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1. INTRODUCTION

Future communication networks will have seamless and ubiquitous connectivity

among several communicating devices using different radio technologies. In

the year 2021, it is predicted that there will be 16 billion devices that will

be connected [9]. These devices could include cell phones, TVs, computers,

tablets, etc. Wireless sensor networks (WSN) play an important role in the

future of Internet of Things (IoT) systems. Several applications, such as Smart

Grids, Smart Homes, Intelligent control systems, are built upon wireless sensor

networks. As a result, sensing and information processing in the sensor networks

becomes more and more important. The increasing trend of more connected

devices via wireless channels leads to the potential problem of lack of free and

usable radio frequencies (as a national resource) and brings up the dilemma for

allowing an opportunistic spectrum usage. Special solutions are needed to handle

that problem.

1.1. Cognitive Radio in Wireless Communications

Cognitive telecommunication systems are a relatively new direction in

telecommunication research. Traditionally, the radio frequencies have been

divided between the interested parties by licensing. The party who has a license

to use a given frequency band has exclusive rights to the band and no one else

can use this band. Nowadays we are reaching the situation where the attractive

frequency bands are full and there are no more frequencies available to license

out new and innovative applications. This situation makes the development and

implementation of new radio-based services more challenging all over the world.

Recent studies have shown that the available licensed radio spectrum is becoming

more occupied, while the assigned spectrum is significantly underutilized [10].

The licensed users do not use their spectrum in all locations and at all times and it

is possible to utilize the available spectrum more fully and effectively. Cognitive

radio [11–13] is a technology that was proposed in 1998 by Joseph Mitola to

solve this problem [14]. Within this paradigm the radio equipment will search

unused frequencies by itself and sense the spectrum area of interest to detect

the presence of a licensed user. The proposed solution poses both technical and

legal problems, which are currently dealt with. Cognitive radio is seen as a

new promising technology and the research topic is providing interests to great
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amount of universities in spectrum sensing and signal detection, estimation, and

communication areas [15, 16].

More specifically, spectrum utilization can be improved by allowing secondary

(unlicensed) users to opportunistically access the licensed spectrum area when

the primary user (PU) is not present. A cognitive radio (CR) technology is able

to serve the secondary users (SUs) for detecting and utilizing so called spectrum

holes by sensing and adapting to the environment without causing harmful effects

or interference to the licensed PUs. It is expected that CR systems are able to

systematically detect the presence of a primary user (while the CR system usually

does not have the a priori knowledge that the channel is free) by continuously

sensing the spectrum area. If a PU signal is detected, the CR system has to

immediately stop operating in this specific frequency area and has to adapt and

find new free spectrum area or channel for continuing its operation. PUs may

use different kind of modulations, transmission rates and powers, which makes

the spectrum sensing more complicated. A CR network is illustrated in Fig. 1.1.

Since the active work-pattern of a PU is usually not known for the CR system,

then adaptive signal processing methods could be used for spectrum sensing,

which are able to learn and track the changes in the statistical properties of the

underlying process.

One of the examples with Cognitive Radio technology is the usage of TV

White Space. The unoccupied TV UHF band may be used for secondary services
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during time periods when the primary TV stations are switched off [12, 17].

Support for opportunistic spectrum access has for example been proposed initially

for the LTE (4G) standard [18] and also for the 5G [19, 20]. The topics related

to cognitive radio technology are providing interests to world leading mobile

access technology providers, including Ericsson [21, 22], etc.

The research in this thesis focuses on the methods of statistical signal

processing. As widely known, statistical signal processing is a research area of

applied mathematics and (digital) signal processing, where signals are treated

as (discrete time) stochastic processes and the processing methods utilize the

statistical properties of the signals to perform signal processing tasks. Statistical

techniques are widely used in wireless signal processing applications.

In this thesis we investigate distributed cooperative detection algorithms that

the radio equipment can use to determine whether a frequency is usable or not,

i.e. whether the primary user is using the frequency for its own purposes or not.

A single CR node may not be in a good location to detect the presence of a PU

with high probability because of the effects of radio propagation like fading and

shadowing of radio waves. A more reliable decision can be obtained if several

cognitive users work together sharing information. In the thesis we investigate

two cooperative detection techniques, that do not need any fusion center (which

would be a single point of failure), but are rather similar to those used in adaptive

filtering to share the information. The individual nodes share the information

directly with each other.

The aim of the work is to develop algorithms usable for both individual and

cooperative detection that can be used in cognitive radio networks to detect the

presence of PU users. In this thesis we assume that there is only one PU signal

present; however, the current work can be logically extended also to the cases

were more PU signals are present, by updating the measurement signal model

and by choosing or designing most optimal detector (module) for these specific

cases.

1.2. Adaptive Distributed Signal Processing and Optimization

Several classical distributed detection methods have been proposed and studied

in the literature [23]. Most of the classical solutions are, however, based on

the ”close to or ideal” a priori knowledge about the statistical properties of the

observations and the detection hypotheses. In the CR application area, we have

usually limited information about the PU signal and about the prior probabilities

of the detection hypotheses. The CR system usually has limited information

about transmission parameters, modes and functions of the PU system. Thus, in

the CR context we usually can not design an optimal detector in the sense of

classical detection theory since the parameters of the conditional distributions of

the measurements are not ideally known (but have to be estimated, where an

estimation error is always present). Also in the CR context, it is not that practical

to limit the detection solutions with the assumption that the prior probabilities of
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the detection hypotheses are known and fixed over a period of time. Thus, the

classical detection methods based on the Bayesian approach are not that practical

in the CR context and we instead use the Neyman-Pearson type of detectors.

Adaptive filters [24, 25] have been used extensively in the systems where

the parameter to be estimated has a dynamic nature. Several applications in

the literature use non-adaptive estimation methods (based on collected amount

of samples) to estimate a parameter of interest. Adaptive (recursive) algorithms

are, however, able to react to the changes in the statistical properties of the

measurements ”on line” and during the time when the recursive algorithm is

kept running. In comparison, classical non-adaptive estimation methods usually

have to be restarted when the maximum amount of samples have been collected

and when the value of the estimate has been calculated. This leads to design

issues related to the size of measurement data windows for a specific application

and there is a higher probability to miss the start moments of the transitions in

the statistical processes of the measurements. Moreover, adaptive algorithms

usually do not require large amounts of system memory since only the data from

the previous time instant should be stored into the memory. These mentioned

aspects make the usage of adaptive estimation algorithms in the CR application

context more practical.

Distributed adaptive estimation and detection schemes have been studied

before in several papers [26, 27]. An optimal, matched filter based distributed

detection scheme has been studied in [28]. However, in most cases we do not

have any information about the waveform of the PU signals and hence we cannot

design a matched filter based solution [28]. LMS (Least Mean Square) based

distributed estimation schemes have been investigated for example in [26, 27].

In this thesis, LMS (Least Mean Square) based adaptive estimation algorithms

(which is a stohastic gradient based algorithm) are chosen due to the simplicity,

robustness and good tracking abilities, compared to e.g. RLS (Recursive Least

Squares) [29].

Some recent developments in adaptation, learning, and optimization over

networks have been published for example in [30, 31]. Diffusion Optimization

strategies [32, 33] can be seen as a generalizations of diffusion LMS estimation

algorithm [26,27].

22



CONTRIBUTIONS OF THETHESIS

The current thesis is composed of the papers, listed in the publication section. The

corresponding research work was performed in accordance to the cooperation

memorandum, agreed and signed between Tallinn Institute of Technology, Estonia

and KTH Royal Institute of Technology, Stockholm, Sweden in September 2012.

This cooperation memorandum, stated the plan of additional studied at KTH,

joint co-supervision of my research work and the defence strategy of the jointly

published material. More specifically, the jointly prepared papers P1-P5 i.e. the

Chapters 3 to 4 are also included in my Licenciate thesis (Lic. Tech.) [34],

which was defended successfully on September 28, 2017. The Chapters 1, 2 and

6 of this thesis are based on the structure which is similar to the corresponding

chapters of my Lic. Tech. thesis, but which is updated with relevant information.

This thesis includes the additional Chapter 5, which is based on the corresponding

latest publication, prepared after September 28, 2017.

1.3. Motivation and Research Statements

Based on the discussion in previous sections, in this thesis we consider a scenario

with a number of CR nodes in the network, which sense a spectrum area of

interest. We additionally assume that the Gaussian noise floor is constant over the

nodes. Several solutions have been proposed that make use of a central processing

unit to collect all the measurements over a sensing period from all the nodes

and make decisions about presence or absence of PU, for example [17, 35, 36].

Instead of this, we expect that the measurements or estimates are exchanged

between the CR nodes directly, without involvement of any central processing

unit (fusion center). At every time instant new measurements or estimates from

the neighbouring nodes become available. Thus CR nodes estimate the elements

of the test statistics in their own location and make individual decisions about

the detection hypotheses. Depending on the exact topology of the network, with

such a solution communication in the network can be reduced as compared to

solutions where nodes send their measurements to a fusion center, which sends

the collected estimates back to the nodes after an iteration of the estimation

process. This method saves energy, required for the data transmission of the

single nodes (transmitting function usually consumes most of the power of a

node [37]). In addition, this method enhances network failure resistance (in case

of FC stops operating).
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The above discussion naturally leads to the following main research topics

which are addressed in this thesis:

1. Cooperative signal processing in CR Networks.

2. Distributed estimation and detection in Cognitive Radio, without using a

FC.

3. Distributed Energy and Largest Eigenvalue detection in Cognitive Radio.

Resulting detection performance analysis.

The main research objectives in the thesis are the following:

1. Removal of the central processing unit − FC − from the domain of

estimation and detection in the CR network. It is expected that the CR

network is able to estimate the test statistic of a detector and to detect the

presence of the PU signal without the usage of any FC.

The solutions in this thesis are based on the idea that distributed estimation

schemes are used for designing distributed detection schemes, with no use

of a FC. Thus, the distributed detection schemes are based on the underlying

distributed estimation strategies and topology in the CR Network.

2. We assume to have limited information about the type and properties of

the PU signal and therefore an energy detection method becomes a usable

solution. The energy detection method is implemented in a distributed

way in the CR network. Secondly, several types of correlation matrix

based detection methods exist in the literature. We have chosen to study

the Largest Eigenvalue detection method, which is similarly implemented

in a distributed way in the CR network.

3. Least Mean Square (LMS) type of adaptive estimation algorithms are

based on the stochastic gradient descent and the LMS estimates are

modelled as random variables. Thus, LMS type of algoritms are suitable

for the estimation of a statistical moment based detection test statistics.

Distributed Diffusion LMS algorithms have been already proposed and

studied in the literature. We adapt the Diffusion LMS algorithms to

estimate the statistical moment based detection test statistics directly.

4. Since the PU signal is assumed to be slowly fading, we design the usage

of distributed adaptive estimation schemes so that approximately equal

statistical properties of the estimates are achieved in every CR node in the

network. In such a way, an averaged detection performance in every CR

node is achieved regardless of the actual channel conditions of each single

node.

5. Usage of adaptive and recursive estimation schemes. We are interested

in the online tracking ability of the statistical properties of the estimates
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to react to the changes in the presence of PU signal − i.e to the changes

of the underlying detection hypothesis, over the iteration period of the

distributed estimation algorithm.

6. As common in the area of statistical signal processing, a (statistical)

performance analysis for the proposed algorithms is performed. Since

the detection performance of the proposed distributed detection schemes

depends on the statistical properties of the underlying estimates, we

propose to use a generic framework for studying the performance of the

proposed estimation schemes in the CR network level. We focus on the

analysis of the theoretical statistical moments of the estimates to study the

resulting detection performance.

7. In the simulation sections we compare the theoretical findings with the

results obtained via Monte-Carlo based computer simulations. A good

match between theory and practice allows us to use computationally much

faster theoretical calculations to evaluate the performance of the proposed

algorithms in different use cases. We mainly use the probability of

detection versus averaged SNR type of computer simulations to study

the detection performance of the proposed algorithms and to evaluate the

ranges when the detection methods fail to provide perfect detection results.

1.4. Thesis Outline

This section provides an outline of the thesis with a brief summary of the material

presented in each chapter. This thesis consists of six chapters: Introduction,

Preliminaries, three Contribution Chapters and the Summary Chapter, of which

are summarized as follows.

Chapter 2

Chapter 2 provides background information, a brief discussion on the concepts

and tools is given, which is essential to follow the rest of the thesis. We give a

short summary of the theory of statistical signal processing in connection to the

material in this thesis, where we discuss the basics of detection and estimation

theory. We provide a generic introduction for the derivation of diffusion LMS

types of algorithms. Also, we provide a short summary about the literature on

CR.

Chapters 3, 4 and 5 discuss the main contributions of this thesis. Each

chapter follows the structure of the corresponding published papers and thus is

complete by itself – the reader does not need the content of the previous or

subsequent chapters to follow the material. However, the chapters themselves

address problems and solutions which are partly related. Each chapter begins

with a background section, which gives the overall context to the discussion that
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follows and ends with a conclusion section which summarizes the chapter along

with the main concepts from that chapter.

Chapter 3

More specifically, Chapter 3 addresses the distributed energy detection problem

in CR networks. Often we have limited information about the signal received

by the cognitive radio nodes and such signal flow can not be modelled as a

deterministic process. Since the radio signals contain information when the PU

signal is present, it is often more suitable to model the PU signal also by a

random process, in addition to the radio channel noise process. In such cases,

energy detection becomes a usable solution. We are interested to remove a

potential single point of error - a central processing unit from the cognitive radio

network. Each CR node should be able to rely only on the communication

between the neighbour CR nodes. We use distributed recursive estimation

schemes to estimate the power of the received signal in a distributed way.

We propose the usage of distributed, Diffusion LMS type of power estimation

algorithms and three different static network topologies: Ring-Around, Combine

AndAdapt andAdapt and Combine are studied. We provide a generic framework

for studying the detection performance of the proposed schemes by using the

statistical properties of these distributed estimates. In case of the Ring-Around

topology, a generic recursive signal power (statistical variance) estimation

algorithm is proposed and more specific results about the moment estimation

of the distributed estimates can be given. These results have been integrated

into the same chapter. The theoretical findings are verified by MATLAB based

simulations.

This chapter is based on the following 3 papers:

P1. A. Ainomäe, T. Trump, and M. Bengtsson, “Distributed recursive

energy detection,” in IEEE WCNC 2014 Conference Proceedings,

Istanbul, Turkey, 2014. ETIS 3.1.

P2. A. Ainomäe, T. Trump, and M. Bengtsson, “CTA diffusion based

recursive energy detection,” in Latest Trends in Circuits, System

Signal Processing and Automatic Control, Salerno, Italy, 2014, pp.

38 – 47. ETIS 3.2.

P3. A. Ainomäe, T. Trump, and M. Bengtsson, “Distributed diffusion

LMS based energy detection,” in IEEE 6th International Congress

on Ultra Modern Telecommunications and Control Systems and

Workshops (ICUMT), St. Petersburg, Russia, 2014, pp. 176 – 183.

ETIS 3.1.
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Chapter 4

Chapter 4 deals with distributed correlation matrix (CM) based signal detection in

Cognitive Radio network. The PU signal is assumed to be temporally correlated.

Similarly as in the previous chapter, we study the usage of diffusion LMS based

estimation strategies for estimating the elements of the correlation matrices, used

for PU signal detection. Two static network topologies Combine and Adapt

(CTA) and Adapt and Combine (ATC), are used in this chapter and we run some

simulations with Consensus and FC based network topologies for comparison.

The estimation and detection solution does not rely on any central processing

unit in the network. The estimation strategies and the section of performance

analyses have been adapted and extended to deal with vector estimates and

block-covariance matrices. Several correlation matrix based detection solutions

have been proposed in the literature and in this research work we have chosen the

Largest Eigenvalue based detection solution, where in case of Primary user signal

exists in the network we assume that the PU signal has a rank one correlation

matrix. In order to obtain analytic results on the detection performance, the exact

distribution of the CM estimates are approximated by a Wishart distribution,

by matching the moments. The theoretical findings are similarly verified by

MATLAB based simulations.

This chapter is based on the following 2 papers:

P4. A. Ainomäe, T. Trump, and M. Bengtsson, “Distributed largest

eigenvalue detection,” in IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP) 2017, New Orleans,

United States, 2017, pp. 176 – 183. ETIS 3.1.

P5. A. Ainomäe, M. Bengtsson, and T. Trump, “Distributed largest

eigenvalue based spectrum sensing using diffusion adaptation,”

IEEE Transactions on Signal and Information Processing over

Networks, Sep. 2017. ETIS 1.1.

Chapter 5

Chapter 5 deals with distributed correlation matrix (CM) based signal detection

in Cognitive Radio network, where diffusion LMS based estimation strategies

for estimating the elements of the correlation matrices are applied for PU

signal detection and no FC unit is used. Compared to the solutions in our

papers [4] and [38], in this chapter, an additional local observation exchange

and combination strategy is introduced and studied, which is based on the local

SNR estimates and is adapted to the context of binary hypothesis testing. It is

shown that when the PU signal is present and when the local SNR estimates

are available, then the network-wise PU signal detection performance can be

slightly improved, compared to the standard case with no observation exchange

studied in our paper [4]. The theoretical analysis is performed and the theoretical

findings are similarly verified by MATLAB-based simulations.
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This chapter is based on the following paper:

P6. A. Ainomäe, T. Trump, and Y. L. Moullec, “SNR weighted

distributed largest eigenvalue based spectrum sensing,” in Submitted

to 16th Biennial Baltic Electronics Conference (BEC 2018), Tallinn,

Estonia, 2018. ETIS 3.1.

Chapter 6

Finally, Chapter 6 summarizes the author’s contribution results in this thesis and

lists possible directions for future research.
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2. PRELIMINARIES

In this chapter, some basic concepts, that are essential to follow the rest of thesis,

are introduced.

2.1. Summary on Cognitive Radio

In this section a brief summary about the aspects of Cognitive Radio Networks

is provided, which are essential in the context of the thesis. The section is based

mainly on the material from [12], [39].

It was already briefly mentioned in Chapter

The concepts of software−defined radio and cognitive radio have been

introduced to enhance the efficiency of frequency spectrum usage in next

generation wireless and mobile computing systems. Cognitive ratio, which

can be implemented through software−defined radio, is able to observe, learn,

optimize, and intelligently adapt to achieve optimal frequency band usage.

Dynamic spectrum access (DSA) or opportunistic spectrum access (OSA) is

the key approach in a cognitive radio network and has emerged as a new design

paradigm for next generation wireless networks. Therefore, a new spectrum

licensing paradigm also needs to be initiated by the national frequency regulation

institutions, for being more flexible in allowing unlicensed (or secondary) users

to access the spectrum as long as the licensed (or primary) users are not interfered

with. In such a way, the utilization of the frequency spectrum could be improved.

In general the development of dynamic spectrum access-based cognitive radio

technology has to deal with technical and practical considerations as well as

regulatory requirements.

The main frequency bands for CR are considered as follows

1. UHF band, typically 470-790 MHz;

2. Cellular bands, typically 800-900 MHz, 1.8-1-9 GHz, 2.1 GHz, 2.3 GHz,

and 2.5 GHz;

3. Wireless access bands, typically 2.5-3.5 GHz.

The main functions of CR to support DSA can be listed as follows [12]:

1. Periodical spectrum sensing, which can be centralized (FC based) or

distributed, to determine if the frequency area of interest is free;
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2. Spectrum analysis, to process the information obtained from previously

listed step, plan the spectrum access and optimize the transmission

parameters;

3. Spectrum access, with the help of a cognitive medium access control

(MAC) protocol;

4. Spectrum mobility, to change the operating frequency band of CR users.

Threemajor models of dynamic spectrum access are considered: common-use,

shared-use, and exclusive-use models. In the first case, the spectrum is open for

access to all users. In the second case, licensed users (i.e. PUs) are assigned

to the frequency bands which are opportunistically accessed by the unlicensed

users. In the latter case, a PU can grant access of a particular frequency band to

an unlicensed user for a spectrum leasing (for a certain period of time).

CR has to use a frequency area without causing interference to the PUs. There

are three main approaches for opportunistic spectrum access [39]:

1. Spectrum Interweave;

2. Spectrum Overlay;

3. Spectrum Underlay.

The spectrum interweave paradigm was the original motivation for the idea of

CR. The requirement is that the CRs should not interfere with the communication

between the already active PUs. Thus, the CRs should be able to detect (sense),

with very high probability, the primary user transmissions in the network.

Once the CR successfully detects the PU transmissions, it can opportunistically

communicate only if it is able to do so without causing any harmful effects

to the PU transmissions. This requires spectrum agility or the ability to

transmit at different frequencies. The temporary space−time−frequency gap

in the transmission of PUs is referred to as a spectrum hole or a white space.

The spectrum overlay paradigm is more advanced. The CR needs to know

the channel properties between the primary transmitter and the primary and

secondary receivers, as well as the channel between the secondary transmitter

and the primary receiver. With the channel knowledge of both the primary and

CRs, the CR can then choose appropriate transmission strategies so that the

communication in the secondary network causes least interference to the primary

network. In the spectrum underlay paradigm, the secondary transmitter keeps

the interference levels below a certain threshold. The primary receiver sees a

higher noise level if the primary and secondary transmission overlap in the same

band. Possible methods include transmission power control, beam-forming and

spread spectrum techniques.

A combination of these methods may be also considered. In practice

estimation of channel gains is often a complicated task and the main CR detection
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algorithm could be constructed so that knowledge about the channel gains is not

required. Thus, although the overlay and the interweave approaches are similar,

in this thesis I focus on the detection methods which follow the interweave

approach, where it is assumed the detectors are not aware about the channel

gains of PU signal.

2.1.1. Spectrum Sensing in Cognitive Radio

This section focuses on the spectrum sensing task of the CR. The objective

is to detect the presence of transmissions from licensed users. Three major

types of spectrum sensing types are: non−cooperative, cooperative and

interference−based sensing [12].

As already discussed in Chapter 1, a CR can accomodate an independent

detector function. Thus a CR nodes monitors a spectrum area of interest (of

bandwidth B) by processing the received PU signal in an additive noise (including

filtering, discretizing, calculation of the function of test statistics etc.).

Usually the model for signal detection is given based on the following idea

H0 : x(n) = v(n)
H1 : x(n) = αs(n) + v(n), (2.1)

where x(n) is the received signal (and is modelled by a stochastic process) of

a CR user at a discrete time instant n, s(n) is the transmitted signal of the PU,
v(n) is the additive white Gaussian noise (AWGN), and α is the channel constant
(gain). The test statistic of a detector is a function of the received signal samples

x(n) and the test statistics is compared with a predefined detection threshold (see
Chapter 2.2).

Three classical and one class of additional detection methods in non-

cooperative sensing are for example:

1. Matched filter detection or coherent detection;

2. PU transmitter energy detection;

3. Cyclostationary feature detection;

4. Correlation based detection.

The matched filter is designed to detect a signal by correlating a known

(transmitted) signal with the received signal. A matched filter will maximize the

received SNR for the measured signal [40]. If the information of the signal from

a licensed user is known, then a matched filter is an optimal detector in stationary

Gaussian noise environment [41]. Thus, when a signal template is perfectly

known and in case of the correlation is achieved between the transmitted and

received signal, then a matched filter requires only a small amount of time to

operate. On the other hand, when this template is not available or is incorrect, the
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performance of spectrum sensing degrades significantly. Matched filter detection

is suitable when the PU signal has a pilot, preambles, synchronization word

or spreading codes which can be used to construct the template for spectrum

sensing [12].

Energy detection is the optimal method for spectrum sensing when the

information from a PU (i.e. signal type, pattern, etc.) is unavailable [41]. The

output signal from a bandpass filter is squared and integrated over the observation

interval. A decision algorithm compares the integrator output with a threshold to

decide whether a licensed user exists or not [12]. It is widely known, that the

energy detection performance deteriorates when the SNR decreases. The Energy

detection method is studied further in Chapter 3 of this thesis.

The PU signal has often a cyclostationarity (periodic) pattern, and this property

could be used to detect the presence of a PU user. A signal is cyclostationary (in

the wide sense) if its autocorrelation is a periodic function. With such a periodic

pattern, the transmitted PU signal can be distinguished from noise, which is

a wide-sense stationary signal without correlation. In general, cyclostationary

detection can provide a more accurate sensing result and it is robust to variations

in noise power. However, the detection is complex and requires long observation

periods to obtain the sensing result [12].

Let us note that in [42, Chapter 2] a brief overview of these three classical

detectors with some detailed signal models and processing block schemes is

given and thus we are omitting such summary in this thesis.

A second large group of detectors for spectrum sensing are based on

eigenvalue properties of an estimated correlation matrix (CM) [43–45]. When

the PU signal exploits certain type of low rank correlation, then this feature can

be used to detect the presence of a PU signal. Several CM based detectors

have been proposed in the literature: the largest eigenvalue (LE) method, the

volume based detector (VD), the covariance based detector (CAV), which have

been studied for example in [46, 47] and [48]. So called robust detectors do not

require noise power value in the threshold calculation. Eigenvalue Arithmetic

to Geometric Mean (AGM) [49], the Maximum to Minimum eigenvalue ratio

(MME), the Energy to Minimum Eigenvalue ratio (EME) [45], the Eigenvalue

Moment ratio (EMR) [49], and the Hadamard [50] robust detectors have been

proposed in the literature. The LE method is studied further in Chapter 4 of this

thesis.

A CR node may not always be able to detect the signal from a licensed

transmitter due to its geographic separation (a shadowing problem) and channel

fading (a multipath fading problem). In cooperative sensing, spectrum sensing

information from multiple CRs are exchanged among each other to detect the

presence of a PU. The cooperative spectrum sensing is usually performed in a

centralized or distributed manner. Obviously cooperative sensing will increase

the communication and computation overhead compared with non-cooperative

sensing. However in case of cooperative sensing, the detection probability can

usually be significantly improved [10]. In this thesis we assume that fully
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distributed CR nodes perform spectrum sensing and no central processing unit

(a fusion center) is used in estimation and detection domain.

We also mention, that in case of Interference based sensing, the noise/inter-

ference level (from all sources of signals) at the receiver of the primary user is

measured. This information is used by a CR to control the spectrum access (e.g.

by computing expected interference level) without violating the interference

temperature limit. Alternatively, an unlicensed transmitter may observe the

feedback signal from a licensed receiver to gain knowledge on the interference

level.

Finally, we briefly list the potential application areas of CR [12,39, 51] etc.:

1. Next Generation Wireless Networks, IoT, Machine-to-machine communi-

cations, Dynamic spectrum access in cellular systems;

2. Wireless broadband for distribution and backhaul, Data boost for mobile

networks;

3. Coexistence of different wireless technologies, Cognitive digital home;

4. Intelligent transportation system, Long range vehicle-to-vehicle networks;

5. eHealth services;

6. Emergency networks;

7. Military networks.

Regarding the two last application areas, we could add that CR technology is

proposed for military radars and maritime monitoring in wide costal areas.

2.1.2. Common Research areas in cognitive radio

For an overview, we list some main CR research areas and aspects, which follow

the function areas of CR:

1. Spectrum sensing;

2. Spectrum management;

3. Spectrum mobility;

4. Network layer and transport layer;

5. Cross-layer design for cognitive radio networks;

6. Artificial intelligence approach in cognitive radio.

Since this thesis focuses on the area of spectrum sensing, it could be specified,

that generic research issues can be categorized for example as follows:
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1. Sensing interference limit,

2. Spectrum sensing in multiuser and multichannel networks,

3. Optimizing the period of spectrum sensing,

4. Spectrum management issues,

where obviously the research in this thesis is related to the second topic (and

with the focus on the physical layer).

From another perspective, by following the recently emphasised interests

in the world-level scientific conferences of communication systems, such as

IEEE GLOBECOM 2017 but also IEEE ICCASP 2017, IEEE WCNC 2017,

the following can be added. In the research area of embedded (electronic)

systems a continuing interest is on the design of energy efficient and failure

resistant hardware platform and architectures for testing and implementing the

CR technology. On the other hand, in the research area of applications and

services of CR, the continuing interest are in the areas of cognitive networking

in TV whitespaces, adaptation and integration with newest access technologies

(incl. massive MIMO and full-duplex). Also aspects related to the (cyber-)

security and privacy in CR radio networks are gaining an interest.

Since the development of new generation 5G access technology is closely

related to the IoT (Internet of Things) concept, then recently the research area

of CR in the 5G/IoT technologies has gained increasing interest. It is expected

that 5G will become the backbone for IoT devices by forming an ecosystem of

so called smart devices. For example [52, Chapters 4 and 2] give an overview

about the challenges related to the implementation of IoT using CR capabilities

in the future 5G Mobile Networks. As also initially planned for 4G, in 5G

technology, the CR technology is expected to improve the handling of resources

of the future smart environments - such as improving the utilization of available

radio spectrum.

2.1.3. Standardization in cognitive radio

In this section some comments about the standardization in CR area are given,

based on [39].

In May 2004 US Federal Communications Commission (FCC) initiated the

proposal to provide more efficient and effective use of the TV spectrum (i.e in

the VHF and UHF band). As a result, IEEE 802.22 Working Group (WG) was

formed to define a standardized air interface based on CRs. The IEEE 802.22

standard for Wireless Regional area Networks requires that CR nodes sense

the spectrum to detect the presence or absence of active primary transmitters.

In November 2008, the FCC issued a second report to adopt rules to allow

unlicensed radio transmitters to operate in TV white spaces in order to make

a significant amount of spectrum available for new and innovative products
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and services, including broadband data and other services for businesses and

consumers. FCC expects that a database and active spectrum sensing is used by

the solution. In September 2010, the FCC released a third report that finalized

the rules for using unused TV bands for unlicensed wireless devices, where

mandatory sensing requirements were removed.

Some of the other IEEE standards related to white space networks are as

follows

1. The IEEE 802.11af WG (first approved standard in 2014) for channel

access and coexistence in TV White Spaces (TVWS);

2. The IEEE P1900 WG (since 2005, first approved standard in 2008)

for developing supporting standards dealing with new technologies and

techniques being developed for cognitive radio and advanced spectrum

management;

3. The IEEE SCC41 (since 2005) for of checking, whether reusing the IEEE

802 PHY/MAC is optimal for white space operation and to estimate how

far the performance of the system could benefit from a tailored PHY/MAC

system;

4. The IEEE 802.19 WG (since 2005) focuses on developing standards for

coexistence between wireless standards of CR devices. The first standard

was formed to minimize the interference between different networks

belonging to various wireless standards in the unlicensed band. The TVWS

project 802.19.1 (since 2009) focuses on the coexistence of unlicensed

devices in the TV White Space.

The International Telecommunication Union (ITU) has formed the following

study groups that discuss cognitive radio networks.

1. ITU-R Study Group 1 on SpectrumManagement, dynamic spectrum issues

was covered by working part 1B;

2. ITU-R Study Group 5 on Terrestrial Services, working part 5A, which

described the potential application of cognitive radio systems in the land

mobile service;

3. ITU-R Study Group 5, working party 5D, where the scope of this work is

to consider the inclusion of CRS into the IMT family of technologies.

In Europe:

1. The European Communications Committee (ECC) has a special Task

Group working on operation of cognitive radio systems in the white spaces

of the UHF frequency band. The initial focus is on opportunistic use of

radio spectrum in TV White Spaces.

35



2. The End−to−End Efficiency is a German Large Scale Integrating Project

for integrating cognitive wireless systems. The key objective of the

E3 project is to design, develop, prototype, and showcase solutions to

guarantee interoperability, flexibility, and scalability between existing

legacy and future wireless systems.

2.2. Detection and Estimation Theory

This section summarizes some elements of detection and estimation theory and

is written based mainly on materials from [53], [40] and [54, Ch.2]. Detection

theory deals with the problem of determining a particular hypothesis from the

observation, x. Typically a hypothesis maps to a particular phenomenon that

is being detected. For example, in the context of a CR, we can formulate a

hypothesis for whether a PU signal is present or not. If there are only two

hypotheses, H0 and H1 for a phenomenon, then the detection problem reduces to

a binary hypothesis test. For a binary hypothesis, the following types of errors

can occur when deciding based on the observation:

• A type-1 error or false alarm, which occurs when the observation is decoded

as H1, for an H0 event. Probability of false alarm, PF A = Pr(H1;H0)1.

• A type-2 error or miss, which occurs when the observation is decoded as

H0, for an H1 event. Probability of miss, PM = Pr(H0;H1).
For an optimal design, both type-1 and type-2 errors cannot be reduced

simultaneously. A typical, Neyman-Pearson (NP) approach to hypothesis testing

is to fix the false alarm (type-1 error) and seek an optimal detector to minimize the

type-2 error. Note that minimizing the type-2 error is the same as maximizing the

detection probability, PD = (1 − Pr(H0;H1)) = Pr(H1;H1). We can formalize

this into a equation as follows:

Theorem 2.2.1. For a given false alarm, PF A = α, to maximize PD, decide

toward H1 if,

L(x) = p(x;H1)
p(x;H0) > γ, (2.2)

where the threshold, γ, is obtained from

PFA =
∫

x:L(x)>γ

p(x;H0)dx = α. (2.3)

Equation 2.2 is called the likelihood ratio test [40]. Let us note that the

formula for PD is obviously given as

PD =
∫

x:L(x)<γ

p(x;H1)dx. (2.4)

1We define Pr(Hi;Hj) as the probability of choosing hypothesis Hi when Hj has

occurred.
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In practice and given the specific signal model, the conditional probability

density functions p(x;H1) and p(x;H1) of the observation variable x are

specified. By following the standard derivation procedure, then usually all the

constant variables in 2.2 are moved on the right hand side of the inequality and

the observation data dependant variables on the left hand side. In general the

detection formula can be given as follows

H0 : Tx < γ,
H1 : Tx ≥ γ,

(2.5)

where after the mentioned steps the left hand side of the likelihood ratio is made

equal to the variable Tx, which is called a test statistics of the detector. The

exact or approximate conditional probability density functions are assigned for

the variable Tx as mentioned above. Throughout this thesis, the threshold γ is

determined based on the desired PF A value. Often, the detection performance of

a NP detector is studied with the help of PD versus PF A graphs, called Receiver

Operation Charateristics (ROC) [40, Chapter 3.4].

The details for the Energy and Largest Eigenvalue Detectors are given in the

corresponding sections of Chapters 3 and 4, 5, respectively. In this thesis we use

the PD versus the network average SNR graphs to study the areas where the

detection method fails to provide perfect detection results.

The Estimation theory deals with arriving at a quantitative conclusion about

a parameter, θ, from the observation, x. An example of this is estimating the

power of the PU signal (which is modelled as a Circularly Symmetric Complex

Gaussian (CSCG) process) in CR network from a function of received PU

signal samples. The joint probability distribution function, p(θ,x), denotes
the complete statistical description of the parameters and observations. The

parameter θ can be random and unknown. However, in certain estimation

problems θ, can be deterministic. Under these conditions, good estimators

can be designed by mathematically modelling the observation x through the

parametrized PDF, p(x;θ).
Typical estimation methods depend on the model assumptions. In this thesis

mainly the mean and variance estimation tasks are considered. The details are

described in Section 3, 4 and 5, respectively.

Let us note that in case of a PU signal detection problem, the usage of

Bayes approach, both in detection [40] and in estimation [53] domains, is rather

impractical, since usually the CR system does not obtain sufficiently accurate

and a priori data about the (longer time) statistical behaviour of the PU signal(s)

and thus about the parameters of the distributions of the corresponding random

processes. It is more practical to view the PU behaviour as a dynamic process,

where the statistical parameters of interest may change inexplicably during the

observation time. Thus, we rather need to look for the adaptive estimation

solutions to implement the detectors of interest, as discussed in what follows.
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2.3. Adaptive Distributed Signal Processing and Optimization

”An adaptive filter is a system with a linear filter that has a transfer function

controlled by variable parameters and a means to adjust those parameters

according to an optimization algorithm” [24,25]. Usually the adaptive filters are

digital filters and are suitable for the applications where ”some parameters of the

desired processing operation” are not known in advance or are changing over the

time instant.

Stochastic optimization methods generate and use random variables. For

stochastic problems, the random variables appear in the formulation of the

optimization problem, which involve ”for example” random objective functions.

Stochastic gradient descent is a stochastic approximation of the gradient descent

optimization method for minimizing an objective function [24] − i.e by finding a

minima or maxima by iteration. A popular stochastic gradient descent algorithm

is the least mean squares (LMS) adaptive filter.

Thus the concepts of adaptive filtering and stochastic optimization are

connected. Usually in both cases a parameter of interest is found from the

realizations of random inputs variables iteratively by solving an optimization

problem with the minima search.

In recent years, the research area of distributed optimization has gained

increasing interest [30, 55]. Distributed estimation algorithms are useful

in several contexts, including wireless and wired sensor networks, where

scalability, robustness, and low power consumption are desirable. Since diffusion

cooperation schemes (such as diffusion LMS) have been shown to provide good

performance, robustness to node, and link failure and are amenable to distributed

implementations [27], then in this thesis we have used diffusion LMS type of

algorithms for designing and implementing the distributed Energy and Largest

Eigenvalue detection solutions.

2.3.1. Diffusion LMSAlgorithm

In this overview section the idea and the derivation steps of the distributed

Diffusion Least Mean Square type of algorithm are briefly described in general

form, by summarising the material from [27]. This section provides some

brief background information for the reader to follow the re−derivation and

implementation steps of the diffusion LMS type of algorithms in Chapters 3 and

4, 5.

Distributed Estimation Problem Formulation

Let us assume we have K nodes in a CR network. Let Nk denote the

neighborhood group of node k ∈ K, i.e Nk defines the set of nodes l which can
send data unidirectionally to the node k. In general, at time instant n, every node
k receives:
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1. a scalar measurement dk(n) and a 1 ×M row regression vector uk,n or

2. a M × 1 vector measurement dk(n) while the row regression vector uk,n

is neglected from the derivations.

dk(n),dk(n),uk(n) are realizations of corresponding complex random processes.

On page 24 we explain that in this thesis we adapt and apply the theory of

diffusion LMS for two different measurement and estimation dimension sets. In

the first case, every node k, using data set {dk(n),uk(n)} estimates an optimal

parameter po. In the second case, an optimalM × 1 vector po is estimated based

on the set {dk(n)}. Thus, for the generic notation in this overview section,

we use boldface notation dk(n) for the measurement parameter and po for the

optimal vector, respectively, and show the row regression parameter uk,n in the

derivations.

Global Optimization

We seek the M × 1 optimal linear estimator po that minimizes the following

global cost function

Jglob(p) ,
K∑

k=1
E |dk(n) − uk,np|2. (2.6)

In case of the so called desired process dk(n) and the so called regressor process
uk,n are wide sense stationary (WSS), then the optimal solution is given as

po =
(

K∑
k=1

Ru,k

)−1( K∑
k=1

Rdu,k

)
, (2.7)

where Ru,k = E
[
u∗

k,nuk,n

]
and Rdu,k = E

[
dk(n)u∗

k,n

]
are the corresponding

covariance matrices.

Steepest Descent Solution

For the minimization of the global cost function, the standard iterative

Steepest-Descent algorithm can be used and we have

pn = pn−1 − µ
[
5wJ

glob(pn−1)
]∗
, (2.8)

whwith scalar step size parameter µ > 0 and where p is the estimate of po at

time iteration i. The complex gradient is given as follows

[
5pJ

glob(pn−1)
]∗

=
K∑

k=1
(Ru,kp − Rdu,k) , (2.9)
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and we get the steepest descent recursion as

pn = pn−1 − µ
K∑

k=1

(
Rdu,k − Ru,kpn−1

)
. (2.10)

Since usually the second order moments in (2.10) are not known a-priori,

then the following approximations can be used instead: Ru,k ≈ u∗
k,nuk,n and

Rdu,k ≈ dk(n)u∗
k,n. As a result, we get a non−distributed Global 2 LMS type of

algorithm

pn = pn−1 − µ
K∑

k=1
u∗

k,n

(
dk(n) − uk,npn−1

)
. (2.11)

Local Optimization

Let us introduce a matrix C with elements {cl,k}, where the element cl,k defines

whether observation from node l is available for the node k. C is usually

considered to be a doubly-stochasticK×K non-negative real matrix with entries

cl,k and cl,k = 0 if l /∈ Nk and thus C1 = 1, 1TC = 1C . The local cost at node

k is given as
J loc

k (p) = cl,k E |dl(n) − ul,np|2. (2.12)

The optimal solution can therefore be updated as

ploc
k =

∑
l∈Nk

cl,kRu,l

−1∑
l∈Nk

cl,kRdu,l

 . (2.13)

Let us define additionally the matrix Γk ,
∑

l∈Nk
cl,kRu,l. By completing the

squares, we get that J loc
k can be alternatively rewritten in terms of ploc

k as

J loc
k (p) = ‖p − ploc

k ‖2
Γk

+ MMSE, (2.14)

where the Minimum Mean Square Error, denoted as MMSE, is a constant part.

With the usage of matrix C, minimizing the global cost Jglob(p) is equivalent to
minimizing the following cost function for any k ∈ K

Jglob(p) =
K∑

l=1
J loc

l (p) = J loc
k (p) +

K∑
l 6=k

J loc
l (p) (2.15)

Jglob(p) =
∑

l∈Nk

cl,k E |dl(n) − ul,np|2 +
K∑

l 6=k

‖p − ploc
k ‖2

Γl
(2.16)

We have now an alternative global cost representation in terms of local

estimates
{
ploc

k

}
.

2The term Global means that the algorithm requires data from all the nodes in the

network.
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MSE Minimization

Minimization of Jglob(p) on every node k still requires access to the global

information
{
ploc

l

}
and matrices Γl in the other nodes in the network. A fully

distributed solution is derived in what follows and this is based on the diffusion

LMS strategy.

Let us replace Γl with Γl = bl,kIM , where IM is M ×M , bl,k = 0 if l /∈ Nk,

1TB = 1T . Let us introduce a new K ×K matrix B. Also we replace ploc
k with

the intermediate estimate ψl at node l. Then the following approximation of

Jglob is proposed so that each node k can minimize modified cost as

Jdist
k (p) =

∑
l∈Nk

cl,k E ‖dl(n) − ul,np‖2 +
∑

l∈Nk/{k}
bl,k‖p −ψl‖2 (2.17)

The complex gradient is given as:[
5pJ

dist
k (pn−1)

]∗
=
∑

l∈Nk

cl,k (Ru,lp − Rdu,l) +
∑

l∈Nk/{k}
bl,k (p −ψl) . (2.18)

We can use Jdist
k (p) to obtain the recursion for the estimate of p at node k in

two steps:

ψk,n = pk,n−1 + µk

∑
l∈Nk

cl,k

(
Rdu,l − Ru,lppk,n−1

)
pk,n = ψk,n + νk

∑
l∈Nk/{k}

bl,k

(
ψl − pk,n−1

)
. (2.19)

In the second equation of (2.19) two replacements are performed: ψl is replaced

by the intermediate estimate ψl,n, available at node l, at time n, and secondly

pk,n−1 is replaced by ψk,n. As a result we get

ψk,n = pk,n−1 + µk

∑
l∈Nk

cl,k

(
Rdu,l − Ru,lpk,n−1

)
pk,n = ψk,n + νk

∑
l∈Nk/{k}

bl,k

(
ψl,n −ψk,n

)
. (2.20)

The second recursion of (2.19) can be rearranged again. First recall that

pk,n = (1 − νk + νkbk,k)ψk,n + νk

∑
l∈Nk/{k}

bl,k. (2.21)

Let us define K × K matrix left stochastic A containing the elements as

coefficients ak,k = (1 − νk + νkbk,k) and al,k = (νkbl,k) for l 6= k. We get the

following recursion
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ψk,n = pk,n−1 + µk

∑
l∈Nk

cl,k

(
Rdu,l − Ru,lpk,n−1

)
pk,n =

∑
l∈Nk

al,kψl,n. (2.22)

Let us note that cl,k = al,k = 0 if l /∈ K, 1TC = 1T , C1 = 1, and (obviously)
1TA = 1T .

ATC and CTA Diffusion LMS algorithms

Two common versions of the Diffusion LMS algorithm are considered in the

literature: Adapt and Combine (ATC) and Combine and Adapt (CTA) types

of Diffusion LMS algorithms. By inserting the approximations of the covariance

matrices we have that

ATC Diffusion LMS

Init: pk,0 = 0 for all k ∈ K. Given the non-negative real coefficients

{cl,k, al,k} for each time n ≥ 0 and for all nodes k:ψk,n = pk,n−1 + µk
∑

l∈Nk
cl,ku

∗
l,n

(
dl(n) − ul,npk,n−1

)
, (incremental step),

pk,n =
∑

l∈Nk
al,nψl,n (diffusion step).

(2.23)

CTA Diffusion LMS

Init: pk,0 = 0 for all l. Given the non-negative real coefficients {cl,k, al,k}
for each time n ≥ 0 and for all nodes k ∈ K:ψk,n−1 =

∑
l∈Nk

al,kpl,n−1 (diffusion step),
pk,n = ψk,n−1 + µk

∑
l∈Nk

cl,ku
∗
l,n

(
dl(n) − ul,nψk,n−1

)
, (incremental step).

(2.24)

We note that detailed performance analysis of the Diffusion LMS algorithms is

performed in [27] but in the estimation domain only and based on the estimation

error recursions.

Comments on the implementation and usage in the CR context

In Chapters 3 and 4 we use the Diffusion LMS algorithm derivation framework

for deriving a diffusion LMS based scalar (power) estimation solution for

the distributed Energy detection solution and a diffusion LMS based vector

(vectorized correlation matrix) estimation solution for the distributed Largest

Eigenvalue detection solution. For deriving these estimation algorithms, we need

to introduce modifications in the standard derivation flow of the Diffusion LMS

algorithms.

The considerations are the following.
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1. Depending on the application of an adaptive filter [24, Chapter 1.7], the

regressor variable uk,n can be seen as a variable which can contain some

a priori information for the estimation process. In a practical PU signal

detection task, a CR system usually can not use a priori data, which can

be incorporated in the estimation process of the elements of test statistics

− i.e the signal sequence of the PU user for implementing a matched

filter detection solution. For the Energy and Largest Eigenvalue detection

solutions, proposed in this thesis, the regressor variable is expendable (i.e

uk(n) = 1 constantly) and thus can be excluded from the derivations.

The secondary statistics becomes then Ru,k = 1 and Rdu,k = E [dk(n)].
Thus, in our solutions the ”desired” variable dk(n) is connected with the
observations for the estimation process.

2. Due to the previous point and for the power estimation algorithm in

Chapter 3, po and dk(n) are both selected as scalars and the derivation of
diffusion LMS type of algorithm can be slightly simplified. These details

are shown in Chapter 3.

3. For the vector estimation algorithm in Chapter 4, the variables dk(n) and
po are taken as a M × 1 vectors. The derivation of diffusion LMS type

algorithm is slightly modified and these details are shown in Chapter 4.

4. In this thesis we do not proceed with the performance analysis of the

Diffusion LMS type algoritm, based on the estimation error measures.

Instead we are interested in the analysis of the statistical moments of the

estimates directly, to be able to proceed with the analysis of the detection

performance of the proposed distributed detection solutions.

Thus, in Chapter 3 and 4 we skip some of the standard derivation steps and

focus on the differences from the standard derivation flow of diffusion LMS type

of algorithms.
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3. DISTRIBUTED DIFFUSION LMS BASED ENERGY

DETECTION

CR systems need to detect the presence of a primary user by continuously sensing

the spectrum area of interest. Radiowave propagation effects like fading and

shadowing often complicate sensing of spectrum holes because the PU signal

can be weak in a particular area. Cooperative spectrum sensing is seen as a

prospective solution to enhance the detection of PU signals. This chapter studies

distributed spectrum sensing in a cognitive radio context based on the results

in [3] and [2]. We investigate distributed energy detection schemes without

using any fusion center. Due to reduced communication, such a topology is

more energy efficient. We propose the usage of distributed, diffusion least mean

square (LMS) type of power estimation algorithms. In this chapter, an Adapt and

Combine (ATC) diffusion based power estimation scheme is proposed and the

performance is compared with the Combine and Adapt (CTA) and ring-around

schemes in a common framework. Additionally we show in this chapter also the

results from the first paper [1] for a recursive and distributed power estimation

scheme with a ring around topology, which does not necessarily have to be

related with the Diffusion LMS context. In this case specific theoretical results

for the performance analysis of that algorithm can be given. The power to be

estimated for the energy detection is a scalar quantity. The PU signal is assumed

to be slowly fading. We analyse the resulting energy detection performance and

verify the theoretical findings through simulations.

3.1. Background

The cognitive radio (CR) system is dynamic. Often in practice the statistical

information (for example conditional probability density of observations, prior

probabilities of detection hypotheses, longer time statistical behaviour of primary

user (PU)) is not available a priori for constructing a PU signal detection

solution. The properties of the test statistics (for making a detection decision)

may change in time.

In cognitive radio context we would like to avoid interference to the PU user

and find free spectrum opportunities as fast as possible. On-line distributed

network learning methods are able to learn the statistical information based on
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observations received by the nodes in the network. These methods can react to

possible changes in the properties of estimated statistics in real time.

Several proposed distributed spectrum sensing solutions make use of a central

fusion center [12], [17], [35], [36]. A fusion center is, however, seen as a

single point of failure in the network since a malfunction in this unit affects the

performance of the whole distributed solution. We propose a power estimation

solution where the available power estimates (and measurements) are fused in

cognitive radio network nodes, to allow all nodes to make detection decisions

based on data from the neighbour nodes and without involvement of any central

processing unit. Such a solution enhances network failure resistance (at the cost

of slightly increased information overhead in the network).

Several distributed adaptive estimation and detection schemes have been

studied in the past. Least mean square (LMS) and recursive least squares (RLS)

based estimation schemes are analysed for example in [26], [27], [56], [29]

and consensus based schemes in [57], [58], [59], [60]. Optimal, matched filter

distributed detection, based on diffusion type LMS and RLS estimation schemes,

was studied in [28]. Here, we make the assumption that the CR network does not

have any prior information about the waveform of the PU signal in the secondary

nodes and hence we cannot design a matched filter. Therefore energy detection

becomes a practical solution.

A ring network topology for distributed energy detection without a fusion

centre has been suggested in [61]. In [1] we proposed and analysed an estimation

based recursive calculation of the test statistics for the energy detectors in

cognitive radio network with ring topology. The test statistic in form of a

converged power estimate is the soft information used for making the detection

decision at every node. Ring networks are, however, sensitive to link failures.

Combine and Adapt (CTA) diffusion based recursive calculation of the test

statistics for the energy detectors was proposed and studied in [2]. In this chapter

we focus mainly on the analysis of the Adapt and Combine (ATC) version of

diffusion LMS type of received power estimation algorithm. The performance

of the ATC diffusion based distributed power estimator is compared with the

previously proposed CTA [2] and ring [1] schemes to complete the analysis.

The resulting energy detection performance is studied and is dependent on the

performance of the used distributed recursive power estimation algorithm.

We organize the remainder of the chapter as follows. In Section 3.2 we review

the system model and the basics of energy detection. We derive an ATC type

received signal power estimation algorithm based on diffusion LMS strategy and

summarize the CTA based version. In Section 3.3 we analyse the performance

of the proposed distributed power estimation algorithm (using a common model)

and the resulting energy detection. In Section 3.4 we present our simulations

results.
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3.2. Distributed power estimation and detection

According to classical detection theory, an energy detector can be used for

detecting random signals in additive noise. For energy detection in a cognitive

radio context, the type of PU signal can be completely unknown. During a

sensing time t, an energy detector (ED) receives N samples of a signal x(n)
from a specific frequency band [17]. The average energy of the received data

samples is the test statistic T (x) of the ED, which compares T (x) to a predefined
threshold γ and decides which of the hypotheses H0 or H1 is more likely.

We assume the following signal model at node k:

H0 : E[|xk(n)|2] = E[|vk(n)|2]
H1 : E[|xk(n)|2] = E[|αk|2|s(n)|2] + E[|vk(n)|2], (3.1)

where k = 1, 2, ..., K is the node number and n = 1, 2, ...N is the sample

index. vk(n) is independent and identically distributed (i.i.d) circularly symmetric
complexGaussian (CSCG) noise with zeromean and varianceE[|vk(n)|2] = σ2

v,k,

i.e. v(n) ∼ CN(0, σ2
v,k). The power of the emitted PU signal s(n) is denoted

as E[|s(n)|2] = S, under H1. The primary signal s(n) and the noise vk(n) are
assumed to be statistically independent. The PU signal passes through a slowly

fading channel with gain αk(n). The gain αk is considered to be constant.

Note, that for implementing the energy detector, only the noise variance is

needed to determine the detection threshold γ, therefore estimates of the channel
gains are not required in practical implementations. Noise power estimation is

not considered in this research work. In this chapter we make the following

assumptions:

• (AS 1) The x(n) is sensed by K nodes in the CR network.

• (AS 2) The additive noise vk(n) is uncorrelated in time and space and has
the same power level over all the nodes in the CR network.

• (AS 3) The number of performed iterations N is large enough.

• (AS 4) The links between the CR nodes are ideal and not capacity restricted

(no need to quantize the soft information).

In the literature on distributed detection, for example in [23], a fusion center,

which collects all the local soft information, hard or soft binary decisions from

the sensors, is often used in distributed detection networks. Similarly a central

processing unit has been used in distributed estimation schemes, see e.g. [26].

However, such a central processing unit can potentially be a single point of

failure in the detection system. Secondly it may require frequent data exchange

between the nodes and the centre and thus drain system energy resources, since

usually most of the energy is spent for powering up the transmitter to exchange

the data with neighbour nodes.
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A distributed and recursive estimation scheme is one of the possible solutions

for removing the central processing unit from the system and thus the network is

able to calculate the global estimates based on the local observations collected

by the CR nodes. Then based on the estimated test statistic, the detector at each

CR node can locally make its own decision if the PU signal is present or not. We

denote the power estimate at node k and at iteration n as p̂k(n). The network
topology is assumed to be fixed over the sensing time. We consider a linear,

fixed combination of neighbour estimates and measurements at every node k.
Next we shortly review the global model for estimating the received signal

power in cooperative manner (as proposed in [2]). Then we derive an ATC type

power estimation algorithm, where the nodes can observe the measurements

and share the estimates (and measurements) only with their neighbour nodes,

according a to predefined network topology. Finally we propose a data exchange

and combination strategy for ATC diffusion algorithm.

3.2.1. Global estimation

According to model (3.1), the power of the PU signal is attenuated at every node

k. The locally estimated power varies between nodes k. Therefore if the channel
gain at node k is low, the resulting energy detection performance is low. The

result is opposite, when the node has a good channel gain. When nodes cooperate

to estimate a common parameter P o, the resulting detection performance will

improve. As in [2] we recommend the following form of po

po = 1
K

K∑
k=1

E
[
|xk(n)|2

]
= S

1
K

∑
k=1

|αk|2 + σ2
v . (3.2)

The po is the average of the received power across the nodes k ∈ K in the

network. The second equation in (3.2) follows from the signal model (3.1) if the

PU signal is present and from the assumption AS 2. When we have sufficient

number of nodes in the CR network, the effect of varying channel gains is

averaged over nodes k ∈ K.

The corresponding global cost function is given as:

Jglob(p) =
K∑

k=1
E
[
|xk(n)|2 − p

]2
, (3.3)

where we have used the form of global cost as proposed in [31], [28], [26].

Minimization of the mean square error across the network (3.3) with respect to

P results in the optimal solution, which is given by (4.10).

3.2.2. Distributed ATC Diffusion LMS estimation

Suppose that K nodes in the CR network are interested in estimating the

scalar parameter p0 in a distributed manner, where the nodes rely only on the
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information, that is available to them. Depending on network topology, nodes

are connected only to selected neighbour nodes and do not have access to any

global data. The global cost (3.3) needs to be approximated in a distributed

manner. The derivation of the ATC diffusion power estimation algorithm follows

the ideas in [55], [27].

Let Nk denote the neighbourhood group of node k ∈ K, i.e Nk consists of

nodes l which can communicate with node k. We assume that the network is

connected and the connection between nodes l and k is unidirectional.

Let us define K × K doubly stochastic matrix C containing non-negative

elements cl,k and cl,k = 0 if l 6= Nk (i.e when data from node l is not available for
node k). Let us note that for a doubly stochastic matric C it holds that C1 = 1
and 1TC = 1T . The local cost and the corresponding local optimal solution in

the neighbourhood of node k can be expressed with the help of coefficients cl,k

as follows

J loc
k (p) =

∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2
, (3.4)

ploc
k =

∑
l∈Nk

cl,k E
[
|xl(n)|2

]
. (3.5)

The global cost can be fractioned into the local cost of over the neighbourhood

of node k and local costs over the neighbourhood of other nodes. Using the

completion of squares argument [31] to relate variable P and local optimal

solution P loc
l , secondly ignoring the mmse part which is not dependant on p, the

global cost function can be expressed as follows

Jglob′(p) =
∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2
+

K∑
l 6=k

‖p− ploc
l ‖2. (3.6)

Node k may not have access to all the data ploc
l in the network. We modify the

second member of right hand side (RHS) of (3.6) by replacing the summation∑K
l 6=k with

∑
l∈Nk/{k}. Next we replace ‖p− ploc

l ‖2 ≈ bl,k‖p− ploc
l ‖2 ( [55, Eq.

117]). We collect the non-negative coefficients bl,k in a K × K matrix B

and assume bl,k = 0 if l 6= Nk. Also we replace the unknown ploc
l with an

intermediate estimate ψ̂l available at node l. Then the approximation of (3.6) at
node k is given as

Jdist
k (p) =

∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2

+
∑

l∈Nk/{k}
bl,k‖p− ψ̂l‖2 (3.7)
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and the derivative of the cost function is (3.7) is

∇pJ
dist
k (p) = 2

∑
l∈Nk

cl,k

[
p− E

[
|xl(n)|2

]]
+ 2

∑
l∈Nk/{k}

bl,k

[
p− ψ̂l

]
. (3.8)

The cost (4.23) can be used to obtain a recursion for the estimate of p at node k,
denoted as p̂k(n). Using the steepest descent method, which is divided into two
parts, we get an iterative solution for (3.7) as follows:

ψ̂k(n+ 1) = p̂k(n) + µk

∑
l∈Nk

cl,k

[
E
[
|xl(n)|2

]
− p̂k(n)

]
p̂k(n+ 1) = ψ̂k(n+ 1) + νk

∑
l∈Nk/{k}

bl,k [ψl − p̂k(n)] . (3.9)

Different step sizes µk and νk at the nodes k have been assigned and the constants
2 has been incorporated into µk and νk. In the second equation of (3.9) we

replace ψ̂l with time dependant ψ̂l(n+ 1), p̂k(n) with ψ̂k(n+ 1) and we get

p̂k(n+ 1) =

1 − νk

∑
l∈Nk/{k}

bl,k

 ψ̂k(n+ 1)

+ νk

∑
l∈Nk/{k}

bl,kψ̂l(n+ 1). (3.10)

Next we introduce the coefficients al,k = 0 if l 6= Nk, al,k = νkbl,k if l 6= k and
ak,k = 1 − νk

∑
l∈Nk/{k} bl,k if l = k. If we collect the coefficients al,k into a

K×K matrix A, it is straightforward to see that
∑

l∈Nk
al,k = 1 for every k ∈ K

and thus A is a left stochastic matrix 1 (but A can be also doubly stochastic).

We replace E |xl(n)|2 with |xl(n)|2 and finally arrive to the Adapt and Combine
(ATC) recursions that we summarise with energy detection as Algorithm 1.

In the ATC diffusion algorithm, during the incremental step, at time instant n,
the estimate ψ̂k(n+ 1) at node k is calculated using the estimate p̂k(n) at node k
and the new observation available for node k. The coefficients cl,k define how

the measurements are exchanged between the nodes. During the diffusion step

the estimate p̂k(n + 1) at every node k is calculated using a linear combination
of the estimates ψ̂l(n + 1) available for node k. The elements al,k specify the

combination strategy of estimates.

Note that in practice the non-negative coefficients al,k and cl,k can be chosen

freely under the conditions, that C1 = 1, 1TC = 1T , 1TA = 1T , al,k = 0, if
l 6= Nk and cl,k = 0 if l 6= Nk. The coefficients bl,k are absorbed into coefficients

al,k and do not have to be considered in practice.

1For a left stochastic matric A it holds 1TA = 1T .
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Algorithm 1 Distributed ATC Diffusion Power Estimation

Start with p̂k(0) = p(0).
Given non-negative real coefficients al,k, cl,k

for every time instant n ≥ 1 do

for every node k = 1, ...,K do

1. Power estimation:

ψ̂k(n+ 1) = p̂k(n)
+µk

∑
l∈Nk

cl,k

(
|xl(n)|2 − p̂k(n)

)
p̂k(n+ 1) =

∑
l∈Nk

al,kψ̂l(n+ 1).
2. Detection decision:

H0 : p̂k(n+ 1) < γ or H1 : p̂k(n+ 1) > γ.
(Refer to (3.55) for selecting the threshold).

end for

end for

We also add that if we replace the order of adaptation and fusion equations in

(3.9) as follows

ψ̂k(n) = p̂k(n) + νk

∑
l∈Nk/{k}

bk,l [ψl − p̂k(n)]

p̂k(n+ 1) = ψ̂k(n) + µk

∑
l∈Nk

ck,l

[
E |xl(n)|2 − p̂k(n)

]
. (3.11)

By skipping the standard steps, we arrive to the CTA (Combine and Adapt)

version of the diffusion LMS algorithm, which is summarised at next In the

Algorithm 2 Distributed CTA Diffusion Power Estimation

Start with p̂k(0) = p(0).
Given non-negative real coefficients ak,l, ck,l

for every time instant n ≥ 1 do

for every node k = 1, ...,K do

1. Power estimation:

ψ̂k(n) =
∑

l∈Nk
ak,lp̂l(n)

p̂k(n+ 1) = ψ̂k(n)
+µk

∑
l∈Nk

ck,l

(
|xl(n)|2 − ψk(n)

)
.

2. Detection decision:

H0 : p̂k(n+ 1) < γ or H1 : p̂k(n+ 1) > γ.
(Refer to (3.55) for selecting the threshold).

end for

end for

CTA diffusion algoritm, the estimates {p̂k(n)}k∈Nk
including the p̂k(n) from
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node k are combined together at every node k. This is the diffusion step. Then
the combined estimate ψ̂k(n) at node k is used to calculate the new estimate

p̂k(n + 1) at node k, using the new observation available for node k, at time
instant n. This is the incremental step.

3.2.3. Recursive ring-around topology

As shown in paper [1], a recusive estimator can be interpreted also as a

counterpart of a non-recursive sample variance estimator. By taking into account

the suggestions in [53] for a local, non-cooperating estimator for sample variance,

the distributed estimator using a circular estimation topology can be constructed

as follows

p̂k(n) = 1
n

n∑
i=1

|x(k−i+1)modK(n− i+ 1)|2. (3.12)

A recursive equivalent to (3.12) is given by

p̂k(n) = p̂(k−1)modK(n− 1) + µ(n)(|xk(n)|2

−p̂(k−1)modK(n− 1)), (3.13)

where n ≥ 1 and with step size: µ(n) = 1
n

The usage of step size µ(n) = 1
n , however, expects that the received signal

xk(n) over n ∈ N stays under a fixed hypotheses: H0 or H1. This fact makes its
direct use in real-time spectrum sensing problematic. As a solution, a positive

constant step size µ(n) = µ can be used in recursive power estimation algorithm
and then (3.13) is able to track the possible changes in power of the received

signal xk(n). As common in the literature of adaptive filtering, the step size of
the algorithm is user defined.

The estimated power level p̂k(n) is used as the test statistic of the recursive
ED. i.e. T (x) = p̂k(n). Since there is no fusion centre and for system redundancy

purposes, information overhead is allowed in the network. Thus there are K
circular estimation processes running in parallel to provide a global estimate

for every node k ∈ K. Every node can then perform the energy detection at

any time instant. The algorithm can in principle run infinitely (no window

for sample processing is required). The proposed algorithm is summarized in

Algorithm 3. Let us note, that with the suggested algorithm, only one-directional

communication with the adjacent node is required for exchanging the soft

information, compared to the schemes, where a central processing unit is used

and thus two way communication direction is needed to also send the global soft

information back to the nodes at every iteration n. An example with K = 2
nodes and thereby 2 estimation processes (red and blue) is illustrated in Fig. 3.1

with nodes k = 1, 2 receiving samples n = 1, ..., 3.
According to AS3 it is assumed that the number of iterations performed

with the recursive algorithm is larger than the number of nodes in the network.

The estimator needs to converge to steady state before the detection decision
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Figure 3.1 Distributed Power Estimation with 2 nodes.

is made and for the convergence a sufficient number of samples are required.

In slow fading the channel coherence time is large and the convergence is

achievable. Secondly, in the performance section of the proposed algorithm the

Central Limit Theorem (CLT) is applied so enough samples are required also

for this approximation to hold. The minimum number of samples for the CLT

approximation has been evaluated in the literature, e.g. in [62].

3.2.4. Network topologies

In the ring-around topology [1], the power estimates are exchanged circularly

between the nodes. At time instant n, node k has access only to one estimate

p̂(k−1)modK(n) from the node (k − 1)modK for calculating p̂k(n + 1). The

local estimate p̂k(n) is ignored. The algorithm uses only locally observed

measurements (i.e C = I). Thus, K estimates have to be sent over the wireless

links at time instant n.

For improving the link failure resistance but keep the need for exchanging

the data over wireless links in the network minimal, we compose the diffusion

topology from the local (A,C = I) and ring-around topologies. At time instant

n, at node k the local estimate p̂k(n) and the estimate p̂(k−1)modK(n) from node

(k− 1)modK are fused together using equal, constant weight 0.5 for calculating
p̂k(n + 1). For example when K = 3 and keeping the same notation and
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Algorithm 3 Distributed Ring−Around Power Estimation

Start with P̂k(0) = P0.
for every time instant n ≥ 1 do

for every node k = 1, ...,K do

1. Power estimation:

P̂k(n) = P̂(k−1)modK(n− 1)+
µ(|xk(n)|2 − P̂(k−1)modK(n− 1)).
2. Detection decision:

H0 : P̂k(n) < γ or H1 : P̂k(n) > γ.
(Refer to (3.55) for selecting the threshold).

end for

end for

conditions for the elements of matrix A, the ring around and diffusion topologies

are given as follows

AT
ring =

0 0 1
1 0 0
0 1 0

 , AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 (3.14)

and is illustrated in Fig. 3.2 If measurements are exchanged between the nodes,

then we set C = AT
diff. Hence at time instant n, additionally K measurements

have to be exchanged in the network. Otherwise C = I. Therefore, in the

subsequent sections we assume, that both matrices C and A are doubly stochastic

(i.e we have additionally A1 = 1) and all the conditions for selecting elements
al,k and cl,k, listed in last subsection, are satisfied.

3.3. Performance analysis

The performance analysis of the proposed algorithms is divided into two parts.

First we derive a general model for analysing the mean and variance of the

estimates of the ATC, CTA [2] and ring-around [1] algorithms in one framework.

Next we analyse the resulting energy detection performance. Let us note that for

the theoretical performance analysis we need to know the values of the channel

gains.

For more convenient notation we stack the estimates and observations from all

the nodes k ∈ K into K × 1 time dependent vectors p̂(n) = [p1(n) . . . pK(n)]T

and x(n) =
[
|x1(n)|2 . . . |xK(n)|2

]T
respectively.

Let us define additional matrix M = diag {µ1, . . . , µK}, which contain the
algorithm step size parameters. We introduce also two additionalK×K matrices

L1 and L2 for being able to represent all the 3 algorithms using one framework.
Then we can write the recursion in the following general form

p̂(n+ 1) = L2 (I − M)L1p̂(n) + L2MCx(n). (3.15)
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Figure 3.2 Distributed Power Estimation with 3 nodes.

The initial estimate is p̂(0). It follows, that we get the ATC algorithm, when

we take L2 = AT
diff, L1 = I, C = I or C = AT

diff in case of the measurements

are exchanged between the nodes. For the CTA algorithm we take L1 = AT
diff,

L2 = I, C = I or C = AT
diff. The ring around topology is selected when L2 = I,

L1 = AT
ring and C = I. Note that to keep the matching notation with Algorithm 1,

we use transposed matrices in the general recursion. The local, non-cooperative

received power estimation is represented by L1 = L2 = C = I.

For evaluating the performance of the estimation algorithms and the resulting

energy detection, we first evaluate the mean and variance of estimates pk(n).

3.3.1. Mean of estimates

Following the signal model (3.1), let us denote the conditional expectation of the

observation vector as E [x(n)|Hi], where i = 1 denotes the case when PU signal

is present and i = 0 the case when PU signal is absent. In this section we assume

that the environment is stationary. The conditional means are thus constant over

time.

Considering the general recursion (5.11), we have

E [p̂(n+ 1)|Hi] = L2 (I − M)L1 E [p̂(n)|Hi]
+ L2MCE [x(n)|Hi] , (3.16)
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for i = 0, 1, where the initial value is given as E [p̂(0)|Hi]. Let us note that the
conditional mean of p̂k(n) under hypothesis Hi, i = 0, 1 at node k is

E [p̂k(n)|Hi] = wT
k E [x(n)|Hi] for i=0,1, (3.17)

where wk = col(0 . . . , [wk(k) = 1], . . . 0) at node k.
After iterating we see, that the mean recursion can be given in the following

equivalent form

E [x(n)|Hi] = [L2 (I − M)L1]n p̂(0)

+
[

n−1∑
i=0

[L2 (I − M)L1]i
]
L2MCE [x(n)|Hi] . (3.18)

We are interested in finding the mean of the estimates when the filter has

converged to a steady state, i.e. when n → ∞. Thus according to (3.18) we

need to analyse the asymptotic behaviour of [L2 (I − M)L1]n and the limit of

the geometric series
∑n−1

i=0 [L2 (I − M)L1]i.
According to [63, Lemma 5.6.11], if for a matrix norm it holds that

‖L2 (I − M)L1‖ < 1 (3.19)

then limn→∞[L2(I − M)L1]n → 0. Thus given the doubly stochastic matrices
L1, L2 and C, the choice of step sizes in M should guarantee that the stability

condition (3.19) holds. Using the matrix 2-norm and the submultiplicativity

property of a matrix norm, we have that

‖L2 (I − M)L1‖2 ≤ ‖L2‖2‖ (I − M) ‖2‖L1‖2 < 1. (3.20)

The spectral norm of a doubly stochastic matrix is 1 2. Since the matrix (I − M)
is diagonal, we have that

‖L2 (I − M)L1‖2 ≤ || (I − M) ||2 = max
k

|1 − µk| < 1. (3.21)

We conclude that for the (3.19) to hold, we must select the µk, k = 1 . . . K in

M so that the diagonal matrix (I − M) is stable. Thus we have the following
condition

|λk [(I − M)]| = |1 − µk| < 1 for all k=1…K. (3.22)

Since in our model we have only one mode of convergence of the filter [25], µk

should be selected in the range:

0 < µk < 2. (3.23)

The geometric series Sn =
∑n−1

i=0 [L2 (I − M)L1]i, which is generated by

matrix [L2 (I − M)L1], converges if and only if the condition (3.19) holds

2See [63, Problem 8.7.P5]
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for all λi. The condition (3.19) guarantees that the [I − [L2 (I − M)L1]] is
invertible. Thus we can write the geometric series as follows

Sn = [I − [L2 (I − M)L1]]−1 [I − [L2 (I − M)L1]n] . (3.24)

Hence according to (3.19) as n → ∞ the geometric series converges to

Sn = [I − [L2 (I − M)L1]]−1 . (3.25)

Thus by noting the mean of p̂(n) in steady state and under both hypotheses Hi,

i = 0, 1 as E [p̂(∞)|Hi], we can write

E [p̂(∞)|Hi] = [I − [L2 (I − M)L1]]−1

× L2MCE [x(n)|Hi] , (3.26)

where the conditional expectations of observations E [x(n)|Hi] follow (3.1).

Similarly to (3.17) we have that the mean of p̂k(n) in steady state is

E [p̂k(∞)|Hi] = wT
k E [p̂(∞)|Hi] for i=0,1. (3.27)

Mean of Ring-Around estimates

Since the iteration cycle of the ring-around estimation structure can be easily

tracked, specific results for the ring-round estimates can be given.

The mean of the global estimation recursion (3.13) can be found directly.

Dropping the modK notation, we have

E[p̂k(n)] = (1 − µ)E[p̂k−1(n− 1)] + µE[|xk(n)|2].
(3.28)

The initial condition is p0 = p̂k(0). Due to the circular estimation topology we
have that N = KM +m, where M = bN/Kc and where m denotes additional

iterations after full cycles. Let E[p̂k(N)|H1] denote the mean when PU signal

present and E[p̂k(N)|H0] the mean when only noise is present. By iterating

recursion (3.28), using the proposed notation and replacing the expectations

using model (3.1), we can write

E[p̂k(N)|H1] =

µS[ 1 − (1 − µ)KM

1 − (1 − µ)K

[
K−1∑
l=0

(1 − µ)l|αk−l|2
]

+ σ2
v

[
1 − (1 − µ)KM+m

]
+ p0(1 − µ)KM+m

+ µS

[
(1 − µ)KM

[
m−1∑
i=0

(1 − µ)i|αk−i|2
]]
. (3.29)
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In line 2 of (3.29), the geometric series
∑M−1

i=0 (1 − µ)Ki has been replaced

with its sum. Let us note, that according to lines 2 and 5 of (3.29), the mean

differs from node to node due to the values and processing order of |αk|2. When

only noise is present then S = 0 and

E[p̂k(N)|H0] =

p0(1 − µ)KM+m + σ2
v

[
1 − (1 − µ)KM+m

]
. (3.30)

According to AS3, M >> K and in steady state of the estimator, when

M → ∞, the exponential factors (1 − µ)KM+m and (1 − µ)KM in (3.29)

converge to 0 if 0 < µ < 1. In steady-state, formula (3.29) goes to

E[p̂k(∞)|H1] =

σ2
v + µS

1 − (1 − µ)K

[
K−1∑
l=0

(1 − µ)l|αk−l|2
]

(3.31)

and in the noise only case correspondingly to

E[p̂k(∞)|H0] = σ2
v . (3.32)

3.3.2. Variance of estimates

Let us denote the conditional covariance of the estimates under the hypothesisHi,

i = 0, 1 as Cov [p̂(n+ 1)|Hi]. Similarly, let Cov [x(n)|Hi] denote the conditional
covariance of the observations. By using recursions (5.11), (4.28) and standard

definition of covariance, taking mathematical expectation and considering the

fact that p̂(n) is independent of the observation vector x(n), it can be shown that
the covariance recursion is

Cov [p̂(n+ 1)|Hi] = L2 (I − M)L1 Cov [p̂(n)|Hi]
× LT

1 (I − M)LT
2

+ L2MCCov [x(n)|Hi]CT MLT
2 . (3.33)

where initial estimate of covariance matrix is noted by Cov [p̂(0)|Hi], i = 0, 1.
The covariance matrix of observations Cov [x(n)|Hi] is constant over time n.

Next we derive the structure of K × K covariance matrix Cov [x(n)|Hi].
By considering the model (3.1), when PU signal is present the main diagonal

elements of matrix Cov [x(n)|H1] – the variances of observations at node k ∈ K
can be shown to be:

Var
[
|xk(n)|2|H1

]
=
(
|αk|2σ2

s + σ2
v,k

)2
. (3.34)

Similarly when the PU signal is not present and according to AS 2 the variances

of observations at node k ∈ K are given as

Var
[
|xk(n)|2|H0

]
= σ4

v,k. (3.35)
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When the PU signal is present, the off diagonal elements of matrix Cov [x(n)|H1]
- the covariance of observations at nodes k and j if k, j ∈ K and i 6= j can be
shown to be:

Cov
[
|xk(n)|2, |xj(n)|2|H1

]
= |αk|2|αj |2σ4

s . (3.36)

According to AS 2 the noise realizations vk(n) and vj(n) are uncorrelated in

time and space for k, j ∈ K and i 6= j. Thus when the PU signal is absent the

covariance of observations is

Cov
[
|xk(n)|2, |xj(n)|2|H0

]
= 0, (3.37)

for k, j ∈ K and i 6= j.
The variance of p̂k(n) at node k, given the hypothesis Hi, i = 0, 1, can be

found by multiplying the recursion (4.37) with vector wT
k from the left and with

vector wk from the right

Var [p̂k(n+ 1)|Hi] = wT
k L2 (I − M)L1 Cov [p̂(n)|Hi]
× LT

1 (I − M)LT
2 wk

+ wT
k L2MCCov [x(n)|Hi]

× CT MLT
2 wk. (3.38)

Note that (4.37) is in the form of a discrete time Lyapunov’s equation , [64, App.

E]. The steady state variance Var [p̂k(∞)Hi], i = 0, 1, at node k ∈ K can be

recovered by selecting the {k, k} element of the steady state covariance matrix

Cov [p̂(∞)|Hi], which has been found as a solution to the Lyapunov’s equation.
Since the Lyapunov’s equation can be solved using standard methods, we skip

the details here. We have finally

Var [p̂k(∞)|Hi] = wT
k [Cov(p̂(∞)|Hi)]wk. (3.39)

To find the solution, we use the Kronecker product property

vec(UΣV ) =
(
V T ⊗ U

)
vec (Σ) (3.40)

to vectorize the covariance recursion (4.37). The notation vec(A) stacks the

columns of its matrix argument A on top of each other, while vec−1(vec(A))
denotes the inverse operation to recover the matrix argument from the vector

input. Thus we can write:

vec(Cov(p̂(n+ 1)|Hi))
= [L2 (I − M)L1 ⊗ L2 (I − M)L1]

× vec(Cov(p̂(n)|Hi))
+ [L2MC ⊗ L2MC] vec(Cov(x(n)|Hi). (3.41)
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In steady state, when n → ∞, the Cov(p̂(n + 1)|Hi) and Cov(p̂(n)|Hi) have
converged to the same value.

The solution for vec(Cov(p̂(∞))|Hi), i = 0, 1, leads to the following result

vec(Cov(p̂(∞)|Hi))
= [I − [L2 (I − M)L1 ⊗ L2 (I − M)L1]]−1

× [L2MC ⊗ L2MC] vec(Cov(x(∞)|Hi)). (3.42)

Thus, the steady state variance Var(p̂k(∞)Hi), i = 0, 1, at node k ∈ K can be

recovered by selecting the {k, k} element of covariance matrix Cov(p̂(∞)|Hi),
which has been found as a solution to Lyapunov’s equation and is given by

(3.42). We have finally

Var(p̂k(∞)|Hi) = wT
k

[
vec−1 (vec(Cov(p̂(∞y)|Hi)))

]
wk. (3.43)

Variance of Ring-Around estimates

Similarly, as for the mean of ring-around estimates, specific results for the

variance of ring-round estimates can be given. Since p̂k−1(n) and |xk(n)|2 are
uncorrelated and by dropping the modK notation, we have

Var[p̂k(n)] = (1 − µ)2Var[p̂k−1(n− 1)]
+ µ2Var[|xk(n)|2]. (3.44)

Replacing the expectations using model (3.1)

Var[p̂k(KM +m+ 1)] =

µ2
M−1∑
i=0

(1 − µ)2Ki
K−1∑
l=0

(1 − µ)2lVar(|xk−l(n)|2)

+ µ2(1 − µ)2KM
m−1∑
i=0

(1 − µ)2iVar(|xk−i(n)|2) (3.45)

Since xk(n) is CSCG, then according to model (3.1) the PU signal is present,

Var(|xk(n)|2) = (S|αk|2 + σ2
v)2. Let Var[p̂k(N)|H1] denote the variance when

the PU signal present and Var[p̂k(N)|H0] the variance when received signal

contains only noise. By iterating (3.44), replacing the variances and using the

proposed notation, we have that
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Var[p̂k(N)|H1] =

µσ4
v

1 − (1 − µ)2(KM+m)

2 − µ

+ µ2 1 − (1 − µ)2KM

1 − (1 − µ)2K

·
[

K−1∑
l=0

(1 − µ)2l
[
S2|αk−l|4 + 2S|αk−l|2σ2

v

]]
+ µ2(1 − µ)2KM

·
[

m−1∑
i=0

(1 − µ)2i
[
S2|αk−i|4 + 2S|αk−i|2σ2

v

]]
.

(3.46)

In line 3 of (3.46), the geometric series
∑M−1

i=0 (1 − µ)2Ki has been replaced

with its sum. Similarly to the mean, the variance differs over the nodes. When

only noise is present, the resulting variance is given as

Var[p̂k(N)|H0] = µσ4
v

2 − µ

[
1 − (1 − µ)2(KM+m)

]
. (3.47)

In steady state of the estimator, when M → ∞, the exponential factors

(1 −µ)2(KM+m) and (1 −µ)2KM in (3.46) converge to 0 if the constant step size

µ is taken sufficient. Thus, the variance tends to

Var[p̂k(∞)|H1] = µσ4
v

2 − µ

+ µ2

1 − (1 − µ)2K

[
K−1∑
l=0

(1 − µ)2l
[
S2|αk−l|4 + 2S|αk−l|2σ2

v

]]
(3.48)

under H1 and in the noise only case to

Var[p̂k(∞)|H0] = µσ4
v

2 − µ
. (3.49)

The residual variance of the fixed step size power estimation algorithm

depends on the value of µ. We observe that smaller µ causes smaller residual

variance and thus more precise estimation results. On the other hand, it is known

from the literature of adaptive filtering that smaller µ causes slower convergence
in the mean.

61



3.3.3. Detection Performance Analysis

The test statistic of the energy detector at node k at time instant n is estimated

using distributed received signal power estimation algorithms. Thus, the resulting

detection performance is dependent on the performance of the underlying

estimation process. For deriving the formulas of probability of detection (PD)

and probability of false alarm (PF A) we need to evaluate the probability density

function (PDF) of the test statistic p̂k(n+ 1) under both hypotheses H0 and H1.
The input signal is CSCG and in caseK = 1, the test statistic of ED p̂k(n+ 1)

is local and under both hypothesis a Chi-Square distributed random variable with

2N degrees of freedom. The test statistic p̂k(n + 1) is obtained as a sum of a

number of identically distributed variables and hence the CLT can be applied

to approximate the Chi square distribution by a Gaussian distribution [62].

According to AS 3 the number of samples is large enough, and the CLT is

expected to apply.

The global test statistic p̂k(n + 1) in case of hypothesis H1, is, however,
estimated over independent, but not identically distributed variables. In such a

case the Lyapunov CLT [65] can still be applied over a large number of samples

to result in a Gaussian approximation.

Let Q be the complementary distribution function of the standard Gaussian

Q(x) = 1√
2π

∫ ∞

x
exp

(
− t2

2

)
dt. (3.50)

The conditional mean E(p̂k(n+ 1)|Hi) and the conditional variance Var(p̂k(n+
1)|Hi) at node k (for i = 0, 1) can be easily obtained from previously derived

(4.28) and (4.37) respectively. The conditional moments in steady state can

be obtained similarly from the corresponding steady state results. At next we

provide approximate formulas for the resulting energy detection performance.

The probability of false alarm PF A of the energy detector under hypothesis H0
is found by

PF A(γ, t) = Pr(T (x) > γ|H0) =
∫ ∞

γ
px(x|H0)dx (3.51)

Substituting the estimation mean and variance under H0, we get

PF A = Q

(
γ − E(p̂k(n+ 1)|H0)√
Var(p̂k(n+ 1)|H0)

)
, (3.52)

which according to AS 2, holds for every node k ∈ K.

The probability of detection of an energy detector under hypothesis H1 is

correspondingly

PD(γ, t) = Pr(T (x) > γ|H1) =
∫ ∞

γ
px(x|H1)dx. (3.53)
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Let the probability of detection at node k be: PD,k. Similarly substituting the

mean and variance under H1, we get

PD,k = Q

(
γ − E(p̂k(n+ 1)|H1)√
Var(p̂k(n+ 1)|H1)

)
. (3.54)

The sensing threshold is found from (3.52) by fixing the desired value of

PF A. Thus

γ = E[p̂k(n+ 1)|H0]

+ Q−1 (PF A)
√
Var[p̂k(n+ 1)|H0].

(3.55)

Due to AS 2 [2] the thresholds for every CR node k are equal.
Calculation of the threshold requires, however, knowledge of the moments

of the estimation algorithm in case of hypothesis H0 and these moments are

dependent on the algorithm parameters (especially the step size). In practice the

required moments can be calculated in advance using (4.28) and (4.37), known

values of the step size and the noise power and then substituting these results

into (3.55).

3.4. Simulation results

In the numerical simulation sectionwe firstly investigate theATCpower estimation

algorithm and compare the results with the CTA [2] and ring-around [1] versions.

Secondly, we view the resulting energy detection performance. In all these

simulations the PU signal s(n) is taken as QPSK with unit power S, under the
active hypothesis H1, the step size is: µ = 0.01.

3.4.1. Local and distributed power estimation

We start with the investigation of the estimation algorithms. The channel gains

are assumed to be constant, fixed during the simulations and obtained by:

αk ∼ CN(0, 1).

Ring-Around

We first investigate the estimates of (3.13) under two modes - local: if the

nodes are not cooperating with each other (i.e. every node acts as a stand alone

energy estimator/detector) and -global: if the nodes cooperate. In the next two

examples all nodes receive N = 1200 samples. To illustrate the tracking feature,
we examine how the algorithm reacts if the power level changes at sample

601. Thus, during samples n = 1, ..., 600 hypothesis H1 is present (the source

signal power S is attenuated by channel gain |αk|2). Due to slow fading, αk is
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Figure 3.3 Local power estimation, fixed step , for the recursive ring-round topology

assumed to be constant and is obtained by: αk ∼ CN(0, 1). In sample range

n = 601, ..., 1200, the PU signal is absent and only background noise power

σ2
v = 1 is present at every node k.
Using recursion (3.13) the local, non-cooperative power estimate is plotted in

Fig. 3.3, with 10 nodes in the CR network. The channel gain values |αk|2 are
given in the figure. Obviously, the estimation result using local information is

dependant on the channel coefficient of the specific node. From n = 601 the

algorithm is starting to converge to the noise only power level σ2
v = 1. If we for

instance chose n dependant step size µ = 1
n , then from n = 601 the algorithm

would obviously not reach to noise level during 600 samples.

In Fig. 3.4 we investigate the cooperative scheme. Exactly the same channel

gains are used as in the local simulation. Since the mean and variance differ at

nodes k, then for illustration we plot only the global power estimation result of
node k = 10 in the network with K = 10. The corresponding mean and ±3
times standard deviation are given in Fig. 3.4.

In Fig. 3.4 the global estimate is converging around the mean. Due to the

proposed circular estimation topology, the recursion (3.13) can reduce the effect

of random gain caused by channel coefficients. We see that the global estimate

stays within the ±3 times standard deviation limits from the mean, which is

expected in case of a Gaussian distribution.
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Figure 3.4 Global power estimation, fixed step, for the recursive ring-round topology
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ATC and CTA

In the comparison of algorithms we use the same channel gains for all the

algorithms. In this subsection, all the nodes in the network receive N = 2000
samples. To illustrate how the proposed adaptive algorithms react to changes

in the underlying stochastic process, we have changed the active detection

hypothesis at sample n = 1001. During samples n = 1 . . . 1000 the PU signal

with constant unit power S is present. In sample range n = 1001 . . . 2000 the

PU signal is absent and only noise is present. Under both detection hypotheses

the noise power is σ2
v = 1 and assumed to be the same in all the nodes. In

this subsection, it is assumed, that no measurements are exchanged between the

nodes, C = I.

For illustration purpose, all the estimated power values in the CR network of

10 nodes are first plotted in Fig. 3.6. Using the ATC algorithm the estimates of

the received power together with the optimal solution P o have been plotted in

Fig. 3.6. All the estimated power values in the CR network of the 10 nodes are

plotted in one figure. When we use the CTA algorithm we obtain the results,

which are given in Fig. 3.7. The value of the optimal solution P o in figure

Fig. 3.6 and in Fig. 3.7 is shown as the black dashed line and is calculated

according to (4.10) using the present channel gains values.
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Figure 3.6 Local power estimation using ATC
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Figure 3.7 Local power estimation using CTA
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Compared to the ring round topology in diffusion strategies, more information

is processed at every node k, since neighbour estimate (k − 1)modK is fused

with the local estimate of node k. It was shown in [2] that the variance of the
estimates of the CTA algorithm is lower than the variance of estimates of the

ring around algorithm. Based on Fig. 3.6 and in Fig. 3.7 we observe that the

variance of the estimates of the ATC algorithm is even slightly lower than the

variance of estimates of the CTA algorithm.

The smallest value of steady state variance is achieved using the ATC

algorithm. Compared to the ring around algorithm, since the precision of

power estimates increases when the diffusion estimation strategies are used, the

resulting detection performance increases as well.

3.4.2. Probability of detection

Next we investigate the probability of detection using the proposed distributed

power estimation algorithms. In the following simulations we compare the

performance of 5 different network sizes: K = 1, 3, 10, 30, 50 nodes. More

specifically, the estimated and theoretical results of PD of the last nodes in the

set are compared, i.e k = K. In the simulations the converged power estimate is

used for detection i.e. p̂k(∞). The theoretical mean and variance of the power
estimates are calculated using directly the steady state formulas.

We set the desired PF A = 10−4. The thresholds of the energy detectors

at nodes k ∈ K are calculated using (3.55) and the corresponding steady state

theoretical mean and variance of the power estimates (of algorithms CTA, ATC

and ring around, respectively) under detection hypothesis H0.

For estimating the PD we use the Monte Carlo method [40] and run 1000

experiments with the same fixed set of channel constants and noise power for

all the algorithms. The estimated PD is compared with the theoretical PD.

The theoretical PD is calculated using (3.54) and the corresponding steady

state mean and variance of the power estimates of the three algorithms under

detection hypothesis H1. In the following figures the continuous lines represent
the theoretical PD and the corresponding signs the estimated PD. First we set

C = I. The detection performance of ATC, CTA and the ring around algorithms

are shown in Fig. 3.8, in Fig. 3.10 and in Fig. 3.9 respectively. We see that there

is a good match between the estimated and theoretical PD. The PDF of the test

statistic is approximated by a Gaussian distribution and the CLT approximation

applies even with small K and when the underlying stochastic process is

cyclostationary (since the variance of the sample of received signal is changing

periodically over n). As we noticed in [2], the CTA algorithm outperforms the

ring around algorithm. The PD of the set with few nodes is more influenced by

the given values of channel constants. According to simulation data whenK = 1
the PU signal is in deep fading and this explains the worse PD result. In case

of non-distributed estimation and detection, not much can be done to improve

the PD. As the number of nodes in the network increases, about 4 dB is gained
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Figure 3.8 Probability of detection, ring around, C = I
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Figure 3.9 Probability of detection, ATC, C = I
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Figure 3.10 Probability of detection, CTA topology, C = I
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Figure 3.11 Probability of detection, ATC topology, C = AT
diff

with respect to the noise power. Based on Fig. 3.9 we see that the ATC slightly

outperforms the CTA. As the number of nodes K increases, from about K = 30,
the PD result stabilizes close to the theoretical PD plot of the no fading case.

We then consider that also measurements from a neighbour node are available

and we set C = AT
diff for the CTA and ATC algorithms; the results are shown in

Fig. 3.12 and in Fig. 3.11, respectively. We note that ATC performs slightly

better when more nodes in the network. While ATC fuses more data than CTA,

the difference of detection performance with CTA is rather small. We see

minor increase in the detection performance when additionally measurements are

exchanged between the nodes. Thus, we conclude that the best detection results

are obtained using ATC algorithm; however, the difference between ATC and

CTA is quite small. On the other hand, for exchanging measurements between

the nodes in a neighbourhood of a node in the CR network, additional data has

to be broadcast and processed; this requires additional energy. Thus, the usage

of measurement exchange may not be justified in a practical implementation.

3.5. Conclusion

In this chapter we studied a diffusion based distributed power estimation

approach, that is applicable for CR networks for detecting the presence of
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Figure 3.12 Probability of detection, CTA topology, C = AT
diff

74



PU signal. We derived Ring-Around, CTA and ATC diffusion based energy

detection algorithms for energy detection. We proposed a general framework

for analysing the performance of the ATC diffusion, previously studied CTA

and ring-around power estimation algorithms and compared the resulting energy

detection performances. Our simulation study demonstrated that both diffusion

LMS based energy detection algorithms outperform the previously proposed

ring around algorithm and that the ATC diffusion algorithm slightly outperforms

the CTA diffusion algorithm, and that the CTA diffusion algorithm outperforms

the ring-around algorithm. It was also observed that the effect of exchanging

measurements in addition to the estimates in CTA and ATC type of algorithms

is rather small. All the three proposed algorithms with fixed step size are able

to track changes in the received signal power and are usable in cognitive radio

systems.
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4. DISTRIBUTED LARGEST EIGENVALUE BASED

SPECTRUM SENSING USING DIFFUSION LMS

In this chapter we propose a distributed detection scheme for cognitive radio

(CR) networks, based on the largest eigenvalues (LEs) of adaptively estimated

correlation matrices (CMs), assuming that the primary user signal is temporally

correlated. The proposed algorithm is fully distributed, thereby avoiding the

potential single point of failure that a fusion centre (FC) would imply. Different

forms of diffusion least mean square (LMS) algorithms are used for estimating

and averaging the CMs over the CR network for the LE detection and the resulting

estimation performance is analyzed using a common framework. In order to

obtain analytic results on the detection performance, the exact distribution of

the CM estimates are approximated by a Wishart distribution, by matching the

moments. The theoretical findings are verified through simulations.

4.1. Background

We consider the interweave CR paradigm [39], where CR systems detect

the presence of a primary user (PU) signal by sensing the spectrum area of

interest. The binary detection problem is studied: PU signal is present or

absent [12,13,66]. In the interweave paradigm it is expected that the CR system

should accurately detect the transmission of a PU system, when the latter is

operating.

As already described in Chapter 3, in the literature several type of detectors for

spectrum sensing have been proposed. When the PU signal waveform, channel

and additive noise properties are known a priori, then the matched filter detector

(MFD) is optimal [40]. The MFD requires perfect synchronization between the

PU signal waveform and the received signal. However in practice such required

knowledge is often not available, which makes the usage of the MFD detector

impractical. The cyclostationary feature detection method [67] requires a priori

knowledge about the cyclic frequencies of the PU signals, which often is a too

strong assumption for practical implementation - in general it is complicated

to implement and it requires that knowledge about the type, modulation and

configuration properties of the PU signal is available. The Energy Detection

(ED) method [40] models the PU signal as a random process and does not require

knowledge about the PU signal, modulation type and channel properties. In such
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a case, when the received PU signal is white, the ED is optimal. However, setting

the detection threshold requires knowledge of the noise power value. It has been

shown, that if there is uncertainty in the noise power or if the received PU signal

is correlated, the ED performance decreases and it is no more optimal [17].

A second large group of detectors for spectrum sensing are based on

eigenvalue properties of an estimated correlation matrix [43–45]. Detection

based on the largest eigenvalue (LE) of estimated CMs [43] is optimal when

the observations are zero mean Gaussian distributed, we do not have specific

information about the PU signal and the channel gains, and when the PU signal

is rank one correlated [68]. The LE method uses knowledge about the additive

noise power to determine the detection threshold. Random Matrix Theory has

been used to study the performance of the CM eigenvalue based detectors [69].

We note, that when linear estimation of CM is used, more sophisticated detectors:

the volume based detector (VD) and the covariance based detector (CAV), which

avoid eigenvalue or singular value decomposition, have been studied in [46, 47]

and [48] respectively. Similarly, when linear estimation of a CM is used, several

eigenvalue based detectors are robust in the sense, that the noise power value

does not influence the test statistics or threshold of the detectors. For example

the Eigenvalue Arithmetic to Geometric Mean (AGM) [49], the Maximum to

Minimum eigenvalue ratio (MME), the Energy to Minimum Eigenvalue ratio

(EME) [45], the Eigenvalue Moment ratio (EMR) [49], and the Hadamard [50]

detectors have been proposed in the literature. A method for blind and optimal

combination of observations for the ED has been proposed in [70]. For these

detectors, the performance analysis is based on the assumption that the sample

CM is Wishart distributed with known degrees of freedom (DoF), an assumption

that does not hold when exponentially weighted (adaptive) CM estimation is

used. Also, the proposed approximate or asymptotic analysis of the theoretical

detection performance for EME, MME, CAV detectors tend to be inaccurate in

the low SNR regime, as seen in [45, 48]. Such potential inaccuracy is not well

usable for studying the accuracy of distribution parameter approximations of

adaptive CM estimates in a low SNR region.

From the previous chapters we know, that in cognitive radio (CR) contexts

we would like to avoid creating interference to the PU user and find free

spectrum opportunities as fast as possible. On the other hand the active detection

hypothesis may change during the processing time. Distributed, adaptive network

learning methods, based on exponential averaging estimation, are able to learn

the statistical information based on observations received by the nodes in the

network. These methods can react to possible changes in the properties of

estimated statistics in real time. Several proposed distributed spectrum sensing

solutions make use of a central FC. A FC will however form a single point of

failure in the network since a malfunction in this unit affects the performance of

the whole distributed solution. We therefore propose a CM estimation solution,

where the available CM estimates (and corresponding measurements) are fused

in cognitive radio network nodes, to allow all nodes to make detection decisions

78



based on data from the neighboring nodes and without involvement of any central

processing unit. Such a solution enhances the network failure resistance.

Also in the Chapter 3 we mentioned that several distributed adaptive

estimation schemes have been studied in the past. Consensus based schemes

are analyzed for example in [57–60]. Diffusion estimation schemes are studied

for instance in [71, 72], while Least mean square (LMS) and recursive least

squares (RLS) schemes in [26, 27, 29, 56]. It has been shown, that distributed

diffusion strategies can often perform better (in terms of faster convergence

and lower Mean Square Deviation) and be more stable compared to consensus

algorithms [30,73]. Several detection solutions, based on distributed estimation,

have been studied for example in [28, 74–76]. A ring network topology for

distributed energy detection without a FC has been suggested in [61]. In [1] we

proposed and analyzed a diffusion LMS based recursive calculation of the test

statistics with ring topology for the energy detectors in cognitive radio network.

Ring networks are however sensitive to communication link failures. Combine

and Adapt (CTA) LMS diffusion based calculation of the test statistics for the

energy detectors was studied in [2] and an Adapt and Combine (ATC) based

version was investigated further in [3].

In this chapter we study the performance of LE detection in a distributed CR

network, based on adaptively, distributively estimated CMs, using the completely

distributed diffusion LMS strategy. We focus on the distributed detection problem

and the analysis of dynamics of the diffusion estimation process is beyond the

scope of the chapter and this thesis. We make the assumption that the CR

network does not have prior information about the waveform of the PU signal

and about the channel gains in the secondary nodes. We assume that the received

PU signals samples are temporally correlated. Secondly in general we assume

the noise power level is known. Noise power estimation procedures and analysis

of the sensitivity to estimation errors falls outside the scope of this chapter.

To analyze the detection performance and determine the threshold value, we

follow the ideas of [77–79] and approximate the distribution of the exponentially

averaged CM estimate by a Wishart distribution by moment matching. The

resulting DoF for the approximate Wishart distribution will depend both on the

step size, the network topology, and under H1 detection hypothesis will depend
also on the value of the noise variance parameter. We have therefore focused on

the LE based detection, since under H1 the robustness of alternative detectors

like EME, MME, CAV in case of adaptively estimated CMs, is lost anyway. We

however provide a simulation with the MME detector, which is a robust detector.

In the distributed CR network, every node acts as an independent detector in

terms of detection decision making based on the available CM estimates. Due

to limited information about the PU signal and the communication channel, the

theoretical global estimation model is proposed as a network-average CM (while

in practice the CR nodes have only access to the subset of data from the neighbor

nodes). We consider the control-level analysis of the proposed distributed CM

estimation and LE detection algorithm to be out of scope of the chapter.
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We organize the remainder of the chapter as follows. In Section 4.2 we

describe the motivation, specify the system models which are analysed further

in this chapter and we motivate the usage of the LE detector. In Section 4.3

we derive an adaptive, distributed CM estimation algorithm based on diffusion

LMS strategy and summarize the versions of it. In Section 4.4 we analyse

the performance of the proposed distributed CM estimation algorithm using

a common framework for moment based analysis for all the versions of the

Diffusion LMS algorithm. We propose the usage of Total and General Variance

based approximations for being able to model the distributions of adaptive CM

estimates under both detection hypotheses. Using these results the theoretical

false alarm and the detection performance of the LE detector are studied. In

Section 4.5 we present our simulations results and verify the theoretical findings.

Notation. In this chapter we use the following notations. Boldface uppercase

and lowercase letters denote matrices and vectors, respectively. E[·], Var[·],
Cov[·] denote expectation, variance (of a scalar) and covariance operators,

respectively. vec[·] and vec−1[·] denote conversion from matrix to vector and

from vector to matrix. (·)T , (·)H and (·)c denote the vector or matrix transpose,

the Hermitian transpose and the complex conjugate, respectively. ⊗ denotes the

Kronecker product.

4.2. Problem formulation and background

4.2.1. Signal model and assumptions

Assume that K single-antenna CR nodes are independently sensing the

communication band of a PU.Let the observation bandwidth of the communication

band be denoted as B. A collection of samples of the down converted continuous

time signal zs(t) are collected every Ts seconds, with sampling period δs < Ts.

As a result every node individually obtains a vector

yk(n) = [zs(nTs), zs(nTs − δs), . . . , zs(nTs − (M − 1)δs)] , (4.1)

which gives the following observation model for both detection hypotheses

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n), (4.2)

where k = 1, 2, ..., K is the node number, M is the length of the observation

vector, and n = 1, 2, ...N is the sample discrete time index. The primary

signal s(n), the noise vk(n) and channel gains αk at node k are assumed to be

statistically independent. We additionally assume that the PU signal follows

s(n) ∼ CNM (ms,Σs) . (4.3)

Due to the one communication channel assumption between a CR and PU,

temporally correlation models of CMs are justified by the signal model 5.1. In

80



the performance analysis of the LE detection scheme, the following assumption

will be used.

AS 1. The additive noise vk(n) is independently and identically distributed
(i.i.d) circularly symmetric complex Gaussian (CSCG) noise with zero mean and

covariance Σv,k = σ2
v,kIM . In the CR network vk(n) is uncorrelated in time and

space. We assume the noise power is known a priori and has the same power

level for all nodes in the CR network.

Under H1 we have the followingM ×M CM model

Rk = Rs,k + Σv,k. (4.4)

Let us denote the actually occupied bandwidth (within the observation bandwidth

B) as b. Thus the ratio between occupation and observation bandwidths is

denoted as β = b/B [80] and the rank of the PU signal matrix can be then

approximated as rank(Rs,k) ≈ dβMe. We assume M > 1, β < 1 and then Rs,k

has in general a low rank (see also [81]), while Σv,k is a scaled identity matrix.

This property can be used for detecting the PU signal.

4.2.2. Largest Eigenvalue detection

In this chapter, we focus on the LE detector, which is known to follow from the

General Likelihood Ratio approach, when AS 1 holds, the received observation

vectors obey a Multivariate Complex Gaussian distribution with zero mean, and

when the PU signal population covariance matrix Rs,k is rank one [68]. The LE

detector requires low computational complexity and the detection performance

analysis is easy to conduct. As seen in [43] and in Section 4.4, there exist

usable theoretical results for the conditional distributions without asymptotic

approximations, which predict the true performance well both in low and high

SNR. The LE method is optimal for one PU signal. In the case of higher rank

PU signals (i.e more than one PU signal in the network), then the LE detector

is no longer optimal, but still usable. We note that all these existing results

from the literature for the LE detector hold when estimating the CM using a

standard non-weighted sample covariance matrix, resulting in a complex Wishart

distribution.

For the distributed adaptive estimation scheme considered here, this latter

assumption is no longer true, but as will be shown in Sections 4.4 and 4.5, the

distribution can still be well approximated by a complex Wishart distribution.

The DoF approximations depend on the parameters of the distributed and adaptive

CM estimation algorithm step-size and under H1 also on the preciseness of the
noise power value (AS 1). Extending the analysis to other type of detectors

can therefore be done using the existing results in the literature, for example

from [46,47,49,50]. As seen in Section 4.5, a noise power uncertainty under the

detection hypothesisH1 causes an inaccuracy to the approximated DoF|H1 value.
This effect causes a potential inaccuracy in the theoretical detection performance

formula of a detector, which requires the DoF|H1 value. However since the
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threshold of a robust detector is not affected by the noise power perturbations,

then such a detector can still be used in the framework of this chapter. Thus

to keep the focus of the chapter, we have limited our study to the LE detector,

whereAS 1 is necessary for the threshold calculation and to illustrate the effect of

accuracy of the DoF approximations under both detection hypotheses. Since the

LE detector is vulnerable to the noise power value uncertainty, then in Section

4.5 we also provide a simulation with the robust MME detector in the proposed

distributed and adaptive CM estimation framework.

Thus an estimate R̂k(n) of the CM Rk is assumed to be available for every

node k ∈ K at time index n. Let us define the eigenvalues of R̂k(n) in

non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λM . Every node k detects the presence
of a PU signal by independently determining the LE of the locally available

estimate R̂k(n) and performing the following detection test

λ1
[
R̂k(n)

] H1
≷
H0

γLE,k, (4.5)

using a threshold γLE,k, which is given in Section 4.4.3 by (5.14) or (4.57).

Next we implement the diffusion LMS based method to derive a distributed

adaptive CM based LE detector in the CR network, so that the algorithm: A)

is able to react to a possible change in the statistics of observations on line

(i.e when the detection hypothesis changes during the observation time) and B)

estimates the CMs in a cooperative manner with an averaging effect over the CR

network. CR nodes can have access only to a subset of neighbor nodes and no

FC unit is used in the CR network.

4.3. Adaptive, Distributed CM estimation and LE detection

Obviously one of the most simple cooperation strategies is where all the CR

nodes are able to exchange their local data (estimates or observations) with all

the other nodes in the CR network, i.e the network global data is available at

every node. However in practice it means that all nodes have to be within

hearing distance of all the other nodes and significant amount of data needs to

be exchanged and processed over the CR network. Secondly transmitting and

processing of (global) data consumes energy, which may drain the batteries of the

CR nodes. In this chapter we assume to have a more general network topology

model, where nodes only share data with a subset of neighbor nodes and thus

no global data is available. Thus we assume that the CR nodes use low power

transmitters (i.e a low energy communication, to save the batteries) we also

would like to save some energy required for local data processing. This means

that while every CR node k still needs to transmit its estimate or observation at a
time instant n, other nodes use data of pre-selected neighbor nodes and in such a
way some energy can be saved by processing (in an adaptive manner) less data

at every CR node.
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We first describe local CM estimation, when the CR nodes in the network do

not cooperate. Then we propose a global (theoretical) cost function for estimating

the CM in a cooperative manner. We assume, that theK nodes in the CR network

estimate a vector parameter po in a distributed manner, where nodes rely only

on the information, that is available to them. The network topology is assumed

to be fixed over the sensing time. We consider a linear, fixed combination of

neighbor estimates and measurements at every node k and time instant n. The
proposed global cost needs to be approximated in a distributed manner, where no

FC, as a potential single point of failure in the system, is used. The derivation

of the ATC and CTA type CM estimation algorithm diffusion power estimation

algorithm follows the ideas in [3, 27, 55].

4.3.1. Local estimation

WhenCRnodes donot cooperate, then according to (5.2)Σv,k = E
[
vk(n)vk(n)H

]
and Rs,k = E

[
|αk|2s(n)s(n)H

]
. The estimate R̂k(N) of CM Rk based on the

observations n = 1, . . . , N can be obtained (independently, non-adaptively) at

every node k for example as

R̂k(N) = 1
N

N∑
n=1

yk(n)yk(n)H , (4.6)

We continue with the notation, suitable for the adaptive processing, i.e the

estimate R̂k(n), available at node k at time instant n. In the light of the signal
model cases in [82], we consider two specific PU signal models under the

detection hypothesis H1, where s(n) is a constant or a random variable. Under

the different detection hypotheses, the R̂k(n) therefore follows the following

Wishart distributions [43, 44, 83]

H0 : R̂k(n) ∼ CWM (N, 1
N Σv,k),

H1 : R̂k(n) ∼ CWM (N, 1
N Σv,k,

1
N Ωk) if ms 6= 0,

H1 : R̂k(n) ∼ CWM (N, 1
N Σ′

k) if ms = 0,
(4.7)

where N is the degree of freedom (DoF) parameter, Σ′
k = Rs,k + Σv,k, by

following the notation in [83, Th. 3.5.2] 1
N Ωk =

[ 1
N Σv,k

]−1 [ 1
NEkE

H
k

]
, and

where the non-zero column n ofM ×N mean matrix Ek equals E [αk]ms. The

first case corresponds to the Complex Central Wishart (CCW) under detection

hypothesis H0, with population covariance matrix 1
N Σv,k. The second case

with the non-centrality matrix 1
N Ω corresponds to the Complex Non-central

Wishart distribution (NCW) under H1. We denote it as Case 1. The third case

corresponds to the Complex Central Correlated Wishart (CCCW) under H1 with
population covariance matrix 1

N Σ′
k. We denote it as Case 2.

According to (5.2), every node k has a unique channel gain αk from the PU

source, which is not known a priori for the nodes. When the nodes in the CR
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network estimate Rk without cooperating with other nodes, then the estimates of

Rk are (locally) influenced by the individual channel gains of the corresponding

nodes. The local SNR at node k is given by

SNRk = Tr
[
|αk|2

(
Rs,k + msm

H
s

)]
Tr [Σv,k] . (4.8)

As seen, some CR nodes achieve better detection performance due to higher

channel gains (i.e due to better position in the space) than the other. We

are interested in a scheme, where all nodes can achieve similar detection

performance, despite of their individual channel gains. The method (4.6) expects

that N samples are available for calculation of the estimate and is not adaptive

in its nature, i.e the CR system is unable to react quickly to a possible change

of a detection hypothesis during the observation time N . This may increase

the possibility of false alarm or a miss-detection of the PU user and thus also

an interference to the PU user. As seen in next chapters, we find an adaptive,

exponential (non-equal weighed) averaging based method for estimated the CMs,

which is able to learn and react to the changes in the statistics of the CM in real

time and needs to store only data from previous iteration.

4.3.2. Global estimation

The CR nodes could cooperate via internal communication links to enhance the

detection performance (of the PU signal(s)) at every node k. In the distributed
CR network we assume:

• AS 2. There is a common control channel available for the CR system for

transferring the network level control messages. The communication links

between the CR nodes are ideal and not capacity restricted.

• AS 3. The CR network is strongly connected (however nodes can directly

communicate only with a subset of neighbor nodes).

We propose a model where nodes jointly (and in case of either detection

hypothesis) estimate the network average CM, which is denoted as Ro and

defined as follows

Ro = 1
K

K∑
k=1

Ro
k. (4.9)

For notational convenience, introduceM2 × 1 ro = vec(Ro). Thus we can write

ro = 1
K

K∑
k=1

vec(Ro
k) = 1

K

K∑
k=1

E
[
vec

[
yk(n)yk(n)H

]]
. (4.10)

Let us define the Hermitian rank one observation matrixDR,k(n) = yk(n)yk(n)H

(under both hypothesis) at node k at time instant n. Its M2 × 1 vectorized form
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is dR,k(n) = vec [DR,k(n)]. We can decompose the dR,k(n) into the product of a
M2 ×M2 constant (invertible) complex matrix T and aM2 × 1 real vector dk(n)
as dR,k(n) = Tdk(n), to keep the dimension of the estimated vector minimal in
the adaptive recursions. For example, whenM = 2, then

Tdk(n) =


1 0 0 0
0 1 −i 0
0 1 i 0
0 0 0 1




DR,k(n)(1, 1)
<[DR,k(n)(1, 2)]
=[DR,k(n)(1, 2)]
DR,k(n)(2, 2)

 . (4.11)

We denote the estimate of the real valued E [dk(n)] as p̂k(n). To construct an

adaptive distributed estimation algorithm, we first relate the estimates of Ro
k and

Ro in (4.9) with the minimization of the following global (network-wise) cost

function

po = argmin
p

K∑
k=1

Jk(p) = argmin
p

K∑
k=1

E ‖dk(n) − p‖2, (4.12)

where the vector p ∈ RM2
represents the real valued parameters of the CM, to

be estimated. Thus po represents the optimal (real valued) CM estimate or is the

optimal solution for the minimization of the Mean Square Error (MSE) type of

global aggregate cost function Jglob(p), which is given as

Jglob(p) =
K∑

k=1
Jk(p)

=
K∑

k=1
E
[
‖dk(n)‖2 − dT

k (n)p − pTdk(n) + pTp
]
. (4.13)

Let us note that compared to the models in [27, 28, 31], in (4.13) both the

observation and estimation variables are vectors. By differentiating Jglob(p) in
(4.13) with respect to p and setting the result to zero, we get

∇pJ
glob(p) = −

K∑
k=1

E
[
dT

k (n)
]

+KpT = 0. (4.14)

It follows that

po = 1
K

K∑
k=1

E [dk(n)] . (4.15)

The Hessian of the aggregate cost function is

∇2
pJ

glob(p) = 2IM . (4.16)

Obviously Jglob(p) in (4.13) is strongly convex [30, C.18] with the unique

solution po. Also, in case of one node in the CR system (K = 1) or when
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the nodes do not cooperate, then the individual cost Jk(p) is minimized at the

point po
k = E [dk(n)]. Since ∇2

pJ
loc
k (p) = 2IM and the individual cost J loc

k (p) is
strongly convex, thus po

k is unique as well.

Compared to [27,28,31], in this chapter the local costs Jk(p) are individually
not minimized at the same global point po due to different channel conditions.

However the derivation of the diffusion LMS algorithm still follows the procedure

as proposed in these papers. The proposed optimal solution (4.12) is similar to

the Pareto model, which is analysed in [33].

Note that

Ro
k = vec−1 [Tpo

k]
Ro = vec−1 [Tpo] . (4.17)

We seek an iterative solution to estimate the po
k and po in a manner, which

is adaptive in time, and is fully distributed (cooperative). We propose to use

diffusion LMS based distributed solution.

4.3.3. Iterative Diffusion solutions

Let Nk denote the neighborhood group of node k ∈ K, i.e Nk defines the set of

nodes l which can send data unidirectionally the node k. The node k is assumed
to be always connected to itself. For deriving the diffusion LMS algorithm,

we define and use the standard matrices A, C and C similarly to [27], with

non-negative elements al,k, bl,k and cl,k, that describe how data is exchanged and

combined in the network.

Let us start by defining theK×K right stochastic matrixCwith non-negative

elements so that

cl,k = 0 if l /∈ Nk, C1 = 1, (4.18)

where cl,k = 1 if node l is connected to the node k. The global cost (4.13) can
be divided into the local cost of over the neighborhood of node k and the sum of

local costs of other nodes over their corresponding neighborhoods, and can be

given in the following form

Jglob(p) = J loc
k (p) +

K∑
l 6=k

J loc
l (p). (4.19)

The local cost at every node k can be expressed as a weighted combination of

the costs of the neighbors of every node k. Thus with the help of non-negative
coefficients cl,k the local cost can be given as follows

J loc
k (p) =

∑
l∈Nk

cl,kJl(p) (4.20)

and is minimized at the location ploc
k . The following relation J loc

l (p) ≈
J loc

l (ploc) + ‖p − ploc
l ‖2 [32] can be used for the second part of right hand side
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(RHS) of (4.19) to relate the variable p and the ploc
l . Here the J loc

k (ploc
l ), can be

ignored, since it is independent on the variable p. Thus we have the modified

global cost function Jglob′
as follows

Jglob′(p) = J loc
k (p) +

K∑
l 6=k

‖p − ploc
l ‖2. (4.21)

Note that it is not assumed, that node k has access to all the ploc
l in the

network. Thus we need to approximate the Jglob′(p) locally at every node k and
the standard steps follow. We use the non-negative coefficients bl,k to define if

ploc
l is available for the node k. Thus the elements bl,k take the following values

if l /∈ Nk then bl,k = 0 else bl,k = 1. (4.22)

Then, we limit the summation
∑K

l 6=k ‖p − ploc
l ‖2 on the RHS of (4.21) to the

neighbors of node k i.e
∑

l∈Nk/{k} bl,k‖p − ploc
l ‖2. Secondly, we replace the

(only theoretically available) ploc
l with an intermediate estimate ψ̂l, which is

available at node l.
After these steps the approximation of (4.21) at node k is given as

Jdist
k (p) =

∑
l∈Nk

cl,k E ‖dl(n) − p‖2

+
∑

l∈Nk/{k}
bl,k‖p − ψ̂l‖2. (4.23)

The steepest descent algorithm [25] can be used to obtain a recursion for the

estimate of po at time instant n, at node k, denoted as p̂k(n). By skipping the
derivation steps, as in [27], the two-step steepest descent recursions are then

given as

ψ̂k(n+ 1) = p̂k(n) + µk

∑
l∈Nk

cl,k [dl(n) − p̂k(n)]

p̂k(n+ 1) =

1 − νk

∑
l∈Nk/{k}

bl,k

 ψ̂k(n+ 1)

+ νk

∑
l∈Nk/{k}

bl,kψ̂l(n+ 1), (4.24)

where µk and νk are a positive step sizes, ψ̂k(n+ 1) is an intermediate estimate
at node k at time n.

The coefficients in front of ψ̂l(n + 1), l = 1, . . . , K in the second equation

of (4.24) can be incorporated into the non-negative coefficients al,k. Let us

introduce the K ×K matrix A, whose elements satisfy

al,k = 0 if l /∈ Nk, 1TA = 1T . (4.25)
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Thus we take ak,k = 1 − νk
∑

l∈Nk/{k} bl,k and al,k = νkbl,k for l 6= k. It is

straightforward to see that
∑

l∈Nk
al,k = 1 for every k ∈ K and thus A is a left

stochastic matrix. Finally we obtain the Adapt and Combine (ATC) recursions as

ψ̂k(n+ 1) = p̂k(n) + µk

∑
l∈Nk

cl,k (dl(n) − p̂k(n))

p̂k(n+ 1) =
∑
l∈Nk

al,kψ̂l(n+ 1). (4.26)

In similar manner the Combine and Adapt (CTA) version can be derived,

following the ideas from [27]. In the ATC and CTA algorithms the coefficients

cl,k and al,k define respectively how the measurements dl(n) and p̂l(n) are

(unidirectionally) available for the node k. Thus the matrices A and C specify

the combination strategy of the measurements and the estimates respectively in

the CR network.

In Algorithm 4 we present the ATC and CTA based CM estimation recursions

and the detection step in a common form. For this we define an additional

intermediate estimate φ̂k(n) and denote the K × K matrix A as A1 or A2,
with the elements a1,l,k and a2,l,k correspondingly. The selection options of the

matrices A1 and A2 and C based on [27] are given in Table 1. In practice

the non-negative coefficients a1,l,k, a2,l,k, cl,k can be chosen freely under the

conditions (5.7) and (5.8) respectively. The coefficients bl,k are absorbed into

coefficients al,k and do not have to be considered in practice. For comparison in

Section 4.5, we list also a topology, where every node acts as a FC, denoted as

Global FC LMS in Table 1. In such case CR nodes estimate the CM adaptively

and independently (without sharing estimates), all the measurements from all the

CR nodes are available and equally weighted for every node in the network.

Table 4.1 Choices of Matrices A1 and A2 and C for different LMS algorithms

Algorithm A1 A2 C

No Cooperation LMS I I I

Global FC LMS [27] I I (1/K)11T

CTA diffusion LMS [27] A I C

ATC diffusion LMS (4.26) I A C

Thus we observe that according to (4.17), Table 1 and the CM estimation

recursions in Algorithm 4, when the nodes in the CR network do not cooperate,

then the adaptive estimate p̂k(n) at time instant n at node k defines the individual
(local) adaptive estimate ofRo

k. When nodes cooperate by following the proposed

cost (4.12), Table 1 and the CM estimation recursions in Algorithm 4, then the

adaptive estimate p̂k(n) at time instant n at node k defines the adaptive estimate
of Ro in (4.9), within acceptable mean square error bounds [27, 28]. Thus
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Algorithm 4 Distributed LMS based CM Estimation and Detection

Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients a1,l,k, a2,l,k, cl,k

for every time instant n ≥ 1 do

for every node k = 1, ...,K do

1. CM estimation recursions:

φ̂k(n) =
∑K

l=1 a1,l,kp̂l(n)).
ψ̂k(n+ 1) = φ̂k(n)

+µk
∑K

l=1 cl,k

[
T−1dR,l(n) − φ̂k(n)

]
p̂k(n+ 1) =

∑K
l=1 a2,l,kψ̂l(n)

2. LE detection decision:

H0 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
< γLE,k or

H1 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
> γLE,k.

(Refer to (5.14) or (4.57) for selecting the γLE,k).

end for

end for

after several iterations, the adaptive estimate R̂k(n) of Ro is available (via the

transformation (4.11) and de-vectorization) for every node in the CR network.

Therefore depending on the cooperation model of the nodes, the node k at time
instant n can perform independently the LE detection based on the available

matrix estimate R̂k(n) = vec−1 [Tp̂k(n)].
Regarding the communication cost of Algorithm 4, then based on Table 1

it is obvious, that when A 6= I, then from the transmission point of view still

every node k ∈ K needs to broadcast itsM2 × 1 estimation vector p̂k(n) at time
instant n to the neighbours of hearing distance of the node k. However from the

receiving point of view the number of estimates p̂k(n) required for the fusion by
every node k is determined by the selection of matrix A. Similarly, every node
k obtains at time instant n a M2 × 1 observation vector d̂k(n) and when C 6= I

broadcasts it at time instant n to the neighbours of hearing distance of the node

k. Thus on the receiving side, the exact selection of C determines the number

d̂k(n) required by every node k at time instant n for observation fusion. In

Section 4.5.1 we comment our selection of A and C for the simulations.

Finally we note that in addition to AS 2, obviously the CR system needs

some control layer protocol to establish a connection between the nodes. The

details of this operation is outside the scope of this chapter. We note, the exact

control layer model and implementation of the CR system is out of scope or the

paper. In general a protocol needs to be implemented to control the (iteration)

time of reliable spectrum sensing and the time of transmission of secondary (CR)

system. Thus based on assumption AS 4, the Algorithm 4 is started and running

on-line, until stopped or , re-initiated by the system.
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4.4. Performance analysis

The performance analysis of the proposed algorithm is divided into three parts.

First we derive a general model for analyzing the mean and (co-)variance of the

adaptive CM estimates of recursions in Algorithm 4 in one framework. Secondly

we study the statistical properties of the adaptive CM estimates. For studying the

LE detection performance of the adaptive CM estimate, the distribution of the

adaptive CM estimate is approximated by a CCCW distribution. We propose the

usage of the Total and General Variance methods for approximation the DoF and

mean matrix parameters for the corresponding CCCW distributions, based on

the moments of adaptive CM estimates. Thirdly we provide theoretical results

for the LE detector. Let us note that for the theoretical performance analysis of

the LE detector, we need to know the values of the channel gains and the noise

power.

4.4.1. Moment analysis of adaptive CM estimates

For the analysis of the moments of the spatio-temporal adaptive CM estimates,

we propose to use a more general vector/matrix recursion model.

We stack first the M2 × 1 estimates and observations from all the nodes

k ∈ K into a KM2 × 1 column vector p̂(n)|Hi = [p̂1(n)|Hi . . . p̂K(n)|Hi]T and

d(n)|Hi = [d1(n)|Hi . . . dK(n)|Hi]T respectively, where i = 1 denotes the case

when the PU signal is present and i = 0 the case when the PU signal is absent.

The initial estimate is noted as p̂(0)|Hi.

Secondly we define an additional K × K matrix M = diag {µ1, . . . , µK},
which contains the positive step size parameters of the algorithms for every

node k ∈ K. The matrix M is then be extended to another KM2 × KM2

matrix as M = M ⊗ IM2 . For the purpose of comparison with the Consensus

algorithm [73], let the K ×K matrix A0 specify the fusion strategy of estimates
of the consensus algorithm.

The K × K network topology matrices A0, A1, A2 and C are extended

to KM2 × KM2 matrices as follows, A0 = AT
0 ⊗ IM2 , A1 = AT

1 ⊗ IM2 ,

A2 = AT
2 ⊗ IM2 and C = CT ⊗ IM2 .

Proposition 1. The distributed LMS algorithms in Table 1 and the consensus

algorithm [73] can be described by the following spatio-temporal recursion

p̂(n+ 1)|Hi = A2
(
A0 − M

)
A1p̂(n)|Hi + A2MCd(n)|Hi. (4.27)

In case of LMS algorithmsA0 = IK and for example we get theATC algorithm

with no measurement exchange, when we take additionally A1 = C = IK and

A2 6= IK , according to the selected network topology. ThusA0 = A1 = IK ⊗IM2 ,

A2 = AT
2 ⊗IM2 andC = IK ⊗IM2 . For CTA algorithmwe takeA1 = AT

diff⊗IM2 ,

A2 = IK ⊗ IM2 , C = IK ⊗ IM2 or C = AT
diff ⊗ IM2 . Note that to keep the

matching notation with Algorithm 1, we use transposed matrices in the general
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spatio-temporal vector recursion. For the Consensus algorithm [73], we take

A1 = A2 = C = IK , A0 6= IK according to the network topology and thus

we have A0 = AT
0 ⊗ IM2 and A1 = A2 = IK ⊗ IM2 . Note, that the proposed

Kronecker extension retains the stochastic property of the extended matrix and

due to the transpose, the matrices A1 and A2 are now right stochastic and C is

left stochastic.

For studying the performance of the LMS algorithms, we first need to

evaluate the moments - mean and covariance of the stacked estimates p̂(n) and
we provide the corresponding recursions for evaluating these moments.

Mean of estimates

Let us denote the conditional expectation of the observation vector asE [d(n)|Hi],
where i = 0, 1. We specify these values in the Section 4.4.2.

Proposition 2. The general recursion (5.11), can be expressed as

E [p̂(n+ 1)|Hi] = A2
(
A0 − M

)
A1 E [p̂(n)|Hi]

+ A2MCE [d(n)|Hi] , (4.28)

for i = 0, 1, where the initial value for the mean vector is given as E [p̂(0)|Hi],
i = 0, 1.

After iterating we see, that the mean recursion can be given in the following

equivalent form

E [p̂(n)|Hi] =
[
A2
(
A0 − M

)
A1
]n
p̂(0)

+
[

n−1∑
i=0

[
A2
(
A0 − M

)
A1
]i
]

× A2MCE [d(n)|Hi] . (4.29)

For the asymptotic analysis of the mean recursion (4.29), we need to analyse

the asymptotic behavior of
[
A2
(
A0 − M

)
A1
]n

and the limit of the geometric

series
∑n−1

i=0

[
A2
(
A0 − M

)
A1
]i
, when n → ∞.

According to [63,Theorem5.6.12], theconvergence limn→∞[A2
(
I − M

)
A1]n

→ 0 happens if and only if the spectral radius of the matrix A2
(
A0 − M

)
A1

satisfies

ρ
(
A2
(
A0 − M

)
A1
)
< 1. (4.30)

As also noted in [73], the stability of the consensus algorithm is dependent not

only on the selection of step sizes but also on the estimation exchange topology

A0. This fact limits the usage of consensus algorithm in practice.
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For the diffusion LMS based algorithms, the choice of step sizes in the M of

the block diagonal matrix
(
I − M

)
should guarantee that the stability condition

(4.30) holds, given the left stochastic matrices A1 and A2 and by considering

the proposed Kronecker extensions. It was shown in [55, Lemma D.6], that by

using the block maximum norm, denoted as ‖.‖b,∞, then for the matrix of type

A2
(
I − M

)
A1, it holds that

ρ
(
A2
(
I − M

)
A1
)

≤ ‖A2
(
I − M

)
A1‖b,∞

≤ ‖A2‖b,∞‖
(
I − M

)
‖b,∞‖A1‖b,∞

= ‖
(
I − M

)
‖b,∞

= ρ
(
I − M

)
. (4.31)

Since the matrix
(
I − M

)
is diagonal we impose to have that

ρ
(
I − M

)
= max

k
|1 − µ̄k| < 1, (4.32)

where the µ̄k, k = 1, . . . , KM2 are the diagonal elements of M. Thus based

on (4.32), the sufficient condition for the (4.30) to hold (i.e to make the power

component in the (4.29) to zero) is to select every µ̄k in M so that the diagonal

matrix
(
I − M

)
is stable - i.e all the eigenvalues of

(
I − M

)
are inside the

unit circle. Since M = M ⊗ IM2 , the step size condition (4.32) applies for the

diagonal elements µk of the K ×K diagonal matrix M directly. Thus for every

k = 1 . . . K we should have

0 < µk < 2. (4.33)

The CR system designer can choose the step size(s) of the nodes (freely) in the

range (4.33), by taking into account the CR system design considerations (which

are however out of the scope of this work). Usually the step sizes are taken quite

small to get more precise estimates (and thus better detection performance) i.e

µk � 2, but with the cost of longer convergence time of the adaptive estimations.
We illustrate the effect of convergence in Section 4.5.

Next we analyse the convergence condition of the second component on the

RHS of (4.29). Based on the result of [63, Corollary 5.6.16] the geometric series

Sn =
∑n−1

i=0

[
A2
(
I − M

)
A1
]i

is generated by the matrix
[
A2
(
I − M

)
A1
]

and converges if for a matrix norm it holds that ‖A2
(
I − M

)
A1‖ < 1. This

condition guarantees that
[
I −

[
A2
(
I − M

)
A1
]]

is invertible. Since from

(4.31) we have ρ
(
A2
(
I − M

)
A1
)

≤ ‖
(
I − M

)
‖b,∞ = ρ

(
I − M

)
, then

the sufficient condition for the convergence of the series is given by (4.32).
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Hence when the condition (4.32) is satisfied, then as n → ∞ the geometric series

converges to

Sn =
[
I −

[
A2
(
I − M

)
A1
]]−1

. (4.34)

Thus by noting the mean of p̂(n) in steady state and under both hypothesis Hi,

i = 0, 1 as E [p̂(∞)|Hi], we have that

E [p̂(∞)|Hi] =
[
I −

[
A2
(
I − M

)
A1
]]−1

× A2MCE [d(n)|Hi] , (4.35)

where the conditional expectations of observations E [d(n)|Hi] are given in the
Section 4.4.2.

The steady state result (4.35) is asymptotically biased. Let us note, that the

mean error (or bias) in steady state is given as

E [p̂(∞)|Hi] = ‖(1K ⊗ po|Hi) − E [p̂(∞)|Hi] ‖2, (4.36)

for, i = 0, 1, where po|Hi denotes the optimal solution (4.15) and E [p̂(∞)|H1]
follows from (4.35). Since the global solution (4.15) follows the Pareto model,

we refer in this chapter to the generic result [33, Th. 3] for characterizing

the bias term, such as (4.36). The referred theorem determines that under

certain conditions (for example when we have the same step-sizes and a

doubly-stochastic matrix A), a lower step-size makes the bias term also lower -

i.e the estimates are closer to the optimal solution. Thus in practice, when very

low step-size values are used, the bias term can be ignored.

Covariance of estimates

Let us denote the conditional covariance of the estimates under the hypothesisHi,

i = 0, 1 as Cov [p̂(n+ 1)|Hi]. Similarly let Cov [d(n)|Hi] denote the conditional
covariance of the observations.

Proposition 3. By using recursions (5.11), (4.28), the definition of covariance

and by considering the fact that p̂(n)|Hi is independent of the stacked observation

vector d(n)|Hi, it can be shown that the covariance recursion is

Cov [p̂(n+ 1)|Hi] = A2
(
A0 − M

)
A1 Cov [p̂(n)|Hi]

× A
T
1

(
A

T
0 − M

)
A

T
2

+ A2MCCov [d(n)|Hi]C
T MA

T
2 . (4.37)

where initial estimate of covariance matrix is noted by Cov [p̂(0)|Hi], i = 0, 1.

The covariance matrix of the observations, Cov [d(n)|Hi], is constant over
time n and we provide the values in the Section 4.4.2. Note that (4.37) is in
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the form of a discrete time algebraic Lyapunov’s equation. Thus the covariance

results in steady state (i.e the solution to Lyapunov’s equation), can be found by

using standard procedures, such as [64, App. E].

Finally we note, that according to the theory of adaptive filtering it is

generically known that a smaller step size causes lower co-variance of an

adaptive estimate in steady state [25] and this leads to better detection result.

4.4.2. Statistical modeling of adaptive CM estimates

In this section we first find the theoretical moments for the rank one (Hermitian)

observations dR,k(n), which are then transformed to real domain for the

spatio-temporal moment recursions of CM estimate p̂k(n), described in the

previous subsection. Then we describe the statistical modelling of adaptive CM

estimates. Thirdly we propose two methods for approximating the adaptive CM

estimates by a Wishart distribution.

Moments of rank one observations

First we summarize the generic and known results about the moments ofM ×M
NCW and CCCW matrices R̂k, based on [84].

When aM ×M matrix R̂k follows a NCW distribution with a DoF parameter

N̄ , a noise population covariance matrix Σ̄v,k and a non-centrality matrix

Ω̄k =
[
Σ̄v,k

]−1
T̄ k, where T̄ k = ĒkĒ

H
k and where the non-zero column k of

M ×N mean matrix Ēk is E [yk(n)], i.e R̂k ∼ CWM (N̄ , Σ̄v,k, Ω̄), then the first
and vectorized second moments are given as

E
[
R̂k

]
= N̄Σ̄v,k + T̄ k,

Cov
[
vec(R̂k)

]
= (Σ̄T

v,k ⊗ T̄ k) + (T̄ T
k ⊗ Σ̄v,k)

+ N̄(Σ̄T
v,k ⊗ Σ̄v,k). (4.38)

As a special case, when the matrix R̂k follows a CCCW distribution with a

population covariance matrix Σ̄k, i.e R̂k ∼ CWM

(
N̄ , Σ̄k

)
, then the matrix T̄ k

equals zero and we get

E
[
R̂k

]
= N̄Σ̄k,

Cov
[
vec(R̂k)

]
= N̄(Σ̄T

k ⊗ Σ̄k). (4.39)

These results in [84] are based on the characteristic functions of the corresponding

Wishart distributions and apply for N̄ ≥ 1. We note that Σ̄T
k = Σ̄c

k for a

Hermitian matrix and then (4.39) also follows from [85] and [86]. Thus the

moments of dR,k(n) can be found by using the results (4.38) and (4.39) with
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N̄ = 1, R̂k = yk(n)yk(n)H = DR,k(n), Σ̄v,k = σ2
vIM , Σ̄k = Rs,k + σ2

vIM2 ,

Rs,k = E
[
|αk|2

]
Σs and where in NCW case T̄ k = E

[
|αk|2

]
msm

H
s .

Based on the signal model (5.1) and on the AS 1, obviously under H0 we

have that

E [dR,k(n)|H0] = vec
[
σ2

vIM

]
. (4.40)

Under H1 the mean at node k is given as

E [dR,k(n)|H1] = vec
[
Rs,k + σ2

vIM

]
. (4.41)

Given the network size K, the stacked KM2 × 1 vector E [dR(n)|Hi] over
k = 1 . . . K and for i = 0, 1 can be formed based on the results (4.40) and (4.41)
respectively.

Due to the AS 1, the k, k (k ∈ K) diagonal block of the KM2 × KM2

network-wise covariance matrix Cov [dR(n)|H0] is given as

Cov [dR,k(n)|H0] = σ4
vIM2 , (4.42)

while the off-diagonal blocks are zeros, since the observation noise is not

correlated over the CR nodes.

The KM2 × KM2 network-wise Cov [dR(n)|H1] is constructed as follows.
Firstly, when ms = 0 and Σs 6= 0 (i.e Case 2 type) it can be verified, that the

k, j ∈ K blocks of the Cov [dR(n)|H1] are given as

Cov
[
dR(k,j)(n)|H1

]
=


[(

Σ̄k

)c
⊗ Σ̄k

]
, k = j

[(Rs,k,j)c ⊗ Rs,k,j ] , k 6= j
(4.43)

where Σ̄k = E
[
|αk|2

]
Σs+σ2

vIM2 andwhere fork 6= jRs,k,j = E
[
yk(n)yj(n)H

]
=

E
[
αkα

c
j

]
Σs, since due to (AS 1) in this case the observations yk(n), yj(n) are

zero mean Gaussian vectors with independent noise processes. Secondly, when

ms 6= 0 and Σs = 0 (i.e Case 1 type) and k = j, then the k, k on-diagonal block
of Cov [dR(n)|H1] is given as

Cov
[
dR(k,k)(n)|H1

]
=
[(
σ2

vIM2

)T
⊗ σ2

vIM2

]
+
[(

E
[
|αk|2

]
msm

H
s

)T
⊗ σ2

vIM2

]
+
[(
σ2

vI
2
M

)T
⊗
(
E
[
|αk|2

]
msm

H
s

)]
. (4.44)

When k 6= j, then due to (AS 1) the observation noise is not correlated

over the CR nodes and it can be verified, that for the k, j off-diagonal

blocks, Cov
[
dR(k,j)(n)|H1

]
= 0. Given the network size K, the network-wise

covariance matrix Cov [dR(n)|H1] can be composed by using (4.43) and (4.44)
respectively.

95



Finally the moments of the real observations (as the inputs for the moment

recursions of the estimates p̂k(n), provided in the previous subsection) can be

given for i = 0, 1 as

E [d(n)|Hi] =
[
T−1 ⊗ IM2

]
E [dR(n)|Hi] , (4.45)

and

Cov [d(n)|Hi] =
[
T−1 ⊗ IM2

]
× Cov [dR(n)|Hi]

[
(TH)−1 ⊗ IM2

]
. (4.46)

Distributions of the adaptive estimates

To study the detection performance of the proposed distributed, adaptive LE

detector, we need to specify the conditional distributions for the detection test

statistics - the LE of

R̂k(n) = vec−1 [Tp̂k(n)] (4.47)

under both detection hypothesis. As summarized in (4.7), when the estimate

R̂k(n) is obtained by using the linear, equal weighting based method (4.6) in a
non-distributed and non-cooperative manner, then according to the definition of

Wishart matrices [69, Chapter 2], Rk(n) follows a Wishart distribution. Based

on the literature, several results exist for the distributions of the LE of Wishart

distributed matrices under both detection hypotheses.

The non-asymptotic cumulative distribution function (CDF) model of the LE

of a NCW distributed CMmatrix is more complicated for practical and numerical

evaluation, compared to the corresponding model of a CCCW distribution. Thus

often a NCW distribution is approximated by a CCCW distribution, where the

non-centrality part of the NCW distribution is incorporated into the population

covariance matrix parameter of the CCCW distribution [43, 79, 87].

When the estimate R̂k(n) is obtained by using the exponential type of

averaging (as used in LMS type of algorithms), then due to different weights

at every n ∈ N , it can be seen, that a sum of non-equally weighted Wishart

matrices over N is not Wishart distributed [79, Theorem 3.3.1, 3.5.2]. Based on

(5.11) it is easy to verify, that the adaptive CM estimate R̂k(n) is an average over
non-equally weighted vectorized observation matrices. At iteration step n, at
node k the elements of the vectors p̂k(n) are weighted equally and fused without
changing or mixing the order of the elements of p̂k(n). The Hermitian property
of the estimated CMs is not affected. Thus we need to seek generic CC(C)W

approximations for studying the conditional CDFs of LE of adaptively estimated

CMs.

Total and General variance approximations

We propose the usage of two methods for approximating the adaptive CM

estimates R̂k(n) (4.47) by conditional approximate CC(C)W distributions. Thus
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based on (4.39) and we assume that

R̂k(n)|Hi ∼ CWM

(
N̄i, Σ̄k,i

)
, (4.48)

for i = 0, 1, and where ∼ denotes an approximate distribution, N̄i is the

approximating DoF and Σ̄k,i is the approximating population covariance matrix

parameter of the corresponding CC(C)W distribution. As shown at next, the

values for N̄i and Σ̄k,i are found by matching the mean and trace or determinant

of moments of R̂k(n)|Hi with the corresponding moments of the devectorized

adaptive estimate vec−1 [Tp̂k(n)] under both detection hypothesis.

Proposition 4. For the approximation (4.48), Σ̄k,i is found as

Σ̄k,i = 1
N̄i

E
[
R̂k(n)|Hi

]
(4.49)

and N̄i can be found using the Total Variance (TV) or General Variance (GV)

method, respectively, as

N̄T V,i =


Tr
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
Tr
[
TCov [pk(n)|Hi]TH

]
 (4.50)

or

N̄GV,i =

 M2

√√√√√det
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
det

[
TCov [pk(n)|Hi]TH

]
, (4.51)

where E
[
R̂k(n)|Hi

]
= vec−1 [TE [pk(n)|Hi]] for i = 0, 1.

These results are found as follows. Firstly we insert the Σ̄k,i =
E
[
R̂k(n)|Hi

]
/N̄i from the first equation of (4.39) into the RHS of the second

equation of (4.39) and we have that

Cov
[
vec(R̂k(n)|Hi)

]
= 1
N̄i

[
E
[
R̂k(n)|Hi

]c

⊗ E
[
R̂k(n)|Hi

] ]
. (4.52)

Based on (4.28) or (4.35) and the first equation of (4.39), we equalize the means

of matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi] and get (4.49). For the DoF, N̄i,

to use in the approximation, we adapt the idea proposed in [77, 78] and equalize

the total variances (i.e the traces of corresponding covariance matrices) of the

matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi]. Thus based on (4.52) we require that
Tr
[
Cov

[
vec(R̂k(n)|Hi)

]]
= Tr

[
TCov [pk(n)|Hi]TH

]
for i = 0, 1. By solving
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for N̄i we have the total variance (TV) type of DoF approximation as given

by (4.50). An alternative for finding the approximation for N̄i is to equalize

the determinants of both matrices [79]. Thus based on (4.52), we require that

det
[
Cov

[
vec(R̂k(n)|Hi)

]]
= det

[
TCov [pk(n)|Hi]TH

]
. Similarly, by solving

for N̄i the general variance (GV) type of DoF approximation is given by (4.51).

Obviously the total variance method takes into account only the variances of

the elements of the corresponding matrices, while the general variance method

includes also the covariances of the elements of the corresponding matrices into

the approximation of parameter N̄i. AS observed, by using the proposed TV

or GV procedures under hypothesis H1, a NCW matrix is approximated by the

CCCW distribution, by matching the moments of NCW matrix into the CCCW

model. This is a desired effect, as we explain in the next section. Based on these

results we can proceed with the detection performance analysis.

It can be verified, that under H0 the DoF value approximations (4.50) and

(4.51) are, via the moment analysis of the adaptive estimate pk(n), dependant
on the step size parameter µk and on the full network topology. Since the same

noise power value σ2
v is present both in the mean and covariance formulas of

the adaptive estimate pk(n), then a change in the σ2
v,k value does not affect the

DoF value under H0. However under H1 both the DoF approximations are

additionally dependant on the noise power value σ2
v,k. This effect is illustrated in

Section 4.5.

Since under H0, the DoF parameter does not affect the threshold calculation,
then a robust detector can also be applied in Algorithm 4, by changing the

detection module accordingly. We give an example with the MME detector in

Section 4.5. On the other hand, since under H1 the DoF parameter is affected

by the uncertainty in the noise power value, then this effect possibly makes the

formula of the theoretical detection performance of a robust detector inaccurate

as well, but that robust detector can still be used.

4.4.3. Detection Performance Analysis

In this section we provide formulas for studying the probability of false alarm

(PF A) and probability of detection (PD) of the proposed, adaptive LE detector.

For this, we need to evaluate the conditional CDFs of the LE of adaptive

CM estimate R̂k(n) (4.48) under both detection hypotheses and under the

assumption that R̂k(n) is approximated by a CC(C)W distribution as proposed in

Section 4.4.2. The resulting detection performance of LE detector is dependent

on the performance of the underlying adaptive, distributed CM estimation.

Let the eigenvalues of Σ̄k,i in (4.48) be denoted in non-increasing order as

ν1,i ≥ ν2,i ≥ · · · ≥ νM,i.
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LE under H0 Hypothesis

Based on [43,88], the R̂k(n)|H0 (4.48) is assumed to follow the CCW distribution

and the eigenvalues of Σ̄k,0 are ν1,0 = · · · = νM,0 = σ2
v/N̄0. The PF A,e, based

on the non-asymptotic CDF model of the R̂k(n)|H0, is given by

FH0,e(x) = | det(Â)|
PF A,e(γLE,k,e) = 1 − FH0,e(γLE,k,e) (4.53)

where theM×M matrix Âi,j =
(N̄0−j−i−1

i−1
)
γR(N̄0+i−j, x

ν1,0
), for i, j = 1, . . . ,M

and where γR(k, u) = 1
Γ(k)

∫ u
0 x

k−1e−xdx is the regularized incomplete Gamma

function. The (ideal) detection threshold γLE,k,e, based on the non-asymptotic

model is expressed as

γLE,k,e = F−1
H0,e(1 − PF A,e) (4.54)

and can be evaluated in terms of a numerical inversion of the exact CDF

formula at a desired PF A,e value. An asymptotic CDF based on the Gaussian

approximation of Tracy-Widom distribution is proposed in [43]. When N̄0 → ∞,

M → ∞ andM/N̄0 ∈ (0, 1), the approximate CDF under H0 can be given as

FH0,g(x) = Φ
(
x− E[λ1]|H0√

Var[λ1]|H0

)
,

E[λ1]|H0 = ν1 (aLE + (bLE(−1.7711))) ,
Var[λ1]|H0 = (ν1bLE)2(0.8132),

aLE = (
√
M +

√
N̄0)2,

bLE = (
√
M +

√
N̄0)( 1

M
+ 1
N̄0

)1/3. (4.55)

This leads to the PF A,g formula

PF A,g(γLE,k,e) = Q

(
γLE,k,g − E[λ1]|H0√

V ar[λ1]|H0

)
, (4.56)

where Q is the complementary distribution function of the standard Gaussian

and to the threshold formula is

γLE,k,g = E[λ1]|H0 +
√

Var[λ1]|H0Q
−1(PF A,g). (4.57)

As seen in Section 4.4, the calculation of the threshold of the LE detector at

node k and time index n requires knowledge of the moments of adaptive CM

estimates (present at the reference node k) under hypothesis H0 i.e R̂k(n)|H0.
Thus based on the values of step sizes, the noise power, the desired PF A,

the provided moment recursions and the distribution parameter approximations
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models for the R̂k(n)|H0 in Section 4.4 can be applied, to evaluate the detection
threshold at node k and at time instant n. As seen, CR nodes need to know the

noise power value(s) to evaluate the moments of R̂k(n)|H0. In practice every

node k needs to calculate its own threshold by using the provided procedure.

While the threshold at node k can be updated iteratively based on the exact

moments of R̂k(n)|H0, the steady state moments are preferred in practice.

LE under H1 Hypothesis

Next we obtain a common model for the non-asymptotic CDF|H1 of the LE of

adaptively estimated CM matrix. As explained in Section 4.4.2, we approximate

the NCW matrix by a CCCW matrix by matching the moments of the matrices.

In Section 4.5 we show this approximation works quite well.

Thus we assume the R̂k(n)|H1 is distributed by a CCCW distribution. The

CDF of the LE of a CCCW matrix R̂k(n)|H1 is given by [89] as follows

FH1,e(x) = KCC

∣∣∣∣∣
{
νN̄1−M+j

i Γ̄
(
N̄1 −M + j,

x

νi,1

)}
i,j

∣∣∣∣∣,
KCC =

M∏
i=1

(N̄1 − i)!
M∏

j=1
(M − i)!

−1
M∏

k=1
(k − 1)! (4.58)

for i, j = 1, . . . ,M and where Γ̄(k, u) =
∫ u

0 x
k−1e−xdx is the lower incomplete

gamma function [90, 8.350].

This result follows from [91, Eq. 1] by integrating the joint PDF of

ordered eigenvalues of a CCCW matrix, by using [91, Corollary 2]. It should

be emphasized, that as explained in [91, Chapter II. B], when some of the

eigenvalues of Σ̄k,1 are coincident, then [92, Lemma. 2] needs to be used to

study the limit [91, Eq. 3].

However we note, that the direct numerical evaluation of (4.58) is complicated

and (4.58) needs to be simplified due to the possibly large N̄ values and large

arguments of Γ̄(k, u). In case of the matrix dimension isM = 2, the eigenvalues
of the population covariance matrix are naturally not coincident under H1 (i.e

ν1,1 > ν2,1). It can be shown, that whenM = 2, the following simplified version
of (4.58) can be used to evaluate the CDF numerically
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FH1,e(x) = D̄(
1
ā − 1

b̄

)
āb̄
,

ā = ν1,1N̄1,

b̄ = ν2,1N̄1,

D̄ = b̄γR(N̄1 − 1, x

ν1,1
)γR(N̄1,

x

ν2,1
)

− āγR(N̄1 − 1, x

ν2,1
)γR(N̄1,

x

ν1,1
), (4.59)

where γR(k, u) is the regularized incomplete gamma function.
Finally the probability of detection of the LE of a CCW matrix under H1

using the exact CDF model is

PD,e(γLE,k,e) = 1 − FH1,e(γLE,k,e). (4.60)

As earlier, we observe that the channel gain values and the noise power value

are required to complete the chain of approximations for the theoretical detection

performance analysis.

4.5. Simulation results

In this numerical simulation Section we investigate the detection performance of

the ATC type of distributed, adaptive LE detection algorithm. We describe the

exact signal model, used in the simulations and then investigate the probability of

false alarm (PF A) and the probability of detection PD of the proposed algorithms.

4.5.1. Simulation model

The channel gains in the following simulations are assumed to be constant overN
andM dimension and are sampled for the CR node k ∈ K as αk ∼ CN(0, 1). We

assume there is only one PU signal present in the CR network i.e s(n) = s(n)1,
where s(n) ∼ CN(0, Ps) and Ps = 1. Using the same examples as in [82],

we use for Case 1: ms = s1, Σs = 0, where s is a complex signal realization,
and for Case 2: ms = 0 and Σs = Ps11H . Obviously rank(11H)=1. Also

in (4.43) and (4.44) we have Rs,k = |αk|2Ps11H , Rs,k,j = αkα
c
jPs11H and

T̄ k = |αk|2Ps11H .

When the CR nodes do not cooperate, the local correlation matrix Rk (5.2) is

given as follows

Rk =
[
|αk|2 E

[
‖s‖2]
N

]
11H + σ2

v,kIM . (4.61)
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For Case 1 we assume |s|2 = Ps, where s is a complex signal realization. Then
we get E

[
‖s‖2] = NPs for both Case 1 and Case 2. The first moment of the

rank one input for these two cases is given as

E [dR,k(n)|H1] = vec
[
|αk|2Ps11H + σ2

vIM

]
. (4.62)

Network topology selection

To improve the communication link failure resistance in the CR network, but

to keep the need for processing the data from neighbor nodes minimal, we

propose to select the diffusion topology of the estimates in the CR network,

i.e the A matrix, as a combination of the local (A,C = I) and ring-around

(A = AT
ring,C = I) topologies [3, Eq. 11]. Thus at time instant n, at every node k

two M2 × 1 estimates: the local estimate p̂k(n) and the estimate p̂(k−1)modK(n)
from node (k − 1)modK are fused together using equal, constant weight 0.5.
Therefore, in the subsequent sections we assume, that C = I, the matrix A is

in such case doubly stochastic (i.e we have additionally A1 = 1) and all the

conditions for selecting elements al,k and cl,k, as listed in the Section 5.2.2, are

satisfied.

For example when K = 3 and by keeping the same notation and conditions

for the elements of matrix A, the ring around and diffusion topologies are given

as follows

AT
ring =

0 0 1
1 0 0
0 1 0

 , AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 . (4.63)

A schematic view of the proposed diffusion and incremental steps for the ATC

type of algorithm with K = 2 is illustrated in Fig. 4.1.
In the next sections we select the dimension of the estimated matrix as

M = 2 and use (4.11) and (4.59). The step size of the algorithms in all

the simulations is selected to be µ = 0.001 for all the nodes, unless stated

otherwise. Given the step-size value, all the nodes in the network receive

N = 7000 [2 × 1] vector-samples to get converged adaptive CM estimates at the

last iteration/sample. These CM estimates are used in the simulations to obtain

the LE observations. A system designer can choose other values for µ and N
(depending on the system requirements).

In Fig. 4.2 we illustrate the change of the LE of adaptively estimated CM

with respect to the threshold (5.14). We set the noise power to one. After the

initialization, the algorithm first tracks and then converges to the steady state

level of LE under theH1 hypothesis. At time instant 7001 the PU signal switches

off, the algorithm adapts and convergences to the H0 level of the LE value.
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Figure 4.1 Proposed diffusion method

DoF values under noise uncertainty

In Fig. 4.3 we illustrate of the effect of the noise power uncertainty to the

TV based DoF approximation under Case 2 and H1. The network sizes are

K = 1, 3, 10, 30 and the results are taken from the last node in the network. The

horizontal axis represents the (network averaged) SNR, which is changed by

scaling the noise power value σ2
v . We use the noise perturbation model [45, Eq.

8] and denote the ᾱ as the noise uncertainty factor. Two noise value perturbations
are added to the non-perturbed case 0 dB (ᾱ = 1): -1 dB (ᾱ = 0.796) and 2 dB
(ᾱ = 1.585). As we see, in case of σ2

v is inaccurate, then the TV approximated

DoF|H1 values are shifted in accordance to the value of ᾱ. For GV based

DoF|H1 values, the results are very similar. Also as we already mentioned in

Section 4.4.2 that changes, and thus also the pertubations, in σ2
v,k do not affect

the TV and GV based DoF|H0 approximations. Thus we skip these to latter

simulations here.

Next we investigate the performance of the proposed LE algorithms by

studying the PF A in case of PU signal is missing and the PD, when the PU signal

is present. Both the PF A and PD based on adaptive CM estimates are estimated

using the Monte Carlo (MC) method [40]. To have an equal comparison between

the node sets in one plot, we take all the reference results from the last node in

the network. Obviously, based on the global estimation model (4.9), when we
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have more nodes in the network, then the CM estimates at every node have been

better averaged over the channel gain values of the nodes in the CR network.

4.5.2. Probability of false alarm

We start the investigation of the proposed algorithms by studying the PF A. Under

the detection hypothesis H0 we assume σ2
v = 1. We select 21 threshold points

in the range of σ2
v and determine the LE realizations of adaptive CMs estimates.

Then we estimate the PF A over 1000 experiments at every threshold point. The

estimated PF A is denoted as Experiments in the Fig. 4.4. We compare the

estimated PF A with the theoretical PF A models when the Total variance (TV)

or the General variance (GV) method are used for determining an approximately

equivalent CCW matrix. The results using (4.55) are denoted as Th. TV and Th.

GV respectively. Similarly the results using (5.13) are denoted as Th. Exact TV

and Th. Exact GV respectively. Finally, based on the moments of the adaptive

CM estimates, we generate the approximate CCW matrices (by using Cholesky

decomposition method), and study the PF A performance based on those matrices

in addition (denoted as Wishart TV and Wishart GV respectively). The PF A

versus threshold results are given in Fig. 4.4 for the ATC algorithm. We note that

the performance of the TV and GV methods are almost equal and the TV/GV

106



approximations are sufficient for studying the PF A of the adaptive CM estimates.

We see a good match between the estimated PF A and the theoretical PF A models

are achieved. The Gaussian approximate PF A model (which is easier to use

in numerical analyses compared to non-asymptotic PF A model), follows the

estimated PF A results quite well and can therefore be used to characterize the

PF A of the adaptive estimates. Therefore by knowing the noise power value, the

theoretical Gaussian approximate PF A model can be also used for deriving the

detection threshold, when we fix a desired PF A value.

4.5.3. Probability of detection

Next we investigate the probability of detection under different noise power

conditions using the proposed distributed and adaptive LE detection algorithms

with signal models Case 1 or 2. In Case 1 we select one complex PU signal

realization, while in Case 2 we set Ps = 1 for all the simulations. We note, that

the performance of the moment estimation framework of adaptively estimated

CMs is well illustrated by the PD versus SNR analysis. In the PD/SNR

simulations, the change in the (network averaged) SNR is achieved by changing

the noise power value σ2
v . In the comparison of algorithms we use the same

individual channel gains of the nodes in all the simulations performed under

hypothesis H1. We set the desired PF A = 10−2 for all the nodes. The thresholds
of the LE detectors at nodes k ∈ K are calculated using (5.14) with both the TV

and GV approximation. Simulations studies showed, that the performance of the

Gaussian CDF|H1 based threshold (4.57) is almost equal to the performance of
the non-asymptotic threshold (5.14) and thus not shown in this work.

In the following simulations we compare the performance of 4 different

network sizes: K = 1, 3, 10, 30 nodes, while the comparable results are taken

from the last node in the set. The PD is estimated over 1000 experiments on a

given noise power value. We compare the MC estimated PD results (based on

the adaptively estimated CMs and denoted as Ad. Exp. in the figures) with the

non-asymptotic theoretical model (4.60) (denoted as Theory) and with the PD

results based on approximately equivalent CCW matrices (denoted asW. Exp.).

These latter matrices are generated based on the respective moments under H1.
For the signal model Case 1, the PD/SNR results are given in Fig. 4.5 and Fig. 4.6

when the TV approximation is used and in Fig. 4.7 and Fig. 4.8 when the GV

approximation is used, respectively for the CTA and ATC algorithm. Similarly

for the signal model Case 2, the PD versus SNR results are given in Fig. 4.9 and

Fig. 4.10 when TV approximation is used and in Fig. 4.11 and Fig. 4.12 when

GV approximation is used, respectively for the CTA and ATC algorithm.

For comparison, the MC estimated PD/SNR performance of the MME

detector [45] under Case 2 is shown additionally in Fig. 4.10 and Fig. 4.12 (where

denoted as MME. Exp.). The threshold of the MME detector is calculated by

using [45, Eq. 29], where in our case L = 1 and Ns = N̄T V,0 or Ns = N̄GV,0.
Based on the discussion in Section 4.4.2, it is obvious, that since the noise
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value perturbations are not affecting the threshold of the MME detector, then

the corresponding MC based PD/SNR performance is not affected as well. In

Fig. 4.13 we show a comparison of PD/SNR performance of the LE detector

by using the FC based algorithm in Table 1, TV approximation based exact

threshold, and Case 2 model only. In such case the observations of every CR

nodes are available for all the CR nodes in the CR network and the CR networks

can (independently and adaptively) estimate the CM. In Fig. 4.14 we provide

similar comparison of the PD/SNR performance of the LE detection scheme in

Fig. 4.14, by using the consensus algorithm ( [73]), TV approximation based

exact threshold and Case 2 model only and we select A0 = AT
diff.

We note that the non-asymptotic theoretical PD model describes the detection

performance of adaptively estimated CMs well, also in the low SNR regime.

The performance of TV and GV methods is almost equal and thus the TV

approximation is computationally less demanding method for the numerical

performance analysis of the LE detector. In terms of the PD versus SNR values,

the Case 1 signal model is well approximated by the signal model of Case 2

(CCCW), via the TV and GV based mean and DoF parameter matching.

We observe that as the number of nodes in the network increases, the point

where the PD starts to decrease from one and moves to the left. In case of one

node in the CR network (or in case of the non-cooperating nodes) the PD is
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highly dependent on the channel constant of that node. As the number of nodes

increases, more channel gain realizations are involved in the network-averaged

CM estimation process and thus the PD results are more equalized over the

nodes.

It can be seen, that the LE detector performs better than the MME in terms of

perfect detection (PD = 1) in the low SNR region and in case of non-perturbed

noise power values.

The detection performance of LE detector, when the FC based diffusion LMS

algorithm is used, is slightly better, compared with the case of ATC type of LMS.

The difference is however not significant. So in the ATC case, where only two

exchanges of estimates are allowed for a CR node at time instant n, we can save
energy in terms of processing less data at a node k. Also in case of ATC we are

not limited to the specific network topology. The detection performance of LE

detector, when the consensus algorithm is used, is very similar to the case of the

ATC algorithm. As argued in Section 4.4, the usage of ATC type algorithm is

less limited by the estimate exchange topology, while this is not the case with

the consensus algorithm.

It is clear that the detection performance of the MME detector is not affected

by noise power uncertainty also when we use the Diffusion LMS based CM

estimation scheme.

Additionally we note that in [3] we showed with scalar estimates (M = 1) in
Case 2, that when there are more nodes in the network, then the ATC performs

better, compared to the CTA type of algorithm. While ATC fuses more data than

CTA [27], the difference of detection performance with CTA is rather small and

thus we also skip these comparisons in this work. We also observed in [1–3] that

for K > 30, PD does not improve significantly any more.

For illustrating the closeness of the detection results of different CR nodes, we

use the theoretical results and plot the PD/SNR performances of all the CR nodes

in the network of sizeK, in Fig. 4.15, by using the ATC algorithm, the TV based

exact threshold and the Case 2 model. The four groups of PD/SNR results from

right to the left in Fig. 4.15 correspond to the network of sizes K = 1, 3, 10, 30
accordingly, i.e. the leftmost group shows the PD/SNR results of all the 30 nodes

in the CR network. It can be seen that the detection performances of the CR

nodes in the CR network are quite close to each other. In practice we are more

concerned about the point where the PD starts to decrease from 1. In case of

30 nodes in the network, the deviation slightly increases, but is still sufficiently

close.

We observe that the non-asymptotic CDFmodels, the TV/GV approximations,

and the CCCW based approximation of NCW type of CMs are usable for

studying the performance of the LE detection of adaptively estimated CMs -

for determining the threshold and for evaluating the theoretical PD of the LE

detector. When the nodes cooperate in estimating the network-wise CM (while

nodes are able to communicate directly only with limited subset of neighbor

nodes) then the resulting LE detection performance is equalized and stabilized
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over the individual CR nodes. We note that other distributed eigenvalue based

detection schemes can be studied in similar manner by using the proposed

framework in this chapter.

4.6. Conclusion

In this chapter we studied distributed and adaptive diffusion LMS based LE

detection algorithms, which are applicable in CR networks for detecting the

presence of a PU signal. We proposed a network-wise CM estimation model

and derived ATC and CTA type of diffusion based LE detection algorithms. We

proposed a general framework for analyzing the performance of the diffusion

LMS based LE detection schemes. In our simulation study we demonstrated that

the proposed framework and the approximations used for studying the detection

performance of the proposed distributed and adaptive LE detection schemes

provided matching results between the theory and simulations. The proposed

algorithms are able to learn the statistical changes in the LE in real-time.
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5. DISTRIBUTEDADAPTIVELARGESTEIGENVALUE

DETECTION WITH SNR WEIGHTED OBSERVA-

TIONS

In this chapter we explore a distributed spectrum sensing approach that exploits

the largest eigenvalue of CMs that are adaptively estimated; local SNR values

are used to assign weights to the input observations. More specifically, CR nodes

exchange also observations with a subset of neighbouring nodes and combine

the neighbouring observations based on the locally estimated SNR values. We

propose a mean vector estimation mechanism that is based on combine and

adapt least mean square diffusion and that does not require a FC. We analyse

the resulting detection performance and verify the theoretical findings through

simulations.

5.1. Background

Radio spectrum is a scare resource. It has been found that even if the

licensed radio spectrum becomes nominally more crowded, there is significant

underutilization of the resource [10]. Cognitive radio (CR) technology has been

proposed to provide an opportunistic access for cognitive radio systems to the

licensed spectrum areas [13, 14]. In CR context, it is highly desirable to detect

the PU and identify free spectrum opportunities as rapidly as possible and create

no disturbances for the (licenced) PU communication. Distributed, adaptive

network learning methods can be used to track the changes in the statistical

information of the observations received by the CR nodes in real time to enhance

the detection of PU signals.

Three main types of classic detection schemes for spectrum sensing in CR

networks have been considered in the literature: the matched filter detector

(MFD) [40], the energy detector (ED) [40], [93], and the cyclostationary

detector [66]. A second large group of detectors for CR networks are based on

the properties of an estimated signal correlation matrix [43], [44], [45]. The

largest eigenvalue (LE) method [43] uses a priori knowledge about the additive

noise power to determine the detection threshold.

Distributed, adaptive estimation and detection research area has gained an

increasing interest over the last decade and many algorithms have been proposed

in the literature. For example, least mean square (LMS) based estimation schemes
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were studied in [26], [27], [56], where good properties of these algorithms were

shown. On the other hand optimal, distributed MFD, based on diffusion type

LMS estimation schemes were studied in [28]. In [1], [2] and [3] we proposed

and analysed diffusion LMS based energy detectors in a CR network and in [4]

and [38] we studied diffusion LMS based Largest Eigenvalue (LE) detectors.

Various SNR estimation methods have been proposed and studied in the

literature, for example [94–96]. In the PU signal detection context, SNR

estimation methods can provide additional information about the quality of the

input observations and that knowledge can be used for enhancing the distributed

estimation process and thus the overall detection results of the main spectrum

sensing method.

In the above-mentioned papers, a constant and equal weighting method for

the data fusion between the nodes has been used. Specifically, the matrix

A and C are taken to be constant and with equal weights over the time

instance. In the literature several methods have been proposed for weighting

the communication between the nodes in an adaptive manner or for optimizing

the combination weights in accordance to a selected optimization criteria. A

list of such methods has been given for example in [30, Chapter 14]. It has

been shown in the literature that properly optimized weights can improve the

properties of the underlying estimation process − for instance providing better

error measures of the estimates. However, for approaches such as for instance

non−adaptive relative variance rule as seen in [73], would (in detection context)

require knowledge of the channel gains under detection hypothesis H1 and thus
cannot be directly adopted to the detection context. Estimation of these gains

would at least require that we know H1 to be true for a given period of time.

The possible implementation of the adaptive combination rule [73] in detection

context requires an analysis of several additional aspects, which can potentially

affect the total detection performance of the main estimation algorithm.

In this chapter we explore a distributed spectrum sensing approach that

exploits the largest eigenvalue of CMs that are adaptively estimated. No FC unit

(as a potential single point of failure) is used. Compared to the solutions in our

papers [4] and [38], in this chapter, we study additionally the local observation

exchange and combination strategy, which is based on the local SNR estimates

and is adapted to the context of binary hypothesis testing. We show, that when

the PU signal is present and when the local SNR estimates are available, then

the network-wise PU signal detection performance can be slightly improved as

compared to the standard case with no observation exchange, studied in our

paper [4].

We assume that the CM of the PU signal is of low rank. On the other

hand, the CR network operates without prior information about the PU signal’s

waveform and the secondary nodes’ channel gains. We assume that while the

PU signal may be absent for a time period, the radio channel properties under the

detection hypothesisH1 do not change over the time of interest and that long time
statistics are usable in enhancing the overall PU signal detection performance.
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For example, the classical TV White space model [13, Chapt. 1.2.4] could be

considered, where the on/off working patterns of the PUs (i.e. TV transmitters)

are quite static, the power of the PUs is constant, and where the CR nodes have

fixed positions in the nearby space. In the distributed CR network, we assume

that every node acts as an independent detector in terms of detection decision

making based on the available CM estimates.

5.2. Distributed Adaptive Largest Eigenvalue Detection

5.2.1. Signal model and assumptions

Let us follow the same signal model as in [4], where

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n) (5.1)

and the detection hypothesis is denoted by Hi, i = 0, 1, the CR node index

by k = 1, 2, ..., K, and the sample discrete time index by n = 1, 2, ...N . The

noise vk(n) and channel gains αk at node k are assumed to be statistically

independent. The PU signal follows s(n) ∼ CNM (0,Σs). The noise follows

vk(n) ∼ CNM

(
0, σ2

vIM

)
and is assumed to be independently and identically

distributed, uncorrelated in time and space. The theoreticalM ×M dimensional

CM Rk at every node is given as

Rk = E
[
yk(n)yk(n)H

]
= |αk|2Rs,k + σ2

v,kIM . (5.2)

Firstly, we assume, that the noise power σ2
v is assumed to be known a priori

and to be identical at every node. Secondly, that Rs,k has a low rank. Thirdly,

that when H1 is present, the PU signal power and the channel constants do not

change over the time of interest (of slow fading channel). Fourthly, internal

communication channels between the CR nodes are assumed to be error free and

the communication capacity is not limited.

For summarizing the LE detection method, let the eigenvalues of the estimate

R̂k(n) of CM Rk be denoted in non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λM .

Every node k detects the presence of a PU signal by determining the largest

eigenvalue λ1 of R̂k(n) as follows

λ1
[
R̂k(n)

] H1
≷
H0

γLE . (5.3)

Here the threshold γLE is given by (5.14).

For improving the detection performance of the LE detector, we introduce

a second parameter - local SNR of the received observations at node k. The

theoretical form is given as

SNRk = Tr
[
|αk|2Rs,k

]
Tr [σ2

vIM ] . (5.4)
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In the SNR estimation phase, each node k estimates locally the SNR of the

received signal, denoted as ŜNRk, based on the locally estimated sample

covariance matrix (SCM). The SCM R̂k at node k ∈ K and over the NSNR

samples can be estimated linearly as

R̂k(n) = 1
NSNR

n∑
k=n−NSNR

[
yk(n)yk(n)H

]
. (5.5)

Local SNR can be estimated separately from the (cooperative) CM estimation

phase for the LE detection (5.3) and it can be considered as a ”goodness measure”

of the received observations in CR network. Similarly to the standard Maximum

ratio combining (MRC) method, i.e. [97], local SNR estimates can be used for

weighting up the observations with strong PU signal in the neighbourhood of CR

nodes (and for weighting down the available neighbouring observations flows,

where PU signal is more strongly attenuated). Since the LE detector requires

knowledge of the σ2
v , then according to (5.1) and the assumptions, the estimation

of the local SNR reduces to the estimation of the (attenuated) PU signal power

at node k. Thus in this chapter we propose the usage of the following simple

SNR estimation method

ŜNRk(n) =
Tr
[
R̂k(n)

]
Mσ2

v,k

− 1. (5.6)

For avoiding negative and zero SNR values in the upcoming calculations, when

the PU signal is very weak or no signal subspace is present, we assign that if

ŜNRk(n) < 0.0001 ⇒ ŜNRk(n) = 0.0001.
Compared, for example, to the more sophisticated minimum description

length (MDL) and akaike information criterion (AIC) criterion based SNR

estimation methods [94], [95], [96], (5.6) is computationally simpler, and based

on experiments, requires significantly less samples NSNR in SCM to detect the

PU signal. Once the local SNR estimates are obtained, these corresponding

results could be deterministically used in the distributed adaptive CM estimation

phase for the LE detection.

5.2.2. Adaptive, Distributed LE detection with SNR weighted

observations

The first part of this section summarizes the adaptive, distributed CTA type of

Diffusion LMS based CM estimation algorithm, which was derived in [4, Chapter

II]. The second part focuses on the usage of local SNR estimates for observation

weighting and exchange in the mentioned Diffusion estimation strategy.

It was shown in [4] that when CR nodes cooperate in the estimation of R̂k(n)
in (5.3) by means of the system internal communication links, then the detection

performance (of the PU signal(s)) at every node k can be enhanced. In this

124



chapter we continuously assume that 1) K nodes in the CR network can rely

only on the subset of global information that is available to them and 2) that the

CR network topology is assumed to be fixed over the sensing time and strongly

connected.

Let us denote Nk as the neighbourhood group of node k ∈ K, i.e. Nk and µk

be a positive step size of node k. We introduce the K × K matrix CSNR with

non-negative elements as follows

cl,k = 0 if l /∈ Nk, CSNR1 = 1. (5.7)

For simplicity we have dropped the time index n in CSNR. Similarly, let us have

constant K ×K matrix AT
diff as

al,k = 0 if l /∈ Nk, 1TAT
diff = 1T . (5.8)

The coefficients cl,k and al,k define respectively how the measurements dl(n) and
estimates p̂l(n) are available for the node k in the CR network (unidirectionally).

Let µk be positive step size of node k.
Similarly, as in [4], for keeping the dimension of the estimated vector

minimal in the adaptive recursions, we decompose the observation at node k
at time instant n as dR,k(n) = vec

[
yk(n)yk(n)H

]
= Tdk(n), where M2 × M2

dimensional constant, the complex invertible matrix T is given in [5, Eq. 11])

andM2 × 1 vector dk(n) is real valued. Thus, dk(n) = T−1 vec
[
yk(n)yk(n)H

]
.

By denoting the M2 × 1 dimensional estimate of the real valued E [dk(n)] as
p̂k(n), then with the help of T, we can re-define R̂k(n) = vec−1 [Tpk(n)].

We skip the derivation details of the adaptive, fully distributed CTA diffusion

type of LMS based LE detection algorithm and show the result in Algorithm 6.

One of the disadvantages of (5.5) is that it is not adaptive and requires

significant amout of memory since all the NSNR samples have to be present for

estimating R̂k(n). Since (5.6) does not use NSNR directly for SNR estimation,

we propose to also use local exponential averaging based adaptive estimation

method for calculating the CM for local SNR estimation. In light of the

previously showed decompositions, let us denote the real time adaptive local CM

estimate (for local SNR estimaton) at node k at time instant n as ŵk(n), while
R̂k(n) = vec−1 [Twk(n)]. Let the step sizes for all the nodes k be equal and

denoted as µSNR. The step-size µSNR needs to be selected so that converged

estimates are achieved after the expected number of samples NSNR (which

determines also the accuracy of the estimates), while the algorithm can continue

running after NSNR have been processed.

Each node k communicates the signal observations and ŜNRk value in real

time to the neighbouring nodes, which are connected to the node k. For defining
the network connections in CSNR (5.7) we introduce a non-negative matrix CT

O

with the element of cO,l,k, which are formed as follows

cO,l,k =
{

1, l ∈ Nk

0, otherwise,
(5.9)
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to define if node l is connected to node k. The combination weights CSNR at

each node k ∈ K are formed as follows

cl,k = cO,l,kŜNRk∑K
k=1

[
cO,l,kŜNRk

] , (5.10)

We note that the rows ofCSNR are normalized to 1, which is useful in the PU signal

detection context. In case of detection hypothesis H1 is present and sufficiently
accurate SNR estimates are available, then the observations with higher SNRs

are slightly weighted up in the observation exchange in the neighbourhood of

the nodes and observations. In such a way, the observations with higher channel

gains are more dominating in the adaptive estimation algorithm and this property

can enhance the overall detection performance of the LE detector in Algorithm

6. On the other hand, when H0 or in case a weak PU signal is present, the SNR

estimates are set equal to 0.0001. If the local SNR estimates are not available at

every node, then it is easy to verify that equal weights cl,k (5.10) are obtained

in the neighbourhood of the CR nodes. In such a way, the existing threshold

determination solution (for the LE detector) under H0, as presented in [4], can
still be used. After CSNR is formed, then this matrix can be used in the adaptive

CTA type of LMS based LE detection method, proposed in [4], summarized in

Algorithm 6. The local SNR estimation steps are given in Algorithm 5.

Algorithm 5 Local SNR Estimation

1. Local CM estimation:

Start with ŵk(0) = w(0) for every k .
for every time instant n ≥ 1 do

for every node k = 1, ...,K do

ŵk(n+ 1) = ŵk(n) + µSNR [dk(n) − ŵk(n)]
end for

end for

2. SNR estimation:

for every node k = 1, ...,K do

R̂k(n+ 1) = vec−1 [Twk(n+ 1)] ⇒ ŜNRk (5.6)

if ŜNRk ≤ 0.0001 set ŜNRk = 0.0001
cl,k = cO,l,kŜNRk∑K

k=1

[
cO,l,kŜNRk

] (5.10)
end for

The algorithms have been presented separately and in principle the system

designer can study these two algorithms in different combinations (also in

separate time scales), depending on the system requirements and noise properties.
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Algorithm 6 CTA type of LE Detection with SNR weighted observations [4]

Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients al,k, cl,k

for every time instant n ≥ 1 do

for every node k = 1, ...,K do

1. CTA type of CM estimation recursions:

ψ̂k(n) =
∑

l∈Nk
al,kp̂l(n).

p̂k(n+ 1) = ψ̂k(n)
+µk

∑
l∈Nk

cl,k

[
dl(n) − ψ̂k(n)

]
2. LE detection decision:

H0 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
< γk or

H1 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
> γk.

(Refer to (5.14) for selecting the γk).

end for

end for

5.3. Theoretical Detection Performance

In this section we summarize the steps needed to set the detection threshold

of the LE detector with SNR weighted observation exchange and to evaluate

the theoretical detection performance (for verifying the Monte-Carlo based

simulation results). The performance analysis of the proposed algorithm can in

general be performed based on the same framework, that was developed in [4]

and [5]. Thus, we skip the details and shortly summarize the main steps. For the

theoretical performance analysis of the LE detector, we assume that the channel

gains are known. The analysis is divided into three parts.

Firstly, the moments of the adaptive CM estimates of Algorithm 6 are

studied. As shown in [4], K × K matrices A1 = AT
diff, A2, CSNR and

M = diag {µ1, . . . , µK} are in CR network extended toKM2 ×KM2 matrices
for the CTA type of algorithm as follows: A1 = AT

diff ⊗ IM2 , A2 = IK ⊗ IM2 ,

C(n) = CSNR ⊗ IM2 and M = M ⊗ IM2 . Let us note that with respect to

Chapter 5.4 and for simplifying the analysis, matrix CSNR (5.7) is considered as

constant and deterministic. Thus, the CTA based estimation recursion can be

given as

p̂(n+ 1)|Hi = A2
(
I − M

)
A1p̂(n)|Hi

+ A2MCd(n)|Hi. (5.11)

For determining the threshold of the LE detector (under H0) and for studying the
theoretical detection performance (under H1), the moments E [p̂(n+ 1)|Hi] and
Cov [p̂(n+ 1)|Hi] for i = 0, 1 need to be determined [4].
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Secondly, the adaptively estimated Tp̂(n)|Hi is approximated by Complex

Central (Correlated) Wishart distributions (CC(C)W) as

Tp̂(n)|Hi = R̂k(n)|Hi ∼ CWM

(
N̄T V,i, Σ̄k,i

)
, (5.12)

for being able to find the conditional CDFs of LE of adaptively estimated CMs.

The values for N̄T V,i (for approximating the DoF parameter) and Σ̄k,i (for

approximating the population covariance matrix parameter) can be found based

on the Total Variance (TV) approximation method, shown in [4, Chapt. 3].

Thirdly, since underH0, R̂k(n)|H0 is assumed to follow the CCW distribution,

then PF A,e of the largest eigenvalue of R̂k(n)|H0 is given as

PF A,e(γLE,e) = 1 − FH0,e(γLE,e) (5.13)

where the CDF|H0, denoted as FH0,e(x), is given in [4, Chapt. 3].
The detection threshold γLE,e, based on the non-asymptotic model is given as

γLE,e = F−1
H0,e(1 − PF A,e) (5.14)

and numerical inversion method can be used to determine the exact CDF formula

at a desired PF A,e value .

UnderH1, the R̂k(n)|H1 is assumed to be distributed by a CCCW distribution.

The PD formula, based on the non-asymptotic CDF|H1 of the LE of a CCCW

matrix R̂k(n)|H1 is given as

PD,e(γLE,e) = 1 − FH1,e(γLE,e), (5.15)

where the CDF|H1, denoted as FH1,e(x), is also given in [4, Chapt. 3].

5.4. Simulation results

In the numerical simulation section we investigate the probability of detection

PD of the CTA type of distributed, adaptive LE detection algorithm together

with the SNR weighted observations. The algorithm performance is presented

in terms of the PD versus (network averaged) SNR analysis; in the SNR, the

noise power value changes. In this example we consider a rather ideal use-case,

which on the other hand illustrates well the achieved LE detection performance

gain − we assume H1 is known to be present during the SNR estimation and

thus good local SNR estimates have been obtained over longer time. The

channel gains are assumed to be constant over the simulation time and are

sampled as αk ∼ CN(0, 1). We assume to have one PU signal s(n) = s(n)1,
s(n) ∼ CN(0, 1) and Σs = 11H .

For the local SNR estimation step, we select NSNR = 50000 and

µSNR = 0.00015 for getting an estimate also in the highest noise power region

of interest, as seen in Fig. 5.1. The matrix CSNR is constructed based on the
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local SNR estimate realizations at every SNR point and used in the LE detection

algorithm for exchanging and weighting the measurements in the CR network.

For the adaptive LE detection, we select the following simulation parameters:

M = 2, N = 7000, M = µ1K , µ = 0.001 and PF A = 10−2 for all the nodes.
The thresholds of the LE detectors at nodes k ∈ K are found by using (5.14)

with the TV approximation. We select the diffusion topology of the estimates in

the CR network similarly as in [3, Eq. 11]. For example, when K = 3 and by

keeping the same notation and conditions for the elements of matrix A, then the

diffusion topology is given as follows

AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 , (5.16)

while A1 = AT
diff ⊗ IM2 .

In the following simulations we compare the performance of three different

network sizes: K = 1, 3 and 10 nodes. All the results are taken from the last

node in the set. The PD versus SNR results are given in Fig. 5.1 when TV

approximation is used for the CTA algorithm. The M-C estimated PD results,

based on the adaptively estimated CMs with local SNR based weighting of

observations, are denoted as Ad. Obs. Ex. in the figure. These M-C based

results are compared with the non-asymptotic theoretical model (5.15) (denoted

as Th. Obs. Ex.). In addition, for reference we plot the The Monte Carlo

estimated PD results, based on the observation weighting with the theoretical

SNR values (5.4), denoted as Th. SNR Ex.. Finally we add the M-C based

PD results based on adaptively estimated CMs with equal observations exchange

CSNR = AT
diff for the reference (denoted as Ad. Eq. Ex).

We note that in [3] we found that for the case of M = 1, an equal weighing
of the observations does not improve significantly the resulting detection

performance. We see that when CR nodes in addition to sharing the estimates

share also their observations, while these observations in the neighbourhood are

weighted not equally, but based on the locally estimated SNR values, then an

observable increase in the PD is seen. As the number of nodes in the network

increases, the point where the PD starts to decrease from 1 is moved to the left

about 1.5-2dB. In general, the values of NSNR and µSNR need to be determined

experimentally, based on the PU activity patterns, CR system requirements and

the noise power conditions. I.e. in a low SNR region, NSNR � 1 and usually

more samples have to be collected to get a reasonably accurate local SNR

estimates, while less samples need to be processed in a high SNR region.

We see that when the SNR estimates with sufficient accuracy are available,

then the SNR based observation weighting solution can be used for improving

the performance of the adaptive, distributed LE detection algorithm. When the

nodes cooperate in estimating the network-wise CM (while nodes are able to

communicate directly only with limited subset of neighbour nodes) then the

resulting LE detection performance is improved in the CR network.
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5.5. Conclusions

In this chapter we studied a distributed and adaptive, CTA diffusion LMS

based LE detection algorithm, which uses local SNR estimates for additional

observation exchange between the CR nodes for PU signal detection. We

analysed the performance of the proposed diffusion LMS based LE detection

scheme and verified the theoretical results with the simulations. With the

proposed algorithm, and in terms of the PD versus SNR values, the PU signal

detection performance is enhanced in CR network in about 1.5-2dB.
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6. SUMMARY, CLAIMSAND FUTURE RESEARCH

6.1. Summary of thesis

This thesis studied two distributed and adaptive detection methods in wireless

sensor networks, which are based on a distributed estimation process. The

design, implementation and performance study of the proposed algorithms has

been done by taking the Cognitive Radio application area into account. In this

thesis we studied the algorithms from the estimation and detection domain point

of view.

The objective of the current thesis was to design and implement three fully

distributed and adaptive detection solutions for Cognitive Radio Networks,

namely distributed Energy and distributed Largest Eigenvalue based detection

solutions. This objective has been achieved successfully. We have proposed

algorithms for each detector that can be practically implemented. Let us

note, that hardware implementation aspects are not studied in this thesis. As

common in the research area of estimation and detection, theoretical analytical

performance of the proposed solutions was evaluated. We assigned statistical

models for the corresponding adaptive estimates and for the detector test

statistics to proceed with the moment and detection performance analysis of

the proposed algorithms. The theoretical results were verified by computer

simulation experiments and good matches between the theoretical performance

measures and corresponding experiments were obtained. Thus we proposed and

studied three main cooperative, fully distributed and adaptive spectrum sensing

methods for a Cognitive Radio Network.

6.2. The Claims

Below is a summary of the theses/claims of novelty that this PhD thesis made.

The claims correspond the papers P1. - P6. as detailed. Thus, thematically, the

main contributions of the thesis are:

1. An adaptive and fully distributed Energy Detection solution proposed

and evaluated. We derived and proposed the usage of distributed,

diffusion least mean square (LMS) type of power estimation algorithms

and three different static network topologies: Ring-Around, Combine and

Adapt, Adapt and Combine are studied. The signal power estimation and
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energy detection solution is not dependant on any Fusion center and the

detection decisions can be made independently in every CR nodes or in a

selecting a CR node for a network wise decision making. The signal power

estimation solution is able to track the changes between the underlying

detection hypotheses so that the usage of such algorithms is more practical

in CR network. The detection performance of the proposed schemes was

performed by using the statistical properties of these distributed, adaptive

estimates. In case of the Ring-Round topology, due to the mathematical

tractability of the estimate functions in time, more specific results about

the moment estimation of the distributed estimates were given. With the

help of the Central Limit Theorem the distribution of the test statistics of

the energy detector was approximated by a CSCG process, by using the

moments of the adaptive power estimates. The theoretical findings were

verified by MATLAB based simulations. The PU signal, received by a

individual CR node may be in deep fading and thus the detection results

are dependant on the signal gain value (which is usually unknown for

the receiver). We showed that when nodes cooperate in the estimation

process of the test statistics, then the resulting detection performance can

be significantly improved and stabilized. We also observed that the best

detection results (also in terms of lowest variance of the power estimates)

are obtained with the ATC type of estimate fusion method and especially

when we have about 30 nodes in the network. It was observed that

measurement fusion in the diffusion LMS estimation process did not

notably improve the resulting detection results.

To the knowledge of the authors, such distributed energy detection method

has not been proposed and studied before. This corresponds to the

Chapter 3 and papers P1. - P3.

2. An adaptive and fully distributed Largest Eigenvalue Detection

solution proposed and evaluated. We selected the Largest Eigenvalue

detection method from the domain of correlation matrix based detection

methods and designed, implemented an adaptive, fully distributed LE

detection solution. Diffusion LMS type of algorithm was implemented

with ATC, CTA topologies and with no Fusion Center. In order to study

the resulting detection performance we extended the framework of the

theoretical performance analysis, from the energy detection solution for

the vector estimates. The correlation matrix estimates were vectorized

for the distributed adaptive estimation process and after the estimation

process re-matrizised. The distribution of the resulting CM matrix

estimates was approximated by a Complex Wishard distribution and we

implemented the Total and General Variance methods for approximating

the Complex Wishart distribution parameters for the mentioned CM

distribution approximation. These results were used to proceed with the

study of the distribution of the test statistics - the largest eigenvalue of
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the adaptively estimated CM. The theoretical results were verified by

MATLAB based simulations. Similarly we observed that the resulting

LE detection performance is more stabilized and equalized over the CR

network, when nodes cooperate in the estimation process. Best results

were observed with the ATC type of estimate fusion method and there

was no notable difference in the performance of the Total and General

Variance approximation methods. We justified that the proposed distributed

estimation algorithm could be used also with some blind type of detectors,

where the noise variance is not needed for the threshold calculation.

To the knowledge of the authors, such distributed largest eigenvalue

detection method has not been proposed and studied before. This

corresponds to the Chapter 4 and papers P4. - P5.

3. An adaptive and fully distributed Largest Eigenvalue Detection

solution with local SNR based observation exchange and weighting

proposed and evaluated.

In addition to the solution, described in previous claim, we proposed

and studied additionally the local observation exchange and combination

strategy, which is based on the local SNR estimates and is adapted to

the context of binary hypothesis testing. Local SNR can be estimated

adaptively and independently from the (cooperative) CM estimation phase

for the LE detection (5.3) and it can be considered as a ”goodness measure”

of the received observations in CR network. We proposed the weighting

method of received observations, were non-equal weights (based on local

SNR estimates) are assigned only under the detection hypothesis H1, so
that the threshold determination solution of LE detection (under H0),
proposed in previous section, is still usable. We showed, that when the PU

signal is present and when the local SNR estimates are available, then the

network-wise PU signal detection performance can be slightly improved,

compared to the standard case with no observation exchange, studied

previously by us.

To the knowledge of the authors, such distributed, adaptive, largest

eigenvalue based detection method with such local SNR based observation

exchange and weighting method has not been proposed and studied

previously. This corresponds to the Chapter 5 and papers P6.

Throughout the thesis and in the distributed estimation domain we proposed

and studied:

4. Distributed diffusion LMS based scalar and vector estimation

algorithms for estimating the elements of the test statistics of Energy

and Largest eigenvalue detector respectively. The algorithms were

implemented so that CR nodes jointly participate in the estimation of

scalar or vector quantities, where these latter quantities follow the model

135



of network average (to reduce the effect of channel gains), while the

CR nodes individually are able to communicate only with a subset of

neighbour nodes. Initially the distributed optimization concept for scalar

measurements and estimates were derived for the energy detection method.

Then a vectorized estimation model of the elements of correlation matrix

was proposed. A network topology with minimum number of data fusions

in CR network was proposed.

To the knowledge of the authors, such exact types of distributed diffusion

LMS based scalar and vector estimation algorithms have not been proposed

and studied before. This corresponds to the Chapters 3, 4, 5 and papers

P1. - P6.

5. A common framework for the performance analysis of the estimation

algorithms and resulting detection performance in CR network. We

derived and proposed the usage of a framework for the performance

analysis of the statistical moments of the distributed, adaptive estimates

so that several common network topologies and data fusion types are

supported. Mean stability analysis for the algorithms was performed. The

statistical moments of the distributed estimates were used further in the

statistical modelling the test statistics of the selected detectors and then for

studying the resulting detection performance.

To the knowledge of the authors, such type of framework for the

performance analysis of distributed estimation algorithms have not been

proposed before. This corresponds to the Chapters 3, 4, 5 and papers P1.

- P6.

To conclude, this thesis has shown the benefits of adaptive and fully distributed

energy and largest eigenvalue detection solutions for cognitive radio networks.

The task of the current thesis, to derive fully distributed versions of two most

widely used detectors for cognitive radio, was completed successfully. The

obtained results are of practical interest, as the need for opportunistic spectrum

sharing in urban areas is increasingly fast.

6.3. Future Research

We now highlight the aspects that might be worthy of future study.

1. Other signal models with various correlation structures and detection

methods could be studied together with adaptive and fully distributed

estimations methods, other hand diffusion LMS algorithm. The work

presented in this thesis did not include comparisons for example with

distributed RLS (Recursive Least Squares) method.

2. Usage of Change Detection methods could be studied further together with

distributed diffusion estimation algorithms. It may be interesting to study
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if a change in the statistical properties of the estimates of these algorithms

could be detected based on the transitions of estimation algorithm to

or from a steady-state and if this effect could be used in Cognitive

Radio networks. Such a way an additional detection method could be

implemented in parallel or instead of the detection algorithms, studied so

far in current thesis.

3. It could be interesting to bring in more hardware aspects and constraints

to the current research. The current work in this thesis is based on the

MATLAB simulations and no major hardware platform specific limitations

or aspects have been included so far in our research. It could be studied

if algorithm properties could be tuned for reducing processing load in a

hardware model, but without losing much in the PU detection performance

at same time.
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ABSTRACT

Distributed Signal Processing in Cognitive Radio Networks

The lack of available radio frequencies is seen to be an increasing problem for

implementing new modern radio communication solutions. Recent studies have

shown that, while the available licensed radio spectrum becomes more occupied,

the assigned spectrum is significantly underutilized. To alleviate the situation,

cognitive radio (CR) technology has been proposed to provide an opportunistic

access to the licensed spectrum areas. Secondary CR systems need to cyclically

detect the presence of a primary user (PU) by continuously sensing the spectrum

area of interest. Radiowave propagation effects like fading and shadowing often

complicate sensing of spectrum holes. When spectrum sensing is performed in

a cooperative manner, then the resulting sensing performance can be improved

and stabilized.

In this thesis, three fully distributed and adaptive cooperative PU detection

solutions for CR networks are studied.

In Chapter 3 of this thesis we study a distributed energy detection scheme

without using any fusion center. Due to reduced communication such a topology

is more energy efficient. We propose the usage of distributed, diffusion least

mean square (LMS) type of power estimation algorithms with different network

topologies. We analyze the resulting energy detection performance by using a

common framework and verify the theoretical findings through simulations.

In Chapter 4 of this thesis we propose a fully distributed detection scheme,

based on the largest eigenvalue of adaptively estimated correlation matrices,

assuming that the primary user signal is temporally correlated. Different forms of

diffusion LMS algorithms are used for estimating and averaging the correlation

matrices over the CR network. The resulting detection performance is analyzed

using a common framework. In order to obtain analytic results on the detection

performance, the adaptive correlation matrix estimates are approximated by a

Wishart distribution. The theoretical findings are verified through simulations.

In Chapter 5 of this thesis we propose a fully distributed largest eigenvalue

detection scheme, where the observations of the elements of correlation matrices

are weighted by independently estimated local SNR values. The resulting

detection performance is analysed by using a common framework. The theoretical

findings are verified through MATLAB simulations.
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KOKKUVÕTE

Hajutatud signaalitöötlus kognitiivse raadio võrgus

Kaasaegsete raadiosidesüsteemide arendamisel on tekkimas tendents, et tulevikus

võib väheneda vabade raadiokanalite hulk. Mitmed raadiosageduskanalid

on regulatiivselt antud litsentseeritud raadiosüsteemide kasutusse. Mitmed

uuringud on näidanud, et kui vajadus teatud litsentseeritud raadiospektri

kasutamiseks kasvab, siis võib litsentseeritud raadiospekter samas olla olulisel

määral alakasutatud. Olukorra leevendamiseks on välja pakutud kognitiivse

raadio (CR) tehnoloogia, mis võimaldab kognitiivse raadio (CR) süsteemidele

oportunistlikku juurdepääsu litsentsitud spektrivaldkondadele. Sekundaarsed

CR süsteemid peavad tsükliliselt tuvastama litsentseeritud kasutaja olemasolu,

jälgides pidevalt huvipakkuvat spektriala. Raadiolainete leviefektid, nagu

peegeldused, raskendavad sageli nn. spektriaukude tuvastamist. Kui spektri

tuvastamine viiakse CR sõlmede poolt läbi ühiselt, siis saab saadud primaarallika

tuvastustõenäosust CR võrgus parandada ja stabiliseerida.

Käesolevas väitekirjas uuritakse kolme täielikult hajutatud ja adaptiivset

primaarse kasutaja (PU) tuvastamise lahendust CR võrkude jaoks.

Antud väitekirja kolmandas peatükis uuritakse hajutatud energiatuvastamise

skeemi ilma keskset võrgusõlme kasutamata. Vähendatud võrgukommu-

nikatsiooni tõttu on selline topoloogia energiasäästlikum. Vajaliku detektori

teststatistika elementide hindamiseks pakutakse välja hajutatud difuusiooni LMS

vähimruutude meetodil põhinev hindamise algoritm, mida vaadeldakse erinevate

võrgupopulatsioonidega. Analüüsitakse väljapakutud energiatuvastamise mee-

todiga saavutatavat detektsioonitõenäosust, kasutades ühist analüüsiraamistikku

ja kontrollides arvutisimulatsioonide abil teoreetiliste tulemuste paikapidavust.

Antud väitekirja neljandas peatükis pakutakse välja täielikult hajutatud

primaarsignaali tuvastusskeem, mis põhineb adaptiivselt hinnatud korrelat-

sioonimaatriksite suurimal omaväärtusel, eeldades, et primaarkasutaja signaal

on ajaliselt korreleeritud. CR-võrgu korrelatsioonimaatriksite hindamiseks ja

keskmistamiseks kasutatakse erinevat tüüpi LMS-i algoritme. Signaalituvas-

tustõenäosust analüüsitakse täiendatud, ühise raamistiku abil. Teoreetilise

detektsioonitõenäosuse mudeli jaoks pakutaks välja kaks meetodit, millega saab

adaptiivselt hinnatud korrelatsioonimaatriksit aproksimeeridaWishart’i jaotusega

baasil. Teoreetilisi tulemusi kontrollitakse arvutisimulatsioonide abil.
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Antud väitekirja viiendas peatükis pakutakse välja täielikult hajutatud,

adaptiivne suurimal omaväärtusel põhinev primaarsignaali tuvastusskeem, kus

sisendmõõteandmeid kaalutakse naabersõlmede abil, baseerudes iseseisvalt

hinnantud lokaalsete SNR-i väärtuseid. CR-võrgu korrelatsioonimaatriksite

hindamiseks ja keskmistamiseks kasutatakse CTA tüüpi diffusion LMS-i

algoritmi. Signaalituvastustõenäosust analüüsitakse täiendatud, ühise raamistiku

abil. Teoreetilisi tulemusi kontrollitakse arvutisimulatsioonide abil.

Märksõnad: Kognitiivne raadio, hajutatud hindamine, hajutatud raadiosig-

naali tuvastamine, Diffusioon LMS, difusioonvõrgud, adaptiivsed võrgud,

spektrituvastus, energia detektsiooni meetod, juhuslikud maatriksid, suurima

omaväärtuse detektsiooni meetod.
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Abstract—Recent studies have shown that, while the available
licensed radio spectrum becomes more occupied, the assigned
spectrum is significantly underutilized. To alleviate the situation,
cognitive radio (CR) technology has been proposed to provide
an opportunistic access to the licensed spectrum areas. CR
systems are able to serve the secondary users for detecting and
utilizing so called spectrum holes by sensing and adapting to the
environment without causing harmful effects or interference to
the licensed primary users (PU). CR systems need to detect the
presence of a primary user by continuously sensing the spectrum
area of interest. Radiowave propagation effects like fading and
shadowing often complicate sensing of spectrum holes because
the PU signal can be weak in a particular area. Cooperative
spectrum sensing is seen as a prospective solution to enhance the
detection of PU signals. This paper studies distributed spectrum
sensing in a cognitive radio context. We investigate a distributed
energy detection scheme without using any fusion center. Due to
reduced communication such a topology is more energy efficient.
The PU signal is assumed to be in slow fading. A recursive
distributed power estimation and detection scheme is proposed.
The theoretical findings are verified through simulations.

Index Terms—Cognitive radio, distributed estimation, dis-
tributed detection, adaptive networks, energy detection.

I. INTRODUCTION

In this paper, we study a distributed detection problem,

where we have a number of nodes in the network sensing the

spectrum area of interest. Nodes estimate the received power

in their own location.

Several solutions have been proposed that make use of a

central processing unit to collect all the measurements over

the sensing period from all the nodes and make decisions

about presence or absence of PU [1],[2],[3],[4]. Instead we

propose to let the power measurements circulate around the

cognitive radio network nodes, to allow all these nodes to

make decisions based on data from all the nodes without

involvement of any central processing unit. At every time

instant measurements with different spatial profiles become

available and nodes in the network make individual decisions

about the present signal detection hypotheses. Such a solution

needs less communication in the CR network (therefore saves

energy resources) and enhances network failure resistance

since there is no need to exchange estimates with the central

processing unit at every iteration.

Distributed adaptive estimation and detection schemes have

been studied before in several papers, for example the least

mean square (LMS) and recursive least squares (RLS) based

estimation schemes in [5],[6] and the consensus based schemes

in [7],[8],[9],[10]. Optimal distributed detection, based on

diffusion type LMS and RLS estimation schemes, has been

studied in [11]. These two schemes rely on matched filter

detection. However, here we make an assumption, that we do

not have any prior information about the waveform of the PU

signal in the secondary nodes and hence we cannot design

a matched filter. Therefore the energy detection becomes a

practical solution.

A ring network topology for distributed energy detection

without a fusion centre has been suggested in [12]. Compared

to [12], in the current paper we propose an estimation based

recursive calculation of the test statistics for the energy de-

tectors (in cognitive radio network with ring topology). The

test statistic in form of a converged power estimate is the soft

information used for making the detection decision at every

node. Usage of a recursive power estimation scheme with fixed

step size provides the ability to track changes in the power of

the received signal in time, as new samples are received. We

also show that in Rayleigh fading channel, processing of the

samples of the received signal over sufficient number of nodes

in the ring topology averages and diminishes the effect of the

different channel gains at the CR nodes. Thus the detection

scheme becomes more robust to fading, compared to the case,

where the test statistic is calculated over locally received signal

samples only or over few nodes. The resulting energy detection

performance is dependant on the performance of the recursive

power estimation algorithm.

We organize the remainder of the paper as follows. In

section II we review the bases of energy detection and then

derive a recursive and distributed received signal power esti-

mation algorithm. In section III we analyse the performance

of the proposed distributed power estimation algorithm and

the resulting energy detection. In section IV we present our

simulations results.

II. DISTRIBUTED POWER ESTIMATION AND DETECTION

According to classical detection theory, an energy detector

can be used for detecting random signals in additive noise. For978-1-4799-3083-8/14/$31.00 c©2014 IEEE
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energy detection in a cognitive radio context, the type of PU

signal can be completely unknown. During a sensing time t,
an energy detector (ED) receives N samples of a signal x(n)
from a specific frequency band [2]. The average energy of

the received data samples is the test statistic T (x) of the ED,

which compares T (x) to a predefined threshold γ and decides

which of the hypotheses H0 or H1 is more likely.

We assume the following signal model at node k:

H0 : E[|xk(n)|2] = E[|v(n)|2]
H1 : E[|xk(n)|2] = E[|αk|2|s(n)|2] + E[|v(n)|2], (1)

where k = 1, 2, ...,K is the node number and n = 1, 2, ...N
is the sample index. v(n) is independent and identically dis-

tributed (i.i.d) circularly symmetric complex Gaussian (CSCG)

noise with zero mean and variance E[|v(n)|2] = σ2
v , i.e.

v(n) ∼ CN(0, σ2
v). The power of the emitted PU signal s(n) is

denoted as E[|s(n)|2] = S, under H1. The primary signal s(n)
and the noise v(n) are assumed to be statistically independent.

The PU signal passes through a slowly fading channel with

gain αk(n). The gain αk is considered to be constant. Note,

that for implementing the energy detector, knowledge about

the values of channel constants is not required. The constant

noise variance is assumed to be known a priori for being

able to set the threshold of the energy detector. Noise power

estimation is not considered in this paper.

In the literature on distributed detection, for example in [13],

a fusion center, which collects all the local soft information,

hard or soft binary decisions from the sensors, is often used in

distributed detection networks. Similarly a central processing

unit has been used in distributed estimation schemes, see e.g.

[5]. However, such a central processing unit can potentially be

a single point of failure in the detection system. Secondly it

may require frequent data exchange between the nodes and the

centre and thus drain system energy resources, since usually

most of the energy is spent for powering up the transmitter to

exchange the data with neighbour nodes.

A distributed and recursive estimation scheme is one of

the possible solutions for removing the central processing unit

from the system and thus the network is able to calculate the

global estimates based on the local observations collected by

the CR nodes. Then based on the estimated test statistic, the

detector at each CR node can locally make its own decision

if the PU signal is present or not.

We denote the estimate at node k and at iteration n as

P̂k(n+ 1). We employ a circular topology for the distributed

power estimation, as also suggested in [12]. At every time

instant n, every CR node k is communicating with the

(k − 1)modK immediate neighbour node only. We use the

modulo notation with the convention 1 ≤ k mod K ≤ K.

Such an estimation method incorporates the incoming mea-

surements periodically over all the nodes and can potentially

diminish the effect of the varying channel gains on these

nodes, thus it is more robust to fading and enhances the

resulting detection performance. In this paper we make the

following assumptions:

• (AS1) The x(n) is sensed by K nodes in the CR network.

• (AS2) The additive noise vk(n) is uncorrelated in time

and space and has the same power level over all the nodes

in the CR network.

• (AS3) For the number of performed iterations N we have

that N � K.

• (AS4) The links between the CR nodes are ideal and

not capacity restricted (no need to quantize the soft

information).

By taking into account the suggestions in [14] for a local,

non-cooperating estimator for sample variance, the distributed

estimator using a circular estimation topology can be con-

structed as follows

P̂k(n) =
1

n

n∑
i=1

|x(k−i+1)modK(n− i+ 1)|2. (2)

A recursive equivalent to (2) is given by

P̂k(n) = P̂(k−1)modK(n− 1) + μ(n)(|xk(n)|2
−P̂(k−1)modK(n− 1)), (3)

where n ≥ 1 and with step size: μ(n) = 1
n

The usage of step size μ(n) = 1
n however, expects that

the received signal xk(n) over n ∈ N stays under a fixed

hypotheses: H0 or H1. This fact makes its direct use in real-

time spectrum sensing problematic. As a solution, a positive

constant step size μ(n) = μ can be used in recursive power

estimation algorithm and then (3) is able to track the possible

changes in power of the received signal xk(n). As common in

the literature of adaptive filtering, the step size of the algorithm

is user defined.

The estimated power level P̂k(n) is used as the test statistic

of the recursive ED. i.e. T (x) = P̂k(n). Since there is no

fusion centre and for system redundancy purposes, information

overhead is allowed in the network. Thus there are K circular

estimation processes running in parallel to provide a global

estimate for every node k ∈ K. Every node can then perform

the energy detection at any time instant. The algorithm can

in principle run infinitely (no window for sample processing

is required). The proposed algorithm is summarized in Al-

gorithm 1. Let us note, that with the suggested algorithm,

only one-directional communication with the adjacent node

is required for exchanging the soft information, compared to

the schemes, where a central processing unit is used and thus

two way communication direction is needed to also send the

global soft information back to the nodes at every iteration

n. An example with K = 2 nodes and thereby 2 estimation

processes (red and blue) is illustrated in Fig. 1 with nodes

k = 1, 2 receiving samples n = 1, ..., 3.

According to AS3 it is assumed, that the number of iter-

ations performed with the recursive algorithm is larger than

the number of nodes in the network. The estimator needs to

converge to steady state before the detection decision is made

and for the convergence a sufficient number of samples are re-

quired. In slow fading the channel coherence time is large and

the convergence is achievable. Secondly, in the performance

section of the proposed algorithm the Central Limit Theorem
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(CLT) is applied so enough samples are required also for this

approximation to hold. The minimum number of samples for

the CLT approximation has been evaluated in the literature,

e.g. in [15].

Fig. 1. Distributed Power Estimation with 2 nodes.

Algorithm 1 Distributed Circular Power Estimation

Start with P̂k(0) = P0.

for every time instant n ≥ 1 do
for every node k = 1, ...,K do

1. Power estimation:

P̂k(n) = P̂(k−1)modK(n− 1)+

μ(|xk(n)|2 − P̂(k−1)modK(n− 1)).
2. Detection decision:

H0 : P̂k(n) < γ or H1 : P̂k(n) > γ.

(Refer to (19) for selecting the threshold).

end for
end for

III. PERFORMANCE ANALYSIS

To design the Neyman-Pearson type of detector of the

proposed algorithm, we need to characterize the probability

density function (PDF) of the test statistic of the recursive

ED. Due to the usage of a circular estimation topology and due

to the varying channel gains observed in different nodes, the

distribution of the received and processed samples |xk(n)|2
differ from node to node. At first we find the mean and

variance of the power estimation algorithm with fixed step size.

From these the performance of the recursive energy detection

is then derived, using a Gaussian approximation. The values

of αk are assumed to be known for the performance analysis.

A. Mean of Estimation

The mean of the global estimation recursion (3) can be

found directly. Dropping the modK notation, we have

E[P̂k(n)] = (1− μ)E[P̂k−1(n− 1)] + μE[|xk(n)|2].
(4)

The initial condition is P0 = P̂k(0). Due to the circular

estimation topology we have that N = KM+m, where M =
�N/K� and where m denotes additional iterations after full

cycles. Let E[P̂k(N)|H1] denote the mean when PU signal

present and E[P̂k(N)|H0] the mean when only noise is present.

By iterating recursion (4), using the proposed notation and

replacing the expectations using model (1), we can write

E[P̂k(N)|H1] =

μS[
1− (1− μ)KM

1− (1− μ)K

[
K−1∑
l=0

(1− μ)l|αk−l|2
]

+ σ2
v

[
1− (1− μ)KM+m

]
+ P0(1− μ)KM+m

+ μS

[
(1− μ)KM

[
m−1∑
i=0

(1− μ)i|αk−i|2
]]

. (5)

In line 2 of (5), the geometric series
∑M−1

i=0 (1− μ)Ki has

been replaced with its sum. Let us note, that according to

lines 2 and 5 of (5), the mean differs from node to node due

to the values and processing order of |αk|2. When only noise

is present then S = 0 and

E[P̂k(N)|H0] =

P0(1− μ)KM+m + σ2
v

[
1− (1− μ)KM+m

]
. (6)

According to AS3, M >> K and in steady state of the es-

timator, when M →∞, the exponential factors (1−μ)KM+m

and (1− μ)KM in (5) converge to 0 if 0 < μ < 1. In steady-

state, formula (5) goes to

E[P̂k(∞)|H1] =

σ2
v +

μS

1− (1− μ)K

[
K−1∑
l=0

(1− μ)l|αk−l|2
]

(7)

and in the noise only case correspondingly to

E[P̂k(∞)|H0] = σ2
v . (8)

B. Variance of Estimation

Since P̂k−1(n) and |xk(n)|2 are uncorrelated and by drop-

ping the modK notation, we have

Var[P̂k(n)] = (1− μ)2Var[P̂k−1(n− 1)]

+ μ2Var[|xk(n)|2]. (9)

Since xk(n) is CSCG, then according to model (1) the

PU signal is present, Var(|xk(n)|2) = (S|αk|2 + σ2
v)

2. Let

Var[P̂k(N)|H1] denote the variance when the PU signal

present and Var[P̂k(N)|H0] the variance when received signal

contains only noise. By iterating (9), replacing the variances

and using the proposed notation, we have that
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Var[P̂k(N)|H1] =

μσ4
v

1− (1− μ)2(KM+m)

2− μ

+ μ2 1− (1− μ)2KM

1− (1− μ)2K

·
[
K−1∑
l=0

(1− μ)2l
[
S2|αk−l|4 + 2S|αk−l|2σ2

v

]]

+ μ2(1− μ)2KM

·
[
m−1∑
i=0

(1− μ)2i
[
S2|αk−i|4 + 2S|αk−i|2σ2

v

]]
.

(10)

In line 3 of (10), the geometric series
∑M−1

i=0 (1 − μ)2Ki

has been replaced with its sum. Similarly to the mean, the

variance differs over the nodes. When only noise is present,

the resulting variance is given as

Var[P̂k(N)|H0] =
μσ4

v

2− μ

[
1− (1− μ)2(KM+m)

]
. (11)

In steady state of the estimator, when M → ∞, the

exponential factors (1−μ)2(KM+m) and (1−μ)2KM in (10)

converge to 0 if the constant step size μ is taken sufficient.

Thus the variance tends to

Var[P̂k(∞)|H1] =
μσ4

v

2− μ

+
μ2

1− (1− μ)2K

[
K−1∑
l=0

(1− μ)2l
[
S2|αk−l|4 + 2S|αk−l|2σ2

v

]]

(12)

under H1 and in the noise only case to

Var[P̂k(∞)|H0] =
μσ4

v

2− μ
. (13)

The residual variance of the fixed step size power estimation

algorithm depends on the value of μ. We observe, that smaller

μ causes smaller residual variance and thus more precise

estimation results. On the other hand it is known from the

literature of adaptive filtering, that smaller μ causes slower

convergence in the mean.

C. Detection Performance Analysis

In order to derive the probability of detection (PD) and

probability of false alarm (PFA), using the Algorithm 1, we

need to evaluate the PDF of the test statistic P̂k(n) under both

hypotheses H0 and H1. As mentioned earlier the test statistic

(for making the detection decision using threshold test) at node

k at time instant n is found with the proposed distributed signal

power estimation scheme. Thus the detection performance is

dependant on the performance of the underlying estimation

process.
As the input xk(n) is CSCG and when we have K = 1

only, then the test statistic of ED P̂k(n) is local and under

both hypothesis a Chi-Square distributed random variable with

2N degrees of freedom. The test statistic P̂k(n) is obtained as

a sum of a number of identically distributed variables and

hence the CLT can be applied to approximate the Chi square

distribution by a Gaussian distribution [15]. According to AS3,

the number of samples and nodes in the network are large

enough, thus the CLT is expected to apply.
The cooperative, global estimation statistic P̂k(n) in (3) in

case of hypothesis H1, is however found over independent, but

not identically distributed variables (due to the node specific

channels). In such a case the Lyapunov CLT can still be

applied over a large number of samples to result in a Gaussian

approximation.
By taking into account the previously derived (5), (6),

(10) and (11), we can provide approximate formulas for the

recursive energy detection performance.
Let Q be the complementary distribution function of the

standard Gaussian

Q(x) =
1√
2π

∫ ∞

x

exp

(
− t2

2

)
dt. (14)

The probability of false alarm PFA of the energy detector

when signal x(n) contains only noise i.e. under hypothesis

H0 is found by

PFA(γ, t) = Pr(T (x) > γ|H0) =

∫ ∞

γ

px(x|H0)dx (15)

Substituting the estimation mean and variance under H0, we

get

PFA = Q

⎛
⎝γ − E[P̂k(N)|H0]√

Var[P̂k(N)|H0]

⎞
⎠ . (16)

Based on the assumption AS3, we observe that the formula

holds for every node k ∈ K.
The probability of detection of an energy detector under

hypothesis H1 is correspondingly

PD(γ, t) = Pr(T (x) > γ|H1) =

∫ ∞

γ

px(x|H1)dx. (17)

Let the probability of detection at node k be: PD,k. Similarly

substituting the mean and variance under H1, we get

PD,k = Q

⎛
⎝γ − E[P̂k(N)|H1]√

Var[P̂k(N)|H1]

⎞
⎠ . (18)

The sensing threshold can be found from (16) by fixing the

desired value of PFA. Since under hypothesis H0 we have

only noise power present,

γ = E[P̂k(N)|H0]

+ Q−1 (PFA)

√
Var[P̂k(N)|H0].

(19)
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Due to the assumption AS2 the thresholds for every CR node

k are equal.

However calculation of the threshold requires knowledge

about the moments of the estimation algorithm in case of

hypothesis H0 and these moments are dependant on the

algorithm parameters (especially the step size). In practice

for the threshold calculation, the required moments can be

calculated in advance using (6),(11), known values of step

size, noise power and then inserting these results into (19).

IV. SIMULATION RESULTS

First we investigate the power estimation algorithm (with

constant step size). Secondly we view the energy detection

performance of proposed algorithm. In all these simulations

the PU signal s(n) is taken as QPSK with unit power S, under

the active hypothesis H1, the step size is: μ = 0.01 and m = 0.

A. Local and global power estimation

We first investigate the estimates of (3) under two modes

- local: if the nodes are not cooperating to each-other (i.e.

every node acts as a stand alone energy estimator/detector)

and global: if nodes are in cooperation. In the next two

examples all nodes receive N = 1200 samples. To illustrate

the tracking feature, we examine how the algorithm reacts if

the power level changes at sample 601. Thus during samples

n = 1, ..., 600 hypothesis H1 is present (the source signal

power S is attenuated by channel gain |αk|2). Due to slow

fading the αk is assumed to be constant and is obtained by:

αk ∼ CN(0, 1). In sample range n = 601, ..., 1200, the PU

signal is absent and only background noise power σ2
v = 1 is

present at every node k.

Using recursion (3) the local, non-cooperative power esti-

mate is plotted in Fig. 2, with 10 nodes in the CR network. The

channel gain values |αk|2 are given on the figure. Obviously,
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Fig. 2. Local power estimation, fixed step

the estimation result using local information is depending on

the channel coefficient of the specific node. From n = 601
the algorithm is starting to converge to the noise only power

level σ2
v = 1.

TABLE I
MEAN AND VAR. ,LAST NODE IN THE SET, σ2

v = 1

K M Mean Variance

1 6000 1.39 0.0097

3 2000 1.63 0.0098

10 600 1.87 0.02

30 200 1.93 0.0189

50 120 2.01 0.0203

In Fig. 3 we investigate the cooperative scheme. Exactly the

same channel gains are used as in the local simulation. Since

the mean and variance differ at nodes k, then for illustration we

plot only the global power estimation result of node k = 10,

in the network with K = 10. The corresponding mean and

±3 times standard deviation are given in Fig. 3.
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Fig. 3. Global power estimation, fixed step

In Fig. 3 the global estimate is converging around the mean.

Due to the proposed circular estimation topology, the recursion

(3) can reduce the effect of random gain caused by channel

coefficients. We see that the global estimate stays within the

±3 times standard deviation limits from the mean, which is

expected in case of a Gaussian distribution.

B. Probability of detection

Next we investigate the probability of detection using the

proposed global power estimation algorithm. We compare the

performance of 5 different network sizes: K = 1, 3, 10, 30, 50
nodes. More specifically, the simulated and theoretical results

of PD of the last nodes in the set are compared. Table I

describes the data sets with chosen fixed channel constants

for this particular simulation: the mean and variance at the

last node in the set, when σ2
v = 1. N = 600. The threshold is

calculated using (19). We set PFA = 10−4. 1000 experiments

are made with given fixed set of channel constants and noise

power. The power estimate of the received signal at iteration N
is compared with the threshold. Theoretical PD is calculated

using (18). In addition, the theoretical PD with |αk|2 = 1 has
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been plotted. This particular result corresponds to the case

with no-fading. Fig. 4 shows the results with different noise

power levels.
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Fig. 4. Probability of detection, known constants, fixed step

As can be seen, there is a good match between simulated

and theoretical PD in every node set. The PDF of the test

statistic is approximated by a Gaussian distribution and the

CLT approximation applies even with small K and when

the underlying stochastic process is cyclostationary (since

the variance of the sample of received signal is changing

periodically over n). The PD of the set with few nodes is

more influenced by the given values of channel constants.

According to simulation data when K = 1 the PU signal

is in deep fading and this explains the worse PD result. In

case of non-distributed estimation and detection, not much

can be done to improve the PD. For the K = 3 and K = 10
the attenuation of PU signal appears to be smaller and thus

detection probability increases on higher noise power values.

As the number of nodes K increases, from about K = 30, the

PD result stabilizes close to the theoretical PD plot of the no

fading case.

V. CONCLUSIONS

In this paper we proposed a recursive distributed power

estimation approach, that is applicable for CR networks for

detecting the presence of PU signal. The performance analysis

of the derived algorithm was carried out and simulations

were run. It was shown, that the proposed signal power

estimation algorithm with a circular topology estimates the

power of received signal x(n) samples by diminishing the

effect of varying channel gains at specific nodes. The proposed

algorithm with fixed step size is able to track changes in

received signal power and usable in cognitive radio systems.
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Abstract: Cognitive radio (CR) has been seen as a promising technology to make radio spectrum usage more
effective by providing an opportunistic access for secondary users to the licensed spectrum areas. CR systems
need to detect the presence of a primary user (PU) signal by continuously sensing the spectrum area of interest.
Radiowave propagation effects like fading and shadowing often complicate the detection of PU because the PU
signal can be weak in a particular area. By sensing the radio spectrum area of interest in a cooperative manner, the
detection performance of PU signals can be increased and made more robust to channel fading. This paper studies
distributed spectrum sensing in a cognitive radio context. We propose and analyse a distributed, combine and adapt
type (CTA) of diffusion energy detection scheme where a central data processing unit is not needed and the required
test statistics is estimated across the network. CR nodes fuse the power estimates of several neighbour nodes in the
network. The PU signal is assumed to be in slow fading. The theoretical findings are verified through simulations.
The proposed CTA algorithm is compared with the ring around distributed power estimation algorithm.

Key–Words: Cognitive radio, distributed estimation, distributed detection, adaptive networks, energy detection.

1 Introduction

In this paper, we study a distributed detection prob-
lem, where we have a number of nodes in the network
sensing the spectrum area of interest.

The cognitive radio system is dynamic. The PU
signal can be absent or present at any time. Of-
ten in practice the statistical information (for example
conditional probability density of observations, prior
probabilities of detection hypotheses, statistical be-
haviour of PU) may not available a priori for con-
structing a PU signal detection solution. The prop-
erties of the detection statistics may change in time.

We need to look for estimation and detection
strategies which are able to react to possible changes
in the properties of detection statistics and to learn the
statistical information based on observations received
by the nodes in the network. To reduce the compu-
tational complexity (memory requirements) and in-
crease the learning speed, we look for methods, which
support real time processing. One of the possible di-
rection is to consider adaptive, on-line network learn-
ing methods. As new observations arrive, the esti-
mated parameter is updated directly, without a need
to re-run the network averaging process using all the
observations from the past. This is a reasonable ap-
proach in cognitive radio, since we would like to avoid

interference to the PU user and react to changes in a
channel usage as soon as possible. On the other hand
we would like to find the free spectrum opportunities
as fast as possible.

Several proposed distributed spectrum sensing so-
lutions make use of a central processing unit to col-
lect together all the observations from all the nodes
and make decisions about presence or absence of PU
[1],[2],[3],[4]. We would like to remove such a node
from the network. Instead we propose a power esti-
mation solution, where the power estimates and mea-
surements are fused in every cognitive radio network
node, to allow the node to make decisions based on
the data, which is available for the node. At every
time instant new measurements and estimates become
available, nodes in the network fuse the information
and then make individual decisions about the present
signal detection hypotheses.

Distributed adaptive estimation and detection
schemes have been studied in several papers. The
least mean square (LMS) and recursive least squares
(RLS) based estimation schemes were analysed in
[5],[6] and the consensus based schemes were han-
dled in [7],[8],[9],[10]. Optimal distributed detec-
tion, based on diffusion type LMS and RLS estimation
schemes, was studied in [11]. These two schemes rely
on matched filter detection. However, in CR network

Latest Trends in Circuits, Systems, Signal Processing and Automatic Control

ISBN: 978-960-474-374-2 38



here we make an assumption, that we do not have any
prior information about the waveform of the PU signal
in the secondary nodes and hence we cannot design a
matched filter. Therefore energy detection becomes a
practical solution.

A ring network topology for recursive distributed
energy detection without a fusion centre has been
analysed in [12]. Compared to [12], in the current pa-
per we propose a CTA diffusion based recursive cal-
culation of the test statistics for the energy detectors.
The test statistic in form of a converged power esti-
mate is the soft information used for making the de-
tection decision independently at every node. Such es-
timation strategy is able to track changes in the power
of the received signal in time, as new samples are
received. We propose a distributed parameter esti-
mation model, which in Rayleigh fading channel be-
comes more robust to fading, compared to the case,
where the test statistic is calculated over locally re-
ceived signal samples only or over few nodes. The
resulting energy detection performance is dependant
on the performance of the recursive power estimation
algorithm.

We organize the remainder of the paper as fol-
lows. In section II we review the system model and
the bases of energy detection. In section III we derive
an adaptive and distributed signal power estimation al-
gorithm based on diffusion LMS strategy. In section
IV we analyse the performance of the proposed dis-
tributed power estimation algorithm and the resulting
energy detection. In section V we present our simula-
tions results.

2 Distributed power estimation and
detection

In classical detection theory, an energy detector can
be used for detecting random signals in additive noise.
For energy detection in a cognitive radio context, the
type of PU signal can be completely unknown. The
common assumption is that the noise power is known
for being able to set the detection threshold. During
a sensing time t, an energy detector (ED) receives N
samples of a signal x(n) from a specific frequency
band [2]. The average energy of the received data
samples is the test statistic T (x) of the ED, which
compares T (x) to a predefined threshold γ and de-
cides which of the hypothesesH0 orH1 is more likely.

We assume the following signal model at node k:

H0 : E[|xk(n)|2] = E[|vk(n)|2]
H1 : E[|xk(n)|2] = E[|αk|2|s(n)|2] + E[|vk(n)|2],

(1)

where k = 1, 2, ...,K is the node number and n =
1, 2, ...N is the sample index. vk(n) is independent
and identically distributed (i.i.d) circularly symmetric
complex Gaussian (CSCG) noise with zero mean and
variance E[|vk(n)|2] = σ2v,k, i.e. v(n) ∼ CN(0, σ2v,k).
The power of the emitted PU signal s(n) is denoted as
E[|s(n)|2] = S, under H1. The primary signal s(n)
and the noise vk(n) are assumed to be statistically in-
dependent. The PU signal passes through a slowly
fading channel with gain αk(n). Note, that for imple-
menting the energy detector, knowledge about the val-
ues of channel constants is not required. Noise power
estimation is not considered in this paper. In this paper
we make the following assumptions:

• (AS1) The x(n) is sensed by K nodes in the CR
network.

• (AS2) The additive noise vk(n) is uncorrelated
in time and space and has the same power level
over all the nodes in the CR network.

• (AS3) The number of performed iterations N is
large enough.

• (AS4) The links between the CR nodes are ideal
and not capacity restricted (no need to quantize
the soft information).

We denote the received power estimate at node
k and at iteration n as P̂k(n). For estimating the re-
ceived signal power, we consider the CTA diffusion
strategy [13]. In this strategy every CR node k shares
the estimates (and also measurement is set so) with the
neighbour nodes which are the connected to node k.
Every node k fuses the estimates (and measurements)
from the neighbour nodes with the estimates (and
measurements) from itself and updates its own esti-
mate. In this work we assume the network topology
to be fixed over the sensing time. Also we consider
linear, fixed combinations of neighbour estimates and
measurements at every node k. We derive the CTA
diffusion algorithm in three phases. First we consider
local processing, when the nodes do not cooperate to
estimate the received signal power jointly. Secondly
we propose a global model for estimating the received
signal power in cooperative manner, where all the ob-
servations are collected together to a FC for central
processing. Finally we propose a fully distributed
power estimation algorithm, where the nodes can ob-
serve the measurements and share the data only with
their neighbour nodes.

2.1 Local and Global estimation
We start with the estimation of local received power
when the nodes do not cooperate between each other.
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We are interested in estimating the parameter, denoted
as P o

k , in the form

P o
k = E[|xk(n)|2]. (2)

By considering the standard cost function of Least
Mean Square (LMS) type of filter [14], the mean
square error of estimating the local received power
adaptively, given the signal model (1), is

Jk(P ) = E[||xk(n)|2 − P |2]. (3)

Minimization of (3) with respect to parameter P inde-
pendently at every node k results in the local solution,
which is given in (2) and noted as P o

k . The latter has
the desired form of a test statistic of an energy de-
tector. The local solution P o

k is optimal in the sense
of minimum mean square error. P o

k will vary at every
node k, since the expectation of E ||xk(n)|2 varies due
to channel gains. Using the standard steepest descent
procedure we can find an iterative solution to the (3).
The derivative of cost function (3) is

∇PJk(P ) = 2
(
P − E

[
|xk(n)|2

])
. (4)

We include the constant 2 into the step size µ. Since
usually the expected value in (4) is not known in prac-
tice, we replace the E|xk(n)|2 with its approxima-
tions |xk(n)|2 and we get the local LMS recursion

P̂k(n+ 1) = P̂k(n) + µ(|xk(n)|2 − P̂k(n)), (5)

which is in the form of an exponential smoother.
According to model (1), the power of the PU sig-

nal is attenuated at every node k. The locally esti-
mated power varies between nodes k. Therefore if
the channel gain at node k is low, the resulting energy
detection performance is low. The result is opposite,
when the node has a good channel gain. When nodes
cooperate to estimate a common parameter P o, the re-
sulting detection performance can become more sta-
ble and robust to channel fading. To accomplish this
purpose, we propose the following global parameter
P o in the form

P o =
1

K

K∑
k=1

E
[
|xk(n)|2

]
, (6)

which is the average of the received power across the
nodes k ∈ K in the network. According to (1) and
the assumption about the distribution of channel con-
stants we observe that if the PU signal is present and
when we have sufficient number of nodes in the CR
network, the effect of varying channel gains is aver-
aged out. The sum over channel gains converges close
to its variance 1.

Similarly to the local cost (3), the corresponding
global cost function can be given as:

Jglobal(P ) =
K∑
k=1

E
[
|xk(n)|2 − P

∣∣2]. (7)

where we have used the form of global cost as pro-
posed in [13], [11], [5]. Minimization of the mean
square error across the network (7) with respect to P
results in the optimal solution, which is denoted as P o

and is given by (6). The observation process |xk(n)|2
is assumed to be stationary at node k but the distribu-
tions of the observations vary across the nodes in the
network.

An iterative solution for minimizing (7) can sim-
ilarly be found using steepest descent method. The
derivative of cost function (7) is

∇PJ
global(P ) = 2

K∑
k=1

(
P − E

[
|xk(n)|2

])
(8)

Similarly the constant 2 can be included in step size
µ. By replacing the moment E |xk(n)|2 with its ap-
proximation |xk(n)|2 we get the global LMS type re-
cursion:

P̂ (n+ 1) = P̂ (n) + µ

[
K∑
k=1

[
|xk(n)|2 − P̂ (n)

]]
,

(9)
The algorithm (9) requires that all the observations
are collected together to a fusion center for updating
the recursion to compute a new estimate P̂ (n + 1).
Thus global information - data collected from all the
nodes in the network is needed to be present for the
algorithm to operate. Since the algorithm (9) is not
distributed, we propose next the distributed strategy
for the nodes to estimate P o based on the information
what is available to the nodes.

2.2 Distributed Diffusion LMS estimation
We assume that K nodes in the CR network are in-
terested to estimate the scalar parameter P 0 in a dis-
tributed manner, where nodes can rely only on the in-
formation, what is available to them. Nodes do not
have access to a global data. We need to find a way to
approximate the global cost (7) in a distributed man-
ner. The estimate P̂k(n) of optimal (6) should be
present at every node in the network for nodes being
able independently to perform an energy detection.

The derivation of the CTA diffusion LMS type
of algorithm follows the idea proposed in [6]. Let
Nk denote the neighbourhood group of node k ∈ K.
We assume the connections between the nodes in the
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neighbourhood are directed. Let us define a K × K
matrix C, which is doubly stochastic (i.e its rows and
columns should sum up to 1). The non-negative ele-
ment ck,l of matrix C defines if a measurement from
node l (including node k) is available for node k. It
holds that the element ck,l = 0 if l 6∈ Nk.

By using the elements ck,l we can express the lo-
cal cost and the corresponding local optimal solution
in the neighbourhood of node k as follows

J loc
k (P ) =

∑
l∈Nk

ck,l E[||xk(n)|2 − P |2], (10)

P loc
k =

∑
l∈Nk

ck,l E[|xk(n)|2. (11)

Similarly as in [6] the global cost can be frac-
tioned into the local cost of over the neighbourhood
of node k and local costs over the neighbourhood of
other nodes. Using the completion of squares method
to relate parameter P and local optimal solution P loc

k
the global cost function can be expressed as:

Jglob(P ) =
∑
l∈Nk

ck,l E
[
|xk(n)|2 − P

∣∣2]
+

K∑
l 6=k

‖P − P loc
l ‖2, (12)

where we have used the fact that rows of C sum up to
1. Let us define a K ×K doubly stochastic matrix B.
The non-negative element bk,l of matrix B defines if
data from from node l (including node k) is available
for node k. It holds that bk,l = 0 if l 6∈ Nk. With the
help of elements bk,l the corresponding approximation
of (12) in case of distributed estimation is given as

Jdist
k (P ) =

∑
l∈Nk

ck,l E
[
|xk(n)|2 − P

∣∣2]
+

∑
l∈Nk/{k}

bk,l‖P − ψl‖2. (13)

In (13) the P loc
l has been replaced with the intermedi-

ate estimate ψl available at node l. The derivate of the
cost function is (13) is

∇PJ
dist
k (P ) = 2

∑
l∈Nk

ck,l
[
P − E

[
|xl(n)|2

]]
+ 2

∑
l∈Nk/{k}

bk,l [P − ψl] . (14)

The cost (13) can be used to obtain a recursion for
the estimate of P at node k, denoted as P̂k(n). Using

the steepest descent method, which is divided into two
parts we get an iterative solution for (13) as follows:

ψ̂k(n) = P̂k(n) + νk
∑

l∈Nk/{k}

bk,l

[
ψl − P̂k(n)

]
P̂k(n+ 1) = ψ̂k(n) + µk

∑
l∈Nk

ck,l

[
E |xl(n)|2 − P̂k(n)

]
.

(15)

Here different step size at the nodes k have been as-
signed and the constant 2 has been taken inside step
sizes µk and νk. In the first row of (15) we replace ψ̂l

with P̂l(n), which is available at time n. In the sec-
ond row of (15) we replace P̂k(n) by ψ̂k(n). Thus the
second row leads to

ψ̂k(n) =

1− νk ∑
l∈Nk/{k}

bk,l

 ψ̂k(n)

+ νk
∑

l∈Nk/{k}

bk,lψ̂l(n). (16)

Let us finally define aK×K doubly stochastic matrix
A. The non-negative element ak,l defines if estimate
from node l (including node k) is available for node
k. Thus for the elements of A it holds that ak,l = 0

if l 6∈ Nk. By taking ak,k =
[
1− νk

∑
l∈Nk/{k} bk,l

]
and ak,l = νkbk,l for l 6= k we arrive to LMS type re-
cursion what is called combine and adapt (CTA). We
summarise it together with energy detection as Algo-
rithm 1. In the CTA diffusion algoritm, the estimates

Algorithm 1 Distributed CTA Diffusion Power Esti-
mation

Start with P̂k(0) = P (0).
Given non-negative real coefficients ak,l, ck,l
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. Power estimation:
ψ̂k(n) =

∑
l∈Nk

ak,lP̂l(n)

P̂k(n+ 1) = ψ̂k(n)
+µk

∑
l∈Nk

ck,l
(
|xl(n)|2 − ψk(n)

)
.

2. Detection decision:
H0 : P̂k(n+ 1) < γ or H1 : P̂k(n+ 1) > γ.
(Refer to (43) for selecting the threshold).

end for
end for{
P̂k(n)

}
k∈Nk

including the P̂k(n) from node k are

combined together at every node k. This is the diffu-
sion step. Then the combined estimate ψ̂k(n) at node
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k is used to calculate the new estimate P̂k(n + 1) at
node k, using the new observation available for node
k, at time instant n. This is the incremental step.

3 Performance analysis
The performance analysis of the proposed algorithms
is divided into three parts. First we analyse the mean
and variance of CTA power estimates. Next we anal-
yse the resulting energy detection performance. Let
us note that for the theoretical analysis we need to
know the values of the channel gains. For implement-
ing the Algorithm 1 in practice, this knowledge is not
required.

For more convenient notation we stack the esti-
mates and observations from all the nodes into K × 1
vectors as follows:

P̂ (n) =

 P̂1(n)
...

P̂K(n)

, X(n) =

 |x1(n)|
2

...
|xK(n)|2

. (17)

Let us define additional matrix M which holds the
LMS algorithm step size parameters as follows

M = diag (µ1, . . . , µK) . (18)

Then we can write the recursion in the following form

P̂ (n+ 1) = (I −M)AP̂ (n) +MCX(n). (19)

The initial estimate is P̂ (n) =
[
P̂k(0) . . . P̂k(0)

]T
.

For the CTA algorithmA = Adiff, C = I orC = Adiff
in case the measurements are exchanged between the
nodes. Observe, that we can use the same recursion
also for analysing the results in ring around topology
[12], where A = Aring and C = I . For example when
we have 3 nodes in the network, the corresponding
ring around and diffusion topologies are given as fol-
lows

Aring =

0 0 1
1 0 0
0 1 0

 , Adiff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 .
(20)

Both the Aring and Adiff are doubly stochastic. In
this paper the diffusion topology is composed of local
(A = I) and ring-around (Adiff) topologies, where we
assign constant equal weights 0.5 for every allowed
transition.

For evaluating the performance of the estima-
tion algorithms and the resulting energy detection, we
need to evaluate first the theoretical mean and variance
of estimates P̂ (n).

3.1 Mean of estimation
According to signal model (1) let E(X(n)|Hi), i =
0, 1 denote the conditional mean under hypothesesH0

(the mean when PU signal is absent) or under H1 (PU
signal is present) respectively. Considering the recur-
sion (19), we have

E(P̂ (n+ 1)) = (I −M)AE(P̂ (n))

+MC E (X(n)) , (21)

where the initial value is given as E(P̂ (0)) =[
P̂k(0) . . . P̂k(0)

]T
.

We define a column vector wk, with dimension
K×1 and which elements are zero, except the element
k of vector wk(k) is one, i.e

wk = col(0 . . . , (wk(k) = 1), . . . 0). (22)

The conditional mean of P̂k(n) under hypothesis Hi,
for i = 0, 1 at node k can be found with the help of
vector wk as follows

E(P̂k(n)|Hi) = wT
k E(P̂ (n)|Hi) for i=0,1. (23)

After iterating (21), the mean recursion can be given
in the following equivalent form

E(P̂ (n)) = [(I −M)A]n P̂ (0)

+

[
n−1∑
i=0

[(I −M)A]i
]
MC E[X(n)].

(24)

We are interested in the mean of the estimates in
steady state, when the filter has converged, i.e when
n → ∞. Thus according to (24) we need to anal-
yse the asymptotic behaviour of the power of ma-
trix [(I −M)A]n and the limit of geometric se-
ries

∑n−1
i=0 [(I −M)A]i. Considering [15, Theorem

5.6.12], the power of matrix [(I −M)A] converges
asymptotically to zero if the matrix is stable. The ma-
trix is stable if and only if the eigenvalues λi of matrix
[(I −M)A] are strictly inside the unit circle, i.e

|λk [(I −M)A]| < 1 for all k=1. . . K. (25)

Thus given the diffusion strategies with a doubly
stochastic matricesA andC the convergence of power
of the matrix [(I −M)A] to zero is dependant on the
selected step sizes in matrix M. The choice of step
sizes should guarantee that the condition (25) holds.

In the recursion the matrix A is equal to doubly
stochastic matrix Aring, Adiff or identity matrix I . The
matrix C is doubly stochastic or equals to I if no
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measurements are fused. According to matrix spec-
tral norm we can write for CTA algorithm that

‖ (I −M)A‖2 ≤ ‖ (I −M) ‖2‖A‖2. (26)

The spectral norm of doubly stochastic matrices A,
C and identity matrix I is 1. Since the matrix
(I −M) is symmetric, we have that || (I −M) ||2 =
|λmax ((I −M))|. If the matrix on the LHS of (26)
is also symmetric, then we can also replace the LHS
with || (I −M)A||2 = |λmax ((I −M)A)|. We
have

|λmax ((I −M)A)| ≤ |λmax (I −M)| . (27)

We conclude that in general if the step sizes µk in
matrix M are selected so that the spectrum of matrix
(I −M) is inside the unit circle, it holds also that the
matrix (I −M)A is stable.

For the selection of µk, k = 1 . . .K so that the
diagonal matrix (I −M) is stable, we have the fol-
lowing condition

|λk [(I −M)A]| = |1− µk| < 1 for all k=1. . . K.
(28)

Since in our model we have only one mode of conver-
gence of the filter [14], µk should be selected in the
range:

0 < µk < 2. (29)

The geometric series Sn =
∑n−1

i=0 [(I −M)A]i is
generated by matrix [(I −M)A] and converges if
and only if the condition (25) holds for all λi. When
it holds we can write the geometric series as follows

Sn = [I − [(I −M)A]]−1 [I − [(I −M)A]n] .
(30)

Hence according to (25) as n → ∞ the power of ma-
trix [(I −M)A]n converges to zero. Thus by using
the coverged result of the geometric series and by not-
ing the mean of P̂ (n) in steady state and under both
hypotheses Hi, i = 0, 1 as E(P̂ (∞)|Hi), we can
write

E(P̂ (∞)|Hi) = [I − [(I −M)A]]−1

×MC E[X(n)|Hi], (31)

where the conditional expectations of observations are
given by (1). Similarly to (23) we have that the mean
of P̂k(n) in steady state is

E(P̂k(∞)|Hi) = wT
k E(P̂ (∞)|Hi) for i=0,1.

(32)

3.2 Variance of estimation
To find the recursion for the variance of P̂k(n), at
node k ∈ K, we start from the recursions (19), (21)
and derive first the recursion for covariance matrix
Cov(P̂ (n)). The covariance of P̂ (n) is defined as

Cov(P̂ (n)) = E
(
P̂ (n)− E[P̂ (n)]

)
×
(
P̂ (n)− E[P̂ (n)]

)T
. (33)

Let us note the conditional covariance of estimates un-
der the hypothesis Hi, i = 0, 1 as Cov(P̂ (n+1)|Hi).
Similarly let Cov(X(n)|Hi) denote the conventional
covariance of observations. After substituting (19)
and (21) into (33), taking expectation and consider-
ing the fact that P̂ (n) is independent of observation
vector X(n), it can be shown that the covariance re-
cursion is

Cov(P̂ (n+ 1)|Hi) = (I −M)ACov(P̂ (n|Hi))

×AT (I −M)

+MC Cov(X(n)|Hi)C
TM.

(34)

where initial estimate of covariance matrix is noted
by Cov(P̂ (0)|Hi), i = 0, 1. The covariance matrix of
observations Cov(X(n)|Hi) is constant over time n.

The covariance matrix Cov(X(n)|Hi) of K ×K
has the following structure. When PU signal is present
the main diagonal elements of matrix Cov(X(n)|H1)
- the variances of observations at node k ∈ K can be
shown to be:

Var(|xk(n)|2|H1) =
(
|αk|2σ2s + σ2v,k

)2
. (35)

When PU signal is not present and according to As-
sumption 2 the variances of observations at node k ∈
K are given as

Var(|xk(n)|2|H0) = σ4v,k. (36)

When PU signal is present, the off diagonal elements
of matrix Cov(X(n)|H1) - the covariance of observa-
tions at nodes k and j if k, j ∈ K and i 6= j can be
shown to be:

Cov(|xk(n)|2, |xj(n)|2|H1) = |αk|2|αj |2σ4s . (37)

According to Assumption 2 the noise realizations
vk(n) and vj(n) are uncorrelated in time and space
for k, j ∈ K and i 6= j. Thus when PU signal is
absent the covariance of observations is

Cov(|xk(n)|2, |xj(n)|2|H0) = 0, (38)
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for k, j ∈ K and i 6= j.
The variance of P̂k(n) at node k under the hy-

pothesis Hi, i = 0, 1, can be found by multiplying the
recursion (34) with vector wT

k from the left and with
vector wk from the right

Var(P̂k(n+ 1)|Hi) = wT
k (I −M)ACov(P̂ (n)|Hi)

×AT (I −M)wk

+ wT
kMC Cov(X(n)|Hi)

× CTMwk. (39)

To derive the steady state value for Var(P̂k(n)|Hi) we
note that (34) is in a form of discrete time algebraic
Riccati equation (DARE), [16, App. E]. Due to space
constraints we skip the derivation details and note that
the steady state variance Var(P̂k(∞)Hi), i = 0, 1,
at node k ∈ K can be recovered by selecting the
{k, k} element of the steady state covariance matrix
Cov(P̂ (∞)|Hi), which has been found as a solution
to DARE. We have finally

Var(P̂k(∞)|Hi) = wT
k

[
Cov(P̂ (∞)|Hi)

]
wk. (40)

3.3 Detection Performance Analysis
As mentioned earlier the test statistic of the energy
detector at node k at time instant n is estimated us-
ing CTA signal power estimation algorithms. Thus
the resulting detection performance is dependant on
the performance of the underlying estimation process.
For deriving the formulas of probability of detection
(PD) and probability of false alarm (PFA) we need to
evaluate the probability density function (PDF) of the
test statistic P̂k(n) under both hypothesesH0 andH1.

Since the input signal is CSCG and in case K =

1, the test statistic of ED P̂k(n) is local and under both
hypothesis a Chi-Square distributed random variable
with 2N degrees of freedom. The test statistic P̂k(n)
is obtained as a sum of a number of identically dis-
tributed variables and hence the CLT can be applied
to approximate the Chi square distribution by a Gaus-
sian distribution [17]. According to AS3 the number
of samples is large enough, and the CLT is expected
to apply.

The global test statistic P̂k(n) in case of hypoth-
esis H1, is however estimated over independent, but
not identically distributed variables. In such a case
the Lyapunov CLT [18] still be applied over a large
number of samples to result in a Gaussian approxima-
tion. We found in previous section that the variance
P̂k(n) in steady state is bounded. In [12] the formulas
for the PFA and PD,k of the energy detector have been
derived.

Using these results and by taking into account the
(23) and (39), we provide approximate formulas for
the resulting energy detection performance.

The probability of false alarm PFA of the energy
detector under hypothesis H0 (using the theoretical
mean and variance of estimates under H0) is given as
follows

PFA = Q

γ − E(P̂k(n)|H0)√
Var(P̂k(n)|H0)

 . (41)

Based on the assumption AS2, we observe that the
formula holds for every node k ∈ K.

The probability of detection of an energy detector
under hypothesis H1 (using the mean and variance of
estimates under H1) is correspondingly given as fol-
lows

PD,k = Q

γ − E(P̂k(n)|H1)√
Var(P̂k(n)|H1)

 . (42)

The sensing threshold is found from (41) by fixing the
desired value of PFA. Thus

γ = E[P̂k(n)|H0]

+ Q−1 (PFA)

√
Var[P̂k(n)|H0].

(43)

Due to the assumption AS2 the thresholds for every
CR node k are equal.

However calculation of the threshold requires
knowledge about the moments of the estimation al-
gorithm under hypothesis H0 and these moments are
dependant on the algorithm parameters (especially on
the step size). In practice for the threshold calcula-
tion, the required moments can be calculated in ad-
vance using (23) and (39), known values of step size,
noise power and then inserting these results into (43).

4 Simulation results
In the numerical simulation section we investigate the
CTA type of power estimation algorithm (with con-
stant step size). We compare the results with the pre-
viously proposed ring around [12] power estimation
algorithm. Secondly we view the resulting energy de-
tection performance of the CTA diffusion algorithm
and compare to the ring around algorithm. In all these
simulations the PU signal s(n) is taken as QPSK with
unit power S, under the active hypothesisH1, the step
size is: µ = 0.01.
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4.1 Local and distributed power estimation
We start with the investigation of the estimation al-
gorithms. The channel gain is assumed to be con-
stant and obtained by: αk ∼ CN(0, 1). We use the
same channel gain values for all the algorithms. All
the nodes in the network receive N = 2000 samples.
During samples n = 1 . . . 1000 the PU signal with
constant unit power S is present. The power S is at-
tenuated by the channel gain |αk|2. In sample range
n = 1001 . . . 2000 the PU signal is absent and only
noise is present. Under both detection hypothesis the
noise power is σ2v = 1 and assumed to be the same
in all the nodes. In the following simulations no mea-
surements are exchanged thus, C = I . When nodes
do not cooperate, then the estimation results are highly
dependant on the given channel gains and therefore
vary across the nodes in the network. When nodes
cooperate using to ring around topology, then the cor-
responding power estimates are given in the Fig. 1.
All the estimated power values in the CR network of
10 nodes are plotted in one figure. In addition the op-
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Figure 1: Local power estimation

timal solution P o has been calculated according to (6)
using the given channel gains values and is added in
the figure as a back dashed line. We see that the es-
timates of P o fluctuate around the optimal solution,
under both active detection hypotheses. Let us note,
that it can be numerically verified, that the theoretical
mean and variance of the ring around estimates, which
are calculated using the formulas (23) and (39), match
with the results, which are found using the formulas
[12, Eq. 5] and [12, Eq. 10].

The CTA diffusion algorithm the estimates of
the received power together with optimal solution P o

have been plotted in Fig. 2. Compared to the ring
round, the variance of estimates of CTA algorithm is
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Figure 2: Local power estimation

lower than the variance of estimates of ring around
algorithm. We can conclude that the preciseness of
power estimates increases when CTA algorithm is
used. Thus also the resulting detection performance
increases, what we show in next subsection.

4.2 Probability of detection

Next we investigate the probability of detection using
the proposed distributed CTA power estimation algo-
rithm. We compare the performance of 5 different net-
work sizes: K = 1, 3, 10, 30, 50 nodes. The estimated
and theoretical results of PD of the last nodes in the set
are compared, i.e at nodes k = K. In the simulations
the converged power estimate is used for detection i.e
P̂k(∞). The theoretical mean and variance of power
estimates can hence be calculated directly using the
steady state formulas (32), (40). The mean and co-
variance of the observation vector is taken under the
detection hypothesis H1 and the choices of values of
matrices A and C to define CTA or ring around algo-
rithms.

We set the desired PFA = 10−4. The thresholds
of the energy detectors at nodes k ∈ K are calculated
using (43) and by using the corresponding theoretical
steady state mean and variance of the power estimates
under detection hypothesis H0.

For estimating the PD we use the Monte Carlo
method [19]. The estimated PD is compared with the
theoretical PD. The latter is calculated using (42) and
using the corresponding steady state mean and vari-
ance of the power estimates of the two algorithms un-
der detection hypothesis H1.

First we set C = I . The detection performances
of the ring around, and CTA algorithms are shown in
Fig. 3, and in Fig. 4 respectively. We see that there is
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Figure 3: Probability of detection, ring around, C = I
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Figure 4: Probability of detection, CTA, C = I

a good match between estimated and theoretical PD.
Due to the smaller variance, the CTA algorithm out-
performs the ring around algorithm. As the number of
nodes in the network increases, about 4 dB is gained
with respect to the noise power.

When also measurements from a neighbour nodes
are available and we set C = Adiff for CTA algo-
rithm. The result is shown in Fig. 5. We see minor
increase in the detection performance when addition-
ally measurements are exchanged between the nodes.
When the data transfer and processing capacity at the
nodes is limited (energy constants etc), then the mea-
surement exchange does not give significant improve-
ment in resulting detection performance. However by
fusing more estimates compared to the simplest ring
around algorithm, we see notable improvement in re-
sulting detection performance.
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Figure 5: Probability of detection, CTA topology,
C = Adiff

5 Conclusion
In this paper we proposed a diffusion based distributed
power estimation approach, that is applicable for CR
networks for detecting the presence of PU signal. We
derived CTA diffusion based power estimation algo-
rithm for energy detection. The performance analy-
sis of the derived algorithm was carried out and sim-
ulations were run. It was shown that the CTA diffu-
sion power estimation algorithm outperforms the pre-
viously proposed ring around algorithm, while the ef-
fect of exchanging also measurements is rather small.
The proposed algorithm is able to track changes in re-
ceived signal power and is usable in cognitive radio
systems.
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Abstract—Cognitive radio (CR) is seen as a promising technol-
ogy to make radio spectrum usage more effective by providing
an opportunistic access for secondary users to the licensed
spectrum areas. CR systems need to detect the presence of a
primary user (PU) signal by continuously sensing the spectrum
area of interest. Radiowave propagation effects like fading and
shadowing often complicate sensing of spectrum holes because
the PU signal can be weak in a particular area. Cooperative
spectrum sensing is seen as a prospective solution to enhance the
detection of PU signals. This paper studies distributed spectrum
sensing in a cognitive radio context. We investigate distributed
energy detection schemes without using any fusion center. We
propose the usage of distributed, diffusion least mean square
(LMS) type of power estimation algorithms. In this paper an
Adapt and Combine (ATC) diffusion based power estimation
scheme is proposed and the performance is compared with
the Combine and Adapt (CTA) and ring-around schemes in
a common framework. The PU signal is assumed to be slowly
fading. We analyse the resulting energy detection performance
and verify the theoretical findings through simulations.

Index Terms—Cognitive radio, distributed estimation, diffusion
LMS, diffusion networks, distributed detection, energy detection.

I. INTRODUCTION

The cognitive radio (CR) system is dynamic. Often in

practice the statistical information (for example conditional

probability density of observations, prior probabilities of de-

tection hypotheses, longer time statistical behaviour of primary

user (PU)) is not available a priori for constructing a PU

signal detection solution. The properties of the test statistics

(for making a detection decision) may change in time.

In cognitive radio context we would like to avoid interfer-

ence to the PU user and find free spectrum opportunities as fast

as possible. On-line distributed network learning methods are

able to learn the statistical information based on observations

received by the nodes in the network. These methods can react

to possible changes in the properties of estimated statistics in

real time.

Several proposed distributed spectrum sensing solutions

make use of a central fusion center [1], [2], [3], [4]. A

fusion center is however seen as a single point of failure

in the network since a malfunction in this unit affects the

performance of the whole distributed solution. We propose a

power estimation solution, where the available power estimates

(and measurements) are fused in cognitive radio network

nodes, to allow all nodes to make detection decisions based

on data from the neighbour nodes and without involvement of

any central processing unit. Such a solution enhances network

failure resistance (at the cost of slightly increased information

overhead in the network).

Several distributed adaptive estimation and detection

schemes have been studied in the past. Least mean square

(LMS) and recursive least squares (RLS) based estimation

schemes are analysed for example in [5], [6], [7], [8] and

consensus based schemes in [9], [10], [11], [12]. Optimal,

matched filter distributed detection, based on diffusion type

LMS and RLS estimation schemes, was studied in [13]. Here,

we make the assumption that the CR network does not have

any prior information about the waveform of the PU signal in

the secondary nodes and hence we cannot design a matched

filter. Therefore energy detection becomes a practical solution.

A ring network topology for distributed energy detection

without a fusion centre has been suggested in [14]. In [15] we

proposed and analysed an estimation based recursive calcula-

tion of the test statistics for the energy detectors in cognitive

radio network with ring topology. The test statistic in form of

a converged power estimate is the soft information used for

making the detection decision at every node. Ring networks

are however sensitive to link failures. Combine and Adapt

(CTA) diffusion based recursive calculation of the test statistics

for the energy detectors was proposed and studied in [16]. In

this paper we analyse the Adapt and Combine (ATC) version

of diffusion LMS type of received power estimation algorithm.

The performance of the ATC diffusion based distributed power

estimator is compared with the previously proposed CTA [16]

and ring [15] schemes to complete the analysis. The resulting

energy detection performance is studied and is dependent

on the performance of the used distributed recursive power

estimation algorithm.

We organize the remainder of the paper as follows. In

section II we review the system model and the basics of energy

detection. We derive an ATC type received signal power

estimation algorithm based on diffusion LMS strategy and

summarize the CTA based version. In section III we analyse

the performance of the proposed distributed power estimation978-1-4799-5291-5/14/$31.00 c©2014 IEEE

Special Session on Recent Advances in Broadband Access Networks 2014

978-1-4799-5291-5/14/$31.00 ©2014 IEEE 176



algorithm (using a common model) and the resulting energy

detection. In section IV we present our simulations results.

II. DISTRIBUTED POWER ESTIMATION AND DETECTION

We assume the following signal model at node k:

H0 : E[|xk(n)|2] = E[|vk(n)|2]
H1 : E[|xk(n)|2] = E[|αk|2|s(n)|2] + E[|vk(n)|2], (1)

where k = 1, 2, ...,K is the node number and n = 1, 2, ...N
is the sample index. vk(n) is independent and identically dis-

tributed (i.i.d) circularly symmetric complex Gaussian (CSCG)

noise with zero mean and variance E[|vk(n)|2] = σ2
v,k, i.e.

v(n) ∼ CN(0, σ2
v,k). The power of the emitted PU signal

s(n) is denoted as E[|s(n)|2] = S, under H1. The primary

signal s(n) and the noise vk(n) are assumed to be statistically

independent. The PU signal passes through a slowly fading

channel with gain αk(n). The gain αk is considered to be

constant. Note, that for implementing the energy detector,

only the noise variance is needed to determine the detection

threshold γ, therefore estimates of the channel gains are not

required in practical implementations. Noise power estimation

is not considered in this paper. In this paper we make the

following assumptions:

• (AS 1) The x(n) is sensed by K nodes in the CR network.

• (AS 2) The additive noise vk(n) is uncorrelated in time

and space and has the same power level over all the nodes

in the CR network.

• (AS 3) The number of performed iterations N is large

enough.

• (AS 4) The links between the CR nodes are ideal and

not capacity restricted (no need to quantize the soft

information).

We denote the power estimate at node k and at iteration n
as P̂k(n). The network topology is assumed to be fixed over

the sensing time. We consider a linear, fixed combination of

neighbour estimates and measurements at every node k.
Next we shortly review the global model for estimating

the received signal power in cooperative manner (as proposed

in [16]). Then we derive an ATC type power estimation

algorithm, where the nodes can observe the measurements

and share the estimates (and measurements) only with their

neighbour nodes, according a to predefined network topology.

Finally we propose a data exchange and combination strategy

for ATC diffusion algorithm.

A. Global estimation
According to model (1), the power of the PU signal is

attenuated at every node k. The locally estimated power varies

between nodes k. Therefore if the channel gain at node k is

low, the resulting energy detection performance is low. The

result is opposite, when the node has a good channel gain.

When nodes cooperate to estimate a common parameter P o,

the resulting detection performance will improve. As in [16]

we recommend the following form of P o

P o =
1

K

K∑
k=1

E
[|xk(n)|2

]
= S

1

K

∑
k=1

|αk|2 + σ2
v . (2)

The P o is the average of the received power across the nodes

k ∈ K in the network. The second equation in (2) follows

from the signal model (1) if the PU signal is present and from

the assumption AS 2. When we have sufficient number of

nodes in the CR network, the effect of varying channel gains

is averaged over nodes k ∈ K.

The corresponding global cost function is given as:

Jglob(P ) =
K∑

k=1

E
[|xk(n)|2 − P

]2
, (3)

where we have used the form of global cost as proposed

in [17], [13], [5]. Minimization of the mean square error

across the network (3) with respect to P results in the optimal

solution, which is given by (2).

B. Distributed ATC Diffusion LMS estimation

Suppose that K nodes in the CR network are interested in

estimating the scalar parameter P 0 in a distributed manner,

where nodes rely only on the information, that is available to

them. Depending on network topology, nodes are connected

only to selected neighbour nodes and do not have access to

any global data. The global cost (3) needs to be approximated

in a distributed manner. The derivation of the ATC diffusion

power estimation algorithm follows the ideas in [18], [6].

Let Nk denote the neighbourhood group of node k ∈ K, i.e

Nk consists of nodes l which can communicate with node k.

We assume that the network is connected and the connection

between nodes l and k is unidirectional.

Let us define K×K doubly stochastic matrix C 1 containing

non-negative elements cl,k and cl,k = 0 if l �= Nk (i.e when

data from node l is not available for node k). The local cost and

the corresponding local optimal solution in the neighbourhood

of node k can be expressed with the help of coefficients cl,k
as follows

J loc
k (P ) =

∑
l∈Nk

cl,k E
[|xl(n)|2 − P

]2
, (4)

P loc
k =

∑
l∈Nk

cl,k E
[|xl(n)|2

]
. (5)

The global cost can be fractioned into the local cost of over

the neighbourhood of node k and local costs over the neigh-

bourhood of other nodes. Using the completion of squares

argument [17] to relate variable P and local optimal solution

P loc
l , secondly ignoring the mmse part which is not dependant

on P , the global cost function can be expressed as follows

Jglob′(P ) =
∑
l∈Nk

cl,k E
[|xl(n)|2 − P

]2
+

K∑
l �=k

‖P − P loc
l ‖2.

(6)

Node k may not have access to all the data P loc
l in the network.

We modify the second member of right hand side (RHS) of (6)

by replacing the summation
∑K

l �=k with
∑

l∈Nk/{k}. Next we

replace ‖P − P loc
l ‖2 ≈ bl,k‖P − P loc

l ‖2 ([18, Eq. 117]). We

1For a doubly stochastic matric C it holds that C1 = 1 and 1TC = 1T .
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collect the non-negative coefficients bl,k in a K×K matrix B

and assume bl,k = 0 if l �= Nk. Also we replace the unknown

P loc
l with an intermediate estimate ψ̂l available at node l. Then

the approximation of (6) at node k is given as

Jdist
k (P ) =

∑
l∈Nk

cl,k E
[|xl(n)|2 − P

]2
+

∑
l∈Nk/{k}

bl,k‖P − ψ̂l‖2 (7)

and derivative of the cost function is (7) is

∇PJ
dist
k (P ) = 2

∑
l∈Nk

cl,k
[
P − E

[|xl(n)|2
]]

+ 2
∑

l∈Nk/{k}
bl,k

[
P − ψ̂l

]
. (8)

The cost (7) can be used to obtain a recursion for the estimate

of P at node k, denoted as P̂k(n). Using the steepest descent

method, which is divided into two parts, we get an iterative

solution for (7) as follows:

ψ̂k(n+ 1) = P̂k(n) + μk

∑
l∈Nk

cl,k

[
E
[|xl(n)|2

]− P̂k(n)
]

P̂k(n+ 1) = ψ̂k(n+ 1) + νk
∑

l∈Nk/{k}
bl,k

[
ψl − P̂k(n)

]
.

(9)

Different step sizes μk and νk at the nodes k have been

assigned and the constants 2 has been incorporated into μk

and νk. In the second equation of (9) we replace ψ̂l with time

dependant ψ̂l(n+ 1), P̂k(n) with ψ̂k(n+ 1) and we get

P̂k(n+ 1) =

⎡
⎣1− νk

∑
l∈Nk/{k}

bl,k

⎤
⎦ ψ̂k(n+ 1)

+ νk
∑

l∈Nk/{k}
bl,kψ̂l(n+ 1). (10)

Next we introduce the coefficients al,k = 0 if l �= Nk, al,k =
νkbl,k if l �= k and ak,k = 1− νk

∑
l∈Nk/{k} bl,k if l = k. If

we collect the coefficients al,k into a K ×K matrix A, it is

straightforward to see that
∑

l∈Nk
al,k = 1 for every k ∈ K

and thus A is a left stochastic matrix 2 (but A can be also

doubly stochastic). We replace E |xl(n)|2 with |xl(n)|2 and

finally arrive to the Adapt and Combine (ATC) recursions that

we summarise with energy detection as Algorithm 1.

In the ATC diffusion algorithm, during the incremental

step, at time instant n, the estimate ψ̂k(n + 1) at node k is

calculated using the estimate P̂k(n) at node k and the new

observation available for node k. The coefficients cl,k define

how the measurements are exchanged between the nodes.

During the diffusion step the estimate P̂k(n+1) at every node

k is calculated using a linear combination of the estimates

ψ̂l(n+1) available for node k. The elements al,k specify the

combination strategy of estimates.

2For a left stochastic matric A it holds 1TA = 1T .

Algorithm 1 Distributed ATC Diffusion Power Estimation

Start with P̂k(0) = P (0).
Given non-negative real coefficients al,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. Power estimation:

ψ̂k(n+ 1) = P̂k(n)

+μk

∑
l∈Nk

cl,k

(
|xl(n)|2 − P̂k(n)

)
P̂k(n+ 1) =

∑
l∈Nk

al,kψ̂l(n+ 1).
2. Detection decision:

H0 : P̂k(n+ 1) < γ or H1 : P̂k(n+ 1) > γ.

(Refer to (32) for selecting the threshold).

end for
end for

Note that in practice the non-negative coefficients al,k and

cl,k can be chosen freely under the conditions, that C1 = 1,

1TC = 1T , 1TA = 1T , al,k = 0, if l �= Nk and cl,k = 0
if l �= Nk. The coefficients bl,k are absorbed into coefficients

al,k and do not have to be considered in practice.

C. Network topologies

In the ring-around topology [15], the power estimates are

exchanged circularly between the nodes. At time instant n,

node k has access only to one estimate P̂(k−1)modK(n) from

the node (k − 1)modK for calculating P̂k(n + 1). The local

estimate P̂k(n) is ignored. The algorithm uses only locally

observed measurements (i.e C = I). Thus K estimates have

to be sent over the wireless links at time instant n.

To improve the link failure resistance but keep the need

for exchanging the data over wireless links in the network

minimal, we compose the diffusion topology from the local

(A,C = I) and ring-around topologies. At time instant

n, at node k the local estimate P̂k(n) and the estimate

P̂(k−1)modK(n) from node (k − 1)modK are fused together

using equal, constant weight 0.5 for calculating P̂k(n + 1).
For example when K = 3 and keeping the same notation and

conditions for the elements of matrix A, the ring around and

diffusion topologies are given as follows

AT
ring =

⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦ , AT

diff =

⎡
⎣0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

⎤
⎦ . (11)

If measurements are exchanged between the nodes, then we

set C = AT
diff. Hence at time instant n additionally K

measurements have to be exchanged in the network. Otherwise

C = I . Therefore in the subsequent sections we assume, that

both matrices C and A are doubly stochastic (i.e we have

additionally A1 = 1) and all the conditions for selecting

elements al,k and cl,k, listed in last subsection, are satisfied.

III. PERFORMANCE ANALYSIS

The performance analysis of the proposed algorithms is

divided into two parts. First we derive a general model for
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analysing the mean and variance of the estimates of the ATC,

CTA [16] and ring-around [15] algorithms in one framework.

Next we analyse the resulting energy detection performance.

Let us note that for the theoretical performance analysis we

need to know the values of the channel gains.

For more convenient notation we stack the estimates and

observations from all the nodes k ∈ K into K × 1 time

dependent vectors P̂ (n) =
[
P̂1(n) . . . P̂K(n)

]T
and X(n) =[|x1(n)|2 . . . |xK(n)|2]T respectively.

Let us define additional matrix M = diag {μ1, . . . , μK},
which contain the algorithm step size parameters. We intro-

duce also two additional K×K matrices L1 and L2 for being

able to represent all the 3 algorithms using one framework.

Then we can write the recursion in the following general form

P̂ (n+ 1) = L2 (I −M)L1P̂ (n) + L2MCX(n). (12)

The initial estimate is P̂ (0). It follows, that we get the ATC

algorithm, when we take L2 = AT
diff, L1 = I , C = I or

C = AT
diff in case of the measurements are exchanged between

the nodes. For CTA algorithm we take L1 = AT
diff, L2 = I ,

C = I or C = AT
diff. The ring around topology is selected

when L2 = I , L1 = AT
ring and C = I . Note that to keep

the matching notation with Algorithm 1, we use transposed

matrices in the general recursion. The local, non-cooperative

received power estimation is represented by L1 = L2 = C =
I .

For evaluating the performance of the estimation algorithms

and the resulting energy detection, we first evaluate the mean

and variance of estimates P̂ (n).

A. Mean of estimates

Following the signal model (1), let us denote the conditional

expectation of the observation vector as E [X(n)|Hi], where

i = 1 denotes the case when PU signal is present and i = 0
the case when PU signal is absent. In this section we assume

that the environment is stationary. The conditional means are

thus constant over time.

Considering the general recursion (12), we have

E
[
P̂ (n+ 1)|Hi

]
= L2 (I −M)L1 E

[
P̂ (n)|Hi

]
+ L2MCE [X(n)|Hi] , (13)

for i = 0, 1, where the initial value is given as E
[
P̂ (0)|Hi

]
.

After iterating we see, that the mean recursion can be given

in the following equivalent form

E
[
P̂ (n)|Hi

]
= [L2 (I −M)L1]

n
P̂ (0)

+

[
n−1∑
i=0

[L2 (I −M)L1]
i

]
L2MCE [X(n)|Hi] .

(14)

We are interested in finding the mean of the estimates, when

the filter has converged to a steady state, i.e when n → ∞.

Thus according to (14) we need to analyse the asymptotic

behaviour of [L2 (I −M)L1]
n

and the limit of the geometric

series
∑n−1

i=0 [L2 (I −M)L1]
i
.

According to [19, Lemma 5.6.11], if for a matrix norm it

holds that

‖L2 (I −M)L1‖ < 1 (15)

then limn→∞[L2(I −M)L1]
n → 0. Thus given the doubly

stochastic matrices L1, L2 and C, the choice of step sizes in

M should guarantee that the stability condition (15) holds.

Using the matrix 2-norm and the submultiplicativity property

of a matrix norm, we have that

‖L2 (I −M)L1‖2 ≤ ‖L2‖2‖ (I −M) ‖2‖L1‖2 < 1. (16)

The spectral norm of a doubly stochastic matrix is 1 3. Since

the matrix (I −M) is diagonal, we have that

‖L2 (I −M)L1‖2 ≤ || (I −M) ||2 = max
k
|1− μk| < 1.

(17)

We conclude that for the (15) to hold, we must select the

μk, k = 1 . . .K in M so that the diagonal matrix (I −M)
is stable. Since in our model we have only one mode of

convergence of the filter [20], μk should be selected in the

range:

0 < μk < 2. (18)

The geometric series Sn =
∑n−1

i=0 [L2 (I −M)L1]
i

generated

by matrix [L2 (I −M)L1] converges if and only if the

condition (15) holds for all λi. The condition (15) guarantees

that the [I − [L2 (I −M)L1]] is invertible. Thus we can write

the geometric series as follows

Sn = [I − [L2 (I −M)L1]]
−1

[I − [L2 (I −M)L1]
n
] .
(19)

Hence according to (15) as n → ∞ the geometric series

converges to

Sn = [I − [L2 (I −M)L1]]
−1

. (20)

Thus by noting the mean of P̂ (n) in steady state and under

both hypotheses Hi, i = 0, 1 as E
[
P̂ (∞)|Hi

]
, we can write

E
[
P̂ (∞)|Hi

]
= [I − [L2 (I −M)L1]]

−1

× L2MC E [X(n)|Hi] , (21)

where the conditional expectations of observations

E [X(n)|Hi] follow (1).

B. Variance of estimates

Let us denote the conditional covariance of the estimates

under the hypothesis Hi, i = 0, 1 as Cov
[
P̂ (n+ 1)|Hi

]
. Sim-

ilarly let Cov [X(n)|Hi] denote the conditional covariance of

the observations. By using recursions (12), (13) and standard

definition of covariance, taking expectation and considering

3See [19, Problem 8.7.P5]
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the fact that P̂ (n) is independent of the observation vector

X(n), it can be shown that the covariance recursion is

Cov
[
P̂ (n+ 1)|Hi

]
= L2 (I −M)L1 Cov

[
P̂ (n)|Hi

]
× LT

1 (I −M)LT
2

+ L2MC Cov [X(n)|Hi]C
TMLT

2 .
(22)

where initial estimate of covariance matrix is noted by

Cov
[
P̂ (0)|Hi

]
, i = 0, 1. The covariance matrix of obser-

vations Cov [X(n)|Hi] is constant over time n.

Next we derive the structure of K × K covariance ma-

trix Cov [X(n)|Hi]. By considering the model (1), when

PU signal is present the main diagonal elements of matrix

Cov [X(n)|H1] – the variances of observations at node k ∈ K
can be shown to be:

Var
[|xk(n)|2|H1

]
=

(|αk|2σ2
s + σ2

v,k

)2
. (23)

Similarly when the PU signal is not present and according to

AS 2 the variances of observations at node k ∈ K are given

as

Var
[|xk(n)|2|H0

]
= σ4

v,k. (24)

When the PU signal is present, the off diagonal elements

of matrix Cov [X(n)|H1] - the covariance of observations at

nodes k and j if k, j ∈ K and i �= j can be shown to be:

Cov
[|xk(n)|2, |xj(n)|2|H1

]
= |αk|2|αj |2σ4

s . (25)

According to AS 2 the noise realizations vk(n) and vj(n) are

uncorrelated in time and space for k, j ∈ K and i �= j. Thus

when the PU signal is absent the covariance of observations

is

Cov
[|xk(n)|2, |xj(n)|2|H0

]
= 0, (26)

for k, j ∈ K and i �= j.

Note that (22) is in the form of a discrete time algebraic

Riccati equation (DARE), [21, App. E]. The steady state

variance Var
[
P̂k(∞)Hi

]
, i = 0, 1, at node k ∈ K can be

recovered by selecting the {k, k} element of the steady state

covariance matrix Cov
[
P̂ (∞)|Hi

]
, which has been found as

a solution to the DARE. Since the DARE can be solved using

standard methods, we skip the details here.

C. Detection Performance Analysis

The test statistic of the energy detector at node k at time

instant n is estimated using distributed received signal power

estimation algorithms. Thus the resulting detection perfor-

mance is dependent on the performance of the underlying

estimation process. For deriving the formulas of probability

of detection (PD) and probability of false alarm (PFA) we

need to evaluate the probability density function (PDF) of the

test statistic P̂k(n+ 1) under both hypotheses H0 and H1.

The input signal is CSCG and in case K = 1, the test

statistic of ED P̂k(n + 1) is local and under both hypothesis

a Chi-Square distributed random variable with 2N degrees of

freedom. The test statistic P̂k(n+1) is obtained as a sum of a

number of identically distributed variables and hence the CLT

can be applied to approximate the Chi square distribution by

a Gaussian distribution [22]. According to AS 3 the number

of samples is large enough, and the CLT is expected to apply.

The global test statistic P̂k(n + 1) in case of hypothesis

H1, is however estimated over independent, but not identically

distributed variables. In such a case the Lyapunov CLT [23]

can still be applied over a large number of samples to result

in a Gaussian approximation.

Let Q be the complementary distribution function of the

standard Gaussian

Q(x) =
1√
2π

∫ ∞

x

exp

(
− t2

2

)
dt. (27)

The conditional mean E(P̂k(n + 1)|Hi) and the conditional

variance Var(P̂k(n + 1)|Hi) at node k (for i = 0, 1), can

be easily obtained from previously derived (13) and (22)

respectively. The conditional moments in steady state can be

obtained similarly from the corresponding steady state results.

We provide at next approximate formulas for the resulting

energy detection performance. The probability of false alarm

PFA of the energy detector under hypothesis H0 is found by

PFA(γ, t) = Pr(T (x) > γ|H0) =

∫ ∞

γ

px(x|H0)dx (28)

Substituting the estimation mean and variance under H0, we

get

PFA = Q

⎛
⎝γ − E(P̂k(n+ 1)|H0)√

Var(P̂k(n+ 1)|H0)

⎞
⎠ , (29)

which according to AS 2, holds for every node k ∈ K.

The probability of detection of an energy detector under

hypothesis H1 is correspondingly

PD(γ, t) = Pr(T (x) > γ|H1) =

∫ ∞

γ

px(x|H1)dx. (30)

Let the probability of detection at node k be: PD,k. Similarly

substituting the mean and variance under H1, we get

PD,k = Q

⎛
⎝γ − E(P̂k(n+ 1)|H1)√

Var(P̂k(n+ 1)|H1)

⎞
⎠ . (31)

The sensing threshold is found from (29) by fixing the

desired value of PFA. Thus

γ = E[P̂k(n+ 1)|H0]

+ Q−1 (PFA)

√
Var[P̂k(n+ 1)|H0].

(32)

Due to the AS 2 [16] the thresholds for every CR node k are

equal.

Calculation of the threshold requires, however, knowledge

of the moments of the estimation algorithm in case of hypoth-

esis H0 and these moments are dependent on the algorithm

parameters (especially the step size). In practice the required

moments can be calculated in advance using (13) and (22),
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known values of the step size and the noise power and then

substituting these results into (32).

IV. SIMULATION RESULTS

In the numerical simulation section we investigate the ATC

power estimation algorithm and compare the results with

the CTA [16] and ring-around [15] versions. Secondly we

view the resulting energy detection performance. In all these

simulations the PU signal s(n) is taken as QPSK with unit

power S, under the active hypothesis H1, the step size is:

μ = 0.01.

A. Local and distributed power estimation

We start with investigation of the estimation algorithms. The

channel gains are assumed to be constant, fixed during the

simulations and obtained by: αk ∼ CN(0, 1). In the compar-

ison of algorithms we use the same channel gains for all the

algorithms. All the nodes in the network receive N = 2000
samples. To illustrate how the proposed adaptive algorithms

react to changes in the underlying stochastic process, we have

changed the active detection hypothesis at sample n = 1001.

During samples n = 1 . . . 1000 the PU signal with constant

unit power S is present. The power S is attenuated by the

channel gain |αk|2. In sample range n = 1001 . . . 2000 the PU

signal is absent and only noise is present. Under both detection

hypothesis the noise power is σ2
v = 1 and assumed to be the

same in all the nodes. In this subsection, it is assumed, that

no measurements are exchanged between the nodes, C = I .

Using the ATC algorithm the estimates of the received

power together with the optimal solution P o have been plotted

in Fig. 1. All the estimated power values in the CR network of

the 10 nodes are plotted in one figure. When we use the CTA
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Fig. 1. Local power estimation using ATC

algorithm we obtain the results, which are given in Fig. 2. The

value of optimal solution P o in figure Fig. 1 and in Fig. 2 is

shown as the black dashed line and is calculated according to

(2) using the present channel gains values.
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Fig. 2. Local power estimation using CTA

Compared to the ring round topology in diffusion strategies

more information is processed at every node k, since neigh-

bour estimate (k−1)modK is fused with the local estimate of

node k. It was shown in [16] that the variance of the estimates

of the CTA algorithm is lower than the variance of estimates

of the ring around algorithm. Based on Fig. 1 and in Fig. 2 we

observe that the variance of the estimates of the ATC algorithm

is even slightly lower than the variance of estimates of the CTA

algorithm.

The smallest value of steady state variance is achieved using

the ATC algorithm. Compared to the ring around algorithm,

since the preciseness of power estimates increases when the

diffusion estimation strategies are used, the resulting detection

performance will increase as well.

B. Probability of detection

Next we investigate the probability of detection using the

proposed distributed power estimation algorithms. In the fol-

lowing simulations we compare the performance of 5 different

network sizes: K = 1, 3, 10, 30, 50 nodes. More specifically,

the estimated and theoretical results of PD of the last nodes

in the set are compared, i.e k = K. In the simulations the

converged power estimate is used for detection i.e P̂k(∞).
The theoretical mean and variance of the power estimates are

calculated using directly the steady state formulas.

We set the desired PFA = 10−4. The thresholds of the

energy detectors at nodes k ∈ K are calculated using (32) and

the corresponding steady state theoretical mean and variance

of the power estimates (of algorithms CTA, ATC and ring

around respectively) under detection hypothesis H0.

For estimating the PD we use the Monte Carlo method

[24] and run 1000 experiments with the same fixed set of

channel constants and noise power for all the algorithms.

The estimated PD is compared with the theoretical PD. The

theoretical PD is calculated using (31) and the corresponding

steady state mean and variance of the power estimates of

the three algorithms under detection hypothesis H1. In the
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following figures the continuous lines represent the theoretical

PD and the corresponding signs the estimated PD. First we

set C = I . The detection performance of ATC, CTA and the

ring around algorithms are shown in Fig. 3, in Fig. 4 and in

Fig. 5 respectively.
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Fig. 3. Probability of detection, ring around, C = I
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Fig. 4. Probability of detection, ATC, C = I

We see that there is a good match between estimated and

theoretical PD. As we noticed in [16] the CTA algorithm

outperforms the ring around algorithm. As the number of

nodes in the network increases, about 4 dB is gained with

respect to the noise power. Based on Fig. 5 we see that the

ATC slightly outperforms the CTA.

When also measurements from a neighbour node are avail-

able and we set C = AT
diff for the CTA and ATC algorithms,

then the results are shown in Fig. 6 and in Fig. 7 respectively.

We note that ATC performs slightly better, when more nodes

in the network. While ATC fuses more data than CTA, the
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Fig. 5. Probability of detection, CTA topology, C = I
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Fig. 6. Probability of detection, ATC topology, C = AT
diff

difference of detection performance with CTA is rather small.

We see minor increase in the detection performance when

additionally measurements are exchanged between the nodes.

Thus we conclude that the best detection results are obtained

using ATC algorithm, however the difference between ATC

and CTA is quite small. On the other hand since exchanging

measurements between the nodes in a neighbourhood of a

node in the CR network, additional data has to be broadcast,

processed and this requires additional energy. Thus the usage

of measurement exchange may not be justified in practical

implementation.

V. CONCLUSIONS

In this paper we studied a diffusion based distributed power

estimation approach, what is applicable for CR networks

for detecting the presence of PU signal. We derived an

ATC diffusion based energy detection algorithm for energy

detection. We proposed a general framework for analysing the
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performance of the ATC diffusion, previously studied CTA

and ring-around power estimation algorithms and compared

the resulting energy detection performances. Our simulation

study demonstrated that both diffusion LMS based energy

detection algorithms outperform the previously proposed ring

around algorithm and that the ATC diffusion algorithm slightly

outperforms the CTA diffusion algorithm. In addition it was

observed that the effect of exchanging measurements in addi-

tion to the estimates is rather small. The proposed algorithms

are able to track changes in received signal power and are

usable in cognitive radio systems.
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ABSTRACT 

Cognitive radio (CR) systems need to detect the presence of a pri
mary user (PU) signal by continuously sensing the spectrum area of 
interest. Radiowave propagation effects Iike fading and shadowing 
often complicate sensing of spectrum holes because the PU signal 
can be weak in a particular area. Cooperative spectrum sensing is 
seen as a prospective solution to enhance the detection of PU sig
nals. In this paper we study distributed spectrum sensing, based on 
the largest eigenvalue of adaptively estimated correlation matrices 
(CMs) of received signals. The PU signal is assumed to be tempo
rally correlated. In this paper an Combine and Adapt (CTA) least 
mean square (LMS) diffusion based mean vector estimation scheme 
is proposed. No fusion center (FC) for estimation or detection is 
used. We analyse the resulting detection performance and verify the 
theoretical findings through simulations. 

Index Terms- Cognitive radio, distributed estimation, diffu
sion LMS, distributed detection, Spectrum Sensing. 

1. INTRODUCTION 

In cognitive radio (CR) contexts we would like to avoid creating 
interference to the PU user and find free spectrum opportunities as 
fast as possible. On the other hand the active detection hypothesis 
may change during the processing time. Distributed, adaptive net
work Iearning methods are able to Iearn the statistical information 
based on observations received by the nodes in the network. These 
methods can react to possible changes in the properties of estimated 
statistics in real time. Cooperative spectrum sensing is seen as a 
prospective solution to address these problems and to enhance the 
detection of PU signals [1]. 

Depending on the signal model assumptions, several type of de
tectors for spectrum sensing have been proposed in the literature 
such as the Matched filter detector [2] , the Energy Detector [2], [3], 
and the CycIostationary detector [4]. A second large group of de
tectors are based on the properties of an estimated signal correla
tion matrix eigenvalues [5], [6], [7]. The Largest Eigenvalue (LE) 
method [5] uses apriori knowledge about the additive noise power 
to determine the detection threshold. 

Several distributed adaptive estimation and detection schemes 
have been studied in the past. Consensus based schemes are anal
ysed for example in [8], [9] , [10] , [11]. Least mean square (LMS) 
and recursive least squares (RLS) based estimation schemes in [12], 
[13], [14], [15]. Optimal, distributed MFD, based on diffusion type 
LMS and RLS estimation schemes, were studied in [16], where good 
properties of diffusion LMS algorithms where shown. In [17] , [18] 
and [19] we proposed and analysed diffusion LMS based energy de
tectors in a CR network. 

In this paper we propose and study the performance of LE detec
tion in a distributed CR network, based on adaptively, distributively 
estimated CMs, using the completely distributed CTA type of dif
fusion LMS strategy (with no central processing unit as a potential 
single point of failure) . We make the assumption that the CR net
work does not have prior information about the waveform of the PU 
signal and about the channel gains in the secondary nodes except that 
the CM of the PU signal is low rank (due to temporal correlation). 
In the distributed CR network, every node acts as an independent de
tector in terms of detection decision making based on the available 
CM estimates. 

We organize the remainder of the paper as folIows. In section 11 
we specify the system models for the LE detection method and de
rive an adaptive, distributed CM estimation algorithm based on the 
CTA diffusion LMS strategy. In section IV we analyse the perfor
mance of the proposed distributed CM estimation algorithm (using 
a common framework) and the detection performance of the dis
tributed LE detection method. In section V we present our simu
lations results. 

Notation. In the paper we use the following notations. Bold
face uppercase and lowercase letters denote matrices and vectors, 
respectively. E [·], Cov [·] denote expectation and covariance opera
tors, respectively. vec [·] and vec - 1 [ . ] denote conversion from matrix 
to vector and from vector to matrix. 0 T , OH and (f denote the 
vector or matrix transpose, the Hermitian transpose and the complex 
conjugate, respectively. (9 denotes the Kronecker product. 

2. DISTRIBUTED ADAPTIVE LARGEST EIGENVALUE 
DETECTION 

2.1. Signal model and assumptions 

Let the K CR nodes independently sense a communication band of a 
PU. Every CR node obtains individually a M x 1 observation vector 

Yk(n) = [zs(nTs), zs(nTs - os), ... , zs(nTs - (M - l)Os)] , 
(1) 

which contain a bunch of sampIes of the down converted continuous 
time signal zs(t), which are collected every Ts seconds with the 
sampling period Os < Ts . Thus in general we have the following 
signal model under both detection hypotheses 

Ho: Yk(n) = vk(n) , 
H1 : Yk(n) = Ctks(n) + vk(n), 

(2) 

where k = 1, 2, ... , K is the node number, M is the length of ob
servation vector, and n = 1,2, ... N is the sampie discrete time in
dex . The primary signal sen) ~ CNM (0, ~s ), the noise vk(n) and 
channel gains Ctk at node kare assumed to be statistically indepen
dent. The additive noise vk(n) is assumed to be independently and 
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identically distributed (i.i.d) Circularly Symmetrie Complex Gaus
si an noise with zero mean and covariance ~v.k = O"~.k IM and un
correlated in time and space. We assurne the noise power is known 
apriori and has the same power level over all the nodes in the CR 
network. 

Each node in the CR network estimates the M x M CM R k as 

We additionally assurne that R s,k has a low rank (see also [20], [21]), 
while ~v,k = O"~,k IM. This property can be used for detecting a PU 
signal. 

Let us define the eigenvalues of the estimate Rk (n) of CM R k 

in non-increasing order as Al ;::: A2 ;::: .. . ;::: AM. Every node k 
detects the presence of a PU signal by independently determining 
the LE of the locally available estimate Rk(n) and by performing 
the following detection test 

(4) 

using a threshold 'YLE, which is given by (24). 

2.2. Adaptive, Distributed CM estimation and LE detection 

CR nodes could cooperate via internal communieation links to en
hance the detection performance (of the PU signal(s» at every node 
k. We assurne, that the K nodes in the CR network can rely only 
on the sub set of global information, that is available to them. The 
CR network topology is assumed to be fixed over the sensing time 
and strongly connected. We consider a linear, fixed combination of 
neighbour estimates and measurements at every node k. 

We propose agiobai (theoretical) model for estimating the CM 
in a cooperative manner, where the CR nodes jointly estimate the 
network average CM, which is denoted as RO and in vectorized form 
defined as follows 

K K 

rO = ~ Lvec(R%) = ~ LE [vec [Yk(n)Yk(n)H]] , (5) 
k= l k= l 

where the M 2 x 1 rO is the vectorized form of RO. 
We can vectorize the observation dR ,k (n) = vec [Yk( n)y k(n)H ] 

at node k at time instant n and decompose it into the product of a 
M 2 x M 2 constant (invertible) complex matrix T (whose elements 
take the values 0, 1 and ± i, where i denotes the imaginary unit) and 
a M 2 x 1 real vector dk(n) as dR,k (n) = Tdk(n), to keep the di
mension of the estimated vector minimal in the adaptive recursions. 
We denote the estimate of the real valued E [dk(n) ] as Pk(n) and 
propose to relate the estimation of the Rk and RO in (5) with the 
minimization of the following Mean Square Error (MSE) type of 
global cost function 

K K 

po = argmin L Jk(p) = argmin L E Il dk(n) - p 11 2, (6) 
P k=l P k=l 

where M 2 x 1 dimensional p E R M. By using standard derivation 
steps on (6) we get the optimal solution 

(7) 

Thus with help of the transformation matrix T, the previously intro
duced minimization framework can be used to re-define the Rk and 
RO as follows 

We need to seek an iterative solution to estimate the Pk and po in a 
manner, whieh is adaptive in time and is fully distributed (coopera
tive). 

2.3. Iterative Diffusion solutions 

In this paper we skip the derivation details of the CTA type of diffu
sion LMS mean vector estimation algorithm (provided in [22] , fol
lowing the ideas of [13]). Let Nk denote the neighbourhood group 
of node k E K, i.e Nk. Let f.,L k be a positive step size of node k. We 
introduce the K x K matrix C with non-negative elements satisfying 

Cl,k = 0 if I rt. Nk, Cl = 1. (9) 

Similarly let the K x K matrix A satisfy 

al,k= O if I rt. Nk, I TA = I T . (10) 

We summarize the CTA based CM estimation recursions and the de
tection step in a common form in Aigorithm 1. The coefficients ct ,k 

Algorithm 1 Distributed LMS based CM Estimation and Detection 

Start with Pk(O) = p(O) forevery k. 
Given non-negative real coefficients al,k, ct,k 
for every time instant n ;::: 1 do 

for every node k = 1, .. . , K do 
1. CTA type of CM estimation recursions: 

-Ipk(n) = L IENk al,kPI(n). 

Pk(n + 1) = -Ipk(n) 

+ f.,L k L IENk ct,k [dl(n) - -Ipk(n)] 
2. LE detection decision: 
Ho: Al [vec- l [Tp k(n + 1)]] < 'Yk or 
H I : Al [vec- l [Tpk(n + 1)]] > 'Yk. 
(Refer to (24) for selecting the 'Yk). 

end for 
end tor 

and al,k define respectively how the neighbouring measurements 
dl(n) and estimates Pl(n) are (unidirectionally) available for the 
node k in the CR network. Thus after several iterations the adaptive 
estimate Rk (n) of RO is available for every node in the CR network, 
while the FC is not used. The node k at time instant n can inde
pendently perform the LE detection based on the available matrix 
estimate Rk(n) = vec- l [Tpk(n) ]. 

As a result the proposed LE detection scheme is able to react to 
a possible change in the statisties of observations on line (i.e when 
the detection hypothesis changes during the observation time) and 
estimates the CMs in a cooperative manner with an averaging effect 
over the CR network. 

3. PERFORMANCE ANALYSIS 

The performance analysis of the proposed algorithm is divided into 
three parts: analysis of the moments of the adaptive CM estimates 
of recursions in Algorithm 1 in one framework, analysis of the sta
tistieal properties of the adaptive CM estimates and analysis of the 
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detection performance of the LE of the adaptive CM estimates. Let 
us note that for the theoretical performance analysis ofthe LE detec
tor, we need to know the values of the channel gains. 

3.1. Moment analysis of adaptive CM estimates 

Let us stack the M 2 x 1 estimates and observations from all 
the nodes k E K into a KM2 x 1 column vector p(n) IHi = 

[PI (n) IHi ... h(n) IHif andd(n) IH i = [dl(n) IH i ... dK(n) IHi] T 
respectively, where i = 1 denotes the case when PU signal is present 
and i = ° the case when PU signal is absent. For the positive step 
sizes we define additional K x K matrix M = diag {fil, . .. , J.LK}. 
Let (9 denote the Kronecker producL The K x K matrices Al. A2, 
C and M are in CR network extended to K M 2 X K M 2 matri
ces Al = Ar (9 1M2, A 2 = Ar (9 1M2, C = CT (9 1M2 and 
M = M (9 1M 2. Then we can write the CM estimation recursion 
in the following general form 

For example for CTA algorithm we take Al = Afuf (9 1M 2 , A2 = 

IK (9 1M2, C = IK (9 1M2 or C = Arff (9 1M2. 
By denoting the conditional expectation of the observation vec

tor as E [d(n) IHi ] for i = 0, 1, then based on (11), we have that 

E [p(n + l) IHi] = A2 (I - M) Al E [p(n) IHi] 

+ A2 MCE [d(n) IHi] , (12) 

for i = 0,1, where the initial value is given as E [p(O) IH i]. It can 
be shown that a sufficient condition for the algorithm to be stable is 
to select the step size for every k = 1 ... K as 

° < J.Lk < 2. (13) 

Similarly by denoting the conditional covariance of the ob
servations and estimates under the hypothesis H i , i = 0, 1 as 
Cov [d(n) IHi] and Cov [p(n + l) IHi] we have 

Cov [p(n + l) IHi] = A 2 (I - M) Al Cov [p(n) IHi] 

xAi (I - M)A; 
--- - T--T + A2MCCov [d(n) IHi] C MA 2 . (14) 

where initial value is noted by Cov [p(O) IH iJ, i = 0, 1. 
The moments E [d(n) IHi] and Cov [d(n) IHi] of the measure

ments are provided in 3.2. 

3.2. Statistical modelling of adaptive CM estimates 

Based on 2.1, for the rank one observations dR ,k (n) under Hl we 
have that 

(15) 

andthestackedKM2 x 1 vectorE [dR(n) IHi] overk = 1. . . K 
and for i = 0, 1 can be formed based on (15) respectively. 

It can be shown, that the k , j E K blocks of the K M 2 x K M 2 

network-wise covariance matrix Cov [dR(n) IHl ] are given as 

(16) 

where:E k = E [l ak I2] ~s + a~IM and where for k =J- j Rs, k,j = 

E [Yk(n)Yj(n)H ] = E [a ka j] ~s and (f denotes a complex con
jugate. Obviously the Cov [dR(n) IHo] is given as 

Cov [dR,k(n) IHo] = a~IM2 . (17) 

Thus the E [d(n) IHi] for (12) and Cov [d(n) IHi] for (14) can be 
given for i = 0, 1 as 

and 

Cov [d(n) IHi] = [T - 1 (9 1M2] 

X Cov [dR(n) IHi] [(TH) - l (9 1M2]. (19) 

When the Rk(n) = vec- I [TPk(n) ] is obtained by using the 
exponential type of averaging (as used in LMS type of algorithms), 
then it is not Wishart distributed [23, Theorem 3.3.1., 3.5.2.]. We 
propose the usage of Total Variance method [24] for approximating 
the Rk (n) by conditional approximative Complex Central (Corre
lated) Wishart distributions (CC(C)W), for studying the conditional 
COFs of LE of adaptively estimated CMs. Thus we use the approx-
imation 

(20) 

for i = 0, 1 and where rv denotes an approximative distribution, ilh 
is the approximating OoF and :Ek,i is the approximating population 
covariance matrix parameter of the corresponding CC(C)W distribu
tion. The values for Ni and :Ek ,i can be found by matching the mean 
and trace of the moments of Rk (n) I H i with the corresponding mo
ments of the devectorized adaptive estimate vec- l [TPk(n) ]. This 
gives (see [22] for details) , by using the TV method, 

- 1 [, ] 1 1 ~k ,i = ~ E Rk(n) IHi = ~ (vec- [TE [Pk(n) IHi]]). 
N i N i 

(21) 
and 

NTV,i = [
Tr [E [Rk(n) IHf (9 E [Rk(n) IHi]] 1 

Tr [TCov [Pk(n) ln ] TH] , 
(22) 

3.3. Detection Performance Analysis 

Let the eigenvalues of :Ek ,i in (20) be denoted in non-increasing 
order as Vl ,i :::: V2 ,i :::: .. . :::: VM,i . 

Based on the [5] , [25], the Rk(n) IHo (20) is assumed to follow 
the CCW distribution and the eigenvalues of :E k,o are Vl,O = ... = 

VM,O = a~ /No. The PFA,e , based on the non-asymptotic COF 
model of the Rk(n) IHo, is given as 

FHo,e (X) = I det(A) I 

PFA,e (rLE ,e ) = 1 - FHo,e (rLE ,e ) (23) 

where the M x M matrix Ai,j = CVo~=-~ i- lhR (No + i - j , v; J, 
for i , j = 1, .. . , M and where "YR (k , u) = d k) Jou xk- le-xd~ is 
the regularized incomplete Gamma function. The detection thresh
old "YLE,e , based on the non-asymptotic model is given as 

(24) 
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and can be evaluated in terms of a numerical inversion of the exact 
CDF formula at a desired PF A ,e value. 

Since the Rk(n) IH l is assumed to be distributed by a CCCW 
distribution, the PD based on the non-asymptotic CDFIH I of the 
LE ofa CCCW matrix Rk(n) IH l is given by [26] as follows 

FH" e(X) = Kcc l {vf ' -M+jI' (NI - M + j , v:J LJ 
K cc = [iI (NI - i)! iI (M - i)!] - 1 fi (k - I)! , 

, - 1 J - l k = l 

PD,e ('yLE ,e) = 1 - FH" e('yLE,e ). (25) 

fori , j = 1, .. . ,MandwhereI'(k , u) Iouxk - le-xdxisthe 
lower incomplete gamma function [27, 8.350]. 

4. SIMULATION RESULTS 

In this section we investigate the probability of detection PD of the 
the CTA type of distributed, adaptive LE detection algorithm. The 
performance of the algorithm is weil illustrated by the PD versus 
SNR analysis, where the change in the (network averaged) SNR 
is achieved by changing the noise power value 0';. The channel 
gains are assumed to be constant and are sampled for the CR node 
k E K as O! k rv CN(O , l). We assume to have one PU signal 
sen) = s(n)1, sen) rv CN(O, l) and ~s = l1 H . Obviously 
rank(l1 H)=l. We select the M = 2, N = 7000, M = 0.001 and 
PF A = 10- 2 for all the nodes. The thresholds of the LE detectors 
at nodes k E Kare found by using (24) with the TV approximation. 
Also we select the diffusion topology of the estimates in the CR net
work, i.e the A matrix, as a combination of the local (A, C = I) and 
ring-around (A = Arng, C = I) topologies, similarly as in [19, Eq. 
11]. 

In the following simulations the performance of 4 different net
work sizes: K = 1, 3, 10,30 nodes are compared, while the com
parable results are taken from the last node in the set. The Monte 
Carlo estimated PD results (based on the adaptively estimated CMs 
and denoted as Ad. Exp. in the figures) are compared with the non
asymptotic theoretical model (25) (denoted as Theory) and with the 
PD results based on approximately equivalent CCW matrices (de
noted as W. Exp.). These laUer matrices are generated based on the 
respective moments under H l . The PD versus SNR results are given 
in Fig. 1 when TV approximation is used for the CTA algorithm. 

It is seen that the non-asymptotic theoretical PD model de
scribes the detection performance of adaptively estimated CMs weil, 
also when the noise power is high relative to the PU signal power 
(SNR). As the number of nodes in the network increases, the point 
where the PD starts to decrease from one, converges to the left by 
equalizing and averaging the PD on every CR node. 

It can be concluded that the TV approximation for the non
asymptotic CDFIH I is usable for studying the performance of the 
LE detection of adaptively estimated CMs. When the nodes coop
erate in estimating the network-wise CM (while nodes are able to 
communicate directly only with limited subset of neighbour nodes) 
then the resulting LE detection performance is equalized and stabi
lized over the individual CR nodes. 

S. CONCLUSIONS 

In this paper a distributed and adaptive, CTA diffusion LMS based 
LE detection algorithm was studied, which is applicable in CR net-

0.1 

eTA, Probability 01 detection. TV. Exact. Thresh. 

-15 -10 
SNR 

* Ad. Exp: 1 node 
- - - W. Exp: 1 node 
--Theory: 3 nodes 

* Ad. Exp: 3 nodes 
- - - W. Exp: 3 nodes 
--Theary: 10 nades 

* Ad. Exp: 10 nodes 
- - - W. Exp: 10 nodes 
-- Theary: 30 nodes 
* Ad. Exp: 30 nodes 

- - - W. Exp: 30 nodes 

-5 

Fig. 1. Probability of detection, CTA, TV, Ca se 2 

o 

works for detecting the presence of a PU signal. We proposed a gen
eral framework for analysing the performance of the diffusion LMS 
based LE detection scheme and we demonstrated that the theoreti
cal results are matching with the simulations. It was shown that the 
cooperative estimation and detection scheme enhances the detection 
performance. 
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Member, IEEE.

Abstract—In this paper we propose a distributed detection
scheme for cognitive radio (CR) networks, based on the largest
eigenvalues (LEs) of adaptively estimated correlation matrices
(CMs), assuming that the primary user signal is temporally
correlated. The proposed algorithm is fully distributed, thereby
avoiding the potential single point of failure that a fusion centre
(FC) would imply. Different forms of diffusion least mean square
(LMS) algorithms are used for estimating and averaging the CMs
over the CR network for the LE detection and the resulting
estimation performance is analyzed using a common framework.
In order to obtain analytic results on the detection performance,
the exact distribution of the CM estimates are approximated by a
Wishart distribution, by matching the moments. The theoretical
findings are verified through simulations.

Index Terms—Cognitive radio, distributed estimation, diffu-
sion LMS, diffusion networks, distributed detection, Spectrum
Sensing, Random Matrix.

I. INTRODUCTION

Cognitive radio (CR) is seen as a promising technology
to make radio spectrum usage more effective by providing
an opportunistic access for secondary users to the licensed
spectrum areas. We consider the interweave CR paradigm [4],
where CR systems detect the presence of a primary user (PU)
signal by sensing the spectrum area of interest. The binary
detection problem is studied: PU signal is present or absent
[5], [6], [7]. In the interweave paradigm it is expected that
the CR system should accurately detect the transmission of a
PU system, when the latter is operating. On the other hand the
radiowave propagation effects like fading and shadowing often
complicate sensing of spectrum holes because the PU signal
can be weak in a particular area. Cooperative spectrum sensing
is seen as a prospective solution to address these problems and
to enhance the detection of PU signals [8].

In the literature several type of detectors for spectrum
sensing have been proposed. When the PU signal waveform,
channel and additive noise properties are known a priori,
then the matched filter detector (MFD) is optimal [9]. The
MFD requires perfect synchronization between the PU signal
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waveform and the received signal. However in practice such
required knowledge is often not available, which makes the
usage of the MFD detector impractical. The cyclostationary
feature detection method [10] requires a priori knowledge
about the cyclic frequencies of the PU signals, which often
is a too strong assumption for practical implementation. The
Energy Detection (ED) method [9] models the PU signal as
a random process and does not require knowledge about the
PU signal, modulation type and channel properties. In such a
case, when the received PU signal is white, the ED is optimal.
However, setting the detection threshold requires knowledge
of the noise power value. It has been shown, that if there is
uncertainty in the noise power or if the received PU signal is
correlated, the ED performance decreases and it is no more
optimal [11].

A second large group of detectors for spectrum sensing are
based on eigenvalue properties of an estimated correlation ma-
trix [12], [13], [14]. Detection based on the largest eigenvalue
(LE) of estimated CMs [12] is optimal when the observations
are zero mean Gaussian distributed, we do not have specific
information about the PU signal and the channel gains, and
when the PU signal is rank one correlated [15]. The LE method
uses knowledge about the additive noise power to determine
the detection threshold. Random Matrix Theory has been used
to study the performance of the CM eigenvalue based detectors
[16]. We note, that when linear estimation of CM is used, more
sophisticated detectors: the volume based detector (VD) and
the covariance based detector (CAV), which avoid eigenvalue
or singular value decomposition, have been studied in [17],
[18] and [19] respectively. Similarly, when linear estimation
of a CM is used, several eigenvalue based detectors are robust
in the sense, that the noise power value does not influence the
test statistics or threshold of the detectors. For example the
Eigenvalue Arithmetic to Geometric Mean (AGM) [20], the
Maximum to Minimum eigenvalue ratio (MME), the Energy
to Minimum Eigenvalue ratio (EME) [14], the Eigenvalue Mo-
ment ratio (EMR) [20], and the Hadamard [21] detectors have
been proposed in the literature. A method for blind and optimal
combination of observations for the ED has been proposed in
[22]. For these detectors, the performance analysis is based on
the assumption that the sample CM is Wishart distributed with
known degrees of freedom (DoF), an assumption that does not
hold when exponentially weighted (adaptive) CM estimation is
used. Also, the proposed approximate or asymptotic analysis
of the theoretical detection performance for EME, MME, CAV
detectors tend to be inaccurate in the low SNR regime, as seen
in [14], [19].
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In cognitive radio (CR) contexts we would like to avoid
creating interference to the PU user and find free spectrum
opportunities as fast as possible. On the other hand the
active detection hypothesis may change during the processing
time. Distributed, adaptive network learning methods, based
on exponential averaging estimation, are able to learn the
statistical information based on observations received by the
nodes in the network. These methods can react to possible
changes in the properties of estimated statistics in real time.

Several proposed distributed spectrum sensing solutions
make use of a central FC. A FC will however form a single
point of failure in the network since a malfunction in this
unit affects the performance of the whole distributed solution.
We therefore propose a CM estimation solution, where the
available CM estimates (and corresponding measurements) are
fused in cognitive radio network nodes, to allow all nodes to
make detection decisions based on data from the neighboring
nodes and without involvement of any central processing unit.
Such a solution enhances the network failure resistance.

Several distributed adaptive estimation schemes have been
studied in the past. Consensus based schemes are analyzed
for example in [23], [24], [25], [26]. Diffusion estimation
schemes are studied for instance in [27], [28], while Least
mean square (LMS) and recursive least squares (RLS) schemes
in [29], [30], [31], [32]. It has been shown, that distributed
diffusion strategies can often perform better (in terms of
faster convergence and lower Mean Square Deviation) and
be more stable compared to consensus algorithms [33], [34].
Several detection solutions, based on distributed estimation,
have been studied for example in [35], [36], [37], [38]. A
ring network topology for distributed energy detection without
a FC has been suggested in [39]. In [3] we proposed and
analyzed a diffusion LMS based recursive calculation of the
test statistics with ring topology for the energy detectors in
cognitive radio network. Ring networks are however sensitive
to communication link failures. Combine and Adapt (CTA)
LMS diffusion based calculation of the test statistics for the
energy detectors was studied in [2] and an Adapt and Combine
(ATC) based version was investigated further in [1].

In this paper we study the performance of LE detection in
a distributed CR network, based on adaptively, distributively
estimated CMs, using the completely distributed diffusion
LMS strategy. We make the assumption that the CR network
does not have prior information about the waveform of the
PU signal and about the channel gains in the secondary
nodes. We assume that the received PU signals samples are
temporally correlated. Secondly in general we assume the
noise power level is known. Noise power estimation pro-
cedures and analysis of the sensitivity to estimation errors
falls outside the scope of this paper. To analyze the detection
performance and determine the threshold value, we follow the
ideas of [40], [41], [42] and approximate the distribution of the
exponentially averaged CM estimate by a Wishart distribution
by moment matching. The resulting DoF for the approximate
Wishart distribution will depend both on the step size, the
network topology, and under H1 detection hypothesis will
depend also on the value of the noise variance parameter.
We have therefore focused on the LE based detection, since

under H1 the robustness of alternative detectors like EME,
MME, CAV in case of adaptively estimated CMs, is lost
anyway. We however provide a simulation with the MME
detector, which is a robust detector. In the distributed CR
network, every node acts as an independent detector in terms
of detection decision making based on the available CM
estimates. Due to limited information about the PU signal and
the communication channel, the theoretical global estimation
model is proposed as a network-average CM (while in practice
the CR nodes have only access to the subset of data from
the neighbor nodes). We consider the control-level analysis
of the proposed distributed CM estimation and LE detection
algorithm to be out of scope of the paper.

We organize the remainder of the paper as follows. In Sec-
tion II we describe the motivation, specify the system models
which are analysed further in this paper and we motivate the
usage of the LE detector. In Section III we derive an adaptive,
distributed CM estimation algorithm based on diffusion LMS
strategy and summarize the versions of it. In Section IV
we analyse the performance of the proposed distributed CM
estimation algorithm using a common framework for moment
based analysis for all the versions of the Diffusion LMS
algorithm. We propose the usage of Total and General Variance
based approximations for being able to model the distributions
of adaptive CM estimates under both detection hypotheses.
Using these results the theoretical false alarm and the detection
performance of the LE detector are studied. In Section V
we present our simulations results and verify the theoretical
findings.

Notation. In the paper we use the following notations.
Boldface uppercase and lowercase letters denote matrices and
vectors, respectively. E[·], Var[·], Cov[·] denote expectation,
variance (of a scalar) and covariance operators, respectively.
vec[·] and vec−1[·] denote conversion from matrix to vector
and from vector to matrix. (·)T , (·)H and (·)c denote the vector
or matrix transpose, the Hermitian transpose and the complex
conjugate, respectively. ⊗ denotes the Kronecker product.

II. PROBLEM FORMULATION AND BACKGROUND

A. Signal model and assumptions

Assume that K single-antenna CR nodes are independently
sensing the communication band of a PU. Let the observation
bandwidth of the communication band be denoted as B. A
collection of samples of the down converted continuous time
signal zs(t) are collected every Ts seconds, with sampling
period δs < Ts. As a result every node individually obtains a
vector

yk(n) = [zs(nTs), zs(nTs − δs), . . . , zs(nTs − (M − 1)δs)] ,
(1)

which gives the following observation model for both detection
hypotheses

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n),

(2)

where k = 1, 2, ...,K is the node number, M is the length
of the observation vector, and n = 1, 2, ...N is the sample
discrete time index. The primary signal s(n), the noise vk(n)
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and channel gains αk at node k are assumed to be statisti-
cally independent. We additionally assume that the PU signal
follows

s(n) ∼ CNM (ms,Σs) . (3)

In the performance analysis of the LE detection scheme, the
following assumption will be used.

AS 1. The additive noise vk(n) is independently and identi-
cally distributed (i.i.d) circularly symmetric complex Gaussian
(CSCG) noise with zero mean and covariance Σv,k = σ2

v,kIM .
In the CR network vk(n) is uncorrelated in time and space.
We assume the noise power is known a priori and has the
same power level for all nodes in the CR network.

Under H1 we have the following M ×M CM model

Rk = Rs,k + Σv,k. (4)

Let us denote the actually occupied bandwidth (within the
observation bandwidth B) as b. Thus the ratio between occu-
pation and observation bandwidths is denoted as β = b/B [43]
and the rank of the PU signal matrix can be then approximated
as rank(Rs,k) ≈ dβMe. We assume M > 1, β < 1 and then
Rs,k has in general a low rank (see also [44]), while Σv,k is a
scaled identity matrix. This property can be used for detecting
the PU signal.

B. Largest Eigenvalue detection

In this paper, we focus on the LE detector, which is known
to follow from the General Likelihood Ratio approach, when
AS 1 holds, the received observation vectors obey a Multivari-
ate Complex Gaussian distribution with zero mean, and when
the PU signal population covariance matrix Rs,k is rank one
[15]. The LE detector requires low computational complexity
and the detection performance analysis is easy to conduct. As
seen in [12] and in Section IV, there exist usable theoretical
results for the conditional distributions without asymptotic
approximations, which predict the true performance well both
in low and high SNR. The LE method is optimal for one PU
signal. In the case of higher rank PU signals (i.e more than one
PU signal in the network), then the LE detector is no longer
optimal, but still usable. We note that all these existing results
from the literature for the LE detector hold when estimating
the CM using a standard non-weighted sample covariance
matrix, resulting in a complex Wishart distribution.

For the distributed adaptive estimation scheme considered
here, this latter assumption is no longer true, but as will be
shown in Sections IV and V, the distribution can still be well
approximated by a complex Wishart distribution. The DoF
approximations depend on the parameters of the distributed
and adaptive CM estimation algorithm step-size and under
H1 also on the preciseness of the noise power value (AS
1). Extending the analysis to other type of detectors can
therefore be done using the existing results in the literature,
for example from [17], [18], [20], [21]. As seen in Section
V, a noise power uncertainty under the detection hypothesis
H1 causes an inaccuracy to the approximated DoF|H1 value.
This effect causes a potential inaccuracy in the theoretical
detection performance formula of a detector, which requires
the DoF|H1 value. However since the threshold of a robust

detector is not affected by the noise power perturbations, then
such a detector can still be used in the framework of this
paper. Thus to keep the focus of the paper, we have limited
our study to the LE detector, where AS 1 is necessary for the
threshold calculation and to illustrate the effect of accuracy
of the DoF approximations under both detection hypotheses.
Since the LE detector is vulnerable to the noise power value
uncertainty, then in Section V we also provide a simulation
with the robust MME detector in the proposed distributed and
adaptive CM estimation framework.

Thus an estimate R̂k(n) of the CM Rk is assumed to be
available for every node k ∈ K at time index n. Let us
define the eigenvalues of R̂k(n) in non-increasing order as
λ1 ≥ λ2 ≥ · · · ≥ λM . Every node k detects the presence
of a PU signal by independently determining the LE of the
locally available estimate R̂k(n) and performing the following
detection test

λ1

[
R̂k(n)

] H1

≷
H0

γLE,k, (5)

using a threshold γLE,k, which is given in the Section IV-C1
by (54) or (57).

Next we implement the diffusion LMS based method to
derive a distributed adaptive CM based LE detector in the
CR network, so that the algorithm: A) is able to react to a
possible change in the statistics of observations on line (i.e
when the detection hypothesis changes during the observation
time) and B) estimates the CMs in a cooperative manner with
an averaging effect over the CR network. CR nodes can have
access only to a subset of neighbor nodes and no FC unit is
used in the CR network.

III. ADAPTIVE, DISTRIBUTED CM ESTIMATION AND LE
DETECTION

Obviously one of the most simple cooperation strategies
is where all the CR nodes are able to exchange their local
data (estimates or observations) with all the other nodes in the
CR network, i.e the network global data is available at every
node. However in practice it means that all nodes have to be
within hearing distance of all the other nodes and significant
amount of data needs to be exchanged and processed over the
CR network. Secondly transmitting and processing of (global)
data consumes energy, which may drain the batteries of the
CR nodes. In this paper we assume to have a more general
network topology model, where nodes only share data with a
subset of neighbor nodes and thus no global data is available.
Thus we assume that the CR nodes use low power transmitters
(i.e a low energy communication, to save the batteries) we
also would like to save some energy required for local data
processing. This means that while every CR node k still needs
to transmit its estimate or observation at a time instant n, other
nodes use data of pre-selected neighbor nodes and in such a
way some energy can be saved by processing (in an adaptive
manner) less data at every CR node.

We first describe local CM estimation, when the CR nodes
in the network do not cooperate. Then we propose a global
(theoretical) cost function for estimating the CM in a coopera-
tive manner. We assume, that the K nodes in the CR network
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estimate a vector parameter po in a distributed manner, where
nodes rely only on the information, that is available to them.
The network topology is assumed to be fixed over the sensing
time. We consider a linear, fixed combination of neighbor
estimates and measurements at every node k and time instant
n. The proposed global cost needs to be approximated in a
distributed manner, where no FC, as a potential single point
of failure in the system, is used. The derivation of the ATC and
CTA type CM estimation algorithm diffusion power estimation
algorithm follows the ideas in [45], [30], [1].

A. Local estimation

When CR nodes do not cooperate, then according to (4)
Rs,k = E

[
|αk|2s(n)s(n)H

]
and Σv,k = E

[
vk(n)vk(n)H

]
.

The estimate R̂k(N) of CM Rk based on the observations
n = 1, . . . , N can be obtained (independently, non-adaptively)
at every node k for example as

R̂k(N) =
1

N

N∑
n=1

yk(n)yk(n)H , (6)

We continue with the notation, suitable for the adaptive
processing, i.e the estimate R̂k(n), available at node k at time
instant n. In the light of the signal model cases in [46], we
consider two specific PU signal models under the detection
hypothesis H1, where s(n) is a constant or a random variable.
Under the different detection hypotheses, the R̂k(n) therefore
follows the following Wishart distributions [12], [13], [47]

H0 : R̂k(n) ∼ CWM (N, 1
NΣv,k),

H1 : R̂k(n) ∼ CWM (N, 1
NΣv,k,

1
NΩk) if ms 6= 0,

H1 : R̂k(n) ∼ CWM (N, 1
NΣ′k) if ms = 0,

(7)
where N is the degree of freedom (DoF) parameter, Σ′k =
Rs,k + Σv,k, by following the notation in [47, Th. 3.5.2]
1
NΩk =

[
1
NΣv,k

]−1 [ 1
N EkEHk

]
, and where the non-zero

column n of M ×N mean matrix Ek equals E [αk] ms. The
first case corresponds to the Complex Central Wishart (CCW)
under detection hypothesis H0, with population covariance
matrix 1

NΣv,k. The second case with the non-centrality matrix
1
NΩ corresponds to the Complex Non-central Wishart distri-
bution (NCW) under H1. We denote it as Case 1. The third
case corresponds to the Complex Central Correlated Wishart
(CCCW) under H1 with population covariance matrix 1

NΣ′k.
We denote it as Case 2.

According to (4), every node k has a unique channel gain
αk from the PU source, which is not known a priori for
the nodes. When the nodes in the CR network estimate Rk
without cooperating with other nodes, then the estimates of
Rk are (locally) influenced by the individual channel gains of
the corresponding nodes. The local SNR at node k is given
by

SNRk =
Tr
[
|αk|2

(
Rs,k + msmH

s

)]
Tr [Σv,k]

. (8)

As seen, some CR nodes achieve better detection performance
due to higher channel gains (i.e due to better position in the
space) than the other. We are interested in a scheme, where
all nodes can achieve similar detection performance, despite

of their individual channel gains. The method (6) expects that
N samples are available for calculation of the estimate and is
not adaptive in its nature, i.e the CR system is unable to react
quickly to a possible change of a detection hypothesis during
the observation time N . This may increase the possibility of
false alarm or a miss-detection of the PU user and thus also
an interference to the PU user. As seen in next chapters, we
find an adaptive, exponential (non-equal weighed) averaging
based method for estimated the CMs, which is able to learn
and react to the changes in the statistics of the CM in real
time and needs to store only data from previous iteration.

B. Global estimation

The CR nodes could cooperate via internal communication
links to enhance the detection performance (of the PU sig-
nal(s)) at every node k. In the distributed CR network we
assume:
• AS 2. There is a common control channel available for

the CR system for transferring the network level control
messages. The communication links between the CR
nodes are ideal and not capacity restricted.

• AS 3. The CR network is strongly connected (however
nodes can directly communicate only with a subset of
neighbor nodes).

We propose a model where nodes jointly (and in case of
either detection hypothesis) estimate the network average CM,
which is denoted as Ro and defined as follows

Ro =
1

K

K∑
k=1

Rok. (9)

For notational convenience, introduce M2 × 1 ro = vec(Ro).
Thus we can write

ro =
1

K

K∑
k=1

vec(Rok) =
1

K

K∑
k=1

E
[
vec
[
yk(n)yk(n)H

]]
.

(10)
Let us define the Hermitian rank one observation matrix
DR,k(n) = yk(n)yk(n)H (under both hypothesis) at node k
at time instant n. Its M2 × 1 vectorized form is dR,k(n) =
vec [DR,k(n)]. We can decompose the dR,k(n) into the product
of a M2 ×M2 constant (invertible) complex matrix T and a
M2 × 1 real vector dk(n) as dR,k(n) = Tdk(n), to keep
the dimension of the estimated vector minimal in the adaptive
recursions. For example, when M = 2, then

Tdk(n) =


1 0 0 0
0 1 −i 0
0 1 i 0
0 0 0 1




DR,k(n)(1, 1)
<[DR,k(n)(1, 2)]
=[DR,k(n)(1, 2)]

DR,k(n)(2, 2)

 . (11)

We denote the estimate of the real valued E [dk(n)] as p̂k(n).
To construct an adaptive distributed estimation algorithm, we
first relate the estimates of Rok and Ro in (9) with the mini-
mization of the following global (network-wise) cost function

po = argmin
p

K∑
k=1

Jk(p) = argmin
p

K∑
k=1

E ‖dk(n)− p‖2, (12)
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where the vector p ∈ RM2

represents the real valued parame-
ters of the CM, to be estimated. Thus po represents the optimal
(real valued) CM estimate or is the optimal solution for the
minimization of the Mean Square Error (MSE) type of global
aggregate cost function Jglob(p), which is given as

Jglob(p) =
K∑
k=1

Jk(p)

=
K∑
k=1

E
[
‖dk(n)‖2 − dTk (n)p− pTdk(n) + pTp

]
.

(13)

Let us note that compared to the models in [48], [35], [30], in
(13) both the observation and estimation variables are vectors.
By differentiating Jglob(p) in (13) with respect to p and setting
the result to zero, we get

∇pJ
glob(p) = −

K∑
k=1

E
[
dTk (n)

]
+KpT = 0. (14)

It follows that

po =
1

K

K∑
k=1

E [dk(n)] . (15)

The Hessian of the aggregate cost function is

∇2
pJ

glob(p) = 2IM . (16)

Obviously Jglob(p) in (13) is strongly convex [34, C.18] with
the unique solution po. Also, in case of one node in the
CR system (K = 1) or when the nodes do not cooperate,
then the individual cost Jk(p) is minimized at the point
pok = E [dk(n)]. Since ∇2

pJ
loc
k (p) = 2IM and the individual

cost J lock (p) is strongly convex, thus pok is unique as well.
Compared to [48], [35], [30], in our paper the local costs

Jk(p) are individually not minimized at the same global point
po due to different channel conditions. However the derivation
of the diffusion LMS algorithm still follows the procedure as
proposed in these papers. The proposed optimal solution (12)
is similar to the Pareto model, which is analysed in [49].

Note that

Rok = vec−1 [Tpok]

Ro = vec−1 [Tpo] . (17)

We seek an iterative solution to estimate the pok and po in a
manner, which is adaptive in time, and is fully distributed (co-
operative). We propose to use diffusion LMS based distributed
solution.

C. Iterative Diffusion solutions

Let Nk denote the neighborhood group of node k ∈ K,
i.e Nk defines the set of nodes l which can send data
unidirectionally the node k. The node k is assumed to be
always connected to itself. For deriving the diffusion LMS
algorithm, we define and use the standard matrices A, C and
C similarly to [30], with non-negative elements al,k, bl,k and
cl,k, that describe how data is exchanged and combined in the
network.

Let us start by defining the K ×K right stochastic matrix
C with non-negative elements so that

cl,k = 0 if l /∈ Nk, C1 = 1, (18)

where cl,k = 1 if node l is connected to the node k. The
global cost (13) can be divided into the local cost of over
the neighborhood of node k and the sum of local costs of
other nodes over their corresponding neighborhoods, and can
be given in the following form

Jglob(p) = J lock (p) +
K∑
l 6=k

J locl (p). (19)

The local cost at every node k can be expressed as a weighted
combination of the costs of the neighbors of every node k.
Thus with the help of non-negative coefficients cl,k the local
cost can be given as follows

J lock (p) =
∑
l∈Nk

cl,kJl(p) (20)

and is minimized at the location plock . The following relation
J locl (p) ≈ J locl (ploc) + ‖p − plocl ‖2 [50] can be used for the
second part of right hand side (RHS) of (19) to relate the
variable p and the plocl . Here the J lock (plocl ), can be ignored,
since it is independent on the variable p. Thus we have the
modified global cost function Jglob

′
as follows

Jglob
′
(p) = J lock (p) +

K∑
l 6=k

‖p− plocl ‖2. (21)

Note that it is not assumed, that node k has access to all
the plocl in the network. Thus we need to approximate the
Jglob

′
(p) locally at every node k and the standard steps follow.

We use the non-negative coefficients bl,k to define if plocl
is available for the node k. Thus the elements bl,k take the
following values

if l /∈ Nk then bl,k = 0 else bl,k = 1. (22)

Then, we limit the summation
∑K
l 6=k ‖p−plocl ‖2 on the RHS of

(21) to the neighbors of node k i.e
∑
l∈Nk/{k} bl,k‖p−plocl ‖2.

Secondly, we replace the (only theoretically available) plocl
with an intermediate estimate ψ̂l, which is available at node
l.

After these steps the approximation of (21) at node k is
given as

Jdistk (p) =
∑
l∈Nk

cl,k E ‖dl(n)− p‖2

+
∑

l∈Nk/{k}

bl,k‖p− ψ̂l‖2. (23)

The steepest descent algorithm [51] can be used to obtain a
recursion for the estimate of po at time instant n, at node k,
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denoted as p̂k(n). By skipping the derivation steps, as in [30],
the two-step steepest descent recursions are then given as

ψ̂k(n+ 1) = p̂k(n) + µk
∑
l∈Nk

cl,k [dl(n)− p̂k(n)]

p̂k(n+ 1) =

1− νk
∑

l∈Nk/{k}

bl,k

 ψ̂k(n+ 1)

+ νk
∑

l∈Nk/{k}

bl,kψ̂l(n+ 1), (24)

where µk and νk are a positive step sizes, ψ̂k(n + 1) is an
intermediate estimate at node k at time n.

The coefficients in front of ψ̂l(n + 1), l = 1, . . . ,K in
the second equation of (24) can be incorporated into the non-
negative coefficients al,k. Let us introduce the K ×K matrix
A, whose elements satisfy

al,k = 0 if l /∈ Nk, 1TA = 1T . (25)

Thus we take ak,k = 1− νk
∑
l∈Nk/{k} bl,k and al,k = νkbl,k

for l 6= k. It is straightforward to see that
∑
l∈Nk

al,k = 1 for
every k ∈ K and thus A is a left stochastic matrix. Finally
we obtain the Adapt and Combine (ATC) recursions as

ψ̂k(n+ 1) = p̂k(n) + µk
∑
l∈Nk

cl,k (dl(n)− p̂k(n))

p̂k(n+ 1) =
∑
l∈Nk

al,kψ̂l(n+ 1). (26)

In similar manner the Combine and Adapt (CTA) version can
be derived, following the ideas from [30]. In the ATC and CTA
algorithms the coefficients cl,k and al,k define respectively
how the measurements dl(n) and p̂l(n) are (unidirectionally)
available for the node k. Thus the matrices A and C specify the
combination strategy of the measurements and the estimates
respectively in the CR network.

In Algorithm 1 we present the ATC and CTA based CM
estimation recursions and the detection step in a common
form. For this we define an additional intermediate estimate
φ̂k(n) and denote the K × K matrix A as A1 or A2, with
the elements a1,l,k and a2,l,k correspondingly. The selection
options of the matrices A1 and A2 and C based on [30] are
given in Table 1. In practice the non-negative coefficients
a1,l,k, a2,l,k, cl,k can be chosen freely under the conditions
(18) and (25) respectively. The coefficients bl,k are absorbed
into coefficients al,k and do not have to be considered in
practice. For comparison in Section V, we list also a topology,
where every node acts as a FC, denoted as Global FC
LMS in Table 1. In such case CR nodes estimate the CM
adaptively and independently (without sharing estimates), all
the measurements from all the CR nodes are available and
equally weighted for every node in the network.

Thus we observe that according to (17), Table 1 and the
CM estimation recursions in Algorithm 1, when the nodes in
the CR network do not cooperate, then the adaptive estimate
p̂k(n) at time instant n at node k defines the individual (local)
adaptive estimate of Rok. When nodes cooperate by following
the proposed cost (12), Table 1 and the CM estimation

Algorithm 1 Distributed LMS based CM Estimation and
Detection

Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients a1,l,k, a2,l,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. CM estimation recursions:
φ̂k(n) =

∑K
l=1 a1,l,kp̂l(n)).

ψ̂k(n+ 1) = φ̂k(n)

+µk
∑K
l=1 cl,k

[
T−1dR,l(n)− φ̂k(n)

]
p̂k(n+ 1) =

∑K
l=1 a2,l,kψ̂l(n)

2. LE detection decision:
H0 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
< γLE,k or

H1 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
> γLE,k.

(Refer to (54) or (57) for selecting the γLE,k).
end for

end for

TABLE I
CHOICES OF MATRICES A1 AND A2 AND C FOR DIFFERENT LMS

ALGORITHMS

Algorithm A1 A2 C
No Cooperation LMS I I I
Global FC LMS [30] I I (1/K)11T

CTA diffusion LMS [30] A I C
ATC diffusion LMS (26) I A C

recursions in Algorithm 1, then the adaptive estimate p̂k(n) at
time instant n at node k defines the adaptive estimate of Ro
in (9), within acceptable mean square error bounds [35], [30].
Thus after several iterations, the adaptive estimate R̂k(n) of Ro
is available (via the transformation (11) and de-vectorization)
for every node in the CR network. Therefore depending on
the cooperation model of the nodes, the node k at time instant
n can perform independently the LE detection based on the
available matrix estimate R̂k(n) = vec−1 [Tp̂k(n)].

Regarding the communication cost of Algorithm 1, then
based on Table 1 it is obvious, that when A 6= I, then from the
transmission point of view still every node k ∈ K needs to
broadcast its M2×1 estimation vector p̂k(n) at time instant n
to the neighbours of hearing distance of the node k. However
from the receiving point of view the number of estimates
p̂k(n) required for the fusion by every node k is determined
by the selection of matrix A. Similarly, every node k obtains at
time instant n a M2 × 1 observation vector d̂k(n) and when
C 6= I broadcasts it at time instant n to the neighbours of
hearing distance of the node k. Thus on the receiving side,
the exact selection of C determines the number d̂k(n) required
by every node k at time instant n for observation fusion. In
Section V-A we comment our selection of A and C for the
simulations.

Finally we note that in addition to AS 2, obviously the
CR system needs some control layer protocol to establish a
connection between the nodes. The details of this operation is
outside the scope of this paper.
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IV. PERFORMANCE ANALYSIS

The performance analysis of the proposed algorithm is
divided into three parts. First we derive a general model for
analyzing the mean and (co-)variance of the adaptive CM
estimates of recursions in Algorithm 1 in one framework.
Secondly we study the statistical properties of the adaptive
CM estimates. For studying the LE detection performance
of the adaptive CM estimate, the distribution of the adaptive
CM estimate is approximated by a CCCW distribution. We
propose the usage of the Total and General Variance methods
for approximation the DoF and mean matrix parameters for
the corresponding CCCW distributions, based on the moments
of adaptive CM estimates. Thirdly we provide theoretical
results for the LE detector. Let us note that for the theoretical
performance analysis of the LE detector, we need to know the
values of the channel gains and the noise power.

A. Moment analysis of adaptive CM estimates

For the analysis of the moments of the spatio-temporal
adaptive CM estimates, we propose to use a more general
vector/matrix recursion model.

We stack first the M2 × 1 estimates and observations
from all the nodes k ∈ K into a KM2 × 1 column vec-
tor p̂(n)|Hi = [p̂1(n)|Hi . . . p̂K(n)|Hi]

T and d(n)|Hi =
[d1(n)|Hi . . . dK(n)|Hi]

T respectively, where i = 1 denotes
the case when the PU signal is present and i = 0 the case
when the PU signal is absent. The initial estimate is noted as
p̂(0)|Hi.

Secondly we define an additional K × K matrix M =
diag {µ1, . . . , µK}, which contains the positive step size pa-
rameters of the algorithms for every node k ∈ K. The matrix
M is then be extended to another KM2 ×KM2 matrix as
M = M ⊗ IM2 . For the purpose of comparison with the
Consensus algorithm [33], let the K ×K matrix A0 specify
the fusion strategy of estimates of the consensus algorithm.

The K ×K network topology matrices A0, A1, A2 and C
are extended to KM2×KM2 matrices as follows, A0 = AT0 ⊗
IM2 , A1 = AT1 ⊗ IM2 , A2 = AT2 ⊗ IM2 and C = CT ⊗ IM2 .

Proposition 1. The distributed LMS algorithms in Table 1
and the consensus algorithm [33] can be described by the
following spatio-temporal recursion

p̂(n+ 1)|Hi = A2

(
A0 −M

)
A1p̂(n)|Hi + A2MCd(n)|Hi.

(27)

In case of LMS algorithms A0 = IK and for example we get
the ATC algorithm with no measurement exchange, when we
take additionally A1 = C = IK and A2 6= IK , according to the
selected network topology. Thus A0 = A1 = IK ⊗ IM2 , A2 =
AT2 ⊗ IM2 and C = IK ⊗ IM2 . For the Consensus algorithm
[33], we take A1 = A2 = C = IK , A0 6= IK according
to the network topology and thus we have A0 = AT0 ⊗ IM2

and A1 = A2 = IK ⊗ IM2 . Note, that the proposed Kronecker
extension retains the stochastic property of the extended matrix
and due to the transpose, the matrices A1 and A2 are now right
stochastic and C is left stochastic.

For studying the performance of the LMS algorithms, we
first need to evaluate the moments - mean and covariance of

the stacked estimates p̂(n) and we provide the corresponding
recursions for evaluating these moments.

1) Mean of estimates: Let us denote the conditional expec-
tation of the observation vector as E [d(n)|Hi], where i = 0, 1.
We specify these values in the Section IV-B1.

Proposition 2. The general recursion (27), can be expressed
as

E [p̂(n+ 1)|Hi] = A2

(
A0 −M

)
A1 E [p̂(n)|Hi]

+ A2MCE [d(n)|Hi] , (28)

for i = 0, 1, where the initial value for the mean vector is
given as E [p̂(0)|Hi], i = 0, 1.

After iterating we see, that the mean recursion can be given
in the following equivalent form

E [p̂(n)|Hi] =
[
A2

(
A0 −M

)
A1
]n p̂(0)

+

[
n−1∑
i=0

[
A2

(
A0 −M

)
A1

]i]
× A2MCE [d(n)|Hi] . (29)

For the asymptotic analysis of the mean recursion (29),
we need to analyse the asymptotic behavior of[
A2

(
A0 −M

)
A1

]n
and the limit of the geometric

series
∑n−1
i=0

[
A2

(
A0 −M

)
A1

]i
, when n→∞.

According to [52, Theorem 5.6.12], the convergence
limn→∞[A2

(
I−M

)
A1]n → 0 happens if and only if the

spectral radius of the matrix A2

(
A0 −M

)
A1 satisfies

ρ
(
A2

(
A0 −M

)
A1

)
< 1. (30)

As also noted in [33], the stability of the consensus algorithm
is dependent not only on the selection of step sizes but also
on the estimation exchange topology A0. This fact limits the
usage of consensus algorithm in practice.

For the diffusion LMS based algorithms, the choice of step
sizes in the M of the block diagonal matrix

(
I−M

)
should

guarantee that the stability condition (30) holds, given the left
stochastic matrices A1 and A2 and by considering the proposed
Kronecker extensions. It was shown in [45, Lemma D.6], that
by using the block maximum norm, denoted as ‖.‖b,∞, then
for the matrix of type A2

(
I−M

)
A1, it holds that

ρ
(
A2

(
I−M

)
A1

)
≤ ‖A2

(
I−M

)
A1‖b,∞

≤ ‖A2‖b,∞‖
(
I−M

)
‖b,∞‖A1‖b,∞

= ‖
(
I−M

)
‖b,∞

= ρ
(
I−M

)
. (31)

Since the matrix
(
I−M

)
is diagonal we impose to have that

ρ
(
I−M

)
= max

k
|1− µ̄k| < 1, (32)

where the µ̄k, k = 1, . . . ,KM2 are the diagonal elements of
M. Thus based on (32), the sufficient condition for the (30) to
hold (i.e to make the power component in the (29) to zero) is
to select every µ̄k in M so that the diagonal matrix

(
I−M

)
is stable - i.e all the eigenvalues of

(
I−M

)
are inside the

unit circle. Since M = M⊗IM2 , the step size condition (32)
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applies for the diagonal elements µk of the K ×K diagonal
matrix M directly. Thus for every k = 1 . . .K we should
have

0 < µk < 2. (33)

The CR system designer can choose the step size(s) of the
nodes (freely) in the range (33), by taking into account the
CR system design considerations (which are however out of
the scope of the paper). Usually the step sizes are taken
quite small to get more precise estimates (and thus better
detection performance) i.e µk � 2, but with the cost of longer
convergence time of the adaptive estimations. We illustrate the
effect of convergence in Section V.

Next we analyse the convergence condition of the sec-
ond component on the RHS of (29). Based on the
result of [52, Corollary 5.6.16] the geometric series
Sn =

∑n−1
i=0

[
A2

(
I−M

)
A1

]i
is generated by the matrix[

A2

(
I−M

)
A1

]
and converges if for a matrix norm it holds

that ‖A2

(
I−M

)
A1‖ < 1. This condition guarantees that[

I−
[
A2

(
I−M

)
A1

]]
is invertible. Since from (31) we have

ρ
(
A2

(
I−M

)
A1

)
≤ ‖

(
I−M

)
‖b,∞ = ρ

(
I−M

)
, then

the sufficient condition for the convergence of the series is
given by (32). Hence when the condition (32) is satisfied, then
as n→∞ the geometric series converges to

Sn =
[
I−

[
A2

(
I−M

)
A1

]]−1
. (34)

Thus by noting the mean of p̂(n) in steady state and under
both hypothesis Hi, i = 0, 1 as E [p̂(∞)|Hi], we have that

E [p̂(∞)|Hi] =
[
I−

[
A2

(
I−M

)
A1

]]−1

× A2MC E [d(n)|Hi] , (35)

where the conditional expectations of observations E [d(n)|Hi]
are given in the Section IV-B1.

The steady state result (35) is asymptotically biased. Let us
note, that the mean error (or bias) in steady state is given as

E [p̂(∞)|Hi] = ‖(1K ⊗ po|Hi)− E [p̂(∞)|Hi] ‖2, (36)

for, i = 0, 1, where po|Hi denotes the optimal solution (15)
and E [p̂(∞)|H1] follows from (35). Since the global solution
(15) follows the Pareto model, we refer in this paper to the
generic result [49, Th. 3] for characterizing the bias term, such
as (36). The referred theorem determines that under certain
conditions (for example when we have the same step-sizes
and a doubly-stochastic matrix A), a lower step-size makes
the bias term also lower - i.e the estimates are closer to the
optimal solution. Thus in practice, when very low step-size
values are used, the bias term can be ignored.

2) Covariance of estimates: Let us denote the conditional
covariance of the estimates under the hypothesis Hi, i = 0, 1
as Cov [p̂(n+ 1)|Hi]. Similarly let Cov [d(n)|Hi] denote the
conditional covariance of the observations.

Proposition 3. By using recursions (27), (28), the definition
of covariance and by considering the fact that p̂(n)|Hi is

independent of the stacked observation vector d(n)|Hi, it can
be shown that the covariance recursion is

Cov [p̂(n+ 1)|Hi] = A2

(
A0 −M

)
A1 Cov [p̂(n)|Hi]

× AT1
(

AT0 −M
)

AT2

+ A2MC Cov [d(n)|Hi] CTMAT2 .
(37)

where initial estimate of covariance matrix is noted by
Cov [p̂(0)|Hi], i = 0, 1.

The covariance matrix of the observations, Cov [d(n)|Hi],
is constant over time n and we provide the values in the
Section IV-B1. Note that (37) is in the form of a discrete
time algebraic Riccati equation (DARE). Thus the covariance
results in steady state (i.e the solution to DARE), can be found
by using standard procedures, such as [53, App. E].

Finally we note, that according to the theory of adaptive
filtering it is generically known that a smaller step size causes
lower co-variance of an adaptive estimate in steady state [51]
and this leads to better detection result.

B. Statistical modeling of adaptive CM estimates

In this section we first find the theoretical moments for the
rank one (Hermitian) observations dR,k(n), which are then
transformed to real domain for the spatio-temporal moment
recursions of CM estimate p̂k(n), described in the previous
subsection. Then we describe the statistical modelling of
adaptive CM estimates. Thirdly we propose two methods
for approximating the adaptive CM estimates by a Wishart
distribution.

1) Moments of rank one observations: First we summarize
the generic and known results about the moments of M ×M
NCW and CCCW matrices R̂k, based on [54].

When a M × M matrix R̂k follows a NCW distribution
with a DoF parameter N̄ , a noise population covariance matrix
Σ̄v,k and a non-centrality matrix Ω̄k =

[
Σ̄v,k

]−1
T̄ k, where

T̄ k = ĒkĒHk and where the non-zero column k of M × N
mean matrix Ēk is E [yk(n)], i.e R̂k ∼ CWM (N̄ , Σ̄v,k, Ω̄),
then the first and vectorized second moments are given as

E
[
R̂k
]

= N̄Σ̄v,k + T̄ k,

Cov
[
vec(R̂k)

]
= (Σ̄

T
v,k ⊗ T̄ k) + (T̄

T
k ⊗ Σ̄v,k)

+ N̄(Σ̄
T
v,k ⊗ Σ̄v,k). (38)

As a special case, when the matrix R̂k follows a CCCW
distribution with a population covariance matrix Σ̄k, i.e R̂k ∼
CWM

(
N̄ , Σ̄k

)
, then the matrix T̄ k equals zero and we get

E
[
R̂k
]

= N̄Σ̄k,

Cov
[
vec(R̂k)

]
= N̄(Σ̄

T
k ⊗ Σ̄k). (39)

These results in [54] are based on the characteristic functions
of the corresponding Wishart distributions and apply for N̄ ≥
1. We note that Σ̄

T
k = Σ̄

c
k for a Hermitian matrix and then

(39) also follows from [55] and [56]. Thus the moments of
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dR,k(n) can be found by using the results (38) and (39) with
N̄ = 1, R̂k = yk(n)yk(n)H = DR,k(n), Σ̄v,k = σ2

vIM , Σ̄k =
Rs,k + σ2

vIM2 , Rs,k = E
[
|αk|2

]
Σs and where in NCW case

T̄ k = E
[
|αk|2

]
msmH

s .
Based on the signal model (2) and on the AS 1, obviously

under H0 we have that

E [dR,k(n)|H0] = vec
[
σ2
vIM

]
. (40)

Under H1 the mean at node k is given as

E [dR,k(n)|H1] = vec
[
Rs,k + σ2

vIM
]
. (41)

Given the network size K, the stacked KM2 × 1 vector
E [dR(n)|Hi] over k = 1 . . .K and for i = 0, 1 can be formed
based on the results (40) and (41) respectively.

Due to the AS 1, the k, k (k ∈ K) diagonal block
of the KM2 × KM2 network-wise covariance matrix
Cov [dR(n)|H0] is given as

Cov [dR,k(n)|H0] = σ4
vIM2 , (42)

while the off-diagonal blocks are zeros, since the observation
noise is not correlated over the CR nodes.

The KM2 × KM2 network-wise Cov [dR(n)|H1] is con-
structed as follows. Firstly, when ms = 0 and Σs 6= 0 (i.e
Case 2 type) it can be verified, that the k, j ∈ K blocks of
the Cov [dR(n)|H1] are given as

Cov
[
dR(k,j)(n)|H1

]
=

{[(
Σ̄k

)c ⊗ Σ̄k

]
, k = j

[(Rs,k,j)
c ⊗ Rs,k,j ] , k 6= j

(43)

where Σ̄k = E
[
|αk|2

]
Σs + σ2

vIM2 and where for k 6= j
Rs,k,j = E

[
yk(n)yj(n)H

]
= E

[
αkα

c
j

]
Σs, since due to (AS

1) in this case the observations yk(n), yj(n) are zero mean
Gaussian vectors with independent noise processes. Secondly,
when ms 6= 0 and Σs = 0 (i.e Case 1 type) and k = j, then
the k, k on-diagonal block of Cov [dR(n)|H1] is given as

Cov
[
dR(k,k)(n)|H1

]
=
[(
σ2
vIM2

)T ⊗ σ2
vIM2

]
+
[(

E
[
|αk|2

]
msmH

s

)T ⊗ σ2
vIM2

]
+
[(
σ2
vI2
M

)T ⊗ (E [|αk|2]msmH
s

)]
.

(44)

When k 6= j, then due to (AS 1) the observation noise is
not correlated over the CR nodes and it can be verified, that
for the k, j off-diagonal blocks, Cov

[
dR(k,j)(n)|H1

]
= 0.

Given the network size K, the network-wise covariance matrix
Cov [dR(n)|H1] can be composed by using (43) and (44)
respectively.

Finally the moments of the real observations (as the inputs
for the moment recursions of the estimates p̂k(n), provided in
the previous subsection) can be given for i = 0, 1 as

E [d(n)|Hi] =
[
T−1 ⊗ IM2

]
E [dR(n)|Hi] , (45)

and

Cov [d(n)|Hi] =
[
T−1 ⊗ IM2

]
× Cov [dR(n)|Hi]

[
(TH)−1 ⊗ IM2

]
. (46)

2) Distributions of the adaptive estimates: To study the
detection performance of the proposed distributed, adaptive
LE detector, we need to specify the conditional distributions
for the detection test statistics - the LE of

R̂k(n) = vec−1 [Tp̂k(n)] (47)

under both detection hypothesis. As summarized in (7), when
the estimate R̂k(n) is obtained by using the linear, equal
weighting based method (6) in a non-distributed and non-
cooperative manner, then according to the definition of Wishart
matrices [16, Chapter 2], Rk(n) follows a Wishart distribution.
Based on the literature, several results exist for the distribu-
tions of the LE of Wishart distributed matrices under both
detection hypotheses.

The non-asymptotic cumulative distribution function (CDF)
model of the LE of a NCW distributed CM matrix is more
complicated for practical and numerical evaluation, compared
to the corresponding model of a CCCW distribution. Thus of-
ten a NCW distribution is approximated by a CCCW distribu-
tion, where the non-centrality part of the NCW distribution is
incorporated into the population covariance matrix parameter
of the CCCW distribution [42], [12], [57].

When the estimate R̂k(n) is obtained by using the exponen-
tial type of averaging (as used in LMS type of algorithms),
then due to different weights at every n ∈ N , it can be seen,
that a sum of non-equally weighted Wishart matrices over N
is not Wishart distributed [42, Theorem 3.3.1, 3.5.2]. Based on
(27) it is easy to verify, that the adaptive CM estimate R̂k(n) is
an average over non-equally weighted vectorized observation
matrices. At iteration step n, at node k the elements of
the vectors p̂k(n) are weighted equally and fused without
changing or mixing the order of the elements of p̂k(n). The
Hermitian property of the estimated CMs is not affected. Thus
we need to seek generic CC(C)W approximations for studying
the conditional CDFs of LE of adaptively estimated CMs.

3) Total and General variance approximations: We pro-
pose the usage of two methods for approximating the adap-
tive CM estimates R̂k(n) (47) by conditional approximate
CC(C)W distributions. Thus based on (39) and we assume
that

R̂k(n)|Hi ∼ CWM

(
N̄i, Σ̄k,i

)
, (48)

for i = 0, 1, and where ∼ denotes an approximate distribution,
N̄i is the approximating DoF and Σ̄k,i is the approximating
population covariance matrix parameter of the corresponding
CC(C)W distribution. As shown at next, the values for N̄i and
Σ̄k,i are found by matching the mean and trace or determinant
of moments of R̂k(n)|Hi with the corresponding moments of
the devectorized adaptive estimate vec−1 [Tp̂k(n)] under both
detection hypothesis.

Proposition 4. For the approximation (48), Σ̄k,i is found as

Σ̄k,i =
1

N̄i
E
[
R̂k(n)|Hi

]
(49)
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and N̄i can be found using the Total Variance (TV) or General
Variance (GV) method, respectively, as

N̄TV,i =


Tr
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
Tr
[
T Cov [pk(n)|Hi] TH

]
 (50)

or

N̄GV,i =


M2

√√√√det
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
det
[
T Cov [pk(n)|Hi] TH

]
,
(51)

where E
[
R̂k(n)|Hi

]
= vec−1 [T E [pk(n)|Hi]] for i = 0, 1.

These results are found as follows. Firstly we insert the
Σ̄k,i = E

[
R̂k(n)|Hi

]
/N̄i from the first equation of (39) into

the RHS of the second equation of (39) and we have that

Cov
[
vec(R̂k(n)|Hi)

]
=

1

N̄i

[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

] ]
. (52)

Based on (28) or (35) and the first equation of (39), we equal-
ize the means of matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi]
and get (49). For the DoF, N̄i, to use in the approximation,
we adapt the idea proposed in [40], [41] and equalize the
total variances (i.e the traces of corresponding covariance ma-
trices) of the matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi]. Thus
based on (52) we require that Tr

[
Cov

[
vec(R̂k(n)|Hi)

]]
=

Tr
[
T Cov [pk(n)|Hi] TH

]
for i = 0, 1. By solving for N̄i we

have the total variance (TV) type of DoF approximation as
given by (50). An alternative for finding the approximation for
N̄i is to equalize the determinants of both matrices [42]. Thus
based on (52), we require that det

[
Cov

[
vec(R̂k(n)|Hi)

]]
=

det
[
T Cov [pk(n)|Hi] TH

]
. Similarly, by solving for N̄i the

general variance (GV) type of DoF approximation is given by
(51).

Obviously the total variance method takes into account
only the variances of the elements of the corresponding
matrices, while the general variance method includes also the
covariances of the elements of the corresponding matrices into
the approximation of parameter N̄i. AS observed, by using
the proposed TV or GV procedures under hypothesis H1, a
NCW matrix is approximated by the CCCW distribution, by
matching the moments of NCW matrix into the CCCW model.
This is a desired effect, as we explain in the next section. Based
on these results we can proceed with the detection performance
analysis.

It can be verified, that under H0 the DoF value approxima-
tions (50) and (51) are, via the moment analysis of the adaptive
estimate pk(n), dependant on the step size parameter µk and
on the full network topology. Since the same noise power value
σ2
v is present both in the mean and covariance formulas of the

adaptive estimate pk(n), then a change in the σ2
v,k value does

not affect the DoF value under H0. However under H1 both the
DoF approximations are additionally dependant on the noise
power value σ2

v,k. This effect is illustrated in Section V.

Since under H0, the DoF parameter does not affect the
threshold calculation, then a robust detector can also be applied
in Algorithm 1, by changing the detection module accordingly.
We give an example with the MME detector in Section V.
On the other hand, since under H1 the DoF parameter is
affected by the uncertainty in the noise power value, then this
effect possibly makes the formula of the theoretical detection
performance of a robust detector inaccurate as well, but that
robust detector can still be used.

C. Detection Performance Analysis

In this section we provide formulas for studying the prob-
ability of false alarm (PFA) and probability of detection
(PD) of the proposed, adaptive LE detector. For this, we
need to evaluate the conditional CDFs of the LE of adaptive
CM estimate R̂k(n) (48) under both detection hypotheses
and under the assumption that R̂k(n) is approximated by
a CC(C)W distribution as proposed in Section IV-B3. The
resulting detection performance of LE detector is dependent
on the performance of the underlying adaptive, distributed CM
estimation. Let the eigenvalues of Σ̄k,i in (48) be denoted in
non-increasing order as ν1,i ≥ ν2,i ≥ · · · ≥ νM,i.

1) LE under H0 Hypothesis: Based on [12], [58], the
R̂k(n)|H0 (48) is assumed to follow the CCW distribution
and the eigenvalues of Σ̄k,0 are ν1,0 = · · · = νM,0 = σ2

v/N̄0.
The PFA,e, based on the non-asymptotic CDF model of the
R̂k(n)|H0, is given by

FH0,e(x) = |det(Â)|
PFA,e(γLE,k,e) = 1− FH0,e(γLE,k,e) (53)

where the M × M matrix Âi,j =
(
N̄0−j−i−1

i−1

)
γR(N̄0 +

i − j, x
ν1,0

), for i, j = 1, . . . ,M and where γR(k, u) =
1

Γ(k)

∫ u
0
xk−1e−xdx is the regularized incomplete Gamma

function. The (ideal) detection threshold γLE,k,e, based on the
non-asymptotic model is expressed as

γLE,k,e = F−1
H0,e

(1− PFA,e) (54)

and can be evaluated in terms of a numerical inversion of the
exact CDF formula at a desired PFA,e value. An asymptotic
CDF based on the Gaussian approximation of Tracy-Widom
distribution is proposed in [12]. When N̄0 → ∞, M → ∞
and M/N̄0 ∈ (0, 1), the approximate CDF under H0 can be
given as

FH0,g(x) = Φ

(
x− E[λ1]|H0√

Var[λ1]|H0

)
,

E[λ1]|H0 = ν1 (aLE + (bLE(−1.7711))) ,

Var[λ1]|H0 = (ν1bLE)2(0.8132),

aLE = (
√
M +

√
N̄0)2,

bLE = (
√
M +

√
N̄0)(

1

M
+

1

N̄0
)1/3. (55)

This leads to the PFA,g formula

PFA,g(γLE,k,e) = Q

(
γLE,k,g − E[λ1]|H0√

V ar[λ1]|H0

)
, (56)
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where Q is the complementary distribution function of the
standard Gaussian and to the threshold formula is

γLE,k,g = E[λ1]|H0 +
√

Var[λ1]|H0Q−1(PFA,g). (57)

As seen in Section IV, the calculation of the threshold of the
LE detector at node k and time index n requires knowledge
of the moments of adaptive CM estimates (present at the
reference node k) under hypothesis H0 i.e R̂k(n)|H0. Thus
based on the values of step sizes, the noise power, the desired
PFA, the provided moment recursions and the distribution
parameter approximations models for the R̂k(n)|H0 in Section
IV can be applied, to evaluate the detection threshold at node
k and at time instant n. As seen, CR nodes need to know the
noise power value(s) to evaluate the moments of R̂k(n)|H0. In
practice every node k needs to calculate its own threshold by
using the provided procedure. While the threshold at node k
can be updated iteratively based on the exact moments of
R̂k(n)|H0, the steady state moments are preferred in practice.

2) LE under H1 Hypothesis: Next we obtain a common
model for the non-asymptotic CDF|H1 of the LE of adaptively
estimated CM matrix. As explained in Section IV-B2, we
approximate the NCW matrix by a CCCW matrix by matching
the moments of the matrices. In Section V we show this
approximation works quite well.

Thus we assume the R̂k(n)|H1 is distributed by a CCCW
distribution. The CDF of the LE of a CCCW matrix R̂k(n)|H1

is given by [59] as follows

FH1,e(x) = KCC

∣∣∣∣∣
{
νN̄1−M+j
i Γ̄

(
N̄1 −M + j,

x

νi,1

)}
i,j

∣∣∣∣∣,
KCC =

 M∏
i=1

(N̄1 − i)!
M∏
j=1

(M − i)!

−1
M∏
k=1

(k − 1)!

(58)

for i, j = 1, . . . ,M and where Γ̄(k, u) =
∫ u

0
xk−1e−xdx is

the lower incomplete gamma function [60, 8.350].
This result follows from [61, Eq. 1] by integrating the joint

PDF of ordered eigenvalues of a CCCW matrix, by using [61,
Corollary 2]. It should be emphasized, that as explained in
[61, Chapter II. B], when some of the eigenvalues of Σ̄k,1 are
coincident, then [62, Lemma. 2] needs to be used to study the
limit [61, Eq. 3].

In case of the matrix dimension is M = 2, the eigenvalues
of the population covariance matrix are naturally not coinci-
dent under H1 (i.e ν1,1 > ν2,1). It can be shown, that when
M = 2, the following simplified version of (58) can be used
to evaluate the CDF numerically

FH1,e(x) =
D̄(

1
ā −

1
b̄

)
āb̄
,

ā = ν1,1N̄1,

b̄ = ν2,1N̄1,

D̄ = b̄γR(N̄1 − 1,
x

ν1,1
)γR(N̄1,

x

ν2,1
)

− āγR(N̄1 − 1,
x

ν2,1
)γR(N̄1,

x

ν1,1
), (59)

where γR(k, u) is the regularized incomplete gamma function.
Finally the probability of detection of the LE of a CCW

matrix under H1 using the exact CDF model is

PD,e(γLE,k,e) = 1− FH1,e(γLE,k,e). (60)

As earlier, we observe that the channel gain values and
the noise power value are required to complete the chain
of approximations for the theoretical detection performance
analysis.

V. SIMULATION RESULTS

In this numerical simulation Section we investigate the
detection performance of the ATC type of distributed, adaptive
LE detection algorithm. We describe the exact signal model,
used in the simulations and then investigate the probability of
false alarm (PFA) and the probability of detection PD of the
proposed algorithms.

A. Simulation model

The channel gains in the following simulations are assumed
to be constant over N and M dimension and are sampled
for the CR node k ∈ K as αk ∼ CN(0, 1). We assume
there is only one PU signal present in the CR network i.e
s(n) = s(n)1, where s(n) ∼ CN(0, Ps) and Ps = 1. Using
the same examples as in [46], we use for Case 1: ms = s1,
Σs = 0, where s is a complex signal realization, and for
Case 2: ms = 0 and Σs = Ps11H . Obviously rank(11H )=1.
Also in (43) and (44) we have Rs,k = |αk|2Ps11H , Rs,k,j =
αkα

c
jPs11H and T̄ k = |αk|2Ps11H .

When the CR nodes do not cooperate, the local correlation
matrix Rk (4) is given as follows

Rk =

[
|αk|2

E
[
‖s‖2

]
N

]
11H + σ2

v,kIM . (61)

For Case 1 we assume |s|2 = Ps, where s is a complex signal
realization. Then we get E

[
‖s‖2

]
= NPs for both Case 1 and

Case 2. The first moment of the rank one input for these two
cases is given as

E [dR,k(n)|H1] = vec
[
|αk|2Ps11H + σ2

vIM
]
. (62)

1) Network topology selection: To improve the communi-
cation link failure resistance in the CR network, but to keep
the need for processing the data from neighbor nodes minimal,
we propose to select the diffusion topology of the estimates
in the CR network, i.e the A matrix, as a combination of
the local (A,C = I) and ring-around (A = ATring,C = I)
topologies [1, Eq. 11]. Thus at time instant n, at every node
k two M2 × 1 estimates: the local estimate p̂k(n) and the
estimate p̂(k−1)modK(n) from node (k − 1)modK are fused
together using equal, constant weight 0.5. Therefore, in the
subsequent sections we assume, that C = I, the matrix A is in
such case doubly stochastic (i.e we have additionally A1 = 1)
and all the conditions for selecting elements al,k and cl,k, as
listed in the Section III-C, are satisfied.
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For example when K = 3 and by keeping the same notation
and conditions for the elements of matrix A, the ring around
and diffusion topologies are given as follows

ATring =

0 0 1
1 0 0
0 1 0

 , ATdiff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 . (63)

A schematic view of the proposed diffusion and incremental
steps for the ATC type of algorithm with K = 2 is illustrated
in Fig. 1.
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Fig. 1. Proposed diffusion method

In the next sections we select the dimension of the estimated
matrix as M = 2 and use (11) and (59). The step size of
the algorithms in all the simulations is selected to be µ =
0.001 for all the nodes, unless stated otherwise. Given the
step-size value, all the nodes in the network receive N = 7000
[2× 1] vector-samples to get converged adaptive CM estimates
at the last iteration/sample. These CM estimates are used in the
simulations to obtain the LE observations. A system designer
can choose other values for µ and N (depending on the system
requirements).

In Fig. 2 we illustrate the change of the LE of adaptively
estimated CM with respect to the threshold (54). We set the
noise power to one. After the initialization, the algorithm first
tracks and then converges to the steady state level of LE under
the H1 hypothesis. At time instant 7001 the PU signal switches
off, the algorithm adapts and convergences to the H0 level of
the LE value.

2) DoF values under noise uncertainty: In Fig. 3 we
illustrate of the effect of the noise power uncertainty to the TV
based DoF approximation under Case 2 and H1. The network
sizes are K = 1, 3, 10, 30 and the results are taken from
the last node in the network. The horizontal axis represents
the (network averaged) SNR, which is changed by scaling
the noise power value σ2

v . We use the noise perturbation
model [14, Eq. 8] and denote the ᾱ as the noise uncertainty
factor. Two noise value perturbations are added to the non-
perturbed case 0 dB (ᾱ = 1): -1 dB (ᾱ = 0.796) and 2 dB
(ᾱ = 1.585). As we see, in case of σ2

v is inaccurate, then the
TV approximated DoF|H1 values are shifted in accordance to
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the value of ᾱ. For GV based DoF|H1 values, the results are
very similar.

Next we investigate the performance of the proposed LE
algorithms by studying the PFA in case of PU signal is missing
and the PD, when the PU signal is present. Both the PFA and
PD based on adaptive CM estimates are estimated using the
Monte Carlo (MC) method [9]. To have an equal comparison
between the node sets in one plot, we take all the reference
results from the last node in the network. Obviously, based on
the global estimation model (9), when we have more nodes in
the network, then the CM estimates at every node have been
better averaged over the channel gain values of the nodes in
the CR network.

B. Probability of false alarm

We start the investigation of the proposed algorithms by
studying the PFA. Under the detection hypothesis H0 we
assume σ2

v = 1. We select 21 threshold points in the range
of σ2

v and determine the LE realizations of adaptive CMs
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estimates. Then we estimate the PFA over 1000 experiments
at every threshold point. The estimated PFA is denoted as Ex-
periments in the Fig. 4. We compare the estimated PFA with
the theoretical PFA models when the Total variance (TV) or
the General variance (GV) method are used for determining an
approximately equivalent CCW matrix. The results using (55)
are denoted as Th. TV and Th. GV respectively. Similarly the
results using (53) are denoted as Th. Exact TV and Th. Exact
GV respectively. Finally, based on the moments of the adaptive
CM estimates, we generate the approximate CCW matrices (by
using Cholesky decomposition method), and study the PFA
performance based on those matrices in addition (denoted as
Wishart TV and Wishart GV respectively). The PFA versus
threshold results are given in Fig. 4 for the ATC algorithm.
We note that the performance of the TV and GV methods are
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Fig. 4. PFA versus threshold using ATC

almost equal and the TV/GV approximations are sufficient for
studying the PFA of the adaptive CM estimates. We see a
good match between the estimated PFA and the theoretical
PFA models are achieved. The Gaussian approximate PFA
model (which is easier to use in numerical analyses compared
to non-asymptotic PFA model), follows the estimated PFA
results quite well and can therefore be used to characterize
the PFA of the adaptive estimates. Therefore by knowing the
noise power value, the theoretical Gaussian approximate PFA
model can be also used for deriving the detection threshold,
when we fix a desired PFA value.

C. Probability of detection

Next we investigate the probability of detection under
different noise power conditions using the proposed distributed
and adaptive LE detection algorithms with signal models Case
1 or 2. In Case 1 we select one complex PU signal realization,
while in Case 2 we set Ps = 1 for all the simulations. We note,
that the performance of the moment estimation framework
of adaptively estimated CMs is well illustrated by the PD
versus SNR analysis. In the comparison of algorithms we
use the same individual channel gains of the nodes in all
the simulations performed under hypothesis H1. We set the

desired PFA = 10−2 for all the nodes. The thresholds of
the LE detectors at nodes k ∈ K are calculated using (54)
with both the TV and GV approximation. Simulations studies
showed, that the performance of the Gaussian CDF|H1 based
threshold (57) is almost equal to the performance of the non-
asymptotic threshold (54) and thus not shown in this paper.

In the following simulations we compare the performance
of 4 different network sizes: K = 1, 3, 10, 30 nodes, while the
comparable results are taken from the last node in the set. The
PD is estimated over 1000 experiments on a given noise power
value. We compare the MC estimated PD results (based on the
adaptively estimated CMs and denoted as Ad. Exp. in the fig-
ures) with the non-asymptotic theoretical model (60) (denoted
as Theory) and with the PD results based on approximately
equivalent CCW matrices (denoted as W. Exp.). These latter
matrices are generated based on the respective moments under
H1. For the signal model Case 1, the PD/SNR results are given
in Fig. 5 when the TV approximation is used and in Fig. 6
when the GV approximation is used for the ATC algorithm.
Similarly for the signal model Case 2, the PD versus SNR
results are given in Fig. 7 when TV approximation is used
and in Fig. 8 when GV approximation is used, respectively
for the ATC algorithm.
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Fig. 5. Probability of detection, ATC, TV, Case 1

For comparison, the MC estimated PD/SNR performance
of the MME detector [14] under Case 2 is shown additionally
in Fig. 7 and Fig. 8 (where denoted as MME. Exp.). The
threshold of the MME detector is calculated by using [14,
Eq. 29], where in our case L = 1 and Ns = N̄TV,0 or
Ns = N̄GV,0. Based on the discussion in Section IV-B3, it
is obvious, that since the noise value perturbations are not
affecting the threshold of the MME detector, then the corre-
sponding MC based PD/SNR performance is not affected as
well. In Fig. 9 we show a comparison of PD/SNR performance
of the LE detector by using the FC based algorithm in Table 1,
TV approximation based exact threshold, and Case 2 model
only. In such case the observations of every CR nodes are
available for all the CR nodes in the CR network and the
CR networks can (independently and adaptively) estimate the
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CM. In Fig. 10 we provide similar comparison of the PD/SNR
performance of the LE detection scheme in Fig. 10, by using
the consensus algorithm ([33]), TV approximation based exact
threshold and Case 2 model only and we select A0 = ATdiff.

We note that the non-asymptotic theoretical PD model
describes the detection performance of adaptively estimated
CMs well, also in the low SNR regime. The performance
of TV and GV methods is almost equal and thus the TV
approximation is computationally less demanding method for
the numerical performance analysis of the LE detector. The
Case 1 signal model is well approximated by the signal model
of Case 2 (CCCW), via the TV and GV based mean and DoF
parameter matching.

We observe, that as the number of nodes in the network
increases, the point where the PD starts to decrease from one,
moves to the left. In case of one node in the CR network
(or in case of the non-cooperating nodes) the PD is highly
dependent on the channel constant of that node. As the number
of nodes increases, more channel gain realizations are involved
in the network-averaged CM estimation process and thus the
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PD results are more equalized over the nodes.
It can be seen, that the LE detector performs better than the

MME in terms of perfect detection (PD = 1) in the low SNR
region and in case of non-perturbed noise power values.

The detection performance of LE detector, when the FC
based diffusion LMS algorithm is used, is slightly better,
compared with the case of ATC type of LMS. The difference is
however not significant. So that in ATC case, where only two
exchanges of estimates are allowed for a CR node at time
instant n, we can save energy in terms of processing less
data at a node k. Also in case of ATC we are not limited
to the specific network topology. The detection performance
of LE detector, when the consensus algorithm is used, is very
similar to the case of the ATC algorithm. As argued in Section
IV, the usage of ATC type algorithm is less limited by the
estimate exchange topology, while this is not the case with
the consensus algorithm.

Additionally we note that, in [1] we showed with scalar es-
timates (M = 1) in Case 2, that when there are more nodes in
the network, then the ATC performs slightly better compared
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to the CTA type of algorithm. While ATC fuses more data
than CTA [30], the difference of detection performance with
CTA is rather small and thus we also skip these comparisons
in this paper. We also observed in [1], [2], [3] that for K > 30,
PD does not improve significantly any more.

For illustrating the closeness of the detection results of
different CR nodes, we use the theoretical results and plot
the PD/SNR performances of all the CR nodes in the network
of size K, in Fig. 11, by using the ATC algorithm, the TV
based exact threshold and the Case 2 model. The four groups
of PD/SNR results from right to the left in Fig. 11 correspond
to the network of sizes K = 1, 3, 10, 30 accordingly, i.e
the leftmost group shows the PD/SNR results of all the 30
nodes in the CR network. It can be seen, that the detection
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performances of the CR nodes in the CR network are quite
close to each other. In practice we are more concerned about
the point, where the PD starts to decrease from 1. In case of
30 nodes in the network, the deviation slightly increases, but
is still sufficiently close.

We observe, that the non-asymptotic CDF models, the
TV/GV approximations and CCCW based approximation of
NCW type of CMs are usable for studying the performance
of the LE detection of adaptively estimated CMs - for de-
termining the threshold and for evaluating the theoretical PD
of the LE detector. When the nodes cooperate in estimating
the network-wise CM (while nodes are able to communicate
directly only with limited subset of neighbor nodes) then the
resulting LE detection performance is equalized and stabilized
over the individual CR nodes. We note that other distributed
eigenvalue based detection schemes can be studied in similar
manner by using the proposed framework in this paper.

VI. CONCLUSIONS

In this paper we studied distributed and adaptive diffusion
LMS based LE detection algorithms, which are applicable in
CR networks, for detecting the presence of a PU signal. We
proposed a network-wise CM estimation model, and derived
ATC and CTA type of diffusion based LE detection algorithms.
We proposed a general framework for analyzing the perfor-
mance of the diffusion LMS based LE detection schemes.
In our simulation study we demonstrated that the proposed
framework and the approximations used for studying the
detection performance of the proposed distributed and adaptive
LE detection schemes provided matching results between the
theory and simulations. The proposed algorithms are able to
learn the statistical changes in the LE in real time.
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Abstract—Cognitive radio (CR) systems should be able detect
the presence of a primary user (PU) signal by sensing the
spectrum area of interest. Due to radiowave propagation effects
like fading and shadowing, spectrum sensing is often complicated,
because the PU signal can be attenuated in a particular area.
Strategies that can sense the spectrum in a cooperative manner
have the potential to enhance the primary user signal detection.
In this paper we explore a distributed spectrum sensing approach
that exploits the largest eigenvalue of correlation matrices (CMs)
that are adaptively estimated; local signal to noise ratio (SNR)
values are used to assign weights to the input observations. More
specifically, CR nodes exchange also observations with a subset of
neighbouring nodes and combine the neighbouring observations
based on the locally estimated SNR values. We propose a mean
vector estimation mechanism that is based on combine and adapt
least mean square diffusion and that does not require a fusion
center (FC). We analyse the resulting detection performance and
verify the theoretical findings through simulations.

Index Terms—Cognitive radio, distributed estimation, dis-
tributed detection, diffusion LMS, spectrum sensing, SNR es-
timation, subspase detection.

I. INTRODUCTION

Radio spectrum is a scare resource. It has been found that
even if the licensed radio spectrum becomes nominally more
crowded there is significant underutilization of the resource
[1]. Cognitive radio (CR) technology has been proposed to
provide an opportunistic access for cognitive radio systems to
the licensed spectrum areas [2], [3]. In CR context it is highly
desirable to detect the PU user and identify free spectrum
opportunities as rapidly as possible and create no disturbances
for the (licenced) PU communication. Distributed, adaptive
network learning methods can be used to track the changes in
the statistical information of the observations received by the
CR nodes in real time, to enhance the detection of PU signals.

Three main types of classic detection schemes for spectrum
sensing in CR networks have been considered in the literature:
the Matched filter detector (MFD) [4], the Energy Detector
(ED) [4], [5], and the Cyclostationary detector [6]. A second
large group of detectors for CR networks are based on the
properties of an estimated signal correlation matrix [7], [8],
[9]. The Largest Eigenvalue (LE) method [7] uses a priori
knowledge about the additive noise power to determine the
detection threshold.

Distributed, adaptive estimation and detection research area
has gained an increasing interest over the last decade and

many algorithms have been proposed in the literature. For
example, Least mean square (LMS) based estimation schemes
were studied in [10], [11], [12], where good properties of
these algorithms were shown. On the other hand optimal,
distributed MFD, based on diffusion type LMS estimation
schemes were studied in [13]. In [14], [15] and [16] we
proposed and analysed diffusion LMS based energy detectors
in a CR network and in [17] and [18] we studied diffusion
LMS based Largest Eigenvalue (LE) detectors.

Various signal to noise ratio (SNR) estimation methods have
been proposed and studied in the literature, for example [19],
[20], [21]. In the PU signal detection context, SNR estimation
methods can provide additional information about the quality
of the input observations and that knowledge can be used
for enhancing the distributed estimation process and thus the
overall detection results of the main spectrum sensing method.

In this paper we explore a distributed spectrum sensing
approach that exploits the largest eigenvalue of correlation
matrices that are adaptively estimated. No FC unit (as a
potential single point of failure) is used. Compared to the
solutions in our papers [17] and [18], in this paper, we study
additionally the local observation exchange and combination
strategy, which is based on the local SNR estimates and
is adapted to the context of binary hypothesis testing. We
show, that when the PU signal is present and when the local
SNR estimates are available, then the network-wise PU signal
detection performance can be slightly improved, compared to
the standard case with no observation exchange, studied in our
paper [17].

We assume that the CM of the PU signal is of low rank.
On the other hand, the CR network operates without prior
information about the PU signal’s waveform and the secondary
nodes’ channel gains. We assume that while the PU signal
may be absent for a time period, the radio channel properties
under the detection hypothesis H1 do not change over the
time of interest and that long time statistics are usable in
enhancing the overall PU signal detection performance. For
example, the classical TV White space model [3, Chapt. 1.2.4]
could be considered, where the on/off working patterns of
the PUs (i.e. TV transmitters) are quite static, the power
of the PUs is constant and where the CR nodes have fixed
positions in the nearby space. In the distributed CR network,
we assume that every node acts as an independent detector in



terms of detection decision making based on the available CM
estimates.

II. DISTRIBUTED ADAPTIVE LARGEST EIGENVALUE
DETECTION

A. Signal model and assumptions

Let us follow the same signal model as in [17], where

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n)

(1)

and the detection hypothesis is denoted by Hi, i = 0, 1, the CR
node index by k = 1, 2, ...,K, and the sample discrete time
index by n = 1, 2, ...N . The noise vk(n) and channel gains
αk at node k are assumed to be statistically independent. The
PU signal follows s(n) ∼ CNM (0,Σs). The noise follows
vk(n) ∼ CNM

(
0, σ2

vIM
)

and is assumed to be independently
and identically distributed, uncorrelated in time and space. The
theoretical M×M dimensional CM Rk at every node is given
as

Rk = E
[
yk(n)yk(n)H

]
= |αk|2Rs,k + σ2

v,kIM . (2)

The noise power σ2
v is assumed to be known a priori and

to be identical at every node. Secondly, we assume, that Rs,k

has a low rank. Thirdly, we assume, that when H1 is present,
the PU signal power and the channel constants do not change
over the time of interest (of slow fading channel). Fourthly,
internal communication channels between the CR nodes are
assumed to be error free and the communication capacity is
not limited.

For summarizing the LE detection method, let the eigen-
values of the estimate R̂k(n) of CM Rk be denoted in non-
increasing order as λ1 ≥ λ2 ≥ · · · ≥ λM . Every node k
detects the presence of a PU signal by determining the largest
eigenvalue λ1 of R̂k(n) as follows

λ1

[
R̂k(n)

] H1

≷
H0

γLE . (3)

Here threshold γLE is given by (14).
For improving the detection performance of the LE detector,

we introduce a second parameter - local SNR of the received
observations at node k. The theoretical form is given as

SNRk =
Tr
[
|αk|2Rs,k

]
Tr [σ2

vIM ]
. (4)

In the SNR estimation phase, each node k estimates locally
the SNR of the received signal, denoted as ŜNRk, based on
the locally estimated sample covariance matrix (SCM). The
SCM R̂k at node k ∈ K and over the NSNR samples can be
estimated linearly as

R̂k(n) =
1

NSNR

n∑
k=n−NSNR

[
yk(n)yk(n)H

]
. (5)

Local SNR can be estimated separately from the (cooperative)
CM estimation phase for the LE detection (3) and it can be
considered as a ”goodness measure” of the received observa-
tions in CR network. Similarly to the standard Maximum ratio

combining (MRC) method, i.e. [22], local SNR estimates can
be used for weighting up the observations with strong PU
signal in the neighbourhood of CR nodes (and for weighting
down the available neighbouring observations flows, where
PU signal is more strongly attenuated). Since the LE detector
requires knowledge of the σ2

v , then according to (1) and the
assumptions, the estimation of the local SNR reduces to the
estimation of the (attenuated) PU signal power at node k. Thus
in this paper we propose the usage of the following simple
SNR estimation method

ŜNRk(n) =
Tr
[
R̂k(n)

]
Mσ2

v,k

− 1. (6)

For avoiding negative and zero SNR values in the upcoming
calculations, when the PU signal is very weak or no signal
subspace is present, we assign that if ŜNRk(n) < 0.0001 ⇒
ŜNRk(n) = 0.0001.

Compared, for example, to the more sophisticated Minimum
Description Length (MDL) and Akaike Information Criterion
(AIC) criterion based SNR estimation methods [19], [20],
[21], (6) is computationally simpler and based on experiments,
requires significantly less samples NSNR in SCM to detect the
PU signal. Once the local SNR estimates are obtained, these
corresponding results could be deterministically used in the
distributed adaptive CM estimation phase for the LE detection.

B. Adaptive, Distributed LE detection with SNR weighted
observations

The first part of this section summarizes the adaptive,
distributed CTA type of Diffusion LMS based CM estimation
algorithm, which was derived in [17, Chapter II]. The second
part focuses on the usage of local SNR estimates for obser-
vation weighting and exchange in the mentioned Diffusion
estimation strategy.

It was shown in [17] that when CR nodes cooperate in
the estimation of R̂k(n) in (3) by means of the system
internal communication links, then the detection performance
(of the PU signal(s)) at every node k can be enhanced. In
this paper we continuously assume that 1) K nodes in the
CR network can rely only on the subset of global information
that is available to them and 2) that the CR network topology
is assumed to be fixed over the sensing time and strongly
connected.

Let us denote Nk as the neighbourhood group of node k ∈
K, i.e. Nk and µk be a positive step size of node k. We
introduce the K×K matrix CSNR with non-negative elements
as follows

cl,k = 0 if l /∈ Nk, CSNR1 = 1. (7)

For simplicity we have dropped the time index n in CSNR.
Similarly, let us have constant K ×K matrix AT

diff as

al,k = 0 if l /∈ Nk, 1T AT
diff = 1T . (8)

The coefficients cl,k and al,k define respectively how the
measurements dl(n) and estimates p̂l(n) are available for the



node k in the CR network (unidirectionally). Let µk be positive
step size of node k.

Similarly, as in [17], for keeping the dimension of the
estimated vector minimal in the adaptive recursions, we de-
compose the observation at node k at time instant n as
dR,k(n) = vec

[
yk(n)yk(n)H

]
= Tdk(n), where M2 ×M2

dimensional constant, the complex invertible matrix T is given
in [23, Eq. 11]) and M2×1 vector dk(n) is real valued. Thus,
dk(n) = T−1 vec

[
yk(n)yk(n)H

]
. By denoting the M2×1 di-

mensional estimate of the real valued E [dk(n)] as p̂k(n), then
with the help of T, we can re-define R̂k(n) = vec−1 [Tpk(n)].

We skip the derivation details of the adaptive, fully dis-
tributed CTA diffusion type of LMS based LE detection
algorithm and show the result in Algorithm 2.

One of the disadvantage of (5) is that it is not adaptive and
requires significant amout of memory, since all the NSNR

samples have to be present for estimating R̂k(n). Since (6)
does not use NSNR directly for SNR estimation, we propose to
also use local exponential averaging based adaptive estimation
method for calculating the CM for local SNR estimation.
In the light of previously showed decompositions, let us
denote the real time adaptive local CM estimate (for local
SNR estimaton) at node k at time instant n as ŵk(n), while
R̂k(n) = vec−1 [Twk(n)]. Let the step sizes for all the nodes
k be equal and denoted as µSNR. The step-size µSNR needs
to be selected so that converged estimates are achieved after
the expected number of samples NSNR (which determines
also the accuracy of the estimates), while the algorithm can
continue running after NSNR have been processed.

Each node k communicates the signal observations and
ŜNRk value in real time to the neighbouring nodes, which are
connected to the node k. For defining the network connections
in CSNR (7) we introduce a non-negative matrix CT

O with the
element of cO,l,k, which are formed as follows

cO,l,k =

{
1, l ∈ Nk

0, otherwise,
(9)

to define if node l is connected to node k. The combination
weights CSNR at each node k ∈ K are formed as follows

cl,k =
cO,l,kŜNRk∑K

k=1

[
cO,l,kŜNRk

] , (10)

We note that the rows of CSNR are normalized to 1, which
is useful in PU signal detection context. In case of detec-
tion hypothesis H1 is present and sufficiently accurate SNR
estimates are available, then the observations with higher
SNRs are slightly weighted up in the observation exchange
in the neighbourhood of the nodes and observations. In such
a way, the observations with higher channel gains are more
dominating in the adaptive estimation algorithm and this
property can enhance the overall detection performance of the
LE detector in Algorithm 2. On the other hand, when H0 or
in case a weak PU signal is present, the SNR estimates are set
equal to 0.0001. If the local SNR estimates are not available
at every node, then it is easy to verify that equal weights cl,k

(10) are obtained in the neighbourhood of the CR nodes. In
such a way, the existing threshold determination solution (for
the LE detector) under H0, as presented in [17], can still be
used. After CSNR is formed, then this matrix can be used in
the adaptive CTA type of LMS based LE detection method,
proposed in [17], summarized in Algorithm 2.

The local SNR estimation steps are given in Algorithm 1.

Algorithm 1 Local SNR Estimation
1. Local CM estimation:
Start with ŵk(0) = w(0) for every k .
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
ŵk(n+ 1) = ŵk(n) + µSNR [dk(n)− ŵk(n)]

end for
end for
2. SNR estimation:
for every node k = 1, ...,K do

R̂k(n+ 1) = vec−1 [Twk(n+ 1)] ⇒ ŜNRk (6)
if ŜNRk ≤ 0.0001 set ŜNRk = 0.0001

cl,k =
cO,l,kŜNRk∑K

k=1[cO,l,kŜNRk]
(10)

end for

Algorithm 2 CTA type of LE Detection with SNR weighted
observations [17]

Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients al,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. CTA type of CM estimation recursions:
ψ̂k(n) =

∑
l∈Nk

al,kp̂l(n).
p̂k(n+ 1) = ψ̂k(n)

+µk

∑
l∈Nk

cl,k

[
dl(n)− ψ̂k(n)

]
2. LE detection decision:
H0 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
< γk or

H1 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
> γk.

(Refer to (14) for selecting the γk).
end for

end for

The algorithms have been presented separately and in prin-
ciple the system designer can study these two algorithms in
different combinations (also in separate time scales), depend-
ing on the system requirements and noise properties.

III. THEORETICAL DETECTION PERFORMANCE

In this section we summarize the steps needed to set the
detection threshold of the LE detector with SNR weighted
observation exchange and to evaluate the theoretical detection
performance (for verifying the Monte-Carlo based simulation
results). The performance analysis of the proposed algorithm
can in general be performed based on the same framework,
that was developed in [17] and [23]. Thus, we skip the details
and shortly summarize the main steps. For the theoretical



performance analysis of the LE detector, we assume that the
channel gains are known. The analysis is divided into three
parts.

Firstly, the moments of the adaptive CM estimates of
Algorithm 2 are studied. As shown in [17], K ×K matrices
A1 = AT

diff, A2, CSNR and M = diag {µ1, . . . , µK} are in CR
network extended to KM2×KM2 matrices for the CTA type
of algorithm as follows: A1 = AT

diff ⊗ IM2 , A2 = IK ⊗ IM2 ,
C(n) = CSNR⊗IM2 and M = M⊗IM2 . Let us note that with
respect to Chapt IV and for simplifying the analysis, matrix
CSNR (7) is considered as constant and deterministic. Thus,
the CTA based estimation recursion can be given as

p̂(n+ 1)|Hi = A2

(
I−M

)
A1p̂(n)|Hi

+ A2MCd(n)|Hi. (11)

For determining the threshold of the LE detector (under H0)
and for studying the theoretical detection performance (under
H1), the moments E [p̂(n+ 1)|Hi] and Cov [p̂(n+ 1)|Hi] for
i = 0, 1 need to be determined [17].

Secondly, the adaptively estimated Tp̂(n)|Hi is approxi-
mated by Complex Central (Correlated) Wishart distributions
(CC(C)W) as

Tp̂(n)|Hi = R̂k(n)|Hi ∼ CWM

(
N̄TV,i, Σ̄k,i

)
, (12)

for being able to find the conditional CDFs of LE of adaptively
estimated CMs. The values for N̄TV,i (for approximating the
DoF parameter) and Σ̄k,i (for approximating the population
covariance matrix parameter) can be found based on the Total
Variance (TV) approximation method, shown in [17, Chapt.
3].

Thirdly, since under H0, R̂k(n)|H0 is assumed to follow
the CCW distribution, then PFA,e of the largest eigenvalue of
R̂k(n)|H0 is given as

PFA,e(γLE,e) = 1− FH0,e(γLE,e) (13)

where the CDF|H0, denoted as FH0,e(x), is given in [17,
Chapt. 3].

The detection threshold γLE,e, based on the non-asymptotic
model is given as

γLE,e = F−1H0,e
(1− PFA,e) (14)

and numerical inversion method can be used to determine the
exact CDF formula at a desired PFA,e value .

Under H1, the R̂k(n)|H1 is assumed to be distributed by
a CCCW distribution. The PD formula, based on the non-
asymptotic CDF|H1 of the LE of a CCCW matrix R̂k(n)|H1

is given as

PD,e(γLE,e) = 1− FH1,e(γLE,e), (15)

where the CDF|H1, denoted as FH1,e(x), is also given in [17,
Chapt. 3].

IV. SIMULATION RESULTS

In the numerical simulation section we investigate the prob-
ability of detection PD of the CTA type of distributed, adaptive
LE detection algorithm together with the SNR weighted ob-
servations. The algorithm performance is presented in terms of
the PD versus (network averaged) SNR analysis; in the SNR,
the noise power value changes. In this example we consider a
rather ideal use-case, which on the other hand illustrates well
the achieved LE detection performance gain − we assume
H1 is known to be present during the SNR estimation and
thus good local SNR estimates have been obtained over longer
time. The channel gains are assumed to be constant over the
simulation time and are sampled as αk ∼ CN(0, 1). We
assume to have one PU signal s(n) = s(n)1, s(n) ∼ CN(0, 1)
and Σs = 11H .

For the local SNR estimation step, we select NSNR =
50000 and µSNR = 0.00015 for getting an estimate also in the
highest noise power region of interest, as seen in Fig. 1. The
matrix CSNR is constructed based on the local SNR estimate
realizations at every SNR point and used in the LE detection
algorithm for exchanging and weighting the measurements in
the CR network.

For the adaptive LE detection, we select the following
simulation parameters: M = 2, N = 7000, M = µ1K ,
µ = 0.001 and PFA = 10−2 for all the nodes. The thresholds
of the LE detectors at nodes k ∈ K are found by using (14)
with the TV approximation. We select the diffusion topology
of the estimates in the CR network similarly as in [16, Eq. 11].
For example, when K = 3 and by keeping the same notation
and conditions for the elements of matrix A, then the diffusion
topology is given as follows

AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 , (16)

while A1 = AT
diff ⊗ IM2 .

In the following simulations we compare the performance
of 3 different network sizes: K = 1, 3 and 10 nodes. All the
results are taken from the last node in the set. The PD versus
SNR results are given in Fig. 1 when TV approximation is used
for the CTA algorithm. The Monte Carlo (M-C) estimated PD

results, based on the adaptively estimated CMs with local SNR
based weighting of observations, are denoted as Ad. Obs. Ex.
in the figure. These Monte Carlo based results are compared
with the non-asymptotic theoretical model (15) (denoted as
Th. Obs. Ex.). In addition, for reference we plot the The
Monte Carlo estimated PD results, based on the observation
weighting with the theoretical SNR values (4), denoted as Th.
SNR Ex.. Finally we add the M-C based PD results based on
adaptively estimated CMs with equal observations exchange
CSNR = AT

diff for the reference (denoted as Ad. Eq. Ex).
We note that in [16] we found that for the case of M = 1,

an equal weighing of the observations does not improve signif-
icantly the resulting detection performance. We see that when
CR nodes in addition to sharing the estimates share also their
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observations, while these observations in the neighbourhood
are weighted not equally, but based on the locally estimated
SNR values, then an observable increase in the PD is seen. As
the number of nodes in the network increases, the point where
the PD starts to decrease from 1 is moved to the left about
1.5-2dB. In general, the values of NSNR and µSNR need to be
determined experimentally, based on the PU activity patterns,
CR system requirements and the noise power conditions. I.e.
in a low SNR region, NSNR� 1 and usually more samples
have to be collected to get a reasonably accurate local SNR
estimates, while less samples need to be processed in a high
SNR region.

We see that when the SNR estimates with sufficient accu-
racy are available, then the SNR based observation weighting
solution can be used for improving the performance of the
adaptive, distributed LE detection algorithm. When the nodes
cooperate in estimating the network-wise CM (while nodes
are able to communicate directly only with limited subset of
neighbour nodes) then the resulting LE detection performance
is improved in the CR network.

V. CONCLUSIONS

In this paper we studied a distributed and adaptive, CTA
diffusion LMS based LE detection algorithm, with uses local
SNR estimates for additional observation exchange between
the CR nodes for PU signal detection. We analysed the
performance of the proposed diffusion LMS based LE de-
tection scheme and verified the theoretical results with the
simulations. With the proposed algorithm PU signal detection
performance is enhanced in CR network.
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