
TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
43/2019

Cost-Effective Concurrent Hardware
Checkers for Network on Chip based

System on Chip

RANGANATHAN HARIHARAN

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Computer SystemsThe dissertation was accepted for the defence of the degree of Doctor of Philosophy inComputer and Systems Engineering on 27 June 2019
Supervisor: Prof. Dr. Jaan Raik

Department of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Dr. Tara GhasempouriDepartment of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Dipl.-Ing. Dr.techn. Andreas Steininger
Vienna University of Technology
Vienna, Austria
Dr. Johnny Öberg
KTH Royal Institute of Technology
Stockholm, Sweden

Defence of the thesis: 21 August 2019, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Ranganathan Hariharan
signature

Copyright: Ranganathan Hariharan, 2019 ISSN 2585-6898 (publication)ISBN 978-9949-83-467-9 (publication)ISSN 2585-6901 (PDF)ISBN 978-9949-83-468-6 (PDF)

TALLINNA TEHNIKAÜLIKOOL DOKTORITÖÖ
43/2019

Kulutõhusad süsteemiga paralleelsed
rikkemonitorid kiipvõrkudel põhinevatele

kiipsüsteemidele

RANGANATHAN HARIHARAN

To my Family ...

Table of contents
List of publications 10

Other related publications 11

Author’s contributions to the publications 12

Abbreviations 13

1 INTRODUCTION 141.1 Motivation . 141.2 Problem formulation . 151.3 Contributions of the thesis . 161.4 Thesis organization . 17
2 Background 182.1 Faults . 182.1.1 Defect, fault, error . 182.1.2 Classification of faults . 182.2 Fault models . 192.2.1 Stuck-at faults . 192.2.2 Single Event Effects: SET and SEU fault models 192.3 Fault simulation . 202.4 Mutation-based fault analysis . 202.5 Levels of abstraction . 212.6 Network-on-Chip router architecture . 212.6.1 Routing computation unit: LBDR 232.6.2 Arbitration unit: Round-Robin arbiter 262.6.3 Input buffer: FIFO . 282.6.4 Crossbar switch . 292.6.5 Even parity checkers . 302.6.6 Infrastructure of the complete router 312.7 Concurrent checkers . 322.8 Metrics to evaluate fault detection capability 322.9 Assertion based verification . 342.10 Data mining and assertion mining . 342.11 Metrics for data mining . 35
3 Online fault detection and minimization of the checkers 383.1 Literature review . 393.1.1 Thesis contributions . 413.2 Checkers’ evaluation and minimization flow 423.2.1 Extraction of pseudo-combinational version of the circuit 433.2.2 Synthesizing the checkers . 443.2.3 Environment generation for checkers’ evaluation 453.2.4 Fault-free simulation and debugging checkers/environment . . . 453.2.5 Fault simulation based evaluation of checkers 453.2.6 Checkers’ evaluation and minimization 483.3 Embedded online test packets . 493.4 Experimental results . 50

7

3.4.1 ELBDR experiment . 503.4.2 ELBDR and SARBITER experiment 523.4.2.1 Importance of the independence of checkers 543.5 Experiments on the whole router . 543.5.1 Experiment considering the overall set of checkers 553.5.2 Experiment considering the control part checkers only 563.5.3 Experiment considering the hybrid solution 573.6 Chapter summary . 57
4 Linking verification assertions and concurrent hardware checkers 594.1 Literature review . 604.1.1 Thesis contributions . 614.2 Correlation between behavioral fault model and structural fault model . . 614.3 Translation of liveness assertions to safety assertions 624.4 Conversion of safety assertions to hardware checkers 644.5 Experimental results . 654.5.1 ELBDR experiment . 654.5.2 SARBITER experiment . 654.6 Chapter summary . 66
5 Qualification and minimization of assertions 675.1 Literature review . 675.1.1 Thesis contributions . 695.2 Assertion qualification . 695.2.1 Assertion ranking . 705.2.2 Assertion fault analysis . 725.3 Assertion minimization . 735.4 Experimental results . 745.5 Chapter summary . 76
6 Conclusion 776.1 Future work . 78
List of figures 79

List of tables 80

References 81

Acknowledgements 87

Abstract 88

Kokkuvõte 89

Appendix 1 - Publication I 91

Appendix 2 - Publication II 97

Appendix 3 - Publication III 105

Appendix 4 - Publication IV 115

8

Appendix 5 - Publication V 125

Appendix 6 - Publication VI 131

Curriculum vitae 139

Elulookirjeldus 140

9

LIST OF PUBLICATIONS
The work of this thesis is based on the following publications:
Publication I: Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan,Thomas Hollstein, and Jaan Raik. Extended checkers for logic-based distributed routingin network-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages77–80. IEEE, 2014
Publication II: Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, GertJervan, and Thomas Hollstein. A framework for comprehensive automated evaluationof concurrent online checkers. In 2015 Euromicro Conference on Digital System Design,pages 288–292. IEEE, 2015
Publication III: Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, GertJervan, and Thomas Hollstein. Automated minimization of concurrent online check-ers for network-on-chips. In 2015 10th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2015
Publication IV: Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, ThomasHollstein, Gert Jervan, and Ranganathan Hariharan. A framework for combiningconcurrent checking and on-line embedded test for low-latency fault detection in nocrouters. In Proceedings of the 9th International Symposium on Networks-on-Chip,page 6. ACM, 2015
Publication V: RanganathanHariharan, BehradNiazmand, and JaanRaik. On fault detectionefficiency of reliability checkers obtained by verification assertion qualification. In

RESCUE 2017 Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. IEEE, 2017

Publication VI: Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and JaanRaik. From rtl liveness assertions to cost-effective hardware checkers. In 2018 Confer-
ence on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2018

10

OTHER RELATED PUBLICATIONS
Publication VII: Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik,Gert Jervan, and Thomas Hollstein. A framework for area-efficient concurrent onlinecheckers design. In MEDIAN 2015 Workshop on Manufacturable and Dependable

Multicore Architectures at Nanoscale, November 10-11, 2015

11

Author’s contributions to the publications
I In Publication I, the author was involved in developing the initial idea of evaluatingand minimizing concurrent checkers and in implementing the additional checkersto the existing set of checkers. The author also implemented the design used forexperimental case study. The author prepared the part of the paper for publication.
II Publication II is an extension of Publication I where the author contributed to thecore idea of devising checkers. The author was involved in implementing the checkersmodule. The author implemented the design used for experimental study. The authorprepared the part of the paper for publication.
III Publication III is an extension of Publication I where the author contributed to the coreidea of devising checkers. The author implemented the design used for experimentalstudy. The author prepared the part of the paper for publication.
IV Publication IV is an extension of Publication I where the author contributed to the coreidea of devising checkers. The author implemented the design used for experimentalstudy. The author prepared the part of the paper for publication.
V The goal of Publication Vwas to analyze the correlation between register-transfer levelassertions and gate-level checkers synthesized from the former. The author developedthe checker module and conducted checkers qualification procedure. The author alsoimplemented the design used for experimental study. The author prepared the partof the paper for publication.
VI In Publication VI, the author has proposed the framework flow and conducted theassertion fault analysis and minimization procedure. The author was also involved intranslating the liveness assertions to safety assertions. The author implemented thedesigns used for experimental case study. The author has prepared the part of thepaper for publication and presented it at the conference.
VII In , the author was involved in implementing the checker module. The author imple-mented the design used for experimental study.

12

Abbreviations
AC Allocation ComparatorBICST Built-In Concurrent Self-TestBIST Built-In Self-TestCEI Checkers Efficiency IndexCMP Chip Multi ProcessorsDMR Double Modular RedundancyDUV Design Under verificationDwC Duplication with ComparisonECC Error Correcting CodesEDC Error Detecting CodesFC Fault coverageFIFO First-In-First-OutFPR False Positive RatioFSM Finite State MachineHBH Hop By Hophr high-radixIC Integrated CircuitIIR Inherent Information RedundancyLBDR Logic-Based Distributed RoutingNI Network InterfaceNoC Network on ChipPE Processing ElementROWR Reduced Observation Width ReplicationRR Round-RobinRTL Register Transfer LevelSA Switch AllocationSAF Stuck-At FaultSEE Single Event EffectSET Single Event TransientSEU Single Event UpsetSoC System on ChipSSA Single Stuck-AtSSBDD Structurally Synthesized Binary Decision DiagramTMR Triple Modular RedundancyTT Turbo TesterVC Virtual Channel

13

1 INTRODUCTION
This thesis addresses a set of timely issues in reliability by proposing a methodology forgenerating cost-effective concurrent hardware checkers. The main emphasis is to reuse theverification assertions to generate hardware checkers for online, real-time fault detectionwithin fault tolerant systems.This introductory chapter presents the motivation leading to this research, followed bya more detailed problem formulation. Finally, a summary of the main contributions and anoverview of the thesis structure are provided.
1.1 Motivation
As the technology scale is shifting steadily from micro- to the nano-scale for today’s designandmanufacturing, the advancements in reliability have not kept up the pace [8]. Reliabilityis the probability that the system functions without failure in the specified environmentalconditions in the defined time interval. Reliable functioning of electronic systems is ofparamount concern as the millions of users depend on these systems every day. Unfortu-nately, most of the systems still fall short of users’ expectation of reliability. The lifetimefailure rate of the system can be illustrated by the use of the bathtub curve [9]. Figure 1shows the bathtub curve changes for different technology nodes over time. The failurerate is characterized by the phases of infant mortality (beginning of the bathtub curve),random constant failures (the smooth and straight horizontal middle section) and systemwear-out (the rising end of the curve), which produce a bathtub looking curve over thelifetime of the system. As it can be seen from the figure, the probability of lifetime errorshas been increasing rapidly with the transition towards nano-scale Integrated Circuits (ICs)and thus, there is a need to handle these lifetime issues.

Figure 1 – Failure rate over a life-time of a hardware system with shrinking technology

Figure 1 shows that due to extreme down-scaling trend in semi-conductor technologies,the digital circuits are becoming more susceptible to both permanent and transient faults.The adverse effect of process variations, aging and wear-out due to the nano-scale regimecauses the reliability to dwindle. Even though most of the faults are identified during themanufacturing test, detecting faults at run-time is becoming more and more imperative.An online fault detection mechanism aims to monitor the digital circuits at run-timeand detects the undesired behavior while the device is in operation. The online faultdetection can be achieved with the help of hardware checker infrastructure. However,designing checkers by hand can be tedious and error-prone task. Checkers can also beautomatically generated, but care needs to be taken so that the checkers do not haveunacceptable negative impact on performance, power or area overhead. Therefore, thereis a need for qualification and minimization of checkers. Moreover, due to scalability
14

issues at gate-level, there is a need to move to higher abstraction levels. The higher theabstraction level, the lower the simulation time, due to the smaller size and complexityof the design. Verification assertions written in a high-level language can be reused ingate-level verification by converting them to checkers to reduce the simulation time.Regarding architectures applied in nano-scale ICs, System on Chip (SoC) is a paradigmfor designing integrated circuit that integrates several cores on a single chip to accomplishthe system task. With the number of cores getting increased, the on-chip communicationefficiency has become one of the factors in determining the overall system performanceand cost. A packet based, on-chip intercommunication network known as Network on Chip(NoC) [10] is emerging as an alternative solution to address the increasing interconnectcomplexity. However, NoC based interconnects, because of advanced router architectures,complex operation and concurrent communication are highly susceptible to faults duringthe runtime of the system. Without taking an appropriate run-time solution to ensurethat such faults do not affect the operation of NoC based interconnects, there could bepossibility of data getting misrouted, dropped, corrupted, deadlocked or several types ofon-chip communication performance degradation.This thesis is addressing the challenges mentioned above.
1.2 Problem formulation
The general objective of this thesis is developing a methodology for generating a setof cost-effective concurrent checkers from verification assertions. Currently, designingsuch checker infrastructure is a manual and error-prone work. A possible solution toautomate the synthesis of concurrent checkers is to derive them fromverification assertions.However, the number of assertions is generally far too high to allow for area-efficientchecking infrastructure. Therefore, there is a need for qualification and minimization ofassertions with a prospect of reusing them as hardware checkers. To derive low-area, highfault coverage hardware checkers from many assertions, there is a need for a frameworkfor selecting a set of high-quality and minimized assertions by combining a data miningtechniquewith the fault analysis approach alongwith an assertion conversionmethodologythat converts liveness assertions into safety assertions. The framework should be capableof synthesizing these safety assertions to hardware checkers to be evaluated at the gatelevel to provide a cost-effective checking infrastructure.

Figure 2 – Overview of the Thesis flow

Figure 2 depicts the overall flow of the framework for generating a set of cost-effectiveconcurrent checkers from verification assertions. An assertion is a precise description ofwhat behavior is expected when an input is fed into the design. Assertion ascends the
15

level of abstraction closer to design specification. A verification environment consists ofa set of liveness assertions that collectively can detect a range of bugs in the considereddesign. However, not all the assertions are essential to detect this range: some assertionsare dominated by others, or by a set of other assertions, some assertions are equivalent interms of bug detection capabilities, etc. Discarding such assertions which do not detectany unique bugs leads to obtaining a set of minimized assertions. These assertion qualityestimation and minimization tasks should be carried out to derive a minimized set ofhigh-quality liveness assertions.
A checker is a hardware module whose output is a Boolean signal which assumes thevalue false when the sequence of values applied to the inputs do not satisfy the checkingcondition. For a liveness assertion, the output of the checker stays false until the conditionbecomes satisfied, whereas for a safety assertion, the output of the checker stays truewhen the condition is violated. And so, a translation procedure that translates the livenessassertions to safety assertions should be executed. The framework proceeds with thesynthesis of safety assertions along with the considered design. The output of the synthesisis the hardware checkers and design implementation in terms of logic gates. The gatelevel fault simulation is carried out for the synthesized hardware checkers along with theconsidered design to evaluate the fault detection capability of the checkers. A trade-offbetween the fault coverage and area overhead of the hardware checkers are eventuallyoutlinedwhich in turns leads to derive a set ofminimized hardware checkers. The optimizedset of concurrent hardware checkers should bematching the target values of fault coverageand area overhead constraints.
The correlation between the assertion quality and the fault detection capability of thecheckers needs to be studied and validated such that when assertion qualification andminimization task is carried out at a higher level of abstraction, it takes consideration ofthe gate-level fault coverage and area overhead of the hardware checker generated fromthese assertions.

1.3 Contributions of the thesis
This thesis proposes a framework for evaluating the fault detection capabilities of con-current checkers for NoC routers. The goal is to achieve low-latency, low area overheadand high fault coverage checkers outlining the trade-off between the area constraint andfault coverage constraint. Also, a framework is proposed for selecting a set of high-qualityliveness assertions by combining a data mining technique with the fault-analysis approachwhich allows reusing the verification assertions in hardware checkers synthesis. The qualityof assertions is validated by studying the correlation between the fault detection capabili-ties of the checkers and assertions.

The main contributions of this thesis are:
• Providing evaluation of the fault detection capability of the concurrent checkers byformally proving the absence or presence of true misses over all possible valid inputsfor a checker and targeting the minimum fault detection latency of a single clock-cycle. Pseudo-combinational extraction guarantees the possibility of fault simulatingthe circuit in an exhaustive valid range of conditions [Publication I, Publication II,
Publication III].

• A hybrid approach is proposed which combines concurrent checkers for control partwith embedded on-line test packets replacing the data-path checkers to outline thetrade-off between area-overhead and fault coverage [Publication IV].
16

• The correlation between the fault coverage obtained from the behavior fault simula-tion with the qualified assertions and the fault coverage obtained from the gate-levelsimulation of the checkers which are synthesized from the qualified assertions isstudied and validated [Publication V].
• A methodology is proposed for producing a set of high-quality hardware checkersfrom Register-Transfer Level (RTL) assertions [Publication VI].

1.4 Thesis organization
This thesis consists of 6 Chapters and 6 appendices.Chapter 1 introduces the thesis, which includes the motivation, problem formulationand the main contributions.Chapter 2 presents the background information about faults, fault models and faultsimulation. An overview of target NoC router architecture is provided, followed by theintroduction of the concept of concurrent checkers. Next, the metrics used to evaluate thefault detection capability of the checkers are introduced. At the end, assertions relatedtopics along with metrics to evaluate the assertion quality are provided.Chapter 3 describes the methodology flow for evaluating online fault detection andminimization of the hardware checkers. It also contains the literature review of relatedworks of the topics. Experimental results are also discussed.Chapter 4 outlines the linking of assertions and hardware checkers. First the correlationbetween the fault models is studied, followed by a translation procedure for assertionsand then a conversion method to derive hardware checkers. It also contains the literaturereview of related works of the topics.Chapter 5 describes the qualification method proposed for assertions followed by aminimization procedure to get a minimized set of high-quality assertions. It also containsthe literature review of related works of the topics. Experimental results are also discussed.Chapter 6 summarizes the conclusion and discusses the future research direction.The appendices 1 to 6 present research papers that form the basis of this thesis.

17

2 Background
This chapter provides the background for the topics that form the basis of the developmentsin this thesis. The topics include faults, faultmodels, fault simulation, fault analysis, levels ofabstraction, overview of NoC router architecture, concurrent checkers, metrics to evaluatefault detection capability, assertion-based verification, data mining and assertion mining,metrics for data mining.
2.1 Faults
2.1.1 Defect, fault, error
Defects are caused by process variations or random localized manufacturing imperfections.A fault is a representation of a defect reflecting a physical condition that causes a circuit tofail to perform in a required manner. A circuit error is a wrong output signal produced by adefective circuit. A failure is a deviation in the performance of a circuit or system from itsspecified behavior and represents an irreversible state of a component such that it mustbe repaired for it to provide its intended design function. A circuit defect may lead to afault, a fault can cause a circuit error, and a circuit error can result in a system failure [11].

Figure 3 – Threats to digital circuits

2.1.2 Classification of faults
Most faults are caused by defects (e.g. shorts, opens, etc. induced by thermal aging,improper manufacture or misuse) or by environmental influences (e.g. particle radiation,electromagnetic fields etc.). Faults can be classified into Soft and Hard faults [9] as shownin figure 4.

Figure 4 – Classification of faults

• Permanent fault: A permanent fault remains active until a corrective measure istaken. They are irreversible changes in the circuit. These faults are caused by someof the physical defects in the circuit like short circuits, broken interconnections. Allpermanent faults once have occurred, cannot get vanished and therefore the test todetect them can be easily repeated with the same results.
• Transient fault: A transient fault remains active for a short period of time. Theoccurrence of transient faults is random in nature and it is difficult to detect. Because

18

of their short duration, transient faults are often detected through the errors thatresult from their propagation. A common impact of a transient fault is a change ofvalue in a single bit.
• Intermittent fault: An intermittent fault becomes apparent not continuously, but atirregular intervals. Intermittent faults can be due to implementation flaws, agingand wear-out and to unexpected environmental conditions.

2.2 Fault models
A fault model is necessary for fault simulation, fault analysis and generating and evaluatingthe set of test vectors. A fault model should accurately reflect the behavior of defectsand it should be computationally efficient in terms of fault simulation and test patterngeneration. No single fault model can accurately enumerate all possible defects that canoccur. As a result, a combination of different fault models is often used in the generationof test vectors.In this thesis, the goal is to develop error-checker circuitry that is able to detect allSingle Event Transient (SET) faults. In the following, the stuck-at fault model, which is thebasis of all logic level fault models is presented, followed by the description of single eventeffects (including SETs) and higher abstraction level fault models.
2.2.1 Stuck-at faultsThe Single Stuck-At (SSA) fault model [12] is by far the most widely used fault model indigital testing. The reasons for its popularity lie in its ease of modeling and simulationand its close correspondence with real physical defects in digital integrated circuits. Threeproperties define a single stuck-at fault:

• Only one circuit line is faulty.
• The faulty line is permanently set to 0 or 1.
• The fault can be at an input or output of a gate.

One of the limitations of SSA is the fact that it models only a single fault at a time andtherefore ignores the effects of fault combinations. The reason for resorting to single faultinstead of considering multiple faults approach lies in the fact that while there exists 2nSSA faults in the circuit, where n is the number of lines, whereas there are as much as 3n-1multiple faults. Although the multiple-fault model is more accurate than the single-faultassumption, the number of possible faults becomes impractically large other than for asmall number of fault types and fault sites. Also, it has been shown that high fault coverageobtained under the single-fault assumption will result in high fault coverage under themultiple-fault model [11].
2.2.2 Single Event Effects: SET and SEU fault modelsSingle Event Effects (SEEs) are faults caused by a single, energetic particle striking a sen-sitive node in the circuit. SEEs are normally soft errors, which means they do not causepermanent damage to the circuit. The main causes of SEE are from radioactive decay ofthe packaging materials (alpha particles) or high-speed neutrons from cosmic rays collidingwith silicon atoms creating secondary particles, which then create an ionization track wherethe electrons or holes can get collected on the source or drain of a transistor, causing thesoft errors [2]. SEEs can be divided into single event transients (SETs) and single eventupsets (SEUs) as shown in figure 5:

19

• SET - A glitch caused by single event effect, which travels through combinationallogic and is captured into one or several storage elements.
• SEU - SEU is a change in the state of a storage element inside a device or system.

Figure 5 – Classification of Single Event Effects

2.3 Fault simulation
In general, simulating a circuit in the presence of faults is known as fault simulation. Themain goal of fault simulation is measuring the effectiveness of the test patterns. Any inputpattern or sequence of input patterns, that produces a different output response in afaulty circuit from that of a fault-free circuit is a test vector. Fault simulation is an essentialprocess for reliable design. Fault simulation is typically used to evaluate the fault coverageobtained by the set of test vectors which is defined as the fraction (or percentage) ofmodeled faults detected by test vectors divided by the set of total faults [11].

Fault Coverage= Number of Detected Faults
Total number of faults (1)

A fault simulation requires a fault model which provides a quantitative measure of thefault detection capabilities of a given set of test vectors.

Figure 6 – Concept of Fault simulation

2.4 Mutation-based fault analysis
In this thesis, we consider mutation-based fault analysis only. Mutation analysis inducesmany simple faults, called mutations into program (HDL design) to create a set of mutantprograms [13]. A mutation is a single syntactic change that is made to the program state-ment. Each mutant program should differ from the original program by one mutation.Each mutant is executed with the test cases and when a mutant produces an incorrect

20

output on a test case, that mutant is said to be killed by that test case. When this happens,the mutant is considered dead and no longer needs to remain in the testing process sincethe faults represented by that mutant have been detected. Mutants are limited to simplechanges on the basis of the coupling effect, which says that complex faults are coupled tosimple faults in such a way that a test data set that detects all simple faults in a programwill detect most complex faults [14].The quality of the test cases is measured by the percentage of faults detected (i.e.,mutants that they kill) against the total number of injected faults (i.e., injected mutants)which shows how good the verification environment is at detecting faults.
Fault coverage= Detected faults

Total number of injected faults (2)
2.5 Levels of abstraction
Due to extreme down-scaling, chip density reaches hundreds of millions of transistors perdie. A key method of managing the ever increasing complexity is to describe a systemat several levels of abstraction [15]. An abstraction is the simplified model of the system,showing only the selected features and ignoring the associated details. A higher level ofabstraction focuses on the most vital data like functional specifications. Whereas the lowerlevel of abstraction are more complex but it is more accurate and is closer to the real circuit.Four levels of abstraction considered in digital system development as shown in figure 7are

Figure 7 – Levels of abstraction

• Behavioral Level
• Register Transfer Level (RTL)
• Gate Level
• Transistor Level

2.6 Network-on-Chip router architecture
A System on Chip (SoC) refers to a single-integrated circuit composed of all the componentsof an electronic system. A SoC is heterogeneous, in addition to classical digital components:processor, memory, bus, etc.; it may contain analog and radio frequency components [16].With the increasing number of on-chip components and further advances in semiconductortechnologies, the communication complexity increases and there is a need for alternatives

21

to the traditional bus-based or point-to-point communication architectures. Althoughthese architectures have the advantages of simple topology, extensibility, and low areacost, these do not scale the system performance with the number of cores attached. As thenumber of cores gets increasing, it causes high latency which in turn decreases the systemperformance. Also, long wires cause high power consumption. Network-on-chip (NoC) hasemerged as the viable alternative for the design of modular and scalable communicationarchitectures [17].In NoC, the cores communicate with each other using a router-based packet-switchednetwork. A SoC can be composed of processing elements (resources). A processingelement can be memory, processor core, DSP or any IP block. Instead of connectingthem by dedicated point-to-point channels, an interconnection network is implementedas a set of shared routers and communication links between the routers. A processingelement can communicate through the network with any other module connected to thecommunication infrastructure, not only with its neighbors. This leads to advantages interms of structure, performance and modularity.Figure 8 provides an example of a typical NoC communication infrastructure. Thenetwork consists of routers (R) connected by interconnect lines. A processing element(Core) is attached to a router through a network interface (NI) module [10] enablingseamless communication between various cores and the network. The way the routersare connected to each other defines the network topology. It is worth noting that the NoCrouter used for experimental case study throughout the thesis was implemented in-house.The author was solely responsible for developing the entire NoC router design.

Figure 8 – An example of NoC based SoC

A NoC router consists of a control part and a data-path. The NoC router architectureused in this thesis for case study is implemented as follows: Data-path responsible fortransmission of the actual data to destination includes
• input buffers, implemented as First-In-First-Out (FIFO), one for each input port
• crossbar switch, implemented with MUXs, one for each output port
• output buffers, implemented as simple single-slot registers, one for each outputport

The control part affecting the flow of data through the data-path comprises of
22

• routing computation unit, which is based on Logic-Based Distributed Routing (LBDR)[18], one for each input port
• arbitration unit, which is based on Round Robin starvation free priority and one-hotencoding of the state, one for each output port.
The considered NoC topology used in this thesis is shown in figure 9 where the followingconsiderations are made such as 4x4, 2D mesh and the target Design Under verification(DUV) is router number 5, counting from the left top corner, from left to right and from topto bottom, starting from number 0. Each router has 5 input/output ports, one for eachdirection. North – N, East – E, South – S, West – W and Local - L. Local port is connected tothe Processing Element (PE) associated with router.

Figure 9 – Target NoC router number 5 in considered 4X4 2D mesh topology

The NoC router utilizes wormhole switching. Therefore, packets are sent in form of flits,consisting of a header flit, body flit(s) and a tail flit. Whenever a flit arrives at a NoC router,first it will be stored in the corresponding input buffer. Next, the routing computationlogic estimates the appropriate output port(s) based on the destination address storedin the header flit of a packet acquired from the input buffer and signals the arbiter. It isworth noting that the routing logic only becomes active upon receiving a header flit. Therole of the arbiter is to solve the contention when multiple input ports want to accessthe same output port, which is done based on prioritization algorithm. Since at the sametime multiple requests might be sent to different output ports, one arbiter is instantiatedfor each output port. An additional role of the arbiter is to control the data-path, that is,when the grant is given to an input port, arbiter allows data to be sent to its correspondingoutput port from the granted port, at the same time opening the correct path through thecrossbar switch.Figure 10 depicts the high-level overview of the NoC router architecture used in thisthesis. The architecture will be described in the following sections.
2.6.1 Routing computation unit: LBDR
The Logic-Based Distributed Routing (LBDR) mechanism [18] is used as the routing compu-tation unit in the NoC router. The design of scalable and reliable interconnection networksfor multicore chips introduces new design constraints like power consumption, area, andultra-low latencies. Usually routers can be easily configured to support most routing al-gorithms and topologies by using routing tables, but the routing table does not scale interms of latency and area.

23

Figure 10 – High-level overview of NoC Router Architecture

LBDR mechanism has been introduced to support different routing algorithms in 2DNoC. The mechanism relies on the use of only three bits per output port (excluding local,12 bits per router) which are grouped in two sets.
• 4 Connectivity bits, one for each output port excluding local, describing the topologyby indicating the connection of each router to its possible neighbor.
• 8 Routing bits describes the routing algorithm by considering whether packets canchange direction at next router.

This way of describing the routing logic with routing and connectivity bits ensures botheasy reconfigurability and scalability of the routing computation unit. LBDR removes theneed of a routing table and therefore it would be more scalable, as it only depends on alimited set of registers and bits in each router. The logic of LBDR is shown in Figure 11.

Figure 11 – LBDR mechanism [18]

LBDR is a distributed routing mechanism, thus, for routing computation it only relieson the current address of the router and the address of the destination node includedwithin the header flit of a packet. On the other hand, in source routing, the source nodecomputes the whole path and stores it in the packet header flit. So, LBDR avoids consumingsignificant network bandwidth. The LBDR becomes active (only) when a header flit isreceived and takes a decision regarding the direction to be followed by the packet at thenext hop, based only on destination address and address of the current router.
24

The following constraints are considered while designing the LBDR logic for NoC router
• Router 5 in a 4x4 2D mesh topology
• XY Dimension-ordered routing algorithm
• no 180° turn restriction, i.e., a packet coming from a port cannot be forwarded tothe same port
Based on the above constraints, the connectivity and routing bits are configured asfollows:
• Cn, Ce, Cw, Cs = 1
• Rne, Rnw, Rse, Rsw = 0
• Ren, Res, Rwn, Rws = 1
A connectivity bit Cx describes the absence (0) or presence (1) of a neighbor router ina certain direction. A routing bit Rxy describes the permission to forward the packet to xdirection and take y direction at the next hop (1) or not (0). A simplified version of LBDRlogic based on the above constraints is shown in figure 12, for instance for East input port. Itis worth noting that XY routing algorithm allows at most one port at time to be selected forforwarding a packet, furthermore the output port corresponding to the direction to whichLBDR is related cannot be selected. In order to cover a wide range of fault occurrences,one-hot encoding is considered for the flit type in the structure of flits.

Figure 12 – East LBDR logic for NoC router

LBDR is a sequential design, including flip-flops to store the current values of the outputrequests for the arbitration units. The proposed methodology for evaluating the faultdetection capability of the checker described in section 3 requires the extraction of pseudo-combinational circuit from the original sequential circuit. The pseudo-combinationalversion of the circuit is extracted by breaking the registers in two different set of signals,one representing the current values of the output request, now fed as inputs to thepseudo-combinational version, the other representing the newly evaluated values of theoutput request, according to the current values and functional inputs of the logic. Thepseudo-combinational version for ELBDR is shown in figure 13.Table 1 presents the checkers introduced for ELBDR logic. The checkers were devisedfor the pseudo-combinational version of the design. After optimization, the checkers areextended to the actual sequential version of the design.
25

Figure 13 – Pseudo-combinational version of ELBDR logic

Valid LBDR output If there is a request to the routing logic (the correspondinginput buffer is not empty and flit type is valid), LBDR hasto compute at least one valid output direction (accordingto XY routing).No LBDR output If no flit arrives (the corresponding input buffer is empty),all the output port signals of LBDR should remain zero.Single LBDR output If the corresponding input buffer is not empty (there isa request to LBDR), because of using XY routing, at mostonly one output port signal of the LBDR logic can becomeactive.Switch LBDR output If the corresponding input buffer is not empty (there is arequest to LBDR) and a non-header flit has arrived, LBDRoutputs should remain the same.Local port output If the corresponding input buffer is not empty (there isa request to LBDR) and a header flit has arrived, the lo-cal output should become active only if the packet hasreached its destination.
Table 1 – Checkers for LBDR logic

2.6.2 Arbitration unit: Round-Robin arbiter
Arbitration unit plays an important role in NoC router by serving simultaneous requestfrom multiple input ports and granting access to one of them based on a schedulingalgorithm implemented to send flits through a single output port. There are many differentimplementations for an arbitration unit, and most of the designs are implemented ina sequential way, describing a Finite State Machine (FSM), in which any different staterepresents a different possible granting condition.The arbitration unit should guarantee the fairness in scheduling, to avoid starvation,and to provide high throughput [19]. Round Robin (RR) arbitration satisfies fairness andfor this reason a RR arbiter is considered in this work. RR is based on dynamic prioritizing,giving highest priority to the L input port, then N, E, W and finally S and again it startsfrom L input port. This way of circular prioritization can guarantee that there would notbe any starvation and all input ports will eventually get access to their requested outputport. Also, each input port cannot hold an output port for more than a specific thresholdperiod during each arbitration round, therefore, the arbiter controls this by setting a timerto threshold period. It is noteworthy that, protecting the timer by checkers has not been

26

considered in this thesis. In the pseudo-combinational version of the arbiter circuit, thetimer logic was not considered. While in the sequential actual version of the arbitrationunit, the timer didn’t contribute to significant loss of fault detection coverage.A high-level overview of the functionality of a RR arbiter is shown in figure 14. The innerFSM of the arbitration unit present 6 different states, corresponding to the following 6possible granting conditions, in which the potential input requests are considered in thedecreasing order of priority.

Figure 14 – Overview of Round-Robin Arbiter

• IDLE - grant is given to none of the input requests
• GRANT_L - grant is given to the local input request
• GRANT_N - grant is given to the north input request
• GRANT_E - grant is given to the east input request
• GRANT_W - grant is given to the west input request
• GRANT_S - grant is given to the south input request
Different encoding style can be chosen for the states of the FSM in the arbiter. In thisthesis, one-hot encoding style is considered. Such that, it would be easier for the checkersto check if, for example, a fault occurs in the state register and violates the one-hot rule.The state variable of the arbiter FSM is used to generate grant signals for the input ports andselect lines of the crossbar switch. Thus, grant signals and select lines follow the one-hotencoding as well, in a way that at most one signal can be high during each arbitration, i.e.only one input port at time can send its data towards a certain output port. It is importantto emphasize the choice made for selecting the encoding style of the state-variable. Binaryencoding style would lead to reduced area for both the arbitration unit itself and its checkerlogic. On the other hand, in case of single Stuck-At Fault (SAF), it could be possible thatthe state variable changes from a valid value to another valid value, but incorrect. Withone-hot encoding of the state variable, any single SAF would lead to an invalid value forthe variable, thus making fault detection much easier and more effective.A simplified version for the arbitration unit is considered for south output port arbiter.The south arbiter cannot provide grant to the south input port because of no 180° turnrestriction. The pseudo-combinational version of South arbiter is shown in figure 15 byomitting clock and reset signals. To extract the pseudo-combinational version of arbiter,the register for the state variable is broken into two different set of signals. One fed as

27

input representing the current value of the state variable, the other considered as output,representing the newly evaluated value of the state variable, according to the current stateand the functional inputs of the logic.

Figure 15 – Pseudo-combinational version of SARBITER logic

Table 2 presents the checkers introduced for the RR arbitration unit. As previouslystated for the LBDR logic, the checkers were devised for the pseudo-combinational versionof the arbitration unit. Once optimization has been accomplished, the final set of checkershas been later extended to the actual sequential version of the arbiter.
Valid Grant output If there is a request from LBDR, arbiter must assert atleast one of the grant signals for the corresponding outputdirection.No Grant output If there is no request to the arbiter, it should not assertany of the grant signals for any direction.Invalid Grant output Whenever there is a request to the arbiter, the grant signalcorresponding to that specific requested direction shouldgo active, and invalid direction should not be chosen.Invalid Arbiter state State variable of the arbiter’s FSM cannot possess invalidvalues according to the one-hot encoding.Invalid IDLE state If the arbiter logic is in IDLE state, and there is a requestfor arbitration from LBDR, the circuit should not remainin IDLE state, i.e. a grant signal should be asserted.Priority Grant In case there are requests to the arbiter, it should followthe correct prioritization (Local, North, East, West andthen South), according to the current value of the statevariable.

Table 2 – Checkers for Round-Robin Arbiter logic

2.6.3 Input buffer: FIFO
The input buffer is implemented as First-In-First-Out (FIFO) for the targeted NoC routerarchitecture. Since the amount of sequential logic is large for a buffer, it is not feasible toextract the pseudo-combinational version of the circuit. Thus the checkers were devisedfor actual sequential version of the circuit from the beginning.The FIFO has been implemented using two pointers: Write pointer and Read pointer

28

along with two status signals: Empty and Full, which signals a neighbor router regardingthe status of the input buffer. Additionally, to accept the request for writing to the FIFO orreading from it, it has two more input signals: Write Enable and Read Enable respectively.Normally the data are written into FIFO if it is not full and theWrite Enable signal (whichcomes from a neighbor router in the network) is set to high. When a flit is written to thebuffer, the write pointer is incremented by one step and then points to the location notyet written to. In the same fashion, the read pointer is incremented whenever there isa request for reading from the buffer i.e., Read Enable is set to high and the FIFO is notempty. The FIFO is considered as a circular buffer i.e., once a pointer reaches the end ofthe buffer, the pointer just wraps around at the next increment and will point to the firstmemory location.Similar to [20], the buffer module is implemented with:
• one-hot encoding style for read and write pointers rather than binary encoding.
• a set of registers to store the data instead of an array of memory locations.

Like arbitration unit, one-hot encoding style is used in FIFO to make the design more robustto single SAFs, aiming to avoid the faulty but legal output situations i.e., one of the pointerschanges its value from a valid one to another one which is valid but incorrect. The depth ofthe FIFO is set to 4 slots, corresponding to 4 registers to store data coming from the inputport. Thus, 4 bits are used to describe the values of the pointers – 0001, 0010, 0100 and1000 as per one-hot encoding style. Each bit of the write pointer represents the enablesignal for the one of the memory registers. To pass the data to output of the buffer, aone-hot multiplexer is implemented at the output which is in-turn controlled by the readpointer.Initially, both write and read pointers will point to the same address in the buffer (0001).In case of FIFO write, the incoming data are written in the location currently addressedby the write pointer and then the write pointer is left shifted by one bit. Similarly, aftera read operation, the read pointer is left shifted by one bit. The following conditions areused to identify FIFO full or empty conditions:
• the Empty signal goes high whenever read and write pointer addresses the samelocation in the FIFO registers.
• the Full signal goes high whenever the read pointer is equivalent to the write pointerbut shifting one bit to the left.

It is worth noting that, to generating Full and Empty signals, only 3 registers of the FIFOcan be used at the same time for storing incoming flits.Table 3 presents the proposed checkers for 4-flits depth FIFO. Only the control partof the FIFO design was addressed, because the data-path is protected by parity checkerswhich will be described later.
2.6.4 Crossbar switch
Crossbar switch is implemented to connect inputs and outputs of the NoC router. Crossbarswitch can establish multiple parallel data paths. Thus, Crossbar switch must be designedin a way that can guarantee connection between every input port and every output portand connections realized by the crossbar are determined by arbiter. Each arbiter decideswhich of the input ports can access its corresponding output port. Crossbar switch isimplemented in the form of multiplexers shown in figure 16, one for each output port.

29

Reset Checker Whenever reset goes high, at the next clockcycle Empty flag should be high (readingand writing pointer are reset to the samevalue).Flags Checkers Empty and Full flags should never be highat the same time. Whenever the definingcondition occurs, the corresponding flagshould go high at the next clock cycle.One-hot pointers checkers Reading and writing pointers must respectone-hot encoding.Registers enable DMR checker Duplication and comparison for the logicenabling the writing operation in data reg-isters.Reading pointer update checker 1 Whenever Read Enable is high and the FIFOis not empty, at the next clock cycle thereading pointer should be updated.Reading pointer update checker 2 If either Read Enable is low or the FIFO isempty, at the next clock cycle the readingpointer should preserve its value.Writing pointer update checker 1 WheneverWrite Enable is high and the FIFOis not full, at the next clock cycle the writingpointer should be updated.Writing pointer update checker 2 If either Write Enable is low or the FIFOis full, at the next clock cycle the writingpointer should preserve its value.
Table 3 – Checkers for FIFO Control part

The select lines of the crossbar switch which are generated by the arbiters are encodedin the form of one-hot fashion to make the fault detection easier. Also, the consideredrouter is limited to XY routing, therefore connections between some inputs and outputsare not needed. For example, for the East crossbar switch, turns from North, South, East(no 180° turn) input ports to East output ports are restricted, only input connections fromLocal and West input ports are allowed. The similar design constraint is applied for theother crossbar switches for other output ports.
Since the checkers devised for Crossbar switch have resulted in unbearable area over-head, it was decided to follow Double Modular Redundancy (DMR) approach. Therefore,the MUXs in the crossbar switch are duplicated, then real and duplicated outputs arecompared.

2.6.5 Even parity checkers
Parity computation provides a simplest means of detecting single event faults. A paritybit may be generated from the various bits of the incoming data entering each input port.A parity bit can be even or odd based on design consideration. In this thesis, even paritychecker is considered. The parity checker evaluates the data before data leave the routerand indicate a parity error if odd parity is received. Figure 17 shows the high-level overviewof the targeted NoC router including parity generation and checker. Parity checkers areeffective in detecting the faults in the data-path, i.e., in the registers of the input andoutput buffers.

30

Figure 16 – Crossbar switch architecture

Figure 17 – Overview of NoC Router with embedded parity checking

2.6.6 Infrastructure of the complete routerIn the previous subsections, each block composing the considered NoC router has beenconsidered separately. Each block has been studied as a stand-module in checkers evalua-tion and minimization computation in the first place. When all the blocks are put togetherto build the whole NoC router, new undetected faults popped up. Most of these faults arerelated to the infrastructure of the router, i.e., the logic dedicated to correctly establish thecommunication between different modules, especially those belonging to the control part.Table 4 list the checkers devised to deal with infrastructure of the control part of therouter. The first one checks one-hot encoding for the flit type input of the LBDR, passed tothe routing computation logic from the corresponding input FIFO. The second and thirdcheckers address the simple logic which deals with the use of the grant signal produced bythe arbiters, both to enable the reading from the FIFOs and writing to the output buffers.The logic is duplicated since the structure of the logic is simple (group of 5 OR gates).
Flit type LBDR error Flit type field of a flit must respect one-hotencoding.FIFOs Read Enable DMR checker Logic producing Read Enable signals for theFIFOs (5 OR gates) is duplicated, then realand duplicated outputs are compared.Output registers enable DMR checker Logic producing enable signals for the out-put registers (5OR gates) is duplicated, thenreal and duplicated outputs are compared.

Table 4 – Checkers for the control part infrastructure

31

2.7 Concurrent checkers
In this section, the concept of concurrent checkers is introduced. A set of checkers (Checker

Figure 18 – The concept of Concurrent checker

logic) is generated and then connected to the functional (primary) inputs and outputsof the circuit. Figure 18 shows the functional logic augmented with checker logic. Thesecheckers are introduced based on functional assertions derived from relationships betweenvariables corresponding to inputs and outputs and also possibly internal signals of thecircuit. The checker logic targets the faults at lines within the functional logic (marked bygreen circles). On the other hand the checkers are not designed to detect faults occurringat
• functional inputs preceding the checkers input
• function outputs succeeding the checkers inputs

marked with red cross. In the first case the checker logic would normally not be ableto detect that a functional input has been altered by a fault, indeed the behavior of thecheckers is based on the assumptions that the functional inputs are correct. In the lattercase the situation is mirrored, the eventual fault on a functional output would occur afterthe scope of the checker logic.
2.8 Metrics to evaluate fault detection capability
In this section, the metrics which are used to evaluate the fault detection capability of thecheckers are explained.Traditionally the most significant index to describe fault detection is fault coverage,but its conventional definition cannot be considered when checker logic is introducedto achieve online fault detection [3]. Fault detection is generally evaluated feeding theconsidered circuit with a suitable test patterns set, considering SAFs in all the possiblelocations, and marking a fault as detected when it’s made observable to the circuitryoutputs by a certain vector. Finally, the index is obtained as the ratio between detected andundetected faults. This conventional definitionmakes absolutely no sense in the evaluationof checkers applied to functional logic. The behavior of each checker strongly depends onthe considered input vector, i.e. a checker could detect a fault with a certain test pattern,while missing it with a different one. For this reason, it makes no sense to consider a faultdetected by checker logic as soon as there is a checker flagging it.In traditional fault detection evaluation, given a fault at a line within the functionallogic and a set of input stimuli, the possible scenarios are

• fault is detected (i.e. it is observable at the outputs)
• fault is not detected (i.e. it is not propagated to the output)

32

In this thesis, a classification of scenarios, using the following terminology to describethe possible different situations in detection of an injected fault is given:
• Case 1: Fault occurs at an internal line and is visible at functional output(s) andchecker logic flags a violation. The term True Detection is used to describe thissituation, since a critical fault is effectively detected by the checker.
• Case 2: Fault occurs at an internal line but is not visible at primary output(s). Checkercatches the fault and flags a violation. The term False Positive is used to describethis situation. False positive is not harmful because an error is flagged which did nothave any effect. However, it has negative impact on design’s performance becausenormally it causes re-execution of the task.
• Case 3: Fault occurs at internal line but is not visible at primary output(s) and thechecker logic does not detect the violation. The term BenignMiss is used to describethis situation. Benign miss shows correct operation by the checker.
• Case 4: Fault occurs at internal node and is visible at primary output(s). Checkerdoes not detect violation. The term True Miss is used to describe this situation,which is the worst possible case. True miss means that the fault propagates to thefunctional outputs and further propagates to the system. However, the system hasno information that a critical fault has occurred.
With visiblemeans the situation in which, given a fault and an input test pattern, thefault is propagated to the functional outputs of the considered logic, i.e. the values ofthese outputs are different from those of the fault-free simulation. Table 5 summarizesthe four possible scenarios. HereXmeans fault is visible at the output and X means notdetected at the output.

Case Functional Logic Checker LogicTrue Detection X XFalse Positive X XBenign Miss X XTrue Miss X X

Table 5 – Checkers Evaluation Metrics

It is worth noting that the class of faults described as False Positives must be carefullyconsidered. Even though harmless on a functional ground, due to the fact the fault is notpropagated to the primary outputs of the considered circuit, if checker logic detectingfaults are evaluated to repeat operations, this may lead to useless re-executions of tasks,causing undesired delay.The following three metrics are introduced to evaluate the fault detection quality ofthe checkers:
• FC - Fault coverage
• FPR - False Positive Ratio
• CEI - Checkers Efficiency Index

33

The fault coverage metric is redefined according to the concurrent online detection capa-bility of the checker logic compared to the conventional fault coverage metric.Let D be the number of occurrences of true detections, F be the number of occurrencesof false positives, W be the number of occurrences of true misses and X be the number ofoccurrences of benign misses detected by checker logic with the considered set of inputstimuli.FC is defined as
FC =

D+X
D+X +W

(3)
FC can be considered as the probability of checkers behaving correctly on a larger set ofsituations.FPR is defined as

FPR =
F

F +X
(4)

FPR describes the ratio of false positives among those faults which are masked towardsthe primary outputs of the considered functional design.CEI is defined as
CEI =

D
D+W

(5)
CEI can be considered as the probability that checkers detect critical faults, those effectivelyleading to a faulty output behaviour in the considered design. It is fundamental to underlinethat this newly devised index cannot be straightforwardly compared with traditional faultcoverage evaluation, thus it is important not to be narrow-minded towards results that maynot immediately track the unity value, avoiding discarding them, as it is commonly donetowards fault coverage results which are not close to 100%. Before concluding about achecker as ineffective, or on the other hand extremely effective, it is fundamental to devisethe right set of input patterns to be used in evaluating the efficiency of the detectiongranted by the checker logic, because the CEI value may change drastically, since thebehaviour of the checker logic strictly depends on the considered set of stimuli.
2.9 Assertion based verification
Assertion-based verification (ABV) [21], has gained popularity in verification process byproviding a more powerful and easy way to verify complex digital systems. ABV has beensuccessfully applied at multiple levels of verification abstraction ranging from high-levelassertions within transaction-level testbenches down to implementation-level assertionssynthesized into hardware. An assertion is a conditional statement that checks for specificbehavior and displays a message if it occurs. Assertions are generally used as monitorslooking for bad behavior but may be used to create an alert for desired behavior as well.Assertions can be used to verify the functional correctness of the design with respect tothe expected behavior. Some of the benefits of assertions are reducing verification time,catching errors earlier, focussing the design effort and pinpointing sources of error.
2.10 Data mining and assertion mining
Some definitions and concepts concerning data mining and assertion mining are reportedinitially. Data mining [22] [23] deals with item sets, transactions and association rules,which are defined as follows .Let I = {i1, i2, . . . , in} be a set of items. Let D = {d1,d2, . . . ,dm} be a data set, i.e., a setof observations, called transactions, with respect the set of items I. Each element in D

34

contains a subset of the items in I. An association rule is defined as an implication of theform X → Y where X , Y ⊆ I and X ∩Y = /0. X and Y are called item sets.Figure 19a shows an example of a data set which describes the behaviours of customersin a supermarket with respect to a set of items (i.e., milk, bread, . . . , coffee). Data miningapproaches are generally intended to extract association rules from data sets, whichare then used to predict non trivial, implicit, previously unknown and potential usefulinformation, like, for example, "when milk is bought bread and coffee are generally boughttoo", which is expressed by the association rule Milk→ Bread∧Co f f ee.Assertion mining deals instead with execution traces and assertions. Figure 19b shows,an example of an assertion in Linear Time Logic is always(p1→ next(p2∧ p3))which statesit always happens that p2 and p3 are satisfied one simulation instant later than p1 becomestrue. Assertions are generally considered as a formula in the form of A→C, where theantecedent A and the consequentC are composed of propositions, logic connectives, andtemporal operators according to the selected temporal logic.The overall goal of data mining is to extract information from a data set and transformit into an understandable and useful structure. This structure allows user analyzing datafrommany different dimensions, categorizing them and summarizing correlations betweenitems in a database. For example, analyzing data from behaviours of different customers asreported in Figure 19 leads to obtain useful information and helps analyzers to decide whichtrend is more interesting for marketing. Association rules can also be extracted when dataare referred to time sequences. In this case, temporal data mining strategies are adopted,whose goal is to discover hidden relations between sequences and sub-sequences ofevents [24]. In any case, the mined (temporal) association rules are a prediction for futurebehaviours, which may be true or not. Metrics are thus used to estimate the probabilitythat rules extracted from past observations can be valid also in the future.On the contrary, the main goal of assertion mining consists of extracting formulas thatexactly describe the functionality implemented in the DUV, which is not ambiguous anddoes not vary in the future, except in the case the implementation is changed. Assertionmining is thus not intended to predict the future, but to formalize the actual set of DUVbehaviours.Summarizing, main similarities among data mining and assertion mining are the pres-ence of a set of data that represents observations with respect to past behaviours exposedby the observed target (customers, DUV, ...), and the need of extracting association rulesthat formalize such observations. Items, data sets, and association rules in data miningcorrespond, respectively, to propositions, execution traces, and temporal assertions inassertion mining. Meanwhile, the main difference between data mining and assertionmining is represented by the concept of transaction (i.e., a row in a data set), which doesnot have a direct correspondence with a row of an execution trace, because an assertionis composed by one antecedent and one consequent that are true in different instantsinside the execution trace. This difference impacts on the way metrics typically adoptedfor evaluating association rules in data mining can be reused for measuring the qual-ity/interestingness of assertions. Finally, another difference is related to the final goal ofthe mining: in one case the prediction of future behaviours, in the other the formalizationof actual (except in the case the DUV functionality is changed) behaviours.
2.11 Metrics for data mining
In the context of assertion qualification [25], metrics that provide information about thedegree of accuracy of a rule with respect to the probability it will hold in the future (like forexample, confidence, which estimates the joint probability between occurrences of theantecedent and the consequent in the data set) are not relevant, since the assertions under

35

(a) Example of data mining

(b) Example of assertion mining

Figure 19 – Similarities between data mining and assertion mining

analysis are always true on the DUV. Rather, the metrics that measure the interestingnessof an assertion with respect to covered behaviours, number of activations, and correlationbetween antecedent and consequent and etc. are worth interested. For this reason, thefollowing metrics support, correlation coefficient and strength measure are identifiedand their definition in the context of data mining is hereafter reported together withconsiderations related to how they can be adapted to be suited for assertion evaluation[26].
Definition 1 Given a set of items I, and the corresponding set of transactions D, a rule
X → Y has support S if X and Y occur concurrently in S percent of transactions in D.

In practice, to compute the support of an association rule, it is necessary to count howmany rows in the transaction set table contain bothX andY . In case of temporal assertions,the support corresponds instead to the number of times a temporal assertion occurs (i.e.,its antecedent is fired and consequently its consequent is satisfied) in the execution traceswith respect to the total number of occurrences corresponding to the other temporalassertions under analysis. For example, let us consider a temporal assertion A→C thatoccurs 10 times in a set of execution traces. If it belongs to a set of temporal assertionsthat globally occur 1000 times in the same execution traces, then the support of A→C is10/1000 = 0.01.
Definition 2 Given a set of items I, and the corresponding set of transactions D, the
correlation coefficient of the rule X → Y is the co-variance of X and Y divided by the
product of their individual standard deviations.

More informally, the correlation coefficient can determine if antecedent and consequentare related or not by observing whether occurrences of the antecedent depend on oc-
36

currences of the consequent and vice-versa. The higher the correlation coefficient is, thehigher is the interestingness of the analyzed rule.
Definition 3 Strength Measure is a product of quantities such as Support (Definition 1) and
Correlation Coefficient (Definition 2) but with giving priority in the region of rules/assertions
with low occurrences but highly correlated with other rules/assertions.

37

3 Online fault detection and minimization of the checkers
Online fault detection in digital systems is of paramount importance for reliable operationof the system. An online fault detection mechanism aims to monitor the digital systems atrun-time and detect the undesired behavior while the system is in operation. The onlinefault detection can be achieved with the help of hardware checker infrastructure. Thechecker infrastructure runs concurrently with the system operation and performs nearinstant fault detection. In [27, 28], end-to-end error detection is discussed, the use of anend-to-end, epoch-based detecting scheme results in significantly delayed fault detection.Also, any faults that do not cause a functional error at the output (like packet loss, flit drop)will never be detected.This thesis focuses on the faults in the Network on Chip (NoC) routers. Componentsinside the NoC router can be divided into two parts, the control part and data path. Faultsin the control part are very crucial, hard to be detected. Faults in the control part may leadto flit drop, packet loss, packet mixing, misrouting of packets, deadlock, livelock. Checkersusually perform a simple comparison and so checkers are usually comprised of simplecombinational circuits. A trade-off between the fault detection capabilities and the areaconsumption of the checkers can be eventually outlined. Also, several checkers mightoverlap with each other in terms of fault coverage. Therefore, there is a need to minimizethe checkers to get maximum fault coverage with low area overhead.Fault detection in the data-path can be achieved through error detection and correctionmechanisms. Simple parity checks will detect and may even correct errors affecting thecontents of in-flight packets [29]. Careful consideration must be made while implementingthe fault detection mechanisms for the data-path against the benefits it can bring. [27,30] shows that the complex Error Detection and Correction (EDC) schemes may requireunacceptably high area overhead. Alternatively, test packets generated by a dedicatedhardware structure to detect faults in the data-path require very little area and provideshigh fault coverage.This chapter is based on the following publications:

• Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, ThomasHollstein, and Jaan Raik. Extended checkers for logic-based distributed routing innetwork-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages77–80. IEEE, 2014 [Publication I]
• Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert Jervan,and Thomas Hollstein. A framework for comprehensive automated evaluation ofconcurrent online checkers. In 2015 Euromicro Conference on Digital System Design,pages 288–292. IEEE, 2015 [Publication II]
• Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jervan,and Thomas Hollstein. Automated minimization of concurrent online checkersfor network-on-chips. In 2015 10th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2015 [Publication
III]

• Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Hollstein,Gert Jervan, and Ranganathan Hariharan. A framework for combining concurrentchecking and on-line embedded test for low-latency fault detection in noc routers.In Proceedings of the 9th International Symposium on Networks-on-Chip, page 6.ACM, 2015 [Publication IV]
38

3.1 Literature review
Several research works have been carried out in the field of fault detection and faultrecovery to increase the fault tolerance and reliability of NoC. With extreme down scalingof the feature size, SoC that have NoC interconnects are becomingmore vulnerable to faultsduring the run-time. Thus, detecting a fault at run-time is rapidly becoming a necessity.Efficient, accurate and quick- responding fault detection is also a prerequisite of successfulfault recovery. However, the fault recovery approaches are beyond the scope of this thesis.

Fault tolerance enables the system to function correctly in presence of one or morefaults within the system. Usually fault tolerance is achieved with some sort of redundancytechniques and one such technique is Hardware redundancy. Hardware redundancy ap-proaches such as Triple Modular Redundancy (TMR) and Duplication with Comparison(DwC) are helpful in detecting the faults, but along with that it brings a lot of drawbackssuch as increase in area, power consumption. Also, the reliability of these redundancy tech-niques decreases as the lifetime of the system increases [9]. Though these approaches arehelpful in detecting the faults, it lacks the information regarding the fault location withinthe system. An alternative to minimize these overheads is the selective TMR approachthat identifies Single Event Upset (SEU) sensitive sub-circuits that are to be protected [31].Even this approach lacks the ability to localize the faults in the system. On the other hand,coding techniques such as Berger [32] or Bose-Lin [33] along with information redundancyaddress fault detection. In many works the coding techniques are combined with synthesis[34, 35, 36]. However, these approaches suffer from significant area overhead, and theyrequire alteration of the original circuit to generate the codes. Hardware redundancy isalso applied in detecting the faults in NoC. Since NoC may integrate hundreds of switchesin a single chip, hardware redundancy imposes a high area overhead.
Concurrent on-line Built-In Self-Test (BIST) techniques such as Built-In Concurrent Self-Test (BICST) [37] and Reduced Observation Width Replication (ROWR) [38] provide highfault coverage at low area overhead, but only consider a limited subset of pre-computedinput test vectors. Hence these approaches are likely to miss faults occurring in a normalcircuit operation, addressing a limited set of the possible errors. [39, 40, 41, 42] deals withBIST strategies to test NoC architectures. However, BIST solution is not suitable to detecttransient faults.
Multiple different alternatives, which do not require changes in the addressed logic,based on concurrent monitors - checkers - were presented. Authors of [43] proposea framework to extract checkers from logical implications derived from the structuraldescription of the considered circuit, which may seem comfortable and is feasible, butsuffers low coverage and extremely huge area overhead, often exceeding Double ModularRedundancy (DMR) solutions.
Grecu et al. introduced a method for on-line fault detection and location in NoCcommunication fabrics [44]. The faults in the communication links and the faults in theNoC switches can be distinguished by the proposed method. The work is based on theutilization of code-disjoint routing elements, combined with parity check encoding for theinter-switch links. Because of design constraints, this method targets the fault detectionand location in the data path of the routing unit only. In [45], a hybrid method is presentedto synthesize a fault-secure NoC switch employing data encoding at data path (data flits)and concurrent error detection structure for dealing with faults not covered by the flitencoding using multiple parity trees. However, the work still results in more than 50% areaoverhead.
In [28], SafeNoC, an end-to-end runtime error detection and recovery technique hasbeen introduced to ensure the functional correctness of Chip Multi Processors (CMP)

39

interconnects. SafeNoC overlay the interconnect with a lightweight and simple checkernetwork. A look-ahead signature is delivered through the checker network for each datapacket which is sent through primary network. SafeNoC detects functional errors bycomputing and comparing the signature of every received data packet with the signaturedelivered through the checker network. SafeNoC does not provide protection againstdropped packets or flits and it cannot recover from errors arising from aliasing of signatures.SafeNoC also does not localize the fault, rather it detects and recovers the interconnectsfrom the fault. The reconstruction and recovery time depend on the severity of thefunctional error. In case a greater number of packets are affected by the error then SafeNoCcan take up to 39M execution cycles to recover the system from the fault. However, thefault recovery approaches are beyond the scope of this thesis. SafeNoC is limited tointerconnects only.
Park et al. [46] have examined the impact of transient faults on the reliability of on-chip interconnects and have developed an approach to either protect against or recoverfrom them. For the inter-router link faults, they use Hop-By-Hop (HBH) retransmissionmethod. However, the retransmission buffer can add latency to the system in case ofa fault occurrence. Moreover, it is not mentioned whether the retransmission bufferitself is protected against SEUs or not. Regarding the control part of router, an AllocationComparator (AC) unit is proposed, which provides full error protection to the VirtualChannels (VCs) and Switch Allocation (SA) units at minimal cost, without affecting therouter’s critical path. Like [28], the approach is limited to interconnects.
Several works have proposed utilization of concurrent checkers for checking faults inthe control part of NoC router. In [47], the Inherent Information Redundancy (IIR) in thecontrol path of NoC routers is utilized to manage transient errors, preventing packet lossand misrouting. The goal is to capture faults that might happen in the routing computationunit or in the arbitration unit of NoC router. However, the proposed method is effectiveonly in routers using XY routing. Yu et al. [48] have proposed a set of error detection unitsfor the NoC routing blocks implemented using Logic-Based Distributed Routing (LBDR) fortopologies with high-radix (hr). The IIR in LBDRhr logic is exploited to manage transienterrors in the routers. LBDRhr provides better scalability compared to routing tables. Despitethe advantages, the proposed checkers for LBDRhr logic cannot reach 100% fault coverage.As the number of faulty gates increases, the error detection rate slightly decreases. Thus,the proposed method achieves a high error detection rate in smaller and simple NoCsonly. Furthermore, the work only focuses on the routing logic of a NoC router and notconsidering the full control part.
In [1], the set of checkers introduced in [48] are extended for the baseline LBDR logic toincrease the fault coverage (up to 64.9%). LBDR mechanism [18] is a scalable solution forthe routing computation unit compared to routing tables. The mechanism describes thetopology and the routing function in form of fixed sets of connectivity and routing bits,therefore, the logic can be easily re-configured. The proposed checkers cover most singlestuck-at faults occurring in the LBDR circuitry. Fault injection experiments have shown thatthe proposed method allows increasing the fault coverage 3 times (compared to [48]), ofcourse at the price of 26.8% checker area overhead. However, still 100% fault coverageis not reached, and the area overhead minimization aspect of the checkers is also notaddressed.
Alaghi et al. [49] have presented a method based on high level fault model for onlineerror detection and diagnosis of NoC switches. The proposed method deals with routingfaults that cause NoC packets to be forwarded to output ports that are not intended to.However, this work targets only functional level fault coverage and does not guarantee a

40

high coverage for structural faults. The fault model does not detect nor diagnose whenthe packets are dropped, misrouted or lost-destination.Parikh et al. [50] have proposed ForEVeR, a solution that complements the use offormal methods and runtime verification to ensure functional correctness in NoCs. Formalverification, due to its scalability limitations, is used to verify the smaller modules, such asindividual router components. To protect against escaped design errors with a runtimetechnique, a network-level error detection and recovery solution, whichmonitors the trafficin the NoC and protects it against escaped functional bugs that affect the communicationpaths in the network. To this end, ForEVeR augments the baseline NoC with a lightweightchecker network that alerts destination nodes of incoming packets ahead of time. Theuse of an end-to-end, epoch-based scheme, ForEVeR results in significantly delayed faultdetection.Authors of [51] have proposed NoCAlert, a comprehensive on-line and real-time faultdetection mechanism that demonstrates 0% false negatives within the interconnect forthe fault model and stimulus set used. It employs a group of lightweight micro-checkermodules that collectively implement real-time hardware assertions based on the conceptof invariance checking. The checkers operate concurrently with the normal NoC operationand can detect a wide range of faults instantaneously. Low overhead checkers were usedto detect faults without the need of periodic or triggered-based testing. The faults that arenot covered correspond to non-catastrophic failures. However, the minimization aspect ofthe area overhead of the checkers is not addressed.In [52], an online checking mechanism, designed specifically for the switch allocator ofa NoC router is proposed. The proposed checkers for the switch allocator of the routerhave self-checking property. The authors did not mention the faults that can occur at thegate-level structure of the switch allocator; therefore, it is not possible to verify whetherthe proposed checking mechanism can eliminate all single points of failure which can occurat the gate-level.The use of embedded test configurations for testing the data-path of NoC routershas been proposed in [53], with design for-testability structures included in [54] and BISTapplication in [42]. However, all thementioned approaches are targeting the global networkand not a concrete router. Furthermore, only off-line test scenarios have been consideredin [53, 54, 42].
3.1.1 Thesis contributionsThis thesis proposes a framework for formal qualification of checkers and forminimizing thearea overhead with the given fault coverage constraints. The goal is to achieve low-latency,low area overhead checkers with high fault coverage for NoC routers. Different from theabove-mentioned approaches, the online fault detection and checkerminimizationmethodproposed in this thesis provides the following novelties:

• Formally proving the absence or presence of true misses over all possible validinputs for a checker, whereas in the case of traditional fault injection only statisticalprobabilities can be calculated without providing the user with full confidence offault detection capabilities [Publication I, Publication II, Publication III].
• Targeting theminimum fault detection latency of a single clock-cycle. This is achievedby representing the circuit under test as a pseudo combinational design and concen-trating on combinational checkers [Publication I, Publication II, Publication III].
• Providing accurate, automated evaluation for the fault detection characteristics ofthe checkers. It allows finding cost-efficient trade-offs between the fault detection

41

capabilities and the required overhead area [Publication I, Publication II, Publication
III].

• Combination of concurrent checkers with embedded on-line test packets to enablecost-effective trade-offs between area-overhead and fault coverage [Publication
IV].

In the following sections, the methodology for devising, evaluating and minimizing con-current checkers is discussed. Followed by experimental results regarding the applicationof framework to the control logic of the NoC router is studied. Finally, a short summary ofthe chapter is provided.
3.2 Checkers’ evaluation and minimization flow
This section focuses on the proposed methodology flow for devising, evaluating andminimizing concurrent checkers. The details regarding the concept of concurrent checkersis already covered in section 2.7.

Figure 20 – Checkers Evaluation and Minimization flow

Figure 20 depicts the proposed methodology flow. Initially the flow starts by consid-ering a design under verification. Next, the pseudo-combinational version of the circuitis extracted, and it is synthesized. An initial set of checkers are devised from a set ofcombinational assertions. Additional checkers are also added to describe the relations onpseudo-primary inputs/outputs to the checker suite to increase the fault coverage. Theinitial set of checkers include set of structural as well as functional checkers which are thensynthesized to be used in fault simulation. Next, the checker evaluation environment is
42

created during the environment generation step by generating an exhaustive valid set ofinput stimuli. A fault free simulation is performed to verify the correctness of environmentand checkers. Once the correction is made, using the bug-free checkers, the checkersevaluation is performed to measure the fault detection capability of checkers using themetrics discussed in section 2.8. In addition to fault detection capability estimation, thecheckers weight information i.e., the number of true detections and its area consumptionis also calculated. Using a greedy heuristics, a minimization procedure is carried out byconsidering the fault detection capability, weight, area of a checker as an input. The finalstep of the methodology flow is the minimized set of checkers with high fault detectioncapability and low area consumption.Traditionally, to evaluate the fault detection capability of the checkers, fault injectionhas been applied. Fault injection refers to injecting fault into a circuit at a certain time stepand simulating it with the input stimuli to see whether any functional output of the circuitchanges and whether any of the checkers detect the fault. Since it is generally impossibleto inject and simulate all the faults at each circuit line at each time step, a statisticallysignificant sample of random faults would normally be injected and simulated. This in turnwould introduce the risk to evaluate the checkers in an incomplete scenario, providingsuperficial and probably misleading results concerning fault coverage.The proposed methodology flow requires the extraction of a pseudo-combinationalversion of the design i.e., a version of the circuit where the feedback loops of the sequentialcircuits are broken. The proposed methodology
• is complete, i.e. it allows proving the absence or presence of true misses.
• provides minimal detection latency, because a pseudo-combinational version of thecircuit is extracted, thus single snapshots of time corresponding to single clock cyclesare considered.
• allows minimization of the initial devised set of checkers for the considered design,based on the weights output information provided by fault simulator tool, openingprospective of seamless trade-offs in between fault detection coverage and areaoverhead.
The completeness of the approach is a key feature: pseudo-combinational extractionguarantees the possibility to fault simulate the circuit in an exhaustive valid range ofconditions, overcoming the feasibility issues of traditional fault injection approaches.Moreover, considering the pseudo-combinational version of the design provides single

clock cycle latency detection capabilities for the checkers, since single instances of timecorresponding to a clock cycle are considered. Furthermore, analysis of sequential circuits,with temporal checkers would not be feasible because of the combinatorial explosion ofconsidering all possible input sequence combinations.
3.2.1 Extraction of pseudo-combinational version of the circuitExtraction of pseudo-combinational version of the design is achieved by breaking thesequential elements of the design such as Flip-flops, Memory(registers). The correspondinginput and output connected to the sequential elements are fed to the overall design as
pseudo-primary inputs/outputs as shown in figure 21. Figure 21a shows the digital designwith combinational and sequential circuits with primary inputs and outputs whereas figure21b shows the pseudo-combinational equivalent circuit, which has additional pseudo-inputs and outputs in addition to primary inputs and outputs. In the pseudo-combinationalcircuit, the current state signals are converted to pseudo-primary inputs and next state

43

(a) (b)

Figure 21 – (a) Design with combinational and sequential circuit (b) Equivalent pseudo-combinational
circuit

signals are converted to pseudo-primary outputs. This way it is possible to take the logicto some desired situation in the considered single clock cycle and also feeding the valuesof the registers through input vectors.It has to be noted that even though the extraction of pseudo-combinational circuit leadsto creation of additional inputs/outputs, at the end of the proposed flow, the checkersare integrated in the original design and therefore, the final structure of the DUV is notaltered. Devising concurrent checker is discussed in the following subsection.
3.2.2 Synthesizing the checkersCheckers monitor the inputs and outputs of the considered design, and they evaluate if thevalues of the output do not match those expected from the values of the input. The flowbegins with the synthesis of an initial set of devised checkers for the considered design,starting from a set of combinational assertions.It is possible to outline a set of implications as relationships in between output andinputs by studying a digital circuit and based on these, assertions can be extracted, whichare later mapped to the checker logic. The specification of the considered design is usedwhile devising the checkers. The checkers are not automatically devised, and it need theexpertise of a verification engineer. Most of times checker logic is based on relationshipsexisting in between values of the inputs and the outputs, of the considered logic, but insome cases, especially when concerning encoding of the information, they could monitoronly the outputs. Some examples of functionality-related violations, on which checkerlogic could be based, can be easily provided:

• empty and full signals of a buffer cannot be high at the same time.
• if a meaningful packet reaches a routing unit in a switch, at least one output directionmust be selected by the unit.
The devised checkers might be redundant in terms of fault coverage metrics. It is worthnoting that, in this step, it could be very challenging to spot any overlap or inconsistenceof some considered checkers, or their effectiveness, and this is the main reason why it isfundamental to correctly evaluate the checker logic. After performing the evaluation andminimization flow using the proposed methodology, the checkers which satisfy the area

44

constraints are kept while ensuring the target fault coverage. It is also noteworthy thatthis section focus on devising checkers for control logic of NoC routers, it is assumed thatthe data path is already protected by Error Detecting/Correcting code (EDC/ECC) [55, 36]techniques, which can alert the system whenever there is any unexpected changes in thedata packets.
3.2.3 Environment generation for checkers’ evaluationThis section focuses on the generation of environment required to perform fault simulationfor checkers evaluation as shown in figure 20. Once the initial set of checkers for the DUVis devised and the pseudo-combinational version of the circuit is extracted, a set of inputtest vectors is needed in order to perform fault simulation for checkers evaluation.In the traditional verification of the circuit, an exhaustive set of input test patterns areconsidered which would guarantee that the design is fully evaluated. On the contrary, forcheckers evaluation this would lead to both erroneous results and useless computationaleffort. The behavior of the checkers strongly depend on the applied input patterns. Ifincorrect patterns are applied to the checkers logic, the checker would detect fault eventhough there is no actual fault causing fallacious results as an outcome of the experiment.At the same time, performing a fault simulationwould cause additional run-time. Therefore,it is imperative to identify a set of valid and meaningful input patterns to be used duringfault simulation for checkers evaluation.For exhaustive set of input patterns, 2n input patterns are considered initially where nis the overall number of inputs (functional and pseudo-primary) of the considered pseudo-combinational version of the design. Then a set of filtering constraints is devised based onthe functional behavior of the considered DUV and those input vectors which do not satisfythose conditions are discarded from the initial set of exhaustive input patterns. This stepis fundamental to consider only those patterns corresponding to correct and meaningfulbehavior of the logic, so that checkers can be evaluated only in realistic conditions. It isimportant to avoid those patterns that would cause the checker logic to fire in a fault-freesituation.
3.2.4 Fault-free simulation and debugging checkers/environmentTo perform fault simulation for checkers evaluation, first a fault-free simulation is performedwith valid set of input stimuli obtained from previous step (see section 3.2.3) along withthe synthesized checkers and pseudo-combinational version of the circuit. This allows tofind bugs either in the devised set of checkers or in the simulation environment generated.If the output of the simulation points out that a checker is firing even though no fault isinjected, this suggests the presence of the either one of the following bugs:

• The checker is not correctly implemented.
• The input vector for which a checker detects fault are not valid and have to bediscarded.

The fault-free simulation results allow to spot and fix single or multiple bugs in the checkerand environment before starting the actual fault simulation for checkers’ evaluation. Itis to be noted the fault-free simulation results are not related to the evaluation of thedetection capability of the checkers.
3.2.5 Fault simulation based evaluation of checkersThe evaluation of a checker is performed using a fault simulator tool developed as anextension of a freeware test system Turbo Tester [56]. Turbo Tester (TT), which is a diag-

45

nostic software package that contains a variety of tools related to testing and diagnosis ofintegrated circuits. TT can read the schematic entries of various EDA tools and produce arepresentation of the circuit in terms of Structurally Synthesized Binary Decision Diagram(SSBDD) [57]. TT tool suite consists of the following set of related tools for performing faultsimulation
• Test generation by different algorithms
• Test program optimization
• Fault simulation for combinational and sequential circuits
• Fault diagnosis
The baseline fault simulator has been extended to deal with the presence of concurrentcheckers (described in section 2.7), rather than only with the functional design, producingadditional output information on the online detection effectiveness of the checker logic.This way the injection of faults can be applied only to the functional design, thus allowingto evaluate the detection capability of the introduced checker logic. The main differencesbetween the extended and baseline fault simulator are
• no parallelization of test patterns is considered during fault simulation, to avoidmemory issues and grant the possibility to evaluate large designs.
• no fault dropping, every fault is simulated with every input vector.
• concurrent fault simulation is considered.
To evaluate the fault detection capabilities of concurrent checkers, fault droppingcannot be considered. In a traditional fault simulation, a fault once detected may beoptionally dropped from the list of active faults. This is intrinsically meaningless whilestudying checker logic, because the behavior of each checker is strictly dependent on theconsidered test pattern, i.e. a checker could flag a fault with a certain test vector, whilemissing it with a different one.The metrics described in section 2.8 are expressed in more generic ways which cannotdistinguish the fault model considered. Since, single stuck-at fault model is consideredfor fault simulation, it is assumed that only one net of the circuit can have a fault at atime. This consideration led to the introduction of new paradigm of statistics to describefault detection capabilities of concurrent checker logic, including a reformulation of faultcoverage, described in section 2.8. The possible detection outcomes after the injection of afault, described in table 5 were extended to seven symbols, to be used in the computationand evaluation of the output of the fault simulation, listed as follows:
• 0 - stuck-at-zero fault is detected by the circuit and by the checkers
• 1 - stuck-at-one fault is detected by the circuit and by the checkers
• w - stuck-at-zero fault is detected by the circuit and not by the checkers
• W - stuck-at-one fault is detected by the circuit and not by the checkers
• o - stuck-at-zero fault is not detected by circuit and is detected by the checkers
• i - stuck-at-one fault is not detected by circuit and is detected by the checkers

46

Symbols Detection Outcomes0 True Detection1 True Detectionw True MissW True Misso False Positivei False PositiveX Benign Miss
Table 6 – Symbols and detection outcome correspondence

• X - none of the stuck-at-faults is detected, nor by the circuit, neither by the checkers
Table 6 represents the correspondence in between the alphabet of symbols and thepreviously introduced classification of possible outcomes.Based on the introduced alphabet of symbols, the newly devised metrics for coverage -CEI, FC and FPR defined in section 2.8 can be rewritten as follows

CEI =
∑[0,1]

∑[0,1,w,W]
(6)

FC =
∑[0,1,X]

∑[0,1,w,W,X]
(7)

FPR =
∑[o, i]

∑[o, i,X]
(8)

where each symbol represents the occurrences of the symbol itself, i.e. of the correspond-ing situation.In addition to the newly devised statistics CEI, FC and FPR, the tool also generates someuseful output information.
• Fault table presents one row for each input vector and one column for each node inthe SSBDD representing the considered design. For the corresponding input pattern,the detection outcome for each node where faults are injected are marked with anyone of the previously introduced alphabet of symbols extensively.
• Nodes’ detection information is extracted from the fault table, for those nodeswhere faults are injected, while the remaining nodes are simply listed. For any nodethe number of occurrences of the introduced alphabet is reported, omitting zeroentries. This information allows to spot those nodes which eventually present a largeamount of truemisses (w andW occurrences), the worst situations in which checkersdo not detect critical faults, thus suggesting where to act in order to increase thedetection effectiveness of the checking logic.
• Checkers’ detection information portrays the capabilities of each checker in detect-ing faults, in form of a table, with a row for each checker and a double columnfor each node. Each double column gives information for stuck-at-0 fault on theleft side and stuck-at-1 fault on the right side, for the corresponding node, if faultsare injected in that node. Each intersection between a row and a double columnprovides the numbers of detection for stuck-at-0 and stuck-at-1 faults, injected inthe node corresponding to the column, provided by the checker corresponding to

47

the row. This table is related to the fault table, indeed, for instance, the sum ofstuck-at-0 fault detections provided by the whole set of checkers, reading the leftside of a double column, is equal to the occurrences of 0 symbols in the columnof the fault table corresponding to the considered node. Checkers detection tablecould also be used to spot eventual overlapping or independence in the action ofdifferent checkers.
• Checkers’ detection absolute weights is evaluated for each checker, as the numberof provided detections over the considered set of stimuli, giving a first hint on thecapabilities of detection of the checker itself. On one hand it would be wrong tosuppose a checker better than another one only considering the number of provideddetections, because a checker firing for a limited number of faults could be theonly one detecting those faults. On the other hand this information may suggestsome optimization work, based on a heuristic approach, trying to use a limited set ofcheckers derived from the whole. For instance it could be interesting to start usingat first only the checker providing the highest number of detections, and graduallyincreasing the size of the used set of checkers, keeping trace of the evolution of bothcoverage information and area overhead.

3.2.6 Checkers’ evaluation and minimizationAll the checkers are assumed to be functionally verified. The checker evaluation is per-formed based on the metrics described in section 2.8. The goal is to reach 100% or anothertarget value for both CEI and FC. A 100% CEI would mean there were no True Misses duringthe fault simulation and thus checkers are able to capture all Single Event Transient (SET)faults at different location in the design. At this point, each checker is weighted accordingto the number of true detections accomplished on the considered input test vectors set,and this information can be used as starting point for some algorithm of minimizationof devised set of checkers. Once a minimized set of checkers is produced, the describedflow can be rerun, to display the eventual loss of coverage due to the reduction of theconsidered set of checkers, through the value of the introduced metrics.In the proposed methodology, the minimization procedure is a greedy weight-basedheuristic procedure as shown in Algorithm 1. First, it selects the heaviest checker, i.e., thechecker with the highest number of detections in the considered environment. Then thesecond heaviest checker is included in the set and so on. At each step, coverage metricsand area consumption are evaluated, expected to reach the target value for coveragemetrics. Based on the results at each step, coverage metrics and area overhead, trade-offsin between them can be eventually outlined. The final output is the optimized set ofcheckers, supposedly matching coverage and area overhead target values.

48

Algorithm 1 Checker minimization
initialization; // Evaluates individual checkers and stores them in a list with number of true
detectionssorted_checkers = sort_checker_based_on_weight()minimized_set = []
for checker in sorted_checkers dotemp_set = minimized_set + checker

if (check_area(temp_set)≤ target_area) thenCEI = calculate_CEI(temp_set)minimized_set.append(checker)
if (CEI≥ target_CEI) thenbreak
end

end
endreturn minimized_set

A greedy heuristic (described in Algorithm 1) is proposed for finding minimized set ofcheckers with low-area high fault coverage. The algorithm sorts the checkers based on theweight (number of True Detection). Area of the chosen checker along with the temporaryset of checkers is calculated to check whether it violates the target area constraint. Ifthere isn’t any area violation, then CEI of the chosen checker along with the temporary setof checkers is calculated. If the CEI of the new set is providing any improvement to thetemporary set, then the checker would be added to the final minimized set. If the chosenchecker either violates area constraint or does not improve the CEI then it is discarded.Once the CEI reaches 100% or target coverage, the process terminates.
3.3 Embedded online test packets
In order to exploit the strong reduction of area overhead due to the removal of data-pathcheckers, while at the same time ensuring high coverage of faults, a hybrid solution couldbe considered, introducing what is proposed in [53, 54, 42], i.e. the use of online embeddedtest packets. The checkers can be complemented by embedded online test packets whichare to be applied as a periodic routine during the idle periods in router operation.In the case of the control part of a NoC router, where embedded test packets basedapproaches have proven inefficient [54], low area concurrent checkers could be applied,as described in previous section. Differently, according to[53, 54, 42], the embedded testyields full fault coverage in data-path modules, whereas error correcting codes wouldbe more expensive in terms of area consumption. The embedded test packets-basedapproaches propose that, whenever a router in a mesh-like NoC is in idle condition for acertain temporal window, neighbor routers can send to it test patterns, in order to detecteventual faults in its data-path. Neighbor routers have the duty both to inject packets andto check the outputs of the router under test.The functional fault model that is applied to cover the stuck-at faults in the data-pathof the NoC router is based on the idea proposed for functional testing of mesh-like NoCnetworks in [53, 54, 42]. The three test configurations considered to cover the entire mesh-like NoC router is shown in figure 22 and they include Straight paths, Turning paths and
Processing element connections. A configuration is set up by adjusting the correspondingdestination address fields of the transmitted packets to the last row (column) of the

49

network. A fault model proposed in [53, 54, 42] is applied, where the value at a selectedrouter input is distinguished from the values at other inputs of the router. To fully cover thestructural faults in the multiplexers of the crossbar, tests for each address value must beperformed. An additional constraint is that all turns must be covered by the distinguishingtests.

Figure 22 – Test configurations for mesh-like NoCs [54]

Straight path configuration will be set up by letting the packets pass straight through thenetwork matrix. This will cover the faults in the straight links of the network. A constraintis that each bit in the data bus must be traversed with a 0 and a 1 (i.e. toggle coveragemust be 100%). Additionally, vertical and horizontally sent data must be distinguishedfrom each other. This is necessary to cover faults in multiplexer addressing of the crossbarswitch. In turning paths configuration, based on the deterministic XY routing implementedin the switches, the packets will be sent by the X axis of the network and will meet at adiagonal of the switch. Here, the diagonal will be shifted over the entire network matrixuntil all the switches have been covered. Processing element configuration is needed tocover the links to resources. This configuration can be achieved by providing a loop-backbetween the resource and links.The embedded online test packets will be applied whenever there are idle periods orslacks in scheduling with length K for the send/receive resources, K test patterns will beapplied from them. This will be done periodically fetching K next tests from the test setin a circular manner, i.e. if the end of the test is reached then it starts again from thebeginning. This scenario provides online test capabilities for regularly checking the healthof the data-path of the router.
3.4 Experimental results
In this section, the experiments ran on the target NoC router architecture explained insection 2.6 using the methodology flow introduced in section 3.2 were discussed. First,the evaluation and minimization flow based on the extraction of pseudo-combinationalversion of the considered design, was applied to stand-alone East input port LBDR moduleas shown in figure 13. Next, the experiment for the pseudo-combinational version of thecontrol part of the NoC router specifically East input port LBDR module connected withSouth output port Arbiter module is discussed. In the end, the evaluation of checkers wasran on the entire router which includes all the modules introduced in section 2.6.
3.4.1 ELBDR experimentTable 1 describes the initial devised set of checkers for the routing computation unitcorresponding to the East input port. Based on the pseudo-combinational version of ELBDRdesign shown in figure 13, it has 11 input bits:

• 2 flit type bits
50

• 4 destination address bits
• 4 previous output port values bits
• 1 empty bit coming from the corresponding input FIFO buffer

It is worth noting that there is no East output port for ELBDR due to no 180° turn restriction.Also, when the routing computation logic has been integrated in the whole router, thenumber of bits for the flit type field was extended to three, to implement one-hot encoding.The exhaustive set of input stimuli represent 211 = 2048 vectors. A filtering schemebased on the following constraints was devised to extract the valid set of input patternsfor fault simulation:
• If Empty signal coming from the input buffer is set high, then the rest of the inputbits are ineffective and therefore any value is allowed.
• If the incoming flit is a header flit, then the destination address must be valid accord-ing to the XY routing and turn restrictions.
• If the incoming flit is a body or tail flit, the previous output values must be valid, i.e.,only one output direction must be set high according to XY routing.

Based on the above constraints, valid set of stimuli consisting of 1536 vectors which isaround 75% of the exhaustive set of stimuli is extracted through filtering scheme.Once both the initial set of checkers and the valid set of input stimuli were available, faultfree simulation is performed to find any bugs in the devised checkers or in the verificationenvironment before starting the actual fault simulation. During the fault simulation, theinitial set of checkers guaranteed full coverage and the results of the evaluation process interms of true detection weights are reported in figure 23.

Figure 23 – Weights of checkers proposed for ELBDR

Based on true detection weight information, the optimization process has been exe-cuted, and by greedy heuristics minimization procedure, the minimized set of checkers wasobtained. The heaviest checker (err_noLBDRout) is considered as the starting point, thenthe following heaviest checkers were added one by one, evaluating coverage metrics andarea overhead for each different set of checkers. Results are shown in figure 24, reporting
51

CEI, FC and area overhead increase at each step. Full coverage (i.e., 100%) is achievedwhen the first three heaviest checkers are considered, resulting in the minimized set ofcheckers. The three selected checkers dominate the others present in the initial set, i.e.,they cover all the faults that the discarded checkers would cover. The area overhead withthe minimized set of checkers has been reduced to 78.57% over the ELBDR circuit whichis far lower than 185.71% imposed by the initial set of checkers. No false positives (FPR iszero) were encountered during this experiment.

Figure 24 – ELBDR checkers optimization results

3.4.2 ELBDR and SARBITER experiment
The design considered for the second experiment is shown in figure 25. East input portrouting computation logic which is evaluated in the previous section 3.4.1 is connectedto South output port arbitration unit and they are evaluated together. The initial set ofcheckers for the arbiter logic is introduced previously in the table 2. The overall designpresents 19 input bits, 11 bits for ELBDR and additional 8 bits for SARBITER.

• 3 inputs requests bits (from North, West and Local input ports, East input port isprovided by ELBDR)
• 5 previous state bits which are one-hot encoded

Figure 25 – ELBDR + SARBITER experiment

52

Due to routing restrictions (no 180° turn), there is no request from South input portand therefore, grant cannot be given to South direction. It is noteworthy to stress that, theset of checkers devised for two modules, routing computation and arbitration units areindependent to each other, i.e., they cover faults for different and separate parts of thecircuit without any overlap. Therefore, the minimized set of checkers obtained from theprevious experiment described in section 3.4.1 is considered for the routing computationunit and the focus is on optimizing the initial set of 28 checkers devised for the arbitrationunit.
The exhaustive set of input patterns considered for the pseudo-combinational circuitwould be 219 = 524288 input stimuli. The filtering scheme used will be an extension of theone used for ELBDR experiment along with one-hot encoding restraint for the 5 previousstate value bits of the arbitration unit. After applying the filtering constraint, the exhaustiveset of input patterns has been reduced to 61440 valid set of input patterns which is around12% of the initial set.
Once both the initial set of checkers and the valid set of input stimuli were available, faultfree simulation is performed to find any bugs in the devised checkers or in the verificationenvironment before starting the actual fault simulation. During the fault simulation, theinitial set of checkers guaranteed full coverage and the results of the evaluation processin terms of true detection weights are reported in figure 26. From the figure 26 it can beclearly noticed that the two checkers which are both related to one-hot encoding of thestate variable of the arbiter logic are effective in detecting single SAFs.

0

100

200

300

400

500

600

700

800

900

1000

Serr_validgrant
Serr_invalidstate
Eerr_noLBD

R
out

Serr_sw
itchgrantW

Serr_sw
itchgrantN

Serr_sw
itchgrantL

Serr_priorityN
Serr_priorityE1
Serr_priorityW
Serr_priorityL
Serr_priorityID

LE
Serr_nogrant
Eerr_validLBD

R
out

Serr_priorityN
2

Serr_priorityE2
Serr_idlestate5
Serr_priorityW

1
Serr_priorityL1
Eerr_singleLBD

R
out

Serr_priorityID
LE1

Serr_priorityN
3

Serr_priorityE3
Serr_priorityL3
Serr_priorityID

LE3
Serr_priorityW

2
Serr_priorityE
Serr_sw

itchgrantE
Serr_priorityN

1
Serr_priorityL2
Serr_priorityID

LE2
Serr_priorityW

3
C
he
ck
er
s
W
ei
gh
t (
x1
03
)

Figure 26 – Weights of checkers proposed for ELBDR+SARBITER scenario

Figure 27 represents the results of the optimization process on the ELBDR + SARBITERscenario, considering the minimized set of checkers of the routing computation logicobtained from the previous section 3.4.1, the greedy heuristics is applied on the set ofcheckers of the arbitration unit. The two heaviest checkers from the figure 26, clearlydominate all the other checkers for the arbitration unit, ensuring full coverage (i.e., 100%).Thus, the area overhead of a total 3 ELBDR and 2 SARBITER checkers over the consideredpartial control path circuit is limited to 56.82%. While the initial set of 28 checkers forthe SARBITER would lead to 170.45% area overhead. It is interesting to observe that theminimized set of 5 checkers corresponds to one third of the whole 31 checkers consideredfor ELBDR + SARBITER scenario. No false positives (FPR is zero) were encountered duringthis experiment.
53

Figure 27 – SARBITER checkers optimization results for ELBDR + SARBITER scenario

3.4.2.1 Importance of the independence of checkers As previously mentioned, the setof checkers devised for ELBDR and SARBITER modules are independent to each other,i.e., they cover faults for different and separate parts of the circuit, without any overlap.Therefore, 100% fault coverage for SARBITER achieved with the two heaviest checkersshown in figure 26 does not mean that they have also covered all the faults occurring inELBDR.Table 7 illustrates the importance of considering the independence information for thesets of checkers of the two different modules. As it can be observed that the weights ofthe ELBDR checkers are far less than those of the SARBITER, but they are still needed toachieve full coverage for the considered design.
Checker WeightSerr_validgrant 871552Serr_invalidstate 600512Eerr_noLBDRout 243840Eerr_validLBDRout 57600Eerr_singleLBDRout 47680

Table 7 – Weights of the minimized set of 5 checkers for ELBDR + SARBITER scenario

Figure 28 shows the inefficiency of the greedy-heuristic approach due to the lack ofthe independence information. The number of steps in the greedy-heuristics procedure isheavily increased, before reaching the target (i.e., 100%) upper bound for CEI and FC. 19steps are needed, and full coverage is reached only when Eerr_singleLBDRout checker isconsidered. However, when partitioning the fault set to different parts of the design hasbeen considered, the overall minimization procedure requires only 5 steps.
3.5 Experiments on the whole router
Evaluation of thewhole NoC router shown in figure 10 is carried out by considering differentvalues of data-path bit-width: 10, 32, 64, 128, 256. Three different evaluation experimentsare carried out for the whole NoC router.

• Considering all the checkers devised for the different modules of the router, address-ing both control part and data-path
• Considering the checkers devised for the control part

54

Figure 28 – Results without considering independent set of checkers for ELBDR + SARBITER scenario

• Hybrid solution which includes the introduction of online embedded test packetsreplacing data-path checkers along with control part checkers.
3.5.1 Experiment considering the overall set of checkers
In this experiment, all checkers previously introduced in section 2.6 are considered

• LBDR Checkers
• RR arbiter Checkers
• FIFO buffer control part Checkers
• Cross bar switch DMR
• Even parity Checkers
• Checkers for infrastructure of the router

It is worth mentioning that for routing computation and arbitration logic, the minimizedset of checkers obtained through previous experiments (described in sections 3.4.1, 3.4.2)were considered. Also, these minimized set of checkers has to be adapted for each port ofthe router.Table 8 lists the results for the considered scenario, comprising the evaluation metricsand run time. It can be noticed that CEI and FC slightly increase with data-path bit-width.Also, FPR decreases, suggesting that the majority of false positive occurs in the control partof the NoC router. Simulation time noticeably increases when the bit-width is increased,as the number of possible locations for the injection of faults becomes wider.
bit-width CEI (%) FC (%) FPR (%) sim_time (s)10 99.10 99.71 16.91 64.1632 99.62 99.67 8.87 233.464 99.79 99.92 5.23 671.5128 99.89 99.96 2.84 2196.9256 99.94 99.98 1.49 8081.2

Table 8 – Evaluation result for the whole NoC Router

55

Figure 29 displays the area information for considered NoC router design for differentdata widths along with the checkers logic for different modules of NoC router. Areaconsumption is provided in terms of number of NAND2 gates of the considered synthesislibrary. As seen from the figure 29, the control part checkers present constant area withthe increase of the data-path bit-width, while the area consumption of the data-pathcheckers (XBAR DMR and parity) grows proportionally to the router size. Table 9 shows thenumerical information for the area consumption of the considered NoC router for differentdata widths along with the checkers logic for different modules of NoC router. The table 9also contains the area overhead increase in percentage.

Figure 29 – Area information for different bit-widths of NoC router with checker logic

bit−width
10 32 64 128 256

Area (NAND2)Router 5772 12636 22620 42588 82524Checker Logic 2393 4472 7483 13509 25567
Control Part checkers 1338 1338 1338 1338 1338
Data-Path checkers 1055 3134 6145 12171 24229XBAR DMR Checker 645 1789 3455 6781 13439Parity Checkers 410 1345 2690 5390 10790

Area Overhead (%)All checkers 41.45 35.39 33.08 31.72 30.98Control part Checkers only 23.18 10.59 5.92 3.15 1.62
Table 9 – Area information for different bit-widths of NoC router with checker logic

3.5.2 Experiment considering the control part checkers only
Table 10 shows the evaluation metrics of the checkers considered only for the control partof the NoC router. It can be observed that the coverage value significantly drops, stressingthe effectiveness of the data-path checkers. However, if the fault injection is limited only tocontrol part of the router, both CEI and FC results in 100% value. Interestingly, FPR valuesreported in table 10 are really close to the ones reported in table 8 from the previous

56

experiment, showing that the most of the false positive occurrences are related to thecontrol part of the NoC router.
bit-width CEI (%) FC (%) FPR (%) sim_time (s)10 60.51 87.17 15.54 47.932 25.99 74.87 7.78 152.664 14.31 70.66 4.49 408.5128 7.47 67.92 2.44 1300.8256 3.84 66.62 1.27 4629.810(No fault injectionin Data-path) 99.68 99.87 21.18 22.3

Table 10 – Evaluation result for the whole NoC Router (control part checkers only)

3.5.3 Experiment considering the hybrid solution
Based on area consumption information shown in table 9 and evaluation metrics shown intable 8 and 10, coverage is dramatically reducedwhen data-path checkers are removed, alsoarea consumption is significantly dropped, ranging in between 23.18% and 1.62% dependingon the different data widths. To exploit the strong reduction of area-overhead due tothe removal of data-path checkers while at the same time ensuring high fault coverage, ahybrid solution can be considered, i.e., the use of online embedded test packets proposedin [53, 54, 42] combining with control part checkers. Using this hybrid solution, full faultcoverage for the NoC router can be achieved with a minor area overhead. As it has beenshown by experiments in [42] an embedded test of length K=196 clock cycles will achieveFC=100% within the NoC router data path.
3.6 Chapter summary
In this chapter, a methodology is proposed to evaluate the fault detection capabilitiesof the concurrent checkers devised for the considered design and to minimize the set ofcheckers to ensure high fault coverage with low area overhead. Initially, a set of checkershas been devised for different modules of NoC router mentioned in the section 2.6. Thena pseudo-combinational version of the design is extracted to ensure the completenessof the approach. The pseudo-combinational extraction guarantees the possibility of faultsimulating the circuit in an exhaustive valid range of conditions, overcoming the feasibilityissues of traditional fault injection approaches.New metrics have been introduced to evaluate the fault detection capabilities of thecheckers devised. A greedy heuristics-based minimization procedure was introduced toderive the minimized set of checkers, outlining the eventual trade-off between the targetfault coverage and area overhead. It was also described how to deal with the clustering ofdifferent units into the whole router, that led to minor changes in some part of the checkerlogic (see table 4), as some of the faults cannot be spotted while studying each logic as astandalone module.Experiments were run, applying the proposed methodology flow, at first, to the stan-dalonemodules and then to the whole router. It is worthmentioning that value of coveragemetrics tracing 100% upper bound where achieved in almost every experiment with lim-ited area overhead, but decreasing as wider bit-widths were considered in the data-path.Finally, a hybrid approach based on the embedded online test packets for the data-path

57

along with the control part checkers was considered, to ensure full coverage while at thesame time ensuring limited area overhead for the data-path.

58

4 Linking verification assertions and concurrent hardware
checkers

The underlying hypothesis of the checker minimization approach proposed in this thesiswas to move to the higher abstraction level (behavioral) to gain productivity and scalability.For this purpose, it was required that the high-level fault model would correlate with thelow-level (structural) fault model. A fault model is a representation of one or more faultsin the design for which the test generation process must generate test vectors. The resultsobtained from test generation and fault simulation - fault coverage, reflects the quality oftest vectors with respect of the underlying fault models. On the other hand, designing ahardware checker infrastructure is a manual and error-prone work. Even for verificationexperts, it can be extremely time-consuming to define the required hardware checkers. Apossible solution to automate the synthesis of concurrent error checkers is to derive themfrom verification assertions. Moreover, creating checkers automatically based on logicimplications derived from the circuit structure [58] is feasible but suffers from low faultcoverage and high area overhead, often exceeding the duplex solutions. However, derivingcheckers from functional assertions, or reusing verification assertions, is similarly knownto yield low coverage of structural faults as it is difficult to correlate functional coverage tostructural one [59]. Thus, in this chapter first, we describe the results of our investigationin correlation of assertion and hardware checkers in detecting faults, second a methodto translate liveness assertions to safety assertions in order to reuse them as hardwarecheckers.Typically, two different types of assertions must be proved essentially to prove the correct-ness of the design. They are safety and liveness assertions. A safety assertion stipulatesthat ’undesired things’ do not happen during execution of a program and a liveness as-sertion stipulates that ’desired things’ do happen eventually [60]. Design specificationscan be described as set of assertions and most of them can be more naturally formulatedas liveness assertions [61, 62]. The automatically generated assertions that are derivedfrom systems behavior are almost exclusively liveness assertions [63] [64]. Some of theassertions generated can be invalid and must be removed. On the other hand, in practicalapplications, safety assertions are prevalent [61, 62] and also, verification using livenessassertion is known to be significantly less scalable [65]. Therefore, a translation procedureis required to translate the valid liveness assertions to safety assertions. Generating check-ers from verification assertion is a solved problem where commercial tools are available(for example IBM FoCs [66]).
In this thesis, the linking between the verification assertions and the hardware checkersis accomplished by the following steps:
• Correlation between behavioral fault model and structural (gate-level) fault model
• Translation of liveness assertions to safety assertions
• Conversion of safety assertions to safety checkers

Correlation of fault detection capability of high-quality assertions versus the fault detectioncapability of the synthesized checkers is studied. A translation scheme is proposed thattranslates liveness assertions into safety assertions. Finally, the safety assertions aresynthesized into hardware checkers which in turn can be used for providing a cost-effectivechecker infrastructure.
This chapter is based on the following publications:

59

• Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault detection ef-ficiency of reliability checkers obtained by verification assertion qualification. In
RESCUE 2017Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. IEEE, 2017 [Publication V]

• Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. Fromrtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2018 [Publication
VI]

4.1 Literature review
Several studies have been carried out to show the correlation between high-level andlow-level fault models.In [67], the authors have proposed a Register Transfer (RT)-level single-bit stuck-at faultmodel which is correlated with Gate-level fault coverage. A set of rules which identifiesthe redundancies removed by synthesis are used to compute a fault list that exhibits goodcorrelation with stuck-at faults. The degree of correlation is measured as the percentage ofgate-level stuck-at faults that are detected by fault simulating the test sequences generatedat RT-level.Brera et al [68] have proposed a methodology to improve the behavioral fault model byincluding information concerning the synthesis flow. The improved behavioral fault modelwhich is having a high correlation with the structural fault model coupled with an efficientbehavioral test generator able to achieve good gate-level fault coverage. Compared to faultcoverage at gate-level obtained by a commercial test pattern generator, the behavioral testgenerator able to obtain a higher fault coverage at gate-level using the improved behavioralfault model.In [69], a high-level fault models referred to as behavioral fault models has beenproposed for complex combinational digital designs described in a high-level hardwaredescription language. The proposed fault models are based on multiple-input stuck-atfaults, actual observed complex failures, and failures of the software structures of a generichardware description language that is used to describe high-level designs. The proposedfault models are validated through a correlation of the fault coverage obtained frombehavior fault simulation of the design in the presence of such faults with the coveragefrom the gate-level simulation of an equivalent gate-level representations in the presenceof stuck-at faults.There exist some research works which convert liveness assertions to safety assertions.For example, [61] uses finite state machine and reachability analysis to translate livenessassertions to safety assertions. In [70] the same technique as [61] has been implementedbut using an unbounded state machine. [60] describes a technique to distinguish betweena liveness and a safety assertion but no specific method for translation of liveness to safetyassertions has been proposed.

In [71], the authors have presented a methodology to synthesize monitors from asser-tions written in the Property Specification Language (PSL). The method implements boththe weak and strong versions of PSL Foundation Language (FL) operators. The authorshave proved the correctness of the monitors using Prototype Verification system (PVS)theorem prover. Monitors can be connected to the DUV for formal verification, simulation,emulation or online testing. Such monitors read the system’s signals and report if theproperty has either failed, completed successfully or its status is still pending.
60

Finally, IBM developed a commercial tool called Formal Checkers (FoCs) [66] whichtakes formal specifications as input and translate them into VHDL checkers which are thenlinked with design in a simulation-based verification environment. The checker essentiallyimplements a state machine which will enter an error state in a simulation run if theproperty fails to hold in the run.
4.1.1 Thesis contributions
This thesis studies the correlation between fault detection capabilities of checkers andhigh-quality assertions. Particularly, contributions of this thesis are:

• Studied the capability of fault coverage of set of assertions at RTL and fault coverageof these assertions when they are converted to hardware checkers at gate level
[Publication VI].

• Studied the correlation between the fault coverage of assertions and fault coverageof the hardware checkers [Publication V].
For the sake of scalability, this thesis proposes the following light weight method togenerate hardware checker from verification assertion:
• Converting liveness assertions to safety assertions. Subsequently, the safety asser-tions are converted to RTL hardware checkers by using checker synthesis softwarelike IBM FoCs [66], which in turn can be synthesized by any logic synthesis tool
[Publication VI].

In the following sections, the correlation between behavioral fault model and structuralfault model is discussed. Followed by, the translation of liveness assertions to safetyassertions is explained and then conversion of safety assertions to safety checkers isstudied. Finally, an experimental result and a short summary of the chapter are provided.
4.2 Correlationbetweenbehavioral faultmodel and structural faultmodel
The focus of this section is studying correlation between the fault coverage of set ofassertion/checkers at different level of abstraction i.e, Behavioral. Figure 30 shows theframework for estimating the correlation between the evaluation of fault coverage atbehavioral level and evaluation of fault coverage at gate-level. Looking at the figure,liveness assertions and the design are given as inputs to the Assertion Qualification and
Minimization phase. A mutation-based qualification software called Certitude injects faultsbased on mutation analysis into considered design and then determines whether theassertions can detect these faults. Based on number of faults detected by an assertion,the fault detection capability of the assertion can be calculated. Similarly, at gate-level,hardware checkers and the design are given as inputs to the Fault Simulation, Evaluation
and Minimization phase. A diagnostic software called Turbo tester performs the faultsimulation on the considered design along with the checkers devised. Based on the metricsintroduced in section 2.8, the fault detection capabilities of the checkers are evaluated. Andfinally, the correlation between fault coverage of the both level is calculated. Experimentalresults reports this correlation. More details about evaluation of fault detection capabilitiesof the checkers at gate-level are described previously in section 3.2.6 and the evaluation offault detection capabilities of the assertions at behavioral level will be discussed in section5.2.2.

61

Figure 30 – Correlation between behavioral fault model and structural fault model

4.3 Translation of liveness assertions to safety assertions
In this section, the translation of liveness assertions to safety assertions is discussed indetail. To verify the expected behavior of a design, it is important to specify the sequenceof events that happen in the design [72]. This can be expressed by the following notation:
Antecedent(A)→Consequent(C), where→ refers to implication operator. Antecedentis a behavior that occurs before the Consequent. The result of the implication is eithertrue or false. A liveness assertion is one which checks for the behavior that must happeneventually. For consequent to be true, the antecedent must be true first. In some cases,the liveness assertion stays true even though the antecedent is false. It means that theverification environment never stimulates the design in such a way to make antecedenttrue. This is known as vacuous success and this success does not carry any weight as faras the verification of the design is concerned. The truth table of the liveness assertion isshown in table 11. From table 11, the liveness assertion output can be expressed as A ||C.

Antecedent Consequent Liveness assertion output0 0 10 1 11 0 01 1 1
Table 11 – Truth table of liveness assertion

A safety assertion is one which checks for the behavior that must not happen. Thesafety assertion used for hardware checker circuitry is concerned when antecedent is true,but consequent is false. The truth table of the safety assertion is shown in table 12. Fromtable 12, the safety assertion output can be expressed as A &C.
Antecedent Consequent Safety assertion output0 0 00 1 01 0 11 1 0

Table 12 – Truth table of safety assertion

62

Based on the output derived from table 11 and table 12, the liveness assertion and safetyassertion are expressed by the following notations respectively.
• Liveness assertion = A ? (C ? 0 : 1) : 1;
• Safety assertion = (A &C) ? 1 : 0;

Here, A is the antecedent and C is the undesired consequent.
The following is a set of examples where liveness assertions generated for the designELBDR are translated into its corresponding safety assertions.
• Whenever there is a request (i.e., the HEADER flit contains the destination address)LBDR must compute at least one valid output direction (XY Routing) to pass the flitsfrom the input buffer to the respective output port.

– E_validLBDRout_liveness = (!Eempty && (flit_id == HEADER || flit_id == PAY-LOAD || flit_id == TAIL)) ? ((!oNport && !oWport && !oSport && !oLport) ?1’b0 : 1’b1) : 1’b1;
– E_validLBDRout_safety = ((!Eempty && (flit_id == HEADER || flit_id == PAY-LOAD || flit_id == TAIL)) && (!oNport && !oWport && !oSport && !oLport)) ?1’b1 : 1’b0;

Here, E_validLBDRout_liveness is the liveness assertion generated, E_validLBDRout_safetyis the translated safety assertion, (!Eempty && (flit_id == HEADER || flit_id == PAYLOAD|| flit_id == TAIL)) is the antecedent and (!oNport && !oWport && !oSport && !oLport) isthe undesired consequent.
• LBDR routing logic works on HEADER flit alone and it maintains the same portdirection for PAYLOAD and TAIL flit of the same packet, until a new HEADER flitarrives. If there is none of these flits arrive then output should be zero.

– E_noLBDRout_liveness = (Eempty || (flit_id != HEADER) && (flit_id != PAYLOAD)&& (flit_id != ‘TAIL)) ? ((oNport || oWport || oSport || oLport) ? 1’b0 : 1’b1) :1’b1;
– E_noLBDRout_safety = ((Eempty || (flit_id != HEADER) && (flit_id != PAYLOAD)&& (flit_id != ‘TAIL)) && (oNport || oWport || oSport || oLport)) ? 1’b1 : 1’b0;

Here, E_noLBDRout_liveness is the liveness assertion generated, E_noLBDRout_safety isthe translated safety assertion, (Eempty || (flit_id != HEADER) && (flit_id != PAYLOAD)&& (flit_id != ‘TAIL)) is the antecedent and (oNport || oWport || oSport || oLport) is theundesired consequent.
• Only one direction port or Local port can become output at an instant.

– E_singleLBDRout_liveness = (!Eempty && (flit_id == HEADER || flit_id == PAY-LOAD || flit_id == TAIL)) ? (((oNport && oWport) || (oNport && oSport) ||(oNport && oLport) || (oWport && oSport) || (oWport && oLport) || (oSport&& oLport)) ? 1’b0 : 1’b1) : 1’b1;
– E_singleLBDRout_safety = ((!Eempty && (flit_id == HEADER || flit_id == PAY-LOAD || flit_id == TAIL)) && ((oNport && oWport) || (oNport && oSport) ||(oNport && oLport) || (oWport && oSport) || (oWport && oLport) || (oSport&& oLport))) ? 1’b1 : 1’b0;

63

Here, E_singleLBDRout_liveness is the liveness assertion generated, E_singleLBDRout_saf-ety is the translated safety assertion, (!Eempty && (flit_id == HEADER || flit_id == PAYLOAD|| flit_id == TAIL)) is the antecedent and ((oNport && oWport) || (oNport && oSport) ||(oNport && oLport) || (oWport && oSport) || (oWport && oLport) || (oSport && oLport))is the undesired consequent.
• A non-header flit (PAYLOAD or TAIL) arrives but there is a request to build a newinput-output port connection or the request of the intended output port is mutedwhile there is a simultaneous request for another output port. Although one outputis computed by LBDR, this erroneous output results in packet misrouting and evendeadlock.

– E_switchLBDRout_liveness = (!Eempty && (flit_id == PAYLOAD || flit_id ==TAIL)) ? (((oNport != iNport) || (oWport != iWport) || (oSport != iSport) ||(oLport != iLport)) ? 1’b0 : 1’b1) : 1’b1;
– E_switchLBDRout_safety = (!Eempty && (flit_id == PAYLOAD || flit_id == TAIL))&& ((oNport != iNport) || (oWport != iWport) || (oSport != iSport) || (oLport!= iLport)) ? 1’b1 : 1’b0;

Here, E_switchLBDRout_liveness is the liveness assertion generated, E_switchLBDRout-_safety is the translated safety assertion, (!Eempty && (flit_id == PAYLOAD || flit_id ==TAIL)) is the antecedent and ((oNport != iNport) || (oWport != iWport) || (oSport != iSport)|| (oLport != iLport)) is the undesired consequent.
• Local port should be triggered when current address matches with the destinationaddress

– E_localport1_liveness = (!Eempty && (flit_id == HEADER)) ? (((oLport == 1) &&(cur_addr != dst_addr)) ? 1’b0 : 1’b1) : 1’b1;
– E_localport1_safety = ((!Eempty && (flit_id == HEADER)) && ((oLport == 1) &&(cur_addr != dst_addr))) ? 1’b1 : 1’b0;

Here, E_localport1_liveness is the liveness assertion generated, E_localport1_safety isthe translated safety assertion, (!Eempty && (flit_id == HEADER)) is the antecedent and((oLport == 1) && (cur_addr != dst_addr)) is the undesired consequent.
– E_localport2_liveness = (!Eempty && (flit_id == HEADER)) ? (((oLport == 0) &&(cur_addr == dst_addr)) ? 1’b0 : 1’b1) : 1’b1;
– E_localport2_safety = ((!Eempty && (flit_id == HEADER)) && ((oLport == 0) &&(cur_addr == dst_addr))) ? 1’b1 : 1’b0;

Here, E_localport2_liveness is the liveness assertion generated, E_localport2_safety isthe translated safety assertion, (!Eempty && (flit_id == HEADER)) is the antecedent and((oLport == 0) && (cur_addr == dst_addr)) is the undesired consequent.
4.4 Conversion of safety assertions to hardware checkers
In this section, the conversion of safety assertions to hardware checkers is discussed.Checking tools, such as [66] are available commercially which converts the assertionsto checkers, which can be integrated into the verification environment. In this thesis,the safety assertions derived from liveness assertions as described in section 4.3 aresynthesized using Synopsys design compiler tool [73] to generate hardware checkers. For asafety assertion, the output of the hardware checker reports whenever the condition isviolated.

64

4.5 Experimental results
In this section, the experiments ran on the East input port LBDR module explained insection 2.6.1 and South output port Arbiter module explained in section 2.6.2 using themethodology flow introduced in section 3.2 and assertion qualification and minimizationintroduced in section 5.2.2, 5.3 respectively were discussed. First, the correlation betweenthe fault detection capabilities of checkers and assertions devised for ELBDR module isstudied. Next, the same procedure is carried out for SARBITER module.
4.5.1 ELBDR experiment
Table 1 describes the initial devised set of checkers for the routing computation unitcorresponding to the East input port. First, the fault simulation is performed with theinitial set of checkers. The results of the evaluation process in terms of true detectionweights are already reported in figure 23. Based on true detection weight information, theoptimization process has been executed, and by greedy heuristics minimization procedure,the minimized set of checkers was obtained. Results are shown in figure 31a, reporting
CEI, FC and area overhead increase at each step. Full coverage (i.e., 100%) is achievedwhen the first three heaviest checkers are considered (Eerr_noLBDRout, Eerr_validLBDRout,Eerr_singleLBDRout), resulting in the minimized set of checkers. At behavioral level, faultanalysis is performed with initial set of assertions. The result is the fault table containingwhich assertions cover which faults. Based on the fault table information, theminimized setof assertions are obtained by the greedy heuristics minimization procedure. Full coverage(i.e., 100%) is achieved when all the assertions are considered except E_switchLBDRout-_liveness. Results are shown in figure 31b reporting Cumulative Fault Coverage increase ateach step.
4.5.2 SARBITER experiment
Table 2 describes the initial devised set of checkers for the arbitration unit corresponding tothe South output port. First, the fault simulation is performedwith the initial set of checkers.The results of the evaluation process in terms of true detectionweights are already reportedin figure 26. Based on true detection weight information, the optimization process hasbeen executed, and by greedy heuristics minimization procedure, the minimized set ofcheckerswas obtained. Results are shown in figure 32a, reporting CEI, FC and area overheadincrease at each step. Full coverage (i.e., 100%) is achieved when the first two heaviest

(a) (b)

Figure 31 – (a) ELBDR checkers optimization results (b) ELBDR Cumulative fault coverage using
Assertion Qualification and Minimization procedure

65

(a) (b)

Figure 32 – (a) SARBITER checkers optimization results (b) SARBITER Cumulative fault coverage using
Assertion Qualification and Minimization procedure

checkers are considered (Serr_validgrant, Serr_invalidstate), resulting in the minimized setof checkers. At behavioral level, fault analysis is performed with initial set of assertions.The result is the fault table containing which assertions cover which faults. Based onthe fault table information, the minimized set of assertions are obtained by the greedyheuristics minimization procedure. Full coverage (i.e., 100%) is achieved when the first twoassertions with high quality fault coverage (Serr_validgrant, Serr_nogrant) are considered.Results are shown in figure 32b reporting Cumulative Fault Coverage increase at each step.
4.6 Chapter summary
In this chapter, the correlation between the fault detection capabilities of the concurrentcheckers and the fault detection capabilities of the high-quality verification assertionsare studied. Next an assertion translation was proposed which converts the livenessassertions into its safety equivalents. Finally, the safety assertions are synthesized furtherto hardware checkers which are to be evaluated at the gate-level to provide cost-effectivechecker infrastructure.Experiments are carried out on the East input port LBDR module and South output portarbiter module. The results showed the feasibility of assessing the fault detection capabil-ities of the concurrent checkers by applying assertion qualification. Although assertionquality was not directly proportional to the fault coverage of the checker, a heuristic-basedminimization procedure indicates that the optimal solution in terms of area and faultcoverage was achieved without the need to move to the lower level of abstraction.

66

5 Qualification and minimization of assertions
Due to the increasing complexity of today’s digital systems, the amount of time and man-power that is invested in finding and removing bugs is growing. To overcome this problemand to develop systems without bugs, verification techniques have arisen which checkif a system meets its specification and thereby fulfills its intended purpose [74]. Amongall these techniques, Assertion Based Verification (ABV) has become a popular means forcatching and eliminating errors. At the same time, due to the growing failure-rates, processvariations and time-dependent degradation of modern chip technologies, it is imperativeto develop cost-effective means for protecting systems against faults occurring in the field,during their life-time.Thus, concurrent on-line checker circuitry is required to monitor the fault-free func-tioning of the system hardware. Such checkers are normally designed ad-hoc or by syn-thesizing them from verification assertions. However, the number of assertions in theverification environment is generally far too high to allow for area-efficient checking infras-tructure. Moreover, the number of liveness checkers generated by automated methods(e.g. [75, 76, 63]) may be too high even for verification purposes. Therefore, there is aneed for qualification and minimization of liveness assertions with a prospect of reusingthem as hardware safety checkers.A verification environment consists of a set of assertions that collectively can detect arange of design bugs. However, not all the assertions are essential to detect this range:some assertions are dominated by others, or by a set of other assertions, some assertionsare equivalent in terms of bug detection capabilities, etc. Discarding such assertions whichdo not detect any unique bugs leads to obtaining a set ofminimized assertions. Of course,it is not possible to enumerate all possible bugs, and therefore, fault models are applied toestimate the coverage of different assertions. This assertion quality estimation task is calledassertion qualification. While there exist several works that address assertion qualificationand minimization [75, 76, 63] as well as qualification and minimization of checkers at thegate-level [3, 77]. This chapter proposes a methodology that applies high-level assertionqualification and minimization with the goal of generating low-area high-quality checkercircuitry.This chapter is based on the following publications:

• Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. Fromrtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2018 [Publication
VI]

5.1 Literature review
With the advent of standardized assertion languages and assertion libraries, several re-search works witnessed an increased interest in adopting assertion-based techniques.Assertions may be generated manually or by assertion mining tools. Manual definitionof assertions requires high expertise, and it is an error-prone, time-consuming activity. Bothmanual as well as automatic way of generating assertions suffer from certain problems.These problems are related to the risk of defining assertion sets that are incomplete (i.e.,unable to cover all expected behaviors of the DUV), inconsistent (i.e., with contradictingassertions), redundant (i.e., with assertions that are logical consequence of others), andincluding vacuous assertions (i.e., assertions that are true independently from the DUV,and thus irrelevant). As a result, a false sense of security is induced by ABV[21] campaignconducted with a low-quality set of assertions. As opposite to manual definition, some

67

works have been done recently to automatically generate assertions from the DUV imple-mentation [78, 64]. In these approaches, execution traces obtained by simulating the DUVare dynamically analyzed to mine significant assertions. Independent from the abstractionlevel of the DUV (e.g. Transaction-Level Modeling [TLM], RTL, gate-level) execution tracespass through an assertionminer, whose output is a set of candidate assertions capturing thebehaviors exposed by the DUV during simulation, according to a set of predefined temporalpatterns. Extracted assertions may highlight shortcomings of the original specifications,which may lead to distinguish design’s error and unpredictable behaviors implemented inthe DUV. While vacuity and inconsistency in the set of generated assertions are generallyavoided by the mining approach itself, assertion incompleteness and redundancy maystill affect the outcome of assertion mining. Thus, a qualification phase for evaluating thedegree of interestingness of extracted assertions and minimize the irrelevant ones is stillnecessary.
As the number of mined assertions can be very high, their manual qualification isalmost impractical. For this reason, a strategy to automatically evaluate the interestingnessof extracted assertions and rank them accordingly is necessary. Unfortunately, currentapproaches for assertion mining are still unsatisfactory from this point of view.
In [78], a stressing phase is proposed to obtain the candidate assertions which in turnare converted into checkers, by using for example, IBM FoCs [66], and connecting thesecheckers to the DUV. During the stressing phase, a much larger set of testbenches areused compared to the initial set of testbenches used to generate the execution traces. Instressing phase when a checker fails, the corresponding candidate assertion is discarded.Only assertions that survive this stressing phase are collected. The stressing phase isapplied to increase the likelihood that the surviving assertions are satisfied by the DUVindependently from the execution traces adopted for their extraction. This approach canverify the likelihood that mined assertions are globally satisfied (and not only for theexecution traces analyzed by the miner), but no strategy is proposed to measure theirinterestingness in covering DUV behaviors.
In [64], interestingness estimation is based on the number of propositions includedin the antecedent of the assertion, according to the fact that an assertion with a lowernumber of propositions in its antecedent has a higher input space coverage than one withmany propositions in its antecedent. However, the correlation between the antecedentand the consequent of an assertion is not considered. To solve this drawback, in [79] aranking function is proposed that evaluates the quality of the mined assertions in terms ofcause-effect relationship between antecedent and consequent of an assertion.
In [22] the quality of assertions is estimated based on their amount of frequencies andcorrelation during the simulation. However, the work does not consider assertions withlow number of frequencies which may cover the corner cases of a design. In [25], a metricis introduced to rank assertions based on their ability to cover corner cases. Moreover, itdoes not consider assertions which cover the general behavior of the design. In [75], minedassertions are said to be generally ranked according to their frequency of occurrences andtime of first occurrence, which is too general metric for the ranking purpose.
As an opposite class of approaches, coverage metrics have been widely studied forqualification of assertions [80, 81, 82, 83] . Most of these works rely on mutation analysis,which requires perturbing the DUV implementation by injecting mutations (faults) tocheck, either statically [81, 82] or dynamically [83], whether they change the truth valuesof the assertions. Mutations that cause a change are said to be detected. Assertions thatdetect a few mutations are less interesting than assertions detecting a higher numberof mutations. Not detected mutants generally highlight area/behaviours of the DUV

68

that are not covered by any of the defined assertions showing a hole on the coverage.Dynamic approaches like [83] scale better with respect to static techniques, however, theystill require long simulation runs for checking each assertion for each mutation with asignificant set of testbenches. When the number of assertions is very high, as in the caseof assertion extracted automatically, evaluating their interestingness through mutationanalysis becomes a very time-consuming activity.
5.1.1 Thesis contributionsThis thesis proposes a framework for selecting a set of high-quality and minimized livenessassertions from initial set of liveness assertions by combining a data mining technique withfault analysis approach. Different from the above-mentioned approaches, the qualificationand minimization method proposed in this thesis provides the following contributions:

• First, an advanced assertion ranking approach has been introduced based on com-bining three different metrics adapted from data mining, to evaluate assertions’quality from different conditions. Compared to similar approaches in the state ofthe art, it provides higher correlation of assertion quality with fault coverage of theobtained checkers [Publication VI].
• Second, combining a fault analysis approach along with a data mining approachfor assertion qualification to get the advantages of both techniques, the formerproviding high accuracy and the latter very short execution time [Publication VI].
• Third, proposing an innovative automatic technique to estimate quality of assertionsby applying a data mining based qualifier, according to probabilistic metric typicallyadopted in the context of data mining. This metric can distinguish the assertionswith limited number of activation which are very effective in covering the cornercases of a design [Publication VI].
In the following sections, the methodology for qualifying, minimizing the consideredset of assertions is discussed. Followed by experimental results regarding the applicationof framework to the control logic of the NoC router is studied. Finally, a short summary ofthe chapter is provided.

5.2 Assertion qualification
In order to derive cost effective hardware checkers from a large number of liveness as-sertions, a methodology is proposed (as shown in figure 33), first to estimate the qualityof the assertions based on data mining metrics and rank them based on their quality i.e.,Assertion Qualification step. Second, these highly ranked assertions are subjected to faultanalysis to determine the fault coverage of each of them. Some of the assertions arediscarded based on the output of fault analysis to derive minimized set of high-qualityliveness assertions i.e., Assertion Minimization step. In the following these two steps arediscussed.

Assertion qualification consists of two main phases as shown in figure 34.
1. Assertion ranking
2. Assertion fault analysis
In Assertion Ranking phase, a data mining-based tool called Shayan [22] is appliedon liveness assertions to estimate their quality based on data mining metrics. The high-quality assertions selected by Shayan go through Assertion Fault Analysis phase utilizing

69

Figure 33 – Assertion Qualification and Minimization

the Synopsys Certitude qualification tool [84]. The hypothesis is that assertions with higherdegree of quality are more effective in the verification process. Thus, Shayan selectsassertions with the degree of quality above a preset threshold and forwards them to thecertitude for fault analysis. The main drawback of fault analysis approaches is their longsimulation time, since the effect of a fault that has been injected needs to be evaluatedby simulation. The above-mentioned preliminary selection by Assertion Ranking leads toreduction of this simulation time. In the following subsections it will be explained howassertions are ranked based on the data mining metrics and also how fault coverage ofeach assertion is estimated.

Figure 34 – Assertion Qualification

5.2.1 Assertion rankingFrom the point of view of general concept, data mining [85] and assertion ranking sharethe same idea (extracting rules from data), but they have several differences that make itpractically different how these metrics are computed and interpreted for evaluating thequality of assertions. Shayan calculates a metric called Q which is calculated individually foreach assertion. Q is the linear combination of Support (Definition 1), Correlation Coefficient(Definition 2) and Strength Measure (Definition 3). The higher the value of Q, the higherthe quality of the assertion would be. Figure 35 shows the internal design of Shayan inthree steps:
1. Occurrence counting
2. Contingency table creation
3. Metric calculation

• Occurrence counting: Liveness assertions and the DUV are inputs of the work flow.In the first step, set of valid input sequences are connected to a simulator to extractinformation about occurrences of assertions during the simulation. It is worth tobe noted that valid input sequences used are extracted from the exhaustive set ofinput pattern. The method used to extract the valid input sequences are discussedalready in section 3.2.3. The number of times an assertion is holding in the validinput sequences is computed. Then, each assertion is decomposed into antecedentand consequent and their respective frequencies in the valid input sequences arecomputed.
70

Figure 35 – Overview of Assertion ranking

• Creation of contingency table: At this stage, the necessary ingredients are ready forCreating contingency tables, see (Table 13). The computation of the contingency
C C̄

A f11 f10 f1X
Ā f01 f00 f0X

fX1 fX0 fXX

Table 13 – Contingency table for A→C.

table is based on counting occurrences of antecedent, consequent and the assertionsrespectively. Given an assertion A→C, its contingency table represents the relationbetween A andC.
The cells of contingency table contain the following information (Table 13):

– Cell f11 represents the number of times where A is true andC is true in thevalid input patterns.
– Cell f10 represents the number of times where A is true butC is false in thevalid input patterns.
– Cell f01 is the dual of f10, i.e., it is the number of times where A is false andCis true in the valid input patterns, i.e., it is the sum of occurrences of assertions

A′→C included in the considered assertion set with A 6= A′. In this case, Aand A′ can also be conflicting because this does not represent an inconsistencyfor the assertion set.
– Cell f00 is the number of times an assertion is not true in the valid input patterns.

f00 is obtained by summing the occurrences of f11, f10 and f01 and subtractingthem to the total number of valid input patterns.
– Cell f1X is the sum of cells f11 and f10.
– Cell f0X is the sum of cells f01 and f00.
– Cell fX1 is the sum of cells f11 and f01.
– Cell fX0 is the sum of cells f10 and f00.

71

– Cell fXX is the grand total. fXX is same as the total number of valid inputpatterns considered in the simulation.
• Metric calculation and assertion ranking: Contingency tables provide basic ingredi-ents for computation of Support [S], Correlation Coefficient [CC], Strength Measure[Strength] and their linear combination Q. Concerning support, according to (Defini-tion 1), it is computed using the following formula:

Support =
f11

fXX
(9)

The Correlation Coefficient for an assertion according to (Definition 2) is computedusing the following formula:
CC(A,C) =

f11 fXX − f1X fX1√
f1X f0X fX1 fX0

(10)

The computation of the StrengthMeasure for an assertion according to (Definition 3)is computed by:
Strength Measure =

√
f 2
11

| fX1− fX0| . | f1X − f0X |
(11)

According to equation 9, the support ranks in the highest positions assertions thatoccur frequently in the execution traces. On the other hand, the correlation coefficient(equation 10) privileges assertions where the number of occurrences of the antecedentbetter matches the number of occurrences of the consequent, but assertions where thesenumbers are low could be extracted by chance without representing a real behavior ofthe DUV. However, there are also some specific assertions that occur very rarely becausethey refer to the corner cases and thus equation 11 has been proposed. A combination ofsupport, correlation coefficient and strength measure provide a more accurate estimationof assertion interestingness (equation 12).Thus, the quality of an assertion A can be measured through the following formula:
Q(A) = α ∗ sn(A)+(1−α)∗ρn(A)+(1−α)∗ strengthn(A) (12)

where, α ∈ [0,1], and sn(A) and ρn(A) are the value obtained by normalizing, respectively,the support s, the correlation coefficient ρ and Strengthmeasure strength ofAwith respectto the whole set of analyzed assertions. By varying the value of α the role of supportbecomes important with respect to the role of the correlation coefficient and strength indetermining the final estimation of assertion quality.
5.2.2 Assertion fault analysis
In this section, the fault detection capability the output from the assertion ranking phase(section 5.2.1) is discussed. The overview of Assertion Fault analysis phase is shown infigure 36. Shayan, which was described in section 5.2.1, can rank the assertions basedon data mining metrics but it cannot provide any information whether two assertionshave the same set of covered faults (i.e. the assertions are equivalent) or one is subsetof the other assertions’ covered faults (i.e. dominated by the other assertion) etc. Suchequivalence and dominance relationships between assertions allow minimizing the setof assertions selected for synthesis and gate-level evaluation. As shown in Figure 36, the

72

Figure 36 – Assertion Fault analysis phase

DUV and selected liveness assertions provided by Assertion Ranking phase together withthe valid input sequence (i.e. the verification environment) are fed into the Certitude toolthat performs the fault analysis.Certitude injects faults based on mutation analysis into considered design and thendetermines whether the liveness assertions can detect these faults. Based on numberof faults detected by an assertion, the fault detection capability of the assertion can becalculated. Once the fault is injected into the design, certitude requires a simulator torun the fault simulation along with valid input patterns. The output is the fault tableshowing which assertion a j covers which faults fi. The fault table presents one row foreach assertion and one column for each fault injected. For the corresponding input pattern,the assertion detecting a particular fault will be marked as 1 and the undetected faults aswell as the faults which have not been propagated are marked as 0. A sample fault table isshown in figure 37.

Figure 37 – Sample Fault Table

5.3 Assertion minimization
In assertion minimization step, a minimization algorithm (see algorithm 2) is implementedon the fault table information of each assertion and the output is the minimized set ofhigh-quality assertion as shown in figure 38. The minimized set of liveness assertions areof high-quality, with good fault coverage and which in turn can be synthesized to be reusedas hardware checker circuitry.

Figure 38 – Assertion Minimization

The algorithm is based on iterative implication and greedy selection operations. Twotypes of implications are used. First, unique assertion a j, which cover some fault fi that isnot covered by any other assertions are identified and removed from the table. Second, itis said that assertion a j dominates assertion ak, if all the faults covered by ak is a subset ofthe faults covered by a j. Note, that equivalence of two assertions a j and ak is a special
73

Algorithm 2 Fault table minimization
while exist faults uncovered by assertions do

while implications provide new assertions doSelect unique assertionsRemove dominated assertions
endMake a greedy selection

end

case of dominance, where a j and ak mutually dominate each another. If after performingthe implications the set of selected assertions are not covering all the faults in the faulttable, a greedy selection operation is performed. The algorithm selects an assertion thatcovers the greatest number of faults not yet covered by the set of selected assertions. Thealgorithm will complete when the selected assertions cover all the faults in the fault table.
5.4 Experimental results

The efficiency of the proposed methodology has been evaluated by considering livenessassertions for East input port routing computation unit and South output port arbitrationunit of NoC router which is already discussed in section 2.6. By applying filtering constraintsfor the exhaustive set of input patterns considered initially for East input port LBDR design,2144 is extracted as valid input patterns. In the similar fashion, for South output port Arbiterdesign, 80 valid input patterns are extracted from an exhaustive set of input patterns.
Initially the information about the occurrences of assertions for the set of valid inputsequence during the simulation is extracted. Based on the counting occurrences of an-tecedent, consequent and assertions, a contingency table is created. The contingencytable for the ELBDR design is shown in Table 14. For example, for assertion E_validLBDRout-_liveness, f11 corresponds to the total number of occurrences of E_validLBDRout_livenessin the analyzed valid input sequences. Assertion E_validLBDRout_liveness was activated in96 different sequences and assertion E_noLBDRout_liveness was activated in 2048 othersequences and exactly at different clock cycle compare to E_validLBDRout_liveness. f10 isequal to 0, since antecedent A does not appear in none of the other assertions. f01 is 0since consequent of the assertion does not appear in none of the other assertions. Andfinally, f00 is obtained by summing the occurrences of f11, f10 and f01 and subtractingthem to the total number of valid input patterns (in this case 2144). Next the combinationcolumns like fX1, fX0, f1X and f0X are obtained by summing the values of either of f11or f10 or f01 or f00 accordingly. fXX is same as the total number of valid input patternsconsidered in the simulation. Similar considerations allow computing values for all theother cells of Table 14.

Assertion f11 f10 f01 f00 fX1 fX0 f1X f0X fXXE_noLBDRout_liveness 2048 0 0 96 2048 96 2048 96 2144E_validLBDRout_liveness 96 0 0 2048 96 2048 96 2048 2144E_switchLBDRout_liveness 64 0 137 1943 201 1943 64 2080 2144E_singleLBDRout_liveness 96 0 0 2048 96 2048 96 2048 2144E_localport1_liveness 4 16 0 2124 4 2140 20 2124 2144E_localport2_liveness 28 0 2116 0 2144 0 28 2116 2144
Table 14 – Contingency table for ELBDR design assertions

74

Based on the contingency table information, the metrics described in section 2.11 foreach assertion of ELBDR design is calculated. The output is shown in table 15. The bestresult for the quality estimation is obtainedwithα = 0.4 in comparisonwith fault detectioncapability of the assertions.
Assertion S CC Strength QE_noLBDRout_liveness 0.96 1.0 1.05 1.61E_validLBDRout_liveness 0.04 1.0 0.05 0.65E_switchLBDRout_liveness 0.03 0.55 0.03 0.36E_singleLBDRout_liveness 0.04 1.0 0.05 0.65E_localport1_liveness 0.001 0.45 0.001 0.27E_localport2_liveness 0.01 0 0.01 0.01

Table 15 – Calculated metrics for each assertion of ELBDR design

The assertions are ranked based on the value Q. According to the preset threshold(here 75%), assertions, E_noLBDRout_liveness, E_validLBDRout_liveness, E_singleLBDRout-_liveness and E_switchLBDRout_liveness are selected and rest are discarded. Similarlyfor SARBITER design, 19 assertions out of 28 assertions are selected and given as input toAssertion fault analysis phase.In Assertion fault analysis phase, a mutation-based qualification software, Certitudedoes fault analysis on each of the selected set of assertions for ELBDR design and outputsthe result in the formof fault table informationwhich contains the details ofwhich assertiondetects which fault injected in the design. Based on the fault table information providedby Assertion fault analysis phase for ELBDR design, the minimization algorithm is applied.Assertions reduced to 3 based on the fault detection capability. Similarly, for SARBITERdesign, based on the fault table information provided by Assertion fault analysis phase,the minimization algorithm selects 2 assertions out of 19.Table 16 shows the number of assertions considered initially at the beginning of eachphase - Assertion ranking phase (described in Section 5.2.1) and a minimized set of asser-tions subsequent to the Assertion fault analysis phase (described in Section 5.2.2). As itcan be seen, for ELBDR design the initial number of assertions were minimized to 50% andfor SARBITER design, the initial number of assertions were reduced to 7.14%.
AssertionAssertion FaultInitial Ranking AnalysisDesign # % # % # %ELBDR 6 100 4 66.7 3 50SARBITER 28 100 19 66.7 2 7.14

Table 16 – Minimization of the number of assertions for ELBDR and SARBITER design

Theminimized set of checkers are synthesized to hardware checkers via Synopsys designcompiler using a class library, leading to area consumption results in terms of numberof NAND2 gate equivalents. As shown in table 17, the area consumption of initial set ofcheckers were 60 and 128 (number of NAND2 gates) for ELBDR and SARBITER respectively.After minimization, the area consumption has been reduced to 29 and 33 (number ofNAND2 gates) respectively. This minimization leads to 48.3% and 25.7% of reduction inarea consumption.
75

Design Initial set Minimized set Reduced Area (in %)ELBDR 60 29 48.3%SARBITER 128 33 25.7%
Table 17 – Area consumption of Checkers (number of NAND2 gates)

5.5 Chapter summary
In this chapter, a framework is proposed for selecting a minimal set of high-quality as-sertions which in turn to be implemented as hardware checkers. Experiments were run,applying the proposed framework, to ELBDR and SARBITER as a standalone module. It isworth mentioning that the area consumption of the synthesized checkers were reduced to25.7% and 48.3% for ELBDR and SARBITER design respectively. These checkers provided bythis proposed framework are able to cover 99.83% of single event transient faults.

76

6 Conclusion
This thesis has addressed a set of timely issues in reliability by developing amethodology forgenerating cost-effective concurrent hardware checkers. A framework has been proposedfor evaluating the fault detection capabilities of concurrent checkers for NoC routers. Thegoal was to achieve low-latency, low area overhead and high fault coverage checkers.Also, a framework has been developed for selecting a set of high-quality assertions bycombining a data mining technique with the fault-analysis approach allowing the reuseof the verification assertions in hardware checkers synthesis. The quality of assertionswas validated by studying the correlation between the fault detection capabilities of thecheckers and assertions.The four main contributions of this thesis are summarized below:

• A frameworkwas provided to evaluate the fault detection capability of the concurrentcheckers by formally proving the absence or presence of true misses over all possiblevalid inputs for a checker and targeting the minimum fault detection latency of asingle clock-cycle. Pseudo-combinational extraction guaranteed the possibility offault simulating the circuit in an exhaustive valid range of conditions. The followingresults were achieved concerning minimization of concurrent checkers:
– Full set of checkers was devised for control part of the target NoC routerarchitecture reaching the target (i.e., 100%) SET fault coverage and detectingthe faults with a single clock cycle latency.
– The area overhead of 185.71% imposed by the initial set of checkers over theELBDR module has been reduced to 78.57% with the minimized set of checkersafter the minimization procedure. While the initial set of checkers for theSARBITER module would lead to 170.45% area overhead, which is limited to56.82% after the minimization procedure.
– The result is by far more cost-effective in terms of area when compared to adoubling or triplicating of the respective modules applied in traditional faulttolerance approaches.

• A hybrid approach was proposed which combines concurrent checkers for controlpart with embedded on-line test packets replacing the data-path checkers. Thetrade-off between area-overhead and fault coverage was outlined. The approachled to the following results:
– When considering the checkers for both control part and data-path of thewhole NoC router, the fault coverage metrics resulted in 100% value with theconsiderable area overhead ranging from 30.98% to 41.45% depending on thedata width of the router.
– By using the hybrid approach, the area overhead was reduced to 1.62% to23.18% depending on different data widths.
– Despite, it comes at the expense of loss of fault coverage for soft errors in thedata path, which is however less critical since those faults can be corrected bymeans of software in an end-to-end correction setup.

• The correlation between the fault coverage obtained from the behavioral faultanalysis with the qualified assertions and the fault coverage obtained from the gate-level fault simulation of the checkers which were synthesized from the qualifiedassertions was studied and validated yielding the following results:
77

– Experiments carried out on the routing computation logic of NoC router showedthe feasibility of assessing the fault detection capabilities of checkers by apply-ing assertion qualification. Although assertion quality was not directly propor-tional to the checker coverage, experiments implementing a heuristic assertionminimization indicate that the optimal solution in terms of coverage/area wasachieved without the need to descend to tedious gate-level analysis.
• A framework was proposed for selecting a minimal set of high-quality assertions tobe implemented as hardware checkers by combining a data mining technique with afault analysis approach. An assertion conversion methodology was proposed whichconverted liveness assertions into their safety equivalents. The safety assertionswere further synthesized to hardware checkers to be evaluated at the gate level toprovide a cost-effective checking infrastructure.

– The area consumption of the synthesized hardware checkers were reduced to25.7% and 48.3% for ELBDR and SARBITER design respectively. These checkersprovided by this proposed framework were able to cover 99.83% of singleevent transient faults.
6.1 Future work
This research paves the way for future work in multiple directions such as:

• Considering multiple-cycle temporal logic assertion which addresses inputs, internalsignals and outputs of the design in different clock cycles.
• Combining the online fault detection based on the concept of end-to-end detection.
• Combining with effective recovery and reconfiguration mechanism enabling thesystem to continue operating properly in the presence of faults.

78

List of Figures
1 Failure rate over a life-time of a hardware system with shrinking technology 142 Overview of the Thesis flow . 153 Threats to digital circuits . 184 Classification of faults . 185 Classification of Single Event Effects . 206 Concept of Fault simulation . 207 Levels of abstraction . 218 An example of NoC based SoC . 229 Target NoC router number 5 in considered 4X4 2D mesh topology 2310 High-level overview of NoC Router Architecture 2411 LBDR mechanism [18] . 2412 East LBDR logic for NoC router . 2513 Pseudo-combinational version of ELBDR logic 2614 Overview of Round-Robin Arbiter . 2715 Pseudo-combinational version of SARBITER logic 2816 Crossbar switch architecture . 3117 Overview of NoC Router with embedded parity checking 3118 The concept of Concurrent checker . 3219 Similarities between data mining and assertion mining 3620 Checkers Evaluation and Minimization flow 4221 (a) Design with combinational and sequential circuit (b) Equivalent pseudo-combinational circuit . 4422 Test configurations for mesh-like NoCs [54] 5023 Weights of checkers proposed for ELBDR 5124 ELBDR checkers optimization results . 5225 ELBDR + SARBITER experiment . 5226 Weights of checkers proposed for ELBDR+SARBITER scenario 5327 SARBITER checkers optimization results for ELBDR + SARBITER scenario . 5428 Results without considering independent set of checkers for ELBDR + SAR-BITER scenario . 5529 Area information for different bit-widths of NoC router with checker logic 5630 Correlation between behavioral fault model and structural fault model . . 6231 (a) ELBDR checkers optimization results (b) ELBDR Cumulative fault cover-age using Assertion Qualification and Minimization procedure 6532 (a) SARBITER checkers optimization results (b) SARBITER Cumulative faultcoverage using Assertion Qualification and Minimization procedure . . . 6633 Assertion Qualification and Minimization 7034 Assertion Qualification . 7035 Overview of Assertion ranking . 7136 Assertion Fault analysis phase . 7337 Sample Fault Table . 7338 Assertion Minimization . 73

79

List of Tables
1 Checkers for LBDR logic . 262 Checkers for Round-Robin Arbiter logic 283 Checkers for FIFO Control part . 304 Checkers for the control part infrastructure 315 Checkers Evaluation Metrics . 336 Symbols and detection outcome correspondence 477 Weights of the minimized set of 5 checkers for ELBDR + SARBITER scenario 548 Evaluation result for the whole NoC Router 559 Area information for different bit-widths of NoC router with checker logic 5610 Evaluation result for the whole NoC Router (control part checkers only) . 5711 Truth table of liveness assertion . 6212 Truth table of safety assertion . 6213 Contingency table for A→C. 7114 Contingency table for ELBDR design assertions 7415 Calculated metrics for each assertion of ELBDR design 7516 Minimization of the number of assertions for ELBDR and SARBITER design 7517 Area consumption of Checkers (number of NAND2 gates) 76

80

References
[1] Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, ThomasHollstein, and Jaan Raik. Extended checkers for logic-based distributed routing innetwork-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages77–80. IEEE, 2014.
[2] Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert Jervan,and Thomas Hollstein. A framework for comprehensive automated evaluation ofconcurrent online checkers. In 2015 Euromicro Conference on Digital System Design,pages 288–292. IEEE, 2015.
[3] Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jer-van, and Thomas Hollstein. Automated minimization of concurrent online check-ers for network-on-chips. In 2015 10th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2015.
[4] Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Hollstein,Gert Jervan, and Ranganathan Hariharan. A framework for combining concurrentchecking and on-line embedded test for low-latency fault detection in noc routers. In

Proceedings of the 9th International Symposium on Networks-on-Chip, page 6. ACM,2015.
[5] Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault detection ef-ficiency of reliability checkers obtained by verification assertion qualification. In

RESCUE 2017 Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. IEEE, 2017.

[6] Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. Fromrtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2018.

[7] Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jervan,and Thomas Hollstein. A framework for area-efficient concurrent online checkersdesign. InMEDIAN 2015 Workshop on Manufacturable and Dependable Multicore
Architectures at Nanoscale, November 10-11, 2015.

[8] Way Kuo. Challenges related to reliability in nano electronics. IEEE Transactions on
Reliability, 55(4):569–570, 2006.

[9] Elena Dubrova. Fault-tolerant design. Springer, 2013.
[10] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,35(1):70–78, Jan 2002.
[11] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. VLSI test principles and

architectures: design for testability. Elsevier, 2006.
[12] Richard D Eldred. Test routines based on symbolic logical statements. Journal of the

ACM (JACM), 6(1):33–37, 1959.
[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help forthe practicing programmer. Computer, 11(4):34–41, April 1978.

81

[14] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective muta-tion. In Proceedings of 1993 15th International Conference on Software Engineering,pages 100–107, May 1993.
[15] Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and

scalability. John Wiley & Sons, 2006.
[16] Tanguy Risset. SoC (System on Chip), pages 1837–1842. Springer US, Boston, MA, 2011.
[17] Santanu Kundu. Network-on-Chip: The Next Generation of System-on-Chip Integration.CRC Press, July 2017.
[18] J. Flich and J. Duato. Logic-based distributed routing for nocs. IEEE Computer Archi-

tecture Letters, 7(1):13–16, Jan 2008.
[19] Zhizhou Fu and Xiang Ling. The design and implementation of arbiters for network-on-chips. In 2010 2nd International Conference on Industrial and Information Systems,volume 1, pages 292–295, July 2010.
[20] I. Miro Panades and A. Greiner. Bi-synchronous fifo for synchronous circuit commu-nication well suited for network-on-chip in gals architectures. In First International

Symposium on Networks-on-Chip (NOCS’07), pages 83–94, May 2007.
[21] Harry Foster, David Lacey, and Adam Krolnik. Assertion-Based Design. Kluwer Aca-demic Publishers, Norwell, MA, USA, 2 edition, 2003.
[22] T. Ghasempouri and G. Pravadelli. On the estimation of assertion interestingness. In

2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),pages 325–330, Oct 2015.
[23] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right In ACM

SIGKDD, pages 32–41, 2002.
[24] AL Oliveira and CM Antunes. Temporal data mining: An overview. In KDD Workshop

on Temporal Data Mining, 2001.
[25] T. Ghasempouri, S. PayandehAzad, B. Niazmand, and J. Raik. An automatic approach toevaluate assertions’ quality based on data-mining metrics. In 2018 IEEE International

Test Conference in Asia (ITC-Asia), pages 61–66, Aug 2018.
[26] Pang-Ning Tan and Vipin Kumar. Interestingness measures for association patterns: Aperspective. In Proc. of Workshop on Postprocessing in Machine Learning and Data

Mining, 2000.
[27] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini, and G. De Micheli.Analysis of error recovery schemes for networks on chips. IEEE Design Test of Com-

puters, 22(5):434–442, Sep. 2005.
[28] R. Abdel-Khalek, R. Parikh, A. DeOrio, and V. Bertacco. Functional correctness forcmp interconnects. In 2011 IEEE 29th International Conference on Computer Design

(ICCD), pages 352–359, Oct 2011.
[29] A. Kohler, G. Schley, and M. Radetzki. Fault tolerant network on chip switching withgraceful performance degradation. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 29(6):883–896, June 2010.
82

[30] D. Bertozzi, L. Benini, and G. De Micheli. Low power error resilient encoding foron-chip data buses. In Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition, pages 102–109, March 2002.

[31] Praveen K Samudrala, Jeremy Ramos, and Srinivas Katkoori. Selective triple modularredundancy (stmr) based single-event upset (seu) tolerant synthesis for fpgas. IEEE
transactions on Nuclear Science, 51(5):2957–2969, 2004.

[32] Jay M Berger. A note on error detection codes for asymmetric channels. Information
and Control, 4(1):68–73, 1961.

[33] Bose and Der Jei Lin. Systematic unidirectional error-detecting codes. IEEE Transac-
tions on Computers, C-34(11):1026–1032, Nov 1985.

[34] D. Das and N. A. Touba. Synthesis of circuits with low-cost concurrent error detec-tion based on bose-lin codes. In Proceedings. 16th IEEE VLSI Test Symposium (Cat.
No.98TB100231), pages 309–315, April 1998.

[35] K. Mohanram, E. S. Sogomonyan, M. Gossel, and N. A. Touba. Synthesis of low-costparity-based partially self-checking circuits. In 9th IEEE On-Line Testing Symposium,
2003. IOLTS 2003., pages 35–40, July 2003.

[36] S. Ghosh, N. A. Touba, and S. Basu. Synthesis of low power ced circuits based onparity codes. In 23rd IEEE VLSI Test Symposium (VTS’05), pages 315–320, May 2005.
[37] R. Sharma and K. K. Saluja. An implementation and analysis of a concurrent built-in self-test technique. In [1988] The Eighteenth International Symposium on Fault-Tolerant

Computing. Digest of Papers, pages 164–169, June 1988.
[38] P. Drineas and Y. Makris. Concurrent fault detection in random combinational logic.In Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.,pages 425–430, March 2003.
[39] Raimund Ubar and Jaan Raik. Testing strategies for networks on chip. In Networks on

chip, pages 131–152. Springer, 2003.
[40] A. Strano, C. Gómez, D. Ludovici, M. Favalli, M. E. Gómez, and D. Bertozzi. Exploitingnetwork-on-chip structural redundancy for a cooperative and scalable built-in self-testarchitecture. In 2011 Design, Automation Test in Europe, pages 1–6, March 2011.
[41] K. Petersen and J. Oberg. Toward a scalable test methodology for 2d-mesh network-on-chips. In 2007 Design, Automation Test in Europe Conference Exhibition, pages1–6, April 2007.
[42] J. Raik and V. Govind. Low-area boundary bist architecture for mesh-like network-on-chip. In 2012 IEEE 15th International Symposium on Design and Diagnostics of

Electronic Circuits Systems (DDECS), pages 95–100, April 2012.
[43] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar. Using implications for online errordetection. In 2008 IEEE International Test Conference, pages 1–10, Oct 2008.
[44] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, and Partha Pratim Pande. On-linefault detection and location for noc interconnects. In 12th IEEE International On-Line

Testing Symposium (IOLTS’06), pages 6 pp.–, July 2006.
83

[45] A. Dalirsani, M. A. Kochte, and H. Wunderlich. Area-efficient synthesis of fault-securenoc switches. In 2014 IEEE 20th International On-Line Testing Symposium (IOLTS),pages 13–18, July 2014.
[46] Dongkook Park, C. Nicopoulos, Jongman Kim, N. Vijaykrishnan, and C. R. Das. Ex-ploring fault-tolerant network-on-chip architectures. In International Conference on

Dependable Systems and Networks (DSN’06), pages 93–104, June 2006.
[47] Q. Yu, M. Zhang, and P. Ampadu. Exploiting inherent information redundancy to man-age transient errors in noc routing arbitration. In Proceedings of the Fifth ACM/IEEE

International Symposium, pages 105–112, May 2011.
[48] Q. Yu, J. Cano, J. Flich, and P. Ampadu. Transient and permanent error control for high-endmultiprocessor systems-on-chip. In 2012 IEEE/ACM Sixth International Symposium

on Networks-on-Chip, pages 169–176, May 2012.
[49] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi. Online noc switch fault detection anddiagnosis using a high level fault model. In 22nd IEEE International Symposium on

Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pages 21–29, Sep. 2007.
[50] R. Parikh and V. Bertacco. Formally enhanced runtime verification to ensure nocfunctional correctness. In 2011 44th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 410–419, Dec 2011.
[51] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides. Nocalert: An on-line andreal-time fault detection mechanism for network-on-chip architectures. In 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 60–71, Dec2012.
[52] Giorgos Dimitrakopoulos and Emmanouil Kalligeros. Low-cost fault-tolerant switchallocator for network-on-chip routers. In Proceedings of the 2012 Interconnection

Network Architecture: On-Chip, Multi-Chip Workshop, pages 25–28. ACM, 2012.
[53] J. Raik, V. Govind, and R. Ubar. An external test approach for network-on-a-chipswitches. In 2006 15th Asian Test Symposium, pages 437–442, Nov 2006.
[54] J. Raik, V. Govind, and R. Ubar. Design-for-testability-based external test and diagnosisof mesh-like network-on-a-chips. IET Computers Digital Techniques, 3(5):476–486,Sep. 2009.
[55] D. Fick, A. DeOrio, , V. Bertacco, D. Blaauw, and D. Sylvester. Vicis: A reliable networkfor unreliable silicon. In 2009 46th ACM/IEEE Design Automation Conference, pages812–817, July 2009.
[56] Margit Aarna, Eero Ivask, Artur Jutman, Elmet Orasson, Jaan Raik, Raimund Ubar,V. Vislogubov, and Heinz-Dietrich Wuttke. Turbo tester – diagnostic package forresearch and training. 2003.
[57] A. Jutman A. Peder J. Raik M. Tombak R. Ubar Tallinn. Structurally synthesized binarydecision diagrams. 2004.
[58] N. Alves, Y. Shi, J. Dworak, R. I. Bahar, and K. Nepal. Enhancing online error detectionthrough area-efficient multi-site implications. In 29th VLSI Test Symposium, pages241–246, May 2011.

84

[59] M. Boule, J. Chenard, and Z. Zilic. Assertion checkers in verification, silicon debugand in-field diagnosis. In 8th International Symposium on Quality Electronic Design
(ISQED’07), pages 613–620, March 2007.

[60] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Distributed
computing, 2(3):117–126, 1987.

[61] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.In 7th Int. Workshop on Formal Methods for Industrial Critical Systems (FMICS’02),volume 66, 2002.
[62] Viktor Schuppan and Armin Biere. Efficient reduction of finite state model checking toreachability analysis. International Journal on Software Tools for Technology Transfer,5(2):185–204, Mar 2004.
[63] Alessandro Danese, Francesca Filini, Tara Ghasempouri, and Graziano Pravadelli. Au-tomatic generation and qualification of assertions on control signals: A time window-based approach. In Youngsoo Shin, Chi Ying Tsui, Jae-Joon Kim, Kiyoung Choi, andRicardo Reis, editors, VLSI-SoC: Design for Reliability, Security, and Low Power, pages193–221, Cham, 2016. Springer International Publishing.
[64] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware assertions with guidancefrom static analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 32(6):952–965, June 2013.
[65] P. K. Nalla, R. K. Gajavelly, H. Mony, J. Baumgartner, and R. Kanzelman. Effective live-ness verification using a transformation-based framework. In 2014 27th International

Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems, pages 74–79, Jan 2014.

[66] Yael Abarbanel, Ilan Beer, Leonid Gluhovsky, Sharon Keidar, and Yaron Wolfsthal.Focs–automatic generation of simulation checkers from formal specifications. In
International Conference on Computer Aided Verification, pages 538–542. Springer,2000.

[67] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. An rt-level fault modelwith high gate level correlation. In Proceedings IEEE International High-Level Design
Validation and Test Workshop (Cat. No.PR00786), pages 3–8, Nov 2000.

[68] M. Brera, F. Ferrandi, D. Sciuto, and F. Fummi. Increase the behavioral fault modelaccuracy using high-level synthesis information. In Proceedings 1999 IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (EFT’99), pages 174–180,Nov 1999.

[69] T. Chakraborty and S. Ghosh. On behavior fault modeling for combinational digitaldesigns. In International Test Conference 1988 Proceeding@m_New Frontiers in
Testing, pages 593–600, Sep. 1988.

[70] Viktor Schuppan and Armin Biere. Liveness checking as safety checking for infinitestate spaces. Electronic Notes in Theoretical Computer Science, 149(1):79–96, 2006.
[71] K. Morin-Allory and D. Borrione. Proven correct monitors from psl specifications. In

Proceedings of the Design Automation Test in Europe Conference, volume 1, pages1–6, March 2006.
85

[72] Ieee standard for systemverilog–unified hardware design, specification, and verifica-tion language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–1315, Feb2018.
[73] Synopsys design compiler. http://www.synopsys.com/, 1994.
[74] H.D.K. Foster and D.J. Lacey. Assertion-based design 2nd edition. Springer, 2004.
[75] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification anddiagnosis. In Design Automation Conference, pages 755–760, June 2010.
[76] Lingyi Liu and Shobha Vasudevan. Automatic generation of system level assertionsfrom transaction level models. Journal of Electronic Testing, 29(5):669–684, 2013.
[77] S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan, and T. Hollstein. Automatedarea and coverage optimization of minimal latency checkers. In 2017 22nd IEEE

European Test Symposium (ETS), pages 1–2, May 2017.
[78] A. Danese, T. Ghasempouri, and G. Pravadelli. Automatic extraction of assertionsfrom execution traces of behavioural models. In 2015 Design, Automation Test in

Europe Conference Exhibition (DATE), pages 67–72, March 2015.
[79] M. Bertasi, G. Di Guglielmo, and G. Pravadelli. Automatic generation of compactformal properties for effective error detection. In 2013 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, Sep.2013.
[80] Sagi Katz, Orna Grumberg, and Danny Geist. ” have i written enough properties?”-amethod of comparison between specification and implementation. In Advanced

Research Working Conference on Correct Hardware Design and Verification Methods,pages 280–297. Springer, 1999.
[81] Y. Hoskote, T. Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation for sym-bolic model checking. In Proceedings 1999 Design Automation Conference (Cat. No.

99CH36361), pages 300–305, June 1999.
[82] N. Jayakumar, M. Purandare, and F. Somenzi. Do’s and don’ts of ctl state cover-age estimation. In Proceedings 2003. Design Automation Conference (IEEE Cat.

No.03CH37451), pages 292–295, June 2003.
[83] A. Fedeli, F. Fummi, and G. Pravadelli. Properties incompleteness evaluation byfunctional verification. IEEE Transactions on Computers, 56(4):528–544, April 2007.
[84] https://www.synopsys.com/verification/simulation/certitude.html.
[85] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interesting-ness measure for association patterns. In Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’02, pages32–41, New York, NY, USA, 2002. ACM.

86

http://www.synopsys.com/
https://www.synopsys.com/verification/simulation/certitude.html

Acknowledgements
I would like to expressmy gratitude tomy supervisor Prof. Jaan Raik for guidingme through-out the PhD studies. I would also like to thank my co-supervisor Dr. Tara Ghasempouri. Ihave always appreciated their support, comments and open-door approach. I could nothave imagined having a better supervisors for my PhD study. It has been a great pleasureto do research work with them.Special thanks to Dr. Margus Kruus, the Head of Department of Computer Systems forhis support with many administrative issues.I would also like to thank all the people in Department of Computer Systems who helpedme during my PhD studies. I would like to express special thanks to my colleague BehradNiazmand. Also, I would thank my friends for their valuable support.Furthermore, I like to acknowledge the organizations that have supported my PhDstudies: Tallinn University of Technology, Estonian IT Academy program, EU’s H2020 RIAIMMORTAL, the Estonian Center of Excellence in IT (EXCITE) and EU’s Twinning ActionTUTORIAL project.Finally, I would like to thank my family: my parents Padmavathi and Hariharan, mybrother Subramaniyan and his family, my in-laws, whose love and guidance are with mein whatever I pursue. Most importantly, I wish to thank my loving wife, Neeraja and oursweet daughter Ankita for supporting and providing unending inspirations.

87

Abstract
Cost-Effective Concurrent Hardware Checkers for Network on
Chip based System on Chip
Extreme down-scaling of semi-conductor technologies causes a rapid increase of life-timeissues in digital circuits. Consequently, detecting faults at run-time is becoming imperative.An on-line fault detection mechanism aims to monitor the digital circuits at run-timeand detect the undesired behavior while the device is in operation. This kind of onlinefault detection can be achieved with the help of concurrent hardware checkers. However,designing checkers by hand can be a tedious and error-prone task.At the same time the complexity of integrated circuits is growing and the underlyingarchitectures have been moving towards multi-/many-core and System-on-Chip (SoC)paradigms. With the number of cores increasing, the on-chip communication efficiencyhas become one of the bottlenecks determining the overall system performance and cost.A packet based, on-chip intercommunication network known as Network on Chip (NoC)is emerging as an alternative solution to address the increasing interconnect complexity.However, NoC based interconnects, because of advanced router architectures, complex op-eration and concurrent communication are highly susceptible to faults during the runtimeof the system. Without taking an appropriate run-time solution to ensure that such faultsdo not affect the operation of NoCs based interconnects, there could be possibility of datagettingmisrouted, dropped, corrupted, deadlocked or even several on-chip communicationperformance degradation.To address the above issues, this thesis proposes a methodology for producing a setof cost-effective concurrent checkers from verification assertions. It is known that thenumber of assertions is generally too high to allow for area-efficient checking infrastructure.Therefore, there is a need for qualification and minimization of assertions with a prospectof reusing them as hardware checkers. To derive low-area, high fault coverage hardwarecheckers from many assertions, this thesis proposes a framework for selecting a set ofhigh-quality and minimized assertions by combining a data mining technique with the faultanalysis approach along with an assertion conversion methodology that converts livenessassertions into safety assertions. The framework then synthesizes these safety assertionsinto hardware checkers to be evaluated at the gate level to provide a cost-effective checkinginfrastructure.Experimental results evaluating the methodology proposed in this thesis show that itis capable of synthesizing checker circuitry whose area overhead lies in a 60-80% rangewhile guaranteeing 100% of single-event transient fault coverage. This is by far more areaefficient than what is required by the traditional duplication and triplication based faulttolerant architectures. Moreover, a hybrid solution combining concurrent checkers withonline test packets can further minimize the requirements of the area overhead down toless than 2 percents.

88

Kokkuvõte
Kulutõhusad süsteemiga paralleelsed rikkemonitorid
kiipvõrkudel põhinevatele kiipsüsteemidele
Pooljuhtide tehnoloogiate ekstreemne miniaturiseerimine on põhjustanud digitaalsüs-teemide eluea jooksul toimuvate rikete plahvatusliku kasvu. Seega on häirete avastamineseadme eluea jooksul hädavajalik. Rikke tuvastamise mehhanismi eesmärk on jälgida di-gitaalsüsteeme ja tuvastada soovimatu käitumine seadme töötamise ajal. Sellist tõrketuvastamist on võimalik saavutada süsteemiga paralleelsete rikkemonitoride abil. Kuidsarnaste monitoride projekteerimine käsitsi on üldjuhul aeganõudev ja vea-aldis tegevus.Samal ajal on kasvanud integraallülituste keerukus ja selle aluseks olevad arhitektuuridon liikunudmitme- ja paljutuumaliste süsteemide ning kiipsüsteemide paradigmade suunas.Tuumade arvu kasvades on kiibi kommunikatsioon muutunud üheks kitsaskohtaks, mismäärab süsteemi üldise jõudluse ja maksumuse. Paketipõhine kiibil olev sidevõrk, midatuntakse kui kiipvõrku, on kujunemas alternatiivseks lahenduseks üha suureneva ühendustekeerukuse lahendamiseks. Kuid kiipvõrgu-põhised ühendused on tänu keerukatele ruuteriarhitektuuridele muutunud äärmiselt tundlikeks rikete suhtes. Adekvaatsete, seadmetöö ajal rakendatavate lahenduste puudumine võib põhjustada andmete ruutimisvigu,kadunud või rikutud andmepakette, võrgu ummikseisu või kiibi kommunikatsiooni jõudlusehalvenemist.Ülaltoodud küsimuste lahendamiseks pakutakse käesolevas töös välja metoodika ve-rifitseerimisväidetest kulu-efektiivsete rikkemonitoride sünteesiks. On teada, et väidetearv on üldjuhul liiga suur, et võimaldada kompaktsete monitoride väljatöötamist. Seetõttuon tarvis verifitseerimise väiteid eelnevalt minimeerida, et neid riistvaramonitoridenataaskasutada. Madala pindala, suure rikete kattega riistvaraliste monitoride sünteesikspaljudest veriftseerimise väidetest pakub väitekiri välja raamistiku kvaliteetsete ja mini-meeritud väidete väljavalimiseks, kombineerides andmekaevandustehnikat veaanalüüsimeetodiga. Seejärel sünteesib raamistik saadud minimiseertud väidete hulga riistvaralis-teks rikkemonitorideks, mida hinnatakse loogikalülituste tasemel, et tagada kulutõhusrikete monitooring.Käesolevas töös välja pakutud metoodika hindamiseks läbi viidud eksperimendid näita-vad, et see on võimeline sünteesima rikkemonitooringu süsteemi, mille pindala lisavajaduson 60-80% , tagades samas 100% transientsete rikete katvuse. Seega on pindala lisava-jadus oluliselt väiksem traditsioonilisest dubleerimisel ja kolmekordistamisel põhineva-test tõrkekindlatest arhitektuuridest. Peale selle võimaldab dissertatsioonis välja pakutudhübriidlahendus, mis ühendab riistvaralisi rikkemonitore online-testipakettidega veelgivähendada pindala nõudeid viies need vähem kui 2 protsendini.

89

Appendix 1

Publication I

Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan,Thomas Hollstein, and Jaan Raik. Extended checkers for logic-based dis-tributed routing in network-on-chips. In 2014 14th Biennial Baltic Electronic
Conference (BEC), pages 77–80. IEEE, 2014

91

Extended Checkers for Logic-Based Distributed
Routing in Network-on-Chips

Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, Thomas Hollstein, Jaan Raik
Department of Computer Engineering

Tallinn University of Technology
Tallinn, Estonia

{bniazmand, ranga, vineeth, gert, thomas, jaan}@ati.ttu.ee

Abstract—Network on Chips (NoCs) are composed of routers,
whose task is to dispatch packets within the communication
network according to the routing algorithm implemented.
However, the extreme scaling of emerging nanometer
technologies makes the routers vulnerable to wear-out and
environmental effects. In order to contain this issue, development
of online testing capabilities for the NoC routers is a must. This
paper proposes concurrent online checkers for structural faults
in the NoC routing algorithms utilizing the Logic-Based
Distributed Routing (LBDR) concept. We show by fault injection
experiments that the fault coverage of existing checking
mechanisms for LBDR faults is very low. We propose an
extended set of concurrent checkers that increase the coverage
more than threefold facilitating detection of the majority of
structural faults within the LBDR.

Keywords—network-on-a-chip, logic-based distributed routing,
concurrent online checking.

I. INTRODUCTION

Network on Chips (NoCs) have emerged as a scalable and
predictable alternative to the bus-based and ad-hoc interconnect
seen in the System-on-a-Chip designs in the past. The NoCs
consist of routers, whose task is to dispatch packets within the
communication network according to the routing algorithm
implemented.

However, the extreme scaling of new nanometer
technologies makes the electronic systems vulnerable to wear-
out (e.g. aging) and environmental effects (e.g. soft errors,
electro-magnetic interference). These are issues occurring
during the life time of the system and cannot be filtered out by
manufacturing testing. Thus, online solutions for detecting
faults during circuit life time are needed. Preferably, these
solutions should be concurrent, i.e. functioning concurrently to
the normal circuit operation.

This paper proposes concurrent online checkers targeting
structural faults in the NoC routing algorithms utilizing the
Logic-Based Distributed Routing (LBDR) concept [1]. We
show by fault injection experiments that the fault coverage of
existing checking mechanisms for LBDR faults is very low [2].
We propose an extended set of concurrent checkers that
increase the coverage threefold facilitating detection of the
majority of structural faults occurring within the LBDR. This

comes at the expense of area overhead requirements, which
however are less than having the circuit duplicated.

The paper is organized as follows. Section 2 presents an
overview of related works. Section 3 explains the basic concept
of LBDR. In Section 4, the concurrent online checkers for
LBDR are presented. Section 5 provides the fault injection
experiments. Finally, Section 6 concludes the paper.

II. RELATED WORKS

Several works on online checking for NoCs have been
developed in the past. Grecu et al. have introduced a method
for online fault detection and location in NoC communication
fabrics [3], which is able to distinguish between faults in the
communication links and the ones in NoC switches. This work
is based on the utilization of code-disjoint routing elements,
combined with parity check encoding for the inter-switch links.
However, the method targets faults in the data part only.

In [4], an end-to-end error detection and recovery solution,
SafeNoC, has been introduced for ensuring the functional
correctness of CMP interconnects. In this solution, a
lightweight checker network is added to the existing
interconnect, that guarantees to deliver messages correctly.
Therefore, for each data message, a look-ahead signature is
transmitted over the checker network, which is used for
detecting errors in the corresponding data message. The
solution does not provide checking for faults within the routers.

Several works have proposed utilization of concurrent
online checkers for checking router faults [5,6,2]. In [5], the
authors propose a lightweight checker for faults in routing
algorithm implementation. However, only faults manifesting
themselves as erroneous routing to the local port are targeted.
[6] proposes checkers synthesized from a set of 32 assertions.
The checkers detect most of the injected faults. The faults that
are not covered correspond to non-catastrophic failures.

Yu et al. [2] have proposed a set of checkers for the NoC
routing algorithmic blocks implemented as LBDR. In this
paper we extend the set of checkers in order to increase the
fault coverage.

77

III. LOGIC-BASED DISTRIBUTED ROUTING (LBDR)
The proposed approach combines the concepts used in [6]

and [2] with the aim of introducing checker modules for
different components related to the combinational logic of the
routing algorithm. In this work we have utilized the concept
mentioned in [1], which proposes a mechanism for
implementing routing algorithms in form of combinational
logic at each router in the network and not making use of
routing tables at all. The proposed logic, named Logic-Based
Distributed Routing (LBDR), relies on two sets of
configuration bits referred to as the connectivity bits and the
routing bits, respectively. The former describes how the
network topology looks like, for example being a 2D mesh,
torus, plus, d and P. The latter describes the limited turns in the
routing algorithm, so for example based on the routing
algorithm used, such as XY (Dimension-Ordered) routing,
Segment-based routing, Turn-Model routing algorithms, the
corresponding routing bits are set to specific values
accordingly in each router.

 The LBDR logic accepts as input the following [1]:

• The ID of the current router (which is stored in a register at
the current router)

• The ID of the destination router (which is extracted from
the header flit of the packet)

• The connectivity bits of the current router (4 bits in total for
a 2D Mesh, corresponding to four main directions)

• The routing bits of the current router (8 bits)

Fig. 1 shows the logic for LBDR as proposed in [1].

Fig. 1. Logic for LBDR

It is worth mentioning that since only the header flit of a
packet includes the destination router ID then this is the flit
that LBDR uses for setting the appropriate output port signal.
The main LBDR logic (as depicted in [1]), provides a set of
five output signals: N, E, W, S and L. That means, for
example if N is set, then the flit can be forwarded to the North
output port. For the North output port to be considered, the
destination router can either be on the same column as the
current router, or it can be located on the NE (North-East)
quadrant with respect to the current router and the routing bit

Rne should allow for the turn from North to East at the next
hop, or it can be located on the NW (North-West) quadrant
with respect to the current router and the routing bit Rnw
should allow for the turn from North to West at the next hop.

Depending on the routing algorithm used, one or two
output signals of the LBDR logic can become active. In case
of using Dimension-Ordered routing algorithms (such as XY
routing), since there is always one output direction chosen as a
candidate for forwarding the flit, only one output signal can be
set to one in the LBDR logic. However, in case of adaptive
routing algorithms (such as Turn Model routing algorithms),
there might be a maximum of two candidate output ports, so
two output signals can be set to one in the LBDR logic. In
such cases, there is a possibility to utilize a selection function
that can decide which output port should finally be chosen for
forwarding the flit.

IV. CONCURRENT CHECKERS FOR THE LBDR
In [2], the comparator units (CMP) of the LBDR are

implemented using subtractors. The output of subtraction
Xcurr-Xdist is denoted as A and the output of subtraction
Ycurr-Ydist is denoted as B, respectively.

Table I presents the properties implemented by checkers in
the current paper. The first two properties ERRCMP and
ERRLBDR-out were introduced by [2]. As an extension, in this
work, we have added new checkers to the LBDR logic, making
it possible to detect faults in connectivity bits, faults in the
value of Node IDs that do not exist and faults that are related to
the router’s local (L) port.

 As mentioned in [2], the LBDR logic utilizes two sets of
configuration bits for computing the appropriate output
signal(s): namely the connectivity bits and the routing bits. The
connectivity bits describe the network topology and indicate
which output ports exist and which output ports do not exist or
have become faulty and cannot be used for routing. According
to the logic of LBDR whenever an output port is expected to be
chosen as a candidate, its corresponding connectivity bit should
also be set to one (the output port should actually exist),
otherwise, the output signal for that port cannot be enabled. For
instance, if the N output signal is set to one, according the
LBDR’s logic for N port, Cn (connectivity bit for the North
port) should have been set to one, otherwise this indicates a
fault. In order to capture faults that might occur regarding
connectivity bits, we have made use of Equation (1) which
describes the corresponding checker logic for this purpose:
(1) ERRconnectivity = (N & ~Cn) | (E & ~Ce) | (W & ~Cw) | (S & ~Cs)

There are also some situations in which the destination
node ID or the current node ID, which are inputs to the LBDR
logic, might be influenced by faults and therefore the value of
the node ID might change to an invalid number that either does
not exist in the topology or its links are disabled. Such
conditions might have effect on the local output signal of
LBDR (L) and make it active inadvertently. However, the
Local output signal in LBDR logic cannot become active when
at least one of the prime signals (N’, E’, W’ and S’) has been
set to one. Also, as long as the flit has not reached its
destination, the local output signal (L) cannot be set to one.

78

TABLE I. CONCURRENT ONLINE CHECKERS FOR THE LBDR

Equation (2) describes the checker logic introduced for
detection of such conditions:

(2) ERRInvalid-Node = (iN | iE | iW | iS | iL) & (~N & Cn) &

 (~E & Ce) & (~W & Cw) & (~S & Cs) & ~L

Furthermore, if one of the output signals of the CMP units
becomes enabled, that means the destination node does not
have the same coordinates as the current node and therefore if
the L output port of LBDR also becomes active, this signals a
fault. In addition, if there is a request to the LBDR logic, but
none of the output signals of the CMP neither the L output port
of LBDR become active, this indicates an occurrence of fault
as well. Equation (3) represents the checker logic proposed for
detection of such conditions:

(3) ERRLocal = ((N’ | E’ | W’ | S’) & L) | ((iN | iE | iW | iS | iL)

& ~N’ & ~E’ & ~W’ & ~S’ & ~L)

Table I presents the checkers proposed by [2] as well as the
additional checkers introduced by this paper.

V. SYNTHESIS AND FAULT INJECTION EXPERIMENTS
In order to evaluate the fault detection capabilities of the

checkers proposed in the current work, fault injection
experiments were carried out. An equivalent circuit consisting
of an LBDR, its duplicate and the checkers’ module was
synthesized (see Fig. 2). The outputs of the LBDR and its
duplication were connected to a miter circuit with an output
signal error_at_output. This signal became 1 only in the case

the fault injected to LBDR propagated to the circuit output.
The outputs of all the checkers were OR-ed together to
generate the signal error_at_checker. Finally, the two
respective signals were AND-ed together to produce the
primary output of the equivalence circuit. The faults were
injected to the LBDR module only. The faults were detected by
the equivalent circuit iff they propagated to the LBDR output
AND they were detected by at least one of the checkers.

Table II presents the results of the fault injection
experiments comparing the fault detection power as well as
required area overhead of the work proposed in [2] and the
proposed method. The experiments showed that the faults
detectable in LBDR by the given set of checkers in [2] was
very low, merely 21.6%. The checkers described in the
previous Section implementing the conditions (1)-(3) allowed
increasing the fault coverage more than threefold, i.e. up to
64.9%.

The area overhead with respect to the area of the LBDR in
the case of the proposed checkers was higher than in [2].
However, the LBDR circuitry is forming only a small portion
(1-2%) of the total router area. Therefore the required area
overhead is small in terms of absolute area. Devising efficient
checkers for the LBDR based routing circuitry is nevertheless
imperative because it is a challenge to check for errors in the
routing control as opposed to checking for errors in the data
intensive parts of the router.

Previous Work [2]

ERRCMP

(E’ & W’) | (N’ & S’) | (~A & (E’ | W’)) |
(A & ~E’ & ~W’) | (~B & (N’ | S’)) |

(B & ~N’ & ~S’)

•

•

ERRLBDR-out (N & S) | (E & W) •

Our Proposal (Extension of Checker Logics)

ERRconnectivity (N & ~Cn) | (E & ~Ce) | (W & ~Cw) | (S & ~Cs)
•

ERRInvalid-Node

•

ERRLocal
((N’ | E’ | W’ | S’) & L) | ((iN | iE | iW | iS | iL) &

~N’ & ~E’ & ~W’ & ~S’ & ~L)

•

79

TABLE II. EXPERIMENTAL RESULTS

[2] Proposed

Fault coverage 21.6% 64.9%

Overhead area 26.8% 60.6%

Fig. 2. An equivalent circuit for fault injection experiments

Fig. 3. Not covered faults in the LBDR schematic.

DISCUSSION OF LIMITATIONS

Figure 3 presents the schematic of the LBDR circuit,
where lines with no faults covered have been marked by blue
rectangles. As it can be seen from the Figure, none of the
prime signals, i.e. N’, W’, E’, S’ (denoted by N1, W1, E1, S1,
respectively) are detected by the checkers. In addition, signals
related to the comparator output signals A and B are not
detected. The latter may be addressed by developing LBDR
architectures, where comparators are designed in a different
manner.

CONCLUSIONS AND FUTURE WORK
The paper presented a set of checkers for concurrent online

testing of both temporary and permanent faults in LBDR based
routing logic of the network on chips. We proposed a set of
five checkers which cover the majority of faults occurring in
the LBDR circuitry of NoC routers.

Fault injection experiments showed that the proposed
method allowed increasing the fault coverage 3 times with a
still acceptable checker area overhead. In future work we
foresee development of new checkers to increase the fault
coverage as well as minimization of the checker set in order to
save the required overhead area.

ACKNOWLEDGMENT
The work has been supported by EU FP7 STREP

BASTION, Estonian institutional research grant IUT 19-1,
research grants 8478, 9429, funded by Estonian Ministry of
Education and Research, and by EU through the European
Structural and Regional Development Funds.

REFERENCES
[1] J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE

Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.
[2] Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., "Transient and Permanent

Error Control for High-End Multiprocessor Systems-on-Chip," 2012
Sixth IEEE/ACM International Symposium on Networks on Chip
(NoCS), vol., no., pp.169,176, 9-11 May 2012.

[3] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, P. P. Pande, On-line
fault detection and location for NoC interconnects. 12th IEEE IOLTS
2006, 6 pp., 10-12 July 2006.

[4] Abdel-Khalek, R.; Parikh, R.; DeOrio, A.; Bertacco, V., "Functional
correctness for CMP interconnects," 2011 IEEE 29th International
Conference on Computer Design (ICCD), pp. 352,359, 9-12 Oct. 2011.

[5] Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch
Fault Detection and Diagnosis Using a High Level Fault Model," 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT '07., vol., no., pp.21,29, 26-28 Sept. 2007.

[6] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

80

Appendix 2

Publication II

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, GertJervan, and Thomas Hollstein. A framework for comprehensive automatedevaluation of concurrent online checkers. In 2015 Euromicro Conference on
Digital System Design, pages 288–292. IEEE, 2015

97

A Framework for Comprehensive Automated
Evaluation of Concurrent Online Checkers

Pietro Saltarelli1,2, Behrad Niazmand1, Jaan Raik1, Ranganathan Hariharan1, Gert Jervan1, Thomas Hollstein1

1Tallinn University of Technology
Tallinn, Estonia

2Università degli Studi di Ferrara
Ferrara, Italy

pietro.saltarelli@student.unife.it
{bniazmand, jaan, ranga, gert, thomas}@ati.ttu.ee

Abstract— This paper proposes a framework for automated
evaluation of concurrent online checkers. The novelty of the
underlying approach lies in its completeness (i.e. ability of
formally proving the presence or absence of true misses),
minimal fault detection latency and accurate, fully automated
evaluation of the fault detection characteristics of the checkers.
The methodology consists of creating a pseudo-combinational
version of the circuit under test, specifying the environment in
terms of valid input stimuli and providing the assertions for
generating the checkers, which will thereafter be evaluated by
the framework. In this paper, a case-study on the control part
(routing and arbitration) of a Network-on-Chip (NoC) router
has been carried out. It shows on a realistic application that the
framework is capable of accurately and formally evaluating the
quality of individual concurrent checkers which constitutes an
important task in fault tolerant system design. The case study
shows that the proposed approach helps achieving high fault
coverage in a single clock-cycle.

Keywords- concurrent online checking, Network-on-Chip,
routing logic, arbitration.

I.� INTRODUCTION

Extreme scaling of nanometer technologies has made the
electronic systems increasingly vulnerable to wear-out and
environmental effects (e.g. soft errors, electro-magnetic
interference). These are issues occurring during the life-time
of the system and cannot be filtered out by manufacturing
testing. Thus, online solutions for detecting faults are needed.
These solutions should preferably be concurrent to the normal
circuit operation.

One of the possible solutions for concurrent online test is
the use of checkers for monitoring faults occurring within the
circuit. In this paper, we introduce a framework for accurate,
automated evaluation of concurrent online checkers. The
methodology includes preparation of the checkers in the form
of verification assertions (or reuse of existing assertions),
creation of a pseudo-combinational version of the circuit
under test and specifying the environment in terms of valid
input stimuli for it.

Subsequently, the set of obtained checkers, together with
the stimuli and the circuit are given to the framework that
accurately evaluates the fault detection characteristics of the
given checkers. The underlying approach in the framework is
complete, i.e. it allows proving the absence or presence of true

misses by the checkers. In addition, it provides minimal fault
detection latency due to the fact that the circuit is transformed
into a pseudo-combinational one and therefore only checkers
with a single clock cycle latency are considered.

The proposed approach is applicable to control-oriented
designs. In this paper, a case-study on the control part (routing
and arbitration) of an NoC router has been carried out. It
shows on a realistic application that the framework is capable
of evaluating the quality of individual concurrent checkers
which constitutes an important task in fault-tolerant system
design.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing.
Section 3 gives an overview of the concurrent online checking
concept. In Section 4, the proposed framework and the
corresponding methodology are presented. Section 5 presents
the target architecture of the control part of a Network-on-
Chip (NoC) router. Section 6 provides the checker evaluation
experiments. Finally, Section 7 concludes the paper.

II.� RELATED WORKS
Online detection of errors in logic is a thoroughly studied

research area. Traditional Triple-Modular Redundancy
(TMR) and duplication-based approach are too costly in terms
of multiplying the area and correspondingly the power
consumption. An alternative to minimize this overhead is the
selective TMR that identifies Single Event Upset (SEU)
sensitive sub-circuits that are to be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3] codes.
In many works the coding techniques are combined with
synthesis [4,5]. The approaches suffer from significant area
overhead as well as require alteration of the original circuit in
order to generate the codes.

Concurrent on-line built-in self-test techniques such as
Built-In Concurrent Self-Test (BICST) [6] and Reduced
Observation Width Replication (ROWR) [7] provide high
fault coverage at low area overhead but only consider a limited
subset of pre-computed test vectors. Hence these approaches
are likely to miss faults occurring in a normal circuit
operation.

Several alternatives based on fault monitors and checkers
that do not require modification of the circuit under test have
been developed. Creating checkers automatically based on

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.15

288

logic implications derived from the circuit structure [8] is
feasible but suffers from low fault coverage and high area
overhead, often exceeding the duplex solutions. On the other
hand, deriving checkers from functional assertions, or reusing
verification assertions, is similarly known to yield low
coverage of structural faults as it is difficult to correlate
functional coverage to structural one [9].

The framework and methodology presented in this paper
exceed the existing state-of-the-art in concurrent online
checking in the following aspects:

•� It allows formally proving the absence or presence of
true misses over all possible valid inputs for a
checker, whereas in the case of traditional fault
injection only statistical probabilities can be
calculated without providing the user with full
confidence of fault detection capabilities.

•� The methodology targets the minimum fault detection
latency of a single clock-cycle. This is achieved by
representing the circuit under test as a pseudo-
combinational design and concentrating on
combinational checkers.

•� The framework provides accurate, fully automated
evaluation for the fault detection characteristics of the
checkers. It allows finding cost-efficient trade-offs
between the fault detection capabilities and the
required overhead area.

III.� THE CONCEPT OF CONCURRENT CHECKERS
Fig. 1 presents the role of concurrent on-line checkers in

detecting faults within a circuit. In addition to the original
circuit (functional logic), a set of checkers (checker logic) will
be connected to functional inputs/outputs of the circuit. These
checkers are introduced based on functional assertions derived
from relationships between variables corresponding to inputs
and outputs of the circuit. The checker logic targets the faults
at lines within the functional logic (marked by green circles).
The lines at the functional outputs succeeding the checker
inputs (marked by a red cross) can not be detected by the
checker. In addition, the checkers are not targeting the faults
at functional inputs preceding checker inputs since the checker
may not detect that the input value has been altered by a fault.
(Such functional input lines are also marked by a red cross in
Fig. 1). In this paper, we consider the single stuck-at fault
model. However, due to the fact that concurrent checkers are
implemented and a single time-frame is targeted, the model
also covers timing related faults.

Given a fault at a line within the functional logic and a set
of input stimuli, four possible scenarios may occur:

Figure 1. � The concept of concurrent checking

- Case 1: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.
- Case 2: Fault occurs at an internal line but is not visible at
functional output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has
negative impact on designs performance because normally it
causes re-execution of the task. In the experiments in this
paper we did not encounter any cases of false positives.
- Case 3: Fault occurs at internal line but is not visible at
functional output(s) and the checker logic does not detect the
violation. The term Benign Miss is used to describe this
situation. Benign miss shows correct operation by the checker.
- Case 4: Fault occurs at internal node and is visible at
functional output(s). Checker does not detect violation. The
term True Miss is used to describe this situation, which is the
worst possible case. True miss means that the fault propagates
to the functional outputs and onwards to the system. However,
the system has no information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection
quality of the checkers, fault injection has been applied. Fault
injection refers to injecting faults into a circuit at a certain time
step and simulating it with the input stimuli to see whether any
functional output of the circuit changes and whether any of the
checker output fires. Due to the fact that it is generally
impossible to inject and simulate all the faults at each circuit
line at each time step, a statistically significant sample of
random faults would normally be injected and simulated.

However, in this paper a methodology is proposed which
is based on automated extraction of a pseudo-combinational
circuit out of the original functional logic by breaking the
flip-flops and converting them to pseudo-primary inputs and
pseudo-primary outputs. Further, an exhaustive test for the
extracted circuit is fed through a filtering tool in order to
derive the exhaustive valid set of input stimuli which will
serve as the environment for checker evaluation. This means
that in this paper full evaluation of the checkers with all
possible stimuli and faults is obtained.

Let D be the number of true detections, X be the number
of benign misses and W be the number of true misses over all
the injection runs. Then we define the metrics of Fault
Coverage (FC) and Checkers’ Efficiency Index (CEI) as
follows.

WD
DCEI
+

= (1)

WXD

XDFC
++

+
= (2)

Here, FC shows the probability of the checkers behaving
correctly over all possible cases and CEI shows the probability
of checkers’ ability to detect critical faults. As mentioned
above, the approach proposed in this paper is able to formally
prove the presence or absence of true misses. Due to the fact

289

that none of the checkers resulted in false positives, this
information is excluded from the metrics.

Figure 2. � The proposed checker evaluation flow

IV.� FRAMEWORK FOR CHECKER EVALUATION
Fig. 2 presents the flow of the checker evaluation

framework together with the respective methodology. The
flow starts with synthesizing the checkers (described in RTL
Verilog) from a set of combinational assertions. Thereafter, a
pseudo-combinational circuit will be extracted from the
circuit of the design under checking. The pseudo-
combinational circuit is derived out of the original circuit by
breaking the flip-flops and converting them to pseudo-primary
inputs and pseudo-primary outputs. Note, that at this point
additional checkers that describe relations also on the pseudo-
primary inputs/outputs may be added to the checker suite in
order to increase the fault coverage.

Subsequently, the checker evaluation environment is
created by generating exhaustive test stimuli for the extracted
pseudo-combinational circuit. These stimuli are fed through a
filtering tool which selects only the stimuli that correspond to
functionally valid inputs for the circuit. As a result, the
exhaustive valid set of input stimuli which will serve as the
environment for checker evaluation is obtained.

The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault free simulation.
The simulation calculates fault free values for all the lines
within the circuit. Additionally, if any of the checkers fires
within fault simulation, it means a bug in the checker or an
incorrect environment. During the case study presented in
Section 5 several bugs were detected by this simulation step.

If none of the checkers are firing in the fault-free mode,
then checker evaluation takes place. The tool injects faults to
all the lines within all the vectors. As a result, the overall fault

detection capabilities for the set of checkers, in terms of FC
and CEI metrics will be calculated. In addition, each
individual checker will be weighted by summing up the total
number of true detections by the checker.

The framework is developed as an extension of a freeware
test system Turbo Tester [10]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [11]
for circuit modelling.

V.� CASE-STUDY DESIGN: NOC ROUTER

Figure 3. � High level overview of an NoC router

Fig. 3 demonstrates the high-level overview of a 5-port 2D
NoC router that we have chosen as a target architecture for
applying the checkers. Mainly, the router consists of a data
path and a control part. The data path is composed of input
buffers (implemented as First-In-First-Out (FIFO)), one for
each input port, a crossbar switch and an output buffer for each
output port. The main responsibility of the data path is to
transmit actual data to destination.

The flow of data through the datapath is managed and
controlled by the control part, which consists of a routing
computation unit for each input port and an arbitration unit
(arbiter) for each output port, which prioritizes the requests
from different input ports to the corresponding output port.
The router has 5 input/output ports, four ports connected to
four cardinal directions (North – N, East – E, South – S, West
– W) and one Local (L) port connected to the local processing
element. The NoC router utilizes wormhole switching.
Therefore, packets are sent in form of flits, consisting of
header flit, body flit(s) and tail flit.

For the routing computation unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)
[12], which is considered as a scalable solution compared to
routing tables. The mechanism describes the topology and the
routing function in form of connectivity and routing bits,
respectively. Therefore, the logic can be easily re-configured.
Routing decision is distributed and only requires local and
destination addresses for forwarding flits.

In this work we focus on a 2D Mesh topology and we
consider XY as the routing algorithm, which is a deterministic
dimension-ordered algorithm, and we assume that 180
degrees turns are not allowed. This would in turn lead to
further simplification of the logic of LBDR. The basic
mechanism of the logic is shown in Fig. 4, customized for the
East input port.

290

Figure 4. � East input port LBDR (ELBDR)

For the arbitration unit (arbiter) we have chosen Round-
Robin (RR) policy for prioritizing the requests from the
routing logic of different input ports. Prioritization is circular,
thus ensuring the absence of starvation, and guaranteeing that
eventually any input port will get access to the requested
output port.

Arbiter grants the access to the requesting input port
winning the eventual contention, allowing data to go from the
input FIFO to the corresponding output port, through the
crossbar switch. The arbitration mechanism is based on an
internal Finite State Machine (FSM). In this work one-hot
encoding has been considered for the state variable, in order
to improve detections of faults in the logic. Moreover, one-hot
encoding is extended to grant signals and select lines for the
crossbar switch.

The design decision to implement a one-hot encoded
arbiter state machine versus a decimal encoded one did
increase the area of the arbiter by 27.7%. However, the CEI
nearly doubled from 58.55% to 100% and the fault coverage
increased from 93.69% to 100%.

Extracting the pseudo-combinational circuit
In the control part of the router, we have limited our focus

to the case in which the LBDR and arbiter logic have the most
number of connected signals, more specifically considering
ELBDR and SArbiter. Since for ELBDR the existing output
port signals are N, W, S and L and for SArbiter, request and
grant signals exist for N, E, W and L. Due to the routing
algorithm and restrictions, other cases could have a smaller
number of connections. The checkers that cover faults for such
scenario, are symmetrical to the other cases (different
connections between each LBDR logic to arbiter logics). The
considered scenario for the connection between
ELBDR and SArbiter is shown in Fig. 5. As it can be seen,
connectivity and routing bits and also the current address are
set to fixed values according to the scenario under
consideration: 2D Mesh topology, XY routing algorithm,

180 degree turns not allowed and focusing on router with
ID 5 in a 4x4 network. This scenario allows minimizing the
number of circuit inputs and previous state values to be
considered to as low as 22 bits:

•� 2 flit type bits;
•� 4 destination address bits;
•� 4 ELBDR previous state bits;
•� 3 SArbiter request signals bits;
•� 4 SArbiter empty signals bits (from FIFOs);
•� 5 SArbiter previous state bits.
This, in turn, makes the exhaustive approach in checker

evaluation fully feasible.

Figure 5. The pseudo-combinational circuit

Filtering the stimuli
The exhaustive test for the pseudo-combinational circuit

would require 222=4,194,304 input stimuli. However, in order
to minimize the stimuli, and more important, to avoid
checkers being evaluated in non-realistic conditions, the
exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

For the pseudo-combinational partial control part of an
NoC router studied here the filtering step is based on the
implemented routing algorithm and restrictions in the routing
logic, as well as on invalid conditions for the state and the
stimuli of the arbiter logic. Its use allowed us to shrink the
exhaustive set of 222 stimuli to a valid and complete set
consisting of 40,960 input vectors, which is less than 1% of
the initial number. It is important to stress the fact that none
of the checkers fires in fault free simulation with any of the
considered input stimuli.

Preparing the checkers
The set of checkers consists of 37 checkers, based on the

functionality of the considered circuit, 3 of them focusing on
the ELBDR logic, 34 (12 types) focusing on the SArbiter
logic. Due to spatial limitations, we have not explicitly
reported the list of checkers individually in this paper.

VI.� EXPERIMENTAL RESULTS
Experiments for the checker evaluation framework were

carried out on the circuit, set of checkers and test stimuli
described in previous section. As a result, the Fault Coverage
(FC) of 99.777% and the Checkers’ Efficiency Index (CEI) of

291

Figure 6. � Checkers weighted according to true detections

99.320% were obtained. Each individual checker was
weighted by the tool by summing up the total number of true
detections by the checker. Fig. 6 lists the 14 checkers with the
highest weights in a descending order. As it can be seen, four
checkers are detecting considerably more faults than the
others.

The proposed framework produced checkers that achieve
99.777% fault coverage for the NoC control part in a single
clock cycle. Similar number for NoCAlert [14] was 97%, and
the technique reached 100% after 28 cycles. The respective
numbers for ForEVeR [13] were 30% and 11950 cycles. This
gain in the proposed approach was achieved due to the facts
that there were checkers devised for arbiter states and that the
implemented state encoding was one-hot.

The area overhead of the initial set of checkers was
relatively high, doubling the size of the LBDR and arbiter
combined. However, the size of the checkers compared to the
entire router area was negligible. Moreover, the checkers’
weighting data allows to further compact the number of
checkers in a straightforward manner.

VII.� CONCLUSIONS AND FUTURE WORK
The paper presented a framework for automated

evaluation of concurrent online checkers, which is formal
(able of proving the presence or absence of true misses), yields
minimal fault detection latency and enables accurate, fully
automated evaluation of the fault detection characteristics of
a given set of checkers.

A case-study on the control part (routing and arbitration)
of a Network-on-Chip (NoC) router showed on a realistic
application the feasibility and efficiency of the framework and
the underlying methodology. Experimental results also
showed that the proposed approach allows reaching higher
fault coverage within a single clock-cycle compared to
previously published approaches.

As a future work we consider extending the framework
with the support of temporal checkers in order to further
increase the fault coverage, for those designs where pseudo-
combinational extraction is either not feasible or not
sufficient. In addition, we plan to develop algorithms for

minimization of checkers based on the weights calculated by
the proposed framework.

ACKNOWLEDGEMENTS
The work has been supported by EU’s FP7 STREP

BASTION, EU's H2020 RIA IMMORTAL, Estonian Science
Foundation grant ETF9429, Estonian institutional research
grant IUT 19-1, funded by Estonian Ministry of Education and
Research, and by EU through the European Structural and
Regional Development Funds.

REFERENCES
[1]� R. Sedmak and H. Liebergot. Selective triple modular redundancy

(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs.
IEEE Transactions on Nuclear Science, 51:2957-2969, 2005.

[2]� J. M. Berger. A note on an error detection code for asymmetric
channels. Information and Control, 4:68-73, 1961.

[3]� D. Das and N. A. Touba. Synthesis of circuits withlow-cost concurrent
error detection based on Bose-Lin codes. In VLSI Test Symposium,
pages 309-315, 1998.

[4]� K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis of
low-cost parity-based partially self-checking circuits, 2003.

[5]� S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced
circuits based on parity codes. In VLSI Test Symposium, pages 315-
320, 1-5 May 2005.

[6]� R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. In Digest of Papers Eighteenth
International Symposium on Fault-Tolerant Computing FTCS-18,
pages 164- 169, June 1988.

[7]� P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proceedings Fourth International Symposium
on Quality Electronic Design ISQED, pages 425-430, March 2003.

[8]� Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.I.; Nepal, K. "Enhancing
online error detection through area-efficient multi-site implications",
IEEE 29th VLSI Test Symposium (VTS), pp. 241 – 246, 2011.

[9]� Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion
checkers in verification, silicon debug and infield diagnosis. In
Proceedings of the ISQED '07.

[10]� M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V
Vislogubov, HD Wuttke. Turbo Tester-Diagnostic Package for
Research and Training. The 1st East-West Design and Test Conference,
Alushta, 2003.

[11]� Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop on
Boolean Problems. pp. 271-278, 2004.

[12]� J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[13]� R. Parikh and V. Bertacco. Formally enhanced runtime verification to
ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

[14] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

292

Appendix 3

Publication III

Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, GertJervan, and Thomas Hollstein. Automatedminimization of concurrent onlinecheckers for network-on-chips. In 2015 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages1–8. IEEE, 2015

105

Automated Minimization of Concurrent Online
Checkers for Network-on-Chips

Pietro Saltarelli1,2, Behrad Niazmand1, Ranganathan Hariharan1, Jaan Raik1, Gert Jervan1, Thomas Hollstein1
1Tallinn University of Technology, Estonia

2Università degli Studi di Ferrara, Italy

pietro.saltarelli@student.unife.it
{bniazmand, jaan, ranga, gert, thomas}@ati.ttu.ee

Abstract— The paper introduces automated minimization of a

set of concurrent online checkers for Network-on-Chips (NoCs)
under given fault detection quality constraints. The proposed
framework allows accurate and complete evaluation of the fault
detection capabilities of checkers, which in turn enables finding
seamless trade-offs between the overhead area of the checkers and
the fault detection quality. The features of the automated
minimization approach include formal proof for the absence or
presence of true misses in checkers and a minimal fault detection
latency. The minimization technique is based on a divide-and-
conquer approach of partitioning the checkers’ fault table into
independent clusters. The checkers within the cluster are weighted
and the set of checkers is minimized based on a heuristic method.
Experiments on the control part (routing and arbitration) of an
NoC router show that 100% fault coverage with very low overhead
area will be achieved by the proposed minimization approach.

Keywords—Network-on-Chip, routing logic, arbitration,
concurrent online checking.

I.! INTRODUCTION
Network-on-Chip (NoC) has been introduced as a solution

to overcome the scalability and performance constraints of
previous on-chip communication architectures such as bus-
based networks. One of the challenges in the design of NoC
routers is that as more cores get integrated on the same die and
nanometer technologies get extremely scaled down, the
probability of vulnerability of the components to wear-out and
environmental effects increases. These are effects occurring
during the life time of the system and cannot be filtered out by
manufacturing testing. Thus, concurrent online fault monitors
(i.e. checkers) for detecting faults during circuit’s life time are
needed. These checkers would report errors within routers and
would allow reconfiguration of the routing infrastructure.

In this paper, we introduce an automated tool flow for
obtaining a minimized list of checkers for checking on-chip
communication architectures. The flow is based on accurate,
automated evaluation of concurrent online checkers. The
methodology includes preparation of the checkers in the form of
verification assertions (or reuse of existing assertions), creation
of a pseudocombinational version of the circuit under test and
specifying the environment in terms of valid input stimuli for it.
Subsequently, the set of the fault detection characteristics for the
checkers, together with the stimuli and the circuit are applied to
accurate evaluation. As a result, weights for individual checkers
belonging to the set are obtained.

Finally, the number of checkers within the set will be
minimized. The minimization technique is based on a divide-
and-conquer approach of partitioning the checkers’ fault table
into independent clusters. Further, weight information of the
checkers within the cluster is applied in a heuristic minimization
method. The ultimate result will be a minimal selection of
checkers to achieve a target fault coverage level.

The underlying approach is complete, i.e. it allows proving
the absence or presence of true misses by the checkers. In
addition, it provides minimal fault detection latency due to the
fact that the circuit is transformed into a pseudo-combinational
one and therefore only checkers with a single clock cycle latency
are considered. Experiments on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router show that 100%
fault coverage with very low overhead area will be achieved by
the proposed minimization approach.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing. Section
3 explains the concurrent online checking concept. In Section 4,
the automated tool flow and the corresponding methodology for
checkers’ minimization are presented. Section 5 presents the
target architecture of the control part of an NoC router. Section
6 discusses application of the checker evaluation and
minimization framework to the NoC Router design. Section 7
provides the checkers’ evaluation and minimization
experiments. Finally, Section 8 concludes the paper.

II.! RELATED WORKS
Online detection of errors in logic is a thoroughly studied

research area. Traditional Triple-Modular Redundancy (TMR)
and duplication based approaches are too costly in terms of
multiplying the area and correspondingly the power
consumption. An alternative to minimize this overhead is the
selective TMR that identifies Single Event Upset (SEU)
sensitive sub-circuits that are to be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3] codes. In
many works the coding techniques are combined with synthesis
[4,5]. The approaches suffer from significant area overhead as
well as require alteration of the original circuit in order to
generate the codes.

Concurrent on-line built-in self-test techniques such as Built-
In Concurrent Self-Test (BICST) [6] and Reduced Observation
Width Replication (ROWR) [7] provide high fault coverage at
low area overhead but only consider a limited subset of pre-

978-1-4673-7942-7/15/$31.00 ©2015 IEEE

computed test vectors. Hence these approaches are likely to miss
faults occurring in a normal circuit operation.

Several alternatives based on checkers that do not require
modification of the circuit under test have been developed.
Creating checkers automatically based on logic implications
derived from the circuit structure [8] is feasible but suffers from
low fault coverage and high area overhead, often exceeding the
duplex solutions. On the other hand, deriving checkers from
functional assertions, or reusing verification assertions, is
similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [9].

Many previous works have focused on addressing faults in
the control logic of NoC routers. In [15], Yu et al. have
addressed fault tolerance for NoC topologies and proposed an
error control method for detecting transient errors in routing
logic implemented using Logic-Based Distributed Routing
(LBDR) mechanism and its extension for high-radix topologies,
LBDRhr. The proposed error control method utilizes the
inherent information redundancy (IIR) to reduce the error
control overhead. However, the method does not guarantee full
fault coverage.

Authors of [16] have presented a method for online error
detection and diagnosis of NoC switches. The proposed method
deals with routing faults that cause NoC packets to be forwarded
to output ports that are not intended to. Regarding modeling
routing faults in switches, a high-level fault model has been
introduced in this work. The fault coverage is measured only at
the functional level and there is no estimate of correlation to
gate-level fault coverage.

Parikh et al. have proposed ForEVeR [13], where in order to
deliver correctness guarantees for the complete network, a
network-level detection and recovery solution is devised that
monitors the traffic in the NoC and protects it against functional
bugs that were not detected during design time. To this end,
ForEVeR augments the baseline NoC with a lightweight checker
network that alerts destination nodes of incoming packets ahead
of time and is used for the recovery process. The approach
suffers from extremely high latency. Only 30% of the faults will
be detected during the first clock cycle by the approach.

[14] proposes checkers synthesized from a set of 32
verification assertions. The checkers detect most of the injected
faults. The faults that are not covered correspond to non-
catastrophic failures. The work proposed in [14] lacks the
completeness and minimization aspects present in the current
paper.

This paper exceeds the existing state-of-the-art in concurrent
online checking by proposing a tool flow for automated
evaluation and minimization of the verification checkers. We
show that starting from a realistic set of verification assertions a
minimal set of checkers will be synthesized that provide 100%
fault coverage at a low area overhead and the minimum fault
detection latency of a single clock-cycle. The latter is especially
crucial for enabling rapid fault recovery in reliable real-time
systems.

An additional feature of the proposed approach is that it
allows formally proving the absence or presence of true misses
over all possible valid inputs for a checker, whereas in the case

of traditional fault injection only statistical probabilities can be
calculated without providing the user with full confidence of
fault detection capabilities.

The formal proof as well as the minimal fault detection
latency will be guaranteed by reasoning on a pseudo-
combinational version of the circuit and by the application of
exhaustive valid set of input stimuli as the verification
environment.

III.! THE CONCEPT OF CONCURRENT CHECKERS
Fig. 1 presents the role of concurrent on-line checkers in

detecting faults within a circuit. In addition to the original circuit
(functional logic), a set of checkers (checker logic) will be
connected to functional inputs/outputs of the circuit. These
checkers are derived based on functional assertions obtained
from relationships between variables corresponding to inputs
and outputs of the circuit. The checker logic targets the faults at
lines at the inputs of each gate within the functional logic
(marked by green circles). The lines at the functional outputs
succeeding the checker inputs (marked by a red cross) cannot be
detected by the checker. In addition, the checkers are not
targeting the faults at functional inputs preceding checker inputs,
since the checker may not detect that the input value has been
altered by a fault (such functional input lines are also marked by
a red cross in Fig. 1). In this paper, we consider the single stuck-
at fault model. However, due to the fact that concurrent checkers
are implemented and a single time-frame is targeted, the model
also covers timing related faults.

Fig. 1.! The concept of concurrent checking

Given a fault at a line within the functional logic and a set of
input stimuli, four possible scenarios may occur:

- Case 1: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has negative
impact on design’s performance because normally it causes re-
execution of the task. In the experiments in this paper we did not
encounter any cases of false positives.

- Case 3: Fault occurs at internal line but is not visible at primary
output(s) and the checker logic does not detect the violation. The
term Benign Miss is used to describe this situation. Benign miss
shows correct operation by the checker.

- Case 4: Fault occurs at internal node and is visible at primary
output(s). Checker does not detect violation. The term True Miss
is used to describe this situation, which is the worst possible
case. True miss means that the fault propagates to the functional
outputs and onwards to the system. However, the system has no
information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection quality
of the checkers, fault injection has been applied. Fault injection
refers to injecting faults into a circuit at a certain time step and
simulating it with the input stimuli to see whether any functional
output of the circuit changes and whether any of the checker
output fires. Due to the fact that it is generally impossible to
inject and simulate all the faults at each circuit line at each time
step, a statistically significant sample of random faults would
normally be injected and simulated.

However, in this paper a methodology is proposed which is
based on automated extraction of a pseudo-combinational circuit
out of the original functional logic by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Further, an exhaustive test for the extracted circuit is fed
through a filtering tool in order to derive the complete valid set
of input stimuli which will serve as the environment for checker
evaluation. This means that in this paper full evaluation of the
checkers with all the valid stimuli and faults is obtained.

Let D be the number of true detections, X be the number of
benign misses and W be the number of true misses over all the
injection runs. Then we define the metrics of Fault Coverage
(FC) and Checkers’ Efficiency Index (CEI) as follows.

WXD
XDFC
++

+
= (1)

WD
DCEI
+

= (2)

Here, FC shows the probability of the checkers behaving
correctly over all possible fault cases while CEI shows the
probability of checkers ability to detect critical faults. Due to the
fact that none of the checkers resulted in false positives, this
information is excluded from the metrics.

IV.!CHECKERS EVALUATION AND MINIMIZATION FLOW
Fig. 2 presents the evaluation and minimization flow for the

checkers. The flow starts with synthesizing the checkers from a
set of combinational assertions. Thereafter, a pseudo-
combinational circuit will be extracted from the circuit of the
design under checking. The pseudo-combinational circuit is
derived out of the original circuit by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Note, that at this point additional checkers that also
describe relations on the pseudo primary inputs/outputs may be
added to the checker suite in order to increase the fault coverage.

Subsequently, the checker evaluation environment is
created by generating exhaustive test stimuli for the extracted
pseudo-combinational circuit. This stimuli are fed through a

Fig. 2.! Checkers’ Evaluation and Minimization Flow

filtering tool that selects only the stimuli that correspond to
functionally valid inputs of the circuit. As a result, the complete
valid set of input stimuli that will serve as the environment for
checker evaluation is obtained.

The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault free simulation.
The simulation calculates fault free values for all the lines
within the circuit. Additionally, if any of the checkers fires
during fault-free simulation it means a bug in the checker or an
incorrect environment. During the case study presented in
Section 5 several bugs were detected by this simulation step.

If none of the checkers is firing in the fault-free mode then
checker evaluation takes place. The tool injects faults to all the
lines within the circuit one-by-one and this step is repeated for
each input vector. As a result, the overall fault detection
capabilities for the set of checkers, in terms of FC and CEI
metrics will be calculated. In addition, each individual checker
will be weighted by summing up the total number of true
detections by the checker.

Finally, the weighting information will be exploited in
minimizing the number of checkers, eventually allowing to
outline a trade-off between CEI, or FC, and the area overhead
due to the introduction of checker logic.

The framework is developed as an extension of a freeware
test system Turbo Tester [10]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [11]
for circuit modeling.

Fig. 3.! High-level overview of an NoC router

V.! TARGET ARCHITECTURE: NOC ROUTER
Fig. 3 demonstrates the high-level overview of a 5-port 2D

NoC router that we have chosen as a target architecture for
applying the checkers. Mainly, the router consists of a datapath
and a control part. The datapath is composed of input buffers
(implemented as First-In-First-Out (FIFO)), one for each input
port, a crossbar switch and an output buffer for each output port.

The flow of data through the data path is managed and
controlled by the control part, which consists of a routing
computation unit for each input port and an arbitration unit
(arbiter) for each output port, which prioritizes the requests from
different input ports to the corresponding output port. The router
has 5 input/output ports, four ports connected to four cardinal
directions (North – N, East – E, South – S, West – W) and one
Local (L) port connected to the local processing element. The
NoC router utilizes wormhole switching. Therefore, packets are
sent in form of flits, consisting of header flit, body flit(s) and tail
flit.

For the routing computation unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)
[12], which is considered as a scalable solution compared to
routing tables. The mechanism describes the topology and the
routing function in form of connectivity and routing bits,
therefore the logic can be easily re-configured. Routing decision
is distributed and only requires local and destination addresses
for forwarding flits.

In this work we focus on a 2D Mesh topology, we consider
XY as the routing algorithm, which is a deterministic
dimension-ordered algorithm, and we assume that 180 degrees
turns are not allowed. This would in turn lead to further
simplification of the logic of LBDR. The basic mechanism of
the logic is shown in Fig. 4, for instance for the East input port.

For the arbitration unit (arbiter) we have chosen Round-
Robin (RR) policy for prioritizing the requests from the routing
logic of different input ports. Prioritization is circular, thus
ensuring the absence of starvation, and guaranteeing that
eventually any input port will get access to the requested output
port.

Arbiter grants the access to the requesting input port winning
the eventual contention, allowing data to go from the input FIFO
to the corresponding output port, through the crossbar switch.
The arbitration mechanism is based on an internal Finite State
Machine (FSM). In this work one-hot encoding has been

considered for the state variable, in order to improve detections
of faults in the logic. Moreover, one-hot encoding is extended to
grant signals and select lines for the crossbar switch.

The design decision to implement a one-hot encoded arbiter
state machine versus a decimal encoded one did increase the
area of the arbiter by 27.7%. However, the CEI nearly doubled
from 58.55% to 100% and the fault coverage increased from
93.69% to 100%, respectively.

Fig. 4.! Logic-based Distributed Routing

(LBDR) logic for the East input port

VI.!APPLICATION OF THE FRAMEWORK TO THE DESIGN
In the control part of the router, we have limited our focus to

the case in which the LBDR and arbiter logic have the most
number of connected signals, more specifically considering
ELBDR and SArbiter. For ELBDR the existing output port
signals are N, W, S and L and for SArbiter, request and grant
signals exist for N, E, W and L. Such scenario provides the case
with the most number of connectivities between LBDR and
arbiter logic. The checkers that cover faults for such scenario,
are symmetrical to the other cases (different connections
between each LBDR logic to arbiter logics).

From the output of the checker evaluation tool it can be
observed that the two set of checkers for the ELBDR and the
SArbiter are independent, i.e. they cover faults for different and
separate parts of the circuit, without any overlap. Therefore the
fault table will be partitioned into two clusters. First, the ELBDR
alone will be considered. Secondly, the circuit under study will
be expanded, interconnecting the routing logic with the
SArbiter. The second considered scenario is depicted in Fig. 5.

Connectivity and routing bits and also the current address are
set to fixed values according to the scenario under consideration:
2D Mesh topology, XY routing algorithm, 180 degrees turns not
allowed, focus on router with ID 5 in a 4x4 network. This
scenario allows minimizing the number of circuit inputs and
previous state input bits that together form the inputs
for the pseudo-combinational circuit to be considered in both

Fig. 5.! The pseudo-combinational circuit for the full scenario

experiments. When ELBDR only is considered, the amount of
inputs is limited to 11 bits:

!! 2 flit identifier bits;
!! 4 destination address bits;
!! 4 ELBDR previous output values bits;
!! 1 empty bit (coming from East input buffer).

With the interconnection to the SArbiter in the second
experiment, the number of input bits is increased to 19,
introducing:

!! 3 SArbiter request signals bits;
!! 5 SArbiter previous state bits.

This, in turn, makes the exhaustive approach in checker
evaluation fully feasible.

Once the pseudo-combinational circuit to be studied is
extracted, a set of checkers can be devised from the functional
behaviour of the considered circuit, evaluating the possible
implications existing in between input and output signals. It is
interesting to underline that a priori it may be very difficult to
outline the effectiveness of a single checker or the overlap of
different checkers in detection.

Together with the considered pseudo-combinational circuit
and its set of checkers, a set of input patterns is needed for
performing fault simulation. The exhaustive test would require
211=2,048 and 219=524,288 input stimuli, respectively for the
ELBDR and for the East-South control path experiments.
However, in order to minimize the stimuli, and more important,
to avoid checkers being evaluated in non-realistic conditions, the
exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

The filtering step is based on the implemented routing
algorithm (i.e. allowed destinations from the current router),
restrictions in the routing logic (e.g. no 180 degrees turns) and
emptiness condition of the input buffer, as well as on invalid
conditions for the state of the arbiter logic (i.e. violation of one-
hot encoding - only for the second experiment). It is important
to stress the fact that none of the checkers is firing in fault free
simulation with any of the considered input stimuli, in neither of
the scenarios.

TABLE I. ! PROPOSED CHECKERS FOR ELBDR

Checkers for Routing Logic (LDBR)
1 Valid LBDR

output
If there is a request to the routing
logic (the corresponding input
buffer is not empty), LBDR has to
compute at least one valid output
direction (according to XY routing).

2 No LBDR output If no flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain
zero.

3 Single LBDR
output

If the corresponding input buffer is
not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

4 Switch LBDR
output

If the corresponding input buffer is
not empty (there is a request to
LBDR) and a non-header flit has
arrived, LBDR outputs should
remain the same.

5 Local Port output If the corresponding input buffer is
not empty (there is a request to
LBDR) and a header flit has arrived,
the local output should become
active only if the packet has reached
its destination.

VII.!EXPERIMENTAL RESULTS
Experiments for the checker evaluation and minimization

framework were carried out on the scenarios described in
previous section, first on the ELBDR circuit only, then on its
interconnection with the SArbiter, as displayed in Fig. 5. In both
cases an initial set of checkers was devised a priori, together with
a filtering scheme to obtain a valid set of input stimuli. Each
individual checker was weighted by the tool by summing up the
total number of true detections by the checker, and this
information was used in a heuristic way to minimize the initial
set of checkers, with the final aim of achieving highest possible
CEI and FC, and at the same time with the lowest possible area
overhead. These quantities were evaluated iterating the fault

Fig. 6.! Weights of checkers proposed for EBLDR

simulation, including at each step the next heaviest checker still
not included in the currently considered set of checkers,
initialized only with the first heaviest checker.

ELBDR experiment
All the experiments in this paper were carried out on an

Asus ux32vd-r4002v computer with a 1.9 GHz Intel Core i7-
3517U processor and 10 GB RAM. Table I lists the initial a
priori set of checkers for ELBDR, devised from the
functionality of the logic. The pseudo-combinational circuit for
ELBDR has 11 input bits, as mentioned in the previous section,
thus the exhaustive set of stimuli presents 211=2,048. A filtering
scheme based on the following statements was devised:
!! if input buffer’s empty signal is high, any other input bit is

meaningless, and therefore any value is allowed for it;
!! if the incoming flit is a header, the destination address has to

be valid according to the XY routing and turns restrictions;
!! if the incoming flit is a body or tail flit, the previous output

values must be valid, they must follow a one-hot fashion,
according to XY routing.

This allowed to obtain a valid and complete set of stimuli
consisting of 1536 vectors, which forms 75% of the exhaustive
set. The run-time for generating the stimuli was 2 seconds.

Fig. 6 displays the weight information output of the tool, on
the initial set of checkers for the ELBDR. The checker,
err_noLBDRout (checker 2 in Table I) is considerably detecting
more faults than any other checker. The 5 remaining checkers,
in descending order of weights are err_validLBDRout (checker
1), err_singleLBDRout (checker 3), err_switchLBDRout
(checker 4), and finally the two err_localport checkers (entry 5).
The checkers’ analysis required 10 ms of run-time from the
proposed framework.

Fig. 7 depicts the results obtained with the weight-based
greedy heuristic approach applied to the ELBDR and its initial
set of checkers, in terms of achieved CEI, FC and area overhead.
Considering at first only the heaviest weight, and adding at each
step the next heaviest checker still not included in the considered
set, all the quantities gradually increase. When the three most
significant checkers are used, CEI and FC reach 100%. This
result shows that minimization of the set of considered checkers
is achieved, with the three heaviest checkers dominating the
three lightest, i.e. the three considered checkers cover all the
faults detected by the other checkers. Reducing the used set of
checkers to the three most significant ones allows to limit the
area overhead to 78.57% over the ELBDR circuit, far lower than
185.71% imposed by the initial non-minimized set of checkers.

TABLE II. ! PROPOSED CHECKERS FOR THE ARBITER LOGIC

Checkers for the Arbiter logic
6 Valid Grant

output
If there is a request from LBDR, arbiter
has to assert at least one of the grant
signals for the corresponding output
direction.

7 No Grant
output

If there is no request to the arbiter, it
should not assert any of the grant signals
for any direction.

8 Invalid Grant
output

Whenever there is a request to the arbiter,
the grant signals should go active

corresponding to that specific requested
direction and invalid direction should not
be chosen.

9 Invalid arbiter
output state

Output state variable (oScurrentState –
which represents the grant signals) in
arbiter’s pseudo-combinational circuit
can not possess invalid values due to the
one-hot coding.

10 Invalid IDLE
state for arbiter

input state

If the input previous state variable
(iScurrentstate) is in IDLE state and there
is a request for arbitration from LBDR,
oScurrentstate should not remain in
IDLE state i.e. a grant signal should be
asserted.

11 Priority Grant In case there is one or multiple request(s)
to the arbiter, it should follow the correct
prioritization (Local, North, East and
then West) according to the input
previous state variable (iScurrentstate).

ELBDR + SArbiter combined scenario experiment

ELBDR is connected to SArbiter according to Fig. 5, thus
providing the East request signal to the arbitrating logic.
Table II lists the a priori initial set of checkers for the arbiter.
Multiple individual checkers are grouped to the same table entry
according to types. The initial set amounts to 28 checkers.

The exhaustive test for the considered pseudo-combinational
circuit would require 219=524,288 input stimuli. The test stimuli
were generated in 270 seconds run time. The considered filtering
scheme is an extension of the one used for the ELBDR
experiment valid input patterns set, adding the one-hot encoding
restraint to the 5 previous state value bits of the arbitrating
pseudo-combinational unit. This allowed to shrink the
exhaustive set of 219 input stimuli to a valid and complete set
consisting of 61,440 input vectors, which is less that 12% of the
initial number. This may be considered as a proof of the
effectiveness of the one-hot encoding for the arbiter state
variable.

First, the evaluation tool was run considering the whole set
of checkers for the SArbiter, altogether with the minimized set
of 3 checkers for the ELBDR. This analysis required 1 second
of run time by the framework. Figure 8 lists the considered 31
checkers, with their corresponding weights in a descending
order. Focusing on the arbitrating unit, two checkers look to be
far more significant than the others, Serr_validgrant (checker 6
in Table II), Serr_invalidstate (checker 9), both of them
monitoring different aspects of the one-hot encoding condition
for the arbiter's state variable.

From the output of the evaluation tool it can be observed that
the two set of checkers for the ELBDR and the SArbiter are
independent, i.e. they cover faults for different and separate parts
of the circuit, without any overlap. For this reason the minimized
set of ELBDR checkers is used, and the previously introduced
weight-based greedy minimization heuristic is applied to the
SArbiter checkers set.

Fig. 9 displays the obtained results. As it could have been
expected from the weighting information in Fig. 8, the two most
significant checkers dominate all the lightest checkers, ensuring

100% CEI and FC. Thus, considering a total of 3 ELBDR and 2
SArbiter checkers, area overhead over the partial control path
circuit is limited to 56.82%, while using the whole initial set of
28 checkers for the SArbiter would lead to 170.45% area
overhead. It is interesting to observe that the minimized set of 5
checkers corresponds to one third of the whole 31 checkers set
area.

Fig. 7.! ELBDR scenario results

Fig. 8.! ELBDR + SArbiter checkers ranked by weights

Fig. 9.! ELBDR + SArbiter scenario results

Fig. 10.!Results without considering independent clusters

Fig. 11.!Weights for minimized set of checkers

Impact of clustering the faults

Assuming that we had no information of the overlap of faults
detected by the checkers for ELBDR and SArbiter, the weight-
based greedy heuristic, starting from the heaviest checker
Serr_validgrant, would add at each step the next heaviest
checker still not considered in the current set of checkers, based
on the weight information displayed in Fig. 8. Fig. 10 shows the
inefficiency of the heuristic approach caused by the lack of the
clustering information. The number of steps in the greedy
procedure is heavily increased, and only after 19 steps, when the
Eerr_singleLBDRout checker is considered, the 100% upper
bound for CEI and FC is reached.

However, when partitioning of the fault set to clusters is
taken into account and minimization is performed on the clusters
separately then total of five checkers are needed. Fig. 11
illustrates the importance of considering the clustering
information. It can be observed that the weights of the ELBDR
checkers are far less than those of the SArbiter, but they are still
needed to achieve full coverage for the considered design.

VIII.!CONCLUSIONS
The paper proposes a new tool providing an automated flow

for evaluation and minimization of concurrent online checkers,
which is formal (able of proving the presence or absence of true
misses), yields minimal fault detection latency and enables
accurate, fully automated evaluation of the fault detection
characteristics of a given set of checkers.

Experiments carried out on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router showed on a
realistic application the feasibility and efficiency of the
framework and the underlying methodology. Experimental
results showed that the approach allowed selecting the minimal

set of 5 checkers out of 31 verification assertions with the fault
coverage of 100% and area overhead of only 56.82%.

ACKNOWLEDGEMENT
The work has been supported by EU FP7 STREP

BASTION, EU's H2020 RIA IMMORTAL, Estonian Science
Foundation grant ETF9429, Estonian institutional research grant
IUT 19-1, funded by Estonian Ministry of Education and
Research, and by EU through the European Structural and
Regional Development Funds.

REFERENCES
[1]! R. Sedmak and H. Liebergot. Selective triple modular redundancy

(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs.
IEEE Transactions on Nuclear Science, 51:2957-2969, 2005.

[2]! J. M. Berger. A note on an error detection code for asymmetric channels.
Information and Control, 4:68-73, 1961.

[3]! D. Das and N. A. Touba. Synthesis of circuits withlow-cost concurrent
error detection based on Bose-Lin codes. In VLSI Test Symposium, pages
309-315, 1998.

[4]! K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis of
low-cost parity-based partially self-checking circuits, 2003.

[5]! S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced circuits
based on parity codes. In VLSI Test Symposium, pages 315-320, 1-5 May
2005.

[6]! R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. In Digest of Papers Eighteenth
International Symposium on Fault-Tolerant Computing FTCS-18, pages
164- 169, June 1988.

[7]! P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proceedings Fourth International Symposium on
Quality Electronic Design ISQED, pages 425-430, March 2003.

[8]! Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.I.; Nepal, K. "Enhancing online
error detection through area-efficient multi-site implications", IEEE 29th
VLSI Test Symposium (VTS), pp. 241 – 246, 2011.

[9]! Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion checkers
in verification, silicon debug and infield diagnosis. In Proceedings of the
ISQED '07.

[10]! M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V Vislogubov,
HD Wuttke. Turbo Tester-Diagnostic Package for Research and Training.
The 1st East-West Design and Test Conference, Alushta, 2003.

[11]! Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop on
Boolean Problems. pp. 271-278, 2004.

[12]! J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[13]! R. Parikh and V. Bertacco. Formally enhanced runtime verification to
ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

[14]! Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert: An
On-Line and Real-Time Fault Detection Mechanism for Network-on-
Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

[15]! Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., ”Transient and Permanent
Error Control for High-End Multiprocessor Systems-on-Chip,” 2012
Sixth IEEE/ACM International Symposium on Networks on Chip (NoCS),
vol., no., pp.169,176, 9-11 May 2012.

[16]! Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch Fault
Detection and Diagnosis Using a High Level Fault Model," 22nd IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems,
2007. DFT '07., vol., no., pp.21,29, 26-28 Sept. 2007.

Appendix 4

Publication IV

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Holl-stein, Gert Jervan, and Ranganathan Hariharan. A framework for combiningconcurrent checking and on-line embedded test for low-latency fault detec-tion in noc routers. In Proceedings of the 9th International Symposium on
Networks-on-Chip, page 6. ACM, 2015

115

A Framework for Combining Concurrent Checking and On-
Line Embedded Test for Low-Latency Fault Detection in

NoC Routers

Pietro Saltarelli
Università degli Studi di Ferrara

Via Savonarola, 9
44121 Ferrara FE, Italy

pietro.saltarelli@student.unife.it

Behrad Niazmand, Jaan Raik,
Vineeth Govind, Thomas

Hollstein, Gert Jervan
Tallinn University of Technology

Department of Computer Engineering
Akadeemia 15a, 12618 Tallinn, Estonia

Phone: +372 6202257
<behrad|jaan>@ati.ttu.ee

Ranganathan Hariharan
Nokia Solutions and Networks Oy

Hatanpää
Hatanpään valtatie 30

33100 Tampere, P.O. Box 785
Finland

ranganathanh87@gmail.com

ABSTRACT1
The focus of the paper is detection of faults in NoC routers by
combining concurrent checkers with embedded on-line test to
enable cost-effective trade-offs between area-overhead and test
coverage. First, we propose a framework of tools for formally
evaluating the quality of the checkers and for optimizing the
overhead area with given fault coverage constraints. The stress is
in particular on the minimization of the error detection latency,
which is a crucial aspect in order to eliminate (or limit) error
propagation. Second, the concurrent checkers will be
complemented by embedded on-line test packets which are to be
applied as a periodic routine during the idle periods in router
operation. The framework together with the corresponding
methodology has been successfully applied to a realistic case-
study of a fault tolerant NoC router design. The case study shows
that combining concurrent routers with embedded test allows
reducing the area overhead of the checkers from 31-35% down to
1.5-10% without sacrificing the fault coverage.

Keywords
Network-on-chip, fault tolerant router design, concurrent online
checking, embedded test, test packets.

1 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

NOCS '15, September 28 - 30, 2015, Vancouver, BC, Canada

© 2015 ACM. ISBN 978-1-4503-3396-2/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2786572.2788713

1. INTRODUCTION
One of the main challenges related to the design of Network-on-
Chip (NoC) routers is the extreme down-scaling of modern
technologies that increases the probability of the components to
wear-out as well as their vulnerability towards environmental
effects. These are phenomena occurring during the life-time of the
system and cannot be screened out by manufacturing testing.
Thus, cost-efficient mechanisms for detecting faults during
system’s life-time are needed. These mechanisms should detect
errors within routers and enable reconfiguration of the routing
network in order to isolate the problem and provide graceful
degradation for the system. In this paper, we propose combining
concurrent checkers with embedded on-line test packets in order
to achieve early and cost-effective detection of faults in NoC
routing infrastructure.

Regarding the development of on-line checkers, we introduce a
new framework and a methodology with a stress on the level of
automation, fault coverage, detection latency and area-efficiency.
The methodology consists of four main steps. The first step of the
methodology is formal checker qualification which includes
identification of control-intensive parts of the router architecture,
converting them to pseudo-combinational counterparts,
preparation of the checkers synthesized from verification
assertions and specifying the environment in terms of valid input
stimuli for the pseudo-combinational circuit. As a result, the faults
detected by each individual checker will be calculated.

Second, the number of checkers within the set will be minimized
by applying the checker optimization step. As a starting point is
the fault detection characteristics for each individual checker as
well as their weights in terms of silicon area. Further, a heuristic
minimization method is applied resulting in a minimal selection of
checkers to achieve a target fault coverage level. The
minimization technique is based on a divide-and-conquer
approach of partitioning the checkers’ fault table into independent
clusters. This approach is very effective as the checkers devised
for different modules normally do not have overlapping fault sets.

Third, and optional, step of the methodology includes devising
additional checkers from temporal assertions for modules that do

not achieve 100% fault detection. For these checkers the formal
qualification step described above is not possible and traditional
fault injection experiments are carried out by a sequential fault
simulation tool included to the framework.

Finally, the checkers for the control part of the router are to be
complemented by embedded on-line test packets which are to be
applied as a periodic routine during the idle periods in router
operation, e.g. slacks in the task scheduling. The framework
together with the corresponding methodology has been
successfully applied to a realistic case-study of a fault tolerant
NoC router design. The case study shows that combining
concurrent checkers with embedded test packets allows reducing
the area overhead of the checkers from 31-35% down to 1.5-10%,
depending on the router bitwidth, without sacrificing the fault
coverage.

The paper is organized as follows. Section 2 provides an overview
of related works in concurrent online testing and embedded test
for NoC routers. Section 3 explains the concurrent online
checking concept. Section 4 discusses application of embedded
test packets. In Section 5, the automated framework and the
corresponding methodology for checkers’ minimization combined
with the embedded test are presented. Section 6 discusses
application of the framework and the underlying methodology to
the NoC router design. Section 7 provides the experiments.
Finally, Section 8 concludes the paper.

2. RELATED WORKS
Online detection of errors in logic is a thoroughly studied

research area. Traditional Triple-Modular Redundancy (TMR)
and duplication based approaches are too costly in terms of
multiplying the area and correspondingly the power consumption.
An alternative to minimize this overhead is the selective TMR that
identifies Single Event Upset (SEU) sensitive sub-circuits that are
to be protected [1].

In addition, there exists a variety of solutions based on coding
techniques such as Berger [2] or Bose-Lin [3] codes. In many
works the coding techniques are combined with synthesis [4,5].
The approaches suffer from significant area overhead to the
design to be checked.

Concurrent on-line built-in self-test techniques such as Built-
In Concurrent Self-Test (BICST) [6] and Reduced Observation
Width Replication (ROWR) [7] provide high fault coverage at
low area overhead but only consider a limited subset of pre-
computed test vectors. Hence these approaches are likely to miss
faults occurring in a normal circuit operation.

Several alternatives based on checkers that do not require
modification of the circuit under test have been developed.
Creating checkers automatically based on logic implications
derived from the circuit structure [8] is feasible but suffers from
low fault coverage and high area overhead, often exceeding the
duplex solutions. On the other hand, deriving checkers from
functional assertions, or reusing verification assertions, is
similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [9].

Many previous works have focused on addressing faults in the
control logic of NoC routers. In [16], Yu et al. have addressed
fault tolerance for NoC topologies and proposed an error control
method for detecting transient errors in routing logic implemented

using Logic-Based Distributed Routing (LBDR) mechanism and
its extension for high-radix topologies, LBDRhr. The proposed
error control method utilizes the inherent information redundancy
(IIR) to reduce the error control overhead. However, the method
does not guarantee full fault coverage.

Authors of [17] have presented a method for online error
detection and diagnosis of NoC switches. The proposed method
deals with routing faults that cause packets to be forwarded to
unintended output ports. Regarding modeling routing faults in
switches, a high-level fault model has been introduced in this
work. The fault coverage is measured only at the functional level
and there is no estimates on correlation to gate-level fault
coverage.

In order to deliver correctness guarantees for the complete
network, Parikh et al. have proposed a network-level detection
and recovery solution ForEVeR [14] that monitors the traffic in
the NoC and protects it against functional bugs that were not
detected during design time. To this end, ForEVeR augments the
baseline NoC with a lightweight checker network that alerts
destination nodes of incoming packets ahead of time and is used
for the recovery process. The approach suffers from extremely
high latency. Only 30% of the faults will be detected during the
first clock cycle by the approach.

The work in [15] proposes checkers synthesized from a set of
32 verification assertions. The checkers detect most of the injected
faults. The faults that are not covered correspond to non-
catastrophic failures. The work proposed in [15] is not automated
and lacks the completeness and minimization aspects present in
the current paper.

In [18] a hybrid method is introduced for synthesis of fault-
secure NoC switches utilizing error detecting codes for the data
path (data flits) and a concurrent error detection structure for
dealing with faults not covered by the flit encoding (using
multiple parity trees). However, the work still results in more than
50% area overhead.

The use of embedded test configurations for testing the
datapath of NoC routers has been proposed in [19], with design-
for-testability structures included in [20] and built-in self-test
application in [21]. However, all the mentioned approaches are
targeting the global network and not a concrete router.
Furthermore, only off-line test scenarios have been considered in
[19-21].

This paper exceeds the existing state-of-the-art in fault
tolerant router design by proposing:

- a framework for formal checker qualification. The underlying
approach is complete, i.e. it allows proving the absence or
presence of true misses by the checkers. In addition, it provides
minimal fault detection latency due to the fact that the circuit is
transformed into a pseudo-combinational one and therefore only
checkers with a single clock cycle latency are considered.

- automated minimization of checkers. The formal qualification
of the combinational checkers provides the fault detection
capabilities for them. These, along with the checker area
requirements are applied in an automated minimization process
resulting in a minimal area overhead checker solution under
certain fault coverage constraints.

- complementing the resulting checkers withtemporal checkers
and on-line embedded test packets. This enables combining best

of both worlds. In the case of NoC control part, where
embedded test packet based approaches have proven inefficient,
low area concurrent checkers are applied. On the other hand, in
the datapath, the embedded test yields full fault coverage
whereas error correcting codes would be expensive.

Experimental results on a realistic NoC router design demonstrate
the efficiency of the proposed approach.

3. THE CONCEPT OF CONCURRENT
CHECKERS
Fig. 1 presents the role of concurrent on-line checkers in detecting
faults within a circuit. In addition to the original circuit
(functional logic), a set of checkers (checker logic) will be
connected to functional inputs/outputs of the circuit. These
checkers are derived based on functional assertions obtained from
relationships between variables corresponding to inputs and
outputs of the circuit. The checker logic targets the faults at lines
at the inputs of each gate within the functional logic (marked by
green circles). The lines at the functional outputs succeeding the
checker inputs (marked by a red cross) cannot be detected by the
checker. In addition, the checkers are not targeting the faults at
functional inputs preceding checker inputs, since the checker may
not detect that the input value has been altered by a fault (such
functional input lines are also marked by a red cross in Fig. 1). In
this paper, we consider the single stuck-at fault model. However,
due to the fact that concurrent checkers are implemented and at-
speed embedded test packets are applied, the model also covers
timing related faults.

Figure 1. The concept of concurrent checking

Given a fault at a line within the functional logic and a set
of input stimuli, four possible scenarios may occur:
Case 1: Fault occurs at an internal line and is visible at functional
output(s) and checker logic flags a violation. The term True
Detection is used to describe this situation, since a critical fault is
effectively detected by the checker.

Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a violation.
The term False Positive is used to describe this situation. False
positive is not harmful because an error is flagged which did not
have any effect. However, it has negative impact on design’s
performance because normally it causes re-execution of the task.

Case 3: Fault occurs at internal line but is not visible at primary
output(s) and the checker logic does not detect the violation. The
term Benign Miss is used to describe this situation. Benign miss
shows correct operation by the checker.

Case 4: Fault occurs at internal node and is visible at primary
output(s). Checker does not detect violation. The term True Miss
is used to describe this situation, which is the worst possible case.
True miss means that the fault propagates to the functional

outputs and onwards to the system. However, the system has no
information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection quality of
the checkers, fault injection has been applied. Fault injection
refers to injecting faults into a circuit at a certain time step and
simulating it with the input stimuli to see whether any functional
output of the circuit changes and whether any of the checker
output fires. Due to the fact that it is generally impossible to inject
and simulate all the faults at each circuit line at each time step, a
statistically significant sample of random faults would normally
be injected and simulated.

However, in this paper a methodology is proposed which is
based on automated extraction of a pseudo-combinational circuit
out of the original functional logic by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Further, an exhaustive test for the extracted circuit is fed
through a filtering tool in order to derive the complete valid set of
input stimuli which will serve as the environment for checker
evaluation. This means that in this paper full formal qualification
of the combinational checkers with all possible stimuli and faults
can be obtained.

Let D be the number of true detections, X be the number of benign
misses, F be the set of false positives and W be the number of true
misses over all the injection runs. In order to evaluate the fault
detection capabilities of the checkers we define the metrics of
Fault Coverage (FC), Checkers’ Efficiency Index (CEI) and False
Positive Ratio (FPR) as follows.

WXD
XDFC
��

�
 (1)

WD
DCEI
�

 (2)

XF

FFPR
�

 (3)

Here, FC shows the probability of the checkers behaving correctly
over all possible fault cases, CEI shows the probability of
checkers ability to detect critical faults whereas FPR reports the
ratio of false positives over all the cases a fault did not propagate
to circuit outputs. The mentioned three metrics are calculated for
checkers by the automated checker qualification framework
proposed in this paper.

4. EMBEDDED ONLINE TEST PACKETS
The functional fault model that is applied to cover the stuck-at
faults in the datapath of the NoC router is based on the idea
proposed for fuctional testing of mesh-like NoC networks in [19-
21]. However, in this paper the fault model is applied to a
“localized” approach, where resources (i.e. processing elements)
connected to neighbouring routers West (W), East (E), North (N),
South (S), and Local (L) are utilized as senders/receivers of test
packets to test the central router as the Circuit Under Test (CUT).
Figure 2 visualizes the overall setup of the sending/receiving
resources and the CUT.

Figure 2. The setup for sending/receiving test packets

In the proposed setup, whenever there are idle periods or slacks in
scheduling with length K for the send/receive resources, K test
patterns will be applied from them. This will be done periodically
fetching K next tests from the test set in a circular manner, i.e. if
the end of the test is reached then it starts again from the
beginning. This scenario provides online test capabilities for
regularly checking the health of the datapath of the routing
infrastructure.
A fault model proposed in [19-21] is applied, where the value at a
selected router input is distinguished from the values at other
inputs of the router. In order to fully cover the structural faults in
the multiplexers of the crossbar, tests for each address value have
to be performed. An additional constraint is that all turns must be
covered by the distinguishing tests. In [19] it was shown that by
applying them, near 100% fault coverage for the crossbar switch
and the I/O buffers comprising the datapath of the NoC router is
achieved.

5. FRAMEWORK AND METHODOLOGY
This Section presents the framework for fault tolerant NoC router
design that has been developed as an extension of the Turbo
Tester test framework [10]. The proposed methodology of
combining concurrent checkers with embedded online test
consists of three main steps:

1. Checkers’ qualification and minimization (combinational
checkers);

2. Checkers’ evaluation by fault injection (temporal
checkers);

3. Fault simulation of the embedded online test packets.

In the following, these steps are explained in more detail.

5.1 Checker Qualification and Minimization
Fig. 3 presents the qualification and minimization flow for the
checkers. The flow starts with synthesizing the checkers from a set
of combinational assertions. Thereafter, a pseudo-combinational

circuit will be extracted from the circuit of the design under
checking. The pseudo-combinational circuit is derived out of the
original circuit by breaking the flipflops and converting them to
pseudo primary inputs and pseudo primary outputs. Note, that at
this point additional checkers that also describe relations on the
pseudo primary inputs/outputs may be added to the checker suite
in order to increase the fault coverage.

Subsequently, the checkers’ qualification environment is created
by generating exhaustive test stimuli for the extracted pseudo-
combinational circuit. This stimuli are fed through a filtering tool
that selects only the stimuli that correspond to functionally valid
inputs of the circuit. As a result, the complete valid set of input
stimuli that will serve as the environment for checkers’
qualification is obtained.

Figure 3. Checkers’ qualification and minimization flow

The obtained environment, pseudo-combinational circuit and
synthesized checkers are applied to fault free simulation. The
simulation calculates fault free values for all the lines within the
circuit. Additionally, if any of the checkers fires during fault-free
simulation it refers either to a bug in the checker or an incorrect
environment.

If none of the checkers is firing in the fault-free mode then
checkers’ qualification takes place. The tool injects faults to all
the lines within the circuit one-by-one and this step is repeated for
each input vector. As a result, the overall fault detection
capabilities for the set of checkers, in terms of FC, CEI and FPR
metrics will be calculated. In addition, each individual checker
will be weighted by summing up the total number of true
detections by the checker.

The weighting information will then be exploited in minimizing
the number of checkers, eventually allowing to outline a trade-off

between the fault coverage, and the area overhead due to the
introduction of checker logic.

5.2 Checkers’ Evaluation by Fault Injection
There are cases when a module under checking cannot be handled
by the combinational checker qualification and minimization
approach. For example the module may have a large number of
inputs so that the set of generated valid input stimuli would be too
large (e.g. datapath modules) and/or the fault coverage reached by
the combinational checkers is too low.

In those cases, the checkers are to be evaluated by traditional fault
injection. Here a test bench is created for the design and the
circuit with the checkers is simulated by a sequential fault
simulator with a sufficiently large random sample of faults
injected into the circuit. In this paper, all the datapath checkers
and the FIFO checkers were evaluated using this approach.

5.3 Fault Simulation of the Embedded Test
Finally, the stuck-at fault coverage of the online embedded test
packets for the datapath of the NoC router is measured by a fault
simulator belonging to the framework. As experimental results
show, full fault coverage for the datapath with the test application
time of 196 clock cycles is achieved.

6. EXPERIMENTAL RESULTS
Fig. 4 demonstrates the high-level overview of a 5-port 2D NoC
router that we have chosen as a target architecture for applying the
checkers. The router consists of a datapath and a control part. The
datapath is composed of input buffers (implemented as FIFO),
one for each input port, a crossbar switch and an output buffer for
each output port. The control part contains routing units, arbiters
and FIFO control. For the routing unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)[13],
which is considered as a scalable solution compared to routing
tables. As an arbiter, round-robbin arbitration was implemented.

Figure 4. High level architecture of the NoC router

6.1 Checker Qualification/Minimization for
LBDR/Arbiter

The pseudo-combinational circuit for ELBDR has 11 input
bits, as mentioned in the previous section, thus the exhaustive set
of stimuli presents 211=2,048. A filtering scheme based on the
following statements was devised:

� if input buffer’s empty signal is high, any other input bit is
meaningless, and therefore any value is allowed for it;

� if the incoming flit is a header, the destination address has to
be valid according to the XY routing and turns restrictions;

� if the incoming flit is a body or tail flit, the previous output
values must be valid, they must follow a one-hot fashion,
according to XY routing.

This allowed to obtain a valid and complete set of stimuli

consisting of 1536 vectors, which forms 75% of the exhaustive
set. The run-time for generating the stimuli was 2 seconds. (All
the experiments in this paper were carried out on an Asus ux32vd-
r4002v computer with a 1.9 GHz Intel Core i7-3517U processor
and 10 GB RAM.)

Table 1 lists the obtained minimized set of three checkers for the
LBDR. Reducing the set of checkers to the three most significant
ones allows to limit the area overhead to 78.57% over the ELBDR
circuit, far lower than 185.71% imposed by the initial non-
minimized set of checkers, while the CEI and FC remain at 100%.

Table 1. A minimized list of checkers for the LBDR
Checkers for Routing Logic (LDBR)

1 Valid LBDR
output

If there is a request to the routing
logic (the corresponding input buffer
is not empty), LBDR has to compute
at least one valid output direction
(according to XY routing).

2 No LBDR output If no flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain
zero.

3 Single LBDR
output

If the corresponding input buffer is
not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

Similarly, Table 2 lists the minimized set of two checkers for the
Arbiter that was obtained from an initial set of 28 verification
checkers by applying the checker qualification and minimization
framework.

Table 2. A minimized list of checkers for the Arbiter
Checkers for Arbiter logic

4 Valid Grant
output

If there is a request from LBDR,
arbiter has to assert at least one of the
grant signals for the corresponding
output direction.

5 Invalid arbiter
State

State variable of the arbiter FSM has
to respect one-hot encoding.

6.2 Fault Injection Experiments for the FIFO
Table 3 lists the set of 8 checkers generated from the verification
assertions for the FIFO control part. The checkers were evaluated
by the fault injection tool of the framework. A set of input stimuli
for the FIFO was devised, aiming to cover all the possible
situations for the control logic. The following conditions were
considered in the pattern generation procedure:
- reset condition;
- filling the FIFO, followed by reading up to empty condition;
- smooth traffic condition, i.e. concurrent writing and reading

operations, avoiding the FIFO to get full;
- idle condition, i.e. write and read enable signals low, during

reading and writing operations, in different conditions of
fulfillment of the buffer.

100% CEI and FC were achieved on the control part of the FIFO,
considering the patterns derived from the previously listed
conditions, amounting to 134. Run time for the experiment was
0.06 s. No false positives were encountered in this experiment.

Table 3. Checkers for the FIFO Control Part
Checkers for FIFO control part

6 Reset checker Whenever reset goes high, at the
next clock cycle empty flag should
be high (reading and writing pointer
are reset to the same value).

7 Flags checkers Empty and full flags should never be
high at the same time. Whenever the
defining condition occurs, the
corresponding flag should go high at
the next clock cycle.

8 One-hot pointers
checkers

Reading and writing pointers have to
respect one-hot encoding.

9 Registers enable
DMR checker

Duplication and comparison for the
logic enabling the writing operation
in data registers.

10 Reading pointer
update checker 1

Whenever read enable is high and
the FIFO is not empty, at the next
clock cycle the reading pointer
should be updated.

11 Reading pointer
update checker 2

If either read enable is low or the
FIFOis empty, at the next clock
cycle the reading pointer should
preserve its value.

12 Writing pointer
update checker 1

Whenever write enable is high and
the FIFO is not full, at the next clock
cycle the writing pointer should be
updated.

13 Writing pointer
update checker 2

If either write enable is low or the
FIFO is full, at the next clock cycle
the writing pointer should preserve it
value.

Table 4 lists the set of 3 additional checkers which were included
in order to achieve the full fault coverage after fault injection
experiments for the control part identified uncovered faults in the
interconnections of control part modules.

Table 4. Control Part Infrastructure Checkers
Control Part Infrastructure Checkers

14 FIFOs read
enable DMR
checker

Logic producing read enable signals
for the FIFOs (5 OR gates) is
duplicated, then real and duplicated
outputs are compared.

15 Output
registers enable
DMR checker

Logic producing enable signals for
the output registers (5 OR gates) is
duplicated, then real and duplicated
outputs are compared.

16 Flit type LBDR
error

Flit type field of a flit has to respect
one-hot encoding.

6.3 Checkers for the Datapath
In order to fully cover the faults in the NoC datapath two types of
concurrent checkers were introduced (listed in Table 5). First, for
each input port an even parity bit is included, whereas each output
port has a checker evaluating the even parity. Second, since fault
injection experiments for the whole router identified undetected
faults within the crossbar multiplexers, dedicated checkers for the
crossbar were devised.

Table 5. Checkers for the NoC Datapath
Datapath Checkers

17 Even parity
checker

An even parity bit is computed and
added to data entering each input
port, which is later evaluated before
data leaves the router through any of
the output ports.

18 Crossbar
checker

Crossbar MUXs are duplicated, then
real and duplicated outputs are
compared.

6.4 Putting It All Together
Fig. 5 reports the area overhead required by the checkers for
routers of varying bitwidth (from 32 bits to 256 bits). It can be
observed from the Figure that the required area for the control
part checkers stays constant while the overhead area of datapath
checkers (parity and crossbar) grow proportionally to the router
size.

Figure 5. Area consumption for different datawidhts

The same trend is revealed in Table 6. It can be seen that if
datapath checkers are included then the required area overhead
would be in the range of 31-35%. Whereas, the control part
checker circuitry demands significantly less area, especially for
larger bitwidths.

Table 6. Overhead Area for Different Datawidths

32-bit 64-bit 128-bit 256-bit

Router (w/o checkers) 12636 22620 42588 82524

Control part checkers 1274 1274 1274 1274

Xbar Checkers 1789 3455 6781 13439

Parity 1345 2690 5390 10790

Area overhead

(contr. p. checkers), % 10.08 5.63 2.99 1.54

Area overhead

(all checkers), % 34.88 32.80 31.57 30.90
However, when combining the control part checkers with
embedded online test packets presented in Section 4, full fault
coverage for the NoC router can be achieved with a minor area
overhead. As it has been shown by experiments in [21] an
embedded test of length K=196 clock cycles will achieve
FC=100% within the NoC router datapath. Thus, combining the
concurrent checkers for the control with embedded test solution
for the datapath results in a cost-effective solution for fault
tolerant NoC routers.

7. CONCLUCIONS
The paper proposes a framework for formal qualification of
checkers and for minimizing the overhead area with the given
fault coverage constraints. The goal is to achieve low-latency, low
area overhead checkers for network on chip routers. In addition
the paper proposes complementing the concurrent checkers with
embedded on-line test packets which are to be applied as a
periodic routine during the idle periods in router operation.

The framework together with the corresponding methodology has
been successfully applied to a realistic case-study of a fault
tolerant NoC router design. The case study shows that combining
concurrent routers with embedded test allows reducing the area

overhead of the checkers from 31-35% down to 1.5-10% without
sacrificing the fault coverage.

8. ACKNOWLEDGMENTS
The work has been supported in part by EU’s FP7 STREP project
BASTION and H2020 RIA IMMORTAL, by Estonian ICT
program project FUSETEST, by Research Centre CEBE funded
by European Union through the European Structural Funds and
by Estonian SF grant 9429.

9. REFERENCES
[1] R. Sedmak and H. Liebergot. Selective triple modular redundancy

(STMR) based single-event upset (SEU) tolerant synthesis for
FPGAs. IEEE Transactions on Nuclear Science, 51:2957-2969,
2005.

[2] J. M. Berger. A note on an error detection code for asymmetric
channels. Information and Control, 4:68-73, 1961.

[3] D. Das and N. A. Touba. Synthesis of circuits withlow-cost
concurrent error detection based on Bose-Lin codes. In VLSI Test
Symposium, pages 309-315, 1998.

[4] K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis
of low-cost parity-based partially self-checking circuits, 2003.

[5] S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced
circuits based on parity codes. In VLSI Test Symposium, pages 315-
320, 1-5 May 2005.

[6] R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. In Digest of Papers
Eighteenth International Symposium on Fault-Tolerant Computing
FTCS-18, pages 164- 169, June 1988.

[7] P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proc. Fourth International Symposium on
Quality Electronic Design ISQED, pages 425-430, March 2003.

[8] Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.I.; Nepal, K. "Enhancing
online error detection through area-efficient multi-site implications",
IEEE 29th VLSI Test Symposium (VTS), 2011.

[9] Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion
checkers in verification, silicon debug and infield diagnosis. In
Proceedings of the ISQED '07.

[10] M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V
Vislogubov, HD Wuttke. Turbo Tester-Diagnostic Package for
Research and Training. The 1st East-West Design and Test
Conference, Alushta, 2003.

[11] Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop
on Boolean Problems. pp. 271-278, 2004.

[12] Raimund Ubar, Sergei Devadze, Jaan Raik, Artur Jutman. Parallel
X-fault simulation with critical path tracing technique. Proceedings
of the Conference on Design, Automation and Test in Europe
(DATE), pp. 879-884, 2010.

[13] J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[14] R. Parikh and V. Bertacco. Formally enhanced runtime verification
to ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

[15] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y.,
"NoCAlert: An On-Line and Real-Time Fault Detection Mechanism
for Network-on-Chip Architectures," IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 2012.

[16] Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., ”Transient and
Permanent Error Control for High-End Multiprocessor Systems-on-
Chip,” 2012 Sixth IEEE/ACM International Symposium on
Networks on Chip (NoCS), vol., no., pp.169,176, 9-11 May 2012.

[17] Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch
Fault Detection and Diagnosis Using a High Level Fault Model,"

22nd IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems, vol., no., pp.21,29, 26-28 Sept. 2007.

[18] Dalirsani, A.; Kochte, M.A.; Wunderlich, H.-J., "Area-efficient
synthesis of fault-secure NoC switches," IEEE 20th International
On-Line Testing Symposium (IOLTS), pp.13,18, 7-9 July 2014.

[19] J. Raik, V. Govind, R. Ubar. An External Test Approach for
Network-on-a-Chip Switches. Proc. of the IEEE Asian Test
Symposium, pp. 437-442, Nov. 2006

[20] J. Raik, V. Govind, R. Ubar. Design-for-Testability- Based External
Test and Diagnosis of Mesh-like NoCs. IET Computers and Digital
Techniques, Vol. 3, Issue 5, pp. 476-486, September 2009.

[21] Raik, J.; Govind, V. Low-area boundary BIST architecture for mesh-
like network-on-chip, IEEE 15th International Symposium on
Design and Diagnostics of Electronic Circuits & Systems (DDECS),
pp. 95-100, 2012.

Appendix 5

Publication V

Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault de-tection efficiency of reliability checkers obtained by verification assertionqualification. In RESCUE 2017 Workshop on Reliability, Security and Quality
European Test Symposium (ETS) Fringe Workshop, May 25-26. IEEE, 2017

125

On Fault Detection Efficiency of Reliability Checkers

Obtained by Verification Assertion Qualification

Ranganathan Hariharan, Behrad Niazmand, Jaan Raik

Tallinn University of Technology, Estonia

Abstract— This paper assesses correlation between verification

assertion qualification results and gate-level fault detection

capabilities of concurrent error checkers synthesized from these

assertions. Generating checkers from verification is a solved

problem where commercial tools are available (e.g. IBM FoCs).

Furthermore, there exists several academic and industrial

solutions for assertion qualification (e.g. Certitude by Synopsys).

Such qualification tools are traditionally applied in order to assess

the verification power of assertions generated in an automated

way. However, the number of assertions selected by qualification

is still far too high and result in unacceptable area overheads when

implemented as checker circuitry in reliability applications.

In order to derive low-area but high-coverage checker

circuitry from a large number of verification assertions this paper

proposes the following flow. First, we use the Certitude tool to

qualify verification assertions. Subsequently, we propose a

minimization algorithm to allow generation of low-area high

quality checkers. Finally, the fault detection capabilities of the

obtained checkers are evaluated using the framework developed

by the authors of the paper. This is the first work to consider

correlation of assertion quality versus fault detection capabilities

of the synthesized checkers. It is also the first time when qualified

assertions are minimized with considerations of the checker

coverage and overhead area.

The paper includes a preliminary study of the proposed

methodology on an example of a network-on-chip routing block.

Keywords—assertions, assertion qualification, checkers, fault

coverage.

I. INTRODUCTION

There exist many assertion qualification methods, both

academic [1-3] and industrial ones (e.g. Synopsys Certitude

[4]). They have been used mainly for two scenarios. First,

qualification allows assessment of the quality of the verification

environment. Second, it enables selection of high quality

assertions during the assertion mining process [5].

At the same time, reliability checkers have been

automatically generated from verification assertions. Probably

the best-known software for performing this is the IBM FoCs

[6]. However, the number of verification assertions is too high

and it result in unacceptable area overheads when implemented

as checker circuitry in reliability applications.

The authors of this paper have proposed methods to carry

out automated qualification and minimization of checkers using

gate-level fault injection [7]. Although accurate, these methods

do not scale as well as assertion qualification taking place at the

register-transfer level.

In order to derive low-area but high-coverage checker

circuitry from a large number of verification assertions this

paper proposes the following flow. First, we use the Certitude

tool to qualify verification assertions. Certitude, like many of

the qualification tools, rely on mutation analysis to assess the

quality of assertions.

Subsequently, we propose a minimization algorithm based

on greedy heuristics to allow generation of low-area high

quality checkers. Finally, the fault detection capabilities of the

obtained checkers are evaluated using the framework

developed by the authors of the paper in [7] and a discussion of

the correlation between verification qualification and checker

evaluation results is also provided.

II. ASSERTION QUALIFICATION AND MINIMIZATION

This Section proposes the algorithm for minimizing a set of

verification assertions minimizations ciC under a given size

constraint W. The algorithm is based on greedy heuristics to

iteratively select assertions ciC with maximum additional

mutation coverage f(ci) with regards to the set of already

detected faults F’ (a subset of the full fault set F), taking into

account the size (i.e. overhead area) of the assertion w(ci) and

the size constraint L.

Minimize_Set_of_Assertions(C, L)
begin

C’=
F’=F
W=0

while F’≠ and W<L do

 Select ci with max f(ci)  F’

 C’=C’{ci}
 F’=F’ \ f(ci)
 W=W+w(ci)
end while

 return C’
 end

Algorithm 1. Greedy minimization of verification assertions

III. TARGET DESIGN AND ITS VERIFICATION ASSERTIONS

The paper includes a preliminary study of the proposed
methodology on an example of a network-on-chip routing block
based on Logic-Based Distributed Routing (LBDR) [8], which
is a scalable solution compared to routing tables. The
mechanism describes the topology and the routing function in
form of connectivity and routing bits, therefore the logic can be
easily re-configured. Routing decision is distributed and only
requires local and destination addresses for forwarding flits.

Table 1 presents the six verification assertions developed for
the routing block with the purpose of the experiments.

TABLE I. PROPOSED CHECKERS FOR ELBDR

Checkers for Routing Logic (LDBR)

C1 No LBDR

output

If no flit arrives (the corresponding

input buffer is empty), all the output

port signals of LBDR should remain

zero.

C2 Valid LBDR

output

If there is a request to the routing logic

(the corresponding input buffer is not

empty), LBDR has to compute at least

one valid output direction (according

to XY routing).

C3 Single LBDR

output

If the corresponding input buffer is not

empty (there is a request to LBDR),

because of using XY routing, at most

only one output port signal of the

LBDR logic can become active.

C4 Switch LBDR

output

If the corresponding input buffer is not

empty (there is a request to LBDR)

and a non-header flit has arrived,

LBDR outputs should remain the

same.

C5,

C6

Local Port

output

If the corresponding input buffer is not

empty (there is a request to LBDR)

and a header flit has arrived, the local

output should become active only if

the packet has reached its destination.

IV. EXPERIMENTAL RESULTS

Fig. 1 shows the results of assertion qualification by

Certitude, as well as the minimization results by Algorithm 1.

Figure 1. Fault table of assertion qualification

Fig. 2 shows the results of assertion qualification by

Certitude, as well as the minimization results by Algorithm 1.

Figure 2. Assertion qualification and minimization

FAULT

ID

CHECKER1

[valid_out]

CHECKER2

[noLBDRout]

CHECKER3

[single_out]

CHECKER4

[switch_out]

CHECKER5

[localport1]

CHECKER6

[localport2]
1 + - - + - -

2 - + + + - -

3 + + + + - -

4 + - - + - -

5 - + + + - -

6 + + + + - -

7 + - - + - -

8 - + + + - -

9 + + + + - -

10 + - - + - +

11 - + + + + -

12 + + + + + +

13 - - - - - +

14 - - - - + -

15 - - + - - +

16 - - + - + +

17 - - + - - -

18 - - - - + -

19 - - - - - +

20 - - - - + +

21 - - - - - -

22 - - - - + -

23 - - + - - +

24 - - + - + +

25 - - + - - -

26 - + - - - -

27 + - - + - +

28 - + - - - -

29 + + - + - +

30 + - - - - +

31 - + - + - -

32 + + - + - +

33 + - - + - -

34 + - - - - -

35 - - + - - -

36 + - + - - -

37 + - - - - -

38 + - - - - -

39 + - - - - -

40 - - + - - -

41 - - + - - -

42 + - - - - -

43 + - - - - -

44 - - + - - -

45 - - + - - -

46 + - - - - -

47 - - + - - -

48 + - + - - -

49 + - - - - +

50 - - + - + -

51 - - + - + -

52 + - + - + +

53 + - + - + +

54 + - + - + +

55 + - - + - -

56 - + - - - -

57 + + - + - -

58 + - - + - -

59 + + - + - -

60 + + - + - -

SUM 31 17 27 22 13 17

Fig. 3 displays the weight information in terms of the gate-

level injection coverage reported by the checker analysis tool

[], on the initial set of checkers for the ELBDR. The checker,

err_noLBDRout (checker C1 in Table 1) is considerably

detecting more faults than any other checker. The 5 remaining

checkers, in descending order of weights are err_validLBDRout

(checker C2), err_singleLBDRout (checker C3),

err_switchLBDRout (checker C4), and finally the two

err_localport checkers (entry C5, C6).

Figure 3. Gate-level qualification results

Minimization of the set of considered checkers by the tool

in [7] showed that the three heaviest checkers were dominating

the three lightest, i.e. the three considered checkers cover all the

faults detected by the other checkers. Reducing the used set of

checkers to the three most significant ones allows to limit the

area overhead to 78.57% over the ELBDR circuit, far lower

than 185.71% imposed by the initial non-minimized set of

checkers generated from the six verification assertions.

V. DISCUSSION ON PRELIMINARY RESULTS

It is important to stress a couple of main aspects indicated

by the qualification and minimization experiments presented in

the previous section. First, as it can be seen from Figures 1 and

2, the assertion qualification and the subsequent minimization

by Algorithm 1 was able to prove that C4 is dominated by other

assertions. Therefore, the search space has been pruned already

at the level of verification assertions.

Second, similar to gate-level checker qualification

presented in Fig. 3, C1-3 are the most significant assertions,

although C2, C3 appear in a switched order. Thus, there is a

relatively good correlation between the ranking provided by

assertion qualification versus the one by checker qualification.

Moreover, if the weight (i.e. size) constraints of the

assertions were included then the minimization process may

end up with the same result as [7], however without the need to

delve to tedious gate-level analysis.

The results presented in this workshop paper is the first

insight to assess the feasibility of the proposed methodology.

As the next step, we plan to extend the experiments to the entire

control part of the network-on-chip router, including also FIFO

control and arbitration logic.

VI. CONCLUSIONS

The paper investigated the correlation between gate-level
fault detection capabilities of concurrent error checkers
synthesized from verification assertions and the high-level
qualification results for these assertions. For the first time,
correlation of assertion quality versus fault detection capabilities
of the synthesized checkers was considered and qualified
assertions were minimized with considerations of the checker
coverage and overhead area.

Experiments carried out on the routing block of a Network-
on-Chip (NoC) router showed the feasibility of assessing the
fault detection capabilities of checkers by applying assertion
qualification. Although assertion quality was not directly
proportional to the checker coverage, experiments
implementing a heuristic assertion minimization indicate that
the optimal solution in terms of coverage/area was achieved
without the need to descend to tedious gate-level analysis.

REFERENCES

[1] S Katz, O Grumberg, and D Geist. Have I written enough

properties?—A method of comparison between

specification and implementation. In Proc. of ACM

CHARME, pages 280–297, 1999..

[2] Andrea Fedeli, Franco Fummi, and Graziano Pravadelli.

Properties incompleteness evaluation by functional

verification. IEEE Trans. on Computers, 56(4):528–544,

2007.

[3] N Jayakumar, M Purandare, and F Somenzi. Dos and don’ts

of CTL state coverage estimation. In Proc. of ACM/IEEE

DAC, pages 292–295, 2003.

[4] https://www.synopsys.com/verification/simulation/

certitude.html

[5] Jan Malburg, Tino Flenker, Görschwin Fey, "Property

Mining using Dynamic Dependency Graphs", Asia and

South Pacific Design Automation Conference (ASP-DAC),

January 2017.

[6] https://www.research.ibm.com/haifa/projects/verification/

focs/

[7] Pietro Saltarelli, Behrad Niazmand, Ranganathan

Hariharan, Jaan Raik, Gert Jervan, Thomas Hollstein,

Automated Minimization of Concurrent Online Checkers

for Networks-on-Chip, Proceedings of the ReCoSoC’15

Conference, IEEE, 2015

[8] J. Flich, J. Duato, Logic-Based Distributed Routing for

NoCs, IEEE Computer Architecture Letters, Vol. 7, No. 1,

January-June 2008.

C1 C2 C3 C5 C4 C6

Appendix 6

Publication VI

Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and JaanRaik. From rtl liveness assertions to cost-effective hardware checkers. In
2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages1–6. IEEE, 2018

131

From RTL Liveness Assertions to Cost-Effective
Hardware Checkers

Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, Jaan Raik

Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia

{ranganathan.harihara, tara.ghasempouri, behrad.niazmand, jaan.raik}@ttu.ee

Abstract—This paper proposes a methodology for producing a
set of high quality hardware checkers from Register-Transfer
Level (RTL) assertions. Assertion Based Verification (ABV)
has become a highly popular area in design verification. On
the other hand, extreme down-scaling of modern technologies
has significantly increased the probability of faults occurring
during the life-time of the system. To overcome this, concurrent
cost-effective checker circuitry is required in order to enable
fault resilience of systems. Currently, designing such checker
infrastructure is a manual and error-prone work. A possible
solution to automate the synthesis of concurrent error checkers
is to derive them from verification assertions. However, the
number of assertions is generally far too high to allow for
area-efficient checking infrastructure. Moreover, the number of
liveness assertions generated by automated methods may be too
high even for verification purposes. Therefore, there is a need
for qualification and minimization of liveness assertions with
a prospect of reusing them as hardware safety checkers. In
order to derive low-area, high fault coverage hardware safety
checkers from a large number of liveness assertions, this paper
proposes for the first time a framework for selecting a set of
high-quality and minimized liveness assertions by combining a
new data mining technique with fault analysis approaches along
with assertion conversion methodology that converts liveness
assertions into safety assertions. The framework then synthesizes
these safety assertions into hardware checkers to be evaluated at
the gate level to provide a cost-effective checking infrastructure.
Experimental results support the effectiveness of the proposed
framework.

I. INTRODUCTION

Due to the increasing complexity of today’s digital systems,

the amount of time and man-power that is invested in finding

and removing bugs is growing. To overcome this problem

and to develop systems without bugs, verification techniques

have arisen which check if a system meets its specification

and thereby fulfills its intended purpose [1]. Among all of

these techniques, ABV has become a popular means for

catching and eliminating errors. At the same time, due to the

growing failure-rates, process variations and time-dependent

degradation of modern chip technologies, it is imperative to

develop cost-effective means for protecting systems against

faults occurring in the field, during their life-time.

Thus, concurrent on-line checker circuitry is required to

monitor the fault-free functioning of the system hardware.

Such checkers are normally designed ad-hoc or by synthe-

sizing them from verification assertions. However, the number

of assertions in the verification environment is generally far

too high to allow for area-efficient checking infrastructure.

Moreover, the number of liveness checkers generated by

automated methods (e.g. [2], [3], [4]) may be too high even

!"#$%&'(

)*#)+,-.(

/0&1%2(&-&%34,45(

644#$2,7-(

$&-+,-.(

/8&2&(9,-,-.5(

:,"#-#44((

&44#$2,7-4(;,-,9,<#8((

4#2(70(*,.*(

=1&%,23(%,"#-#44((

&44#$2,7-4(
>?@(

A2#'(BC(644#$2,7-4D(=1&%,0,)&2,7-(

A2#'(EC(A&0#23(&44#$2,7-4D()$#&2,7-(

F7-"#$2,-.(%,"#-#44(

&44#$2,7-4(27(4&0#23(

&44#$2,7-4(

A2#'(GC(F*#)+#$4D(43-2*#4,4(&-8(#"&%1&2,7-(

A3-2*#4,<#8(

>?@(H(4&0#23(

&44#$2,7-4(

F*#)+#$4D(

0&1%2(

4,91%&2,7-(

A&0#23((

&44#$2,7-4(

:7I(&$#&(&-8(

,.()7"#$&.#(

)*#)+#$4(>?@(

Fig. 1: Overview of the proposed methodology

for verification purposes. Therefore, there is a need for qualifi-

cation and minimization of liveness assertions with a prospect

of reusing them as hardware safety checkers.

A verification environment consists of a set of assertions that

collectively are capable of detecting a range of design bugs.

However, not all the assertions are essential in order to detect

this range: some assertions are dominated by others, or by a

set of other assertions, some assertions are equivalent in terms

of bug detection capabilities, etc. Discarding such assertions

which do not detect any unique bugs leads to obtaining a

set of minimized assertions. Of course, it is not possible to

enumerate all possible bugs, and therefore, fault models are

applied in order to estimate the coverage of different asser-

tions. This assertion quality estimation task is called assertion

qualification. While there exist several works that address

assertion qualification and minimization [2], [3], [4] as well

as qualification and minimization of checkers at the gate-level

[5], [6], to the best of our knowledge, this is the first paper that

applies high-level assertion qualification/minimization with the

goal of generating low-area high-quality checker circuitry.

Figure 1 presents the overview of the proposed method-

ology. Looking at Step 1 in Figure 1, Assertion ranking

ranks and selects the high quality assertions passing a preset

threshold in order to pass them to Overlap checking. Pre-

liminary selection by Assertion Ranking gives the framework

the advantage of obtaining shorter execution time since the

Overlap checking phase is based on fault analysis which has

high complexity. Application of this methodology prevents the

XXXIII Conference on Design of Circuits and Integrated Systems (DCIS)

978-1-7281-0171-2/18/$31.00 ©2018 IEEE

!

involvement of assertion sets that are incomplete (i.e. unable

to cover all expected behaviors of the Design Under Verifi-

cation (DUV), inconsistent (i.e. with contradicting assertions),

redundant (i.e. with assertions that are logical consequence of

others), and including vacuous assertions (i.e. assertions that

are true, independently from the DUV and thus, irrelevant)

into the verification process. Of the different strategies to

generate and define assertions there are typically two types

of assertions distinguished: safety and liveness assertions.

A safety assertion stipulates that ’undesired things’ do not

happen during execution of a program and a liveness assertion

stipulates that ’desired things’ do happen.

Specifications of most systems contain liveness parts [7].

Moreover, automatically generated assertions that are derived

from the systems’ behavior are almost exclusively liveness

assertions. However, function of the checker circuitry is

based on safety assertions For these reasons, a conversion

procedure that translates liveness assertions into equivalent

safety assertions using transposition logic is described in this

work. (See Step 2 in Figure 1). The methodology continues

with synthesis of the safety assertions into hardware checkers

whose quality is evaluated by gate-level fault simulation (Step

3 in Figure 1). As a result, low-area high coverage checker

circuitry is obtained.

The rest of the paper is organized as follows. Section II

presents related work. Section III introduces preliminary def-

initions. Section IV presents the methodology. Section V

describes the experimental results and finally Section VI

concludes the paper.

II. RELATED WORK

There are several techniques in the state of the art for

generating assertions, [5] [4], [8], [9] and in many of them

minimization of the number of generated assertions is ad-

dressed. However in all techniques, the generated assertions

suffer from shortcomings such as vagueness, incompleteness

and redundancy. As a result, a false sense of security can

emerge in the verification flow which is caused by a low

quality set of assertions. Moreover, in most cases, the number

of generated assertions is very high and verifying a system

through all the assertions needs a long simulation time. All the

above-mentioned problems show that an assertion qualification

and minimization phase is necessary in the ABV so that the

verification environment would be free from using inconsis-

tent, redundant and vacuous assertions. Current approaches for

ABV are still unsatisfactory from this point of view.

In [10], a stressing phase is proposed only to verify the

likelihood that mined assertions are globally satisfied (i.e. not

only for the execution traces analyzed by the miner). However,

no strategy is proposed to measure their quality in covering

DUV behaviors or selecting the best minimized assertions. In

[8], quality estimation is based on the number of propositions

included in the antecedent of the assertion. It is according to

the fact that an assertion with a lower number of propositions

in its antecedent has a higher input space coverage than

one with many propositions in its antecedent. However, the

correlation between the antecedent and the consequent of an

assertion is not considered. To solve this drawback, in [11]

a ranking function is proposed that evaluates the quality of

the mined assertions in terms of cause-effect relationships

between antecedent and consequent of an assertion. In [12]

the quality of assertions are estimated based on their amount

of frequencies and correlation during the simulation. However,

the work does not consider assertions with low number of

frequencies which may cover the corner cases of a design. In

[13], instead, a metric is introduced to rank assertions based

on their ability to cover corner cases. Moreover, it does not

take into account assertions which cover the general behavior

of the design. Finally, in [9], mined assertions are said to be

generally ranked according to their frequency of occurrences

and time of first occurrence, however, no specific approach is

presented.

As an opposite class of approaches, coverage metrics have

been widely studied for qualification of assertions [14], [15],

[16], [17]. Most of these works rely on fault analysis, which

requires perturbing the DUV implementation by injecting

mutations (faults) to check, either statically [15], [16] or

dynamically [17], whether they change the truth values of the

assertions; Faults that do not cause a change are said to be

not observed. Assertions that observe a lower number of faults

have less quality than assertions detecting a higher number of

faults. Not observed faults generally highlight areas/behaviors

of the DUV that are not covered by any of the defined

assertions showing a hole within the coverage.

Dynamic approaches such as [17] scale better with respect

to static techniques, however, they still require long simulation

runs for checking each assertion for each fault with a signif-

icant set of test-benches. When the number of assertions is

very high, as in the case of assertions extracted automatically,

evaluating their quality through fault analysis becomes a very

time-consuming task.

Error-checkers are to be generated from safety assertions,

whereas automated assertion generation provides mostly live-

ness assertions. Therefore, a liveness to safety generation

step is proposed in this paper. In the state-of-the-art, there

exist some works to convert liveness to safety assertions.

For example [18] uses finite state machine and reachability

checking to translate liveness assertions to safety assertions.

In [19] the same technique as [18] has implemented but using

an unbounded state machine. [20] describes a technique to

distinguish between a liveness and a safety assertion but no

specific method for translation of liveness to safety assertions.

The technique which is proposed in this work, is translation

of liveness assertions to safety with transposition logic which

is a fast and cost-effective approach.

Last but not least, there exist previous works in gate-level

minimization of checkers at the gate level [5], [6]. However,

the scalability of minimization at the gate-level is very low due

to the excessive run-times of fault injection, iterative synthesis

and minimization at this low level of abstraction.

To fill the gaps described above, the methodology proposed

in this paper provides the following contributions:

• First, an advanced assertion ranking approach has been

introduced based on combining three different metrics

adapted from data mining, to evaluate assertions’ quality

!

!

from different conditions (See Section IV-A1). Compared

to similar approaches in the state of the art, it provides

higher correlation of assertion quality with fault coverage

of the obtained checkers.

• Second, combining a fault analysis approach along with

a data mining approach for assertion qualification to get

the advantages of both techniques, the former providing

high accuracy and the latter very short execution time.

• Last but not least, different from existing checker synthe-

sis and minimization approaches, the methodology pro-

posed in this paper operates on high level of abstraction,

therefore providing better scalability with the circuit size.

III. PRELIMINARIES

Definition 1: A fault fi is a local alteration of the DUV’s

source code that perturbs its functionality.

Definition 2: A fault fi is called an observable fault if, in

comparison with a fault-free DUV, its effect is visible as an

alteration in the DUV’s primary outputs. A fault fi is covered

by an assertion aj if assertion aj fails when the fault fi is

observed at primary outputs.

Definition 3: An assertion is a composition of propositions,

connected via temporal operators according to some temporal

logic.

Definition 4: An assertion with higher degree of Quality is

the one that observes a higher number of faults.

Definition 5: An assertion is composed of Antecedent i.e.,

the left side of an implication and Consequent i.e., the right

side of an implication. An example of an assertion applied in

the Experimental Results section:

Empty = False && (flit = Header || flit = Payload || flit = Tail) →

oNport = True || oWport = True || oSport = True || oLport = True

where the Antecedent is:

Empty = False && (flit = Header || flit = Payload || flit = Tail)

and the corresponding Consequent is:

oNport = True || oWport = True || oSport = True || oLport = True

Definition 6: Given a set of items I and the corresponding

dataset of D, a rule X → Y (X being the antecedent and

Y being the consequent) has support S if X and Y occur

concurrently in S percent of transactions in D.

Definition 7: Given a set of items I and the corresponding

dataset of D, the Correlation Coefficient of the rule X → Y

is the covariance of X and Y divided by the product of their

individual standard deviations.

Definition 8: Strength Measure is a product of quantities

such as Support (Definition 6) and Correlation Coefficient

(Definition 7) but with giving priority in the region of

rules/assertions with low occurrences but highly correlated

with other rules/assertions.

IV. METHODOLOGY

In order to derive cost effective hardware safety checkers

from a large number of liveness assertions, a methodology

based on a tool framework is shown in Figure 1. This

methodology is applicable independently from the way as-

sertions are defined/generated. The assumption is that they

are represented in the form of A → C where A and C

are antecedent and consequent (Definition 5), respectively.

Assertions go through an Assertion ranking phase to evaluate

their quality based on data mining metrics. The highest ranked

assertions are further forwarded to an Overlap checking phase

implementing mutation based assertion qualification to analyze

the observed faults by each assertion. As a result, a set of

high quality minimized assertions are sent to the liveness to

safety assertion conversion step. The output of this step is

a set of safety assertions. In the last step, DUV and safety

assertions are synthesized to be evaluated at the gate-level

using fault injection and simulation. So, as stated above, the

work flow of the proposed methodology is divided into 3 main

steps: assertions’ qualification, liveness to safety conversion

and checkers’ synthesis and evaluation. The three steps are

explained in more detail below.

A. Assertion qualification

This step consists of two main phases: Assertion ranking

and Overlap checking. In Assertion Ranking, an assertion

qualification tool Shayan [12] is applied on liveness assertions

to estimate their quality (Definition 4) based on data mining

metrics. The high quality assertions, selected by Shayan go

through the Overlap checking phase for fault analysis utilizing

the Synopsys Certitude qualification tool [21]. The hypothesis

is that assertions with higher degree of quality are more

effective in the verification process. Thus, Shayan selects

assertions with the degree of quality above a preset threshold

and forwards them to the Overlap Checking phase for fault

analysis. The main drawback of fault analysis approaches

is their long simulation time, since the effect of a fault

(Definition 1) that has been injected needs to be evaluated

by simulation. The above-mentioned preliminary selection by

Assertion Ranking leads to reduction of this simulation time.

!"#$%&$'()*&

+,-),'.,

/"#.)#"*$0'&1,*2$.+&

"'%&"((#3$'4&0'&

"++,2*$0'+&

Step 1: Occurrence Counting

Step 2: Creation of Contingency table

Step 3: Metric calculation and assertion ranking

5$6,',++&&

"++,2$0'+&

78!&

9"':,%&"++,2*$0'+&

;"+,%&0'&*<,$2&

-)"#$*3&

+$1)#"*02&
=..)22,'.,&0>&

,".<&"++,2*$0'

/2,"*$'4&

/0'*$'4,'.3&

*";#,

Fig. 2: Overview of Shayan (Assertion ranking)

1) Assertion Ranking: In the core of assertion ranking, a

data mining based tool called Shayan is placed. From the point

of view of general concept, data mining [22] and assertion

ranking share the same idea (extracting rules from data), but

they have several differences that make it practically different

how these metrics are computed and interpreted for evaluating

!

!

the quality of assertions. Shayan calculates a metric called

Q which is calculated individually for each assertion. Q is

the linear combination of Support (Definition 6), Correlation

Coefficient (Definition 7) and Strength Measure (Definition 8).

The higher the value of Q, the higher the quality of the

assertion would be. Figure 2 shows the internal design of

Shayan, composed of three metrics, i.e.,Occurrence counting,

Contingency table creation and Metric calculation.

• Occurrence counting: Liveness assertions and the DUV

are inputs of the work flow. In the first step, set of valid

input sequences are connected to a simulator to extract

information about occurrences of assertions during the

simulation. The number of times an assertion is holding in

the valid input sequences is computed. Then, each asser-

tion is decomposed into antecedent and consequent and

their respective frequencies in the valid input sequences

are computed.

• Creation of contingency table: At this stage, the necessary

ingredients are ready for Creating contingency tables, see

(Table I).

C C̄

A f11 f10 f1X
Ā f01 f00 f0X

fX1 fX0 fXX

TABLE I: Contingency table for A → C.
The computation of the contingency table is based on

counting occurrences of antecedent/consequent and the

assertions respectively. Given an assertion A → C, its

contingency table represents the relation between A and

C. The cells of contingency table contain the following

information (Table I): Cell f11 represents the number of

times where A is true and C is true in the valid input

patterns; Cell f10 represents the number of times where

A is true but C is false in the valid input patterns. Cell

f01 is the dual of f10, i.e., it is the number of times where

A is false and C is true in the valid input patterns, i.e., it

is the sum of occurrences of assertions A′ → C included

in the considered assertion set with A "= A′. In this case,

A and A′ can also be conflicting because this doest not

represent an inconsistency for the assertion set. Cell f00
is the number of times an assertion is not true through

the simulation. Cell f1X is the sum of cells f11 and f10.

Cell f0X is the sum of cells f01 and f00. Cell fX1 is the

sum of cells f11 and f01. Cell fX0 is the sum of cells

f10 and f00. Cell fXX is the grand total.

The corresponding contingency tables are reported in

Table II. For example, for assertion validLB, f11 cor-

respond to the total number of occurrences of validLB

in the analyzed valid input sequences; f10 is equal to 0,

since antecedent A does not appear in none of the other

assertions; f01 is 0 since consequent of the assertion does

not appear in none of the other assertions; and finally, f00
is obtained by summing the occurrences of all the other

assertions except V alidLB. Similar considerations allow

computing values for all the other cells of Table II.

• Metric calculation and assertion ranking: Contingency ta-

bles provide basic ingredients for computation of Support

AssertionID f11 f10 f01 f00
validLB 468 0 0 2827

noLB 436 0 0 2859

singleLB 481 0 0 2814

switchLB 361 0 0 2934

port1 524 1025 0 1746

port2 516 1033 0 1746

TABLE II: Contingency tables of assertions reported in

Table I.

and Correlation Coefficient, Strength Measure and their

linear combination Q. Concerning support, according to

(Definition 6), it is computed using the following formula:

Support =
f11

fXX

(1)

The Correlation Coefficient for an assertion according to

(Definition 7) is computed using the following formula:

CC(A,C) =
f11fXX − f1XfX1
√

f1Xf0XfX1fX0

(2)

The computation of the Strength Measure for an assertion

according to (Definition 8) is computed by:

Strength Measure =

√

f2

11

|fX1 − fX0| . |f1X − f0X |
(3)

According to equation 1 the support ranks in the highest po-

sitions assertions that occur frequently in the execution traces.

However, we can have specific assertions that occur very rarely

because they refer to the corner cases and thus equation 3 has

been proposed. On the other hand, the correlation coefficient

privileges assertions where the number of occurrences of the

antecedent better matches the number of occurrences of the

consequent, but assertions where these numbers are low could

be extracted by chance without representing a real behavior of

the DUV. For this reason a combination of support, correlation

coefficient and strength measure provides a more accurate

estimation of assertion interestingness. Thus, we propose mea-

suring the quality of an assertion A through the following

formula:

Q(A) = α∗sn(A)+(1−α)∗ρn(A)+(1−α)∗strengthn(A)
(4)

where, α ∈ [0, 1], and sn(A) and ρn(A) are the value obtained

by normalizing , respectively, the support s, the correlation

coefficient ρ and Strength measure strength of A with respect

to the whole set of analysed assertions. By varying of α

the role of support becomes more or less important with

respect to the role of the correlation coefficient and strength

in determining the final estimation of assertion quality. In our

experiments best results have been obtained with α = 0.4.

In Table III the metrics with their corresponding values

for each assertion are represented. Assertions noLB, validLB,

singleLB and switchLB are rank better than assertions port2

and port1. Thus, for the next step the best 4 assertions are

selected and port1 and port2 are discarded.

!

!

TABLE III: calculated metrics for each assertion

S CC Strenght Q

noLB 0.04 1.0 0.05 0.64

validLB 0.96 1.0 0.98 1.57

singleLB 0.04 1.0 0.05 0.64

switchLB 0.03 0.55 0.03 0.36

port2 0.001 0.45 0.001 0.27

port1 0.01 0 0.01 0.01

!"#$%$&&''

(&&$)"*%&'

+,-'
./$0'12'3(45/'"%6$7/"*%'

./$0'82'3(45/'*#$)5(0'(%(59&"&'

:0059"%;'

<"%"<"=(/"*%'

(5;*)"/><'

-(5"?'"%04/'

&$@4$%7$

&"<45(/*)' A$)/"/4?$'
A*<0"5$'

.7)"0/'

3(45/''

/(B5$'
C"%"<"=$?'&$/'*D'

>";>'@4(5"/9'5"#$%$&&'

(&&$)/"*%'

Fig. 3: Overview of overlap checking phase

2) Overlap checking: The Overlap Checking phase calcu-

lates which faults are covered by which assertions. Shayan,

which was described above, has the ability to rank the as-

sertions based on data mining metrics but it can not provide

any information whether two assertions have the same set of

covered faults (i.e. the assertions are equivalent) or one is

subset of the other assertions’ covered faults (i.e. dominated

by the other assertion) etc. Such equivalence and dominance

relationships between assertions allow minimizing the set of

assertions selected for synthesis and gate-level evaluation.

Thus, we applied the Overlap Checking framework which

consists of two steps, i.e., Fault injection and Fault overlap

analysis (See Figure 3).

As shown in Figure 3, the DUV and selected liveness

assertions together with the valid input sequence (i.e. the

verification environment) are fed into the Certitude tool that

performs the fault analysis. The output of Step 1 is the fault

table showing which assertion aj covers which faults fi.

The following algorithm is applied for minimizing the

number of assertions based on the fault table information.

The algorithm is based on iterative implication and greedy

selection operations. Two types of implications are used. First,

unique assertion aj , which cover some fault fi that is not

covered by any other assertions are identified and removed

from the table. Second, it is said that assertion aj dominates

assertion ak, if all the faults covered by ak is a subset of the

faults covered by aj . Note, that equivalence of two assertions

aj and ak is a special case of dominance, where aj and ak
mutually dominate each another.

If after performing the implications the set of selected

assertions are not covering all the faults in the fault table, a

greedy selection operation is performed. The algorithm selects

an assertion that covers the greatest number of faults not yet

covered by the set of selected assertions. The algorithm will

complete when the selected assertions cover all the faults in

the fault table.

while exist faults uncovered by assertions do

while implications provide new assertions do

Select unique assertions;

Remove dominated assertions;

end

Make a greedy selection;
end

Algorithm 1: Fault table minimization

B. Converting liveness assertions to safety checkers

The next step is converting this set of high quality liveness

assertion to safety. During this step liveness assertions in

the form A → C are converted using transposition into the

equivalent safety assertions A ∧ C.

Consider a real example of a liveness assertion for the

design LBDR which is studied in the experimental results.

The assertion is describing one of the behaviors of the design

as follows: "Whenever there is a request (i.e., the HEADER

flit contains the destination address) LBDR has to compute

at least one valid output direction (according to XY Routing)

to pass the flits from the input buffer to the respective output

port":

E_validLBDRout_liveness = !Eempty && (flit_id ==

HEADER || flit_id == PAYLOAD || flit_id == TAIL => oNport

|| oWport || oSport || oLport.

Here, !Eempty && (flit_id == HEADER || flit_id ==

PAYLOAD || flit_id == TAIL is the antecedent A and oNport

|| oWport || oSport || oLport is the consequent C, respec-

tively. After transposition the liveness assertion is converted

to the following safety assertion: Eerr_validLBDRout_safety

= !Eempty && flit_id == HEADER) || flit_id == PAYLOAD

|| flit_id == TAIL && !oNport && !oWport && !oSport &&

!oLport.

C. Checkers’ synthesis and evaluation

During this final step, the safety assertions obtained after

the minimization and conversion steps are synthesized to the

gate level to obtain concurrent error checkers. The checkers

along with the synthesized DUV are fault simulated using the

Turbo Tester software [23] in order to evaluate the coverage

of gate-level stuck-at faults achieved by the minimized set of

checkers.

V. EXPERIMENTAL RESULTS

This section presents the experiments carried out by apply-

ing the proposed methodology. To this end, three different

modules related to the control part of a 2D Network-on-

Chip (NoC) router are considered as examples. Three design

modules are taken into consideration for experimental study:

Logic Based Distributed Routing (LBDR), Arbiter and a

complex Arbiter with timeout. The assertions are manually

generated for two design modules: LBDR, Arbiter and are

automatically generated for Arbiter with timeout.

The fault simulation experiments in this paper are performed

on an IBM System x3500 M3 7380 with two 6-core Intel Xeon

E5690 3.47GHz processors and 96 GB RAM.

!

!

Table IV shows the number of assertions considered initially

at the beginning of each phase - assertion ranking phase

(described in Section IV-A1) and a minimized set of checkers

subsequent to the overlap checking phase (described in Section

IV-A2). As it can be seen, the initial number of assertions was

minimized to 7.14-50%.

TABLE IV: Minimization of the number of assertions

Assertion Overlap
Initial

Ranking Checking

Example # % # % # %

LBDR 6 100 4 66.7 3 50

Arbiter 28 100 19 66.7 2 7.14

Arbiter with timeout 139 100 94 66.7 18 12.95

The area consumption of the synthesized checkers from the

assertions is summarized in Table V. The synthesis of the

checkers has been performed via Synopsys Design Compiler

[24] using Class library, leading to results in terms of number

of NAND2 gate equivalents.

TABLE V: Area consumption of checkers

(number of NAND2 gates)

Example Initial set Minimized set

LBDR 60 29 48.3%

Arbiter 128 33 25.7%

Arbiter with timeout 428 91 21.2%

Run times of each phase and the fault coverage calculated in

Checkers’ synthesis and evaluation step (explained in Section

IV-C) are summarized in Table VI. The fault model applied

was Single Event Transients (SETs) in the logic of the designs.

TABLE VI: Runtime and Fault Coverage

Assertion Overlap Checker’s Fault
Example Ranking Checking Simulation Coverage

LBDR 4.15 s 110 s 0.01 s 99.838%

Arbiter 3.04 s 280 s > 0.01 s 100%

Arbiter with timeout 5.01 s 1293 s 12.6 s 99.833%

It is observable that the SET fault coverage for the initial set

of checkers was 100% and for the minimized sets it exceeded

98.83%. The run time of simulation is 0.01 seconds for the

LBDR and Arbiter, respectively and 12.6s for Arbiter with

timeout.

VI. CONCLUSIONS

This paper proposed a framework for selecting a minimal

set of high-quality liveness assertions to be implemented as

hardware checkers by combining a new data mining tech-

nique with fault analysis approaches. An assertion conversion

methodology was proposed which converts liveness assertions

into their safety equivalents, which are further synthesized to

hardware checkers to be evaluated at the gate level to provide

a cost-effective checking infrastructure. Experimental results

on example designs show that the initial checker area was

minimized to 21.2-48.3% obtaining more than 99.83% single

even transient coverage by applying the proposed approach.

VII. ACKNOWLEDGEMENT

The work has been supported by H2020 Twinning TU-

TORIAL, Estonian institutional research grant IUT 19-1, by

the Estonian Center of Excellence in IT EXCITE funded by

the European Regional Development Fund, and supported by

Estonian IT Academy program.

REFERENCES

[1] H. Foster and D. Lacey, Assertion-based design 2nd edition. Springer,
2004.

[2] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. of ACM/IEEE CAD.

[3] L. Liu and S. Vasudevan, “Automatic generation of system level as-
sertions from transaction level models,” Journal of Electronic Testing,
vol. 29, no. 5, pp. 669–684, 2013.

[4] A. Danese, F. Filini, T. Ghasempouri, and G. Pravadelli, Automatic
Generation and Qualification of Assertions on Control Signals: A Time
Window-Based Approach. Springer, 2016.

[5] P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan, and
T. Hollstein, “Automated minimization of concurrent online checkers
for network-on-chips,” in ReCoSoC, 2015.

[6] S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan, and
T. Hollstein, “Automated area and coverage optimization of minimal
latency checkers,” in European Test Symposium (ETS), 2017.

[7] P. K. Nalla, R. K. Gajavelly, H. Mony, J. Baumgartner, and R. Kanzel-
man, “Effective liveness verification using a transformation-based frame-
work,” in International Conference on VLSI Design and International
Conference on Embedded Systems, Jan 2014, pp. 74–79.

[8] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertion
with guidance from static analysis,” IEEE Trans. on CAD, vol. 32, no. 6,
pp. 952–965, 2013.

[9] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. of ACM/IEEE DAC, 2010.

[10] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction
of assertions from execution traces of behavioural models,” in Proc. of
ACM/IEEE DATE, 2015.

[11] M. Bertasi, G. Di Guglielmo, and G. Pravadelli, “Automatic generation
of compact formal properties for effective error detection,” in Proc. of
ACM/IEEE CODES+ISSS, 2013, pp. 1–10.

[12] T. Ghasempouri and G. Pravadelli, “On the estimation of assertion
interestingness,” in 2015 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), Oct 2015, pp. 325–330.

[13] T. Ghasempouri, S. P. Azad, B. Niazmand, and J. Raik, “An automatic
approach to evaluate assertions’ quality based on data-mining metrics,”
in 2018 International Test Conference in Asia (ITC-Asia), August 2018.

[14] S. Katz, O. Grumberg, and D. Geist, “Have I written enough properties?
— A method of comparison between specification and implementation,”
in Proc. of ACM CHARME, 1999, pp. 280–297.

[15] H. Hoskote, T. Kam, P. H. Ho, and X. Zao, “Coverage estimation for
symbolic model checking,” in Proc. of ACM/IEEE DAC.

[16] N. Jayakumar, M. Purandare, and F. Somenzi, “Dos and don’ts of CTL
state coverage estimation,” in Proc. of ACM/IEEE DAC.

[17] A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incompleteness eval-
uation by functional verification,” IEEE Trans. on Computers, vol. 56,
no. 4, pp. 528–544, 2007.

[18] “Liveness checking as safety checking,” Electronic Notes in Theoretical
Computer Science, vol. 66, no. 2, pp. 160 – 177, 2002.

[19] V. Schuppan and A. Biere, “Liveness checking as safety checking for
infinite state spaces,” Electronic Notes in Theoretical Computer Science,
vol. 149, no. 1, pp. 79–96, 2006, proceedings of the 7th International
Workshop on Verification of Infinite-State Systems (INFINITY 2005).

[20] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Ithaca,
NY, USA, Tech. Rep., 1986.

[21] [Online]. Available: https://www.synopsys.com/verification/simulation/
certitude.html

[22] P.-N. Tan, V. Kumar, and J. Srivastava, “Selecting the right interesting-
ness measure for association patterns,” in ACM SIGKDD.

[23] R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Ultra fast parallel fault
analysis on structurally synthesized bdds,” in 12th IEEE European Test
Symposium (ETS’07), May 2007, pp. 131–136.

[24] (1994) Synopsys design compiler. http://www.synopsys.com/.

!

!

Curriculum vitae
1. Personal data

Name Ranganathan HariharanDate and place of birth 20 May 1987 Chennai, IndiaNationality Indian
2. Contact information

Address Tallinn University of Technology, School of Information Technologies,Department of Computer Systems,Akadeemia tee 15A, 12618 Tallinn, EstoniaPhone +358 408209435E-mail ranganathan.harihara@taltech.ee, ranganathanh87@gmail.com
3. Education

2014–2019 Tallinn University of Technology, School of Information Technologies,PhD studies2010–2011 University of Glasgow,M.Sc. in Telecommunication Electronics2004–2008 RMK Engineering College (Affiliated to Anna University),B.E. in Electronics and Communication Engineering
4. Language competence

Tamil nativeEnglish fluentHindi basic
5. Professional employment

2014–2014 Tallinn University of Technology, Early-stage researcher2014–Present Nokia, SoC Verification Engineer

139

Elulookirjeldus
1. Isikuandmed

Nimi Ranganathan HariharanSünniaeg ja -koht 20.05.1987, Chennai, IndiaKodakondsus India
2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Usaldusväärsete arvutisüsteemide keskus,Arvutisüsteemide Instituut,Akadeemia tee 15A, 12618 Tallinn, EstoniaTelefon +358 408209435E-post ranganathan.harihara@taltech.ee, ranganathanh87@gmail.com
3. Haridus

2014–2019 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Doktoriõpe, arvuti- ja süsteemitehnika õppekava2010–2011 Glasgow Ülikool, magistrikraad telekommunikatsiooni elektroonikas2004–2008 RMK Engineering College (Anna Ülikooli filiaal),Elektroonika ja sidetehnoloogia bakalaureus
4. Keelteoskus

Tamili keel emakeelInglise keel kõrgtaseHindi Keel põhitase
5. Teenistuskäik

2014–2014 Tallinna Tehnikaülikool, nooremteadur2014–. . . Nokia, insener

140

	List of publications
	Other related publications
	Author's contributions to the publications
	Abbreviations
	INTRODUCTION
	Motivation
	Problem formulation
	Contributions of the thesis
	Thesis organization

	Background
	Faults
	Defect, fault, error
	Classification of faults

	Fault models
	Stuck-at faults
	Single Event Effects: SET and SEU fault models

	Fault simulation
	Mutation-based fault analysis
	Levels of abstraction
	Network-on-Chip router architecture
	Routing computation unit: LBDR
	Arbitration unit: Round-Robin arbiter
	Input buffer: FIFO
	Crossbar switch
	Even parity checkers
	Infrastructure of the complete router

	Concurrent checkers
	Metrics to evaluate fault detection capability
	Assertion based verification
	Data mining and assertion mining
	Metrics for data mining

	Online fault detection and minimization of the checkers
	Literature review
	Thesis contributions

	Checkers' evaluation and minimization flow
	Extraction of pseudo-combinational version of the circuit
	Synthesizing the checkers
	Environment generation for checkers' evaluation
	Fault-free simulation and debugging checkers/environment
	Fault simulation based evaluation of checkers
	Checkers' evaluation and minimization

	Embedded online test packets
	Experimental results
	ELBDR experiment
	ELBDR and SARBITER experiment
	Importance of the independence of checkers

	Experiments on the whole router
	Experiment considering the overall set of checkers
	Experiment considering the control part checkers only
	Experiment considering the hybrid solution

	Chapter summary

	Linking verification assertions and concurrent hardware checkers
	Literature review
	Thesis contributions

	Correlation between behavioral fault model and structural fault model
	Translation of liveness assertions to safety assertions
	Conversion of safety assertions to hardware checkers
	Experimental results
	ELBDR experiment
	SARBITER experiment

	Chapter summary

	Qualification and minimization of assertions
	Literature review
	Thesis contributions

	Assertion qualification
	Assertion ranking
	Assertion fault analysis

	Assertion minimization
	Experimental results
	Chapter summary

	Conclusion
	Future work

	List of figures
	List of tables
	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1 - Publication I
	Appendix 2 - Publication II
	Appendix 3 - Publication III
	Appendix 4 - Publication IV
	Appendix 5 - Publication V
	Appendix 6 - Publication VI
	Curriculum vitae
	Elulookirjeldus

