
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

 School of Information Technologies

Kush Hiren Brahmbhatt
212284IASM

Comparative analysis of selecting
a test automation framework for

an e-commerce website

 Master's thesis

Supervisor:

Jekaterina
Tšukrejeva
MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kush Hiren Brahmbhatt

212284IASM

E-kaubanduse
veebisaidi testimise
automatiseerimise

raamistiku valimise
võrdlev analüüs

Juhendaja:

Jekaterina
Tšukrejeva
MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kush Hiren Brahmbhatt

 08.05.2023

4

Abstract

Ecommerce websites are growing and there is a need for test automation to mitigate human

error caused of manual testing and to provide a seamless experience to their customers

shopping online. Playwright is an easy to use open-source test automation framework which

will be competitor of the popular open-source framework Selenium Webdriver. This master

thesis aims to perform comparative analysis between these two frameworks to make an

informed decision when choosing the test automation framework for the ecommerce

website and performing end-to-end testing on popular fitness clothing brand Gymshark EU.

After conducting end to end testing. The results suggest that for Gymshark EU website,

Selenium Webdriver is 2 times faster than Playwright. The Playwright framework is easy

to use, documentation is provided on their website. Scripting in Java using Selenium

Webdriver is tedious and has a lot more code to write than Playwright. Playwright locator

API and data locator id is superior has an edge over Selenium's find by element method

when handing dynamic elements and floating buttons. Playwright has in-built recording

libraries taking less hard-disk space then third-party supported recording in Selenium

Webdriver. Playwright is a viable option to consider and further improvements in

Playwright would improve its execution speed and computational time. Selenium

Webdriver has its robust Page Object Model that gives an edge over its completion.

This thesis is written in English and is 51 pages long, including 5 chapters, 10 figures and

5 tables.

5

Annotatsioon

E-kaubanduse veebisaidi testimise
automatiseerimise raamistiku valimise

võrdlev analüüs

Poodide veebisaidid kasvavad ja on vaja testimise automatiseerimist, et leevendada käsitsi

testimisest põhjustatud inimvigu ja pakkuda klientidele veebis ostlemist sujuvalt.

Playwright on hõlpsasti kasutatav avatud lähtekoodiga testimise automatiseerimise

raamistik, mis on populaarse avatud lähtekoodiga raamistiku Selenium Webdriver

konkurent. Selle magistritöö eesmärk on teha nende kahe raamistiku võrdlev analüüs, et

teha teadlik otsus poodide veebisaidi testimise automatiseerimise raamistiku valimisel ja

populaarse fitnessrõivabrändi Gymshark EU täieliku testimise läbiviimisel.

Pärast otsast lõpuni testimist. Tulemused näitavad, et Gymsharki EL-i veebisaidil on

Selenium Webdriver 2 korda kiirem kui Playwright. Playwrighti raamistikku on lihtne

kasutada, dokumentatsioon on nende veebisaidil. Java-skriptimine Selenium Webdriveri

abil on tüütu ja selle kirjutamiseks on palju rohkem koodi kui Playwrightil. Dramaturgi

asukoha API ja andmelokaatori ID on parem, omavad dünaamiliste elementide ja hõljuvate

nuppude üleandmisel eelist Seleeni elementide järgi leidmise meetodi ees. Playwrightil on

sisseehitatud salvestusteegid, mis võtavad vähem kõvakettaruumi kui kolmanda osapoole

toetatud salvestus Selenium Webdriveris. Playwright on mõistlik võimalus kaaluda ja

Playwrighti edasised täiustused parandaksid selle täitmiskiirust ja arvutusaega. Selenium

Webdriveril on tugev leheobjekti mudel, mis annab eelise selle valmimise ees.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti

51 leheküljel, 5 peatükki, 10 joonist, 5 tabelit.

6

List of abbreviations and terms

DPI Dots per inch

IA Department of Computer Systems

WWW World Wide Web

Ecommerce Electric commerce

SDLC Software Development Life Cycle

STLC Software Test Life Cycle

UI User Interface

QA Quality Assurance

AUT Application Under Test

Web App Web Application

IT Information Technology

EU European Union

MB Megabytes

POM Page Object Model

7

Table of contents

1 Introduction ... 11

1.1 Background ... 13

1.2 Problem ... 13

1.3 Thesis Objective ... 16

2 Testing of web applications ... 17

2.1 Types of Testing ... 17

2.2 Testing Techniques and Strategies ... 19

2.2.1 Manual and Automated testing .. 20

2.2.2 Black Box and White Box Testing ... 22

2.3 Phases of Software Test Life Cycle (STLC) .. 23

2.4 Importance of Test Automation Approach ... 25

3 Evaluation of testing tools and frameworks .. 26

3.1 Criteria for choosing the test automation frameworks. .. 26

3.2 Comparative analysis of test automation frameworks .. 28

3.2.1 Cypress ... 28

3.2.2 Nightwatch ... 29

3.2.3 Playwright .. 30

3.2.4 Selenium Webdriver... 31

3.3 Dependencies .. 35

4 Results ... 38

4.1 Test automation implementation .. 42

4.1.1 Page Object Model ... 42

4.2 Result analysis and challenges ... 43

8

5 Summary .. 50

References .. 51

Appendix 1 – Non-exclusive license for reproduction and publication of a graduation

thesis1 .. 53

Appendix 2 – Test cases written in Javascript using Playwright framework and

Chromium web browser ... 54

Appendix 3 – Test cases in Java using Selenium Webdriver framework and Chrome web

browser ... 60

9

List of figures

Figure 1. Illustration of software testing ... 12

Figure 2. Test automation Pyramid ... 18

Figure 3 Phases of Software Test Life Cycle (STLC) .. 25

Figure 4 Popular framework amongst JavaScript users. [30] ... 34

Figure 5 Selenium Webdriver (right) and Playwright folder structure (left) 37

Figure 6 Homepage of Gymshark Website .. 39

Figure 7 Mind map of Gymshark website... 40

Figure 8 Screenshot passed test case for invalid signup using Playwright framework 45

Figure 9 Playwright test results ... 46

Figure 10 Selenium Webdriver test results ... 46

10

List of tables

Table 1 Comparison between Manual and Automated testing ... 22

Table 2 Comparison of software testing tools [24, 25, 26, 27] ... 27

Table 3 Comparison table of test automation frameworks ... 33

Table 4 Test cases for Gymshark EU .. 41

Table 5 Comparison of execution time between Selenium Webdriver and Playwright.................. 47

11

1 Introduction

The global number of websites on the internet has more than doubled from 2015 to 2022.

Currently, there are over 1.98 billion active websites on the World Wide Web (WWW),

and this number is forecast to increase exponentially in the upcoming years [1]. One of the

internet's largest markets, eCommerce is a hugely valuable sector. The eCommerce income

projection indicates that in 2024, it will increase to 3.1 billion US dollars [2]. Moreover,

as the eCommerce sector keeps on growing, the number of eCommerce websites increases.

As the demand for creating an online website increase, focus and emphasis on testing the

software becomes critical.

Testing is a vital part of software development life cycle (SDLC) and it is the most time-

consuming phase of the life cycle model, consuming approximately 40% to 70% of time

in the development phase [3]. Software testing contributes to the improvement and

maintenance of software quality, and hence plays a significant role in the software

development process. The earlier a failure or bug is detected, the lower the cost of

correction and easier it is to update the software [4]. There are various techniques for

software testing. Most popular traditional software testing approaches include automated

tests in the form of unit level, then followed by integration, and user interface (UI) tests.

These tests are performed manually, hence called manual testing. The selection of test

cases to evaluate each unit under testing is an important aspect of the testing activity. Such

test cases can be developed manually by the tester or automatically via test generators.

An automated testing technique attempts to reduce the process's tedium by utilizing a

software tool that creates test cases from the program's specification (black box) or actual

text (white box). Automated and manual procedures are frequently regarded to be unique,

and they are typically backed by different technologies [5].

12

Figure 1. Illustration of software testing

As illustrated in Figure 1, Test development process consists of two main parts. The first

half is manual testing performed manually by testers or quality assurance (QA) personal

and the other half is automated testing also known as test automation, which is performed

by test engineers and test software developers or QA specialized in scripting test automation

software.

In recent times, Test automation has helped automating major parts of the testing phase thus

reducing the human-error in testing. Test automation frameworks for web applications like

Selenium are popular amongst web developers providing a wide range of cross-platform

functionalities. Selenium is open-sourced, and it is comprised of two main parts: Selenium

IDE (Integrated Development Environment) and Selenium Webdriver. First, Selenium IDE

is a Firefox and Chrome plugin feature where any interactions of the browser can be

recorded during a bug generation and verification process with the help of assertions that

can be used during the test automation suite. Lastly, Selenium Webdriver is a popular web

testing framework used in creating and executing test cases in a wide variety of

programming languages such as JavaScript (Node.js), Python, Ruby, Java, C# and many

more. It is robust, user friendly and a de facto choice of developers and test engineers.

Recently, Selenium has launched Selenium Grid that allows Selenium WebDriver scripts

to run and test in parallel across multiple remote machines [6].

Microsoft launched Playwright, a new end-to-end testing framework which is open-

sourced, and which is cross-platform, cross-language, and cross-browser. The upcoming

framework is resilient, provides power tooling and as claimed a faster execution [7].

13

The aim of the thesis is to provide a detailed overview of major test automation frameworks

available in the current software market and perform comparative analysis of those

frameworks and run some sample unit tests to help individuals and companies in making

an informed decision when selecting an automation framework for their eCommerce web

applications.

1.1 Background

Testing automation has been around for the last three to four decades. Predominately,

Manual testing was performed during the first couple of decades then in the early 2000s the

arrival of test automation tools and frameworks facilitated the growing needs for internet

and the world wide web (WWW). Until recent times, the majority of developers preferred

to use the tools and frameworks they were comfortable with but that has changed with the

arrival of new frameworks and technologies. New open-source platforms like Playwright

have entered the web automation industry and are being considered a viable option and

potential replacement to the old frameworks and tools developed in the early 2000s.

In the mid-2010s, several new test automation frameworks entered the market and are on a

constant rise because of their free to use, reliable and cross-platform features. The de-facto

choice for developers and test engineers remains to Selenium frameworks with their

constant focus to improve and develop it features and offering to the wider range of user

but there is a slow and steady raise with regards to the use-case and popularity of certain

frameworks.

The growing eCommerce market is searching for alternatives to improve their website

visibility, performance, and user experience.

1.2 Problem

A well thought-out plan for test automation process might not work out owing to a wrong

selection made during initial stages of choosing a test automation framework or tool. The

selection of a test framework or tool is critical to the testing process and should be done

with care.

14

Before planning, development teams must conduct research on the tools available and

assess the available budget. Choosing a popular commercial tool simply because others in

the business are does not always work out. A successful evaluation entails identifying tool

requirements based on application under test (AUT) testimonies from professionals who

have used the tools previously.

No matter how good the testing strategy and methodologies are, they would fail if the tool

used to execute them does not meet technical and business criteria. Any automation

endeavor is doomed to fail in the absence of the proper tool.

Nowadays, due to enormous growth in the demand of online web applications and software

products, software teams are under pressure to produce web apps and testers to run tests

quicker. Testers are required to run more tests on websites under various conditions in less

time thus creating a constraint. As new versions of software are published, new features

must be manually tested, and previous versions must also be evaluated under regression

testing [8]. If the same tests must be run repeatedly, automation is preferable than manual

execution and thus requires automation testing tool that can be perform parallel testing to

save execution time.

There are various important issues in the domain of test automation that must be addressed:

 Making an informed selection and choosing the most suitable test automation

framework which is compatible for the project.

 After selecting test automation framework, choosing the appropriate stack of

tools and compatible programming language would improve the overall

efficiency.

 Automating the test cases and minimizing the use of manual testing.

The eCommerce website that I have selected for my master’s thesis is one of the fastest

growing gym clothing brands in Europe and it is called Gymshark Europe [9]. As the

eCommerce industry is growing rapidly, I was searching for a website which I personally

use and frequently purchase online clothing from. The online traffic at Gymshark is amongst

15

the highest in recent times thus the website would be ideal for performing end to end testing

and performance of the selected frameworks would be tested thoroughly. The impact of

running automated testing in Selenium Webdriver and Playwright will be observed.

Like any ecommerce platform, the Gymshark EU website is susceptible to encountering

various potential issues during the quality assurance phase. There are notable challenges

observed from initially using their website. The website contains a lot of media and video

elements. The website is updated constantly with new offers and discounts might contain

some third-party links to sign up for discount. The overall user experience is improved but

there are several test automations challenges and issues that would be addressed in this

thesis work. These could include:

 Functionality issues: The present study highlights the significance of conducting

comprehensive testing of the website's functionality, including the shopping cart,

checkout process, and product pages, to ensure optimal performance and user

satisfaction.

 Compatibility issues: The matter of compatibility is of utmost importance in

website development. It is imperative to conduct thorough testing of the website on

various browsers and devices to ascertain its seamless functionality across all

platforms. This is crucial in ensuring that all users are able to access and utilize the

website without any hindrances.

 Performance issues: The present study identifies performance issues pertaining to

the website, which necessitate optimization measures for enhancing its loading

speed and capacity to accommodate high user traffic.

 Dynamic content: The Gymshark website comes with a vast and ever-evolving

product catalog, characterized by a dynamic nature that is typified by a continuous

influx of new products and the continuous removal of outdated ones. The challenge

of generating stable and dependable test cases that encompass the entire spectrum

of product combinations and variations is a potential issue.

 Complex user flows: The Gymshark website exhibits a diverse range of user flows,

encompassing activities such as product browsing, cart item addition, and checkout.

The comprehensive testing of these various flows necessitates a substantial

investment of time and resources and may entail the utilization of specialized

software to emulate user actions.

16

1.3 Thesis Objective

The aim of the thesis is to perform comparative analysis between different test automation

frameworks such as popular web-based framework Selenium, new and steady growing

framework backed by Microsoft Playwright, in order to identify the best suited test

automation framework for eCommerce website.

Many online technology platforms publish their opinions and articles about which

automation framework to use when performing web testing, but many articles cover general

aspects, but they leak technical viewpoints, lack of actual testing performed on a particular

website and their results and data. My thesis aims to cover not only general aspects but to

give detail overview by those frameworks, their advantages and disadvantages, their

performance and use case on an eCommerce website as well as performing end-to-end

testing in selected frameworks Selenium and Playwright to determine which one is better

suited for Gymshark webpage and compare the testing process, execution, and ease to

program.

The Playwright framework is a new automation framework as compared to other

established frameworks. As it is a new framework, it is required to analyze and compare

with the existing frameworks and document its competitive advantages and disadvantages.

Moreover, the thesis aims to cover the Playwright automation framework and its

functionalities. It also aims to highlight the significance of automated testing and manual

testing and recommend the optimal tool stack for website testing based on comparative

analysis and unit testing.

17

2 Testing of web applications

The realm of software development is constantly changing and evolving. Over the course of

time, information technology (IT) companies and organizations focused on improving the

user experience, hence improving their websites, and creating customer friendly user

interfaces. With the increase in the demand for creating, managing, and updating web

applications resulting in creation of quality assurance division within software department.

QA teams are responsible for running the different tests on web applications ensuring the

quality of the software product to satisfy the user requirements [10]. Testing a software

product is essential and the process of testing is a vital part of SDLC. Testing process

contains some fundamental processes of general development life cycle model of defining

the scope, strategy, responsibilities, and planned activities.

2.1 Types of Testing

Testing is described as the process of determining whether a certain system satisfies its

originally established criteria or requirements [11]. The testing process compasses of

validation and verification. The aim of testing the software is to discover any unforeseen

bugs, errors, or missing requirements in the developed software product. The general

classification of testing based on business requirements is termed as functional testing and it

involves testing the software application against the specified business requirements whereas

non-functional testing involves those methods that focuses on operational aspects of

software product such as security testing and compatibility testing.

With reference to SDLC, defining the scope is the most critical attribute of testing. The scope

underlines the size of the tested units of application under test (AUT). Functional testing

includes the three main level of testing methods (as shown in the figure 2) [12] as well as

acceptance testing as the last layer of verification:

 Unit testing: The initial level of testing is unit testing, which is frequently handled by

the developers themselves. It is the process of verifying that individual code

components of a piece of software are functional and perform as intended. In a test-

driven environment, developers often create and execute the tests before passing the

program or feature to the testing team. Manual unit testing is possible but automating

18

the process will shorten delivery cycles and increase test coverage. Unit testing will

also make debugging easier since issues detected earlier in the testing process require

less time to fix than those discovered later in the testing process.

 Integration testing: The second level of testing following comprehensive unit

testing, each unit is combined with other units to form modules that are meant to

execute certain tasks or activities. These are then evaluated as a group using

integration testing to ensure that whole application parts function as intended.

Moreover, the interactions between units themselves is tested to make sure that

interactions are flawless. User scenarios, such as login into an application or accessing

files, are frequently used to structure these tests. Integrated tests are often performed

by either developers or independent testers and consist of a combination of automated

functional and manual tests.

 System testing: The third and final level testing, which is performed as software

application. Numerous units combined to form a component; multiple components

combined to form a system (i.e., software web application). System testing validates

the fully integrated software web application [13].

 Acceptance testing: It is regarded as the last phase for functional verification. This

layer of testing validates how the system behaves in a production environment,

whether this works as intended or not. The system's end users carry out testing [14].

Figure 2. Test automation Pyramid

19

Figure 2, The testing pyramid is multi-layer test levels. The testing pyramid is an integral

part of any software testing approach. Thorough testing is required before releasing an app

into the market and a comprehensive test automation plan is required to effectively test an

app [15]. Test levels are abstractions that are used to manage time and resources between

different stages of software development. Test level definitions vary by company, but test

levels commonly relate to three separate software testing tiers [16].

2.2 Testing Techniques and Strategies

Testing is an important part of the software development cycle thus creating a reliable

software product requires high level of planning and follows a stepwise structured approach

for the development process. Establishing a method of testing or strategy assists in achieving

clarity on goals and objectives from the necessary stakeholders, hence benefiting in managing

expectations. Selecting an appropriate technique facilitates distinguishing the suitable

methodology of approach.

The primary goal of any testing approach is to ensure that the program is bug-free. As a result,

it seeks to detect problems in a specific section of the software. Software testing is more

dependent on what you want to test in software and how you want to test it; also, this helps

to identify the tools needed to complete the test. A test strategy is a brief statement that

specifies how the software testing objectives are satisfied. It takes a high-level picture of the

test event and focuses on its objectives. It is critical that they prepare their testing

methodology at each step of the project and build a framework for testing the project. A

testing approach is a method of ensuring that the application being tested operates in a

systematic manner. [17].

The three main techniques of testing are as mentioned below [17]:

 Manual or Automated Testing
 Structural or functional testing is also known as White Box and Black Box testing.
 Static or dynamic testing

For the scope of this master thesis, the main emphasis is on manual and automated testing.

Furthermore, structural and functional testing concepts such as black box testing, and white

box testing are important and been used in web automation testing. Static and dynamic testing

20

are out of scope.

2.2.1 Manual and Automated testing

A person or a machine can perform testing. Manual testing occurs when a tester manually

conducts a specific set of tests. We refer to Automated testing as the execution of the same

set of tests by a machine. In essence, testing is vital for the development process and test

automation cannot replace manual testing, but it can allow the tester to perform repetitive

testing over a longer period. Furthermore, certain tests are time-consuming to run manually;

for example, if you want to automate thousands of operations in a given time frame, it is often

impossible to do so by hand.

Manual testing comprises manual tasks such as setting up a test environment, executing test

tasks, reporting errors discovered, and reviewing the findings. Manual unit testing has become

an essential aspect of modern software development. Manual unit testing frameworks

automate the execution of test cases. Hand-written test cases (including input data creation

and test result verification) are required. This procedure may be carried out using either a

test plan or exploratory testing [18]. It should have a test plan identifier, an introduction, test

items, the features to be tested or not, a strategy, item pass/fail criteria, stakeholder

information, testing communication, and a timeline, according to IEEE 29119-3 [19].

Automated testing, as opposed to manual testing, automates not just test case execution

but also test case generation and test result verification. A completely automated testing

system can run software without any user participation. Users do not have control over

which test cases are executed when utilizing fully automated testing solutions. Instead, they

often supply a test scope: a list of classes to be tested; in other words, they only need to

indicate what to test, not how.

Automated testing is the execution of tests without the intervention of a person. However,

other prerequisites for automated test execution exist [20]:

 The ability to perform a subset of all tests.

 Automatically configure and record environmental variables.

 Execute the test cases.

 Documenting the outcomes.

21

 Analyzing actual and predicted results and processing them comprehensively.

Both forms of testing have their pros and cons. It highly depends on the web application

under test enables user to choose one testing method over another. Some constraints such

as development and testing budget, the defined scope of testing, deadline to release the

project are considered when deciding which testing method to select. As the name suggests,

automated testing is automated and independent hence faster than the standard manual

testing which is time-consuming in nature and is prone to human error. On the budget side

of things, manual testing is affordable and easy to follow [21].

Moreover, a tester can arrange the tests to run independently using end-to-end test

automation. While tests are running in background, testers may use the extra time to

complete any necessary manual testing or create more automated test cases to expand test

coverage. Since automated testing allows for concurrent/parallel testing, it saves valuable

time. A tester can perform several tests at the same time, but manual tests can only be

conducted sequentially [22].

Automation testing offers an advantage over manual testing since manual testing is

meticulously prepared and documented, whereas automated testing delivers critical insights

such as test execution, length, and failed test cases. Furthermore, automation testing aids in

testing large sequences of data and aids in randomizing the search for errors in software,

thereby assisting web/based systems in performance reliability testing [17].

To summarize, with a test automation framework and automated testing, software testers

can focus on testing the software product (i.e., the web application) instead of worrying

about developing the infrastructure needed to support their test environment [21]. During

the initial stages of the project, it is recommended to use manual testing and understand its

importance in the starting phase of SDLC [23].

To further elaborate on the differences and advantages of manual and automated testing,

table comparison is performed refer to the Table 1. The automated testing is reliable and

efficient and requires less human attention and the pro of manual testing is manual QA can

22

give personalized feedback as compared to automation hard type comments and feedback.

Furthermore, the cons of manual testing are further described in the Table 1.

Table 1 Comparison between Manual and Automated testing

Manual Testing

Automated Testing

Test performed by humans.

Software tools execute all the tests.

Performing manual testing is time-
consuming and tedious.

Automated testing is a fast and efficient
process. These tests are faster than manual

testing.

Prone to human error thus less reliable. A higher degree of reliability as tests are
performed by software program.

Human resources are required.

Software tools and programs are required.

Manual testing is feasible when the test is
performed just once or twice during

development and testing process.

Automation testing is useful when a
repetitive test execution is required over a

lengthy period of time.

Manual testing allows for human
observation and exploratory testing, which
aids in the detection of UX and usability

concerns.

Doesn’t allow human observation hence
there is less chance of detecting UX and

usability concerns.

2.2.2 Black Box and White Box Testing

Structural and functional testing methodologies are also referred to as white box and black

box testing techniques, respectively. These two categories of testing methodologies are

critical in software testing. Black box testing is more commonly referred to as behavioral

testing. During this testing approach, the software tester runs a series of tests to see if the

application under test (AUT) meets the specifications and requirements [17].

It is referred as a black box because the software tester performs specified tests without any

prior knowledge of the software's internal workings; the tester's sole goal is to observe the

required outputs in response to the supplied inputs and circumstances. One advantage of

23

black box testing is the ease with which test cases can be written from the perspective of an

end user without understanding of core program logic. As part of this testing technique, it

is vital to use test monitoring tools to track the executed tests and avoid repetition.

White box testing is better known as the glass box testing technique. The software tester

concentrates on the structure and core of the AUT software program in this testing approach.

The test developer is tasked with creating test cases that validate the software program's

underlying logic [17]. This approach assists the testing team in determining the efficiency

of the software code and its extra activities. One of the key advantages of white box testing

is that the tests are performed at the code level, which allows for additional code

optimization as well as the detection and removal of unnecessary code or hidden bugs.

Additionally, a new semi-transparent approach of testing is getting popular amongst the

developers, QA specialists and software testers in recent times. This testing method is a

combination of the black box and white box testing, known as the semi-transparent testing,

also known as Grey-box testing. In this testing approach it entails having knowledge of the

internal structures of AUT software for creating test design but testing at the block-box

level. E.g., Testing the functionality of an online application requires knowledge and an

idea of the webpage structure but its functionality is not important to know.

2.3 Phases of Software Test Life Cycle (STLC)

Software testing and STLC is the most important and fundamental part of SDLC. The

process of STLC consists of QA specialists, Software testers including manual and

automation testing and constant communication with product owner and stakeholders. The

step-by-step process of AUT makes sure the quality of software applications. The following

are the key phases of STLC and visual illustration of the process of test development refer

to Figure 3, each phase of STLC showed in relation with the other, the perquisite or the

initial stage where the process of STLC starts is when user requirements are analyzed and

the last phase where development ends is shown and called as test closure:

 Requirement Analysis: In the first stage of the STLC, The QA team gets acquainted

about the requirements, such as what will be tested, throughout this phase. The

quality assurance team interacts with the stakeholders to better grasp the specific

24

knowledge of requirements if anything is missing or not clear.

 Test Planning: The most vital step of the software testing life cycle in which all

testing strategies are developed is test planning. During this phase, the testing

manager and team determine the projected effort and cost for the testing task. When

the requirement-gathering phase is finished, this phase begins.

 Test Case Development: Upon completion of the test planning phase, the test case

development phase is initiated. During this phase, the testing team documents

comprehensive test cases. The team responsible for conducting the testing also

undertakes the task of generating the necessary test data for the testing process.

Upon completion of test case preparation, the QA team conducts a review.

 Test Environment Setup: The establishment of a test environment is a crucial

component of the STLC. The test environment is a critical determinant of the testing

conditions for software. The present activity is deemed independent and may be

initiated concomitantly with the development of test cases. The involvement of the

testing team is absent in this particular process. The responsibility of creating the

testing environment lies with either the developer or the customer.

 Test Execution: The phase of test execution commences subsequent to the

development of test cases and the establishment of the test environment. During this

phase, the testing team proceeds with the execution of test cases that were previously

prepared in the preceding step. In the phase of test execution, the software

application is subjected to test cases and scripts that were previously designed to

detect any potential defects or issues.

The following are some of the key activities taking place during the process of

executing tests:

o Initial test execution

o Defect logging

o Test data preparation

o Test environment setup

o Running test cases scripts

o Test result analysis

25

o Defect retesting

o Test reporting

 Test closure: the conclusive phase of the STLC is known as Test Closure, during

which all testing-related tasks are finalized and recorded. The primary aim of the

test closure phase is to verify the completion of all testing-related tasks and to

ascertain the software's readiness for deployment. This phase also includes

documentation and report creation such as test summary and test closure reports.

Figure 3 Phases of Software Test Life Cycle (STLC)

2.4 Importance of Test Automation Approach

The utilization of test automation extends beyond the mere execution of test cases. The

author of the article [1] mentions that to optimize productivity and efficacy, test engineers

must possess knowledge of diverse automated testing methodologies and tools that facilitate

testing operations beyond mere test execution.

Nevertheless, the implementation of automation necessitates a judicious approach, as it

incurs a cost. The formulation of a test automation strategy comes from the consideration

of the consequences of test suite implementation, specifically regarding test maintenance.

The significance of continuous integration in agile software development cannot be

overstated. It is imperative for software quality assurance professionals to contemplate the

integration of automated testing throughout the development, deployment, and delivery

phases, extending beyond the mere execution of tests. The optimal utilization of automation

in software engineering is contingent upon the familiarity of software engineers with the

various test automation strategies and tools at their disposal.

26

3 Evaluation of testing tools and frameworks

As mentioned, above section 2.2 and 2.3, Choosing the correct testing strategies, tools and

framework is the most crucial part of test development. The selection should consider

various factors such as client requirements, website compactivity, cost, execution, time

duration and so on. In the growing world of start-ups and small-scale business, there are

some financial constraints. New and upcoming e-Commerce websites have limited budget

and they constantly come up with new ideas and discount campaigns to attract their

customers thus hiring third parties or software contractors for regularly conducting web

testing is not a solution.

To overcome this challenge, test automation is required which provides a reliable and cost-

effective solution to this problem. The present study aimed to automate an e-commerce web

application for a startup company, with a focus on open-source tools that are deemed

appropriate for enterprise-level deployment. The primary objective is to implement

automation of the checkout process across various web browsers, with a particular emphasis

on desktop browsers such as Google Chrome and Chromium. The provision of major

operating systems, including Linux, Windows, and Mac is important. The present study

aims to perform end-to-end automation testing on e-Commerce website based on customer

journey from homepage to checkout page by two different selected frameworks and

comparing their performance and results.

3.1 Criteria for choosing the test automation frameworks.

The assessment of automation tools can be conducted through the examination of various

characteristics or parameters. Therefore, it is imperative to identify the distinct features for

the purpose of conducting a comparative analysis.

The present study employed a set of criteria for conducting analysis, derived from a

collection of characteristics deemed significant by professionals in the domain of test tool

selection. The present study outlines a set of criteria that are deemed essential for the

evaluation of a given software system. These criteria include applicability, compatibility,

27

configurability, cost-effectiveness, cross-platform support, ease of use, expandability,

further development, maintenance of test cases and data, performance, popularity,

programming skills, and reporting features. The study posits that these criteria are crucial

for the effective assessment of software systems and can provide valuable insights into their

overall quality and suitability for a given task.

Now, to meet the goal of this study i.e., comparison of software testing tools;

features/characteristics are shown in a table below [24, 25, 26, 27] :

Table 2 Comparison of software testing tools [24, 25, 26, 27]

Number Parameters /
Characteristics

Meaning

1 Cost Open-sourced (free to use) or license
2 Operating System (OS)

compatibility
Cross-OS support

3 Brower compatibility Cross-browser support
4 Extendibility The degree to which software can be extend,

add functionality
5 Record playback Ability of tools to record scripts
6 Programming language

support
 Programming languages used to edit test scripts
or for the creation of testing scripts.

7 Ease of learning How easy the framework/tool is to learn and use
8 Data driven

functionalities
The ability of tool to reduce efforts like making
it possible to make the scripts access the
different sets of input data from external source
like data tables, excel sheets

9 Testing functionalities Different type of testing supported
10 Modifiability Quality of being modifiable according to user

requirement.
11 Report generation Ability to generate test results

28

 3.2 Comparative analysis of test automation frameworks

Table 2 describes the key characteristics required for comparing software test tools and

frameworks. On the basics of the above table 2, A comparative analysis is performed in

which the popular frameworks, its tools and features are compared. Key parameters such as

OS compatibility, ease of learning and programming language support and so on will

analyzed and documented in the upcoming section. For the scope of this comparative

analysis four popular frameworks are chosen. To further elaborate on each framework and

its features a brief description is provided below:

3.2.1 Cypress

Cypress is a widely adopted end-to-end testing framework utilized in web application

development, prioritizing ease of use, expeditiousness, and dependability. The present

software artifact is implemented using the JavaScript programming language and is

constructed utilizing Mocha and Chai, two widely adopted testing frameworks in the

JavaScript domain.

The Cypress framework offers a distinctive architecture that facilitates the composition of

test suites that execute within the identical context as the target application under

examination. The present architecture obviates the necessity of a distinct Selenium

WebDriver and thereby enables expedited and more dependable test executions. Moreover,

Cypress incorporates a robust test execution environment that provides functionalities such

as automated test retries, parallelization, and optimized test sequencing.

The Cypress testing framework provides a user-friendly syntax that facilitates the creation

of tests, incorporating selectors, assertions, and network requests as integral features. The

platform offers a diverse array of beneficial application programming interfaces (APIs) that

empower software developers to execute intricate testing procedures such as authentication,

mocking, and stubbing.

The debugging capabilities of Cypress are a notable feature of the framework. The

framework incorporates an integrated test runner, which enables software developers to

29

perform real-time debugging of tests, establish breakpoints, and execute code line-by-line.

Furthermore, Cypress offers a robust extension of browser development tools that

empowers developers to scrutinize the Document Object Model (DOM), troubleshoot

network requests, and perform other related tasks.

Cypress provides integration support with popular CI tools, such as Jenkins, CircleCI and

Travis CI. The framework offers a command-line interface that enables software developers

to execute tests in headless mode or on remote machines, thus facilitating seamless

integration with continuous integration and continuous delivery pipelines.

3.2.2 Nightwatch

Nightwatch is a software tool that has been developed as an open-source solution for the

purpose of facilitating end-to-end testing of web applications. Its primary function is to

automate the testing process, thereby reducing the need for manual intervention. The

software artifact is implemented in the JavaScript programming language and leverages the

robust Selenium WebDriver application programming interface (API) for the purpose of

managing web browsers.

The fundamental characteristics of the framework encompass a user-friendly syntax for

scripting tests, provision for diverse browser drivers, and an integrated assertion library for

validating test outcomes. Nightwatch provides robust reporting functionalities and exhibits

seamless integration with Continuous Integration (CI) utilities such as Jenkins, Travis CI,

and CircleCI.

Nightwatch's simplicity is a notable advantage. The syntax of the framework is

characterized by its simplicity and accessibility, rendering it easily comprehensible even for

novice users. The Nightwatch framework employs a rudimentary test runner that is capable

of executing tests concurrently, thereby diminishing the aggregate testing duration.

Furthermore, the framework facilitates the utilization of page object models (POMs), a

design pattern that empowers developers to systematize their test code into self-contained,

interchangeable units.

30

The Nightwatch testing framework offers multi-browser support for a variety of widely

used web browsers such as Chrome, Firefox, Safari, and Internet Explorer. Additionally, it

enables the execution of tests across diverse operating systems, namely Windows, macOS,

and Linux. The framework boasts comprehensive documentation and a thriving developer

community that actively contributes plugins, extensions, and other tools to augment its

functionality. The plugins offered by Nightwatch facilitate the customization of testing

environments by developers, enabling the incorporation of supplementary features such as

code coverage, performance testing, and screenshot capture.

3.2.3 Playwright

The Playwright framework is an open-source tool that has been specifically developed to

automate the testing of web applications. The software in question was developed by

Microsoft and is implemented in TypeScript, with the added capability of interoperability

with other programming languages, including but not limited to JavaScript, Python, and

Java.

Playwright's notable advantage lies in its provision of multi-browser support, encompassing

Chrome, Firefox, Safari, and Edge. The aforementioned feature facilitates the composition

of test suites by developers that are capable of being executed on a variety of web browsers

and operating systems. Furthermore, Playwright presents a consolidated application

programming interface (API) that enables software engineers to compose source code that

functions seamlessly across various web browsers.

The Playwright API is a potent tool for engaging with web applications, encompassing

navigation, input, and assertions functionalities. The framework incorporates a robust

interception capability that empowers developers to alter network requests, append bespoke

headers, or even emulate network errors, thereby facilitating the testing of diverse scenarios.

The support for headless testing is a notable characteristic of Playwright. The framework

has the capability to execute tests in a headless mode, thereby enabling the execution of

tests without the need to launch a browser window. The aforementioned attribute proves to

be particularly advantageous in scenarios where tests are executed within a Continuous

31

Integration (CI) framework, wherein a visual interface is absent.

The Playwright toolset offers a comprehensive testing infrastructure that encompasses

support for various testing frameworks such as Jest and Mocha. The framework exhibits

seamless integration with widely used Continuous Integration (CI) tools such as Jenkins

and Travis CI.

The Playwright framework boasts an integrated video recording functionality that can

comprehensively capture the entire test execution process, encompassing screenshots,

network traffic, and console logs. The streamlined process facilitates the expeditious review

of test outcomes by developers, thereby enabling prompt identification of potential issues.

3.2.4 Selenium Webdriver

Selenium is a test automation framework designed for web applications that is open-source

and cross-platform in nature. It was originally created by Jason Huggins in 2004 as a tool

to automate tests for a web application. Subsequent to its inception, the aforementioned

framework has garnered significant popularity and is presently among the most extensively

employed test automation frameworks on a global scale and widely popular amongst senior

developers.

Selenium allows QA engineers to automate websites using a wide variety of scripting

languages that consists of Java, Ruby, C# and Python. It provides a suite of tools for

automating web applications, including Selenium WebDriver, Selenium IDE, and Selenium

Grid. One of the most popular and most widely used frameworks in the Selenium suite

portfolio is Selenium Webdriver.

The Selenium WebDriver is a widely adopted test automation framework that is utilized for

the purpose of testing web applications. The Selenium suite encompasses a tool that offers

a programming interface to facilitate interactions with web browsers. With Selenium

WebDriver, developers can write scripts that simulate user interactions with web pages,

enabling them to automate web application testing.

The Selenium WebDriver tool facilitates the use of various programming languages such

32

as Java, Python, Ruby, C#, and JavaScript. The feature facilitates the composition of tests

by software developers, who are able to utilize their favored programming language.

Additionally, Selenium WebDriver can automate tests on multiple browsers, including

Chrome, Firefox, Safari, and Edge, making it easier for developers to test their web

applications on multiple platforms.

One of the key features of Selenium WebDriver is its ability to interact with elements on a

web page. Developers can use WebDriver to find elements by their ID, name, class, or other

attributes, and then perform actions on them, such as clicking a button, filling out a form,

or verifying text.

The WebDriver software framework is capable of facilitating sophisticated user

interactions, including but not limited to the manipulation of graphical user interface

elements through drag and drop functionality, as well as the ability to hover the mouse

pointer over specific elements.

Selenium WebDriver supports a range of test automation frameworks, including TestNG,

JUnit, and NUnit. This makes it easy for developers to integrate their Selenium tests with

their existing testing infrastructure.

Additionally, Selenium WebDriver can be integrated with Continuous Integration (CI) tools

like Jenkins, allowing tests to be run automatically after every code change. Another

advantage of Selenium WebDriver is its support for parallel testing. The concurrent

execution of multiple tests by developers can expedite the testing procedure and furnish

prompt feedback. The WebDriver tool possesses the capability to execute tests in a headless

mode, whereby the tests are performed without the need to launch a browser window. This

feature enhances the speed and efficiency of the tests.

Finally, Selenium WebDriver is highly extensible. Custom extensions or plugins can be

developed by developers to augment the functionality of WebDriver. The extensibility of

the framework enables developers to tailor it to their unique requirements and augment their

tests with supplementary features and functionality.

33

Table 3 Comparison table of test automation frameworks

Parameters /
Characteristics

Cypress
[22]

Nightwatch
[28]

Playwright
[29]

Selenium
Webdriver [6]

Cost Open source,
free to use.

Open source,
free to use

Open source,
free to use.

Open source,
free to use

Operating
System (OS)
compatibility

Windows,
Linux, and
macOS 10.9
and above

Windows,
Linux, and
macOS

Windows,
Linux, and
macOS

Windows,
Linux, and
macOS

Brower
compatibility

Chrome,
Firefox, Edge

Chrome,
Safari,
Firefox, Edge

Chromium
Safari, Firefox,
Edge, Internet
Explorer

Chrome, Safari,
Firefox, Edge,
Internet
Explorer

Extendibility Yes, extendible Up to
only certain
extent

Up to
only certain
extent

Limited

Record
playback

Available,
In-built

Available
with
extensions

Available,
 In-built

Available with
extensions

Programming
language
support

JavaScript JavaScript,
TypeScript

JavaScript,
Python, C#,
.NET,
Java

JavaScript,
Python, Ruby,
Java, C#

Ease of learning Yes Yes Yes Partially
Data driven
functionalities

Available Basic
functionalities

Available

Available

Testing
functionalities

E2E and
component
testing

POM, Parallel
testing

E2E testing and
more

POM, E2E
testing and more

Report
generation

Mocha HTML
report

HTML, Junit-
XML, and
JSON reports

HTML, Junit-
XML, and
JSON reports

TestNG,
HTML, Junit-
XML, and
JSON reports

From the above table 3, all the above frameworks mentioned above, comparative, and

personalized choice of framework can be made, Playwright provides the superior testing

functionalities, supports most of the popular programming languages thus developers, IT

students and tech enthusiast can easily program test automation programs in their preferred

programming language. All four frameworks are open sourced, provide extensive support

for report generation and provide options to generate innovative report results.

34

From the figure, a recently published survey ranked Playwright 8th most popular framework

amongst JavaScript users. If we compare the year 2020 to the year 2021, awareness for

Playwright software has grown from 19% to 34% [30]. Furthermore, Selenium Webdriver

is the preferred by experienced QA engineers.

Figure 4 Popular framework amongst JavaScript users. [30]

Each test automation framework has its own advantages and disadvantages, Moreover,

some individuals have their personal preferences since they have been using frameworks as

Selenium for a long time, Hence, transiting to new and improved framework will take some

time. To summarize and highlight the features of each test automation framework are listed

below:

 Selenium WebDriver is a robust test automation framework that offers a

programming interface for web browser interaction. Selenium WebDriver is a

highly recommended tool for teams seeking to automate their web application

testing due to its capacity to interact with web page elements, compatibility with

various programming languages and browsers, seamless integration with popular

testing frameworks and CI tools, as well as its support for parallel and headless

testing.

 Playwright is a robust test automation framework that provides a consolidated API

for engaging with various web browsers, potent interception functionalities, and

backing for headless testing.

35

Playwright is a highly recommended option for teams seeking a streamlined and

dependable approach to automating their web application testing, owing to its

extensive testing infrastructure and seamless integration with widely used CI tools.

 Nightwatch is a potent and uncomplicated framework for testing web applications

that provides a diverse array of functionalities and adaptability. The framework in

question is a highly recommended option for teams seeking a user-friendly testing

solution that can effectively expedite their testing procedures and enhance the

caliber of their web-based applications.

 Cypress represents a contemporary and robust testing framework that presents a

diverse array of functionalities aimed at streamlining the testing procedure and

enhancing the dependability of web-based applications. Cypress is a highly

recommended tool for teams seeking an effective and dependable approach to

testing their web applications, owing to its user-friendly syntax, robust debugging

functionalities, and integrated test runner.

3.3 Dependencies

To perform end-to-end testing in Selenium Webdriver and Playwright test automation

framework. The following are the listed dependencies, tools and its version:

1. Selenium Webdriver

Programming Language: Selenium Java

List of tools and its versions used:

 Selenium 3.141.59

 Webdriver manager 3.8.1

 TestNG 7.7.0

 Maven 4.0.0

 IDE: Eclipse

36

Framework:

 Pages package, Utilities package, Testcases package and Testdata package.

 pom.xml lists out all Maven dependencies required to execute the tests.

 testng.xml outlines the java classes that contain the test steps.

 Screenshots are saved in the ‘Screenshots’ folder during test execution.

 Third party screen recorder used for Video recording compactable with

Selenium Webdriver.

2. Playwright framework

Programming Language: Playwright Javascript

Tools and its versions used:

 Node v16.18.0

 npm 8.19.2

 Playwright 1.33

Framework:

 ‘playwright.config.js’ file defines the test configurations.

 Tests are written within the ‘tests’ folder and are executed sequentially based on

the Config.

 ‘@playwright/test’ library is implemented to run these tests.

 Generated reports are saved in the ‘playwright-report’ folder.

 Screenshots captured during test execution are saved in the user-defined folders.

 Video recordings of test execution are stored in the ‘test-recordings’ folder.

The below figure 5 shows the basic structure and directory of Selenium Webdriver and

Playwright. The main program of Selenium Webdrvier MainTestCases is in testcases folder

and for Playwright main program login.test.ts is under tests folder. The folder contains

config files, screenshots, and test results.

37

Figure 5 Selenium Webdriver (right) and Playwright folder structure (left)

38

4 Results

For the scope of this thesis, I have performed end-to-end testing on Gymshark EU website.

All the required test cases are taken from Gymshark EU website, and it represents the

European sector of Gymshark, a company specializing in fitness apparel and accessories

that originated in the United Kingdom in 2012. The Gymshark EU website functions as an

electronic commerce platform that provides a diverse selection of fitness apparel,

accessories, and equipment tailored for both male and female consumers. The website of

Gymshark EU exhibits a contemporary and uncluttered layout, characterized by a

preponderance of black and white hues. The primary landing page of Gymshark's website

exhibits conspicuous banner visuals that highlight the brand's most recent merchandise and

marketing campaigns. The present study observes that the navigation menu located at the

uppermost section of the webpage facilitates the customers to conveniently peruse diverse

product categories, encompassing men's and women's clothing, accessories, and

equipment.

The Gymshark EU website's product pages offer comprehensive details regarding each

item, encompassing various product images, a meticulous product description, and sizing

and fit information. The product's customer reviews and ratings are available for viewing

by prospective customers, providing them with valuable insights from previous purchasers.

Figure 6 showcase the landing page of Gymshark website also known as the homepage of

the website. From the figure 6, on the top center, men, women and accessories sections are

situated by hovering on top of each sections options popup as mentioned and listed under

each section in the figure 7.

39

Figure 6 Homepage of Gymshark Website

Moreover, as illustrated in the figure 7 below, the website's mind-map can serve as a basis

for the development of manual test plans. The utilization of a mind map is a straightforward

technique for ideation, whereby a visual representation is employed to showcase a

collection of tasks, terms, concepts, or articles that are associated with a central concept or

topic. The non-linear design of the mind map allows for the creation of an intuitive context

around a fundamental idea. Prior to initiating the implementation of test automation, it is

imperative to first construct a mind-map and document test cases for the purpose of manual

test execution of the website in question.

40

Figure 7 Mind map of Gymshark website

From the above figure 7 the mind-map of the website, I have selected 10 main test cases

that identify the journey of a new and existing customer of the Gymshark website. During

the process of creating and documenting test cases and their scenarios, the website

introduced a special discount offer for students thus I have included it as a special test case

that navigates to that page and views its terms and conditions. The following section and

table present the documented test cases.

The below table 4, describes 10 main test cases as well as 1 additional test case regarding

student discount. The following things are described in detail regarding each test case: test

case name, its scenario and perquisite condition and the expected output or the result. The

base nomenclature of test case is TC_0XX, where X represents the sequential number.

Certain test cases such as TC_002 that checks invalid input during the sign up process are

important to check because the invalid or false inputs have the potential to break the website,

so it has the utmost importance to detect that website is functioning correctly.

41

Table 4 Test cases for Gymshark EU

Test
Case ID

Test Case
Name

Explanation/Test
Description

Pre-Condition/
Prerequisite

Expected result

TC_001
Launch the
app

To ensure whether
the app gets
launched
successfully.

URL must be available:
https://eu.shop.gymshark.com

Browser gets
launched.

TC_002

Create a new
account with
empty fields
in the form
and invalid
password.

To ensure new
accounts are not
created
successfully when
there are empty
mandatory fields
in the form or
password invalid. Home page is open. Page loads

TC_003
Creating a
new account

To ensure that a
new account gets
created when all
required data is
entered. Sign Up page is opened.

All elements are
loaded.

TC_004
Log into the
website

To verify that the
user can login to
the website
successfully. Home page is open.

Account' button is
located at the top-
right corner of the
page.

TC_005
Search for a
product

To ensure the
Search feature is
working
successfully

1. User is logged in.
2. Home page is open.

Login page is
opened.

TC_006

Adding and
removing
items to and
from the
cart/bag

To ensure that the
user can add and
remove items to
the shopping
bag/cart.

1. User is logged in.
2. Home page is open.

"Sign Up" form is
displayed.

TC_007
Student
Discount

To ensure that the
student discount
page is displayed
correctly.

1. User is logged in.
2. Home page is open.

"Your password
does not match
our requirements"
message is
displayed in red.
Also, Grey dot and
Green Tick appear
below the
message.

TC_008
Men's
Joggers

To ensure that a
particular item can
be picked from the
list.

1. User is logged in.
2. Home page is open.

Data is populated
in the textbox.

TC_009 Wishlist
To verify that the
Wishlist feature

1. User is logged in.
2. Home page is open.

"Please fill in this
field" message

42

works
successfully.

appears on email
field.

TC_010
Filter and
Sort

To ensure that the
filter and sort
feature works
successfully.

1. User is logged in.
2. Home page is open.

Data is populated
in the textbox.

TC_011 Logout

To verify that the
user can
successfully log
out from the
website.

1. User is logged in.
2. Home page is open.

"Please include a
@ in the Email
address" message
is displayed.

4.1 Test automation implementation

As stated before, the thesis aims to identify and select potential suitable test automation

framework for ecommerce websites for the purpose of test automation. The primary

objective is to examine the features of both the frameworks, their ease of use, execution

time as well as investigate how easy it is to learn the framework and their scripting process.

According to section 3.3, I have installed the listed dependencies and its latest toolset

version. Both Selenium Webdriver and Playwright framework provide extensive

documentation on the process of installing and configuring the framework system as well

as example programs are provided in Java, Javascript and Python. Selenium Webdriver has

widely adopted design pattern technique in automated testing known as Page Object Model

(POM).

4.1.1 Page Object Model

The Page Object Model (POM) design pattern entails the representation of each webpage

as a Java class that encapsulates all the elements and actions associated with the page. The

page elements are defined by the class through the utilization of locators such as ID, name,

class name, CSS selector, or XPath. The methods offered by each page class enable the

execution of various actions on the corresponding elements, including but not limited to

button clicking, form filling, and text retrieval.

43

It is utilized for the purpose of systematically organizing and managing web pages and their

constituent elements in a structured and coherent manner. The utilization of the Page Object

Model (POM) design pattern has been shown to enhance the maintainability and scalability

of automated testing procedures through the segregation of test code from page-specific

code.

I have used the features of POM as well as utilized the element locators' option of finding

the element by XPath. Here is an example line 1 of finding an element in Gymshark website

and clicking on it. Line 2 is an example code of class HomePage where all the XPath of

elements of homepage are stored and further called in the main class MainTestCases.

driver.findElement(By.xpath("//a[contains(text(),'t shirt')]")).click(); //line 1

Public static By homePageSearchButton =

By.xpath("//header/div[1]/div[2]/div[1]/button[1]"); //line 2

For the playwright, the process of creating test automation script was straightforward. The

website was easier to access and navigate from the code. One of the key advantages

Playwright had over Selenium Webdriver was it uses Locator API for locating all the web

elements in my case website had some dynamic elements with variable paths and locating

them with Playwright was easier and efficient. I followed the simple steps provided by

Playwright writing test documentation with regards to creating test scripts using Playwright

framework in Visual Studio. [29]

4.2 Result analysis and challenges

 The 10 main testcases covering the most important scenarios are listed below and these

names mentioned below are used as function names in the program.

 Launch testcase

 SignupWithEmptyFields testcase

 Signup testcase

 Login testcase

44

 SearchItem testcase

 ShoppingCart testcase

 StudentDiscount testcase

 MensJogger testcase

 Wishlist testcase

 FilterAndSort testcase

 Logout testcase

Initially, For Selenium Webdriver out of the 10 testcases, 4 kept failing randomly due to the

behavior of the website. The website uses dynamic elements and XPaths that make test

automation process challenging as well as the special test case of StudentDiscount consist

of third-party link that sometimes block the access of the page. These complications were

never encountered in Playwright.

The Gymshark website itself poses some challenges for running test automation especially

in Selenium Webdriver framework. The website consists of media snippets playing during

the execution of the program. Hence, Making it time-consuming and for some parts of

testing. I had to add a bit of delay or wait time in order to move ahead.

For Playwright, creating the test automation code was straightforward and step by step

guidelines of its functions and its use case were written in the Playwright website’s

documentation section. I encounter no issues while navigating and clicking using JavaScript

in Playwright. The visual studio environment is integrated well with the Playwright

framework. Below is an example screenshot of a successful test case of implementing

invalid password credentials for the signup process in Playwright.

45

Figure 8 Screenshot passed test case for invalid signup using Playwright framework

For Playwright, creating the test automation code was straightforward and step by step

guidelines of its functions and its use case were written in the Playwright website’s

documentation section. I encounter no issues while navigating and clicking using JavaScript

in Playwright. The visual studio environment is integrated well with the Playwright

framework.

The above figure 8 is an example screenshot of a successful test case of implementing

invalid password credentials for the signup process in Playwright. As described Table 4

description section, checking with help of test automation if the website detects invalid,

empty or null empty and returns back an error message. As seen on figure 8, red error

message under password section is visible.

All the test cases were successfully carried out in Playwright. The biggest advantage of

Playwright was that I was able to use data locator id to locate elements easily whereas with

Selenium locating a dynamic element was difficult. Moreover, while using Selenium

Webdriver and Chrome browser the website was constantly asking for access to cookies

hence initially results in failed test cases whereas using Playwright and Chromium browser

there were no issue with cookies only had to accept them once. Playwright also has an in-

46

built video recording option providing easy access to screen recording the progress and test

cases whereas I had to use third-party add on feature for Selenium Webdriver.

Figure 9 Playwright test results

Figure 10 Selenium Webdriver test results

Figure 9 and 10, display the successful execution of test automation program. Both

Playwright and Selenium Webdriver were able to run all test cases successfully. The initial

issue in Selenium framework regarding some test cases failing was solved after making

47

adjustment in the code and changing to XPaths certain elements. To further evaluate and

compare both the frameworks table is created below to compare the successful test cases

and its execution time.

Table 5 Comparison of execution time between Selenium Webdriver and Playwright

Test Case
ID

Test Case Test function name Selenium
Webdriver
(Execution

time in
seconds)

Playwright
(Execution

time in
seconds)

TC_001 Launch the app Launch test
15.3

seconds
17.1

seconds

TC_002

Create a new
account with

empty fields in the
form and invalid

password.

SignupWithEmptyFields
test

14.8
seconds

23.3
seconds

TC_003
Creating a new

account Signup test

Skipped

22.6
seconds

TC_004
Log into the

website Login test

15.5
seconds

16.9
seconds

TC_005
Search for a

product SearchItem test
14.9

seconds

27.6
seconds

 TC_006

Adding and
removing items to

and from the
cart/bag ShoppingCart test

7.2 seconds

TC_007 Student Discount StudentDiscount test

24.5
seconds

35.9
seconds

TC_008 Men's Joggers MensJogger test
2.7 seconds

23 seconds

TC_009 Wishlist Wishlist test

22.8
seconds

36 seconds

TC_010 Filter and Sort FilterAndSort test
6.7 seconds

30.7
seconds

TC_011 Logout Logout test

14.2
seconds

31.7
seconds

Total time 2.3 minutes 4.6 minutes

48

From the above table 5 and result discussed before, Comparison between two frameworks

can be made. At first, Playwright automation script was run in Visual Studio and the results

were stored as test report with the help of in-built report library in Playwright as a html file

named index.html under playwright-report as shown in figure 5. The screenshot of

index.html shown on figure 9. The total execution time was calculated with the help

Playwright in built report library.

Furthermore, for Selenium Webdriver with the help of TestNG [31] to create test report, a

framework for testing based and inspired by Junit with additional features and plugin

options. Similarly, index.html and emailable-report.html are stored under surefire-reports

as shown in the figure 5 top right side.

The Selenium Webdriver is a robust framework and well-liked by QA and testing specialists

whereas the upcoming ease-to-use Playwright framework well integrated with Microsoft’s

visual studio is also a viable option. For Gymshark EU end to end testing Selenium proved

to faster than Playwright. The total execution time for Playwright was 4.6 minutes on the

other hand Selenium Webdriver is twice as fast as the total time was 2.3 minutes. During

script development, several challenges were encountered with Selenium Webdriver. Also,

locating the elements in Selenium specially for those websites who uses dynamic elements

and iframe tags is very difficult.

Playwright locates the elements more effectively with the help of data locator and by simply

searching by name as well as Scripting process is very easy. In Selenium Webdriver, there

were more line of codes as compared to Playwright Javascript coding. Debugging in

Selenium framework took a long time whereas debugging in Playwright with visual studio

was very easily.

In Selenium Webdriver, there was an instance were automating a click event on a floating

button was challenging. However, in Playwright, the button was located without any

difficulty and was used in the program without any trouble.

49

The video recording and taking screenshot in Playwright is easier and takes less Megabytes

(MB) to store about 20-30 MB whereas in Selenium Webdriver with third party support, it

takes more than 100 MB. Hence, Playwright consumes less hard-drive space with the help

of in-built recording libraries.

In conclusion, both Selenium and Playwright have their strengths and weaknesses, and the

choice between them depends on your type of website and its specific requirements. If there

is a requirement for support of multiple languages and browsers, it is plausible that opting

for Selenium Webdriver would be a best. If one is seeking a more user-friendly framework

with superior performance capabilities, it may be advisable to consider Playwright as a more

viable alternative.

With the comparative analysis and end to end testing conducted in this Master thesis, it

would be helpful for new and existing ecommerce websites on how to select the correct

framework for themselves as well as the explore multiple options in the market not only the

de-facto frameworks existing for decades. Furthermore, importance user experience,

searching for framework with in-built features such as Playwright which is open source

helps companies and individuals in starting the entrepreneurship journey on budget

providing the best customer experience with the help of new and robust open-source testing

framework.

Future research can be conducted further, testing the cross compatibility of the website with

different types of electronic devices like mobile phones, tablets, and smartwatches. Cross

browser compatibility test can be performed further to examine the website performance

under different platforms. Moreover, end to end testing right from user lands at the

homepage to checkout and payment can be test further with Cypress another popular test

automation framework mentioned in the comparative analysis. Hybrid testing can be

perform using combination of frameworks like Playwright and Cypress or Selenium

Webdriver with Playwright and comparing the results, speed and execution time with the

result published in this thesis work to compare efficiency.

50

5 Summary

Ecommerce websites are ever evolving and the need to automate the test processes is rising

day by day. Web test automation provides a viable alternative to the tedious manual testing

process which is prone to human error. New test automation technologies are coming up in

the market. Playwright is a new upcoming open-sourced test automation framework which

is an alternative to the established Selenium framework. Selenium Webdriver is a widely

adopted test automation framework that is utilized for the purpose of testing web

applications.

I performed comparative analysis to make informed decision while choosing between

Selenium Webdriver and Playwright highlighting their pros and cons as well as performing

end-to-end testing on popular fitness clothing brand Gymshark EU. Creating test cases on

basics of website mind map and customer journey later performing test automation and

scripting them in Java and Javascript respectively.

After conducting test automation and executing the programs for Selenium Webdriver and

Playwright. The following are the major findings:

 The Playwright framework is easy to use, and detailed documentation is provided

on their website.

 For Gymshark EU website, Selenium Webdriver is 2 times faster than Playwright.

 Scripting in Java using Selenium Webdriver is tedious and has a lot more code to

write than Playwright.

 Playwright locator API and data locator id is superior has an edge over Selenium's

find by element method when handing dynamic elements and floating buttons.

 Playwright functions and features are easy to learn and implement.

 Playwright has in-built recording libraries taking less hard-disk space then third-

party supported recording in Selenium Webdriver.

Playwright is a viable option to consider and further improvements in Playwright would

improve its execution speed and computational time. Selenium Webdriver has its robust

Page Object Model that gives an edge over its completion.

51

References

[1] O. Djuraskovic, "FirstSiteGuide," 28 09 2022. [Online]. Available:
https://firstsiteguide.com/how-many-websites/.

[2] Statista, 2021. [Online]. Available: https://www.statista.com/forecasts/480797/e-commerce-
revenue-forecast-in-the-world.

[3] R. Angmo and M. Sharma, "Performance Evaluation of Web based Automation Testing
Tools," IEEE, no. 5th International Journal of Computer Science and Information
Technologie, pp. 908-912, 2014.

[4] B. Boehm and V. Basili, "Software Defect Reduction," IEEE, vol. 34, no. 1, pp. 135-137,
2001.

[5] A. Leitner, I. Ciupa and B. Meyer, "Reconciling Manual and Automated Testing: the
AutoTest Experience," no. Proceedings of the 40th Hawaii International Conference on
System Sciences, 2007.

[6] Selenium, Software Freedom Conservancy, [Online]. Available: https://www.selenium.dev/.

[7] Playwright , "Playwright by Microsoft," [Online]. Available: https://playwright.dev/.

[8] M. Limaye, Software Testing – Principles, Techniques and tools, Tata MCGraw-Hill
Education PVT Ltd , 2009.

[9] Gymshark, "Gymshark Europe," [Online]. Available: https://eu.gymshark.com/.

[10] E. Vila et al., "Automation Testing Framework for Web Applications with Selenium
WebDriver: Opportunities and Threats," ICAIP, no. Association for Computing Machinery,
2017.

[11] M. Jamil et al., "Software Testing Techniques: A Literature Review," 6th International
Conference on Information and Communication Technology for The Muslim World
(ICT4M), Jakarta, Indonesia, no. IEEE, pp. 177-182, 2016.

[12] The International Software Testing Qualifications Board, ISTQB, 2017. [Online]. Available:
https://www.istqb.org/.

[13] A. Husen, "Maintainable Test Suite Design using Page Object Model in Selenium
Webdriver," no. Taltech, 2020.

[14] Smartbear, "Software Testing Methodologies," [Online]. Available:
https://smartbear.com/learn/automated-testing/software-testing-methodologies/.

[15] M. Tufano, D. Drain, A. Svyatkovskiy and N. Sundaresan, "Generating accurate assert
statements for unit test cases using pretrained transformers," no. IEEE, pp. 54-64, 2022.

[16] T. Virtanen, "Literature Review of Test Automation Models in Agile Testing," 2018.
[Online]. Available:
https://trepo.tuni.fi/bitstream/handle/123456789/25869/Virtanen.pdf?sequence=4.

[17] M. Kaur, Software testing and quality assurance, New Delhi: Excel books private limited,
2017.

[18] J. Húska, "Automated Testing of the Component-based Web Application User," 2017.

[19] ISO/IEC/IEEE International Standard, "Software and systems engineering – Software testing
–Part 3: Test documentation," Vols. ISO/IEC/IEEE 29119-3, no. IEEE, p. 1/138, 2013.

[20] D. Hoffman, "Test Automation Architectures: Planning for Test Automation," 1999.

[21] A. Cervantes, "Exploring the use of a test automation," no. IEEE Aerospace conference, pp.
7-14, 2009.

[22] Cypress, "Cypress," [Online]. Available: https://learn.cypress.io/testing-foundations/manual-

52

vs-automated-testing.

[23] R. Dahiya and S. Ali, "Importance of Manual and Automation Testing," 2019.

[24] A. S. Gadwal, "Comparative review of the literature of automated testing tools,"
ResearchGate, 2020.

[25] M. Monier, "International, Evaluation of automated web testing tools," 2015.

[26] P. Raulamo-Jurvanen, "Practitioner Evaluations on Software Testing tools," 2019.

[27] E. S. Architecture, "Gorton, Ian," Springer-verlag berlin Heidelberg, vol. second edition,
2011.

[28] Nightwatch, "Nightwatch," 15 05 2023. [Online]. Available: https://nightwatchjs.org/.

[29] P. w. Tests, "Playwright," [Online]. Available: https://playwright.dev/docs/writing-tests.
[Accessed 15 05 2023].

[30] "State of javascript 2021," 2021. [Online]. Available: https://2021.stateofjs.com/en-
US/libraries/testing/. [Accessed 08 May 2023].

[31] TestNG, "TestNG," [Online]. Available: http://testng.org/doc/. [Accessed 15 05 2023].

53

Appendix 1 – Non-exclusive license for
reproduction and publication of a graduation
thesis1

I Kush Hiren Brahmbhatt
1. Grant Tallinn University of Technology free license (non-exclusive license) for my

thesis "Comparative analysis of selecting a test automation framework for an e-

commerce website", supervised by Jekaterina Tšukrejeva.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright.

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

08.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

54

Appendix 2 – Test cases written in Javascript
using Playwright framework and Chromium
web browser

import { chromium, test } from "@playwright/test"

test("Setup", async () => {
 const browser = await chromium.launch({
 headless: false
 });
 const context = await browser.newContext();
 const page = await context.newPage();
});

test("Launch", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 //await page.screenshot({ path: 'screenshots/001_launch.png' });
 console.log("Website launched...");
 console.log("Cookies close button clicked...");

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/002_HomePage.png' });
 console.log("Location Confirm button clicked...");

 await page.waitForTimeout(4000);
});

test("SignupWithEmptyFields test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 //await page.screenshot({ path: 'screenshots/Testing.png' });
 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.click('[data-locator-id="secondaryLinks-account-select"]');
 console.log("Home page Account button clicked...");
 await page.waitForTimeout(8000);

 await page.click('[id="tab-2"]');
 //await page.screenshot({ path: 'screenshots/003_SignUpPage.png' });
 console.log("Sign Up Tab clicked...");

 await page.click('[id="signup-email"]');
 console.log("Sign Up Email textbox clicked...");
 await page.locator('[id="signup-email"]').fill('davesmithgmail.com');

55

 console.log("Entered an invalid email in the textbox...");
 await page.click('[id="new-password"]');
 await page.locator('[id="new-password"]').fill('asdfg12345');
 console.log("Entered an invalid password in the textbox...");

 await page.click('[id="signup-firstname"]');
 await page.locator('[id="signup-firstname"]').fill('David');
 await page.click('[id="signup-lastname"]');
 await page.locator('[id="signup-lastname"]').fill('Smith');
 await page.click('[id="signup-email_optin"]')
 //await page.screenshot({ path: 'screenshots/004_SignUpFormFilled.png' });

 await page.click('[id="btn-signup"]');
 await page.waitForTimeout(6000);
});

test("Signup test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');

 await page.click('[data-locator-id="secondaryLinks-account-select"]');
 console.log("Home page Account button clicked...");
 await page.waitForTimeout(8000);

 await page.click('[id="tab-2"]');
 //await page.screenshot({ path: 'screenshots/005_SignUpPage.png' });
 console.log("Sign Up Tab clicked...");

 await page.click('[id="signup-email"]');
 console.log("Sign Up Email textbox clicked...");
 await page.locator ('[id="signup-email"]').fill('sraj17916@gmail.com');
 console.log("Entered a valid email in the textbox...");
 await page.click('[id="new-password"]');
 await page.locator('[id="new-password"]').fill('A$dfg12345');
 console.log("Entered a valid password in the textbox...");

 await page.click('[id="signup-firstname"]');
 await page.locator('[id="signup-firstname"]').fill('John');

 await page.click('[id="signup-lastname"]');
 await page.locator('[id="signup-lastname"]').fill('Mason');
 await page.click('[id="signup-email_optin"]');

 //await page.screenshot({path:'screenshots/006_SignUpFormFilledValid.png' });

 await page.click('[id="btn-signup"]');

56

 await page.waitForTimeout(6000);
});

test("Login test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);
 await page.click('[data-locator-id="storeSelector-confirm-select"]');

 await page.click('[data-locator-id="secondaryLinks-account-select"]');
 console.log("Home page Account button clicked...");
 await page.click('[id="tab-1"]');
 //await page.screenshot({ path: 'screenshots/007_LogInPage.png' });
 console.log("Log In Tab clicked...");
 await page.click('[id="login-email"]');
 console.log("Log In Email textbox clicked...");
 await page.locator('[id="login-email"]').fill('kushbrahm3@gmail.com');
 console.log("Entered a valid email in the textbox...");
 await page.click('[id="current-password"]');
 await page.locator('[id="current-password"]').fill('A$dfg12345');
 console.log("Entered a valid password in the textbox...");

 //await page.screenshot({ path: 'screenshots/008_LogInFormFilledValid.png' });
 await page.click('[id="btn-login"]');
 console.log("Clicked on the Login Button...");

 await page.waitForTimeout(5000);

});

test("SearchItem test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(6000);

 //await page.screenshot({ path: 'screenshots/Testing.png' });

 await page.click('[data-locator-id="header-searchContainer-read"]');
 console.log("Clicked on the Search Button...");

 await page.waitForTimeout(4000);
 await page.click('[data-locator-id="search-search-enter"]');
 //await page.screenshot({ path: 'screenshots/009_SearchBox.png' });
 await page.locator('[data-locator-id="search-search-enter"]').fill('shorts');
 await page.keyboard.press('Enter');
 console.log("Entered Search term in the Search textbox...");

57

 await page.waitForTimeout(4000);
 console.log(await page.textContent('[data-locator-id="plp-productCount-read"]'));
 //await page.screenshot({ path: 'screenshots/010_SearchResults.png' });

 await page.waitForTimeout(4000);
});

test("StudentDiscount test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);

 await page.click('[title="10% Student Discount"]');
 console.log("Clicked on the View More link...");
 //await page.screenshot({ path: 'screenshots/011_ViewMoreClicked.png' });

 await page.waitForTimeout(6000);
 await page.goto("https://connect.studentbeans.com/v4/gymshark-
eu?stb_offer_path=https%3A%2F%2Feu.shop.gymshark.com%2Fpages%2Fstudentbeans
&validate_iframe=true");
 //await page.screenshot({ path: 'screenshots/012_TAndCCookies.png' });

 await page.waitForTimeout(5000);
 //await page.keyboard.press('Enter');
 await page.click('[id="onetrust-accept-btn-handler"]');
 await page.waitForTimeout(4000);
 await page.locator('text="See Terms & Conditions"').click();
 await page.waitForTimeout(4000);

 //await page.screenshot({ path: 'screenshots/013_TermsAndConditions.png' });

 console.log("Clicked on the Terms and Conditions link...");
 await page.waitForTimeout(4000);

});

test("MensJoggers test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);

 await page.hover('[title="Men"]');
 //await page.screenshot({ path: 'screenshots/Testing.png' });

58

 await page.hover('[href="https://eu.shop.gymshark.com/collections/joggers/mens"]');
 //await page.screenshot({ path: 'screenshots/Testing2.png' });

 await page.click('[href="https://eu.shop.gymshark.com/collections/joggers/mens"]');
 //await page.screenshot({ path: 'screenshots/014_MenJoggers.png' });

 await page.waitForTimeout(4000);
 //await page.click('[data-locator-id="plp-size-m-select"]');
 await page.getByRole('button', { name: 'm' }).nth(1).click();

 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/Testing3.png' });

 await page.getByRole('button', { name: 'l' }).nth(1).click();
 //await page.click('[data-locator-id="plp-size-l-select"]');
 //await page.screenshot({ path: 'screenshots/Testing3.png' });
 await page.waitForTimeout(4000);

 console.log(await page.textContent('[class="summary_summary-info-
wrapper__UvYyZ"]'));
 //await page.screenshot({ path: 'screenshots/015_MenJoggersCart.png' });

});

test("Wishlist test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="header-searchContainer-read"]');
 console.log("Clicked on the Search Button...");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="searchModal-trendingTerm-t_shirt-select"]');
 //await page.screenshot({ path: 'screenshots/016_TrendsTShirt.png' });
 //await page.click('[title="Geo Seamless T-Shirt"]');
 await page.click('[class="wishlist-button_icon-container__mFQoT"]');
 await page.waitForTimeout(2000);

 //await page.screenshot({ path: 'screenshots/017_AddedToWishlist.png' });
 await page.click('[data-locator-id="loginPrompt-login-select"]');

 await page.click('[id="login-email"]');
 await page.locator('[id="login-email"]').fill('rsrajeshs@gmail.com');
 await page.click('[id="current-password"]');
 await page.locator('[id="current-password"]').fill('A$dfg12345');

59

 await page.click('[id="btn-login"]');
 await page.waitForTimeout(4000);
 await page.click('[class="header_action-bar-item-wrap__m_Rhz"]');
 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/018_WishlistConfirmation.png' });
 console.log(await page.textContent('[data-locator-id="plp-productCount-read"]'));

});

test("FilterAndSort test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);
 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);

 await page.hover('[title="Men"]');
 await page.hover('[href="https://eu.shop.gymshark.com/collections/sport/mens"]');
 //await page.screenshot({ path: 'screenshots/Testing2.png' });
 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/019_MensSport.png' });

 await page.click('[href="https://eu.shop.gymshark.com/collections/sport/mens"]');
 await page.waitForTimeout(4000);
 console.log(await page.textContent('[data-locator-id="plp-productCount-read"]'));

 await page.click('[data-locator-id="plp-filterButton-select"]');
 await page.waitForTimeout(2000);
 //await page.screenshot({ path: 'screenshots/020_FilterAndSort.png' });
 await page.click('[data-locator-id="filters-filterCategory-PRICE-select"]')

 await page.click('[data-locator-id="filters-filterOption-20_30-select"]');
 await page.click('[data-locator-id="filters-seeProducts-select"]');
 await page.waitForTimeout(4000);
 console.log(await page.textContent('[data-locator-id="plp-productCount-read"]'));

});

test("Logout test", async ({page}) => {
 await page.goto("https://eu.shop.gymshark.com/");
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="storeSelector-confirm-select"]');
 await page.waitForTimeout(4000);

 await page.click('[data-locator-id="secondaryLinks-account-select"]');
 console.log("Home page Account button clicked...");

60

 await page.waitForTimeout(4000);
 await page.click('[id="tab-1"]');
 await page.click('[id="login-email"]');
 await page.locator('[id="login-email"]').fill('rsrajeshs@gmail.com');
 await page.click('[id="current-password"]');
 await page.locator('[id="current-password"]').fill('A$dfg12345');

 await page.click('[id="btn-login"]');
 await page.waitForTimeout(6000);

 await page.click('[data-locator-id="secondaryLinks-account-select"]');
 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/050_AccountStatus.png' });

 await page.click('[data-locator-id="account-logoutButton-select"]');
 await page.waitForTimeout(4000);
 //await page.screenshot({ path: 'screenshots/051_LoggedOutSuccess.png' });

});

--
--

Appendix 3 – Test cases in Java using Selenium
Webdriver framework and Chrome web
browser

// Homepage.class contains xpaths of all the homepage elements used in MainTestCases

package pages;

import org.openqa.selenium.By;

public class HomePage {
 public static By homePageAccountButton =
By.xpath("//body[1]/div[1]/header[1]/div[1]/div[4]/a[1]");
 public static By homePageTopLeftLogo =
By.xpath("//body[1]/div[1]/header[1]/div[1]/span[1]/a[1]/span[1]");
 public static By homePageWomenNav =
By.xpath("//header/div[1]/div[1]/div[2]/div[2]/a[2]");
 public static By homePageMenNav =
By.xpath("//body[1]/div[1]/header[1]/div[1]/div[1]/div[2]/div[2]/a[4]");
 public static By homePageAccessoriesNav =
By.xpath("//header/div[1]/div[1]/div[2]/div[2]/a[2]");
 public static By homePageSearchButton =
By.xpath("//header/div[1]/div[2]/div[1]/button[1]");
 public static By homePageWishlistButton =

61

By.xpath("//body[1]/div[1]/header[1]/div[1]/div[3]/a[1]");
 public static By homePageCart = By.xpath("//header/div[1]/div[5]");
 public static By homePageSearchTextbox =
By.xpath("//body/div[6]/div[1]/div[1]/div[1]/div[1]/div[1]/input[1]");
 public static By homePageSearchCloseButton =
By.xpath("//body/div[6]/div[1]/div[1]/div[1]/div[1]/button[1]");
 public static By homePageSearchFirstArticle =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[1]/div[1]/a[1]");
 public static By homePageSearchViewAll =
By.xpath("//body/div[6]/div[1]/div[1]/div[1]/div[3]/div[2]/a[1]");
 public static By homePageCookiesLabel = By.xpath("//h2[@id='onetrust-policy-title']");
 public static By homePageCookiesClose = By.xpath("//body/div[@id='onetrust-consent-
sdk']/div[@id='onetrust-banner-sdk']/div[1]/div[2]/button[1]");
 public static By homePageAreYouInTheRightPlace = By.xpath("//h5[contains(text(),'are
you in the right place?')]");
 public static By homePagePleaseSelectAStore = By.xpath("//label[contains(text(),'Please
select a store')]");
 public static By homePageRightPlaceConfirmButton =
By.xpath("//button[contains(text(),'confirm')]");
 public static By homePageRightPlaceCloseButton =
By.xpath("//body/div[3]/div[1]/div[1]/button[1]");
 public static By homePageChooseLocation =
By.xpath("//body/div[5]/div[1]/div[1]/div[1]/div[1]/div[2]/select[1]");
 public static By homePageChooseLocationLabel =
By.xpath("//label[contains(text(),'Please select a store')]");
 public static By homePageLocationEurope =
By.xpath("//option[contains(text(),'Europe')]");
 public static By homePageLocationConfirmButton =
By.xpath("//button[contains(text(),'confirm')]");
 public static By homePageLocationCloseButton =
By.xpath("//body/div[5]/div[1]/div[1]/button[1]");
 public static By homePageDiscountLink =
By.xpath("//body[1]/div[1]/div[1]/div[1]/div[1]/div[1]/div[1]/div[1]/div[1]/div[1]/div[1]/d
iv[1]/a[1]");
 public static By studentbeansCookies = By.xpath("//button[@id='onetrust-accept-btn-
handler']");
 public static By studentDiscountTerms = By.xpath("//p[contains(text(),'See Terms &
Conditions')]");
 public static By JoggersFirstItem =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[1]/div[1]/div[1]/a[1]/d
iv[1]/span[1]");
 public static By quickAddSizeM =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[1]/div[1]/div[1]/div[1]
/div[1]/div[2]/div[1]/button[3]");
 public static By quickAddSizeL =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[1]/div[1]/div[1]/div[1]
/div[1]/div[2]/div[1]/button[4]");
 public static By youMightLikeSizeM =
By.xpath("//body[1]/div[8]/div[1]/div[1]/div[1]/div[2]/div[1]/section[1]/div[1]/article[1]/d
iv[1]/div[1]/div[1]/div[1]/div[2]/div[1]/button[4]");

62

 public static By cartCloseButton =
By.xpath("//body[1]/div[8]/div[1]/div[1]/div[2]/div[1]/button[1]");
 public static By trendTShirt =
By.xpath("//body[1]/div[6]/div[1]/div[1]/div[1]/div[2]/div[1]/div[1]/div[1]/div[4]/a[1]");
 public static By geoSeamlessTShirt = By.xpath("//h4[contains(text(),'Geo Seamless T-
Shirt')]");
 public static By geoSeamlessTShirtWishlist =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[2]/button[1]/span[1]/di
v[1]/i[1]");
 public static By menSport =
By.xpath("//body[1]/div[1]/header[1]/div[1]/div[1]/div[2]/div[2]/section[2]/div[1]/ul[1]/li[
3]/ul[1]/li[6]/a[1]");
 public static By filterAndSort =
By.xpath("//body[1]/div[1]/main[1]/section[1]/button[1]");
 public static By filterPrice =
By.xpath("//body[1]/div[12]/div[1]/div[1]/div[2]/details[7]");
 public static By filterPrice2030 =
By.xpath("//body[1]/div[12]/div[1]/div[1]/div[2]/details[6]/ul[1]/li[2]/input[1]");
 public static By seeFilterResults =
By.xpath("//body[1]/div[12]/div[1]/div[1]/div[3]/button[1]");
 public static By liftingFirstItem =
By.xpath("//body[1]/div[1]/main[1]/div[1]/section[4]/div[2]/div[1]/article[1]/div[1]/div[1]
/a[1]");
 public static By SearchResultsGrid = By.className("class=\"product-card_product-
card__gB8_b\"");

 public HomePage() {
 }
}

--
--

// SignUp.class contains xpaths of all the signup elements used in MainTestCases

package pages;

import org.openqa.selenium.By;

public class SignUp {
 public static By logInTab = By.xpath("//body[1]/div[1]/div[2]/div[1]/div[2]/button[1]");
 public static By logInEmailTextbox = By.xpath("//input[@id='login-email']");
 public static By logInPasswordTextbox = By.xpath("//input[@id='current-password']");
 public static By logInButton = By.xpath("//button[@id='btn-login']");
 public static By signUpTab =
By.xpath("//body[1]/div[1]/div[2]/div[1]/div[2]/button[2]");
 public static By signUpEmailTextbox = By.xpath("//input[@id='signup-email']");
 public static By signUpPassword = By.xpath("//input[@id='new-password']");
 public static By signUpFirstname = By.xpath("//input[@id='signup-firstname']");
 public static By signUpLastname = By.xpath("//input[@id='signup-lastname']");

63

 public static By signUpMarketingCheckbox = By.xpath("//input[@id='signup-
email_optin']");
 public static By signUpButton = By.xpath("//button[@id='btn-signup']");
 public static By signUpGreyDot =
By.xpath("//body/div[1]/div[2]/div[1]/div[3]/div[2]/form[1]/div[2]/div[1]/ul[1]/li[1]/div[1
]");
 public static By signUpGreenTick =
By.xpath("//body/div[1]/div[2]/div[1]/div[3]/div[2]/form[1]/div[2]/div[1]/ul[1]/li[2]/span[
1]");
 public static By signUpPasswordRequirements = By.xpath("//span[@id='for-
password']");
 public static By signUpLogout = By.xpath("//a[contains(text(),'Log out')]");
 public static By signUpYourOrders = By.xpath("//h3[contains(text(),'Your orders')]");

 public SignUp() {
 }
}

--
--

// Selenium Webdriver main class – MainTestCases

package testcases;

import io.github.bonigarcia.wdm.WebDriverManager;
import java.io.File;
import java.io.IOException;
import java.util.concurrent.TimeUnit;
import org.apache.commons.io.FileUtils;
import org.monte.screenrecorder.ScreenRecorder;
import org.openqa.selenium.By;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.Keys;
import org.openqa.selenium.OutputType;
import org.openqa.selenium.TakesScreenshot;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.chrome.ChromeOptions;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.testng.Assert;
import org.testng.annotations.AfterSuite;
import org.testng.annotations.Test;
import pages.HomePage;
import pages.SignUp;
import utils.ConfigFileReader;

64

import utils.ScreenRecorderUtil;

public class MainTestcases {
 public static WebDriver driver;
 public static ScreenRecorder screenRecorder;
 public static String emailAddressSignUp =
ConfigFileReader.getConfigPropertyVal("emailAddressSignUp");
 public static String emailAddressLogIn =
ConfigFileReader.getConfigPropertyVal("emailAddressLogIn");
 public static String password = ConfigFileReader.getConfigPropertyVal("password");

 public MainTestcases() {
 }
 public static void main(String[] args) throws Exception {
 System.out.println("Main function...");
 MainTestcases object = new MainTestcases();
 object.launch();
 }

 @Test(priority = 0)

 public void launch() throws Exception {

 ScreenRecorderUtil.startRecord("launch");

 ChromeOptions chromeOptions = new ChromeOptions();

 WebDriverManager.chromedriver().setup();

 driver = new ChromeDriver(chromeOptions);

 driver.manage().window().maximize();

 driver.get("https://eu.shop.gymshark.com");

 System.out.println("Website is launched...");

 takeSnapShot(driver, "Screenshots/001_launch.png");

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 1, enabled = true)

 public void signUpWithEmptyFields() throws Exception {

 System.out.println("In signUpWithEmptyFields method...");

 ScreenRecorderUtil.startRecord("signUpWithEmptyFields");

 if (((WebElement)(new WebDriverWait(driver,

30L)).until(ExpectedConditions.presenceOfElementLocated(HomePage.homePageCooki

65

esLabel))).isDisplayed()) {

 driver.findElement(HomePage.homePageCookiesClose).click();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageRightPlaceConfirmButton).click();

 System.out.println("Location submitted...");

 }

 if

(driver.findElement(By.xpath("//header/div[1]/div[1]/div[2]/div[3]/ul[1]/li[1]/a[1]")).get

Attribute("text").contains("account")) {

 System.out.println("User has not logged in yet.");

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(SignUp.signUpTab).click();

 driver.findElement(SignUp.signUpEmailTextbox).sendKeys(new

CharSequence[]{"davesmith123gmail.com"});

 driver.findElement(SignUp.signUpPassword).sendKeys(new

CharSequence[]{"asdfg12345"});

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/002_PasswordInvalid.png");

 if (driver.findElement(SignUp.signUpGreyDot).isDisplayed()) {

 Assert.assertTrue(true, "\"Please include an @ in the Email address\" message is

displayed.");

 Assert.assertTrue(true, "Password does not match the requirements.");

 }

 driver.findElement(SignUp.signUpFirstname).sendKeys(new

CharSequence[]{"David"});

 driver.findElement(SignUp.signUpButton).click();

 takeSnapShot(driver, "Screenshots/003_SignUpButton.png");

 }

 else {

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

66

 System.out.println("User already logged in...");

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/004_accountButton.png");

 driver.findElement(SignUp.signUpLogout).click();

 System.out.println("Logout link clicked.");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 System.out.println("User logged out.");

 driver.findElement(HomePage.homePageTopLeftLogo).click();

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(SignUp.signUpTab).click();

 driver.findElement(SignUp.signUpEmailTextbox).sendKeys(new

CharSequence[]{"davesmith123gmail.com"});

 driver.findElement(SignUp.signUpPassword).sendKeys(new

CharSequence[]{"asdfg12345"});

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/005_PasswordInvalid.png");

 if (driver.findElement(SignUp.signUpGreyDot).isDisplayed()) {

 Assert.assertTrue(true, "\"Please include an @ in the Email address\" message is

displayed.");

 Assert.assertTrue(true, "Password does not match the requirements.");

 }

 driver.findElement(SignUp.signUpFirstname).sendKeys(new

CharSequence[]{"David"});

 driver.findElement(SignUp.signUpButton).click();

 takeSnapShot(driver, "Screenshots/006_SignUpButton.png");

 }

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 2, enabled = false)

67

 public void signUp() throws Exception {

 System.out.println("In signUp method...");

 ScreenRecorderUtil.startRecord("signUp");

 driver.get("https://eu.shop.gymshark.com");

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 driver.findElement(SignUp.signUpTab).click();

 driver.findElement(SignUp.signUpEmailTextbox).sendKeys(new

CharSequence[]{"tottygreen123@gmail.com"});

 driver.findElement(SignUp.signUpPassword).sendKeys(new

CharSequence[]{password});

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 driver.findElement(SignUp.signUpFirstname).sendKeys(new

CharSequence[]{"Kush"});

 driver.findElement(SignUp.signUpLastname).sendKeys(new

CharSequence[]{"Smith"});

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/007_ValidCredentials.png");

 driver.findElement(SignUp.signUpButton).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 if (driver.findElement(HomePage.homePageWishlistButton).isDisplayed()) {

 Assert.assertTrue(true, "User Account created successfully.");

 takeSnapShot(driver, "Screenshots/008_AccountCreated.png");

 }

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 3, enabled = true)

 public void login() throws Exception {

 System.out.println("In Login method...");

 ScreenRecorderUtil.startRecord("login");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(10L, TimeUnit.SECONDS);

 if

68

(driver.findElement(By.xpath("//header/div[1]/div[1]/div[2]/div[3]/ul[1]/li[1]/a[1]")).get

Attribute("text").contains("account")) {

 System.out.println("User has not logged in yet.");

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 driver.findElement(SignUp.logInTab).click();

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 driver.findElement(SignUp.logInEmailTextbox).sendKeys(new

CharSequence[]{emailAddressLogIn});

 driver.findElement(SignUp.logInPasswordTextbox).sendKeys(new

CharSequence[]{password});

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/009_LoginButton.png");

 driver.findElement(SignUp.logInButton).click();

 driver.manage().timeouts().implicitlyWait(20L, TimeUnit.SECONDS);

System.out.println(driver.findElement(By.xpath("//header/div[1]/div[1]/div[2]/div[3]/ul[

1]/li[1]/a[1]")).getAttribute("text").toString());

 driver.navigate().refresh();

Assert.assertTrue(driver.findElement(By.xpath("//header/div[1]/div[1]/div[2]/div[3]/ul[1

]/li[1]/a[1]")).getAttribute("text").contains("Hi"), "User successfully logged in.");

 System.out.println("Exiting Login method now...");

 } else {

 Assert.assertTrue(true, "User is already logged in.");

 System.out.println("User is already logged in.");

 driver.findElement(HomePage.homePageAccountButton).click();

 System.out.println("Account button clicked.");

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(SignUp.signUpLogout).click();

 System.out.println("Logout link clicked.");

 takeSnapShot(driver, "Screenshots/010_LoggedOut.png");

69

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 System.out.println("User logged out.");

 driver.findElement(HomePage.homePageTopLeftLogo).click();

 System.out.println("Logo clicked...");

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageAccountButton).click();

 System.out.println("Account button clicked...");

 driver.manage().timeouts().implicitlyWait(10L, TimeUnit.SECONDS);

 driver.findElement(SignUp.logInTab).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 driver.findElement(SignUp.logInEmailTextbox).sendKeys(new

CharSequence[]{emailAddressLogIn});

 driver.findElement(SignUp.logInPasswordTextbox).sendKeys(new

CharSequence[]{password});

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/011_LogInButton.png");

 driver.findElement(SignUp.logInButton).click();

 driver.manage().timeouts().implicitlyWait(10L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageTopLeftLogo).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

Assert.assertTrue(driver.findElement(By.xpath("//header/div[1]/div[1]/div[2]/div[3]/ul[1

]/li[1]/a[1]")).getAttribute("text").contains("Hi"), "User successfully logged in.");

 System.out.println("Exiting Login method now...");

 }

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 4, enabled = true)

 public void searchItem() throws Exception {

 System.out.println("In searchItem method...");

 ScreenRecorderUtil.startRecord("searchItem");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(5L, TimeUnit.SECONDS);

70

 driver.findElement(HomePage.homePageSearchButton).click();

 System.out.println("Search button clicked...");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageSearchTextbox).sendKeys(new

CharSequence[]{"shorts"});

 takeSnapShot(driver, "Screenshots/012_SearchTerm.png");

 driver.findElement(HomePage.homePageSearchTextbox).sendKeys(new

CharSequence[]{Keys.ENTER});

 driver.manage().timeouts().implicitlyWait(10L, TimeUnit.SECONDS);

 if

(driver.findElement(By.xpath("//body[1]/div[1]/main[1]/div[1]/section[1]/div[1]/article[

1]/div[1]/div[1]/a[1]")).isDisplayed()) {

 System.out.println("Search items are displayed...");

 String results =

driver.findElement(By.xpath("//body[1]/div[1]/main[1]/section[1]/div[1]/span[2]")).getT

ext();

 takeSnapShot(driver, "Screenshots/013_ResultsCount.png");

 System.out.println("The search returned " + results);

 }

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 5, enabled = true, dependsOnMethods = {"searchItem"})

 public void shoppingCart() throws Exception {

 System.out.println("In shoppingCart method...");

 ScreenRecorderUtil.startRecord("shoppingCart");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(5L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageSearchButton).click();

 System.out.println("Search button clicked...");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageSearchTextbox).sendKeys(new

CharSequence[]{"shorts"});

 driver.findElement(HomePage.homePageSearchTextbox).sendKeys(new

71

CharSequence[]{Keys.ENTER});

 driver.manage().timeouts().implicitlyWait(10L, TimeUnit.SECONDS);

 ScreenRecorderUtil.stopRecord();

 }

 public static void takeSnapShot(WebDriver webdriver, String fileWithPath) throws

IOException {

 TakesScreenshot scrShot = (TakesScreenshot)webdriver;

 File SrcFile = (File)scrShot.getScreenshotAs(OutputType.FILE);

 File DestFile = new File(fileWithPath);

 FileUtils.copyFile(SrcFile, DestFile);

 }

 @Test(priority = 6, enabled = true)

 public void studentDiscountTest() throws Exception {

 System.out.println("In studentDiscountTest method...");

 ScreenRecorderUtil.startRecord("studentDiscountTest");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 WebDriverWait waitDiscount = new WebDriverWait(driver, 20L);

waitDiscount.until(ExpectedConditions.elementToBeClickable(HomePage.homePageDis

countLink));

 driver.findElement(HomePage.homePageDiscountLink).click();

 System.out.println("Clicked on View more...");

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

driver.get("https://connect.studentbeans.com/v4/gymshark/us?stb_offer_path=https%3A

%2F%2Fus.shop.gymshark.com%2Fpages%2Fstudentbeans&validate_iframe=true");

 driver.findElement(By.id("onetrust-accept-btn-handler")).click();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 driver.findElement(By.className("_1eizlsp")).click();

 System.out.println("Clicked on Terms and Conditions...");

 Assert.assertTrue(true, "Clicked on Student Discount Terms and Conditions...");

 driver.navigate().back();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

72

 ScreenRecorderUtil.stopRecord();

 driver.navigate().back();

 }

 @Test(priority = 7,enabled = true)

 public void mensJoggersTest() throws Exception {

 System.out.println("In mensJoggersTest method...");

 ScreenRecorderUtil.startRecord("mensJoggersTest");

 driver.findElement(HomePage.homePageTopLeftLogo).click();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 WebElement ele = driver.findElement(HomePage.homePageMenNav);

 Actions action = new Actions(driver);

 action.moveToElement(ele).perform();

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/017_MensMouseHover.png");

 WebElement joggerEle =

driver.findElement(By.xpath("//body[1]/div[1]/header[1]/div[1]/div[1]/div[2]/div[2]/sect

ion[2]/div[1]/ul[1]/li[2]/ul[1]/li[3]/a[1]"));

 action.moveToElement(joggerEle).perform();

driver.findElement(By.xpath("//body[1]/div[1]/header[1]/div[1]/div[1]/div[2]/div[2]/sect

ion[2]/div[1]/ul[1]/li[2]/ul[1]/li[3]/a[1]")).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/018_Joggers.png");

 System.out.println("Clicked on Joggers...");

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 8, enabled = true)

 public void wishlistTest() throws Exception {

 System.out.println("In wishlistTest method...");

 ScreenRecorderUtil.startRecord("wishlistTest");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageSearchButton).click();

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

73

 WebDriverWait waitTrend = new WebDriverWait(driver, 30L);

 WebElement Trend = driver.findElement(By.xpath("//a[contains(text(),'t shirt')]"));

 waitTrend.until(ExpectedConditions.elementToBeClickable(Trend));

 takeSnapShot(driver, "Screenshots/Testing.png");

 driver.findElement(By.xpath("//a[contains(text(),'t shirt')]")).click();

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

driver.findElement(By.xpath("//body/div[@id='__next']/main[@id='MainContent']/div[1

]/section[1]/div[1]/article[1]/div[1]/a[1]")).click();

 ScreenRecorderUtil.stopRecord();

 }

 @Test(priority = 9, enabled = true)

 public void filterSortTest() throws Exception {

 System.out.println("In filterSortTest method...");

 ScreenRecorderUtil.startRecord("filterSortTest");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 WebElement ele = driver.findElement(HomePage.homePageMenNav);

 Actions action = new Actions(driver);

 action.moveToElement(ele).perform();

 driver.manage().timeouts().implicitlyWait(3L, TimeUnit.SECONDS);

 WebElement sportEle = driver.findElement(HomePage.menSport);

 action.moveToElement(sportEle).perform();

 driver.findElement(HomePage.menSport).click();

 driver.manage().timeouts().implicitlyWait(4L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/021_MenSport.png");

 System.out.println("Clicked on Sport...");

 ScreenRecorderUtil.stopRecord();

 System.out.println("Filter applied...");

 }

 @Test(priority = 10, enabled = true)

 public void logoutTest() throws Exception {

74

 System.out.println("In logoutTest method...");

 ScreenRecorderUtil.startRecord("logoutTest");

 driver.get("https://eu.shop.gymshark.com");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 driver.findElement(HomePage.homePageAccountButton).click();

 driver.manage().timeouts().implicitlyWait(2L, TimeUnit.SECONDS);

 WebElement element =

driver.findElement(By.xpath("//*[@id=\"MainContent\"]/div[1]/h1[1]"));

 String text = element.getText();

 System.out.println(text);

 Assert.assertEquals(text, "YOUR GYMSHARK ACCOUNT");

 System.out.println(text);

 String highlightScript = "arguments[0].style.border='3px solid red'";

 takeSnapShot(driver, "Screenshots/023_AccountStatus.png");

 Actions actions = new Actions(driver);

 actions.moveToElement(element).perform();

 ((JavascriptExecutor)driver).executeScript(highlightScript, new Object[]{element});

 driver.findElement(SignUp.signUpLogout).click();

 System.out.println("Logout link clicked.");

 driver.manage().timeouts().implicitlyWait(6L, TimeUnit.SECONDS);

 takeSnapShot(driver, "Screenshots/024_LoggedOut.png");

 System.out.println("User logged out.");

 ScreenRecorderUtil.stopRecord();

 }

 @AfterSuite

 public void QuitBrowser() throws InterruptedException, IOException {

 Thread.sleep(5000L);

 System.out.println("Quitting the Browser now...");

 driver.quit();

 }

}
