
Development of the
Calculation Method for Barge Hull

DMITRI GORNOSTAJEV

P R E S S

THESIS ON MECHANICAL ENGINEERING E85



TALLINN UNIVERSITY OF TECHNOLOGY 
Faculty of Mechanical Engineering

  Department of Mechatronics 

This dissertation was accepted for the defense of the degree of Doctor of 
Philosophy in Engineering on June 25, 2014. 

Supervisor:  Assoc. Prof., Gennadi Arjassov 
Department of Mechatronics, Tallinn University of Technology 

Co-supervisor: Assoc. Prof., Igor Penkov 
Department of Mechatronics, Tallinn University of Technology 

Opponents: Prof., D. Sc. Victor Musalimov 
St. Petersburg National Research University of Information 
Technologies, Mechanics and Optics, Russia 

Assoc. Prof., PhD Alexander Ryabchikov, 
Estonian University of Life Sciences, Estonia 

Defense of the thesis: August 26, 2014 

Declaration: 
Hereby I declare that this doctoral thesis, my original investigation and achievement, 
submitted for the doctoral degree at Tallinn University of Technology, has not been 
submitted for any academic degree. 

/Dmitri Gornostajev/ 

Copyright: Dmitri Gornostajev, 2014 
ISSN 1406-4758 
ISBN 978-9949-23-662-6 (publication) 
ISBN 978-9949-23-663-3 (PDF) 



MEHHANOTEHNIKA E85

Pargase korpuse uus

arvutusmeetod

DMITRI GORNOSTAJEV





5 

CONTENTS 
 
LIST OF PUBLICATIONS ........................................................................................ 6 
SYMBOLS ................................................................................................................. 7 
INTRODUCTION ...................................................................................................... 8 

Background ............................................................................................................ 8 
Main objectives of the thesis .................................................................................. 9 

1. OVERVIEW OF THE VESSEL TYPES ............................................................. 10 
Conclusion ............................................................................................................ 12 

2. OVERVIEW AND ANALISYS OF THE METHODS FOR CALCULATION OF 
PLATES ............................................................................................................... 14 
2.1. Main equations and relations for plate calculations ...................................... 14 
2.2. Navier’ method for a simply supported plate ................................................ 16 
2.3. Levy solution for rectangular plates with two opposite edges simply 
supported and two edges built in under hydrostatic pressure ............................... 19 
2.4. Collocation method of the four-side fixed plate ............................................ 25 
2.5. Kantorovits-Vlassov method for a four side fixed plate ................................ 29 
2.6. Grid method for the calculation of a plate ..................................................... 32 
2.7. Plate calculations by FEM ............................................................................. 35 
2.8. Analysis of methods for plate calculation ..................................................... 38 
Conclusion ............................................................................................................ 40 

3. NEW METHOD OF CALCULATION OF PLATES .......................................... 42 
3.1. Calculation of plates with variable thicknesses by the generalized functions 42 

3.1.1. Particular solution  yYr
~

 in the case of a distributed load ........................ 47 

3.1.2. Particular solution  yYr

~
 in the case of hydrostatic pressure ..................... 49 

3.2. Results of calculations ................................................................................... 51 
Conclusion ............................................................................................................ 54 

4. ANALYSIS OF THE EXPERIMENTAL RESULTS .......................................... 56 
4.1. Experiment on the plate with constant and variable thicknesses under a 
distributed load ..................................................................................................... 56 
4.2. Results by the FEM ....................................................................................... 59 
4.3. Analysis of the results ................................................................................... 63 

CONCLUSIONS ...................................................................................................... 72 
Scientific Results .................................................................................................. 72 

ACKNOWLEDGEMENTS ..................................................................................... 75 
REFERENCES ......................................................................................................... 76 
OTHER PUBLICATIONS ....................................................................................... 81 
ABSTRACT ............................................................................................................. 82 
KOKKUVÕTE ......................................................................................................... 84 
ELULOOKIRJELDUS ............................................................................................. 86 
CURRICULUM VITAE .......................................................................................... 87 

  



6 

LIST OF PUBLICATIONS 

1. Gornostajev, D., Aryassov, G. Development of the Calculation Method of 
Plates for Optimization of Hull Thickness. Scientific journal Solid State Phe-
nomena. [Accepted]  

2. Zhigailov, S.; Gornostajev, D.; Aryassov, G.; Barashkova, T. Application of the 
Improved Method of Grids with the Estimation of Accuracy. Procedia Engi-
neering, 69C, 2014, 1443-1448 

3. Aryassov, G., Barashkova, T., Gornostajev, D. Estimation of Complex Deriva-
tives and Application for Fault Diagnosis. In: Annals of DAAAM for 2012 & 
Proceedings of the 23nd International DAAAM Symposium “Intelligent Manu-
facturing & Automation: Power of Knowledge and Creativity“, University of 
Zadar, Zadar, Croatia, (Toim.) B.Katalinic. DAAAM International, Vienna, 
Austria, DAAAM International Vienna, (CDROM version; 1), 2012, 0469 – 
0472 

4. Aryassov, G., Barashkova, T., Gornostaiev, D., Petritsenko, A. Development of 
the Improved Method of Grids. In: Annals of DAAAM for 2011 & Proceedings 
of the 22nd International DAAAM Symposium “Intelligent Manufacturing & 
Automation: Power of Knowledge and Creativity“: 22nd International DAAAM 
Symposium, University of Vienna, Vienna, Austria, (Toim.) B.Katalinic. Vienna, 
Austria, DAAAM International Vienna, 2011, 0565 - 0566 

5. Aryassov, G., Barashkova, T., Gornostajev, D., Petritshenko, A. Generalization 
of the Method of Finite Elements. In: Annals of DAAAM for 2010 & PRO-
CEEDINGS of the 21nd International DAAAM Symposium " Intelligent Manu-
facturing & Automation:Focus on Interdisciplinary Solutions",University of 
Zadar, Zadar, Croatia, (Toim.) B.Katalinic, Vienna, Austria, 2010, 0547 – 
0548  

The personal contribution of the author  

The contribution of the author to the papers above is as follows:  

For papers 2, 3, 4, and 5 Dmitri Gornostajev is the main author of the paper. He is 
responsible for the literature overview, analysis, development of the theory and cal-
culation. He had a major role in writing. The author participated in development of 
the theory. The author has made calculations. 
  



7 

SYMBOLS 

 x,y,z - Rectangular coordinates 

r,φ - Polar coordinates 

rx, ry - Radius of curvature of the middle of a plate  

h - Thickness of a plate 

q(x,y) - intensity of a continuously distributed load  

D - Flexural rigidity of the plate 

 yxw , - Deflection of the plate 

γ - Weight per unit volume 

x , y , z  - Normal components of stress  

xy , xz , yz  - Shearing stress components in rectangular coordinates 

x , y , z  - Unit elongations  

xy , xz , yz  - Shearing strain components in rectangular coordinates 

E  - Modulus of elasticity in tension and compression 

G  - Modulus of elasticity in shear 

 - Poisson's ratio  

xM , yM , zM  - Bending moments per unit length  

xyM - Twisting moment per unit length  

xV , yV  - Vertical reactions in the plate 

xQ , yQ  - Shearing forces  

xN , yN  - Normal forces  
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INTRODUCTION 

Background  

Today’s fish farming industry is growing very fast due to increased fish 
consumption in the world. The market in Norway is very stable and has been 
growing very well. Fish farmer companies are investing increasingly in their 
business. Those developments are required to open more slots in the fjords, to 
establish new fish feeding centers, to fulfill the requirement of the consumers. Due 
to limitations in the law, farmers need to place fish farms farther away from the 
shore. The requirement to be taken into consideration is the load capacity of the 
barge and store room size. Those parameters are very important because of remote 
location of the barges from the shore and limitation of availability service ships who 
supply the feed for the fish. In other words, the barges need to be lighter in weight 
and have more capacity to meet the strength requirements. 

A barge like any other vessel is located on the water and some loads are forced on 
the hull of the barge. Figure 1.1 shows the hull of the barge with loads on it. 

 

Figure 1.1. Scheme of loads on the hull of the barge in cross-section. 

As shown in the figure, the uniformly distributed load is located on the bottom plate 
and the hydrostatic pressure is placed on the sides of the barge. 

As soon as the barge is in calm water, the dynamic forces are not present. Only static 
loads will be taken into account in our calculations. In fish feeding barges the weight 
is a very important parameter. The lower the weight of the barge the more feed it can 
carry and the more money the owner can save. Reduction of the weight is a common 
problem in the fish feeding industry and it is a challenge for engineers. Thus, one of 
the possibilities to reduce the weight is to use thinner materials on the hull of the 
barge. At the same time, the strength requirements must be satisfied. In order to 
achieve this, plates with variable thicknesses can be used. In places at minimum load 
thinner steel can be implemented, which reduces the weight. However, a method is 
to be developed to calculate plates with variable thicknesses. In this work a method 
of calculation of plates with variable thicknesses will be developed. 
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Main objectives of the thesis 

The main aim is to develop a method of calculation of plate thickness for the hull of 
the barges and ships using plates with variable thicknesses that were not used before. 
To achieve this, it is necessary to investigate the existing methods of calculations 
and to compare them with the new method.  

The objectives are as follows: 

1. To analyze the existing methods of calculations of plates and to compare 
them with the real solution. 

2. To propose a new method of the calculation of rectangular plates with vari-
able thicknesses. 

3. To find the curve of deflection for results obtained by the new method. 
4. To make an experiment with rectangular plates with constant and variable 

thicknesses under a distributed load. 
5. To provide calculations by the FEM method.  
6. To compare results achieved by the new method and those from the experi-

ment with FEM calculations and find the deviation. 

The study required the following steps to be taken: 

 To provide calculations of plates by Navier, Levi, collocation, Kantorovits-
Vlassov, grid and FEM methods for the plate under distributed loads and 
hydrostatic pressure. 

 To compare the above methods with the real solution in order to define the 
method most suitable for the calculation of a plate for a hull.  

 To introduce the new method of calculation of plates with variable thick-
nesses. 

 Using a program obtain the results and find the curve of deflection. In order 
to solve the equations and obtain the numerical results of deflection, the 
MATLAB program will be used.  

 To make an experiment for rectangular plates with variable and constant 
thickness under a distributed load. 

 To compare the results and draw a conclusion from the results achieved by 
experiment, new method and FEM.  
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1. OVERVIEW OF THE VESSEL TYPES  

Until the 20th century, generally, ships were all-purpose cargo vessels, with very 
little specialization (with the exception of tank vessels which first appeared in the 
1880s). All cargoes were carried in general purpose holds, or on deck. Modern 
commercial vessels are designed and built to carry specific cargo types. The names 
given to the various vessel types reflect the type of cargo for which they are 
designed and built to carry. For example, a "bulk carrier" is specially designed to 
carry cargo "in bulk" and the hatch cover and hold design is focused on the carriage 
of raw dry cargo goods, such as coal, grain, iron ore and bauxite, which are simply 
poured into cavernous holds, then grabbed and bulldozed out at the port of 
discharge. 

Tankers carry liquid cargo in tanks. The most obvious example is the well-known oil 
tanker, but even within this generic type, each tanker is specially designed to carry a 
particular type of liquid cargo, not just crude oil. Other liquid cargoes would include 
petroleum products, chemicals and yes, even wine. Two recent hybrid tanker designs 
carry Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG), both of 
which need to be kept under pressure and at low temperature to maintain the cargo 
in a liquefied state. A further hybrid is the Floating Production, Storage and 
Offloading unit (FPSO), which is usually a large tanker (maybe a converted old 
VLCC, but now brand new specialized FPSOs are being built) specifically designed 
for the oil industry, working offshore where an onshore facility to process and store 
offshore oil is deemed impractical [1]. 

All ships are categorized to acquire better understanding of their usage. The main 
characteristic feature is the purpose of the ship. Also, vessels are divided by their 
place of the usage type of the main engine, hull material, and architectural type and 
by other aspects. Civil ships by their purpose are divided to transportation, 
commercial and technical types. The transportation vessels are the main types of 
vessels used on sea and on rivers. Figure 1.1 shows some ship types used on the sea. 

a) b)  

Figure 1.1. a) Cruise vessel [2], b) Container ship [2]. 

Some vessels as barges have no to move by their own force and have to be towed by 
other vessels such as tugboats. Figure 1.2 shows some types of barges. 
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a)  b)  

Figure 1.2. a) Transportation barge [2], b) Fish feeding barge [3]. 

There are various types of vessels for different purposes. This study concentrates on 
fish feeding barges, the most useful and fast developing type of vessels in the fish 
feeding industry. Focus will be on the forces having impact on the hull of the barge. 

Nowadays the fish farming industry is growing very fast due to increased fish con-
sumption in the world. The market in Norway is very stable and has been growing 
very well. Fish farmer companies are investing increasingly in their business. Those 
developments require that more slots be opened in the fjords, new fish feeding cen-
ters be established to fulfill the requirements of the consumers. Due to limitations in 
the law, farmers need to place fish farms farther from the shore. The requirement to 
be taken into consideration is the load capacity of the barge and the store room size. 
Those parameters are very important because of offshore location of the barge and 
limitations of availability of service ships who supply the feed for the fish. In other 
words, the barges need to be lighter in weight and higher in capacity to meet 
strength requirements.  

First, the construction of the fish feeding barge is introduced. Figures 1.3 and 1.4 
show the typical construction of the fish feeding barge. 

 

Figure 1.3. Fish feeding barge crossed in silo section [4]. 
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Figure 1.4. Cross-section of a fish feeding barge [4]. 

Each barge consists of a hull, superstructure, control room, engine room, technical 
room, living room, etc. The purpose of the barge is to feed the fish located in the 
cages, as shown in Figure 1.5. 

 

Figure 1.5. Cages with fish supply fed by the fish feeding barge [4]. 

Conclusion 

The amount of fish feeding barges is growing very fast and the market of the fish 
industry is growing. Today it is very important to have barges with larger capacity 
and lower weight. For that reason, the weight needs to be increased in order to in-
crease the capacity. To achieve this, more accurate methods of calculations have to 
be developed. Today’s methods for barge hull calculations do not consider the 
weight of the barge. They are concentrated only on the strength considerations. 
Thus, a new method for hull calculations is required to achieve the goals set in order 
to fulfill the market and client requirements, such as larger capacity and lower 
weight of the barge. Still another very important aspect is the price of the barge. If 
the weight is reduced, the price of the barge will be cheaper and the demand for 
barges can be increased, which has a positive effect on the fish farming business. In 
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order to achieve this goal, a plate thickness has to be decreased and keep strength 
requirements. To achieve this new method of calculation has to be developed. Many 
different methods of plate calculations are available. In this thesis most of them will 
be described, analyzed and compared. The methods discussed here are: Navier, Levi, 
collocation, Kantorovits-Vlassov, grid, and the FEM methods. This study has to 
prove that the new method has more advantages for the calculation of the plate and 
for future use in barge hull calculation. In order to propose a new method, existing 
methods will be analyzed.  
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2. OVERVIEW AND ANALISYS OF THE METHODS FOR 
CALCULATION OF PLATES 

Thin plates are initially flat structural members bounded by two parallel planes 
called faces, and a cylindrical surface called an edge or a boundary. The generators 
of the cylindrical surface are perpendicular to the plane faces. The distance between 
the plane faces is called the thickness of the plate. It will be assumed that the plate 
thickness is small compared with other characteristic dimensions of the faces 
(length, width, diameter, etc.). Geometrically, plates are bounded either by straight 
or curved boundaries. The static or dynamic loads carried by plates are predominant-
ly perpendicular to the plate faces [5-10]. 

The theoretical tasks of the calculations of plate bending even for simple shape 
plates and continuous thickness face some mathematical problems, which in most 
cases are solved by approximation methods or by using numerical methods. The 
mathematical problems are growing if the plate has variable stiffness. For those cas-
es theoretical solutions are provided in general for round and rectangular plates with 
linear thickness changing [11-18]. 

Real solutions [19] of plate calculations can be provided only in some particular 
cases, mainly for plates with constant thickness, easy shape and with special bound-
ary conditions. Variational methods of calculations are a more efficient instrument 
when defining deflections in more difficult cases. One of the few tasks of plate cal-
culations with real solution that can be reached relatively easily is the task where a 
rectangular plate is randomly loaded with two sides freely supported [20-22]. 

2.1. Main equations and relations for plate calculations  

 

Figure 2.1. Plate under a distributed load [20]. 

At the beginning we have to obtain main equations and relations for an isotropic 
plate [30]. Having done all the calculations, we obtain the main deferential equation 
for an isotropic plate with constant thickness, (Eqs. (2.1) - (2.6) [20-22]): 
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- flexural rigidity of the plate. 

To solve Eq. (2.1), different approximation methods described below will be used.  
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2.2. Navier’ method for a simply supported plate 

Navier’ method [30] is the method of calculation with approximation. The plate is 
landed simply supported, as shown in Figure 2.2. (Eqs. (2.7) - (2.8) [20-22]): 

 

Figure 2.2. Plate simply supported under a distributed load [20]. 

The boundary conditions for this method are: 
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After all calculations, the deflection of plate is defined as follows: 
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In the same way, bending moments ܯ௫,ܯ௬ of shearing forces ܳ௫, ܳ௬ can be found 
by Eqs. (2.2)-(2.5).  
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For our case the scheme of the plate loaded by the hydrostatic pressure is shown in 
Figure 2.3. 

 

Figure 2.3 Plate simply supported under a load of the hydrostatic pressure [20]. 

In our case the distributed load is changing as follows: 

y
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where, 

ab / .         
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The bending moments xM , yM  and the torque moment xyM  are found by Eqs. 

(2.4), (2.5) and (2.6). 

Shearing forces Q x and Q y are found by substituting Eqs. (2.2) and (2.3). 

A disadvantage of the Navier’ method is that the solution can be found only if the 
plate is simply supported. For most cases, this method does not suit for barge 
calculations.  

Also, the deviation for the shearing forces is up to 18 % from the real solution, for 
vertical reactions up to 15 % from the real solution. The most accurate solutions by 
the Navier’ method can be found for deflections close to 0 and for bending moments 
up to 2 % [20-22]. 

Figure 2.4 shows the deviation between the Navier’ method and the real solution for 
a distributed load. 

 

Figure 2.4. Deviation between the Navier’ method and the real solution for a distributed 
load. 

As can be seen from Figure 2.4, deviation for the deflection W is zero, so it means 
that it matches exactly a real solution. Thus, this method suits for the calculations of 
deflection. I our case the deflection is the distance to which a structural element is 
displaced under a load [20]. For bending moments M the deviation is small, only 2 
%. This method is also suitable for calculations of bending moments. The deviation 
for shearing forces Q and vertical reactions V is up to 18 % as compared with a real 
solution, which is large. 

Figure 2.5 shows the deviation between the Navier’ method and the real solution for 
the hydrostatic pressure. 
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 Figure 2.5. Deviation between the Navier method and the real solution for the hydrostatic 
pressure. 

We can see that the deviation for the hydrostatic pressure is on the same level as that 
for a distributed load. The maximum difference is only 0,8 %, so we do not have to 
take that into consideration. 

In conclusion, the Navier’ method has no deviation from the real solution for the 
deflection W, for the bending moments M the deviation is only 2,9 %. This method 
cannot be used in plate calculations for hulls because the boundary conditions are 
not suit the case. We have to take into consideration the deviation from the real solu-
tion for shearing forces Q and vertical reactions V is 19 % and 16,3 %, accordingly. 

2.3. Levy solution for rectangular plates with two opposite edges simply 
supported and two edges built in under hydrostatic pressure 

 

 

 

 

 

 

 

Figure 2.6. Plate with two sides simply supported and two sides built in [20]. 
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If the bending plates have two opposite sides axx  ,0  simply supported and two 

opposite edges 2/by  built in (Figure 2.6), M. Levy 20-22 suggested a 
solution in the form a series: 
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2





x

yxw
at these two sides. 

Further, )( yYm should be determined in a form to satisfy the boundary conditions on 

the sides 2/by   and also the equation of the deflection surface. 

We represent a distributed load q in the form of a trigonometric series of Fourier:  
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m
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 ,      (2.12) 

where, 

dx
a

xm
yxq

a
yK

a

m


sin),(

2
)(

0
 .     (2.13) 

The differential equation for the deflection surface of the plate is described by the 
biharmonic equation (2.1). 

Differentiating the expressions (2.1) and substituting them with the expressions 
(2.11) in Eq. (2.12), we obtain an equation: 
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
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
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
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
,   (2.14) 

where, 

a

m
m

  .         
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This equation can satisfy all the values of x  only if the function Ym(y) satisfies the 
equation 

DKYYY m
IY

mmmmm /2 24   ,     (2.15) 

 where the function )( yYm consists of a general integral )( yY o
m  and a particular 

integral )( yY e
m  

)()()( yYyYyY e
m

o
mm  .      (2.16) 

The general integral o
mY  of this equation is  

ychyDyshyC

ychByshAyY

mmmm

mmmm
o

m





)(

,     (2.17) 

 which has to satisfy all the boundary conditions of the plate. 

A particular solution )( yY e
m represents the deflection of a strip under the hydrostatic 

pressure axqq o /  (Figure 2.7). It satisfies the differential equation (2.1) and the 

boundary conditions at the edges x = 0 and x = a. 

 

 

 

 

Figure 2.7. Plate with two sides simply supported and two sides built under hydrostatic pres-
sure [20]. 

According to Eq. (2.14), coefficients )( yK m  of the trigonometric series of Fourier 

(2.13) are  
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As a result, the load by the hydrostatic pressure in the form of a trigonometric series 
of Fourier is 

 
a
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m

q
yxq

m
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

sin1
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q=q0x/a

a 
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Substituting the expression (2.18) in Eq. (2.15), we obtain the particular integral e
mY

(y) in the form 

  1

55
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1
2

)(  moe
m Dm

aq
yY


,      (2.20) 

and 
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
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2
sin)(, 1

55

4

1
 .   (2.21) 

represents the deflection of a strip parallel to the x-axis under the distributed load q. 

The deflection surface Eq. (2.11) is represented by the following expression: 

 
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q
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  , (2.22) 

which satisfies Eq. (2.11) and also the boundary conditions at the edges x = 0 and  

x = a. Next, we have to adjust the constants of integration mB  and mC  such that that 

they will satisfy the boundary conditions 

  0, yxw ,
 

0
,





x

yxw
,      (2.23) 

on the sides 2/by  . 

Substituting the expression (2.22) in the boundary conditions (2.23) and using the 
notation 

a

bmb
u mm 22

  ,       (2.24) 

Substituting these values of the constants of integration in Eq. (2.22), we obtain the 
deflection surface of the plate that satisfies differential equation (2.1) and the 
boundary conditions in the following form: 
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from which the deflection at any point can be calculated by using the tables of 
hyperbolic functions 3. 

In case m = 1, we obtain the deflection of the plate at any point in the form 
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y
sh

b
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a
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D
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




















 ,   (2.26) 

where 

abu 2/ .        (2.27) 

The deflection at the center of the plate is 

D

aq
yxw o

4

00087.0),(  .      (2.28) 

which is one-half of the deflection of a uniformly loaded plate as required. 

The bending moments xM , yM  and the torque moment xyM  are found by Eqs. 

(2.4), (2.5) and (2.6). 

Shearing forces Q x and Q y are found by substituting expressions (2.2) and (2.3). 

A disadvantage of the Levy method is that the solution can be found only if the plate 
is two sides free landed and two sides fixed. Thus, the boundary conditions are 
limited. 

The deviation for the shearing forces is up to 17 % from the real solution, for the 
vertical reactions up to 15 % from the real solution. The most accurate solutions by 
the Levy method can be found for the deflection around zero and for the bending 
moment up to 2 % [20-22]. 

Figure 2.8 shows the deviation between the Levy method and the real solution for a 
distributed load. 
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Figure 2.8. Deviation between the Levy method and the real solution for a distributed load. 

As Figure 2.8 shows, the deviation for the deflection W is only 0,5 %. Thus, this 
method can be used for the calculations of deflection. For the bending moments M 
the deviation is small, only 2 %. This method is also suitable for the calculations of 
bending moments. The deviation for shearing forces Q and vertical reactions V is up 
to 17 % as compared with the real solution, which is quite large. 

Figure 2.9 shows the deviation between the Levy method and the real solution for 
the hydrostatic pressure. 

 

Figure 2.9. Deviation between the Levy method and the real solution for the hydrostatic 
pressure. 

Figure 2.9 shows that the deviation for the hydrostatic pressure is on the same level 
as that for the distributed load. The maximum difference is only 1,8 %, which can be 
neglected. 
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In conclusion, the Levy method has a small deviation from the real solution for de-
flection W and for bending moments M and it can be used in the plate calculations 
for hulls if the boundary conditions suit the case. We have to take into consideration 
the deviation from the real solution for shearing forces Q and vertical reactions V 
due to the deviation of up to 18,5 %. 

2.4. Collocation method of the four-side fixed plate  

The collocation method [20-22] is used when the plate is fixed with four sides as 
shown in Figure 2.10. (Eqs. (2.29) - (2.34) [20-22]): 

 

Figure 2.10. Four side fixed plate with a distributed load [20]. 

Approximation of the plate’s elastic equation is defined by 


m n

mnmn yxwCyxw ),(),( ,(2.29) 

where ),( yxw is chosen to satisfy boundary conditions in order to describe the plate 
shape quite accurately. 

The differential equation of plate bending is defined by 

D

q
w  22 .        (2.30) 

Using the polynomial and the approximation method we obtain the equation 
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



CC

CCw
,  (2.31) 

where 

a

x
 ; 

b

y
 . 

The boundary conditions are: 

if 1 , the 0x ; 0w , and if 1 , the 0y ; 0w . (2.32) 

Equation (2.31) satisfies the boundary conditions (2.32) 

For a rectangular plate where ba  chosen collocation )5,0;5,0();0;5,0();5,0;0();0;0(  

we can define the equation system to obtain the parameter mnC  and after solving the 

system of equations, we have: 

D
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C
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4

2112

4

11

0048,0

0051,0

0201,0
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

.       (2.33) 

The deflection in the middle of the plate with 3,0 is defined by: 

3

44

11
)2(0138,00201,0

Eh

aq

D

qa
Cw  .     (2.34) 

For our case the scheme of the plate shown in Figure 2.11 is loaded by the hydrostat-
ic pressure. 
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Figure 2.11. Plate fixed at four sides under hydrostatic pressure. 

In our case the equation of plate bending is defined by 
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For a rectangular plate where ba   are chosen collocation points 
)5,0;5,0();0;5,0();5,0;0();0;0( ,we can define the equation system in order to obtain 

the parameter mnC . 

In our case the distributed loads are defined by 

  





 

a

xqq
q 1

2
1

2
00  .      (2.36) 

For collocation points )5,0;5,0();0;5,0();5,0;0();0;0( we can define the distributed 
loads as follows: 

in points )0;0( and :)5,0;0(  
2

0q
q  ,     (2.37) 

in points )0;5,0( and :)5,0;5,0(  
4

3 0q
q  .    (2.38) 
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From the solving of the system of equations we obtain the equation: 
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The deflection in the middle of the plate with 3,0 is defined by 
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4
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11 0028,00028,0
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aq

D

aq
Cw  .     (2.40) 

The deviation for shearing forces is up to 11% from the real solution, for vertical 
reactions up to 11 % from the real solution. The solutions found by the collocation 
method and the real solution match and the deviation is zero for the deflection and 
for the bending moment up to 2 % [30]. 

Figure 2.12 shows the deviation between the collocation method and the real solu-
tion for a distributed load. 

 

Figure 2.12. Deviation between the collocation method and the real solution for a distributed 
load. 

As shown by Figure 2.12, the deviation for the deflection W is zero. Thus, it matches 
exactly the real solution and the method can be used for calculations of deflection. 
For bending moments M the deviation is small, accounting for 2 %. This method is 
also suitable for calculations of bending moments. The deviation for shearing forces 
Q and vertical reactions V is up to 11 % as compared with the real solution, which 
appears not so large. 

Figure 2.13 shows the deviation between the collocation method and the real solu-
tion for the hydrostatic pressure. 
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Figure 2.13. Deviation between the collocation method and the real solution for the hydro-
static pressure. 

As can be seen, the deviation for the hydrostatic pressure is on the same level as for 
the distributed load. The difference is very small, so we can neglect it. 

In conclusion, the collocation method has a small deviation from the real solution 
for the deflection W and for bending moments M and can be used in the plate calcu-
lations for hulls. A minor deviation of up to 12 % from the real solution for shearing 
forces Q and vertical reactions V was found. 

2.5. Kantorovits-Vlassov method for a four side fixed plate 

Kantorovits-Vlassov [20-22] method is one of the approximations methods. 

The plate fixed on four sides with the relation 1
a

b
with a distributed load is shown 

in Figure 2.14. 

 

Figure 2.14. Plate fixed on four sides under a distributed load [30]. 
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The equation for deflection is defined by 

22 )1)((  yYw .       (2.41) 

To satisfy the boundary conditions on the sides ax  , the differential equation of 
deflection is defined by 

022 
D

q
w .       (2.42) 

To take the differential, we can obtain the equation 

0)1)(( 22
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After all the calculations we obtain: 
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Use to the symmetric matter, the )( yY is the even function of the coefficients

032 CC . In that case Eq. (2.4) is as follows: 
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Having in mind that by  or by  , we can find the coefficients 1C  and 4C ; 
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The deflection in the middle of the plate is defined by 
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The deviation for shearing forces is up to 14 % from the real solution, for the 
vertical reactions up to 15 % from the real solution. The most accurate solutions by 
the Kantorovits-Vlassov method can be found for zero deflection and for the 
bending moment only 0.5 % [20]. 

Figure 2.15 shows the deviation between the Kantorovits-Vlassov method and the 
real solution for a distributed load. 

 

Figure 2.15. Deviation between the Kantorovits-Vlassov method and the real solution for a 
distributed load. 

As shown in Figure 2.15, the deviation for the deflection W is zero. Thus, it matches 
exactly the real solution and this method can be used for the calculations of deflec-
tion. For bending moments M, the deviation is very small, only 0,5 %. This method 
is also suitable for calculations of bending moments. However, the deviation for 
shearing forces Q and vertical reactions V is relatively large - up to 15 % as com-
pared to the real solution. Figure 2.16 shows the deviation between the Kantorovits-
Vlassov method and the real solution for the hydrostatic pressure. 

 

Figure 2.16. Deviation between the Kantorovits-Vlassov method and the real solution for the 
hydrostatic pressure. 
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We can see that the deviation for the hydrostatic pressure is on the same level as that 
for a distributed load. As there is only a slight difference, we can neglect that. 

In conclusion, the Kantorovits-Vlassov method has a small deviation from the real 
solution for the deflection W and for bending moments M and can be used in plate 
calculations for hulls considering the deviation from the real solution for shearing 
forces Q and vertical reactions V that amounts up to 16,5 %. 

2.6. Grid method for the calculation of a plate  

The differential method can be extended by the partial derivative equation, so- called 
grid method [23-29]. The accuracy of this method is low but it can be increased by 
using a more rapid mesh. Using this method, different shape plates and different 
boundary conditions can be calculated. (Eqs. (2.48) - (2.55) [20-22]): 

Let us divide the plate into a mesh, as shown in Figure 2.17; the step in the direction 
of axis X is x , in the direction of axis Y is y . Mesh points around the point 

CC are as shown in the figure. 

 

Figure 2.17. Plate divided by a mesh [20]. 

The first derivative in the point CC is defined by 
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The derivative with two variables is defined by 
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After some calculations we obtain a harmonized equation: 
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 Under the consideration that 
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For a plate fixed in all four edges and with the boundary condition 0ccw  we ob-

tain: 
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After simplification we have: 

bcdc ww  .        (2.53) 

For a plate free landed and under the boundary condition 0ccw  we obtain: 
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Taking into consideration the boundary condition 0ccw  we have: 

bcdc ww  .        (2.55) 

The deviation for the shearing forces is up to 22 % from the real solution, for the 
vertical reactions up to 20 % from the real solution. The most accurate solutions by 
the grid method can be found for a deflection around 0,7 % and for a bending 
moment up to 4,6 % [20]. 

Figure 2.18 demonstrates the deviation between the grid method [30-37] and the real 
solution for a distributed load. 
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Figure 2.18. Deviation between the grid method and the real solution for a distributed load. 

As seen from Figure 2.18, the deviation for the deflection W is very small. Thus, this 
method can be used for the calculations of the deflection. However, it should be 
taken into account that the deviation for the shearing forces Q and the vertical reac-
tions V is large, up to 22 % from the real solution. 

Figure 2.19 shows the deviation between the grid method and the real solution for 
the hydrostatic pressure. 

 

Figure 2.19. Deviation between the grid method and the real solution for the hydrostatic 
pressure. 

As can be seen from Figure 2.19, the deviation for the deflection is small. Thus, this 
method can be used to calculate the deflection. However, it should be taken into 
account that the deviation for the shearing forces and the vertical reactions is large, 
accounting for up to 24 % from the real solution. 
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In conclusion, the grid method has a small deviation from the real solution for the 
deflection W and can be used in the plate calculations for hulls at the same time tak-
ing into account the major deviation from the real solution for the shearing forces Q 
and the vertical reactions V. 

2.7. Plate calculations by FEM 

Calculations for the plate can be provided by the integration of the biharmonic equa-
tion, which consists of the derivative of the plate deflection perpendicular to the 
plate plane. Under finite elements, we can define the deflection w by using an equa-

tion that has a matrix  N  and an angular displacement e . It is used for rectangular 

and triangular elements in the plate calculations. In each node n  the movement has 
three components, such as the deflection that is perpendicular to the plate plane w in 
the direction of axis z , rotation angle  nx around the axis x and the rotation angle 

 
ny around the axis y . (Eqs. (2.56) - (2.65) [38-48]): 

Figure 2.20 illustrates triangle and rectangular elements.  

Figure 2.20. Triangle and rectangular elements in the FEM [20]. 

For each element we have twelve parameters, so for w we have a polynomial as 
follows: 
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Constants 1221 ,...,,  are defined from the system of equations. 

In the matrix we can write that as follows: 
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     Ce  .        (2.58) 

where 

     eC  1 .       (2.59) 

The deflections inside the element are defined by 

         ee CPNw  1 .      (2.60) 

The matrix  P is the function of coordinates x and y. If we place the center of the 
coordinate system in the center of the gravity of the rectangular element, Eq. (2.60) 
can be defined by 

    e
klji NNNNw ,,, .      (2.61) 

We determine the matrix of deformation by the second derivative of the deflection 
and the stresses will be defined by using the bending and torque moments. Taking 
into consideration Eqs. (2.56), (2.57) and (2.58) we have: 

            ee BC   1
.    (2.62) 

The matrix of elasticity is a part of the equation of tension: 

      D .        (2.63) 

The matrix of stiffness is defined by 

      dxdyBDBk
Te  .      (2.64) 

Taking into consideration that the matrix  C  does not depend on x and y , we ob-
tain: 

           dxdyDCCk
TTe   11

 .    (2.65) 

The deviation for the shearing forces is up to 14 % from the real solution, for the 
vertical reactions up to 15 % from the real solution. For the deflection, the deviation 
by the FEM method is around 7 % and for the bending moment up to 6,5 %. 

Figure 2.21 shows the deviation between the FEM method [49-60] and the real solu-
tion for a distributed load. 
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Figure 2.21. Deviation between the FEM method and the real solution for a distributed load. 

As demonstrated by the figure, the deviation from the real solution is quite large and 
the deviation is also great. 

Figure 2.22 illustrates the deviation between the FEM method and the real solution 
for the hydrostatic pressure. 

 

Figure 2.22. Deviation between the FEM method and the real solution for the hydrostatic 
pressure. 

As shown by the figure, the deviation is larger for the results of the hydrostatic pres-
sure than for the distributed load. 

The advantage [61-65] of the FEM method is:  

 the possibility to include any shape into the FE. 

14 % 15 %

7 % 6,5 %

0%

5%

10%

15%

20%

Shearing forces
Qx, Qy

Vertical
reations Vx,

Vy

Deflection
W

Bending
moments Mx,

My

Deviation of the FEM results from the real solution 
for a distributed load

16 % 17 %

8,5 % 7,5 %

0%

5%

10%

15%

20%

Shearing forces
Qx, Qy

Vertical
reations Vx,

Vy

Deflection
W

Bending
moments Mx,

My

Deviation of FEM results from the real solution for 
the hydrostatic pressure



38 

The disadvantages of the FEM method are:  

 results depend on the choice of the mesh by the operator, 
 evaluation of the accuracy of the results is complicated. 

In conclusion, the FEM method has a large deviation from the real solution for the 
deflection W, moments M, shearing forces Q and vertical reactions V. But keeping in 
mind that others method are not suitable for plate calculation FEM method can be 
used for plate calculation in comparison with other methods. FEM method will be 
used as a method with which we compare our results.  

2.8. Analysis of methods for plate calculation 

In order to determine which of the methods described above suits best for plate cal-
culation and is closer to the real solution, comparison of the deviations of all the 
methods is essential. The data of all deviations for plates loaded by a distributed load 
are shown in Table 2.1. Resulting from the table, the most suitable method for plate 
calculation for a ship hull structure can be determined.  

Table 2.1. Deviations of all methods from the real solution for a distributed load. 

Parameters 
Method 

Navier' Levy Collocation K-Vlassov Grid FEM 

Shearing forces 
Qx, Qy 

18 % 17 % 11 % 14 % 22 % 14 % 

Vertical reations 
Vx, Vy 

15 % 15 % 11 % 15 % 20 % 15 % 

Deflection 
W 

0 % 0,5 % 0 % 0 % 0,7 % 7 % 

Bending moments 
Mx, My 

2 % 2 % 2 % 0,5 % 4,6 % 6,5 % 

For better visualization and understanding, all the results are shown in Figure 2.23 
for plates loaded by a distributed load. 

 

Figure 2.23. Deviation of all the methods and the real solution for a distributed load. 
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Figure 2.23 demonstrates that the Navier’, the collocation and the Kantorovits-
Vlassov method have the smallest deviation from the real solution. The deviation for 
the deflection W is zero, which means that the solution exact in terms of the real 
solution for calculations with certain boundary conditions. Next in ranking are the 
Levy and the grid method with deviations for the deflection W 0,5 % and 0,7 %, 
accordingly. The FEM method appears to have the largest deviation, accounting for 
7 % [66-71]. In summary, all the methods can be used for plate calculation taking 
into account the boundary conditions and deviations for bending moments, shearing 
forces and vertical reactions, if necessary. If we take all the parameters into consid-
eration, we can conclude that the most suitable method for plate calculation is the 
FEM method, the deviations of which are not the smallest in terms of all the parame-
ters, such as the deflection W, the bending moments M, the shearing forces Q and 
the vertical reactions V. However, taking into consideration the boundary conditions, 
it is most suitable for hull calculations.  

Table 2.2 presents the results of deviations for the plates loaded by the hydrostatic 
pressure. 

Table 2.2. Deviations of all the methods and the real solution for the hydrostatic pressure. 

Parameters 
Method 

Navier' Levy Collocation
K-

Vlassov 
Grid FEM 

Shearing forces 
Qx, Qy 

19 % 18,5 % 12 % 15 % 24 % 16 % 

Vertical reations 
Vx, Vy 

16,3 % 17 % 12 % 16,5 % 21 % 17 % 

Deflection 
W 

0.8 % 1,8 % 0,5 % 0,5 % 1,3 % 8,5 % 

Bending moments 
Mx, My 

2,9 % 3,1 % 2,6 % 1,2 % 5,5 % 7,5 % 

For better visualization and understanding, all the results are illustrated in Figure 
2.24 for the plates loaded by the hydrostatic pressure. 

 

Figure 2.24. Deviation of all the methods and the real solution for a distributed load. 
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Figure 2.24 demonstrates that the collocation, the Kantorovits-Vlassov and the Na-
vier’ method have the smallest deviation from the real solution. The deviation for 
the deflection W is variable from 0,5 % to 0,8 %, which is a very small deviation 
from the real solution. Next in ranking are the grid and the Levy method with devia-
tions for the deflection W 1,3 % and 1,8 %, respectively. The FEM method has the 
largest deviation, accounting for a deflection of 8,5 %. In summary, all the methods 
except FEM cannot be used for plate calculation loaded by the hydrostatic pressure 
taking account of the boundary conditions. If we take all the parameters into consid-
eration, we can conclude that the most suitable method for plate calculation loaded 
by the hydrostatic pressure is the FEM method, the deviations of which are not the 
smallest on most of the parameters, such as the deflection W, the shearing forces Q 
and the vertical reactions V. However, taking into consideration that the FEM meth-
od does not depend on the boundary conditions, it suits best for comparison of our 
results.  

Conclusion 

Many different methods exist for plate calculations. Most common of them were 
described above in the thesis. Most of them depend on the boundary conditions and 
cannot be used for the calculation of plates with variable thicknesses. In order to 
choose the best method the boundary conditions and deviations from the real solu-
tion must be taken into consideration.  

Resulting from the analysis, we can conclude that the Navier’ method cannot be 
used for the hull calculation because the Navier ’method is valid only if the plate is 
simply supported with all four sides. However, in the ship building it is impossible 
to find a plate simply supported, which makes the Navier’ method unsuitable for the 
hull calculation. Another disadvantage of the Navier’ method is that the plates must 
have very simple shape. It is impossible to calculate more complicated plate shapes 
by the Navier’ method. Neither can this method be used for the calculation of plates 
with variable thicknesses. 

The Levi method can theoretically be used for the hull calculations because its 
boundary conditions match ship calculations. The Levi method and the Navier 
method have the same disadvantage that lies in the plate shape, which has to be very 
simple. In other cases this method cannot be used. 

The Kantorovits-Vlassov and the collocation method cannot be used in the hull cal-
culations because of their boundary conditions. Those methods suit when the plate is 
four sides fixed. They are unsuitable for our calculations. 

The grid method is suitable for the hull calculations due to its boundary conditions. 
But in terms of its accuracy and deviation from the real solution for the shearing 
forces Q and the vertical reactions V, the grid method is unsuitable and cannot pro-
vide good results. 

The FEM method does not depend on the boundary conditions and thus can be used 
for the hull calculation. Also, the FEM can be used for plates with variable thick-
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nesses. The deviation is neither small nor large. The disadvantage of the FEM meth-
od is that it depends on the operator. Thus, the probability of wrong results is also 
significant. Also, the more frequent mesh takes too much time for the calculations if 
the shape of the plate is complicated. For that reason the FEM method is not appro-
priate for hull calculations. However, but if the shape of the plate is simple, we can 
use this method as an alternative for the hull calculation. 

In summary, of all the methods, the FEM is most suitable for the plate calculation 
loaded by a distributed load and the hydrostatic pressure. In conclusion, none of the 
methods is completely (100%) suitable for use in the hull calculations and will not 
enable most accurate results to be achieved. All the methods have their own limita-
tions, which makes them unsuitable for the hull calculations. Thus, a new method 
has to be developed that would be independent of the boundary conditions, the shape 
of the plate and would provide good calculation results.  
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3. NEW METHOD OF CALCULATION OF PLATES 

To increase stiffness and ensure a more optimal distribution of the stress, the plates 
can have variable thicknesses. Those constructions are widely used in shipbuilding 
for most of the hull elements of the ships. In plate calculations by variational meth-
ods it is necessary to determine the basic set functions for unknown variables which 
satisfy the boundary conditions on the edge of the construction. The task is to devel-
op the theory and methods of plates with variable thicknesses. For that purpose cal-
culation algorithms are required, which can expand the area of plate calculation 
tasks and improve existing solutions. The considerations above define the topicality 
of the thesis of the present work and its goals.  

In particular, the calculations are complex if the elements consist of variable thick-
nesses. Composite structures include beams, plates with stepwise changing stiffness 
as well as a shells consisting of elements of various shapes. Composite structures are 
typically calculated by their decomposition into individual elements, within each of 
which the stiffness and geometric characteristics change monotonously. For each of 
the elements obtained, a solution must be known in advance. To ensure neighboring 
conjugation sites on the displacements and the internal forces, a system of algebraic 
equations must be set up with unknowns, where nN  is the order of the differential 
equation, and N is the number of elements. 

However, if we use some properties of generalized functions, we need to set up a 
system of algebraic equations containing only n  unknowns. 

G.Aryassov and coauthors [64-70] proposed a method based on the properties of 
generalized functions for shell plates and beams with variable thicknesses. The 
method provides increased accuracy and decreased time for building the algorithm.  

Through a generalized function, the above method of calculation enables compari-
son with other methods used for the same purpose of plate calculations.  

In this thesis the method of generalized function is modified and generalized for the 
calculation of rectangular plates with under the hydrostatic pressure. 

3.1. Calculation of plates with variable thicknesses by the generalized 
functions 

Taking into account the method of additional partial solutions for the properties of 
generalized functions, in this thesis the author develops a method of rectangular 
plates with variable stiffness using generalized functions. This can be defined as a 
private case of a method of generalized solutions [64]. 

As was described above, to calculate constructions with variable thicknesses need a 
system of algebraic equations is required that consists of nN   unknown, where n
is the degree of differential equation and N is the quantity of elements. 
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But taking into account some properties of generalized functions, to solve this task, 
it is necessary to develop a system of algebraic equations only with n  unknown. 

 

 

 

 

 

 

 

 

Figure 3.1. Rectangular plate with variable thicknesses with two opposite edges freely sup-
ported and two edges built in. 

Figure 3.1 shows a rectangular plate with variable thicknesses at two opposite edges 
freely supported byy  ,0 and two edges built in axx  ,0 . This corresponds 
to the boundary conditions of our experiment. 

We note that in calculations of barges the boundary conditions of a barge hull ele-
ment supported by stiffeners are following: at two opposite edges simply supported 
and two edges built in.  

However, in general the method of solution does not depend on the boundary condi-
tions.  

The differential equation for the deflection surface ),( yxw of i section the plate 

(Fig. 3.1) is described by the biharmonic equation 20: 
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where iD - is the flexural rigidity of the plate. 

The solution is in the form  
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)(yY  and  xX  are functions of y and x respectively. 

Taking into consideration that stiffness is changing uneven only in one direction 
along the y axis, the function  xX  can be defined as the polynomial below:  

  222 )/1( axxX  ,       (3.3) 

and the deflection surface ),( yxw  will be 

222 )/1)((),( axyYyxw  .      (3.4) 

Equation (3.2) satisfies the boundary conditions   0, yxw  and  

 
0

,





x

yxw
 at these two sides axx  ,0 . 

Polynomial (3.3) can be accepted as more generalized [D. Gornostajev publications 
1-5], which means that the view of the polynomial does not affect the algorithm of 
the solution which is calculated by generalized functions. 

Secondly, it is very important in our case that the polynomial  xX , which defines 

the deflection of the plate along the short side of the plate a (Fig. 3.1), does not 
affect the accuracy of the solution because of the relation of the plate sides 3/ ab
[20, 63]. 

The task is to determine )(yY in such a form that would satisfy the boundary 

conditions on the sides byy  ,0  and also the equation of the deflection surface. 

For this we use the principle of virtual displacements as follows: 
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Let us place ),( yxw from Eq. (3.4) to Eq. (3.5), we obtain 
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After integration of Eq. (3.6) we have 
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 Ni ,...2,1 . 

We assume that the structure consists of two sections only (Fig. 3.1). Then, instead 
of Eq. (3.7), we consider the following auxiliary differential equation: 
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where  dy  - is delta-function, 

     dBdBdB 210 ,,  and  dB3  - are unknown coefficients, 

d - is the coordinate of the point at which stiffening behavior changes abruptly or 
design changes rigidity. 

We will seek a special solution of the differential equation (3.8) in this form: 
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,  (3.9) 

where  dy   - is the unit function, 

 yZ0  - is the general solution of the corresponding homogeneous differential 

equation, 

   yVyZ qq ,  - are partial solutions for the first and second sections corresponding 

to the action on the structure of the normal pressure q . 

Consistently differentiating the expression (3.9) four times and taking into account 
the filtering property of the delta function, we obtain 
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Substituting the values  yY IY
r

~
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~
yYr  and )(

~
yYr  in Eq. (3.8) and comparing the 

coefficients of the delta-function and its derivatives on the left and right sides of Eq. 
(3.8), we will have 
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Taking into account that Eq. (3.8) is the differential equation of the fourth degree, 
the unknown coefficients      dBdBdB 210 ,,  and  dB3  for this equation must 

satisfy the relations, where four integration constants jC are included 
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j
dyqjqj yZyZyVCdB , (3.12) 

where jC - integration constants determined from the boundary conditions, and 

 yZ j0  - particular linearly independent solutions of the homogeneous differential 

equation  
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From the homogeneous differential equation (3.13), we have the particular solutions 
 yZ j0 . 
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a

y

a

y
chyZ

575,1
sin

343,2
02  ; 
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a

y

a

y
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03  ;  

a

y

a

y
shyZ
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04  .  (3.14) 

 Then the function 
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is the general solution of the differential equation (3.8). 

It follows that the general solution of the initial differential equation (3.7) in the case 
of two sections is determined by the formula 

   yYyYyY r

~
)(  ,       (3.16) 

where  yYr

~
 is the special particular solution of the non-homogeneous differential 

equation (3.8) on the condition that the coefficients      dBdBdB 210 ,,  and  dB3  

satisfy the relations (3.12). 

As a result of all the calculations we attain the main equation for the deflection by 
multiplying Eqs. (3.4) and (3.16): 

     222 )/1(
~

)(, axyYyYyxw r       (3.16*) 

Using Eq. (3.16*) we obtain the numerical results of the deflection of the plate. 

3.1.1. Particular solution  yYr
~

 in the case of a distributed load 

A particular solution  yYr

~
 can be found by the method of variation of arbitrary 

constants.  

In this case we have  
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where 

     yZyZyZ 030201 ,,  and  yZ04  are the particular solutions of the homogeneous 

differential equation (3.13), which are determined by the expressions (3.14) 

and the coefficients      dBdBdB 210 ,,  and  dB3 , 
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Thus, the general solution of the non-homogeneous differential equation (3.1) can be 
found by the following formula, taking into account Eqs. (3.15), (3.16) and (3.17) 
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If the construction contains several sections with different stiffness characteristics, 
the general solution can be written as follows: 
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where   10  dy ,   01  ldy .     (3.20*) 

1ld   ,...,2,1l  are the coordinates of the points in which the stiffness 

characteristics of the construction are changed. 

The particular solution  yYr

~
, which is included in Eq. (3.20), takes the form 
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where  yYrl

~
 is the partial solution, which can be calculated by Eq. (3.17) with the 

replacement d  for ld . 

Equation (3.20) shows that the unknown included in this formula are arbitrary 
constants 1C , 2C , 3C  and 4C  which can be calculated from the boundary 

conditions of the problem. 

3.1.2. Particular solution  yYr

~
 in the case of hydrostatic pressure 

Similarly, we can find the particular solution  yYr

~
 for the hydrostatic pressure. 

In this case the differential equation (3.8) will be 
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Similarly to the case of the uniformly distributed load, the particular solution  yYr
~

 
for the hydrostatic pressure can be found by the method of variation of arbitrary 
constants.  

In this case we have 
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where 

     yZyZyZ 030201 ,,  and  yZ 04  are the particular solutions of the homogeneous 

differential equation (3.13), which are determined by Eq. (3.14) 

and the coefficients      dBdBdB 210 ,,  and  dB3 , 
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Thus, the general solution of the non-homogeneous differential equation (3.1) for the 
hydrostatic pressure, taking into account Eqs. (3.15), (3.16) and (3.23 ), can be 
found by the next formula:  
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The obtained results can be generalized to any type of a composite construction of 
beams and plates. The number of arbitrary constants of integration will be equal to 
the order of the differential equations corresponding to the considered type of 
constructions. These constants are determined from the appropriate boundary 
conditions of the problem. 

3.2. Results of calculations 

In order to solve the equations and obtain the numerical results of deflection, it is a 
program is needed. In our case, the MATLAB program will be used. The results will 
be presented by the curve of deflection for all our cases: for the plate with constant 
thickness loaded by a distributed load and by the hydrostatic pressure and for the 
plate with variable thicknesses loaded by a distributed load and by the hydrostatic 
pressure. The load will be 6 kPa, 12 kPa, 18 kPa and 24 kPa for the distributed load. 
The same load will be used for calculations under the hydrostatic pressure. The first 
calculations will be made for a plate with a constant thickness of 8 mm with the 
dimensions of 180 mm in width and 400 mm in length loaded by a distributed load 
of 6 kPa. Steel grade NVA with yield stress 235 N/mm2 will be used. After obtain-
ing all the results, we will compare these with the FEM results to find the deviation. 
The comparison is needed to understand how accurate the results of the new method 
are. Thus, the correctness of the new theory can be verified and further use of the 
new method for calculations can be confirmed. Figure 3.2 shows the curve of deflec-
tion for the plate with a constant thickness of 8 mm loaded by a distributed load of 
24 kPa. 
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Figure 3.2. Curve of deflection for the plate with a constant thickness of 8 mm 
loaded by a distributed load of 24 kPa. 

Figure 3.2 demonstrates that the maximum deflection is in the middle area, account-
ing for 0.49 mm. That result will be compared with the FEM results. In the same 
way we can obtain deflections for other loads. All the deflections for the plate with 
constant thickness under the distributed load are shown in Table 3.1. 

Table 3.1. Deflection for the 8 mm plate with constant thickness under a distributed 
load. 

8 mm plate with constant thickness, distributed load 

Load, kPa 0 6 12 18 24 
Deflection, 
mm 

0 0,11 0,24 0,37 0,49 

We obtain all the deflections for the 8 mm plate with constant thickness under the 
distributed load. Next, the same plate will be loaded by the hydrostatic pressure. 
Figure 3.3 shows the curve of deflection for the 8 mm plate with constant thickness 
under the hydrostatic pressure of 24 kPa. 
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Figure 3.3. Curve of deflection for a 8 mm plate with constant thickness under the 
hydrostatic pressure of 24 kPa. 

Figure 3.3 demonstrates that the maximum deflection is in the middle area, account-
ing for 0.099 mm. All the deflections for the plate with constant thickness loaded by 
the hydrostatic pressure are shown in Table 3.2. 

Table 3.2. Deflection for the 8 mm plate with constant thickness under the 
hydrostatic pressure. 

8 mm plate with constant thickness, hydrostatic pressure 

Load, kPa 0 6 12 18 24 
Deflection, 
mm 

0 0,022 0,049 0,072 0,099 

We can obtain all the deflections for the 8 mm plate with constant thickness under 
the hydrostatic pressure. Next, a plate with variable thicknesses of 6 mm and 8 mm 
will be loaded by a distributed load. Figure 3.4 shows the curve of deflection for 
plates of variable thicknesses 6 mm and 8 mm under the distributed load of 24 kPa. 

 

Figure 3.4. Curve of deflection for a plate with variable thicknesses of 6 mm and 8 
mm under the distributed load of 24 kPa. 

Figure 3.4 demonstrates that the maximum deflection is in the middle area, account-
ing for 0.69 mm. All the deflections for the plate with variable thicknesses under a 
distributed load are shown in Table 3.3. 

Table 3.3. Deflection for the plate with variable thicknesses of 6 mm and 8 mm 
under a distributed load. 

Plate of 6 mm and 8 mm variable thicknesses, distributed load 

Load, kPa 0 6 12 18 24 
Deflection, 
mm 

0 0,16 0,32 0,51 0,69 

We can obtain all the deflections for the plate with variable thicknesses of 6 mm and 
8 mm under a distributed load. Next, the plate with variable thicknesses of 6 mm and 
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8 mm will be loaded by the hydrostatic pressure. Figure 3.5 shows the curve of de-
flection for the plate with variable thicknesses of 6 mm and 8 mm loaded by the 
hydrostatic pressure 24 kPa. 

 

Figure 3.5. Curve of deflection for the plate with variable thicknesses of 6 mm and 8 
mm loaded by the hydrostatic pressure 24 kPa. 

Figure 3.5 demonstrates that the maximum deflection is in the middle area, account-
ing for 0.133 mm. All the deflections for the plate with constant thickness loaded by 
the hydrostatic pressure are shown in Table 3.3. 

Table 3.4. Deflection for the plate with variable thicknesses of 6 mm and 8 mm 
loaded by the hydrostatic pressure. 

Plate of 6 mm and 8 mm variable thicknesses, hydrostatic pressure 

Load, kPa 0 6 12 18 24 
Deflection, 
mm 

0 0,031 0,062 0,093 0,133 

All the results from the tables will be used below in the comparisons with the exper-
imental and FEM results.  

Conclusion 

A new method was developed in order to provide improved results of hull 
calculations to be used in the future. The method was developed for the calculations 
of a plate with variable thicknesses. Current methods except for FEM are limited 
and enable only calculation of plates with constant thickness. Moreover, all of them 
depend on the boundary conditions and are very sensitive to the shape of plate, i.e. 
the shape of plate has to be very simple.  

The new method does not require that the construction be divided into separate 
homogeneous parts and support the performance of kinematic and static conditions 
of the matching points of neighboring parts of the construction. This method can be 
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used under different boundary conditions. The new method does not depend on the 
boundary conditions like other methods do. 

As a result, we obtained a general number of algebraic equations used to define the 
solutions that do not depend on the number of elements composing the whole 
construction, but rather are equal to the order of the differential equation “n”. 

The proposed method enables the calculation of rectangular plates with variable 
thicknesses. 

The method can be used for the calculation of plates with any quantity of plate parts 
with variable thicknesses.  

The load is not limited, which means that we can use the point force and the 
distributed load. 

The advantage of the method is that it approaches the FEM especially in places 
where the stress is changing significantly, for instance, where the plate thickness is 
changing. It means that the FEM cannot provide sufficient accuracy especially in 
places where the thickness of the plate is changing significantly. 

The new method allows complicated mathematical modelling of the plate, including 
the factors that were not in use before and that cannot be done in the FEM because 
of an established algorithm in the FEM. 

The method allows solving the dynamic tasks of plate calculations, for instance, to 
take into account load impact of waves, hull vibrations on the waves and other 
aspects. 

The curve of deflection was found in order to find deflections in any point of the 
plate. 

Common methods for the calculations of constructions enable us to transfer a task to 
solving a system of algebraic equations; the number of those is proportional to the 
number of the constructions. Moreover, those methods are used to calculate plates 
with constant thickness.  

In order to prove the accuracy of the new method, calculations have to be compared 
with the FEM results.  
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4. ANALYSIS OF THE EXPERIMENTAL RESULTS  

4.1. Experiment on the plate with constant and variable thicknesses un-
der a distributed load 

In order to check and prove that our new method of calculation is correct and can be 
used in the future, a comparison with experimental results is required [71-73]. For 
the experiment a machine shown in Figure 4.1 was chosen. The experiment was 
made in the certified laboratory in Elme TKS. The laboratory and equipment have 
all necessary certificates and the laboratory has been accredited.  

 

Figure 4.1.Experimental setup: 1- force dynamometer, 2 – fixed table 3 – pressure shaft. 

The experimental scheme for the plate with variable thicknesses is shown in Figure 
4.2. 

 

 

 

 

 

 

Figure 4.2. Principal scheme of the experiment. 
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The experiment was carried out for two types of plates: a plate with variable 
thicknesses of 6 and 8 mm, and a plate with constant thickness of 8 mm. Steel grade 
NVA with yield stress 235 N/mm2 was used. The aim was to show the size of the 
deflection on the plate under a distributed load on the real plate. The main challenge 
was to convert a single force to a distributed load. For this reason a special jig was 
designed and produced. Another aim was to imitate a distributed load on the whole 
surface of the plate. Therefore, a rubber pie was produced and connected to the jig. 
Medium soft rubber was used, which in our opinion suits perfectly to transfer a load 
on the whole surface of the plate. It enables us to imitate a maximum distributed 
load in the real situation. The plate with variable thicknesses was fixed at two sides 
to the U-channel in order to imitate a real hull side plate. U-channel with the plate 
was fixed to the table to avoid any movements during the pressure work. The 
deflection was measured by the clock indicator ИЧ-10 [74], which has an accuracy 
of +/-0.01 mm. 

In our experiment three attempts of each 6 kPa load were made, with a total of 12 
measurements of the deflection in order to achieve more accurate results. In the first 
experiment a plate with a constant thickness of 8 mm was used. The dimensions of 
the plate were 180 mm in width and 400 mm in length. The plate was fixed at two 
sides and two sides were free landed. This connection imitates most realistically the 
connection of plates in the hull of barge or ship. The dimensions of the plate were 
chosen due to the limited area of the stand of the setup. Figure 4.3 shows the 8 mm 
plate welded to the U-channel installed on the stand with the rubber pie, the sensor 
and the jig. 

 

Figure 4.3. 8 mm plate welded to the U-channel installed on the stand with the rubber pie 
and the jig.  
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The results of the experiment are presented in the table. The deflections of all the 12 
attempts with the plate with constant thickness are shown in Table 4.1. 

Table 4.1. Deflection of the plate with constant thickness under a distributed load. 

8 mm plate with constant thickness 

Deflection, mm 

Attempt Load 6 kPa Load 12 kPa Load 18 kPa Load 24 kPa 

1 0,12 0,26 0,37 0,47 

2 0,14 0,27 0,37 0,48 

3 0,14 0,27 0,38 0,46 

Next, experiments were made for the plate with variable thicknesses with 
dimensions 6x180x200 mm and 8x180x200 mm welded together and welded to the 
U-channel. The plate with variable thicknesses welded to the U-channel installed on 
the stand with the rubber pie and the jig is shown in Figure 4.4. 

 

Figure 4.4. Plate with variable thicknesses of 6 mm and 8 mm welded to the U-channel 
installed on the table with the rubber pie, the hinge and the jig. 

Similarly to the first experiment, 12 measurements were taken at the same load with 
step, each 6 kPa. The results of the measurements are presented in Table 4.2. 
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Table 4.2. Deflection of the plate with variable thicknesses under a distributed load. 

6-8 mm plate with variable thicknesses 

Deflection, mm 

Attempt Load 6 kPa Load 12 kPa Load 18 kPa Load 24 kPa 

1 0,15 0,29 0,44 0,59 

2 0,15 0,30 0,44 0,58 

3 0,16 0,29 0,43 0,57 

The results are very close to those obtained by our equations, which means that the 
equations developed are correct and can be used in the plate calculations. Still, the 
results obtained so far are not sufficient to use plates with variable thicknesses in the 
ships because the strength is still unknown. In order to make sure that the strength is 
within the allowed limits, the FEM calculations need to be done. 

4.2. Results by the FEM 

In order to check the accuracy of the new method and the experimental results, the 
FEM calculations were done by the Solid Works Cosmos program. In the calculation 
the same data were used as in the experiment and in the new method calculations. 
Two calculations for the plate with variable thicknesses of 6 and 8 mm and for the 
plate with a constant thickness of 8 mm were made. 

First, calculations were made for the plate with a constant thickness of 8 mm with 
dimensions 180 mm in width and 400 mm in length under a distributed load. The 
stress simulation and results are shown in Figure 4.5. 

 

Figure 4.5. Stress simulation and the results for the plate with a constant thickness of 8 mm 
under the distributed load of 24 kPa. 

We can see that the maximum stress is 36 N/mm2, which is less than the yield 

strength for the NVA steel, i.e. 235 N/mm2. So the allowable stress ሾߪሿ ൌ
ଶଷହ

ଵ,ହ
ൌ 157 

N/mm2.Thus, the strength requirement is satisfied. The deflection for the plate with 
constant thickness is shown in Figure 4.6.  
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Figure 4.6. Deflection for the plate with a constant thickness of 8 mm under the distributed 
load of 24 kPa. 

The results demonstrate that the maximum deflection is 0,47 mm, which is very 
close to the results of our new method and the experiments. In conclusion, the 
experiment proved successful for the plates with constant thickness. 

Next, the same calculations were made for the plate loaded by the hydrostatic 
pressure. The stress simulation and the results are shown in Figure 4.7. 

 

Figure 4.7. Stress simulation and the results for the plate with a constant thickness of 8 mm 
loaded by the hydrostatic pressure of 24 kPa. 

We can see that the maximum stress is 9 N/mm2, which is less than the yield stress 

for the NVA steel, i.e. 235 N/mm2. So the yield stress ሾߪሿ ൌ
ଶଷହ

ଵ,ହ
ൌ 157 N/mm2. 

Thus, the strength requirement is satisfied. 

The deflection for the plate of 8 mm loaded by the hydrostatic pressure is shown in 
Figure 4.8. 
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Figure 4.8. Deflection for the plate with a constant thickness of 8 mm loaded by the 
hydrostatic pressure of 24 kPa. 

The maximum deflection is 0,09 mm. It occurs in the area where the maximum load 
is concentrated.  

The same calculation is required for the plate with variable thicknesses of 6 mm and 
8 mm, first loaded by a distributed load. The stress simulation and the results are 
shown in Figure 4.9. 

 

Figure 4.9. Stress simulation and results for the plate with variable thicknesses of 6 and 8 
mm under the distributed load of 24 kPa. 

We can see that the maximum stress is 54 N/mm2, which is less than the yield 

strength for the NVA steel, i.e. 235 N/mm2 and the allowable stress ሾߪሿ ൌ
ଶଷହ

ଵ,ହ
ൌ 157 

N/mm2. From this result, we can make a conclusion that the experiment was 
successful and the strength is within the allowable limit. The minimum safety factor 
is 2,9, which means that at the same strength plates with lower thickness and lower 
weight can be used. That finding is very important and useful for our work. We 
know that the hydrostatic pressure is loaded on the hull. Due to the difficulties to 
make the experiment using the hydrostatic pressure we should prove that the 
strength is kept using a distributed load which allows us to state that the new method 
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calculations are made correctly for the hydrostatic pressure as well. In addition, we 
can obtain a deflection by the FEM and compare the result with the new method 
calculations and experimental results. In the calculation the same data will be used 
for the load and the dimensions of the plates. The results will be compared with the 
results achieved by the experiment and by the new method calculations. Analysis 
and conclusions will be made. The deflection for the plate with variable thicknesses 
is shown in Figure 4.10. 

 
Figure 4.10. Deflection for the plate with variable thicknesses of 6 and 8 mm under the 
distributed load of 24 kPa. 

We can see that the maximum deflection is equal to 0,9 mm and it is concentrated 
where the maximum pressure occurs in the middle of the 6 mm plate. To compare 
with experimental results, the deflection needs to be taken from the middle point of 
the plate. The deflection in the middle of the plate is equal to 0,7 mm. We can see 
that the deflection achieved by the experiment and the deflection obtained by the 
FEM are very similar. In conclusion, the experiment is successful for the plate with 
variable thicknesses.  

All the considerations above prove that our equations are correct for the distributed 
load and match the results of the experiment and in the FEM calculations we can 
provide the same calculations using the hydrostatic pressure for the same plates and 
conditions. The results of stress for the plate with variable thicknesses of 6 mm and 
8 mm are shown in Figure 4.11. 

 

Figure 4.11. Stress simulation and results for the plate with variable thicknesses of 6 mm and 
8 mm loaded by the hydrostatic pressure of 24 kPa. 
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We can see that the maximum stress is 10,5 N/mm2, which is much less than the 

yield strength of 235 N/mm² for the NVA steel. So the allowable stress ሾߪሿ ൌ
ଶଷହ

ଵ,ହ
ൌ

157 N/mm2. That means that at loading by the hydrostatic pressure we can use 
thinner plate thickness and at the same time keep the strength. The minimum safety 
factor is 15. As a result, we have decreased the weight of the plate, which is a very 
good result regarding the weight of barges and ships. The real numbers of savings in 
weights is engineer task and can be found later. We also need to obtain the 
deflection for this plate. The next step is to find the deflection for the plate with 
variable thicknesses of 6 mm an 8 mm loaded by the hydrostatic pressure, as shown 
in Figure 4.12. 

 

Figure 4.12. Deflection for the plate with variable thicknesses of 6 and 8 mm loaded by the 
hydrostatic pressure of 24 kPa. 

As shown in the figure, the maximum deflection is equal to 0,14 mm and it occurs in 
the place where the maximum load is concentrated in the 6 mm plate. To compare 
with the experimental results, the deflection needs to be taken from the middle point 
of the plate. The deflection in the middle of the plate is equal to 0,13 mm, which 
means that using a plate with lower thickness satisfies all the strength requirements 
and enables us to use plates with variable thicknesses in the ship and barge building.  

Resulting from the above, we can conclude that the provided method of plate 
calculation is correct and accurate. The results achieved by this method are similar 
to the results of the experiment and to the calculations made by the FEM. This 
method enables saving some % of steel, which can reduce the cost of the barge. The 
real numbers of savings in weights is engineer task and can be found later. The 
algorithms of the proposed method can be used in the program calculations in the 
future. The method can be developed further with regard to the dynamic forces and 
heating due to welding. 

4.3. Analysis of the results 

The results from all the calculations have to be compared. First, let us compare the 
experimental and the FEM results. Figure 4.13 shows the deflections of the plate 



64 

with a constant thickness of 8 mm under a distributed load obtained by the experi-
mental and the FEM method. 

 

Figure 4.13. Deflection for the plate with a constant thickness of 8 mm under a distributed 
load from the experimental and the FEM method. 

As the chart shows, the results are very similar, which satisfies us. 

In order to simplify it, the results of the deflections achieved for the plate with a 
constant thickness of 8 mm are shown in Table 4.3. 

Table 4.3. Deflection for the plate with a constant thickness of 8 mm under a distributed load 
at different methods. 

8 mm plate of constant thickness, distributed load 

Deflection, mm 

Method No load
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 0,11 0,24 0,37 0,49 

Experiment 0 0,12 0,26 0,37 0,47 

FEM 0 0,12 0,24 0,36 0,47 

The chart in Figure 4.14 presents a comparison of the results. 
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Figure 4.14. Deflection for the plate with a constant thickness of 8 mm under a distributed 
load at different methods. 

The FEM is known to provide more accurate results, so we need to find the devia-
tion of the new method and the experimental calculations as compared to the results 
of the FEM. The deviation of the new method and the experimental results for the 
plate with a constant thickness of 8 mm loaded by a distributed load is shown in 
Table 4.4. 

Table 4.4. Deviation of the new method and the experimental results compared with the FEM 
results for the plate with a constant thickness of 8 mm under a distributed load. 

8 mm plate with constant thickness, distributed load 

Deviation, % 

Method 
No 

load 
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 8  0  3  4  

Experiment 0 0  8  3  0  

The table demonstrates that the deviation is very little with a maximum of 8 % for 
the experimental results and 8 % for the new method results. The results of the new 
method are very close to the FEM result, which confirms that our theory proves 
correct and can be used for plate calculations.  

The procedure for the plate with variable thicknesses will be the same as with the 
plate with constant thickness. Figure 4.15 shows the deflections of the plate with 
variable thicknesses of 6 mm and 8 mm under a distributed load found by the exper-
imental and the FEM method. 
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Figure 4.15. Deflection for the plate with variable thicknesses of 6 and 8 mm under a 
distributed load from the experimental and the FEM method. 

As we can see in the chart, the results are very similar, which satisfies us. 

In the same way we can obtain the results of deflection found by all the methods for 
the plate with variable thickness under a distributed load. The results are presented 
in Table 4.5. 

Table 4.5. Deflection for the plate with variable thicknesses of 6 mm and 8 mm under a 
distributed load obtained by different methods. 

Plate of 6 mm and 8 mm variable thicknesses, distributed load 

Deflection, mm 

Method No load
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 0,16 0,32 0,51 0,69 

Experiment 0 0,15 0,29 0,44 0,59 

FEM 0 0,18 0,34 0,53 0,70 

The deflection of the plate with variable thickness 6 mm and 8 mm is shown in Fig-
ure 4.16. 
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Figure 4.16. Deflection for the plate with variable thicknesses of 6 mm and 8 mm loaded 
under a distributed load obtained by different methods. 

Similarly to the plate with constant thickness, we will find deviations for the plate 
with variable thicknesses by the new method and the experimental results as com-
pared with the FEM calculations that are most accurate. The deviation for the plate 
with variable thicknesses is shown in Table 4.6. 

Table 4.6. Deviation of the new method and the experimental results compared with the FEM 
results for the plate with variable thicknesses of 6 mm and 8 mm under a distributed load. 

6 mm and 8 mm plate of variable thicknesses, distributed load 

Deviation, % 

Method 
No 

load 
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 11 6 4 1 

Experiment 0 17 15 17 16 

As we can see from the table, the deviation is insignificant, the maximum account-
ing for 17 % for the experimental results and 11 % for the new method results. That 
means that the results of the new method are accurate when the load is large. The 
results of the new method are closer to the FEM result, which proves that the theory 
is correct and can be used for plate calculations. 

Now we need to do the same comparison for the plates loaded by the hydrostatic 
pressure. We cannot compare the experimental results because of data missing for 
the experimental results, as was described above. For the hydrostatic pressure, we 
compare only the results of the new method and the FEM results. 
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Figure 4.17 shows the deflections of the plate with a constant thickness of 8 mm 
loaded by the hydrostatic pressure made by the new calculation method and by the 
FEM methods. 

 

Figure 4.17. Deflection for the plate with 8 mm constant thickness loaded by the hydrostatic 
pressure from the new method and the FEM method. 

We can see that the results are very similar. In order to simplify it, the results for the 
deflections achieved for the plate with 8 mm constant thickness loaded by the hydro-
static pressure are shown in Table 4.7. 

Table 4.7. Deflection for the plate with 8 mm constant thickness loaded by the hydrostatic 
pressure by different methods. 

8 mm plate with constant thickness, hydrostatic pressure. 

Deflection, mm 

Method No load
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 0,022 0,049 0,072 0,099 

FEM 0 0,020 0,050 0,070 0,090 

The chart in Figure 4.18 compares the results from the new method and those from 
the FEM. 
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Figure 4.18. Deflection for the 8 mm plate with constant thickness loaded by the hydrostatic 
pressure at different methods. 

As was described earlier, the FEM calculation provides more accurate results, so to 
find the deviation of the calculations by the new method, we have to compare the 
results with those from the FEM. The deviation of the results by the new method for 
the 8 mm plate with constant thickness loaded by the hydrostatic pressure is shown 
in Table 4.8. 

Table 4.8. Deviation of the results from the new method compared with those from the FEM 
for the 8 mm plate with constant thickness loaded by the hydrostatic pressure. 

8 mm plate with constant thickness, hydrostatic pressure 

Deviation, % 

Method 
No 

load 
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 9 2 3 9 

As we can see from the table, the deviation is high for a minimum load, accounting 
for 9 %, which is a good accuracy. 

The same procedure as we used for the constant plate, will be applied to the plate 
with variable thicknesses. Figure 4.19 shows the deflections of the plate with varia-
ble thicknesses of 6 mm and 8 mm loaded by the hydrostatic pressure found by the 
FEM method. 
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Figure 4.19. Deflection for the plate with variable thicknesses of 6 and 8 mm loaded by the 
hydrostatic pressure from the new method and the FEM method. 

As we can see in the chart, the results are very similar, which is good for our pur-
pose.  

In the same way we can obtain the results of the deflection achieved by all the meth-
ods for the plate with variable thicknesses under a distributed load. The results are 
presented in Table 4.9. 

Table 4.9. Deflection for the plate with variable thicknesses of 6 and 8 mm loaded by the 
hydrostatic pressure at different methods. 

Plate 6 and 8 mm variable thicknesses, hydrostatic pressure 

Deflection, mm 

Method No load
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 0,031 0,062 0,093 0,133 

FEM 0 0,030 0,060 0,090 0,130 

The deflection of the plate with variable thicknesses of 6 and 8 mm is shown in Fig-
ure 4.20. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 6 12 18 24

D
ef

le
ct

io
n

, m
m

Load, kPa

Deflection of the results of the FEM and the new method for 
the plate of variable thicknesses 6 and 8 mm by the hydrostatic 

pressure

New method

FEM



71 

 

Figure 4.20. Deflection for the plate with variable thicknesses of 6 and 8 mm loaded by the 
hydrostatic pressure at different methods. 

With a similar procedure, we will find the deviation of the new method and the FEM 
calculations, for as is known, the FEM results are most accurate. The deviation is 
shown in Table 4.10. 

Table 4.10. Deviation of the results of the new method compared with the FEM results for 
the plate with variable thicknesses of 6 and 8 mm loaded by the hydrostatic pressure. 

6 and 8 mm plate with variable thicknesses, hydrostatic pressure 

Deviation, % 

Method 
No 

load 
Load  
6 kPa 

Load  
12 kPa 

Load  
18 kPa 

Load  
24 kPa 

New method 0 3 3 3 2 

As we can see from the table, the deviation is high for the minimum load, account-
ing for 3 % and it is falling to 2 % when the load is increasing to the maximum lev-
el, which means that the results are accurate. The results of the new method are very 
close to those of the FEM result, which proves that the correctness of our theory and 
thus the method can be used for plate calculations. Thus, the main aim of this thesis 
has been achieved. The main conclusions are drawn in the final chapter of this the-
sis. 
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CONCLUSIONS 

Scientific Results 

The current thesis proposes an improved method of calculation for plates with 
variable thicknesses. In this method, it is not necessary to divide the construction 
into separate homogeneous parts and support the performance of kinematic and 
static conditions of the matching points of the neighboring parts of the construction. 
This method can be used under different boundary conditions. The new method is 
independent of the boundary conditions, which makes it different from other 
methods. The proposed method enables the calculations of rectangular plates with 
variable thicknesses. A substantial advantage of the method of generalized function 
is that it can be compared with other methods, which are used to solve the tasks of 
the theory of plates. 

The results achieved show that the calculations with the new method are correct and 
can be used for plates with variable thicknesses. The maximum deviation was in the 
range from 0 to 11% for the results from the new method as compared with the FEM 
results. The strength requirements are also satisfied. As a result, the weight was 
decreased, which is very good to take into consideration the total weight of the barge 
or the ship. It enables saving money, increases the capacity of the barge and reduces 
the weight of the barge or the ship. The real numbers of savings in weights is 
engineer task and can be found later in optimization [75-77] process. Using the 
MATLAB program, the curve of deflection was found and is presented. Using that 
curve, a deflection in any point can be found.  

Chapter 4 describes the experiment with two plates: first, with an 8 mm plate of 
constant thickness and second, a 6 and 8 mm plate with variable thicknesses. All 
those plates were loaded by a distributed load and the deflection was measured. The 
results show that the results from the new method and those from the experiments 
are quite similar, which is a proof that the proposed method is correct and can be 
used to calculate plates with variable thicknesses. To ensure validity, the calcula-
tions were made by the Solid Works Cosmos program. The results achieved by dif-
ferent methods were compared and they all were found to match. That is another 
proof for the correctness of the proposed method and validity for calculations for 
plates with variable thicknesses.  

The main conclusions are as follows: 

1. A new method for the calculation of plates with variable thicknesses was 
developed. 

2. The results of the new method are close to those of the FEM. The deviation 
is in the range from 0% to 11 % to compare with FEM calculations. 

3. The experimental results are close to the results of the new method. The 
maximum deviation is in the range from 0% to 17 %.  
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4. The new method enables the weight of the plates on the barge to be de-
creased by using plates with variable thicknesses. At the same time, the 
strength requirements are satisfied. 

5. The method can be used as a basis for the development of an algorithm for 
program calculations of plate thickness. 

6. Implementation of the new method could give an economical effect on the 
cost of the barge or another object. 

Novelty 

The new method has an advantage of avoiding the practice of dividing the 
construction into separate homogeneous parts and supporting performance of 
kinematic and static conditions of the matching points of the neighboring parts of the 
construction. This method can be used under different boundary conditions. In 
contrast to other methods, the method is independent of the boundary conditions. 

As a result, we obtained a general number of algebraic equations which are used to 
define the solutions, independent of the number of elements that compose the whole 
construction, but equal to the order of the differential equation “n”. 

Common methods for the calculation of constructions enable us to transfer the task 
to solving the system of algebraic equations, the number of those being proportional 
to the number of the construction. Also, those methods are used to calculate plates 
with constant thickness.  

The proposed method enables the calculation of rectangular plates with variable 
thicknesses. 

The new method can be used to calculate plates with any quantity of plate parts with 
variable thicknesses.  

The load is not limited, which means that we can use the point force and the 
distributed load. 

The new method has an advantage related to the FEM, especially in places where the 
stress is changing significantly as, for instance, where the plate thickness is 
changing. Thus, the FEM cannot provide sufficient accuracy especially in places 
where the thickness of the plate is changing significantly. 

The new method allows complicated mathematical modeling of the plate and 
includes factors which were not in use before, those that cannot be done in the FEM 
because of established algorithm in the FEM. 

The new method allows moving towards the dynamic tasks of plate calculations, for 
instance, to consider load impact of waves, hull vibrations on the waves and other 
aspects. 

The existing methods were used to calculate plates loaded by the hydrostatic 
pressure. 
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Future work 

During the research, several ideas and problems emerged that require further inves-
tigation. 

 In the future it is needed to make an experiment using an imitation of hydro-
static pressure. The research and development of this experiment can be 
conducted in the future. 

 The calculations were made under static forces. In the future the dynamic 
forces [78] have to be taken into consideration. 

 The influence of welding can be taken into consideration in the future. 
 Calculations of plates reinforced by beams can be done in the future. 
 Real numbers of weight decreasing can be found in the future.  
 In-depth analysis of economic aspects has to be done in the future. 
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ABSTRACT 

Today’s fish farming industry is growing very fast due to increased fish consump-
tion. The market in Norway is very stable and has been growing very well. Fish 
farmer companies are investing increasingly in their business. The developments 
require that more slots be opened in the fjords, new fish feeding centres be estab-
lished, the requirements of the consumers be satisfied. Due to limitations in the leg-
islation, farmers need to place fish farms farther offshore. The requirement to be 
taken into consideration is the load capacity of the barge and storeroom size. Those 
parameters are very important because of offshore locations of the barges and limita-
tion of availability service ships that supply the feed for the fish. In other words, the 
barges need to be lighter in weight and higher in capacity, at the same time keeping 
strength requirements.  

As soon as the barge is located in calm waters, the dynamic forces are not presented. 
Only static loads will be taken into account in our calculations. A very important 
parameter in fish feeding barges is their weight. The lighter the barges the more feed 
they can carry the more money their owners can save. The reduction of the weight is 
a common problem in the fish feeding industry and it is a challenge for engineers. 
One of the possibilities to reduce the weight is to use thinner materials on the hull of 
the barge. At the same time, the strength requirements are to be met.  

The thesis proposes a new method of calculation for plates with variable thicknesses. 
Using that method, it is not required to divide the construction into separate 
homogeneous parts and support the performance of cinematic and static conditions 
of the matching points of the neighbouring parts of the construction. Moreover, the 
method can be used under different boundary conditions. In contrast to other 
methods, the new method is independent of the boundary conditions. The proposed 
method enables us to calculate rectangular plates with variable thicknesses. 

The thesis consists of four parts: an overview of vessel types, an overview and 
analysis of existing methods of plate calculation, a new method of plate calculation, 
practical experiments and conclusions. The introduction presents the objectives of 
the thesis and describes its structure. 

Chapter 1 describes the variety of vessel types and their use. Also, the fish-feeding 
barges are described.  

Chapter 2 describes the methods of calculation of the plates, such as Navier, Levi, 
collocation, Kantorovits-Vlassov, grid and FEM methods. Each method is briefly 
introduced with formulas of calculation of plates under a distributed load and the 
hydrostatic pressure. The analysis of each method is performed. The results of each 
method are compared with the real solution and the resulting conclusions state 
which method is more suitable for the hull barge calculation. 

Chapter 3 proposes the new method of the calculation of plates and provides 
equations for the new method and the results.  
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To give higher stiffness and more optimal distribution of the stress, the plates can 
have variable thicknesses. Those constructions are widely used in shipbuilding for 
most of the hull elements of the ships. In plate calculations by the variation methods 
it is needed to shift focus from basic set functions to unknown variables that would 
satisfy the boundary conditions on the edge of the construction. At the fixed contour 
of the plate different from free landed, the system of functions used for calculations 
is missing. Thus, a theory and methods of plates with variable thicknesses are re-
quired. The topicality of this task is in the development of calculation algorithms, 
which can expand the area of plate calculation tasks and improve existing solutions. 
In particular, the calculations are complex in the case of elements consisting of vari-
able thicknesses. Among the composite structures are beams, plates with stepwise 
changing stiffness as well as shells consisting of elements of variable shapes. Typi-
cally, composite structures are calculated by decomposition into individual elements 
within each of which the stiffness and geometric characteristics change monotonous-
ly. For each of the elements obtained, the solution must be known in advance. To 
ensure neighbouring conjugation sites on the displacements and internal forces, a 
system of algebraic equations is required with unknowns, where nN   is the order 
of differential equation, and N  the number of elements. However, if we use some 
properties of generalized functions in solving this problem, we have to set up a sys-
tem of algebraic equations containing only n  unknowns. In this thesis a method of 
generalized function is proposed to calculate the rectangular plates with variable 
thickness under the uniformly distributed load and under the hydrostatic pressure.  

The final chapter describes the experiment for the plates with variable thicknesses 
under a distributed load. The results are compared with those from the new method 
and the calculations are made by the Solid Works Cosmos program. The comparison 
shows that the proposed method provides good results and can be used in the calcu-
lations for plates with variable thicknesses. 

The content of this doctoral thesis is summarized in the conclusion, which outlines 
the main achievements and future-oriented ideas. 
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KOKKUVÕTE 

Kaasaegse kalamajanduse kasv on väga kiire, kuna maailmas kala tarbimine kasvab. 
Norra turg on väga stabiilne ja kasvab järgmise paari aasta jooksul väga hästi. Kala-
kasvatusfirmad investeerivad oma ärisse üha suuremaid summasid. Need faktid on 
olulised selleks, et tarbijate soovide täitmiseks avada fjordides üha uusi kohti ja ra-
jada uusi kalade söötmise keskusi. Piirangute tõttu seadusandluses peavad kalakas-
vatajad rajama kalakasvandusi kaldast üha kaugemale. Nõudmised, millega peab 
arvestama, on pargase kandevõime ja ladustamisruumi suurus. Need parameetrid on 
äärmiselt olulised, sest pargased asuvad kaldast kaugel ja teeninduslaevade, mis 
toovad kalade söötmiseks söödajahu, kättesaadavus on piiratud. Teisisõnu peavad 
pargased olema kergemad ja mahutama rohkem, kuid peavad säilitama nõuded tuge-
vusele. 

Niipea, kui pargas on paigutatud rahulikesse vetesse, ei mõju talle dünaamilised 
jõud. Oma arvutustes arvestame ainult staatiliste koormustega. Kalade söötmise 
pargaste väga oluliseks parameetriks on nende kaal. Mida kergem on pargas, seda 
rohkem sööta suudab see mahutada ja seda rohkem raha omanik säästab. Kaalu vä-
hendamine on kalasööda tööstuses üldiseks probleemiks ning selle saavutamine on 
väljakutseks inseneridele. Kaalu vähendamise üheks võimaluseks on kasutada par-
gase kere juures õhemat materjali. Kuid seda saab rakendada vaid tugevusnõudeid 
järgides. 

See väitekiri pakub erineva paksusega plaatidele välja uue arvutusmeetodi. Seda 
meetodit kasutades ei pea konstruktsiooni jagama eraldiseisvateks homogeenseteks 
osadeks ning see toetab konstruktsiooni kõrvutiasuvate osade kokkupuutepunktide 
kinemaatiliste ja staatiliste tingimuste rakendamist. Seda meetodit saab kasutada 
erinevate piirtingimustega. Erinevalt teistest meetoditest ei sõltu meie meetod piir-
tingimustest. Soovitatud meetod annab võimaluse arvutada erineva paksusega kandi-
lisi plaate. 

Väitekiri koosneb neljast osast – laevatüüpide ülevaatest, olemasolevate plaadi- 
arvutusmeetodite ülevaatest ja analüüsist, plaatide uue arvutusmeetodist, praktilistest 
katsetest ja järeldustest. Sissejuhatus tutvustab väitekirja eesmärke ja kirjeldab üle-
sehitust. 

Peatükk “Laevatüüpide ülevaade” kirjeldab erinevaid laevatüüpe ja nende kasutus- 
eesmärke. Kirjeldatud on ka kalasöödapargast ja esitatud on pargase lühikirjeldus. 

Peatükk “Olemasolevate plaatide arvutusmeetodite ülevaade ja analüüs” kirjeldab 
plaatide arvutusmeetodeid Navier, Levi, collocation, Kantorovits-Vlassov, grid ja 
FEM. Iga meetodi juurde on lisatud lühike sissejuhatus ning arvutusvalemid plaati-
dele, millele on rakendatud jaotuskoormus ja hüdrauliline surve. Lõpus on esitatud 
iga meetodi lõpp-tulemuste võrdlus koos täpse lahendusega ja nende omavaheline 
võrdlus ning on tehtud järeldused, milline meetod on pargase kere arvutuseks parim. 

Kolmandas peatükis on plaatide uue arvutusmeetodi ettepanek ning esitatud on teo-
reetilised võrrandid ja meetodi tulemused. 
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Parema tugevuse ja optimaalsema pinge jagunemise jaoks võivad plaadid ja kered 
olla erineva paksusega. Sarnaseid konstruktsioone kasutatakse laialdaselt laevaehitu-
ses laevakere enamike elementide juures. Plaatide ja kerede erinevate arvutusmeeto-
dite korral on vaja paika panna põhilised baasfunktsioonid tundmatutele muutujate-
le, mis on konstruktsiooni servades rahuldavateks piirtingimusteks. Juhul, kui fik-
seeritud plaadi kontuurid erinevad vabalt asetatust, siis arvutuseks kasutatud funkt-
sioonide süsteem puudub. Tegelik ülesanne on arendada erineva paksusega plaatide 
ja kerede teooriat ning meetodeid. Tegelik ülesanne on arendada arvutuse algoritme, 
mis laiendaks plaatide arvutusülesannete ala ning parandaks olemasolevaid lahendu-
si. Eriti keeruliseks lähevad arvutused juhul, kui elemendid on erineva paksusega. 
Komposiitstruktuuri hulka kuuluvad talad, plaadid ja kered, mille tugevus muutub 
astmeliselt, kui ka kere, mis koosneb eri kujuga elementidest. Üldjuhul tehakse 
komposiitstruktuuride arvutusi jagades need üksikuteks osadeks, kus tugevus ja 
geomeetrilised näitajad muutuvad monotoonselt. Sel moel saadud lahendused pea-
vad iga elemendi jaoks olema ette teada. Kindlustamaks, et naaberkonjugatsioonid 
oleksid nihutus- ja sisemistes jõududes paigas, tuleb paika panna tundmatutega al-
gebravõrrandite süsteem, kus N · n – on esimese järgu diferentsiaalvõrrand ja N – 
osade arv. Siiski, kui me kasutame üldiste funktsioonide mõningaid omadusi selle 
probleemi lahendamiseks, tuleb paika panna algebravõrrandite süsteem, mis sisaldab 
ainult n tundmatuid. Selles väitekirjas üldistav funktsioon on pakutud ja üldistab 
kandiliste plaatide arvutusi rakendades hüdraulilist survet. 

Viimases peatükis viiakse erineva paksusega plaatidele läbi katse jagatud koormuse 
all. Saavutatud tulemusi võrreldakse soovitatud meetodi teoreetiliste arvutustega ja 
arvutustega, mis tehtud Solid Works Cosmos programmiga. Võrdlus näitab, et soo-
vitatud meetodil on häid tulemusi ja seda võib kasutada erineva paksusega plaatide 
plaadiarvutusteks. 

Selle doktoritöö sisu on kokku võetud lõppjärelduses, mis toob välja peamised saa-
vutused ja tulevikule orienteeritud ideed.  
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