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NSCLC – non-small cell lung cancer 
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QC – quality control 
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RTK – receptor tyrosine kinase 
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SNV – single nucleotide variant 
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TP53 – p53 tumor suppressor 
TSG – tumor suppressor gene 
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VCF – variant call format 
WES – whole-exome sequencing 
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Introduction 
 
Lung cancer is one of the most often diagnosed tumors and the main cause of death in cancer 
patients all over the world (World Health Organization 2021). In 2020, over 2,2 million of new lung 
cancer cases and over 1,7 million deaths were reported globally (Sung et al. 2021). Most of lung 
cancer patients get their diagnosis in the late phases of the disease leading to poor outcomes 
(Blandin Knight et al. 2017). Even if the tumor is treated with conventional therapies, cancer is likely 
to return often more aggressively than before. The risk of developing metastatic recurrence is 
shown to surpass local recurrence, and its aggressiveness is illustrated by the fact of over half of 
the patients dying in a one-year timeframe (Consonni et al. 2015). Cancer is characterized by 
different hallmarks, such as uncontrollable proliferation and resisting cell death among other 
features, but the foundation of these is set on a molecular level. As cancer stems from accumulating 
somatic mutations, sequencing cancer genetic material is essential to get a fuller understanding of 
cancer development and recurrence. Due to rapidly evolving opportunities in bioinformatics, it has 
become possible to analyze cancer exomes and genomes in a small amount of time. One of the 
most commonly used methods is whole-exome sequencing (WES), which provides comprehensive 
information on cancer genetic aberrations in the coding subset of the genome (“Whole Exome 
Sequencing for Cancer Research: IDT” n.d.). WES is valuable in the discovery of causal tumor 
variants and gives biological insight into underlying molecular alterations (Rabbani, Tekin, and 
Mahdieh 2014). WES exhibits its advantages and disadvantages compared to whole-genome 
sequencing (WGS), but, the easier data analysis and lower cost outweigh the downsides for many 
researchers. Subsequent steps of the variant detection are equally important: data quality control, 
alignment, variant calling, variant filtration, variant annotation, and variant prioritization (Ugur 
Sezerman et al. 2019). Each part of the work holds vast amounts of different tools to be used, 
however making the choice may not be easy. It has to be reckoned that there are no tools, which 
are suitable for everything and always. Choosing the most appropriate tools precedes research on 
the subject and includes weighing the pros and cons for each. As root causes for cancer arise from 
single nucleotide variants (SNVs) as well as larger structural rearrangements, multiple analysis tools 
may be needed for comprehensive results. Detection of novel genetic alterations in cancer serves 
as a starting point for developing new and better diagnostic and prognostic molecular targets, as 
well as promising options for personalized treatments. This current work focused on small variant 
(SNPs, INDELs) detection and analysis in tumors that later developed either local or metastatic 
recurrence. WES data was used to search for novel genetic alterations involved in lung cancer re-
growth and provide a workflow to implement the data analysis. Executed work procedures 
illustrate the possibility of novel variant detection when non-tumor control samples are missing, 
which is common with formalin-fixed paraffin-embedded (FFPE) samples. Sample preparation and 
sequencing, as well as initial quality control, alignment, and variant calling were provided by 
Intermountain Precision Genomics, St. George, Utah, USA. The present thesis encompassed 
downstream steps of the data analysis, with the data preparation, SNP analysis, INDEL analysis, 
gene enrichment analysis, and result interpretation being the most fundamental parts of the work. 
The main emphasis was put on finding differences in groups with local recurrence versus distant 
recurrence to possibly discover novel genetic aberrations contributing to some patients developing 
an aggressive relapse leading to shorter survival times. The hypothesis was, that implementation 
of WES and subsequent data analysis enables the discovery of potential biomarkers capable of 
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predicting the prognosis and outcome of patients. Importantly, discrepancies between the two 
groups were present, showing a greater amount of enrichments in many gene set terms within the 
metastatic group. Multiple potential prognostic markers were detected, with most of them being 
related to Ca2+ transport, mitosis, microtubules, and cell motility. 
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1 Review of the literature  
 
1.1 Lung cancer 
 
Lung cancer is the leading cause of death out of different cancer types (Figure 1). The survival of 
lung cancer patients at 5 years after diagnosis is only 10% to 20% in most countries (Sung et al. 
2021). In 2020, 2.21 million new lung cancer cases and 1.80 million deaths were reported globally 
(World Health Organization 2021).  
 

 

 
Figure 1. Lung cancer mortality. (A) Lung cancer is the leading cause of death out of all cancer types in many 
countries. (B) Lung cancer mortality exceeds even breast cancer, which has the highest incidence rate (Global 
Cancer Observatory n.d.).  
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Lung cancer is a vastly heterogeneous disease that can emerge in different locations of the 
bronchial tree, consequently producing highly variable symptoms and signs depending on its 
anatomic site (Lemjabbar-Alaoui et al. 2015). The most common lung cancer symptoms 
experienced by patients are cough, dyspnea, hemoptysis, and weight loss. Risk factors include 
tobacco use or exposure, environmental exposures to radon and asbestos, comorbidities such as 
HIV, chronic obstructive pulmonary disease (COPD), and family history of the disease (Kelly M. 
Latimer and Timothy F. Mott 2015). The individual susceptibility to tobacco-evoked lung cancer may 
rely on competitive gene-enzyme interactions that exert influence on activation or detoxification 
of procarcinogens as well as determined by the integrity of DNA repair mechanisms (Lemjabbar-
Alaoui et al. 2015). Based on histology, lung cancer is classified into non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC), which comprise 85% and 15% of all, respectively (Figure 
2A). SCLC is characterized by high proliferative capacity, a tendency for metastasis generation, and 
a poor prognosis (Hiddinga et al. 2021). Additionally, NSCLC comprises mainly of adenocarcinomas, 
followed by squamous cell carcinomas (Figure 2B) (Thai et al. 2021).  
 

 
Figure 2. Lung cancer histology. (A) NSCLC constitutes the majority of lung cancer cases with an 85% 
prevalence, while SCLC makes up the remaining 15%. (B) In the NSCLC cases, non-squamous forms 78% and 
squamous 18% of the occurrences. Adapted from (Thai et al. 2021).  
 
One of the main reasons for the high mortality rate among lung cancer patients is the high 
percentage of brain metastases occurrence. Furthermore, 50% out of all brain metastases appear 
with lung cancer (Yousefi et al. 2017). Poor prognosis is caused by a 30-77% recurrence rate in 
NSCLC cases (Subotic, Van Schil, and Grigoriu 2016). Furthermore, most of the recurrences are 
metastatic, whereas patients can die in a one-year timeframe. Recognizing and detecting subsets 
of patients with a high risk for recurrence and mortality could accelerate interventions that improve 
the survival (Consonni et al. 2015). Therapeutic approaches include conventional therapies, such as 
surgery, radiotherapy, and chemotherapy (Gridelli, Rossi, and Maione 2003). Surgery is the 
recommended treatment for NSCLC patients with a lower stage (I-II) (Vansteenkiste et al. 2014). 
However, most patients are diagnosed at advanced stages when systemic treatment is needed 
(Bodor, Kasireddy, and Borghaei 2018). A deeper understanding of molecular mechanisms behind 
tumorigenesis has allowed the development of precision medicine. Possibly, by targeting those 
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driver genetic aberrations, clinicians could hit the weak spot of the tumor (Q. Zhang et al. 2020). 
Most of the therapies are targeted against receptor tyrosine kinases (RTKs) known to be involved 
in cellular growth and survival  (Schrank et al. 2018). Tyrosine kinase inhibitors of the epidermal 
growth factor receptor (EGFR-TKIs) are the standards of care for first-line treatment in patients with 
EGFR mutation-positive advanced NSCLC  (Alanazi et al. 2021). Patients who have tumors with 
specific genomic alterations have benefited from targeted therapies. Up to 69% of patients with 
advanced NSCLC could have a potentially actionable molecular target. Patients lacking targetable 
mutations receive platinum-based doublet therapy (chemotherapy) (Hirsch et al. 2017; Tsao et al. 
2016). As a consequence of routine testing for molecular alterations and the introduction of FDA-
approved targeted therapies, mortality from NSCLC and to a lesser extent from SCLC has begun to 
decline. The mortality from NSCLC has been driven by both decreasing incidence and improving 
survival. Mortality from SCLC declined almost entirely due to declining incidence, with no 
improvement in the survival (Howlader et al. 2020). Although major advances have been made with 
the discovery and use of targeted therapies, their efficacy is limited by cancer drug resistance. The 
resistance can be intrinsic or acquired, and in the case of the latter, this manifests by the tumor 
obtaining secondary mutations, using alternative signaling pathways, or changing its phenotype 
(Lin and Shaw 2016). In recent years, immunotherapy has come to light as a treatment possibility 
that has led to powerful responses in a subset of patients. These agents hinder key immune 
checkpoints that normally regulate the immune response but are used by cancer cells to evade the 
patients’ immune system. By blocking these receptor-ligand interactions, a subset of T cells is better 
activated to recognize and respond to tumor cells (Bodor, Kasireddy, and Borghaei 2018). The main 
immune checkpoint targets are CTLA-4, PD-1, and PD-L1 (Pérez-Ruiz et al. 2020). Immunotherapy 
response rates remain highly variable. Prediction of responsiveness is possible due to tumor 
mutational burden (TMB), which is defined as the total amount of nonsynonymous mutations in 
the coding area of a tumor genome (Meléndez et al. 2018). The higher the tumor mutational 
burden, the better the response to the immunotherapy (Pérez-Ruiz et al. 2020).  
 

1.2 Genetic alterations and cancer 
 
Cancer emerges as a result of accumulating changes in the genetic and epigenetic levels. Genetic 
alterations are provoked by aging, mutagenic chemicals, radiation, ultraviolet light, and oxygen 
radicals, on the other hand, epigenetic alterations are induced by aging and chronic inflammation 
(Takeshima and Ushijima 2019). Cancer is characterized by common hallmarks, which serve as a 
basis for tumor complexity: preserving proliferative signaling, evading growth suppressors and 
immune destruction, resisting cell death, enabling replicative immortality, promoting angiogenesis, 
and inducing invasion and metastasis. The foundation for these hallmarks is genomic instability and 
mutations (Hanahan and Weinberg 2011). All cancers stem from a single cell starting to act in 
perplexing ways as a result of acquired somatic mutations (Alexandrov and Stratton 2014). Genomic 
landscapes of cancer usually encompass a small number of frequently mutated genes and a much 
larger number of rarely altered genes (Vogelstein et al. 2013). Genetic alterations can take place in 
either coding or non-coding part of the genome. Exome includes many genetic changes leading to 
altered protein sequences and de novo mutations, yet only a minor part of these are disease-
causing (Jalali Sefid Dashti and Gamieldien 2017). Some effects of alterations in the coding area of 
the genome are shown in Figure 3. About 95% of somatic mutations are single-base substitutions, 
whereas rest are insertions and deletions. 90,7% of the SNPs cause missense changes, 7,6% lead to 
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truncated protein through stop-gain mutations, and 1,7% result in modification of splice sites or 
untranslated regions adjacent to start or stop codons (Vogelstein et al. 2013). The least common 
are frameshift and stop-gain/stop-loss variants, which interestingly give rise to the most damaging 
effects on the protein level (Seaby, Pengelly, and Ennis 2016). Stop-loss mutations convert a stop 
codon to a sense codon, hence leading to extended protein translation and may cause tumor 
suppressor degradation (Dhamija et al. 2020). Missense (non-synonymous) mutations cause 
changes in the amino acid sequence, and by that, alter protein structure and function. Although 
synonymous mutations seem benign, as they do not affect the primary protein structure, they can 
have an indirect impact on protein structure and function (Deng et al. 2017).  Synonymous 
mutations recurrently alter exonic motifs and through that, regulate oncogene splicing. The p53 
tumor suppressor (TP53) also has recurrent synonymous mutations adjacent to splice sites, which 
inactivate them (Supek et al. 2014).  
 
 

 
Figure 3. The outcome of genetic alterations. Aberrations in the coding area of the DNA can result in changed 
mRNA. The cellular process, called nonsense-mediated decay (NMD), is able to remove abnormal mRNAs. A 
mutation is synonymous if the change in amino acid does not occur. Missense mutations result in one amino 
acid substitution. The consequence of stop-gain mutation is the occurrence of an early stop codon and 
therefore, a truncated protein. Base insertions and deletions lead to a frameshift, which alters all the 
following amino acids. In addition to coding mRNA which is translated to amino acids, there are also non-
coding RNAs. Adapted from (Bartha and Győrffy 2019).  
 
Beyond the exome, non-coding mutations are also shown to be involved in cancer development. 
Those kinds of mutations can be present in the promoter, enhancer, UTR, or miRNA regions (Piraino 
and Furney 2016). The miRNAs are small non-coding RNAs that are dysregulated in cancer through 
up- or downregulation, deletion, or epigenetic modifications of miRNA genes. MiRNAs may act as 
oncogenes or tumor suppressors depending on the conditions and are known to affect common 
hallmarks of the cancer (Peng and Croce 2016).  UTRs mediate post-transcriptional gene regulation 
and mutations in them are reported as potential drivers of the cancer etiology (Schuster and Hsieh 
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2019). In addition to smaller alterations, larger chromosomal arrangements are also considered as 
the primary cause of cancer (Nambiar, Kari, and Raghavan 2008). Major structural variation events 
are inversion, deletion, duplication, and translocation (van Belzen et al. 2021). Gene fusion events 
have also been reported in cancers, which can arise from chromosomal rearrangements or 
transcriptional errors in splicing. In addition, fusion proteins can originate from transcriptional read-
throughs (Tuna, Amos, and Mills 2019).  
 
1.2.1 Genetic alterations in lung cancer 
 
Specific tumor types exhibit a larger number of mutations than average, and lung cancer belongs 
to one of them with ~200 nonsynonymous mutations per tumor. The larger number reflects the 
involvement of potential mutagen(s), which in the case of lung cancer is cigarette smoke. Therefore, 
lung cancers from smokers hold 10 times as many somatic mutations as those from the non-
smokers’ (Vogelstein et al. 2013) (Govindan et al. 2012). Evolvements in sequencing and 
subsequent data analysis have made it possible to detect mutations, which are the foundation of 
cancer. Tumor suppressor genes (TSGs) are vital for the regulation of normal cell growth and 
division. Loss of tumor suppressor gene function is a common mechanism of cancer onset. 
Alterations inactivating TSGs usually involve two events: deletion of a large chromosomal DNA 
segment of one allele and a smaller mutational or epigenetic event in the other allele (Osada and 
Takahashi 2002). In lung cancer, frequently inactivated TSGs are TP53, retinoblastoma 1 (RB1), 
serine-threonine kinase 11 (STK11), CDKN2A, FHIT, RASSF1A, and PTEN (Cooper et al. 2013). New 
technologies have facilitated the utilization of targeted therapies. Current oncogenic protein 
targets are EGFR, ALK, MET, HER2, ROS1, BRAF, RET, NTRK1, MEK1, PIK3CA (Figure 4). Some of the 
drugs developed against these targets are FDA approved, for example, drugs targeting EGFR, but 
most of them are going through clinical trials (Hirsch et al. 2017). It is predicted that the discovery 
of novel mutated genes and molecular pathways lays the way for increasing the number of targeted 
therapy drugs, reaching combinational use, and better outcome (Sanchez-Vega et al. 2018). Wide-
ranging profiling studies implemented with WES or broad targeting panels in NSCLC tumors have 
exposed multiple non-random patterns of co-occurring or mutually exclusive mutations, which 
usually vary depending on the specific oncogenic driver mutation. Co-mutations form major 
determinants of tumor molecular variety and can affect cancer hallmarks, determine prognosis, 
predict response to systemic therapies and impact mechanisms of resistance (Skoulidis and 
Heymach 2019). For example, co-existing TP53 and EGFR mutations are associated with noticeably 
shorter time to progression and shorter overall survival (Yu et al. 2018).  
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Figure 4. Commonly altered oncogenes in lung adenocarcinoma. The most frequently occurring mutations 
include unknown oncogenic drivers (31%), KRAS (25%) and EGFR-sensitizing (17%). Following are ALK (7%), 
EGFR-other (4%), MET (3%), >1 mutation (3%), HER2 (2%), ROS1 (2%), BRAF (2%), RET (2%), NTRK (1%), PIK3CA 
(1%), and MEK1 (1%). Adapted from (Hirsch et al. 2017). 
 

1.3 Whole-exome sequencing 
 
Whole-exome sequencing (WES) is a next generation sequencing (NGS) technology used to 
determine the protein coding region of the genome. As most of the disease-causing mutations are 
known to be located in the coding area, exome sequencing is the most advantageous tool to use 
making it more cost-efficient compared to WGS (Bartha and Győrffy 2019). Retrospective analysis 
has shown that mutation calls within the coding regions of WGS and WES data are consistent to a 
large extent (MC3 Working Group et al. 2020). The main parts of the WES work-flow can be 
categorized into two actions (Figure 5): the preparation of genomic libraries plus capturing the 
exome and NGS of eluted target sequences. Subsequently, data analysis pipeline follows (Goh and 
Choi 2012). Studies have shown that exome analysis is suitable for cancer research, enabling 
detection of genetic predispositions and new molecular targets (Réda et al. 2020; Mendoza-Alvarez 
et al. 2019). Abundant use of NGS and novel comprehension of cancer on a molecular level has 
shifted from cancer type-based approaches to gene- and biomarker-based strategies (Suwinski et 
al. 2019). A standard pipeline for WES data analysis has not been set and the variability across 
studies is substantial (Rotunno et al. 2020). Evidence suggests that exome analysis should be 
conducted using tumor-normal sample pairs if possible, while utilization of tumor-only can lead to 
false positives as the definitive identification of germline mutations is unachievable (Jones et al. 
2015). However, there exist a large collection of tumor-only samples that contain valuable genomic 
information. WES utilizes hybridization capture to provide comprehensive data, which can be used 
for tumor profiling. The possibilities of WES include acquiring information of patient's risk of 
developing specific types of cancer, providing knowledge of genetic changes affecting tumor 
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progression and helping doctors make decisions of targeted therapies (“Whole Exome Sequencing 
for Cancer Research: IDT” n.d.). 
 
 

 
 
Figure 5. Whole-exome sequencing workflow. The experimental pipeline can be separated into two main 
parts: 1) Preparation of genomic DNA libraries and hybridization to capture arrays 2) NGS of the eluted target 
fragments. After generation of short sequencing reads, they are mapped to a reference genome and variant 
calling is performed. Subsequent filtration and annotation of variants is carried out for comprehensive 
analysis of their potential biological effect. Adapted from (Goh and Choi 2012). 
 
1.4 Formalin-fixed paraffin-embedded tissues in genomic analysis 
 
Formalin fixation and paraffin embedding of tissues preserve the morphology, therefore it has 
become the mainly used method for diagnostic surgical pathology. Nucleic acid extraction is shown 
to be equally successful 1-year or 12-years from preservation (Kokkat et al. 2013). Utilization of 
fresh frozen (FF) or formalin-fixed paraffin-embedded (FFPE) tissues for NGS has been discussed in 
several articles. The main downsides of FFPE technique samples are difficulties in extracting high 
quality DNA and differentiating true variant calls from artifacts, as formalin can induce mutations. 
Nonetheless FFPE has many advantages over FF sampling, owing to the fact that clinicians do not 
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have the capability to regularly collect FF tissue and its preservation is complicated due to 
requirement of liquid nitrogen or dry ice (Mathieson and Thomas 2019). The study comparing FFPE 
and FF from hepatocellular carcinoma with the aim to produce WES data showed 91% sensitivity of 
variants detection for FFPE (Ouchi et al. 2013). Gao and colleagues found, that there is a high 
concordance between FF and FFPE tissue variant detection, nevertheless important differences 
between tissue types was observed. They also noticed disparities in total coverage, as FF tissue had 
significantly higher rate (Gao et al. 2020). All SNVs and INDELs taken into account, 90% of cancer-
related genes were found altered with higher frequency in the FFPE data set than FF data set. 
However, investigating the most clinically relevant types of aberrations, such as missense, stop, 
frameshift, and splicing variants >99% of genes did not show higher rate of mutations in FFPE data 
sets (on behalf of the 100,000 Genomes Project et al. 2018). Multiple studies conclude, that the use 
of FFPE samples is feasible in WES variant discovery (Astolfi et al. 2015; Bailey et al. 2018).  
 
1.5 Data analysis from raw data to clinically relevant variants 
 
FASTQ and FASTA are standard formats incorporating biological sequence data. The FASTA format 
is a text-based depiction of sequenced material starting with the sequence name followed by 
nucleotides, FASTQ format additionally includes base quality scores for smoother evaluation of 
sequencing quality (Institute for Systems Genomics 2017). WES data analysis starts with quality 
control, continues with mapping to reference genome, follows with variant calling, and ends with 
annotation, filtration, and prioritization (Goh and Choi 2012; Ugur Sezerman et al. 2019). A typical 
WES data analysis pipeline is seen in Figure 6. WES data analysis has many challenges, as there are 
vast amounts of tools created for each phase of variant identification. Hence, the advantages and 
downsides of every tool have to be considered before being put into the application (Ugur 
Sezerman et al. 2019). WES generates a large amount of data, which has to be aligned to a reference 
genome in order to allow variant calling for identification of SNVs and INDELs (Suwinski et al. 2019). 
Identification of single nucleotide variants (SNV) is dependent on the accuracy of the variant calling 
(Bartha and Győrffy 2019). After variant detection, annotation characteristics such as genomic 
feature, gene symbol, exonic function, and amino acid alteration can be added to the variant list. 
Most studies focus on non-synonymous SNPs and INDELs in the coding part of the region, as they 
account for most of the disease-associated mutations in complex diseases (Bao et al. 2014). 
Annotation has a substantial effect on the final interpretation of findings, as errors could lead to 
false negatives or false positives (Goh and Choi 2012). ANNOVAR is one of the most commonly used 
software tools for annotation of called variants (Rotunno et al. 2020). ANNOVAR is a command-line 
based tool, which takes text-based input files (e.g. VCF files) and generates output files with 
annotations for every variant in the input file (H. Yang and Wang 2015). ANNOVAR provides fast 
and simple gene-based, region-based and filter-based annotations (Wang, Li, and Hakonarson 
2010). Additionally, choice of reference transcript set, such as RefSeq or Ensembl, is equally 
important (McCarthy et al. 2014). The output of high-throughput sequencing (HTS) is about one 
called variant per 1000 base pairs of sequenced genetic material compared to the reference 
genome, yielding tens of thousands of sequence variants in WES. Appropriate filtering helps to 
reduce the excess of variants with the aim to retain potentially pathogenic ones (Caspar et al. 2018). 
Every filtering process starts with making decisions, which are based on logical suppositions of 
causal variants, and must be conducted wisely. The fundamental element of filtering is elimination 
of benign variants (Seaby, Pengelly, and Ennis 2016). 
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Figure 6. Variant discovery pipeline. Green rectangles represent different steps of the workflow with 
examples of possible tools for implementation (blue gradient background). White rectangles display 
produced file formats. The data analysis process starts with quality control: raw unmapped reads (FASTQ) 
pervade evaluation of the quality and subsequent trimming, producing trimmed reads (FASTQ). High quality 
as a prerequisite, work proceeds with alignment: QC-pass reads (FASTQ) are aligned to a reference genome 
and raw mapped reads (SAM/BAM) are created. The next step is post-alignment processing, which leads to 
analysis-ready reads (BAM). The analysis continues with variant calling, where raw SNVs and INDELs are 
produced (VCF). The final part comprehends downstream steps, such as filtration, annotation, and further 
analysis of variants. Adapted from (Ugur Sezerman et al. 2019).  
 
Excessive dependence on automation and predictive tools may result in the elimination of clinically 
relevant variants or provide false positives (Jalali Sefid Dashti and Gamieldien 2017). Many 
databases can be used for filtration with the purpose of distinguishing novel variants from common 
polymorphisms. For that, variants are given a score called minor allele frequency (MAF) to retain 
only rare variants occurring in less than 1% of the population, which are considered most influential 
in cancer studies (Hintzsche, Robinson, and Tan 2016). Prioritization of detected mutated genes is 
necessary and can be implemented by looking at individual genes or gene sets. For looking at genes 
in sets, gene set enrichment analysis (GSEA) is performed directing to variants associated with 
statistically enriched pathways, functions, and more. Genes not standing out in GSEA can be 
analyzed separately applying knowledge-driven prioritization (Jalali Sefid Dashti and Gamieldien 
2017). In the upcoming years, WES/WGS may start to be used routinely in clinical laboratories for 
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disease treatments. New standards come with new challenges: vast amounts of variant data has to 
be integrated with clinical records and patient information in order to allow fast discovery of new 
variants contributing to disease, obtaining the information and user-friendly decision making for 
the specialists (Bao et al. 2014).  
 
1.6 Gene enrichment and pathway analysis 
 
Gene set enrichment analysis (GSEA) is applicable to find a connection between the disease 
phenotype and a group of genes/proteins (Zito et al. 2021). The root of the method’s strength is 
focusing on gene sets (groups of genes) that share similar biological functions, chromosomal 
locations, or regulation. GSEA shows multiple advantages in comparison with single-gene methods. 
It eases the interpretation of a large-scale experiment by identifying pathways and processes and 
additionally, gene sets enable more reproducible results (Subramanian et al. 2005). There are many 
GSEA methods available with over-representation analysis (ORA) being the most commonly used 
due to its simplicity and ease of use (Maleki et al. 2020). The gene ontology (GO) represents 
information about the biological region in relation to three different classes: molecular function 
shows molecular activities executed by gene products, cellular compartment indicates the 
localization of main activity in the cell, and biological process gives a broader understanding of 
programs achieved by multiple molecular activities (Ashburner et al. 2000; “Gene Ontology 
Overview” n.d.). In addition to detecting over-representation in GO terms, enrichments in pathways 
also should be inspected, as it provides a compelling prospect capable of enhancing the 
interpretation of genomic variations and is shown to produce biological insight (Ugur Sezerman et 
al. 2019). In the process of carcinogenesis aberrations in signal pathways managing the cell cycle, 
cell death, and cell growth occur, yet the scope, co-existence, and mechanisms of these changes 
vary depending on the tumor type and individuality (Sanchez-Vega et al. 2018). Pathway 
enrichment analysis is a statistical method identifying if pathways are noticeably enhanced in a set 
of genes. The protocol of pathway enrichment analysis comprises three distinct steps: defining the 
gene list to be analyzed, implementing the pathway enrichment analysis using the chosen tool, and 
visualizing the results (Reimand et al. 2019). The selection of tools for gene enrichment and 
pathway analysis is diverse, with all of them with their own unique virtues. The properties of used 
tools used in present thesis are described as follows. The advantages of g:Profiler are data quality, 
frequent data updates, technical robustness, as well as availability via many platforms, including 
web service, Python, R, and Galaxy. The g:Profiler’s primary data source is Ensembl, and updates 
are provided quarterly. However, previous releases are preserved for the reproducibility of the 
results. The adjusted P-values are calculated using g:SCS method, which is more conservative than 
Benjamini-Hochberg approach but not as strict as Bonferroni correction (Raudvere et al. 2019; 
Reimand et al. 2007). Another tool, Enrichr incorporates an impressive amount of resources and 
covers a vast proportion of data sets. The Enrichr tool’s assets are comprehensiveness, result 
visualization opportunities, and ease of use. For Enrichr tool an adjusted P-value is calculated using 
the Benjamini-Hochberg correction method (Chen et al. 2013; Kuleshov et al. 2016; “Enrichr Help 
Center” n.d.). The third tool, Metascape, stands out by its convenient use, ready-to-use 
visualizations, and easier interpretation. For the functional gene enrichment analysis, Metascape 
uses the well-known hypergeometric test and Benjamini-Hochberg correction method (Zhou et al. 
2019).  
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2 Aims of the study 
 
The research’s importance consists in demonstrating the possible implementation of bioinformatic 
workflow to find disease-related variants from enormous amounts of data in the case of lacking 
tumor-normal sample pairs. The purpose of the study is to analyze lung cancer whole-exome 
sequencing data from primary tumor samples to discover novel mutations involved in cancer 
recurrence. The present study addresses small genetic alterations, SNPs and INDELs, with the aim 
of acquiring knowledge of possibly pathogenic variants leading to mutated genes and pathways. 
The hypothesis is, that undiscovered specific genetic aberrations could affect and stimulate lung 
cancer metastatic relapse, or the presence of protective mutations could prevent it. New findings 
in this topic could pave the way for a deeper understanding of the underlying mechanisms, and 
therefore better prognostic or therapeutic opportunities for patients.  
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3 Research design and methods 
 
Following chapter describes research setting, analysis workflow and implemented methods. All 
commands and operations are retained in the data analysis diary for reproducibility of the results. 
Additionally, same research structure can be applied to any dataset exploring genomic variation.  
 
3.1 Research structure 
 
Initially, the acquired data was prepared for further analysis starting with the data organized into 
different groups. The first step was done by supervisor Olli-Pekka Smolander prior to this thesis 
work. Next, SNPs and INDELs were separated to be inspected individually. Data was transformed 
into suitable format for compatibility with the ANNOVAR tool. ANNOVAR tool was set up in order 
to utilize it for SNP and INDEL investigation. SNP analysis covered SNP filtering, SNP annotation, and 
SNP grouping by effect. Using INDEL data, the work proceeded with annotation, filtering and 
looking at effects by the group. For more comprehensive and reliable data interpretation, gene 
enrichment analysis was carried out using multiple tools: g:Profiler, EnrichR and Metascape. The 
overall research structure is elucidated in Figure 7. All data and implemented commands have been 
documented for reproducibility of the results.  
 

 
Figure 7. Overall research structure. The work started with preliminary steps: Unification of metadata and 
data preparation. For first, the samples were distributed into groups by: histology, cancer type, recurrence 
type, metastases location, extent of metastases and progression-free survival (PFS). Data analysis was started 
by separating SNPs and INDELs. Next steps were setting data into correct format and setting up ANNOVAR 
tool. Groundwork finished, next stage was SNP analysis including filtering, annotation and grouping by effect. 
Next step was investigation of INDELs, covering annotation and grouping by effect. After looking at effects in 
groups, gene enrichment analysis was performed with both, g:Profiler and EnrichR. Last, but not least 
important part was result interpretation.  
 
3.2 Background information 
 
3.2.1 Cohort description 
 
Cohort was composed of lung cancer patients with an age between 43-84. The entire number of 
samples was 94. For three patients, initial and recurrence samples were collected. Additionally, for 



 

 21 

three samples clinical information was missing. Histology and cancer type was determined by the 
North Estonia Medical Centre (NEMC) pathology department. Non-small cell lung cancer (NSCLC) 
was present in 91% and small cell lung cancer (SCLC) in 9% of the samples. Represented lung cancer 
subtypes were adenocarcinoma, adenosquamous carcinoma, squamous cell carcinoma, large cell 
carcinoma or small cell carcinoma. Three samples were evaluated as uncertain by histology. Biopsy 
samples were preserved by FFPE technique. In addition to current cohort, the analysis of the second 
batch of data of control group patients has been started, however, it is not included in the scope of 
present thesis. 
 
3.2.2 Sequencing and variant data 
 
Cancer WES was conducted with Illumina sequencing platform by Intermountain Precision 
Genomics (USA). Sequencing of 94 samples was attempted, however 12 samples received less than 
1 million reads likely due to low-quality libraries. Therefore, data from the remaining 82 samples 
were applied for further analysis. The average autosomal coverage over the target region was 165x 
with values ranging from 8.8 to 584.5. Variant calling was implemented by the same company using 
the Edico DRAGEN (Dynamic Read Analysis for GENomics) (Version 01.011.269.3.2.2-4-g960897cf) 
tumor-only pipeline. A strand orientation bias filter was used to help with FFPE artifacts. For variant 
calling, the genome GRGCH38 was used. Unification of metadata and sequencing was implemented 
by supervisor Olli-Pekka Smolander. For that, NEMC clinical data of patients was combined with 
SNP data: patient ID-s were added as there were multiple samples from one patient, filenames 
were matched to sample names, and different groups were formed. Six different groups were 
produced (Figure 8): cancer type (NSCLC, SCLC), histology (adenocarcinoma, adenosquamous, large 
cell, small cell, squamous cell), type of recurrence (stage IV, local), metastases grouping (adrenal, 
brain, hepatic, lymphatic, ossific, other, pleural, pulmonary), extent of metastases (local-
metastatic, oligo-metastatic, poly-metastatic) and PFS (less than a year, one to three years, more 
than three years). 
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Figure 8. Generated groups for lung cancer samples. Different groups: cancer type (NSCLC, SCLC), histology 
(adenocarcinoma, adenosquamous, large cell, small cell, squamous cell), type of recurrence (local, stage IV), 
metastases (adrenal, brain, hepatic, lymphatic, ossific, other, pleural, pulmonary), extent of metastases 
(local-metastatic, oligo-metastatic, poly-metastatic), PFS (less than a year, one to three years, more than 
three years). NSCLC refers to non-small cell lung cancer and SCLC to small cell lung cancer. ADR=adrenal, 
BRA=brain, HEP=hepatic, LYM=lymphatic, OSS=ossific, OTH=other, PLE=pleural, PUL=pulmonary. PFS 
indicates progression-free survival, which is defined as the time without disease progression or death.  
 
3.3 Data formatting and set-up  
 
The first step of the work was separation of single nucleotide polymorphisms (SNPs) and insertions 
and deletions (INDELs) using VCFtools in Linux command line. Script was written in Nano (command 
line text editor for Linux operating systems) to allow simple processing of large number of files and 
after this step, run in the command line. Implementation of the scripts is presented in Figure 9 and 
denotation of the script contents can be found in Appendix 1.  
 

 

 
Figure 9. Separation of SNPs and INDELs. Scripts (recode_snp_only.run and recode_indel_only.run) for 
separating SNPs and INDELs was written in Nano, made executable and run in the command line.   
 
SNP and INDEL data was converted into a simpler format for ANNOVAR to ensure the compatibility 
and simpler analysis. A list of files created by VCFtools (contain only SNPs or only INDELs) was made 
and a script was written in Nano, so that irrelevant columns would be eliminated from each file, 
retaining only five: chromosome with the SNP/INDEL, SNP/INDEL starting position, SNP/INDEL 



 

 23 

ending position, initial nucleotide(s), new nucleotide(s). The implemented commands for this 
purpose regarding SNP data is shown in Table 1 and denotation of the scripts contents can be found 
in Appendix 2. For INDELs, python script written by supervisor was used with the aim of retaining 
only INDELS <50bp, as it is the limit for the use of ANNOVAR.   
 
Table 1. The workflow of putting SNP data into simpler format (e.g., chr1 398 398 A T). A file listing files was 
generated, a script was written in Nano, the script was made executable and run.  

1) Make a list of files ls snp_only.*.vcf > snp_only_vcf_files.txt 

2) Write a script in Nano while read line 
do 
 
cat $(echo $line) | grep -v ^# | awk 
'{print $1,$2,$2,$4,$5}' > 
snp_positions.$(echo $line).txt 
 
done < $1 

3) Make the script executable chmod u+x snp_position.run 

4) Run the script ./snp_position.run snp_only_vcf_files.txt 

 

3.3.1 ANNOVAR set-up  
 
Next step was installation of ANNOVAR (Wang, Li, and Hakonarson 2010), a software tool for 
filtering and annotation, along with selected databases: ENSEMBL (Howe et al. 2021), cytoband 
(BAC Resource Consortium et al. 2001), ExAC03nontcga (Exome Aggregation Consortium et al. 
2016), ClinVar (Landrum et al. 2014), COSMIC92-coding (Tate et al. 2019), COSMIC92-noncoding 
(Tate et al. 2019), gnomAD-211exome (Karczewski et al. 2020), and gnomAD-30genome 
(Karczewski et al. 2020). The process of downloading databases is shown in Table 2.  
 
Table 2. Downloading ANNOVAR tool and relevant databases. ANNOVAR was downloaded, the contents 
were extracted, the module was loaded, the software tool was added to PATH, databases were downloaded, 
and the COSMIC databases were copied from the shared folder.  

1) Download 
ANNOVAR 

wget 
http://www.openbioinformatics.org/annovar/download/annovar.latest.tar.gz 

2) Extract the 
contents 

tar xvzf annovar.latest.tar.gz 

3) Load the 
module 

module load perl5.26.1 

3) Add to PATH  export PATH=/home/laura.vitsut/software/annovar:$PATH 

4) Download 
databases 

annotate_variation.pl -buildver hg38 -downdb -webfrom annovar ensGene 
humandb/ 
 
annotate_variation.pl -buildver hg38 -downdb cytoBand humandb/ 
 
annotate_variation.pl -buildver hg38 -downdb -webfrom annovar 
exac03nontcga humandb/ 
 
annotate_variation.pl -buildver hg38 -downdb -webfrom annovar 
clinvar_20210123 humandb/ 
 
annotate_variation.pl -buildver hg38 -downdb -webfrom annovar 
gnomad30_genome humandb/ 
 
annotate_variation.pl -buildver hg38 -downdb -webfrom annovar 
gnomad211_genome humandb/ 
 

5) Copy COSMIC 
databases from 
the shared folder 

cp /home/bioinf-jagatud/hg38_cosmic92_coding.txt .  
cp /home/bioinf-jagatud/hg38_cosmic92_noncoding.txt . 
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3.4 SNP analysis 
 
3.4.1 Filtering with population databases 
 
Databases including common population-level variants were applied on the data, as those are not 
relevant for the discovery of novel cancer-related mutations. Databases used to filter out frequently 
occurring variants were ExaC03 (Exome Aggregation Consortium) non-TCGA (The Cancer Genome 
Atlas), gnoMAD (Genome Aggregation Database) v2.1.1 exome, and gnoMAD v3.1 genome. Those 
databases contain information about the frequency of variants in different populations. TCGA ExAC 
is derived from matched germline sample of “cancer patients.” Non-TCGA excludes these variants 
and includes only information from healthy samples. In this filtering step, MAF cutoff 0.01 was used 
as a threshold. This limit is commonly used to filter out frequent variants, which probably are not 
clinically relevant, as variants with deleterious effects are usually rare. Estonian population variant 
information was included in gnoMAD v3.1 genome. This was also separately confirmed by 
contacting Geenivaramu. For first, filtering was conducted with ExaC03. Description of the actions 
and commands are presented in Figure 10. A file listing all input files, where each file lays on a 
separate line, was created. Next, a script was written in Nano, named exac03nontcgavol2.run. The 
purpose of the program was for it to go through the input file line by line until the end. The program 
was told to do the following for each file: modify the output file name for it not to be too long, filter 
out variants with MAF >1% using the Exac03-nontcga database. The script was made executable 
and run, resulting in two separate types of files: dropped and filtered. Dropped files were filtered 
out and filtered files were used as an input for a next step of the work. Similarly, filtering proceeded 
with the gnoMAD v2.1.1 exome and gnoMAD v3.1 genome.  
 

 
Figure 10. Filtering SNPs with ExaC03 population database. Right column presents the commands used to 
implement the filtering. Left column describes the meaning and contents of each command.  
 
3.4.2 Filtering with cancer databases 
 
The next step of the work used filtered files from gnoMAD v3.1 genome filtering as an input. 
Commands and working procedures were similar to previous steps, except for the use of argument 
for allele frequency specification. Firstly used database, ClinVar, aggregates information about 
genomic variation and its relationship to human health. ClinVar includes both germline and somatic 
variants, but somatic variants are not well-represented. It evaluates the clinical significance of each 
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mutation. Again, dropped and filtered files were produced. Filtered files include variants not found 
in the ClinVar database for the potentiality to discover novel mutations. COSMIC92 coding and non-
coding databases were used to filter out already discovered cancer-involved mutations. COSMIC 
includes somatic mutations reported in the literature in various types of cancers. Using ANNOVAR, 
a file with mutations is scanned against the database. This provides information concerning 
previous knowledge about the mutations, also their appearance and incidence in different cancer 
types. Filtered files from the previous step were used as an input and implementation was similar 
to filtering with ClinVar.  
 
3.4.3 Gathering distinct SNPs 
 
Before proceeding to annotation, distinct SNPs were gathered to one list and all samples where 
particular SNP occurred were listed for that SNP (overall procedure is shown in Table 3). For that 
purpose two files were produced: one listing previously filtered files and second listing only sample 
names. Both of those files were merged into one. The Python script was generated by supervisor 
Olli-Pekka Smolander.  
 
Table 3. Gathering distinct SNPs and collecting information about samples in which they were present. 
Right column depicts the commands used to implement the process. Left column describes the aim of the 
command.  

1) Make a file listing previously filtered 
files 

ls simple.*noncoding*.csv > csv_filenames.txt 

2) Make a file listing only sample names ls simple.*noncoding*.csv | sed ‘s/.*only.//g’ | 
sed ‘s/.exac.*//g’ > samplenames.txt 

3) Merge those two files into one  paste csv_filenames.txt samplenames.txt > 
filenames_with_samplenames.txt 

4) Copy the python script from the shared 
folder 

cp /home/bioinf-
jagatud/variants_with_samplenames.py/ 
/home/laura.vitsut/SNP_folder/SNP_simple_annotation  

5) Load the module module load python-3.8.7+jupyter 

6) Run the python script python variants_with_samples.py 
filenames_with_samplenames.txt 
variants_withsamplenames.csv 

 

3.4.4 Annotation and gathering SNPs by distinct effects 
 
Next, the SNPs were annotated with ANNOVAR and grouped by distinct effects on particular genes. 
The process started with annotation of variants and associated sample names. The sample names 
were put into one file and the header (“Samples”) was added. The two files, sample names and 
annotations, were merged into one using paste command. The columns were extracted, sorted and 
the duplicates were removed. The python script was constructed by supervisor Olli-Pekka 
Smolander. Used commands are seen in Table 4.  
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Table 4. Annotation and gathering SNPs by distinct effects. Left column shows the purpose of each step and 
command. Right column demonstrates used commands.  

1) Annotation of variants 
and associated sample 
names 

/home/laura.vitsut/software/annovar/table_annovar.pl 
variants_with_samplenames.csv -out 
variants_with_samplenames_annotated 
/home/laura.vitsut/software/annovar/humandb/ -buildver hg38 -
remove -protocol ensGene,refGene,dbnsfp41a,cytoBand -operation 
g,g,f,r -nastring . -csvout -polish 

2) Put sample names in one 
file and add header 
‘Samples’) 

echo Samples | cat - variants_with_samplenames.csv | cut -d' ' 
-f 6 > variant_samplenames.csv 

3) Merge two files (sample 
names + annotated) into 
one 

paste -d',' 
variants_with_samplenames_annotated.hg38_multianno.csv 
variant_samplenames.csv > 
variants_annotated_with_samplenames.csv 

4) Extract the columns, sort, 
remove duplicates 

cat variants_annotated_with_samplenames.csv | cut -d',' -f 
6,7,9 | sort | uniq > 
unique_effects_in_variants_with_annotations_and_samplenames.csv 

5) Copy the python script 
from the shared folder 

cp /home/bioinf-jagatud/final_variants_by_effect.py 
/home/laura.vitsut/SNP_folder/SNP_simple_annotation 

6) Load the module module load python-3.8.7+jupyter 

7) Run the python script python final_variants_by_effect.py 
unique_effects_in_variants_with_annotations_and_samplenames.csv 
variants_annotated_with_samplenames.csv 
variants_grouped_by_effects.csv 

 

3.4.5 Looking at effects by group in SNP data 
 
The subsequent step of the work was to separate the effects by group: cancer type (NSCLC, SCLC), 
histology (adenocarcinoma, adenosquamous, large cell, small cell, squamous cell), type of 
recurrence (stage IV, local), metastases grouping (adrenal, brain, hepatic, lymphatic, ossific, other, 
pleural, pulmonary), extent of metastases (local-metastatic, oligo-metastatic, poly-metastatic) and 
PFS (less than a year, one to three years, more than three years). A file listing all samples within a 
specific group (e.g adenocarcinoma) was created. Files without clinical information were excluded. 
Anaconda and Scipy (Scientific Computing Library) were installed and added to PATH. Subsequently, 
a script was composed with Nano listing commands for each group in order to provide group-
specific SNP information. The python script was generated by supervisor Olli-Pekka Smolander. The 
P-value for enrichment of given effect in a group under observation was calculated using 
hypergeometric distribution.  
 
Table 5. Dividing variants into specific groups. The left column shows the aims of the commands and the 
right column depicts implemented commands.  

1) Make files listing all samples within a specific 
group (e.g. adenocarcinoma) 

Nano Adenocarcinoma_samples.txt 

2) Install Anaconda cp /home/bioinf-jagatud/Anaconda3-2020.11-
Linux-x86_64.sh /home/laura.vitsut bash 
~/Anaconda3-2020.11-Linux-x86_64.sh 
 

3) Install Scipy conda install -c anaconda scipy 

4) Add it to PATH export 
PATH=/home/laura.vitsut/anaconda3/bin:$PATH 

5) Create a script in nano listing commands for 
each group 

nano different_groups_SNPs.run (example of 
one line: python effect_in_group.py 
Adenocarcinoma_samples.txt 
variants_grouped_by_effects.csv > 
Adenocarcinoma_variants.txt) 

6) Make the script executable chmod u+x different_groups_SNPs.run 

7) Run the script ./different_groups_SNPs.run 
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3.5 INDEL analysis 
 
3.5.1 Gathering distinct INDELs 
 
INDEL analysis started with gathering distinct INDELs to one list and collecting samples where they 
were present (Table 6). For that, two files were created, one listing all indel files and other listing 
sample names.  Subsequently, those two files were merged into one. The python script originated 
from supervisor Olli-Pekka Smolander. Finally, the module was loaded and the script was run.  
 
Table 6. Gathering distinct INDELs. The first column represents the purpose of each command. The second 
column depicts used commands in Linux system.  

1) Make a file listing all indel files ls *.bed >filenames.list 

2) Make a file listing sample names cat filenames.list | sed ‘s/.*only.//g’ | 
sed ‘s/_PASS.*//g’ > samplenames.list 

3) Merge those two files into one  paste filenames.list samplenames.list > 
filenames_w_samplenames.list 

4) Copy the python script from the shared folder cp /beegfs/home/bioinf-
jagatud/indels_with_samples.py  

5) Load the module module load python-3.8.7+jupyter 

6) Run the python script python3 indels_with_samples.py 
filenames_w_samplenames.list 
indels_with_samples.csv 

 

3.5.2 Annotation of INDELs 
 
Indels were annotated with ANNOVAR using the Ensembl database. Sample names were added to 
one file and a header ‘Samples’ was attached. The file with annotations and the file with sample 
names were merged together using the paste command. Commands utilized to implement these 
steps are shown in Table 7.  
 
Table 7. Annotation of INDELs. The left column demonstrates conducted steps and right column shows 
implemented commands.  

1) Load the module module load perl5.26.1 

2) Annotate the INDELs /ceph/home/laura.vitsut/software/annovar/table_annovar.pl 
indels_with_samples.csv -out 
indels_with_samplenames_annotated 
/ceph/home/laura.vitsut/software/annovar/humandb/ -buildver 
hg38 -remove -protocol ensGene,refGene,dbnsfp41a,cytoBand -
operation g,g,f,r -nastring . -csvout -polish 

3) Put sample names in one 
file and add header ‘Samples’ 

echo Samples | cat indels_with_samples.csv | -d’ ‘ -f6 > 
indel_samplenames.csv 

4) Merge two files (sample 
names + annotated) into one 

paste -d’,’ 
indels_with_samplenames_annotated.hg38_multianno.csv 
indel_samplenames.csv > indels_annotated_with_samplenames.csv 

 

3.5.3 Filtering of INDELs 
 
Similarly to SNP filtering, INDELS were first filtered with population databases using ExaC03 (Exome 
Aggregation Consortium) non-TCGA, gnoMAD (Genome Aggregation Database) v2.1.1 exome, and 
gnoMAD v3.1 genome applying MAF cutoff <0.01. Following the elimination of frequently occurring 
INDELs in the population, removal of already published mutations was conducted using ClinVar and 
COSMIC92 coding as well as non-coding.  
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3.5.4 Gathering INDELs by distinct effects 
 
For the purpose of collecting all INDELs into one file by their effects on particular genes, the lastly 
produced file with the remaining INDELs needed conversion from tab-separated values (TSV) to 
comma-separated values (CSV). The columns were extracted, sorted and duplicates were removed. 
Subsequently, the python script provided by the supervisor was run. Used commands are shown in 
Table 8.  
 
Table 8. Gathering INDELs by their distinct effects on particular genes. The left column shows the aims of 
used commands and the right column indicates the used commands.  

Convert from TSV to CSV cat indels_filtered_with_cosmic92noncoding | sed 's/\t/,/g' > 
indels_filtered_annotated_with_samplenames.csv  

Extract the columns, 
sort, remove duplicates 

cat indels_filtered_annotated_with_samplenames.csv | cut -d',' -f 
6,7,9 | sort | uniq > 
unique_effects_in_indels_with_annotations_and_samplenames_vol2.csv 

Copy the python script cp /gpfs/mariana/home/laura.vitsut/SNP_folder/ 
SNP_simple_annotation/final_variants_by_effect.py . 

Load the module module load python-3.8.7+jupyter 

Run the python script python3 final_variants_by_effect.py 
unique_effects_in_indels_with_annotations_and_samplenames_vol2.csv 
indels_filtered_annotated_with_samplenames.csv 
indels_grouped_by_effects_vol2.csv 

 

3.5.5 Looking at effects by group in INDEL data 
 
This step of the work was carried out similarly to SNPs. Firstly, files listing all samples within specific 
groups were copied from SNP folder data. A script was written in Nano listing commands for each 
group. Within the script, the python script was applied (provided by supervisor). Anaconda was 
added to path and the module was loaded. After that, the script was made executable and run.  
 
3.6 Gene enrichment analysis 
 
Gene enrichment analysis was conducted separately for each group using generated gene lists in 
order to possibly view if sets of mutated genes are overrepresented in GO terms or pathways. Work 
started with setup for gene enrichment – only mutations with P-value under 0.05 (<5%) were 
retained. A strict group of variants was formed, including exonic non-synonymous, exonic start-
loss, exonic stop-loss, exonic stop-gain variants, plus frameshift variants in the case of INDELs. The 
gene lists were manually curated to prevent false-positive overrepresentation, hence some double 
readthrough genes were removed. All of the gene lists were downloaded and run with gene 
enrichment tools. For enrichment analysis, INDELs and SNPs were combined into one list and run 
conjointly as well as investigating SNPs and INDELs separately. Gene enrichment analysis was 
performed with freely available tools: g:Profiler, Enrichr. The g:Profiler allowed the possibility to 
insert gene lists in an ordered way, Enrichr did not have this opportunity. For evaluation of protein-
protein interactions Metascape tool was used.  
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4 Results  
 
4.1 SNP analysis results 
 
The total number of SNPs before the filtering step was 2 362 746 with an average of 28 814 per 
sample. After applying population databases with MAF <0.01 cutoff, the majority of SNPs (~83%) 
were eliminated retaining 399 756 SNPs (~17%), while the mean number of SNPs in this phase was 
4875 per sample. Further filtering was exerted using known cancer databases, including germline 
and somatic mutations, in order to eliminate previously known and published SNPs. Subsequent to 
the last filtering step, the number of SNPs was down to 346 280 preserving ~15% of the initial 
quantity of SNPs with an average of 4223 per sample. The numbers indicating SNP filtration results 
for each sample are shown below in Figure 11. The median numbers of SNPs in local and metastatic 
groups were 30 164 and 29 272 before the filtering and 3521 and 4094 after the filtering, 
respectively. The Mann-Whitney U test was used to determine whether the observed differences 
were statistically significant. The corresponding P-values were 0.81034 and 0.08544. Therefore, the 
differences were not statistically significant. Despite the fact that the P-value after the filtering does 
not reach the significance level of 0.05, a difference in median values is much larger after the 
filtering. With larger number of samples in local group, statistical significance would probably have 
been reached even with this non-parametric test. As a result of SNP annotation, the captured 24 
distinct elements and effects were: UTR5, UTR3, UTR5-UTR3, upstream, upstream-downstream, 
downstream, splicing, ncRNA-splicing, ncRNA-intronic, ncRNA-exonic, ncRNA-exonic-splicing, 
intronic, intergenic, exonic-splicing nonsynonymous SNV, exonic-splicing unknown, exonic-splicing 
synonymous, exonic-splicing stoploss, exonic-splicing stopgain, exonic-nonsynonymous SNV, 
exonic-synonymous SNV, exonic-stopgain, exonic-stoploss, exonic-startloss, exonic-unknown 
(Figure 12).  
 
4.2 INDEL analysis results 
 
Annotation detected 27 following distinct elements and effects: UTR5, UTR3, UTR5-UTR3, 
upstream, upstream-downstream, downstream, splicing, ncRNA-splicing, ncRNA-intronic, ncRNA-
exonic, ncRNA-exonic-splicing, intronic, intergenic, exonic-frameshift substitution, exonic-
nonframeshift substitution, exonic nonsynonymous, exonic synonymous, exonic-stopgain, exonic-
stoploss, exonic-startloss, exonic-unknown, exonic-splicing frameshift substitution, exonic-splicing 
nonframeshift substitution, exonic-splicing nonsynonymous, exonic-splicing synonymous, exonic-
splicing stopgain, exonic-splicing unknown (Figure 13). The top three most occurring elements were 
intronic, exonic frameshift substitution, and exonic nonframeshift substitutions.  The total number 
of INDELs in all samples was 376 180 before filtering, with an average of 4588 per sample. With the 
implementation of databases incorporating frequent population-derived INDELs, the amount of 
INDELs went down to 213 792, comprising 57% of the initial number. The quantity of INDELs did 
not further decline by the exploitation of cancer databases with known genetic alterations (Figure 
14). By the end of the last filtering, the mean number of INDELs was 2607 per sample. The median 
numbers for local and metastatic groups were 3677 and 4860,5 before the filtering and 1539 and 
2572 after the filtering. Differences in both cases were statistically significant with P-values 0.0466 
and 0.01788, respectively.  
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Figure 11. SNP amount before and after filtering. The graph depicts the quantity of SNPs for each sample before filtering, after filtering using population databases with MAF 
cutoff <0.01, and after filtering with cancer databases. Samples are labeled as “L” or “M”, which stands for belonging into local or metastatic recurrence group, respectively. 
Samples labeled with question marks missed clinical information. Samples are ordered based on the initial number of SNPs. The amount of SNPs declined extensively after 
applying filtering criteria with an aim to eliminate frequently occurring variants from the dataset. With the starting number of variants being fairly fluctuating and diverse, 
the final set’s differences were more conformed. Differences between groups were not statistically significant (P=0.81034 before filtering and P=0.08544 after filtering). 
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Figure 12. The number and percentage of annotated SNPs with regard to different elements and effects. 
The top three most abundant elements were intronic, exonic nonsynonymous, and exonic unknown.  
 
 

 
Figure 13. Annotated INDELs with all detected elements and effects. Intronic, exonic frameshift 
substitutions and exonic non-frameshit substitutions belonged to the top of the table with the highest 
incidence.  
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Figure 14. INDEL amount before and after filtering. The bars shown on the graph implicate the volume of INDELs in all 82 samples before filtering and after filtering with 
population and cancer databases. Samples are labeled as “L” or “M”, referring to them belonging to local or metastatic recurrence group, respectively. Samples labeled with 
question marks missed clinical information. The application of population databases dropped a proportion of INDELs, however applying cancer databases filtration did not 
give any extra effect. Differences between the groups were statistically significant (P=0.0466 before filtering and P=0.01788 after filtering). 
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4.3 Genetic characteristics 
 
The number of significantly mutated genes containing INDELs was 38 in the aggressive recurrence 
group and 98 in the local recurrence group. The number of significantly (P-value < 0.05) enriched 
genetically altered genes containing single-nucleotide changes was 63 and 179 for the metastatic 
recurrence and local recurrence, respectively. Investigation of gene lists revealed multiple 
overlapping genes exhibiting both SNPs and INDELs, with DMXL2 occurring in the metastatic 
recurrence group exclusively. DMXL2 possessed non-synonymous SNVs with a P-value of 0.002 and 
frameshift substitutions with a P-value of 0.017. In the aggressive recurrence group, ~32% and 
~22% of samples contained the named effect produced by SNPs and INDELs, respectively. The local 
recurrence group displayed four co-existent variations, such as CCDC181, HNRNPU, NBPF26, and 
ZNF311. However, those mutations were only borderline significant or could be detected in some 
of the metastatic recurrence samples as well. Gene CCDC168 was found mutated in high number 
of samples (50) and had high number of mutations (86). It was found in 67% of the metastatic group 
samples. However, as the same mutation was found also in several local recurrence group samples 
(8), the over-representation P-value was only borderline significant (0.049966). Hence, CCDC168 
mutation seems to lack a role as a factor predicting distant recurrence, but its overall function in 
lung cancer recurrence, whether distant or local, is yet to be investigated. The altered gene with 
the smallest P-value (0.002) occurring merely in the aggressive relapse group was ABCC9 with 13 
frameshift substitutions, appearing in ~32% of the metastatic recurrence 2group’s samples.  
 
4.4 Gene enrichment analysis  
 
4.4.1 SNPs only 
 
Inspecting gene enrichment analysis results for SNPs only, the discrepancy between metastatic 
(Figure 15) and local (Figure 16) groups was notably clear, with only single enrichment occurring in 
the local group. The only over-represented term was related to transcription factor SPI1 possible 
binding motif with an adjusted P-value of 2.421 x 10-2. In the aggressive recurrence group, multiple 
enriched GO classes and pathways were present, with most being associated with binding, 
organelle localization, cell projection, calcium channel activity, and ion homeostasis. Terms with 
the most prominent P-value were found in GO Cellular Component ‘plasma membrane-bounded 
cell projection’ with an adjusted P-value of 1.106 x 10-5 (g:Profiler) and ‘cell projection’ with an 
adjusted P-value of 2.441 x 10-5 (g:Profiler). Participants detected in those two terms were C2CD3, 
GNAS, PRR12, SEZ6, CLASP2, DOCK7, KIF21B, NPC1L1, CABYR, DIAPH1, ESPN, PTPRH, MAP4, 
UNC13B, SACS, MTOR, EXOC8, MTSS1, MYO6, MYO7A, which constitute about one-third of the 
group’s genes. Such findings could indicate affected genes’ role in cell migration, which is the 
foundation of metastasis and cancer progression. Many terms related to Ca2+ transport were 
salient, such as GO Molecular Function ‘calcium-release channel activity’, ‘ligand-gated calcium 
channel activity’, as well as GO Biological Process ‘release of sequestered calcium ion into cytosol’, 
‘negative regulation of sequestering of calcium ion’, ‘regulation of sequestering of calcium ion’, and 
‘sequestring of calcium ion’ with an adjusted P-values varying between 4.482 x 10-2 and 1.094 x 10-

2 (g:Profiler). For the GO Molecular Function terms the related genes were ITPR3 and RYR3, while 
for the GO Biological Process the affected genes were ITPR3, RYR3, CHD7, and DIAPH1. The GO 
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Cellular Component term ‘sarcoplasmatic  reticulum’ was also present with an adjusted P-value of 
7.783 x 10-3 (g:Profiler) or 0.045 (Enrichr), while genes involved were ITPR3, RYR3, and STIM1.  
 

 
Figure 15. Enriched terms generated by g:Profiler tool in the aggressive recurrence group for SNPs. More 
over-representations occur when compared to local group, with the most enrichments falling into GO 
Molecular Function, GO Biological Process, GO Cellular Component terms.  
 

 
Figure 16. Gene enrichment analysis provided by g:Profiler tool in the local recurrence group for SNPs. Only 
one enrichment showed up in the TF (transcription factor) term.  
 
4.4.2 INDELs only 
 
Compared to SNPs, gene enrichment analysis of INDELs resulted in less overall enrichments. 
Nevertheless, more over-representation was detectable in the distant recurrence group conferred 
to the local recurrence group. Metastatic recurrence group enrichment patterns are shown in 
Figure 17 and local group enrichments in Figure 18. In the aggressive relapse group, microtubule 
and cytoskeleton-related terms were mainly prevalent. Terms with the highest significance were 
GO Cellular Compartment ‘kinetochore microtubule’ and ‘microtubule cytoskeleton’, with an 
adjusted P-values of 5.753 x 10-7 (g:Profiler) and 6.028 x 10-5 (g:Profiler), respectively. First 
enrichment was produced by genes KNTC1, CLASP1, and CENPE and second by genes KNTC1, 
CLASP1, MAP1A, CENPE, LYST, NR3C1, RTTN, RIF1, CEP97, EML6, KIAA0586, and DNAH9. In this 
group, three genes occurring in many distinct terms were KNTC1, CLASP1, and CENPE, showing their 
role in multiple activities. Enrichments in the local recurrence group were characterized by the 
presence of regulator activity classes, such as GO Molecular Function ‘GTPase regulator activity’ 
and GO Biological Process ‘regulation of molecular function’ with an adjusted P-value of 2.346 x 10-

3 (g:Profiler) and 3.276 x 10-4 (g:Profiler).  
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Figure 17. Gene enrichment analysis results provided by g:Profiler in the distant recurrence group for 
INDELs. Enrichment occurred in GO Molecular Function, GO Biological process, GO Cellular Component, and 
Reactome terms. 
 

 
Figure 18. Gene enrichment analysis results generated by g:Profiler in the local recurrence group for 
INDELs. GO Biological process and GO Molecular function contained some enriched terms.  
 
4.4.3 SNPs and INDELs combined 
 
Enrichment with G:Profiler revealed significantly more over-representation of genes in numerous 
GO terms, KEGG,  WikiPathway, and Reactome pathways within metastatic recurrence group 
compared to local recurrence group (Figure 19 and 20).  
 

 
Figure 19. Gene enrichment results for the metastatic recurrence group integrating SNPs and INDELs 
generated by the G:Profiler. Genes are enriched in multiple GO terms, such as molecular function, biological 
process, cellular compartment and Reactome pathways.  
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Figure 20. Gene enrichment results for the local recurrence group integrating SNPs and INDELs generated 
by the G:Profiler. Local, non-aggressive recurrence group exhibits much less enrichments with only few 
belonging to GO molecular function or biological process group.  
 
Gene enrichment analysis was conducted inspecting SNPs and INDELs separately, as well as 
combined, and over-representation was even more enhanced in the case of consolidation. Gene 
enrichment analysis of the local recurrence group revealed much fewer enrichments, with most of 
them kindred to calcium ion transport. Following terms were enriched in the local group with 
adjusted P-values ranging from 4.402 x 10-2 to 7.690x10-3: GO Molecular Function ‘voltage-gated 
calcium channel activity involved in AV node cell action potential’, ‘voltage-gated calcium channel 
activity involved in cardiac muscle cell action potential’ with involved genes CACNB2 and CACNA1G, 
as well as GO Biological Process ‘positive regulation of cation transmembrane transport’ with genes 
JPH2, WNK2, ABL1, CACNB2,  ATP2A1, ‘positive regulation of calcium ion transmembrane transport’ 
with genes JPH2, ABL1, CACNB2, ATP2A1 and ‘regulation of calcium ion transmembrane transport’ 
with genes JPH2, ABL1, CACNB2, PIK3CG, ATP2A1. In the distant recurrence group, many enriched 
GO terms were related to microtubules, binding, mitosis, and calcium channel activity. The most 
frequently enriched pathways were associated with kinetochores and mitosis. Cancer-inherent 
signal was prominent in WP ‘MFAP5-mediated ovarian cancer cell motility and invasiveness’ with 
an adjusted P-value of 4.642 x 10-4 (g:Profiler) or 0.0029 (Enrichr) with involved genes CREB1, ITPR3 
and RYR3. Therefore, mutations within these genes could indicate their possible collective 
contribution to invasiveness in lung cancer. The enriched term with the highest significance was GO 
Cellular Compartment ‘kinetochore microtubule’ occurring with an adjusted P-value of 7.855 x 10-

9 (g:Profiler) or 0.0000024 (Enrichr), encompassing genes KNTC1, CLASP1, CLASP2, and CENPE. 
Aforementioned findings are illustrated by Volcano plot in Figure 21.  
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Figure 21. Volcano plot representing enriched gene sets in GO Cellular Component term generated with 
Enrichr. One term, ‘kinetochore microtubule’ stood out from others with high significance, comprising of 
CENPE, KNTC1, CLASP1, CLASP2.  
 
Investigating GO Biological Process term, ‘exit from mitosis’ outstood with a possible relation to 
invasiveness, exhibiting an adjusted P-value of 9.528 x 10-3 (g:Profiler) and passing genes KNTC1, 
CLASP1, and CLASP2. Thus, genetic aberrations in those genes could endorse the process of cells 
being unable to exit mitosis and start proliferating uncontrollably. GO Molecular Function was also 
examined, which showed salient enrichment in ‘microtubule binding’ with an adjusted P-value of 
5.527 x 10-5 (g:Profiler) or 0.0000269 (Enrichr) as well as similar ‘microtubule plus-end binding’ with 
an adjusted P-value of 1.921 x 10-3 (g:Profiler) or 0.00575 (Enrichr). The latter findings are illustrated 
by Manhattan plot in Figure 22. In the first term, the appearing genes were CLASP1, MAP1A, CENPE, 
CLASP2, KIF21B, NEFM, STIM1 detected by g:Profiler, while Enrichr identified additionally 
CAMSAP3, MAP4, and EML6. The second term comprised a fewer number of genes, such as STIM1, 
CLASP1, and CLASP2 coinciding by both tools. As microtubules are known to have a function in cell 
movement, motility, and division, genetic alterations in genes related to microtubules are intriguing 
to behold. The hypothesis is, that various genes detected by our analysis could conjointly affect 
cellular processes and pathways giving rise to more aggressive properties of cancer, possibly 
leading to metastatic nature.  
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Figure 22. Manhattan plot depicting enriched gene sets in GO Molecular Function term generated by 
Enrichr. ‘Microtubule binding’ term distinguished compared to others comprising of CAMSAP3, CENPE, EML6, 
STIM1, MAP1A, NEFM, KIF21B, MAP4, CLASP1, CLASP2.  
 
Evaluation of protein-protein interactions in the aggressive relapse group detected the associations 
between CENPE, KNTC1, CLASP1, and CLASP2, reinforcing their possible part in collectively affecting 
microtubule changes (Figure 23). Overall protein interaction networks were enriched in the 
following GO terms: ‘organelle localization’ (P-value 10-9.7), ‘establishment of organelle localization’ 
(P-value 10-9.7), and ‘cell division’ (P-value 10-7.2). More specifically, aforementioned four genes 
were enriched in following terms: ‘amplification of signal from unattached kinetochores via a MAD2 
inhibitory signal’ (P-value 10-10.0), ‘amplification of signal from kinetochores’ (P-value 10-10.0), and 
‘mitotic spindle checkpoint’ (P-value 10-9.7). Enrichments in the local group regarding protein 
interactions were also detected, however the over-representation P-values were larger (Figure 24). 
Detection of enriched terms exhibited following findings: ‘T-cell activation’ (P-value 10-6.0), 
‘membrane trafficking’ (P-value 10-5.4), and ‘lymphocyte proliferation’ (P-value 10-5.4).  
 

 
Figure 23. Protein interactions generated with Metascape tool. Detection of physical protein-protein 
interactions in the metastatic recurrence group examining SNPs and INDELs combined. 
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Figure 24. Protein interactions generated with Metascape tool. Detection of physical protein-protein 
interactions in the local recurrence group examining SNPs and INDELs combined. 
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5 Discussion and analysis 
 
The present study showed the possible implementation of bioinformatic analysis starting with 
variant call data with the aim of possibly discovering novel prognostic lung cancer recurrence 
markers in the absence of normal tissue non-tumor controls, as for the FFPE samples those simply 
are not available. The main focus was put on comparing distant versus local datasets to examine 
potential differences between the groups. It has to be considered, that analyzed samples originate 
from primary tumors which have later on produced local or metastatic recurrence. Many earlier 
discovered biomarkers are thought to be the main contributors to underlying disease and targeted 
therapies are used, yet no single suitable target is eligible in all cases. The most known lung cancer 
marker genes are EGFR, ALK, KRAS, ROS1, HER2, RET, MET, BRAF, PIK3CA, NTRK1, FGFR, DDR2 
(Villalobos and Wistuba 2017). Regarding the prediction of recurrence and its extent, multiple 
circulating proteins, circulating nucleic acids, and circulating tumor microemboli have been 
reported as promising markers (Crosbie et al. 2013). Nevertheless, the research on the topic 
continues with attempts to find the best and most trustworthy targets or their combinations. 
Investigating gene lists acquired as a result of data analysis, the invasive group’s genes’ relation to 
cancer or metastasis was explored from previous publications. Additionally, the genes’ function was 
taken into account. The gene DMXL2 from the aggressive relapse group exhibited mutations 
produced by SNPs and INDELs both. In addition, it appeared in the start of the table with a P-value 
of 0.002 in the SNPs list and 0.017 in the INDEL list, showing its statistical significance. In breast 
cancer, DMXL2 is reported as an initiator of epithelial to mesenchymal progression, where cells 
acquire migratory and invasive characteristics (Faronato et al. 2015). Association between DMXL2 
and lung cancer has not been yet discovered nor published to the author’s knowledge. From the 
current study, DMXL2 shows as a promising novel marker potentially driving metastasis in lung 
cancer patients. Another intriguing unique gene from the metastatic group SNP list was ABCC9, 
with a P-value of 0.002. Examination of prior research on the gene showed its potential to be a 
diagnostic and prognostic marker in the triple-negative breast cancer (X. Zhang et al. 2020). 
Furthermore, breast cancer progression is hindered and tumor resistance to doxorubicin is reduced 
by inhibition of ABCC9 (Li et al. 2022). Conversely, comparing ABCC9 expression in lung 
adenocarcinomas and nontumorous tissues, ABCC9 was found to be highly expressed in the last 
one (L. Zhang et al. 2021). These findings suggest, that more studies have to be employed on its 
function in lung cancer progression and recurrence. Subsequently, gene enrichment analysis 
detected a greater extent of over-representation in the metastatic recurrence group in proportion 
to the local recurrence group, which indicates more randomness in the latter. In other words, genes 
mutated in the aggressive relapse group exhibit more systematic patterns. Furthermore, enriched 
terms were often related to mitosis, microtubules, binding, cell projection and motility, and 
kinetochores. These findings are compelling, as they occurred in distant recurrence group 
exclusively. In addition, all these terms can serve in one way or another as a basis for cells gaining 
migratory attributes. In many cancer types, microtubule instability has been reported, giving cancer 
cells survival advantages. Moreover, it is associated with a poor prognosis (Parker, Kavallaris, and 
McCarroll 2014). Kinetochores are large protein complexes at the edge of the centromere 
connecting DNA and microtubules present during mitosis. Disturbance of kinetochore-microtubule 
associations is found to initiate chromosome instability and cancer evolution (Herman et al. 2015). 
Importantly, the most significantly enriched term was detected investigating SNPs and INDELs 
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conjointly with an adjusted P-value of 7.855 x 10-9 (g:Profiler). The term was GO Cellular Component 
‘kinetochore microtubule’ with affected genes KNTC1, CLASP1, CLASP2, and CENPE. In the local 
group, the enrichments’ adjusted P-values did not reach up to this extent. Notably, the same four 
genes of interest were detected by Metascape analysis forming physical protein-protein 
interactions. Current data further suggest their possible role in microtubule disturbance and as a 
result, chromosome instability and cancer progression. Additionally, several Ca2+ related terms 
were enriched both in metastatic and local recurrence groups. Interestingly, detailed investigation 
of involved genes revealed actions of opposite directions. For example, ATP2A1 gene from local 
relapse group encodes SERCA1 enzyme with a function of transporting calcium from cytosol to 
sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER) (“ATP2A1 Gene: MedlinePlus Genetics” 
2020, 1). ITPR3 from the metastatic recurrence group however transports calcium out of the ER 
into the cytosol and RYR3 releases calcium from SR to the cytoplasm (“RYR3” n.d., 3; “Reactome: 
ITPR3 Transports Ca2+ from the Endoplasmic Reticulum to the Cytosol” n.d.). Hence, a preliminary 
hypothesis for further studies is that calcium influx/efflux may be altered differently in local and 
metastatic recurrence. Such assumption is supported by previous evidence in associations between 
cancer and calcium regulation. For example, deregulation of calcium signaling is related to cancer 
hallmarks and aberration of Ca2+ transporter protein expression is related to some cancer types. 
However, there is still poor understanding about the essence of changed calcium signaling (Stewart, 
Yapa, and Monteith 2015). In the case of breast cancer, both increases and decreases in the cellular 
Ca2+ level indicate the malignant potential of the cell and exhibits prognostic significance (O’Grady 
and Morgan 2021). Furthermore, ITPR3, also known as Type 3 Inositol 1,4,5-Triphosphate Receptor, 
is been shown to have an anti-apoptotic and proliferative role in tumor cells (Rezuchova et al. 2019) 
and facilitate tumor growth and metastasis in urinary bladder carcinoma (M. Zhang et al. 2021). 
From a more broad view, calcium as a cell signal molecule affects cell motility, division and 
apoptosis, as well as cancer progression (Monteith, Prevarskaya, and Roberts-Thomson 2017). In 
the metastatic recurrence group, STIM1 was also found over-represented in GO Cellular 
Compartment ‘sarcoplasmic reticulum’ along with ITPR3 and RYR3. The STIM1 localizes in ER and 
acts as a Ca2+ sensor, detecting depletion of calcium ions inside ER, and subsequently interacting 
with ORAI1 for influx of calcium ions into the cell (“STIM1 Gene: MedlinePlus Genetics” 2020, 1). It 
has been reported already in 2009, that STIM1 along with its interaction partner ORAI1 are in critical 
importance of breast cancer cell migration and metastasis (S. Yang, Zhang, and Huang 2009, 1). 
Multiple participants in calcium transport within a cell are depicted in Figure 25, with mutated 
genes detected from current analysis SERCA (coded by ATP2A1), ITPR3, RYR3, and STIM1 all 
localizing in the SR/ER. Presumption is, that mutations in those proteins are not random and 
presents a highly intriguing hypothesis of lung cancer acquiring invasive behavior as a result of 
accumulating aberrations in calcium transporters. In the scope of this research, preliminary genetic 
alterations have been discovered. However, narrowing down and finding the most promising 
markers has to be conducted in the future. The initial results of the present study need validation 
and further investigation to make solid conclusions.  
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Figure 25. Ca2+ pathways within a cell. The activation of GPCR in plasma membrane activates IP3 pathway, 
where IP3 activates ITPR3 and calcium is released from ER/SR. STIM1 monitors calcium levels in the cell, and 
in the case of depletion, activates influx of calcium ions from extracellular environment. Similarly to ITPR3, 
RYR3 transports Ca2+ out of the SR/ER into cytosol. Conversly, SERCA is a Ca2+ dependent ATPase transporting 
calcium ions into ER/SR. Purple and blue colored proteins were mutated in the metastatic recurrence group, 
pink colored protein was found mutated in local recurrence group. Adapted from (Stewart, Yapa, and 
Monteith 2015). 
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6 Conclusions 
 
The amount of detected SNPs was noticeably higher than the number of INDELs differing more than 
over six times (2 362 746 vs 376 180). Application of population databases with the aim to filter out 
benign variants removed a vast majority of detected SNPs and INDELs, 83% and 43%, respectively. 
Differences of INDEL numbers between local and metastatic groups were statistically significant, 
with more INDELs occurring in the latter. Therefore, higher initial INDEL load may be characteristic 
of tumors that produce metastasizing recurrence. Annotation resulted in 27 different effects 
produced by INDELs, with intronic, frameshift, and non-frameshift substitutions being the most 
common ones. Annotation of SNPs lead to the capture of 24 distinct effects, of which intronic, 
exonic non-synonymous, and exonic unknown appeared most frequently. In the aggressive 
recurrence group one gene, DMXL2, exhibited SNPs and INDELs both leading to abnormal 
translation of the gene. In the local recurrence group, four genes contained both small variations. 
However, their P-value was only borderline significant or they did not belong to the local group 
exclusively. Significantly more enrichments were present in the metastatic recurrence group 
compared to the local recurrence group. This effect occurred persistently regardless of investigating 
SNPs and INDELs separately or conjointly, although the combination of variants yielded the most 
magnified effects. Conferring two groups’ enriched terms, more migration-related and 
invasiveness-promoting classes arose in the aggressive recurrence group. In addition, lower P-
values in the distant relapse group reinforce the higher significance of detected results, with the 
gap reaching up to a million (10-9 vs 10-3) when looking at all variants in conjunction. Some genes, 
such as CLASP1, CLASP2, KNTC1, and CENPE were showing up in different terms more abundantly 
than others implicating their role in various functions and processes. The same genes were also 
over-represented in ‘kinetochore microtubule’ exhibiting the smallest adjusted P-value over all 
terms (7.855 x 10-9). Furthermore, physical protein-protein interactions were detected between the 
four genes by Metascape, which further reinforces their possible collective role in microtubule 
disturbance. Additionally, both local and metastatic recurrence group exhibited mutations in Ca2+-
transport related terms. Interestingly, the involved genes ATP2A1 in the local and ITPR3 and RYR3 
in the aggressive recurrence group, appear to be associated in actions of opposite directions of 
calcium influx/efflux. Possibly, those findings could indicate different calcium movement in the case 
of local and invasive recurrence. In conclusion, overall terms being characteristic of an invasive 
recurrence group solely were associated with cell projection, binding, mitosis, microtubules, and 
cells gaining migratory properties. In this research, possible genes facilitating recurrent tumor 
progression and metastasis have been captured, yet the confirmation of the results remains to be 
investigated with further studies. Hopefully, these findings contribute to ongoing efforts regarding 
developing novel prognostic biomarkers, capable of predicting patients outcome. 
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Abstract 
 
Lung cancer is the top one cause for cancer mortality and the second most commonly diagnosed 
tumor. Lung cancer is characterized by substantial recurrence rate, with most of them falling into 
metastatic category, leading to poor outcomes. Although multiple lung cancer driver oncogenes 
have been reported, the precise underlying mechanisms of tumor aggressive relapse remain still 
unknown. Whole-exome sequencing provides the possibility to decipher cancer-inherent genomic 
alterations stemming from the coding part of the genome with a fairly small time and manageable 
cost. The aim of current thesis was to depict possible implementation of bioinformatic data analysis 
in order to detect novel clinically relevant small mutations, such as SNPs and INDELs contributing 
to lung cancer recurrence. The main emphasis was put on comparing local and metastatic 
recurrence patients variant data which originated from primary tumors. The hypothesis was, that 
there are genetic aberrations with potential to predict aggressive lung cancer re-growth and aid the 
prognosis of patients. As a result, much more enrichments occurred in the metastatic recurrence 
group compared to local recurrence group. The enrichments in the aggressive recurrence group 
were more systematic, being present in terms mostly related to mitosis, microtubules, Ca2+ 
transport, as well as cell projection and motility. As cancer cell migration is the foundation of 
metastasis, multiple genes detected by present analysis could possibly affect tumor switching to 
more invasive form. In the future, confirmation of the results is needed to make conclusive 
inferences. Idea of using control group of patients lacking lung cancer recurrence after primary 
tumor treatment has been started to ensure the reliability of current results. 
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Kokkuvõte 
 
Kopsuvähi uute diagnooside arv igal aastal kuulub tabeli tippude hulka, kusjuures suremus antud 
vähitüüpi on kõrgeim võrreldes teiste kasvajatega. Kopsuvähki iseloomustab kõrge retsidiivide hulk 
ning enamikel juhtudel on tegu agressiivse progressiooniga, mis on levinud siiretega üle keha 
erinevatesse organitesse. Selle tulemusena ei ole patsientide prognoos soodne ning suremus 
haigusesse on kõrge. Kasvaja eksoomi sekveneerimine võimaldab detekteerida mutatsioone 
võrdlemisi väikese aja- ja rahakuludega. Käesoleva magistritöö eesmärgiks oli uute väikeste 
mutatsioonide avastamine, mis panevad aluse kopsuvähi taas-tekkele. Põhirõhk antud töös asetati 
lokaalse ja invasiivse kopsuvähi retsidiivi uurimisele, kusjuures proovid pärinesid primaarse 
kasvajaga patsientidelt. Hüpoteesiks oli, et aset leiavad geneetilised muudatused, mis on 
võimelised ennustama retsidiivi ulatuse ja raskusastme teket ning mille abil saaks prognoosida 
haiguse kulgu. Vaadates tulemusi, olid mitmed bioloogiliste funktsioonid, protsessid ja raku osad 
ulatuslikult rohkem üle-esindatud metastaatilise kuluga retsidiivi grupis. Enim rikastunud olid Ca2+ 
transpordi, mikrotuubulite, mitoosi, kui ka raku liikumise ja migratsiooni seotud klassid. Kasvaja 
siirete tekkimise aluseks on rakkude liikumine ja migratsioon, seetõttu mitmed käesolevast 
analüüsist detekteeritud geneetilised mutatsioonid võivad potentsiaalselt mõjutada haiguse 
lülitumist agressiivsesse vormi. Tulevikus on vajalikud lisauuringud antud leidude kinnitamiseks, mis 
võimaldaks teha põhjapanevaid järeldusi. Plaanis on kontroll-grupi kaasamine, kus patsientidel 
esialgse vähi ravimise järgselt retsidiivi ei tekkinud, võimaldades tõsta käesoleva uurimustöö 
usaldusväärsust.  
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Appendices 
 
Appendix 1 Denotation for some of the script contents 
 
Appendix 1.1 Denotation of script contents for separation of SNPs from INDELs.  

while read line Goes through the input file line by line until the end 
< $1 Specifies that the input is a file given when the script is run 
do-done pair Tells what to do each time we go through file 
$ Allows us to put the contents of the line as a part of the command 
$line Allows us to use the contents of each file 
echo $line To print the contents of the line (filename) to the command we want to run 

for each file 
--gzvcf Defines the VCF file to be processed (compressed VCF file) 
--remove-indels Excludes sites that contain an INDEL 
--keep-only-indels Excludes sites that contain SNPs 
--out Defines the output filename prefix for all files generated by vcftools 
--recode Used to generate a new file (output file) in VCF from the input VCF file after 

applying the filtering options (remove INDELs) 
 
Appendix 1.2 Denotation of the script contents of SNP data yielding ANNOVAR compatible format.  

while read line Goes through the input file line by line until the end 
< $1 Specifies that the input is a file given when the script is run 
do-done pair Tells what to do each time we go through file 
cat $(echo $line) Reads data from the file and gives their content as output 
grep -v Matches and displays all the lines except the given pattern 
awk ‘{print 
$1,$2,$2,$4,$5}’ 

Prints only 5 elements of the line to get just the SNP positions, ref and 
alt allele 
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Appendix 2 Gene lists for local and metastatic groups including SNPs and INDELs 
 
Appendix 2.1 Gene list for metastatic group for SNPs and INDELs. Green colored genes are indicated to exhibit SNPs and INDELs both.  

Gene Effect Gene Effect Gene Effect Gene Effect 

ABCC9 frameshift substitution KIF21B nonsynonymous SNV RTTN frameshift substitution MANBA frameshift substitution 

DMXL2 nonsynonymous SNV NEFM frameshift substitution SSH2 nonsynonymous SNV MSS51 nonsynonymous SNV 

EIF5B frameshift substitution NR4A2 nonsynonymous SNV TAS2R10 frameshift substitution MTSS1 nonsynonymous SNV 

KNTC1 frameshift substitution PBRM1 nonsynonymous SNV TMEM5 frameshift substitution MYO6 nonsynonymous SNV 

C2CD3 nonsynonymous SNV STIM1 nonsynonymous SNV YLPM1 stopgain MYO7A nonsynonymous SNV 

CLASP1 frameshift substitution TTC3 nonsynonymous SNV MAP4 nonsynonymous SNV PCDHGA9 nonsynonymous SNV 

USP54 nonsynonymous SNV ZNF646 nonsynonymous SNV UBR5 nonsynonymous SNV PDZRN4 nonsynonymous SNV 

APOB nonsynonymous SNV EPB41L2 nonsynonymous SNV UNC13B nonsynonymous SNV PRRT4 nonsynonymous SNV 

ITPR3 nonsynonymous SNV LYST frameshift substitution SACS nonsynonymous SNV SLCO5A1 nonsynonymous SNV 

GNAS nonsynonymous SNV NPC1L1 nonsynonymous SNV ZNF469 nonsynonymous SNV SPPL2C nonsynonymous SNV 

PRR12 nonsynonymous SNV TNRC6A nonsynonymous SNV MTOR nonsynonymous SNV SPRYD7 frameshift substitution 

MGA frameshift substitution ADAMTSL3 stopgain RIF1 frameshift substitution SRGAP1 nonsynonymous SNV 

RYR3 nonsynonymous SNV BNC1 frameshift substitution WNK1 nonsynonymous SNV SVEP1 stopgain 

SEZ6 nonsynonymous SNV CABYR nonsynonymous SNV BRD8 nonsynonymous SNV TMEM168 nonsynonymous SNV 

FER1L6 nonsynonymous SNV CHD7 nonsynonymous SNV BZW1 frameshift substitution ZNF114 stopgain 

MAP1A frameshift substitution DIAPH1 nonsynonymous SNV CAPN1 nonsynonymous SNV ZNF184 nonsynonymous SNV 

NUP160 nonsynonymous SNV ESPN nonsynonymous SNV CEP97 frameshift substitution ARHGEF28 nonsynonymous SNV 

SBNO2 nonsynonymous SNV FNBP4 nonsynonymous SNV COL15A1 nonsynonymous SNV ATM nonsynonymous SNV 

SWT1 frameshift substitution FNDC3B frameshift substitution CORIN frameshift substitution CAMSAP3 nonsynonymous SNV 

CREB1 stopgain GOLGA6C nonsynonymous SNV DENND2A nonsynonymous SNV DNAH9 frameshift substitution 

CENPE frameshift substitution IL18RAP frameshift substitution EGFLAM frameshift substitution KIAA1549 frameshift substitution 

CLASP2 nonsynonymous SNV NR3C1 frameshift substitution EML6 stopgain NEXN frameshift substitution 

CSMD2 frameshift substitution PELP1 nonsynonymous SNV EXOC8 nonsynonymous SNV CCDC168 nonsynonymous SNV 

DOCK7 nonsynonymous SNV PRUNE2 nonsynonymous SNV FYCO1 nonsynonymous SNV 
  

IL4R nonsynonymous SNV PTPRH nonsynonymous SNV KIAA0586 frameshift substitution 
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Appendix 2.2 Gene list for local group for SNPs and INDELs. Green colored genes are indicated to exhibit SNPs and INDELs both.  

Gene Element Gene Element Gene Element Gene Element 
MPDZ nonsynonymous SNV PAQR7 nonsynonymous SNV ZNF257 stopgain RAB27A frameshift substitution 
WASF3 nonsynonymous SNV TCHH nonsynonymous SNV CACNA1G nonsynonymous SNV RNASE10 frameshift substitution 
CCDC181 nonsynonymous SNV TBX6 nonsynonymous SNV SPTBN2 nonsynonymous SNV SEC23A stopgain 
ARSH nonsynonymous SNV WNK2 nonsynonymous SNV APOBR nonsynonymous SNV SLC37A3 frameshift substitution 
DCLRE1C nonsynonymous SNV DNAH5 nonsynonymous SNV INTS5 nonsynonymous SNV SLC9A8 nonsynonymous SNV 
FGFR1 nonsynonymous SNV ARID2 nonsynonymous SNV UBTF nonsynonymous SNV STAU1 nonsynonymous SNV 
MECOM frameshift substitution ABL1 frameshift substitution WASHC2C nonsynonymous SNV STX1A nonsynonymous SNV 
SELP frameshift substitution AMDHD2 nonsynonymous SNV AMZ1 nonsynonymous SNV TECPR2 stopgain 
TRIM16 nonsynonymous SNV ANO8 nonsynonymous SNV ARMC12 nonsynonymous SNV TRIM2 frameshift substitution 
BDH1 nonsynonymous SNV ARHGEF25 nonsynonymous SNV CCDC113 nonsynonymous SNV UBXN11 nonsynonymous SNV 
C8orf34 nonsynonymous SNV ATP10A nonsynonymous SNV CCM2 nonsynonymous SNV UGT1A3 nonsynonymous SNV 
ERMAP nonsynonymous SNV C19orf25 nonsynonymous SNV CLOCK frameshift substitution USP49 nonsynonymous SNV 
FAHD1 nonsynonymous SNV CACNB2 frameshift substitution EHD1 nonsynonymous SNV CSMD1 nonsynonymous SNV 
FUT3 nonsynonymous SNV GDF6 nonsynonymous SNV FAM102A nonsynonymous SNV CCDC116 nonsynonymous SNV 
GAB3 frameshift substitution LRRC4B nonsynonymous SNV FOXD4L6 nonsynonymous SNV KIFAP3 nonsynonymous SNV 
IRAK4 nonsynonymous SNV N4BP2L1 nonsynonymous SNV HNRNPA3 nonsynonymous SNV OSBPL5 nonsynonymous SNV 
JPH2 nonsynonymous SNV PIK3CG nonsynonymous SNV HNRNPU stopgain EPB41L1 nonsynonymous SNV 
OR4X1 frameshift substitution STT3B nonsynonymous SNV HSD17B4 nonsynonymous SNV ERN2 nonsynonymous SNV 
PALM2 nonsynonymous SNV WSB1 nonsynonymous SNV IL17REL nonsynonymous SNV MYH13 nonsynonymous SNV 
THRA nonsynonymous SNV C11orf95 nonsynonymous SNV LRP5L nonsynonymous SNV RASA1 frameshift substitution 
UCHL1 nonsynonymous SNV TRMT1 nonsynonymous SNV LRRC36 nonsynonymous SNV WIPF3 nonsynonymous SNV 
ZFAND3 stopgain ATP2A1 nonsynonymous SNV NME7 frameshift substitution ZC3H13 frameshift substitution 
ZSCAN32 nonsynonymous SNV CAPN12 nonsynonymous SNV NTNG1 nonsynonymous SNV ZNF517 nonsynonymous SNV 
ZYG11A nonsynonymous SNV RIMS1 stopgain OR9I1 nonsynonymous SNV ABCA4 nonsynonymous SNV 
MTMR10 frameshift substitution RUNDC3A nonsynonymous SNV POTEE nonsynonymous SNV ARMC2 frameshift substitution 
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Gene Element Gene Element Gene Element Gene Element 

BARHL1 nonsynonymous SNV ASPA nonsynonymous SNV DDR1 stopgain KLHL4 stopgain 
DENND4A stopgain ATP5F1 frameshift substitution DECR1 frameshift substitution KNG1 nonsynonymous SNV 
DSTYK nonsynonymous SNV ATP6AP1L frameshift substitution DENND1C frameshift substitution KPRP frameshift substitution 
GORASP1 nonsynonymous SNV AVIL stopgain DENND2A frameshift substitution KRT77 stopgain 
MTERF3 nonsynonymous SNV AXDND1 nonsynonymous SNV DHRS12 nonsynonymous SNV KRTAP21-3 nonsynonymous SNV 
POU4F2 nonsynonymous SNV B3GALT4 stopgain DNAJC12 stopgain KRTDAP nonsynonymous SNV 
RASAL2 stopgain BCAP29 stopgain DPY30 nonsynonymous SNV LAP3 frameshift substitution 
RUNX2 nonsynonymous SNV C17orf97 nonsynonymous SNV EPC2 nonsynonymous SNV LEF1 nonsynonymous SNV 
SASH1 nonsynonymous SNV CBWD7 nonsynonymous SNV EXOC5 nonsynonymous SNV LEKR1 nonsynonymous SNV 
SLC22A1 nonsynonymous SNV CCDC7 stopgain FANCD2OS frameshift substitution LRRC23 frameshift substitution 
SLC38A7 nonsynonymous SNV CCND3 nonsynonymous SNV FCGR1A frameshift substitution MCL1 frameshift substitution 
SRL nonsynonymous SNV CD151 nonsynonymous SNV FLG2 stopgain MLEC nonsynonymous SNV 
TBX5 nonsynonymous SNV CDH24 frameshift substitution FSD1L nonsynonymous SNV MLST8 nonsynonymous SNV 
TESMIN nonsynonymous SNV CDKL4 frameshift substitution GALNTL6 nonsynonymous SNV MORN1 nonsynonymous SNV 
VSTM2A nonsynonymous SNV CFHR2 stopgain GGACT nonsynonymous SNV MPC1L nonsynonymous SNV 
PPP1R26 nonsynonymous SNV CHN2 stopgain GPC3 nonsynonymous SNV MRGPRX4 nonsynonymous SNV 
ZNF827 stopgain CLEC4G nonsynonymous SNV GPR179 stopgain MSS51 stopgain 
KIAA1671 nonsynonymous SNV CLN3 frameshift substitution GPR34 frameshift substitution MTIF3 frameshift substitution 
FAM65A nonsynonymous SNV COG4 stopgain HBS1L stopgain MYO19 frameshift substitution 
ACSL1 stopgain COMMD7 frameshift substitution HCLS1 nonsynonymous SNV NAT16 stopgain 
ACTR2 nonsynonymous SNV CRAMP1 nonsynonymous SNV HERC5 frameshift substitution NBPF26 nonsynonymous SNV 
AMPD1 frameshift substitution CRYGA nonsynonymous SNV HSPD1 stopgain NECAB1 nonsynonymous SNV 
ARHGEF38 frameshift substitution CST3 nonsynonymous SNV IRF6 stopgain NEK2 nonsynonymous SNV 
ARMT1 frameshift substitution CYP2B6 nonsynonymous SNV ITGA2B stopgain NKX2-1 frameshift substitution 
ASH2L nonsynonymous SNV DCUN1D4 nonsynonymous SNV KCNAB1 stopgain NPVF stopgain 
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Gene Element Gene Element Gene Element 

NUP35 frameshift substitution RFPL1 nonsynonymous SNV YWHAZ nonsynonymous SNV 
 
OAZ3 

nonsynonymous SNV 
RIMBP3 frameshift substitution ZBED9 stopgain 

OLFM3 stopgain SERPINB3 frameshift substitution ZBTB34 stopgain 
OR1E2 nonsynonymous SNV SERTAD2 frameshift substitution ZDHHC23 frameshift substitution 
OR2D3 nonsynonymous SNV SFTPC nonsynonymous SNV ZFP92 nonsynonymous SNV 
OR2M7 nonsynonymous SNV SH3KBP1 stopgain ZIM3 nonsynonymous SNV 
OR6C70 nonsynonymous SNV SKAP1 nonsynonymous SNV ZMAT3 stopgain 
OXCT2 nonsynonymous SNV SLC6A6 frameshift substitution ZNF23 stopgain 
PAX2 stopgain SMAGP stopgain ZNF311 frameshift substitution 
PDPR nonsynonymous SNV SNU13 stopgain ZNF418 frameshift substitution 
PKMYT1 frameshift substitution SP3 stopgain ZNF521 stopgain 
PLAT nonsynonymous SNV ST3GAL3 nonsynonymous SNV ZNF585A stopgain 
PNLDC1 nonsynonymous SNV STARD10 nonsynonymous SNV ZNF770 stopgain 
PPA2 nonsynonymous SNV TERB1 stopgain SCAF4 nonsynonymous SNV 
PPIL2 nonsynonymous SNV TEX29 frameshift substitution 
PPP2R3B nonsynonymous SNV TFAP2D stopgain 
PRIMPOL nonsynonymous SNV TIMP3 nonsynonymous SNV 
PROKR2 startloss TK1 nonsynonymous SNV 
PROP1 nonsynonymous SNV TKFC nonsynonymous SNV 
PTPRQ stopgain TM4SF18 stopgain 
PYGO2 frameshift substitution TMEM209 stopgain 
RAB43 nonsynonymous SNV TMEM45A nonsynonymous SNV 
RAD51AP1 frameshift substitution TNFSF8 frameshift substitution 
RBM38 stopgain TRIM62 nonsynonymous SNV 
RBM46 stopgain TRMT12 stopgain 
RCBTB1 frameshift substitution USP16 frameshift substitution 
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Appendix 3 Gene enrichment analysis results generated by g:Profiler 
 

 
Appendix 3.1. Gene enrichment analysis results generated by g:Profiler for the aggressive group including 
only SNPs.  
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Appendix 3.2. Gene enrichment analysis results generated by g:Profiler for the aggressive group including 
only INDELs.  
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Appendix 3.3. Gene enrichment analysis results generated by g:Profiler for the metastatic group including 
SNPs and INDELs.  
 

 
Appendix 3.4. Gene enrichment analysis results generated by g:Profiler for the local group including only 
SNPs.  
 

 
Appendix 3.5. Gene enrichment analysis results generated by g:Profiler for the local group including only 
INDELs.  

 

 
Appendix 3.6. Gene enrichment analysis results generated by g:Profiler for the local group including SNPs 
and INDELs.  
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