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Abstract 

Digital Twin technology in the automotive industry is a growing trend that promises to 

bring accurate and cost-effective simulations, testing environments and predictive 

maintenance platforms. Autonomous vehicles are a special case - the number of sensors 

such vehicles possess and the amounts of data they generate can help to create precise, 

sophisticated models and environments for testing and analysis. To make this happen, a 

research project "Digital Twin for propulsion drive of autonomous electric vehicle” 

(project number PSG-453) was founded. 

In this Master's thesis, a middleware framework for communication of Digital Twin 

entities is proposed. The framework based on Robot Operating System 2 (ROS2) and 

micro-ROS frameworks is used to connect two entities of the propulsion drive system 

Digital Twin. In the end, the latency tests are used to verify the reliability and speed of 

the framework. 

This thesis is written in English language and is 46 pages long, including 6 chapters, 15 

figures and 5 tables. 
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Annotatsioon 

Digitaalsete kaksikute tehnoloogia on autotööstuses kiiresti kasvav arengusuund, mis 

lubab luua täpse ja tootliku keskonda simulatsiooni, testimise ja ennustava hoolduse 

jaoks. Autonoomsed sõidukid on erijuhtumid - suur arv andureid võimaldab genereerida 

piisavalt andmeid selleks, et luua täpne ja keeruline keskkond autonoomsete sõidukite 

testimiseks ja analüüsiks. Seetõttu oli "Isejuhtiva elektrisõiduki veoajami digitaalne 

kaksik" (projekti kood PSG-453) loodud. 

Antud lõputöö pakub vahevararaamistiku digitaal kaksiku üksuste infovahetuseks ning 

selgitab, kuidas see seob digikaksiku üksusi kokku. Vahevararaamistik on loodud Roboti 

Operatsioonsüsteemi 2 (ROS2) ning micro-ROS'i põhjal. Kokkuvõtes on esitatud 

latentsuse testide tulemused, mis kinnitavad, et vahevararaamistik vastab kiiruse ja 

töökindluse nõuetele. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 15 

joonist, 5 tabelit. 
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List of abbreviations and terms 

AI Artificial Intelligence 

API Application Programming Interface 

Black box Object or system producing useful information without 

revealing any information about its internal workings 

CAD Computer-Aided Design 

CLI Command Line Interface 

DAS Data Acquisition System 

DDS Data Distribution Service 

DT Digital Twin 

Guest machine An independent instance of an OS and associated software and 

information 

GUI Graphical User Interface 

Host machine The physical machine that provides the guest VM with 

computing hardware resources 

IM Induction Motor 

MATLAB Commercial numerical analysis programming platform 

MCU Microcontroller Unit 

micro-ROS Native embedded implementation of ROS2 

OS Operating System 

PDS Propulsion Drive System 

PMSM Permanent Magnet Synchronous Machine 

PSG-453 DT for propulsion drive of autonomous electric vehicle project 

code 

QoS Quality of Service 

ROS Robot Operating System 

ROS2 Robot Operating System 2 – the successor of ROS 

RTT Round Trip Time 

TB Test Bench 

USB Universal Serial Bus 

VM Virtual machine 
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1 Introduction 

With the increasing complexity of modern mechatronic systems, the traditional methods 

of monitoring and maintaining these systems have become inapplicable. At the same time, 

their sophisticated design and ability to generate large amounts of data open new ways 

for analysis and simulations.  

One example of such a system is the self-driving vehicle ISEAUTO which is being 

developed on the premises of Tallinn University of Technology (TalTech) since 2018 [1]. 

A large number of installed sensors and powerful processing units allow this vehicle to 

navigate autonomously by processing the surrounding environment and making choices 

based on the received data. Very little is done towards an in-depth understanding of how 

these autonomous vehicles are affected during operation, considering how analysis of the 

vehicle’s working systems can improve its overall performance.  

To solve this problem, a research project PSG-453 [2] [3] was established, which aims to 

develop a specialized, unsupervised analysis of a propulsion drive system (PDS) of 

ISEAUTO based on the technology of digital twins (DT). The outcomes of this project 

are expected to be: a new educational tool, the discovery of new methods for monitoring 

and maintenance, and an improved analysis of existing systems.  

The task of this thesis is to implement the middleware that connects specifically chosen 

hardware and software components of the DT and test the latency of implemented 

middleware solution. The thesis is organized in the following way. Chapter 2 presents the 

background of digital twin technology, outlines the state of the art in DT technology in 

the automotive field, and provides background to the PSG-453 project. Chapter 3 

describes the selection of middleware framework and provides an overview of the 

selected framework. Chapter 4 covers the implementation details of the middleware. 

Chapter 5 describes the results of implementation and provides suggestions for future 

work.  Conclusions are given in the Summary section.
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2 Background 

This section provides an insight into the current state of the art of DT, the history of the 

concept, and notable examples of systems deployed with DT principles in the automotive 

industry. At the end of the chapter, an overview and state of the ongoing project are given 

with defined goals to be achieved. 

2.1 Definition of Digital Twin 

There are several definitions of DT that were given over time by various academics and 

organizations. The first-ever definition originates from Dr. Michael Grieves who 

introduced this concept in 2002 – DT is a set of virtual information constructs that fully 

describes a potential or actual physical manufactured product from the micro atomic level 

to the macro geometrical level, as shown in Figure 1 [4].  

 

Figure 1. Visual representation of digital twin concept described by M. Grieves [4]. 

 

In [5], DT is defined as a software analog of a physical system that mimics the internal 

processes, technical characteristics, and overall behavior of the system. Lockheed Martin 

gives the following definition of a DT: “virtual representations of as-built physical assets, 

processes, and systems that can be used across the product life cycle using real-time data 

and other sources to provide actual insights” [6]. All in all, most definitions are similar in 
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describing the idea of the DT – it is a precise virtual clone of a real device or system based 

on physical properties, gathered or real-time sensor data, intending to simulate its 

behavior. IBM outlines several key differences that make DT stand ahead of simulations 

– larger scale (many engineering disciplines studied at the same time) and two-way flow 

of information (sensor data from the physical device and feedback from the virtual 

environment of the DT) [7]. 

2.2 A brief history of Digital Twin technology 

The general concept of the DT was first introduced in 2002. Shortly after, it was adopted 

by the aerospace industry – particularly by NASA and U.S. Air Force. Since 2014, 

companies such as Lockheed Martin, Boeing, and General Electric were brought together 

by U.S. Air Force to conduct a series of applied research in the field of DT [8]. The advent 

of IoT and Big Data has further bridged the gap between physical and virtual worlds and 

necessitated the development of a sophisticated model to meaningfully process and 

visualize the physical processes. Altogether, these events have sparked the interest in 

research of DT technology and, as can be seen in Figure 2, the number of publications 

has been growing exponentially ever since [9]. 

 

Figure 2.  The number of digital twin-related publications by year, from 2011 to 2020 on Scopus and 

ScienceDirect [9]. 
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The growth and importance of the DT technologies can also be verified by the fact that 

Gartner has named DT as a strategic technology trend in three consecutive years (2017 - 

2019) [10] [11] [12], and Forbes [13] described the DT as one of the defining 

technologies of next decade. 

2.3 Digital Twin technology in the automotive industry 

Traditionally, automotive and aerospace systems have been designed with empirical 

engineering practices [14], but with increasing performance requirements, the necessity 

for “self-awareness” during operation, and lack of external support, new engineering 

practices are needed. With the introduction of the DT, new development and testing 

simulation practices became available to fulfill new requirements, and consequently, the 

interest in research of these technologies is growing steadily, as can be seen in Figure 3. 

 

Figure 3. Search1 results for publications related to digital twins in automotive applications in periods 

2011-2022 in ScienceDirect and Scopus. 

 

In [15], Best et al. claim that gained information from vehicle simulations could provide 

critical training data on algorithmic inefficiencies before actual vehicle testing. As a 

result, they developed a simulation platform for autonomous driving of a vehicle with the 

 

 

1 Search consisted of the following query: (TITLE-ABS-KEY(digital AND twin AND car ) OR TITLE-

ABS-KEY(digital AND twin AND vehicle ) OR TITLE-ABS-KEY(digital AND twin AND  

automotive)). The last time the search was conducted was on 04.05.2022. 
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possibility of generating labeled data for machine learning. In their research, simulation 

covers kinematics and dynamics, traffic rules, path planning, and environmental 

conditions. However, the research does not cover the simulation of hardware components 

of the vehicle, solely focusing on the software aspect and AI.  

Liu et al. [16] demonstrate two DT models created by two different methods: Gaussian 

process and convolutional neural networks (CNN). Both DT models were created using 

the sensor data, collected from a transmission shaft of the vehicle. The simulated 

measurements were almost identical to those measured on the real vehicle. The conducted 

study achieved its task of identifying the driving states, but researchers noted that a real-

time dual connection between DT and the real vehicle is needed to achieve reliable results. 

An improved design was proposed by Chen et al. [17], where scientists developed a 

hardware-in-the-loop (HiL) simulation platform. The focus was applied on bridging the 

gap between pure software simulations and hardware simulation, and making the 

simulation more “online” in nature, by establishing a link between the virtual and real car 

environments. In their platform, the Electronic Control Unit (ECU) was used for hardware 

control, with the rest of simulation (such as simulated sensor data, kinematics, and 

dynamics) occurring in a virtual environment. The simulated data from driving was 

streamed to the ECU, where the hardware evaluated the state of driving and returned the 

calculated decisions to the virtual environment.  

Using a different approach, Ruba et al. [18] developed a real-time DT implementation 

using Field-Programmable Gate Array (FPGA) for a propulsion system. In their setup, 

DT of a propulsion system TB was implemented with two FPGAs: one for mimicking the 

entire behavior of a Permanent Magnet Synchronous Machine (PMSM) TB, and another 

FPGA for simulating the control unit. The communication between these two FPGAs was 

handled by digital and analog IO, utilizing the same interfaces that were used between a 

PMSM TB and control unit. Therefore, researchers were able to swap the FPGA control 

unit with the real control unit. 

Rassõlkin et al. [3] [19] described a concept of the DT that features three components: a 

physical entity, a virtual entity, and a service entity. All these entities are interconnected 

by middleware. The physical entity is represented in a form of the propulsion drive TB, 

the virtual entity - as the simulated 3D model of TB, and the service entity - as an 
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integrated service platform responding to the demands of both physical and virtual 

systems. The study outlines that such DT should provide monitoring capabilities in 

dynamic regimes.  

The abovementioned findings indicate that DT technology is a trending subject of 

research in the automotive industry and is expected to grow in the upcoming years. 

Studies are being carried out to make interactions between digital and physical systems 

more dynamic, occur in real-time, and make simulated operations more identical to those 

of physical vehicle systems. The benefits of using such systems are reduced cost for 

carrying out tests and simulations, reduced need for physical testing in the field, and the 

ability to simulate various scenarios that are difficult to simulate in physical testing. 

2.4 Case study - Digital Twin for a propulsion drive system 

DT for propulsion drive of autonomous electric vehicle (project number PSG-453) [2] [3] 

is a research project which aims to develop a specialized unsupervised analysis and 

prognosis tool of an ISEAUTO PDS, based on DT technology. The design of the proposed 

DT can be seen in Figure 4. 

 

Figure 4. Architecture of the PSG-453 DT showing how the 4 modules are used [20]. 

 

The proposed DT consists of four modules: the real vehicle that is supplied with sensors 

(real physical entity), a test bench (TB) of a vehicle’s propulsion drive (designated as Test 
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benches), 3D models of the TB/real vehicle (virtual entity), the service platform (service 

entity). All communication is to be handled by a middleware, through which the DT data 

is going to flow. 

The data is being sent and received from all modules to all modules simultaneously, thus 

enabling the creation of sophisticated controls and analysis of the whole DT in real time. 

The data generated during the operation of a real vehicle/TB is consumed by the virtual 

and service entity. Those entities, in response, generate feedback data and other useful 

parameters that help the analysis of vehicle operation. 

To illustrate the process better, assume the following scenario. The PDS TB starts its 

operation, and the shaft of a motor starts to spin. A sensor installed on the motor records 

the angular velocity of the shaft and sends it to the virtual entity. The virtual entity 

calculates the linear velocity of each wheel based on the received shaft angular velocity 

and forces the 3D model of a vehicle to move. At the same time, friction is exerted on the 

wheels, causing the vehicle to slow down. The actual recorded linear velocity is 

recalculated back to the shaft angular velocity and is sent to the PDS to adjust to changes. 

Meanwhile, the service entity monitors that the data sent by the PDS TB is in the correct 

range.  

2.4.1 Physical entity 

The physical entity of the DT is replaced by experimental TB consisting of a PDS 

identical to the one present inside the ISEAUTO vehicle. The PDS features a Mitsubishi 

PMSM traction motor Y4F1 (present in i-MiEV car models) which is operated by an 

ABB HES880 - a frequency converter that transforms the supply power to the motor 

based on the set parameters. HES880 in its turn is powered by a Cinergia B2C+ battery 

emulation system. Y4F1 motor’s output is attached to a shaft via a gearbox. The shaft is 

attached to two ABB IM loading motors (ABB 3GAA132214-ADE) that simulate the 

loads on the traction motor. Two loading motors are connected to two ABB ACS880 

frequency converters that transform the supply power to the motor based on the set 

parameters. The PDS is attached to a metallic frame which enables the operation of the 

system and allows the connection of other elements to the system (controllers, 

converters, sensors, etc). Described TB can be observed in Figure 5 and Figure 6. 
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Figure 5. TB for PDS in the Electrical Machine Group lab. 

 

 
 

Figure 6. Illustration schematic for TB for PDS. 

2.4.2 Virtual entity 

As seen in Figure 7, the virtual entity is represented as a 3D model of the TB created in 

the virtual environment provided by the Unity game engine. The virtual entity is 

composed of imported CAD geometric models of PDS parts (motors, shafts, bearings, 

gearbox), thus keeping the real dimensions of the TB. Implemented software in Unity 

controls the 3D model and can simulate motion and action depending on the provided 

input. Likewise, the virtual entity can have virtual sensors that record the simulated 

operation data of the 3D model and stream it back to the physical entity through the 

middleware. 
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Figure 7. 3D model of the PDS TB in a virtual entity of DT [21]. 

2.4.3 Service entity 

The service system represents an integrated service platform responding to the demands 

of both physical and virtual systems and acts as a predictive maintenance component [3].  

It monitors the operation of TB, analyses any detected abnormalities to find the cause of 

them, and ultimately warns about problems in the DT. One of the implementations is 

described in [20] where inter-turn short circuit faults were detected and analyzed in 

MATLAB software during operation. 

2.5 Problem statement 

At the time of writing this Master’s thesis, the PSG-453 team was in the process of 

connecting physical entities with their virtual and service entity counterparts. The goal of 

this Master’s thesis is to connect the traction motor of the PDS with a service entity, for 

the analysis of the traction motor’s data. 

2.6 Motivation 

In any complex system, reliable, scalable, and secure communication between all entities 

ensures the operation of the system as a whole. In present days, it is observable that many 

independent technologies that tackle a specific set of problems have begun to be used 

interchangeably to provide new functionalities. DT technology is one of such fields, and 

the proposed DT by PSG-453 requires a flexible means to communicate between all the 

independent technologies. 
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In this thesis, a middleware framework on a base of ROS2 (Robot Operating System 2) 

and micro-ROS (micro-ROS) is proposed, through which: 

• all entities will be defined in the ROS2-based middleware in a structural manner 

• data will be sampled from the physical entity (PDS TB) using micro-ROS 

• sampled data will be sent to the service entity 

• the service entity will process the data and send it back to the middleware 

2.7 Section summary 

In this section, the state of the art in DT for automotive applications has been defined. 

Literature research indicates that interest in DT for automotive applications is increasing 

every year. Motivations for that are the cost-effectiveness of DTs, advanced maintenance, 

and analysis of automotive systems. The background for the PSG-453 project and its 

current state was introduced. Current DT consists of the physical, virtual, and service 

entities. The problem and motivation for this Master’s thesis were outlined.
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3 Middleware framework selection 

This section provides the definition of middleware, explains the process of selecting the 

appropriate middleware framework for the needs of described DT, and gives an overview 

of ROS2 and micro-ROS middleware frameworks. 

3.1 Definition of middleware 

There is no official definition of the term "middleware", as industry and academics 

explain this term differently, yet one definition found by the authors explains it the most 

clearly: middleware platforms are intermediaries between sensors, services, and 

applications, managing the flow of data and allowing them to interoperate [22]. 

Middleware handles all the serialization and transfer of information from one platform to 

another utilizing various applied standards. Middleware has a defined Application 

Program Interface (API) that allows engineers to bind the middleware software to their 

parts of the system and allow inter-system communication. Dozens of middleware 

frameworks are available for use, both proprietary and free of charge. Some of the 

frameworks are based on standard communication protocols, whereas other frameworks 

use custom solutions. Different frameworks have different fields of application, ranging 

from smart homes to aerospace. 

3.2 Overview and selection of available middleware 

Considering the complexity of elements that constitute a DT (as described in Section 2.4) 

and the overall application of a DT, it is important to choose appropriate middleware and 

define an architecture for DT connections. Based on the needs of the TB DT of PSG-453, 

a set of qualitative criteria based on [22] was outlined: 

1. Area of use suitable for industrial cases. 

Applicability for industrial use-cases guarantees that middleware is reliable, possibly 

standardized, and is capable to handle desired loads of data flow.  
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2. Support for desired communication model – publisher-subscriber. 

As described in Section 2.4, data between components is expected to flow (e.g., 

continuously streamed). Publisher-subscriber model is more appropriate for this 

reason due to its asynchronous nature (communication speeds may vary for each 

element), and greater scalability if compared to other communication models. 

3. Must support real-time operation. 

Data from DT must be coming with real-time precision, thus enabling precise analysis 

of operating PDS. 

4. Availability and clarity of documentation. 

Concise documentation that is easily available and covers all the information 

regarding middleware is required to ensure smooth integration into a system. 

5. Quality of the support and livelihood of developer communities. 

The livelihood of developer communities guarantees that middleware is being 

improved continuously, reported bug fixes get resolved, and help will be guaranteed 

if edge cases are encountered. 

In a previously conducted study [23], the author has compared the most common 

middleware frameworks that apply to the investigated study case. The results of the 

comparison are presented in Table 1. An initial group of middleware frameworks was 

selected based on their application cases – industrial, automotive, or robotics. From there, 

it was important to select those supporting the publisher-subscriber model. Then, the 

advantages and disadvantages of all middleware frameworks were considered, and the 

choice in favor of ROS2 was made. The native support for real-time operation, 

availability of extensive documentation, and the use of a standardized (DDS) middleware 

were the key factors taken into account. Also, the liveliness of ROS2 was considered the 

best as it is an actively developing platform.  
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In [23], it was also discovered that the reliability of DDS implementation makes ROS2 

better at retaining messages and delivering them without losses – in high-frequency 

communication, the latency was roughly 25 times less, and the number of lost messages 

was 32 times less in ROS2 compared to ROS. The discovery was made through latency 

testing – every message contained a header consisting of a unique ID and a timestamp. 

All publishers inserted an ID into the message with the time of submission. All 

subscribers were aware of the message ID that they needed to receive. If the IDs matched, 

the timestamps were compared, and the difference (indicating the latency) was saved. 

Else, the message was considered lost, and the subscriber would reset the ID to the next 

expected one. All data was logged into text files and analyzed separately using Jupyter 

Notebook. 

Table 1. Comparison of available middleware frameworks [23]. 

Framework 
Initial 

Release 
Type 

Messaging 

Type 
Advantages Disadvantages 

ach 2013 
Inter-Process 
Communication 

mechanism 

Message bus 
Publish-

subscribe 

+ Real time support  

+ Solved head-of-line 

problem for accessing the 

newest message 

+ Extensive documentation 

-  Inactive community 
- Development 

discontinued 
- No ready software 

packages 

YARP 2002 Robotics middleware 
Publish-

subscribe 

+ Extensible family of 
connection types 
+ Extensive documentation 

+ Active community 

+ QoS policies 

- Limited real time support 

- No ready software 

packages 

LCM 2006 

Libraries and tools for 

message passing and 

data marshaling, 

targeted at real-time 

systems 

Publish-

subscribe 

+ Distributed network topology 

+ Low-latency inter-process 
communication 
+ Large support of 
programming languages 

- No ready software 

packages 
- Development stalled 

- Weak documentation 

- Inactive community 

ROS 2007 Robotics middleware 
Publish-

subscribe 

+ Extensive collection of ready-

to-use packages 
+ Extensive documentation 

+ Active community   

- Limited real time 
support  
- Has a master server 

through which all 

connections are handled 

- Support ends in 2025 

ROS2 2017 Robotics middleware 
Publish-

subscribe 

+ Real time support 
+ Distributed network topology 
+ Native embedded support 
+ Based on a standard 

+ Active community 

+ Extensive documentation 

+ QoS policies 

- Development is still 

ongoing  

- Documentation is 

aimed more at ROS users 

- Some of ROS ready 

packages are still being 

ported to ROS2 
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3.3 ROS2 

ROS2 is a state-of-the-art framework for robotics development that consists of a large set 

of free and open-source tools and libraries for robotic engineering, and a structured 

communication layer.  

The communication in ROS2 is realized via a publisher-subscriber messaging pattern. 

Messaging occurs between ROS Nodes which are defined as “processes that perform 

computation” [24]. ROS Nodes can advertise (produce and send messages) or subscribe 

(receive messages) to Topics (name buses over which Nodes exchange Messages) [25]. 

ROS messages constitute data structures made of typed fields [26] to group all the 

necessary information collected by ROS Nodes. Messages can be default ones provided 

by ROS packages or they can be custom-defined. Additionally, ROS2 has a request-

response messaging pattern in form of ROS Services, which is suitable for cases such as 

one-time requests to complete some operation.  

ROS2 also provides a set of GUI and CLI tools for debugging and monitoring. ROS2 CLI 

tools typically enable users to get information regarding subscriptions and publishers, 

frequency of submitted Messages, the Message content, etc. The GUI tools allow data 

visualization – for example, RQt Plot is used to plot the data on a time graph to visualize 

how data is changing over time. Rosbags [27] allow recording ROS Messages on different 

topics to play this data back later – a feature particularly useful for offline development, 

and development based on data gathered during real-life operations. 

ROS2’s predecessor, ROS, was widely used in academia and research for its rich set of 

documentation and available ROS packages - already developed software components for 

complex robotic tasks (navigation, localization, computer vision, etc) that are open-

source and available to everybody. ROS was well-perceived by the community - it is 

widely used in academic institutions for education and research. Furthermore, there were 

some commercial robot platforms developed [28] as well as the largest framework for 

autonomous vehicles development – Autoware AI [29]. However, as the use of ROS was 

growing beyond the academic world, it became apparent that ROS must meet a 

completely new set of demands than it originally was created for. Therefore, the 

development of ROS2 began with the aim to create a robust platform suitable to operate 

in real-time, in non-ideal network conditions, and be possible to use on embedded 



 

 

25 

devices. ROS2 is developed and managed by Open Robotics, with some parts of the 

software being co-developed by renowned industry leaders in the automotive and 

technology sectors (such as Bosch, Sony, AWS, iRobot, etc) [30]. 

3.3.1 ROS2 architecture 

The communication in ROS2 is based on the Data Distribution Service - a middleware 

protocol and API standard for data-centric connectivity from the Object Management 

Group (OMG). It provides reliable, low-latency, and real-time communication. Its key 

feature – dynamic discovery and Quality of Service (QoS) makes it server-free and more 

extensible [31]. In large systems with multiple communicating elements, DDS solves the 

problem of scalability and speed, providing a fast network. DDS is well-standardized 

[32], and has been a part of other time-critical standards used in automotive, aerospace, 

and defense industries (e.g NATO NGVA, AUTOSAR Adaptive) [33]. 

ROS2 is structured as follows: the user application layer is used for writing software for 

ROS Nodes. The user application layer relies on the ROS2 Client layer, which provides 

users with the language-specific (C++, Python, C) API for ROS2 core libraries and 

functions. The client layer is connected to the DDS Abstraction layer which binds ROS2 

with DDS implementations. The communication is handled entirely by various DDS 

vendors on the DDS Implementation Layer. ROS2 entirely resides in operating systems. 

The visual representation of described architecture can be seen in Figure 8. 

 

Figure 8. ROS2 Architecture. 
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User-written software can be grouped into ROS Packages and compiled using colcon – a 

process automation CLI tool for building sets of software packages. Compiled software 

can be launched by a standalone execution, or it can be executed in series according to 

specified logic, using launch files.  

3.3.2 micro-ROS 

To gather information from sensors and influence the operation of the TB, hardware 

interfacing is required. The simplest hardware for this purpose would be microcontroller 

units (MCUs) – compact integrated circuits designed to control specific operations in 

embedded systems. Typically, MCUs would be used for low-level operating, control, and 

data gathering with an interface to a higher-level governing system. For instance, the OS 

manages the access and use of resources to the user and is interfaced with hardware. 

Hardware, on the other hand, has its firmware that manages energy, internal sensors, etc. 

MCUs vary, they have different resources and are equipped with different base software 

available.  

Default distributions of ROS2 are not optimized for use on microcontrollers or real-time 

OS. Community-developed solutions to tackle these problems exist, namely rosserial 

[34] and mROS [35], but they have a very limited set of features, and their development 

is discontinued. Considering the features available in ROS2 (QoS, security) and 

ambitions to support real-time operation, a micro-ROS (micro-ROS) project has been 

established [36]. 

micro-ROS is a microcontroller-optimized ROS2 distribution that supports all the main 

features of ROS2 in resource-constrained environments and can be seamlessly integrated 

with ROS2. It is the de-facto standard ROS2 approach for embedded systems, developed 

by Bosch GmbH [37]. micro-ROS aims to bring support to a wide set of microcontrollers, 

but for now, there is a limited set of officially and community-supported MCU platforms. 

Additionally, Bosch GmbH provides instructions on how to compile micro-ROS on yet 

unsupported MCU platforms that meet the minimal hardware requirements. 

It is important to note, that micro-ROS is still in active development, and it has not yet 

been officially standardized for production use. 
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3.3.3 Difference between ROS2 and micro-ROS architectures 

As described in [36], the executors present in ROS2 (rclcpp) and micro-ROS (rclc) are 

different. rclcpp executor requires dynamic memory allocation, which cannot be used on 

many microcontrollers. Additionally, the rclcpp library was not created for resource-

constrained environments and thus it is not optimized to fit the small memory of MCUs. 

Furthermore, the rclc executor features deterministic scheduling and execution and real-

time guarantees [38]. 

If in ROS2 the choice of DDS Implementation is available to a user, in micro-ROS it is 

fixed to eProsima Micro XRCE-DDS - a software solution that allows communication in 

extremely resource-constrained environments (in this specific case - MCUs) with an 

existing DDS network [39]. 

Contrary to ROS2, the choice of OS (if available) is limited only to RTOS that can operate 

on MCUs. Currently, supported ones are Zephyr, FreeRTOS, and NuttX [36].  

Other features, such as Node discovery and bridge between micro-ROS Nodes and DDS 

middleware are resource-hungry and are implemented in a ROS 2 Agent – a separate 

piece of software that is meant to run on the host where ROS2 is running. It supports 

Serial, UDP, and Bluetooth connection with MCU. 

The abovementioned differences can be observed Figure 9 which illustrates the full 

architecture of micro-ROS. 

 

Figure 9. micro-ROS architecture [36]. 
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3.4 Section summary 

In this section, the definition of middleware was given. An appropriate middleware 

framework for purposes of DT was selected. The selection process included a comparison 

of available middleware frameworks that satisfy the given criteria and a comparison of 

performance between ROS and ROS2. Definitions and architectures of ROS2 and micro-

ROS frameworks were given. 
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4 Middleware implementation for studied Digital Twin 

This section provides the description and requirements of the middleware 

implementation. The details of the middleware interface to hardware and software are 

given. The method of gathering motor data using an MCU is explained. 

4.1 Desired operation and requirements 

To implement the middleware for the DT of PDS, it is required to first determine what it 

should be interfaced with, and which operation must be performed through it. In the scope 

of this Master’s thesis, only several components of PDS are chosen for detailed study: the 

HES880 frequency converter and the traction motor. The studied part of PDS TB can be 

seen illustrated in Figure 10. 

 

Figure 10. Illustration of studied components in TB for PDS. Studied parts are enclosed by a red frame. 

 

The desired operation to be fulfilled for the abovementioned components of PDS TB is 

defined as follows:  

 

1. All entities and their subsystems and components must be grouped and 

structurally represented in the middleware. 
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2. The DT middleware must receive the data regarding the supply input power to the 

Mitsubishi PMSM traction motor Y4F1. 

The supply input power is defined as a 3-phase voltage and current that is generated 

by a frequency converter attached to the motor. Based on input configurations, the 

frequency converter modifies the power supply that is then supplied to the motor, 

causing it to work. The power supply modified by the frequency converter must be 

sampled and sent into the middleware. 

3. This data must be conveyed to the service entity to calculate the motor’s output 

parameters. 

The service entity, upon reception of data, must extract the following parameters 

using analytical model of the traction motor: angular velocity and torque of the 

traction motor.  

4. Calculated torque and angular velocity must be sent into the middleware. 

Parameters calculated by the service entity must be present in the middleware for 

other entities. 

4.2 Proposed solution  

Considering the described operation and requirements presented in Section 4.1, the 

following solution is proposed:  

1. An MCU with micro-ROS installed will be connected to the output of frequency 

converter HES880 to sample the data at a 1 kHz frequency. 

2. The sampled measurements are serialized into ROS messages and sent to the 

middleware (via a micro-ROS agent hosted on a separate machine) to the 

designated topic. 

3. The service entity connects to the middleware by subscribing to the designated 

topic and processes the incoming data to calculate the angular velocity and torque 

of the traction motor. 
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4. The service entity publishes the resultant angular velocity and torque to the 

designated topic, thus sending the data back to the middleware. 

The proposed solution is illustrated in Figure 11.  

 

Figure 11. Draft of a proposed solution. U, V, W indicate the 1,2 and 3 phase voltage and current. 

 

In the proposed solution the middleware coverage ranges from a host Windows 10 

machine to a microcontroller. Due to the micro-ROS agent requirements, it executes on 

a guest Ubuntu 20.04 virtual machine (VM). The service entity executes in a MATLAB 

run-time environment installed in Windows 10. Defined ROS2 messages and interfaces 

between entities are described in Section 4.3, service entity is described in Section 4.4, 

and used hardware elements are described in Section 4.5.  

4.3 Structure of ROS2 middleware 

Inside the DT it is expected that components, parts, and subsystems are going to 

communicate with each other. The publisher-subscriber topology allows for flexible 

communication between them. But the problem that arises is – how does a component 

know which information it is supposed to receive? Considering the design of physical 

entity TB (as described in 2.4.1), we will have a total of three motors – one as part of PDS 

and two loading motors to simulate the load. These three motors communicate the same 
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information (torque, angular velocity, power, etc), but they must be differentiated. The 

same applies to whole subsystems – there may be similar sets of information flows, but 

they may be required inside the subsystem only, without exposure to other subsystems. 

To solve this, context is required for every ROS Node, ROS Message, and ROS Topic. 

4.3.1 Naming requirements 

To differentiate between subsystems in the DT, hierarchical naming and grouping should 

apply to every component of the DT.  

ROS2 provides a flexible naming configuration that helps developers to design modular 

components of their ROS2 applications and for others to be able to easily integrate them. 

Although every component is required to have a pre-defined name for a Node or Topic, 

it can be renamed, mapped, or grouped by any name defined by the user. The names can 

be of two types: relative and global. A global name would indicate a completely specified 

name for a Node or Topic, and it cannot be modified. Relative names can be supplied 

with a namespace during configuration and launch – which makes it possible to have the 

same Nodes grouped under different names. 

In our middleware design, all names are expected to be relative and specified with a 

namespace indicating a group at a launch time. This will allow modular development and 

reuse of DT components. Thus, every component will have a default relative Node name 

(indicating which component it is generally) and Topic names (indicating the generic 

parameters it communicated with), and upon launch time these components are grouped 

by a namespace according to the naming requirements of PSG-453 project that can be 

shown in Table 2. 

  



 

 

33 

Table 2. Namespaces used for grouping components of the DT. 

Name of the namespace Components to be used for 

/tb_tm 
Traction motor components, torque, angular velocity, power calculating nodes, any 

hardware connected to them. 

/tb_lm_left 
Any loading motor components: torque, angular velocity, power calculating nodes, 

any hardware connected to them. Left and right specify exactly which loading motor 

in the physical entity it is. 

/tb_lm_right 

/tb_service Service entities used for the analysis of the TB PDS, warning systems. 

/tb_virtual Components of the visual entity that are interfaced to ROS Middleware. 

/tb_bat 
Components related to the battery that is used to simulate operating battery in 

ISEAUTO. 

/tb_td 
Components related to frequency converter (traction drive HES880 used to control 

traction motor). 

/tb_ld_left 

Components related to frequency converters (ACS850 used to control loading motors).  

Since each frequency converter can control only one motor, they are designated left 

and right per loading motor they control. 

/tb_ld_right 

 

It is important to note that namespaces are generally applied to Nodes that are associated 

with the component of DT they represent, and topics they would send the data to would 

include the Node’s namespace. However, it is possible for Nodes of one group to require 

data from Nodes of other groups. 

To better illustrate the latter, assume there are two Nodes: /tb_tm/left_shaft_consumer 

and /tb_lm_left/torque_producer. /tb_tm/left_shaft_consumer Node is expecting to 

receive the torque that left loading motor exerts on it. In this case, 

/tb_tm/left_shaft_consumer Node would subscribe to a topic published by 

/tb_lm_left/torque_producer Node (e.g. /tb_lm_left/torque). In this case, it is logical to 

assume that the exerted torque is a part of loading motor, rather than the traction motor’s 

shaft. 
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4.3.2 ROS2 messages definitions 

Section 3.3 described ROS messages as custom or standard data structures made of typed 

fields to group information provided by Nodes. For DT, custom messages were defined 

to group several signals and/or parameters together that are related by time and context. 

Every message contains a header that records the time of submission and a unique ID of 

the message. All messages were included in a separate ROS Package digital_twin_msgs 

that is required by the middleware to operate the DT. Apart from custom-defined 

definitions, the middleware uses standard ROS messages (std_msgs) [40] where 

necessary. Message defined in ROS package digital_twin_msgs can be seen in Table 3, 

and the structure of each message can be observed in Appendix 2. 

Table 3. Messages of DT defined in the digital_twin_msgs package. 

Name of the message Description 

digital_twin_msgs::Current 
A message consisting of 3 phase currents values. Used to store information 

about AC current. 

digital_twin_msgs::Voltage 
A message consisting of 3 phase voltages values. Used to store information 

about AC voltage. 

digital_twin_msgs::SupplyInput 
Message comprised of Current.msg and Voltage.msg with a timestamp. Used 

as a container structure to communicate the AC input of the motors. 

digital_twin_msgs::Power 
A message consisting of power values of a 3-phase AC input at every phase and 

total mean. Includes a timestamp. Used to store information about AC power. 

digital_twin_msgs::Float32Stamped 
Generic float data-type message with a timestamp. Can be used for any topic 

requiring a generic float type data container. 

 

4.4 Used service entity 

The service entity in use for the objective is an analytical simulation model of the traction 

motor which was built in MATLAB/Simulink interfaced with middleware. The 

simulation model was developed by the author’s colleague for a separate research 

problem, as presented in [41]. Hence, this model is not in the scope of this Master’s thesis 

and will be treated as a black box. The model’s purpose is to calculate the traction motor’s 

output torque and angular velocity based on the input voltage of the motor. The 
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calculation is based on derived analytical equations of the electromagnetic properties of 

the traction motor. 

The input voltage of the model is the input voltage of the traction motor generated by the 

HES880 frequency converter and is expected to be received by the service entity in real 

time. A ROS2 Subscriber MATLAB block is used to connect the service entity to 

middleware for voltage data reception, and a ROS2 Publisher MATLAB block is used for 

sending angular velocity and torque data back to middleware. When received, voltage 

input is deserialized using a Bus Selector MATLAB block and is directed into the model. 

When finished processing, the model outputs angular velocity and torque parameters; in 

combination with the Blank Message MATLAB block, these parameters constitute a new 

ROS message that is then published via a ROS2 publisher block. The described service 

entity can be seen in Figure 12 and its interface with middleware is shown in Table 4. 

 

Figure 12. MATLAB/Simulink block diagram of used service entity. 
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Table 4. Middleware interface of service entity. 

Topic Message type Description 

/tb_tm/supply_input digital_twin_msgs::SupplyInput 
Topic to subscribe. Used to receive voltage of 

traction motor from the middleware. 

/tb_tm/torque digital_twin_msgs::Float32Stamped 
Topic for publishing. Used to send the 

calculated torque to the middleware. 

/tb_tm/angular_velocity digital_twin_msgs::Float32Stamped 

Topic for publishing. Used to send the 

calculated angular velocity to the 

middleware. 

 

4.5 Hardware interface between TB and middleware 

To gather the data from the HES880 frequency converter and direct it to middleware, 

there must be hardware that serves as an interface between these two entities. In our case, 

it must be an MCU capable of reading analog data, have a peripheral interface able to 

communicate via Serial/USB and be possible to run with micro-ROS. 

One of the aims of micro-ROS is to provide support for a large number of families of 

microcontrollers. Although this is a large and complicated task when this Master’s thesis 

was written several microcontroller families were already supported [42]. This meant, 

that there were tools for compilation of micro-ROS to targeted microcontrollers and 

official manuals assisting in this matter. Considering the requirements, the officially 

supported microcontrollers by micro-ROS, and the availability of the latter on the 

premises of Tallinn University of Technology, a choice was made to proceed with Teensy 

4.0. 

Teensy 4.0 [43] is a small ARM family microcontroller. It features a 600 MHz ARM 

Cortex-M7 processor, with 1024kB of RAM and 1984kB of Flash memory with USB 

peripheral supporting speeds up to 480 Mbit/sec. It features 40 GPIO pins, 14 of which 

can be configured as analog input pins. Teensy is programmable through Arduino IDE 

with an installed Teensyduino add-on. Teensy 4.0 is illustrated in Figure 13. 
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Figure 13. Teensy 4.0 microcontroller unit [43]. 

 

To fulfill the operation described in Section 4.1, Teensy 4.0 with micro-ROS software 

will gather the data from the HES880 frequency converter and send it to the middleware 

via a micro-ROS agent. 

4.5.1 Teensy 4.0 with micro-ROS 

To get micro-ROS running on Teensy 4.0, the official tutorial from micro-ROS [44] with 

some additional steps was followed. In the tutorial, it is suggested to download the already 

pre-compiled micro-ROS library for microcontrollers and just copy it to the Arduino IDE 

library folder. For the desired operation, however, support for digital_twin_msgs must 

have been provided, thus additional steps were required. For this to happen, the micro-

ROS library was recompiled according to instructions from the official Github repository 

[45]. The following steps were done: 

1. Download and install Arduino IDE and Teensyduino add-on. 

2. Download the micro-ROS Arduino source library for ROS2 foxy distribution. 

git clone git@github.com:micro-ROS/micro_ros_arduino.git 

git checkout foxy 

 

3. Add digital_twin_msgs package to a folder 

/extras/library_generation/extra_packages of micro-ROS Arduino library. 

4. Compile the micro-ROS Arduino library for Teensy 4.0. 

sudo docker pull microros/micro_ros_static_library_builder:foxy 

sudo docker run -it --rm -v $(pwd):/project --env 
MICROROS_LIBRARY_FOLDER=extras microros/micro_ros_static_library_builder:foxy 
-p teensy4 

 

5. Copy the contents of /src into the Arduino IDE’s library folder. 

mailto:git@github.com:micro-ROS/micro_ros_arduino.git
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Afterward, micro-ROS API becomes available for use in Arduino IDE and enables to 

write, compile and flash written software with digital_twin_msgs messages included in 

Teensy 4.0. As soon as the software is flashed and is working correctly, Teensy 4.0 must 

be connected to a computer with a micro-ROS agent via a USB. By default, the 

connection is plug-and-play and the micro-ROS agent should detect new microcontrollers 

automatically. However, since the micro-ROS agent is running on a VM, USB support 

had to be enabled in the settings of a VM. When the micro-ROS agent detects a new 

connected microcontroller, it becomes available in the whole middleware and the 

communication (data sending and reception) starts automatically. 

4.5.2 HES880 frequency converter 

ABB HES880 [46] is a mobile frequency converter for controlling asynchronous AC 

induction motors. In the case of TB, HES880 controls the Mitsubishi traction motor. The 

HES880 consists of 2 parts: the drive module and the control module. Based on the 

selected parameters in the control module, the HES880 modifies the supply AC voltage 

and frequency into AC motor input.  

The frequency converter directly dictates the operation of an electrical motor it controls 

by supplying AC voltage to the motor. Knowing this, it is possible to measure the 

output of the frequency converter directly and then forward it to the middleware. 

4.5.3 HES880 output measurement 

The output of HES880 is AC current, and appropriate electronics were required to 

transform the AC current into a positive-only (larger than 0V) periodic voltage signal in 

a range of 0 – 3.3V, for Teensy 4.0 MCU to sample it. Signal conversion and electronics 

design were done by the author’s colleague who had the required knowledge and skills to 

solve this problem. Therefore, the electronics and signal conversion will be treated as a 

black box solution and is out of the scope of this Master’s thesis. Nevertheless, a short 

description will be provided to explain the general idea of how the signal conversion is 

done. 

 

Three devices, known as current clamps, are attached to the cables that connect HES880 

output terminals with the Mitsubishi traction motor’s input terminals. Depending on the 

configuration and wiring, the current clamps can measure voltages and currents and 
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output both as voltage signals. These devices have conversion ratios (also known as 

scale): 1mV/A for current (that is, every 1mV clamp output represents 1 measured Amp 

of input current), and 10mV/V for voltage (that is, every 10mV clamp output represents 

1 measured Volt of input voltage). The input signals generated by HES880 were in the 

range of +350A to -350A for current and +500V to -500V for voltage. However, for the 

selected operation of HES880, the generated current and voltage would not exceed 

ranges +200A to -200A and +25V to -25V, respectively. As a result of conversion from 

current clamps, the input signals of current and voltage are scaled to: +200mV to -

200mV and +250mV to -250mV, respectively. Because most ADCs (analog-to-digital 

converters) present in MCUs (including Teensy 4.0) can only process positive analog 

signals, the output signals of current clamps must be brought to the positive-only range. 

For this, a level shifter was used that lifts the signal by 1 V.  

 

Teensy 4.0 MCU features 14 analog input pins that can be used to sample the data. 

Measurements of 3-phase AC current and voltage would require 6 analog inputs. A0 – 

A5 were used to sample the data, A0-A2 for current and A3-A5 for voltages. The 

frequency of AC current is estimated to be around 20 Hz, therefore input AC signal is 

sampled at 1 kHz frequency, eliminating the possibility of aliasing. Teensy 4.0 MCU has 

a 10-bit ADC (input range 0 – 1023 bits) that can measure voltages in the range 0 – 3.3V, 

which means that the resolution of the ADC is approximately 3.22 mV. For conversion 

of bits to voltage in mV, Equation 1 was used: 

𝑈𝑖𝑛 =
𝑁𝑏𝑖𝑡𝑠 × 3300

1024
 (1) 

Equation 2 and Equation 3 show the conversion of acquired voltage to real measured 

voltage and current, respectively (1000 was subtracted to bring the measured voltage 

back to its original range; vt_scale is the voltage scale factor and is equal to 10 mV; 

ct_scale is the current scale factor and is equal to 1 A): 

 

𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  
𝑈𝑖𝑛 − 1000

𝑣𝑡_𝑠𝑐𝑎𝑙𝑒
 (2) 

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  
𝑈𝑖𝑛 − 1000

𝑐𝑡_𝑠𝑐𝑎𝑙𝑒
 (3) 
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With everything considered, a script that handles data sampling, serialization of data into 

ROS messages, and transport to the middleware was written, as presented in Appendix 3. 

The script was compiled using Teensyduino IDE and flashed onto Teensy 4.0 MCU. 

4.6 Section summary 

This section covered the details of middleware implementation for a given problem. The 

desired operation of a DT entity was described, and a possible solution was proposed. All 

communication details were covered: interfaces between hardware and software 

components, subscribed and published topics, and used messages with the data they 

contain. An overview of used hardware components was given and the data gathering 

method was explained. 
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5 Results 

This section covers the achieved results of the conducted work. The sampled data is 

shown, along with the results of latency tests. The section explains achieved results and 

provides suggestions for future work. 

5.1 Acquired data 

Acquired data by Teensy 4.0 MCU was sampled at 1 kHz frequency and converted to raw 

voltage, as shown in Equation 1. The raw voltage measurement was then used to calculate 

the real current and voltage as described in Section 4.5.3 in Equations 2, 3 and the 

resultant measured current and voltage signals were serialized into ROS2 

digital_twin_msgs/SupplyInput message. As the last step, the messages were published 

on ROS2 topic /tb_tm/supply_input. The operation was recorded by ROS2 as a rosbag 

and analyzed in MATLAB. The results of measured AC voltage and current can be 

observed in Figure 14. 

 

Figure 14. Real measured current and voltage as a result of conversion: a) measured AC current, b) 

measured AC voltage. U, V, W are designations for every phase in AC current. 
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Acquired measurements of current and voltage appear to be noisy, but the overall 

representation of sine waves of voltage and current are kept, thus aliasing was avoided. 

There is a multitude of factors that can be the cause of the noise: losses in precision 

from sampling (as the ADC has 10-bit precision), noise from the level shifter caused by 

oscillation of the shifting signal, the interference from the environment and the signal 

quality produced by the HES880 frequency converter itself. To smooth out the signal, 

the service entity uses a second-order filter implementation before feeding the voltage 

signal to the main model. 

5.2 Latency test 

To validate that implemented solution can be used in real-time, a latency test was 

conducted. For this specific case, RTT (round trip time, visual representation can be seen 

in Figure 15) latency test was chosen, due to MCU and host machine possessing different 

clocks. Different clocks may not be properly synchronized, leading to false results. 

Furthermore, virtual machines specifically are subject to an occurrence known as clock 

drift. Typically, VMs synchronize their clock with the host machine every 60 seconds and 

therefore may “lag behind” the host system. 

 

 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  
𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1

2
 

Figure 15. RTT latency test visualization. 

 

To conduct the RTT latency test, a new message type was defined consisting of a message 

ID and time stamp. Every message was generated by Teensy 4.0 MCU and sent to a ROS2 

listener, running in the MATLAB run-time environment. The listener, upon receiving the 

message, verified that the message was not lost (by comparing the expected message ID 
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with the received one) and simply sent it back to the Teensy 4.0 MCU. When the MCU 

received messages back, it calculated the approximate time it took for a message to return. 

To avoid running out of memory, the Teensy 4.0 did not store the latencies locally and 

forwarded them to a specially created ROS2 Node on a host machine that later calculated 

mean, maximum, and minimum latency. The test was conducted for 60000 messages. The 

latency was measured in microseconds since the clock of Teensy 4.0 is capable of 

recording time only with microsecond precision. Written scripts for the latency test can 

be seen in Appendix 4, 5, and 6. 

Latency test between Teensy 4.0 MCU and service entity yielded the following results: 

only 560 messages out of 60000 were received, with mean latency being 350 μs, 

maximum latency being 7569 μs, and minimum latency being 92 μs. As investigation 

showed, it was not the fault of middleware, but MATLAB/Simulink software itself. 

MATLAB/Simulink was unable to receive data at high frequencies and was forced to 

drop messages, leading to a low rate of successfully delivered messages. 

Such operation cannot be considered reliable, and it can be concluded that 

MATLAB/Simulink solutions must be changed to be capable of receiving high-frequency 

data. 

5.2.1 Suggested improvement to the service entity 

Even though MATLAB cannot process software in real time, it has a code generator that 

can transform various models into lower-level programming languages for target devices. 

Essentially, MATLAB/Simulink code generator establishes a connection with the target 

device, transforms the model into a C++ code, and attempts to compile it using the default 

compiler for ROS2. Therefore, the goal was to use the model of the service entity to 

generate a ROS2 Node C++ code, with VM being the target device. After following the 

manual on MATLAB/Simulink code generation [47], the generation succeeded, and the 

model was available as a ROS2 node in the VM.  

The same RTT latency test was conducted to calculate the approximate latency of the 

solution. The results were indeed better: all 60000 messages were successfully delivered, 

mean latency was 197 μs, maximum latency was 6594 μs, and minimum latency was 151 

μs. The increase in reliability suggests that using lower-level code for processing data is 
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more preferred in the scope of the proposed DT. For comparison, both latency test results 

can be observed in Table 5. 

Table 5. Results of conducted RTT latency tests 

Operation 

environment 
Messages sent (#) Messages lost (#) 

Mean latency 

(μ   

Maximum latency 

 μ   

Minimum latency 

 μ   

MATLAB run-time 

on Windows host 
60.000 59.440 350 7569 92 

Compiled C++ 

program on 

Ubuntu VM 

60.000 0 197 6594 151 

 

5.3 Overview of conducted work and final solution 

As a result of implementations described in Section 4, the following tasks were done: 

1. Traction motor input data was sampled from the HES880 frequency converter by 

Teensy 4.0 MCU. 

2. The software for Teensy 4.0 MCU was written using the micro-ROS framework. 

The software handled data sampling, serialization, and transport to the 

middleware via a micro-ROS agent.  

3. The service entity was interfaced with the middleware to receive and send the 

traction motor data. 

4. A latency test was conducted to estimate the reliability of the solution. 

5. Conversion of MATLAB/Simulink model to C++ was made as a possible way to 

fix unreliable data reception by the service entity. 

The achieved result satisfies the operational requirements presented in Section 4.1. ROS2 

framework proves to be quite flexible for designing systems and implementing the intra-

communication between the components of a system. Its internal implementation of the 

DDS standard provides a reliable means to communicate in a peer-to-peer manner. 

Custom message definition, contextual grouping using namespaces and provided API are 

optimal for such fields as DT technology. The micro-ROS framework provides an out-

of-the-box approach for connecting microcontrollers to ROS2. However, supported 
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hardware is still limited and some operational requirements for micro-ROS are yet to be 

fulfilled. MATLAB/Simulink computational abilities were found to be unreliable and 

conversion to C++ had to be made to improve the communication between the 

middleware and the service entity. 

5.3.1 Suggestions for future work 

To improve the overall design of the DT, the following improvements are suggested: 

1. The service entity components that require high-frequency communication and/or 

real-time operation must be migrated to lower-level implementation, such as C++, 

Python, or a similar language/platform. 

2. For increased precision of the DT, it may be necessary to utilize communication 

protocols like SPI or I2C between MCU and the middleware. This will increase 

possible messaging frequency. 

3. In the future, TB may have a very large number of connections to the DT, and 

microcontrollers may not be the optimal way to interface these connections. A 

larger module/router would be required in this case. 

4. Electronics that handle signal processing may need to be of higher precision to 

eliminate noise. 

5.4 Section summary 

This section provided an overview of conducted work. Latency tests revealed that the 

service entity implementation in MATLAB/Simulink was very unreliable when it came 

to receiving data. A solution to mitigate this problem was provided. Overall, the latency 

between the MCU and the service entity is low enough to be considered real-time. The 

final solution was presented, featuring all the interfaces between the components of DT. 

In the end, the author provided suggestions for future work to improve the state of the 

DT. 
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6 Summary 

Digital Twin (DT) technology is a trending technology in the automotive field that 

allows advanced analysis and testing of such complex systems. Autonomous vehicles 

are a special case – the possession of large amounts of sensors and processing 

capabilities allows a very in-depth study of the internal workings of the vehicles, but 

very little is done towards the understanding of how these autonomous vehicles are 

affected during operation. For this reason, DT for propulsion drive of autonomous 

electric vehicle (project number PSG-453) was established. The project aims to develop 

a DT for the propulsion drive system of ISEAUTO – a self-driving vehicle being 

developed by Tallinn University of Technology since 2018. 

 

In recent years the DT technology in the automotive field has seen a spike in 

publications and various methods are actively proposed and discussed. The latest 

developments indicate interest in creating high-precision DTs for hardware components 

of the vehicles in an attempt to create cost-effective, in-depth analysis systems. 

 

The goal of this thesis was to connect two entities present in DT architecture, proposed 

by PSG-453: a traction motor from the physical entity with the analytical model of the 

motor from the service entity. The connection had to follow the implementation of 

middleware – a special software layer that handles all the communication between all 

the entities of the DT system. The chosen middleware framework – ROS2, was 

described in terms of architecture and capabilities.  

 

As a result, the traction motor was interfaced with ROS2 middleware via Teensy 4.0 

microcontroller that uses micro-ROS – a ROS2 framework for embedded devices. The 

analytical model of the motor developed in MATLAB software was interfaced with the 

middleware using the provided ROS2 API.  The acquired results were presented and 

analyzed. The latency test shows that the implemented solution operates in real time. At 

the same time, the latency test suggested that the service entity had to be run outside the 
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MATLAB run-time environment due to low reliability, hence an improvement was 

made to overcome this issue. 

 

Based on the results of this Master’s thesis, a conference paper was written to describe 

the used approach for connecting DT entities and describing the achieved results.
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I Sergei Jegorov 
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thesis “Middleware framework for Digital Twin entities communication”, supervised 

by Anton Rassõlkin and Eduard Petlenkov.  

1.1. to be reproduced for the purposes of preservation and electronic publication of 

the graduation thesis, incl. to be entered in the digital collection of the library of 

Tallinn University of Technology until expiry of the term of copyright; 

1.2. to be published via the web of Tallinn University of Technology, incl. to be 

entered in the digital collection of the library of Tallinn University of Technology 

until expiry of the term of copyright. 

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive license. 

3. I confirm that granting the non-exclusive license does not infringe other persons' 

intellectual property rights, the rights arising from the Personal Data Protection Act 

or rights arising from other legislation. 

05.05.2022 

 

 

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation 

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis 

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her 

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive 

license shall not be valid for the period. 
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Appendix 2 – digital_twin_msgs ROS2 message definitions 

Voltage.msg float32 voltage1 
float32 voltage2 
float32 voltage3 
 

Current.msg float32 current1 
float32 current2 
float32 current3 
 

SupplyInput.msg builtin_interfaces/Time stamp 
digital_twin_msgs/Voltage voltages 
digital_twin_msgs/Current currents 

 

Power.msg builtin_interfaces/Time stamp 
float32 phase1 
float32 phase2 
float32 phase3 
float32 total 
 

Float32Stamped.msg builtin_interfaces/Time stamp 
float32 data 
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Appendix 3 – Embedded software for sampling and 

transporting current and voltage data 

/** @file tractionMotorMeasurement.c 

 *  @brief Script to handle data sampling, serialization,  

 *  and transport to middleware of TB DT. 

 *   

 *  @author Sergei Jegorov (sejego) 

*/ 

 

#include <micro_ros_arduino.h> 

 

#include <stdio.h> 

#include <rcl/rcl.h> 

#include <rcl/error_handling.h> 

#include <rclc/rclc.h> 

#include <rclc/executor.h> 

#include <unistd.h> 

#include <time.h> 

 

#include <std_msgs/msg/float32.h> 

#include <digital_twin_msgs/msg/supply_input.h> 

 

#define LED_PIN 13 

#define RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc != 
RCL_RET_OK)){error_loop(del);}} 

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 
RCL_RET_OK)){}} 

 

rcl_publisher_t publisher; 

digital_twin_msgs__msg__SupplyInput msg; 

rclc_executor_t executor; 

rclc_support_t support; 

rcl_allocator_t allocator; 

rcl_node_t node; 

rcl_timer_t timer; 

 

unsigned long long time_offset = 0; 

const char *node_name = "teensy_mcu"; 

const char *node_namespace = "tb_tm"; 

const int VT_SCALE = 10; // scale for voltage measurements 10mV/V; 

const int CT_SCALE = 1; // current fir current measurements 1mV/A 

 

typedef struct timespec timespec; 
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/** @brief Synchronize time of MCU with uROS Agent time 

 *   

 *  This function makes a call to uROS agent on the host to 

 *  receive the UNIX time in nanoseconds. The current time of the MCU 

 *  starts counting from 0 when it launches, thus we can find the time 

 *  offset by subtracting MCU time from an actual UNIX time 

 *   

 *  @param None 

 *  @return None 

 *  

 */ 

void sync_time(void) 

{ 

    // get the current time from the agent 

    unsigned long now = millis(); 

    RCCHECK(rmw_uros_sync_session(10), 1000); 

    unsigned long long ros_time_ms = rmw_uros_epoch_millis();  

    // now we can find the difference between ROS time and uC time 

    time_offset = ros_time_ms - now; 

} 

 

/** @brief Get current UNIX time of the MCU 

 *  

 *  Takes into account the calculated offset and returns the UNIX time in 
seconds and nanoseconds 

 *  since seconds to be used as timestamp. 

 *  @param None 

 *  @return timespec type current time in UNIX seconds and nanoseconds since 
seconds 

 */ 

timespec get_time(void) 

{ 

    timespec ts = {0}; 

    // add time difference between uC time and ROS time to 

    // synchronize time with ROS 

    unsigned long long now = millis() + time_offset; 

    ts.tv_sec = now / 1000; 

    ts.tv_nsec = (now % 1000) * 1000000; 

 

    return ts; 

} 

 

/** @brief calculate the sample into voltage in mV 

 *  

 *  Recalculates the input sample bits into voltage. Knowing 

 *  that ADC is 10-bit, it gives a precision of ~ 3.22 mV/bit 

 *  

 *  @param int sample, a value from 0 - 1023 

 *  @return float voltage in mV  

*/ 

float sampleToVoltage(int sample) 
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{ 

  return sample*(3300)/((float)1024); // mV 

} 

 

/** @brief Computes the real values of traction motor input.  

 *  

 *  Each pin from A0-A6 is read and first computed to mV value, 

 * then is recalculated as follows: first 1000mV is subtracted to bring the 
shifted signal down 

 * to original one, then it is scaled value to reflect the real value of 
sampled current/voltage. 

 *  

 * @param None 

 * @return None 

*/ 

void computeAndPublish(void) 

{ 

    // create a temo variable to store intermediate voltage values 

    int adc_in_sample = 0;  

    adc_in_sample = analogRead(0); 

    msg.currents.current1 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
CT_SCALE; 

    adc_in_sample = analogRead(1); 

    msg.currents.current2 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
CT_SCALE; 

    adc_in_sample = analogRead(2); 

    msg.currents.current3 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
CT_SCALE; 

    adc_in_sample = analogRead(3); 

    msg.voltages.voltage1 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
VT_SCALE; 

    adc_in_sample = analogRead(4); 

    msg.voltages.voltage2 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
VT_SCALE; 

    adc_in_sample = analogRead(5); 

    msg.voltages.voltage3 = (sampleToVoltage(adc_in_sample) - 1000.0) / 
VT_SCALE; 

 

    timespec ts = get_time(); 

    msg.stamp.sec = ts.tv_sec; 

    msg.stamp.nanosec = ts.tv_nsec; 

     

    RCSOFTCHECK(rcl_publish(&publisher, &msg, NULL)); 

} 

 

/** @brief Enter an error state, blinking the LED with a designated frequency 

 *  in an infinite loop 

 * 

 *  @param delay_ms indicating the period of blinking 

 *  @return None 

*/ 

void error_loop(int delay_ms) 
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{ 

  while(1){ 

    digitalWrite(LED_PIN, !digitalRead(LED_PIN)); 

    delay(delay_ms); 

  } 

} 

 

/** @brief Callback function with a wall timer used for publishing ROS 
messages periodically 

 *  

 *  Timer callback is executed everytime a timer fires an interrupt.  

 *   

 *  @param pointer to timer, int64_t last_call_time 

 *  @return None 

 */ 

void timer_callback(rcl_timer_t * timer, int64_t last_call_time) 

{   

  RCLC_UNUSED(last_call_time); 

  if (timer != NULL) { 

    computeAndPublish(); 

  } 

} 

 

/** @brief Setup function to initialize all ROS2 nodes, publishers, 
subscribers, timers  

 *  and uROS executors 

 *  

 *  

 *  Initializes uROS executors, publishers with designated topics and message 
types, timers 

 *  and callbacks for publishing and handling subscriptions. In case 
something goes wrong, 

 *  MCU will enter into an error state with LED blinking 

 *   

 *  @param None 

 *  @return None 

 */ 

void setup() { 

  set_microros_transports(); 

   

  pinMode(LED_PIN, OUTPUT); 

  digitalWrite(LED_PIN, HIGH);   

   

  delay(1000); 

 

  allocator = rcl_get_default_allocator(); 

 

  //create init_options, if fails, will blink every 1s 

  RCCHECK(rclc_support_init(&support, 0, NULL, &allocator), 1000); 

 

  // create node 
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  RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support), 
1000); 

 

  // create publisher, if fails, the LED blinks every 100ms 

  RCCHECK(rclc_publisher_init_default(&publisher, &node, 
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, SupplyInput), 
"supply_input"), 1000); 

   

  // create timer, 

  const unsigned int timer_timeout = RCL_MS_TO_NS(1); 

  RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout, 
timer_callback), 500); 

 

  // create executor 

  RCCHECK(rclc_executor_init(&executor, &support.context, 1, &allocator), 
500); 

  RCCHECK(rclc_executor_add_timer(&executor, &timer), 100); 

 

  sync_time(); 

   

} 

 

/** @brief loop function where main code executes 

 *   

 *  spin the executor forever to run uROS 

 *   

 *  @param None 

 *  @return None 

 */ 

void loop() { 

  rclc_executor_spin(&executor); 

} 
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Appendix 4 – Latency test software run on Teensy 4.0 MCU 

/** @file latency_test.c 

 *  @brief Script for generating data with time stamps 

 *  and measuring RTT latency. 

 *   

 *  @author Sergei Jegorov (sejego) 

 *  

 */ 

 

#include <micro_ros_arduino.h> 

 

#include <stdio.h> 

#include <rcl/rcl.h> 

#include <rcl/error_handling.h> 

#include <rclc/rclc.h> 

#include <rclc/executor.h> 

#include <rmw_microros/rmw_microros.h> 

#include <unistd.h> 

 

#include <std_msgs/msg/u_int64.h> 

#include <digital_twin_msgs/msg/latency_test.h> 

 

#define LED_PIN 13 

#define RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc != 
RCL_RET_OK)){error_loop(del);}} 

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc != 
RCL_RET_OK)){}} 

 

 

rcl_publisher_t publisher_ping; 

rcl_publisher_t publisher_result; 

rcl_subscription_t subscription_pong; 

 

digital_twin_msgs__msg__LatencyTest msg_in; 

digital_twin_msgs__msg__LatencyTest msg_out; 

std_msgs__msg__UInt64 msg_res; 

 

rclc_executor_t executor; 

rclc_support_t support; 

rcl_allocator_t allocator; 

rcl_node_t node; 

rcl_timer_t timer; 

 

unsigned int msg_id = 0; 

unsigned long long time_offset = 0; 
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const char *node_name = "teensy_mcu"; 

const char *node_namespace = "tb_tm"; 

 

 

/** @brief Enter an error state, blinking the LED with a designated frequency 

 *  in an infinite loop 

 * 

 *  @param delay_ms indicating the period of blinking 

 *  @return None 

*/ 

void error_loop(int delay_ms) 

{ 

  while(1){ 

    digitalWrite(LED_PIN, !digitalRead(LED_PIN)); 

    delay(delay_ms); 

  } 

} 

 

/** @brief Synchronize time of MCU with uROS Agent time 

 *   

 *  This function makes a call to uROS agent on the host to 

 *  receive the UNIX time in nanoseconds. The current time of the MCU 

 *  starts counting from 0 when it launches, thus we can find the time 

 *  offset by subtracting MCU time from an actual UNIX time 

 *   

 *  @param None 

 *  @return None 

 *  

 */ 

void sync_time(void) 

{ 

    unsigned long now = micros(); 

    rmw_uros_sync_session(10); 

    unsigned long long ros_time_us = rmw_uros_epoch_nanos() / 1000;  

    // now we can find the difference between ROS time and uC time 

    time_offset = ros_time_us - now; 

} 

 

/** @brief Get current UNIX time of the MCU 

 *  

 *  Takes into account the calculated offset and returns the UNIX time in 
microseconds 

 *   

 *  @param None 

 *  @return uint64_t current time in microseconds 

 */ 

unsigned long long get_time(void) 

{ 

    // add time difference between uC time and ROS time to 

    // synchronize time with ROS 
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    unsigned long long now = micros() + time_offset; 

    return now; 

} 

 

/** @brief Publish ping message with the ID and time stamp 

 *  

 *  @param None 

 *  @return None 

 */ 

void publish_ping(void)  

{ 

    unsigned long long stamp = get_time(); 

 

    msg_out.seq_id = msg_id; 

    msg_out.stamp = stamp; 

    RCSOFTCHECK(rcl_publish(&publisher_ping, &msg_out, NULL)); 

    msg_id += 1; 

} 

 

/** @brief Publish latency result message to calculating Node on host 

 *  

 *  Calculates the difference in received time as a RRT. 

 *   

 *  @param pointer to message type 

 *  @return None 

 */ 

void publish_res(const void * msgin)  

{ 

    unsigned long long time_now = get_time(); 

    const digital_twin_msgs__msg__LatencyTest * msg = (const 
digital_twin_msgs__msg__LatencyTest *)msgin;  

    msg_res.data = time_now - msg->stamp; 

    RCSOFTCHECK(rcl_publish(&publisher_result, &msg_res, NULL)); 

} 

 

/** @brief Callback function with a wall timer used for publishing ROS 
messages periodically 

 *  

 *  Timer callback is executed everytime a timer fires an interrupt.  

 *   

 *  @param pointer to timer, int64_t last_call_time 

 *  @return None 

 */ 

void timer_callback(rcl_timer_t * timer, int64_t last_call_time) 

{   

    RCLC_UNUSED(last_call_time); 

    if (timer != NULL){ 

        publish_ping(); 

    } 

} 
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/** @brief Subscriber callback to perform operation when new message is 
received 

 *  

 *  @param pointer to received message 

 *  @return None 

 */ 

void subscriber_pong_callback(const void * msgin) 

{ 

    publish_res(msgin); 

} 

 

/** @brief Setup function to initialize all ROS2 nodes, publishers, 
subscribers, timers  

 *  and uROS executors 

 *  

 *  

 *  Initializes uROS executors, publishers with designated topics and message 
types, timers 

 *  and callbacks for publishing and handling subscriptions. In case 
something goes wrong, 

 *  MCU will enter into an error state with LED blinking 

 *   

 *  @param None 

 *  @return None 

 */ 

void setup() { 

  set_microros_transports(); 

   

  pinMode(LED_PIN, OUTPUT); 

  digitalWrite(LED_PIN, HIGH);   

   

  delay(1000); 

 

  allocator = rcl_get_default_allocator(); 

 

  //create init_options, if fails, will blink every 1s 

  RCCHECK(rclc_support_init(&support, 0, NULL, &allocator), 1000); 

 

  // create node 

  RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support), 
1000); 

 

  // create publisher, if fails, the LED blinks every 100ms 

  RCCHECK(rclc_publisher_init_default(&publisher_ping, &node, 
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, LatencyTest), "ping"), 
2000); 

  RCCHECK(rclc_publisher_init_default(&publisher_result, &node, 
ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, UInt64), "latency_results"), 
2000); 

   

  // create subscriber, if fails, the LED blinks every 100ms 
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  RCCHECK(rclc_subscription_init_default(&subscription_pong, &node, 
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, LatencyTest), "pong"), 
2000); 

   

  // create timer, 

  const unsigned int timer_timeout = RCL_MS_TO_NS(1); 

  RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout, 
timer_callback), 1000); 

 

  // create executor 

  RCCHECK(rclc_executor_init(&executor, &support.context, 2, &allocator), 
500); 

  RCCHECK(rclc_executor_add_timer(&executor, &timer), 300); 

  RCCHECK(rclc_executor_add_subscription(&executor, &subscription_pong, 
&msg_in, &subscriber_pong_callback, ON_NEW_DATA), 3000); 

   

  sync_time(); 

} 

 

/** @brief loop function where main code executes 

 *   

 *  spin the executor forever to run uROS 

 *   

 *  @param None 

 *  @return None 

 */ 

void loop() { 

  rclc_executor_spin(&executor); 

} 
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Appendix 5 – Latency software run on MATLAB 

latencyTestNode = ros2node("/latencyTestNode"); 

pause(2); 

global next; 

global recv; 

global lost; 

next = 0; 

recv = 0; 

lost = 0; 

pingSubscriber = ros2subscriber(latencyTestNode,"/tb_tm/ping"); 

pongPublisher = 
ros2publisher(latencyTestNode,"/tb_tm/pong","digital_twin_msgs/LatencyTest"); 

 

while true 

    msg = receive(pingSubscriber,10); 

    if next == msg.seq_id 

        recv = recv + 1; 

        out_msg = ros2message("digital_twin_msgs/LatencyTest"); 

        out_msg.seq_id = msg.seq_id; 

        out_msg.stamp = msg.stamp; 

        send(pongPublisher,out_msg); 

    else 

        lost = lost + msg.seq_id - next; 

    end 

     

    next = msg.seq_id + 1; 

 

    if recv >= 60000 

        quit(); 

    end 

end
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Appendix 6 – Latency test software run on Ubuntu VM 

/** 

 * @file latencyTestNode.cpp 

 * @author Sergei Jegorov (sejego) 

 * @brief This ROS2 Node records latencies, received and lost messages, 
calculates 

 * min, max and meand latencies in microseconds. 

 *  

 * @copyright Copyright (c) 2022 

 *  

 */ 

 

#include <iostream> 

#include <vector> 

#include <chrono> 

#include <ratio> 

#include <memory> 

#include <algorithm> 

 

#include "rclcpp/rclcpp.hpp" 

#include "rclcpp/time.hpp" 

 

#include <digital_twin_msgs/msg/latency_test.hpp> 

#include "std_msgs/msg/u_int64.hpp" 

 

#include "data_logger/data_logger.hpp" 

 

using namespace DataLogger; 

using namespace std::chrono_literals; 

 

class LatencyTestNode : public rclcpp::Node 

{ 

  public: 

    std::unique_ptr<SubscriptionLogger> p_input_sub; 

 

    LatencyTestNode() : Node("latency_test_node") 

    { 

      PongPublisher_ = this-
>create_publisher<digital_twin_msgs::msg::LatencyTest>("/tb_tm/pong", 10); 

       

      PingSubscriber_ = this-
>create_subscription<digital_twin_msgs::msg::LatencyTest>("/tb_tm/ping", 50,  

                                                    
std::bind(&LatencyTestNode::pingCallback, this, std::placeholders::_1)); 
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      LatencySubscriber_ = this-
>create_subscription<std_msgs::msg::UInt64>("/tb_tm/latency_results", 100,  

                                                    
std::bind(&LatencyTestNode::latencyCallback, this, std::placeholders::_1)); 

      p_input_sub.reset(new SubscriptionLogger("/tb_tm/ping")); 

 

      RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "Subscription logger 
initialized"); 

      RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "LatencyTestNode 
initialized"); 

    } 

 

  private: 

    /* Declare all message types, Publishers and Subscribers */ 

 

    rclcpp::Publisher<digital_twin_msgs::msg::LatencyTest>::SharedPtr 
PongPublisher_; 

    rclcpp::Subscription<digital_twin_msgs::msg::LatencyTest>::SharedPtr 
PingSubscriber_; 

    rclcpp::Subscription<std_msgs::msg::UInt64>::SharedPtr 
LatencySubscriber_; 

    digital_twin_msgs::msg::LatencyTest msg_to_send; 

     

    /* If the expected 'ping' message is received, it is considered received,  

     * and is sent back to the original publisher. Then, it receives the 
recorded latencies 

     * and stores them in a vector of latencies 

    */ 

    void pingCallback(const digital_twin_msgs::msg::LatencyTest::SharedPtr 
msg) 

    { 

      if(msg->seq_id == p_input_sub->next_id) { 

        msg_to_send.seq_id = msg->seq_id; 

        msg_to_send.stamp = msg->stamp; 

        p_input_sub->recv_counter += 1; 

        PongPublisher_->publish(msg_to_send); 

      } else { 

        p_input_sub->lost_count += 1; 

      } 

      p_input_sub->next_id = msg->seq_id + 1; 

    } 

 

    void latencyCallback(const std_msgs::msg::UInt64::SharedPtr msg){ 

      uint64_t latency_us = msg->data / 2; 

      p_input_sub->time_diffs.push_back(latency_us); 

    } 

}; 

 

int main(int argc, char ** argv) 

{ 

  rclcpp::init(argc, argv); 



 

 

68 

  auto ptr = std::make_shared<LatencyTestNode>(); 

  rclcpp::spin(ptr); 

  DataLogger::save_logged_data("latency_test_results.csv"); 

  rclcpp::shutdown(); 

  return 0; 

} 
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Appendix 7 – The comparison between ROS and ROS2 based 

on the propulsion drive of autonomous vehicle 
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Appendix 8 – Digital Twin Service Unit for AC Motor Stator 

Inter-Turn Short Circuit Fault Detection 
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Appendix 9 – ROS middle-layer integration to Unity 3D as an 

interface option for propulsion drive simulations of 

autonomous vehicles 
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Appendix 10 – Conceptual Modelling of an EV-Permanent 

Magnet Synchronous Motor Digital Twin 



 

 

89 



 

 

90 



 

 

91 



 

 

92 

Appendix 11 – Novel Digital Twin Concept For Industrial 

Application. Study Case: Propulsion Drive System 
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