
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Sergei Tsimbalist 121034IAPB

DETECTING, CLASSIFYING AND
EXPLAINING IOT BOTNET ATTACKS

USING DEEP LEARNING METHODS BASED
ON NETWORK DATA

Bachelor’s thesis

Supervisors: Sven Nõmm

 PhD

 Alejandro Guerra
Manzanares

 MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Sergei Tsimbalist 121034IAPB

IOT BOTNETI RÜNNAKUTE AVASTAMINE,
KLASSIFITSEERIMINE JA SELETAMINE

SÜGAVÕPPEGA VÕRGUANDMETE
PÕHJAL
bakalaureusetöö

Juhendajad: Sven Nõmm

 PhD

 Alejandro Guerra
Manzanares

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Sergei Tsimbalist

06.01.2019

4

Abstract

The growing adoption of Internet-of-Things devices brings with it the increased

participation of said devices in botnet attacks, and as such novel methods for IoT botnet

attack detection are needed. This work demonstrates that deep learning models can be

used to detect and classify IoT botnet attacks based on network data in a device agnostic

way and that it can be more accurate than some more traditional machine learning

methods, especially without feature selection. Furthermore, this works shows that the

opaqueness of deep learning models can mitigated to some degree with Local

Interpretable Model-Agnostic Explanations technique.

This thesis is written in English and is 31 pages long, including 5 chapters, 21 figures and

11 tables.

5

Annotatsioon

Asjade Interneti seadmete kasvav kasutuselevõtt toob kaasa nende seadmete suurema

osalemise botneti rünnakutes, mistõttu on vaja uusi meetodeid IoT botneti rünnakute

avastamiseks. See töö näitab, et sügava õppe mudeleid saab kasutada IoT botneti

rünnakute avastamiseks ja klassifitseerimiseks võrguandmete põhjal seadme agnostilisel

viisil ja et see võib olla täpsem, kui mõned traditsioonilisemad masinõppemeetodid, eriti

ilma tunnuste valikuta. Lisaks näitab see, et sügava õppe mudelite läbipaistmatus võib

mõningal määral leevendada Local Interpretable Model-Agnostic Explanations

meetodiga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 31 leheküljel, 5 peatükki, 21

joonist, 11 tabelit.

6

List of abbreviations and terms

ACK Handshake protocol based botnet attack

C&C Command and Control, botnet term

DDoS Distributed Denial of Service, type of attack

DL Deep Learning, machine learning subfield

IoT Internet of Things, network of devices

k-NN k-Nearest Neighbors, machine learning algorithm

LIME Local Interpretable Model-Agnostic Explanations, data science
method

LOF Local Outlier Factor, machine learning algorithm

ML Machine Learning, study of data and algorithms

MSE Mean Squared Error, statistics term

P2P Peer to Peer, mode of communication

SCAN Scanning type of botnet attack

STD Standard Deviation, statistics term

SYN Handshake protocol based botnet attack

UDP User Datagram Protocol based botnet attack

UDPPlain User Datagram Protocol based botnet attack with modification

7

Table of contents

1 Introduction ... 11

1.1 Overview .. 11

1.2 Previous works ... 12

1.3 Novelty ... 12

2 Research methods .. 14

2.1 Data ... 14

2.1.1 Description .. 15

2.1.2 Splitting the dataset ... 16

2.1.3 Feature scaling ... 16

2.1.4 Feature selection .. 17

2.2 Anomaly detection .. 17

2.2.1 Deep Autoencoder ... 18

2.3 Attack classification ... 21

2.3.1 Deep Neural Network .. 21

2.4 Evaluation metrics .. 22

2.5 Local Interpretable Model-Agnostic Explanations ... 23

2.6 Tools and technologies ... 24

3 Results ... 25

3.1 Feature scoring ... 25

3.2 Attack detection .. 25

3.3 Attack classification ... 30

3.3.1 Botnet type classification .. 30

3.3.2 Mirai attack type classification .. 33

4 Analysis and discussion ... 37

4.1 Detecting attacks ... 37

4.2 Classifying attacks .. 38

4.3 Implementation in real environment ... 39

5 Conclusions ... 41

References .. 42

Appendix 1 – Fisher’s score calculation procedure .. 44

8

Appendix 2 – Autoencoder model creation function .. 45

Appendix 3 – Deep Neural Network model creation function 46

Appendix 4 – Autoencoder training ... 47

Appendix 5 – Classifier training ... 48

9

List of figures

Figure 1. Potential attack detection, classification and explanation pipeline. 14

Figure 2. LOF plot .. 18

Figure 3. Autoencoder. ... 19

Figure 4. Neural network diagram. ... 22

Figure 5. LIME plot. ... 24

Figure 6. Keras early stopping. ... 26

Figure 7. Keras Autoencoder architecture. ... 26

Figure 8. Autoencoder training curve. .. 27

Figure 9. Attack detection on test set. .. 28

Figure 10. Autoencoder accuracy for different # of features. .. 29

Figure 11. Autoencoder # of parameters for different # of features. 29

Figure 12. LIME explanation for attack detection. .. 30

Figure 13. Botnet classification learning curve. ... 31

Figure 14. Botnet classification confusion matrix. ... 32

Figure 15. Botnet classification accuracy with different # of features. 32

Figure 16. LIME explanation for botnet classification. .. 33

Figure 17. Mirai attack classification learning curve. .. 34

Figure 18. Mirai attack classification confusion matrix. .. 34

Figure 19. Mirai attack classification accuracy for different # of features. 35

Figure 20. LIME explanation for Mirai attack type UDP. ... 36

Figure 21. Plot for 2 most important attack detection features. 38

10

List of tables

Table 1. Data set size .. 15

Table 2. Confusion matrix for two classes. .. 23

Table 3. Fisher's scores for different data subsets. ... 25

Table 4. Results with different N values for threshold. .. 27

Table 5. Attack detection performance comparison. .. 29

Table 6. LIME explanation boundaries for attack detection. ... 30

Table 7. Botnet classification accuracy comparison. ... 32

Table 8. LIME explanation boundaries for Mirai botnet classification. 33

Table 9. Mirai attack classification accuracy for different # of features. 35

Table 10. LIME explanation boundaries for correct UDP class. 36

Table 11. LIME explanation boundaries for wrong ACK class. 36

11

1 Introduction

1.1 Overview

In recent years the IoT (Internet-of-Things) market has experienced a dramatic growth,

with number of IoT devices connected to the network reaching 7 billion in 2018 [1]. This

creates a motivation for the malware industry to infect such devices and use them for

malicious purposes. In 2017 the number of DDoS (Distributed Denial of Service) attacks

has increased by 91% thanks to IoT botnets [2]. Such attacks are carried by out by a group

of infected machines (bots), forming a botnet under the control of the attacker through a

C&C (Command and Control) server, against some other entity in the network, such as a

corporation or a government. For example, in 2016 one such botnet under the name of

Mirai has attacked multiple internet companies like Krebs on Security, OVH and Dyn [3].

A typical botnet such as Mirai usually operates in multiple steps. Botnets spread starting

with a scan phase in which they scan available networks for vulnerable devices. Access

to these devices is then brute forced using some common credentials. In case of a

successful access, the details of the compromised machine are sent to the attacker’s server

and the load phase begins, where malware is loaded and installed on a device. At this

point device becomes a part of the botnet network and will be operated through a C&C

server [3].

IoT itself means extending internet connection to devices and appliances that in the past

operated offline. Connecting them to the internet allows for remote control and

monitoring. IoT devices find their use in many different domains, both in consumer and

enterprise markets. For example, the concept of Smart Home heavily relies on IoT by

connecting thermometers, light bulbs, security cameras and other devices to the network

[4]. This sheer variety of IoT devices and manufacturers contributes to the security

challenges faced by the industry [4].

Traditional malware detection methods require a lot of manpower in order to analyze the

threats and come up with detection rules [5], especially as malware industry continuously

adapts and evades new countermeasures. In this regard machine learning gives a lot of

12

promise for the task. One possible approach to the problem of IoT security against botnets

is based on the application of machine learning to the network traffic data [5] [6].

1.2 Previous works

Earlier related research that deals with botnets does not yet refer to the IoT, perhaps as

IoT concept has experienced tremendous growth only very recently. In 2011 a research

has been done on detection of P2P (Peer-to-Peer) botnets during the pre-attack phase [7].

In 2013 a group of researchers in India again explored P2P botnet detection with neural

networks [8]. Others tried different approaches, like not searching for particular patterns

in overall traffic flow itself, but for example only in DNS queries [9] [10].

IoT botnet research comes prominently onto the scene more recently. In 2015 there was

a proposal for packet inspection algorithm [11] that would have to be installed on the IoT

device itself and would inspect the network packet payload. Later works, however,

recognized that this host-based approach would be difficult to implement in real

environment, due to the resource constraints and many differences between vendors. And

so in 2018 a team from Ben-Gurion University at Negev described how botnet attack

traffic can be detected based on network flow data using autoencoders, a particular type

of neural network [12], in addition to that they also released a public dataset of Mirai and

BASHLITE1 botnet traffic data [13], that will be used in this work. A team at Aberdeen

modeled IoT botnet attacks as a sequence using recurrent neural networks [14]. A couple

of studies have been conducted at TalTech: one showed how to detect anomalous traffic

using a combination of feature selection techniques together with unsupervised machine

learning methods like Local Outlier Factor, One-class SVM and Isolation Forest [15],

while another focused on the exploration of dimensionality reduction and methods like

Decision Tree and k-Nearest Neighbors classification [16].

1.3 Novelty

Firstly, this work will fill the gap left by [12] where a separate model for each IoT device

in the network has been created. The motivation is that training, deploying and

maintaining separate models for each device could quickly become burdensome in big

1 https://www.cyber.nj.gov/threat-profiles/botnet-variants/bashlite

13

networks. The datasets [13] for different devices will be combined into one and then

autoencoder algorithm as described in [12] will be implemented for this dataset. This

autoencoder will have similar size and number of layers as in [12] and their formula for

the threshold will be used, albeit it will be modified – a parameter will be added to it, and

an optimization is made for this parameter. Some details, such as activation function

choice and optimization algorithm choice are this work’s original contributions, as they

were not described in detail in the referred work. The technical implementation (source

code) is also completely independent from the referred work, as they didn’t publicize it.

Additionally, this work will employ a feature selection mechanism. This will allow for

assessment of autoencoder method accuracy on smaller feature subsets and for making a

fairer comparison on anomalous traffic detection with more traditional machine learning

methods studied in [15].

Secondly, this work will propose and assess a deep feedforward neural network with

softmax algorithm for attack type classification. Both classification of botnet type and

classification of Mirai attack type will be done. This is all in contrast to [14], where a

recurrent neural network was used, and only Mirai was studied. Moreover, this work will

also employ feature selection for attack classification to assess neural network

performance on varying number of features and make a comparison to more classical

machine learning algorithms studied in [16].

Thirdly, this work will explore the topic of explaining the neural network predictions, that

is usually not addressed by works studying deep learning methods. Neural networks suffer

from what can be called a lack of interpretability of results, a problem not experienced by

e.g. decision trees. As this can potentially stop a deep learning algorithm from being taken

into a real-life use, this work will assess LIME (Local Interpretable Model-Agnostic

Explanations) [17] technique, that can provide some interpretability to the results.

14

2 Research methods

For the purpose of our tasks we will employ two different architectures of neural

networks: an autoencoder for anomaly detection and a feedforward network with softmax

algorithm for classification. Fisher’s score will be used to select the most important

features and investigate algorithm performance on varying number of features. Data will

be pre-processed using the normal scaling. Explanations for the neural network decision

will be given by Local Interpretable Model-Agnostic Explanation method. Components

studied in this work could in real life be combined as on Figure 1 to create a complete

detection and classification pipeline.

On the technical side, code will be written in Python 3 with the use of modern frameworks

for data handling and machine learning, such as Pandas, scikit-learn and Keras.

2.1 Data

The data was obtained experimentally in a laboratory environment by the research team

at Ben-Gurion University of Negev [13]. In this environment different IoT devices were

connected to an isolated network using both Wi-Fi and wired connections. Additionally,

botnet components were installed in the network, such as C&C server. Then, using port

mirroring at the internet switch, data was gathered using Wireshark for both normal

traffic, when none of the devices were infected, and as well for malicious traffic, when

devices were infected.

Figure 1. Potential attack detection, classification and explanation pipeline.

15

2.1.1 Description

The data comes from 9 IoT devices belonging to smart-home and security domains:

doorbells, security cameras, thermostat, baby monitor. For this work all devices are

combined into one dataset.

In total data consists of 115 features which are related to different information about the

packets, aggregated in different ways.

The network statistics data that is included consists of: weight, or packet count; mean of

packet size; variance of packet size; standard deviation of packet size; radius as root

squared sum of two stream’s variances; magnitude of two stream’s means; covariance

and Pearson’s correlation coefficient.

Data is aggregated by:

• Source Host IP (H – feature name part in dataset file)

• Source MAC-IP (MI)

• Source and destination host IP (HH)

• Source and destination host and port (HpHp)

• Source and destination host traffic jitter (HH_jit)

Further, each statistic was calculated for different window sizes: 100ms, 500ms, 1.5sec,

10sec, and 1min using lambda decay parameter. More details about the dataset are

available at the UCI website [13].

Two types of botnet were installed in the laboratory environment: BASHLITE and Mirai.

These two are most notable botnet families in the world of Linux based IoT. Further,

Mirai data consists of 5 attack classes: SYN, ACK, UDP, UDPPlain, SCAN. The dataset

is described in greater detail in [12].

In total dataset consists of more than 5 million points.

Table 1. Data set size

Normal Mirai BASHLITE

555 932 3 668 402 1 032 056

16

For this work BASHLITE tcp.csv and udp.csv files were excluded, as their content

appeared to be inconsistent.

2.1.2 Splitting the dataset

Dataset is heavily skewed towards attack data and attack data is dominated by Mirai data,

it is unbalanced. During the experiments the data will be sampled to create more or less

balanced classes.

For anomaly detection purposes, normal data will be split into 3 sets: train, optimize and

test. Attack data will be added on testing stage and it will be equal to the normal test data

set size.

For botnet classification purposes, as the data is heavily overrepresented with attack

classes, but we also want to include the normal data to compare our classification to other

results, the Mirai and BASHLITE datasets will be sampled to the size of normal data, and

then our data set will be split into train and test subsets as 80:20, as is custom in the

machine learning field. For Mirai attack type classification, from each of 5 classes 100000

points will be taken to total of 500000 and then split 80:20 for train and test.

2.1.3 Feature scaling

When training neural networks, it is considered to be the best practice to scale the data

[18]. Otherwise different problems can be encountered such as degraded performance,

unpredictable behavior of optimization algorithm and exploding gradient.

There are different ways to scale the data, some of them rely on knowing the maximum

and minimum values for the distribution, and as the data is not in some predefined range

like, e.g. pixel value data, the standardization method is chosen, that relies on computing

the mean and variance of the train set.

This formula describes how to obtain scaled features (1).

𝑋"# =
𝑋#−	𝜇#
𝜎#

																																																																																																																																(1)			

In the given formula X tilde is the dataset feature i after scaling, X is the dataset feature

before scaling, 𝜇 is the mean of the training set feature and 𝜎 is the standard deviation of

17

the training set feature. Scaling then is applied to each feature of the dataset

independently. As a result, this should give us the features with mean of 0 and variance

of 1.

2.1.4 Feature selection

Some features of the data may be more important than others for the tasks of anomaly

detection or attack classification. This has been reflected by the works studying

dimensionality reduction for botnet attack detection [15] [16].

By selecting a smaller number of features we will enable this work to be compared to

other works and additionally demonstrate how neural network performance changes when

applied to varying number of inputs.

The metric that we will use for measuring the importance of a feature will be Fisher’s

score [19, p. 290]. It is calculated using the following formula (2).

𝐹 = 	
∑ 𝑝/(𝜇/ − 𝜇)0		1
/23

∑ 𝑝/𝜎/01
/23

																																																																																																													(2)

This score can be thought of as measuring the ratio of the average interclass separation to

the average intraclass separation. In the enumerator we sum for each class in the dataset

the product of this class’s proportion given by p6 with the squared difference of this class’s

mean µ6	and the feature’s mean µ. While in the denominator we sum the product of the

proportion of the class with its variance σ60. Then it is possible to simply sort the features

by this score in descending order and take only top N important features.

2.2 Anomaly detection

The task of detecting an attack can be framed as an anomaly or outlier detection problem.

This is based on the assumption that the normal usage network traffic data and malware

network data will differ in some dimensions, so that an algorithm will be able to make a

distinction.

There are different methods for anomaly detection, some of them, which were used

previously in other works for the same task, are Local Outlier Factor, Isolation Forest and

One class SVM.

18

LOF algorithm for example uses the deviation of local density of a given data point with

respect to its neighbors. The samples with considerably lower densities than neighbors

are considered as outliers.

Isolation forest works by splitting random features to isolate samples. The assumption is

that outliers will need less partitions to be isolated.

One-class SVM learns from normal data its properties, and then on novel attack data it

can predict it as not being normal.

2.2.1 Deep Autoencoder

One known method of how to perform anomaly detection using neural networks is to use

the special architecture that is called autoencoder.

Autoencoders are not a recent invention, they were known as early as 1986 [20]. Until

recently, however, the applications of autoencoders were mainly: representation learning,

dimensionality reduction and denoising.

For the anomaly detection purposes, the autoencoders, in particular deep autoencoders,

meaning having more than one hidden layer, have started gaining popularity only

recently, perhaps due to the growth of interest in the field of DL as a whole. Examples of

specific anomaly detection tasks solved by deep autoencoders include fraud detection,

e.g. credit card fraud, or experiment data quality assessment, as was done CERN [21].

1 https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html

Figure 2. LOF plot1

19

An autoencoder can be described as consisting of two different networks: an encoder and

a decoder. The job of the encoder is to receive the input 𝑋 and encode it into a hidden

state 𝑍. The decoder then receives this hidden state 𝑍 and aims to reconstruct the original

input as 𝑋′ [22, pp. 502-504].

𝑍 = 𝑒(𝑋)	

𝑋′ = 𝑑(𝑍)	

𝑋 ≈ 	𝑋′

The optimization task then is to minimize the loss function, which in our case will be

defined as a mean squared error between the original input and the reconstruction (3).

ℒ(𝑋, 𝑋@) = 	
1
𝑛B(𝑋# − 𝑋′#)0

C

#23

																																																																																																				(3)

Now if we consider the fact that the dimensionality of hidden state 𝑍 is less than the

dimensionality of input X, then this hidden state acts as a bottleneck, it forces the

autoencoder to learn useful representation of the input dataset, so then it could

successfully reconstruct them. We then expect that if we give the autoencoder a data

point not from the normal distribution, but from attack dataset, it will fail to reconstruct

1 https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Figure 3. Autoencoder1.

20

it, meaning that the difference between the original and the reconstruction will be too

high.

Additional construct that we will need then is the threshold for our error, such that if the

error is higher that the given threshold, we consider the data point being an anomaly or

an attack. In another work [12] the authors decided to use the threshold defined as

follows (4).

𝜏 = 𝑀𝑆𝐸(𝑋IJK)	LLLLLLLLLLLLLLL + 	𝑆𝑇𝐷 P𝑀𝑆𝐸Q𝑋IJKRS																																																																																	(4)

However, we will try to find a more optimal value for our task by trying out different

values of N with this formula (5).

𝜏 = 𝑀𝑆𝐸(𝑋IJK)	LLLLLLLLLLLLLLL + 𝑁 ∗ 	𝑆𝑇𝐷 P𝑀𝑆𝐸Q𝑋IJKRS																																																																										(5)

Our goal will be to reduce the number of false positives, where a normal traffic is

misclassified as an attack.

Internally our autoencoder will use 5 hidden layers of sizes 0.75, 0.5, 0.25, 0.5, 0.75 of

the input feature vector size. That is in addition to input and output layers of sizes n

respectively. The number of parameters in such model can be estimated as (6) where n

is the number of input parameters and b is the number of bias1 terms.

𝑛 ∗
3
4𝑛 +

3
4𝑛 ∗

1
2𝑛 +

1
2𝑛 ∗

1
4𝑛 +

1
4𝑛 ∗

1
2𝑛 +	

1
2 𝑛 ∗ 	

3
4 𝑛 +

3
4𝑛 ∗ 𝑛 + 𝑏 = 	2.5𝑛0 + 𝑏	(6)

We will use hyperbolic tangent as an activation function for our hidden unit neurons (7)

as per literature recommendation [22, p. 195].

𝑔(𝑥) = 	
𝑒0] − 1
𝑒0] + 1																																																																																																																								(7)

Without a nonlinear function the result of the autoencoder becomes just a linear

combination of features and as such loses power offered by nonlinear models.

1 https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html#bias

21

2.3 Attack classification

Having solved the problem of attack detection using autoencoders we then would like to

inspect the data to find out what type of attack is it exactly. As the dataset consists of two

botnet types: Mirai and BASHLITE, there will be these two classes, plus, in order to

compare our performance with earlier work using traditional ML methods, we will

consider normal data as a third class. Also, we will try to classify different Mirai attack

types: ACK, SCAN, SYN, UDP, UDPPlain.

In general, the task of classification appears to be the most popular application of machine

learning and consequently there are lots of algorithms to solve it: SVMs, decision tress,

random forests, k-nearest neighbors and others.

Apart from the neural network that will be applied in this work, of interest it to briefly

introduce decision trees and k-nearest neighbors, as this is what we will compare our

results to.

Decision Tree algorithm learns the partitions of feature values for given classes. Main

advantage of the algorithm is that the results are easily interpretable. Sometimes however,

decision tree learner can produce overly complicated and biased solution.

k-Nearest Neighbors algorithm works on principle that the class of the data point is

decided by the classes of k nearest neighbors to that point.

2.3.1 Deep Neural Network

We will attempt to solve the problem of classification with a deep neural network with

two hidden layers each with 8 neurons. Unfortunately, there are no theoretical rules yet

that would guide the choice of a neural network size for particular tasks. Mostly the

approach seems to be to just increase the number of layers or neurons until good accuracy

is attained. Preliminary experiments showed that for our task of classification with 115

features and 3 classes and 5 classes, the proposed architecture should suffice.

22

Apart from the number of layers and neurons other important details to describe for

proposed neural network are:

• Hyperbolic tangent activation function for hidden neurons

• Softmax function applied to the last layer

• Categorical cross-entropy as a loss function

Hyperbolic tangent activation function definition was already given previously (7).

The need for softmax arises from the fact that we are doing a classification, hence at the

last layer we want to receive a probability vector with normalized probabilities for each

class, and softmax (8) gives us exactly that [22, pp. 185-186].

𝑠𝑜𝑓𝑡𝑚𝑎𝑥Q𝑥/R = 	
𝑒]e

∑ 𝑒]fg
#23

																																																																																																										(8)

Categorical cross-entropy [22, p. 178] is a standard choice for a loss function with

multiple classes.

2.4 Evaluation metrics

For the task of anomaly detection, we can apply a two-class confusion matrix to evaluate

our results as in Table 2.

Figure 4. Neural network diagram.

Input Layer ∈ ℝ¹⁵ Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ³

23

Table 2. Confusion matrix for two classes.

 Predicted normal Predicted attack

Actual normal True Negative (TN) False Positive (FP)

Actual attack False Negative (FN) True Positive (TP)

Accuracy can then be defined as (9).

𝐴𝐶𝐶 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																																																																																																		(9)

And precision as (10).

𝑃𝑅 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																																																																																																									(10)

False positive rate will be defined as (11).

𝐹𝑃𝑅 = 	
𝐹𝑃

𝐹𝑃 + 𝑇𝑁																																																																																																																						(11)

Similarly, accuracy can be computed for more than 2 classes. Also, for our deep learning

models, we can also measure how long does the training take in seconds to achieve good

accuracy and how complex the model is, meaning how many parameters does it contain

and how much does it weight when saved to disk.

2.5 Local Interpretable Model-Agnostic Explanations

Both the autoencoder and the classification neural network suffer from the same problem

of opaqueness. At least in theory, of course, one could inspect all the weights of neural

network to understand how it made the decision that in made, but in practice the number

of parameters is too high to make any meaningful inference from that.

As deep neural network becomes the algorithm of choice for many modern tasks, it

becomes imperative to find a solution for interpretability. One possible approach, known

as Local Interpretable Model-Agnostic Explanation [17] will be studied in this work.

This technique works by perturbing values of a particular instance that we want to explain

and learning a local linear approximation for classification. As shown on the example

Figure 5, where the bold red cross point is being explained, a linear model can be inferred

24

by looking at instances that are near and their classes, and this line can be presented as an

explanation.

2.6 Tools and technologies

The language of choice is Python2 3.6. Recently Python has been extremely popular with

machine learning community thanks to many factors. The wealth of libraries and

frameworks for data processing and data analysis makes working on ML projects quite a

pleasant experience. Most of the experiments for this thesis were done in a form of a

Jupyter3 notebook. This can be more convenient than terminal programs, as Jupyter

allows for better visualization and rerunning of different parts of an experiment. Pandas4

library is used to handle the csv data for this work. Pandas data frames, backed by Numpy5

arrays solve the problem of our not-so-small data (the size of the dataset is in Gigabytes).

This work also relies on scikit-learn6 library for the scaling and evaluation metrics

functions. Neural network models are composed using Keras7 2.2 library, which in turn

relies on Tensorflow8 framework for all the computations.

1 https://raw.githubusercontent.com/marcotcr/lime/master/doc/images/lime.png
2 https://www.python.org/
3 https://jupyter.org/
4 https://pandas.pydata.org/
5 https://www.numpy.org/
6 https://scikit-learn.org/stable/
7 https://keras.io/
8 https://www.tensorflow.org/

Figure 5. LIME plot1.

25

3 Results

The results of the experiments are listed in this chapter. Experiments were run multiple

times to ensure their validity. Random seed was set where possible to ensure that results

don’t vary between different reruns. All the experiments were run on a computer with 2,6

GHz Intel Core i7 CPU.

3.1 Feature scoring

Fisher’s score was calculated (Table 3) on training sets for each data subset used

respectively for attack detection, botnet type classification and Mirai attack type

classification. Results in later sections where only a subset of features is used, are based

on these rankings. Code for the score calculation procedure can be found in Appendix 1.

Table 3. Fisher's scores for different data subsets.

2 class (normal, attack) 3 class (2 botnets + 1
normal)

5 classes of Mirai attacks

Feature F Sc Feature F Sc Feature F Sc

MI_dir_L0.1_weight 3.34 MI_dir_L3_weight 1.96 MI_dir_L0.01_var 43.75

H_L0.1_weight 3.34 H_L3_weight 1.96 H_L0.01_var 43.75

MI_dir_L1_weight 3.18 MI_dir_L5_weight 1.93 MI_dir_L0.1_var 41.43

H_L1_weight 3.18 H_L5_weight 1.93 H_L0.1_var 41.43

MI_dir_L3_weight 3.01 MI_dir_L1_weight 1.87 MI_dir_L0.01_mean 30.05

H_L3_weight 3.01 H_L1_weight 1.87 H_L0.01_mean 30.05

MI_dir_L5_weight 2.86 MI_dir_L0.1_weight 1.70 MI_dir_L0.1_mean 27.03

H_L5_weight 2.86 H_L0.1_weight 1.70 H_L0.1_mean 27.03

MI_dir_L0.01_weight 1.65 MI_dir_L0.01_weight 1.43 MI_dir_L1_var 19.62

H_L0.01_weight 1.65 H_L0.01_weight 1.43 H_L1_variance 19.62

3.2 Attack detection

The autoencoder as described in section 2.2.1 was created (Appendix 2) and trained on

all 115 features. Default Keras optimization hyperparameters were used. Training was

limited to 100 epochs with additional condition of early stopping (Figure 6), using

functionality provided by Keras. This ensures that the model is trained only until the score

26

on validation set is not getting worse – this in turn helps to avoid overfitting the training

set.

es = EarlyStopping(monitor='val_loss', patience=5)

Figure 6. Keras early stopping.

Adam [23] gradient descent optimization algorithm was chosen, as it should give

noticeable improvements in training times compared to more basic stochastic gradient

descent.

The code for training procedure is found in Appendix 4.

The model trained in total for 23 epochs, taking about 25 seconds for each epoch, totaling

in 584 seconds of training time. Figure 8 demonstrates the training curve. Loss is defined

as MSE between original and predicted values.

Training set had 185310 samples and optimization (validation) set 185311 samples.

The created model contained 33900 parameters (weights) and when saved, the file was

of size 471 kB. Figure 7 shows the created model’s architecture.

Figure 7. Keras Autoencoder architecture.

27

Values of integers from 1 to 10 were tried for the threshold equation (5) parameter N on

the optimization dataset. The results are presented in the Table 4. Threshold with N value

of 10 showed the best accuracy and lowest numbers of false positives so it was chosen

for subsequent operations on the test set.

Table 4. Results with different N values for threshold.

N Accuracy False positives False negatives

1 0.9894 3911 23

2 0.9934 2203 25

3 0.9961 1396 28

4 0.9973 978 35

5 0.9979 744 38

6 0.9983 587 41

7 0.9986 467 43

8 0.9988 387 45

9 0.9990 292 51

10 0.9992 245 52

With model trained and threshold selected it is now possible to do an evaluation on the

test set. Achieved accuracy is 0.9991 and precision is 0.9985. A more detailed breakdown

is given by a confusion matrix Figure 9. False positive rate is thus 0.0015.

Figure 8. Autoencoder training curve.

28

Additionally, autoencoder models were trained on reduced number of features for the

purposes of their comparison. Some modifications in the training procedure were

introduced, such as the maximum number of epochs was limited to 50. Also, the value

for threshold parameter N was used that was selected earlier from Table 4. Figure 10

shows how accuracy depends on the number of input features in such model. While Figure

11 demonstrates how number of parameters in the autoencoder grows as a function of a

number of input features.

Table 5 makes a comparison between more traditional ML methods for anomaly detection

and the autoencoder implemented in this work. It should be noted, that the specific

features used by each method are varied, as such this comparison is not strict.

Figure 9. Attack detection on test set.

29

Table 5. Attack detection performance comparison.

Number of
features

Accuracy

 Deep
Autoencoder

Entropy SVM
[15]

Variance
Isolation
Forest [15]

3 0.9991 0.8337 0.6229

5 0.9989 0.6765 0.6055

10 0.9986 0.5050 0.9220

Figure 10. Autoencoder accuracy for different # of features.

Figure 11. Autoencoder # of parameters for different # of features.

30

Figure 12 presents a LIME explanation for a detected attack. While Table 6 presents the

boundaries used by this decision.

Table 6. LIME explanation boundaries for attack detection.

Boundary Importance

MI_dir_L0.01_weight > 27982.34 0.02

MI_dir_L0.1_weight > 6079.16 0.02

HH_L0.1_weight > 2849.41 0.02

H_L0.1_weight > 6079.16 0.01

HH_jit_L0.01_weight > 12113.47 0.01

3.3 Attack classification

Two types of deep learning classifier models were trained to differentiate between

different botnet types (Mirai, BASHLITE and also non-botnet) and between different

Mirai botnet attack types (SCAN, ACK, SYN, UDP, UDPPlain). Additionally, these

types of classifiers were trained on varying number of features to assess their

performance.

3.3.1 Botnet type classification

For botnet type classification a neural network was implemented as specified in section

2.3.1 using function from Appendix 3. As with autoencoder, amount of training epochs

Figure 12. LIME explanation for attack detection.

31

was limited to 100 for practical purposes, and default Keras hyperparameters were used.

Training code can be found in Appendix 5.

Resulting model based on all 115 features contained 1027 parameters (weights). Training

took only 11 epochs with early stopping. Figure 13 shows the learning curve for this

model. Total training time amounted to 689 seconds with about 62 seconds per epoch.

Saved model file weighted only 41kB.

On the test set of size 333560, the accuracy of 0.9997 was achieved.

Figure 14 gives a complete test set classification breakdown in the form a confusion

matrix.

For the purpose of comparison with other ML methods, model was retrained on 2, 3 and

10 features selected by their Fisher’s score and the comparison is shown in Table 7. This

classifier was also retrained on selected numbers of features from 2 to 115 to show how

the accuracy changes with growing number of features, the result is on Figure 15.

Figure 13. Botnet classification learning curve.

32

Table 7. Botnet classification accuracy comparison.

Number of features Accuracy

Deep Neural Network Decision Tree
[16]

k-NN [16]

2 0.8188 0.9843 0.9805

3 0.8663 0.9851 0.9724

10 0.9933 0.9897 0.9497

Figure 14. Botnet classification confusion matrix.

Figure 15. Botnet classification accuracy with different # of features.

33

A random Mirai botnet class data point was then selected and its explanation by LIME is

presented on Figure 16. LIME boundaries are additionally specified in Table 8.

Table 8. LIME explanation boundaries for Mirai botnet classification.

Boundary Importance

3427.45 < MI_dir_L0.1_weight <= 6431.98 0.12

3427.45 < H_L0.1_weight <= 6431.98 0.11

MI_dir_L3_weight > 252.04 -0.07

100.09 < H_L0.01_weight <= 11161.10 -0.07

HH_jit_L0.1_weight <= 1.21 0.06

3.3.2 Mirai attack type classification

For Mirai attack type classification the neural network was created as specified in section

2.3.1 using function from Appendix 3. Again, default hyperparameters provided by Keras

were used during training, and Adam optimization algorithm was employed to speed up

training.

With early stopping mechanism, training took 17 epochs, in total taking 258 seconds, so

about 15 seconds for each epoch. Training set size was 400000. Training curve is

presented on Figure 17. Model consisted of 1045 parameters and weighted 41 kB.

On test set of size 100000 accuracy of 0.9984 was achieved. A detailed confusion matrix

is shown on Figure 18.

Figure 16. LIME explanation for botnet classification.

34

For comparison purposes model was also recreated and retrained on 2, 3, 4, 5, and 10

features selected by Fisher’s score. The results are demonstrated in Table 9. Figure 19

shows how accuracy changes from on sets of features from 2 to 115.

Figure 17. Mirai attack classification learning curve.

Figure 18. Mirai attack classification confusion matrix.

35

Table 9. Mirai attack classification accuracy for different # of features.

Number of features Accuracy

2 0.6235

3 0.6294

4 0.6284

5 0.9783

10 0.9788

A random UDP type attack point was selected to create a LIME explanation. Figure 20,

Table 10 and Table 11 show this explanation and as classifier was not absolutely certain

in this case, additionally explanation for ACK class which had 30% probability assigned

to it is also explained.

Figure 19. Mirai attack classification accuracy for different # of features.

36

Table 10. LIME explanation boundaries for correct UDP class.

Boundary Importance

HpHp_L0.1_weight <= 1.00 0.15

HpHp_L3_weight <= 1.00 0.13

HpHp_L1_weight <= 1.00 0.13

HpHp_L0.01_weight <= 1.00 0.12

HpHp_L5_weight <= 1.00 0.10

Table 11. LIME explanation boundaries for wrong ACK class.

Boundary Importance

H_L0.01_variance > 57736.45 0.14

HpHp_L0.1_weight <= 1.00 0.14

MI_dir_L0.1_variance > 57211.65 0.13

MI_dir_L0.01_variance > 57736.45 0.13

H_L0.1_variance > 57211.65 0.09

Figure 20. LIME explanation for Mirai attack type UDP.

37

4 Analysis and discussion

Overall the results of the experiments showed that very good results can be achieved in

the application of deep learning methods to the problems of IoT botnet attack detection

and classification.

4.1 Detecting attacks

The attack detection with deep autoencoder showed outstanding results with accuracy of

0.9991 and false positive rate of 0.0015. As such there does not appear to be a lot of room

for improvement in this regard.

One of the goals of this work was to show, that the anomaly detection with autoencoders

can be applied to the data coming from multiple different IoT devices, this is in contrast

to [12], where an autoencoder was trained for each IoT device in the network. The results

suggest that this goal can be considered accomplished, as the mean false positive rate of

0.007±0.01 that was reported there is quite comparable to ours 0.0015. Is should be noted

that our approach had an advantage of higher threshold by the equation (5) with N=10. In

fact, difference in the number of false positives between N=1 and N=10 as shown by

Table 4 is almost 16 times, even if both numbers are small in relation to the total number

of negatives.

Another interesting aspect of the studied approach is that the accuracy of the autoencoder

seems to stay relatively constant with varying number of features as shown in Figure 10.

The explanation can probably be given by the plot in Figure 21 which shows that there is

a very noticeable difference in data distributions based on the number of packets for

normal and attack data. This is not surprising, considering that DDoS attacks are based

on large amounts of packets beings sent in order to deny a service. What is interesting

however, is that the autoencoder is able to effectively filter out the unimportant data, as

the accuracy does not drop with increasing number of features, compared to more

traditional methods, some of which apparently have problems with increased dimensions

like SVMs as per Table 5.

38

It has to be noted, however, that to do this feature analysis using Fisher’s score, one has

to be in possession of attack data. And as such it would not possible to do this scoring

having only normal data, whereas the whole idea of framing the problem of attack

detection as anomaly detection is that the model can be trained suing only normal data.

If such a system were to be implemented in real life, with just one autoencoder for a whole

(sub)network, and not separate models for each IoT device in the network, then the size

of the autoencoder model, which increased quadratically with the number of features

used, as shown by equation (6) and also visually demonstrated by Figure 11, does not

seem as a significant concern.

The result of the LIME technique applied to an attack data point, as presented in Figure

12 and Table 6, seems to be intuitively correct, in regard that most important conditions

for this decision are identified as very high number of packets in the statistic.

4.2 Classifying attacks

Both botnet type classification and Mirai attack type classification showed very good

results on the whole 115 feature set with accuracies over 0.99. However, on a very small

feature sets the results we not as great, as shown in Table 7 and Table 9, even being

substantially lower on 2 and 3 features than those achieved in [16] with more traditional

ML. This could however, be attributed to different feature selection strategies.

Interestingly, for Mirai attack type classification on different feature sets (Table 9) the

performance dramatically improved after including 5th feature from Table 3, which

corresponded to a mean of the packet size during last minute time frame, while 4 features

Figure 21. Plot for 2 most important attack detection features.

39

used before referred only to the variance within different time frames, which perhaps

suggests that when selecting small number of features, diverse types should be included.

Not surprisingly, two most confused Mirai classes are UDP and UDPPlain with 88 data

points confused between them, as seen on Figure 18. Both of them constitute a variation

of a flooding attack using the same network protocol, namely User Datagram Protocol,

and UDPPlain appears to be modified to not include payload [24].

In a similar vein as with attack detection, it is noticeable, that model accuracy does not

degrade with increasing number of features, reflecting the models’ ability to disregard

unimportant data. In contrast, for example, k-Nearest Neighbors algorithm appeared to

have a degraded in accuracy as can be seen in Table 7 when features increased from 2 to

3 and to 10.

LIME explanations for Mirai UDP attack type in Table 10, Table 11, Figure 20 present

an interesting case. Firstly, the classifier is not absolutely certain that it is, in fact, a UDP

attack, its predictions are split 70% for UDP and 30% for ACK type attack. Most

important boundaries in favor of UDP are packet counts grouped by source and

destination ports. According to research, a distinctive feature of UDP flood attack is port

randomization [24], which means that in the statistics grouped by port it is quite possible

to get only one packet for each combination of ports, which is in accordance with the

data. But why is classifier not completely certain? The explanation for 30% probability

class ACK points out the packet size variance. Out of 5 Mirai attack types present in the

dataset, only UDP, UDPPlain and ACK can send the payload, according to research [24],

with UDPPlain usually being used without payload to optimize for packets-per-second.

And so, it seems that the classifier’s relative uncertainly can be explained by the fact that

both UDP and ACK attacks can have high payload variance.

4.3 Implementation in real environment

Using elements studied in this work, it could be possible to assemble a complete

detection, classification and explanation pipeline as suggested by Figure 1. There would

be however, many practical considerations.

The anomaly detection part of the pipeline should be easier to implement in practice, as

there would be no need to obtain and maintain a dataset for different botnets and their

attacks. It would still require sampling traffic from an IoT network that is not yet infected,

40

of course, which could be a problem in and on itself. Further, it is not clear, how the

method performance would change if the network itself is changed, for example: new

devices are added. If it would be a device of the same type as the one we already have in

the network, e.g. one more security camera, but from another manufacturer, perhaps the

data distribution will not change much, but this is just speculation. As dataset actually

contains multiple devices from similar categories, this could be something worth

exploring.

The theoretically good false positive rate of 0.0015 in practice would still mean that more

than 1 in 1000 normal data points would be falsely labeled as an attack. If a data point is

generated every 100 milliseconds, that would give us a false alarm every 100 seconds,

and this is not practical. One data point by itself, however, could hardly be considered an

attack, where a continuous stream of packets is usually sent. To that regard, an approach

suggested by [12] could be implemented, where an alarm only goes off if there is a

majority of attack data points within a window of some specified size.

While the attack detection mechanism based on autoencoder could be developed locally,

maybe by an engineer maintaining the IoT network, the botnet classifier presents a

challenge in the form of data set requirements. Ideally, this is a task for a cybersecurity

firm or a research university team, that specializes in IoT botnets and collects and

maintains data sets needed to train an effective classifier that would recognize a wide

range of different botnets and attack types.

41

5 Conclusions

Deep learning methods demonstrated good IoT botnet attack detection and classification

accuracy. Moreover, these methods can work well with varying number of features and

generally their performance does not suffer from extra features, meaning that in real world

environment they offer the possibility of using all existing data features.

It was also shown that there may not be a need to create different models for each device

in the network, and that one model trained on data from all devices can be just as good.

The lack of interpretability, one of the neural network limitations, can be successfully

addressed using LIME, as was demonstrated by producing feature value boundaries

which upon closer inspection agreed with common sense.

42

References

[1] K. L. Lueth, "State of the IoT 2018: Number of IoT devices now at 7B – Market

accelerating," [Online]. Available: https://iot-analytics.com/state-of-the-iot-
update-q1-q2-2018-number-of-iot-devices-now-7b/. [Accessed 6 January 2019].

[2] A. D. Rayome, "DDoS attacks increased 91% in 2017 thanks to IoT," [Online].
Available: https://www.techrepublic.com/article/ddos-attacks-increased-91-in-
2017-thanks-to-iot/. [Accessed 6 January 2019].

[3] M. Antonakakis, "Understanding the Mirai Botnet," in Proceedings of the 26th
USENIX Security Symposium, Vancouver, 2017.

[4] M. Rouse, "IoT devices (internet of things devices)," [Online]. Available:
https://internetofthingsagenda.techtarget.com/definition/IoT-device. [Accessed 6
January 2019].

[5] Z. Bazrafshan, et al, "A survey on heuristic malware detection techniques," in
2013 5th Conference on Information and Knowledge Technology (IKT), 2013.

[6] M. Stevanovic and J. M. Pedersen, "On the Use of Machine Learning for
Identifying Botnet Network Traffic," Journal of Cyber Security, vol. 4, pp. 1-32,
2016.

[7] S. Saad, et al, "Detecting P2P botnets through network behavior analysis and
machine learning," in 2011 Ninth Annual International Conference on Privacy,
Security and Trust, Montreal, 2011.

[8] S. C. Guntuku, P. Narang and C. Hota, "Real-time Peer-to-Peer Botnet Detection
Framework based on Bayesian Regularized Neural Network".

[9] X. D. Hoang and Q. C. Nguyen, "Botnet Detection Based On Machine Learning
Techniques Using DNS Query Data," Future Internet, vol. 10, no. 43, 2018.

[10] A. Kamal, et al, "A survey of botnet detection based on DNS," Neural Computing
and Applications, 2015.

[11] D. H. Summerville, K. M. Zach and Y. Chen, "Ultra-lightweight deep packet
anomaly detection for Internet of Things devices," in IPCCC, Nanjing, 2015.

[12] Y. Meidan, et al, "N-BaIoT: Network-based Detection of IoT Botnet Attacks
Using Deep Autoencoders," IEEE PERVASIVE COMPUTING, vol. 18, no. 9,
2018.

[13] Y. Meidan, et al , "iot botnet dataset," [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT.
[Accessed 27 December 2018].

[14] C. D. McDermott, F. Majdani and A. V. Petrovski, "Botnet Detection in the
Internet of Things using Deep Learning Approaches," in IJCNN, Rio De Janeiro,
2018.

[15] S. Nõmm and H. Bahsi, "Unsupervised Anomaly Based Botnet Detection in IoT
Networks," in ICMLA, 2018.

[16] H. Bahsi, S. Nõmm and F. B. L. Torre, "Dimensionality Reduction for Machine
Learning Based IoT Botnet Detection," in ICARCV, Singapore, 2018.

[17] M. T. Ribeiro, S. Singh and C. Guestrin, "“Why Should I Trust You?” Explaining
the Predictions of Any Classifier," in KDD, 2016, San Francisco.

43

[18] A. Ng, "Gradient Descent in Practice I - Feature Scaling," Coursera, [Online].
Available: https://www.coursera.org/lecture/machine-learning/gradient-descent-
in-practice-i-feature-scaling-xx3Da. [Accessed 6 January 2019].

[19] C. C. Aggarwal, Data Mining: The Textbook, Springer, 2015.
[20] D. Rumelhart, G. Hinton and R. Williams, "Learning internal representations by

error propagation.," in Parallel Distributed Processing, vol. 1, Cambridge, MA,
MIT Press, 1986, p. 336.

[21] A. A. Pol, "Anomaly detection using Deep Autoencoders for the assessment of the
quality of the data acquired by the CMS experiment," in 23rd International
Conference on Computing in High Energy and Nuclear Physics, Sofia, 2018.

[22] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.
[23] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in

International Conference for Learning Representations, San Diego, 2015.
[24] C. Seaman, "Threat Advisory: Mirai Botnet," [Online]. Available:

https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/akamai-mirai-botnet-threat-advisory.pdf. [Accessed 6 January 2019].

44

Appendix 1 – Fisher’s score calculation procedure

scored = []
indices = {}
shps = {}
for cl in classes:
 indices[cl] = df_fish['class'] == cl
 shps[cl] = df_fish[indices[cl]].shape[0]

for col in df_fish.columns:
 if col == 'class':
 continue
 num = 0
 den = 0
 m = df_fish[col].mean()

 for cl in classes:
 num += (shps[cl] / df_fish.shape[0]) * (m -
df_fish[indices[cl]][col].mean())**2
 den += (shps[cl] / df_fish.shape[0]) *
df_fish[indices[cl]][col].var()
 score = {'feature': col, 'score': num / den}
 scored.append(score)

45

Appendix 2 – Autoencoder model creation function

def create_model(input_dim):
 inp = Input(shape=(input_dim,))
 encoder = Dense(int(math.ceil(0.75 * input_dim)), activation="tanh")(inp)
 encoder = Dense(int(math.ceil(0.5 * input_dim)),
activation="tanh")(encoder)
 encoder = Dense(int(math.ceil(0.25 * input_dim)),
activation="tanh")(encoder)
 decoder = Dense(int(math.ceil(0.5 * input_dim)),
activation="tanh")(encoder)
 decoder = Dense(int(math.ceil(0.75 * input_dim)),
activation="tanh")(decoder)
 decoder = Dense(input_dim)(decoder)
 return Model(inp, decoder)

46

Appendix 3 – Deep Neural Network model creation function

def create_model(input_dim, hidden_layer_size, num_of_classes):
 model = Sequential()
 model.add(Dense(hidden_layer_size, activation="tanh",
input_shape=(input_dim,)))
 model.add(Dense(hidden_layer_size, activation="tanh"))
 model.add(Dense(num_of_classes))
 model.add(Activation('softmax'))
 return model

47

Appendix 4 – Autoencoder training

 model = create_model(top_n_features)
 model.compile(loss="mean_squared_error",
 optimizer="adam")
 cp = ModelCheckpoint(filepath=f"anomaly/anomaly{top_n_features}.h5",
 monitor='val_loss',
 save_best_only=True,
 verbose=0)

 es = EarlyStopping(monitor='val_loss', patience=5,
restore_best_weights=True)

 epochs = 100
 history = model.fit(X_train, X_train,
 epochs=epochs,
 validation_data=(X_opt, X_opt),
 verbose=1,
 callbacks=[cp, es])

48

Appendix 5 – Classifier training

 model = create_model(top_n_features, 8, 3)
 model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
 cp = ModelCheckpoint(filepath=f'./models/model_{top_n_features}.h5',
 save_best_only=True,
 verbose=0)
 es = EarlyStopping(patience=5, monitor='val_acc',
restore_best_weights=True)
 epochs = 100

 history = model.fit(X_train, y_train,
 epochs=epochs,
 validation_split=0.2,
 verbose=1,
 callbacks=[cp, es])

