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Abstract

Research on removing effects from guitar recordings is hampered by the lack of large-scale,
diverse processed audio resources. Without comprehensive datasets, deep learning models
struggle to generalize beyond controlled laboratory recordings, limiting their usefulness
in tasks such as restoring archival performances, isolating instrument tracks for remixing,
and improving automatic transcription and music analysis.

This thesis presents a toolkit that automates the aggregation and preprocessing of real-
world guitar audio. It unifies multiple public collections, implements efficient workflows
for audio concatenation, metadata-based segmentation, and configurable silence removal,
and offers optional pre-rendering for computationally intensive experiments. Built on
modern frameworks, the toolkit integrates directly with standard deep learning training
pipelines to ensure reproducibility, scalability, and ease of use.

To validate the toolkit, a series of controlled experiments examined the impact of different
normalization methods, the blending of acoustic and electric recordings, the inclusion of
monophonic and polyphonic textures, the benefits of combining multiple source collec-
tions, and two augmentation strategies—simple waveshaping and neural network–based
simulation. Model performance was evaluated in terms of improvements in signal clarity
and reduction of distortion artifacts.

Results reveal that perceptual loudness normalization, when applied consistently during
training and evaluation, yields the greatest gains in output clarity. Models trained on
aggregated, varied recordings consistently outperformed those using single-source data.
Moreover, advanced neural network–based augmentation delivered larger relative im-
provements than baseline distortion, indicating that realistic effect simulation is crucial
for generalization. This toolkit thus provides a robust, extensible platform and practical
guidelines that advance guitar audio effect removal and support applications in audio
restoration, creative remixing, and music information retrieval.

The thesis is written in English and is 75 pages long, including 7 chapters, 13 figures and
15 tables.

2



Annotatsioon
Tööriistakomplekti arendamine reaalmaailma kitarriheli andmete

koondamiseks ja genereerimiseks

Kitarrisalvestustelt efektide eemaldamise uurimist takistab suures mahus mitmekülgsete
heliallikate puudus. Ilma mitmekülgsete andmekogudeta on süvaõppemudelitel keeru-
line üldistada väljaspool kontrollitud laboritingimusi, mis piirab nende rakendatavust
arhiivsalvestiste taastamisel, pilliradade eraldamisel remiksimiseks ning automaatse tran-
skriptsiooni ja muusikaanalüüsi täiustamisel.

Käesolev magistritöö esitleb tööriistakomplekti, mis automatiseerib reaalse maailma kitar-
riaudio kogumise ja eeltöötluse. See liidab mitu avalikku andmekogu, rakendab tõhusaid
töövooge heli ühendamiseks, metainformatsiooni põhist segmenteerimiseks ja konfigureeri-
tava vaikuse eemaldamiseks ning pakub valikulist eelrenderdamist arvutusmahukate katsete
jaoks. Modernsetest raamistikest lähtudes integreerub tööriistakomplekt otse süvaõppe
treeningahelatesse, tagades korratavuse, laiendatavuse ja kasutusmugavuse.

Tööriistakomplekti valideerimiseks viidi läbi rida kontrollitud eksperimente, milles uuriti
erinevate normaliseerimismeetodite mõju, akustiliste ja elektriliste salvestuste segamist,
monofoniliste ja polüfoniliste tekstuuride kaasamist, mitme allikakogu kombineerimise
eeliseid ning kahte andmete suurendamise strateegiat – lihtsat lainekujude kujundamist ja
neuronvõrkudel põhinevat simulatsiooni. Mudeleid hinnati signaali selguse paranemise ja
moonutuste artefaktide vähenemise alusel.

Tulemused näitavad, et tajuline helitugevuse normaliseerimine annab treeningu ja hin-
damise käigus järjekindlalt suurimad selguse parandused, kui see on ühtlaselt rakendatud.
Agregeeritud ja mitmekesistel salvestustel treenitud mudelid ületasid pidevalt üksikallikast
pärinevate andmetega treenitud mudeleid. Lisaks näitas neuronvõrkudel põhinev and-
mete suurendamine suhtelisi suuremaid täiustusi võrreldes baasdistortsiooniga, mis viitab
sellele, et realistlik efektisimulatsioon on generaliseerumise seisukohast kriitiline. See
tööriistakomplekt pakub seega tugevat ja laiendatavat platvormi ning praktilisi juhiseid,
mis edendavad kitarriefektide eemaldamist, toetavad audio restaureerimist, loomingulist
remiksimist ja muusikainformatsiooni päringuid.
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Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 75 leheküljel, 7 peatükki, 13
joonist, 15 tabelit.
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1. Introduction

Musicians and audio engineers interact with sound in multiple ways daily, from transcribing
intricate performances and learning new pieces, to creatively shaping timbres with audio
effects, and composing using a variety of digital tools. In recent years, the rapid evolution
of artificial intelligence (AI), particularly deep learning, has begun to revolutionize the field
of audio signal processing, offering powerful new methods to assist with these tasks and
unlock new creative possibilities. AI-driven tools are increasingly integrated into Digital
Audio Workstations (DAWs), plugins, and standalone applications, aiding in tasks ranging
from automated transcription and source separation to intelligent mixing and mastering.

Among the various manipulations of audio, the application of effects—such as distortion,
delay, and reverb—is fundamental to modern music production, especially for instruments
like the electric guitar where effects are integral to the characteristic sound. While these
effects are powerful creative tools, the inverse problem—removing or "undoing" these
effects to recover the original, clean signal—presents a significant technical challenge. The
ability to effectively remove audio effects is highly valuable for numerous applications.
For instance, it can enable the restoration of old or poorly processed recordings, facilitate
remixing and remastering by isolating clean instrumental tracks, provide cleaner signals
for music information retrieval (MIR) tasks like transcription or chord recognition, and
serve as a pedagogical tool for understanding signal processing chains.

Despite its importance, developing robust deep learning models for audio effect removal,
particularly for complex, non-linear effects like guitar distortion, faces two critical open
problems. Firstly, there is a significant scarcity of large-scale, diverse, and consistently
processed training data. While some datasets exist, they often lack the sheer volume,
timbral variety, or specific clean/effected pairings needed to train models that generalize
well to real-world audio. Secondly, evaluating the performance of these models on
"real-life" audio with a wide array of effect types, parameter settings, and recording
conditions remains a complex endeavor. This makes it difficult to benchmark progress and
understand the true capabilities of developed systems. The practical uptake of advanced
effect removal in industry tools, while growing, is often hampered by these data and
evaluation bottlenecks.

This thesis directly addresses these challenges within the domain of guitar audio. Recogniz-
ing the critical need for better data resources and standardized processing, the overarching
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aim of this work is to develop a comprehensive, engineeringly sound toolkit. This toolkit is
designed to facilitate the aggregation of diverse existing guitar datasets and the generation
of high-quality, consistently processed guitar audio data, specifically tailored for training
and evaluating robust effect removal models and supporting related MIR tasks. By integrat-
ing heterogeneous datasets, implementing advanced and configurable normalization and
augmentation techniques, and enabling rigorous cross-dataset evaluation methodologies,
this thesis seeks to provide a replicable framework that can advance both academic research
and practical applications in guitar audio processing.

1.1 Background

Guitar audio research has evolved significantly over the past decade, driven by both the
creation of specialized datasets and the development of novel processing techniques. Early
efforts, such as the GuitarSet dataset [1], laid the groundwork for automatic transcription
by providing well-annotated acoustic recordings. Later collections like EGDB [2] and
IDMT-SMT-Guitar [3] expanded the focus to include electric guitar recordings with diverse
timbral properties. More recently, synthetic datasets such as SynthTab [4] and the com-
prehensive Guitar-TECHS [5] have been introduced to overcome data scarcity, enabling
pre-training and fine-tuning strategies that improve cross-domain generalization. Funda-
mental to leveraging these diverse datasets is the issue of audio normalization. Traditional
approaches like per-sample peak normalization lack perceptual consistency, while internal
methods like Batch Normalization [6], common in deep learning, operate within the model
rather than as a preprocessing step. Perceptual loudness normalization tools, such as
pyloudnorm [7] implementing the ITU-R BS.1770 standard, are emerging as viable
alternatives for consistent preprocessing, though their comparative benefits specifically
for training deep audio models remain underexplored. Alongside normalization, data
augmentation strategies are crucial for simulating real-world variability. These range from
simple signal transformations (e.g., soft-clipping using libraries like Pedalboard [8])
and processing with commercial VST plugins [9] (offering realism but facing accessibility
issues) to advanced neural network-driven methods [10], including community-driven
models from projects like Guitar ML [11] and Neural Amp Modeler [12]. These develop-
ments set the stage for a comprehensive approach that not only aggregates heterogeneous
guitar data but also systematically addresses the challenges posed by complex audio effects,
particularly non-linear distortion.
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1.2 Problem Statement

The primary objective of this thesis is to improve the generalization and robustness of deep
learning models for guitar distortion removal by addressing three key challenges: data
aggregation, normalization, and augmentation. Specifically, the research seeks to answer
the following questions:

■ What are the most effective methods to increase size and diversity of training data
for guitar effect removal?

■ Which normalization strategies best preserve characteristics of audio and ensure
stable training for neural net models?

■ How can both baseline synthetic and advanced neural network-based data augmenta-
tion techniques be leveraged to enhance model generalization for effect removal?

■ What role does the categorization of guitar audio data play in the performance of
distortion removal systems?

By answering these questions, this thesis aims to establish best practices for data processing
that can enhance the performance of guitar distortion removal models across diverse, real-
world scenarios.

The research object of this study is a comprehensive toolkit for the aggregation, normal-
ization, categorization, and augmentation of guitar audio data, with the ultimate goal of
recovering clean (dry) guitar signals from recordings affected by complex, non-linear distor-
tion. Building upon established concepts in audio processing and deep learning, this work
will employ rigorous cross-dataset validation to verify that the proposed methodologies
yield reproducible and robust results. The research plan involves curating diverse datasets
(specifically GuitarSet [1], EGDB [2], IDMT-SMT-Guitar [3], and Guitar-TECHS [5]),
experimenting with various normalization techniques (peak vs. loudness normalization via
pyloudnorm [7]), and developing augmentation pipelines that combine both baseline
(e.g., tanh distortion) and advanced neural approaches (using OpenAmp models [10]).
State-of-the-art distortion removal models—specifically the RemFx framework [13] with a
Hybrid Demucs architecture, comparable to methods like Lee et al. [9]—will be trained
and evaluated using objective metrics (SI-SDR [14], MRSTFT [15]) as well as qualitative
listening tests. Preliminary experiments have suggested that synthetic data augmentation
can significantly reduce overfitting and improve transcription performance [4, 16], and
this thesis extends these investigations to the domain of distortion removal. The proposed
solution is both novel and highly relevant, as it addresses the scarcity of large-scale, diverse,
and consistently processed guitar data for effect removal research, alongside the need for
replicable, robust methodologies. Although the task is complex—requiring integration of
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data engineering, signal processing, and advanced deep learning—it is well-suited for a
master’s thesis given its potential to make a substantial contribution to both research and
industry.

1.3 Related Work

A substantial body of literature underpins the research in guitar audio processing and
effect removal. Lee et al. [9] present a two-stage GAN-based approach for distortion
removal combining spectral cleaning with neural vocoding, achieving strong performance
but relying on large, proprietary datasets, limiting broader applicability. In contrast,
general-purpose audio effect removal frameworks like RemFx [13] and audio effect chain
estimation methods [17] aim for more comprehensive modeling of real-world processing
pipelines. Additional contributions include blind extraction techniques for guitar effects
[18] and approaches for real-time amplifier emulation [19, 20], blurring the lines between
effect removal and application. Synthetic data methodologies, demonstrated in SynthTab
[4] and the Open-Amp framework [10], show that incorporating large-scale simulated
data enhances model robustness. Recent advances in zero-shot domain adaptation for
transcription [21] also offer strategies to mitigate data scarcity. The repository compiled in
AFX-Research [22] further illustrates the growing importance of audio effect studies by
providing an extensive overview of available datasets and methods.

While tools exist for managing audio datasets, such as mirdata [23], they present
limitations in the specific context of this thesis. mirdata provides standardized loaders
for various MIR datasets, promoting reproducibility. However, it is a general-purpose
library and lacks a specific focus on the requirements of guitar effect removal research,
such as handling paired clean/effected data generation or integrating specific augmentation
and normalization pipelines tailored for this task. Furthermore, its reliance on NumPy
often necessitates that researchers implement custom data loading and preprocessing
logic using frameworks like PyTorch to integrate effectively with deep learning training
loops. The toolkit developed in this thesis aims to overcome these limitations by providing
native PyTorch integration, focusing specifically on aggregating relevant guitar datasets
(including those not currently in mirdata), and incorporating configurable on-the-fly
normalization and augmentation pipelines designed explicitly for generating training data
for effect removal models from clean source audio.

Collectively, the existing literature validates the significance of addressing data diversity,
normalization, and augmentation challenges. The methodological choices adopted in this
thesis are informed by these prior works, ensuring the proposed toolkit is grounded in the
state-of-the-art while addressing critical gaps in current tooling and research practices,
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particularly the need for a unified, flexible, and deep-learning-native platform for guitar
audio effect data aggregation and generation.
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2. Theoretical Background

2.1 Audio Effects

Audio effects play an essential role in contemporary music production and sound design,
providing tools that enable musicians and engineers to shape audio signals through modi-
fications in timbre, pitch, dynamics, and spatial characteristics. As highlighted by Reiss
and McPherson [24], audio effects are both creative instruments and subjects of technical
investigation in digital audio signal processing.

From their analog origins in tube amplifiers and electromechanical devices to today’s
advanced digital implementations, audio effects have continually evolved alongside techno-
logical innovation. Zölzer [25] emphasizes that digital signal processing has significantly
enhanced the precision and creative potential of audio effect modeling. The historical
context provided by Wilmering [26] further illustrates how interdisciplinary advancements
have propelled innovations in this field.

This chapter comprehensively reviews audio effects by examining their historical devel-
opment, theoretical foundations, and modern digital approaches. Particular emphasis is
placed on guitar-oriented audio effects, especially the nonlinear drive effects crucial in
shaping guitar tones, which sets the stage for subsequent discussions about guitar-specific
music information retrieval (MIR) tasks.

2.1.1 Historical Development of Audio Effects

The evolution of audio effects is marked by a constant interplay between artistic creativity
and technological progress. Initially, composers leveraged natural acoustics and architec-
tural spaces to manipulate reverberation and echo, laying the foundation for future artificial
reverberation techniques [26].

With the advent of electronic amplification and recording technologies in the twentieth
century, intentional sound modification became increasingly prominent. Tube amplifiers
introduced desirable nonlinearities, producing warmth and distortion characteristic of
certain musical genres [24]. Concurrently, electromechanical innovations such as spring-
based delay lines expanded the creative toolbox for sound engineers, underpinning many
contemporary audio effects [26].
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The transition to digital audio signal processing represented a significant advancement,
enabling precise emulation and innovative digital algorithms. Zölzer [25] details how digi-
tal audio effects (DAFX) have provided unprecedented parameter control and complexity,
significantly influenced by innovations from telecommunications, computer science, and
film technology [26].

Overall, the historical trajectory of audio effects demonstrates a progressive convergence
of creative vision and technological advancements, directly influencing today’s music
production practices.

2.1.2 Theoretical Foundations and Categorization of Guitar Audio
Effects

To understand audio effects within guitar signal processing, it is crucial to examine
their theoretical underpinnings. Digital audio processing models signals as discrete data
streams and employs both linear and nonlinear systems. Linear systems typically preserve
spectral characteristics, while nonlinear systems—prevalent in guitar effects—introduce
harmonically complex distortions through clipping and waveshaping [24, 25].

Four primary categories emerge when analyzing guitar audio effects:

1. Dynamic Effects: Compressors, limiters, and gates that manage amplitude dynamics
without significantly altering harmonic content [24].

2. Time-Based Effects: Delays and reverbs, which add spatial depth and richness by
temporal manipulation of the signal [25].

3. Modulation Effects: Chorus, flanger, phaser, vibrato, and tremolo, involving mod-
ulated signal copies to produce variations in pitch, phase, or amplitude, enriching
sound textures [25].

4. Drive Effects: Including overdrive, distortion, and fuzz, these nonlinear effects
drastically reshape the guitar’s sonic identity through waveform clipping, generat-
ing harmonically rich textures essential to numerous musical styles. Due to their
complexity, they pose significant challenges in tasks such as audio effect removal,
highlighting the unique research opportunities in guitar-specific MIR tasks [24, 26].

As seen in the Figure 1, time-based effects like delay introduce discernible repetitions.
Modulation effects such as phaser alter the waveform’s phase characteristics, often cre-
ating a sweeping visual texture. Drive effects, like distortion, typically result in a more
compressed and clipped waveform altering the original waveform the most, visually
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representing the added harmonic richness and sustain.

Figure 1. Electric guitar audio effects waveforms

Understanding these categories and their visual manifestations provides essential context
for exploring digital modeling techniques and their application within guitar signal pro-
cessing, especially regarding nonlinear drive effects. It is worth noticing that in this thesis
the term distortion will be used to refer to all drive effects, including overdrive, fuzz, and
distortion. This is due to the fact that in the context of guitar audio processing, these
effects are often used interchangeably and share similar principles of operation, primarily
involving nonlinear signal processing techniques to create harmonic richness and sustain.

2.1.3 Digital Modeling Approaches

Digital modeling has revolutionized audio effects, enabling precise replication of traditional
analog effects and innovative new processes within digital audio workstations (DAWs) [24,
25].

Traditional Frameworks: JUCE and VST. The JUCE framework [27] is widely adopted
for developing cross-platform audio plugins, facilitating integration across various DAWs
and formats, thus promoting innovative effect modeling [24].

Accessible Interfaces: Pedalboard. Pedalboard [8], built atop JUCE, offers streamlined
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development and prototyping capabilities, significantly lowering barriers to entry for audio
effect design.

Neural Network-Based Methods. Recently, neural network techniques have emerged as
powerful tools for modeling complex nonlinear effects, particularly drive effects. Methods
such as GuitarML [11] and NeuralAmpModeler [12] utilize deep learning to achieve highly
accurate representations of analog distortions, addressing limitations inherent in traditional
DSP methods.

Together, these modeling techniques form the foundation of modern audio effect processors,
highlighting the intersection of traditional DSP practices with innovative machine learning
methodologies, particularly relevant in the context of guitar-oriented music information
retrieval tasks discussed in the following chapters.

2.2 Music Information Retrieval

Music Information Retrieval (MIR) has seen significant advancements in recent decades,
with automatic music transcription emerging as one of its most extensively researched tasks.
Early studies laid the groundwork for accurately extracting note onsets, durations, and
pitches from guitar recordings [3]. These pioneering efforts not only advanced transcription
techniques but also established datasets—such as GuitarSet and EGDB—that have become
essential resources for both transcription and effect removal research. Notably, the high-
quality, annotated data from these datasets provide the clean guitar performance signals
that underpin recent deep learning approaches, which in turn have spurred progress in tasks
like audio effect removal.

2.2.1 Automatic Music Transcription

In the last decades evolution of automatic music transcription (AMT) for guitar signals
was supported by new innovative approaches such as the method proposed by Kehling
et al. [3] accompanied by the introduction of new a dataset - IDMT-SMT-Guitar. Their
algorithm combined state-of-the-art techniques for onset and offset detection, multipitch
estimation, and instrument-specific parameter extraction to achieve high accuracy in both
note and technique identification. This early work demonstrated that robust transcription
of guitar-based tablature is achievable even in polyphonic settings.

Building on these foundations, approach by Yu-Hua Chen et al. with the release of the
GuitarSet dataset [1] marked a significant milestone in the field. GuitarSet provided
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rich, time-aligned annotations—including string and fret positions, chords, and playing
styles—that have not only improved transcription models but also offered invaluable
training data for related tasks such as effect removal. The availability of such detailed and
diverse datasets has been critical in pushing the limits of transcription accuracy.

More recently, the introduction of the EGDB dataset and a multi-loss Transformer model
[2] has further advanced the state-of-the-art in guitar transcription. By benchmarking
well-known transcription models originally designed for piano and integrating a novel
Transformer architecture, this work highlighted the influence of timbre on transcription
performance and identified areas where guitar transcription still lags behind its piano
counterparts.

Subsequent research has aimed to improve transcription robustness by leveraging real
electric guitar tones and audio effects [16]. These studies have shown that incorporating
synthetic data—generated from real recordings processed with diverse effects—can signifi-
cantly enhance the performance of guitar tablature transcription models. Moreover, recent
advances in domain adaptation have resulted in high-resolution transcription methods
that use score alignment techniques to train models in a zero-shot context [28]. This
approach not only bridges the gap between piano and guitar transcription accuracy but also
underscores the utility of large-scale, annotated datasets in overcoming data scarcity.

Finally, another work on zero-shot domain adaptation for AMT [21] further demonstrates
the potential of adapting pre-trained models—originally developed for piano transcrip-
tion—to guitar recordings without requiring additional labeled data. By aggregating
predictions from pitch-shifted inputs, this method consistently improves transcription
performance under various domain shifts.

Together, these contributions—from early algorithmic innovations to state-of-the-art deep
learning techniques—have established a robust framework for automatic music transcrip-
tion. Moreover, the same datasets and methodologies developed for transcription are now
instrumental in addressing the inverse problem of audio effect removal, highlighting the
interdependent evolution of these MIR tasks.

2.2.2 Audio Effect Removal

The evolution of audio effect removal techniques mirrors the broader development in
MIR—from early, model-based methods to current deep learning approaches that benefit
from large-scale transcription datasets and advanced music source separation models.
Early efforts focused on inverting simpler audio effects, such as dynamic range compres-
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sion, using traditional signal processing techniques. For example, Lachaise and Daudet
[29] estimated the additional side information needed to exactly or approximately invert
a compressor, achieving nearly lossless reconstruction in favorable conditions. Later,
Gorlow and Reiss [30] developed a model-based inversion method that exploited known
compression parameters to recover the original (dry) signal with high accuracy and low
computational complexity. Although these methods address relatively simpler non-linear
processes compared to guitar distortion, they laid the groundwork for subsequent effect
removal research.

The availability of high-quality guitar transcription datasets—such as GuitarSet [1] and
EGDB [2]—has been instrumental in advancing effect removal. These datasets, originally
developed for automatic music transcription, together with digital audio effect modeling
provide clean reference as well as processed audio signals that serve as training data for
supervised inversion models. In this way, the transcription community’s efforts indirectly
support effect removal by supplying the reliable ground truth needed to learn complex
non-linear mappings.

Parallel to these developments, sparsity-based methods have been explored for audio
declipping—a task conceptually similar to effect removal. Kitic et al. [31] proposed a
flexible non-convex approach that compares sparse synthesis and analysis regularization
for recovering signals from clipped audio. Although such methods work well for speech,
they assume a simpler distortion model than the highly non-linear, memory-dependent
drive effects found in electric guitar recordings.

Advances in virtual analog modeling further extended traditional inversion techniques.
Bernardini et al. [32] investigated the inversion of analog audio circuits using Wave Digital
Filter theory, exploiting circuit nullors to approximate the input signal from the output.
However, the inherent complexity of real-world non-linear systems—especially those with
memory effects—often limits these approaches.

The advent of deep learning has dramatically transformed effect removal. Early applica-
tions of deep filtering for speech declipping [33] demonstrated that neural networks could
extract and reconstruct signals in the short-time Fourier transform domain with improved
performance over conventional methods. Building on these ideas, Imort et al. [9] leveraged
music source separation architectures—such as Demucs, Wave-U-Net, and UMX—to
remove distortion effects from guitar recordings, achieving high-quality recovery when the
distorted (wet) signal mixes with the original dry signal.

Complementary to inversion methods, accurate recognition and parameter estimation
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of guitar effects is critical. Works by Jürgens et al. [34] and Comunità et al. [35]
utilize convolutional neural networks to classify and estimate effect parameters, providing
valuable priors that can enhance effect removal performance.

Recent research is moving toward more general-purpose solutions capable of handling
multiple effects simultaneously. Rice et al. [13] introduced RemFX, which dynamically
constructs a graph of effect-specific removal models using audio effect classification.
Tanaka et al. [36] proposed APPLADE, integrating a deep neural network within an
optimization framework to robustly reverse audio distortions despite mismatches between
training and test data. Other promising approaches include blind extraction methods for
guitar effects based on hybrid Transformer architectures [18] and two-stage methodologies
that first purify the Mel-spectrogram and then use a neural vocoder to reconstruct a high-
fidelity dry signal from distorted guitar recordings [37]. Diffusion-based models have also
been explored for unsupervised estimation and inversion of unknown non-linear distortions
[38]. In addition, work on audio effect chain estimation [17] aims to recover not only
the dry signal but also the complete chain of applied effects, while real-time capable
approaches like DDD [39] demonstrate low-response-time declipping with adversarial
training.

In summary, effect removal research has evolved from traditional compression inversion
methods to sophisticated deep learning frameworks that exploit high-quality transcription
datasets and state-of-the-art source separation models. Current approaches increasingly
integrate effect recognition, general-purpose removal, chain estimation, and multi-stage
processing to tackle the complex non-linear distortions typical in guitar recordings—paving
the way for improved post-production, remixing, and automated audio editing applications.

Despite significant progress, several challenges remain. In the context of effect removal,
the scarcity of large-scale, high-quality training data as noted by many researchers [40,
4, 5] limits the generalization of deep learning models, as often state-of-the-art systems
rely on large, proprietary datasets [37]. Similarly, while datasets such as GuitarSet and
EGDB have propelled advances in guitar transcription, further expansion in data diversity
is needed to address the variability present in real-world recordings.

2.3 Datasets

Transitioning from the challenges outlined above, it is essential to assess the available
guitar datasets with an eye toward their suitability for effect removal tasks. Many existing
datasets were originally designed for transcription and other MIR tasks, which impacts
their direct transferability to effect removal. For instance, while datasets such as unnamed
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dataset by Schmitz and Embrechts [41], EGFxSet [42], IDMT-SMT-Audio-Effects [43]
and Guitar FX DIST [35] offer aligned clean and rendered guitar audio, they are less
appropriate for effect removal task due to limitations such as short duration of clean audio
as well as lack of control over effect applied to rendered audio. Similarly, resources
like AudioSet [44], GuitarDuets [45], GAPS [46], SignalTrain [47], DadaGP [48], and
GuitarSoloDetection [49] are constrained by factors including the exclusive availability of
annotations, need to render the data or reliance on purely synthetic sound without timbral
diversity.

In contrast, several datasets have emerged as robust baselines for guitar effect removal
research. Key datasets utilized and aggregated in this thesis include IDMT-SMT-Guitar
[3], GuitarSet [1], EGDB [2], and Guitar-TECHS [5]. These offer clean and sufficiently
long recordings that facilitate both transcription and effect removal tasks. A summary of
their primary characteristics relevant to this work is presented in Table 1.

Table 1. Primary Guitar Datasets

Dataset Main Task(s) Data Com-
position

Musical
Texture

Duration

IDMT-SMT-
Guitar

Transcription Electric &
Acoustic

Mono- &
Polyphonic

5.6 h

GuitarSet Transcription Acoustic Polyphonic 3 h

EGDB Transcription Electric Polyphonic 2 h

Guitar-
TECHS

Timbre transfer, perfor-
mance gen., transcription

Electric Mono- &
Polyphonic

5 h

The most recent contribution, Guitar-TECHS, further introduces a diverse range of guitar
techniques and timbral variations that hold promise for advancing future research in effect
removal.

2.3.1 IDMT-SMT-Guitar Dataset

The IDMT-SMT-Guitar dataset was originally introduced by Kehling et al. [3] as part
of a novel approach for automatic tablature transcription of electric guitar recordings.
The dataset is divided into several subsets tailored for various transcription tasks. For
example, one subset contains single-note and chord recordings with detailed annotations
on parameters such as pitch, string number, plucking style, and expression. Additional
subsets include a series of guitar licks—both monophonic and polyphonic—as well as
short musical pieces recorded under different playing conditions.
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Despite its comprehensive annotation, the dataset’s limited size (e.g., only 17 unique guitar
licks for transcription purposes) has been noted as a constraining factor in achieving robust
generalization in deep learning models [2, 1]. Nevertheless, the fine-grained annotations
have also made the dataset an attractive resource beyond transcription. For instance, Wright
et al. [50] employed IDMT-SMT-Guitar (in conjunction with its bass counterpart) to train
neural network models for real-time guitar amplifier emulation, while Comunità et al. [51]
and Hinrichs et al. [18] leveraged portions of the dataset for modeling and blind extraction
of guitar effects.

In further research, the dataset’s utility has been extended to novel tasks. Švento et al.
[38] used a small portion of the IDMT-SMT-Guitar dataset as part of a diffusion-based
approach to restore nonlinearly distorted audio. Take et al. [17] also integrated this dataset
into their pipeline for audio effect chain estimation and dry signal recovery. Moreover, its
role as a benchmark for guitar transcription has spurred the development of augmented and
synthetic datasets—such as SynthTab [4] and more recent collections [10]—to overcome
the limitations in timbral and expressive diversity inherent to the original IDMT-SMT-
Guitar dataset.

Overall, while the IDMT-SMT-Guitar dataset has been foundational in guitar-related Music
Information Retrieval (MIR) research, its relatively narrow scope has motivated further
expansion and innovation in dataset design for both transcription and effect removal tasks.

2.3.2 GuitarSet Dataset

GuitarSet, introduced by Xi et al. [1], is a seminal dataset for guitar transcription. It
provides 360 excerpts of acoustic guitar recordings with rich annotations including string
and fret positions, chords, beats, and downbeats. The dataset was designed to overcome
limitations of earlier collections by capturing detailed note-level information and enabling
the exploration of additional research directions such as stroke analysis and harmony
segmentation.

Following its introduction, GuitarSet quickly became a de-facto standard in guitar Music
Information Retrieval (MIR). For instance, Bittner et al. [23] incorporated GuitarSet into
the mirdata library, addressing reproducibility issues by providing standardized data
loaders and validation tools. This effort helped ensure consistent usage of GuitarSet in
subsequent research.

Sarmento et al. [48] further highlighted GuitarSet’s role by using it as a reference point
in their symbolic music generation dataset, DadaGP, while noting that the dataset’s focus
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on acoustic recordings and its limited timbral diversity could restrict its utility for broader
musical applications.

Building on this, Chen et al. [2] contrasted GuitarSet with their newly introduced EGDB,
pointing out that GuitarSet offers only 30 unique comping and solo tracks recorded in a
single timbre. This limitation has motivated the creation of datasets that capture a broader
range of electric guitar tones.

In the same vein, Pedroza et al. [42] emphasized that while GuitarSet’s meticulous
annotations are valuable for transcription, the absence of effect processing renders it less
suitable for tasks that involve modeling real-world audio effects. Later, Rice et al. [13]
demonstrated that augmenting GuitarSet using Pedalboard [8] audio effects can extend its
applicability to general purpose audio effect removal tasks.

Further work by Chen et al. [40] employed GAN-based techniques for clean-to-rendered
guitar tone transformation, using GuitarSet as a baseline for comparing paired clean and
effected audio. Similarly, Hinrichs et al. [18] adapted GuitarSet by segmenting and
augmenting its recordings to form GuitarSetEQ and GuitarSetVFX, which served as the
foundation for their work on blind extraction of guitar effects.

More recent studies have integrated GuitarSet into complex processing pipelines. Pedroza
and Abreu [16] combined GuitarSet with synthetic data to improve robustness in guitar tab-
lature transcription, and Riley et al. [28] applied domain adaptation techniques to achieve
high-resolution transcription performance on GuitarSet. Additionally, the emergence of
larger datasets such as Guitar-TECHS [5] reflects ongoing efforts to address GuitarSet’s
limitations by incorporating diverse timbral and recording conditions.

Together, these works underscore the pivotal role of GuitarSet as a benchmark in guitar
MIR research, while also highlighting its limitations in terms of timbral diversity and effect
modeling. This has motivated further dataset development and methodological innovations
aimed at broadening the scope of guitar-related tasks, including robust transcription and
effect removal.

2.3.3 EGDB Dataset

The EGDB dataset was introduced by Yu-Hua Chen et al. [2] to overcome limitations in-
herent in earlier guitar transcription datasets. Unlike datasets based on acoustic recordings
such as GuitarSet, EGDB focuses on electric guitar performances. By capturing direct
input (DI) recordings with a hexaphonic pickup and re-rendering these recordings using
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different amplifier settings, EGDB provides transcriptions for 240 tablatures rendered in
six distinct timbres, totaling approximately 118 minutes of audio. This multi-timbre design
addresses the variability of electric guitar sounds and helps mitigate the historical gap
between guitar and piano transcription performance.

Building on this foundation, subsequent works have further explored the potential of EGDB.
Pedroza et al. [42] introduced the EGFxSet dataset, which extends EGDB by processing its
clean recordings through real effects hardware. Although EGFxSet improves effect realism
by incorporating parameters from real-world devices, it is limited to monophonic tones,
highlighting an ongoing trade-off between effect authenticity and musical complexity.

In parallel, Chen et al. [40] leveraged EGDB in a GAN-based framework aimed at clean-
to-rendered guitar tone transformation. Their approach, which benefits from unpaired data
across multiple sources, demonstrated improved modeling for both low-gain and high-gain
amplifier effects—underscoring the value of the timbral diversity provided by EGDB.

The dataset’s impact extends into effect removal research as well. Lee et al. [37] utilized
EGDB as the source of dry signals for training a two-stage distortion recovery model.
Their method, which first purifies the audio signal in the Mel-spectrogram domain and
then reconstructs it using a neural vocoder, illustrates how EGDB can serve as a robust
reference for recovering original guitar tones from effected signals.

Addressing challenges related to limited data, Švento et al. [38] pre-trained a diffusion
model on EGDB’s DI recordings to combat overfitting, thereby highlighting EGDB’s
importance as a source of clean electric guitar data for modeling nonlinear distortion.

Finally, Wright et al. [10] incorporated EGDB into their Open-Amp framework for
synthetic data augmentation. By using EGDB as input to generate a wide range of
augmented guitar effects, they demonstrated improved generalization of guitar effects
models in large-scale training scenarios.

Collectively, these studies illustrate that EGDB has become a critical benchmark for both
electric guitar transcription and effect processing. Its emphasis on multi-timbre recordings
and systematic re-rendering has provided a rich resource for advancing state-of-the-art
techniques in both transcription and effect removal.
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2.3.4 Guitar-TECHS Dataset

The Guitar-TECHS dataset [5] is a recently introduced, comprehensive electric guitar
dataset designed to address the limitations of previous collections. Unlike earlier datasets
that focus primarily on acoustic guitar—such as GuitarSet [1]—Guitar-TECHS offers
multi-perspective recordings by capturing audio via four distinct setups: direct input, a
miked amplifier, an egocentric (player) microphone, and an exocentric (listener) micro-
phone. This rich diversity, combined with precise MIDI annotations of guitar techniques,
musical excerpts, chords, and scales, provides over five hours of combined monophonic
and polyphonic electric guitar content. Such detailed annotation and varied recording
conditions are particularly valuable for advancing tasks in guitar tablature transcription
(GTT) and other guitar-related machine listening applications.

Due to its novelty, the number of studies citing Guitar-TECHS remains limited. However,
early investigations already point to several important insights. Preliminary experiments
have shown that incorporating Guitar-TECHS into training pipelines for GTT can enhance
model robustness—improving metrics such as tablature disambiguation and multi-pitch
estimation. Additionally, the dataset’s multi-perspective design is recognized as highly
promising for emerging applications in augmented and virtual reality, where capturing
both the performer’s and listener’s perspectives can significantly enrich user experience.
The rich annotations provided by Guitar-TECHS are also expected to facilitate more
nuanced analyses of guitar timbre and playing techniques, which may prove crucial in
future research on effect removal and cross-view learning.

In summary, Guitar-TECHS fills an important gap by offering increased acoustic diversity
and multi-modal audio captures, making it a valuable benchmark for future data-driven
guitar research.

2.4 Normalization

Normalization is a critical preprocessing step in Music Information Retrieval (MIR) sys-
tems, particularly when addressing complex tasks such as audio effect removal. The quality
and consistency of normalization methods directly affect the performance and generaliza-
tion of deep learning models. In this chapter, an overview of normalization techniques used
in MIR is provided, discussing early approaches, the widespread application of internal
normalization methods such as batch normalization, and the limitations of traditional peak
normalization compared to perceptually motivated strategies like loudness normalization.
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Early MIR research often relied on simple amplitude scaling methods such as peak normal-
ization. While peak normalization adjusts the maximum amplitude of signals to a common
reference (e.g., a fixed dBFS level), it does not account for perceptual loudness differences.
As pointed out by [52] in the context of soundscape synthesis, two sounds normalized by
their peak values may still be perceived as having different loudness levels. This limitation
becomes especially critical in tasks like effect removal, where maintaining the dynamic
and timbral nuances of the audio is essential.

In recent years, deep neural network (DNN) architectures have predominantly incorporated
batch normalization within their layers. For instance, several works on audio declipping
[33] and virtual analog modeling [53] utilize batch normalization to stabilize and accelerate
training. Similarly, studies in industrial sound analysis demonstrate the use of adaptive
normalization methods that mitigate domain shift [54]. However, while batch normalization
is effective in an internal network context, its role as a preprocessing normalization step
has not been thoroughly examined. There remains an open question as to whether omitting
external normalization in favor of solely relying on internal batch normalization might
compromise the preservation of essential musical dynamics.

Despite its widespread use, peak normalization suffers from fundamental shortcomings.
Works such as [55] continue to employ peak normalization (e.g., applying a -12 dBFS
reference), yet this method fails to ensure that the perceived loudness of different signals is
consistent. Perceptually, equalizing loudness rather than merely matching peak amplitudes
is more aligned with human auditory perception. The pyloudnorm library, described in
[7], implements loudness normalization based on the ITU-R BS.1770 standard (measuring
in LUFS), providing a more robust and perceptually relevant normalization. This approach
has demonstrated improved consistency across various audio contents and is particularly
beneficial in tasks where the dynamic range and timbral details are paramount, such as in
the removal of complex distortion effects.

In effect removal tasks, the preservation of subtle audio characteristics is essential for
recovering a clean signal from processed or distorted recordings. While many studies on
effect removal integrate batch normalization within their DNN frameworks (e.g., [33, 56]),
there is a notable lack of systematic research on how external normalization techniques
influence the performance of these models. Recent works in automatic music mixing and
amplifier modeling have shown that proper normalization can alleviate data scarcity and
domain shift issues [57, 55]. However, a comprehensive evaluation contrasting the benefits
of perceptual loudness normalization with traditional peak and batch normalization is still
needed. Given its ability to provide uniform perceived loudness, loudness normalization
presents a promising direction for enhancing the robustness of effect removal systems.
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The literature reveals that while internal normalization via batch normalization is a staple
in modern deep learning architectures, the impact of external normalization strategies
has not been sufficiently explored in MIR. The limitations of peak normalization and
the perceptual advantages of loudness normalization suggest that future research should
systematically investigate how these preprocessing steps affect the generalization and
performance of effect removal models.

2.5 Audio Effects as Augmentations

Audio effects as a form augmentation of audio data in Music Information Retrieval (MIR)
has undergone significant evolution, particularly for the task of audio effect removal. Early
research focused on the nonlinear modeling of guitar signal chains, which established
foundational methods for accurately emulating hardware effects in real time [58]. Such
pioneering work underscored the importance of capturing nonlinear behaviors to support
downstream processing tasks, including the removal of complex audio effects.

2.5.1 Baseline Effect Application Methods

A variety of tools have been developed to facilitate audio data augmentation in MIR. No-
tably, the Pedalboard library has gained considerable popularity due to its accessibility
and ease-of-use [18, 37, 17]. Pedalboard offers a range of basic audio effects (e.g., distor-
tion, delay, chorus, and reverb), making it a useful tool for generating baseline augmented
datasets. However, its implementations tend to be simplified and do not fully capture
the tonal diversity of real-world hardware. As such, while Pedalboard is effective for
initial evaluations and benchmarking, its limited realism can constrain the generalization
of models trained on such augmented data.

2.5.2 Advanced Effect Application with VST Plugin Effects

To overcome the limitations of simplified tools, several studies have explored the use of
commercial-grade VST plugin effects [18, 37, 10]. VST plugins are capable of emulating
the intricate behaviors of analog devices by incorporating detailed circuit and acoustic mod-
eling. Despite their potential to yield more realistic augmented data, VST plugins present
several challenges. High-quality plugins are often commercial products, restricting their
accessibility, and many are optimized for macOS rather than Linux or high-performance
computing (HPC) environments. Furthermore, their effective use typically requires a
deep understanding of the specific plugin’s characteristics, which can be a barrier for
researchers.
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2.5.3 Neural Network Models for Effect Application

Recent advances in neural network modeling offer a promising alternative for audio
effects augmentation. Open-source frameworks—such as GuitarML and Neural Amp
Modeler—have emerged as compelling solutions by leveraging large, community-curated
datasets to model a wide variety of amplifier and effect characteristics [10]. These neural
approaches enable the synthesis of highly diverse and realistic augmented data, which is
critical for training robust models for effect removal. In addition to their scalability and
adaptability, these methods facilitate real-time emulation and provide a flexible framework
for generating paired clean and processed audio samples. Their advantages are particularly
notable when compared with the more constrained capabilities of traditional methods [10].

The literature indicates a clear trajectory from baseline augmentation tools such as
Pedalboard [37, 17], to inconvinient VST plugin based processing and finally toward
more advanced neural network-based frameworks [10]. While traditional tools provide
valuable benchmarks, neural approaches promise greater realism and diversity, which are
crucial for enhancing the generalization of effect removal systems. Future research should
continue to address challenges related to preserving the dynamic and timbral nuances of
original recordings during augmentation, and explore integrated normalization strategies
to further improve model robustness [18].
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3. Technical Implementation

3.1 Functional Requirements

Building on the comprehensive theoretical framework that explores the intricate dynamics
of guitar audio effects, effect removal challenges, and state-of-the-art normalization and
augmentation methods, the technical implementation outlined in this chapter transforms
these insights into a practical solution. By adopting an agile methodology structured
around clearly defined epics (see Table 2) and user stories (see Table 3), the development
process systematically addresses the core challenges identified in the literature. This
approach enables the integration of diverse guitar datasets, the application of perceptually
robust normalization techniques, and the deployment of advanced augmentation strategies,
thereby bridging the gap between theoretical innovation and real-world application in
audio effect removal.

Table 2. Epics

Epic
ID

As a <type
of user>

I want to <perform some
task>

so that I can <achieve some
goal>

1 Researcher Download guitar datasets Use them for my research

2 Researcher Specify the type of data from
a dataset to use

Use data best suitable for my
research

3 Researcher Normalize datasets Improve the model training
process

4 Researcher Augment datasets with effects Train models for effect re-
moval

Table 3. User Stories

User
Story
ID

User
Story
Priority

As a <type
of user>

I want to <perform
some task>

so that I can <achieve
some goal>

1.1 High Researcher Download IDMT-SMT-
Guitar

Use its data for my re-
search

1.2 High Researcher Download GuitarSet Use its data for my re-
search

Continues...
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Table 3 – Continues...

User
Story
ID

User
Story
Priority

As a <type
of user>

I want to <perform
some task>

so that I can <achieve
some goal>

1.3 High Researcher Download EGDB Use its data for my re-
search

1.4 High Researcher Download Guitar-
TECHS

Use its data for my re-
search

2.1 High Researcher Specify several datasets Use more data for my re-
search

2.2 High Researcher Specify acoustic and/or
electric guitar data from
a dataset to use

Use data best suitable
for my research

2.3 Low Researcher Specify mono- and/or
polyphonic data from a
dataset to use

Use data best suitable
for my research

2.4 Low Researcher Specify datasets used
for pretraining, training,
validation, and testing

Use configuration
best suitable for my
research and enable
cross-validation

3.1 High Researcher Use loudness normaliza-
tion

Improve the model train-
ing process

3.2 Medium Researcher Use peak normalization Improve the model train-
ing process

4.1 Medium Researcher Augment datasets with
Pedalbord

Train models using syn-
thetic effects

4.2 High Researcher Augment datasets with
GuitarML

Train models using real-
istic effects

The overall data processing pipeline envisioned and implemented in this toolkit is depicted
in Figure 2. Initially, various established guitar datasets such as IDMT-SMT-Guitar,
GuitarSet, EGDB, and Guitar-TECHS, among others, are aggregated. This aggregated
collection then undergoes a normalization stage, where techniques like peak or loudness
normalization can be applied. Subsequently, data augmentation is performed, offering
options for both baseline (e.g., simple waveshaping) and advanced (e.g., neural network-
based) effect simulation. Finally, this prepared data is used to train effect removal models,
such as the RemFX framework utilized in the experiments.

31



Figure 2. Data aggregation and processing pipeline

3.2 Frameworks

To build a robust and reproducible toolkit for aggregating and generating real-world guitar
audio data, current implementation leverages three core frameworks: PyTorch [59], Hydra
[60], and PyTorch Lightning [61]. Each of these frameworks addresses distinct challenges
in deep learning and software configuration, ensuring that developed system remains
efficient, reproducible, and scalable.

3.2.1 PyTorch

PyTorch serves as the backbone for deep learning components due to its dynamic, imper-
ative programming style and seamless GPU acceleration, which greatly facilitate rapid
prototyping and debugging [59]. Unlike libraries such as mirdata [23], which are built
on NumPy and often force researchers to re-implement data loaders repeatedly, PyTorch
offers native support through its Dataset and DataLoader abstractions. This not
only streamlines data preprocessing but also enforces consistency and reproducibility in
handling diverse guitar audio datasets.

3.2.2 Hydra and hydra-zen

Hydra is a powerful framework that enables the dynamic composition of hierarchical
configurations, ensuring that every experimental run is fully reproducible by automatically
recording its complete configuration state [60]. In developed toolkit, Hydra is employed
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to manage configurations for datasets which enables high degree of reproducibility. In
addition, the hydra-zen [62] extension offers a Python-centric workflow for automatically
generating and validating YAML configurations. Although hydra-zen has not yet become
a mainstream tool, its ability to significantly reduce the manual overhead and technical
debt associated with configuration management makes it a promising extension to Hydra.

3.2.3 PyTorch Lightning

PyTorch Lightning abstracts much of the engineering boilerplate inherent in standard
PyTorch training loops, thereby allowing to focus on developing and refinin models [61].
Lightning enforces best practices by decoupling scientific code from engineering concerns,
which results in cleaner, more maintainable code. Furthermore, its built-in support for
distributed training strategies simplifies scaling experiments across multiple GPUs. This
streamlined approach not only accelerates development but also enhances reproducibility
and consistency across different hardware configurations.

3.3 Implementation

This section details the technical realization of the toolkit’s core components, following
a process that encompasses data aggregation and preprocessing, audio segmentation,
normalization, augmentation, dataset loading, and optional rendering. The implementation
prioritizes efficiency, reproducibility, and flexibility for research purposes. Figure 3
illustrates the overall architecture and data flow of these components, from initial data
acquisition to the final data representation used for model training or experimentation. This
includes components for downloading, extracting and concatenating datasets as well as
segmenting audio files, generating metadata, applying normalization and augmentation,
and loading datasets for training. The toolkit is designed to be modular and extensible,
allowing researchers to adapt it to their specific needs while maintaining a consistent
interface for data handling.

3.3.1 Data Aggregation and Preprocessing

The initial stage focuses on acquiring raw audio data from diverse sources and preparing
it for subsequent processing. This involves downloading datasets and then extracting,
categorizing, and concatenating the audio files.
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Figure 3. Architecture and data flow of the toolkit components

Downloading

To ensure maintainability and ease of adding future datasets, downloader functionalities are
built upon an abstract BaseDownloader class. Specific downloaders inheriting from
this base were implemented for the target datasets: IDMT-SMT-Guitar [3], GuitarSet [1],
EGDB [2], and Guitar-TECHS [5].

The download process adapts to the hosting specifics of each dataset. IDMT-SMT-Guitar
and GuitarSet are hosted on Zenodo as single ZIP archives, which are downloaded directly
using streaming requests. EGDB, hosted on Google Drive, presents challenges due to
API limitations for unauthenticated bulk downloads. The implementation uses the gdown
library with a workaround that scrapes the public folder view to obtain individual file IDs,
allowing download without requiring user credentials, although this method is sensitive
to changes in Google Drive’s web interface. Downloaded EGDB files are then packaged
locally into a single ZIP archive for consistent handling. Guitar-TECHS, also from Zenodo,
is provided as a single archive containing nested ZIP files, requiring specialized handling
during the extraction phase. Progress bars are integrated for monitoring large downloads.
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Extraction and Concatenation

Following the download, audio data is extracted and organized. The extraction logic,
managed within the BaseDownloader structure, adapts to the varying archive struc-
tures. GuitarSet and the repackaged EGDB archive contain a flat structure of audio
files, corresponding directly to acoustic polyphonic and electric polyphonic categories,
respectively.

IDMT-SMT-Guitar and Guitar-TECHS contain multiple data types within their archives.
The BaseDownloader allows specifying filtering conditions (based on file paths and
keywords) to categorize and extract specific data subsets. For IDMT-SMT-Guitar, filters
identify electric monophonic, electric polyphonic (using keywords like Chords, LickX,
and path components), and acoustic polyphonic data. For Guitar-TECHS, filters target
electric monophonic and electric polyphonic data (using keywords like directinput,
chords, music), while also handling the nested ZIP structure inherent to its distribu-
tion format. Based on specified characteristics of these datasets BaseDownloader is
designed in such a way as to provide common interface to handle described issues.

A key preprocessing step is the concatenation of all extracted audio files belonging to
the same category (e.g., electric monophonic) into a single large .wav file. This strategy
optimizes storage space and subsequent data loading efficiency. Performance evaluations
were conducted to determine the most efficient concatenation method. Initial tests com-
paring various libraries (pydub, librosa, soundfile, pedalboard) with a naive
sequential approach identified pydub as significantly faster due to its direct byte-level
operations. Further experiments compared different merging algorithms using pydub and
soundfile on the GuitarSet dataset (approx. 3 hours of audio). A heap-based optimal
merge pattern strategy, which iteratively merges the smallest segments first, demonstrated
superior performance compared to naive, merge-sort-inspired, and quick-sort-inspired
approaches, drastically reducing concatenation time. The results comparing pydub and
soundfile with different strategies on the 3 hours of GuitarSet data are summarized in
Table 4.

Table 4. Audio Concatenation Efficiency Comparison

Strategy soundfile time (seconds) pydub time (seconds)
Naive 149.28 65.85

Merge 38.09 4.74

Quick 16.19 4.48

Heap 4.56 2.27

35



Based on these results, the heap-based optimal merge pattern using pydub was adopted
for all concatenation tasks within the toolkit.

3.3.2 Audio Segmentation and Metadata Generation

To efficiently handle the large concatenated audio files during training, a segmentation mod-
ule divides them into smaller, manageable chunks. This process avoids saving numerous
small audio files by instead generating metadata.

The segmenter iterates through each concatenated file, extracting segments of a specified
duration. This segment length is configurable to suit different experimental needs. During
this process, silent or near-silent segments are identified and discarded using a method
inspired by prior work [63]. This involves analyzing 1-second sub-chunks within each
potential segment; if the volume of a sub-chunk falls below a configurable silence threshold
(dBFS), it’s marked silent. A segment is only considered valid if the proportion of non-
silent sub-chunks exceeds a configurable minimum percentage. This filtering enhances
robustness and prevents numerical issues associated with normalizing silence.

For each valid segment, its starting frame offset and duration (number of frames) within
the parent concatenated file are recorded. This metadata is stored compactly in PyTorch’s
.pt format, enabling rapid lookup and loading of specific audio segments later without
needing to read the entire multi-hour file.

3.3.3 Normalization Implementation

Audio normalization is applied as a transformation step during data loading to ensure
consistent levels for model training. Two primary methods are provided, both configurable:

■ Peak Normalization: Scales the waveform so its maximum absolute amplitude
reaches a target level, typically set to -1.0 dBFS by default.

■ Loudness Normalization: Measures the integrated loudness (LUFS) of the au-
dio segment using the pyloudnorm library (implementing ITU-R BS.1770) and
scales it to match a target loudness, defaulting to -32.0 LUFS. This provides better
perceptual consistency across diverse audio content.

The choice of method and target levels can be adjusted based on research requirements.
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3.3.4 Augmentation Implementation

To simulate real-world conditions and improve model generalization for tasks like effect
removal, audio augmentation is applied to the clean (dry) audio segments. Two distinct
augmentation strategies are available:

1. Baseline Augmentation: Implements a hyperbolic tangent (tanh) function applied
after a random gain multiplication. This efficiently simulates soft-clipping distortion,
a common guitar effect. The gain range is configurable. This method is based
on Distortion effect provided by Pedalboard library [8] though since the
later operates using numpy arrays, a reimplementation using pytorch tensors was
necessary to ensure compatibility and effectiveness.

2. Advanced Augmentation: Leverages pre-trained neural network models from the
Open-Amp framework [10]. This uses a Time-Conditioned Network (TCN) capable
of emulating a wide variety of guitar amplifiers and distortion pedals (382 distinct
models in total, ranging from subtle amp coloration to heavy distortion). The module
cycles through these models during processing, applying realistic and diverse effects.
While more computationally demanding, this provides high-fidelity augmentation
closely mimicking real-world signal chains.

The selection between baseline and advanced augmentation, along with their respective
parameters such as range for gain of random tanh distortion, is configurable.

3.3.5 Dataset Loading and Configuration

The toolkit provides a flexible data loading system built on PyTorch’s Dataset and
DataLoader abstractions. A BaseAudioSegmentDataset class handles the low-
level loading: given a path to a concatenated audio file and its metadata file, it retrieves the
metadata for a specific index, loads only the required audio segment from the large file,
and performs necessary channel selection and resampling.

The primary interface for users is the AudioSegmentDataset class. This class
aggregates multiple BaseAudioSegmentDataset instances based on user-specified
keywords. Available keywords correspond to the extracted categories: acoustic,
electric, monophonic, polyphonic, and dataset identifiers like idmt-smt-guitar,
guitarset, egdb, guitar-techs. Researchers can combine these keywords (e.g.,
[’electric’, ’polyphonic’, ’guitar-techs’]) to precisely define the
data mixture for an experiment. This class also manages reproducible train/validation/test
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splitting using a fixed random seed.

Crucially, all normalization and augmentation transformations are applied on-the-fly within
the AudioSegmentDataset. When a clean (dry) segment is loaded, the selected
augmentation is applied to create the wet version. Subsequently, the selected normalization
is applied independently to both the wet and the original dry segments before they are
returned. This on-the-fly approach allows leveraging any available clean guitar audio, as
it does not depend on pre-existing paired wet/dry datasets, significantly expanding the
potential training data pool.

3.3.6 Dataset Rendering

While on-the-fly processing offers maximum flexibility, the computational cost of repetative
augmentation, especially the neural network-based approach, can be significant. To address
this, an optional rendering pipeline is provided. The AudioSegmentDatasetRenderer
module takes a configured AudioSegmentDataset (specifying keywords, split, aug-
mentation, normalization) and iterates through it, saving each generated wet/dry segment
pair as separate .wav files to disk. These are organized in a structured directory hierarchy
based on the configuration and segment index.

A corresponding RenderedAudioSegmentDataset class allows loading these pre-
rendered datasets efficiently. This is beneficial for computationally intensive experiments,
sharing standardized datasets, or scenarios where augmentation parameters are fixed.

In summary, the technical implementation provides a robust and efficient toolkit for man-
aging real-world guitar audio data. It features automated aggregation and optimized
preprocessing, configurable segmentation with silence removal, flexible on-the-fly normal-
ization and augmentation using both baseline and advanced techniques, and a powerful
dataset loading system allowing fine-grained data selection and splitting. An optional
rendering pipeline further enhances efficiency for specific use cases. The components are
designed for research flexibility and reproducibility. While validated for compatibility
with configuration frameworks like Hydra [60] and execution frameworks like PyTorch
Lightning [61], these are not strict dependencies, ensuring broader usability within com-
mon research workflows. Furthermore native compatibility with pytorch and focus
on clean guitar audio prove as significant improvement over mirdata [23], which re-
quires re-implementation of data loaders and processing steps such as normalization and
augmentation and do not account for the specific needs of guitar effect removal task.
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4. Experiments

To validate the performance and robustness of the implemented toolkit for guitar distortion
removal, a series of experiments were designed. These experiments leverage the RemFx
framework [13], chosen for its robust approach to audio effect removal and its convenient
integration with PyTorch Lightning and Hydra. This integration facilitated the management
of diverse experimental setups and ensured compatibility with frameworks mentioned. For
all training runs, the Hybrid Demucs model architecture, a state-of-the-art model originally
developed for instrument separation and adapted within RemFx for distortion removal,
was utilized.

The experimental design focused on evaluating various configurations of the data aggrega-
tion, normalization, and augmentation pipeline. A total of 14 distinct Hydra configurations
were defined to systematically explore the impact of:

■ Different data subsets (e.g., acoustic, electric, combined, monophonic, polyphonic).
■ Normalization strategies (peak-based vs. loudness-based at -23 LUFS and -32

LUFS).
■ Augmentation methods (baseline tanh distortion vs. advanced NN-based distor-

tion).

For consistency and to prevent data leakage, the underlying clean audio data used for gener-
ating training, validation, and test segments was strictly separated across all configurations.
Training was conducted for 8000 steps per epoch, while validation and testing each used
1000 steps per epoch, with early stopping employed to prevent overfitting.

The primary evaluation metrics were chosen to assess both signal fidelity and spectral
similarity, alongside the improvement achieved by the models. These include:

■ Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [14]: Reported in decibels
(dB), where higher values (↑) indicate better reconstruction quality relative to the
clean source.

■ Multi-Resolution Short-Time Fourier Transform (MRSTFT) Loss [15]: A mea-
sure of spectral similarity, where lower values (↓) are better.

■ Delta Metrics (∆SI-SDR↑, ∆MRSTFT↓): To quantify the improvement, the
change in SI-SDR and MRSTFT is reported, calculated as the final metric value
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minus the initial metric value of the distorted (wet) test data before processing.
Positive ∆SI-SDR and negative ∆MRSTFT indicate improvement.

A key aspect of the analysis involved cross-configuration comparisons, where models
trained under one set of conditions were evaluated on test sets generated with different
conditions to assess generalization and robustness. Table 5 summarizes the key character-
istics of the datasets generated by the different configurations used for training and testing,
including the total duration of the underlying clean audio and the initial quality metrics of
the test sets after augmentation and normalization. Appendix 2 provides a detailed tables
of the results obtained from the experiments, including the performance metrics for each
configuration across different test sets.

Table 5. Experiments and Datasets: Characteristics and Quality Metrics

Configuration (augmentation, normal-
ization)

Duration MRSTFT ↓ SI-SDR ↑
(dB)

Electric (Tanh, Peak) 10h 17m 8.62 1.89

Electric (Tanh, Loudness -23 LUFS) 10h 17m 2.24 3.13

Electric (Tanh, Loudness -32 LUFS) 10h 17m 1.23 7.52

Acoustic (Tanh, Loudness -32 LUFS) 4h 9m 1.02 7.78

Combined (Tanh, Loudness -32 LUFS) 14h 26m 1.17 7.58

Monophonic (Tanh, Loudness -32 LUFS) 2h 57m 1.18 8.29

Polyphonic (Tanh, Loudness -32 LUFS) 11h 29m 1.14 7.59

GuitarSet (Tanh, Loudness -32 LUFS) 3h 3m 0.99 8.05

EGDB (Tanh, Loudness -32 LUFS) 1h 47m 0.96 8.92

Guitar-TECHS (Tanh, Loudness -32
LUFS)

5h 1m 1.28 8.11

IDMT (Tanh, Loudness -32 LUFS) 4h 34m 1.22 7.00

Acoustic (NN, Loudness -32 LUFS) 4h 9m 1.58 -10.05

Electric (NN, Loudness -32 LUFS) 10h 17m 1.68 -13.80

Combined (NN, Loudness -32 LUFS) 14h 26m 1.57 -14.23

4.1 Normalization Strategy: Peak and Loudness

This experiment investigates the impact of peak versus perceptual loudness normalization
on model performance. Peak normalization scales the signal to a fixed maximum amplitude
(e.g., -1.0 dBFS, ensuring values are within [-1, 1]), while loudness normalization (using
pyloudnorm [7]) targets a specific perceived loudness (e.g., -23 or -32 LUFS). The latter
may result in peak values exceeding the [-1, 1] range, especially after applying effects
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like distortion, which can be problematic for numerical stability in deep learning models.
It was observed that loudness normalization targets leading to clipped samples (like -23
LUFS in this case, as seen by its initial SI-SDR of 3.13 dB in Table 5 compared to 7.52 dB
for -32 LUFS) might hinder training compared to targets ensuring no clipping (-32 LUFS)
or peak normalization. Models were trained on electric guitar data (tanh augmentation)
with each normalization strategy and evaluated across all strategies.

The results, detailed in Tables 6 and 7 and illustrated in Figures 4 and 5, confirm the
importance of matching normalization strategies between training and testing phases and
support the hypothesis regarding numerical stability. The loudness normalization to -32
LUFS, which avoided clipping in the initial data (initial SI-SDR 7.52 dB, MRSTFT 1.23
from Table 5), achieved the best performance when training and testing conditions matched.
This configuration yielded the highest SI-SDR (25.84 dB) and the lowest MRSTFT loss
(0.22). As seen in Figure 4, this also corresponded to the largest improvement over the
initial distorted signal, with a ∆SI-SDR of +18.31 dB and a ∆MRSTFT of -1.01 (Figure
5).

Figure 4. Performance by Normalization Strategy: SI-SDR / ∆SI-SDR (dB) ↑
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Figure 5. Performance by Normalization Strategy: MRSTFT / ∆MRSTFT ↓

The -23 LUFS target, which resulted in clipped initial samples (initial SI-SDR 3.13 dB,
MRSTFT 2.24), led to significantly lower matched performance (17.75 dB SI-SDR, 0.43
MRSTFT) and smaller improvements (∆SI-SDR +14.62 dB, ∆MRSTFT -1.80). This
is likely due to numerical instability caused by clipping during training or testing. Peak
normalization, with an initial SI-SDR of 1.89 dB and a very high initial MRSTFT of 8.62,
yielded the lowest matched SI-SDR (13.63 dB) among the three strategies. Although
its MRSTFT score (0.71) showed a large improvement (∆MRSTFT of -7.92, visible in
Figure 5), this substantial spectral improvement did not translate to high signal fidelity, as
indicated by the low SI-SDR.

Cross-condition testing, where the normalization strategy differed between training and
testing, consistently showed significant performance degradation across both metrics.
For instance, training with -32 LUFS normalization but testing on peak-normalized data
resulted in a very low SI-SDR of 4.76 dB and a high MRSTFT of 6.32. This is clearly
visualized in Figures 4 and 5 by the off-diagonal elements (e.g., Loudness (-32 LUFS) train
split tested on Peak test split). Listening tests aligned with these objective results: models
trained on -32 LUFS loudness normalized data effectively removed distortion, while
models trained on peak-normalized data introduced audible artifacts, and models trained
on -23 LUFS data showed less effective distortion removal. Therefore, -32 LUFS loudness
normalization was adopted for subsequent experiments due to its superior performance
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and stability under matched conditions.

4.2 Data Composition: Acoustic, Electric, and Combined

This experiment investigates how the type of guitar recording used for training affects
performance. Models trained exclusively on acoustic data (GuitarSet, IDMT-SMT-Guitar
acoustic data), solely on electric data (EGDB, IDMT-SMT-Guitar electric data, Guitar-
TECHS), or on a combination of both are compared. All configurations use -32 LUFS
loudness normalization and tanh augmentation. The initial characteristics of these test
sets (Acoustic, Electric, Combined with Tanh, Loudness -32 LUFS) can be found in Table
5.

Tables 8 and 9, along with Figures 6 and 7, demonstrate that training on the Combined
dataset (acoustic and electric guitars) yields the best overall generalization. While the
model trained exclusively on acoustic data performs best when tested on matched acoustic
data (SI-SDR 24.06 dB, MRSTFT 0.20, ∆SI-SDR +16.28 dB, ∆MRSTFT -0.82), its
performance drops significantly when tested on electric data (SI-SDR 21.40 dB) or com-
bined data (SI-SDR 22.03 dB). This is evident in Figure 6, where the model trained on
Acoustic data has highest performance for the Acoustic test split but lower for Electric and
Combined test splits.

Figure 6. Performance by Data Composition (Acoustic, Electric, Combined): SI-SDR /
∆SI-SDR (dB) ↑
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Figure 7. Performance by Data Composition (Acoustic, Electric, Combined): MRSTFT /
∆MRSTFT ↓

Conversely, the model trained on the Combined dataset achieves the highest SI-SDR and
lowest MRSTFT scores, along with the largest improvements, when tested on electric
data (SI-SDR 26.17 dB, MRSTFT 0.22, ∆SI-SDR +18.65 dB, ∆MRSTFT -1.01) and
combined data (SI-SDR 25.24 dB, MRSTFT 0.22, ∆SI-SDR +17.65 dB, ∆MRSTFT
-0.96). Furthermore, the Combined model maintains strong performance on purely acoustic
test data (SI-SDR 23.70 dB, MRSTFT 0.20), performing nearly as well as the specialized
Acoustic model. Figure 6 clearly shows that model trained on Combined data achieved
top or near-top performance across all three test splits. This indicates that exposing the
model to both clean acoustic and diverse electric guitar sounds during training is crucial
for building a more robust and generalizable effect removal system capable of handling
varied inputs.

4.3 Data Musical Texture: Monophonic, Polyphonic, and Combined
Data

This experiment evaluates performance based on musical texture, comparing models
trained on Monophonic, Polyphonic, or Combined datasets (-32 LUFS loudness normal-
ization, tanh augmentation). The initial characteristics of the corresponding test sets
(Monophonic, Polyphonic, Combined with Tanh, Loudness -32 LUFS) can be found in
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Table 5.

Similar to the findings regarding acoustic versus electric data, the results presented in
Tables 10 and 11 and visualized in Figures 8 and 9 show that training on combined data
(both monophonic and polyphonic textures) leads to the best overall generalization. As seen
in Figure 8, the Combined model achieves the highest SI-SDR and largest improvement
on monophonic test data (SI-SDR 26.11 dB, ∆SI-SDR +17.81 dB) and combined test
data (SI-SDR 25.24 dB, MRSTFT 0.22, ∆SI-SDR +17.65 dB, ∆MRSTFT -0.96, see also
Figure 9).

Figure 8. Performance by Data Musical Texture (Monophonic, Polyphonic, Combined):
SI-SDR / ∆SI-SDR (dB) ↑
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Figure 9. Performance by Data Musical Texture (Monophonic, Polyphonic, Combined):
MRSTFT / ∆MRSTFT ↓

While the model trained only on polyphonic data performs best on the matched Polyphonic
test set (SI-SDR 25.36 dB, MRSTFT 0.19, ∆SI-SDR +17.77 dB, ∆MRSTFT -0.95),
the Combined model performs nearly as well (SI-SDR 24.99 dB, MRSTFT 0.20, ∆SI-
SDR +17.39 dB, ∆MRSTFT -0.94). Models trained exclusively on either monophonic
or polyphonic data exhibit significant performance degradation when tested on the other
texture type (e.g., for the Monophonic model on the Polyphonic test split in Figure 8,
resulting in only 18.90 dB SI-SDR). This underscores the importance of including diverse
musical textures during training to enhance model robustness and generalization across
different input types.

4.4 Data Aggregation: Individual and Combined Datasets

This experiment directly compares models trained on individual datasets versus aggregated
datasets (-32 LUFS loudness normalization, tanh augmentation), highlighting the benefits
of data aggregation. The five training configurations evaluated are: µ Acoustic, representing
the average performance of models trained separately on GuitarSet and IDMT-SMT-Guitar
acoustic data; Acoustic, a model trained on combined acoustic data; µ Electric, the average
performance of models trained separately on EGDB, Guitar-TECHS, and IDMT-SMT-
Guitar electric data; Electric, a model trained on combined electric data; and Combined,
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a model trained on all available datasets. These models are tested against corresponding
data splits, allowing a detailed view of generalization capabilities. µ Acoustic averages
results on GuitarSet and IDMT-SMT-Guitar (acoustic) test sets, while µ Electric averages
results on EGDB, Guitar-TECHS, and IDMT-SMT-Guitar (electric) test sets.

Figure 10. Performance by Data Aggregation Strategy (Individual vs. Combined): SI-SDR
/ ∆SI-SDR (dB) ↑
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Figure 11. Performance by Data Aggregation Strategy (Individual vs. Combined):
MRSTFT / ∆MRSTFT ↓

The results, detailed in Tables 12 and 13 and visualized in Figures 10 and 11, strongly
reinforce the benefits of aggregating diverse datasets. The Combined model, trained
on all available data, consistently demonstrates superior performance and generalization
compared to models trained on individual datasets or averaged results from individually
trained models.

Specifically, the Combined model achieves the highest SI-SDR scores and lowest MRSTFT
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scores (indicating best performance) across multiple aggregated test conditions:

■ µ Acoustic Test: SI-SDR 24.11 dB (∆ +16.58 dB), MRSTFT 0.23 (∆ -0.88)
■ µ Electric Test: SI-SDR 26.63 dB (∆ +18.62 dB), MRSTFT 0.21 (∆ -0.94)
■ Electric Test: SI-SDR 26.17 dB (∆ +18.65 dB), MRSTFT 0.22 (∆ -1.01)
■ Combined Test: SI-SDR 25.24 dB (∆ +17.65 dB), MRSTFT 0.22 (∆ -0.96)

While models trained on specific subsets (e.g., the Acoustic model) perform best on
perfectly matched test data (Acoustic test: SI-SDR 24.06 dB, MRSTFT 0.20), their
performance significantly degrades when evaluated on out-of-domain data (e.g., Acoustic
model on Electric test data: SI-SDR 21.40 dB, in Figure 10, Part 2). Averaging the
performance of models trained on individual datasets (µ Acoustic, µ Electric) generally
results in lower performance than training a single model on the combined data for that
category (Acoustic, Electric). The Combined model’s consistent high performance across
diverse test sets, clearly visible in Figures 10 and 11, highlights the significant advantage
of training on a large, aggregated dataset encompassing varied acoustic and electric guitar
characteristics from multiple sources.

4.5 Augmentation Strategy: Baseline and Advanced

This experiment compares the baseline tanh augmentation against the more advanced
neural network (NN) based augmentation using OpenAmp models [10]. The results
across acoustic, electric, and combined training data for each augmentation type are
averaged (µ Advanced (NN), µ Baseline (Tanh)) and evaluated on test sets created with
both augmentation methods (-32 LUFS loudness normalization). The initial quality metrics
for the NN-augmented and Tanh-augmented test sets can be found in Table 5.

Tables 14 and 15, along with Figures 12 and 13, reveal a significant domain mismatch
between the two augmentation techniques. Models perform well only when the training
augmentation matches the testing augmentation. Baseline trained models achieve high
performance on Baseline augmented test data (SI-SDR 24.53 dB, MRSTFT 0.26, ∆SI-SDR
+16.90 dB, ∆MRSTFT -0.89, but fail completely when tested on Advanced augmented test
data (SI-SDR -11.88 dB, MRSTFT 1.60, Figure 12 shows minimal ∆SI-SDR improvement
of +0.81 dB, while Figure 13 shows MRSTFT improvement of -0.02).

Conversely, Advanced trained models perform best on Advanced augmented test data
(SI-SDR 11.28 dB, MRSTFT 0.75) but perform poorly on Baseline augmented test data
(SI-SDR -1.09 dB, MRSTFT 1.07). Notably, while the absolute SI-SDR achieved by
Advanced trained models on matched Advanced data (11.28 dB) is lower than that of
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Figure 12. Performance by Augmentation Strategy (Baseline vs. Advanced): SI-SDR /
∆SI-SDR (dB) ↑

Figure 13. Performance by Augmentation Strategy (Baseline vs. Advanced): MRSTFT /
∆MRSTFT ↓
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Baseline trained models on matched Baseline data (24.53 dB), the improvement (∆SI-
SDR) is substantially larger for the Advanced case (+23.97 dB) compared to the Baseline
case (+16.90 dB), as clearly visualized in Figure 12. This suggests that the Advanced
augmentation presents a significantly more challenging effect removal task (reflected in
the lower absolute scores and worse initial SI-SDR values around -13 dB, see Table 5), but
the model trained on this data learned to reverse these complex distortions more effectively,
achieving a greater relative improvement.

These results strongly indicate that the choice of augmentation strategy is critical and
must closely align with the characteristics of the target effects for successful removal.
Simple augmentations like tanh may not adequately prepare models for the complexity
of real-world distortions, which are potentially better simulated by the more advanced
NN-based augmentation, even if it leads to lower absolute performance metrics in current
models due to the increased task difficulty.
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5. Results

This chapter presents the key findings derived from the series of experiments detailed in
previous chapter. The experiments systematically evaluated the impact of different data
aggregation, normalization, and augmentation strategies facilitated by the developed toolkit
on the performance of a guitar effect removal model (RemFx Hybrid Demucs), using the
SI-SDR and MRSTFT metrics. The results consistently highlight the benefits of specific
preprocessing choices and diverse data aggregation for enhancing model robustness and
generalization, as visualized in Figures 4 through 13 and detailed in Tables 6 through 15
(Appendix 2).

5.1 Impact of Normalization Strategy

The comparison between peak normalization and perceptual loudness normalization (at
-23 LUFS and -32 LUFS targets), detailed in Section 4.1, revealed critical insights into
maintaining numerical stability and perceptual consistency. As shown in Tables 6 and
7 (Appendix 2) and Figures 4 and 5, the loudness normalization strategy targeting -32
LUFS achieved superior performance when the training and testing normalization methods
were matched. This configuration yielded the highest SI-SDR (25.84 dB) and the lowest
MRSTFT loss (0.22), corresponding to the largest performance improvement over the
initial distorted audio (∆SI-SDR +18.31 dB, ∆MRSTFT −1.01).

Conversely, the -23 LUFS target, which led to clipping in the input data (Table 5), resulted
in significantly lower matched performance (SI-SDR 17.75 dB), likely due to numeri-
cal instability. Peak normalization, while showing a substantial spectral improvement
(∆MRSTFT −7.92), yielded the lowest matched SI-SDR (13.63 dB), indicating poor
signal fidelity despite spectral correction.

Crucially, mismatching normalization methods between training and testing led to se-
vere performance degradation across all metrics, as visualized by the off-diagonal results
in Figures 4 and 5. For instance, training with -32 LUFS normalization but testing on
peak-normalized data resulted in an SI-SDR of only 4.76 dB. These quantitative results,
corroborated by listening tests mentioned in Section 4.1, underscore the importance of
selecting a normalization strategy that avoids clipping (like -32 LUFS loudness normaliza-
tion) and maintaining consistency between training and evaluation phases. Consequently,
-32 LUFS loudness normalization was adopted for all subsequent experiments.
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5.2 Influence of Data Composition: Acoustic vs. Electric

Investigating the role of data source diversity (acoustic vs. electric guitar recordings),
as described in Section 4.2, demonstrated the clear advantage of training on a combined
dataset. Tables 8 and 9 (Appendix 2), along with Figures 6 and 7, show that while models
trained exclusively on one data type (e.g., acoustic) performed best on matched test data
(Acoustic test: SI-SDR 24.06 dB), their performance dropped considerably when evaluated
on the other data type (Acoustic model on Electric test: SI-SDR 21.40 dB).

The model trained on the combined acoustic and electric data achieved the best overall
generalization. It attained the highest SI-SDR scores when tested on electric data (26.17
dB) and combined data (25.24 dB), along with the largest performance improvements
(∆SI-SDR +18.65 dB and +17.65 dB, respectively). Furthermore, as seen in Figure 6,
this combined model maintained strong performance on purely acoustic test data (SI-SDR
23.70 dB), performing almost as well as the specialized acoustic model. This highlights
that exposure to diverse timbres from both acoustic and electric guitars during training is
essential for building a robust effect removal system capable of handling varied inputs.

5.3 Influence of Musical Texture: Monophonic vs. Polyphonic

Similar conclusions were drawn from evaluating the impact of musical texture (Section
4.3). As presented in Tables 10 and 11 (Appendix 2) and visualized in Figures 8 and 9,
training on a dataset combining both monophonic and polyphonic examples resulted in
the best overall generalization. The combined model achieved the highest SI-SDR on
monophonic test data (26.11 dB, ∆SI-SDR +17.81 dB) and combined test data (25.24 dB,
∆SI-SDR +17.65 dB).

While the model trained exclusively on polyphonic data performed best on the matched
polyphonic test set (SI-SDR 25.36 dB), the combined model performed nearly as well (SI-
SDR 24.99 dB). Models trained solely on one texture type showed significant performance
degradation when tested on the other (e.g., the monophonic-trained model achieved only
18.90 dB SI-SDR on polyphonic data, visible in Figure 8). This emphasizes the necessity
of including both monophonic and polyphonic examples during training to ensure the
model can effectively process different musical textures encountered in real-world audio.
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5.4 Benefit of Dataset Aggregation

The direct comparison between models trained on individual datasets versus aggregated
datasets (Section 4.4) strongly validated the aggregation approach facilitated by the toolkit.
Tables 12 and 13 (Appendix 2), along with Figures 10 and 11, clearly show that the
Combined model, trained on all available datasets (IDMT-SMT-Guitar, GuitarSet, EGDB,
Guitar-TECHS), consistently outperformed models trained on individual datasets or even
models trained on combined subsets (like Acoustic or Electric).

The Combined model achieved the highest SI-SDR and lowest MRSTFT scores across
nearly all aggregated test conditions, including average acoustic (24.11 dB SI-SDR),
average electric (26.63 dB SI-SDR), electric (26.17 dB SI-SDR), and combined (25.24 dB
SI-SDR). While specialized models performed best only on perfectly matched data, their
generalization was poor. Averaging the results of individually trained models (µ Acoustic,
µ Electric) also yielded lower performance than training a single model on the aggregated
data. This demonstrates the significant advantage of leveraging the toolkit’s aggregation
capabilities to train on a large, diverse dataset encompassing multiple sources, leading to
superior robustness and generalization.

5.5 Comparison of Augmentation Techniques

The final set of experiments (Section 4.5) compared the baseline tanh augmentation with
the advanced neural network (NN) based augmentation using OpenAmp models. The
results, summarized in Tables 14 and 15 (Appendix 2) and visualized in Figures 12 and 13,
indicated a substantial domain mismatch between the two methods. Models performed
well only when the augmentation method used during training matched the one used for
testing.

Models trained with tanh augmentation achieved a high absolute SI-SDR (24.53 dB)
on tanh-augmented test data but failed completely when tested on NN-augmented data
(SI-SDR −11.88 dB). Conversely, models trained with NN augmentation performed best
on NN-augmented test data (SI-SDR 11.28 dB) but poorly on tanh-augmented data
(SI-SDR −1.09 dB).

Interestingly, although the absolute SI-SDR was lower for the NN-trained model on
matched data, the improvement (∆SI-SDR) was significantly larger (+23.97 dB) compared
to the tanh-trained model on matched data (+16.90 dB), as highlighted in Figure 12.
This suggests that the NN-based augmentation, while representing a more challenging task
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(reflected in lower absolute scores and worse initial SI-SDR values in Table 5), enables the
model to learn to reverse more complex, realistic distortions more effectively. The choice of
augmentation is therefore critical; simple methods like tanh may not adequately prepare
models for real-world effect removal, whereas advanced NN-based methods, despite
potentially lowering absolute scores with current model architectures due to increased task
difficulty, offer a path towards handling more complex distortions.

In summary, the presented experimental results validate the design choices implemented
in the toolkit. Utilizing -32 LUFS loudness normalization, aggregating data from diverse
sources (acoustic/electric, mono/poly, multiple datasets), and employing augmentation
techniques that reflect the complexity of real-world effects (like the NN-based approach)
are crucial steps towards building robust and generalizable guitar audio effect removal
systems. The toolkit effectively facilitates these steps, providing a strong foundation for
future research in this domain.
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6. Conclusion

This thesis addressed the critical need for robust data aggregation and generation method-
ologies in the domain of guitar audio processing, particularly focusing on the challenging
task of audio effect removal. Recognizing the limitations imposed by the scarcity of
diverse, large-scale datasets and standardized preprocessing pipelines, a comprehensive
toolkit designed to bridge this gap was developed. The toolkit facilitates the aggregation
of heterogeneous guitar datasets (IDMT-SMT-Guitar, GuitarSet, EGDB, Guitar-TECHS),
implements efficient preprocessing techniques, and offers flexible, on-the-fly normalization
and augmentation strategies. Leveraging modern frameworks like PyTorch, Hydra, and
PyTorch Lightning, the toolkit provides a significant improvement over existing solutions,
offering features specifically tailored for effect removal research.

The research presented herein aimed to answer key questions regarding data preparation
for guitar effect removal models. A series of systematic experiments, detailed in Chapter 4
using the RemFx framework, provided the following insights:

1. Effective Methods for Increasing Data Size and Diversity: The experiments demon-
strated conclusively that aggregating all available diverse datasets (IDMT-SMT-Guitar,
GuitarSet, EGDB, Guitar-TECHS) into a single, large training pool is the most effective
method identified in this study for increasing size and diversity (Section 4.4). The model
trained on this fully aggregated "Combined" dataset consistently outperformed models
trained on individual datasets or smaller aggregated subsets (e.g., only acoustic or only
electric) across nearly all test conditions, achieving superior generalization and the highest
average performance metrics (e.g., 26.63 dB SI-SDR on average electric test data, Tables
12, 13). This highlights the significant advantage of maximizing dataset diversity through
aggregation.

2. Optimal Normalization Strategies: Regarding normalization (Section 4.1), perceptual
loudness normalization targeting -32 LUFS proved to be the most effective strategy. This
approach significantly outperformed peak normalization and loudness targets prone to clip-
ping (-23 LUFS in the tests), yielding the highest SI-SDR (25.84 dB) and lowest MRSTFT
(0.22) on matched test data (Tables 6, 7). The -32 LUFS target avoided clipping observed
with louder targets, ensuring numerical stability. Crucially, maintaining consistency in the
normalization method between training and testing phases was found to be essential for
optimal performance, as mismatches led to drastic degradation.
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3. Leveraging Augmentation Techniques: The study (Section 4.5) revealed a significant
domain mismatch between baseline (tanh) and advanced NN-based (OpenAmp) augmen-
tation. While tanh-trained models achieved higher absolute SI-SDR on matched data
(24.53 dB), advanced NN-trained models demonstrated substantially larger relative im-
provements (∆SI-SDR +23.97 dB vs. +16.90 dB) when tested on matched NN-augmented
data (Tables 14, 15). This indicates that while NN augmentation presents a more difficult
task (reflected in lower absolute scores currently), it likely simulates real-world effect
complexity more realistically. Therefore, leveraging advanced NN-based augmentation is
crucial for enhancing model generalization to complex, real-world distortions, even if it
requires more capable model architectures to fully realize its potential.

4. Role of Data Categorization: The categorization of guitar audio data plays a critical
role in the performance of distortion removal systems. Experiments focusing on source
type (acoustic vs. electric, Section 4.2) and musical texture (monophonic vs. polyphonic,
Section 4.3) both showed that training on maximally diverse data encompassing both
acoustic and electric guitars, and both monophonic and polyphonic textures, yielded the
most robust and generalizable models. Models trained on only one category (e.g., only
acoustic, only polyphonic) suffered significant performance drops when tested on other
categories (Tables 8, 9, 10, 11). This emphasizes that comprehensive categorization and
inclusion of diverse data types during training are vital for robust performance.

In synthesis, the experimental results underscore the critical importance of a holistic data
preparation strategy: utilizing perceptual loudness normalization applied consistently (-32
LUFS), maximizing data diversity through the aggregation of varied sources, textures, and
datasets, and employing realistic augmentation techniques that capture the complexity of
real-world effects.

The developed toolkit successfully implements these findings, providing a robust, repro-
ducible, and extensible platform for guitar audio research. It effectively addresses the
limitations of data scarcity and inconsistent processing, offering a practical tool and vali-
dated methodologies. This work bridges the gap between foundational MIR tasks and the
less explored, yet crucial, area of effect removal, paving the way for future advancements
in building more effective and generalizable guitar audio processing models.
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7. Future Work

Building upon the foundation laid by this thesis, several promising avenues for future
research and development emerge, primarily centered on enhancing the diversity and
realism of the training data and broadening the scope of the toolkit and its applications.
Firstly, the continued expansion of dataset support is crucial. Integrating additional publicly
available guitar datasets into the toolkit’s aggregation pipeline will further enrich data
diversity, enabling more comprehensive model training and robust evaluation across an even
wider range of recording conditions and playing styles. Alongside data expansion, ongoing
toolkit enhancements, such as improved documentation, more illustrative examples, will
increase its accessibility and utility for the wider research community.

A significant area for future development lies in refining the augmentation strategies. The
current comparison between baseline tanh and advanced NN-based distortion highlighted
the need for more nuanced and controllable approaches. Future work should focus on
extending the NN-based augmentation module, or implementing alternatives, to allow
for the explicit selection and weighting of different distortion characteristics (e.g., soft-
clipping/overdrive, hard-clipping/distortion, fuzz). This aligns with findings in general
effect removal [13] suggesting that effect-specific models can improve performance, and
this concept can be extended within the distortion category itself. Furthermore, imple-
menting mechanisms to control the intensity or grade of the applied distortion during
augmentation would be highly beneficial. This would enable the training of models spe-
cialized not only for distortion type but also for distortion severity, potentially leading to
significantly better performance across a wider spectrum of real-world scenarios. Explor-
ing strategies for combining different augmentation methods, such as mixing tanh and
NN-based effects or applying sequential effects, could also better simulate the complexity
of real-world guitar pedal chains. The overarching goal of these refinements is to facilitate
the training of more specialized effect removal models tailored to specific distortion pro-
files, which could potentially surpass the performance of general-purpose models on those
particular tasks.

Finally, the research can be extended by exploring more advanced model architectures for
the task of effect removal, evaluating how datasets generated by this toolkit perform with
other state-of-the-art audio processing and source separation models beyond the Hybrid
Demucs architecture used herein (e.g., diffusion models, newer Transformer variants).
Moreover, the toolkit’s augmentation capabilities and experimental validation should be
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broadened to incorporate other common guitar effects such as reverb, delay, chorus, and
compression. This would move towards a more comprehensive multi-effect removal
framework, addressing a wider range of challenges in audio restoration and production.
By pursuing these directions, the research community can further leverage and build upon
the toolkit developed in this thesis to significantly advance the state-of-the-art in guitar
audio effect removal and related Music Information Retrieval tasks.
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Appendix 2 - Performance comparisons of experiments
performed using RemFx

Table 6. Performance by Normalization Strategy: SI-SDR / ∆SI-SDR (dB) ↑

Effect Removal SI-SDR (dB) Test
Loudness (-23) Loudness (-32) Peak

Train
Loudness (-23 LUFS) 17.75 (+14.62) 19.42 (+11.90) 11.99 (+10.10)
Loudness (-32 LUFS) 8.57 (+5.44) 25.84 (+18.31) 4.76 (+2.86)
Peak 15.51 (+12.38) 12.87 (+5.35) 13.63 (+11.74)

Table 7. Performance by Normalization Strategy: MRSTFT / ∆MRSTFT ↓

Effect Removal MRSTFT Test
Loudness (-23) Loudness (-32) Peak

Train
Loudness (-23 LUFS) 0.43 (-1.80) 0.41 (-0.83) 5.88 (-2.74)
Loudness (-32 LUFS) 1.11 (-1.13) 0.22 (-1.01) 6.32 (-2.30)
Peak 2.18 (-0.06) 2.32 (+1.09) 0.71 (-7.92)

Table 8. Performance by Data Composition (Acoustic, Electric, Combined): SI-SDR /
∆SI-SDR (dB) ↑

Effect Removal SI-SDR (dB) Test
Acoustic Electric Combined

Train
Acoustic 24.06 (+16.28) 21.40 (+13.88) 22.03 (+14.44)
Electric 20.58 (+12.80) 25.84 (+18.31) 24.05 (+16.47)
Combined 23.70 (+15.92) 26.17 (+18.65) 25.24 (+17.65)
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Table 9. Performance by Data Composition (Acoustic, Electric, Combined): MRSTFT /
∆MRSTFT ↓

Effect Removal MRSTFT Test
Acoustic Electric Combined

Train
Acoustic 0.20 (-0.82) 0.42 (-0.82) 0.35 (-0.83)
Electric 0.31 (-0.71) 0.22 (-1.01) 0.25 (-0.92)
Combined 0.20 (-0.82) 0.22 (-1.01) 0.22 (-0.96)

Table 10. Performance by Data Musical Texture (Monophonic, Polyphonic, Combined):
SI-SDR / ∆SI-SDR (dB) ↑

Effect Removal SI-SDR (dB) Test
Monophonic Polyphonic Combined

Train
Monophonic 25.63 (+17.34) 18.90 (+11.31) 19.84 (+12.26)
Polyphonic 21.30 (+13.00) 25.36 (+17.77) 24.83 (+17.24)
Combined 26.11 (+17.81) 24.99 (+17.39) 25.24 (+17.65)

Table 11. Performance by Data Musical Texture (Monophonic, Polyphonic, Combined):
MRSTFT / ∆MRSTFT ↓

Effect Removal MRSTFT Test
Monophonic Polyphonic Combined

Train
Monophonic 0.30 (-0.88) 0.46 (-0.67) 0.44 (-0.73)
Polyphonic 0.37 (-0.81) 0.19 (-0.95) 0.22 (-0.95)
Combined 0.31 (-0.88) 0.20 (-0.94) 0.22 (-0.96)

Table 12. Performance by Data Aggregation Strategy (Individual vs. Combined): SI-SDR
/ ∆SI-SDR (dB) ↑

Effect Removal
SI-SDR (dB) Test

µ Acoustic Acoustic µ Electric Electric Combined

Train

µ Acoustic 22.16
(+14.63)

23.20
(+15.42)

21.64
(+13.63)

21.43
(+13.91)

21.82
(+14.24)

Acoustic 22.68
(+15.15)

24.06
(+16.28)

22.53
(+14.52)

21.40
(+13.88)

22.03
(+14.44)

µ Electric 20.42
(+12.89)

19.64
(+11.86)

22.56
(+14.55)

21.76
(+14.24)

21.17
(+13.59)

Electric 22.03
(+14.50)

20.58
(+12.80)

25.60
(+17.59)

25.84
(+18.31)

24.05
(+16.47)

Combined 24.11
(+16.58)

23.70
(+15.92)

26.63
(+18.62)

26.17
(+18.65)

25.24
(+17.65)
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Table 13. Performance by Data Aggregation Strategy (Individual vs. Combined): MRSTFT
/ ∆MRSTFT ↓

Effect Removal
MRSTFT Test

µ Acoustic Acoustic µ Electric Electric Combined

Train

µ Acoustic 0.34
(-0.76)

0.25
(-0.78)

0.37
(-0.78)

0.41
(-0.82)

0.36
(-0.82)

Acoustic 0.31
(-0.79)

0.20
(-0.82)

0.36
(-0.79)

0.42
(-0.82)

0.35
(-0.83)

µ Electric 0.41
(-0.69)

0.41
(-0.61)

0.41
(-0.75)

0.42
(-0.82)

0.41
(-0.76)

Electric 0.29
(-0.81)

0.31
(-0.71)

0.24
(-0.91)

0.22
(-1.01)

0.25
(-0.92)

Combined 0.23
(-0.88)

0.20
(-0.82)

0.21
(-0.94)

0.22
(-1.01)

0.22
(-0.96)

Table 14. Performance by Augmentation Strategy (Baseline vs. Advanced): SI-SDR /
∆SI-SDR (dB) ↑

Effect Removal SI-SDR (dB) Test
µ Advanced (NN) µ Baseline (Tanh)

Train µ Advanced (NN) 11.28 (+23.97) -1.09 (-8.72)
µ Baseline (Tanh) -11.88 (+0.81) 24.53 (+16.90)

Table 15. Performance by Augmentation Strategy (Baseline vs. Advanced): MRSTFT /
∆MRSTFT ↓

Effect Removal MRSTFT Test
µ Advanced (NN) µ Baseline (Tanh)

Train µ Advanced (NN) 0.75 (-0.86) 1.07 (-0.07)
µ Baseline (Tanh) 1.60 (-0.02) 0.26 (-0.89)
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