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Abstract

State-of-the-art robot vision techniques have recently enabled outstanding results in the
navigation of autonomous robotics. However, these are not suitable for use in caves and
mining environments due to the large amount of dust and mud present, in addition to a
dark and locally self-similar environment. This prohibits mining from being automated
with the help of robots, which is a key goal for the EU-funded ROBOMINERS project. In
order to perform navigation in caves and mines, using artificial whiskers as tactile sensors
was explored in the thesis. In order to validate their performance for navigation, three
algorithms were developed: a wall-follower, a navigation algorithm based on Theta* and
an algorithm combining the two for increased navigating efficiency in unknown areas.
During tests in both simulation and real-world experiments involving the RM3 robot,
it was shown that tactile sensing worked well in complex environments in the case of
wall-following, and also when aiding navigation, if a method to estimate pose was also
present. In addition, the third algorithm (that combined navigation and wall-following)
could improve the traversal time of an unknown map by between 26− 43% compared to
regular navigation without wall-following. This thesis thus lays part of the groundwork
for navigation in an autonomous mine as part of the ROBOMINERS project, utilising
tactile navigation. In addition, the thesis opens up a plethora of potential research avenues,
including optimisations to the simulator, the navigation algorithms, the locomotion system
and the whisker configurations, as well as in unifying the robot with external systems.

The thesis is written in English and is 69 pages long, including 5 chapters, 47 figures and
14 tables.
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Annotatsioon
Tehislikel tundlatel põhinev navigatsioonialgoritm autonoomsetele

maa-alustele kaevandusrobotitele

Kaasaegsed masinnägemise tehnoloogiad on võimaldanud robotitel saavutada märkimis-
väärseid tulemusi autonoomsel liikumisel. Enamasti kasutavad antud tehnoloogiad kaam-
eraid ja LiDAR-it. Samas on keskkondi, kuhu antud tehnoloogiad ei sobi. Näited sellistest
keskkondadest on koopad ja kaevandused, kus kaamerate ja LiDAR-ite töö on häiritud
tolmu, muda ja pimeduse tõttu. Lisaks on need keskkonnad tihti ka lokaalselt väga sarnased,
st ühe koha eristamine teisest visuaalselt on raske.

Eelnevad asjaolud muudavad robotite abil kaevanduste automatiseerise keeruliseks. See on
aga EL poolt rahastatava ROBOMINERS-i projekti üks olulisemaid eesmärke. Selleks, et
võimaldada navigeerimist koobastes ja kaevandustes, uuriti antud töös kunstlike tundlate
kasutamise efektiivsust taktiilsete sensoritena. Selleks arendati lisaks juhtimisrakendusele
välja kolm erinevat algoritmi: seinajärgija, navigatsioonialgoritm Theta* baasil ning algo-
ritm, mis ühendab kaks eelnevat algoritmi, et suurendada navigeerimise kiirust keskkonnas,
mida pole kaardistatud.

Simulatsioonis ja RM3 robotiga läbi viidud katsetes oli näha, et taktiilne tajumine töö-
tas ka keerulistes keskkondades seina järgimisel. Lisaks aitas taktiilne tajumine ka
märkimisväärselt navigeerimisel, kui oli olemas väline viis roboti asendi määramiseks.
Lisaks sellele kiirendas kolmas (st navigeerimist ja seina järgimist ühendav) algoritm
navigatsiooni 26− 43% võrreldes tavalise Theta*-l põhineva navigatsioonialgoritmiga.

Antud töö loob seega osa alusest ROBOMINERS-i projekti raames loodavale autonoomsele
kaevandusele, mille tarvis uuritakse hetkel taktiilsete sensorite kasutamist kaevandus-
robotitel. Antud töö võimaldab järgnevat teadustööd, mis hõlmab loodud algoritmide
optimiseerimist, süsteemide omavahelist ühendamist, simulatsiooni realismi edendamist ja
taktiilsete sensorite asetuse optimiseerimist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 69 leheküljel, 5 peatükki, 47
joonist, 14 tabelit.
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List of Abbreviations and Terms

Widespread abbreviations and terms

A* Informed search algorithm used for path planning
Any-angle path
planning

Path planning algorithm which allows turns to have any
angle, resulting in more optimal paths especially in open
areas

Gazebo Simulator software used for robots
GPS Global Positioning System
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging, or more accurately, Laser

Imaging, Detection, and Ranging
Path planning Problem of finding a valid (optimal) path from point A to

point B; synonymous with pathfinding and motion planning
PID controller Proportional-integral-derivative controller
PID controller
tuning

Process of finding suitable gain values for the P, I and D
parts of a controller

PID setpoint Desired eventual input value for a PID controller
ROS 2 Robot Operating System 2
RRT Rapidly-exploring Random Tree - an algorithm used for path

planning
SLAM Simultaneous Localisation and Mapping
Theta* Informed search algorithm, which uses A* as a base to per-

form any-angle path planning

Definitions for the present thesis

Collision Event of any component of the robot, including whiskers,
coming into contact with an obstacle

Hard collision Event of a non-whisker component of the robot coming into
contact with an obstacle

Line-of-sight
check

A check in a grid to see whether two points have any obsta-
cles between a line drawn directly from one point to another
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Navigation Ability for a robot to arrive at a target destination without
collisions using localisation and path planning

Pressure Term used for the amount of deviation from a whisker’s
neutral position

RM3 ROBOMINER 3 robot, part of the ROBOMINER project
Whisker Bio-inspired tactile sensor developed for the RM3 robot
Whisker array Interface which has several whiskers in a row and can report

current orientations of whiskers
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1. Introduction

In recent years state-of-the-art robot vision techniques have started to enable outstanding
results in autonomous robotics, as outlined in [1]. One of the most outstanding areas
of this is real-time autonomous driving. The state-of-the-art techniques mostly depend
on cameras and LiDAR as sensor inputs. However, there are environments where visual
sensors are greatly compromised [2]. Two such examples are underground mines and caves
— environments that are often dusty, muddy and dark that are also locally very self-similar
and at times could also be underwater. In addition, what compromises robot vision even
further for these environments is also the inability to use GPS for localisation.

The ROBOMINERS project is an EU-funded project [3, 4] with the objective to create
autonomous robotic miner prototypes to mine difficult to access mineral deposits. The
project in turn addresses the second pillar of the EU Raw Materials initiative, which is
to secure a supply of raw materials from sources within the EU. The ROBOMINERS
project aims to change the current paradigm of mining that is currently mostly dominated
by humans and conventional large machines. The environment it aims to create is fully
artificial, with no human life support underground in the mines. This is seen as a better
method economically, and also as a method to reduce the environmental impact of mining
and increase safety for workers in the mining industry. [2]

In order to achieve efficient robotic miners, the robots need a method to sense their
environment. This includes a way to localise themselves within a map and a way to avoid
obstacles. As explained in [2], the current state-of-the-art methods to achieve these are
insufficient for use in mines and caves. Thus, novel ways of localisation and sensing need
to be developed in order to perform efficient navigation in these environments.

Due to biological inspiration showing great results in recent research, then one of the
goals of the ROBOMINERS project was to also seek to use bio-inspiration for solving
problems [2]. Thus one of the areas that is being studied for solving the issue of perception
is tactile sensing, which is seen in many animals. As part of this, some previous research
as part of this project has developed artificial whiskers. These are similar to the ones in
mammals, but are a lot thicker in order to offer better performance in mining environments.
Previous and current research as part of the project is also developing the use of tactile
sensing for Simultaneous Localisation and Mapping (SLAM), in order to explore the
potential of whiskers in mapping large environments.
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The main focus of the present thesis was to validate the ability to perform navigation using
the novel sensing method, and to also lay groundwork for combining the navigation with
localisation methods (e.g. SLAM) in order to perform more complex functions. These
complex functions could in the future include exploration of a mine, prospecting for ore
densities, mining the ore with the best return etc. The goal for the thesis was to develop
three navigation algorithms for one specific prototype robot in the project — RM3 —
independent of any SLAM algorithms, and a control application for switching between
algorithms and providing necessary input.

The first algorithm sought to implement wall-following — a task often used for initial
validation of sensing methods — with only tactile sensing used. The main goal of the first
algorithm was to validate the overall ability of basic navigation for the robot using the
novel sensing method. In addition, the first algorithm could further be used to provide a
way for the robot to navigate if localisation fails. In addition, wall-following could aid in
speeding up exploration and navigation, by following obstacles instead of trailing back to
an unoccupied spot.

The second algorithm sought to implement basic path planning for the robot, with whiskers
being used for obstacle detection and building a map. Localisation itself was received
from either simulation data or achieved by using an external camera to determine pose. As
mentioned before, in the future this is planned to be integrated with a SLAM algorithm
for real-world use. Thus the purpose of the algorithm was to move the robot to a given
destination (provided by a human or another algorithm) and avoid any obstacles.

The third algorithm sought to implement a combination of the two: speeding up navigation
by performing wall-following, especially when exploring unknown areas or navigating
through them. Thus the algorithm intended to reach the target in a more optimal way by
switching between using path planning and performing wall-following according to the
perceived optimality of each algorithm in a given position.

The algorithms were developed in iterations, using both a simulator previously developed
as part of the project and also three real-world experiments, in order to validate the
effectiveness of the whiskers in real-world conditions and discover any potential issues
affecting the tactile sensors. Due to the novel method of sensing and movement, no
previous research on the optimal whisker placement for navigation existed. Thus, an
additional necessity and a separate goal of the thesis was to evaluate, propose and test
configurations of whisker placement on the robot.

To summarise, the contributions of this thesis are:

12



■ development of:
– a control application for switching between algorithms;
– a wall-following algorithm;
– a navigation algorithm based on Theta*;
– a navigation algorithm combining wall-following and regular Theta* naviga-

tion.
■ propositions of whisker configurations suitable for navigation.

The thesis is thus organised as follows. In the second chapter, the overall background
of the thesis is explored. This includes a detailed explanation of the main aspects of the
project, robot and its components. In addition, relevant research in the underlying areas is
discussed and the relevant theory behind the solution is explained. In the third chapter, the
methodology of developing the algorithms is outlined and the three developed algorithms
are explained in detail, in order for them to be reproducible. In the fourth chapter, results
of tests are brought out and discussed. In the fifth chapter, a summary of the thesis is
provided.
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2. Background

In the following chapter the background of the project, related state-of-the-art research and
the theoretical background for the underlying thesis are described.

2.1 ROBOMINERS project

The ROBOMINERS project is an EU-funded project [3, 4] to develop a bio-inspired,
modular and reconfigurable robot for mining small deposits that are hard to access. The
end goal of the project is to create an amphibious robot that would be capable of mining
in environments that would otherwise be inaccessible or economically unfeasible. These
environments can range from abandoned and operating mines that still have remaining
resources, to environments that are very deep underground, inaccessible to humans or
hazardous. The long-term concept of the project is outlined in Figure 1. [2]

Figure 1. Main elements of the ROBOMINERS long-term concept [2].

The current conventional methods of perception for localisation and navigation (i.e. GPS,
LiDAR) do not work well in mining environments. In addition, the project decided to take
biological inspiration as a guideline due to a lot of focus on this area in research in the last
few years, and due to many bio-inspired robot designs showing effectiveness in locomotion,
energy efficiency and perception. For these reasons, part of the project is to study the use
of tactile sensing as a method of perception for localisation and navigation. [2]
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2.2 The RM3 robot

The RM3 (see Figure 2) is a prototype robot that is part of the ROBOMINERS project. The
robot is designed to be used as a testing platform for various technologies in order to pave
way towards a functional prototype as part of the ROBOMINERS project. It is envisioned
to be able to use the robot underground and underwater in a flooded environment, and
it is also required to work in slurry and on dry land. For tactile sensing, the robot uses
bio-inspired whiskers analogous to ones used by mammals in the real world and described
in more detail in subsection 2.2.2. The whiskers are placed on each of the 4 sides of the
robot in arrays of 8 whiskers each, with different angle configurations possible relative to
the robot.

The frame of the robot is 0.79 meters long and 0.74 meters wide, with the whiskers having
variable length depending on the test (but the length usually being 0.2-0.3 meters long).
In addition to the whisker arrays — developed by TalTech Centre for Biorobotics — the
sensors of the robot also include a PI48 IMU, a secondary IMU (BNO080), an MCP9808
temperature sensor and a custom water ingress detector (for detecting if water has entered
the main elecronics compartment). More sensors could be added in the future for improving
localisation or data collection, e.g. for measuring resource densities.

The robot consists of four main parts: a rigid frame (where other modules can be mounted),
the main electronics compartment and two locomotion modules, i.e. screws (described in
more detail in subsection 2.2.1).

(a) RM3 in the real-world. (b) RM3 in the Gazebo simulator.

Figure 2. RM3 robot with a side whisker configuration.

The RM3 robot’s software is built onto the ROS 2 (Robot Operating System 2) platform.
As ROS 2 is open-source, multi-platform and widely used in both research and industry,
then using this platform ensures that the developments made for this prototype could also
be applied in the future when the project develops further into actual use. In addition, the
platform enables easy use of testing platforms like Gazebo and the ease of re-using most
of the program code for both simulation and real-world use. [5]
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2.2.1 Locomotion

Modern mining machines usually use tracks or large wheels for locomotion. Due to the
small size of the robot, tracks or large wheels were not feasible due to loss in traction and
large mechanical complexity. However, there has been research into using Archimedean
screws (see Figure 3) for locomotion that has shown good traction in various environments.
As screws also have few moving parts and low control requirements, the project ended up
using Archimedean screws in their prototype [6].

Figure 3. Screws mounted onto the robot. (TalTech Centre for Biorobotics)

The locomotion modules both include two counteracting Archimedean screws, individually
actuated by two separate motors (see Figure 4). Each motor module has a hall encoder
for position feedback, and an INA219 sensor for monitoring voltage and current. The two
sides are interlinked with a centre piece, that is used to be mechanically fastened to any
kind of leg joint. The aluminum hull of the screw modules is waterproofed using O-rings
on both end caps and on the centre piece.

Figure 4. Cutout illustration of the construction of the screw mechanism.
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As there are two counteracting helices on each actuator, each degree of freedom on the x-y
plane can be separately controlled. Thus the robot can move in each direction separately,
which simplifies movement algorithms. Due to the geometry of screws, on different
surfaces the speed and optimal direction for movement is different. This should also be
considered when seeking to create an optimal navigation algorithm for RM3.

2.2.2 Tactile whisker sensors

Due to the previously mentioned difficulties in operating sensors that are traditionally used
for machine navigation, long-reaching tactile sensors are being experimented with, called
whiskers due to their resemblance to real-life whiskers on animals.

The whiskers consist of a 3D Hall effect sensor (Infineon TLV493D-A1B6), a magnet
mounted on the base of the whisker, a flexible silicone membrane for the whisker and
the whisker itself (see Figure 5). The silicone membrane holds the whisker up straight
(perpendicular to the array) when the whisker is not in contact with any object and provides
a small force to return the whisker back to its resting state when in contact with an object.
[7]

Figure 5. Whisker sensor components [7].

The whiskers are configurable: the length of the whiskers can be changed and a suitable
material chosen depending on the behaviour that is needed from the whisker [7]. In [7],
the whiskers were used in a configuration where they were only in the bottom of the
robot, in an 8-by-8 configuration (see Figure 6). The purpose of [7] was to use the given
whisker arrays for Simultaneous Localisation and Mapping (SLAM) based on the ground
interactions.
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Figure 6. Whisker configuration for ground-based SLAM [7].

2.3 Whisker-based sensing

Bio-inspired whiskers have inspired solutions to many different issues. One area they have
been used for is flow sensing in otherwise challenging environments, both in air [8] and
underwater environments [9]. In both [8] and [9] they showed good performance for a
relatively low cost. In addition, both studies also brought out the whisker’s size, shape
and material as something to be tuned depending on the desired behaviour, as they also
contribute greatly to the ability to sense the flow of air and water.

Another area with recent research efforts is object mapping classification with whiskers
on a robotic arm. A 2019 paper [10] explored using 18 sparsely located tactile sensors on
a rotatable robotic arm for object classification (see Figure 7a). Although the purpose of
the present thesis is not to identify objects, [10] showed that basic objects can be fairly
easily identified through the use of whiskers. A 2022 paper [11] expanded on this, using
just five whiskers on a robotic arm to identify much smaller objects that requiring more
precision. Thus using whiskers to map and navigate cave environments — demanding
much less regarding precision — shows promise.

(a) Use of whiskers to classify
objects in [10].

(b) Robot used for tactile
SLAM in [12].

(c) WhiskEye platform used
in [13].

Figure 7. Whisker-based sensing examples.

A 2012 paper [12] mapped an indoors environment with SLAM using a robot with no
other sensors for besides whiskers (see Figure 7b). The robot functioned indoors around
straight-edged objects. The paper determined that using tactile information for SLAM
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is sufficient for mapping small arenas, as timing information between contacts and prior
knowledge about edges can be used. However, [12] determined that it could not compete
with SLAM systems using visual or laser sensors. Since 2012 lots of progress has been
made to improve tactile sensor-based SLAM however — as can be seen in previous and
upcoming examples in this thesis — so expanding it into environments that are both larger
and less defined seems possible.

Whiskers have also been used to augment camera sensors, as in the WhiskEye robot
platform described in [13]. The WhiskEye platform (see Figure 7c) uses 4 whisker arrays
with 6 whiskers each on the rotatable head. The whisker sensors themselves used a 2-axis
hall effect sensor to detect whisker deflections, similar to our current robot. [13] found
that in their test fusing whisker sensors (camera optimised for long-range and whiskers
optimised for short-range) reduced the energy required for localisation by nearly ten times.

2.4 Wall-following algorithms

Wall following is one of the most researched areas in robotics, as it contains a lot of
challenges that are also necessary to solve for more advanced use cases of robots. Thus a
good start for the novel whisker sensors and the screws is to see how it is able to handle
wall-following. Thus it is beneficial to explore wall-following algorithms that have been
proposed for various robots.

Wall-following has been successfully done using various sensor combinations. One
approach has been to use sonar data and LiDAR and combine them using a fuzzy Kalman
filter [14]. One earlier approach was also to use a single ultrasonic sensor to measure the
angle of the closest reflecting point and moving in a direction perpendicular to that [15].
More recently, using cameras along with AI-based methods have also become more popular.
For example, in 2020 a vision-based framework [16] was proposed for cleaning walls
during the COVID-19 pandemic. The framework used deep learning to detect, classify and
segment wall and floor surfaces that required cleaning.

In addition, metaheuristic optimisation has also been used for tuning parameters in wall-
following algorithms. In 2006, evolutionary learning was used in [17] to generate the
values for a fuzzy controller for a wall-following robot using an ultrasound sensor for
localisation. In that case as well, navigation could be performed with only the ultrasound
sensors of the robot, without any IMU data needed [17]. The algorithm showed relatively
good performance in simulation and would likely also show promising results for the RM3
in good conditions, though is currently limited in the realism and speed of the robot’s
simulator and thus also would likely suffer in real tests unless trained in a wide variety of

19



scenarios.

In 2017, an algorithm [18] was invented for a two-wheeled robot using a laser range finder
which scanned different angles in front of and on the side of the robot. The distance
measurement points were then used with the least squares method to produce a virtual
wall. This in turn simplified the problem of wall following to just adjusting the robot’s
angle to that of the virtual wall (see Figure 8). In addition, in the resulting algorithm, the
velocity of the robot was adjusted based on the distance to the wall to increase obstacle
avoidance capabilities, as the sensor has a fixed interval of capturing data. This robot in
[18] is in a sense quite similar to the requirements of the algorithm in this thesis, though
using different locomotion and sensing tools. Similar to our platform, no easy way to
obtain odometry data exists, so the algorithm does not use odometry, and only uses a
single sensor at that. What’s different though is the much more demanding environment
for the RM3, in which straight walls rarely exist. However, a similar case of virtual wall
construction could be used.

Figure 8. Use of laser range finder for wall-following [18].

A 2007 paper explored an artificial antenna for wall following — inspired by the sensory
system of cockroaches — with relatively good success. In this case a unicycle-like robot
was used. Instead of having many whiskers and one sensor near the body of the robot, they
instead had just one antenna, but had flex sensors spread every 2.5cm apart (see Figure 9).
The antenna being further ahead than the robot provides leeway for avoiding collisions
and thus the robot can be made to be relatively high-speed. The given sensors are however
more difficult to manufacture, though potentially less are needed. The processing was
quite simple, using just a PD controller. The robot could achieve a 0.5 m/s speed, used
wheels and operated indoors on flat ground, with strictly straight walls. [19]

The author considers the closest current research related to the topic of this thesis to
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(a) Build process of the antenna. (b) Wall-following robot.

Figure 9. Cockroach-inspired antenna sensor on a robot [19].

be a thesis from 2013 [20]. The sensors it used were slightly different to whiskers (see
Figure 10a), however in terms of function they could be considered similar as they provide
information on pressure on the robot’s sides (see Figure 10b). The robot was only simulated
in Matlab, so the thesis did not involve any real-world experiments. This limits its use
for this thesis especially due to a real-world cave environment differing greatly from a
simulated indoors environment with no obstacles.

(a) Used sensor displacement model. (b) Simulated robot model.

Figure 10. Robot and sensor used in related wall-following MA thesis [20].

In addition, the author of the present thesis considers the method of navigation chosen in
[20] questionable, as no existing optimal pathfinding algorithms (e.g. A*, Dijkstra) were
used. Instead, Gaussian Mixture Models (GMM) were used for an estimation of state for
each sensor, after which a relatively complex strategy was created for both pathfinding and
wall following, which was built on top of the potentially faulty estimation. In addition,
the means of acquiring odometry information outside of simulation for the robot’s present
or target position was not considered. This means that there’s significant potential for
improvement using different methods and several issues that need to be solved when
developing an algorithm for a similar robot for real-world use. However, [20] still showed
that there is potential for navigation for a similar robot, at least in simulation.

As we see, then most research around wall-following is restricted to the indoor environment,
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i.e. an environment with good lighting, a flat non-slippery floor, no obstacles and straight
walls with easily defined edges. What we need out of a navigation algorithm for the RM3
is to however work in conditions that are the exact opposite of the aforementioned indoor
environment. Thus the algorithm needs to be rigorous and take into account environmental
factors like wind and rain. In addition, environments could have very different terrain,
affecting the forces needed for effective navigation.

2.5 Cave navigation and mapping

In addition to wall-following, the requirements for the algorithm include navigation, which
also brings with it the requirement to map the surroundings either before or during the
navigation. Thus a basic understanding is needed about the how cave navigation and
mapping is performed in recent research.

A 2018 paper explored path planning and navigation in off-world caves and dealt with
similar issues — dark and large caves difficult for traversing with conventional sensors
like cameras and miniature laser sensors. The localisation issue in that case was solved by
having 2D laser range finders mounted on a servo that enabled 3D range scans. As they
also planned to have multiple robots, then the other robots could track the single moving
robot to measure absolute positioning, solving the issue of localisation. Though not the
purpose of this thesis, this could be one way of achieving reliable localisation for the RM3
robot. [21]

A 2021 paper [22] and a 2022 paper [23] explored the surveying of caves using autonomous
drones. Both used sensor fusion, combining an IMU with a visual camera for pose
estimation, and then used LiDAR for generating a 3D occupancy grid. This was then used
to survey further locations with a weight function to reduce entropy of the unknown parts
of the environment. The positives of using drones for exploring caves include the relative
easy of avoiding ground-based obstacles and high possible speed. However, using a drone
of course provides a relatively limited amount of time to do mapping due to weight and
battery constraints. In addition, due to weight constraints only cargo that is very light could
be carried onboard for any other use cases in addition to mapping.

A paper published in 2021 investigated robotic inspection and mapping in cave-like
environments using SLAM with LiDAR and a camera. The robot could employ various
configurations for movement, including wheels, tracks and legs. Pathfinding was done by
converting the mesh cloud obtained through SLAM into a graph, and then using Dijkstra’s
algorithm to find an appropriate path, considering multiple terrain metrics in the edge
weights. [24]
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The approach used in [24] would likely not work for our use case, hence the investigation
into whiskers. However, for pathfinding a similar approach — Dijkstra’s algorithm —
could be used with a few modifications to take into account the lack of an existing map of
the environment. In addition, the path planning algorithm should be able to handle a large
grid, which could potentially also be 3D in the future, and also provide as effective a path
as possible due to the robot being relatively slow.

2.6 Path planning algorithms

As the goal of this thesis is to also provide a path planning algorithm in addition to wall-
following, then previous research on pathfinding algorithms was also looked into. In
addition to Dijkstra, another algorithm (of many possible) that has been used for path
planning is the optimal version of Rapidly-exploring Random Tree (RRT*) algorithm, as
was done in [25]. The original version is the regular RRT algorithm and another more-
known algorithm for pathfinding is A*. In a few comparative papers comparing A*, RRT
and RRT*, all of them ([26, 27, 28])), found A* to be the best performing regarding
optimality — which is inherent due to the A* providing a guaranteed optimal result and
RRT not providing it — but also regarding its execution speed.

The A* algorithm was originally presented in 1968 [29]. It solves for the shortest path
between an origin and a destination in a graph. If we can estimate the distance from
one node to the destination node such that for every node we will never underestimate
the distance, then we can use A* to obtain an optimal solution. This estimate is called a
heuristic h(i), i.e. estimated distance from node i to destination node t. For this, often
the Euclidean distance is used. A* uses the function d(i) = g(i) + h(i) for a total (lowest
possible) estimation of the distance to destination node t, with g(i) marking already
travelled distance to the node. [30]

The A* algorithm is the following [30]:

1. Begin by setting d(i) = +∞ for each i ∈ N . Next set g(s) = 0 and d(s) =

g(s) + h(s). Mark the current parent of the start node: parent(s) = 0. Finally, let
S = {s}.

2. Node selection: identify node v ∈ S where d(v) ≤ d(i) for all i ∈ S, set S =

S − {v}.
3. Stopping criteria: if v = t, stop as the shortest path to destination t has been found;

otherwise go to step 4.
4. Expanding: for each node w where edge(v, w) ∈ A, if g(w) > g(v) + l(v, w)

then update g(w) = g(v) + l(v, w), set d(w) = g(w) + h(w) and if w /∈ S let
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S = S + {w}. In addition, keep track of the current parent: parent(w) = v.
Continue with step 2.

S is the set of candidate nodes that have yet to be selected as the closest nodes. A is
the set of all edges. l(v, w) is the length of an edge between nodes v and w. A* is
similar to Dijkstra, but adds a heuristic h(i) to speed up the process of finding a path. In
smaller graphs, both perform well, but in large graphs, A* outperforms Dijkstra by a large
margin. [30]

However, in cave environments there is large potential to cross more open areas. In
addition, when having more resolution in the grid (i.e. less area per grid node), turning
separately for each node can get very time-consuming, especially when there could be
cases of movement to a point that would be straight, but not parallel to the axes of the
grid. Thus, any-angle path planning algorithms can greatly improve navigation in cave
environments.

One of the most known any-angle path planning algorithms for square grids is Theta*. It
retains a similar algorithm to A*, but introduces a concept of line-of-sight between nodes.
If line-of-sight is present between two nodes, then in most cases it is possible to reduce
the path by traversing straight from a node that is not a direct neighbour instead of strictly
following the edges between direct neighbours. Thus in most cases the algorithm reduces
the traversed distance and also the necessary amount of turning, as can be seen in Figure
11. Steps 1-3 remain the same from the above algorithm, however step 4 (expanding)
becomes more intricate. L denotes the set of edges with line-of-sight that have line of sight
between the specific nodes. [31].

The algorithm is the following (with steps 1-3 remaining the same) [31]:

4. Expanding: for each node w where edge(v, w) ∈ A, assign a potential parent p.
If edge(parent(v), w) ∈ L, then assign p = parent(v), else assign p = v. Then
continue the same as for A*: if if g(w) > g(p) + l(p, w), then update g(w) =

g(p)+h(p, w), set d(w) = g(w)+h(w) and if w /∈ S let S = S+{w}. In addition,
keep track of the current parent: parent(w) = p. Continue with step 2.

In addition, some modifications have also been proposed for Theta*, such as Lazy Theta*,
Angle-Propagation Theta*, Incremental Phi* etc, which make improvements in different
areas to the algorithm [32]. Although basic Theta* should prove to be good enough for
smaller caves that do not require 3D path planning, modifications like Lazy Theta* would
allow for expansion of the path planning into larger and more demanding grids, including
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(a) A* path. (b) Corresponding Theta* path.

Figure 11. A* and Theta* comparison [32].

3D cave traversal (taking height into account) and much larger and more complex caves.
As a lot of optimization was not required initially, then the basic Theta* path planning
algorithm was chosen for the present thesis.

2.7 PID controller

In order to provide more stability to a system in a way which would also be easy to
comprehend and control, a proportional-integral-derivative controller (PID controller) can
be used. PID controllers are a simple way to implement feedback into a system as a control
input and often are sufficient for control problems. As a result they are found in large
numbers in all industries. For example, they are a key part in motor control, which is what
is required in a navigation algorithm as well. Essentially, they provide a way to take into
account the past (I), present (P) and future (D) errors of the system and based on those
make a prediction on what the current control input should be. [33, pp. 1–5]

The standard form of a PID controller is presented in Equation (2.1). K is the controller
gain, Ti the integral time and Td the derivative time. y(t) is the current value of the process
variable and ysp is the set-point value, i.e. the desired value for the process variable. e(t)
represents the error between the current value and the set-point. u(t) represents the output
control value, where every addend represents the P, I and D, respectively. [33, pp. 1–5]
e(t) = ysp − y(t)

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

) (2.1)

Due to this, Equation (2.2) is another form which is widely used for a PID controller. In
this case the values of Kp, Ki and Kd can be set directly and added together in a simpler
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way.
u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

Ki =
Kp

Ti

Kd = KpTd

(2.2)

The topic of tuning variables for PID controllers is widely researched. Some of the
most known methods were proposed by Ziegler and Nichols in 1942, however these give
moderately good tuning in only some scenarios. Often the tuning process starts by setting
Ti = ∞, Td = 0 and then raising the proportional gain Kp until the process starts to
oscillate. Then, based on the gain at which it starts to oscillate and the period of the
oscillation, all other variables are set according to specified constants. These values then
usually still need to be manually tuned to improve performance. [33, pp. 158, 161, 169]

In [33, p. 225] a new Ziegler-Nichols replacement tuning process was proposed as well,
named AMIGO. However, in [34] three tuning rulesets — including AMIGO — were
compared with a software-based PID tuning method developed by them, and after tests
all four of the methods were concluded to be non-optimal. So, even with software-based
methods manual tuning is still required. Manual tuning can be performed using the
instructions in Table 1.

Table 1. Instructions for manually tuning a PID controller [35].

Parameter
Increased

Rise Time Overshoot Settling
Time

Steady-State
Error

Stability

Kp Decrease Increase Small
Change

Decrease Degrade

Ki Decrease Increase Increase Decrease
Significantly

Degrade

Kd Minor
Decrease

Minor
Decrease

Minor
Decrease

No Effect Improve
(for small Kd)
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3. Algorithm

In the following chapter the requirements for the algorithm, the algorithm implementation
itself and the reasoning behind the implementation are described.

3.1 Requirements

The requirements for the algorithm were the following:

■ wall and contour tracking
– Implement a navigation strategy to control the robot’s forward velocity while

keeping the whiskers in contact with the wall, using a predefined pressure
threshold.

■ navigation
– Implement a strategy to move the robot to a given target point, avoiding static

and dynamic obstacles, using positioning information originating from an
outside source.

■ control mechanism
– Implement a control mechanism with which to control the aforementioned

navigation algorithms, i.e. allow to select the algorithm, to change speed, select
a waypoint and provide other required inputs.

The reason behind using positioning information for navigation that originated from an
outside source and not trying to create a localisation algorithm for the robot was due to this
capability being developed as part of a separate study. In addition to the aforementioned
requirements, an additional goal of the thesis was to investigate the optimality of the
whisker configuration and propose new ones.

3.2 Methodology

To create the wall-following algorithm, an iterating method was used of first creating the
most basic version imaginable, testing it out in the simulator, and then making required
changes and improving it further. Thus for example the first step was a very imprecise
wall-follower without any turning. Then improvements were made to stay parallel to the
wall, thus increasing the algorithm’s reliability of not losing touch of the wall. Then the
gains of the PID controllers were tuned in a variety of simulated environments to provide a
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fast response time without overly large oscillation, and hard collision avoidance was added
to provide certainty for avoiding collisions.

After the algorithm could successfully follow the walls in a variety of environments without
collision or erratic behaviour, multiple rounds of real-world testing were done to verify the
solution for use outside of a simulator and to fix any issues not occurring in simulation.
These turned out to be integration issues such as sensor and motor values differing between
simulation and the real robot, but also some issues that were not yet accounted for in the
algorithm, such as whisker noise, whisker bias and the need to recalibrate the sensors
during real-world use.

Thus, the overall principle for creating the algorithm was to first create a wall-following
algorithm that would only use whiskers as the sensors. This would then validate the
possibility of using whiskers for relatively simple movements. In addition, this algorithm
could then be used in the event of the robot’s position and orientation information becoming
unavailable (e.g. due to sensor failure).

In addition, a navigation and path planning method was developed in parallel. As no
method of localisation was present on the robot itself — but was being developed as part
of the ROBOMINERS project — then instead an external camera-based pose estimation
was used for the thesis. Using the positioning and orientation information, an algorithm
could then be created for mapping out a cave and navigating it, using the whiskers for
detecting walls and objects. In addition, incorporating the wall-following algorithm in the
navigation could then be used to decrease the time taken to navigate to a point when the
map was still unknown. The navigation and path planning methods were also tested out
similarly with iterative methods in both the simulator and real-world use, just as with the
wall-following algorithm.

During the testing of both algorithms, various whisker configurations were tried as well, as
studies brought out in Sections 2.3 and 2.4 confirmed the size, shape, material can greatly
affect the sensing. Also the direction and placement can of course greatly affect the sensing
of the environment around it, with unidentified obstacles potentially causing the robot to
get stuck on them.

3.3 High-level working principles

In the following section high-level working principles for wall-following and navigation
algorithms are presented and discussed.
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3.3.1 Wall-following

The high-level working principles of the created wall-following algorithm can be seen
on Figure 12. The algorithm is repeated every time an update for the orientation of the
whiskers is received (at 20 Hz). First, whisker preprocessing is performed in order to
get a smoothed and unbiased pressure value for each whisker, indicating how much the
whisker is being bent or pushed inwards, i.e. how much a whisker deviates from its resting
orientation. Then, pressures are generalised from whiskers to their whisker arrays on each
side, considering the average and maximum pressures. In addition, an additional error
considering the distribution of whisker pressure — towards the start or end of the array —
is then calculated.

Figure 12. High-level working principle for wall-following.
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Then, if a whisker array is over a given threshold of either average or maximum pressure,
hard collision avoidance is triggered, moving the robot in a reverse direction to the highest
pressure whisker array. In addition, if calibration has been initiated — when the algorithm
was selected or once per given time period — a separate recalibration algorithm is executed,
outlined in Section 3.5.

If collision avoidance and recalibration are not triggered, the algorithm uses a weight-
based movement system. This means that there are several predefined weights which
depend on their specific defined errors. Each weight and its error also has a corresponding
movement vector. After calculating the weights, they are then normalised and each weight
factor’s weight is multiplied with its respective movement factor, providing the final desired
movement vector for the robot. That vector is then published to the motor module — not
developed as part of this thesis — which transforms the vector into motor inputs and makes
the screws move in the desired direction.

3.3.2 Navigation

The high-level working principles of the created navigation algorithm can be seen on
Figure 13. Whisker preprocessing, whisker array average and maximum calculation, hard
collision checking and calibration remain the same as in wall-following. However, as
previously mentioned, the pose is also taken into account for the navigation. This gets
transformed into a grid coordinate, which is the location of the robot in its internal map
(stored as a graph). Using both the current location and the whisker contact points, collision
points are then added relative to the internal map. If any collision points are in the given
path, the path of course is recalculated.

The navigation movement part itself also uses weights, similar to the wall-following part.
However, in order to speed up the navigation in unknown areas, wall-following is also
incorporated where possible (outlined in Section 3.12). If wall-following is not applicable,
weight-based movement is used, similar to the previous wall-following working principles,
but with just the base normalisation weight, the next path node direction error weight and
forward movement weight.

3.4 Processing whisker data

Each whisker sensor in every array allows the deflection of the whisker joint to be measured
in three axes (see Figures 14 and 15). A ROS2 node developed for whisker data acquisition
(based on the TLV493D-A1B6 C++ library for Arduino) calculates the orientation in
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Figure 13. High-level working principle for navigation.

spherical coordinates, with ϕ being the azimuth, θ being the polar angle and r being
unmeasurable, but remaining a constant depending on the chosen whisker. As in real-life
some of the deflection is absorbed by the flexible stem, then these coordinates were entirely
based on the direction of the lower part of the whisker, as that was the part of the whisker
in direct contact with the sensor. Thus unless the whisker was in contact while remaining at
or nearly at 90 degrees, the exact location of the end of the whisker was hard to determine,
as the whisker itself was flexible. As the whiskers were rigid in the simulator, then this
was not the case for simulation, causing some inconsistencies between simulation and
real-world experiments.

Due to this the azimuth ϕ value was discarded for this thesis. Further reasoning for this
was that the azimuth does not assist in finding the distance of an object or a wall, which
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Figure 14. Single whisker array consisting of 8 whisker sensors.

Figure 15. Measurement axes of a whisker.

was the main application of whiskers in the present thesis. However, this is one avenue
which could be explored further in the future for refinement of the algorithm.

In addition to the azimuth ϕ and polar angle θ, the third axis that can be measured with
the sensor is z. This axis stands for the perpendicularly applied pressure to the whisker,
i.e. the force of pushing the whisker directly towards the sensor. Depending on the exact
shape and material of the obstacle and its angle relative to the robot, both polar angle θ
and perpendicular force z are useful for different purposes, and thus various ratios of their
measurements were used — weights of wθ and wz respectively.

3.4.1 Introducing bias and noise in simulation

During real-world tests the whiskers generated some noise, which was not modeled in the
simulator. In order to make simulation more realistic, experimental measurements were
taken and then similar noise was added to the whisker measurements during preprocessing.
This was a matrix of randomised values with Gaussian distribution (R), which was re-
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generated every time the whisker values were passed.

Another issue that needed handling was the bias of the whiskers. This refers to the whiskers
not being in an exact orientation to give a reading of exactly zero when not in contact
as they did in simulation. This issue derives from the whiskers being flexible, yet still
somewhat stiff, and thus retaining some of the bend when deflected by a large amount.
This could be improved in tests manually by bending the whiskers back to be entirely
straight, however none of the whiskers were entirely perfect.

In order to simulate this behaviour, a matrix of randomised values with Gaussian distribu-
tion (B) is generated, and then added to the whisker sensor readings every time. So, in
terms of simulation there are two random values applied to every whisker every time to
simulate what happens in reality (see Equation (3.1)). Matrix Win represents the values
of the original whiskers and W represents the matrix of output values for the whiskers
after adding noise and bias. The matrices are three-dimensional: first dimension being
m whisker arrays, second dimension being n whiskers per array and the last dimension
being the whisker’s (θ, z) data measuring deflection and perpendicular pressure. For
non-simulated use of course, no noise is added, i.e. W = Win.

W = Win +B +R (3.1)

3.4.2 Handling initial bias and noise

In order to cancel out whisker bias B, a method is proposed of first putting the robot in an
environment with a neutral state — i.e. no whiskers in contact with an object — and then
measuring the average for whisker values for a given time period to reduce the noise on
the bias reading itself. Then, for every reading the bias cancelling matrix B− is subtracted
from whisker matrix W . In Equation (3.2), θij(t) represents the value of θ of whisker in
position (i, j) at time t, where the robot is also in a neutral state. The same applies to
zij(t), but for the value of z, respectively.

b−ij =

[∑n−1
t=0 θij(t)

n

∑n−1
t=0 zij(t)

n

]

B− =


b0,0 b0,1 . . . b0,n−1

b1,0 b1,1 . . . b1,n−1

...
... . . . ...

bn−1,0 bn−1,1 . . . bn−1,n−1


(3.2)
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In order to filter out noise not resulting from bias, a simple method of averaging by a
constant r = 3 was sufficient due to the relatively small amount of noise in the whisker
sensor readings. In the preprocessing equation (see Figure (3.3)), W ′k represents the
three-dimensional output matrix of the whiskers. The preprocessing equation seeks to
reduce the bias and noise from whisker sensor readings which appeared in real-world use.W ′

0 = [0]m×n×2

W ′
k = W ′

k−1 +
Wk −B− −W ′

k−1

r

(3.3)

3.5 Recalibration

One aspect that was not replicated in simulation and only discovered during real-world
experiments was the occurrence of accumulating biases in whiskers during operation. An
example of this can be seen on Figure 16. After the first two displacements, the resting
point of the whisker remained very similar, however after a multitude of displacements, the
resting point changed by about 3 degrees. As this skewed the perception of the robot into
slightly invalid values — eventually resulting in a detected contact on the whisker’s side —
then a mechanism was needed to recalibrate the whiskers depending on certain conditions.

Figure 16. Example of accumulating bias in whisker bias.

A key problem is that at one given point in time it cannot be known whether the whisker is
displaced due to bias or due to contact. Thus calibration has to consist of two parts, first
navigating the whisker array away from any potential contact, and only then calibrating
the array. The following strategy for calibration is used:

1. If calibration is initiated, create a set of uncalibrated directions U = {Dleft, Dright,

Dfront, Drear}.
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2. If U = ∅, calibration is completed and regular navigation/wall-following movement
can proceed. If U ̸= ∅, choose a direction d ∈ U .

3. Navigating away from a potential contact:
3.1. Create a deque q for calibrating d, i.e. a data structure which can hold a

maximum of s elements, and if adding an element would go over the limit,
then it deletes the first (i.e. oldest) element when adding a new element.

3.2. Add the maximum pressure value in the array Pmax(d) (in more detail in
Chapter 3.6.2) to deque q.

3.3. If |q| = s, calculate the standard deviation σ of all elements in deque.
3.4. If |q| < s or σ ≥ ξcal, move the robot in a direction opposite to d to reduce

pressure on the whisker array that is being calibrated.
4. Calculate an updated matrix for the whisker array:

4.1. Create a set M to store bias matrices and define the sample amount n with
which to average the bias calculation (see Equation (3.2)).

4.2. Store filtered whisker matrix W ′
k in M . If |M | ≠ n, wait for the next whisker

data update and keep the robot still.
4.3. If |M | = n, calculate the new bias matrix B−′ (see Equation (3.4)), where new

bias values b′−i,j are added to the current whisker array’s bias matrix values bi,j .
This can be achieved simply with matrix multiplication, for example for array
i = 1 this can be achieved with Equation (3.5).

4.4. Update U = U − d. Continue with Step 2.

b′−ij =

[∑n−1
t=0 θij(t)

n

∑n−1
t=0 zij(t)

n

]

B−′
=



b0,0 b0,1 . . . b0,n−1

b1,0 b1,1 . . . b1,n−1

...
... . . . ...

b′i,0 b′i,1 . . . b′i,n−1
...

... . . . ...
bn−1,0 bn−1,1 . . . bn−1,n−1


(3.4)

B−′
=

[
1 0 1 1

]
B−

old +
[
0 1 0 0

]
B−

new (3.5)

For calibration, pressure sample amount s, bias sample amount n and standard deviation
threshold ξcal have to be chosen, depending on the amount of sensor noise and the delay of
motor movement between control inputs. For s and n, too low values provide inadequate
bias compensation (due to not sufficient averages), and too high values take up too much
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time to calibrate. For ξcal, too high values mean the robot might still be in contact with
a wall during calibration, and too low values mean the robot will never start calibration.
Thus these values need to be calibrated for each type of robot separately. For the current
robot, these values were chosen to be s = 10, n = 20 and ξcal = 0.015. Also, in Step 3.4.
the velocity should be multiplied by a small constant to make calibration smoother and for
the robot to travel a lesser distance during calibration.

In addition, of course a collision could be detected from the other side of the robot in case
it is in a narrow gap. For this, the hard collision avoidance system (introduced in Section
3.10) would override the movement provided by the calibration. Thus calibration would
occur in the place of hard collision, which would still be the best calibration location for
the whisker array locally.

As to when to trigger calibration — in the present thesis it was triggered when a movement
algorithm was selected and also every 1000 whisker cycles, i.e. once every 50 seconds.
In the future, this could be optimised further to only trigger calibration once conditions
occur in whiskers that are likely to move the bias point, i.e. high pressure values, and also
to only trigger calibration for that specific direction.

3.6 Errors calculated from whisker pressures

In order to obtain information about the surroundings, the polar angle (θ) and perpendicular
forces (z) of single whiskers are converted into one general value for each whisker and
then into generalised errors over entire whisker arrays.

3.6.1 Individual whisker errors

A single whisker is always mapped to a single value, pressure p, which is normalized, i.e.
0 ≤ p ≤ 1. A p value 0 means no contact for the whisker and a p value 1 means that
the whisker effectively cannot bend any more without likely damage to the whisker. The
normalization values θmax = 0.7 and zmax = 25 were thus chosen during experiments
to take this into account. Weights wθ and wz can be varied depending on the experiment
results to prioritise the robot to use more of the polar angle θ or the perpendicular force
z. Due to measurement noise and the possibility of getting measurements beyond the
maximum value, it is also necessary to explicitly cap pθ and pz values in the formulas to
retain p normalization to [0, 1].

The formula for p is presented in Equation (3.6). In the following chapters, pij will be used
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to refer to the pressure calculated for a whisker that is in whisker array i and is the whisker
in the j’th position in the whisker array.

pz = max(1, abs(zrk/zmax))

pθ = max(1, (π/2− abs(θrk))/(π/2− zmax))

wθ ≥ 0, wz ≥ 0, wθ + wz = 1

p = wθ ∗ pθ + wz ∗ pz

(3.6)

In addition, as the algorithm is designed to work for following a wall on both its right side
or its left side, then the way of processing whiskers also changes when switching sides. As
such, we define the value signwall for use in further equations (see Equation (3.7)).

signwall =

{
1, if following right wall

−1, if following left wall
(3.7)

3.6.2 Generalised whisker array errors

In order to do wall-following and navigation, generalising errors to whisker arrays is
needed as well. For calculating the errors, both average and maximum pressure p values
are first calculated for each whisker array i, marked by Pavg(i) and Pmax(i) (see Equations
(3.8) and (3.9)). In the equations, the total number of whiskers in an array is marked as n.

Pavg(i) =

∑n−1
j=0 pij

n
(3.8)

Pmax(i) = max
j∈{0,1,2,...,n}

pij (3.9)

In addition, helper definitions are defined for upcoming equations: Dtracked as the direction
of the tracked wall and Dopposite as the direction opposite of the tracked wall direction.
Thus, for example if the indices of the left and right whisker arrays are respectively 3 and
4, and if the tracked wall direction is chosen to be the left side, then Dtracked = 3 and
Dopposite = 4. Thus also Pavg(3) = Pavg(Dtracked) and Pavg(4) = Pavg(Dopposite). These
helper definitions are defined because the tracked wall direction can change depending
on configurations. In addition — for clarity — when only a whisker array in a certain
direction is applicable, Dleft, Dright, Dfront and Drear will be used instead of using a
certain i value as above.
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3.6.3 Directional error

The directional error was introduced for keeping the robot as parallel to the wall (or object)
next to it as possible, primarily for the purpose of smooth wall-following. In addition, in
cases where the robot was surrounded by walls on two or three sides, it was one way for
the robot to orient itself correctly for continuing to follow the wall on a chosen side.

The basic principle of the directional error is to always try to keep the whiskers of an
array at the same length if possible. So if on the right side the frontmost whisker is the
only whisker to have contact, then the robot should turn left in the hopes of finding a wall
with also the other whiskers and then having the whiskers at the same length if possible.
However, this can be generalised for all whiskers. Thus if there is a tunnel that the robot
can fit through, then it would average the directions on both left and right sides to find the
optimal way through.

In addition, including the front and rear whiskers in the directional error also serves a
valuable purpose. As can be seen on Figure 17, pressure on front whiskers can serve as
another reason to rotate. If the desired wall to be followed is on the right, contact on the
front should force the robot to steer left (as there’s a wall or an impassable gap on the
right and front). If the desired wall is on the left, it should steer right. For calculating

Figure 17. Example of front whisker contact forcing rotation.

the directional error, the concept of a directional whisker weight wdir was introduced and
generalised for any whisker array that has equidistant whiskers, regardless of the number
of whiskers (see Figure 18 and Equation (3.10)). As a reminder, ⌊a/b⌋ means integer
division, i.e. a divided by b, with the fractional part discarded.
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Figure 18. Calculation of the directional whisker weight wdir for n = 8.

wdir =


⌊(j − n)/2⌋, if odd

⌊(j − n)/2⌋, if even and j ≥ ⌊n/2⌋

⌊(j − n)/2⌋ − 1, if even and j ≤ ⌊n/2⌋

(3.10)

In addition, the resulting total directional error for the whisker array is also normalised to
[0, 1]. Thus, the directional error for a given whisker array i is calculated with Equation
(3.11).

Ecdir(i) =

∑n−1
j=0 pijwdir(j)

2 ·
∑⌊n/2⌋

k=0 k
(3.11)

In order to create a correct directional error, knowledge of the placement of the whiskers is
required (see Figure 19). In addition, it was necessary to choose either the left or the right
side according to which other values will be set to either add or subtract from the error. In
this thesis the right side was chosen. This means that above-zero values from the weight
functions will come from right side sensors 4–7, which makes the robot turn left. To get
the same behaviour from left-side sensors 0–3, Edir(Dleft) have to be negated. For front
and rear whisker arrays, using the directional weights would not give additional benefit —
for the front side the robot should steer left (or right in the case of following the left wall)
regardless of the whiskers that are in contact. However, using both the Pavg and the Pmax

showed better adaptability than using just one, which led to using weights for them. As
for the rear whiskers, not much benefit was observed in regards to having the rear array
included in the directional error. Depending on the environment and the specific angles
it would usually disrupt the wall-following regardless if it was added or subtracted from
the error. This means that rear whiskers were excluded from the calculation of the final
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Figure 19. Layout of the RM3 whiskers and their indices.

directional error, Edir (see Equation (3.12)).
wavg ≥ 0, wmax ≥ 0, wavg + wmax = 1

Edir = Ecdir(Dright)− Ecdir(Dleft)

+ signfront(wavgPavg(Dfront) + wmaxPmax(Dfront))

(3.12)

3.7 Path planning

In order to follow a path, first the path has to be calculated after a destination has been
entered through a control application (described in Section 3.14). In this section, the
method of positioning, path planning and converting into an error of path following angle
are described.

3.7.1 Grid structure

As exploration is part of the functions of the robot, then before navigating through an
entire cave, the size of the cave cannot be known. Thus variable and fixed-size arrays
were considered unsuitable as data types and the structure for the grid was chosen to be
a dictionary, with the keys being (x, y) values, where x and y were signed integers. For
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future use, this can also easily be expanded to be a three-dimensional grid. Non-existing
values in the dictionary are thus considered passable until contact is detected on that square.
In addition, visited squares are marked separately to retain knowledge of the resulting map.

As localisation with whiskers was not a goal for the present thesis — will be developed
and integrated separately — then the position of the robot was acquired with a camera and
fiducial markers in real-world testing. For simulation, the coordinates of the robot in the
simulated world were simply used. As the scale of these coordinates could be different, the
resolution of the map also needed to be tuned based on the information or units of sensors
used for localisation.

In order to tune the resolution of the grid, grid square size λ is defined. Lower values allow
for more precise edges of obstacles, but too low values can increase the amount of time
it takes for exploration significantly. In order to transform the location of the robot into
the grid’s dimensions, Equation (3.13) is used. This is used for the direction errors, for
navigating to the next point. However, for graph-based path planning, integer values for
grid square locations are needed. For this, the location that is transformed to the grid’s
dimension is rounded to the nearest integer (see Equation (3.14)). This gives the location
of the grid intersection to which the robot is currently nearest to.x

′ =
x

λ

y′ =
y

λ

(3.13)


x′node =

⌊
x

λ
+

1

2

⌋
y′node =

⌊
y

λ
+

1

2

⌋ (3.14)

3.7.2 Marking collisions

In order to mark collisions based on the whiskers, the current orientation of the robot is
needed. As with the position, this was also obtained through a camera and markers for
real-world testing, or simply through simulator coordinates for simulation. For a collision
to be marked, a threshold of ξmark = 0.1 was chosen. Thus, if any whisker pressure
reaches over the given threshold, i.e. p ≥ ξmark, a collision is marked using the whisker’s
position.
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Table 2. Collision angle parameters based on whisker array.

Direction of whisker over
the threshold

Collision angle
αarray

Whisker angle multiplier
λwhisker(i)

Dleft 90° -1

Dright -90° 1

Dfront 0° 1

Drear 180° -1

Table 3. Whisker index to αwhisker mapping.

Whisker index 0 1 2 3 4 5 6 7

αwhisker -45° -30° -20° -10° 10° 20° 30° 45°

The whisker position is converted into an angle relative to the robot using Tables 2 and 3.
Table 2 first displays aarray, showing the angle of the direction of the whisker array relative
to the front of the robot. It also displays λwhisker(i), which relates to the direction of the
physical whisker array. Thus it allows to map the values of αwhisker in a unified direction
such that higher whisker indices would be towards the left of the robot and lower indices
towards the right.

The resulting total angle αcollision can then be used to mark a square on the grid as
impassable, as displayed on Figure 20. This process is repeated for all whiskers during
whisker preprocessing every time information about whisker states is received.

αcollision = αrobot + αarray + λwhisker(i) αwhisker (3.15)

3.7.3 Theta* implementation

Most of the Theta* algorithm could just be implemented as written in Section 2.6 using
the graph that was derived above. However, a line-of-sight check also needed to be
implemented. This is implemented by forming a line from point (x1, y1) to another point
x2, y2, as can be seen in Figure 21. Thus the slope a of the line can be obtained. Next, all
intersections of the line between the two points are calculated. This is accomplished by
first choosing the x coordinate, increasing its absolute value towards the second point by 1
(as it could be negative as well) and marking down all the edges it passes through, marking
the node position on both sides until x = x2. Then the same process is repeated for the
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Figure 20. Collision marking on the grid.

y coordinate. In addition, special cases have to be added for x1 = x2 and y1 = y2, as
these would have an invalid slope a of either 0 or ± inf, not allowing a correct calculation.
This is a similar method of producing line-of-sight calculations as was used in the original
Theta* proposition paper [31].

Figure 21. Basic Theta* line-of-sight calculation.

This sort of line-of-sight calculation however considers the robot to be a point without any
dimensions. Thus a path between two squares could be planned to cross that would require
an infinitely small robot to pass. As such, squares on the sides of these points should also
be included, as seen in Figure 22. As seen on the figure, additional line-of-sight checks are
performed, taking into account a constant c. Thus the space that is needed for the robot to
pass through is enough. The same approach for considering the width of the robot was
also used in [31].
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As the algorithm states, this line-of-sight check is used between all nodes except neigh-
bouring ones. If any of the nodes acquired using this way is marked as impassable, no
line of sight is present between the start and end node. Thus, when executing Theta*, the
performance of the line-of-sight check can be improved by performing a check for the
square being an obstacle or not instead of adding the square to a set S, and immediately
returning False if the node is an obstacle.

The algorithm for obtaining the nodes for the line-of-sight check is presented below:

1. Create set S = ∅ to store visited squares. Define δxmin = min(0, x2−x1), δxmax =

min(0, x2 − x1) and repeat for ymin and ymax.
2. For x collisions:

2.1. Assign δx = 0 and Spot = ∅.
2.2. If δx > x2 − x1, then move to Step 3.
2.3. Update δx = δx+sgn(x2−x1) and the resulting xk = x1+δx. Then calculate

the y part and transform it into a grid coordinate: yk = ⌊y1 + aδx + c⌋. If
y1 = y2, use yk = ⌊y1 + c⌋.

2.4. For points (xk−1, yk) and (xk, yk), if x1 + δxmin ≤ x ≤ x1 + δxmax and
y1 + δymin ≤ y ≤ y1 + δymax, add the point to S. Then go back to Step 2.2.

3. For y collisions:
3.1. Assign δx = 0.
3.2. If δy > y2 − y1, then finish the loop and return the visited square set S.
3.3. Update δy = δy+ sgn(y2− y1) and the resulting yk = y1+ δy. Then calculate

the x part and transform it into a grid coordinate: xk = ⌊x1 + (yk − c)/a⌋. If
x1 = x2, use xk = ⌊x1 + c⌋.

3.4. For points (xk, yk−1) and (xk, yk), if x1 + δxmin ≤ x ≤ x1 + δxmax and
y1 + δymin ≤ y ≤ y1 + δymax, add the point to S. Then go back to Step 2.2.

Figure 22. Theta* line-of-sight calculation with robot size modification.
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3.7.4 Path following angle error

Theta* calculates the sequence of path nodes p0, p1, ..., pm that is required to reach the
chosen destination. The sequence of path nodes is pruned at the start, i.e. path nodes that
are closer to the current robot location in Euclidean distance than a given threshold are
eliminated. This needs to be done as it is impossible to reach a given point precisely with
floating point numbers, and also it is required for the robot to not try to navigate back in
case the robot overshoots the initial goal by a small amount. This threshold was chosen
to be half the grid square size of the graph, i.e. ξremove = 0.5. For the final destination
this was chosen to be ξremove_final = 0.1 for a more accurate final position. In addition,
for the later aspect of utilising wall-following during path planning, then ξremove_wf = 3

was utilised when wall-following was being used in order to encourage wall-following.
Pruning the sequence of path nodes gives a new sequence: p′0, p

′
1, ..., p

′
n.

Then, the required angle between the current unrounded translated position s′ (floating
point precision) — obtained using Equation (3.13) — and the translated destination position
p′0 (integer precision) is calculated using Equation (3.16). As in the algorithm all the values
are in degrees, then the error is also converted to degrees. Then, the current position of
the robot is used to obtain the error Epath for the path following regarding direction (see
Equation (3.17)).

s′ = (x′s, y
′
s)

p′0 = (x′0, y
′
0)

αtarget =
180

π
atan2(y′0 − y′s, x

′
0 − x′s)

αtemp = (αrobot − αtarget) mod 360

(3.16)

Epath =

{
αtemp − 360, if αtemp > 180

αtemp, if αtemp ≤ 180
(3.17)

3.8 Weight-based movement system

In order to avoid complex decision trees and the need to smooth their movements, but still
retain traceability of what was determining the movement of the robot, the algorithm is
designed with the use of weights. A weight factor ϕi consists of a scalar weight wi and a
movement vector v⃗i (see Equation (3.18)). The way the parts of movement vector v⃗i impact
movement is described in Table 4. In addition, in the algorithm a short description is also
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Table 4. Impact of vx, vy and ψ̇ on motion.

Parameter Positive values Negative values
vx Forward motion Backwards motion

vy Movement left Movement right

ψ̇ Turn right Turn left

added to the weight factor, which describes the purpose of the specific weight factor.
wi ≥ 0, −1 ≤ vx, vy, ψ̇ ≤ 1

v⃗i =
[
vx vy ψ̇

]
ϕi = (wi, v⃗i)

(3.18)

To determine the robot’s final movement vector v⃗′, the weights are first normalised to a
sum of 1 to keep values within expected limits. Then, the weights are multiplied with
the respective weight factors’ movement vectors to obtain the final movement vector.
These two steps are combined into Equation (3.19). This final movement vector v⃗′ is
then published to a separate module — not developed as part of this thesis — which is
responsible for translating the movement vector to motor speeds.

v⃗′ =

∑n
i=1wiv⃗i∑n
i=1wi

(3.19)

Equation (3.19) and the overall logic can be considered similar to one of the most known
fuzzy logic systems: the Takagi-Sugeno model introduced in [36]. In fact, the exact same
equation is used in their method for defuzzification, with the vector being replaced by a
scalar value. However, two major differences are that there is no strict rulebase for the
method proposed in this thesis and also the inputs used are purely linear, without the need
to go through a fuzzification process beforehand. Moreover, in the chosen method all the
values affect each other due to normalisation. Though this is possible to implement in
fuzzy logic, it would make the rulesets very complex. Thus this is considered as a separate
method different to the Takani-Sugeno system.

3.9 Weight factors

In the following section all the weight factors created for the navigation and wall-following
algorithms are presented. In addition, all weight factors — except the base normalisation
and forward movement weight factors — also utilised a PID controller for easy tuning.
The weight factors will be presented in the order they were tuned.
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3.9.1 Base normalisation weight factor

In case the weights are small, then without having a baseline normalisation weight factor
in place, the weights themselves would not matter, but only their size relative to each
other. This means that for example if only a slight directional error is detected and the
other errors are near zero, the direction weight factor would get exceedingly high values
after normalisation. This in turn would prompt the robot to rotate at full speed, which is
unwanted behaviour if the error is small. Thus a normalisation factor (see Equation (3.20))
is introduced, keeping small weights small in proportion.
wbase = 1

v⃗base =
[
0 0 0

]
ϕbase = (wbase, v⃗base)

(3.20)

3.9.2 Wall distance

The wall distance error Ey, i.e. the y-axis error, is used for keeping the robot at a fixed
distance from the wall. The error is calculated (see Equation (3.21)) by adding together
Pavg and Pmax with specific weights wmax and wavg determined during experiments.

Ey =(wavgPavg(Dtracked) + wmaxPmax(Dtracked))

− (wavgPavg(Dopposite) + wmaxPmax(Dopposite))
(3.21)

During experiments it was noted that using just the Pavg(i) disregarded some whiskers
being very close to the wall or an object and thus the robot either eventually collided with
the object or the whisker itself deformed too much. In addition, using just the Pmax(i)

value did not provide a consistent performance for rough surfaces and resulted in too much
oscillation even at low PID values. The resulting weight factor is brought out in Equation
(3.22).

vec(Dtracked) =


[
0 1 0

]
, if Dtracked = Dleft[

0 −1 0
]

, if Dtracked = Dright

wwall_dist = |Ey|

v⃗wall_dist =
[
0 sgn(Ey)vec(Dtracked) 0

]
ϕwall_dist = (wwall_dist, v⃗wall_dist)

(3.22)
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3.9.3 Wall tracking direction

The wall tracking direction Edir is used for keeping the robot as parallel to the wall as
possible. As previously mentioned, some methods have used the least squares method
for this, but the unpredictable environment RM3 is designed to work in makes it hard to
apply. Instead, this weight factor directly uses Edir derived in Equation (3.12), without
any modification in between, except a PID. The directional weight factor is brought out in
Equation (3.23).
wdir = |Edir|

v⃗dir =
[
0 0 −sgn(Edir)

]
ϕdir = (wdir, v⃗dir)

(3.23)

3.9.4 Path following angle

The path following angle error Epath is used for keeping the in the correct orientation to
follow the calculated path. The path following angle weight factor also directly uses the
Epath error, derived in Equation (3.17), without any modification in between, except a PID.
The path following weight factor is brought out in Equation (3.24).
wpath = |Epath|

v⃗path =
[
0 0 sgn(Epath)

]
ϕpath = (wpath, v⃗path)

(3.24)

3.9.5 Forward movement

For wall-following to happen, a robot must vary its forward momentum depending on
the need to get closer to the wall so it would not overshoot the wall or collide with it. In
addition, the robot should not go forward when it is not in contact with the wall it should
follow or when the angle of the wall in relation to the robot is not close to being parallel.
This is achieved by setting a weight for the forward movement weight factor that depends
on wwall_dist and wdir (see Equation (3.25)). In order to select a value for the forward
movement, first γwall_dist was tuned to be appropriate, i.e. to not cause large oscillations,
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but still be responsive. After this, γdir was tuned.

γwall_dist = max(1,min(0, 1− 2|Ey|))

γdir = max(1,min(0, 1− 1.25|Edir|))

wforward_wall = γwall_distγdir

v⃗forward =
[
1 0 0

]
ϕforward_wall = (wforwardwall, v⃗forward)

(3.25)

As navigation does not use Ey or Edir, then a different weight calculation is also needed
for forward movement. The purpose of the forward weight in this case is to slow the robot
down when approaching an obstacle on the front. For navigation, using the maximum
pressure in the front was chosen (see Equation (3.26)). The value was chosen such that
wforward_path would be 1 with no pressure on the front and 0 if the hard collision avoidance
system would activate.
wforward_path = max(1,min(0, 1− 1.25Pmax(Dfront)))

v⃗forward =
[
1 0 0

]
ϕforward_path = (wforward_path, v⃗forward)

(3.26)

3.10 Hard collision avoidance

As there can occur cases where the weight-based algorithm (or any algorithm for that
matter) could potentially cause damage to the robot’s components, especially for high
velocity values, then a hard collision avoidance system was implemented. The goal is
to have a predefined threshold for when to invoke hard collision avoidance, upon which
the robot would stop and slowly move back from the side with the most pressure. The
implemented hard collision avoidance is presented below. The chosen thresholds were
ξavg = 0.4 for Pavg(i) and ξmax = 0.8 for Pmax(i).

In addition, the need for an additional more complex mechanism arose in order to avoid
perpetual oscillations between either front-rear or left-right directions. This can occur for
example if the robot moves into an appropriately-sized hole on which both sides have a
pressure above the threshold or very close to it. In addition, a threshold reduction ξr = 0.3

was defined for avoiding this oscillation. If a danger of perpetual oscillation is detected
and if wall-following is currently being performed (i.e. Dtracked is set), then the movement
direction is simply the opposite of the tracked direction, as we can be sure there’s a wall
on the other side. However, if hard collisions are detected for example on the left and right,
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then inclination information needs to be used to obtain an appropriate direction, as can be
seen in Step 6.

1. Set dirprev = 0 if not set, for tracking previous hard collision movements that did
not result from avoiding perpetual oscillation.

2. If max
i∈D

(Pavg(i)) ≥ ξavg or max
i∈D

(Pmax(i)) ≥ ξmax, then hard collision was detected
and maximum hard collision direction i was obtained (taking Pavg with a higher
priority as is written). If no hard collision was detected, then regular movement can
proceed.

3. Check for perpetual oscillation:
3.1. Check which directions have Pavg(i) ≥ ξavg − ξr or Pmax(i) ≥ ξmax − ξr. If

both directions on an axis (i.e. both Dleft and Dright or Dfront and Drear) were
over a threshold, then skip to Step 5.

3.2. Check if dirprev is the opposite direction of array i. If yes, skip to Step 5.
4. If checks for perpetual oscillation were false:

4.1. Move the robot in the opposite direction (see Table 5) of the high-pressure
direction in order to move away from the hard collision. This should be
performed at a slow pace with a fairly low value to ease transition back into
regular weight-based movement.

4.2. Set dirprev to the direction the robot moved towards.
5. If Dtracked is set:

5.1. Move the robot opposite from Dtracked at a slow pace. In addition, slight
rotation towards the Dtracked direction should be added to aid wall following.

6. If Dtracked is not set (thus wall-following not currently enabled):
6.1. If directions were front-rear, calculate inclination inc = Ecdir(Dfront) +

Ecdir(Drear). If inc ≥ 0, movement direction should be Dright. Otherwise, it
should be Dleft.

6.2. Otherwise (i.e. if directions were left-right), calculate inclination inc =

Ecdir(Dleft) + Ecdir(Dright). If inc ≥ 0, movement direction should be
Drear. Otherwise, it should be Dfront.

6.3. Move the robot towards the chosen movement direction at a slow pace, without
any rotation added.

3.11 Wall-following algorithm

This section describes the final algorithm for wall-following in detail. A higher level
overview was presented in Section 3.3.1 and on Figure 12. First, basic safety and calibration
checks are performed, in order to ensure the safety and correct calibration of the robot.
Then, contact with the tracked wall is checked, and the robot is moved with a constant
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Table 5. Movement vectors for hard collision avoidance.

Whisker index Desired movement
direction

Published no-weight
movement vector

Dleft Right
[
0 −1 0

]
Dright Left

[
0 1 0

]
Dfront Backward

[
−1 0 0

]
Drear Forward

[
1 0 0

]

speed towards the wall if no contact with the wall is detected. This prevents the weight-
based movement from having integral windup when not in contact with the wall and allows
higher PID gains and thus more responsive PID output values. Once the movement vector
is returned, it is also multiplied with a velocity factor chosen in the control application
(described in 3.14) to either increase or decrease robot velocity.

1. Check for hard collision using the algorithm defined in Section 3.10 using predefined
thresholds for Pmax and Pavg. If hard collision exists, then move the robot according
to the appropriate movement vector.

2. If calibration has been initiated, then use the calibration algorithm described in
Section 3.5. If the calibration algorithm has not been completed and thus returns
a valid movement vector, move the robot according to the movement vector and
deactivate the PID controllers to avoid integral windup.

3. If Pavg(Dtracked) < ξtrack, i.e. no contact is detected on the tracked wall with a given
threshold ξtrack, then deactivate PID controllers and move the robot slowly towards
the Dtracked direction (0.1 coefficient on max speed in the present thesis, with a
ξtrack = 0.05).

4. Weight-based movement:
4.1. If PID controllers are deactivated, then re-activate them and reset the integral

values to 0.
4.2. Calculate the movement vector based on the weight-based movement method

described in Equation (3.19) with set Swall = {ϕbase, ϕwall_dist, ϕforward_wall,

ϕdir}.

3.12 Navigation algorithm

The navigation algorithm — outlined on a higher level in Section 3.3.2 and on Figure
13 — uses hard collision avoidance and calibration in the same way as wall-following.
First, a check is done to halt movement if the robot has arrived at the destination. Then,
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basic checks are done just as in the wall-following algorithm to handle hard collisions and
calibration. Then, a check is done to see whether wall-following could be used during
navigation, to speed up navigation in unknown areas (introduced in Section 3.12.1). If all
the mentioned algorithms do not return a movement vector, then weight-based movement
is used to move the robot directly to the path node.

1. If the current position is the destination or no destination has been supplied, hold the
robot still.

2. Check for hard collision using the algorithm defined in Section 3.10 using predefined
thresholds for Pmax and Pavg. If hard collision exists, then move the robot according
to the appropriate movement vector.

3. If calibration has been initiated, then use the calibration algorithm described in
Section 3.5. If the calibration algorithm has not been completed and thus returns
a valid movement vector, move the robot according to the movement vector and
deactivate the PID controllers to avoid integral windup.

4. If it is possible to use wall-following during navigation (see algorithm in Section
3.12.1), then use the movement given by the algorithm.

5. Weight-based movement:
5.1. Deactivate wall-following PID controllers.
5.2. Calculate the movement vector based on the weight-based movement method

described in Equation (3.19) with set Spath = {ϕbase, ϕforward_path, ϕpath}.

3.12.1 Utilising wall-following

In order to improve navigation speed in unknown areas with obstacles, wall-following
is utilised when applicable. The way this is achieved can be seen in Figure 23. If a
wall is detected on the left or right side and the next path node is within the thresholds,
wall-following can start.

For the thresholds, the open side threshold serves the purpose of not going too far with
the wall-following if the path node is on its (hopefully) free side. The wall side threshold
serves the purpose of redirecting the robot if the desirable path node is in the other direction.
These thresholds can be tuned to achieve optimal performance, but for the present thesis
the open side threshold was set to ξopen = 40◦ and the wall side threshold to ξwall = 150◦.

An example of both the open side and wall side thresholds can be observed in Figure
24. Also, keep in mind that this is designed for times when the map is still unknown and
true line-of-sight values are not known yet. First, on Figure 24a the robot has detected a
collision on its right with the whiskers and thus can start following the right wall. Then it
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Figure 23. Utilisation of wall-following during navigation for right-wall following.

reaches the first node — causing the first node to get deleted and node 2 getting the index
of 1 — and starts to rotate around the path node on Figure 24b.

(a) Following a wall during
pathfinding, using wall side threshold.

(b) Robot during turning
when pathfinding.

(c) First path node going outside the
threshold after path recalculation.

(d) Stopping of wall-following due to no
wall contact.

Figure 24. Example of utilising wall-following for navigation.

Then, the robot goes past the threshold of the path node on its left on Figure 24c. Thus,
according to our rules, wall-following can not continue and regular path planning movement
is used, i.e. weight-based movement to reach the path node directly. The robot then rotates
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to its left and continues on to the path node, seen on Figure 24d. The full algorithm is the
following:

1. If uninitialised, initialise qpath = false, qwall_follow = false, cycles = 0.
2. If no path can be calculated and there is side contact (Pavg(Dleft) ≥ ξavg or
Pavg(Dright) ≥ ξavg), perform wall following, setting Dtracked as the side direc-
tion with a larger Pavg(i) value.

3. If qalign = true:
3.1. If |Epath| > ξnav, then proceed with regular navigation.
3.2. If Pavg(Dleft) ≥ ξavg or Pavg(Dright) ≥ ξavg, then also proceed with regular

navigation, in order not to trigger wall following again until a transition to path
following is complete (rotation and movement away from initial point).

3.3. Otherwise, set qpath = false and continue with the next step.
4. Calculate whether the left side is within the wall-following threshold, (−ξwall <

Edir < ξopen), and whether the right side is within wall-following threshold
(−ξopen < Edir < ξwall).

5. If qwall_follow = true and the current tracked side Dtracked is within wall-following
threshold, then continue wall-following with the same Dtracked direction.

6. If either left or right side have contact and the side with a higher Pavg(i) value is
within wall-following threshold, then wall-following can start. Set Dtracked to the
side with the higher Pavg(i) value. Also set qwall_follow = true and temporarily
deactivate path planning PIDs to avoid integral windup. Then execute the regular
wall-following algorithm.

7. If qwall_follow = true or Dtracked ̸= 0 and there is side contact, then cancel wall-
following and rotate towards the next path node, i.e. set Dtracked = 0, qwall_follow =

false and qpath = true. Then execute weight-based navigation.
8. If Dtracked = 0, there is front contact (Pmax(Dfront) ≥ ξmax) and no contact on the

sides, then an attempt to rotate the robot to a suitable wall-following position is
made. If Edir ≥ 0, set Dtracked = Dright, else set Dtracked = Dleft.

9. If Dtracked ̸= 0:
9.1. If cycles >= ξcycles, then the threshold amount of cycles of direct movement

has been exceeded. Clear αgoal if set, and set cycles = 0.
9.2. If αgoal is not set, then set αgoal = αrobot + 30 if Dtracked = Dright, else set

αgoal = αrobot − 30.
9.3. Get the current error between the temporary goal orientation: ∆goal = αgoal −

αrobot.
9.4. If |∆goal| ≥ ξnav, then set cycles = 0, deactivate all PIDs and turn the robot to

reduce the error, i.e. towards left if ∆goal < 0 and right otherwise.
9.5. If |∆goal| < ξnav, update cycles = cycles+1 and run the regular wall-follower
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algorithm. Thus it will try to find a wall in the Dtracked direction until it finds
one or the amount of cycles run out.

10. If previous steps did not return a movement vector, then wall-following cannot be
currently performed and regular path following is used.

Several thresholds are defined for the algorithm. The temporary goal orientation ξnav = 5◦,
the Pavg(i) pressure threshold for a contact ξavg = 0.05, the Pmax(i) pressure threshold
for a contact ξmax = 0.05 and the amount of cycles ξcycles = 10 to attempt to find a
wall (by performing wall-following). In addition, qpath is a variable to transition from
wall-following to path following when the angle of the robot is not in the wall-following
threshold any more.

The full algorithm can be considered relatively complex compared to the logic of weight-
based movement. The main reason behind this is that there are quite many corner cases
that can arise when transitioning from wall-following to path following and back, usually
resulting in perpetual loops. One example of this is when the robot is rotating away from
the wall in order to follow a path and then encountering a wall again, forcing it to rotate
back towards the wall (as now it is within wall-following threshold). This example was
solved with Step 3.2.

3.13 Tuning PID controller parameters

There are three PID controllers used in the algorithms in total: for Ey, Edir and Epath.
For these errors, having a PID controller in between the input and the output of the error
increases the stability significantly compared to using a proportional controller with gain 1.
In addition, for Ey a setpoint can be set to ensure contact with the wall is achieved.

For tuning PID controller parameters, a manual approach based on oscillation was used,
however the starting parameters were taken with the approach mentioned in Section 2.7,
i.e. increasing proportional gain until the system starts to oscillate and then setting values
based on a formula presented in [33, p. 160]. As the PID controls are linked and also the
value itself modified on each cycle due to the weight-based approach, then these values
were always reduced even further.

As the PID controls affected each other, each error was first tuned separately, without
involving any other movement. Then, the movements were combined one-by-one. So,
for wall-following, first the combination of ϕbase, ϕwall_dist and ϕforward_wall were tuned
together before adding ϕdir and tuning all PID controllers together depending on the
resulting behaviour. The resulting PID controller values can be seen in Table 6. The
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setpoint for Ey was either 0.2 or -0.2 depending on whether the tracked side was left or
right.

Table 6. Tuned PID controller values.

Error type Kp Ki Kd Setpoint Saturation
Ey 1.0 0.5 0.2 ±0.2 [−0.5, 0.5]

Edir 7.5 1.5 0.5 0.0 [−5, 5]

Epath 0.5 0.1 0.2 0.0 [−40,−40]

It was also observed that the PID controller values that were tuned in simulation were
slightly suboptimal in real-world tests. As only one real-world environment for tests was
used, then different terrains could also have different optimal PID controller values. Thus
this was considered as one avenue for more research in the future.

3.14 Control application

For the control mechanism, a terminal-based application was created to allow changing
the parameters of the pathfinding algorithm in real-time, for testing both in simulation and
real life. The application allowed to:

■ select (and also change in real-time) one of the following pathfinding algorithms:
– left wall following;
– right wall following;
– waypoint-based A* algorithm;
– waypoint-based Theta* algorithm.

■ change the destination point of the navigation algorithm (for waypoint-based algo-
rithms);

■ change the velocity of the navigation;
■ turn the navigation algorithm off (killswitch).
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4. Results and discussion

In the following chapter the results of simulation and real-world testing are described,
including the method with which the algorithm was tested, the measurements taken and
the changes the tests resulted in.

4.1 Overview of experiments

Continuous testing in the simulator was done during the development of the algorithm and
three real-world experiments were carried out for validation. This section will explore the
methodology with which the simulated and real-world experiments were carried out and
analysed.

4.1.1 Simulation with Gazebo

As robots are often easier to test and develop in simulations, then a simulation environment
for the RM3 had been previously built. The simulator that was used was Gazebo. Gazebo
is an open-source 3D simulator with a physics engine that also supports relatively realistic
sensor simulation, including cameras and laser range finders. With additional programming
it is also possible to create custom sensors, as was previously done for the whiskers as part
of the ROBOMINERS project. In addition, Gazebo interfaces very well with ROS 2, the
chosen operating system for the RM3 robot.

In Gazebo, the RM3 could be placed in different environments to allow testing the per-
formance of the algorithms in various conditions. The environments used in the thesis
were created using Blender. Environment 1 (see Figure 25) was a cave-like environment
with walls that were curved and had many different facets. Environment 2 (see Figure 26)
was an unpredictable city-like environment containing sharper, more defined objects like
barriers, trees, water fountains and garbage containers.

Initial tests while developing the algorithms were done on environment 1 due to more
cave-like features. However, with complex objects like the cave walls with a complex
layout, problems started to appear with collision of small objects like the whiskers. The
main issue was the whiskers going through walls without colliding and thus passing faulty
information to the robot as a result. As environment 2 had very few such issues, then
environment 2 was the main environment used for tests, and environment 1 was mostly
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(a) Top-down image of simulated
environment 1.

(b) Closer view of the simulated
environment 1.

Figure 25. Layout of simulated environment 1.

(a) Top-down image of simulated
environment 2.

(b) Simulated environment 2 at an angle.

Figure 26. Layout of simulated environment 2.

used to verify PID values for cave-like walls.

Due to computation constraints in the simulator, the whiskers were stiff, unlike their
real-world counterparts. Thus no amount of the recorded whisker’s deflection was lost to
the flexible whisker in simulation, which slightly modified the whisker pressure results. In
addition, no detailed simulation of the surface was done, meaning that if in real-world tests
the locomotion screws could dig up some of the ground and thus hinder locomotion, then
in simulation this was not a factor. In addition, as described earlier, artificial noise and bias
was added to the whiskers in simulation in order to simulate noise that would be present
in real-life measurements. Measurements were taken from real-life tests to provide the
best simulation possible, as filtering the noise impacts the response time of the algorithm,
which in turn require different PID values for weight factors.
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4.1.2 Real-world experiments

In order to test the suitability of the algorithm in real-world use for the RM3 robot,
three experiments were conducted. Different environments were created for testing the
algorithm, taking into account various challenges that were encountered in simulation. The
environments were created using available objects: bricks, styrofoam walls and a large
flower pot. External camera-based pose estimation was used for measuring the pose and
analysing the trajectories of the algorithms. In addition, for navigation the same pose
information was also passed as input, as described in Section 3.2.

The environments (see Figures 27-31) were created specifically to take into account
different failures that initially occurred during testing in simulation. This includes areas
for testing undershoot, i.e. when the turn is too sharp and the robot overshoots into empty
space. These can be seen on the left side of the environment. Also another situation is the
potential of driving into a wall at a sharp angle, which can be seen at the top half part of
the environment.

Figure 27. Top-down angle of the environment used for the first test.

Figure 28. Close-up angle of the environment used for the first test.

4.1.3 Analysis

For validating the performance of the algorithm, data originating from either the RM3 ob-
ject in the simulator or the data originating from the external camera-based pose estimation
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Figure 29. Close-up angle of the environment used for the second test.

Figure 30. Top-down angle of the environment used for the third test.

Figure 31. Close-up angle of the environment used for the third test.

was used. Then, the traversal time and total distance were calculated. For calculating theo-
retical fastest times, the fastest forward speed and the fastest turning speed were obtained
by having the robot only do the specific movement, and then by taking the average of the
movement speed of 100 samples. The obtained maximum speeds are presented in Table 7.

Table 7. Forward and angular speeds used for calculating the theoretical best traversal
time.

Movement type Simulation Real-world experiment

Moving
(m
s

)
0.18 0.053

Turning
(
deg

s

)
22.50 6.45
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The theoretical fastest traversal for a given path itself was calculated by taking the path
of the robot — averaged over 100 samples for real-world experiments, not filtered for
simulation — and then dividing it with the maximum forward speed of the robot, presented
in Table 7. In addition, turning was also included by calculating the amount of turning
needed to pass the course and dividing it by the maximum turning speed. As this calculation
does not include physical factors like acceleration or surface conditions changing, then
this is of course realistically unachievable. However, comparable results can be achieved.
These results could then be compared with the results of the algorithm to provide a metric
for the algorithm’s performance.

In addition, for navigation, an additional theoretical best was calculated where the whole
environment had been explored (and thus the theoretical best path was also known). In
some cases, especially for simpler cases, the algorithm could find a similar path without
the map explored. However, in worse cases, the differences could be larger. There is
a theoretical limitation to this when the map cannot be known in advance. However,
algorithms can be tuned to be more likely to choose the correct path, especially if some
parameters of the environment and likely paths are already known.

4.2 Modifications for real-world use

In total, three separate real-world experiments were carried out in order to verify the
algorithm working in a complex environment. Experiment 1 encountered issues due to
different aspects not being considered. These issues are outlined in this section. Experiment
2 encountered issues relating to the robot’s locomotion hardware. As the robot is a
prototype and novel in several ways, then this was however to be expected, and will not be
covered due to the focus of the present thesis being on the algorithm implementation.

The present section also confirms the thought mentioned in Section 2.4 for the work the
author considers the closest current research to the present topic — that there are often
major differences between simulation and real-world use that also require changes in the
overall principles of the algorithm. An example of this is whisker bias, which if not dealt
with in the algorithm could make the algorithm unusable.

4.2.1 Whisker configuration

One issue that was confirmed during experiment 1 was the issue of blind spots for the robot.
Although this at times also appeared as an issue in simulation, then in simulation this issue
was not as severe. One major reason for this is that the cables required for connecting the
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whisker arrays to the main electronics compartment are not simulated. As the connector
cables have been engineered to be at the end of the whisker arrays, then blind spots being
at the same place was a major problem for wall-following and navigation (see Figure 32).
Though the cables used were relatively rigid, then these would not stand up to long-term
use. In addition, the connectors would of course ideally not be on the side in the future.

Figure 32. Blind spot for the default whisker configuration.

Three different approaches were tried for whiskers in regards to the blind spots, as seen on
Figure 33. The default whisker configuration is the configuration with the posed issue. The
diagonal edge whiskers were used only in simulation (with good results), as the currently
existing whisker arrays do not support having the whisker sensors at an angle. In this case
the edge whiskers themselves in theory could have been bent at such an angle that it would
have given a similar outcome, but this was not tried due to the modified whiskers likely
having more issues with bias in such a case.

(a) Default whisker
configuration.

(b) Diagonal edge whiskers
used in simulation.

(c) Connected edge whiskers used
in real-world experiment.

Figure 33. Whisker configuration approaches to mitigate blind spots.

The third variant — connected edge whiskers — was not used in simulation due to the
required effort of producing such a whisker modification in simulation. However, these
were tried out in the experiment 1 by using heat-shrink tubes to connect a regular whisker
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to a much longer whisker on the other side. This configuration needed no change in the
algorithm due to the way bias is accounted for, as described in Section 3.4.2.

In theory, the connected edge whiskers configuration should have performed well, espe-
cially with walls, as they provided full coverage of the blind spots on the plane they were
situated on. In tests however, this configuration introduced new issues, as the friction
between the styrofoam wall and the whiskers’ grooved plastic material was high enough
that following a wall in a stable manner was not possible. For other whiskers, mostly just
the ends of the whiskers touched the styrofoam walls, thus it was not a major problem.
Despite this, the connected edge whisker configuration was the best candidate of covering
the blind spots without large modifications to the whisker arrays. Thus this approach was
used for experiment 3, with the connected edge whiskers covered in tape to reduce friction.

In addition, the vertical placement of the whiskers was also explored. Different configu-
rations were first first tested out in simulation. If the demands are to only follow a wall
with the environment being very controlled (no debris, straight walls and even floors), then
one array could be considered enough. However, if there are uncertainties (see Figure
34), then there are blind spots on the vertical side as well, which need to be taken into
consideration. In case of just having level or ascending whisker arrays, lower obstacles
would cause issues for navigation. When only having descending whisker arrays however,
then a ceiling with a small slope could damage the main electronics compartment, as no
obstacle is detected in that case.

(a) Main blind spot for a level
single-array setup.

(b) Main blind spot for a descending
single-array setup.

Figure 34. Whisker configuration approaches to mitigate blind spots.

As was observed, just one whisker array is not enough for unpredictable environments.
Thus a more universal whisker setup is proposed in Figure 35. It avoids the blind spots of
level and descending single array setups by incorporating two arrays: one ascending and
one descending. There remain two relatively unlikely and small blind spots. For solving
these, different variants can be proposed, with the easiest theoretical solution being to add
more whisker arrays. Another way of solving this would be to have every whisker pair (i.e.
whiskers equally spaced from the center of the array) at a slightly different angle to cover
the blind spots vertically. One issue with this approach would be whisker bias, changing
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the angles over time. Due to the blind spots being small and improbable, any additional
mitigation of this was not explored.

Figure 35. Proposed universal whisker setup with its potential blind spots.

For real-world testing, initially only one array was used on each side, with the possible angle
between −30◦ and 0◦. Later, custom mounting brackets for the arrays were manufactured
with a 3D printer in order to attach multiple whiskers at an angle (see Figure 36). Initially,
a −30◦ and 30◦ configuration was used for all sides, as in Figure 36. However, as the walls
used for testing were too short, then final testing was done with the whisker arrays at −30◦

and 0◦ instead to obtain more realistic results.

Figure 36. Method of attaching whiskers at an angle.

4.2.2 Whisker friction

In Section 4.2.1, the connected edge whiskers were described to have a large amount of
friction with the styrofoam wall. Although not as big of an issue, then regular whiskers had
some issues with friction as well. As the tips of the whiskers were cut with wire cutters and
did not receive any further treatment, they were relatively sharp. Combined with the fact
that the whisker material itself was relatively stiff and thus required quite a large amount
of force to bend (and thus detect pressure), the friction for the tips of whiskers was also
relatively large. This in turn hindered smooth wall-following, as the whisker could usually
bend further due to the large friction force holding it against the wall.

For experiments 2 and 3, this was partly mitigated by gluing a plastic end cap onto the
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whisker (see Figure 37a). The grooves of the whiskers can also be seen on the same figure,
which are the main culprit in the large amount of friction. The oversized end cap depicted
is however not ideal either, as it could get stuck on some types of obstacles due to the
sharp edge. In order to improve upon this even further, gaffer tape was thus applied to
the ends of whiskers (see Figure 37b) in order to smooth out the edge between the end
cap and the whisker. As the connected edge whiskers were the most affected by friction,
tape was added for most of the entire part as well (see Figure 37c). Despite the connected
edge whiskers still showing signs after this of slightly getting stuck due to friction, it was a
major improvement.

(a) Whisker grooves and
end cap.

(b) Tape applied to the ends of whiskers.

(c) Tape applied to connected edge whiskers.

Figure 37. Mitigation of friction between whiskers and walls.

These measures are not a long-term solution by itself, only a temporary improvement due
to the nature of the present whiskers. However, these grooves are also not unnecessary
— they are present as they have the ability to be screwed into the whisker array. This
experiment however shows that the grooved main body of the whisker causes issues. Thus
in the future these grooves should be eliminated from the outer part of the whisker. One
option would be to cast the entire whisker with the base included, instead of having to
connect the whisker with grooves. As there have also been issues with the grooves in the
base wearing out, this would be one way of solving that problem.

In relation to the shape of the whisker, different materials and shapes of the whisker itself
could also prove beneficial. The whiskers used for the robot were of uniform thickness,
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however a tapering whisker was used in the cockroach-inspired wall-follower [19] with
good results. In addition, whisker-based sensing research covered in Section 2.3 also
seemed to use significantly more flexible whiskers that were also smaller in size. Of course,
stiffer whiskers have the benefit of producing less noise, in addition to being less affected
by the robot’s own movements and the movements of wind or water. Thus, this is still an
additional avenue for improvement and optimisation.

4.2.3 Whisker bias

As mentioned in Section 3.4.2, whisker bias had to be handled. As seen on Figure 37b,
the whiskers always have bias to some extent. However, in cases the whisker is displaced
to a larger extent, then the bias can also change during the execution of the algorithm,
especially so if there are lots of hard collisions. This is accounted for in the algorithm
through recalibrating, which for the final tests was done every 60 seconds. However, this
also means degrading performance of the whisker in most cases, as it cannot detect objects
anymore from as far away from the wall as possible.

This bias was most noticeable on the connected edge whiskers, especially in front on
the side which the robot tracked. As the connected edge whisker was constantly being
displaced up and down in different cases of obstacles, the bias accumulated very quickly.
An example of such a connected edge whisker can be seen in 38a.

In order to reduce the accumulating bias, a setup of two small strings of fishing line were
used in order to attach the centre of the connected edge whisker to the robot’s frame
(see Figure 38b). One of the strings was attached onto a higher part and the other onto a
lower part of the frame than the whisker. This was done to limit the motion range of the
connected edge whisker to desired positions. The fishing lines were pulled to be slightly
more than taut. This enabled the whisker bases to be at a higher angle to the whisker array,

(a) Accumulated bias in connected edge
whisker on the left.

(b) Fishing lines used for mitigating bias.

Figure 38. Mitigation of accumulating bias in connected edge whiskers.
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thus increasing the sensitivity to pressure for the connected edge whisker.

4.3 Wall-following results

In the following section the results of testing the final wall-following algorithm in both sim-
ulation and real-world experiments are presented and discussed. As previously mentioned,
final results only consider the final algorithm, i.e. the algorithm outlined in Chapter 3. Thus
the outlined results originate either from the latest simulation tests or from experiment 3.

4.3.1 Simulation

First, the results of wall-following are presented, being the simplest algorithm of the three.
As can be seen on Figure 39a, the trajectory of the Path 1 can be considered relatively
optimal in simulation. Most of the small bumps in the trajectory are spots where calibration
took place. Though this is not required for simulation (as accumulating bias was not
simulated), it was still done for the results to be more comparable to real-world cases.
However, this is a small part of the optimality difference.

(a) Full path. (b) Areas with gaps in the wall.

Figure 39. Path 1 of the wall-following algorithm in simulation.

Most of the difference between the algorithm’s traversal time and the theoretical best
traversal time (see Table 8) came down to the spots where there were gaps in the wall, such
which in this path were entirely in the spots outlined in 39b. In addition, the rotation in very
sharp corners also causes quite a bit of losses between the two. Decreasing the amount of
time the robot takes to move through these obstacles is a balance between speed, reliability
and smoothness. The slower the robot moves, the smoother the path, as the chance of
losing track of the wall is smaller. Thus the traversal time could likely be reduced at the
cost of a less defined path with more oscillation.

Path 2 for wall-following was chosen to involve slightly more complex objects (see Figure
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Table 8. Performance of the regular wall-following algorithm for Path 1 compared to the
theoretical best case.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Theoretical fastest traversal for the
wall-follower path

363.04 100.00% 59.71

Wall-follower 505.40 139.22% 59.71

40a). This included right angle turns, some less thick walls and also dynamic boxes which
moved when a considerable amount of pressure was applied on its sides. In addition,
wall-following was performed on the left. Though theoretically the same algorithm can
be used for both sides (with the small setpoint modification in Ey and change in Dtracked),
this was done to showcase that the algorithm is indeed able to follow walls on both sides.

(a) Full path. (b) Areas with sharp corners.

Figure 40. Path 2 of the wall-following algorithm in simulation.

As can be seen from the traversed path, the wall-follower followed the wall and obstacles
in a relatively smooth way. However, a lot of the time difference compared with the
theoretical fastest traversal of the path (see Table 9) came down to the sharp corners. For
the first box on the right (see Figure 40b), the robot moved towards the wall ignoring the
small pressure on its front-right corner initially. Then, it took some time to turn, changing
between turning towards its right and avoiding the occurring hard collisions on its left, rear
and front sides.

For manual control and for cases where the location of the robot, the wall and the obstacle
are precisely known, the robot could just reverse to a given distance, turn right and continue
following the box. However, the challenge here is to do this blind and avoid hard collisions.
Thus, close contact is needed with the tracked direction or on the two sides perpendicular
to it.
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Table 9. Performance of the regular wall-following algorithm for Path 2 compared to the
theoretical best case.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Theoretical fastest traversal for the
wall-follower path

290.77 100.00% 42.22

Wall-follower 565.15 194.36% 42.22

If these situations would be frequent, the rectangle outer shape of the robot or the whiskers
could be changed to be more rounded. An ideal case for turning would be for the outer
shape to be a circle. Thus turning would not induce additional pressure and only change the
locations of the pressures around the robot, making it ideal for turning. However, there are
of course other tradeoffs for this, e.g. smooth wall-following becoming more difficult with
the mentioned configuration, and likely increased costs and complexity in manufacturing.

Another issue that was also present for Path 2 was that at the termination point was an
obstacle that was uncrossable due to the combination of the algorithm and the whisker
setup (see Figure 41). As the algorithm prioritises a certain distance from the wall and also
a total direction sum of 0, then in this case the robot gets stuck. This is due to the large
hole similar to the length of the whisker arrays and the thin wall. Thus, the robot started to
slowly oscillate between directions.

Figure 41. Example of an uncrossable obstacle for the wall-follower.

There is reason to believe this would not occur with the connected edge whisker configura-
tion that was used for real-world experiments. Instead of the wall on the top-right being
stuck between two edge whiskers, the wall would instead apply pressure to the connected
edge whisker and also provide the Ey threshold for the robot to move forward.
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Based on the above, the simulator tests confirmed that overall the wall-following algorithm
was reliable, but inoptimal at times. In addition, the simulations showed that issues with
the simulated whisker configuration can occur.

4.3.2 Real-world experiments

For the real-world experiments, difficult cases from the simulator were carried over into
real-world environments for verification in real use. Path 3 was navigating around the whole
environment. The tests were carried out with two speed settings of the algorithm. This
meant that all of the published movement vectors were multiplied with a constant of either
1.0 or 1.5. The resulting trajectories the robot moved in for both cases can be observed on
Figure 42. As there was significant noise in measuring compared to simulation, the pink
line signifies the path with positions averaged over 10 readings, and the green identifies
positions averaged over 100 readings. The same is true for all real-world experiments.

(a) With speed setting 1.0. (b) With speed setting 1.5.

Figure 42. The path of the wall-following algorithm in experiment 3 with two different
speed settings.

The real-world experiment highlights the same as the previous simulation tests: that the
main factor in a lower traversal time compared to the theoretical best (see Table 10) is
navigating around sharp corners. As can be seen for both, the main positions with less
smooth movements are in the sharp corners, especially so for the 1.5 speed setting variant.
This is a result of the same behaviour as seen in simulation for Path 2: the need to rotate
around while avoiding hard collision, but still keeping in contact with the tracked side or
in its absence the two sides perpendicular to it.

In addition to the inoptimality pointed out in the simulator, the robot also struggled a bit
with locomotion. This was especially visible on smooth turns, like the one around the
upside down flower pot visible on the top-right in Figure 42. For these movements there
were situations where two of the locomotion screws stood still and only acted as breaks
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Table 10. Performance of the wall-following algorithm at two speeds compared to the best
theoretical result.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Distance
(%)

Theoretical fastest traversal 531.49 100.00% 19.42 100.00%

Right wall, speed 1 1304.60 245.46% 21.40 110.19%

Right wall, speed 1.5 1416.30 266.48% 25.59 131.80%

for the other two screws, slowing down the overall movement and also causing more
damage to the top part of the surface than usual. This was not strictly an issue with the
present algorithm, but instead with the locomotion algorithm that converted the published
movement vectors to motor speeds. However, it still added to the increased traversal time
of the algorithm.

Overall, the real-world experiments confirmed much of the same as the simulator: that
overall the algorithm was reliable, but inoptimal for sharp angles. In addition, issues
with the locomotion algorithm converting the algorithm movement to motor speeds also
increased the traversal time for real-world experiments.

4.4 Navigation results

In the following section the results of testing the final navigation algorithm in both simula-
tion and real-world experiments are laid out and discussed. As previously mentioned, then
final results only consider the final algorithm, i.e. the algorithm outlined in Chapter 3. Thus
the outlined results originate either from the latest simulation tests or from experiment 3.

4.4.1 Simulation

Firstly, simulation results are presented. One of the main hypotheses raised in the Chapter
3 was that of the wall-following Theta* offering better performance compared to regular
Theta* for maps with an unknown state. Thus, this was tested out in simulation as well.
For Destination 1, as seen on Figures 43 and 44, this indeed seems to be the case when
looking at the paths both algorithms took.

The wall-following variation results in a smooth path, needing to rotate very little against
an unknown wall, whereas the regular Theta* algorithm needs to turn 180◦ for every
traversed square for a diagonal wall as seen on Figure 44. However, this also depends on
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Figure 43. Navigation for Destination 1 in simulation using the final Theta*-based
algorithm that utilises wall-following.

Figure 44. Navigation for Destination 1 in simulation using the final Theta*-based
algorithm that does not utilise wall-following.

having an optimal algorithm in place to engage and disengage the wall-following. For
Destination 1 this algorithm looks optimal: the line is smooth when following the wall and
also the wall-following is stopped almost as soon a direct line-of-sight appears between
the robot’s location and the destination.

When looking at the traversal times and distances (see Table 11), then a similar conclusion
can be made as when looking at the paths qualitatively. When not utilising wall-following,
the distance increased by only 14.77%, however the traversal time improved by 42.97%.
As turning is time-consuming, then this is an expected outcome.

For Destination 2 (see Figure 45), a point was chosen to require a more complex trajectory.
Though both start against a diagonal wall similar to the last example, the navigation gets
more complex after doing the turn, as there is an rectangular obstacle in the way in addition
to a sharp angle right next to it.

Similar to Destination 1, following the diagonal walls was one reason for a longer trajectory
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Table 11. Performance of Theta* vs Theta* wall-following in simulation for Destination 1
compared to the theoretical best cases.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Distance
(%)

Theoretical best (map explored) 97.75 83.13% 16.90 83.57%

Theoretical fastest traversal for the
Theta* wall-following path

117.59 100.00% 20.22 100.00%

Theta* wall-following 164.55 139.94% 20.22 100.00%

Theta* without wall-following 288.35 245.22% 23.21 114.77%

(a) Utilising wall-following. (b) Not utilising wall-following.

Figure 45. Navigation for Destination 2 in simulation using the final Theta*-based
algorithm.

and a longer traversal time for the algorithm not utilising wall-following. However, this
time there was also very small potential benefit — it did not try to go between the
rectangular obstacle and the wall and it happened that the fastest traversal path was not to
go through. However, in cases where the robot is just small enough to fit through this, then
the algorithm utilising wall-following could provide different solutions to the algorithm
not utilising wall-following.

Looking at the traversal times and distances (see Table 12), the results could be considered
similar to the results for Destination 1. For Destination 2, utilising wall-following improves
the traversal speed by 26.39%. However, due to the increase in the amount of sharp turns,
the difference in time between the Theta* wall-following variant and the theoretical fastest
time for the path was now significantly higher. This was also seen in tests in the wall-
following algorithm overall in Section 4.3.
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Table 12. Performance of Theta* vs Theta* wall-following in simulation for Destination 2
compared to the theoretical best cases.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Distance
(%)

Theoretical best (map explored) 149.53 64.87% 24.67 72.55%

Theoretical fastest traversal for the
Theta* wall-following path

230.52 100.00% 34.00 100.00%

Theta* wall-following 420.85 182.57% 34.00 100.00%

Theta* without wall-following 571.70 248.01% 36.21 106.50%

4.4.2 Real-world experiments

Due to time constraints and the significantly better performance of the wall-following
variant of Theta* in simulations, only the wall-following navigation algorithm was tested
in real-world experiments. Three different trajectories that were used in experiments are
presented.

Firstly, two successful navigations are presented, Destinations 3 and 4 (see Figure (see
Figure 46). Destination 3 was similar to the simulated Destination 1, and performed
similarly as well when observing the path. Though there are some smaller deviations, these
are mostly seen in the areas of the wall where additional curvature was added to make it
more cave-like.

(a) Destination 3, a simpler trajectory. (b) Destination 4: a longer, more complex
trajectory.

Figure 46. The paths of two experiments for the navigation algorithm utilising wall-
following.

Destination 4 on the other hand was a longer and more complex trajectory. Overall, it
performed better than wall-following as well, allowing to skip the sharp corner on its right
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midway through. However, towards the end of the trajectory on the top left there was an
inoptimality — the robot switched to regular navigation and went to a grid square, when it
would have been more optimal to continue wall-following.

As previously mentioned, the optimality of the Theta* algorithm utilising wall-following
depends largely on the algorithm that switches between wall-following and regular Theta*.
Thus the thresholds, grid square size and a plethora of other variables could be altered
for better performance that is tuned to specific environments. Further optimisations to the
switching system are thus definitely an additional avenue for research.

Results for Destination 3 (see Table 13) show that the traversal time of the algorithm was
205.94% of the theoretical fastest traversal time. For the simulated Destination 1, the
corresponding value for the same algorithm was 139.94%. Thus it can be concluded that
the unsimulated real-world factors described at the end of Section 4.3.2 — the locomotion
system and the addition of a surface material — increase the traversal time quite a bit when
compared to simulation, even when no sharp angles were present as in Section 4.1.2.

Table 13. Performance of Theta* wall-following algorithm for destination 3 compared to
the theoretical best cases.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Distance
(%)

Theoretical best (map explored) 113.93 93.59% 5.83 94.73%

Theoretical fastest traversal for the
Theta* wall-following path

121.74 100.00% 6.15 100.00%

Theta* wall-following 250.70 205.94% 6.15 100.00%

For Destination 4, the difference in values (see Table 14) was even higher, just like for the
more complex Destination 2 in simulation. In addition, Destination 4 was the first example
where the theoretical best (for when the map is explored) was not chosen as the path, as the
shortest path would have been to go from the right of the structure. The traversal time for
Destination 4 was nearly four times higher than the theoretical fastest traversal time. This
shows that even if the path itself could be considered relatively optimal for an unknown
map, then there are improvements that can be made for a quicker traversal of the path.

So far mostly successful traversals have been shown. However, a more complex destination
— Destination 5 — got stuck in a local loop (see Figure 47). As regular wall-following did
not encounter issues in the same place, then it can be deduced that the current system of
utilising wall-following is still susceptible to local loops of a specific size. One aspect that
likely contributed to the issue was that the Theta* path planning algorithm could not find a
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Table 14. Performance of Theta* wall-following algorithm for destination 4 compared to
the theoretical best cases.

Description Traversal
time (s)

Traversal
time (%)

Distance
(m)

Distance
(%)

Theoretical best (map explored) 116.35 55.20% 5.87 58.37%

Theoretical fastest traversal for the
Theta* wall-following path

210.76 100.00% 10.06 100.00%

Theta* wall-following 810.40 384.51% 10.06 100.00%

way out, as the square sizes were too large and thus all squares nearby had been marked as
occupied. In these rare cases, the algorithm uses wall-following until it finds a valid path.
Thus it was thought that this behaviour might need additional logic to not get stuck in a
loop.

Figure 47. Failed real-world traversal with Theta* due to local loop in utilising wall-
following.

Overall, though there are still a few cases (one that we know of) which require more
thorough testing, both algorithms proved to be reliable for reaching the destinations in an
unknown map, both in simulation and in real-world experiments. In order to reach more
optimal results in terms of traversal time, the locomotion system needs to be improved. In
addition, there definitely exist optimisations to enable quicker navigation in sharp corners.

4.5 Potential avenues for future research

As this is relatively novel research into the possibility of using tactile sensors for navigation
outdoors, there are a plethora of avenues for future research that the thesis opens. These
can be split into five categories: unifying systems, improved simulation, locomotion
system improvements, whisker configuration improvements and navigation algorithm
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improvements.

For unifying systems, a way of not needing the external camera-based pose estimation
is necessary to be able to have the navigation algorithm in actual use. This could be
added for example by unifying it with a SLAM algorithm, as was stated before. This
could also be provided by exploring the mine with several robots at once and having them
communicate for providing pose, as was done in [21]. For unifying systems, another
potential avenue would be the development of a control application with more features and
a proper graphical user interface. For example, this could display the discovered map and
also the location of all robots. In addition, of course in the long term an avenue related to
the robot would be to perform mining with it.

A major improvement would also be to have improved simulation for the robot. One part
of this would be to properly simulate the flexible whiskers and the perpendicular force
z. This would allow for improved tuning of the robot. In addition, the simulation of the
terrain and the locomotion system could also be improved to be more realistic. These in
turn would significantly speed up the development of all other avenues of research for the
robot.

Regarding the locomotion systems, it was observed that the locomotion system produces
inoptimal motor speeds for some movements, especially for turns with a wide radius. If a
more optimal locomotion system could be created, then this would speed up the navigation
of the robot significantly.

As seen in Section 4.2, several changes were made to the whisker configuration and
the whiskers themselves to enable real-world use. In addition, many avenues of further
research were proposed within the chapter as well. One major avenue of research is the
optimal material and shape of the whiskers. For example one major improvement would
be to get rid of the grooves in the whiskers to reduce friction. Additionally, other whisker
configurations are worth exploring, both for horizontal and vertical axes. One proposition
of this was to have a circular configuration for more efficient turning.

For the navigation algorithm itself, there are also a number of additional research avenues.
The most pertinent is the overall speed optimisation for traversing sharp angles. In addition,
a more thorough analysis could be performed of the optimality of which side to follow
when encountering a wall in unmapped positions. Another development aspect would be
also to allow any side of the robot to follow a wall, not just the left or right as given now
— and this could also be dynamic, i.e. follow the wall on the side that is most optimal.
This optimality could also take into consideration which way it would be more efficient to
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traverse the surface, i.e. straight or sideways.

One more avenue for research in regards to the navigation algorithm would also be to
enable it to perform navigation in 3D, in multilevel mines and caves. In addition, a worthy
avenue of exploration would be to test it in a large mine, or to have a larger sample size of
tests for determining any other shortcomings of the algorithm. For maps, an occupancy
map could also be used instead of a discrete grid, or other ways of mapping, in order to
provide increased precision when path planning. And finally, of course the optimisation
of the computation speed of the algorithm is also worth exploring in order to run it in big
mines.
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5. Summary

The main aim of the thesis was to validate the ability to perform navigation using the
novel sensing method of whiskers. For doing this, a control application was created, along
with three algorithms: a wall-follower, a Theta* navigation algorithm and an algorithm
combining the two for increased navigating efficiency in unknown maps. For both the
regular wall-follower and the algorithm that combined wall-following with navigation,
the act of following a wall took between 139.22% and 245.45% of the theoretical fastest
traversal, thus not losing an inordinate amount of speed due to wall-following.

For navigation, the hypothesized greater efficiency of utilising wall-following was shown
to be true in simulations, improving the traversal time by between 26− 43%. In addition,
relatively efficient paths were found by the algorithm considering the missing knowledge
about the environment for the algorithm. Though the paths were relatively optimal, then
the speed for traversing them could be improved significantly. The reasons for these are
mostly inoptimalities in the locomotion system and the turning in sharp angles being slow
due to the constraint of constantly being in contact with walls on the robot’s sides.

Overall, it was validated that the ability to perform navigation using whiskers certainly
exists. Due to the state-of-the-art techniques being difficult to use in mine and cave
environments, then these results are not meant to be compared with existing methods using
LiDAR and cameras. This thesis displays that tactile sensing can be used in complex
environments to perform wall-following. In the event that a relatively accurate method of
estimating pose is unified with the algorithm, then tactile sensing can also be used as an
efficient aid to perform navigation.

The work done in the scope of this thesis opens up a plethora of potential avenues for
further research. This includes improving the locomotion system, whisker configurations,
the navigation algorithm itself and also developing more realistic simulation environments.
An additional avenue of research is unifying the robot with other robots and interfaces for
use in mine and cave environments, for industrial and research applications.
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