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Abstract 

The growing adoption of Internet-of-Things devices brings with it the increased 

participation of said devices in botnet attacks, and as such novel methods for IoT botnet 

attack detection are needed. This work demonstrates that deep learning models can be 

used to detect and classify IoT botnet attacks based on network data in a device agnostic 

way and that it can be more accurate than some more traditional machine learning 

methods, especially without feature selection. Furthermore, this works shows that the 

opaqueness of deep learning models can mitigated to some degree with Local 

Interpretable Model-Agnostic Explanations technique. 

This thesis is written in English and is 31 pages long, including 5 chapters, 21 figures and 

11 tables. 
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Annotatsioon 

 

 

Asjade Interneti seadmete kasvav kasutuselevõtt toob kaasa nende seadmete suurema 

osalemise botneti rünnakutes, mistõttu on vaja uusi meetodeid IoT botneti rünnakute 

avastamiseks. See töö näitab, et sügava õppe mudeleid saab kasutada IoT botneti 

rünnakute avastamiseks ja klassifitseerimiseks võrguandmete põhjal seadme agnostilisel 

viisil ja et see võib olla täpsem, kui mõned traditsioonilisemad masinõppemeetodid, eriti 

ilma tunnuste valikuta. Lisaks näitab see, et sügava õppe mudelite läbipaistmatus võib 

mõningal määral leevendada Local Interpretable Model-Agnostic Explanations 

meetodiga. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 31 leheküljel, 5 peatükki, 21 

joonist, 11 tabelit. 
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List of abbreviations and terms 

ACK Handshake protocol based botnet attack 

C&C Command and Control, botnet term 

DDoS Distributed Denial of Service, type of attack 

DL Deep Learning, machine learning subfield 

IoT Internet of Things, network of devices 

k-NN k-Nearest Neighbors, machine learning algorithm 

LIME Local Interpretable Model-Agnostic Explanations, data science 
method 

LOF Local Outlier Factor, machine learning algorithm 

ML Machine Learning, study of data and algorithms 

MSE Mean Squared Error, statistics term 

P2P Peer to Peer, mode of communication 

SCAN Scanning type of botnet attack 

STD Standard Deviation, statistics term 

SYN Handshake protocol based botnet attack 

UDP User Datagram Protocol based botnet attack 

UDPPlain User Datagram Protocol based botnet attack with modification 
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1 Introduction 

1.1 Overview 

In recent years the IoT (Internet-of-Things) market has experienced a dramatic growth, 

with number of IoT devices connected to the network reaching 7 billion in 2018 [1]. This 

creates a motivation for the malware industry to infect such devices and use them for 

malicious purposes. In 2017 the number of DDoS (Distributed Denial of Service) attacks 

has increased by 91% thanks to IoT botnets [2]. Such attacks are carried by out by a group 

of infected machines (bots), forming a botnet under the control of the attacker through a 

C&C (Command and Control) server, against some other entity in the network, such as a 

corporation or a government. For example, in 2016 one such botnet under the name of 

Mirai has attacked multiple internet companies like Krebs on Security, OVH and Dyn [3].  

A typical botnet such as Mirai usually operates in multiple steps. Botnets spread starting 

with a scan phase in which they scan available networks for vulnerable devices. Access 

to these devices is then brute forced using some common credentials. In case of a 

successful access, the details of the compromised machine are sent to the attacker’s server 

and the load phase begins, where malware is loaded and installed on a device. At this 

point device becomes a part of the botnet network and will be operated through a C&C 

server [3].   

IoT itself means extending internet connection to devices and appliances that in the past 

operated offline. Connecting them to the internet allows for remote control and 

monitoring. IoT devices find their use in many different domains, both in consumer and 

enterprise markets. For example, the concept of Smart Home heavily relies on IoT by 

connecting thermometers, light bulbs, security cameras and other devices to the network 

[4]. This sheer variety of IoT devices and manufacturers contributes to the security 

challenges faced by the industry [4].  

Traditional malware detection methods require a lot of manpower in order to analyze the 

threats and come up with detection rules [5], especially as malware industry continuously 

adapts and evades new countermeasures. In this regard machine learning gives a lot of 
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promise for the task. One possible approach to the problem of IoT security against botnets 

is based on the application of machine learning to the network traffic data [5] [6]. 

1.2 Previous works 

Earlier related research that deals with botnets does not yet refer to the IoT, perhaps as 

IoT concept has experienced tremendous growth only very recently. In 2011 a research 

has been done on detection of P2P (Peer-to-Peer) botnets during the pre-attack phase [7]. 

In 2013 a group of researchers in India again explored P2P botnet detection with neural 

networks [8]. Others tried different approaches, like not searching for particular patterns 

in overall traffic flow itself, but for example only in DNS queries [9] [10]. 

IoT botnet research comes prominently onto the scene more recently. In 2015 there was 

a proposal for packet inspection algorithm [11] that would have to be installed on the IoT 

device itself and would inspect the network packet payload. Later works, however, 

recognized that this host-based approach would be difficult to implement in real 

environment, due to the resource constraints and many differences between vendors. And 

so in 2018 a team from Ben-Gurion University at Negev described how botnet attack 

traffic can be detected based on network flow data using autoencoders, a particular type 

of neural network [12], in addition to that they also released a public dataset of Mirai and 

BASHLITE1 botnet traffic data [13], that will be used in this work. A team at Aberdeen 

modeled IoT botnet attacks as a sequence using recurrent neural networks [14]. A couple 

of studies have been conducted at TalTech: one showed how to detect anomalous traffic 

using a combination of feature selection techniques together with unsupervised machine 

learning methods like Local Outlier Factor, One-class SVM and Isolation Forest [15], 

while another focused on the exploration of dimensionality reduction and methods like 

Decision Tree and k-Nearest Neighbors classification [16].  

1.3 Novelty 

Firstly, this work will fill the gap left by [12] where a separate model for each IoT device 

in the network has been created. The motivation is that training, deploying and 

maintaining separate models for each device could quickly become burdensome in big 

                                                
 
1 https://www.cyber.nj.gov/threat-profiles/botnet-variants/bashlite 
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networks. The datasets [13] for different devices will be combined into one and then 

autoencoder algorithm as described in [12] will be implemented for this dataset. This 

autoencoder will have similar size and number of layers as in [12] and their formula for 

the threshold will be used, albeit it will be modified – a parameter will be added to it, and 

an optimization is made for this parameter. Some details, such as activation function 

choice and optimization algorithm choice are this work’s original contributions, as they 

were not described in detail in the referred work. The technical implementation (source 

code) is also completely independent from the referred work, as they didn’t publicize it. 

Additionally, this work will employ a feature selection mechanism. This will allow for 

assessment of autoencoder method accuracy on smaller feature subsets and for making a 

fairer comparison on anomalous traffic detection with more traditional machine learning 

methods studied in [15]. 

Secondly, this work will propose and assess a deep feedforward neural network with 

softmax algorithm for attack type classification. Both classification of botnet type and 

classification of Mirai attack type will be done. This is all in contrast to [14], where a 

recurrent neural network was used, and only Mirai was studied. Moreover, this work will 

also employ feature selection for attack classification to assess neural network 

performance on varying number of features and make a comparison to more classical 

machine learning algorithms studied in [16]. 

Thirdly, this work will explore the topic of explaining the neural network predictions, that 

is usually not addressed by works studying deep learning methods. Neural networks suffer 

from what can be called a lack of interpretability of results, a problem not experienced by 

e.g. decision trees. As this can potentially stop a deep learning algorithm from being taken 

into a real-life use, this work will assess LIME (Local Interpretable Model-Agnostic 

Explanations) [17] technique, that can provide some interpretability to the results. 
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2 Research methods 

For the purpose of our tasks we will employ two different architectures of neural 

networks: an autoencoder for anomaly detection and a feedforward network with softmax 

algorithm for classification. Fisher’s score will be used to select the most important 

features and investigate algorithm performance on varying number of features. Data will 

be pre-processed using the normal scaling. Explanations for the neural network decision 

will be given by Local Interpretable Model-Agnostic Explanation method. Components 

studied in this work could in real life be combined as on Figure 1 to create a complete 

detection and classification pipeline. 

On the technical side, code will be written in Python 3 with the use of modern frameworks 

for data handling and machine learning, such as Pandas, scikit-learn and Keras. 

2.1 Data 

The data was obtained experimentally in a laboratory environment by the research team 

at Ben-Gurion University of Negev [13]. In this environment different IoT devices were 

connected to an isolated network using both Wi-Fi and wired connections. Additionally, 

botnet components were installed in the network, such as C&C server. Then, using port 

mirroring at the internet switch, data was gathered using Wireshark for both normal 

traffic, when none of the devices were infected, and as well for malicious traffic, when 

devices were infected.  

 
Figure 1. Potential attack detection, classification and explanation pipeline. 
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2.1.1 Description 

The data comes from 9 IoT devices belonging to smart-home and security domains: 

doorbells, security cameras, thermostat, baby monitor. For this work all devices are 

combined into one dataset. 

In total data consists of 115 features which are related to different information about the 

packets, aggregated in different ways. 

The network statistics data that is included consists of: weight, or packet count; mean of 

packet size; variance of packet size; standard deviation of packet size; radius as root 

squared sum of two stream’s variances; magnitude of two stream’s means; covariance 

and Pearson’s correlation coefficient. 

Data is aggregated by: 

• Source Host IP (H – feature name part in dataset file) 

• Source MAC-IP (MI) 

• Source and destination host IP (HH) 

• Source and destination host and port (HpHp) 

• Source and destination host traffic jitter (HH_jit) 

Further, each statistic was calculated for different window sizes: 100ms, 500ms, 1.5sec, 

10sec, and 1min using lambda decay parameter. More details about the dataset are 

available at the UCI website [13]. 

Two types of botnet were installed in the laboratory environment: BASHLITE and Mirai. 

These two are most notable botnet families in the world of Linux based IoT. Further, 

Mirai data consists of 5 attack classes: SYN, ACK, UDP, UDPPlain, SCAN. The dataset 

is described in greater detail in [12]. 

In total dataset consists of more than 5 million points. 

Table 1. Data set size 

Normal Mirai BASHLITE 

555 932 3 668 402 1 032 056 
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For this work BASHLITE tcp.csv and udp.csv files were excluded, as their content 

appeared to be inconsistent. 

2.1.2 Splitting the dataset 

Dataset is heavily skewed towards attack data and attack data is dominated by Mirai data, 

it is unbalanced. During the experiments the data will be sampled to create more or less 

balanced classes. 

For anomaly detection purposes, normal data will be split into 3 sets: train, optimize and 

test. Attack data will be added on testing stage and it will be equal to the normal test data 

set size. 

For botnet classification purposes, as the data is heavily overrepresented with attack 

classes, but we also want to include the normal data to compare our classification to other 

results, the Mirai and BASHLITE datasets will be sampled to the size of normal data, and 

then our data set will be split into train and test subsets as 80:20, as is custom in the 

machine learning field. For Mirai attack type classification, from each of 5 classes 100000 

points will be taken to total of 500000 and then split 80:20 for train and test.   

2.1.3 Feature scaling 

When training neural networks, it is considered to be the best practice to scale the data 

[18].  Otherwise different problems can be encountered such as degraded performance, 

unpredictable behavior of optimization algorithm and exploding gradient. 

There are different ways to scale the data, some of them rely on knowing the maximum 

and minimum values for the distribution, and as the data is not in some predefined range 

like, e.g. pixel value data, the standardization method is chosen, that relies on computing 

the mean and variance of the train set.  

This formula describes how to obtain scaled features (1). 

𝑋"# =
𝑋#−	𝜇#
𝜎#

																																																																																																																																(1)			 

In the given formula X tilde is the dataset feature i after scaling, X is the dataset feature 

before scaling, 𝜇 is the mean of the training set feature and 𝜎 is the standard deviation of 
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the training set feature. Scaling then is applied to each feature of the dataset 

independently. As a result, this should give us the features with mean of 0 and variance 

of 1. 

2.1.4 Feature selection 

Some features of the data may be more important than others for the tasks of anomaly 

detection or attack classification. This has been reflected by the works studying 

dimensionality reduction for botnet attack detection [15] [16].  

By selecting a smaller number of features we will enable this work to be compared to 

other works and additionally demonstrate how neural network performance changes when 

applied to varying number of inputs. 

The metric that we will use for measuring the importance of a feature will be Fisher’s 

score [19, p. 290]. It is calculated using the following formula (2). 

𝐹 = 	
∑ 𝑝/(𝜇/ − 𝜇)0		1
/23

∑ 𝑝/𝜎/01
/23

																																																																																																													(2) 

This score can be thought of as measuring the ratio of the average interclass separation to 

the average intraclass separation. In the enumerator we sum for each class in the dataset 

the product of this class’s proportion given by p6 with the squared difference of this class’s 

mean µ6	and the feature’s mean  µ. While in the denominator we sum the product of the 

proportion of the class with its variance σ60. Then it is possible to simply sort the features 

by this score in descending order and take only top N important features. 

2.2 Anomaly detection 

The task of detecting an attack can be framed as an anomaly or outlier detection problem. 

This is based on the assumption that the normal usage network traffic data and malware 

network data will differ in some dimensions, so that an algorithm will be able to make a 

distinction. 

There are different methods for anomaly detection, some of them, which were used 

previously in other works for the same task, are Local Outlier Factor, Isolation Forest and 

One class SVM. 
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LOF algorithm for example uses the deviation of local density of a given data point with 

respect to its neighbors. The samples with considerably lower densities than neighbors 

are considered as outliers.  

Isolation forest works by splitting random features to isolate samples. The assumption is 

that outliers will need less partitions to be isolated. 

One-class SVM learns from normal data its properties, and then on novel attack data it 

can predict it as not being normal. 

2.2.1 Deep Autoencoder 

One known method of how to perform anomaly detection using neural networks is to use 

the special architecture that is called autoencoder. 

Autoencoders are not a recent invention, they were known as early as 1986 [20]. Until 

recently, however, the applications of autoencoders were mainly: representation learning, 

dimensionality reduction and denoising.  

For the anomaly detection purposes, the autoencoders, in particular deep autoencoders, 

meaning having more than one hidden layer, have started gaining popularity only 

recently, perhaps due to the growth of interest in the field of DL as a whole. Examples of 

specific anomaly detection tasks solved by deep autoencoders include fraud detection, 

e.g. credit card fraud, or experiment data quality assessment, as was done CERN [21].   

                                                
 
1 https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html 

 
Figure 2. LOF plot1 
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An autoencoder can be described as consisting of two different networks: an encoder and 

a decoder. The job of the encoder is to receive the input 𝑋 and encode it into a hidden 

state 𝑍. The decoder then receives this hidden state 𝑍 and aims to reconstruct the original 

input as 𝑋′ [22, pp. 502-504].  

𝑍 = 𝑒(𝑋)	

𝑋′ = 𝑑(𝑍)	

𝑋 ≈ 	𝑋′ 

The optimization task then is to minimize the loss function, which in our case will be 

defined as a mean squared error between the original input and the reconstruction (3). 

ℒ(𝑋, 𝑋@) = 	
1
𝑛B(𝑋# − 𝑋′#)0

C

#23

																																																																																																				(3) 

Now if we consider the fact that the dimensionality of hidden state 𝑍 is less than the 

dimensionality of input X, then this hidden state acts as a bottleneck, it forces the 

autoencoder to learn useful representation of the input dataset, so then it could 

successfully reconstruct them. We then expect that if we give the autoencoder a data 

point not from the normal distribution, but from attack dataset, it will fail to reconstruct 

                                                
 
1 https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png 

 
Figure 3. Autoencoder1. 
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it, meaning that the difference between the original and the reconstruction will be too 

high. 

Additional construct that we will need then is the threshold for our error, such that if the 

error is higher that the given threshold, we consider the data point being an anomaly or 

an attack. In another work [12] the authors decided to use the threshold defined as 

follows (4). 

𝜏 = 𝑀𝑆𝐸(𝑋IJK)	LLLLLLLLLLLLLLL + 	𝑆𝑇𝐷 P𝑀𝑆𝐸Q𝑋IJKRS																																																																																	(4) 

However, we will try to find a more optimal value for our task by trying out different 

values of N with this formula (5). 

𝜏 = 𝑀𝑆𝐸(𝑋IJK)	LLLLLLLLLLLLLLL + 𝑁 ∗ 	𝑆𝑇𝐷 P𝑀𝑆𝐸Q𝑋IJKRS																																																																										(5) 

Our goal will be to reduce the number of false positives, where a normal traffic is 

misclassified as an attack. 

Internally our autoencoder will use 5 hidden layers of sizes 0.75, 0.5, 0.25, 0.5, 0.75 of 

the input feature vector size. That is in addition to input and output layers of sizes n 

respectively. The number of parameters in such model can be estimated as (6) where n 

is the number of input parameters and b is the number of bias1 terms. 

𝑛 ∗
3
4𝑛 +

3
4𝑛 ∗

1
2𝑛 +

1
2𝑛 ∗

1
4𝑛 +

1
4𝑛 ∗

1
2𝑛 +	

1
2 𝑛 ∗ 	

3
4 𝑛 +

3
4𝑛 ∗ 𝑛 + 𝑏 = 	2.5𝑛0 + 𝑏	(6) 

We will use hyperbolic tangent as an activation function for our hidden unit neurons (7) 

as per literature recommendation [22, p. 195]. 

𝑔(𝑥) = 	
𝑒0] − 1
𝑒0] + 1																																																																																																																								(7) 

Without a nonlinear function the result of the autoencoder becomes just a linear 

combination of features and as such loses power offered by nonlinear models. 

 
                                                
 
1 https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html#bias 
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2.3 Attack classification 

Having solved the problem of attack detection using autoencoders we then would like to 

inspect the data to find out what type of attack is it exactly. As the dataset consists of two 

botnet types: Mirai and BASHLITE, there will be these two classes, plus, in order to 

compare our performance with earlier work using traditional ML methods, we will 

consider normal data as a third class. Also, we will try to classify different Mirai attack 

types: ACK, SCAN, SYN, UDP, UDPPlain. 

In general, the task of classification appears to be the most popular application of machine 

learning and consequently there are lots of algorithms to solve it: SVMs, decision tress, 

random forests, k-nearest neighbors and others.  

Apart from the neural network that will be applied in this work, of interest it to briefly 

introduce decision trees and k-nearest neighbors, as this is what we will compare our 

results to. 

Decision Tree algorithm learns the partitions of feature values for given classes. Main 

advantage of the algorithm is that the results are easily interpretable. Sometimes however, 

decision tree learner can produce overly complicated and biased solution.  

k-Nearest Neighbors algorithm works on principle that the class of the data point is 

decided by the classes of k nearest neighbors to that point. 

2.3.1 Deep Neural Network 

We will attempt to solve the problem of classification with a deep neural network with 

two hidden layers each with 8 neurons. Unfortunately, there are no theoretical rules yet 

that would guide the choice of a neural network size for particular tasks. Mostly the 

approach seems to be to just increase the number of layers or neurons until good accuracy 

is attained. Preliminary experiments showed that for our task of classification with 115 

features and 3 classes and 5 classes, the proposed architecture should suffice. 
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Apart from the number of layers and neurons other important details to describe for 

proposed neural network are: 

• Hyperbolic tangent activation function for hidden neurons 

• Softmax function applied to the last layer 

• Categorical cross-entropy as a loss function 

Hyperbolic tangent activation function definition was already given previously (7). 

The need for softmax arises from the fact that we are doing a classification, hence at the 

last layer we want to receive a probability vector with normalized probabilities for each 

class, and softmax (8) gives us exactly that [22, pp. 185-186]. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥Q𝑥/R = 	
𝑒]e

∑ 𝑒]fg
#23

																																																																																																										(8) 

Categorical cross-entropy [22, p. 178] is a standard choice for a loss function with 

multiple classes.  

2.4 Evaluation metrics 

For the task of anomaly detection, we can apply a two-class confusion matrix to evaluate 

our results as in Table 2. 

 
Figure 4. Neural network diagram. 

Input Layer ∈ ℝ¹⁵ Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ³
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Table 2. Confusion matrix for two classes. 

 Predicted normal Predicted attack 

Actual normal True Negative (TN) False Positive (FP) 

Actual attack False Negative (FN) True Positive (TP) 

 

Accuracy can then be defined as (9). 

𝐴𝐶𝐶 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																																																																																																		(9) 

And precision as (10). 

𝑃𝑅 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																																																																																																									(10) 

False positive rate will be defined as (11). 

𝐹𝑃𝑅 = 	
𝐹𝑃

𝐹𝑃 + 𝑇𝑁																																																																																																																						(11) 

Similarly, accuracy can be computed for more than 2 classes. Also, for our deep learning 

models, we can also measure how long does the training take in seconds to achieve good 

accuracy and how complex the model is, meaning how many parameters does it contain 

and how much does it weight when saved to disk. 

2.5 Local Interpretable Model-Agnostic Explanations 

Both the autoencoder and the classification neural network suffer from the same problem 

of opaqueness. At least in theory, of course, one could inspect all the weights of neural 

network to understand how it made the decision that in made, but in practice the number 

of parameters is too high to make any meaningful inference from that. 

As deep neural network becomes the algorithm of choice for many modern tasks, it 

becomes imperative to find a solution for interpretability. One possible approach, known 

as Local Interpretable Model-Agnostic Explanation [17] will be studied in this work. 

This technique works by perturbing values of a particular instance that we want to explain 

and learning a local linear approximation for classification. As shown on the example 

Figure 5, where the bold red cross point is being explained, a linear model can be inferred 
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by looking at instances that are near and their classes, and this line can be presented as an 

explanation. 

2.6 Tools and technologies 

The language of choice is Python2 3.6. Recently Python has been extremely popular with 

machine learning community thanks to many factors. The wealth of libraries and 

frameworks for data processing and data analysis makes working on ML projects quite a 

pleasant experience. Most of the experiments for this thesis were done in a form of a 

Jupyter3 notebook. This can be more convenient than terminal programs, as Jupyter 

allows for better visualization and rerunning of different parts of an experiment. Pandas4 

library is used to handle the csv data for this work. Pandas data frames, backed by Numpy5 

arrays solve the problem of our not-so-small data (the size of the dataset is in Gigabytes). 

This work also relies on scikit-learn6 library for the scaling and evaluation metrics 

functions. Neural network models are composed using Keras7 2.2 library, which in turn 

relies on Tensorflow8 framework for all the computations. 

                                                
 
1 https://raw.githubusercontent.com/marcotcr/lime/master/doc/images/lime.png 
2 https://www.python.org/ 
3 https://jupyter.org/ 
4 https://pandas.pydata.org/ 
5 https://www.numpy.org/ 
6 https://scikit-learn.org/stable/ 
7 https://keras.io/ 
8 https://www.tensorflow.org/ 

 
Figure 5. LIME plot1. 



25 

3 Results 

The results of the experiments are listed in this chapter. Experiments were run multiple 

times to ensure their validity. Random seed was set where possible to ensure that results 

don’t vary between different reruns. All the experiments were run on a computer with 2,6 

GHz Intel Core i7 CPU.  

3.1 Feature scoring 

Fisher’s score was calculated (Table 3) on training sets for each data subset used 

respectively for attack detection, botnet type classification and Mirai attack type 

classification. Results in later sections where only a subset of features is used, are based 

on these rankings. Code for the score calculation procedure can be found in Appendix 1. 

Table 3. Fisher's scores for different data subsets. 

2 class (normal, attack) 3 class (2 botnets + 1 
normal) 

5 classes of Mirai attacks 

Feature F Sc Feature F Sc Feature F Sc 

MI_dir_L0.1_weight 3.34 MI_dir_L3_weight 1.96 MI_dir_L0.01_var 43.75 

H_L0.1_weight 3.34 H_L3_weight 1.96 H_L0.01_var 43.75 

MI_dir_L1_weight 3.18 MI_dir_L5_weight 1.93 MI_dir_L0.1_var 41.43 

H_L1_weight 3.18 H_L5_weight 1.93 H_L0.1_var 41.43 

MI_dir_L3_weight 3.01 MI_dir_L1_weight 1.87 MI_dir_L0.01_mean 30.05 

H_L3_weight 3.01 H_L1_weight 1.87 H_L0.01_mean 30.05 

MI_dir_L5_weight 2.86 MI_dir_L0.1_weight 1.70 MI_dir_L0.1_mean 27.03 

H_L5_weight 2.86 H_L0.1_weight 1.70 H_L0.1_mean 27.03 

MI_dir_L0.01_weight 1.65 MI_dir_L0.01_weight 1.43 MI_dir_L1_var 19.62 

H_L0.01_weight 1.65 H_L0.01_weight 1.43 H_L1_variance 19.62 
 

3.2 Attack detection 

The autoencoder as described in section 2.2.1 was created (Appendix 2) and trained on 

all 115 features. Default Keras optimization hyperparameters were used. Training was 

limited to 100 epochs with additional condition of early stopping (Figure 6), using 

functionality provided by Keras. This ensures that the model is trained only until the score 



26 

on validation set is not getting worse – this in turn helps to avoid overfitting the training 

set. 

es = EarlyStopping(monitor='val_loss', patience=5) 

Figure 6. Keras early stopping. 

Adam [23] gradient descent optimization algorithm was chosen, as it should give 

noticeable improvements in training times compared to more basic stochastic gradient 

descent. 

The code for training procedure is found in Appendix 4. 

The model trained in total for 23 epochs, taking about 25 seconds for each epoch, totaling 

in 584 seconds of training time. Figure 8 demonstrates the training curve. Loss is defined 

as MSE between original and predicted values. 

Training set had 185310 samples and optimization (validation) set 185311 samples. 

The created model contained 33900 parameters (weights) and when saved, the file was 

of size 471 kB. Figure 7 shows the created model’s architecture. 

 

 

 
Figure 7. Keras Autoencoder architecture. 
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Values of integers from 1 to 10 were tried for the threshold equation (5) parameter N on 

the optimization dataset. The results are presented in the Table 4. Threshold with N value 

of 10 showed the best accuracy and lowest numbers of false positives so it was chosen 

for subsequent operations on the test set. 

Table 4. Results with different N values for threshold. 

N Accuracy False positives False negatives 

1 0.9894 3911 23 

2 0.9934 2203 25 

3 0.9961 1396 28 

4 0.9973 978 35 

5 0.9979 744 38 

6 0.9983 587 41 

7 0.9986 467 43 

8 0.9988 387 45 

9 0.9990 292 51 

10 0.9992 245 52 

 
With model trained and threshold selected it is now possible to do an evaluation on the 

test set. Achieved accuracy is 0.9991 and precision is 0.9985. A more detailed breakdown 

is given by a confusion matrix Figure 9. False positive rate is thus 0.0015. 

 
Figure 8. Autoencoder training curve. 
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Additionally, autoencoder models were trained on reduced number of features for the 

purposes of their comparison. Some modifications in the training procedure were 

introduced, such as the maximum number of epochs was limited to 50. Also, the value 

for threshold parameter N was used that was selected earlier from Table 4. Figure 10 

shows how accuracy depends on the number of input features in such model. While Figure 

11 demonstrates how number of parameters in the autoencoder grows as a function of a 

number of input features. 

Table 5 makes a comparison between more traditional ML methods for anomaly detection 

and the autoencoder implemented in this work. It should be noted, that the specific 

features used by each method are varied, as such this comparison is not strict. 

 
Figure 9. Attack detection on test set. 
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Table 5. Attack detection performance comparison. 

Number of 
features 

Accuracy 

 Deep 
Autoencoder 

Entropy SVM 
[15] 

Variance 
Isolation 
Forest [15] 

3 0.9991 0.8337  0.6229  

5 0.9989 0.6765  0.6055 

10 0.9986 0.5050  0.9220  

 
Figure 10. Autoencoder accuracy for different # of features. 

 

 

 
Figure 11. Autoencoder # of parameters for different # of features. 
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Figure 12 presents a LIME explanation for a detected attack. While Table 6 presents the 

boundaries used by this decision. 

 

 

 

Table 6. LIME explanation boundaries for attack detection. 

Boundary Importance 

MI_dir_L0.01_weight > 27982.34 0.02 

MI_dir_L0.1_weight > 6079.16 0.02 

HH_L0.1_weight > 2849.41 0.02 

H_L0.1_weight > 6079.16 0.01 

HH_jit_L0.01_weight > 12113.47 0.01 

 
 

3.3 Attack classification 

Two types of deep learning classifier models were trained to differentiate between 

different botnet types (Mirai, BASHLITE and also non-botnet) and between different 

Mirai botnet attack types (SCAN, ACK, SYN, UDP, UDPPlain). Additionally, these 

types of classifiers were trained on varying number of features to assess their 

performance. 

3.3.1 Botnet type classification 

For botnet type classification a neural network was implemented as specified in section 

2.3.1 using function from Appendix 3. As with autoencoder, amount of training epochs 

 
Figure 12. LIME explanation for attack detection. 
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was limited to 100 for practical purposes, and default Keras hyperparameters were used. 

Training code can be found in Appendix 5. 

Resulting model based on all 115 features contained 1027 parameters (weights). Training 

took only 11 epochs with early stopping. Figure 13 shows the learning curve for this 

model. Total training time amounted to 689 seconds with about 62 seconds per epoch. 

Saved model file weighted only 41kB. 

On the test set of size 333560, the accuracy of 0.9997 was achieved. 

 

Figure 14 gives a complete test set classification breakdown in the form a confusion 

matrix. 

For the purpose of comparison with other ML methods, model was retrained on 2, 3 and 

10 features selected by their Fisher’s score and the comparison is shown in Table 7. This 

classifier was also retrained on selected numbers of features from 2 to 115 to show how 

the accuracy changes with growing number of features, the result is on Figure 15. 

 
Figure 13. Botnet classification learning curve. 
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Table 7. Botnet classification accuracy comparison. 

Number of features Accuracy 

Deep Neural Network Decision Tree 
[16] 

k-NN [16] 

2 0.8188 0.9843  0.9805  

3 0.8663 0.9851  0.9724  

10 0.9933 0.9897  0.9497  
 

 
Figure 14. Botnet classification confusion matrix. 

 
Figure 15. Botnet classification accuracy with different # of features. 
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A random Mirai botnet class data point was then selected and its explanation by LIME is 

presented on Figure 16. LIME boundaries are additionally specified in Table 8. 

 
 
 

Table 8. LIME explanation boundaries for Mirai botnet classification. 

Boundary Importance 

3427.45 < MI_dir_L0.1_weight <= 6431.98 0.12 

3427.45 < H_L0.1_weight <= 6431.98 0.11 

MI_dir_L3_weight > 252.04 -0.07 

100.09 < H_L0.01_weight <= 11161.10 -0.07 

HH_jit_L0.1_weight <= 1.21 0.06 
 

3.3.2 Mirai attack type classification 

For Mirai attack type classification the neural network was created as specified in section 

2.3.1 using function from Appendix 3. Again, default hyperparameters provided by Keras 

were used during training, and Adam optimization algorithm was employed to speed up 

training.  

With early stopping mechanism, training took 17 epochs, in total taking 258 seconds, so 

about 15 seconds for each epoch. Training set size was 400000. Training curve is 

presented on Figure 17. Model consisted of 1045 parameters and weighted 41 kB. 

On test set of size 100000 accuracy of 0.9984 was achieved. A detailed confusion matrix 

is shown on Figure 18. 

 

 
Figure 16. LIME explanation for botnet classification. 
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For comparison purposes model was also recreated and retrained on 2, 3, 4, 5, and 10 

features selected by Fisher’s score. The results are demonstrated in Table 9. Figure 19 

shows how accuracy changes from on sets of features from 2 to 115. 

 
Figure 17. Mirai attack classification learning curve. 

 
Figure 18. Mirai attack classification confusion matrix. 
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Table 9. Mirai attack classification accuracy for different # of features. 

Number of features Accuracy 

2 0.6235 

3 0.6294 

4 0.6284 

5 0.9783 

10 0.9788 
 
 

 

A random UDP type attack point was selected to create a LIME explanation. Figure 20, 

Table 10 and Table 11 show this explanation and as classifier was not absolutely certain 

in this case, additionally explanation for ACK class which had 30% probability assigned 

to it is also explained. 

 

 
Figure 19. Mirai attack classification accuracy for different # of features. 
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Table 10. LIME explanation boundaries for correct UDP class. 

Boundary Importance 

HpHp_L0.1_weight <= 1.00 0.15 

HpHp_L3_weight <= 1.00 0.13 

HpHp_L1_weight <= 1.00 0.13 

HpHp_L0.01_weight <= 1.00 0.12 

HpHp_L5_weight <= 1.00 0.10 
 
 
 

Table 11. LIME explanation boundaries for wrong ACK class. 

Boundary Importance  

H_L0.01_variance > 57736.45 0.14 

HpHp_L0.1_weight <= 1.00 0.14 

MI_dir_L0.1_variance > 57211.65 0.13 

MI_dir_L0.01_variance > 57736.45 0.13 

H_L0.1_variance > 57211.65 0.09 
 
 
 

 

  

 
Figure 20. LIME explanation for Mirai attack type UDP. 
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4 Analysis and discussion 

Overall the results of the experiments showed that very good results can be achieved in 

the application of deep learning methods to the problems of IoT botnet attack detection 

and classification. 

4.1 Detecting attacks 

The attack detection with deep autoencoder showed outstanding results with accuracy of 

0.9991 and false positive rate of 0.0015. As such there does not appear to be a lot of room 

for improvement in this regard.  

One of the goals of this work was to show, that the anomaly detection with autoencoders 

can be applied to the data coming from multiple different IoT devices, this is in contrast 

to [12], where an autoencoder was trained for each IoT device in the network. The results 

suggest that this goal can be considered accomplished, as the mean false positive rate of 

0.007±0.01 that was reported there is quite comparable to ours 0.0015. Is should be noted 

that our approach had an advantage of higher threshold by the equation (5) with N=10. In 

fact, difference in the number of false positives between N=1 and N=10 as shown by 

Table 4 is almost 16 times, even if both numbers are small in relation to the total number 

of negatives.  

Another interesting aspect of the studied approach is that the accuracy of the autoencoder 

seems to stay relatively constant with varying number of features as shown in Figure 10. 

The explanation can probably be given by the plot in Figure 21 which shows that there is 

a very noticeable difference in data distributions based on the number of packets for 

normal and attack data. This is not surprising, considering that DDoS attacks are based 

on large amounts of packets beings sent in order to deny a service. What is interesting 

however, is that the autoencoder is able to effectively filter out the unimportant data, as 

the accuracy does not drop with increasing number of features, compared to more 

traditional methods, some of which apparently have problems with increased dimensions 

like SVMs as per Table 5. 
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It has to be noted, however, that to do this feature analysis using Fisher’s score, one has 

to be in possession of attack data. And as such it would not possible to do this scoring 

having only normal data, whereas the whole idea of framing the problem of attack 

detection as anomaly detection is that the model can be trained suing only normal data.  

If such a system were to be implemented in real life, with just one autoencoder for a whole 

(sub)network, and not separate models for each IoT device in the network, then the size 

of the autoencoder model, which increased quadratically with the number of features 

used, as shown by equation (6) and also visually demonstrated by Figure 11, does not 

seem as a significant concern.  

The result of the LIME technique applied to an attack data point, as presented in Figure 

12 and Table 6, seems to be intuitively correct, in regard that most important conditions 

for this decision are identified as very high number of packets in the statistic.  

4.2 Classifying attacks 

Both botnet type classification and Mirai attack type classification showed very good 

results on the whole 115 feature set with accuracies over 0.99. However, on a very small 

feature sets the results we not as great, as shown in Table 7 and Table 9, even being 

substantially lower on 2 and 3 features than those achieved in [16] with more traditional 

ML. This could however, be attributed to different feature selection strategies. 

Interestingly, for Mirai attack type classification on different feature sets (Table 9) the 

performance dramatically improved after including 5th feature from Table 3, which 

corresponded to a mean of the packet size during last minute time frame, while 4 features 

 
Figure 21. Plot for 2 most important attack detection features. 
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used before referred only to the variance within different time frames, which perhaps 

suggests that when selecting small number of features, diverse types should be included.  

Not surprisingly, two most confused Mirai classes are UDP and UDPPlain with 88 data 

points confused between them, as seen on Figure 18. Both of them constitute a variation 

of a flooding attack using the same network protocol, namely User Datagram Protocol, 

and UDPPlain appears to be modified to not include payload [24]. 

In a similar vein as with attack detection, it is noticeable, that model accuracy does not 

degrade with increasing number of features, reflecting the models’ ability to disregard 

unimportant data. In contrast, for example, k-Nearest Neighbors algorithm appeared to 

have a degraded in accuracy as can be seen in Table 7 when features increased from 2 to 

3 and to 10.   

LIME explanations for Mirai UDP attack type in Table 10, Table 11, Figure 20 present 

an interesting case. Firstly, the classifier is not absolutely certain that it is, in fact, a UDP 

attack, its predictions are split 70% for UDP and 30% for ACK type attack. Most 

important boundaries in favor of UDP are packet counts grouped by source and 

destination ports. According to research, a distinctive feature of UDP flood attack is port 

randomization [24], which means that in the statistics grouped by port it is quite possible 

to get only one packet for each combination of ports, which is in accordance with the 

data. But why is classifier not completely certain? The explanation for 30% probability 

class ACK points out the packet size variance. Out of 5 Mirai attack types present in the 

dataset, only UDP, UDPPlain and ACK can send the payload, according to research [24], 

with UDPPlain usually being used without payload to optimize for packets-per-second. 

And so, it seems that the classifier’s relative uncertainly can be explained by the fact that 

both UDP and ACK attacks can have high payload variance. 

4.3 Implementation in real environment 

Using elements studied in this work, it could be possible to assemble a complete 

detection, classification and explanation pipeline as suggested by Figure 1. There would 

be however, many practical considerations. 

The anomaly detection part of the pipeline should be easier to implement in practice, as 

there would be no need to obtain and maintain a dataset for different botnets and their 

attacks. It would still require sampling traffic from an IoT network that is not yet infected, 
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of course, which could be a problem in and on itself. Further, it is not clear, how the 

method performance would change if the network itself is changed, for example: new 

devices are added. If it would be a device of the same type as the one we already have in 

the network, e.g. one more security camera, but from another manufacturer, perhaps the 

data distribution will not change much, but this is just speculation. As dataset actually 

contains multiple devices from similar categories, this could be something worth 

exploring.  

The theoretically good false positive rate of 0.0015 in practice would still mean that more 

than 1 in 1000 normal data points would be falsely labeled as an attack. If a data point is 

generated every 100 milliseconds, that would give us a false alarm every 100 seconds, 

and this is not practical. One data point by itself, however, could hardly be considered an 

attack, where a continuous stream of packets is usually sent. To that regard, an approach 

suggested by [12] could be implemented, where an alarm only goes off if there is a 

majority of attack data points within a window of some specified size. 

While the attack detection mechanism based on autoencoder could be developed locally, 

maybe by an engineer maintaining the IoT network, the botnet classifier presents a 

challenge in the form of data set requirements. Ideally, this is a task for a cybersecurity 

firm or a research university team, that specializes in IoT botnets and collects and 

maintains data sets needed to train an effective classifier that would recognize a wide 

range of different botnets and attack types.    
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5 Conclusions 

Deep learning methods demonstrated good IoT botnet attack detection and classification 

accuracy. Moreover, these methods can work well with varying number of features and 

generally their performance does not suffer from extra features, meaning that in real world 

environment they offer the possibility of using all existing data features.  

It was also shown that there may not be a need to create different models for each device 

in the network, and that one model trained on data from all devices can be just as good.  

The lack of interpretability, one of the neural network limitations, can be successfully 

addressed using LIME, as was demonstrated by producing feature value boundaries 

which upon closer inspection agreed with common sense. 
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Appendix 1 – Fisher’s score calculation procedure 

scored = [] 
indices = {} 
shps = {} 
for cl in classes: 
    indices[cl] = df_fish['class'] == cl 
    shps[cl] =  df_fish[indices[cl]].shape[0] 
         
for col in df_fish.columns: 
    if col == 'class': 
        continue 
    num = 0 
    den = 0 
    m = df_fish[col].mean() 
     
    for cl in classes: 
        num += (shps[cl] / df_fish.shape[0]) * (m - 
df_fish[indices[cl]][col].mean())**2 
        den += (shps[cl] / df_fish.shape[0]) * 
df_fish[indices[cl]][col].var() 
    score = {'feature': col, 'score': num / den} 
    scored.append(score) 
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Appendix 2 – Autoencoder model creation function 

 
 
def create_model(input_dim): 
    inp = Input(shape=(input_dim,)) 
    encoder = Dense(int(math.ceil(0.75 * input_dim)), activation="tanh")(inp) 
    encoder = Dense(int(math.ceil(0.5 * input_dim)), 
activation="tanh")(encoder) 
    encoder = Dense(int(math.ceil(0.25 * input_dim)), 
activation="tanh")(encoder) 
    decoder = Dense(int(math.ceil(0.5 * input_dim)), 
activation="tanh")(encoder) 
    decoder = Dense(int(math.ceil(0.75 * input_dim)), 
activation="tanh")(decoder) 
    decoder = Dense(input_dim)(decoder) 
    return Model(inp, decoder) 
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Appendix 3 – Deep Neural Network model creation function 

 
def create_model(input_dim, hidden_layer_size, num_of_classes): 
    model = Sequential() 
    model.add(Dense(hidden_layer_size, activation="tanh", 
input_shape=(input_dim,))) 
    model.add(Dense(hidden_layer_size, activation="tanh")) 
    model.add(Dense(num_of_classes)) 
    model.add(Activation('softmax')) 
    return model 
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Appendix 4 – Autoencoder training 

     
    model = create_model(top_n_features) 
    model.compile(loss="mean_squared_error", 
                    optimizer="adam") 
    cp = ModelCheckpoint(filepath=f"anomaly/anomaly{top_n_features}.h5", 
                                 monitor='val_loss', 
                               save_best_only=True, 
                               verbose=0) 
 
    es = EarlyStopping(monitor='val_loss', patience=5, 
restore_best_weights=True) 
     
    epochs = 100 
    history = model.fit(X_train, X_train, 
                    epochs=epochs, 
                    validation_data=(X_opt, X_opt), 
                    verbose=1, 
                    callbacks=[cp, es]) 
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Appendix 5 – Classifier training 

    model = create_model(top_n_features, 8, 3) 
    model.compile(loss='categorical_crossentropy', optimizer='adam', 
metrics=['accuracy']) 
    cp = ModelCheckpoint(filepath=f'./models/model_{top_n_features}.h5', 
                               save_best_only=True, 
                               verbose=0) 
    es = EarlyStopping(patience=5, monitor='val_acc', 
restore_best_weights=True) 
    epochs = 100 
     
    history = model.fit(X_train, y_train, 
                    epochs=epochs, 
                    validation_split=0.2, 
                    verbose=1, 
                    callbacks=[cp, es]) 


