$	5	���
��!�����	���������	���	*�	����	(��	��'�	Q�	
(��	������	���	����!�����	������	
�	���������	������������
�	��	
�	/����0$	

������)

�(����������������������	
��
�����(����������������������	
��
�����$	/��	 ��
����	���'��'�$	$	/��	 ��
����	���'��'�$	������ ��
	���$����!��	���$����!��$0$0
BBQ	/E/)��)�00Q	/E/)��)�00C�C�	

(���
Q	S	������	
E	S	*����
)�	S	�
�	
)�	S	
���

7� 	 �
���� 	 �
� 	 �
�������� 	 �� 	 ����� 	 �� 	 �
���*�� 	 (�� 	 �
��	
�)������
�	
�	���	(
���	��#�	F���G	���	F���	*�G$	����	��	��	
��������	����������	*��(���	����	������$	

��	���������	���	�
��*
��	�����	�
�����'	�����	���	�	����	
�
���*�����	�)����	�
	�
	�
�����'	/*��	��	��	�
�	�
�����
��0"
Q	B◊E/)��)�0C

J���	��	���������	���	�
��*
��	�������
�����'	�����	���	��	
�
��*
��	��#�	�
	�
	�
�����'	���	���	������	(���	������	��	
�
��*
��	������	����
���	���$
Q	B�◊E/)��)��	�0C
	
��	
���	��(�
����	��#��	������*��	�
	������	*��
�'�	/∈0	�
	
����$ 	 ��� 	 �������
� 	 '
�� 	 �
 	 ������ 	 ��� 	 �� 	 ��)� 	 �������� 	 ��	
(
���� 	 (�� 	 �������� 	 ���� 	 ��� 	 *��
�'��' 	
� 	 ����'$ 	 ��	
�
��
�
'����	�����>��	������	�������	���	�
���$	

5	��(�
����	/�0	��	*���	������	���	'����	��	
��
�������	�
	
������ 	��((
���	 �� 	 ������ 	(��	��#��	������*�� 	�
�L�����
���	
���L�����
��� 	 ��'
�����
��� 	 ��������� 	 2����������� 	 �)���������	
2�����������	�
���������	���������
���	������������	����	���*
��	��	
�����	�������	���	������$

���(��'	�

9!�'��'�,�+���

��	��(�����	
�	�����
�����	
�	��	��E	������	������*��	��	
���	�����	'���	��	��	�
��
(��'	�
���*�������"

! �
 	 ������
��	 �� 	 ��)�� 	 �
 	 �� 	 �
'���� 	 �
������� 	(��	
��������"

� �
��������	�
��������
� ����	���*
��	���	����	�����������	
�	������	

���	��
���
� �����������	
�	�����������	���	����������
� *��
�'�	�
	���

! �
 	 ��� 	 �� 	 ��((
��� 	 �
 	 �� 	 F�
'���� 	
�����
� 	 ���	
���*
�	�������
�	�
����G/,0	*�	�
����	�$

4
�	��	��)�	�����
�����	���'�	
�	��	��E	������	��	����	��)�	
��������	/��'�	�
(�	��� 	���������	���	��
������'	����������0	 	 ��	
�������$	���	����
��	'����	����	�
���*�������	�
�	���������	#���	

�	��)�	���������	�����������	��������
�	�����	�)�������'�	���$	

9!��� ����'��

B�C$ 	=���>�� 	=$ 	 �9?.$ 	��� �7�����������
������� � ��� � �������

.�����������!� �	
��5��$	����	��	,	/�9?.0�	��	,9?	-	�.�$

B�C$ 	 &
����� 	 E$� 	�
��� 	 &$� 	 ��##
 	 U$ 	 �9:.$ 	$ � ������ � ���
��������
���������:��

�� � ������!� ,� 	 745KD747E 	 ����
���� 	
� 	 �
��(��� 	 �
�	
K
������	K
���
��	=��>�	5������	���	��	$	�?$

B?C$	&
������	E$	�	�
����	&$	�9:.$ 	����������������������:�����
���2� � ��� � ��������;� � ��������
 ���������� �(��� ��������:���

���� � ��������!� 71 	 �
�������� 	
� 	 �� 	 ����$ 	 5��������
� 	
�	
���
�� 	
� 	 ����������� 	 �
'��$$ 	 ����� 	
� 	 �� 	 ����������
��$	
7��������	
�	K�*��������	
�	 ��
����	5������	
�	�������$	�������$

B,C$	&
�����	E$	����$ 		������������������������ J�!E�7��$	
�������$

B�C$ 	�����# 	 $ 	 ����$� ������� � ������ �
�� � ��������� � ������

������������� � �� � ����� � ������ � �����! �E�
������'� 	
� 	 ��	
7��������
���	K
��������	
�	5���������	7������'����$	7K	-	576	����$	
1
����	77	�$	<9�	-	<9<$

B.C$ 	����� 	=$� 	���'� 	 $ 	�9:�$ 	<����
������ ��
 � ��� �����������
��������� � �
 � �������! �������� 	
� 	 �
������ 	 ��
'������'	
�/?0����!�,�

B<C$	�����	=$�	���'�	 $	�9:<$		�����������������������+.!�
U
�����	
�	���*
���	K
�������
��	/,0$

B:C$	���'�	 $	�9::$	%��(�����=&��������������!�5����
�!
+�����$	

THE PROTOTYPE OF SYSTEM FOR DISCOVERING OF
INFERENCE RULES

Erika Matsak

Reprinted with permission, from Proceedings of the International Conference on
Artificial Intelligence. IC-AI 2007. Volume II p. 489 – 492. Las Vegas, Nevada, USA

91

THE PROTOTYPE OF SYSTEM FOR DISCOVERING
OF INFERENCE RULES.

Erika Matsak
Tallinn University

Department of Computer Science
25 Narva Road, 10120 Tallinn, Estonia

Tallinn University of Technology
Department of Computer Engineering

Raja 15, 12618 Tallinn, Estonia

e-mail: erika.matsak@tlu.ee

Keywords. Natural language texts, Logical
constructions, Transformation procedure of texts,
Derivation steps and Description of algorithms

Abstract. The derivation steps hidden in natural
language texts has been discovered. This discovery
provides a prototype system for the extraction of
derivation steps. The usage of this system provides
an overview of the logical rules used by children
between the ages of 10-11. The aim of such
research is to understand logical thinking
formation.

1. Introduction

The large amount of different logics (for example
classic, intuitionistic, modal, fuzzy logics etc.)
brings about a question: how do the before
mentioned logics occur in intelligence systems that
use them? Is logic (A) imputed from outside the
system, (B) systems choose logics themselves and
input inside, or (C) does a system create its own
logic in accordance with necessity?

Logic formation mechanism’s main aim is to create
a device, which makes it possible for artificial
systems to synthesize necessary logic for its own
activity (Lorents).

One representative of intelligence systems is a
human. No doubt people obtain logic in common
way (as to say outside – inside): by learning and
tracing the usage of constructions. But the another
possibility also exists: people create logics during
growth and progress in accordance with necessity.
For example multivalent logic for quaint mechanics
[see for ex. Birkhoff, Neumann 1936], dynamic
logics for researching of computer software
engineering [see for ex. Hoare 1969, Harel 1978].
One way for extracting human (as intelligence
systems) logical mechanisms is researching and
analysing natural language texts. In detail: (1) to
transform the propositions and reasons from the
text to logical formulas, (2) to anilyze the order and
frequency of the appearing constructions in texts
and propositions.

This paper consists of the results of a short report,
which the author recieved from the text of children
between the ages of 4-6, by speech recording and from
typed essays of an older group of children (aged 10-11).
The essays have been kindly given by K. Pata
(collected during her pedagogical reseach). But the
main part of the paper dicribes the algorithm of
extraction of logical construction from natural language
texts. To explain the basics of algorithm P. Lorents’
method for system mining has been used.

2. Lorents’ method in the case of
mining of inference rules

The main steps of this method in the mentioned case
are as follows:
- To fix the system of research (in this case the text or
speech of people).
- To fix the age of a person who delivers the texts or
speech
- To extract logical constructions from the texts: (1)
constructions which are presented by propositional
formulas extracted by the text transformation procedure
[see Lorents 2000, Matsak 2005, Matsak 2006] and (2)
derivation steps, which give expression for the reasons,
extracted by procedures related to the matapredicate of
Relatedness and metapredicate of Similarity.
- To create a 3-dimensional array, where one parameter
is time (age of a person), the second consists of all
logical constructions at the moment in time and the
third is the frequency of construction appearance.

If a larger amount of data is collected, it will give an
understanding how people use logical construction and
show us the growth of construction usage by age. In
another words, show us the dynamic picture of logical
construction “toolbox” development and usage.

Such an overview further provides the base for the
research, whose aim is to understand how intelligent
and self developing systems obtain and build up the
logical construction “toolbox” (including different
logics).

3. Short overview of logical
constructions, extruded from the
children recorded speeches in
age 4-6.

The author has used the dialog system DST
[Matsak 2005, 2006] in her own researches. By this
dialog system the logical construction of children
aged 4-6 was extracted.
As a result it occurred that children use all
components of first-level predicate calculus,
including:
-sorts of individuals
-time moment and time related symbols
-unary and n-ary predicates
-all logical operators (¬,&,∨,⊃)
-quantifiers (∀,∃)
-modalities (◊,�)

It has been demonstrated that children use for
proposition creation the quite complicated logical
instruments, including multisort object symbols,
modalities, higher-order predicates and
functionals. Also the application of many different
gradations of assessment (as partially-ordered
structures) has been demonstrated.

4. Examples of logical
constructions, extruding from
children texts aged 10-11

This year researches have been based on children’s
essays with answers to the questions and their
reasons. The amount of essays was 176. Data was
collected for K. Pata pedagogical research as a part
of the study on the development of primary
students’ cohesiveness and consistency of
conceptual frameworks about seasonal changes.
This was investigated as students were studying in
a computer-supported inquiry environment called
“Young Scientist.” [Pata, submitted]. The given
texts have been kindly given by her for logic
researches. These texts have enabled us to not only
consider (or examine) logic constructions, which
are necessary for proposition creation, but also for
reason conception.

Children aged 10 – 11 years also use the same set
of logic constructions, as those at the earlier ages of
4-6. The use of sets and operations above them are
added to this. Also we can find the use of terms and
various ways of comparing predicates beginning
with "more-less" and finishing with functional
dependences.
Further is given diagram (chart 1), which shows the
results by quantity of usage the standard logic
operators and quantifiers.

24%

76%

3%
7% 7%

50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Neg
ati

on

Kon
jun

cti
on

Disj
un

cti
on

Exis
ten

tia
l q

ua
nti

fie
r

Univ
er

sa
l q

ua
nt

ifie
r

Im
pli

ca
tio

n

%

In the given texts children between the ages of 10-11
answered a question “Why does the winter (summer)
come?"

5. The prototype of dialog system for
extraction of derivation steps

The author of the paper has been discovering the
possibilities for human logic extraction from natural
language text for 3 years. At first software was created,
which gave the logical formulas of separate sentences
[Matsak 2005, 2006]. During this year the prototype of
a dialog system was created, which will be extracting
the derivation steps. Realized algorithm can be
described mathematically. One example of such an
explanation has been gaven by P. Lorents [P. Lorents
1993, 2002]. Shortly we can say that we use two kinds
of Metapredicates: Metapredicate of Similarity and
Metapredicte of Relatedness.

The denotation of Metapredicate of Relatedness is, in
some meaning, our intuition about what kind of
elements may have the important properties for us and
between which elements some important property may
be present. However, we don’t need to know, what kind
of properties or relation are searched. For at first, we
just accept, that something exist and this is the
explanation of Metapredicate of Relatedness.

The Metapredicate of Similarity is, in some meaning,
our intuition about some similarity existence between
two elements or sets of elements.
In common words, this procedure works as follows:

- at first we need to create the Cartesius degrees of set
H : H(n), where n=1,2,3, … .

- next, we compare parts (kits) of set H(n) (pairs, ordered
ternaries, etc) and decide (A) are the elements from the

Chart 1

kit related between each other or not, (B) is this kit
similar to some other kit from H(n).

- if we collect the similar kits in separate classes,
then we finally get all the relations in a set H
(unary, binary, ternary etc. relations).

If set H consists of propositions, then using the
before mentioned procedure gives us the derivation
steps for reason explanation [Lorents 1993, 2002].

6. Conclusions

For each person there exists a knowledge base. In
reasoning each person uses this knowledge, leaning
before as axioms. Thus it is possible to tell, that for
everyone there is the world W with a set of axioms
and rules. Wrong answers as a rule take place
because of wrong initial knowledge (axioms). As
far as there are different types of thinking, so-called
mathematical, abstract and etc., it is quite probable
that different groups of people use different steps to
formulate conclusions. Unfortunately at a given
stage of research we cannot tell which existing set
of derivation steps and for what group of people
they are most usable.

From the available texts some repeating steps of
conclusions have been allocated. The most popular
(~85 %) was still mentioned by Aristotle Modus
Ponens, which at Gentzen [Gentzen, 1936] has the
name cutting.

→A A→B
→B

However, the interesting variations of modus ponens
appeared.

Example (see also the picture 1)
Children have used the next derivation step:

¬K→X →¬X
 →K

Where K denotates the preposion: „Spring comes“, and
X: „Summer comes after winter“

This construction can be visualized by a graph. For
derivation step extraction we need to discover the field
around the “?” (Unknown) step.

Picture 1. Algorithm for extraction the derivation steps from the natural language texts.

Picture 2. Unknown derivation step

If we find in the next text the same part of graph (K
and X may be present by other letters, but logical
operator and quantifiers must be the same) we can
call them as “Similar” derivation steps.

The problem lies in the hidden conclusions or
axioms. The people who collect the answers must
pay special attention to the very detailed
explanation. In this example the sentence was used:

“If spring does not come, then summer comes after
winter.“ And the child knows (but this is hidden),
“that summer comes after winter“ is absurd.

The next frequantly used derivation step a well
know kontopository rule

¬K → ¬S
S → K

For example: “If spring does not come, the summer
will not come too. And as far as summer does come,
then spring will come too.“

Acknowledgement: The author of the given work
expresses profound gratitude to the professor Peeter
Lorents for assistance in a writing of given clause.

7. References

[1] Birkhoff G., von Neumann J. 1936. The logic of
quantum mechanics. Ann. Math. 37, 823–842.

[2] Curry H. B. 1963. Foundation of Mathematical
Logic. McGraw-Hill Book Company. New-York,
San Francisco, Toronto, London.

[3] Feys R. 1965. Modal Logics. Gauthier-Villars.
Paris.

[4] Frege G. 1892. Über Sinn und Bedeutung.
Zeitschrift für Philosophie und philosophische
Kritik. Nr 100. p. 25 -50.

[5] Gentzen G. 1936 Die Widerspruchsfreiheit der
reinen Zahlentheorie, Mathematische Annalen, 112:
493-565.(1936)

[6] Harel D. 1978. Logic of programs; Axiomatic and
descriptive power. Technical report. Massachusets
Institute of Technology. May, 1978.

[7] Hoare C. A. R. 1969. An axiomatic basis for
Computer programming. CACM 1969, 13, p.576 – 580.

[8] Lorents P. 2000. Language and logic. EBS Print.
Tallinn

[9] Lorents P. 2001. Formalization of data and
knowlwdge based on the fundamental notation-
denotation relation. Proceedings of the International
Conference on Artificial Intelligence. IC – AI’ 2001.
Volume III. p. 1297 – 1301.

[10] P. Lorents. 2002. A System Mining Framework.
The 6th World Multiconference on Systemics,
Cybernetics and Informatics. Proceedings. Vol. 1. 195 –
200.

[11] Matsak E. 2005. Dialogue system for extracting
Logic constructions in natural language texts.
Proceedings of the International Conference on
Artificial Intelligence. IC – AI’2005. Volume II p. 791
– 797.

[12] Matsak E. 2006a. Using Natural Language Dialog
System DST for Discovery of Logical Constructions of
Children's Speech. The 2006 International Conference
on Artificial Intelligence IC-AI 2006. Las Vegas,
Nevada, USA (June 26-29, 2006)

[13] Matsak E. 2006b System DST for Transforming
Natural Language Texts, Representing Estimates and
Higher Order Predicates and Functionals. The 3rd
International Conference on Cybernetics and
Information Technologies, Systems and Applications:
CITSA 2006. July 20-23, 2006 . Orlando, Florida,
USA.

[14] Pata K. (submitted) „Students’ Conceptual
Development Related to Seasonal Changes by Virtual
Inquiry Using “Young Scientist” as a Learning
Environment” Submitted to the “Journal of Learning
Science”

English version is edited by Leon M. Miller

IMPROVED VERSION OF THE NATURAL LANGUAGE
DIALOG SYSTEM DST AND ITS APPLICATION FOR

DISCOVERY OF LOGICAL CONSTRUCTIONS IN
CHILDREN’S SPEECH

Erika Matsak

Reprinted with permission, from Proceedings of the International Conference on
Artificial Intelligence. IC-AI 2008. Volume II p. 332 – 338. Las Vegas, Nevada, USA

97

IMPROVED VERSION OF THE NATURAL LANGUAGE DIALOG
SYSTEM DST AND ITS APPLICATION FOR DISCOVERY OF

LOGICAL CONSTRUCTIONS IN CHILDREN’S SPEECH

Erika Matsak
Faculty of Information Technology
Tallinn University of Technology

15 Raja, 12617 Tallinn, Estonia
E-mail: erika.matsak@tlu.ee

Abstract

The improved version of the dialogue system DST for
extracting logical constructions from natural language
texts is considered. Results received by means of DST
and by the analysis of children's texts are described.
Many interesting logical constructions, including some
steps of a conclusion are revealed.

Introduction

The improved version of the DST dialogue system
for extracting logical constructions from natural
language texts [Matsak 2005, 2006, 2007] is
considered in the present work. The purpose of the
creation and usage of the DST system is the study
of mechanisms of formation of logical
constructions in self-developmental intelligent
systems. Children are examples of such systems.
Logical constructions (including formation of
formulas and a deduction of formulas) are in turn
connected with mechanisms of extraction and use
of knowledge [Jackson 1985, Padhy 2006]. It is
natural to believe that development of the above-
stated mechanisms is reflected in texts, which
children create and apply. It brings the necessity
of transforming text from a natural language to a
logical language (for example the language of
calculation of predicates). Next step is to reveal
the use of logic steps and rules of a conclusion (as
sets of similar steps [Lorents 2002]). For this
purpose it is necessary to modify and improve the
DST system with additional modules.

By means of the advanced system it was possible
to show that even very small children (for
example 3 years old) can use an unexpectedly rich
set of logic means.

Procedures for extraction of logic steps of a
conclusion

Here we bring only the basic procedures that are
necessary for extracting logic steps of a
conclusion [Matsak 2007].

1. Find formulas in which repetition of
individuals and predicates exist (at a
designation symbols x or A)

2. If formulas satisfy this requirement, then
print them out with transformed sentences

3. According to the amount of the chosen
formulas the operation cycle is started

3.1. Split each formula to segments, new
variables store separate designations of
individuals and predicates

3.2. For definition of pairs with repeating
individuals and predicates the new
operation cycle is started

3.2.1. Search pairs of formulas which
contain at least one same individual
and also together with individual the
same predicate. The found pairs
formulas can be logic steps.

Logical constructions and their increase at
age of 3-5 years

During last year 216 different sentences used by
children between the ages of 2,7 and 3,1 have
been discovered. A surprising revelation was that
children at this age use a very rich set of logic
constructions, including an extensive alphabet of

logic calculations. A young child starts using
speech by using separate names of individual
objects to create ordered pairs: (the name, a real
subject), which represents knowledge [Lorents,
2001]. However, children use separate predicates
too, which speaks about formation of simple
subsets of objects in a child’s brain.

Remarks: A child may not initially represent
understanding in a full expression like “Yellow
ducklings". For example, the child shows the ducklings
on the picture and says: “ducklings”. When somebody
asks about the color of the ducklings the child
answers: "Yellow".

Texts of three year old children will be studied in
the near future in more detail in order to reveal the
order of occurrence of logic operators and
quantifiers. But it is already possible to see that
the first logic operator that appears at the child
text is negation. After a very small time interval
(2-3 months) the child already uses almost all
logic operators in the obvious or implicit form.
The diagram of figure 1 shows the usage of
classical operators and quantifiers. However, it is
necessary to note a situation with conjunction.
Only 8 % of the conjunctions were used in a
natural way by the children. Another part is the

hidden conjunction as a result of text
transformation.

Procedure of transformation has been described
for the first time by Lorents in 2000 [Lorents,
2000] and used for development of dialogue
system DST [Matsak 2005, 2006, 2007]. Two

years ago elements of assessments of
predicates, individuals and time and different
modalities were found in children’s speech.

Examples:

− In the sentence “It is too big birdie”
we have to deal with assessment „too“ for
the predicate „big“.
P1(q1 q2)&[Val(P1)=ε1]

− In the sentence „A lot of children are
here“ the amount of people is assessment.
P1(q1 q2)&[Val(q2)=γ1]

− In the sentence „You will be soon
healthy“ the word „soon“ is assessment,
which declare the time moment.
P1(q1 t0)&[Val(t0)=τ1]

The statement that somebody may do
something means that maybe is the possibility
to do something and it is real: ╞ [◊P(x1, x2)]

3a

0,9

0,5 0,5

4,6

5,6

3,7

0,0

1,0

2,0

3,0

4,0

5,0

6,0

May-be May Can Val(t) Val(q) Val(P)

Age of 3

23%

2%
5%

2%

15%

0%

8%

0%

5%

10%

15%

20%

25%

30%

35%

N
eg
at

io
n

Ko
nju

nc
tio

n

D
is
ju
nct

io
n

Exi
st

en
tia

l q
ua

nt
ifi
er

U
ni

ve
rs
al

 q
ua

nt
ifie

r

Im
pl

ic
at

io
n

Clear Conjunction

Logical roles

Figure 1

Figure 2

Figure 3

The statement that somebody can do something
means that if somebody asks to do something then
this really will happen, if somebody really
performs this.╞ [� ◊ P(x1, x2, t)]

The sentences, which include such parts as “really
do, really have etc”, have special semantics
[Matsak 2006]. It means that some argument is
controlled and the result is “true”. A second-level
predicate may be used with sign ╞ , which means
that statement interpretation is true.

╞(P(x)) ∫ ϕ(P(x))=1, where the ϕ is the formula
interpretation.

The following diagram (figure 2) shows the use of
the logic elements described above. On the next
diagram (figure 3) the same logic constructions
are present, but already for age of 4-5 years
(amount of sentences is 227). It is interesting to
notice, that despite of the increased conjunction,
frequency of use of conjunction in a clear way
was the same, also the quantity of implication, use
of modalities and assessment of individuals
essentially has not changed.

However, the amount of assessments of predicates
and time is rising, and also the new logic
construction has appeared at this age.

Hidden use of equivalence

During the transformation of the text the sentences
with the word "otherwise" have drawn some
attention. We shall show, that sentences like "it is
forbidden to come here, otherwise the uncle will
be displeased" include hidden equivalence.

Let's transform the text for extraction of hidden
equivalence:

If you come here, then uncle will be displeased
and if you don’t come here, then event X will take
a place (Most likely in many cases under X
understand a phrase "uncle will not be
displeased"). In other words we can write down
after text transformation the sentence in a
following way: (A⊃B)&(¬A⊃¬B). It is easy to
find, that the formula represents equivalence.

Age of 4-5

20% 48% 0% 0% 1,3%

7% 5%4% 6,6%5,7%

13,2%
11,5%

1,3%

7%

0%

10%

20%

30%

40%

50%

60%

N
eg
at

io
n

C
on

ju
nc

tio
n

D
is
ju
nct

io
n

Exi
st

en
tia

l q
ua

nt
ifi
er

U
ni

ve
rs
al

 q
ua

nt
ifie

r

Im
pl

ic
at

io
n

M
ay

-b
e

M
ay

C
an

Va
l(P

)

Va
l(t

)

Va
l(q

)

R
ea

ly

Clear conjunction

Logical roles

Extracted inference steps

In the report [Matsak, 2007] inference steps were
discussed that had been extracted from the texts of
older children (10-11 y.o).

● Aristotle Modus Ponens (which is
variations of Gentzen’s [Gentzen, 1936]
Cutting).

→A A→B
 →B

● some variation of Modus Ponens, as
→¬A ¬ B→A

→ B
● Contrapository rule

¬Β → ¬Α
 A → B

There has been no research about the logic steps
that children of the age 3-6 use. However,
available texts allow to us to see without special
difficulties a lot of transitions, which are correct
steps of a logic conclusion, or are transitions
similar to them.
The simplest step which has been used for
confirming the ideas was a trivial tautology:

→ Α
→ Α

Children of young age (for example 2 years of 11
months) willingly used it for confirmation of the
correctness.

Example:

1. I like this book. Why? Because I like it.
2. I eat. Why? Because I eat.

In the three year olds some incorrect, but
nevertheless interesting steps were noticed:

(∃ t)A(x, t)
A(x, t)

Example:
The alarm clock rings. Why? Because alarm clock
rings sometimes.

Also:
(∃ t) A(x1, t) & (∃ t) P(x2 t)
A(x1, t)

And the correct logical transition with conjunction
removing (→&−)

A & B
 A

Remark:
The text examples for the last two transitions and the
explanation in detail how the DST dialogue system
extracts the steps will be described in the next chapter.

Children of the age of 5-6 years have been noted
to use steps of conclusion similar to syllogisms,
in both incorrect and correct ways.

Example 1 (incorrect step):

All wild animals hibernate in the winter. Frog is
not a wild animal. Frog doesn’t hibernate in the
winter.

S(x)⊃(∀x)A(x)
¬S(q)
¬A(q)

Example 2 (correct step):
Student: If you could be an animal, who you
would be?
Child: Bird. Student: Is the bird an animal?
Child: No. Because a bird can fly, but animals
can't fly.

 A → ¬Β

 Β → ¬Α

Extraction of inference steps using the DST
dialogue system

Let's examine the next part of text:

Ducks swim here. But ducks can fly too. Bad dog
wants to eat duck. But he is bad. Why? Because he
is bad sometimes and he is good sometimes.

Figure 4

With input of text it is necessary to turn on an
option, which gives the possibility to transform
the text into a form where repeating individuals
and predicates are defined. Next the DST rejects
the sentences which have no true-values. In this
case a sentence without a true-value is the
question “Why”.

Further it is shown that the program has found
repeating individuals "ducks" and "he" and has
designated them accordingly x1 x2 (figure 4). It is
also detected that the repeating predicate A1 "is
bad".1

The second sentence "But ducks can fly too" has a
transformation for extracting the hidden
conjunction. As a result we get: "Somebody can
fly and ducks can fly too" and the formula
(∃q2)A2(q2)&A2(x1).

The third sentence is transformed into: "Dog is
bad and dog wants to eat duck” and the new
repeating individual - x3 "dog" is found.

1 Designations "х" and "A" are used for sign of repeating
individuals and predicates

Further it is necessary to replace the pronoun with
concrete name and as a result our sentence will be
“But dog is bad " A1(x3 t0). And at last, the
sentence “Because dog is bad sometimes and dog
is good sometimes“ will give the formula:
(∃t0)A1(x3 t0)&(∃t1)P3(x3 t1).

In process of search of steps of the conclusion
DST has the following operations. First of all a
dialogue system separates out all sentences where
individuals designated by "х" or predicates
designated by "A" are used. Further, the system
chooses from a set of sentences, extracted before,
the pairs that simultaneously use both a repeating
predicate and a repeating individual (figure 5).

In our case there are the following pairs:
Dog is bad and dog wants to eat duck
But dog is bad
A1(x3 t0) & P1(x3 x1)
--
A1(x3 t0)

Dog is bad and dog wants to eat duck
Because he is bad sometimes and he is good
sometimes
A1(x3 t0) & P1(x3 x1)
--
(∃ t0) A1(x3 t0) & (∃ t1) P2(x3 t1)

Figure 5

Remark. In this and also other cases the premise and
conclusion in natural language text are put
contrariwise, in comparing with predicate calculation
schema. Such rearrangement of premise and conclusion
is normal and it removes the wish to affect the
conclusion.

But dog is bad
Because he is bad sometimes and he is good
sometimes

A1(x3 t0)
--
(∃ t0) A1(x3 t0) & (∃ t1) P1(x3 t1)

Next operation is renumbering individuals and
predicates. In each pair the individual or predicate
with least index should be numbered by index 1
and the others in the increasing order.

Conclusions

The usage of the DST dialogue system has
brought out the fact that in one kind of intellect
system, like a child, the appearance and usage of
logical constructions may have jumps: during a
rather short time interval children learn to use
negation, and then practically all other operators,
modalities and quantifiers. In case of inference

steps the picture is not yet clear and additional
research is needed.

At the same time by means of the developed
dialogue system it was possible to show the
following:

1. Ability to prove the statement (in a
context of logic - a deduce of formulas)
can develop in early years of a person’s
development

2. Ability to prove the statement can be
developed almost in parallel with
development of ability to set up the
statements (in a context of logic -
formulas). The following is still not clear :

a. how the ability to apply correct
steps of a conclusion (in
understanding of logic) is
developed

b. how the rules of a conclusion are
formed from similar steps of a
conclusion

For the decision of these problems the further
development of the DST system is required.

Acknowledgements: The author of the given
work expresses profound gratitude to professor
Peeter Lorents for assistance in a writing of given
clause, to Kaire Kollom and students of Tallinn
University for recording of children speeches ����

to ���������	�
�������	�����	�������������
.

References

Jackson Ph. C. 1985. Introduction to artificial
intelligence. Second, enlarged edition. Dover
Publications, INC., New York.

Padhi N. P. 2006. Artificial Intelligence and Intelligent

Systems. Oxford University Press.

Gentzen G. 1936 Die Widerspruchsfreiheit der reinen
Zahlentheorie, Mathematische Annalen, 112: 493
565.(1936)

Lorents P. 2000. Language and logic. EBS Print.
Tallinn

Lorents P. 2001. Formalization of data and knowlwdge
based on the fundamental notationdenotation relation.
Proceedings of the International Conference on
Artificial Intelligence. IC – AI’ 2001. Volume III. p.
1297 – 1301.

P. Lorents. 2002. A System Mining Framework. The
6th World Multiconference on Systemics,
Cybernetics and Informatics. Proceedings. Vol. 1. 195
– 200.

Matsak E. 2005. Dialogue system for extracting Logic
constructions in natural language texts. Proceedings of
the International Conference on Artificial Intelligence.
IC – AI’2005. Volume II p. 791 – 797.

Matsak E. 2006a. Using Natural Language Dialog
System DST for Discovery of Logical Constructions of
Children's Speech. The 2006 International Conference
on Artificial Intelligence IC-AI 2006. Las Vegas,
Nevada, USA (June 26-29, 2006)

Matsak E. 2006b System DST for Transforming
Natural Language Texts, Representing Estimates and
Higher Order Predicates and Functionals. The 3rd
International Conference on Cybernetics and
Information Technologies, Systems and Applications:
CITSA 2006. July 20-23, 2006 . Orlando, Florida,
USA.

Matsak E. 2007. The prototype of system for
discovering of inference rules. Proceedings of the
International Conference on Artificial Intelligence. IC –
AI’2007. Volume II p. 489 – 492.

ON THE LOGIC MODULE IN INTELLIGENT SYSTEMS.

Erika Matsak

Reprinted with permission, from Proceedings of the International Conference on
Artificial Intelligence. IC-AI 2009 Las Vegas, Nevada, USA

107

On the logic module in intelligent systems

Erika Matsak
Faculty of Information Technology, Tallinn University of Technology, Tallinn, Estonia

Abstract - While developing and implementing the natural
language text transformation dialogue system prototype DST,
an unexpectedly diverse and large logical arsenal has been
found in children’s texts. This is true for the levels of logical
operators and quantifiers as well as for the applications of
inference rules. The identified logical tools and the analysis of
their implementation points to one way to construct the logic
module in intelligent systems. We have investigated technical,
mathematical and in some sense even philosophical aspects of
development of the logical module.

Keywords: DST dialogue system; logic operations,
quantifiers, modalities and inference steps in children’s texts;
implementing logic formulas and inference steps with digital
circuits; logic module.

1 Introduction
 The ability to generate and implement correct decisions
in intelligent systems (IS) becomes increasingly important
with every passing day. One formal representation of making
correct decisions is the use of the correct formulas of
mathematical logic. As a rule, there are two sources for these
formulas:

- a priori correct formulas (axioms, basic postulates etc.);
- results of implementing correct inference steps (where
inferring from correct formulas results in new correct
formulas).

Depending on options and choices, there are other approaches
for getting correct decisions (Tamisier 2008.). For example,
various graph based methods (see Bo Haoy, Tomohiro
Yoshikaway, Takeshi Furuhashiyz, Shin-ichi Sugiuraz.
2008.). In several studies on deductive synthesis of programs
(especially when this area of research was still taking shape),
two types of graphs were used to represent steps that
engineers use to solve problems (see Tyugu 1988, 2007). An
interesting example is the use of graphs to model the thought
process of the famous military commander and politician Otto
von Bismarck (see Lukov, Sergejev 1983).

Regardless of the theoretical representation and choice of
implementation tools of correct decisions and their
generation, two important questions must be dealt with:

- how are correct decisions and the tools to make them
implemented in natural intelligent systems (NIS), including

humans;
- how are the formalization and the tools to generate
correct decisions acquired or developed in intelligent systems.

Assuming that the mechanisms in natural intelligent systems
are good enough to guarantee the subsistence of the
organisms (including humans) that use them in various
environments, we could take these mechanisms as examples
in our search for sufficiently robust and effective solutions for
artificial intelligent systems (AIS). Based on this premise the
author has spent several years studying the logic constructs in
children’s (mainly between the ages of two and five years)
texts, in order to explain their existence and the development
of their use (especially so-called first sightings) compared to
the children’s development in time. These studies (see Matsak
2005 – 2008) have identified surprising results in logic
operations, quantifiers, modalities, as well as very „early”
sightings of inference steps. This has raised questions about
which of these logic constructs are so-called software based,
which are hardware based and how are they all implemented
(see Matsak 2009). In the following chapters we discuss
aspects related to these problems

2 Logic operations, quantifiers and
modalities in children’s texts

 One of the most foolproof ways to identify the presence
of some sort of logic constructs is to look at their „traces” in
the texts of a natural language. The Lorents’ text
transformation procedure can be used to step-by-step
transform the text segments that represent a logic construct
into logic formulas (see Lorents 2000). The DST dialogue
system prototype, which was developed to implement this
transformation procedure, has enabled the author to study
recordings of children of various age groups, collected over a
period of more than five years, as well as the texts in the
Childe database (see Child Language Data Exchange
System). The results of this study are somewhat surprising in
terms of the presence of various logical operators (including
negation, conjunction, disjunction, implication and
equivalence), quantifiers and modalities (see Matsak 2005,
2006, 2007). It turned out (see Figure 1) that the first
operation detected in children is the negation (including in a –
NB! 1.2-year-old child). Two-year-olds demonstrate most of
the „common” logic operations, including quantifiers and
various modalities (see Figures 1 and 2). This abrupt
emergence of many simultaneous logic operations points to a

possibility that certain permanent configurations are formed
in the „elemental basis” of the human brain during this time

(see Matsak 2009) that then become usable for describing and
analyzing situations.

Figure 1 Operations and quantifiers identified in children’s texts

Figure 2 Modalities identified in children’s texts

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

Realy Assesment Can May‐be

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

Hidden Conjunction Universal Quantifier Eksistentsial quantifier Hidden equalents

Conjunction Implication Negation

3 Logical inference steps in children’s
texts

 The development and implementation of the DST
dialogue system prototype identified a diverse arsenal of
inference tools that are used even during very young age to
back up one’s arguments. Just like many adults, children try
to reason by using both logically correct, as well as seemingly
correct (but in reality incorrect) inference steps. Table 1
shows the inference steps identified in the studied texts.

Tabel 1 Inference steps identified in children’s texts

 A (2.9)
 A

S(x)⊃(∀x)A(x) (5‐6)
¬S(q)
¬A(q)

A⊃¬B (2.6)
¬A⊃B

¬(∃t A(t,x)) (5.9)
(∀t)¬A(x)

A ⊃ B (2.6)
¬A⊃¬B

 A ⊃ ¬B (5.11)
 B ⊃ ¬A

(∃α A(α)& ∃β A(β)) (2.6)
 ∀x A(x)

A A⊃B (10‐11)
 B

A & B (3.1)
 A

¬K⊃X ¬X (10‐11)
 K

(∃ t)A(x, t) (3.1)
A(x, t)

¬K ⊃ ¬S (10‐11)
 S ⊃ K

Note. As with logic operations, logic inference steps may
raise questions about their implementation with hardware.
One option is to use digital circuits using logic gates (see
Matsak 2009).

4 On the logic module of intelligent
systems

 While studying the use of logic tools by children as
(self)evolving natural intelligent systems, the author has
proposed a hypothesis about what the corresponding logic
module could be. The author does not claim that this type of
thing has never been created or researched before. The
question in focus is fairly simple: has nature, which can be
used as an inspiration for technological development,
„designed” humans with the necessary logic construct
processing „machinery”, as described below?

Let us start with Lorents’ definition of an intelligent system:
we call a system intelligent, if it is capable of operating with
knowledge (see Lorents 2002, 2003, 2008). In here,
knowledge is defined as an ordered pair 〈A,B〉, where A and
B are sets, where A is the notation (symbol, sign) for B while
B is the denotation (meaning) of A (see Lorents 2001, 2004,
2008).

From the aspect of subsistence of intelligent systems it is
important to know, which things are the meaning of specific
signs or notations and whether it is correct or incorrect that,
for example, things with notations x, y, ..., z are related to
each other with a relation that has the notation R. In other
words, does the intelligent system under observation know,
what is the truth value of the atomal formula R(x,y,...,z) if the
the meanings of R, x, y, ..., z are known.

One way to determine the truth value of the formula
R(x,y,…,z) is the so-called direct check: whether the objects
with notations x, y, ..., z in reality have or have not a relation
with the notation R. Another way is to deduce the formula
from other correct formulas by using correct inference steps
(the correctness of the inference steps guarantees the
correctness of the resulting formula). It is interesting to note
that natural intelligent systems (as observed from the study of
children’s texts) often rely on so-called secondary methods to
check the correctness of formulas that are more complex than
atomic:

- by using previously known correct formulas (from a
reputable source, checked previously by the actor itself, etc.);

- by using proofs (which guarantee correctness of the
result if the premises and inference steps are correct).

The author’s studies indicate that when implementing
quantifiers or corresponding quantification rules, in reality the
finite sets of meanings for the corresponding variables are
used. This changes quantifiers into longer or shorter (atomic
formula) conjunctions or disjunctions, which, in turn, enables
the use of relatively simple digital circuits when operating
with these quantifiers (see Figures 3 and 4 below).

Figure 3 A circuit diagram for the universal quantifier

Figure 4 A circuit diagram for the existential quantifier

The logic module of an intelligent system could consist of the
following components:

- a binary matrix of notation-denotation (symbol-meaning)

relations, where rows represent notation (symbols, signs) and
columns represent denotation (meaning). The intersections
contain markers (for example 1 or 0) that indicate that the
corresponding notation applies to the denotation (or not). It is
important to remember, that according to Lorents (2001, 2004,
2008) some notations may have multiple denotations, and
some denotations may have multiple notations;

- the set of correct formulas;

- the set of inference rules.

Note. It may become necessary to modify one or more of the
three components (the matrix, formula set or inference rule
set). The reason could be changes in the environment, which

Figure 5 Fitting formulas and inference rules

could result in:

- some notations no longer having the previously recorded
denotations. For example, after ten years of marriage the word
„mom” may no longer be the primary notation for the man’s
mother, but instead of his wife, who is the mother of his
children.

- some previously correct formulas no longer being correct.
For example, after a few years a boy’s older sister may no
longer be taller and stronger.

- new inference steps that can be added to the set. For
example, induction as a reasoning technique can be learned in
high school.

Implementation of the logic module can be achieved by using
relatively well known digital circuits for describing notation-
denotation relations and formulas, as well as the inference set
circuits developed by the author (see Matsak San Diego). The
construction of such a system may take the simple form of
„fitting” puzzle +pieces, where the „suitable” premise set of
an inference rule allows the rule to be matched to a
combination of existing formulas that normally do not involve
more than a few formulas (see Figure 5).

5 Conclusion
 An essential aspect of the intelligent systems is the
ability to apply logical instruments in description of situations
and in making correct decisions on this basis. A considerable
part of the logical instruments that have been investigated and
have been applied in the intelligent systems have been in
some way extracted from the texts produced by humans.

However, it is not clear from where the humans get these
instruments. It would be interesting to know how much of this
capability is given on the so called base software level (at
birth); what and when is added later during the development
of a person. One has to have answers to these questions in
order to be able to develop new intelligent systems with a
capability of autonomously adjusting/developing a logic for
the needs of a particular domain. We have used the dialogue
system DST in finding answers to these questions. We have
discovered jumps of the ability to use logic in a child’s
development.

Acknowledgements:
 The author of the given work expresses profound
gratitude to professor Peeter Lorents, professor Enn Tyugu
and Rain Ottis from the Cooperative Cyber Defense Centre of
Excellence for assistance in writing this paper.

6 References

[1] Bo Haoy, Tomohiro Yoshikaway, Takeshi Furuhashiyz,
Shin-ichi Sugiuraz. 2008. "A Development of Early
Diagnosis and Hospital Search Support System for Integrate

Medical Support System". International Multi-Conference on
Engineering and Technological Innovation, 2008, Orlando,
Florida, USA, June 29-July 2.

[2] Child Language Data Exchange System
http://childes.psy.cmu.edu/

[3] Lorents P, “Keel ja loogika (Language and Logic).”
EBS Print. Tallinn, 2000.

[4] Lorents P. “Formalization of data and knowledge based
on the fundamental notation-denotation relation”.
Proceedings of the International Conference on Artificial
Intelligence. IC – AI’ 2001. Volume III. p. 1297 – 1301,
2001.

[5] P. Lorents. “A System Mining Framework.” The 6th
World Multiconference on Systemics, Cybernetics and
Informatics. Proceedings. Vol. 1. 195 – 200, 2002.

[6] Lorents P., Lorents D. “Intelligence and the notation-
denotation relation.” Proceedings of the International
Conference on Artificial Intelligence. IC – AI’ 2003. Vol. II.
p. 703 – 707, 2003

[7] Lorents P. “Knowledge and understanding.“
Proceedings of the International Conference on Artificial
Intelligence. IC – AI’ 2004. Volume I p. 333 – 337, 2004.

[8] Lorents P. “The role of equality in knowledge
acquisition.” Proceedings of the International Conference on
Artificial Intelligence. IC – AI’ 2005. Volume II p. 555 – 561.
2005

[9] Lorents P. “Associated knowledge.” Proceedings of the
International Conference on Artificial Intelligence. IC – AI’
2006. Volume II p. 537 – 544, 2006.

[10] Lorents P. “Taxonomy of intellect.” Proceedings of the
International Conference on Artificial Intelligence. IC – AI’
2008. Volume II p. 537 – 544. 2008.

[11] Lukov V. B., Sergejev V. M. Луков В. Б., Сергеев В.
М., „Опыт моделирования мышления исторических
деятелей: Отто фон Бисмарк, 1866 – 1876 гг.“ В
сборнике Вопросы кибернетики. Логика рассуждений и
ее моделирование. АН СССР. Научный Соет по
комплексной проблеме “Кибернетика”. Москва. p. 148 –
161, 1983.

[12] Matsak E. “Dialogue system for extracting Logic
constructions in natural language texts”. Proceedings of the
International Conference on Artificial Intelligence. IC –
AI’2005. Volume II p. 791 – 797, 2005.

[13] Matsak E. “Using Natural Language Dialog System
DST for Discovery of Logical Constructions of Children's
Speech.” The 2006 International Conference on Artificial

Intelligence IC-AI 2006. Las Vegas, Nevada, USA (June 26-
29, 2006)

[14] Matsak E. “System DST for Transforming Natural
Language Texts, Representing Estimates and Higher Order
Predicates and Functionals.” The 3rd International
Conference on Cybernetics and Information Technologies,
Systems and Applications: CITSA 2006. . Orlando, Florida,
USA. (July 20-23, 2006)

[15] Matsak E. “The prototype of system for discovering of
inference rules.” Proceedings of the International Conference
on Artificial Intelligence. IC – AI’2007. Volume II p. 489 –
492, 2007.

[16] Matsak E. “Improved version of the natural language
dialog system DST and its application for discovery of logical
constructions in children’s speech.” Proceedings of the
International Conference on Artificial Intelligence. IC –
AI’2008. Volume II p. 332 – 338, 2008.

[17] Matsak E. 2009. “Representing logical inference steps
with digital circuits.” Lecture Notes in Artificial Intelligence:
HCI International 2009. Springer, 2009.

[18] Tamisier Thomas. “Cadral: an automated decision-
making framework for business collaboration.” International
Multi-Conference on Engineering and Technological
Innovation, Orlando, Florida, USA, (June 29-July 2, 2008)

[19] Tyugu E. “Knowledge - Based Programming.” Addison-
Wesley. 1988.

[20] Tyugu E. “Algorithms and Architectures of Artificial
Intelligence.” IOS Press. Amsterdam. Berlin. Oxford. Tokyo.
Washington, DC. 2007.

REPRESENTING LOGICAL INFERENCE STEPS WITH
DIGITAL CIRCUITS

 Erika Matsak

Reprinted with permission, from Lecture Notes in Artificial Intelligence: HCI
International 2009. Springer

115

Representing logical inference steps with digital circuits

MSc Erika Matsak

Tallinn University, Department of Computer Science, 25 Narva Road, 10120 Tallinn, Estonia

Tallinn University of Technology, Department of Computer Engineering, Raja 15, 12618
Tallinn, Estonia

e-mail: erika.matsak@tlu.ee

Abstract. The use of inference steps in natural language reasoning is observed.
An algorithm is presented for representing logically correct inference steps with
digital circuits. New foundations for creating decision making systems are
studied.

Keywords. Logical inference steps, logic gates, digital circuits representing
logical inference steps

1 Introduction

Many decisions that are required for efficient results with modern systems need to be
made without human intervention. For example, driving a Mars rover remotely from
Earth is not practical because the sensor information from Mars takes tens of minutes
to reach Earth and it takes equally long for the steering commands to reach the rover.
Another example would be taking defensive action in case of cyber attacks: a human
will not be able to understand the situation and make a (informed) decision in a
fraction of a second. Therefore, computers must make these necessary decisions. At
the same time we want that the computer-made decisions would be at least as reliable
as the one that an intelligent person would make (if he/she would be able to do that).

This brings us to the point that the decision making computer must possess logical
instruments: logic formulas (for formulating propositions) and logic inference rules
(for constructing an argument). A problem in this case is that a number of different
logic systems are in use. For example, classical logic is suitable for operating with
legal arguments, while intuitionistic logic (see E. Tyugu, G. Mints 1982, 1987) can be
used for structural program synthesis. One of the ways to distinguish the various logic
systems is to use inference rules and the corresponding inference steps. In information

technology the inference rules (using inference steps to move between formulae) are
implemented in software (see C. Chang, R. Lee, 1973, M. Fitting. 1996). However,
this does not have to be the only viable option. It is not excluded, in principle, that
some of the inference steps could be more efficiently implemented at the hardware
level. For this we would first need to develop instruments that allow the separation of
logical constructs, such as formulas and inference steps, from natural language (see P.
Lorents 2000, E. Matsak 2005, 2006, 2007, 2008). We could then proceed to
implement these constructs with digital circuits using logic gates (see W. Kunz, D.
Stoffel, 1997).

2 Inference steps and implications in logic gate circuits

Let us agree that within this paper we rely on the classic bivalent logic and that we
will stay in the confines of first-order predicate calculation. In this case we can use
the fact that each correct inference step corresponds to a correct implication, which
has the conjunction of the premises of the inference step as an antecedent and the
formula of the conclusion of the inference step as a result (see Lorents 2000):

M P … Q - inference step, (1)

 R

 (M&P& … &Q)⊃R - corresponding implication.

From this point on the implication representing an inference step will be matched
with a two-part digital circuit, where the first part (above the dotted line on drawings)
represents the conjunction of the premises of the inference step M&P& ... &Q, and
the second part represents the formula R.

Note. In bivalent logic the implication can be replaced by the disjunction of the
negation of the antecedent and the result (for example, the implication X⊃Y can be
replaced with the disjunction ¬X∨Y). We did not use such replacements above!
Therefore, for example, the Modus Ponens inference step is not represented with the
formula ¬(A&(¬A∨B))∨B, but with a two part circuit, where the first part represents
the formula A&(¬A∨B) and the second part represents the formula B.

The solution described above allows for representing inference steps with
traditional digital circuits composed of three types of logic gate elements: negation,
conjunction and disjunction. As explained previously, each circuit is divided into two
parts, where the first part represents the list of premises and the second part represents
the conclusion formula. The use of the inference step therefore corresponds to moving
from the first part of the circuit to the second part. A separate problem in here is
creating such circuits as well as suitable visualization software, which was not as
simple as it first appeared.

3 An algorithm for using logic gates to design a digital circuit
that represents inference steps

While designing a digital circuit we assume that as we move from left to right in the
formula all signals must have reached the corresponding gates. In order to guarantee
this property, we will change the formula (and sub-formulas) as necessary:

─ If the formula contains a conjunction that is not in parentheses and immediately
before or after it are other operations then the conjunction must be surrounded
by parentheses.

─ For example we replace the formula A ∨ B & C ⊃ D with the formula A ∨ (B &
C) ⊃ D

─ If the formula contains sub-formulas or their negations then we nest the
components from left to right in successive parentheses.

─ For example we replace the formula ¬A & B & ¬C & D with the formula
(((¬A & B) & ¬C) & D). We use an analogous process in a formula consisting
of only disjunctions.

─ If conjunctions (disjunctions) contain sub-formulas of various lengths (including
negations or „quantifications” of formulas) then we arrange them from left to
right by order of decreasing length (number of symbols).

─ For example we replace the formula
(Δ ∨ Γ) & (¬Α & Γ) ∨ ((Α & Β) & Χ) with the formula
((Α & Β) & Χ) ∨ (¬Α & Γ) & (Δ ∨ Γ).

─ We replace implications with applicable formulas consisting of negations,
conjunctions and disjunctions. For example we replace the formula X⊃Y with
the formula ¬X∨Y.

─ If following the rearrangements there is a negation at the right end of the
formula then we surround it with parentheses. For example we replace Δ&¬B
with Δ&(¬B). If there are two conjunctions or two disjunctions without
parentheses at the right end of the formula, then we surround them with
parentheses. For example we replace Δ & A & B with Δ & (A & B). Similarly,
we replace Δ ∨ A ∨ B with Δ ∨ (A ∨ B).

─ The final change is perhaps the most unusual. We write the negation symbol
after the formula in question, not before. For example, we replace ¬C with C¬.

The described changes enable the use of the algorithm in Figure 1.

Fig. 1. The algorithm for designing an inference step.

Using the algorithm in figure 1 we get the following circuit for the Modus Ponens
inference step:

Fig. 2. „Digital“ Modus Ponens.

By introducing the universal quantifier to the rule (see Gentzen 1936)

 (Α(β) & Γ) ⊃ Δ (2)
(∀ξ Α(ξ) & Γ) ⊃ Δ

we get the following digital circuit:

Fig. 3. Digital circuit of the univeral quantifier rule (∀+→)

4 Circuits in practice

The logic module of decision system could consist of the following components:
─ a binary matrix of notation-denotation (symbol-meaning) relations, where rows

represent notation (symbols, signs) and columns represent denotation
(meaning). The intersections contain markers (for example 1 or 0) that indicate
that the corresponding notation applies to the denotation (or not). It is important
to remember, that according to Lorents (2001, 2004, 2008) some notations may
have multiple denotations, and some denotations may have multiple notations;

─ the set of correct formulas;
─ the set of inference rules.
Before implementing the inference steps by using digital circuits, the data in the

role of predicates must be inserted. In order to achieve this, the relation between
formulas and digital logic gates must be established. Since classically there are two
possible truth values 1 and 0 (or true and false) and each logic gate also has two
values 1 and 0 (or High Voltage (+5V) and Low Voltage (0V)), then it is natural to
connect the gates in a way that correct atomal formulas are represented by the signal
„1”. Non-atomal formulas should be treated in the following way:

─ Identify the part of the circuit that corresponds to the non-atomal formula in
question;

─ Identify the input points (corresponding to the atomal formulas) for that specific
circuit part;

─ Identify an input signal combination for the above input gates that produces „1”
as an output for that circuit part.

This way we can provide the necessary input signals to the (upper) part of digital
circuits, which corresponds to the predicates of the inference step.

The construction of decision may take the simple form of „fitting” puzzle pieces,
where the „suitable” premise set of an inference rule allows the rule to be matched to
a combination of existing formulas that normally do not involve more than a few
formulas.

5 Advantages of the proposed circuits

While creating decision making systems (that are based on, for example, binary
decision diagrams (BDD), negation normal form (NNF), propositional directed
asyclic graph (PDAG), etc.) data structures related to Boolean functions are often
used. The logical operations used to form decisions are simple: AND, OR, NOT. In
recent years, several problems have surfaced in solutions relying on neural networks
or graphs. This does not mean that these methods should be cast aside (for example,
neural networks have advantages in modeling non-linear characteristics of sample
data – see Kim D., Lee J. 2001). However, systems based on implementing inference
steps with digital circuits also have advantages. One source of these advantages is the
ability to include „regular” operations (AND, OR, NOT), as well as other operations
(implication, etc.) and quantifiers. Second and more important advantage is the
possibility to notably „shorten” the decision making process (it is well known from

logic studies that manipulating with the rules may sometimes allow an exponential (!)
decrease in the number of inference steps).

6 Conclusion

The described digital circuits consisting of logic gates are not the only way to
represent inference steps. In principle, using special transformations one could
implement them in neural networks (see Minsky 1967) or other circuits. The
important part here is how to implement logical inference steps in hardware based on
the logical constructs extracted from natural language. It is possible that a similar
implementation is present in the human brain, which allows us to use logical
constructs, including the ability to formulate propositions and to come up with the
correct conclusion.

Acknowledgements: The author of the given work expresses profound gratitude to
professor Peeter Lorents for assistance in a writing of given clause and to Rain Ottis
for English version edition.

7 References

1. W. Kunz, D. Stoffel Reasoning in Boolean Networks: Logic Synthesis and
Verification Using Testin Techniques. Kluwer Academic Publishers.(1997)

2. C.Chang, R. Lee.: Symbolic logic and mechanical theorem proving. Academic
Press, New York San Francisco London (1973)

3. M. Fitting.: First-Order Logic and Automated Theorem Proving (2nd edition ed.).
Springer (1996).

4. Mints G., Tyugu E.: Justification of the structural synthesis of programs. Science
of computer programming 2(3), 215-240 (1982).

5. Mints G., Tyugu E.: The programming system PRIZ. Journal of Symbolic
Computation, (4). (1987).

6. Lorents P.:. Language and logic. EBS Print. Tallinn (2000)
7. Matsak E.: Dialogue system for extracting Logic constructions in natural language

texts. Proceedings of the International Conference on Artificial Intelligence.
ICAI’2005. Volume II p. 791 – 797. (2005)

8. Matsak E.: Using Natural Language Dialog System DST for Discovery of Logical
Constructions of Children's Speech. The 2006 International Conference on
Artificial Intelligence ICAI 2006. Las Vegas, Nevada, USA (2006)

9. Matsak E.: System DST for Transforming Natural Language Texts, Representing
Estimates and Higher Order Predicates and Functionals. The 3rd International
Conference on Cybernetics and Information Technologies, Systems and
Applications: CITSA 2006. Orlando, Florida, USA. (2006)

10. Matsak E.: The prototype of system for discovering of inference rules.
Proceedings of the International Conference on Artificial Intelligence. International
Conference on Artificial Intelligence ICAI’2007. Volume II p. 489 – 492 (2007)

11. Matsak E.: Improved version of the Natural Language Dialog System DST and its
application for discovery of logical constructions in children’s speech.
International Conference on Artificial Intelligence ICAI’2008. Volume I p. 332 –
338. (2008)

12. M. Minsky: Finite and Infinite machines. Prentice-Hall, Inc. Englewood Cliffs,
N.J. (1967)

13. G. Gentzen: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Annalen, 112: 493-565. (1936)

14. Lorents P.: Formalization of data and knowledge based on the fundamental
notation-denotation relation. Proceedings of the International Conference on
Artificial Intelligence. IC – AI’ 2001. Volume III. p. 1297 – 1301. (2001)

15. Lorents P.: Knowledge and understanding. Proceedings of the International
Conference on Artificial Intelligence. IC – AI’ 2004. Volume I p. 333 – 337.
(2004)

16. Lorents P.:. Taxonomy of intellect. Proceedings of the International Conference
on Artificial Intelligence. IC – AI’ 2008. Volume II p. 537 – 544. (2008)

17. Kim D., Lee J.: Rule Reduction over Numerical Attributes in Decision Trees
Using Multilayer Perceptron. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2001)

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

 1. Lea Elmik. Informational modelling of a communication office. 1992.

 2. Kalle Tammemäe. Control intensive digital system synthesis. 1997.

 3. Eerik Lossmann. Complex signal classification algorithms, based on the third-
order statistical models. 1999.

 4. Kaido Kikkas. Using the Internet in rehabilitation of people with mobility
impairments – case studies and views from Estonia. 1999.

 5. Nazmun Nahar. Global electronic commerce process: business-to-business.
1999.

 6. Jevgeni Riipulk. Microwave radiometry for medical applications. 2000.

 7. Alar Kuusik. Compact smart home systems: design and verification of cost
effective hardware solutions. 2001.

 8. Jaan Raik. Hierarchical test generation for digital circuits represented by
decision diagrams. 2001.

 9. Andri Riid. Transparent fuzzy systems: model and control. 2002.

10. Marina Brik. Investigation and development of test generation methods for
control part of digital systems. 2002.

11. Raul Land. Synchronous approximation and processing of sampled data
signals. 2002.

12. Ants Ronk. An extended block-adaptive Fourier analyser for analysis and
reproduction of periodic components of band-limited discrete-time signals. 2002.

13. Toivo Paavle. System level modeling of the phase locked loops: behavioral
analysis and parameterization. 2003.

14. Irina Astrova. On integration of object-oriented applications with relational
databases. 2003.

15. Kuldar Taveter. A multi-perspective methodology for agent-oriented business
modelling and simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected issues of modeling, verification and testing of digital
systems. 2004.

125

18. Ander Tenno. Simulation and estimation of electro-chemical processes in
maintenance-free batteries with fixed electrolyte. 2004.

19. Oleg Korolkov. Formation of diffusion welded Al contacts to semiconductor
silicon. 2004.

20. Risto Vaarandi. Tools and techniques for event log analysis. 2005.

21. Marko Koort. Transmitter power control in wireless communication systems.
2005.

22. Raul Savimaa. Modelling emergent behaviour of organizations. Time-aware,
UML and agent based approach. 2005.

23. Raido Kurel. Investigation of electrical characteristics of SiC based
complementary JBS structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive secure data transmission method for OSI level I. 2005.

26. Deniss Kumlander. Some practical algorithms to solve the maximum clique
problem. 2005.

27. Tarmo Veskioja. Stable marriage problem and college admission. 2005.

28. Elena Fomina. Low power finite state machine synthesis. 2005.

29. Eero Ivask. Digital test in WEB-based environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом
и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian large vocabulary speech recognition.
2006.

32. Erki Eessaar. Relational and object-relational database management systems
as platforms for managing softwareengineering artefacts. 2006.

33. Rauno Gordon. Modelling of cardiac dynamics and intracardiac bio-
impedance. 2007.

34. Madis Listak. A task-oriented design of a biologically inspired underwater
robot. 2007.

35. Elmet Orasson. Hybrid built-in self-test. Methods and tools for analysis and
optimization of BIST. 2007.

36. Eduard Petlenkov. Neural networks based identification and control of
nonlinear systems: ANARX model based approach. 2007.

126

37. Toomas Kirt. Concept formation in exploratory data analysis: case studies of
linguistic and banking data. 2007.

38. Juhan-Peep Ernits. Two state space reduction techniques for explicit state
model checking. 2007.

39. Innar Liiv. Pattern discovery using seriation and matrix reordering: A unified
view, extensions and an application to inventory management. 2008.

40. Andrei Pokatilov. Development of national standard for voltage unit based on
solid-state references. 2008.

41. Karin Lindroos. Mapping social structures by formal non-linear information
processing methods: case studies of Estonian islands environments. 2008.

42. Maksim Jenihhin. Simulation-based hardware verification with high-level
decision diagrams. 2008.

43. Ando Saabas. Logics for low-level code and proof-preserving program
transformations. 2008.

44. Ilja Tšahhirov. Security protocols analysis in the computational model –
dependency flow graphs-based approach. 2008.

45. Toomas Ruuben. Wideband digital beamforming in sonar systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model based method for adaptive decomposition of the
thoracic bio-impedance variations into cardiac and respiratory components.

48. Vineeth Govind. DfT-based external test and diagnosis of mesh-like networks
on chips. 2009.

49. Andres Kull. Model-based testing of reactive systems. 2009.

50. Ants Torim. Formal concepts in the theory of monotone systems. 2009.

127

	Las Vegas Matsak 2006.pdf
	Erika Matsak
	1.1 Lorents´s Procedure of Text
	2. Detected logical constructions
	2.1 Meanings and roles of “then”
	3. The assessment gradation
	Values of time intervals
	5. Remark (about next stage).
	6. Conclusions

