TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
43/2019

Cost-Effective Concurrent Hardware
Checkers for Network on Chip based
System on Chip

RANGANATHAN HARIHARAN

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Computer Systems

The dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer and Systems Engineering on 27 June 2019

Supervisor: Prof. Dr. Jaan Raik
Department of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Dr. Tara Ghasempouri
Department of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Dipl.-Ing. Dr.techn. Andreas Steininger
Vienna University of Technology
Vienna, Austria

Dr. Johnny Oberg
KTH Royal Institute of Technology
Stockholm, Sweden

Defence of the thesis: 21 August 2019, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Ranganathan Hariharan

signature

European Union Investing
European Regional in your future
Development Fund

Copyright: Ranganathan Hariharan, 2019
ISSN 2585-6898 (publication)

ISBN 978-9949-83-467-9 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9949-83-468-6 (PDF)

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
43/2019

Kulutohusad slisteemiga paralleelsed
rikkemonitorid kiipvorkudel pohinevatele
kiipslisteemidele

RANGANATHAN HARIHARAN

TAL
TECH

To my Family ...

Table of contents

List of publications

Other related publications

Author’s contributions to the publications

Abbreviations
1 INTRODUCTION
11 Motivation. e
1.2 Problemformulation,
1.3 Contributionsofthethesis
1.4 Thesisorganization e
2 Background
21 Faults e e e
211 Defect, fault,error
2.1.2 Classificationoffaults
22 Faultmodels.
2.21 Stuck-atfaults.
2.2.2 Single Event Effects: SET and SEU fault models
2.3 Faultsimulation
2.4 Mutation-based faultanalysis
2.5 Levelsofabstraction,
2.6 Network-on-Chip router architecture
2.6.1 Routing computationunit: LBDR
2.6.2 Arbitration unit: Round-Robin arbiter
2.6.3 Inputbuffer: FIFO.
2.6.4 Crossbarswitch
2.6.5 Evenparitycheckers
2.6.6 Infrastructure of the completerouter
2.7 Concurrentcheckers
2.8 Metrics to evaluate fault detection capability
2.9 Assertion based verification oL oL,
2.10 Data mining and assertionmining
211 Metricsfordatamining,
3 Online fault detection and minimization of the checkers

3.1

3.2

3.3
3.4

Literaturereviewo
311 Thesiscontributions L.
Checkers’ evaluation and minimizationflow
3.2.1 Extraction of pseudo-combinational version of the circuit
3.2.2 Synthesizingthecheckers
3.2.3 Environment generation for checkers’ evaluation
3.2.4 Fault-free simulation and debugging checkers/environment

3.2.5 Fault simulation based evaluation of checkers
3.2.6 Checkers’ evaluation and minimization
Embedded onlinetest packets
Experimentalresults

10

1

12

13

14
14
15
16
17

3.41 ELBDRexperiment 50

3.4.2 ELBDR and SARBITER experiment 52

3.4.21 Importance of the independence of checkers 54

3.5 Experimentsonthewholerouter 54
3.5.1 Experiment considering the overall set of checkers 55

3.5.2 Experiment considering the control part checkersonly 56

3.5.3 Experiment considering the hybrid solution 57

3.6 Chaptersummary e e e 57

4 Linking verification assertions and concurrent hardware checkers 59
41 Literaturereview e e 60
411 Thesiscontributions L. 61

4.2 Correlation between behavioral fault model and structural fault model . . 61
4.3 Translation of liveness assertions to safety assertions 62

4.4 Conversion of safety assertions to hardware checkers 64

4.5 Experimentalresults 65
4,51 ELBDRexperiment 65

4.5.2 SARBITERexperiment. 65

4.6 Chaptersummary o i it e e e e e e e e 66

5 Qualification and minimization of assertions 67
51 Literaturereview 67
511 Thesis contributions 69

5.2 Assertion qualification L L L. 69
521 Assertionranking o 70

5.2.2 Assertionfaultanalysis 72

5.3 Assertion minimization L. 73

5.4 Experimentalresults e 74

5.5 Chaptersummary i e e e e e e 76

6 Conclusion 77
6.1 Futurework 78
List of figures 79
List of tables 80
References 81
Acknowledgements 87
Abstract 88
Kokkuvéte 89
Appendix 1- Publication | 91
Appendix 2 - Publication Il 97
Appendix 3 - Publication Il 105
Appendix 4 - Publication IV 115

Appendix 5 - Publication V 125

Appendix 6 - Publication VI 131
Curriculum vitae 139
Elulookirjeldus 140

LIST OF PUBLICATIONS

The work of this thesis is based on the following publications:

Publication I: Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan,
Thomas Hollstein, and Jaan Raik. Extended checkers for logic-based distributed routing
in network-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages
77-80. IEEE, 2014

Publication Il: Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert
Jervan, and Thomas Hollstein. A framework for comprehensive automated evaluation
of concurrent online checkers. In 2015 Euromicro Conference on Digital System Design,
pages 288-292. IEEE, 2015

Publication Ill: Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert
Jervan, and Thomas Hollstein. Automated minimization of concurrent online check-
ers for network-on-chips. In 2015 10th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1-8. IEEE, 2015

Publication IV: Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas
Hollstein, Gert Jervan, and Ranganathan Hariharan. A framework for combining
concurrent checking and on-line embedded test for low-latency fault detection in noc
routers. In Proceedings of the 9th International Symposium on Networks-on-Chip,
page 6. ACM, 2015

Publication V: Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault detection
efficiency of reliability checkers obtained by verification assertion qualification. In
RESCUE 2017 Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. IEEE, 2017

Publication VI: Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan
Raik. From rtl liveness assertions to cost-effective hardware checkers. In 2018 Confer-
ence on Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2018

10

OTHER RELATED PUBLICATIONS

Publication VII: Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik,
Gert Jervan, and Thomas Hollstein. A framework for area-efficient concurrent online
checkers design. In MEDIAN 2015 Workshop on Manufacturable and Dependable
Muilticore Architectures at Nanoscale, November 10-11, 2015

1

Author’s contributions to the publications

I In Publication I, the author was involved in developing the initial idea of evaluating
and minimizing concurrent checkers and in implementing the additional checkers
to the existing set of checkers. The author also implemented the design used for
experimental case study. The author prepared the part of the paper for publication.

Il Publication Il is an extension of Publication | where the author contributed to the
core idea of devising checkers. The author was involved in implementing the checkers
module. The author implemented the design used for experimental study. The author
prepared the part of the paper for publication.

Il Publication lll is an extension of Publication | where the author contributed to the core
idea of devising checkers. The author implemented the design used for experimental
study. The author prepared the part of the paper for publication.

IV Publication IV is an extension of Publication | where the author contributed to the core
idea of devising checkers. The author implemented the design used for experimental
study. The author prepared the part of the paper for publication.

V The goal of Publication V was to analyze the correlation between register-transfer level
assertions and gate-level checkers synthesized from the former. The author developed
the checker module and conducted checkers qualification procedure. The author also
implemented the design used for experimental study. The author prepared the part
of the paper for publication.

VI In Publication VI, the author has proposed the framework flow and conducted the
assertion fault analysis and minimization procedure. The author was also involved in
translating the liveness assertions to safety assertions. The author implemented the
designs used for experimental case study. The author has prepared the part of the
paper for publication and presented it at the conference.

VIl In, the author was involved in implementing the checker module. The author imple-
mented the design used for experimental study.

12

Abbreviations

AC Allocation Comparator

BICST Built-In Concurrent Self-Test
BIST Built-In Self-Test

CEl Checkers Efficiency Index

CMP Chip Multi Processors

DMR Double Modular Redundancy
DUV Design Under verification

DwC Duplication with Comparison
ECC Error Correcting Codes

EDC Error Detecting Codes

FC Fault coverage

FIFO First-In-First-Out

FPR False Positive Ratio

FSM Finite State Machine

HBH Hop By Hop

hr high-radix

IC Integrated Circuit

IIR Inherent Information Redundancy
LBDR Logic-Based Distributed Routing
NI Network Interface

NoC Network on Chip

PE Processing Element

ROWR Reduced Observation Width Replication
RR Round-Robin

RTL Register Transfer Level

SA Switch Allocation

SAF Stuck-At Fault

SEE Single Event Effect

SET Single Event Transient

SEU Single Event Upset

SoC System on Chip

SSA Single Stuck-At

SSBDD Structurally Synthesized Binary Decision Diagram
TMR Triple Modular Redundancy

TT Turbo Tester

VvC Virtual Channel

13

1 INTRODUCTION

This thesis addresses a set of timely issues in reliability by proposing a methodology for
generating cost-effective concurrent hardware checkers. The main emphasis is to reuse the
verification assertions to generate hardware checkers for online, real-time fault detection
within fault tolerant systems.

This introductory chapter presents the motivation leading to this research, followed by
a more detailed problem formulation. Finally, a summary of the main contributions and an
overview of the thesis structure are provided.

1.1 Motivation

As the technology scale is shifting steadily from micro- to the nano-scale for today’s design
and manufacturing, the advancements in reliability have not kept up the pace [8]. Reliability
is the probability that the system functions without failure in the specified environmental
conditions in the defined time interval. Reliable functioning of electronic systems is of
paramount concern as the millions of users depend on these systems every day. Unfortu-
nately, most of the systems still fall short of users’ expectation of reliability. The lifetime
failure rate of the system can be illustrated by the use of the bathtub curve [9]. Figure 1
shows the bathtub curve changes for different technology nodes over time. The failure
rate is characterized by the phases of infant mortality (beginning of the bathtub curve),
random constant failures (the smooth and straight horizontal middle section) and system
wear-out (the rising end of the curve), which produce a bathtub looking curve over the
lifetime of the system. As it can be seen from the figure, the probability of lifetime errors
has been increasing rapidly with the transition towards nano-scale Integrated Circuits (ICs)
and thus, there is a need to handle these lifetime issues.

Failure Rate

0 Time t

Figure 1 - Failure rate over a life-time of a hardware system with shrinking technology

Figure 1 shows that due to extreme down-scaling trend in semi-conductor technologies,
the digital circuits are becoming more susceptible to both permanent and transient faults.
The adverse effect of process variations, aging and wear-out due to the nano-scale regime
causes the reliability to dwindle. Even though most of the faults are identified during the
manufacturing test, detecting faults at run-time is becoming more and more imperative.
An online fault detection mechanism aims to monitor the digital circuits at run-time
and detects the undesired behavior while the device is in operation. The online fault
detection can be achieved with the help of hardware checker infrastructure. However,
designing checkers by hand can be tedious and error-prone task. Checkers can also be
automatically generated, but care needs to be taken so that the checkers do not have
unacceptable negative impact on performance, power or area overhead. Therefore, there
is a need for qualification and minimization of checkers. Moreover, due to scalability

14

issues at gate-level, there is a need to move to higher abstraction levels. The higher the
abstraction level, the lower the simulation time, due to the smaller size and complexity
of the design. Verification assertions written in a high-level language can be reused in
gate-level verification by converting them to checkers to reduce the simulation time.

Regarding architectures applied in nano-scale ICs, System on Chip (SoC) is a paradigm
for designing integrated circuit that integrates several cores on a single chip to accomplish
the system task. With the number of cores getting increased, the on-chip communication
efficiency has become one of the factors in determining the overall system performance
and cost. A packet based, on-chip intercommunication network known as Network on Chip
(NoC) [10] is emerging as an alternative solution to address the increasing interconnect
complexity. However, NoC based interconnects, because of advanced router architectures,
complex operation and concurrent communication are highly susceptible to faults during
the runtime of the system. Without taking an appropriate run-time solution to ensure
that such faults do not affect the operation of NoC based interconnects, there could be
possibility of data getting misrouted, dropped, corrupted, deadlocked or several types of
on-chip communication performance degradation.

This thesis is addressing the challenges mentioned above.

1.2 Problem formulation

The general objective of this thesis is developing a methodology for generating a set
of cost-effective concurrent checkers from verification assertions. Currently, designing
such checker infrastructure is a manual and error-prone work. A possible solution to
automate the synthesis of concurrent checkers is to derive them from verification assertions.
However, the number of assertions is generally far too high to allow for area-efficient
checking infrastructure. Therefore, there is a need for qualification and minimization of
assertions with a prospect of reusing them as hardware checkers. To derive low-area, high
fault coverage hardware checkers from many assertions, there is a need for a framework
for selecting a set of high-quality and minimized assertions by combining a data mining
technique with the fault analysis approach along with an assertion conversion methodology
that converts liveness assertions into safety assertions. The framework should be capable
of synthesizing these safety assertions to hardware checkers to be evaluated at the gate
level to provide a cost-effective checking infrastructure.

Behavioral
Level

Liveness
assertions

Minimized set
of High-Quality
Liveness

Assertion Qualification

Safety
and Minimization

assertions

Assertion Translation

T

/Eo;siﬁon between \\
_@ A

behavioral fault

L Synthesis

]
Safety
Checkers

Minimized set of
Hardware Checkers
with high fault coverage
and low area overhead

Fault simulation,
Evaluation and
Minimization

Gate-level

Synthesized
Design

Figure 2 - Overview of the Thesis flow
Figure 2 depicts the overall flow of the framework for generating a set of cost-effective
concurrent checkers from verification assertions. An assertion is a precise description of

what behavior is expected when an input is fed into the design. Assertion ascends the

15

level of abstraction closer to design specification. A verification environment consists of
a set of liveness assertions that collectively can detect a range of bugs in the considered
design. However, not all the assertions are essential to detect this range: some assertions
are dominated by others, or by a set of other assertions, some assertions are equivalent in
terms of bug detection capabilities, etc. Discarding such assertions which do not detect
any unique bugs leads to obtaining a set of minimized assertions. These assertion quality
estimation and minimization tasks should be carried out to derive a minimized set of
high-quality liveness assertions.

A checker is a hardware module whose output is a Boolean signal which assumes the
value false when the sequence of values applied to the inputs do not satisfy the checking
condition. For a liveness assertion, the output of the checker stays false until the condition
becomes satisfied, whereas for a safety assertion, the output of the checker stays true
when the condition is violated. And so, a translation procedure that translates the liveness
assertions to safety assertions should be executed. The framework proceeds with the
synthesis of safety assertions along with the considered design. The output of the synthesis
is the hardware checkers and design implementation in terms of logic gates. The gate
level fault simulation is carried out for the synthesized hardware checkers along with the
considered design to evaluate the fault detection capability of the checkers. A trade-off
between the fault coverage and area overhead of the hardware checkers are eventually
outlined which in turns leads to derive a set of minimized hardware checkers. The optimized
set of concurrent hardware checkers should be matching the target values of fault coverage
and area overhead constraints.

The correlation between the assertion quality and the fault detection capability of the
checkers needs to be studied and validated such that when assertion qualification and
minimization task is carried out at a higher level of abstraction, it takes consideration of
the gate-level fault coverage and area overhead of the hardware checker generated from
these assertions.

1.3 Contributions of the thesis

This thesis proposes a framework for evaluating the fault detection capabilities of con-
current checkers for NoC routers. The goal is to achieve low-latency, low area overhead
and high fault coverage checkers outlining the trade-off between the area constraint and
fault coverage constraint. Also, a framework is proposed for selecting a set of high-quality
liveness assertions by combining a data mining technique with the fault-analysis approach
which allows reusing the verification assertions in hardware checkers synthesis. The quality
of assertions is validated by studying the correlation between the fault detection capabili-
ties of the checkers and assertions.
The main contributions of this thesis are:

e Providing evaluation of the fault detection capability of the concurrent checkers by
formally proving the absence or presence of true misses over all possible valid inputs
for a checker and targeting the minimum fault detection latency of a single clock-
cycle. Pseudo-combinational extraction guarantees the possibility of fault simulating
the circuit in an exhaustive valid range of conditions [Publication I, Publication II,
Publication Il1].

e A hybrid approach is proposed which combines concurrent checkers for control part

with embedded on-line test packets replacing the data-path checkers to outline the
trade-off between area-overhead and fault coverage [Publication 1V].

16

e The correlation between the fault coverage obtained from the behavior fault simula-
tion with the qualified assertions and the fault coverage obtained from the gate-level
simulation of the checkers which are synthesized from the qualified assertions is
studied and validated [Publication V1.

¢ A methodology is proposed for producing a set of high-quality hardware checkers
from Register-Transfer Level (RTL) assertions [Publication VI].

1.4 Thesis organization

This thesis consists of 6 Chapters and 6 appendices.

Chapter 1introduces the thesis, which includes the motivation, problem formulation
and the main contributions.

Chapter 2 presents the background information about faults, fault models and fault
simulation. An overview of target NoC router architecture is provided, followed by the
introduction of the concept of concurrent checkers. Next, the metrics used to evaluate the
fault detection capability of the checkers are introduced. At the end, assertions related
topics along with metrics to evaluate the assertion quality are provided.

Chapter 3 describes the methodology flow for evaluating online fault detection and
minimization of the hardware checkers. It also contains the literature review of related
works of the topics. Experimental results are also discussed.

Chapter 4 outlines the linking of assertions and hardware checkers. First the correlation
between the fault models is studied, followed by a translation procedure for assertions
and then a conversion method to derive hardware checkers. It also contains the literature
review of related works of the topics.

Chapter 5 describes the qualification method proposed for assertions followed by a
minimization procedure to get a minimized set of high-quality assertions. It also contains
the literature review of related works of the topics. Experimental results are also discussed.

Chapter 6 summarizes the conclusion and discusses the future research direction.

The appendices 1to 6 present research papers that form the basis of this thesis.

17

2 Background

This chapter provides the background for the topics that form the basis of the developments
inthis thesis. The topics include faults, fault models, fault simulation, fault analysis, levels of
abstraction, overview of NoC router architecture, concurrent checkers, metrics to evaluate
fault detection capability, assertion-based verification, data mining and assertion mining,
metrics for data mining.

2.1 Faults

2.1.1 Defect, fault, error

Defects are caused by process variations or random localized manufacturing imperfections.
A fault is a representation of a defect reflecting a physical condition that causes a circuit to
fail to perform in a required manner. A circuit error is a wrong output signal produced by a
defective circuit. A failure is a deviation in the performance of a circuit or system from its
specified behavior and represents an irreversible state of a component such that it must
be repaired for it to provide its intended design function. A circuit defect may lead to a
fault, a fault can cause a circuit error, and a circuit error can result in a system failure [11].

Activate Activate Propagate
PR ~< PR ~ PR ~
Pid Cause/Effect So e Cause/Effect S id Cause/Effect S
7 Relationship \ 7 Relationship \ 7 Relationship \
1 o v/ v
Defect Fault Error Failure

Figure 3 - Threats to digital circuits

2.1.2 Classification of faults

Most faults are caused by defects (e.g. shorts, opens, etc. induced by thermal aging,
improper manufacture or misuse) or by environmental influences (e.g. particle radiation,
electromagnetic fields etc.). Faults can be classified into Soft and Hard faults [9] as shown
in figure 4.

Soft Faults Hard Faults

Transient Intermittent Permanent

Figure 4 - Classification of faults

e Permanent fault: A permanent fault remains active until a corrective measure is
taken. They are irreversible changes in the circuit. These faults are caused by some
of the physical defects in the circuit like short circuits, broken interconnections. All
permanent faults once have occurred, cannot get vanished and therefore the test to
detect them can be easily repeated with the same results.

e Transient fault: A transient fault remains active for a short period of time. The
occurrence of transient faults is random in nature and it is difficult to detect. Because

18

of their short duration, transient faults are often detected through the errors that
result from their propagation. A common impact of a transient fault is a change of
value in a single bit.

e [ntermittent fault: An intermittent fault becomes apparent not continuously, but at
irregular intervals. Intermittent faults can be due to implementation flaws, aging
and wear-out and to unexpected environmental conditions.

2.2 Fault models

A fault model is necessary for fault simulation, fault analysis and generating and evaluating
the set of test vectors. A fault model should accurately reflect the behavior of defects
and it should be computationally efficient in terms of fault simulation and test pattern
generation. No single fault model can accurately enumerate all possible defects that can
occur. As a result, a combination of different fault models is often used in the generation
of test vectors.

In this thesis, the goal is to develop error-checker circuitry that is able to detect all
Single Event Transient (SET) faults. In the following, the stuck-at fault model, which is the
basis of all logic level fault models is presented, followed by the description of single event
effects (including SETs) and higher abstraction level fault models.

2.2.1 Stuck-at faults

The Single Stuck-At (SSA) fault model [12] is by far the most widely used fault model in
digital testing. The reasons for its popularity lie in its ease of modeling and simulation
and its close correspondence with real physical defects in digital integrated circuits. Three
properties define a single stuck-at fault:

e Only one circuit line is faulty.
e The faulty line is permanently set to O or 1.
e The fault can be at an input or output of a gate.

One of the limitations of SSA is the fact that it models only a single fault at a time and
therefore ignores the effects of fault combinations. The reason for resorting to single fault
instead of considering multiple faults approach lies in the fact that while there exists 2n
SSA faults in the circuit, where n is the number of lines, whereas there are as much as 3"-1
multiple faults. Although the multiple-fault model is more accurate than the single-fault
assumption, the number of possible faults becomes impractically large other than for a
small number of fault types and fault sites. Also, it has been shown that high fault coverage
obtained under the single-fault assumption will result in high fault coverage under the
multiple-fault model [11].

2.2.2 Single Event Effects: SET and SEU fault models

Single Event Effects (SEEs) are faults caused by a single, energetic particle striking a sen-
sitive node in the circuit. SEEs are normally soft errors, which means they do not cause
permanent damage to the circuit. The main causes of SEE are from radioactive decay of
the packaging materials (alpha particles) or high-speed neutrons from cosmic rays colliding
with silicon atoms creating secondary particles, which then create an ionization track where
the electrons or holes can get collected on the source or drain of a transistor, causing the
soft errors [2]. SEEs can be divided into single event transients (SETs) and single event
upsets (SEUs) as shown in figure 5:

19

e SET - A glitch caused by single event effect, which travels through combinational
logic and is captured into one or several storage elements.

e SEU - SEU is a change in the state of a storage element inside a device or system.

Combinational § Sequential

logic Single Event Effect elements

AN

Single Event Transient : Single Event Upset

Figure 5 - Classification of Single Event Effects

2.3 Fault simulation

In general, simulating a circuit in the presence of faults is known as fault simulation. The
main goal of fault simulation is measuring the effectiveness of the test patterns. Any input
pattern or sequence of input patterns, that produces a different output response in a
faulty circuit from that of a fault-free circuit is a test vector. Fault simulation is an essential
process for reliable design. Fault simulation is typically used to evaluate the fault coverage
obtained by the set of test vectors which is defined as the fraction (or percentage) of
modeled faults detected by test vectors divided by the set of total faults [11].

Number of Detected Faults

Fault Coverage =
. verag Total number of faults

(1)

A fault simulation requires a fault model which provides a quantitative measure of the
fault detection capabilities of a given set of test vectors.

Input pattern Golden reference
putp (Fault free model)
Output Monitor
Output Report
Comparator
Fault list Faulty model
Fault

Injection

Figure 6 - Concept of Fault simulation

2.4 Mutation-based fault analysis

In this thesis, we consider mutation-based fault analysis only. Mutation analysis induces
many simple faults, called mutations into program (HDL design) to create a set of mutant
programs [13]. A mutation is a single syntactic change that is made to the program state-
ment. Each mutant program should differ from the original program by one mutation.
Each mutant is executed with the test cases and when a mutant produces an incorrect

20

output on a test case, that mutant is said to be killed by that test case. When this happens,
the mutant is considered dead and no longer needs to remain in the testing process since
the faults represented by that mutant have been detected. Mutants are limited to simple
changes on the basis of the coupling effect, which says that complex faults are coupled to
simple faults in such a way that a test data set that detects all simple faults in a program
will detect most complex faults [14].

The quality of the test cases is measured by the percentage of faults detected (i.e.,
mutants that they kill) against the total number of injected faults (i.e., injected mutants)
which shows how good the verification environment is at detecting faults.

Detected faults

Fault coverage = 2
& Total number of injected faults @

2.5 Levels of abstraction

Due to extreme down-scaling, chip density reaches hundreds of millions of transistors per
die. A key method of managing the ever increasing complexity is to describe a system
at several levels of abstraction [15]. An abstraction is the simplified model of the system,
showing only the selected features and ignoring the associated details. A higher level of
abstraction focuses on the most vital data like functional specifications. Whereas the lower
level of abstraction are more complex but it is more accurate and is closer to the real circuit.
Four levels of abstraction considered in digital system development as shown in figure 7
are

Higher Behavioral Less
level
A
RTL
Abstraction Details/
Y Complexity
Gate level
Lower Transistor level More

Figure 7 - Levels of abstraction

e Behavioral Level
e Register Transfer Level (RTL)
e Gate Level

e Transistor Level

2.6 Network-on-Chip router architecture

A System on Chip (SoC) refers to a single-integrated circuit composed of all the components
of an electronic system. A SoC is heterogeneous, in addition to classical digital components:
processor, memory, bus, etc.; it may contain analog and radio frequency components [16].
With the increasing number of on-chip components and further advances in semiconductor
technologies, the communication complexity increases and there is a need for alternatives

21

to the traditional bus-based or point-to-point communication architectures. Although
these architectures have the advantages of simple topology, extensibility, and low area
cost, these do not scale the system performance with the number of cores attached. As the
number of cores gets increasing, it causes high latency which in turn decreases the system
performance. Also, long wires cause high power consumption. Network-on-chip (NoC) has
emerged as the viable alternative for the design of modular and scalable communication
architectures [17].

In NoC, the cores communicate with each other using a router-based packet-switched
network. A SoC can be composed of processing elements (resources). A processing
element can be memory, processor core, DSP or any IP block. Instead of connecting
them by dedicated point-to-point channels, an interconnection network is implemented
as a set of shared routers and communication links between the routers. A processing
element can communicate through the network with any other module connected to the
communication infrastructure, not only with its neighbors. This leads to advantages in
terms of structure, performance and modularity.

Figure 8 provides an example of a typical NoC communication infrastructure. The
network consists of routers (R) connected by interconnect lines. A processing element
(Core) is attached to a router through a network interface (NI) module [10] enabling
seamless communication between various cores and the network. The way the routers
are connected to each other defines the network topology. It is worth noting that the NoC
router used for experimental case study throughout the thesis was implemented in-house.
The author was solely responsible for developing the entire NoC router design.

R R R R

core core ’ core core
—_— E— R ——*
core core ’ core core

R R R R

R R R R
core core core core

Figure 8 - An example of NoC based SoC

A NoC router consists of a control part and a data-path. The NoC router architecture
used in this thesis for case study is implemented as follows: Data-path responsible for
transmission of the actual data to destination includes

e input buffers, implemented as First-In-First-Out (FIFO), one for each input port
e crossbar switch, implemented with MUXs, one for each output port

¢ output buffers, implemented as simple single-slot registers, one for each output
port

The control part affecting the flow of data through the data-path comprises of

22

e routing computation unit, which is based on Logic-Based Distributed Routing (LBDR)
[18], one for each input port

e arbitration unit, which is based on Round Robin starvation free priority and one-hot
encoding of the state, one for each output port.

The considered NoC topology used in this thesis is shown in figure 9 where the following
considerations are made such as 4x4, 2D mesh and the target Design Under verification
(DUV) is router number 5, counting from the left top corner, from left to right and from top
to bottom, starting from number 0. Each router has 5 input/output ports, one for each
direction. North - N, East - E, South - S, West - W and Local - L. Local port is connected to
the Processing Element (PE) associated with router.

0 1 2 3
| | |
4 5 6 7
| | | |
8 9 10 11
| | | |
12 13 14 15

Figure 9 - Target NoC router number 5 in considered 4X4 2D mesh topology

The NoC router utilizes wormhole switching. Therefore, packets are sent in form of flits,
consisting of a header flit, body flit(s) and a tail flit. Whenever a flit arrives at a NoC router,
first it will be stored in the corresponding input buffer. Next, the routing computation
logic estimates the appropriate output port(s) based on the destination address stored
in the header flit of a packet acquired from the input buffer and signals the arbiter. It is
worth noting that the routing logic only becomes active upon receiving a header flit. The
role of the arbiter is to solve the contention when multiple input ports want to access
the same output port, which is done based on prioritization algorithm. Since at the same
time multiple requests might be sent to different output ports, one arbiter is instantiated
for each output port. An additional role of the arbiter is to control the data-path, that is,
when the grant is given to an input port, arbiter allows data to be sent to its corresponding
output port from the granted port, at the same time opening the correct path through the
crossbar switch.

Figure 10 depicts the high-level overview of the NoC router architecture used in this
thesis. The architecture will be described in the following sections.

2.6.1 Routing computation unit: LBDR

The Logic-Based Distributed Routing (LBDR) mechanism [18] is used as the routing compu-
tation unit in the NoC router. The design of scalable and reliable interconnection networks
for multicore chips introduces new design constraints like power consumption, area, and
ultra-low latencies. Usually routers can be easily configured to support most routing al-
gorithms and topologies by using routing tables, but the routing table does not scale in
terms of latency and area.

23

Local Local

Input Output
— LFIFO LLBDR }»_:_ LARBITER I e e
North North

Input L
Output
NFIFO NLBDR }» i NARBITER I ol |ouest

East East

B S S N B
1 e |
T
ERERE e

Input H Output
EFIFO ELBDR H{H | EARBITER | CROSSBAR EOUTPUT |outeut
i | SWITCH BUFFER
Y::S: | West
u H Output
"‘ WOUTPUT
WFIFO _| WLBDR % % WARBITER | BURFER AN
?:::lt' | South
4>‘ _’3 Output
= SOUTPUT
SFIFO . SLBDR % SARBITER | e i
Control Eal’t

Figure 10 - High-level overview of NoC Router Architecture

LBDR mechanism has been introduced to support different routing algorithms in 2D
NoC. The mechanism relies on the use of only three bits per output port (excluding local,
12 bits per router) which are grouped in two sets.

e 4 Connectivity bits, one for each output port excluding local, describing the topology
by indicating the connection of each router to its possible neighbor.

¢ 8 Routing bits describes the routing algorithm by considering whether packets can
change direction at next router.

This way of describing the routing logic with routing and connectivity bits ensures both
easy reconfigurability and scalability of the routing computation unit. LBDR removes the
need of a routing table and therefore it would be more scalable, as it only depends on a
limited set of registers and bits in each router. The logic of LBDR is shown in Figure 11.

North

Payload Header
—_—
West East -
Routing and connetivity bits required per router(12 bits, 3 per output port)
First part of the routing logic Bits at the North port < Bits at the West port < p”

. e] e
c Bits at the East port Bits at the South port
¢ B
Xdst — | P w
Second Part of the routing logic
N

N".Cn W=W".Cw
E".Ce §=8".Cs

<

S

<

o

n z
mz wsmz
Wy

Figure 11 - LBDR mechanism [18]

LBDR is a distributed routing mechanism, thus, for routing computation it only relies
on the current address of the router and the address of the destination node included
within the header flit of a packet. On the other hand, in source routing, the source node
computes the whole path and stores it in the packet header flit. So, LBDR avoids consuming
significant network bandwidth. The LBDR becomes active (only) when a header flit is
received and takes a decision regarding the direction to be followed by the packet at the
next hop, based only on destination address and address of the current router.

24

The following constraints are considered while designing the LBDR logic for NoC router
e Router 5in a 4x4 2D mesh topology
¢ XY Dimension-ordered routing algorithm

e no 180° turn restriction, i.e., a packet coming from a port cannot be forwarded to
the same port

Based on the above constraints, the connectivity and routing bits are configured as
follows:

d Cnyce,CW1 Cs=1
® Rpe, Raws Rse, Rsyy =0
® Ren; Res, Rwns Rws =1

A connectivity bit C, describes the absence (0) or presence (1) of a neighbor router in
a certain direction. A routing bit Ry, describes the permission to forward the packet to x
direction and take y direction at the next hop (1) or not (0). A simplified version of LBDR
logic based on the above constraints is shown in figure 12, for instance for East input port. It
is worth noting that XY routing algorithm allows at most one port at time to be selected for
forwarding a packet, furthermore the output port corresponding to the direction to which
LBDR is related cannot be selected. In order to cover a wide range of fault occurrences,
one-hot encoding is considered for the flit type in the structure of flits.

Header

[Fittyoe | vdst [xdst |
Routing and connectivity bits based
First part of the routing logic on XY routing and 2D Mesh
Xeurr E Cn=1,Ce=1,Cw=1,Cs=1
c Rne =0, Ren =1, Rwn = 1, Rse = 0
M Rnw =0, Res = 1, Rws = 1, Rsw=0
Xdst — P w
Second Part of the routing logic
Your —— C N N"=N".IE". W
M W=W_IN.IS+W N+W.8
Ydst P s §=8 . IE. W
N=N"
wW=w"
s=8"

Figure 12 - East LBDR logic for NoC router

LBDR is a sequential design, including flip-flops to store the current values of the output
requests for the arbitration units. The proposed methodology for evaluating the fault
detection capability of the checker described in section 3 requires the extraction of pseudo-
combinational circuit from the original sequential circuit. The pseudo-combinational
version of the circuit is extracted by breaking the registers in two different set of signals,
one representing the current values of the output request, now fed as inputs to the
pseudo-combinational version, the other representing the newly evaluated values of the
output request, according to the current values and functional inputs of the logic. The
pseudo-combinational version for ELBDR is shown in figure 13.

Table 1 presents the checkers introduced for ELBDR logic. The checkers were devised
for the pseudo-combinational version of the design. After optimization, the checkers are
extended to the actual sequential version of the design.

25

Eempty

Eflit_type N
Edst_addr w
iN ELBDR s
——>|
H
—s| L
1is
s
E iL

Figure 13 - Pseudo-combinational version of ELBDR logic

Valid LBDR output If there is a request to the routing logic (the corresponding
input buffer is not empty and flit type is valid), LBDR has
to compute at least one valid output direction (according
to XY routing).

No LBDR output If no flit arrives (the corresponding input buffer is empty),
all the output port signals of LBDR should remain zero.
Single LBDR output | If the corresponding input buffer is not empty (there is
a request to LBDR), because of using XY routing, at most
only one output port signal of the LBDR logic can become
active.

Switch LBDR output | If the corresponding input buffer is not empty (there is a
request to LBDR) and a non-header flit has arrived, LBDR
outputs should remain the same.

Local port output If the corresponding input buffer is not empty (there is
a request to LBDR) and a header flit has arrived, the lo-
cal output should become active only if the packet has
reached its destination.

Table 1 - Checkers for LBDR logic

2.6.2 Arbitration unit: Round-Robin arbiter

Arbitration unit plays an important role in NoC router by serving simultaneous request
from multiple input ports and granting access to one of them based on a scheduling
algorithm implemented to send flits through a single output port. There are many different
implementations for an arbitration unit, and most of the designs are implemented in
a sequential way, describing a Finite State Machine (FSM), in which any different state
represents a different possible granting condition.

The arbitration unit should guarantee the fairness in scheduling, to avoid starvation,
and to provide high throughput [19]. Round Robin (RR) arbitration satisfies fairness and
for this reason a RR arbiter is considered in this work. RR is based on dynamic prioritizing,
giving highest priority to the L input port, then N, E, W and finally S and again it starts
from L input port. This way of circular prioritization can guarantee that there would not
be any starvation and all input ports will eventually get access to their requested output
port. Also, each input port cannot hold an output port for more than a specific threshold
period during each arbitration round, therefore, the arbiter controls this by setting a timer
to threshold period. It is noteworthy that, protecting the timer by checkers has not been

26

considered in this thesis. In the pseudo-combinational version of the arbiter circuit, the
timer logic was not considered. While in the sequential actual version of the arbitration
unit, the timer didn’t contribute to significant loss of fault detection coverage.

A high-level overview of the functionality of a RR arbiter is shown in figure 14. The inner
FSM of the arbitration unit present 6 different states, corresponding to the following 6
possible granting conditions, in which the potential input requests are considered in the
decreasing order of priority.

Priority

LINPUT ARBITER

NINPUT ——» Grant
EINPUT ——» signals
WINPUT ———» L

SINPUT

Crossbar
select lines

Figure 14 - Overview of Round-Robin Arbiter

e IDLE - grant is given to none of the input requests

e GRANT_L - grant is given to the local input request
e GRANT_N - grant is given to the north input request
e GRANT_E - grant is given to the east input request

e GRANT_W - grant is given to the west input request

e GRANT_S - grant is given to the south input request

Different encoding style can be chosen for the states of the FSM in the arbiter. In this
thesis, one-hot encoding style is considered. Such that, it would be easier for the checkers
to check if, for example, a fault occurs in the state register and violates the one-hot rule.
The state variable of the arbiter FSM is used to generate grant signals for the input ports and
select lines of the crossbar switch. Thus, grant signals and select lines follow the one-hot
encoding as well, in a way that at most one signal can be high during each arbitration, i.e.
only one input port at time can send its data towards a certain output port. It is important
to emphasize the choice made for selecting the encoding style of the state-variable. Binary
encoding style would lead to reduced area for both the arbitration unit itself and its checker
logic. On the other hand, in case of single Stuck-At Fault (SAF), it could be possible that
the state variable changes from a valid value to another valid value, but incorrect. With
one-hot encoding of the state variable, any single SAF would lead to an invalid value for
the variable, thus making fault detection much easier and more effective.

A simplified version for the arbitration unit is considered for south output port arbiter.
The south arbiter cannot provide grant to the south input port because of no 180° turn
restriction. The pseudo-combinational version of South arbiter is shown in figure 15 by
omitting clock and reset signals. To extract the pseudo-combinational version of arbiter,
the register for the state variable is broken into two different set of signals. One fed as

27

input representing the current value of the state variable, the other considered as output,
representing the newly evaluated value of the state variable, according to the current state
and the functional inputs of the logic.

N_req
E_req
W_req
L_req

SARBITER

Next state
FF

Sel_in
Grant
signals

Figure 15 - Pseudo-combinational version of SARBITER logic

Table 2 presents the checkers introduced for the RR arbitration unit. As previously
stated for the LBDR logic, the checkers were devised for the pseudo-combinational version
of the arbitration unit. Once optimization has been accomplished, the final set of checkers
has been later extended to the actual sequential version of the arbiter.

Valid Grant output If there is a request from LBDR, arbiter must assert at
least one of the grant signals for the corresponding output
direction.

No Grant output If there is no request to the arbiter, it should not assert

any of the grant signals for any direction.

Invalid Grant output | Whenever there is a request to the arbiter, the grant signal
corresponding to that specific requested direction should
go active, and invalid direction should not be chosen.
Invalid Arbiter state | State variable of the arbiter’s FSM cannot possess invalid
values according to the one-hot encoding.

Invalid IDLE state If the arbiter logic is in IDLE state, and there is a request
for arbitration from LBDR, the circuit should not remain
in IDLE state, i.e. a grant signal should be asserted.
Priority Grant In case there are requests to the arbiter, it should follow
the correct prioritization (Local, North, East, West and
then South), according to the current value of the state
variable.

Table 2 - Checkers for Round-Robin Arbiter logic

2.6.3 Input buffer: FIFO
The input buffer is implemented as First-In-First-Out (FIFO) for the targeted NoC router
architecture. Since the amount of sequential logic is large for a buffer, it is not feasible to
extract the pseudo-combinational version of the circuit. Thus the checkers were devised
for actual sequential version of the circuit from the beginning.

The FIFO has been implemented using two pointers: Write pointer and Read pointer

28

along with two status signals: Empty and Full, which signals a neighbor router regarding
the status of the input buffer. Additionally, to accept the request for writing to the FIFO or
reading from it, it has two more input signals: Write Enable and Read Enable respectively.

Normally the data are written into FIFO if it is not full and the Write Enable signal (which
comes from a neighbor router in the network) is set to high. When a flit is written to the
buffer, the write pointer is incremented by one step and then points to the location not
yet written to. In the same fashion, the read pointer is incremented whenever there is
a request for reading from the buffer i.e., Read Enable is set to high and the FIFO is not
empty. The FIFO is considered as a circular buffer i.e., once a pointer reaches the end of
the buffer, the pointer just wraps around at the next increment and will point to the first
memory location.

Similar to [20], the buffer module is implemented with:

e one-hot encoding style for read and write pointers rather than binary encoding.
e aset of registers to store the data instead of an array of memory locations.

Like arbitration unit, one-hot encoding style is used in FIFO to make the design more robust
to single SAFs, aiming to avoid the faulty but legal output situations i.e., one of the pointers
changes its value from a valid one to another one which is valid but incorrect. The depth of
the FIFO is set to 4 slots, corresponding to 4 registers to store data coming from the input
port. Thus, 4 bits are used to describe the values of the pointers - 0001, 0010, 0100 and
1000 as per one-hot encoding style. Each bit of the write pointer represents the enable
signal for the one of the memory registers. To pass the data to output of the buffer, a
one-hot multiplexer is implemented at the output which is in-turn controlled by the read
pointer.

Initially, both write and read pointers will point to the same address in the buffer (0001).
In case of FIFO write, the incoming data are written in the location currently addressed
by the write pointer and then the write pointer is left shifted by one bit. Similarly, after
a read operation, the read pointer is left shifted by one bit. The following conditions are
used to identify FIFO full or empty conditions:

¢ the Empty signal goes high whenever read and write pointer addresses the same
location in the FIFO registers.

¢ the Full signal goes high whenever the read pointer is equivalent to the write pointer
but shifting one bit to the left.

It is worth noting that, to generating Full and Empty signals, only 3 registers of the FIFO
can be used at the same time for storing incoming flits.

Table 3 presents the proposed checkers for 4-flits depth FIFO. Only the control part
of the FIFO design was addressed, because the data-path is protected by parity checkers
which will be described later.

2.6.4 Crossbar switch

Crossbar switch is implemented to connect inputs and outputs of the NoC router. Crossbar
switch can establish multiple parallel data paths. Thus, Crossbar switch must be designed
in a way that can guarantee connection between every input port and every output port
and connections realized by the crossbar are determined by arbiter. Each arbiter decides
which of the input ports can access its corresponding output port. Crossbar switch is
implemented in the form of multiplexers shown in figure 16, one for each output port.

29

Reset Checker Whenever reset goes high, at the next clock
cycle Empty flag should be high (reading
and writing pointer are reset to the same
value).

Flags Checkers Empty and Full flags should never be high
at the same time. Whenever the defining
condition occurs, the corresponding flag
should go high at the next clock cycle.

One-hot pointers checkers Reading and writing pointers must respect
one-hot encoding.

Registers enable DMR checker Duplication and comparison for the logic
enabling the writing operation in data reg-
isters.

Reading pointer update checker 1 | Whenever Read Enable is high and the FIFO
is not empty, at the next clock cycle the
reading pointer should be updated.
Reading pointer update checker 2 | If either Read Enable is low or the FIFO is
empty, at the next clock cycle the reading
pointer should preserve its value.

Writing pointer update checker 1 | Whenever Write Enable is high and the FIFO
is not full, at the next clock cycle the writing
pointer should be updated.

Writing pointer update checker 2 | If either Write Enable is low or the FIFO
is full, at the next clock cycle the writing
pointer should preserve its value.

Table 3 - Checkers for FIFO Control part

The select lines of the crossbar switch which are generated by the arbiters are encoded
in the form of one-hot fashion to make the fault detection easier. Also, the considered
router is limited to XY routing, therefore connections between some inputs and outputs
are not needed. For example, for the East crossbar switch, turns from North, South, East
(no 180° turn) input ports to East output ports are restricted, only input connections from
Local and West input ports are allowed. The similar design constraint is applied for the
other crossbar switches for other output ports.

Since the checkers devised for Crossbar switch have resulted in unbearable area over-
head, it was decided to follow Double Modular Redundancy (DMR) approach. Therefore,
the MUXs in the crossbar switch are duplicated, then real and duplicated outputs are
compared.

2.6.5 Even parity checkers

Parity computation provides a simplest means of detecting single event faults. A parity
bit may be generated from the various bits of the incoming data entering each input port.
A parity bit can be even or odd based on design consideration. In this thesis, even parity
checker is considered. The parity checker evaluates the data before data leave the router
and indicate a parity error if odd parity is received. Figure 17 shows the high-level overview
of the targeted NoC router including parity generation and checker. Parity checkers are
effective in detecting the faults in the data-path, i.e., in the registers of the input and
output buffers.

30

N_Selin
L_Datain
E_Datain
W_Datain
S_Datain

E_Selin
L_Datain
W_Datain

—— W_Selin

L_Datain
E_Datain
S_Selin
L_Datain
N_Datain
E_Datain
W_Datain
L_Selin
N_Datain
E_Datain
W_Datain
S_Datain

IS

IS
IS

NCROSSBAR
SWITCH

ECROSSBAR
SWITCH

A

LCROSSBAR

SCROSSBAR
SWITCH

SWITCH

WCROSSBAR
SWITCH

N_Dataout

E_Dataout

W_Dataout

S_Dataout L_Dataout

Figure 16 - Crossbar switch architecture

Local

Local
Input LPARITY

CALCULATOR

o280

LFIFO

=

LLBDR }»; LARB\TER‘

Output
LOUTPUT {4

BUFFER

LPARITY
out

North

North
Input NPARITY

CALCULATOR

ey

NFIFO

=

NLBDR |»

:i NARBITER ‘

lOutput
NOUTPUT i

NPARITY
o BUFFER

East

EPARITY

East
Input
| CALCULATOR

H

N

EFIFO

=

ELBDR }»

Ej EARBITER }

Output
EOUTPUT (A

BUFFER

CROSSBAR
SWITCH

EPARITY
o

West

West
Input WPARITY
| CALCULATOR

1

WLBDR }»

% WARBITER

wouTpuT | [Output

| WPARITY
BUFFER

‘ out

South

South
Input SPARITY

CALCULATOR

H

SFIFO

=i

SLBDR }»77*

lOutput
SOUTPUT i

BUFFER

L,| sPaRITY

o
=4 =1 c
S S S

SARBITER }

N

Control part

Figure 17 - Overview of NoC Router with embedded parity checking

2.6.6 Infrastructure of the complete router
In the previous subsections, each block composing the considered NoC router has been
considered separately. Each block has been studied as a stand-module in checkers evalua-
tion and minimization computation in the first place. When all the blocks are put together
to build the whole NoC router, new undetected faults popped up. Most of these faults are
related to the infrastructure of the router, i.e., the logic dedicated to correctly establish the
communication between different modules, especially those belonging to the control part.
Table 4 list the checkers devised to deal with infrastructure of the control part of the
router. The first one checks one-hot encoding for the flit type input of the LBDR, passed to
the routing computation logic from the corresponding input FIFO. The second and third
checkers address the simple logic which deals with the use of the grant signal produced by
the arbiters, both to enable the reading from the FIFOs and writing to the output buffers.
The logic is duplicated since the structure of the logic is simple (group of 5 OR gates).

Flit type LBDR error

Flit type field of a flit must respect one-hot
encoding.

FIFOs Read Enable DMR checker

Logic producing Read Enable signals for the
FIFOs (5 OR gates) is duplicated, then real
and duplicated outputs are compared.

Output registers enable DMR checker

Logic producing enable signals for the out-
put registers (5 OR gates) is duplicated, then
real and duplicated outputs are compared.

Table 4 - Checkers for the control part infrastructure

31

2.7 Concurrent checkers

In this section, the concept of concurrent checkers is introduced. A set of checkers (Checker

Checker

| Output
Checker
Logic
*
Internal :
Signal(s) 3
Primary Functional Primary
Input(s) Logic Output(s)

Figure 18 - The concept of Concurrent checker

logic) is generated and then connected to the functional (primary) inputs and outputs
of the circuit. Figure 18 shows the functional logic augmented with checker logic. These
checkers are introduced based on functional assertions derived from relationships between
variables corresponding to inputs and outputs and also possibly internal signals of the
circuit. The checker logic targets the faults at lines within the functional logic (marked by
green circles). On the other hand the checkers are not designed to detect faults occurring
at

e functional inputs preceding the checkers input
¢ function outputs succeeding the checkers inputs

marked with red cross. In the first case the checker logic would normally not be able
to detect that a functional input has been altered by a fault, indeed the behavior of the
checkers is based on the assumptions that the functional inputs are correct. In the latter
case the situation is mirrored, the eventual fault on a functional output would occur after
the scope of the checker logic.

2.8 Metrics to evaluate fault detection capability

In this section, the metrics which are used to evaluate the fault detection capability of the
checkers are explained.

Traditionally the most significant index to describe fault detection is fault coverage,
but its conventional definition cannot be considered when checker logic is introduced
to achieve online fault detection [3]. Fault detection is generally evaluated feeding the
considered circuit with a suitable test patterns set, considering SAFs in all the possible
locations, and marking a fault as detected when it’s made observable to the circuitry
outputs by a certain vector. Finally, the index is obtained as the ratio between detected and
undetected faults. This conventional definition makes absolutely no sense in the evaluation
of checkers applied to functional logic. The behavior of each checker strongly depends on
the considered input vector, i.e. a checker could detect a fault with a certain test pattern,
while missing it with a different one. For this reason, it makes no sense to consider a fault
detected by checker logic as soon as there is a checker flagging it.

In traditional fault detection evaluation, given a fault at a line within the functional
logic and a set of input stimuli, the possible scenarios are

e fault is detected (i.e. it is observable at the outputs)

e fault is not detected (i.e. it is not propagated to the output)

32

In this thesis, a classification of scenarios, using the following terminology to describe
the possible different situations in detection of an injected fault is given:

e Case 1: Fault occurs at an internal line and is visible at functional output(s) and
checker logic flags a violation. The term True Detection is used to describe this
situation, since a critical fault is effectively detected by the checker.

e Case 2: Fault occurs at an internal line but is not visible at primary output(s). Checker
catches the fault and flags a violation. The term False Positive is used to describe
this situation. False positive is not harmful because an error is flagged which did not
have any effect. However, it has negative impact on design’s performance because
normally it causes re-execution of the task.

e Case 3: Fault occurs at internal line but is not visible at primary output(s) and the
checker logic does not detect the violation. The term Benign Miss is used to describe
this situation. Benign miss shows correct operation by the checker.

e Case 4: Fault occurs at internal node and is visible at primary output(s). Checker
does not detect violation. The term True Miss is used to describe this situation,
which is the worst possible case. True miss means that the fault propagates to the
functional outputs and further propagates to the system. However, the system has
no information that a critical fault has occurred.

With visible means the situation in which, given a fault and an input test pattern, the
fault is propagated to the functional outputs of the considered logic, i.e. the values of
these outputs are different from those of the fault-free simulation. Table 5 summarizes
the four possible scenarios. Here v'means fault is visible at the output and X means not
detected at the output.

Case Functional Logic | Checker Logic
True Detection v v
False Positive X v
Benign Miss X X
True Miss v X

Table 5 - Checkers Evaluation Metrics

It is worth noting that the class of faults described as False Positives must be carefully
considered. Even though harmless on a functional ground, due to the fact the fault is not
propagated to the primary outputs of the considered circuit, if checker logic detecting
faults are evaluated to repeat operations, this may lead to useless re-executions of tasks,
causing undesired delay.

The following three metrics are introduced to evaluate the fault detection quality of
the checkers:

e FC - Fault coverage
e FPR - False Positive Ratio

e CEl - Checkers Efficiency Index

33

The fault coverage metric is redefined according to the concurrent online detection capa-
bility of the checker logic compared to the conventional fault coverage metric.

Let D be the number of occurrences of true detections, F be the number of occurrences
of false positives, W be the number of occurrences of true misses and X be the number of
occurrences of benign misses detected by checker logic with the considered set of input
stimuli.

FCis defined as
D+X

FC=——""°_
D+X+W

(3)
FC can be considered as the probability of checkers behaving correctly on a larger set of
situations.

FPR is defined as

F
FPR= —— (4)
F+X
FPR describes the ratio of false positives among those faults which are masked towards
the primary outputs of the considered functional design.

CEl is defined as
D

CEl=—— (5)
D+W

CEl can be considered as the probability that checkers detect critical faults, those effectively
leading to a faulty output behaviour in the considered design. It is fundamental to underline
that this newly devised index cannot be straightforwardly compared with traditional fault
coverage evaluation, thus it is important not to be narrow-minded towards results that may
not immediately track the unity value, avoiding discarding them, as it is commonly done
towards fault coverage results which are not close to 100%. Before concluding about a
checker as ineffective, or on the other hand extremely effective, it is fundamental to devise
the right set of input patterns to be used in evaluating the efficiency of the detection
granted by the checker logic, because the CEl value may change drastically, since the
behaviour of the checker logic strictly depends on the considered set of stimuli.

2.9 Assertion based verification

Assertion-based verification (ABV) [21], has gained popularity in verification process by
providing a more powerful and easy way to verify complex digital systems. ABV has been
successfully applied at multiple levels of verification abstraction ranging from high-level
assertions within transaction-level testbenches down to implementation-level assertions
synthesized into hardware. An assertion is a conditional statement that checks for specific
behavior and displays a message if it occurs. Assertions are generally used as monitors
looking for bad behavior but may be used to create an alert for desired behavior as well.
Assertions can be used to verify the functional correctness of the design with respect to
the expected behavior. Some of the benefits of assertions are reducing verification time,
catching errors earlier, focussing the design effort and pinpointing sources of error.

2.10 Data mining and assertion mining

Some definitions and concepts concerning data mining and assertion mining are reported
initially. Data mining [22] [23] deals with item sets, transactions and association rules,
which are defined as follows .

Let I = {i1,iz,...,in} be asetof items. Let D = {d,,d>,...,d,} be adata set, i.e., a set
of observations, called transactions, with respect the set of items 1. Each element in D

34

contains a subset of the items in I. An association rule is defined as an implication of the
formX — Ywhere X, Y Cland XNY =0. X and Y are called item sets.

Figure 19a shows an example of a data set which describes the behaviours of customers
in a supermarket with respect to a set of items (i.e., milk, bread, ..., coffee). Data mining
approaches are generally intended to extract association rules from data sets, which
are then used to predict non trivial, implicit, previously unknown and potential useful
information, like, for example, "when milk is bought bread and coffee are generally bought
too", which is expressed by the association rule Milk — Bread N\ Cof fee.

Assertion mining deals instead with execution traces and assertions. Figure 19b shows,
an example of an assertion in Linear Time Logic is always(pi — next(p, A p3)) which states
it always happens that p, and p3 are satisfied one simulation instant later than p; becomes
true. Assertions are generally considered as a formula in the form of A — C, where the
antecedent A and the consequent C are composed of propositions, logic connectives, and
temporal operators according to the selected temporal logic.

The overall goal of data mining is to extract information from a data set and transform
it into an understandable and useful structure. This structure allows user analyzing data
from many different dimensions, categorizing them and summarizing correlations between
items in a database. For example, analyzing data from behaviours of different customers as
reported in Figure 19 leads to obtain useful information and helps analyzers to decide which
trend is more interesting for marketing. Association rules can also be extracted when data
are referred to time sequences. In this case, temporal data mining strategies are adopted,
whose goal is to discover hidden relations between sequences and sub-sequences of
events [24]. In any case, the mined (temporal) association rules are a prediction for future
behaviours, which may be true or not. Metrics are thus used to estimate the probability
that rules extracted from past observations can be valid also in the future.

On the contrary, the main goal of assertion mining consists of extracting formulas that
exactly describe the functionality implemented in the DUV, which is not ambiguous and
does not vary in the future, except in the case the implementation is changed. Assertion
mining is thus not intended to predict the future, but to formalize the actual set of DUV
behaviours.

Summarizing, main similarities among data mining and assertion mining are the pres-
ence of a set of data that represents observations with respect to past behaviours exposed
by the observed target (customers, DUV, ...), and the need of extracting association rules
that formalize such observations. Items, data sets, and association rules in data mining
correspond, respectively, to propositions, execution traces, and temporal assertions in
assertion mining. Meanwhile, the main difference between data mining and assertion
mining is represented by the concept of transaction (i.e., a row in a data set), which does
not have a direct correspondence with a row of an execution trace, because an assertion
is composed by one antecedent and one consequent that are true in different instants
inside the execution trace. This difference impacts on the way metrics typically adopted
for evaluating association rules in data mining can be reused for measuring the qual-
ity/interestingness of assertions. Finally, another difference is related to the final goal of
the mining: in one case the prediction of future behaviours, in the other the formalization
of actual (except in the case the DUV functionality is changed) behaviours.

2.11 Metrics for data mining

In the context of assertion qualification [25], metrics that provide information about the
degree of accuracy of a rule with respect to the probability it will hold in the future (like for
example, confidence, which estimates the joint probability between occurrences of the
antecedent and the consequent in the data set) are not relevant, since the assertions under

35

Data set N
Customer | Milk | Bread |...| Coffee ||
customer1 | True | True |..| True H Association rules
Customer2 | False | True |..| True [Milk — Bread A Coffee
Customer3 | False | False |..| False [Bread — Coffee
CustomerN | False | False |..| False [

(a) Example of data mining

Proposition set N
Time | p, P, Ps | Pm [j
1 | True | False | False |...| False || Temporal assertions
2 |False| True | True |..| False | | P —=> next(p, A ps3)
3 |False| True | True |..| True P, —> next(p;)
4 |False | True | True True :
n |False | True | False |..| True [

(b) Example of assertion mining

Figure 19 - Similarities between data mining and assertion mining

analysis are always true on the DUV. Rather, the metrics that measure the interestingness
of an assertion with respect to covered behaviours, number of activations, and correlation
between antecedent and consequent and etc. are worth interested. For this reason, the
following metrics support, correlation coefficient and strength measure are identified
and their definition in the context of data mining is hereafter reported together with
considerations related to how they can be adapted to be suited for assertion evaluation
[26].

Definition 1 Given a set of items I, and the corresponding set of transactions D, a rule
X — Y has support S if X and Y occur concurrently in S percent of transactions in D.

In practice, to compute the support of an association rule, it is necessary to count how
many rows in the transaction set table contain both X and Y. In case of temporal assertions,
the support corresponds instead to the number of times a temporal assertion occurs (i.e.,
its antecedent is fired and consequently its consequent is satisfied) in the execution traces
with respect to the total number of occurrences corresponding to the other temporal
assertions under analysis. For example, let us consider a temporal assertion A — C that
occurs 10 times in a set of execution traces. If it belongs to a set of temporal assertions
that globally occur 1000 times in the same execution traces, then the support of A — C'is
10/1000 = 0.01.

Definition 2 Given a set of items I, and the corresponding set of transactions D, the
correlation coefficient of the rule X — Y is the co-variance of X and Y divided by the
product of their individual standard deviations.

More informally, the correlation coefficient can determine if antecedent and consequent
are related or not by observing whether occurrences of the antecedent depend on oc-

36

currences of the consequent and vice-versa. The higher the correlation coefficient is, the
higher is the interestingness of the analyzed rule.

Definition 3 Strength Measure is a product of quantities such as Support (Definition 1) and
Correlation Coefficient (Definition 2) but with giving priority in the region of rules/assertions
with low occurrences but highly correlated with other rules/assertions.

37

3 Online fault detection and minimization of the checkers

Online fault detection in digital systems is of paramount importance for reliable operation
of the system. An online fault detection mechanism aims to monitor the digital systems at
run-time and detect the undesired behavior while the system is in operation. The online
fault detection can be achieved with the help of hardware checker infrastructure. The
checker infrastructure runs concurrently with the system operation and performs near
instant fault detection. In [27, 28], end-to-end error detection is discussed, the use of an
end-to-end, epoch-based detecting scheme results in significantly delayed fault detection.
Also, any faults that do not cause a functional error at the output (like packet loss, flit drop)
will never be detected.

This thesis focuses on the faults in the Network on Chip (NoC) routers. Components
inside the NoC router can be divided into two parts, the control part and data path. Faults
in the control part are very crucial, hard to be detected. Faults in the control part may lead
to flit drop, packet loss, packet mixing, misrouting of packets, deadlock, livelock. Checkers
usually perform a simple comparison and so checkers are usually comprised of simple
combinational circuits. A trade-off between the fault detection capabilities and the area
consumption of the checkers can be eventually outlined. Also, several checkers might
overlap with each other in terms of fault coverage. Therefore, there is a need to minimize
the checkers to get maximum fault coverage with low area overhead.

Fault detection in the data-path can be achieved through error detection and correction
mechanisms. Simple parity checks will detect and may even correct errors affecting the
contents of in-flight packets [29]. Careful consideration must be made while implementing
the fault detection mechanisms for the data-path against the benefits it can bring. [27,
30] shows that the complex Error Detection and Correction (EDC) schemes may require
unacceptably high area overhead. Alternatively, test packets generated by a dedicated
hardware structure to detect faults in the data-path require very little area and provides
high fault coverage.

This chapter is based on the following publications:

e Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, Thomas
Hollstein, and Jaan Raik. Extended checkers for logic-based distributed routing in
network-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages
77-80. IEEE, 2014 [Publication 1]

e Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert Jervan,
and Thomas Hollstein. A framework for comprehensive automated evaluation of
concurrent online checkers. In 2015 Euromicro Conference on Digital System Design,
pages 288-292. IEEE, 2015 [Publication I1]

e Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jervan,
and Thomas Hollstein. Automated minimization of concurrent online checkers
for network-on-chips. In 2015 10th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1-8. IEEE, 2015 [Publication
]

o Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Hollstein,
Gert Jervan, and Ranganathan Hariharan. A framework for combining concurrent
checking and on-line embedded test for low-latency fault detection in noc routers.
In Proceedings of the 9th International Symposium on Networks-on-Chip, page 6.
ACM, 2015 [Publication 1V]

38

3.1 Literature review

Several research works have been carried out in the field of fault detection and fault
recovery to increase the fault tolerance and reliability of NoC. With extreme down scaling
of the feature size, SoC that have NoC interconnects are becoming more vulnerable to faults
during the run-time. Thus, detecting a fault at run-time is rapidly becoming a necessity.
Efficient, accurate and quick- responding fault detection is also a prerequisite of successful
fault recovery. However, the fault recovery approaches are beyond the scope of this thesis.

Fault tolerance enables the system to function correctly in presence of one or more
faults within the system. Usually fault tolerance is achieved with some sort of redundancy
techniques and one such technique is Hardware redundancy. Hardware redundancy ap-
proaches such as Triple Modular Redundancy (TMR) and Duplication with Comparison
(DwWC) are helpful in detecting the faults, but along with that it brings a lot of drawbacks
such as increase in area, power consumption. Also, the reliability of these redundancy tech-
nigues decreases as the lifetime of the system increases [9]. Though these approaches are
helpful in detecting the faults, it lacks the information regarding the fault location within
the system. An alternative to minimize these overheads is the selective TMR approach
that identifies Single Event Upset (SEU) sensitive sub-circuits that are to be protected [31].
Even this approach lacks the ability to localize the faults in the system. On the other hand,
coding techniques such as Berger [32] or Bose-Lin [33] along with information redundancy
address fault detection. In many works the coding techniques are combined with synthesis
[34, 35, 36]. However, these approaches suffer from significant area overhead, and they
require alteration of the original circuit to generate the codes. Hardware redundancy is
also applied in detecting the faults in NoC. Since NoC may integrate hundreds of switches
in a single chip, hardware redundancy imposes a high area overhead.

Concurrent on-line Built-In Self-Test (BIST) techniques such as Built-In Concurrent Self-
Test (BICST) [37] and Reduced Observation Width Replication (ROWR) [38] provide high
fault coverage at low area overhead, but only consider a limited subset of pre-computed
input test vectors. Hence these approaches are likely to miss faults occurring in a normal
circuit operation, addressing a limited set of the possible errors. [39, 40, 41, 42] deals with
BIST strategies to test NoC architectures. However, BIST solution is not suitable to detect
transient faults.

Multiple different alternatives, which do not require changes in the addressed logic,
based on concurrent monitors - checkers - were presented. Authors of [43] propose
a framework to extract checkers from logical implications derived from the structural
description of the considered circuit, which may seem comfortable and is feasible, but
suffers low coverage and extremely huge area overhead, often exceeding Double Modular
Redundancy (DMR) solutions.

Grecu et al. introduced a method for on-line fault detection and location in NoC
communication fabrics [44]. The faults in the communication links and the faults in the
NoC switches can be distinguished by the proposed method. The work is based on the
utilization of code-disjoint routing elements, combined with parity check encoding for the
inter-switch links. Because of design constraints, this method targets the fault detection
and location in the data path of the routing unit only. In [45], a hybrid method is presented
to synthesize a fault-secure NoC switch employing data encoding at data path (data flits)
and concurrent error detection structure for dealing with faults not covered by the flit
encoding using multiple parity trees. However, the work still results in more than 50% area
overhead.

In [28], SafeNoC, an end-to-end runtime error detection and recovery technique has
been introduced to ensure the functional correctness of Chip Multi Processors (CMP)

39

interconnects. SafeNoC overlay the interconnect with a lightweight and simple checker
network. A look-ahead signature is delivered through the checker network for each data
packet which is sent through primary network. SafeNoC detects functional errors by
computing and comparing the signature of every received data packet with the signature
delivered through the checker network. SafeNoC does not provide protection against
dropped packets or flits and it cannot recover from errors arising from aliasing of signatures.
SafeNoC also does not localize the fault, rather it detects and recovers the interconnects
from the fault. The reconstruction and recovery time depend on the severity of the
functional error. In case a greater number of packets are affected by the error then SafeNoC
can take up to 39M execution cycles to recover the system from the fault. However, the
fault recovery approaches are beyond the scope of this thesis. SafeNoC is limited to
interconnects only.

Park et al. [46] have examined the impact of transient faults on the reliability of on-
chip interconnects and have developed an approach to either protect against or recover
from them. For the inter-router link faults, they use Hop-By-Hop (HBH) retransmission
method. However, the retransmission buffer can add latency to the system in case of
a fault occurrence. Moreover, it is not mentioned whether the retransmission buffer
itself is protected against SEUs or not. Regarding the control part of router, an Allocation
Comparator (AC) unit is proposed, which provides full error protection to the Virtual
Channels (VCs) and Switch Allocation (SA) units at minimal cost, without affecting the
router’s critical path. Like [28], the approach is limited to interconnects.

Several works have proposed utilization of concurrent checkers for checking faults in
the control part of NoC router. In [47], the Inherent Information Redundancy (lIR) in the
control path of NoC routers is utilized to manage transient errors, preventing packet loss
and misrouting. The goal is to capture faults that might happen in the routing computation
unit or in the arbitration unit of NoC router. However, the proposed method is effective
only in routers using XY routing. Yu et al. [48] have proposed a set of error detection units
for the NoC routing blocks implemented using Logic-Based Distributed Routing (LBDR) for
topologies with high-radix (hr). The IIR in LBDRhr logic is exploited to manage transient
errors in the routers. LBDRhr provides better scalability compared to routing tables. Despite
the advantages, the proposed checkers for LBDRhr logic cannot reach 100% fault coverage.
As the number of faulty gates increases, the error detection rate slightly decreases. Thus,
the proposed method achieves a high error detection rate in smaller and simple NoCs
only. Furthermore, the work only focuses on the routing logic of a NoC router and not
considering the full control part.

In [1], the set of checkers introduced in [48] are extended for the baseline LBDR logic to
increase the fault coverage (up to 64.9%). LBDR mechanism [18] is a scalable solution for
the routing computation unit compared to routing tables. The mechanism describes the
topology and the routing function in form of fixed sets of connectivity and routing bits,
therefore, the logic can be easily re-configured. The proposed checkers cover most single
stuck-at faults occurring in the LBDR circuitry. Fault injection experiments have shown that
the proposed method allows increasing the fault coverage 3 times (compared to [48]), of
course at the price of 26.8% checker area overhead. However, still 100% fault coverage
is not reached, and the area overhead minimization aspect of the checkers is also not
addressed.

Alaghi et al. [49] have presented a method based on high level fault model for online
error detection and diagnosis of NoC switches. The proposed method deals with routing
faults that cause NoC packets to be forwarded to output ports that are not intended to.
However, this work targets only functional level fault coverage and does not guarantee a

40

high coverage for structural faults. The fault model does not detect nor diagnose when
the packets are dropped, misrouted or lost-destination.

Parikh et al. [50] have proposed ForEVeR, a solution that complements the use of
formal methods and runtime verification to ensure functional correctness in NoCs. Formal
verification, due to its scalability limitations, is used to verify the smaller modules, such as
individual router components. To protect against escaped design errors with a runtime
technique, a network-level error detection and recovery solution, which monitors the traffic
in the NoC and protects it against escaped functional bugs that affect the communication
paths in the network. To this end, ForEVeR augments the baseline NoC with a lightweight
checker network that alerts destination nodes of incoming packets ahead of time. The
use of an end-to-end, epoch-based scheme, ForEVeR results in significantly delayed fault
detection.

Authors of [51] have proposed NoCAlert, a comprehensive on-line and real-time fault
detection mechanism that demonstrates 0% false negatives within the interconnect for
the fault model and stimulus set used. It employs a group of lightweight micro-checker
modules that collectively implement real-time hardware assertions based on the concept
of invariance checking. The checkers operate concurrently with the normal NoC operation
and can detect a wide range of faults instantaneously. Low overhead checkers were used
to detect faults without the need of periodic or triggered-based testing. The faults that are
not covered correspond to non-catastrophic failures. However, the minimization aspect of
the area overhead of the checkers is not addressed.

In [52], an online checking mechanism, designed specifically for the switch allocator of
a NoC router is proposed. The proposed checkers for the switch allocator of the router
have self-checking property. The authors did not mention the faults that can occur at the
gate-level structure of the switch allocator; therefore, it is not possible to verify whether
the proposed checking mechanism can eliminate all single points of failure which can occur
at the gate-level.

The use of embedded test configurations for testing the data-path of NoC routers
has been proposed in [53], with design for-testability structures included in [54] and BIST
applicationin [42]. However, all the mentioned approaches are targeting the global network
and not a concrete router. Furthermore, only off-line test scenarios have been considered
in [53, 54, 42].

3.1.1 Thesis contributions

This thesis proposes a framework for formal qualification of checkers and for minimizing the
area overhead with the given fault coverage constraints. The goal is to achieve low-latency,
low area overhead checkers with high fault coverage for NoC routers. Different from the
above-mentioned approaches, the online fault detection and checker minimization method
proposed in this thesis provides the following novelties:

e Formally proving the absence or presence of true misses over all possible valid
inputs for a checker, whereas in the case of traditional fault injection only statistical
probabilities can be calculated without providing the user with full confidence of
fault detection capabilities [Publication I, Publication IlI, Publication III].

e Targeting the minimum fault detection latency of a single clock-cycle. This is achieved
by representing the circuit under test as a pseudo combinational design and concen-
trating on combinational checkers [Publication I, Publication I, Publication Iil].

¢ Providing accurate, automated evaluation for the fault detection characteristics of
the checkers. It allows finding cost-efficient trade-offs between the fault detection

a0

capabilities and the required overhead area [Publication I, Publication Il, Publication
.

e Combination of concurrent checkers with embedded on-line test packets to enable
cost-effective trade-offs between area-overhead and fault coverage [Publication
Iv].

In the following sections, the methodology for devising, evaluating and minimizing con-
current checkers is discussed. Followed by experimental results regarding the application
of framework to the control logic of the NoC router is studied. Finally, a short summary of
the chapter is provided.

3.2 Checkers’ evaluation and minimization flow

This section focuses on the proposed methodology flow for devising, evaluating and
minimizing concurrent checkers. The details regarding the concept of concurrent checkers
is already covered in section 2.7.

i Environment generation
|

; Generation of

|

1

exhaustive stimuli

Extraction of pseudo-
combinational circuit

Checker synthesis

Synthesized
Checkers

Synthesized
pseudo-
combinational
circuit

Filtering of stimuli

|
|

Fault-free simulation T Ex_hau§t|ve_
! valid stimuli

Fault-free
values for each
circuit line

Any
Checker
firing?

Bug in checkers orin _Yes

the environment

Fault simulation

Detection Metrics(CEI, FC,
FPR)
Checkers weight and Area

Final minimized
set of checkers

Weight evaluation and
minimization procedure

Figure 20 - Checkers Evaluation and Minimization flow

Figure 20 depicts the proposed methodology flow. Initially the flow starts by consid-
ering a design under verification. Next, the pseudo-combinational version of the circuit
is extracted, and it is synthesized. An initial set of checkers are devised from a set of
combinational assertions. Additional checkers are also added to describe the relations on
pseudo-primary inputs/outputs to the checker suite to increase the fault coverage. The
initial set of checkers include set of structural as well as functional checkers which are then
synthesized to be used in fault simulation. Next, the checker evaluation environment is

42

created during the environment generation step by generating an exhaustive valid set of
input stimuli. A fault free simulation is performed to verify the correctness of environment
and checkers. Once the correction is made, using the bug-free checkers, the checkers
evaluation is performed to measure the fault detection capability of checkers using the
metrics discussed in section 2.8. In addition to fault detection capability estimation, the
checkers weight information i.e., the number of true detections and its area consumption
is also calculated. Using a greedy heuristics, a minimization procedure is carried out by
considering the fault detection capability, weight, area of a checker as an input. The final
step of the methodology flow is the minimized set of checkers with high fault detection
capability and low area consumption.

Traditionally, to evaluate the fault detection capability of the checkers, fault injection
has been applied. Fault injection refers to injecting fault into a circuit at a certain time step
and simulating it with the input stimuli to see whether any functional output of the circuit
changes and whether any of the checkers detect the fault. Since it is generally impossible
to inject and simulate all the faults at each circuit line at each time step, a statistically
significant sample of random faults would normally be injected and simulated. This in turn
would introduce the risk to evaluate the checkers in an incomplete scenario, providing
superficial and probably misleading results concerning fault coverage.

The proposed methodology flow requires the extraction of a pseudo-combinational
version of the design i.e., a version of the circuit where the feedback loops of the sequential
circuits are broken. The proposed methodology

e is complete, i.e. it allows proving the absence or presence of true misses.

e provides minimal detection latency, because a pseudo-combinational version of the
circuit is extracted, thus single snapshots of time corresponding to single clock cycles
are considered.

¢ allows minimization of the initial devised set of checkers for the considered design,
based on the weights output information provided by fault simulator tool, opening
prospective of seamless trade-offs in between fault detection coverage and area
overhead.

The completeness of the approach is a key feature: pseudo-combinational extraction
guarantees the possibility to fault simulate the circuit in an exhaustive valid range of
conditions, overcoming the feasibility issues of traditional fault injection approaches.
Moreover, considering the pseudo-combinational version of the design provides single
clock cycle latency detection capabilities for the checkers, since single instances of time
corresponding to a clock cycle are considered. Furthermore, analysis of sequential circuits,
with temporal checkers would not be feasible because of the combinatorial explosion of
considering all possible input sequence combinations.

3.2.1 Extraction of pseudo-combinational version of the circuit

Extraction of pseudo-combinational version of the design is achieved by breaking the
sequential elements of the design such as Flip-flops, Memory(registers). The corresponding
input and output connected to the sequential elements are fed to the overall design as
pseudo-primary inputs/outputs as shown in figure 21. Figure 21a shows the digital design
with combinational and sequential circuits with primary inputs and outputs whereas figure
21b shows the pseudo-combinational equivalent circuit, which has additional pseudo-
inputs and outputs in addition to primary inputs and outputs. In the pseudo-combinational
circuit, the current state signals are converted to pseudo-primary inputs and next state

43

Primary Primary Primary Primary
input(s) N output(s) input(s) N loutput(s)
: Combinational 4 v| Combinational
logic logic
»| >
Pseudo input(s) Psetdo output(s)

Next state
signals

Clock Sequential logic Seq%ogic

(a) (b)

Figure 21 - (a) Design with combinational and sequential circuit (b) Equivalent pseudo-combinational
circuit

signals are converted to pseudo-primary outputs. This way it is possible to take the logic
to some desired situation in the considered single clock cycle and also feeding the values
of the registers through input vectors.

It has to be noted that even though the extraction of pseudo-combinational circuit leads
to creation of additional inputs/outputs, at the end of the proposed flow, the checkers
are integrated in the original design and therefore, the final structure of the DUV is not
altered. Devising concurrent checker is discussed in the following subsection.

3.2.2 Synthesizing the checkers

Checkers monitor the inputs and outputs of the considered design, and they evaluate if the
values of the output do not match those expected from the values of the input. The flow
begins with the synthesis of an initial set of devised checkers for the considered design,
starting from a set of combinational assertions.

It is possible to outline a set of implications as relationships in between output and
inputs by studying a digital circuit and based on these, assertions can be extracted, which
are later mapped to the checker logic. The specification of the considered design is used
while devising the checkers. The checkers are not automatically devised, and it need the
expertise of a verification engineer. Most of times checker logic is based on relationships
existing in between values of the inputs and the outputs, of the considered logic, but in
some cases, especially when concerning encoding of the information, they could monitor
only the outputs. Some examples of functionality-related violations, on which checker
logic could be based, can be easily provided:

e empty and full signals of a buffer cannot be high at the same time.

¢ if a meaningful packet reaches a routing unit in a switch, at least one output direction
must be selected by the unit.

The devised checkers might be redundant in terms of fault coverage metrics. It is worth
noting that, in this step, it could be very challenging to spot any overlap or inconsistence
of some considered checkers, or their effectiveness, and this is the main reason why it is
fundamental to correctly evaluate the checker logic. After performing the evaluation and
minimization flow using the proposed methodology, the checkers which satisfy the area

44

constraints are kept while ensuring the target fault coverage. It is also noteworthy that
this section focus on devising checkers for control logic of NoC routers, it is assumed that
the data path is already protected by Error Detecting/Correcting code (EDC/ECC) [55, 36]
techniques, which can alert the system whenever there is any unexpected changes in the
data packets.

3.2.3 Environment generation for checkers’ evaluation

This section focuses on the generation of environment required to perform fault simulation
for checkers evaluation as shown in figure 20. Once the initial set of checkers for the DUV
is devised and the pseudo-combinational version of the circuit is extracted, a set of input
test vectors is needed in order to perform fault simulation for checkers evaluation.

In the traditional verification of the circuit, an exhaustive set of input test patterns are
considered which would guarantee that the design is fully evaluated. On the contrary, for
checkers evaluation this would lead to both erroneous results and useless computational
effort. The behavior of the checkers strongly depend on the applied input patterns. If
incorrect patterns are applied to the checkers logic, the checker would detect fault even
though there is no actual fault causing fallacious results as an outcome of the experiment.
At the same time, performing a fault simulation would cause additional run-time. Therefore,
it is imperative to identify a set of valid and meaningful input patterns to be used during
fault simulation for checkers evaluation.

For exhaustive set of input patterns, 2" input patterns are considered initially where n
is the overall number of inputs (functional and pseudo-primary) of the considered pseudo-
combinational version of the design. Then a set of filtering constraints is devised based on
the functional behavior of the considered DUV and those input vectors which do not satisfy
those conditions are discarded from the initial set of exhaustive input patterns. This step
is fundamental to consider only those patterns corresponding to correct and meaningful
behavior of the logic, so that checkers can be evaluated only in realistic conditions. It is
important to avoid those patterns that would cause the checker logic to fire in a fault-free
situation.

3.2.4 Fault-free simulation and debugging checkers/environment

To perform fault simulation for checkers evaluation, first a fault-free simulation is performed
with valid set of input stimuli obtained from previous step (see section 3.2.3) along with
the synthesized checkers and pseudo-combinational version of the circuit. This allows to
find bugs either in the devised set of checkers or in the simulation environment generated.
If the output of the simulation points out that a checker is firing even though no fault is
injected, this suggests the presence of the either one of the following bugs:

e The checker is not correctly implemented.

e The input vector for which a checker detects fault are not valid and have to be
discarded.

The fault-free simulation results allow to spot and fix single or multiple bugs in the checker
and environment before starting the actual fault simulation for checkers’ evaluation. It
is to be noted the fault-free simulation results are not related to the evaluation of the
detection capability of the checkers.

3.2.5 Fault simulation based evaluation of checkers
The evaluation of a checker is performed using a fault simulator tool developed as an

extension of a freeware test system Turbo Tester [56]. Turbo Tester (TT), which is a diag-

45

nostic software package that contains a variety of tools related to testing and diagnosis of
integrated circuits. TT can read the schematic entries of various EDA tools and produce a
representation of the circuit in terms of Structurally Synthesized Binary Decision Diagram
(SSBDD) [57]. TT tool suite consists of the following set of related tools for performing fault
simulation

e Test generation by different algorithms

e Test program optimization

e Fault simulation for combinational and sequential circuits
e Fault diagnosis

The baseline fault simulator has been extended to deal with the presence of concurrent
checkers (described in section 2.7), rather than only with the functional design, producing
additional output information on the online detection effectiveness of the checker logic.
This way the injection of faults can be applied only to the functional design, thus allowing
to evaluate the detection capability of the introduced checker logic. The main differences
between the extended and baseline fault simulator are

¢ no parallelization of test patterns is considered during fault simulation, to avoid
memory issues and grant the possibility to evaluate large designs.

¢ no fault dropping, every fault is simulated with every input vector.
e concurrent fault simulation is considered.

To evaluate the fault detection capabilities of concurrent checkers, fault dropping
cannot be considered. In a traditional fault simulation, a fault once detected may be
optionally dropped from the list of active faults. This is intrinsically meaningless while
studying checker logic, because the behavior of each checker is strictly dependent on the
considered test pattern, i.e. a checker could flag a fault with a certain test vector, while
missing it with a different one.

The metrics described in section 2.8 are expressed in more generic ways which cannot
distinguish the fault model considered. Since, single stuck-at fault model is considered
for fault simulation, it is assumed that only one net of the circuit can have a fault at a
time. This consideration led to the introduction of new paradigm of statistics to describe
fault detection capabilities of concurrent checker logic, including a reformulation of fault
coverage, described in section 2.8. The possible detection outcomes after the injection of a
fault, described in table 5 were extended to seven symbols, to be used in the computation
and evaluation of the output of the fault simulation, listed as follows:

0 - stuck-at-zero fault is detected by the circuit and by the checkers

1 - stuck-at-one fault is detected by the circuit and by the checkers

w - stuck-at-zero fault is detected by the circuit and not by the checkers

W - stuck-at-one fault is detected by the circuit and not by the checkers

o - stuck-at-zero fault is not detected by circuit and is detected by the checkers

i - stuck-at-one fault is not detected by circuit and is detected by the checkers

46

Symbols | Detection Outcomes

(0] True Detection
1 True Detection
w True Miss

w True Miss

o False Positive
i

False Positive
X Benign Miss

Table 6 - Symbols and detection outcome correspondence

e X - none of the stuck-at-faults is detected, nor by the circuit, neither by the checkers

Table 6 represents the correspondence in between the alphabet of symbols and the
previously introduced classification of possible outcomes.

Based on the introduced alphabet of symbols, the newly devised metrics for coverage -
CEl, FC and FPR defined in section 2.8 can be rewritten as follows

oy
CEI= 50 1w] ©
_ ¥0,1.X]
=0 Lmwx] ”)
Yo,
FPR = Y o.ix] ®

where each symbol represents the occurrences of the symbol itself, i.e. of the correspond-
ing situation.

In addition to the newly devised statistics CEl, FC and FPR, the tool also generates some
useful output information.

¢ Fault table presents one row for each input vector and one column for each node in
the SSBDD representing the considered design. For the corresponding input pattern,
the detection outcome for each node where faults are injected are marked with any
one of the previously introduced alphabet of symbols extensively.

¢ Nodes’ detection information is extracted from the fault table, for those nodes
where faults are injected, while the remaining nodes are simply listed. For any node
the number of occurrences of the introduced alphabet is reported, omitting zero
entries. This information allows to spot those nodes which eventually present a large
amount of true misses (w and W occurrences), the worst situations in which checkers
do not detect critical faults, thus suggesting where to act in order to increase the
detection effectiveness of the checking logic.

e Checkers’ detection information portrays the capabilities of each checker in detect-
ing faults, in form of a table, with a row for each checker and a double column
for each node. Each double column gives information for stuck-at-O fault on the
left side and stuck-at-1 fault on the right side, for the corresponding node, if faults
are injected in that node. Each intersection between a row and a double column
provides the numbers of detection for stuck-at-O and stuck-at-1 faults, injected in
the node corresponding to the column, provided by the checker corresponding to

47

the row. This table is related to the fault table, indeed, for instance, the sum of
stuck-at-O fault detections provided by the whole set of checkers, reading the left
side of a double column, is equal to the occurrences of O symbols in the column
of the fault table corresponding to the considered node. Checkers detection table
could also be used to spot eventual overlapping or independence in the action of
different checkers.

e Checkers’ detection absolute weights is evaluated for each checker, as the number
of provided detections over the considered set of stimuli, giving a first hint on the
capabilities of detection of the checker itself. On one hand it would be wrong to
suppose a checker better than another one only considering the number of provided
detections, because a checker firing for a limited number of faults could be the
only one detecting those faults. On the other hand this information may suggest
some optimization work, based on a heuristic approach, trying to use a limited set of
checkers derived from the whole. For instance it could be interesting to start using
at first only the checker providing the highest number of detections, and gradually
increasing the size of the used set of checkers, keeping trace of the evolution of both
coverage information and area overhead.

3.2.6 Checkers’ evaluation and minimization

All the checkers are assumed to be functionally verified. The checker evaluation is per-
formed based on the metrics described in section 2.8. The goal is to reach 100% or another
target value for both CEl and FC. A 100% CEl would mean there were no True Misses during
the fault simulation and thus checkers are able to capture all Single Event Transient (SET)
faults at different location in the design. At this point, each checker is weighted according
to the number of true detections accomplished on the considered input test vectors set,
and this information can be used as starting point for some algorithm of minimization
of devised set of checkers. Once a minimized set of checkers is produced, the described
flow can be rerun, to display the eventual loss of coverage due to the reduction of the
considered set of checkers, through the value of the introduced metrics.

In the proposed methodology, the minimization procedure is a greedy weight-based
heuristic procedure as shown in Algorithm 1. First, it selects the heaviest checker, i.e., the
checker with the highest number of detections in the considered environment. Then the
second heaviest checker is included in the set and so on. At each step, coverage metrics
and area consumption are evaluated, expected to reach the target value for coverage
metrics. Based on the results at each step, coverage metrics and area overhead, trade-offs
in between them can be eventually outlined. The final output is the optimized set of
checkers, supposedly matching coverage and area overhead target values.

48

Algorithm 1 Checker minimization
initialization; // Evaluates individual checkers and stores them in a list with number of true
detections
sorted_checkers = sort_checker_based_on_weight()
minimized_set =[]
for checker in sorted_checkers do
temp_set = minimized_set + checker
if (check_area(temp_set) < target_area) then
CEl = calculate_CEl(temp_set)
minimized_set.append(checker)
if (CEl > target_CEl) then
| break
end
end

end
return minimized_set

A greedy heuristic (described in Algorithm 1) is proposed for finding minimized set of
checkers with low-area high fault coverage. The algorithm sorts the checkers based on the
weight (number of True Detection). Area of the chosen checker along with the temporary
set of checkers is calculated to check whether it violates the target area constraint. If
there isn't any area violation, then CEIl of the chosen checker along with the temporary set
of checkers is calculated. If the CEl of the new set is providing any improvement to the
temporary set, then the checker would be added to the final minimized set. If the chosen
checker either violates area constraint or does not improve the CEl then it is discarded.
Once the CEl reaches 100% or target coverage, the process terminates.

3.3 Embedded online test packets

In order to exploit the strong reduction of area overhead due to the removal of data-path
checkers, while at the same time ensuring high coverage of faults, a hybrid solution could
be considered, introducing what is proposed in [53, 54, 42], i.e. the use of online embedded
test packets. The checkers can be complemented by embedded online test packets which
are to be applied as a periodic routine during the idle periods in router operation.

In the case of the control part of a NoC router, where embedded test packets based
approaches have proven inefficient [54], low area concurrent checkers could be applied,
as described in previous section. Differently, according to[53, 54, 42], the embedded test
yields full fault coverage in data-path modules, whereas error correcting codes would
be more expensive in terms of area consumption. The embedded test packets-based
approaches propose that, whenever a router in a mesh-like NoC is in idle condition for a
certain temporal window, neighbor routers can send to it test patterns, in order to detect
eventual faults in its data-path. Neighbor routers have the duty both to inject packets and
to check the outputs of the router under test.

The functional fault model that is applied to cover the stuck-at faults in the data-path
of the NoC router is based on the idea proposed for functional testing of mesh-like NoC
networks in [53, 54, 42]. The three test configurations considered to cover the entire mesh-
like NoC router is shown in figure 22 and they include Straight paths, Turning paths and
Processing element connections. A configuration is set up by adjusting the corresponding
destination address fields of the transmitted packets to the last row (column) of the

49

network. A fault model proposed in [53, 54, 42] is applied, where the value at a selected
router input is distinguished from the values at other inputs of the router. To fully cover the
structural faults in the multiplexers of the crossbar, tests for each address value must be
performed. An additional constraint is that all turns must be covered by the distinguishing
tests.

T
;
S
73

vYVVvVvVYy vvyyy vVVYY

‘o

N

v Iiviviv

AR A

Figure 22 - Test configurations for mesh-like NoCs [54]

Straight path configuration will be set up by letting the packets pass straight through the
network matrix. This will cover the faults in the straight links of the network. A constraint
is that each bit in the data bus must be traversed with a 0 and a 1 (i.e. toggle coverage
must be 100%). Additionally, vertical and horizontally sent data must be distinguished
from each other. This is necessary to cover faults in multiplexer addressing of the crossbar
switch. In turning paths configuration, based on the deterministic XY routing implemented
in the switches, the packets will be sent by the X axis of the network and will meet at a
diagonal of the switch. Here, the diagonal will be shifted over the entire network matrix
until all the switches have been covered. Processing element configuration is needed to
cover the links to resources. This configuration can be achieved by providing a loop-back
between the resource and links.

The embedded online test packets will be applied whenever there are idle periods or
slacks in scheduling with length K for the send/receive resources, K test patterns will be
applied from them. This will be done periodically fetching K next tests from the test set
in a circular manner, i.e. if the end of the test is reached then it starts again from the
beginning. This scenario provides online test capabilities for regularly checking the health
of the data-path of the router.

3.4 Experimental results

In this section, the experiments ran on the target NoC router architecture explained in
section 2.6 using the methodology flow introduced in section 3.2 were discussed. First,
the evaluation and minimization flow based on the extraction of pseudo-combinational
version of the considered design, was applied to stand-alone East input port LBDR module
as shown in figure 13. Next, the experiment for the pseudo-combinational version of the
control part of the NoC router specifically East input port LBDR module connected with
South output port Arbiter module is discussed. In the end, the evaluation of checkers was
ran on the entire router which includes all the modules introduced in section 2.6.

3.4.1 ELBDR experiment

Table 1 describes the initial devised set of checkers for the routing computation unit
corresponding to the East input port. Based on the pseudo-combinational version of ELBDR
design shown in figure 13, it has 11 input bits:

e 2 flit type bits

50

e 4 destination address bits
e 4 previous output port values bits
¢ 1empty bit coming from the corresponding input FIFO buffer

It is worth noting that there is no East output port for ELBDR due to no 180° turn restriction.
Also, when the routing computation logic has been integrated in the whole router, the
number of bits for the flit type field was extended to three, to implement one-hot encoding.

The exhaustive set of input stimuli represent 2'" = 2048 vectors. A filtering scheme
based on the following constraints was devised to extract the valid set of input patterns
for fault simulation:

o If Empty signal coming from the input buffer is set high, then the rest of the input
bits are ineffective and therefore any value is allowed.

e If the incoming flit is a header flit, then the destination address must be valid accord-
ing to the XY routing and turn restrictions.

o If the incoming flit is a body or tail flit, the previous output values must be valid, i.e.,
only one output direction must be set high according to XY routing.

Based on the above constraints, valid set of stimuli consisting of 1536 vectors which is
around 75% of the exhaustive set of stimuli is extracted through filtering scheme.

Once both the initial set of checkers and the valid set of input stimuli were available, fault
free simulation is performed to find any bugs in the devised checkers or in the verification
environment before starting the actual fault simulation. During the fault simulation, the
initial set of checkers guaranteed full coverage and the results of the evaluation process in
terms of true detection weights are reported in figure 23.

7000
6096
6000
5000
4000

3000

2000
1440

1192 1112
1000
176 144
0 — —

ELBDR Checkers Weight

Inoyagou s

noyagpeA Lo

noyagIyoums L
Tuod[eoo| e
2vodjesol s

mnoyaga|buis e

Figure 23 - Weights of checkers proposed for ELBDR

Based on true detection weight information, the optimization process has been exe-
cuted, and by greedy heuristics minimization procedure, the minimized set of checkers was
obtained. The heaviest checker (err_nolLBDRout) is considered as the starting point, then
the following heaviest checkers were added one by one, evaluating coverage metrics and
area overhead for each different set of checkers. Results are shown in figure 24, reporting

51

CEl, FC and area overhead increase at each step. Full coverage (i.e., 100%) is achieved
when the first three heaviest checkers are considered, resulting in the minimized set of
checkers. The three selected checkers dominate the others present in the initial set, i.e.,
they cover all the faults that the discarded checkers would cover. The area overhead with
the minimized set of checkers has been reduced to 78.57% over the ELBDR circuit which
is far lower than 185.71% imposed by the initial set of checkers. No false positives (FPR is
zero) were encountered during this experiment.

== CE| =—¥=FC AreaOv

Number of Checkers

Figure 24 - ELBDR checkers optimization results

3.4.2 ELBDR and SARBITER experiment

The design considered for the second experiment is shown in figure 25. East input port
routing computation logic which is evaluated in the previous section 3.4.1is connected
to South output port arbitration unit and they are evaluated together. The initial set of
checkers for the arbiter logic is introduced previously in the table 2. The overall design
presents 19 input bits, 11 bits for ELBDR and additional 8 bits for SARBITER.

e 3inputs requests bits (from North, West and Local input ports, East input port is
provided by ELBDR)

e 5 previous state bits which are one-hot encoded

Eempty

N_Req

Eflit_ type ————————

E_Req
oCurrentstate
W_Req I —

: Sel_in
L_Req |
: Grant
SARBITER H signals

Figure 25 - ELBDR + SARBITER experiment

Edst addr ———————

iN ELBDR
ol

ol

‘ o s |z ‘
iCurrentstate
S

52

Due to routing restrictions (no 180° turn), there is no request from South input port
and therefore, grant cannot be given to South direction. It is noteworthy to stress that, the
set of checkers devised for two modules, routing computation and arbitration units are
independent to each other, i.e., they cover faults for different and separate parts of the
circuit without any overlap. Therefore, the minimized set of checkers obtained from the
previous experiment described in section 3.4.1is considered for the routing computation

unit and the focus is on optimizing the initial set of 28 checkers devised for the arbitration
unit.

The exhaustive set of input patterns considered for the pseudo-combinational circuit
would be 2! = 524288 input stimuli. The filtering scheme used will be an extension of the
one used for ELBDR experiment along with one-hot encoding restraint for the 5 previous
state value bits of the arbitration unit. After applying the filtering constraint, the exhaustive
set of input patterns has been reduced to 61440 valid set of input patterns which is around
12% of the initial set.

Once both the initial set of checkers and the valid set of input stimuli were available, fault
free simulation is performed to find any bugs in the devised checkers or in the verification
environment before starting the actual fault simulation. During the fault simulation, the
initial set of checkers guaranteed full coverage and the results of the evaluation process
in terms of true detection weights are reported in figure 26. From the figure 26 it can be
clearly noticed that the two checkers which are both related to one-hot encoding of the
state variable of the arbiter logic are effective in detecting single SAFs.

1000
900
800
700
600
500
400

Checkers Weight (x103)

300
200

°s I

=l

s IIIII
. Il EE e
(%] OO onononononnomonoononononmonon w00 ononononon
222288 LT LT LLL22 2200222222288 ¢8¢8¢¢8
DR a gl Ghelhblbhl
2 5P 22233333853 2 5 3 %30 5 0
&§Sm888z33232s 22 2383333
S 20T TELLLLS e S T ZZ
823898 zmsr g~ z =M@z g s
S 8583 5s5 % m T~ 03 g 3 2K T
-z [bl [N - W
TS 322 m Py m 2 m
=zZF 2 w m N

Figure 26 - Weights of checkers proposed for ELBDR+SARBITER scenario

Figure 27 represents the results of the optimization process on the ELBDR + SARBITER
scenario, considering the minimized set of checkers of the routing computation logic
obtained from the previous section 3.4.1, the greedy heuristics is applied on the set of
checkers of the arbitration unit. The two heaviest checkers from the figure 26, clearly
dominate all the other checkers for the arbitration unit, ensuring full coverage (i.e., 100%).
Thus, the area overhead of a total 3 ELBDR and 2 SARBITER checkers over the considered
partial control path circuit is limited to 56.82%. While the initial set of 28 checkers for
the SARBITER would lead to 170.45% area overhead. It is interesting to observe that the
minimized set of 5 checkers corresponds to one third of the whole 31 checkers considered
for ELBDR + SARBITER scenario. No false positives (FPR is zero) were encountered during
this experiment.

53

=4— CE| =%=FC AreaOv
100 -~

7

80

70
60
50
40
30
20
10

0
0 1 2 3 4 5 6 7 8 9 10

Number of SArb Checkers

Figure 27 - SARBITER checkers optimization results for ELBDR + SARBITER scenario

3.4.2.1 Importance of the independence of checkers As previously mentioned, the set
of checkers devised for ELBDR and SARBITER modules are independent to each other,
i.e., they cover faults for different and separate parts of the circuit, without any overlap.
Therefore, 100% fault coverage for SARBITER achieved with the two heaviest checkers
shown in figure 26 does not mean that they have also covered all the faults occurring in
ELBDR.

Table 7 illustrates the importance of considering the independence information for the
sets of checkers of the two different modules. As it can be observed that the weights of
the ELBDR checkers are far less than those of the SARBITER, but they are still needed to
achieve full coverage for the considered design.

Checker Weight
Serr_validgrant 871552
Serr_invalidstate 600512
Eerr_noLBDRout 243840
Eerr_validLBDRout 57600
Eerr_singleLBDRout | 47680

Table 7 - Weights of the minimized set of 5 checkers for ELBDR + SARBITER scenario

Figure 28 shows the inefficiency of the greedy-heuristic approach due to the lack of
the independence information. The number of steps in the greedy-heuristics procedure is
heavily increased, before reaching the target (i.e., 100%) upper bound for CEl and FC. 19
steps are needed, and full coverage is reached only when Eerr_singleLBDRout checker is
considered. However, when partitioning the fault set to different parts of the design has
been considered, the overall minimization procedure requires only 5 steps.

3.5 Experiments on the whole router

Evaluation of the whole NoC router shown in figure 10 is carried out by considering different
values of data-path bit-width: 10, 32, 64, 128, 256. Three different evaluation experiments
are carried out for the whole NoC router.

e Considering all the checkers devised for the different modules of the router, address-
ing both control part and data-path

e Considering the checkers devised for the control part

54

85

80

%

75

70

65

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Checkers

Figure 28 - Results without considering independent set of checkers for ELBDR + SARBITER scenario

e Hybrid solution which includes the introduction of online embedded test packets
replacing data-path checkers along with control part checkers.

3.5.1 Experiment considering the overall set of checkers

In this experiment, all checkers previously introduced in section 2.6 are considered

e LBDR Checkers

RR arbiter Checkers

Cross bar switch DMR

e Even parity Checkers

FIFO buffer control part Checkers

Checkers for infrastructure of the router

It is worth mentioning that for routing computation and arbitration logic, the minimized
set of checkers obtained through previous experiments (described in sections 3.4.1, 3.4.2)
were considered. Also, these minimized set of checkers has to be adapted for each port of

the router.

Table 8 lists the results for the considered scenario, comprising the evaluation metrics
and run time. It can be noticed that CEl and FC slightly increase with data-path bit-width.
Also, FPR decreases, suggesting that the majority of false positive occurs in the control part
of the NoC router. Simulation time noticeably increases when the bit-width is increased,
as the number of possible locations for the injection of faults becomes wider.

bit-width | CEI (%) | FC (%) | FPR (%) | sim_time (s)
10 99.10 99.71 16.91 64.16
32 99.62 99.67 8.87 233.4
64 99.79 99.92 5.23 671.5
128 99.89 99.96 2.84 2196.9
256 99.94 99.98 1.49 8081.2

Table 8 - Evaluation result for the whole NoC Router

55

Figure 29 displays the area information for considered NoC router design for different
data widths along with the checkers logic for different modules of NoC router. Area
consumption is provided in terms of number of NAND2 gates of the considered synthesis
library. As seen from the figure 29, the control part checkers present constant area with
the increase of the data-path bit-width, while the area consumption of the data-path
checkers (XBAR DMR and parity) grows proportionally to the router size. Table 9 shows the
numerical information for the area consumption of the considered NoC router for different
data widths along with the checkers logic for different modules of NoC router. The table 9
also contains the area overhead increase in percentage.

Area consumption for different data widths

120000
100000
80000

60000

Area (NAND2 gates)

40000

sl

0 10-bit 32-bit 64-bit 128-bit 256-bit

m Control Part Checkers 1338 1338 1338 1338 1338
Parity 410 1345 2690 5390 10790
XBAR DMR 645 1789 3455 6781 13439
Router (without checkers) 5772 12636 22620 45288 82524

Figure 29 - Area information for different bit-widths of NoC router with checker logic

bit — width

10 32 64 128 [256
Router 5772 | 12636 | 22620 | 42588 | 82524
Checker Logic 2393 | 4472 | 7483 | 13509 | 25567

| Control Part checkers | 1338 | 1338 | 1338 [1338 [1338 |

Data-Path checkers 1055 [3134 | 6145 | 12171 [24229
XBAR DMR Checker 645 | 1789 | 3455 | 6781 | 13439
Parity Checkers 410 | 1345 [2690 | 5390 [10790
All checkers 4145 | 35.39 | 33.08 | 3172 | 30.98

Control part Checkers only | 23.18 | 10.59 5.92 3.15 1.62

Table 9 - Area information for different bit-widths of NoC router with checker logic

3.5.2 Experiment considering the control part checkers only

Table 10 shows the evaluation metrics of the checkers considered only for the control part
of the NoC router. It can be observed that the coverage value significantly drops, stressing
the effectiveness of the data-path checkers. However, if the fault injection is limited only to
control part of the router, both CEIl and FC results in 100% value. Interestingly, FPR values
reported in table 10 are really close to the ones reported in table 8 from the previous

56

experiment, showing that the most of the false positive occurrences are related to the
control part of the NoC router.

bit-width CEl (%) | FC (%) | FPR (%) | sim_time (s)
10 60.51 8717 15.54 47.9
32 25.99 74.87 7.78 152.6
64 14.31 70.66 4.49 408.5
128 7.47 67.92 2.44 1300.8
256 3.84 66.62 1.27 4629.8
10
(No fault injection
in Data-path) 99.68 99.87 2118 22.3

Table 10 - Evaluation result for the whole NoC Router (control part checkers only)

3.5.3 Experiment considering the hybrid solution

Based on area consumption information shown in table 9 and evaluation metrics shown in
table 8 and 10, coverage is dramatically reduced when data-path checkers are removed, also
area consumption is significantly dropped, ranging in between 23.18% and 1.62% depending
on the different data widths. To exploit the strong reduction of area-overhead due to
the removal of data-path checkers while at the same time ensuring high fault coverage, a
hybrid solution can be considered, i.e., the use of online embedded test packets proposed
in [53, 54, 42] combining with control part checkers. Using this hybrid solution, full fault
coverage for the NoC router can be achieved with a minor area overhead. As it has been
shown by experiments in [42] an embedded test of length K=196 clock cycles will achieve
FC=100% within the NoC router data path.

3.6 Chapter summary

In this chapter, a methodology is proposed to evaluate the fault detection capabilities
of the concurrent checkers devised for the considered design and to minimize the set of
checkers to ensure high fault coverage with low area overhead. Initially, a set of checkers
has been devised for different modules of NoC router mentioned in the section 2.6. Then
a pseudo-combinational version of the design is extracted to ensure the completeness
of the approach. The pseudo-combinational extraction guarantees the possibility of fault
simulating the circuit in an exhaustive valid range of conditions, overcoming the feasibility
issues of traditional fault injection approaches.

New metrics have been introduced to evaluate the fault detection capabilities of the
checkers devised. A greedy heuristics-based minimization procedure was introduced to
derive the minimized set of checkers, outlining the eventual trade-off between the target
fault coverage and area overhead. It was also described how to deal with the clustering of
different units into the whole router, that led to minor changes in some part of the checker
logic (see table 4), as some of the faults cannot be spotted while studying each logic as a
standalone module.

Experiments were run, applying the proposed methodology flow, at first, to the stan-
dalone modules and then to the whole router. It is worth mentioning that value of coverage
metrics tracing 100% upper bound where achieved in almost every experiment with lim-
ited area overhead, but decreasing as wider bit-widths were considered in the data-path.
Finally, a hybrid approach based on the embedded online test packets for the data-path

57

along with the control part checkers was considered, to ensure full coverage while at the
same time ensuring limited area overhead for the data-path.

58

4 Linking verification assertions and concurrent hardware
checkers

The underlying hypothesis of the checker minimization approach proposed in this thesis
was to move to the higher abstraction level (behavioral) to gain productivity and scalability.
For this purpose, it was required that the high-level fault model would correlate with the
low-level (structural) fault model. A fault model is a representation of one or more faults
in the design for which the test generation process must generate test vectors. The results
obtained from test generation and fault simulation - fault coverage, reflects the quality of
test vectors with respect of the underlying fault models. On the other hand, designing a
hardware checker infrastructure is a manual and error-prone work. Even for verification
experts, it can be extremely time-consuming to define the required hardware checkers. A
possible solution to automate the synthesis of concurrent error checkers is to derive them
from verification assertions. Moreover, creating checkers automatically based on logic
implications derived from the circuit structure [58] is feasible but suffers from low fault
coverage and high area overhead, often exceeding the duplex solutions. However, deriving
checkers from functional assertions, or reusing verification assertions, is similarly known
to yield low coverage of structural faults as it is difficult to correlate functional coverage to
structural one [59]. Thus, in this chapter first, we describe the results of our investigation
in correlation of assertion and hardware checkers in detecting faults, second a method
to translate liveness assertions to safety assertions in order to reuse them as hardware
checkers.
Typically, two different types of assertions must be proved essentially to prove the correct-
ness of the design. They are safety and liveness assertions. A safety assertion stipulates
that 'undesired things’ do not happen during execution of a program and a liveness as-
sertion stipulates that 'desired things’ do happen eventually [60]. Design specifications
can be described as set of assertions and most of them can be more naturally formulated
as liveness assertions [61, 62]. The automatically generated assertions that are derived
from systems behavior are almost exclusively liveness assertions [63] [64]. Some of the
assertions generated can be invalid and must be removed. On the other hand, in practical
applications, safety assertions are prevalent [61, 62] and also, verification using liveness
assertion is known to be significantly less scalable [65]. Therefore, a translation procedure
is required to translate the valid liveness assertions to safety assertions. Generating check-
ers from verification assertion is a solved problem where commercial tools are available
(for example IBM FoCs [66]).

In this thesis, the linking between the verification assertions and the hardware checkers
is accomplished by the following steps:

e Correlation between behavioral fault model and structural (gate-level) fault model

¢ Translation of liveness assertions to safety assertions

e Conversion of safety assertions to safety checkers
Correlation of fault detection capability of high-quality assertions versus the fault detection
capability of the synthesized checkers is studied. A translation scheme is proposed that
translates liveness assertions into safety assertions. Finally, the safety assertions are

synthesized into hardware checkers which in turn can be used for providing a cost-effective
checker infrastructure.

This chapter is based on the following publications:

59

e Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault detection ef-
ficiency of reliability checkers obtained by verification assertion qualification. In
RESCUE 2017 Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. IEEE, 2017 [Publication V]

e Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. From
rtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2018 [Publication
Vi]

4.1 Literature review

Several studies have been carried out to show the correlation between high-level and
low-level fault models.

In [67], the authors have proposed a Register Transfer (RT)-level single-bit stuck-at fault
model which is correlated with Gate-level fault coverage. A set of rules which identifies
the redundancies removed by synthesis are used to compute a fault list that exhibits good
correlation with stuck-at faults. The degree of correlation is measured as the percentage of
gate-level stuck-at faults that are detected by fault simulating the test sequences generated
at RT-level.

Brera et al [68] have proposed a methodology to improve the behavioral fault model by
including information concerning the synthesis flow. The improved behavioral fault model
which is having a high correlation with the structural fault model coupled with an efficient
behavioral test generator able to achieve good gate-level fault coverage. Compared to fault
coverage at gate-level obtained by a commercial test pattern generator, the behavioral test
generator able to obtain a higher fault coverage at gate-level using the improved behavioral
fault model.

In [69], a high-level fault models referred to as behavioral fault models has been
proposed for complex combinational digital designs described in a high-level hardware
description language. The proposed fault models are based on multiple-input stuck-at
faults, actual observed complex failures, and failures of the software structures of a generic
hardware description language that is used to describe high-level designs. The proposed
fault models are validated through a correlation of the fault coverage obtained from
behavior fault simulation of the design in the presence of such faults with the coverage
from the gate-level simulation of an equivalent gate-level representations in the presence
of stuck-at faults.

There exist some research works which convert liveness assertions to safety assertions.
For example, [61] uses finite state machine and reachability analysis to translate liveness
assertions to safety assertions. In [70] the same technique as [61] has been implemented
but using an unbounded state machine. [60] describes a technique to distinguish between
a liveness and a safety assertion but no specific method for translation of liveness to safety
assertions has been proposed.

In [71], the authors have presented a methodology to synthesize monitors from asser-
tions written in the Property Specification Language (PSL). The method implements both
the weak and strong versions of PSL Foundation Language (FL) operators. The authors
have proved the correctness of the monitors using Prototype Verification system (PVS)
theorem prover. Monitors can be connected to the DUV for formal verification, simulation,
emulation or online testing. Such monitors read the system’s signals and report if the
property has either failed, completed successfully or its status is still pending.

60

Finally, IBM developed a commercial tool called Formal Checkers (FoCs) [66] which
takes formal specifications as input and translate them into VHDL checkers which are then
linked with design in a simulation-based verification environment. The checker essentially
implements a state machine which will enter an error state in a simulation run if the
property fails to hold in the run.

4.1.1 Thesis contributions

This thesis studies the correlation between fault detection capabilities of checkers and
high-quality assertions. Particularly, contributions of this thesis are:

e Studied the capability of fault coverage of set of assertions at RTL and fault coverage
of these assertions when they are converted to hardware checkers at gate level
[Publication V1].

o Studied the correlation between the fault coverage of assertions and fault coverage
of the hardware checkers [Publication V].

For the sake of scalability, this thesis proposes the following light weight method to
generate hardware checker from verification assertion:

e Converting liveness assertions to safety assertions. Subsequently, the safety asser-
tions are converted to RTL hardware checkers by using checker synthesis software
like IBM FoCs [66], which in turn can be synthesized by any logic synthesis tool
[Publication V1].

In the following sections, the correlation between behavioral fault model and structural
fault model is discussed. Followed by, the translation of liveness assertions to safety
assertions is explained and then conversion of safety assertions to safety checkers is
studied. Finally, an experimental result and a short summary of the chapter are provided.

4.2 Correlation between behavioral fault model and structural fault model

The focus of this section is studying correlation between the fault coverage of set of
assertion/checkers at different level of abstraction i.e, Behavioral. Figure 30 shows the
framework for estimating the correlation between the evaluation of fault coverage at
behavioral level and evaluation of fault coverage at gate-level. Looking at the figure,
liveness assertions and the design are given as inputs to the Assertion Qualification and
Minimization phase. A mutation-based qualification software called Certitude injects faults
based on mutation analysis into considered design and then determines whether the
assertions can detect these faults. Based on number of faults detected by an assertion,
the fault detection capability of the assertion can be calculated. Similarly, at gate-level,
hardware checkers and the design are given as inputs to the Fault Simulation, Evaluation
and Minimization phase. A diagnostic software called Turbo tester performs the fault
simulation on the considered design along with the checkers devised. Based on the metrics
introduced in section 2.8, the fault detection capabilities of the checkers are evaluated. And
finally, the correlation between fault coverage of the both level is calculated. Experimental
results reports this correlation. More details about evaluation of fault detection capabilities
of the checkers at gate-level are described previously in section 3.2.6 and the evaluation of
fault detection capabilities of the assertions at behavioral level will be discussed in section
5.2.2.

61

Behavioral
Level

Liveness
assertions

Minimized set
of High-Quality
Liveness
assertions

Assertion Qualification
and Minimization

Correlation between
behavioral fault

Gate
Level

Hardware
Checkers

Fault simulation,
Evaluation and
Minimization

Minimized set of
High-fault coverage
Hardware Checkers

Figure 30 - Correlation between behavioral fault model and structural fault model

4.3 Translation of liveness assertions to safety assertions

In this section, the translation of liveness assertions to safety assertions is discussed in
detail. To verify the expected behavior of a design, it is important to specify the sequence
of events that happen in the design [72]. This can be expressed by the following notation:
Antecedent(A) — Consequent(C), where — refers to implication operator. Antecedent
is a behavior that occurs before the Consequent. The result of the implication is either
true or false. A liveness assertion is one which checks for the behavior that must happen
eventually. For consequent to be true, the antecedent must be true first. In some cases,
the liveness assertion stays true even though the antecedent is false. It means that the
verification environment never stimulates the design in such a way to make antecedent
true. This is known as vacuous success and this success does not carry any weight as far
as the verification of the design is concerned. The truth table of the liveness assertion is
shown in table 11. From table 11, the liveness assertion output can be expressed as A || C.

Antecedent | Consequent | Liveness assertion output
0 0 1
0 1 1
1 0 0
1 1 1

Table 11 - Truth table of liveness assertion

A safety assertion is one which checks for the behavior that must not happen. The
safety assertion used for hardware checker circuitry is concerned when antecedent is true,
but consequent is false. The truth table of the safety assertion is shown in table 12. From
table 12, the safety assertion output can be expressed as A & C.

Antecedent | Consequent | Safety assertion output
0 0 0
0 1 0
1 0 1
1 1 0

Table 12 - Truth table of safety assertion

62

Based on the output derived from table 11 and table 12, the liveness assertion and safety
assertion are expressed by the following notations respectively.

e Liveness assertion=A?(C?0:1):1;
e Safety assertion=(A&C)?1:0;

Here, A is the antecedent and C is the undesired consequent.

The following is a set of examples where liveness assertions generated for the design
ELBDR are translated into its corresponding safety assertions.

e Whenever there is a request (i.e., the HEADER flit contains the destination address)
LBDR must compute at least one valid output direction (XY Routing) to pass the flits
from the input buffer to the respective output port.

- E_validLBDRout_liveness = (!Eempty && (flit_id == HEADER | | flit_id == PAY-
LOAD || flit_id == TAIL)) ? ((!oNport && 'oWport && !oSport && 'olLport) ?
1’b0 : 1'b1) : 1'b1;

- E_validLBDRout_safety = (('Eempty && (flit_id == HEADER | | flit_id == PAY-
LOAD || flit_id == TAIL)) && (!oNport && 'oWport && !oSport && !oLport)) ?
1'b1: 1'bO;

Here, E_validLBDRout_liveness is the liveness assertion generated, E_validLBDRout_safety
is the translated safety assertion, (!Eempty && (flit_id == HEADER | | flit_id == PAYLOAD
| | flit_id == TAIL)) is the antecedent and (!oNport && 'oWport && !oSport && !oLport) is
the undesired consequent.

e LBDR routing logic works on HEADER flit alone and it maintains the same port
direction for PAYLOAD and TAIL flit of the same packet, until a new HEADER flit
arrives. If there is none of these flits arrive then output should be zero.

- E_noLBDRout_liveness = (Eempty | | (flit_id != HEADER) && (flit_id != PAYLOAD)
&& (flit_id !'= ‘TAIL)) ? ((oNport | | oWport | | oSport || oLport) ? 1'bO : 1’b1) :
1'b1;

- E_nolLBDRout_safety = ((Eempty || (flit_id != HEADER) && (flit_id != PAYLOAD)
&& (flit_id != ‘TAIL)) && (oNport | | oWport || oSport | | oLport)) ? 1'b1: 1’b0;

Here, E_noLBDRout_liveness is the liveness assertion generated, E_noLBDRout_safety is
the translated safety assertion, (Eempty || (flit_id != HEADER) && (flit_id !'= PAYLOAD)
&& (flit_id != ‘TAIL)) is the antecedent and (oNport | | oWport | | oSport | | oLport) is the
undesired consequent.

e Only one direction port or Local port can become output at an instant.

- E_singleLBDRout_liveness = (\Eempty && (flit_id == HEADER | | flit_id == PAY-
LOAD || flit_id == TAIL)) ? (((oNport && oWport) || (oNport && oSport) ||
(oNport && olLport) | | (oWport && oSport) | | (oWport && oLport) || (oSport
&& olport)) ? 1'b0 : 1'b1) : 1'b1;

- E_singleLBDRout_safety = ((!Eempty && (flit_id == HEADER | | flit_id == PAY-
LOAD || flit_id == TAIL)) && ((oNport && oWport) | | (oNport && oSport) | |
(oNport && olLport) | | (oWport && oSport) | | (oWport && oLport) | | (oSport
&& olport))) ? 'b1: 1'bO0;

63

Here, E_singleLBDRout_liveness is the liveness assertion generated, E_singleLBDRout_saf-
ety is the translated safety assertion, (\Eempty && (flit_id == HEADER | | flit_id == PAYLOAD
| | flit_id == TAIL)) is the antecedent and ((oNport && oWport) | | (oNport && oSport) | |
(oNport && oLport) || (oWport && oSport) || (oWport && oLport) | | (oSport && oLport))
is the undesired consequent.

¢ A non-header flit (PAYLOAD or TAIL) arrives but there is a request to build a new
input-output port connection or the request of the intended output port is muted
while there is a simultaneous request for another output port. Although one output
is computed by LBDR, this erroneous output results in packet misrouting and even
deadlock.

- E_switchLBDRout_liveness = (!Eempty && (flit_id == PAYLOAD || flit_id ==
TAIL)) ? (((oNport != iNport) || (oWport != iWport) || (oSport != iSport) | |
(oLport !=iLport)) ? 1'bO : 1’b1) : 1'b1;

- E_switchLBDRout_safety = ('Eempty && (flit_id == PAYLOAD | | flit_id == TAIL))
&& ((oNport !'=iNport) | | (oWport !=iWport) | | (oSport !=iSport) | | (oLport
=ilLport)) ? 1'b1: 1'bO;

Here, E_switchLBDRout_liveness is the liveness assertion generated, E_switchLBDRout-
_safety is the translated safety assertion, (!Eempty && (flit_id == PAYLOAD | | flit_id ==
TAIL)) is the antecedent and ((oNport !=iNport) | | (oWport !=iWport) | | (oSport !=iSport)
|| (oLport !=iLport)) is the undesired consequent.

e Local port should be triggered when current address matches with the destination
address

- E_localport1_liveness = (!Eempty && (flit_id == HEADER)) ? (((oLport == 1) &&
(cur_addr !=dst_addr)) ? 1'b0O : 1'b1) : 1’b1;

- E_localport1_safety = ((!Eempty && (flit_id == HEADER)) && ((oLport == 1) &&
(cur_addr !=dst_addr))) ? 1'b1: 1'bO0;

Here, E_localport1_liveness is the liveness assertion generated, E_localport1_safety is
the translated safety assertion, ('Eempty && (flit_id == HEADER)) is the antecedent and
((oLport == 1) && (cur_addr !=dst_addr)) is the undesired consequent.

- E_localport2_liveness = (\Eempty && (flit_id == HEADER)) ? (((oLport == 0) &&
(cur_addr == dst_addr)) ? 1’'b0 : 1'b1) : 1'b1;

- E_localport2_safety = (('Eempty && (flit_id == HEADER)) && ((oLport == 0) &&
(cur_addr == dst_addr))) ? 1'b1: 1'bO0;

Here, E_localport2_liveness is the liveness assertion generated, E_localport2_safety is
the translated safety assertion, (!Eempty && (flit_id == HEADER)) is the antecedent and
((oLport == 0) && (cur_addr == dst_addr)) is the undesired consequent.

4.4 Conversion of safety assertions to hardware checkers

In this section, the conversion of safety assertions to hardware checkers is discussed.
Checking tools, such as [66] are available commercially which converts the assertions
to checkers, which can be integrated into the verification environment. In this thesis,
the safety assertions derived from liveness assertions as described in section 4.3 are
synthesized using Synopsys design compiler tool [73] to generate hardware checkers. For a
safety assertion, the output of the hardware checker reports whenever the condition is
violated.

64

4.5 Experimental results

In this section, the experiments ran on the East input port LBDR module explained in
section 2.6.1 and South output port Arbiter module explained in section 2.6.2 using the
methodology flow introduced in section 3.2 and assertion qualification and minimization
introduced in section 5.2.2, 5.3 respectively were discussed. First, the correlation between
the fault detection capabilities of checkers and assertions devised for ELBDR module is
studied. Next, the same procedure is carried out for SARBITER module.

4.5.1 ELBDR experiment

Table 1 describes the initial devised set of checkers for the routing computation unit
corresponding to the East input port. First, the fault simulation is performed with the
initial set of checkers. The results of the evaluation process in terms of true detection
weights are already reported in figure 23. Based on true detection weight information, the
optimization process has been executed, and by greedy heuristics minimization procedure,
the minimized set of checkers was obtained. Results are shown in figure 31a, reporting
CEl, FC and area overhead increase at each step. Full coverage (i.e., 100%) is achieved
when the first three heaviest checkers are considered (Eerr_noLBDRout, Eerr_validLBDRout,
Eerr_singleLBDRout), resulting in the minimized set of checkers. At behavioral level, fault
analysis is performed with initial set of assertions. The result is the fault table containing
which assertions cover which faults. Based on the fault table information, the minimized set
of assertions are obtained by the greedy heuristics minimization procedure. Full coverage
(i.e., 100%) is achieved when all the assertions are considered except E_switchLBDRout-
_liveness. Results are shown in figure 31b reporting Cumulative Fault Coverage increase at
each step.

4.5.2 SARBITER experiment

Table 2 describes the initial devised set of checkers for the arbitration unit corresponding to
the South output port. First, the fault simulation is performed with the initial set of checkers.
The results of the evaluation process in terms of true detection weights are already reported
in figure 26. Based on true detection weight information, the optimization process has
been executed, and by greedy heuristics minimization procedure, the minimized set of
checkers was obtained. Results are shown in figure 32a, reporting CEl, FC and area overhead
increase at each step. Full coverage (i.e., 100%) is achieved when the first two heaviest

Number of Checkers

(a) (b)

Figure 31 - (a) ELBDR checkers optimization results (b) ELBDR Cumulative fault coverage using
Assertion Qualification and Minimization procedure

65

——CEl —#—FC AreaOv

Number of SArb Checkers

(a) (b)

Figure 32 - (a) SARBITER checkers optimization results (b) SARBITER Cumulative fault coverage using
Assertion Qualification and Minimization procedure

checkers are considered (Serr_validgrant, Serr_invalidstate), resulting in the minimized set
of checkers. At behavioral level, fault analysis is performed with initial set of assertions.
The result is the fault table containing which assertions cover which faults. Based on
the fault table information, the minimized set of assertions are obtained by the greedy
heuristics minimization procedure. Full coverage (i.e., 100%) is achieved when the first two
assertions with high quality fault coverage (Serr_validgrant, Serr_nogrant) are considered.
Results are shown in figure 32b reporting Cumulative Fault Coverage increase at each step.

4.6 Chapter summary

In this chapter, the correlation between the fault detection capabilities of the concurrent
checkers and the fault detection capabilities of the high-quality verification assertions
are studied. Next an assertion translation was proposed which converts the liveness
assertions into its safety equivalents. Finally, the safety assertions are synthesized further
to hardware checkers which are to be evaluated at the gate-level to provide cost-effective
checker infrastructure.

Experiments are carried out on the East input port LBDR module and South output port
arbiter module. The results showed the feasibility of assessing the fault detection capabil-
ities of the concurrent checkers by applying assertion qualification. Although assertion
quality was not directly proportional to the fault coverage of the checker, a heuristic-based
minimization procedure indicates that the optimal solution in terms of area and fault
coverage was achieved without the need to move to the lower level of abstraction.

66

5 Qualification and minimization of assertions

Due to the increasing complexity of today’s digital systems, the amount of time and man-
power that is invested in finding and removing bugs is growing. To overcome this problem
and to develop systems without bugs, verification techniques have arisen which check
if a system meets its specification and thereby fulfills its intended purpose [74]. Among
all these techniques, Assertion Based Verification (ABV) has become a popular means for
catching and eliminating errors. At the same time, due to the growing failure-rates, process
variations and time-dependent degradation of modern chip technologies, it is imperative
to develop cost-effective means for protecting systems against faults occurring in the field,
during their life-time.

Thus, concurrent on-line checker circuitry is required to monitor the fault-free func-
tioning of the system hardware. Such checkers are normally designed ad-hoc or by syn-
thesizing them from verification assertions. However, the number of assertions in the
verification environment is generally far too high to allow for area-efficient checking infras-
tructure. Moreover, the number of liveness checkers generated by automated methods
(e.g. [75, 76, 63]) may be too high even for verification purposes. Therefore, there is a
need for qualification and minimization of liveness assertions with a prospect of reusing
them as hardware safety checkers.

A verification environment consists of a set of assertions that collectively can detect a
range of design bugs. However, not all the assertions are essential to detect this range:
some assertions are dominated by others, or by a set of other assertions, some assertions
are equivalent in terms of bug detection capabilities, etc. Discarding such assertions which
do not detect any unique bugs leads to obtaining a set of minimized assertions. Of course,
it is not possible to enumerate all possible bugs, and therefore, fault models are applied to
estimate the coverage of different assertions. This assertion quality estimation task is called
assertion qualification. While there exist several works that address assertion qualification
and minimization [75, 76, 63] as well as qualification and minimization of checkers at the
gate-level [3, 77]. This chapter proposes a methodology that applies high-level assertion
qualification and minimization with the goal of generating low-area high-quality checker
circuitry.

This chapter is based on the following publications:

e Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. From
rtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2018 [Publication
VI]

5.1 Literature review

With the advent of standardized assertion languages and assertion libraries, several re-
search works witnessed an increased interest in adopting assertion-based techniques.
Assertions may be generated manually or by assertion mining tools. Manual definition
of assertions requires high expertise, and it is an error-prone, time-consuming activity. Both
manual as well as automatic way of generating assertions suffer from certain problems.
These problems are related to the risk of defining assertion sets that are incomplete (i.e.,
unable to cover all expected behaviors of the DUV), inconsistent (i.e., with contradicting
assertions), redundant (i.e., with assertions that are logical consequence of others), and
including vacuous assertions (i.e., assertions that are true independently from the DUV,
and thus irrelevant). As a result, a false sense of security is induced by ABV[21] campaign
conducted with a low-quality set of assertions. As opposite to manual definition, some

67

works have been done recently to automatically generate assertions from the DUV imple-
mentation [78, 64]. In these approaches, execution traces obtained by simulating the DUV
are dynamically analyzed to mine significant assertions. Independent from the abstraction
level of the DUV (e.g. Transaction-Level Modeling [TLM], RTL, gate-level) execution traces
pass through an assertion miner, whose output is a set of candidate assertions capturing the
behaviors exposed by the DUV during simulation, according to a set of predefined temporal
patterns. Extracted assertions may highlight shortcomings of the original specifications,
which may lead to distinguish design’s error and unpredictable behaviors implemented in
the DUV. While vacuity and inconsistency in the set of generated assertions are generally
avoided by the mining approach itself, assertion incompleteness and redundancy may
still affect the outcome of assertion mining. Thus, a qualification phase for evaluating the
degree of interestingness of extracted assertions and minimize the irrelevant ones is still
necessary.

As the number of mined assertions can be very high, their manual qualification is
almost impractical. For this reason, a strategy to automatically evaluate the interestingness
of extracted assertions and rank them accordingly is necessary. Unfortunately, current
approaches for assertion mining are still unsatisfactory from this point of view.

In [78], a stressing phase is proposed to obtain the candidate assertions which in turn
are converted into checkers, by using for example, IBM FoCs [66], and connecting these
checkers to the DUV. During the stressing phase, a much larger set of testbenches are
used compared to the initial set of testbenches used to generate the execution traces. In
stressing phase when a checker fails, the corresponding candidate assertion is discarded.
Only assertions that survive this stressing phase are collected. The stressing phase is
applied to increase the likelihood that the surviving assertions are satisfied by the DUV
independently from the execution traces adopted for their extraction. This approach can
verify the likelihood that mined assertions are globally satisfied (and not only for the
execution traces analyzed by the miner), but no strategy is proposed to measure their
interestingness in covering DUV behaviors.

In [64], interestingness estimation is based on the number of propositions included
in the antecedent of the assertion, according to the fact that an assertion with a lower
number of propositions in its antecedent has a higher input space coverage than one with
many propositions in its antecedent. However, the correlation between the antecedent
and the consequent of an assertion is not considered. To solve this drawback, in [79] a
ranking function is proposed that evaluates the quality of the mined assertions in terms of
cause-effect relationship between antecedent and consequent of an assertion.

In [22] the quality of assertions is estimated based on their amount of frequencies and
correlation during the simulation. However, the work does not consider assertions with
low number of frequencies which may cover the corner cases of a design. In [25], a metric
is introduced to rank assertions based on their ability to cover corner cases. Moreover, it
does not consider assertions which cover the general behavior of the design. In [75], mined
assertions are said to be generally ranked according to their frequency of occurrences and
time of first occurrence, which is too general metric for the ranking purpose.

As an opposite class of approaches, coverage metrics have been widely studied for
qualification of assertions [80, 81, 82, 83] . Most of these works rely on mutation analysis,
which requires perturbing the DUV implementation by injecting mutations (faults) to
check, either statically [81, 82] or dynamically [83], whether they change the truth values
of the assertions. Mutations that cause a change are said to be detected. Assertions that
detect a few mutations are less interesting than assertions detecting a higher number
of mutations. Not detected mutants generally highlight area/behaviours of the DUV

68

that are not covered by any of the defined assertions showing a hole on the coverage.
Dynamic approaches like [83] scale better with respect to static techniques, however, they
still require long simulation runs for checking each assertion for each mutation with a
significant set of testbenches. When the number of assertions is very high, as in the case
of assertion extracted automatically, evaluating their interestingness through mutation
analysis becomes a very time-consuming activity.

5.1.1 Thesis contributions

This thesis proposes a framework for selecting a set of high-quality and minimized liveness
assertions from initial set of liveness assertions by combining a data mining technique with
fault analysis approach. Different from the above-mentioned approaches, the qualification
and minimization method proposed in this thesis provides the following contributions:

e First, an advanced assertion ranking approach has been introduced based on com-
bining three different metrics adapted from data mining, to evaluate assertions’
quality from different conditions. Compared to similar approaches in the state of
the art, it provides higher correlation of assertion quality with fault coverage of the
obtained checkers [Publication VI].

e Second, combining a fault analysis approach along with a data mining approach
for assertion qualification to get the advantages of both techniques, the former
providing high accuracy and the latter very short execution time [Publication VI].

¢ Third, proposing an innovative automatic technique to estimate quality of assertions
by applying a data mining based qualifier, according to probabilistic metric typically
adopted in the context of data mining. This metric can distinguish the assertions
with limited number of activation which are very effective in covering the corner
cases of a design [Publication VI].

In the following sections, the methodology for qualifying, minimizing the considered
set of assertions is discussed. Followed by experimental results regarding the application
of framework to the control logic of the NoC router is studied. Finally, a short summary of
the chapter is provided.

5.2 Assertion qualification

In order to derive cost effective hardware checkers from a large number of liveness as-
sertions, a methodology is proposed (as shown in figure 33), first to estimate the quality
of the assertions based on data mining metrics and rank them based on their quality i.e.,
Assertion Qualification step. Second, these highly ranked assertions are subjected to fault
analysis to determine the fault coverage of each of them. Some of the assertions are
discarded based on the output of fault analysis to derive minimized set of high-quality
liveness assertions i.e., Assertion Minimization step. In the following these two steps are
discussed.

Assertion qualification consists of two main phases as shown in figure 34.
1. Assertion ranking

2. Assertion fault analysis

In Assertion Ranking phase, a data mining-based tool called Shayan [22] is applied
on liveness assertions to estimate their quality based on data mining metrics. The high-
quality assertions selected by Shayan go through Assertion Fault Analysis phase utilizing

69

Liveness
assertions

Minimized set
of High-Quality
Liveness
assertions

Figure 33 - Assertion Qualification and Minimization

the Synopsys Certitude qualification tool [84]. The hypothesis is that assertions with higher
degree of quality are more effective in the verification process. Thus, Shayan selects
assertions with the degree of quality above a preset threshold and forwards them to the
certitude for fault analysis. The main drawback of fault analysis approaches is their long
simulation time, since the effect of a fault that has been injected needs to be evaluated
by simulation. The above-mentioned preliminary selection by Assertion Ranking leads to
reduction of this simulation time. In the following subsections it will be explained how
assertions are ranked based on the data mining metrics and also how fault coverage of
each assertion is estimated.

Liveness
assertions

Assertion Assertion
Ranking Fault Analysis

Figure 34 - Assertion Qualification

5.2.1 Assertion ranking

From the point of view of general concept, data mining [85] and assertion ranking share
the same idea (extracting rules from data), but they have several differences that make it
practically different how these metrics are computed and interpreted for evaluating the
quality of assertions. Shayan calculates a metric called Q which is calculated individually for
each assertion. Q s the linear combination of Support (Definition 1), Correlation Coefficient
(Definition 2) and Strength Measure (Definition 3). The higher the value of Q, the higher
the quality of the assertion would be. Figure 35 shows the internal design of Shayan in
three steps:

1. Occurrence counting
2. Contingency table creation

3. Metric calculation

e Occurrence counting: Liveness assertions and the DUV are inputs of the work flow.
In the first step, set of valid input sequences are connected to a simulator to extract
information about occurrences of assertions during the simulation. It is worth to
be noted that valid input sequences used are extracted from the exhaustive set of
input pattern. The method used to extract the valid input sequences are discussed
already in section 3.2.3. The number of times an assertion is holding in the valid
input sequences is computed. Then, each assertion is decomposed into antecedent
and consequent and their respective frequencies in the valid input sequences are
computed.

70

Liveness / Valid input
assertions sequence
- Occurrence of
cach asserion
Step 1: Occurence Counting

I

Creating
contingency
table

Design

)

Step 2: Creation of Contingency table

I

Calculating the metrics i
and ranking assertions — Ranked assertions
based on the quality

Step 3: Metric calculation and Assertion ranking

Figure 35 - Overview of Assertion ranking

e Creation of contingency table: At this stage, the necessary ingredients are ready for
Creating contingency tables, see (Table 13). The computation of the contingency

L c| C|
A\l fu | fio || fix
A ||l for | foo || fox
I fxi | fxo || fex

Table 13 - Contingency table for A — C.

table is based on counting occurrences of antecedent, consequent and the assertions
respectively. Given an assertion A — C, its contingency table represents the relation
between A and C.

The cells of contingency table contain the following information (Table 13):
- Cell f1; represents the number of times where A is true and C is true in the
valid input patterns.

- Cell fio represents the number of times where A is true but C is false in the
valid input patterns.

- Cell fo; is the dual of fig, i.e., it is the number of times where A is false and C
is true in the valid input patterns, i.e., it is the sum of occurrences of assertions
A’ — Cincluded in the considered assertion set with A # A’. In this case, A
and A’ can also be conflicting because this does not represent an inconsistency
for the assertion set.

- Cell foo is the number of times an assertion is not true in the valid input patterns.
Joo is obtained by summing the occurrences of f11, fio and fo; and subtracting
them to the total number of valid input patterns.

- Cell fix is the sum of cells f1; and fig.
- Cell fox is the sum of cells fo; and foo.
- Cell fx is the sum of cells f1; and fy;.

- Cell fxo is the sum of cells f19 and fyo.

71

- Cell fxx is the grand total. fxx is same as the total number of valid input
patterns considered in the simulation.

e Metric calculation and assertion ranking: Contingency tables provide basic ingredi-
ents for computation of Support [S], Correlation Coefficient [CC], Strength Measure
[Strength] and their linear combination Q. Concerning support, according to (Defini-
tion 1), it is computed using the following formula:

Support = S (9)
fxx

The Correlation Coefficient for an assertion according to (Definition 2) is computed
using the following formula:

CC(A,C) = SfirSxx — fixfxi (10)

VI ix fox fx1/xo

The computation of the Strength Measure for an assertion according to (Definition 3)
is computed by:

i
Strength Measure = (1)
\/f)ﬂ = fxol-1fix — fox|

According to equation 9, the support ranks in the highest positions assertions that
occur frequently in the execution traces. On the other hand, the correlation coefficient
(equation 10) privileges assertions where the number of occurrences of the antecedent
better matches the number of occurrences of the consequent, but assertions where these
numbers are low could be extracted by chance without representing a real behavior of
the DUV. However, there are also some specific assertions that occur very rarely because
they refer to the corner cases and thus equation 11 has been proposed. A combination of
support, correlation coefficient and strength measure provide a more accurate estimation
of assertion interestingness (equation 12).

Thus, the quality of an assertion A can be measured through the following formula:

O(A)=ax*s,(A)+ (1 —a)xp,(A)+ (1 — &) x strength, (A) (12)

where, a € [0,1], and s,(A) and p,(A) are the value obtained by normalizing, respectively,
the support s, the correlation coefficient p and Strength measure strength of A with respect
to the whole set of analyzed assertions. By varying the value of « the role of support
becomes important with respect to the role of the correlation coefficient and strength in
determining the final estimation of assertion quality.

5.2.2 Assertion fault analysis

In this section, the fault detection capability the output from the assertion ranking phase
(section 5.2.1) is discussed. The overview of Assertion Fault analysis phase is shown in
figure 36. Shayan, which was described in section 5.2.1, can rank the assertions based
on data mining metrics but it cannot provide any information whether two assertions
have the same set of covered faults (i.e. the assertions are equivalent) or one is subset
of the other assertions’ covered faults (i.e. dominated by the other assertion) etc. Such
equivalence and dominance relationships between assertions allow minimizing the set
of assertions selected for synthesis and gate-level evaluation. As shown in Figure 36, the

72

Valid input
sequence

Compile
Script

Liveness
assertions !

Fault Table

Fault Analysis

Figure 36 - Assertion Fault analysis phase

DUV and selected liveness assertions provided by Assertion Ranking phase together with
the valid input sequence (i.e. the verification environment) are fed into the Certitude tool
that performs the fault analysis.

Certitude injects faults based on mutation analysis into considered design and then
determines whether the liveness assertions can detect these faults. Based on number
of faults detected by an assertion, the fault detection capability of the assertion can be
calculated. Once the fault is injected into the design, certitude requires a simulator to
run the fault simulation along with valid input patterns. The output is the fault table
showing which assertion a; covers which faults f;. The fault table presents one row for
each assertion and one column for each fault injected. For the corresponding input pattern,
the assertion detecting a particular fault will be marked as 1 and the undetected faults as
well as the faults which have not been propagated are marked as 0. A sample fault table is
shown in figure 37.

Faults
Assertions

f1 f2 3 4 5 6 f7
al 0 0 1 1 0 0 1
a2 1 0 0 0 0 1 0
a3 0 1 0 0 0 0 0
a4 1 1 1 1 0 0 0
ab 0 0 1 1 1 0 0

Figure 37 - Sample Fault Table

5.3 Assertion minimization

In assertion minimization step, a minimization algorithm (see algorithm 2) is implemented
on the fault table information of each assertion and the output is the minimized set of
high-quality assertion as shown in figure 38. The minimized set of liveness assertions are
of high-quality, with good fault coverage and which in turn can be synthesized to be reused
as hardware checker circuitry.

. L Minimized set
Applying minimization of High-Quality

Fault Table algorithm Liveness

assertions

Figure 38 - Assertion Minimization

The algorithm is based on iterative implication and greedy selection operations. Two
types of implications are used. First, unique assertion a;, which cover some fault f; that is
not covered by any other assertions are identified and removed from the table. Second, it
is said that assertion a; dominates assertion ay, if all the faults covered by ay is a subset of
the faults covered by a;. Note, that equivalence of two assertions a; and ay is a special

73

Algorithm 2 Fault table minimization

while exist faults uncovered by assertions do
while implications provide new assertions do
Select unique assertions

Remove dominated assertions
end

Make a greedy selection
end

case of dominance, where a; and a; mutually dominate each another. If after performing
the implications the set of selected assertions are not covering all the faults in the fault
table, a greedy selection operation is performed. The algorithm selects an assertion that
covers the greatest number of faults not yet covered by the set of selected assertions. The
algorithm will complete when the selected assertions cover all the faults in the fault table.

5.4 Experimental results

The efficiency of the proposed methodology has been evaluated by considering liveness
assertions for East input port routing computation unit and South output port arbitration
unit of NoC router which is already discussed in section 2.6. By applying filtering constraints
for the exhaustive set of input patterns considered initially for East input port LBDR design,
2144 is extracted as valid input patterns. In the similar fashion, for South output port Arbiter
design, 80 valid input patterns are extracted from an exhaustive set of input patterns.

Initially the information about the occurrences of assertions for the set of valid input
sequence during the simulation is extracted. Based on the counting occurrences of an-
tecedent, consequent and assertions, a contingency table is created. The contingency
table for the ELBDR design is shown in Table 14. For example, for assertion E_validLBDRout-
_liveness, f11 corresponds to the total number of occurrences of E_validLBDRout_liveness
in the analyzed valid input sequences. Assertion E_validLBDRout_liveness was activated in
96 different sequences and assertion E_noLBDRout_liveness was activated in 2048 other
sequences and exactly at different clock cycle compare to E_validLBDRout_liveness. fiq is
equal to O, since antecedent A does not appear in none of the other assertions. fy; is O
since consequent of the assertion does not appear in none of the other assertions. And
finally, fyo is obtained by summing the occurrences of fi1, fio and fy; and subtracting
them to the total number of valid input patterns (in this case 2144). Next the combination
columns like fx1, fxo, fix and fox are obtained by summing the values of either of f1;
or fio or fo1 or foo accordingly. fxx is same as the total number of valid input patterns
considered in the simulation. Similar considerations allow computing values for all the
other cells of Table 14.

Assertion Sir | fio | for foo fxi fxo | fix Jox | fxx
E_nolLBDRout_liveness 2048 0 0 96 2048 96 2048 96 2144
E_validLBDRout_liveness 96 0 0 2048 96 2048 96 2048 | 2144
E_switchLBDRout_liveness 64 0 137 | 1943 201 1943 64 2080 | 2144
E_singleLBDRout_liveness 96 0 0 2048 96 2048 96 2048 | 2144
E_localport1_liveness 4 16 0 2124 4 2140 20 2124 | 2144
E_localport2_liveness 28 0 | 2116 0 2144 0 28 2116 | 2144

Table 14 - Contingency table for ELBDR design assertions

74

Based on the contingency table information, the metrics described in section 2.11 for
each assertion of ELBDR design is calculated. The output is shown in table 15. The best
result for the quality estimation is obtained with o¢ = 0.4 in comparison with fault detection
capability of the assertions.

Assertion S CC | Strength 0
E_nolLBDRout_liveness 0.96 1.0 1.05 1.61
E_validLBDRout_liveness 0.04 1.0 0.05 0.65
E_switchLBDRout_liveness | 0.03 | 0.55 0.03 0.36
E_singleLBDRout_liveness | 0.04 1.0 0.05 0.65
E_localport1_liveness 0.001 | 0.45 0.001 0.27
E_localport2_liveness 0.01 0 0.01 0.01

Table 15 - Calculated metrics for each assertion of ELBDR design

The assertions are ranked based on the value Q. According to the preset threshold
(here 75%), assertions, E_noLBDRout_liveness, E_validLBDRout_liveness, E_singleLBDRout-
_liveness and E_switchLBDRout_liveness are selected and rest are discarded. Similarly
for SARBITER design, 19 assertions out of 28 assertions are selected and given as input to
Assertion fault analysis phase.

In Assertion fault analysis phase, a mutation-based qualification software, Certitude
does fault analysis on each of the selected set of assertions for ELBDR design and outputs
the result in the form of fault table information which contains the details of which assertion
detects which fault injected in the design. Based on the fault table information provided
by Assertion fault analysis phase for ELBDR design, the minimization algorithm is applied.
Assertions reduced to 3 based on the fault detection capability. Similarly, for SARBITER
design, based on the fault table information provided by Assertion fault analysis phase,
the minimization algorithm selects 2 assertions out of 19.

Table 16 shows the number of assertions considered initially at the beginning of each
phase - Assertion ranking phase (described in Section 5.2.1) and a minimized set of asser-
tions subsequent to the Assertion fault analysis phase (described in Section 5.2.2). As it
can be seen, for ELBDR design the initial number of assertions were minimized to 50% and
for SARBITER design, the initial number of assertions were reduced to 7.14%.

Assertion
Assertion Fault
Initial Ranking Analysis

Design # % # % # %
ELBDR 6 | 100 | 4 | 66.7 | 3 50
SARBITER | 28 | 100 | 19 | 66.7 | 2 714

Table 16 - Minimization of the number of assertions for ELBDR and SARBITER design

The minimized set of checkers are synthesized to hardware checkers via Synopsys design
compiler using a class library, leading to area consumption results in terms of number
of NAND2 gate equivalents. As shown in table 17, the area consumption of initial set of
checkers were 60 and 128 (number of NAND2 gates) for ELBDR and SARBITER respectively.
After minimization, the area consumption has been reduced to 29 and 33 (number of
NAND2 gates) respectively. This minimization leads to 48.3% and 25.7% of reduction in
area consumption.

75

Design Initial set | Minimized set | Reduced Area (in %)
ELBDR 60 29 48.3%
SARBITER 128 33 25.7%

Table 17 - Area consumption of Checkers (number of NAND2 gates)

5.5 Chapter summary

In this chapter, a framework is proposed for selecting a minimal set of high-quality as-
sertions which in turn to be implemented as hardware checkers. Experiments were run,
applying the proposed framework, to ELBDR and SARBITER as a standalone module. It is
worth mentioning that the area consumption of the synthesized checkers were reduced to
25.7% and 48.3% for ELBDR and SARBITER design respectively. These checkers provided by
this proposed framework are able to cover 99.83% of single event transient faults.

76

6 Conclusion

This thesis has addressed a set of timely issues in reliability by developing a methodology for
generating cost-effective concurrent hardware checkers. A framework has been proposed
for evaluating the fault detection capabilities of concurrent checkers for NoC routers. The
goal was to achieve low-latency, low area overhead and high fault coverage checkers.
Also, a framework has been developed for selecting a set of high-quality assertions by
combining a data mining technique with the fault-analysis approach allowing the reuse
of the verification assertions in hardware checkers synthesis. The quality of assertions
was validated by studying the correlation between the fault detection capabilities of the
checkers and assertions.
The four main contributions of this thesis are summarized below:

o Aframework was provided to evaluate the fault detection capability of the concurrent
checkers by formally proving the absence or presence of true misses over all possible
valid inputs for a checker and targeting the minimum fault detection latency of a
single clock-cycle. Pseudo-combinational extraction guaranteed the possibility of
fault simulating the circuit in an exhaustive valid range of conditions. The following
results were achieved concerning minimization of concurrent checkers:

- Full set of checkers was devised for control part of the target NoC router
architecture reaching the target (i.e., 100%) SET fault coverage and detecting
the faults with a single clock cycle latency.

- The area overhead of 185.71% imposed by the initial set of checkers over the
ELBDR module has been reduced to 78.57% with the minimized set of checkers
after the minimization procedure. While the initial set of checkers for the
SARBITER module would lead to 170.45% area overhead, which is limited to
56.82% after the minimization procedure.

- The result is by far more cost-effective in terms of area when compared to a
doubling or triplicating of the respective modules applied in traditional fault
tolerance approaches.

¢ A hybrid approach was proposed which combines concurrent checkers for control
part with embedded on-line test packets replacing the data-path checkers. The
trade-off between area-overhead and fault coverage was outlined. The approach
led to the following results:

- When considering the checkers for both control part and data-path of the
whole NoC router, the fault coverage metrics resulted in 100% value with the
considerable area overhead ranging from 30.98% to 41.45% depending on the
data width of the router.

- By using the hybrid approach, the area overhead was reduced to 1.62% to
23.18% depending on different data widths.

- Despite, it comes at the expense of loss of fault coverage for soft errors in the
data path, which is however less critical since those faults can be corrected by
means of software in an end-to-end correction setup.

e The correlation between the fault coverage obtained from the behavioral fault
analysis with the qualified assertions and the fault coverage obtained from the gate-
level fault simulation of the checkers which were synthesized from the qualified
assertions was studied and validated yielding the following results:

77

- Experiments carried out on the routing computation logic of NoC router showed
the feasibility of assessing the fault detection capabilities of checkers by apply-
ing assertion qualification. Although assertion quality was not directly propor-
tional to the checker coverage, experiments implementing a heuristic assertion
minimization indicate that the optimal solution in terms of coverage/area was
achieved without the need to descend to tedious gate-level analysis.

¢ A framework was proposed for selecting a minimal set of high-quality assertions to
be implemented as hardware checkers by combining a data mining technique with a
fault analysis approach. An assertion conversion methodology was proposed which
converted liveness assertions into their safety equivalents. The safety assertions
were further synthesized to hardware checkers to be evaluated at the gate level to
provide a cost-effective checking infrastructure.

- The area consumption of the synthesized hardware checkers were reduced to
25.7% and 48.3% for ELBDR and SARBITER design respectively. These checkers
provided by this proposed framework were able to cover 99.83% of single
event transient faults.

6.1 Future work

This research paves the way for future work in multiple directions such as:

e Considering multiple-cycle temporal logic assertion which addresses inputs, internal
signals and outputs of the design in different clock cycles.

e Combining the online fault detection based on the concept of end-to-end detection.

e Combining with effective recovery and reconfiguration mechanism enabling the
system to continue operating properly in the presence of faults.

78

List of Figures

NV ooOoONoONTULDNOWON -

NN = = = 2 o
_o0ovVvooNOoUbhWN—=O

22
23
24
25
26
27
28

29
30
31

32

33
34
35
36
37
38

Failure rate over a life-time of a hardware system with shrinking technology 14

Overview of the Thesisflow 15
Threats to digital circuits 18
Classificationoffaults 18
Classification of Single Event Effects 20
Concept of Faultsimulation 20
Levels of abstraction 21
Anexampleof NoCbasedSoC 22
Target NoC router number 5 in considered 4X4 2D mesh topology 23
High-level overview of NoC Router Architecture 24
LBDR mechanism [18] o e 24
East LBDR logicforNoCrouter 25
Pseudo-combinational version of ELBDR logic 26
Overview of Round-Robin Arbiter 27
Pseudo-combinational version of SARBITER logic 28
Crossbar switch architecture, 31
Overview of NoC Router with embedded parity checking 31
The concept of Concurrentchecker 32
Similarities between data mining and assertion mining 36
Checkers Evaluation and Minimizationflow 42
(a) Design with combinational and sequential circuit (b) Equivalent pseudo-

combinational circuit L 44
Test configurations for mesh-like NoCs [54] 50
Weights of checkers proposed forELBDR 51
ELBDR checkers optimizationresults 52
ELBDR + SARBITER experiment 52
Weights of checkers proposed for ELBDR+SARBITER scenario 53
SARBITER checkers optimization results for ELBDR + SARBITER scenario . 54
Results without considering independent set of checkers for ELBDR + SAR-

BITERSCenario. e e e e e e e 55
Area information for different bit-widths of NoC router with checker logic 56
Correlation between behavioral fault model and structural fault model . . 62
(a) ELBDR checkers optimization results (b) ELBDR Cumulative fault cover-

age using Assertion Qualification and Minimization procedure 65
(a) SARBITER checkers optimization results (b) SARBITER Cumulative fault

coverage using Assertion Qualification and Minimization procedure . . . 66
Assertion Qualification and Minimization 70
Assertion Qualification L 70
Overview of Assertionranking 71
Assertion Fault analysisphase 73
SampleFaultTable 73
Assertion Minimization Lo oo o 73

79

List of Tables

NV ooOoONoONTULDNOWON -

—_ = A
NoupMhWDN=O0O

CheckersforLBDRlogic
Checkers for Round-Robin Arbiter logic
Checkers for FIFO Controlpart
Checkers for the control part infrastructure
Checkers Evaluation Metrics
Symbols and detection outcome correspondence
Weights of the minimized set of 5 checkers for ELBDR + SARBITER scenario
Evaluation result for the whole NoCRouter
Area information for different bit-widths of NoC router with checker logic
Evaluation result for the whole NoC Router (control part checkers only)

Truth table of liveness assertion
Truth table of safety assertion
Contingency tableforA —C.,
Contingency table for ELBDR design assertions
Calculated metrics for each assertion of ELBDRdesign
Minimization of the number of assertions for ELBDR and SARBITER design
Area consumption of Checkers (number of NAND2 gates)

80

54

References

(1]

(3]

(4]

(5]

(6]

[7]

(8]

(9]
[10]

(1]

[12]

[13]

Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, Thomas
Hollstein, and Jaan Raik. Extended checkers for logic-based distributed routing in
network-on-chips. In 2014 14th Biennial Baltic Electronic Conference (BEC), pages
77-80. IEEE, 2014.

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert Jervan,
and Thomas Hollstein. A framework for comprehensive automated evaluation of
concurrent online checkers. In 2015 Euromicro Conference on Digital System Design,
pages 288-292. |EEE, 2015.

Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jer-
van, and Thomas Hollstein. Automated minimization of concurrent online check-
ers for network-on-chips. In 2015 10th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1-8. IEEE, 2015.

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Hollstein,
Gert Jervan, and Ranganathan Hariharan. A framework for combining concurrent
checking and on-line embedded test for low-latency fault detection in noc routers. In
Proceedings of the 9th International Symposium on Networks-on-Chip, page 6. ACM,
2015.

Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault detection ef-
ficiency of reliability checkers obtained by verification assertion qualification. In
RESCUE 2017 Workshop on Reliability, Security and Quality European Test Symposium
(ETS) Fringe Workshop, May 25-26. |IEEE, 2017.

Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan Raik. From
rtl liveness assertions to cost-effective hardware checkers. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2018.

Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert Jervan,
and Thomas Hollstein. A framework for area-efficient concurrent online checkers
design. In MEDIAN 2015 Workshop on Manufacturable and Dependable Multicore
Architectures at Nanoscale, November 10-11, 2015.

Way Kuo. Challenges related to reliability in nano electronics. IEEE Transactions on
Reliability, 55(4):569-570, 2006.

Elena Dubrova. Fault-tolerant design. Springer, 2013.

L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,
35(1):70-78, Jan 2002.

Laung-Terng Wang, Cheng-Wen Wu, and Xiaoging Wen. VLSI test principles and
architectures: design for testability. Elsevier, 2006.

Richard D Eldred. Test routines based on symbolic logical statements. Journal of the
ACM (JACM), 6(1):33-37, 1959.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34-41, April 1978.

81

[14] A.). Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective muta-
tion. In Proceedings of 1993 15th International Conference on Software Engineering,
pages 100-107, May 1993.

[15] Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and
scalability. John Wiley & Sons, 2006.

[16] Tanguy Risset. SoC (System on Chip), pages 1837-1842. Springer US, Boston, MA, 2011.

[17] Santanu Kundu. Network-on-Chip: The Next Generation of System-on-Chip Integration.
CRC Press, July 2017.

[18] J. Flich and J. Duato. Logic-based distributed routing for nocs. IEEE Computer Archi-
tecture Letters, 7(1):13-16, Jan 2008.

[19] zhizhou Fu and Xiang Ling. The design and implementation of arbiters for network-
on-chips. In 2010 2nd International Conference on Industrial and Information Systems,
volume 1, pages 292-295, July 2010.

[20] I. Miro Panades and A. Greiner. Bi-synchronous fifo for synchronous circuit commu-
nication well suited for network-on-chip in gals architectures. In First International
Symposium on Networks-on-Chip (NOCS’07), pages 83-94, May 2007.

[21] Harry Foster, David Lacey, and Adam Krolnik. Assertion-Based Design. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2 edition, 2003.

[22] T. Ghasempouri and G. Pravadelli. On the estimation of assertion interestingness. In
2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
pages 325-330, Oct 2015.

[23] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right In ACM
SIGKDD, pages 32-41, 2002.

[24] AL Oliveira and CM Antunes. Temporal data mining: An overview. In KDD Workshop
on Temporal Data Mining, 2001.

[25] T.Ghasempouri, S. Payandeh Azad, B. Niazmand, and J. Raik. An automatic approach to
evaluate assertions’ quality based on data-mining metrics. In 2018 IEEE International
Test Conference in Asia (ITC-Asia), pages 61-66, Aug 2018.

[26] Pang-Ning Tan and Vipin Kumar. Interestingness measures for association patterns: A
perspective. In Proc. of Workshop on Postprocessing in Machine Learning and Data
Mining, 2000.

[27] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini, and G. De Micheli.
Analysis of error recovery schemes for networks on chips. IEEE Design Test of Com-
puters, 22(5):434-442, Sep. 2005.

[28] R. Abdel-Khalek, R. Parikh, A. DeOrio, and V. Bertacco. Functional correctness for
cmp interconnects. In 2011 IEEE 29th International Conference on Computer Design
(ICCD), pages 352-359, Oct 2011.

[29] A.Kohler, G. Schley, and M. Radetzki. Fault tolerant network on chip switching with
graceful performance degradation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(6):883-896, June 2010.

82

[30] D. Bertozzi, L. Benini, and G. De Micheli. Low power error resilient encoding for
on-chip data buses. In Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition, pages 102-109, March 2002.

[31] Praveen K Samudrala, Jeremy Ramos, and Srinivas Katkoori. Selective triple modular
redundancy (stmr) based single-event upset (seu) tolerant synthesis for fpgas. IEEE
transactions on Nuclear Science, 51(5):2957-2969, 2004.

[32] Jay M Berger. A note on error detection codes for asymmetric channels. Information
and Control, 4(1):68-73, 1961.

[33] Bose and Der Jei Lin. Systematic unidirectional error-detecting codes. IEEE Transac-
tions on Computers, C-34(11):1026-1032, Nov 1985.

[34] D. Das and N. A. Touba. Synthesis of circuits with low-cost concurrent error detec-
tion based on bose-lin codes. In Proceedings. 16th IEEE VLSI Test Symposium (Cat.
No.98TB100231), pages 309-315, April 1998.

[35] K. Mohanram, E. S. Sogomonyan, M. Gossel, and N. A. Touba. Synthesis of low-cost
parity-based partially self-checking circuits. In 9th IEEE On-Line Testing Symposium,
2003. IOLTS 2003., pages 35-40, July 2003.

[36] S. Ghosh, N. A. Touba, and S. Basu. Synthesis of low power ced circuits based on
parity codes. In 23rd IEEE VLSI Test Symposium (VTS'05), pages 315-320, May 2005.

[37] R.SharmaandK.K. Saluja. Animplementation and analysis of a concurrent built-in self-
test technique. In [1988] The Eighteenth International Symposium on Fault-Tolerant
Computing. Digest of Papers, pages 164-169, June 1988.

[38] P. Drineas and Y. Makris. Concurrent fault detection in random combinational logic.
In Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.,
pages 425-430, March 2003.

[39] Raimund Ubar and Jaan Raik. Testing strategies for networks on chip. In Networks on
chip, pages 131-152. Springer, 2003.

[40] A. Strano, C. Gbmez, D. Ludovici, M. Favalli, M. E. Gomez, and D. Bertozzi. Exploiting
network-on-chip structural redundancy for a cooperative and scalable built-in self-test
architecture. In 2011 Design, Automation Test in Europe, pages 1-6, March 2011.

[41] K. Petersen and J. Oberg. Toward a scalable test methodology for 2d-mesh network-
on-chips. In 2007 Design, Automation Test in Europe Conference Exhibition, pages
1-6, April 2007.

[42] J. Raik and V. Govind. Low-area boundary bist architecture for mesh-like network-
on-chip. In 2012 IEEE 15th International Symposium on Design and Diagnostics of
Electronic Circuits Systems (DDECS), pages 95-100, April 2012.

[43] K. Nepal, N. Alves, J. Dworak, and R. |. Bahar. Using implications for online error
detection. In 2008 IEEE International Test Conference, pages 1-10, Oct 2008.

[44] C. Grecu, A. lvanov, R. Saleh, E. S. Sogomonyan, and Partha Pratim Pande. On-line
fault detection and location for noc interconnects. In 12th IEEE International On-Line
Testing Symposium (IOLTS'06), pages 6 pp.-, July 2006.

83

[45] A. Dalirsani, M. A. Kochte, and H. Wunderlich. Area-efficient synthesis of fault-secure
noc switches. In 2014 IEEE 20th International On-Line Testing Symposium (IOLTS),
pages 13-18, July 2014.

[46] Dongkook Park, C. Nicopoulos, Jongman Kim, N. Vijaykrishnan, and C. R. Das. Ex-
ploring fault-tolerant network-on-chip architectures. In International Conference on
Dependable Systems and Networks (DSN’06), pages 93-104, June 2006.

[47] Q. Yu, M. Zhang, and P. Ampadu. Exploiting inherent information redundancy to man-
age transient errors in noc routing arbitration. In Proceedings of the Fifth ACM/IEEE
International Symposium, pages 105-112, May 2011.

[48] Q.VYu, J.Cano, J. Flich, and P. Ampadu. Transient and permanent error control for high-
end multiprocessor systems-on-chip. In 2012 IEEE/ACM Sixth International Symposium
on Networks-on-Chip, pages 169-176, May 2012.

[49] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi. Online noc switch fault detection and
diagnosis using a high level fault model. In 22nd IEEE International Symposium on
Defect and Fault-Tolerance in VLS| Systems (DFT 2007), pages 21-29, Sep. 2007.

[50] R. Parikh and V. Bertacco. Formally enhanced runtime verification to ensure noc
functional correctness. In 2011 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 410-419, Dec 2011.

[51] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides. Nocalert: An on-line and
real-time fault detection mechanism for network-on-chip architectures. In 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 60-71, Dec
2012.

[52] Giorgos Dimitrakopoulos and Emmanouil Kalligeros. Low-cost fault-tolerant switch
allocator for network-on-chip routers. In Proceedings of the 2012 Interconnection
Network Architecture: On-Chip, Multi-Chip Workshop, pages 25-28. ACM, 2012.

[53] J. Raik, V. Govind, and R. Ubar. An external test approach for network-on-a-chip
switches. In 2006 15th Asian Test Symposium, pages 437-442, Nov 2006.

[54] J.Raik, V. Govind, and R. Ubar. Design-for-testability-based external test and diagnosis
of mesh-like network-on-a-chips. IET Computers Digital Techniques, 3(5):476-486,
Sep. 20089.

[55] D. Fick, A. DeOrio, , V. Bertacco, D. Blaauw, and D. Sylvester. Vicis: A reliable network
for unreliable silicon. In 2009 46th ACM/IEEE Desigh Automation Conference, pages
812-817, July 2009.

[56] Margit Aarna, Eero Ivask, Artur Jutman, Elmet Orasson, Jaan Raik, Raimund Ubar,
V. Vislogubov, and Heinz-Dietrich Wuttke. Turbo tester - diagnostic package for
research and training. 2003.

[57] A.Jutman A. Peder J. Raik M. Tombak R. Ubar Tallinn. Structurally synthesized binary
decision diagrams. 2004.

[58] N. Alves, Y. Shi, J. Dworak, R. I. Bahar, and K. Nepal. Enhancing online error detection
through area-efficient multi-site implications. In 29th VLSI Test Symposium, pages
241-246, May 2011.

84

[59] M. Boule, J. Chenard, and Z. Zilic. Assertion checkers in verification, silicon debug
and in-field diagnosis. In 8th International Symposium on Quality Electronic Design
(ISQED’07), pages 613-620, March 2007.

[60] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Distributed
computing, 2(3):117-126, 1987.

[61] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.
In 7th Int. Workshop on Formal Methods for Industrial Critical Systems (FMICS'02),
volume 66, 2002.

[62] Viktor Schuppan and Armin Biere. Efficient reduction of finite state model checking to
reachability analysis. International Journal on Software Tools for Technology Transfer,
5(2):185-204, Mar 2004.

[63] Alessandro Danese, Francesca Filini, Tara Ghasempouri, and Graziano Pravadelli. Au-
tomatic generation and qualification of assertions on control signals: A time window-
based approach. In Youngsoo Shin, Chi Ying Tsui, Jae-Joon Kim, Kiyoung Choi, and
Ricardo Reis, editors, VLSI-SoC: Design for Reliability, Security, and Low Power, pages
193-221, Cham, 2016. Springer International Publishing.

[64] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware assertions with guidance
from static analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 32(6):952-965, June 2013.

[65] P.K. Nalla, R. K. Gajavelly, H. Mony, J. Baumgartner, and R. Kanzelman. Effective live-
ness verification using a transformation-based framework. In 2014 27th International
Conference on VLS| Design and 2014 13th International Conference on Embedded
Systems, pages 74-79, Jan 2014.

[66] Yael Abarbanel, llan Beer, Leonid Gluhovsky, Sharon Keidar, and Yaron Wolfsthal.
Focs-automatic generation of simulation checkers from formal specifications. In
International Conference on Computer Aided Verification, pages 538-542. Springer,
2000.

[67] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. An rt-level fault model
with high gate level correlation. In Proceedings IEEE International High-Level Design
Validation and Test Workshop (Cat. No.PRO0786), pages 3-8, Nov 2000.

[68] M. Brera, F. Ferrandi, D. Sciuto, and F. Fummi. Increase the behavioral fault model
accuracy using high-level synthesis information. In Proceedings 1999 IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (EFT’99), pages 174-180,
Nov 1999.

[69] T. Chakraborty and S. Ghosh. On behavior fault modeling for combinational digital
designs. In International Test Conference 1988 Proceeding@m_New Frontiers in
Testing, pages 593-600, Sep. 1988.

[70] Viktor Schuppan and Armin Biere. Liveness checking as safety checking for infinite
state spaces. Electronic Notes in Theoretical Computer Science, 149(1):79-96, 2006.

[71] K. Morin-Allory and D. Borrione. Proven correct monitors from psl specifications. In
Proceedings of the Design Automation Test in Europe Conference, volume 1, pages
1-6, March 2006.

85

[72] leee standard for systemverilog-unified hardware design, specification, and verifica-
tion language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1-1315, Feb
2018.

[73] Synopsys design compiler. http://www.synopsys.com/, 1994.
[74] H.D.K. Foster and D.J. Lacey. Assertion-based design 2nd edition. Springer, 2004.

[75] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification and
diagnosis. In Design Automation Conference, pages 755-760, June 2010.

[76] Lingyi Liu and Shobha Vasudevan. Automatic generation of system level assertions
from transaction level models. Journal of Electronic Testing, 29(5):669-684, 2013.

[77] S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan, and T. Hollstein. Automated
area and coverage optimization of minimal latency checkers. In 2017 22nd IEEE
European Test Symposium (ETS), pages 1-2, May 2017.

[78] A. Danese, T. Ghasempouri, and G. Pravadelli. Automatic extraction of assertions
from execution traces of behavioural models. In 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 67-72, March 2015.

[79] M. Bertasi, G. Di Guglielmo, and G. Pravadelli. Automatic generation of compact
formal properties for effective error detection. In 2013 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1-10, Sep.
2013.

[80] Sagi Katz, Orna Grumberg, and Danny Geist. ” have i written enough properties?”-a
method of comparison between specification and implementation. In Advanced
Research Working Conference on Correct Hardware Design and Verification Methods,
pages 280-297. Springer, 1999.

[81] Y. Hoskote, T. Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation for sym-
bolic model checking. In Proceedings 1999 Design Automation Conference (Cat. No.
99CH36361), pages 300-305, June 1999.

[82] N. Jayakumar, M. Purandare, and F. Somenzi. Do’s and don’ts of ctl state cover-
age estimation. In Proceedings 2003. Design Automation Conference (IEEE Cat.
No.03CH37451), pages 292-295, June 2003.

[83] A. Fedeli, F. Fummi, and G. Pravadelli. Properties incompleteness evaluation by
functional verification. IEEE Transactions on Computers, 56(4):528-544, April 2007.

[84] https://www.synopsys.com/verification/simulation/certitude.html.

[85] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interesting-
ness measure for association patterns. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD '02, pages
32-41, New York, NY, USA, 2002. ACM.

86

http://www.synopsys.com/
https://www.synopsys.com/verification/simulation/certitude.html

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Jaan Raik for guiding me through-
out the PhD studies. | would also like to thank my co-supervisor Dr. Tara Ghasempouri. |
have always appreciated their support, comments and open-door approach. | could not
have imagined having a better supervisors for my PhD study. It has been a great pleasure
to do research work with them.

Special thanks to Dr. Margus Kruus, the Head of Department of Computer Systems for
his support with many administrative issues.

I would also like to thank all the people in Department of Computer Systems who helped
me during my PhD studies. | would like to express special thanks to my colleague Behrad
Niazmand. Also, | would thank my friends for their valuable support.

Furthermore, | like to acknowledge the organizations that have supported my PhD
studies: Tallinn University of Technology, Estonian IT Academy program, EU’s H2020 RIA
IMMORTAL, the Estonian Center of Excellence in IT (EXCITE) and EU’s Twinning Action
TUTORIAL project.

Finally, I would like to thank my family: my parents Padmavathi and Hariharan, my
brother Subramaniyan and his family, my in-laws, whose love and guidance are with me
in whatever | pursue. Most importantly, | wish to thank my loving wife, Neeraja and our
sweet daughter Ankita for supporting and providing unending inspirations.

87

Abstract
Cost-Effective Concurrent Hardware Checkers for Network on
Chip based System on Chip

Extreme down-scaling of semi-conductor technologies causes a rapid increase of life-time
issues in digital circuits. Consequently, detecting faults at run-time is becoming imperative.
An on-line fault detection mechanism aims to monitor the digital circuits at run-time
and detect the undesired behavior while the device is in operation. This kind of online
fault detection can be achieved with the help of concurrent hardware checkers. However,
designing checkers by hand can be a tedious and error-prone task.

At the same time the complexity of integrated circuits is growing and the underlying
architectures have been moving towards multi-/many-core and System-on-Chip (SoC)
paradigms. With the number of cores increasing, the on-chip communication efficiency
has become one of the bottlenecks determining the overall system performance and cost.
A packet based, on-chip intercommunication network known as Network on Chip (NoC)
is emerging as an alternative solution to address the increasing interconnect complexity.
However, NoC based interconnects, because of advanced router architectures, complex op-
eration and concurrent communication are highly susceptible to faults during the runtime
of the system. Without taking an appropriate run-time solution to ensure that such faults
do not affect the operation of NoCs based interconnects, there could be possibility of data
getting misrouted, dropped, corrupted, deadlocked or even several on-chip communication
performance degradation.

To address the above issues, this thesis proposes a methodology for producing a set
of cost-effective concurrent checkers from verification assertions. It is known that the
number of assertions is generally too high to allow for area-efficient checking infrastructure.
Therefore, there is a need for qualification and minimization of assertions with a prospect
of reusing them as hardware checkers. To derive low-area, high fault coverage hardware
checkers from many assertions, this thesis proposes a framework for selecting a set of
high-quality and minimized assertions by combining a data mining technique with the fault
analysis approach along with an assertion conversion methodology that converts liveness
assertions into safety assertions. The framework then synthesizes these safety assertions
into hardware checkers to be evaluated at the gate level to provide a cost-effective checking
infrastructure.

Experimental results evaluating the methodology proposed in this thesis show that it
is capable of synthesizing checker circuitry whose area overhead lies in a 60-80% range
while guaranteeing 100% of single-event transient fault coverage. This is by far more area
efficient than what is required by the traditional duplication and triplication based fault
tolerant architectures. Moreover, a hybrid solution combining concurrent checkers with
online test packets can further minimize the requirements of the area overhead down to
less than 2 percents.

88

Kokkuvote
Kulutohusad siisteemiga paralleelsed rikkemonitorid
kiipvorkudel pohinevatele kiipsiisteemidele

Pooljuhtide tehnoloogiate ekstreemne miniaturiseerimine on péhjustanud digitaalsis-
teemide eluea jooksul toimuvate rikete plahvatusliku kasvu. Seega on hairete avastamine
seadme eluea jooksul hddavajalik. Rikke tuvastamise mehhanismi eesmark on jalgida di-
gitaalstisteeme ja tuvastada soovimatu kditumine seadme té6tamise ajal. Sellist torke
tuvastamist on voimalik saavutada slisteemiga paralleelsete rikkemonitoride abil. Kuid
sarnaste monitoride projekteerimine kasitsi on tildjuhul aeganéudev ja vea-aldis tegevus.

Samal ajal on kasvanud integraalliilituste keerukus ja selle aluseks olevad arhitektuurid
on liikkunud mitme- ja paljutuumaliste stisteemide ning kiipsiisteemide paradigmade suunas.
Tuumade arvu kasvades on kiibi kommunikatsioon muutunud theks kitsaskohtaks, mis
maarab sisteemi lldise jdudluse ja maksumuse. Paketipohine kiibil olev sidevork, mida
tuntakse kui kiipvorku, on kujunemas alternatiivseks lahenduseks (iha suureneva tihenduste
keerukuse lahendamiseks. Kuid kiipvorgu-pohised (ihendused on tanu keerukatele ruuteri
arhitektuuridele muutunud darmiselt tundlikeks rikete suhtes. Adekvaatsete, seadme
t60 ajal rakendatavate lahenduste puudumine véib pohjustada andmete ruutimisvigu,
kadunud voi rikutud andmepakette, vorgu ummikseisu voi kiibi kommunikatsiooni joudluse
halvenemist.

Ulaltoodud kiisimuste lahendamiseks pakutakse kiesolevas t66s vilja metoodika ve-
rifitseerimisvaidetest kulu-efektiivsete rikkemonitoride siinteesiks. On teada, et viidete
arv on Uldjuhul liiga suur, et voimaldada kompaktsete monitoride valjaté6tamist. Seetottu
on tarvis verifitseerimise vaiteid eelnevalt minimeerida, et neid riistvaramonitoridena
taaskasutada. Madala pindala, suure rikete kattega riistvaraliste monitoride slinteesiks
paljudest veriftseerimise vaidetest pakub vaitekiri valja raamistiku kvaliteetsete ja mini-
meeritud vaidete valjavalimiseks, kombineerides andmekaevandustehnikat veaanaliiisi
meetodiga. Seejarel slinteesib raamistik saadud minimiseertud vaidete hulga riistvaralis-
teks rikkemonitorideks, mida hinnatakse loogikaliilituste tasemel, et tagada kulutéhus
rikete monitooring.

Kaesolevas t606s valja pakutud metoodika hindamiseks labi viidud eksperimendid naita-
vad, et see on voéimeline stinteesima rikkemonitooringu stisteemi, mille pindala lisavajadus
on 60-80% , tagades samas 100% transientsete rikete katvuse. Seega on pindala lisava-
jadus oluliselt vaiksem traditsioonilisest dubleerimisel ja kolmekordistamisel pohineva-
test torkekindlatest arhitektuuridest. Peale selle voimaldab dissertatsioonis vélja pakutud
hiibriidlahendus, mis tihendab riistvaralisi rikkemonitore online-testipakettidega veelgi
vahendada pindala noéudeid viies need vahem kui 2 protsendini.

89

Appendix 1

Publication |

Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan,
Thomas Hollstein, and Jaan Raik. Extended checkers for logic-based dis-
tributed routing in network-on-chips. In 2014 14th Biennial Baltic Electronic
Conference (BEC), pages 77-80. IEEE, 2014

91

Extended Checkers for Logic-Based Distributed
Routing in Network-on-Chips

Behrad Niazmand, Ranganathan Hariharan, Vineeth Govind, Gert Jervan, Thomas Hollstein, Jaan Raik
Department of Computer Engineering
Tallinn University of Technology
Tallinn, Estonia
{bniazmand, ranga, vineeth, gert, thomas, jaan}@ati.ttu.ee

Abstract—Network on Chips (NoCs) are composed of routers,
whose task is to dispatch packets within the communication
network according to the routing algorithm implemented.
However, the extreme scaling of emerging nanometer
technologies makes the routers vulnerable to wear-out and
environmental effects. In order to contain this issue, development
of online testing capabilities for the NoC routers is a must. This
paper proposes concurrent online checkers for structural faults
in the NoC routing algorithms utilizing the Logic-Based
Distributed Routing (LBDR) concept. We show by fault injection
experiments that the fault coverage of existing checking
mechanisms for LBDR faults is very low. We propose an
extended set of concurrent checkers that increase the coverage
more than threefold facilitating detection of the majority of
structural faults within the LBDR.

Keywords—network-on-a-chip, logic-based distributed routing,
concurrent online checking.

L. INTRODUCTION

Network on Chips (NoCs) have emerged as a scalable and
predictable alternative to the bus-based and ad-hoc interconnect
seen in the System-on-a-Chip designs in the past. The NoCs
consist of routers, whose task is to dispatch packets within the
communication network according to the routing algorithm
implemented.

However, the extreme scaling of new nanometer
technologies makes the electronic systems vulnerable to wear-
out (e.g. aging) and environmental effects (e.g. soft errors,
electro-magnetic interference). These are issues occurring
during the life time of the system and cannot be filtered out by
manufacturing testing. Thus, online solutions for detecting
faults during circuit life time are needed. Preferably, these
solutions should be concurrent, i.e. functioning concurrently to
the normal circuit operation.

This paper proposes concurrent online checkers targeting
structural faults in the NoC routing algorithms utilizing the
Logic-Based Distributed Routing (LBDR) concept [1]. We
show by fault injection experiments that the fault coverage of
existing checking mechanisms for LBDR faults is very low [2].
We propose an extended set of concurrent checkers that
increase the coverage threefold facilitating detection of the
majority of structural faults occurring within the LBDR. This

978-1-4673-9539-7/14/$31.00 ©2014 IEEE

comes at the expense of area overhead requirements, which
however are less than having the circuit duplicated.

The paper is organized as follows. Section 2 presents an
overview of related works. Section 3 explains the basic concept
of LBDR. In Section 4, the concurrent online checkers for
LBDR are presented. Section 5 provides the fault injection
experiments. Finally, Section 6 concludes the paper.

II. RELATED WORKS

Several works on online checking for NoCs have been
developed in the past. Grecu et al. have introduced a method
for online fault detection and location in NoC communication
fabrics [3], which is able to distinguish between faults in the
communication links and the ones in NoC switches. This work
is based on the utilization of code-disjoint routing elements,
combined with parity check encoding for the inter-switch links.
However, the method targets faults in the data part only.

In [4], an end-to-end error detection and recovery solution,
SafeNoC, has been introduced for ensuring the functional
correctness of CMP interconnects. In this solution, a
lightweight checker network is added to the existing
interconnect, that guarantees to deliver messages correctly.
Therefore, for each data message, a look-ahead signature is
transmitted over the checker network, which is used for
detecting errors in the corresponding data message. The
solution does not provide checking for faults within the routers.

Several works have proposed utilization of concurrent
online checkers for checking router faults [5,6,2]. In [5], the
authors propose a lightweight checker for faults in routing
algorithm implementation. However, only faults manifesting
themselves as erroneous routing to the local port are targeted.
[6] proposes checkers synthesized from a set of 32 assertions.
The checkers detect most of the injected faults. The faults that
are not covered correspond to non-catastrophic failures.

Yu et al. [2] have proposed a set of checkers for the NoC
routing algorithmic blocks implemented as LBDR. In this
paper we extend the set of checkers in order to increase the
fault coverage.

14th Biennial Baltic Electronics Conference (BEC2014)
Tallinn, Estonia, October 6-8, 2014

111

The proposed approach combines the concepts used in [6]
and [2] with the aim of introducing checker modules for
different components related to the combinational logic of the
routing algorithm. In this work we have utilized the concept
mentioned in [1], which proposes a mechanism for
implementing routing algorithms in form of combinational
logic at each router in the network and not making use of
routing tables at all. The proposed logic, named Logic-Based
Distributed Routing (LBDR), relies on two sets of
configuration bits referred to as the comnectivity bits and the
routing bits, respectively. The former describes how the
network topology looks like, for example being a 2D mesh,
torus, plus, d and P. The latter describes the limited turns in the
routing algorithm, so for example based on the routing
algorithm used, such as XY (Dimension-Ordered) routing,
Segment-based routing, Turn-Model routing algorithms, the
corresponding routing bits are set to specific values
accordingly in each router.

LoGIC-BASED DISTRIBUTED ROUTING (LBDR)

The LBDR logic accepts as input the following [1]:

* The ID of the current router (which is stored in a register at
the current router)

e The ID of the destination router (which is extracted from
the header flit of the packet)

* The connectivity bits of the current router (4 bits in total for
a 2D Mesh, corresponding to four main directions)

* The routing bits of the current router (8 bits)

Fig. 1 shows the logic for LBDR as proposed in [1].

North payload header

T
East

Routing and connectivity bits required per switch (12 bits, 3 per output port)

West switch

f

South

bits at the North port < bits at the West port <

‘ R
bits at the East pcn< bits at the South pon<

First part of the routing logic

Second part of the routing logic

N"=N.E.W +N .E .Rne+N'.W'.Rnw
E”=E.N'.S+E.N.Ren+E .S .Res
W? =W .N'.S+W .N .Rwn+W .S .Rws
S .W'+S.E'.Rse+S . W’ Rsw

P
. Cn
=E” . Ce

N=N
E

Fig. 1. Logic for LBDR

It is worth mentioning that since only the header flit of a
packet includes the destination router ID then this is the flit
that LBDR uses for setting the appropriate output port signal.
The main LBDR logic (as depicted in [1]), provides a set of
five output signals: N, E, W, S and L. That means, for
example if N is set, then the flit can be forwarded to the North
output port. For the North output port to be considered, the
destination router can either be on the same column as the
current router, or it can be located on the NE (North-East)
quadrant with respect to the current router and the routing bit

78

R, should allow for the turn from North to East at the next
hop, or it can be located on the NW (North-West) quadrant
with respect to the current router and the routing bit R,
should allow for the turn from North to West at the next hop.

Depending on the routing algorithm used, one or two
output signals of the LBDR logic can become active. In case
of using Dimension-Ordered routing algorithms (such as XY
routing), since there is always one output direction chosen as a
candidate for forwarding the flit, only one output signal can be
set to one in the LBDR logic. However, in case of adaptive
routing algorithms (such as Turn Model routing algorithms),
there might be a maximum of two candidate output ports, so
two output signals can be set to one in the LBDR logic. In
such cases, there is a possibility to utilize a selection function
that can decide which output port should finally be chosen for
forwarding the flit.

IV. CONCURRENT CHECKERS FOR THE LBDR

In [2], the comparator units (CMP) of the LBDR are
implemented using subtractors. The output of subtraction
Xcurr-Xdist is denoted as A and the output of subtraction
Ycurr-Ydist is denoted as B, respectively.

Table I presents the properties implemented by checkers in
the current paper. The first two properties ERRcyp and
ERR| gprow Were introduced by [2]. As an extension, in this
work, we have added new checkers to the LBDR logic, making
it possible to detect faults in connectivity bits, faults in the
value of Node IDs that do not exist and faults that are related to
the router’s local (L) port.

As mentioned in [2], the LBDR logic utilizes two sets of
configuration bits for computing the appropriate output
signal(s): namely the connectivity bits and the routing bits. The
connectivity bits describe the network topology and indicate
which output ports exist and which output ports do not exist or
have become faulty and cannot be used for routing. According
to the logic of LBDR whenever an output port is expected to be
chosen as a candidate, its corresponding connectivity bit should
also be set to one (the output port should actually exist),
otherwise, the output signal for that port cannot be enabled. For
instance, if the N output signal is set to one, according the
LBDR’s logic for N port, Cn (connectivity bit for the North
port) should have been set to one, otherwise this indicates a
fault. In order to capture faults that might occur regarding
connectivity bits, we have made use of Equation (1) which
describes the corresponding checker logic for this purpose:

(1) ERRconncetivity = (N & ~Cn) [(E & ~Ce) | (W & ~Cw) | (S & ~Cs)

There are also some situations in which the destination
node ID or the current node ID, which are inputs to the LBDR
logic, might be influenced by faults and therefore the value of
the node ID might change to an invalid number that either does
not exist in the topology or its links are disabled. Such
conditions might have effect on the local output signal of
LBDR (L) and make it active inadvertently. However, the
Local output signal in LBDR logic cannot become active when
at least one of the prime signals (N’, E’, W’ and S’) has been
set to one. Also, as long as the flit has not reached its
destination, the local output signal (L) cannot be set to one.

TABLE L.

CONCURRENT ONLINE CHECKERS FOR THE LBDR

Previous Work [2]

(B &W)[(N"&S”) | (~A & (B*| W) |

* Two opposite direction signals can not be set to one at the
same time

ERRcyvp (A&~E & ~W") | (~B& (N’ | S")) | * Inconsistency should not exist between inside the CMP
B & ~N’" & ~S”) logic and its output signals (between Node A and E’ and W’
signals and between Node B and N’ and S’ signals)
ERR| ppreout (N&S)|(E& W) * Two opposite output port signals can not be set to one at

Our Proposal (Extension of Checker Logics)

ERReomncetiviy (N & ~Cy) | (E & ~Co) [(W & ~Cy) [(S & ~C)

the same time

The output port signal of a direction can not be set to one
when the corresponding output link does not exist

(iN [iE | iW | iS | iL) & (~N & Cx) & (~E & Ce) &

ERR nvatid-Node (~W & Cu) & (~5 & C5) & ~L

e The Local output signal in LBDR logic can not become
active when at least one of the Prime signals has been set to
one. Also, as long as the flit has not reached its destination,
the Local output signal can not be set to one.

(N’ |E | W | $”) & L) | ((iN | iE [iW | iS | iL) &

ERRocal N & ~E’ & W’ & ~8* & ~L)

The Local output signal in LBDR logic can not become
active when at least one of the Prime signals has been set to
one. Also, as long as the flit has not reached its destination,
the Local output signal can not be set to one.

Equation (2) describes the checker logic introduced for
detection of such conditions:

(2) ERRinaiianode= (N [iE[iW [iS [iL) & (~N & Cn) &
(~E & Ce) & (~W & Cw) & (~S & Cs) & ~L

Furthermore, if one of the output signals of the CMP units
becomes enabled, that means the destination node does not
have the same coordinates as the current node and therefore if
the L output port of LBDR also becomes active, this signals a
fault. In addition, if there is a request to the LBDR logic, but
none of the output signals of the CMP neither the L output port
of LBDR become active, this indicates an occurrence of fault
as well. Equation (3) represents the checker logic proposed for
detection of such conditions:

(3) ERRyoear = (N[E* | W? | S7) & L) [(N [iE [iW [S [iL)
& N’ &~E & ~W’ & ~S’ & ~L)

Table I presents the checkers proposed by [2] as well as the
additional checkers introduced by this paper.

V.

In order to evaluate the fault detection capabilities of the
checkers proposed in the current work, fault injection
experiments were carried out. An equivalent circuit consisting
of an LBDR, its duplicate and the checkers’ module was
synthesized (see Fig. 2). The outputs of the LBDR and its
duplication were connected to a miter circuit with an output
signal error_at output. This signal became 1 only in the case

SYNTHESIS AND FAULT INJECTION EXPERIMENTS

79

the fault injected to LBDR propagated to the circuit output.
The outputs of all the checkers were OR-ed together to
generate the signal error at checker. Finally, the two
respective signals were AND-ed together to produce the
primary output of the equivalence circuit. The faults were
injected to the LBDR module only. The faults were detected by
the equivalent circuit iff they propagated to the LBDR output
AND they were detected by at least one of the checkers.

Table II presents the results of the fault injection
experiments comparing the fault detection power as well as
required area overhead of the work proposed in [2] and the
proposed method. The experiments showed that the faults
detectable in LBDR by the given set of checkers in [2] was
very low, merely 21.6%. The checkers described in the
previous Section implementing the conditions (1)-(3) allowed
increasing the fault coverage more than threefold, i.e. up to
64.9%.

The area overhead with respect to the area of the LBDR in
the case of the proposed checkers was higher than in [2].
However, the LBDR circuitry is forming only a small portion
(1-2%) of the total router area. Therefore the required area
overhead is small in terms of absolute area. Devising efficient
checkers for the LBDR based routing circuitry is nevertheless
imperative because it is a challenge to check for errors in the
routing control as opposed to checking for errors in the data
intensive parts of the router.

TABLE II. EXPERIMENTAL RESULTS
[2] Proposed
Fault coverage 21.6% 64.9%
Overhead area 26.8% 60.6%

Duplicate LBDR

LBDR

Fault njection

|\rr|\{

dst_ager < 04

x>

CHECKERS

error_at_output

lerror_at_checker

Fig. 2. An equivalent circuit for fault injection experiments

oo

=

L) 7
ure Eport

MRk
PN,
e

'
i

DB&O—D«
™
me
|
.

Fig. 3. Not covered faults in the LBDR schematic.

80

DISCUSSION OF LIMITATIONS

Figure 3 presents the schematic of the LBDR circuit,
where lines with no faults covered have been marked by blue
rectangles. As it can be seen from the Figure, none of the
prime signals, i.e. N°, W’, E’, S’ (denoted by N1, W1, E1, S1,
respectively) are detected by the checkers. In addition, signals
related to the comparator output signals A and B are not
detected. The latter may be addressed by developing LBDR
architectures, where comparators are designed in a different
manner.

CONCLUSIONS AND FUTURE WORK

The paper presented a set of checkers for concurrent online
testing of both temporary and permanent faults in LBDR based
routing logic of the network on chips. We proposed a set of
five checkers which cover the majority of faults occurring in
the LBDR circuitry of NoC routers.

Fault injection experiments showed that the proposed
method allowed increasing the fault coverage 3 times with a
still acceptable checker area overhead. In future work we
foresee development of new checkers to increase the fault
coverage as well as minimization of the checker set in order to
save the required overhead area.

ACKNOWLEDGMENT

The work has been supported by EU FP7 STREP
BASTION, Estonian institutional research grant IUT 19-1,
research grants 8478, 9429, funded by Estonian Ministry of
Education and Research, and by EU through the European
Structural and Regional Development Funds.

REFERENCES

[1] J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, /EEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[2] Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., "Transient and Permanent
Error Control for High-End Multiprocessor Systems-on-Chip," 2012
Sixth IEEE/ACM International Symposium on Networks on Chip
(NoCS), vol., no., pp.169,176, 9-11 May 2012.

[3] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, P. P. Pande, On-line
fault detection and location for NoC interconnects. /2th IEEE IOLTS
2006, 6 pp., 10-12 July 2006.

[4] Abdel-Khalek, R.; Parikh, R.; DeOrio, A.; Bertacco, V., "Functional
correctness for CMP interconnects," 2011 IEEE 29th International
Conference on Computer Design (ICCD), pp. 352,359, 9-12 Oct. 2011.

[5] Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch
Fault Detection and Diagnosis Using a High Level Fault Model," 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT '07., vol., no., pp.21,29, 26-28 Sept. 2007.

[6] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

Appendix 2

Publication Il

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Ranganathan Hariharan, Gert
Jervan, and Thomas Hollstein. A framework for comprehensive automated
evaluation of concurrent online checkers. In 2015 Euromicro Conference on
Digital System Design, pages 288-292. IEEE, 2015

97

2015 Euromicro Conference on Digital System Design

A Framework for Comprehensive Automated
Evaluation of Concurrent Online Checkers

Pietro Saltarellil’z, Behrad Niazmandl, Jaan Raikl, Ranganathan Hariharanl, Gert Jervanl, Thomas Hollstein'

'Tallinn University of Technology
Tallinn, Estonia

Universita degli Studi di Ferrara
Ferrara, Italy

pietro.saltarelli@student.unife.it
{bniazmand, jaan, ranga, gert, thomas}@ati.ttu.ee

Abstract— This paper proposes a framework for automated
evaluation of concurrent online checkers. The novelty of the
underlying approach lies in its completeness (i.e. ability of
formally proving the presence or absence of true misses),
minimal fault detection latency and accurate, fully automated
evaluation of the fault detection characteristics of the checkers.
The methodology consists of creating a pseudo-combinational
version of the circuit under test, specifying the environment in
terms of valid input stimuli and providing the assertions for
generating the checkers, which will thereafter be evaluated by
the framework. In this paper, a case-study on the control part
(routing and arbitration) of a Network-on-Chip (NoC) router
has been carried out. It shows on a realistic application that the
framework is capable of accurately and formally evaluating the
quality of individual concurrent checkers which constitutes an
important task in fault tolerant system design. The case study
shows that the proposed approach helps achieving high fault
coverage in a single clock-cycle.

Keywords- concurrent online checking, Network-on-Chip,
routing logic, arbitration.

L INTRODUCTION

Extreme scaling of nanometer technologies has made the
electronic systems increasingly vulnerable to wear-out and
environmental effects (e.g. soft errors, electro-magnetic
interference). These are issues occurring during the life-time
of the system and cannot be filtered out by manufacturing
testing. Thus, online solutions for detecting faults are needed.
These solutions should preferably be concurrent to the normal
circuit operation.

One of the possible solutions for concurrent online test is
the use of checkers for monitoring faults occurring within the
circuit. In this paper, we introduce a framework for accurate,
automated evaluation of concurrent online checkers. The
methodology includes preparation of the checkers in the form
of verification assertions (or reuse of existing assertions),
creation of a pseudo-combinational version of the circuit
under test and specifying the environment in terms of valid
input stimuli for it.

Subsequently, the set of obtained checkers, together with
the stimuli and the circuit are given to the framework that
accurately evaluates the fault detection characteristics of the
given checkers. The underlying approach in the framework is
complete, i.e. it allows proving the absence or presence of true

978-1-4673-8035-5/15 $31.00 © 2015 IEEE
DOI 10.1109/DSD.2015.15

misses by the checkers. In addition, it provides minimal fault
detection latency due to the fact that the circuit is transformed
into a pseudo-combinational one and therefore only checkers
with a single clock cycle latency are considered.

The proposed approach is applicable to control-oriented
designs. In this paper, a case-study on the control part (routing
and arbitration) of an NoC router has been carried out. It
shows on a realistic application that the framework is capable
of evaluating the quality of individual concurrent checkers
which constitutes an important task in fault-tolerant system
design.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing.
Section 3 gives an overview of the concurrent online checking
concept. In Section 4, the proposed framework and the
corresponding methodology are presented. Section 5 presents
the target architecture of the control part of a Network-on-
Chip (NoC) router. Section 6 provides the checker evaluation
experiments. Finally, Section 7 concludes the paper.

II. RELATED WORKS

Online detection of errors in logic is a thoroughly studied
research area. Traditional Triple-Modular Redundancy
(TMR) and duplication-based approach are too costly in terms
of multiplying the area and correspondingly the power
consumption. An alternative to minimize this overhead is the
selective TMR that identifies Single Event Upset (SEU)
sensitive sub-circuits that are to be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3] codes.
In many works the coding techniques are combined with
synthesis [4,5]. The approaches suffer from significant area
overhead as well as require alteration of the original circuit in
order to generate the codes.

Concurrent on-line built-in self-test techniques such as
Built-In Concurrent Self-Test (BICST) [6] and Reduced
Observation Width Replication (ROWR) [7] provide high
fault coverage at low area overhead but only consider a limited
subset of pre-computed test vectors. Hence these approaches
are likely to miss faults occurring in a normal circuit
operation.

Several alternatives based on fault monitors and checkers
that do not require modification of the circuit under test have
been developed. Creating checkers automatically based on

cps®

Conferance Publishing Services

logic implications derived from the circuit structure [8] is
feasible but suffers from low fault coverage and high area
overhead, often exceeding the duplex solutions. On the other
hand, deriving checkers from functional assertions, or reusing
verification assertions, is similarly known to yield low
coverage of structural faults as it is difficult to correlate
functional coverage to structural one [9].

The framework and methodology presented in this paper
exceed the existing state-of-the-art in concurrent online
checking in the following aspects:

¢ Ttallows formally proving the absence or presence of
true misses over all possible valid inputs for a
checker, whereas in the case of traditional fault
injection only statistical probabilities can be
calculated without providing the user with full
confidence of fault detection capabilities.

The methodology targets the minimum fault detection
latency of a single clock-cycle. This is achieved by
representing the circuit under test as a pseudo-
combinational design and concentrating on
combinational checkers.

The framework provides accurate, fully automated
evaluation for the fault detection characteristics of the
checkers. It allows finding cost-efficient trade-offs
between the fault detection capabilities and the
required overhead area.

II1.

Fig. 1 presents the role of concurrent on-line checkers in
detecting faults within a circuit. In addition to the original
circuit (functional logic), a set of checkers (checker logic) will
be connected to functional inputs/outputs of the circuit. These
checkers are introduced based on functional assertions derived
from relationships between variables corresponding to inputs
and outputs of the circuit. The checker logic targets the faults
at lines within the functional logic (marked by green circles).
The lines at the functional outputs succeeding the checker
inputs (marked by a red cross) can not be detected by the
checker. In addition, the checkers are not targeting the faults
at functional inputs preceding checker inputs since the checker
may not detect that the input value has been altered by a fault.
(Such functional input lines are also marked by a red cross in
Fig. 1). In this paper, we consider the single stuck-at fault
model. However, due to the fact that concurrent checkers are
implemented and a single time-frame is targeted, the model
also covers timing related faults.

Given a fault at a line within the functional logic and a set
of input stimuli, four possible scenarios may occur:

checker
checker
Logic

THE CONCEPT OF CONCURRENT CHECKERS

output

functional
functional o Logic functional
input o ouput

Figure 1. The concept of concurrent checking

289

- Case I: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at
functional output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has
negative impact on designs performance because normally it
causes re-execution of the task. In the experiments in this
paper we did not encounter any cases of false positives.

- Case 3: Fault occurs at internal line but is not visible at
functional output(s) and the checker logic does not detect the
violation. The term Benign Miss is used to describe this
situation. Benign miss shows correct operation by the checker.
- Case 4: Fault occurs at internal node and is visible at
functional output(s). Checker does not detect violation. The
term True Miss is used to describe this situation, which is the
worst possible case. True miss means that the fault propagates
to the functional outputs and onwards to the system. However,
the system has no information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection
quality of the checkers, fault injection has been applied. Fault
injection refers to injecting faults into a circuit at a certain time
step and simulating it with the input stimuli to see whether any
functional output of the circuit changes and whether any of the
checker output fires. Due to the fact that it is generally
impossible to inject and simulate all the faults at each circuit
line at each time step, a statistically significant sample of
random faults would normally be injected and simulated.

However, in this paper a methodology is proposed which
is based on automated extraction of a pseudo-combinational
circuit out of the original functional logic by breaking the
flip-flops and converting them to pseudo-primary inputs and
pseudo-primary outputs. Further, an exhaustive test for the
extracted circuit is fed through a filtering tool in order to
derive the exhaustive valid set of input stimuli which will
serve as the environment for checker evaluation. This means
that in this paper full evaluation of the checkers with all
possible stimuli and faults is obtained.

Let D be the number of true detections, X be the number
of benign misses and ¥ be the number of true misses over all
the injection runs. Then we define the metrics of Fault
Coverage (FC) and Checkers’ Efficiency Index (CEI) as
follows.

CE[=7D ey
D+W
D+X
=T %))
D+ X+W

Here, FC shows the probability of the checkers behaving
correctly over all possible cases and CEI shows the probability
of checkers’ ability to detect critical faults. As mentioned
above, the approach proposed in this paper is able to formally
prove the presence or absence of true misses. Due to the fact

that none of the checkers resulted in false positives,
information is excluded from the metrics.

Extraction of pseudo-
combinational circuit

Environment generation 2

: Generation of
| exhaustive stimuli !

pseudo-combinational
circuit

Fault-free simulation

Fault-free values for circuit line

A checker firing?

N

Checkers evaluation

CEl, FC

Weights for individual checkers

Filtering of stimuli

Exhaustive valid stimuli

Bugs in checkers
or in the environment

Figure 2. The proposed checker evaluation flow

Iv.

FRAMEWORK FOR CHECKER EVALUATION

Fig. 2 presents the flow of the checker evaluation
framework together with the respective methodology. The
flow starts with synthesizing the checkers (described in RTL
Verilog) from a set of combinational assertions. Thereafter, a
pseudo-combinational circuit will be extracted from the
circuit of the design under checking. The pseudo-
combinational circuit is derived out of the original circuit by
breaking the flip-flops and converting them to pseudo-primary
inputs and pseudo-primary outputs. Note, that at this point
additional checkers that describe relations also on the pseudo-
primary inputs/outputs may be added to the checker suite in
order to increase the fault coverage.

Subsequently, the checker evaluation environment is
created by generating exhaustive test stimuli for the extracted
pseudo-combinational circuit. These stimuli are fed through a
filtering tool which selects only the stimuli that correspond to
functionally valid inputs for the circuit. As a result, the
exhaustive valid set of input stimuli which will serve as the
environment for checker evaluation is obtained.

The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault free simulation.
The simulation calculates fault free values for all the lines
within the circuit. Additionally, if any of the checkers fires
within fault simulation, it means a bug in the checker or an
incorrect environment. During the case study presented in
Section 5 several bugs were detected by this simulation step.

If none of the checkers are firing in the fault-free mode,
then checker evaluation takes place. The tool injects faults to
all the lines within all the vectors. As a result, the overall fault

290

detection capabilities for the set of checkers, in terms of FC
and CEI metrics will be calculated. In addition, each
individual checker will be weighted by summing up the total
number of true detections by the checker.

The framework is developed as an extension of a freeware
test system Turbo Tester [10]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [11]
for circuit modelling.

V. CASE-STUDY DESIGN: NOC ROUTER

.| LR % F
= =)
; %
-

Local
Output
Lo a2

Local
Input

|

i]][

LouTPuT
BUFFER

LFIFO

North
Output
| —

North
Input

il

NouTPUT
BUFFER

N FIFO

:
:
ad
i
i

3| NARBITER

East
Output
>

East
Input

CROSSBAR
SWITCH

EoUTIUT
BUFFER

E LBDR)a

W LBDR
H

EARBITER

—-{SLHDR }- - 3 SARBITER |||
—3 [ig

Control part of router

West
Input

West
Output
>

- wouTPUT
WFFO BUFFER

T

[T

South
Input

South
Output

souTPuT
BUFFE

S FIFO

i ST RN S "——

Figure 3. High level overview of an NoC router

Fig. 3 demonstrates the high-level overview of a 5-port 2D
NoC router that we have chosen as a target architecture for
applying the checkers. Mainly, the router consists of a data
path and a control part. The data path is composed of input
buffers (implemented as First-In-First-Out (FIFO)), one for
each input port, a crossbar switch and an output buffer for each
output port. The main responsibility of the data path is to
transmit actual data to destination.

The flow of data through the datapath is managed and
controlled by the control part, which consists of a routing
computation unit for each input port and an arbitration unit
(arbiter) for each output port, which prioritizes the requests
from different input ports to the corresponding output port.
The router has 5 input/output ports, four ports connected to
four cardinal directions (North — N, East — E, South — S, West
— W) and one Local (L) port connected to the local processing
element. The NoC router utilizes wormhole switching.
Therefore, packets are sent in form of flits, consisting of
header flit, body flit(s) and tail flit.

For the routing computation unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)
[12], which is considered as a scalable solution compared to
routing tables. The mechanism describes the topology and the
routing function in form of connectivity and routing bits,
respectively. Therefore, the logic can be easily re-configured.
Routing decision is distributed and only requires local and
destination addresses for forwarding flits.

In this work we focus on a 2D Mesh topology and we
consider XY as the routing algorithm, which is a deterministic
dimension-ordered algorithm, and we assume that 180
degrees turns are not allowed. This would in turn lead to
further simplification of the logic of LBDR. The basic
mechanism of the logic is shown in Fig. 4, customized for the
East input port.

Header Flit | flit type dst_addr
Routing and Connectivity bits Rne = 0 Ren =1
(based on XY Routing and _ _
2D Mesh topology) Row 0 Res 1
Cni = 1 Ce = 1 Rwn =1 Rse =10
Cw=1GC =1 Rws =1Rsw =0
First part of the routing logic
X_curr Y _curr
X_dst ¥ v =
s
=t CMP L > w =, CMP L > g
Second partof | N' = N".E. W’ N =N".Cn
therouting | W'= W'.N.5'+ W.N' | W =W".Cw
logic +w's’ & =808
(for ELBDR) | s" = 5" .E. W Iy =N ELWES!

Figure 4. East input port LBDR (ELBDR)

For the arbitration unit (arbiter) we have chosen Round-
Robin (RR) policy for prioritizing the requests from the
routing logic of different input ports. Prioritization is circular,
thus ensuring the absence of starvation, and guaranteeing that
eventually any input port will get access to the requested
output port.

Arbiter grants the access to the requesting input port
winning the eventual contention, allowing data to go from the
input FIFO to the corresponding output port, through the
crossbar switch. The arbitration mechanism is based on an
internal Finite State Machine (FSM). In this work one-hot
encoding has been considered for the state variable, in order
to improve detections of faults in the logic. Moreover, one-hot
encoding is extended to grant signals and select lines for the
crossbar switch.

The design decision to implement a one-hot encoded
arbiter state machine versus a decimal encoded one did
increase the area of the arbiter by 27.7%. However, the CEI
nearly doubled from 58.55% to 100% and the fault coverage
increased from 93.69% to 100%.

Extracting the pseud binational circuit

In the control part of the router, we have limited our focus
to the case in which the LBDR and arbiter logic have the most
number of connected signals, more specifically considering
ELBDR and SArbiter. Since for ELBDR the existing output
port signals are N, W, S and L and for SArbiter, request and
grant signals exist for N, E, W and L. Due to the routing
algorithm and restrictions, other cases could have a smaller
number of connections. The checkers that cover faults for such
scenario, are symmetrical to the other cases (different
connections between each LBDR logic to arbiter logics). The
considered scenario for the connection between
ELBDR and SArbiter is shown in Fig. 5. As it can be seen,
connectivity and routing bits and also the current address are
set to fixed values according to the scenario under
consideration: 2D Mesh topology, XY routing algorithm,

291

180 degree turns not allowed and focusing on router with
ID 5 in a 4x4 network. This scenario allows minimizing the
number of circuit inputs and previous state values to be
considered to as low as 22 bits:

¢ 2 flit type bits;

* 4 destination address bits;

* 4 ELBDR previous state bits;

¢ 3 SArbiter request signals bits;

* 4 SArbiter empty signals bits (from FIFOs);

* 5 SArbiter previous state bits.

This, in turn, makes the exhaustive approach in checker
evaluation fully feasible.

Empty Signals

L

FUT_TYPE
—_—
DEST_ADDR N IN_Req oCurrentState
S gy o
N w [—»Jeq e : A
> s @ Sel_in '
[MG ELROR 9 x| Grant {1
is Req P Signals E
L —— i
i 1
:
{ i
H iCurrentState 3
H Fs :
Lal : |
: :
- ESTSRNY | o0 PO ;
A
Figure 5. The pseudo-combinational circuit
Filtering the stimuli

The exhaustive test for the pseudo-combinational circuit
would require 2%2=4,194,304 input stimuli. However, in order
to minimize the stimuli, and more important, to avoid
checkers being evaluated in non-realistic conditions, the
exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

For the pseudo-combinational partial control part of an
NoC router studied here the filtering step is based on the
implemented routing algorithm and restrictions in the routing
logic, as well as on invalid conditions for the state and the
stimuli of the arbiter logic. Its use allowed us to shrink the
exhaustive set of 2** stimuli to a valid and complete set
consisting of 40,960 input vectors, which is less than 1% of
the initial number. It is important to stress the fact that none
of the checkers fires in fault free simulation with any of the
considered input stimuli.

Preparing the checkers

The set of checkers consists of 37 checkers, based on the
functionality of the considered circuit, 3 of them focusing on
the ELBDR logic, 34 (12 types) focusing on the SArbiter
logic. Due to spatial limitations, we have not explicitly
reported the list of checkers individually in this paper.

VI

Experiments for the checker evaluation framework were
carried out on the circuit, set of checkers and test stimuli
described in previous section. As a result, the Fault Coverage
(FC) 0f99.777% and the Checkers’ Efficiency Index (CEI) of

EXPERIMENTAL RESULTS

Checkers Weight (x 103)

IIEIS
PIC

9)e15}0yaU0 L3S

21e3SpI[eAUlLIDS

Inoyqgiou ue3

(SEEIICH

noyagIplen a3

$1e153|pI LIS

juesSpijen 1as
NAond

JAod™uas

juesgou 1as

MAuond
FaiAinond s

Jues8a|8uls was

noyagie|suls 193

Figure 6. Checkers weighted according to true detections

99.320% were obtained. Each individual checker was
weighted by the tool by summing up the total number of true
detections by the checker. Fig. 6 lists the 14 checkers with the
highest weights in a descending order. As it can be seen, four
checkers are detecting considerably more faults than the
others.

The proposed framework produced checkers that achieve
99.777% fault coverage for the NoC control part in a single
clock cycle. Similar number for NoCAlert [14] was 97%, and
the technique reached 100% after 28 cycles. The respective
numbers for ForEVeR [13] were 30% and 11950 cycles. This
gain in the proposed approach was achieved due to the facts
that there were checkers devised for arbiter states and that the
implemented state encoding was one-hot.

The area overhead of the initial set of checkers was
relatively high, doubling the size of the LBDR and arbiter
combined. However, the size of the checkers compared to the
entire router area was negligible. Moreover, the checkers’
weighting data allows to further compact the number of
checkers in a straightforward manner.

VIL

The paper presented a framework for automated
evaluation of concurrent online checkers, which is formal
(able of proving the presence or absence of true misses), yields
minimal fault detection latency and enables accurate, fully
automated evaluation of the fault detection characteristics of
a given set of checkers.

A case-study on the control part (routing and arbitration)
of a Network-on-Chip (NoC) router showed on a realistic
application the feasibility and efficiency of the framework and
the underlying methodology. Experimental results also
showed that the proposed approach allows reaching higher
fault coverage within a single clock-cycle compared to
previously published approaches.

As a future work we consider extending the framework
with the support of temporal checkers in order to further
increase the fault coverage, for those designs where pseudo-
combinational extraction is either not feasible or not
sufficient. In addition, we plan to develop algorithms for

CONCLUSIONS AND FUTURE WORK

292

minimization of checkers based on the weights calculated by
the proposed framework.

ACKNOWLEDGEMENTS

The work has been supported by EU’s FP7 STREP
BASTION, EU's H2020 RIA IMMORTAL, Estonian Science
Foundation grant ETF9429, Estonian institutional research
grant IUT 19-1, funded by Estonian Ministry of Education and
Research, and by EU through the European Structural and
Regional Development Funds.

REFERENCES
(1]

R. Sedmak and H. Liebergot. Selective triple modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs.
IEEE Transactions on Nuclear Science, 51:2957-2969, 2005.

J. M. Berger. A note on an error detection code for asymmetric
channels. Information and Control, 4:68-73, 1961.

D. Das and N. A. Touba. Synthesis of circuits withlow-cost concurrent
error detection based on Bose-Lin codes. In VLSI Test Symposium,
pages 309-315, 1998.

K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis of
low-cost parity-based partially self-checking circuits, 2003.

S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced
circuits based on parity codes. /n VLSI Test Symposium, pages 315-
320, 1-5 May 2005.

R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. /n Digest of Papers Eighteenth
International Symposium on Fault-Tolerant Computing FTCS-18,
pages 164- 169, June 1988.

P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proceedings Fourth International Symposium
on Quality Electronic Design ISOED, pages 425-430, March 2003.
Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.I.; Nepal, K. "Enhancing
online error detection through area-efficient multi-site implications",
1EEE 29th VLSI Test Symposium (VTS), pp. 241 — 246, 2011.

Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion
checkers in verification, silicon debug and infield diagnosis. In
Proceedings of the ISOED '07.

M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V
Vislogubov, HD Wuttke. Turbo Tester-Diagnostic Package for
Research and Training. The 1st East-West Design and Test Conference,
Alushta, 2003.

Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop on
Boolean Problems. pp. 271-278, 2004.

J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[2]
B3]

[4]
1]

[6]

7

(8]

[9]

[10]

(1]

[12]
[13] R. Parikh and V. Bertacco. Formally enhanced runtime verification to
ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert:
An On-Line and Real-Time Fault Detection Mechanism for Network-
on-Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

[14]

Appendix 3

Publication lll

Pietro Saltarelli, Behrad Niazmand, Ranganathan Hariharan, Jaan Raik, Gert
Jervan, and Thomas Hollstein. Automated minimization of concurrent online
checkers for network-on-chips. In 2015 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages
1-8. IEEE, 2015

105

Automated Minimization of Concurrent Online
Checkers for Network-on-Chips

Pietro Saltarelli'?, Behrad Niazmand', Ranganathan Hariharan', Jaan Raik', Gert Jervan', Thomas Hollstein'

'Tallinn University of Technology, Estonia
Universita degli Studi di Ferrara, Italy

pietro.saltarelli@student.unife.it
{bniazmand, jaan, ranga, gert, thomas}@ati.ttu.ee

Abstract— The paper introduces automated minimization of a
set of concurrent online checkers for Network-on-Chips (NoCs)
under given fault detection quality constraints. The proposed
framework allows accurate and complete evaluation of the fault
detection capabilities of checkers, which in turn enables finding
seamless trade-offs between the overhead area of the checkers and
the fault detection quality. The features of the automated
minimization approach include formal proof for the absence or
presence of true misses in checkers and a minimal fault detection
latency. The minimization technique is based on a divide-and-
conquer approach of partitioning the checkers’ fault table into
independent clusters. The checkers within the cluster are weighted
and the set of checkers is minimized based on a heuristic method.
Experiments on the control part (routing and arbitration) of an
NoC router show that 100% fault coverage with very low overhead
area will be achieved by the proposed minimization approach.

Keywords—Network-on-Chip,
concurrent online checking.

routing logic, arbitration,

1. INTRODUCTION

Network-on-Chip (NoC) has been introduced as a solution
to overcome the scalability and performance constraints of
previous on-chip communication architectures such as bus-
based networks. One of the challenges in the design of NoC
routers is that as more cores get integrated on the same die and
nanometer technologies get extremely scaled down, the
probability of vulnerability of the components to wear-out and
environmental effects increases. These are effects occurring
during the life time of the system and cannot be filtered out by
manufacturing testing. Thus, concurrent online fault monitors
(i.e. checkers) for detecting faults during circuit’s life time are
needed. These checkers would report errors within routers and
would allow reconfiguration of the routing infrastructure.

In this paper, we introduce an automated tool flow for
obtaining a minimized list of checkers for checking on-chip
communication architectures. The flow is based on accurate,
automated evaluation of concurrent online checkers. The
methodology includes preparation of the checkers in the form of
verification assertions (or reuse of existing assertions), creation
of a pseudocombinational version of the circuit under test and
specifying the environment in terms of valid input stimuli for it.
Subsequently, the set of the fault detection characteristics for the
checkers, together with the stimuli and the circuit are applied to
accurate evaluation. As a result, weights for individual checkers
belonging to the set are obtained.

978-1-4673-7942-7/15/$31.00 ©2015 IEEE

Finally, the number of checkers within the set will be
minimized. The minimization technique is based on a divide-
and-conquer approach of partitioning the checkers’ fault table
into independent clusters. Further, weight information of the
checkers within the cluster is applied in a heuristic minimization
method. The ultimate result will be a minimal selection of
checkers to achieve a target fault coverage level.

The underlying approach is complete, i.e. it allows proving
the absence or presence of true misses by the checkers. In
addition, it provides minimal fault detection latency due to the
fact that the circuit is transformed into a pseudo-combinational
one and therefore only checkers with a single clock cycle latency
are considered. Experiments on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router show that 100%
fault coverage with very low overhead area will be achieved by
the proposed minimization approach.

The paper is organized as follows. Section 2 provides an
overview of related works in concurrent online testing. Section
3 explains the concurrent online checking concept. In Section 4,
the automated tool flow and the corresponding methodology for
checkers’ minimization are presented. Section 5 presents the
target architecture of the control part of an NoC router. Section
6 discusses application of the checker evaluation and
minimization framework to the NoC Router design. Section 7
provides the checkers’ evaluation and minimization
experiments. Finally, Section 8 concludes the paper.

II. RELATED WORKS

Online detection of errors in logic is a thoroughly studied
research area. Traditional Triple-Modular Redundancy (TMR)
and duplication based approaches are too costly in terms of
multiplying the area and correspondingly the power
consumption. An alternative to minimize this overhead is the
selective TMR that identifies Single Event Upset (SEU)
sensitive sub-circuits that are to be protected [1].

In addition, there exists a variety of solutions based on
coding techniques such as Berger [2] or Bose-Lin [3] codes. In
many works the coding techniques are combined with synthesis
[4,5]. The approaches suffer from significant area overhead as
well as require alteration of the original circuit in order to
generate the codes.

Concurrent on-line built-in self-test techniques such as Built-
In Concurrent Self-Test (BICST) [6] and Reduced Observation
Width Replication (ROWR) [7] provide high fault coverage at
low area overhead but only consider a limited subset of pre-

computed test vectors. Hence these approaches are likely to miss
faults occurring in a normal circuit operation.

Several alternatives based on checkers that do not require
modification of the circuit under test have been developed.
Creating checkers automatically based on logic implications
derived from the circuit structure [8] is feasible but suffers from
low fault coverage and high area overhead, often exceeding the
duplex solutions. On the other hand, deriving checkers from
functional assertions, or reusing verification assertions, is
similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [9].

Many previous works have focused on addressing faults in
the control logic of NoC routers. In [15], Yu et al. have
addressed fault tolerance for NoC topologies and proposed an
error control method for detecting transient errors in routing
logic implemented using Logic-Based Distributed Routing
(LBDR) mechanism and its extension for high-radix topologies,
LBDRhr. The proposed error control method utilizes the
inherent information redundancy (IIR) to reduce the error
control overhead. However, the method does not guarantee full
fault coverage.

Authors of [16] have presented a method for online error
detection and diagnosis of NoC switches. The proposed method
deals with routing faults that cause NoC packets to be forwarded
to output ports that are not intended to. Regarding modeling
routing faults in switches, a high-level fault model has been
introduced in this work. The fault coverage is measured only at
the functional level and there is no estimate of correlation to
gate-level fault coverage.

Parikh et al. have proposed ForEVeR [13], where in order to
deliver correctness guarantees for the complete network, a
network-level detection and recovery solution is devised that
monitors the traffic in the NoC and protects it against functional
bugs that were not detected during design time. To this end,
ForEVeR augments the baseline NoC with a lightweight checker
network that alerts destination nodes of incoming packets ahead
of time and is used for the recovery process. The approach
suffers from extremely high latency. Only 30% of the faults will
be detected during the first clock cycle by the approach.

[14] proposes checkers synthesized from a set of 32
verification assertions. The checkers detect most of the injected
faults. The faults that are not covered correspond to non-
catastrophic failures. The work proposed in [14] lacks the
completeness and minimization aspects present in the current
paper.

This paper exceeds the existing state-of-the-art in concurrent
online checking by proposing a tool flow for automated
evaluation and minimization of the verification checkers. We
show that starting from a realistic set of verification assertions a
minimal set of checkers will be synthesized that provide 100%
fault coverage at a low area overhead and the minimum fault
detection latency of a single clock-cycle. The latter is especially
crucial for enabling rapid fault recovery in reliable real-time
systems.

An additional feature of the proposed approach is that it
allows formally proving the absence or presence of true misses
over all possible valid inputs for a checker, whereas in the case

of traditional fault injection only statistical probabilities can be
calculated without providing the user with full confidence of
fault detection capabilities.

The formal proof as well as the minimal fault detection
latency will be guaranteed by reasoning on a pseudo-
combinational version of the circuit and by the application of
exhaustive valid set of input stimuli as the verification
environment.

III. THE CONCEPT OF CONCURRENT CHECKERS

Fig. 1 presents the role of concurrent on-line checkers in
detecting faults within a circuit. In addition to the original circuit
(functional logic), a set of checkers (checker logic) will be
connected to functional inputs/outputs of the circuit. These
checkers are derived based on functional assertions obtained
from relationships between variables corresponding to inputs
and outputs of the circuit. The checker logic targets the faults at
lines at the inputs of each gate within the functional logic
(marked by green circles). The lines at the functional outputs
succeeding the checker inputs (marked by a red cross) cannot be
detected by the checker. In addition, the checkers are not
targeting the faults at functional inputs preceding checker inputs,
since the checker may not detect that the input value has been
altered by a fault (such functional input lines are also marked by
ared cross in Fig. 1). In this paper, we consider the single stuck-
at fault model. However, due to the fact that concurrent checkers
are implemented and a single time-frame is targeted, the model
also covers timing related faults.

checker
output

checker
Logic

functional
functional o Logic functional
input 0 ouput

Fig. 1. The concept of concurrent checking

Given a fault at a line within the functional logic and a set of
input stimuli, four possible scenarios may occur:

- Case I: Fault occurs at an internal line and is visible at
functional output(s) and checker logic flags a violation. The
term True Detection is used to describe this situation, since a
critical fault is effectively detected by the checker.

- Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a
violation. The term False Positive is used to describe this
situation. False positive is not harmful because an error is
flagged which did not have any effect. However, it has negative
impact on design’s performance because normally it causes re-
execution of the task. In the experiments in this paper we did not
encounter any cases of false positives.

- Case 3: Fault occurs at internal line but is not visible at primary
output(s) and the checker logic does not detect the violation. The
term Benign Miss is used to describe this situation. Benign miss
shows correct operation by the checker.

- Case 4: Fault occurs at internal node and is visible at primary
output(s). Checker does not detect violation. The term True Miss
is used to describe this situation, which is the worst possible
case. True miss means that the fault propagates to the functional
outputs and onwards to the system. However, the system has no
information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection quality
of the checkers, fault injection has been applied. Fault injection
refers to injecting faults into a circuit at a certain time step and
simulating it with the input stimuli to see whether any functional
output of the circuit changes and whether any of the checker
output fires. Due to the fact that it is generally impossible to
inject and simulate all the faults at each circuit line at each time
step, a statistically significant sample of random faults would
normally be injected and simulated.

However, in this paper a methodology is proposed which is
based on automated extraction of a pseudo-combinational circuit
out of the original functional logic by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Further, an exhaustive test for the extracted circuit is fed
through a filtering tool in order to derive the complete valid set
of input stimuli which will serve as the environment for checker
evaluation. This means that in this paper full evaluation of the
checkers with all the valid stimuli and faults is obtained.

Let D be the number of true detections, X be the number of
benign misses and # be the number of true misses over all the
injection runs. Then we define the metrics of Fault Coverage
(FC) and Checkers’ Efficiency Index (CEI) as follows.

FC=% 1)
D+ X+W

CEI=L)
D+W

Here, FC shows the probability of the checkers behaving
correctly over all possible fault cases while CEI shows the
probability of checkers ability to detect critical faults. Due to the
fact that none of the checkers resulted in false positives, this
information is excluded from the metrics.

IV. CHECKERS EVALUATION AND MINIMIZATION FLOW

Fig. 2 presents the evaluation and minimization flow for the
checkers. The flow starts with synthesizing the checkers from a
set of combinational assertions. Thereafter, a pseudo-
combinational circuit will be extracted from the circuit of the
design under checking. The pseudo-combinational circuit is
derived out of the original circuit by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Note, that at this point additional checkers that also
describe relations on the pseudo primary inputs/outputs may be
added to the checker suite in order to increase the fault coverage.

Subsequently, the checker evaluation environment is
created by generating exhaustive test stimuli for the extracted
pseudo-combinational circuit. This stimuli are fed through a

Environment generation

Extraction of pseudo-
combinational circuit

Generation of
exhaustive stimuli

pseudo-combinational
circuit

Filtering of stimuli
Exhaustive valid stimuli

Fault-free simulation

U SR

Fault-free values for circuit line

A checker firing?
Bugs in checkers

or in the environment N

Checkers evaluation

Detection Info. (CEI, FC)
Checkers weights

|

Weights evaluation
Minimization
procedure

Optimized set
of checkers

Fig. 2. Checkers’ Evaluation and Minimization Flow

filtering tool that selects only the stimuli that correspond to
functionally valid inputs of the circuit. As a result, the complete
valid set of input stimuli that will serve as the environment for
checker evaluation is obtained.

The obtained environment, pseudo-combinational circuit
and synthesized checkers are applied to fault free simulation.
The simulation calculates fault free values for all the lines
within the circuit. Additionally, if any of the checkers fires
during fault-free simulation it means a bug in the checker or an
incorrect environment. During the case study presented in
Section 5 several bugs were detected by this simulation step.

If none of the checkers is firing in the fault-free mode then
checker evaluation takes place. The tool injects faults to all the
lines within the circuit one-by-one and this step is repeated for
each input vector. As a result, the overall fault detection
capabilities for the set of checkers, in terms of FC and CEI
metrics will be calculated. In addition, each individual checker
will be weighted by summing up the total number of true
detections by the checker.

Finally, the weighting information will be exploited in
minimizing the number of checkers, eventually allowing to
outline a trade-off between CEI, or FC, and the area overhead
due to the introduction of checker logic.

The framework is developed as an extension of a freeware
test system Turbo Tester [10]. The system applies Structurally
Synthesized Binary Decision Diagram (SSBDD) models [11]
for circuit modeling.

Local

Input

North

Input

East

i

LARBITER

il

H 3 NARBITER

SWITCH

LouTPUT
BUFFER

NouTPUT
BUFFER

EQUTPUT
BUFFER

Local

Output
Rt

North

Output
L

East

Output
—>

West
Input

West
Output
adniant

T

WOUTPUT
™ BUFFE

EARBITER ‘>_) CROSSBAR

W ARBITER

South
Input

South
Output
—

souUTPUT
BUFFER

v

][] 41

1
1
1
1

—U [[[
=L TJL= L L
lii‘u

S ARBITER
=

Control part of router

Fig. 3. High-level overview of an NoC router

V. TARGET ARCHITECTURE: NOC ROUTER

Fig. 3 demonstrates the high-level overview of a 5-port 2D
NoC router that we have chosen as a target architecture for
applying the checkers. Mainly, the router consists of a datapath
and a control part. The datapath is composed of input buffers
(implemented as First-In-First-Out (FIFO)), one for each input
port, a crossbar switch and an output buffer for each output port.

The flow of data through the data path is managed and
controlled by the control part, which consists of a routing
computation unit for each input port and an arbitration unit
(arbiter) for each output port, which prioritizes the requests from
different input ports to the corresponding output port. The router
has 5 input/output ports, four ports connected to four cardinal
directions (North — N, East — E, South — S, West — W) and one
Local (L) port connected to the local processing element. The
NoC router utilizes wormhole switching. Therefore, packets are
sent in form of flits, consisting of header flit, body flit(s) and tail
flit.

For the routing computation unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)
[12], which is considered as a scalable solution compared to
routing tables. The mechanism describes the topology and the
routing function in form of connectivity and routing bits,
therefore the logic can be easily re-configured. Routing decision
is distributed and only requires local and destination addresses
for forwarding flits.

In this work we focus on a 2D Mesh topology, we consider
XY as the routing algorithm, which is a deterministic
dimension-ordered algorithm, and we assume that 180 degrees
turns are not allowed. This would in turn lead to further
simplification of the logic of LBDR. The basic mechanism of
the logic is shown in Fig. 4, for instance for the East input port.

For the arbitration unit (arbiter) we have chosen Round-
Robin (RR) policy for prioritizing the requests from the routing
logic of different input ports. Prioritization is circular, thus
ensuring the absence of starvation, and guaranteeing that
eventually any input port will get access to the requested output
port.

Arbiter grants the access to the requesting input port winning
the eventual contention, allowing data to go from the input FIFO
to the corresponding output port, through the crossbar switch.
The arbitration mechanism is based on an internal Finite State
Machine (FSM). In this work one-hot encoding has been

considered for the state variable, in order to improve detections
of faults in the logic. Moreover, one-hot encoding is extended to
grant signals and select lines for the crossbar switch.

The design decision to implement a one-hot encoded arbiter
state machine versus a decimal encoded one did increase the
area of the arbiter by 27.7%. However, the CEI nearly doubled
from 58.55% to 100% and the fault coverage increased from
93.69% to 100%, respectively.

Header Flit | flit_type dst_addr
Routing and Connectivity bits Rne = 0 Ren = 1
(based on XY Routing and _ _
2D Mesh topology) Row Res 1
Cn 1Ce =1 Rwn =1 Rse 0
Cw=1GCs =1 Rws =1Rsw =0
First part of the routing logic
X_curr Y_curr
X_dst BGARE >N
_ds CMP L > w _ds CMP L5
Second partof | N' = N".E".W’ N =N".Cn
the routing w'= W.N.S+ W.N | W =W"Cw
logic +w's' S =S5".Cs
(for ELBDR) | §" = §'.E'. W’ L =N.E.W.§

Fig. 4. Logic-based Distributed Routing
(LBDR) logic for the East input port

VI. APPLICATION OF THE FRAMEWORK TO THE DESIGN

In the control part of the router, we have limited our focus to
the case in which the LBDR and arbiter logic have the most
number of connected signals, more specifically considering
ELBDR and SArbiter. For ELBDR the existing output port
signals are N, W, S and L and for SArbiter, request and grant
signals exist for N, E, W and L. Such scenario provides the case
with the most number of connectivities between LBDR and
arbiter logic. The checkers that cover faults for such scenario,
are symmetrical to the other cases (different connections
between each LBDR logic to arbiter logics).

From the output of the checker evaluation tool it can be
observed that the two set of checkers for the ELBDR and the
SArbiter are independent, i.e. they cover faults for different and
separate parts of the circuit, without any overlap. Therefore the
fault table will be partitioned into two clusters. First, the ELBDR
alone will be considered. Secondly, the circuit under study will
be expanded, interconnecting the routing logic with the
SArbiter. The second considered scenario is depicted in Fig. 5.

Connectivity and routing bits and also the current address are
set to fixed values according to the scenario under consideration:
2D Mesh topology, XY routing algorithm, 180 degrees turns not
allowed, focus on router with ID 5 in a 4x4 network. This
scenario allows minimizing the number of circuit inputs and
previous state input bits that together form the inputs
for the pseudo-combinational circuit to be considered in both

Eempty

T —

FLIT_TYPE
—
DEST_ADDR N Req oCurrentState
X « |
N w EReq [\
—> S = Sel_in
Y ELBDR Rea & Grant
. L <
H LRea o Signals
H
|
iCurrentstate
H FFs

Fig. 5. The pseudo-combinational circuit for the full scenario

experiments. When ELBDR only is considered, the amount of
inputs is limited to 11 bits:

= 2 flit identifier bits;

= 4 destination address bits;

= 4 ELBDR previous output values bits;

= | empty bit (coming from East input buffer).

With the interconnection to the SArbiter in the second
experiment, the number of input bits is increased to 19,
introducing:

= 3 SArbiter request signals bits;
= 5 SArbiter previous state bits.

This, in turn, makes the exhaustive approach in checker
evaluation fully feasible.

Once the pseudo-combinational circuit to be studied is
extracted, a set of checkers can be devised from the functional
behaviour of the considered circuit, evaluating the possible
implications existing in between input and output signals. It is
interesting to underline that a priori it may be very difficult to
outline the effectiveness of a single checker or the overlap of
different checkers in detection.

Together with the considered pseudo-combinational circuit
and its set of checkers, a set of input patterns is needed for
performing fault simulation. The exhaustive test would require
2''=2,048 and 2"°=524,288 input stimuli, respectively for the
ELBDR and for the East-South control path experiments.
However, in order to minimize the stimuli, and more important,
to avoid checkers being evaluated in non-realistic conditions, the
exhaustive set of stimuli has to be filtered to contain only the
functionally feasible values.

The filtering step is based on the implemented routing
algorithm (i.e. allowed destinations from the current router),
restrictions in the routing logic (e.g. no 180 degrees turns) and
emptiness condition of the input buffer, as well as on invalid
conditions for the state of the arbiter logic (i.e. violation of one-
hot encoding - only for the second experiment). It is important
to stress the fact that none of the checkers is firing in fault free
simulation with any of the considered input stimuli, in neither of
the scenarios.

TABLE L. PROPOSED CHECKERS FOR ELBDR

Checkers for Routing Logic (LDBR)

1 | Valid LBDR
output

If there is a request to the routing
logic (the corresponding input
buffer is not empty), LBDR has to
compute at least one valid output
direction (according to XY routing).
If no flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain
Zero.

If the corresponding input buffer is
not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

If the corresponding input buffer is
not empty (there is a request to
LBDR) and a non-header flit has
arrived, LBDR outputs should
remain the same.

If the corresponding input buffer is
not empty (there is a request to
LBDR) and a header flit has arrived,
the local output should become
active only if the packet has reached
its destination.

2 | No LBDR output

3 | Single LBDR
output

4 | Switch LBDR
output

5 | Local Port output

VII. EXPERIMENTAL RESULTS

Experiments for the checker evaluation and minimization
framework were carried out on the scenarios described in
previous section, first on the ELBDR circuit only, then on its
interconnection with the SArbiter, as displayed in Fig. 5. In both
cases an initial set of checkers was devised a priori, together with
a filtering scheme to obtain a valid set of input stimuli. Each
individual checker was weighted by the tool by summing up the
total number of true detections by the checker, and this
information was used in a heuristic way to minimize the initial
set of checkers, with the final aim of achieving highest possible
CEI and FC, and at the same time with the lowest possible area
overhead. These quantities were evaluated iterating the fault

7000

6096
6000

-
£
2
2 so0
4
4
£ 4000
=3
2
O 3000
4
a
m 2000
4 1440
w 1192 1112
1000
. . = b
0 — —
2 2 2 2 2 2
3 [N N — -
e S 5 = 8 8
= = (=3 g [N [
o o 2 = 8 B
=
g g g & &]
g 3 2 3
g 2 g
s s

Fig. 6. Weights of checkers proposed for EBLDR

simulation, including at each step the next heaviest checker still
not included in the currently considered set of checkers,
initialized only with the first heaviest checker.

ELBDR experiment
All the experiments in this paper were carried out on an
Asus ux32vd-r4002v computer with a 1.9 GHz Intel Core i7-
3517U processor and 10 GB RAM. Table I lists the initial a
priori set of checkers for ELBDR, devised from the
functionality of the logic. The pseudo-combinational circuit for
ELBDR has 11 input bits, as mentioned in the previous section,
thus the exhaustive set of stimuli presents 2''=2,048. A filtering
scheme based on the following statements was devised:
= if input buffer’s empty signal is high, any other input bit is
meaningless, and therefore any value is allowed for it;
= if'the incoming flit is a header, the destination address has to
be valid according to the XY routing and turns restrictions;
= if the incoming flit is a body or tail flit, the previous output
values must be valid, they must follow a one-hot fashion,
according to XY routing.

This allowed to obtain a valid and complete set of stimuli
consisting of 1536 vectors, which forms 75% of the exhaustive
set. The run-time for generating the stimuli was 2 seconds.

Fig. 6 displays the weight information output of the tool, on
the initial set of checkers for the ELBDR. The checker,
err_noLBDRout (checker 2 in Table I) is considerably detecting
more faults than any other checker. The 5 remaining checkers,
in descending order of weights are err_validLBDRout (checker
1), err_singleLBDRout (checker 3), err_switchLBDRout
(checker 4), and finally the two err_localport checkers (entry 5).
The checkers’ analysis required 10 ms of run-time from the
proposed framework.

Fig. 7 depicts the results obtained with the weight-based
greedy heuristic approach applied to the ELBDR and its initial
set of checkers, in terms of achieved CEI, FC and area overhead.
Considering at first only the heaviest weight, and adding at each
step the next heaviest checker still not included in the considered
set, all the quantities gradually increase. When the three most
significant checkers are used, CEI and FC reach 100%. This
result shows that minimization of the set of considered checkers
is achieved, with the three heaviest checkers dominating the
three lightest, i.e. the three considered checkers cover all the
faults detected by the other checkers. Reducing the used set of
checkers to the three most significant ones allows to limit the
area overhead to 78.57% over the ELBDR circuit, far lower than
185.71% imposed by the initial non-minimized set of checkers.

TABLE II. PROPOSED CHECKERS FOR THE ARBITER LOGIC

s for the Arbiter logic
If there is a request from LBDR, arbiter

6 | Valid Grant

output has to assert at least one of the grant
signals for the corresponding output

direction.
7 | No Grant If there is no request to the arbiter, it
output should not assert any of the grant signals

for any direction.
Whenever there is a request to the arbiter,
the grant signals should go active

8 | Invalid Grant
output

corresponding to that specific requested
direction and invalid direction should not
be chosen.

Output state variable (oScurrentState —
which represents the grant signals) in
arbiter’s pseudo-combinational circuit
can not possess invalid values due to the
one-hot coding.

If the input previous state variable
(iScurrentstate) is in IDLE state and there
is a request for arbitration from LBDR,
oScurrentstate should not remain in
IDLE state i.e. a grant signal should be
asserted.

In case there is one or multiple request(s)
to the arbiter, it should follow the correct
prioritization (Local, North, East and
then West) according to the input
previous state variable (iScurrentstate).

9 | Invalid arbiter
output state

10 Invalid IDLE
state for arbiter
input state

11 | Priority Grant

ELBDR + SArbiter combined scenario experiment

ELBDR is connected to SArbiter according to Fig. 5, thus
providing the East request signal to the arbitrating logic.
Table 1II lists the a priori initial set of checkers for the arbiter.
Multiple individual checkers are grouped to the same table entry
according to types. The initial set amounts to 28 checkers.

The exhaustive test for the considered pseudo-combinational
circuit would require 2'°=524,288 input stimuli. The test stimuli
were generated in 270 seconds run time. The considered filtering
scheme is an extension of the one used for the ELBDR
experiment valid input patterns set, adding the one-hot encoding
restraint to the 5 previous state value bits of the arbitrating
pseudo-combinational unit. This allowed to shrink the
exhaustive set of 2'° input stimuli to a valid and complete set
consisting of 61,440 input vectors, which is less that 12% of the
initial number. This may be considered as a proof of the
effectiveness of the one-hot encoding for the arbiter state
variable.

First, the evaluation tool was run considering the whole set
of checkers for the SArbiter, altogether with the minimized set
of 3 checkers for the ELBDR. This analysis required 1 second
of run time by the framework. Figure 8 lists the considered 31
checkers, with their corresponding weights in a descending
order. Focusing on the arbitrating unit, two checkers look to be
far more significant than the others, Serr _validgrant (checker 6
in Table II), Serr invalidstate (checker 9), both of them
monitoring different aspects of the one-hot encoding condition
for the arbiter's state variable.

From the output of the evaluation tool it can be observed that
the two set of checkers for the ELBDR and the SArbiter are
independent, i.e. they cover faults for different and separate parts
of the circuit, without any overlap. For this reason the minimized
set of ELBDR checkers is used, and the previously introduced
weight-based greedy minimization heuristic is applied to the
SArbiter checkers set.

Fig. 9 displays the obtained results. As it could have been
expected from the weighting information in Fig. 8, the two most
significant checkers dominate all the lightest checkers, ensuring

100% CEI and FC. Thus, considering a total of 3 ELBDR and 2
SArbiter checkers, area overhead over the partial control path
circuit is limited to 56.82%, while using the whole initial set of
28 checkers for the SArbiter would lead to 170.45% area
overhead. It is interesting to observe that the minimized set of 5
checkers corresponds to one third of the whole 31 checkers set
area.

=—4— CE|l =—%—FC AreaOv

1 2 3 4 5 6

Number of Checkers

Fig. 7. ELBDR scenario results

1000
900
800

& 700
600
500
400
300
200
100

Checkers Weight (x10°
-
wesbprexuos. I

CMOOOOOOOOO MO DD OMm 00000
2332988882223 22838¢9 2839¢2
2333 E3 28gaggs el
535558333335 338%3%3°¢ 5337373
s585588888¢:588¢833¢ §8838
20888522 pEEEZTZTR g2z
83884 g & <
23868&zhm zhme e €% %
5288820 = 98833 82823
582322 g 2 2 m
2z2°7 2 2 i 3

Fig. 8. ELBDR + SArbiter checkers ranked by weights

=t CE| =%—FC AreaOv
%
10
0
0 1 2 3 4 5 6 7 8 9 10
Number of SArb Checkers

Fig. 9. ELBDR + SArbiter scenario results

85

75
70

65

12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Checkers

Fig. 10. Results without considering independent clusters

| Checker ‘ Weight ‘
Serr_validgrant 871552
Serr_invalidstate 600512
FEerr_noLBDRout 243840
Eerr_wvalidLBDRout | 57600
FEerr_singleLBDRout | 47680

Fig. 11. Weights for minimized set of checkers

Impact of clustering the faults

Assuming that we had no information of the overlap of faults
detected by the checkers for ELBDR and SArbiter, the weight-
based greedy heuristic, starting from the heaviest checker
Serr_validgrant, would add at each step the next heaviest
checker still not considered in the current set of checkers, based
on the weight information displayed in Fig. 8. Fig. 10 shows the
inefficiency of the heuristic approach caused by the lack of the
clustering information. The number of steps in the greedy
procedure is heavily increased, and only after 19 steps, when the
Eerr_singleLBDRout checker is considered, the 100% upper
bound for CEI and FC is reached.

However, when partitioning of the fault set to clusters is
taken into account and minimization is performed on the clusters
separately then total of five checkers are needed. Fig. 11
illustrates the importance of considering the clustering
information. It can be observed that the weights of the ELBDR
checkers are far less than those of the SArbiter, but they are still
needed to achieve full coverage for the considered design.

VIII. CONCLUSIONS

The paper proposes a new tool providing an automated flow
for evaluation and minimization of concurrent online checkers,
which is formal (able of proving the presence or absence of true
misses), yields minimal fault detection latency and enables
accurate, fully automated evaluation of the fault detection
characteristics of a given set of checkers.

Experiments carried out on the control part (routing and
arbitration) of a Network-on-Chip (NoC) router showed on a
realistic application the feasibility and efficiency of the
framework and the underlying methodology. Experimental
results showed that the approach allowed selecting the minimal

set of 5 checkers out of 31 verification assertions with the fault
coverage of 100% and area overhead of only 56.82%.

ACKNOWLEDGEMENT

The work has been supported by EU FP7 STREP
BASTION, EU's H2020 RIA IMMORTAL, Estonian Science
Foundation grant ETF9429, Estonian institutional research grant
IUT 19-1, funded by Estonian Ministry of Education and
Research, and by EU through the European Structural and
Regional Development Funds.

REFERENCES

[1] R. Sedmak and H. Liebergot. Selective triple modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs.
IEEE Transactions on Nuclear Science, 51:2957-2969, 2005.

[2] J. M. Berger. A note on an error detection code for asymmetric channels.
Information and Control, 4:68-73, 1961.

[3] D. Das and N. A. Touba. Synthesis of circuits withlow-cost concurrent
error detection based on Bose-Lin codes. In VLSI Test Symposium, pages
309-315, 1998.

[4] K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis of
low-cost parity-based partially self-checking circuits, 2003.

[5] S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced circuits
based on parity codes. In VLSI Test Symposium, pages 315-320, 1-5 May
2005.

[6] R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. In Digest of Papers Eighteenth
International Symposium on Fault-Tolerant Computing FTCS-18, pages
164- 169, June 1988.

[7] P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proceedings Fourth International Symposium on
Quality Electronic Design ISQED, pages 425-430, March 2003.

[8] Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.L.; Nepal, K. "Enhancing online
error detection through area-efficient multi-site implications", IEEE 29th
VLSI Test Symposium (VTS), pp. 241 — 246, 2011.

[9] Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion checkers
in verification, silicon debug and infield diagnosis. In Proceedings of the
ISQED '07.

[10] M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V Vislogubov,
HD Wuttke. Turbo Tester-Diagnostic Package for Research and Training.
The Ist East-West Design and Test Conference, Alushta, 2003.

[11] Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop on
Boolean Problems. pp. 271-278, 2004.

[12] J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, IEEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[13] R. Parikh and V. Bertacco. Formally enhanced runtime verification to
ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

[14] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y., "NoCAlert: An
On-Line and Real-Time Fault Detection Mechanism for Network-on-
Chip Architectures," 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71, 1-5 Dec. 2012.

[15] Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., ”Transient and Permanent
Error Control for High-End Multiprocessor Systems-on-Chip,” 2072
Sixth IEEE/ACM International Symposium on Networks on Chip (NoCS),
vol., no., pp.169,176, 9-11 May 2012.

[16] Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch Fault
Detection and Diagnosis Using a High Level Fault Model," 22nd IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems,
2007. DFT '07., vol., no., pp.21,29, 26-28 Sept. 2007.

Appendix 4

Publication IV

Pietro Saltarelli, Behrad Niazmand, Jaan Raik, Vineeth Govind, Thomas Holl-
stein, Gert Jervan, and Ranganathan Hariharan. A framework for combining
concurrent checking and on-line embedded test for low-latency fault detec-
tion in noc routers. In Proceedings of the 9th International Symposium on
Networks-on-Chip, page 6. ACM, 2015

15

A Framework for Combining Concurrent Checking and On-
Line Embedded Test for Low-Latency Fault Detection in
NoC Routers

Pietro Saltarelli
Universita degli Studi di Ferrara
Via Savonarola, 9
44121 Ferrara FE, ltaly

Behrad Niazmand, Jaan Raik,
Vineeth Govind, Thomas

Hollstein, Gert Jervan
. . e . Tallinn University of Technology
pietro.saltarelli@student.unife.it Department of Computer Engineering
Akadeemia 15a, 12618 Tallinn, Estonia
Phone: +372 6202257

Ranganathan Hariharan
Nokia Solutions and Networks Oy
Hatanpaa
Hatanpaan valtatie 30
33100 Tampere, P.O. Box 785
Finland

ranganathanh87@gmail.com

<behrad|jaan>@ati.ttu.ee

ABSTRACT

The focus of the paper is detection of faults in NoC routers by
combining concurrent checkers with embedded on-line test to
enable cost-effective trade-offs between area-overhead and test
coverage. First, we propose a framework of tools for formally
evaluating the quality of the checkers and for optimizing the
overhead area with given fault coverage constraints. The stress is
in particular on the minimization of the error detection latency,
which is a crucial aspect in order to eliminate (or limit) error
propagation. Second, the concurrent checkers will be
complemented by embedded on-line test packets which are to be
applied as a periodic routine during the idle periods in router
operation. The framework together with the corresponding
methodology has been successfully applied to a realistic case-
study of a fault tolerant NoC router design. The case study shows
that combining concurrent routers with embedded test allows
reducing the area overhead of the checkers from 31-35% down to
1.5-10% without sacrificing the fault coverage.

Keywords
Network-on-chip, fault tolerant router design, concurrent online
checking, embedded test, test packets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

NOCS '15, September 28 - 30, 2015, Vancouver, BC, Canada

© 2015 ACM. ISBN 978-1-4503-3396-2/15/09...$15.00
DOI: http://dx.doi.org/10.1145/2786572.2788713

1. INTRODUCTION

One of the main challenges related to the design of Network-on-
Chip (NoC) routers is the extreme down-scaling of modern
technologies that increases the probability of the components to
wear-out as well as their vulnerability towards environmental
effects. These are phenomena occurring during the life-time of the
system and cannot be screened out by manufacturing testing.
Thus, cost-efficient mechanisms for detecting faults during
system’s life-time are needed. These mechanisms should detect
errors within routers and enable reconfiguration of the routing
network in order to isolate the problem and provide graceful
degradation for the system. In this paper, we propose combining
concurrent checkers with embedded on-line test packets in order
to achieve early and cost-effective detection of faults in NoC
routing infrastructure.

Regarding the development of on-line checkers, we introduce a
new framework and a methodology with a stress on the level of
automation, fault coverage, detection latency and area-efficiency.
The methodology consists of four main steps. The first step of the
methodology is formal checker qualification which includes
identification of control-intensive parts of the router architecture,
converting them to pseudo-combinational counterparts,
preparation of the checkers synthesized from verification
assertions and specifying the environment in terms of valid input
stimuli for the pseudo-combinational circuit. As a result, the faults
detected by each individual checker will be calculated.

Second, the number of checkers within the set will be minimized
by applying the checker optimization step. As a starting point is
the fault detection characteristics for each individual checker as
well as their weights in terms of silicon area. Further, a heuristic
minimization method is applied resulting in a minimal selection of
checkers to achieve a target fault coverage level. The
minimization technique is based on a divide-and-conquer
approach of partitioning the checkers’ fault table into independent
clusters. This approach is very effective as the checkers devised
for different modules normally do not have overlapping fault sets.

Third, and optional, step of the methodology includes devising
additional checkers from temporal assertions for modules that do

not achieve 100% fault detection. For these checkers the formal
qualification step described above is not possible and traditional
fault injection experiments are carried out by a sequential fault
simulation tool included to the framework.

Finally, the checkers for the control part of the router are to be
complemented by embedded on-line test packets which are to be
applied as a periodic routine during the idle periods in router
operation, e.g. slacks in the task scheduling. The framework
together with the corresponding methodology has been
successfully applied to a realistic case-study of a fault tolerant
NoC router design. The case study shows that combining
concurrent checkers with embedded test packets allows reducing
the area overhead of the checkers from 31-35% down to 1.5-10%,
depending on the router bitwidth, without sacrificing the fault
coverage.

The paper is organized as follows. Section 2 provides an overview
of related works in concurrent online testing and embedded test
for NoC routers. Section 3 explains the concurrent online
checking concept. Section 4 discusses application of embedded
test packets. In Section 5, the automated framework and the
corresponding methodology for checkers’ minimization combined
with the embedded test are presented. Section 6 discusses
application of the framework and the underlying methodology to
the NoC router design. Section 7 provides the experiments.
Finally, Section 8 concludes the paper.

2. RELATED WORKS

Online detection of errors in logic is a thoroughly studied
research area. Traditional Triple-Modular Redundancy (TMR)
and duplication based approaches are too costly in terms of
multiplying the area and correspondingly the power consumption.
An alternative to minimize this overhead is the selective TMR that
identifies Single Event Upset (SEU) sensitive sub-circuits that are
to be protected [1].

In addition, there exists a variety of solutions based on coding
techniques such as Berger [2] or Bose-Lin [3] codes. In many
works the coding techniques are combined with synthesis [4,5].
The approaches suffer from significant area overhead to the
design to be checked.

Concurrent on-line built-in self-test techniques such as Built-
In Concurrent Self-Test (BICST) [6] and Reduced Observation
Width Replication (ROWR) [7] provide high fault coverage at
low area overhead but only consider a limited subset of pre-
computed test vectors. Hence these approaches are likely to miss
faults occurring in a normal circuit operation.

Several alternatives based on checkers that do not require
modification of the circuit under test have been developed.
Creating checkers automatically based on logic implications
derived from the circuit structure [8] is feasible but suffers from
low fault coverage and high area overhead, often exceeding the
duplex solutions. On the other hand, deriving checkers from
functional assertions, or reusing verification assertions, is
similarly known to yield low coverage of structural faults as it is
difficult to correlate functional coverage to structural one [9].

Many previous works have focused on addressing faults in the
control logic of NoC routers. In [16], Yu et al. have addressed
fault tolerance for NoC topologies and proposed an error control
method for detecting transient errors in routing logic implemented

using Logic-Based Distributed Routing (LBDR) mechanism and
its extension for high-radix topologies, LBDRhr. The proposed
error control method utilizes the inherent information redundancy
(IIR) to reduce the error control overhead. However, the method
does not guarantee full fault coverage.

Authors of [17] have presented a method for online error
detection and diagnosis of NoC switches. The proposed method
deals with routing faults that cause packets to be forwarded to
unintended output ports. Regarding modeling routing faults in
switches, a high-level fault model has been introduced in this
work. The fault coverage is measured only at the functional level
and there is no estimates on correlation to gate-level fault
coverage.

In order to deliver correctness guarantees for the complete
network, Parikh et al. have proposed a network-level detection
and recovery solution ForEVeR [14] that monitors the traffic in
the NoC and protects it against functional bugs that were not
detected during design time. To this end, ForEVeR augments the
baseline NoC with a lightweight checker network that alerts
destination nodes of incoming packets ahead of time and is used
for the recovery process. The approach suffers from extremely
high latency. Only 30% of the faults will be detected during the
first clock cycle by the approach.

The work in [15] proposes checkers synthesized from a set of
32 verification assertions. The checkers detect most of the injected
faults. The faults that are not covered correspond to non-
catastrophic failures. The work proposed in [15] is not automated
and lacks the completeness and minimization aspects present in
the current paper.

In [18] a hybrid method is introduced for synthesis of fault-
secure NoC switches utilizing error detecting codes for the data
path (data flits) and a concurrent error detection structure for
dealing with faults not covered by the flit encoding (using
multiple parity trees). However, the work still results in more than
50% area overhead.

The use of embedded test configurations for testing the
datapath of NoC routers has been proposed in [19], with design-
for-testability structures included in [20] and built-in self-test
application in [21]. However, all the mentioned approaches are
targeting the global network and not a concrete router.
Furthermore, only off-line test scenarios have been considered in
[19-21].

This paper exceeds the existing state-of-the-art in fault
tolerant router design by proposing:

- a framework for formal checker qualification. The underlying
approach is complete, i.e. it allows proving the absence or
presence of true misses by the checkers. In addition, it provides
minimal fault detection latency due to the fact that the circuit is
transformed into a pseudo-combinational one and therefore only
checkers with a single clock cycle latency are considered.

automated minimization of checkers. The formal qualification
of the combinational checkers provides the fault detection
capabilities for them. These, along with the checker area
requirements are applied in an automated minimization process
resulting in a minimal area overhead checker solution under
certain fault coverage constraints.

complementing the resulting checkers withtemporal checkers
and on-line embedded test packets. This enables combining best

of both worlds. In the case of NoC control part, where
embedded test packet based approaches have proven inefficient,
low area concurrent checkers are applied. On the other hand, in
the datapath, the embedded test yields full fault coverage
whereas error correcting codes would be expensive.

Experimental results on a realistic NoC router design demonstrate
the efficiency of the proposed approach.

3. THE CONCEPT OF CONCURRENT
CHECKERS

Fig. 1 presents the role of concurrent on-line checkers in detecting
faults within a circuit. In addition to the original circuit
(functional logic), a set of checkers (checker logic) will be
connected to functional inputs/outputs of the circuit. These
checkers are derived based on functional assertions obtained from
relationships between variables corresponding to inputs and
outputs of the circuit. The checker logic targets the faults at lines
at the inputs of each gate within the functional logic (marked by
green circles). The lines at the functional outputs succeeding the
checker inputs (marked by a red cross) cannot be detected by the
checker. In addition, the checkers are not targeting the faults at
functional inputs preceding checker inputs, since the checker may
not detect that the input value has been altered by a fault (such
functional input lines are also marked by a red cross in Fig. 1). In
this paper, we consider the single stuck-at fault model. However,
due to the fact that concurrent checkers are implemented and at-
speed embedded test packets are applied, the model also covers

timing related faults.
checker
Logic

i functional X
functienal Logic functional

input ouput

checker
output

\ 4

Figure 1. The concept of concurrent checking

Given a fault at a line within the functional logic and a set
of input stimuli, four possible scenarios may occur:

Case 1: Fault occurs at an internal line and is visible at functional
output(s) and checker logic flags a violation. The term True
Detection is used to describe this situation, since a critical fault is
effectively detected by the checker.

Case 2: Fault occurs at an internal line but is not visible at
primary output(s). Checker catches the fault and flags a violation.
The term False Positive is used to describe this situation. False
positive is not harmful because an error is flagged which did not
have any effect. However, it has negative impact on design’s
performance because normally it causes re-execution of the task.

Case 3: Fault occurs at internal line but is not visible at primary
output(s) and the checker logic does not detect the violation. The
term Benign Miss is used to describe this situation. Benign miss
shows correct operation by the checker.

Case 4: Fault occurs at internal node and is visible at primary
output(s). Checker does not detect violation. The term True Miss
is used to describe this situation, which is the worst possible case.
True miss means that the fault propagates to the functional

outputs and onwards to the system. However, the system has no
information that a critical fault has occurred.

Traditionally, in order to evaluate the fault detection quality of
the checkers, fault injection has been applied. Fault injection
refers to injecting faults into a circuit at a certain time step and
simulating it with the input stimuli to see whether any functional
output of the circuit changes and whether any of the checker
output fires. Due to the fact that it is generally impossible to inject
and simulate all the faults at each circuit line at each time step, a
statistically significant sample of random faults would normally
be injected and simulated.

However, in this paper a methodology is proposed which is
based on automated extraction of a pseudo-combinational circuit
out of the original functional logic by breaking the flipflops and
converting them to pseudo primary inputs and pseudo primary
outputs. Further, an exhaustive test for the extracted circuit is fed
through a filtering tool in order to derive the complete valid set of
input stimuli which will serve as the environment for checker
evaluation. This means that in this paper full formal qualification
of the combinational checkers with all possible stimuli and faults
can be obtained.

Let D be the number of true detections, X be the number of benign
misses, F be the set of false positives and 7 be the number of true
misses over all the injection runs. In order to evaluate the fault
detection capabilities of the checkers we define the metrics of
Fault Coverage (FC), Checkers’ Efficiency Index (CEI) and False
Positive Ratio (FPR) as follows.

D+X+W

CEI :L ?)
D+W

FPR :L (3)
F+X

Here, FC shows the probability of the checkers behaving correctly
over all possible fault cases, CEI shows the probability of
checkers ability to detect critical faults whereas FPR reports the
ratio of false positives over all the cases a fault did not propagate
to circuit outputs. The mentioned three metrics are calculated for
checkers by the automated checker qualification framework
proposed in this paper.

4. EMBEDDED ONLINE TEST PACKETS

The functional fault model that is applied to cover the stuck-at
faults in the datapath of the NoC router is based on the idea
proposed for fuctional testing of mesh-like NoC networks in [19-
21]. However, in this paper the fault model is applied to a
“localized” approach, where resources (i.e. processing elements)
connected to neighbouring routers West (W), East (E), North (N),
South (S), and Local (L) are utilized as senders/receivers of test
packets to test the central router as the Circuit Under Test (CUT).
Figure 2 visualizes the overall setup of the sending/receiving
resources and the CUT.

cutT

N

Figure 2. The setup for sending/receiving test packets

In the proposed setup, whenever there are idle periods or slacks in
scheduling with length K for the send/receive resources, K test
patterns will be applied from them. This will be done periodically
fetching K next tests from the test set in a circular manner, i.e. if
the end of the test is reached then it starts again from the
beginning. This scenario provides online test capabilities for
regularly checking the health of the datapath of the routing
infrastructure.

A fault model proposed in [19-21] is applied, where the value at a
selected router input is distinguished from the values at other
inputs of the router. In order to fully cover the structural faults in
the multiplexers of the crossbar, tests for each address value have
to be performed. An additional constraint is that all turns must be
covered by the distinguishing tests. In [19] it was shown that by
applying them, near 100% fault coverage for the crossbar switch
and the 1/O buffers comprising the datapath of the NoC router is
achieved.

5. FRAMEWORK AND METHODOLOGY

This Section presents the framework for fault tolerant NoC router
design that has been developed as an extension of the Turbo
Tester test framework [10]. The proposed methodology of
combining concurrent checkers with embedded online test
consists of three main steps:

1. Checkers’ qualification and minimization (combinational
checkers);

2. Checkers’ evaluation by fault injection (temporal
checkers);

3. Fault simulation of the embedded online test packets.

In the following, these steps are explained in more detail.

5.1 Checker Qualification and Minimization

Fig. 3 presents the qualification and minimization flow for the
checkers. The flow starts with synthesizing the checkers from a set
of combinational assertions. Thereafter, a pseudo-combinational

circuit will be extracted from the circuit of the design under
checking. The pseudo-combinational circuit is derived out of the
original circuit by breaking the flipflops and converting them to
pseudo primary inputs and pseudo primary outputs. Note, that at
this point additional checkers that also describe relations on the
pseudo primary inputs/outputs may be added to the checker suite
in order to increase the fault coverage.

Subsequently, the checkers’ qualification environment is created
by generating exhaustive test stimuli for the extracted pseudo-
combinational circuit. This stimuli are fed through a filtering tool
that selects only the stimuli that correspond to functionally valid
inputs of the circuit. As a result, the complete valid set of input
stimuli that will serve as the environment for checkers’
qualification is obtained.

Exiraction of pseudo-
combinational circuit

Environment generation

Generation of
exhaustive stimuli

pseudo-combinational
circuit

Filtering of stimuli
Exhaustive valid stimuli

Fault-free simulation

Fault-free values for circuit line

|

Weights evaluation
A checker firing? -
Minimization
Bugs in checkers procedure
or in the environment N

Checkers evaluation

Detection Info. (CEI, FC, FPR)
Checkers weights

Optimized set
of checkers

Figure 3. Checkers’ qualification and minimization flow

The obtained environment, pseudo-combinational circuit and
synthesized checkers are applied to fault free simulation. The
simulation calculates fault free values for all the lines within the
circuit. Additionally, if any of the checkers fires during fault-free
simulation it refers either to a bug in the checker or an incorrect
environment.

If none of the checkers is firing in the fault-free mode then
checkers’ qualification takes place. The tool injects faults to all
the lines within the circuit one-by-one and this step is repeated for
each input vector. As a result, the overall fault detection
capabilities for the set of checkers, in terms of FC, CEI and FPR
metrics will be calculated. In addition, each individual checker
will be weighted by summing up the total number of true
detections by the checker.

The weighting information will then be exploited in minimizing
the number of checkers, eventually allowing to outline a trade-off

between the fault coverage, and the area overhead due to the
introduction of checker logic.

5.2 Checkers’ Evaluation by Fault Injection
There are cases when a module under checking cannot be handled
by the combinational checker qualification and minimization
approach. For example the module may have a large number of
inputs so that the set of generated valid input stimuli would be too
large (e.g. datapath modules) and/or the fault coverage reached by
the combinational checkers is too low.

In those cases, the checkers are to be evaluated by traditional fault
injection. Here a test bench is created for the design and the
circuit with the checkers is simulated by a sequential fault
simulator with a sufficiently large random sample of faults
injected into the circuit. In this paper, all the datapath checkers
and the FIFO checkers were evaluated using this approach.

5.3 Fault Simulation of the Embedded Test
Finally, the stuck-at fault coverage of the online embedded test
packets for the datapath of the NoC router is measured by a fault
simulator belonging to the framework. As experimental results
show, full fault coverage for the datapath with the test application
time of 196 clock cycles is achieved.

6. EXPERIMENTAL RESULTS

Fig. 4 demonstrates the high-level overview of a S-port 2D NoC
router that we have chosen as a target architecture for applying the
checkers. The router consists of a datapath and a control part. The
datapath is composed of input buffers (implemented as FIFO),
one for each input port, a crossbar switch and an output buffer for
each output port. The control part contains routing units, arbiters
and FIFO control. For the routing unit of our target architecture,
we have opted for Logic-Based Distributed Routing (LBDR)[13],
which is considered as a scalable solution compared to routing
tables. As an arbiter, round-robbin arbitration was implemented.

Local Local

Input ﬁ Output

LFIFO T LLBOR 5 | LARBITER ,
North North
et |] NFIFO _1 NLBDR

Output
East

Input .
EFIFO __1 E LBDR

West

|
J NARBITER

East
CROSSBAR Output)
SWITCH

EARBITER

West

et | | wEIFO H WLBDR [$H--—— W ARBITER Outpat |
South South
Output

2 SARBITER

tiliial

Input .
Sl-l}()_} SLBDR

Figure 4. High level architecture of the NoC router

6.1 Checker Qualification/Minimization for

LBDR/Arbiter

The pseudo-combinational circuit for ELBDR has 11 input
bits, as mentioned in the previous section, thus the exhaustive set
of stimuli presents 2!'=2,048. A filtering scheme based on the
following statements was devised:

= if input buffer’s empty signal is high, any other input bit is
meaningless, and therefore any value is allowed for it;

= if the incoming flit is a header, the destination address has to
be valid according to the XY routing and turns restrictions;

= if the incoming flit is a body or tail flit, the previous output
values must be valid, they must follow a one-hot fashion,
according to XY routing.

This allowed to obtain a valid and complete set of stimuli
consisting of 1536 vectors, which forms 75% of the exhaustive
set. The run-time for generating the stimuli was 2 seconds. (All
the experiments in this paper were carried out on an Asus ux32vd-
r4002v computer with a 1.9 GHz Intel Core i7-3517U processor
and 10 GB RAM.)

Table 1 lists the obtained minimized set of three checkers for the
LBDR. Reducing the set of checkers to the three most significant
ones allows to limit the area overhead to 78.57% over the ELBDR
circuit, far lower than 185.71% imposed by the initial non-
minimized set of checkers, while the CEI and FC remain at 100%.

Table 1. A minimized list of checkers for the LBDR
Routing Logic (LDBR)

1 | Valid LBDR
output

If there is a request to the routing
logic (the corresponding input buffer
is not empty), LBDR has to compute
at least one valid output direction
(according to XY routing).

2 | No LBDR output | Ifno flit arrives (the corresponding
input buffer is empty), all the output
port signals of LBDR should remain

Zero.

3 | Single LBDR If the corresponding input buffer is
output not empty (there is a request to
LBDR), because of using XY
routing, at most only one output port
signal of the LBDR logic can
become active.

Similarly, Table 2 lists the minimized set of two checkers for the
Arbiter that was obtained from an initial set of 28 verification
checkers by applying the checker qualification and minimization
framework.

Table 2. A minimized list of checkers for the Arbiter

Checkers for Arbiter logic

4 | Valid Grant
output

If there is a request from LBDR,
arbiter has to assert at least one of the
grant signals for the corresponding
output direction.

5 Invalid arbiter State variable of the arbiter FSM has
State to respect one-hot encoding.

6.2 Fault Injection Experiments for the FIFO

Table 3 lists the set of 8 checkers generated from the verification
assertions for the FIFO control part. The checkers were evaluated
by the fault injection tool of the framework. A set of input stimuli
for the FIFO was devised, aiming to cover all the possible
situations for the control logic. The following conditions were
considered in the pattern generation procedure:

- reset condition;

- filling the FIFO, followed by reading up to empty condition;

- smooth traffic condition, i.e. concurrent writing and reading
operations, avoiding the FIFO to get full;

- idle condition, i.e. write and read enable signals low, during
reading and writing operations, in different conditions of
fulfillment of the buffer.

100% CEI and FC were achieved on the control part of the FIFO,
considering the patterns derived from the previously listed
conditions, amounting to 134. Run time for the experiment was
0.06 s. No false positives were encountered in this experiment.

Table 3. Checkers for the FIFO Control Part

Checkers for FIFO control part

6 Reset checker Whenever reset goes high, at the
next clock cycle empty flag should
be high (reading and writing pointer

are reset to the same value).

Empty and full flags should never be
high at the same time. Whenever the
defining condition occurs, the
corresponding flag should go high at
the next clock cycle.

7 Flags checkers

8 One-hot pointers | Reading and writing pointers have to

checkers respect one-hot encoding.

9 Registers enable
DMR checker

Duplication and comparison for the
logic enabling the writing operation
in data registers.

Whenever read enable is high and
the FIFO is not empty, at the next
clock cycle the reading pointer
should be updated.

10 | Reading pointer
update checker 1

If either read enable is low or the
FIFOis empty, at the next clock
cycle the reading pointer should
preserve its value.

11 | Reading pointer
update checker 2

‘Whenever write enable is high and
the FIFO is not full, at the next clock
cycle the writing pointer should be
updated.

12 | Writing pointer
update checker 1

If either write enable is low or the
FIFO is full, at the next clock cycle
the writing pointer should preserve it
value.

13 | Writing pointer
update checker 2

Table 4 lists the set of 3 additional checkers which were included
in order to achieve the full fault coverage after fault injection
experiments for the control part identified uncovered faults in the
interconnections of control part modules.

Table 4. Control Part Infrastructure Checkers

Control Part Infrastructure Checkers

14 | FIFOs read Logic producing read enable signals

for the FIFOs (5 OR gates) is

enable DMR : .
duplicated, then real and duplicated
checker outputs are compared.
15 | Output Logic producing enable signals for

the output registers (5 OR gates) is
duplicated, then real and duplicated
outputs are compared.

registers enable
DMR checker

16 | Flit type LBDR

error one-hot encoding.

Flit type field of a flit has to respect

6.3 Checkers for the Datapath

In order to fully cover the faults in the NoC datapath two types of
concurrent checkers were introduced (listed in Table 5). First, for
each input port an even parity bit is included, whereas each output
port has a checker evaluating the even parity. Second, since fault
injection experiments for the whole router identified undetected
faults within the crossbar multiplexers, dedicated checkers for the
crossbar were devised.

Table 5. Checkers for the NoC Datapath
Datapath Checkers

17 | Even parity An even parity bit is computed and
added to data entering each input
port, which is later evaluated before
data leaves the router through any of

the output ports.

checker

18 | Crossbar

checker

Crossbar MUXs are duplicated, then
real and duplicated outputs are
compared.

6.4 Putting It All Together

Fig. 5 reports the area overhead required by the checkers for
routers of varying bitwidth (from 32 bits to 256 bits). It can be
observed from the Figure that the required area for the control
part checkers stays constant while the overhead area of datapath
checkers (parity and crossbar) grow proportionally to the router
size.

80000

“aall

:

£
32-bit 64-bit 128-bit 256-bit
m Control Part Checkers 1274 1274 1274 1274
Parity 1345 2690 5390 10790
Xbar Checkers 1789 3455 6781 13439
Router (without checkers) 12636 22620 42588 82524

Figure 5. Area consumption for different datawidhts

The same trend is revealed in Table 6. It can be seen that if
datapath checkers are included then the required area overhead
would be in the range of 31-35%. Whereas, the control part
checker circuitry demands significantly less area, especially for
larger bitwidths.

Table 6. Overhead Area for Different Datawidths
32-bit | 64-bit [128-bit|256-bit
Router (w/o checkers)| 12636 |22620| 42588 | 82524
Control part checkers | 1274 | 1274 | 1274 | 1274
Xbar Checkers 1789 | 3455 | 6781 | 13439
Parity 1345 | 2690 | 5390 | 10790
Area overhead

(contr. p. checkers), %
Area overhead

(all checkers), %

10.08 | 5.63 | 2.99 | 1.54

34.88 |32.80| 31.57 | 30.90

However, when combining the control part checkers with
embedded online test packets presented in Section 4, full fault
coverage for the NoC router can be achieved with a minor area
overhead. As it has been shown by experiments in [21] an
embedded test of length K=196 clock cycles will achieve
FC=100% within the NoC router datapath. Thus, combining the
concurrent checkers for the control with embedded test solution
for the datapath results in a cost-effective solution for fault
tolerant NoC routers.

7. CONCLUCIONS

The paper proposes a framework for formal qualification of
checkers and for minimizing the overhead area with the given
fault coverage constraints. The goal is to achieve low-latency, low
area overhead checkers for network on chip routers. In addition
the paper proposes complementing the concurrent checkers with
embedded on-line test packets which are to be applied as a
periodic routine during the idle periods in router operation.

The framework together with the corresponding methodology has
been successfully applied to a realistic case-study of a fault
tolerant NoC router design. The case study shows that combining
concurrent routers with embedded test allows reducing the area

overhead of the checkers from 31-35% down to 1.5-10% without
sacrificing the fault coverage.

8. ACKNOWLEDGMENTS

The work has been supported in part by EU’s FP7 STREP project
BASTION and H2020 RIA IMMORTAL, by Estonian ICT
program project FUSETEST, by Research Centre CEBE funded
by European Union through the European Structural Funds and
by Estonian SF grant 9429.

9. REFERENCES

[1] R. Sedmak and H. Liebergot. Selective triple modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for
FPGAs. IEEE Transactions on Nuclear Science, 51:2957-2969,
2005.

[2] J. M. Berger. A note on an error detection code for asymmetric
channels. Information and Control, 4:68-73, 1961.

[3] D. Das and N. A. Touba. Synthesis of circuits withlow-cost
concurrent error detection based on Bose-Lin codes. In VLSI Test
Symposium, pages 309-315, 1998.

[4] K. Mohanram, E. Sogomonyan, M. Gossel, and N. Touba. Synthesis
of low-cost parity-based partially self-checking circuits, 2003.

[5] S. Ghosh, N.A. Touba, and S. Basu. Synthesis of low power ced
circuits based on parity codes. In VLSI Test Symposium, pages 315-
320, 1-5 May 2005.

[6] R. Sharma and K.K. Saluja. An implementation and analysis of a
concurrent built-in self-test technique. In Digest of Papers
Eighteenth International Symposium on Fault-Tolerant Computing
FTCS-18, pages 164- 169, June 1988.

[7] P. Drineas and Y. Makris. Concurrent fault detection in random
combinational logic. In Proc. Fourth International Symposium on
Quality Electronic Design ISOED, pages 425-430, March 2003.

[8] Alves, N.; Shi, Y.; Dworak, J.; Bahar, R.I; Nepal, K. "Enhancing
online error detection through area-efficient multi-site implications",
IEEE 29th VLSI Test Symposium (VTS), 2011.

[91 Marc Boule, Jean-Samuel Chenard, and Zeljko Zilic. Assertion
checkers in verification, silicon debug and infield diagnosis. In
Proceedings of the ISOED '07.

[10] M Aarna, E Ivask, A Jutman, E Orasson, J Raik, R Ubar, V
Vislogubov, HD Wauttke. Turbo Tester-Diagnostic Package for
Research and Training. The Ist East-West Design and Test
Conference, Alushta, 2003.

[11] Artur Jutman, A Peder, J Raik, M Tombak, R Ubar. Structurally
synthesized binary decision diagrams. 6th International Workshop
on Boolean Problems. pp. 271-278, 2004.

[12] Raimund Ubar, Sergei Devadze, Jaan Raik, Artur Jutman. Parallel
X-fault simulation with critical path tracing technique. Proceedings
of the Conference on Design, Automation and Test in Europe
(DATE), pp. 879-884, 2010.

[13] J. Flich, J. Duato, Logic-Based Distributed Routing for NoCs, /EEE
Computer Architecture Letters, Vol. 7, No. 1, January-June 2008.

[14] R. Parikh and V. Bertacco. Formally enhanced runtime verification
to ensure NoC functional correctness. In Proc. of the International
Symposium on Microarchitecture (MICRO), 2011.

[15] Prodromou, A.; Panteli, A.; Nicopoulos, C.; Sazeides, Y.,
"NoCAlert: An On-Line and Real-Time Fault Detection Mechanism
for Network-on-Chip Architectures," [EEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 60-71,2012.

[16] Yu, Qiaoyan; Cano, J.; Flich, J.; Ampadu, P., “Transient and
Permanent Error Control for High-End Multiprocessor Systems-on-
Chip,” 2012 Sixth IEEE/ACM International Symposium on
Networks on Chip (NoCS), vol., no., pp.169,176, 9-11 May 2012.

[17] Alaghi, A.; Karimi, N.; Sedghi, M.; Navabi, Z., "Online NoC Switch
Fault Detection and Diagnosis Using a High Level Fault Model,"

[18]

[19]

22nd IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems, vol., no., pp.21,29, 26-28 Sept. 2007.
Dalirsani, A.; Kochte, M.A.; Wunderlich, H.-J., "Area-efficient
synthesis of fault-secure NoC switches," IEEE 20th International
On-Line Testing Symposium (IOLTS), pp.13,18, 7-9 July 2014.

J. Raik, V. Govind, R. Ubar. An External Test Approach for
Network-on-a-Chip Switches. Proc. of the IEEE Asian Test
Symposium, pp. 437-442, Nov. 2006

[20] J. Raik, V. Govind, R. Ubar. Design-for-Testability- Based External
Test and Diagnosis of Mesh-like NoCs. IET Computers and Digital
Techniques, Vol. 3, Issue 5, pp. 476-486, September 2009.

[21] Raik, J.; Govind, V. Low-area boundary BIST architecture for mesh-
like network-on-chip, IEEE 15th International Symposium on
Design and Diagnostics of Electronic Circuits & Systems (DDECS),
pp. 95-100, 2012.

Appendix 5

Publication V

Ranganathan Hariharan, Behrad Niazmand, and Jaan Raik. On fault de-
tection efficiency of reliability checkers obtained by verification assertion
qualification. In RESCUE 2017 Workshop on Reliability, Security and Quality
European Test Symposium (ETS) Fringe Workshop, May 25-26. IEEE, 2017

125

On Fault Detection Efficiency of Reliability Checkers
Obtained by Verification Assertion Qualification

Ranganathan Hariharan, Behrad Niazmand, Jaan Raik

Tallinn University of Technology, Estonia

Abstract— This paper assesses correlation between verification
assertion qualification results and gate-level fault detection
capabilities of concurrent error checkers synthesized from these
assertions. Generating checkers from verification is a solved
problem where commercial tools are available (e.g. IBM FoCs).
Furthermore, there exists several academic and industrial
solutions for assertion qualification (e.g. Certitude by Synopsys).
Such qualification tools are traditionally applied in order to assess
the verification power of assertions generated in an automated
way. However, the number of assertions selected by qualification
is still far too high and result in unacceptable area overheads when
implemented as checker circuitry in reliability applications.

In order to derive low-area but high-coverage checker
circuitry from a large number of verification assertions this paper
proposes the following flow. First, we use the Certitude tool to
qualify verification assertions. Subsequently, we propose a
minimization algorithm to allow generation of low-area high
quality checkers. Finally, the fault detection capabilities of the
obtained checkers are evaluated using the framework developed
by the authors of the paper. This is the first work to consider
correlation of assertion quality versus fault detection capabilities
of the synthesized checkers. It is also the first time when qualified
assertions are minimized with considerations of the checker
coverage and overhead area.

The paper includes a preliminary study of the proposed
methodology on an example of a network-on-chip routing block.

Keywords—assertions, assertion qualification, checkers, fault
coverage.

. INTRODUCTION

There exist many assertion qualification methods, both
academic [1-3] and industrial ones (e.g. Synopsys Certitude
[4]). They have been used mainly for two scenarios. First,
qualification allows assessment of the quality of the verification
environment. Second, it enables selection of high quality
assertions during the assertion mining process [5].

At the same time, reliability checkers have been
automatically generated from verification assertions. Probably
the best-known software for performing this is the IBM FoCs
[6]. However, the number of verification assertions is too high
and it result in unacceptable area overheads when implemented
as checker circuitry in reliability applications.

The authors of this paper have proposed methods to carry
out automated qualification and minimization of checkers using
gate-level fault injection [7]. Although accurate, these methods

do not scale as well as assertion qualification taking place at the
register-transfer level.

In order to derive low-area but high-coverage checker
circuitry from a large number of verification assertions this
paper proposes the following flow. First, we use the Certitude
tool to qualify verification assertions. Certitude, like many of
the qualification tools, rely on mutation analysis to assess the
quality of assertions.

Subsequently, we propose a minimization algorithm based
on greedy heuristics to allow generation of low-area high
quality checkers. Finally, the fault detection capabilities of the
obtained checkers are evaluated using the framework
developed by the authors of the paper in [7] and a discussion of
the correlation between verification qualification and checker
evaluation results is also provided.

Il. ASSERTION QUALIFICATION AND MINIMIZATION

This Section proposes the algorithm for minimizing a set of
verification assertions minimizations cijeC under a given size
constraint W. The algorithm is based on greedy heuristics to
iteratively select assertions cieC with maximum additional
mutation coverage f(ci) with regards to the set of already
detected faults F* (a subset of the full fault set F), taking into
account the size (i.e. overhead area) of the assertion w(ci) and
the size constraint L.

Minimize_Set_of Assertions(C, L)
begin
=g
F=F
W=0
while F'2& and W<L do
Select ¢ with max f(ci) N F’
C'=C'U{ci}
F'=F"\ f(ci)
W=W+w(ci)
end while
return C’
end

Algorithm 1. Greedy minimization of verification assertions

I1l. TARGET DESIGN AND ITS VERIFICATION ASSERTIONS FAULT | CHECKER1 | CHECKER2 | CHECKER3 | CHECKER4 | CHECKERS | CHECKER6
A L. ID_|[valid_out] |[noLBDRout] |[single_out] |[switch_out]| [localport1] |[localport2]
The paper includes a preliminary study of the proposed T + - - + - -
methodology on an example of a network-on-chip routing block : . : : i . .
based on Logic-Based Distributed Routing (LBDR) [8], which 4 * H . > - -
is a scalable solution compared to routing tables. The 6 * + * + - -
mechanism describes the topology and the routing function in 5 ! : : : . .
form of connectivity and routing bits, therefore the logic can be = : u * > - -
easily re-configured. Routing decision is distributed and only n : : : ’ : :
requires local and destination addresses for forwarding flits. 13 - - - - - .
Table 1 presents the six verification assertions developed for 1L = : : = a =
the routing block with the purpose of the experiments. 1 - : : - * *
18 - +
TABLE I. PROPOSED CHECKERS FOR ELBDR = - - - . H *
Cl1 | NoLBDR If no flit arrives (the corresponding z . . : B B -
output input buffer is empty), all the output 2 - ; * - - -
port signals of LBDR should remain 27 + - - + - +
zero. % : : : : : :
C2 | Valid LBDR If there is a request to the routing logic) * : - . - *
output (the corresponding input buffer is not 2 + + - + . +
empty), LBDR has to compute at least » : - - * - -
one valid output direction (according 35 . E - . .
to XY routing). ¥ : : : : :
C3 | Single LBDR If the corresponding input buffer is not - : - : - -
output empty (there is a request to LBDR), 2 - - + - -
because of using XY routing, at most j; N - * - -
only one output port signal of the 43 + B B E
LBDR logic can become active. - : - : : :
C4 | Switch LBDR If the corresponding input buffer is not % * - - - -
output empty (there is a request to LBDR) 48 + - + - -
and a non-header flit has arrived, z : : ; : : !
LBDR outputs should remain the 8 : : - : .
same. 53 , + E - i
C5, | Local Port If the corresponding input buffer is not o : - * = z *
C6 | output empty (there is a request to LBDR) 56 - + -
and a header flit has arrived, the local i; : ! :
output should become active only if o : . = > : =
the packet has reached its destination. UM 31 7 27 2)]

Figure 1. Fault table of assertion qualification

IV. EXPERIMENTAL RESULTS . . I
.] o Fig. 2 shows the results of assertion qualification by
Fig. 1 shows the results of assertion qualification by Certitude, as well as the minimization results by Algorithm 1.
Certitude, as well as the minimization results by Algorithm 1.

Assertion Qualification/Minimization

100%
90%
80%
70%
60%
50%
40%
30%

20%
o .
0%
c1 c3 c2 Ccs5 6
e weight = cumulative coverage

Figure 2. Assertion qualification and minimization

Fig. 3 displays the weight information in terms of the gate-
level injection coverage reported by the checker analysis tool
[], on the initial set of checkers for the ELBDR. The checker,
err_noLBDRout (checker C1 in Table 1) is considerably
detecting more faults than any other checker. The 5 remaining
checkers, in descending order of weights are err_validLBDRout
(checker C2), err_singleLBDRout (checker C3),
err_switchLBDRout (checker C4), and finally the two
err_localport checkers (entry C5, C6).

7000
6096
o 6000
=
=
2 s
w
[
£ 000
[*]
2
O 3000
4
8 20
| 1440
] 1192 1112
1000
176 144
0 — —
1 e 2 1 e e
‘g i < o ‘% [l =
2 E g 3 8
Clk C25 C3% C45 C55 C65
W - Z =} o
3 = g @ = 5]
-] ol = =]
= £ 3
= g 2

Figure 3. Gate-level qualification results

Minimization of the set of considered checkers by the tool
in [7] showed that the three heaviest checkers were dominating
the three lightest, i.e. the three considered checkers cover all the
faults detected by the other checkers. Reducing the used set of
checkers to the three most significant ones allows to limit the
area overhead to 78.57% over the ELBDR circuit, far lower
than 185.71% imposed by the initial non-minimized set of
checkers generated from the six verification assertions.

V. DISCUSSION ON PRELIMINARY RESULTS

It is important to stress a couple of main aspects indicated
by the qualification and minimization experiments presented in
the previous section. First, as it can be seen from Figures 1 and
2, the assertion qualification and the subsequent minimization
by Algorithm 1 was able to prove that C4 is dominated by other
assertions. Therefore, the search space has been pruned already
at the level of verification assertions.

Second, similar to gate-level checker qualification
presented in Fig. 3, C1-3 are the most significant assertions,
although C2, C3 appear in a switched order. Thus, there is a
relatively good correlation between the ranking provided by
assertion qualification versus the one by checker qualification.

Moreover, if the weight (i.e. size) constraints of the
assertions were included then the minimization process may
end up with the same result as [7], however without the need to
delve to tedious gate-level analysis.

The results presented in this workshop paper is the first
insight to assess the feasibility of the proposed methodology.
As the next step, we plan to extend the experiments to the entire
control part of the network-on-chip router, including also FIFO
control and arbitration logic.

VI. CONCLUSIONS

The paper investigated the correlation between gate-level
fault detection capabilities of concurrent error checkers
synthesized from verification assertions and the high-level
qualification results for these assertions. For the first time,
correlation of assertion quality versus fault detection capabilities
of the synthesized checkers was considered and qualified
assertions were minimized with considerations of the checker
coverage and overhead area.

Experiments carried out on the routing block of a Network-
on-Chip (NoC) router showed the feasibility of assessing the
fault detection capabilities of checkers by applying assertion
qualification. Although assertion quality was not directly
proportional to the checker coverage, experiments
implementing a heuristic assertion minimization indicate that
the optimal solution in terms of coverage/area was achieved
without the need to descend to tedious gate-level analysis.

REFERENCES

[1] S Katz, O Grumberg, and D Geist. Have | written enough
properties?>—A method of comparison between
specification and implementation. In Proc. of ACM
CHARME, pages 280-297, 1999..

[2] Andrea Fedeli, Franco Fummi, and Graziano Pravadelli.
Properties incompleteness evaluation by functional
verification. IEEE Trans. on Computers, 56(4):528-544,
2007.

[3] N Jayakumar, M Purandare, and F Somenzi. Dos and don’ts
of CTL state coverage estimation. In Proc. of ACM/IEEE
DAC, pages 292-295, 2003.

[4] https://www.synopsys.com/verification/simulation/
certitude.html

[5] Jan Malburg, Tino Flenker, Gorschwin Fey, "Property
Mining using Dynamic Dependency Graphs", Asia and
South Pacific Design Automation Conference (ASP-DAC),
January 2017.

[6] https://www.research.ibm.com/haifa/projects/verification/
focs/

[7] Pietro Saltarelli, Behrad Niazmand, Ranganathan
Hariharan, Jaan Raik, Gert Jervan, Thomas Hollstein,
Automated Minimization of Concurrent Online Checkers
for Networks-on-Chip, Proceedings of the ReCoSoC’/5
Conference, IEEE, 2015

[8] J. Flich, J. Duato, Logic-Based Distributed Routing for
NoCs, IEEE Computer Architecture Letters, Vol. 7, No. 1,
January-June 2008.

Appendix 6

Publication VI

Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, and Jaan
Raik. From rtl liveness assertions to cost-effective hardware checkers. In
2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages
1-6. IEEE, 2018

131

XXXII Conference on Design of Circuits and Integrated Systems (DCIS)

From RTL Liveness Assertions to Cost-Effective
Hardware Checkers

Ranganathan Hariharan, Tara Ghasempouri, Behrad Niazmand, Jaan Raik
Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
{ranganathan.harihara, tara.ghasempouri, behrad.niazmand, jaan.raik } @ttu.ee

Abstract—This paper proposes a methodology for producing a
set of high quality hardware checkers from Register-Transfer
Level (RTL) assertions. Assertion Based Verification (ABYV)
has become a highly popular area in design verification. On
the other hand, extreme down-scaling of modern technologies
has significantly increased the probability of faults occurring
during the life-time of the system. To overcome this, concurrent
cost-effective checker circuitry is required in order to enable
fault resilience of systems. Currently, designing such checker
infrastructure is a manual and error-prone work. A possible
solution to automate the synthesis of concurrent error checkers
is to derive them from verification assertions. However, the
number of assertions is generally far too high to allow for
area-efficient checking infrastructure. Moreover, the number of
liveness assertions generated by automated methods may be too
high even for verification purposes. Therefore, there is a need
for qualification and minimization of liveness assertions with
a prospect of reusing them as hardware safety checkers. In
order to derive low-area, high fault coverage hardware safety
checkers from a large number of liveness assertions, this paper
proposes for the first time a framework for selecting a set of
high-quality and minimized liveness assertions by combining a
new data mining technique with fault analysis approaches along
with assertion conversion methodology that converts liveness
assertions into safety assertions. The framework then synthesizes
these safety assertions into hardware checkers to be evaluated at
the gate level to provide a cost-effective checking infrastructure.
Experimental results support the effectiveness of the proposed
framework.

I. INTRODUCTION

Due to the increasing complexity of today’s digital systems,
the amount of time and man-power that is invested in finding
and removing bugs is growing. To overcome this problem
and to develop systems without bugs, verification techniques
have arisen which check if a system meets its specification
and thereby fulfills its intended purpose [1]. Among all of
these techniques, ABV has become a popular means for
catching and eliminating errors. At the same time, due to the
growing failure-rates, process variations and time-dependent
degradation of modern chip technologies, it is imperative to
develop cost-effective means for protecting systems against
faults occurring in the field, during their life-time.

Thus, concurrent on-line checker circuitry is required to
monitor the fault-free functioning of the system hardware.
Such checkers are normally designed ad-hoc or by synthe-
sizing them from verification assertions. However, the number
of assertions in the verification environment is generally far
too high to allow for area-efficient checking infrastructure.
Moreover, the number of liveness checkers generated by
automated methods (e.g. [2], [3], [4]) may be too high even

978-1-7281-0171-2/18/$31.00 ©2018 IEEE

Minimized

Liveness S
Assertion

assertions i L;l‘verkl_ap
ranking > checking
= set of high
(data mining) | (fault analysis) quality liveness

= assertions
Step 1: Assertions’ qualification

| Converting liveness
assertions to safety.
assertions

assertions J

Step 2: Safety assertions’ creation

Checkers’

Synthesized
fault
simulation

= e
e _ DUV + safety L -
DUV _ assertions & y
Step 3: Checkers’ synthesis and evaluation

Fig. 1: Overview of the proposed methodology

Low area and
> high coverage
checkers

for verification purposes. Therefore, there is a need for qualifi-
cation and minimization of liveness assertions with a prospect
of reusing them as hardware safety checkers.

A verification environment consists of a set of assertions that
collectively are capable of detecting a range of design bugs.
However, not all the assertions are essential in order to detect
this range: some assertions are dominated by others, or by a
set of other assertions, some assertions are equivalent in terms
of bug detection capabilities, etc. Discarding such assertions
which do not detect any unique bugs leads to obtaining a
set of minimized assertions. Of course, it is not possible to
enumerate all possible bugs, and therefore, fault models are
applied in order to estimate the coverage of different asser-
tions. This assertion quality estimation task is called assertion
qualification. While there exist several works that address
assertion qualification and minimization [2], [3], [4] as well
as qualification and minimization of checkers at the gate-level
[5], [6], to the best of our knowledge, this is the first paper that
applies high-level assertion qualification/minimization with the
goal of generating low-area high-quality checker circuitry.

Figure 1 presents the overview of the proposed method-
ology. Looking at Step 1 in Figure 1, Assertion ranking
ranks and selects the high quality assertions passing a preset
threshold in order to pass them to Overlap checking. Pre-
liminary selection by Assertion Ranking gives the framework
the advantage of obtaining shorter execution time since the
Overlap checking phase is based on fault analysis which has
high complexity. Application of this methodology prevents the

involvement of assertion sets that are incomplete (i.e. unable
to cover all expected behaviors of the Design Under Verifi-
cation (DUV), inconsistent (i.e. with contradicting assertions),
redundant (i.e. with assertions that are logical consequence of
others), and including vacuous assertions (i.e. assertions that
are true, independently from the DUV and thus, irrelevant)
into the verification process. Of the different strategies to
generate and define assertions there are typically two types
of assertions distinguished: safety and liveness assertions.
A safety assertion stipulates that "undesired things’ do not
happen during execution of a program and a liveness assertion
stipulates that ’desired things’ do happen.

Specifications of most systems contain liveness parts [7].
Moreover, automatically generated assertions that are derived
from the systems’ behavior are almost exclusively liveness
assertions. However, function of the checker circuitry is
based on safety assertions For these reasons, a conversion
procedure that translates liveness assertions into equivalent
safety assertions using transposition logic is described in this
work. (See Step 2 in Figure 1). The methodology continues
with synthesis of the safety assertions into hardware checkers
whose quality is evaluated by gate-level fault simulation (Step
3 in Figure 1). As a result, low-area high coverage checker
circuitry is obtained.

The rest of the paper is organized as follows. Section II
presents related work. Section III introduces preliminary def-
initions. Section IV presents the methodology. Section V
describes the experimental results and finally Section VI
concludes the paper.

II. RELATED WORK

There are several techniques in the state of the art for
generating assertions, [S] [4], [8], [9] and in many of them
minimization of the number of generated assertions is ad-
dressed. However in all techniques, the generated assertions
suffer from shortcomings such as vagueness, incompleteness
and redundancy. As a result, a false sense of security can
emerge in the verification flow which is caused by a low
quality set of assertions. Moreover, in most cases, the number
of generated assertions is very high and verifying a system
through all the assertions needs a long simulation time. All the
above-mentioned problems show that an assertion qualification
and minimization phase is necessary in the ABV so that the
verification environment would be free from using inconsis-
tent, redundant and vacuous assertions. Current approaches for
ABYV are still unsatisfactory from this point of view.

In [10], a stressing phase is proposed only to verify the
likelihood that mined assertions are globally satisfied (i.e. not
only for the execution traces analyzed by the miner). However,
no strategy is proposed to measure their quality in covering
DUV behaviors or selecting the best minimized assertions. In
[8], quality estimation is based on the number of propositions
included in the antecedent of the assertion. It is according to
the fact that an assertion with a lower number of propositions
in its antecedent has a higher input space coverage than
one with many propositions in its antecedent. However, the
correlation between the antecedent and the consequent of an
assertion is not considered. To solve this drawback, in [11]

a ranking function is proposed that evaluates the quality of
the mined assertions in terms of cause-effect relationships
between antecedent and consequent of an assertion. In [12]
the quality of assertions are estimated based on their amount
of frequencies and correlation during the simulation. However,
the work does not consider assertions with low number of
frequencies which may cover the corner cases of a design. In
[13], instead, a metric is introduced to rank assertions based
on their ability to cover corner cases. Moreover, it does not
take into account assertions which cover the general behavior
of the design. Finally, in [9], mined assertions are said to be
generally ranked according to their frequency of occurrences
and time of first occurrence, however, no specific approach is
presented.

As an opposite class of approaches, coverage metrics have
been widely studied for qualification of assertions [14], [15],
[16], [17]. Most of these works rely on fault analysis, which
requires perturbing the DUV implementation by injecting
mutations (faults) to check, either statically [15], [16] or
dynamically [17], whether they change the truth values of the
assertions; Faults that do not cause a change are said to be
not observed. Assertions that observe a lower number of faults
have less quality than assertions detecting a higher number of
faults. Not observed faults generally highlight areas/behaviors
of the DUV that are not covered by any of the defined
assertions showing a hole within the coverage.

Dynamic approaches such as [17] scale better with respect
to static techniques, however, they still require long simulation
runs for checking each assertion for each fault with a signif-
icant set of test-benches. When the number of assertions is
very high, as in the case of assertions extracted automatically,
evaluating their quality through fault analysis becomes a very
time-consuming task.

Error-checkers are to be generated from safety assertions,
whereas automated assertion generation provides mostly live-
ness assertions. Therefore, a liveness to safety generation
step is proposed in this paper. In the state-of-the-art, there
exist some works to convert liveness to safety assertions.
For example [18] uses finite state machine and reachability
checking to translate liveness assertions to safety assertions.
In [19] the same technique as [18] has implemented but using
an unbounded state machine. [20] describes a technique to
distinguish between a liveness and a safety assertion but no
specific method for translation of liveness to safety assertions.
The technique which is proposed in this work, is translation
of liveness assertions to safety with transposition logic which
is a fast and cost-effective approach.

Last but not least, there exist previous works in gate-level
minimization of checkers at the gate level [5], [6]. However,
the scalability of minimization at the gate-level is very low due
to the excessive run-times of fault injection, iterative synthesis
and minimization at this low level of abstraction.

To fill the gaps described above, the methodology proposed
in this paper provides the following contributions:

o First, an advanced assertion ranking approach has been
introduced based on combining three different metrics
adapted from data mining, to evaluate assertions’ quality

from different conditions (See Section IV-A1). Compared
to similar approaches in the state of the art, it provides
higher correlation of assertion quality with fault coverage
of the obtained checkers.

« Second, combining a fault analysis approach along with
a data mining approach for assertion qualification to get
the advantages of both techniques, the former providing
high accuracy and the latter very short execution time.

« Last but not least, different from existing checker synthe-
sis and minimization approaches, the methodology pro-
posed in this paper operates on high level of abstraction,
therefore providing better scalability with the circuit size.

III. PRELIMINARIES

Definition 1: A fault f; is a local alteration of the DUV’s
source code that perturbs its functionality.

Definition 2: A fault f; is called an observable fault if, in
comparison with a fault-free DUV, its effect is visible as an
alteration in the DUV’s primary outputs. A fault f; is covered
by an assertion a; if assertion a; fails when the fault f; is
observed at primary outputs.

Definition 3: An assertion is a composition of propositions,
connected via temporal operators according to some temporal
logic.

Definition 4: An assertion with higher degree of Quality is
the one that observes a higher number of faults.

Definition 5: An assertion is composed of Antecedent i.c.,
the left side of an implication and Consequent i.e., the right
side of an implication. An example of an assertion applied in
the Experimental Results section:

Empty = False && (flit = Header || flit = Payload || flit = Tail) —
oNport = True || oWport = True || oSport = True || oLport = True
where the Antecedent is:

Empty = False && (flit = Header || flit = Payload || flit = Tail)

and the corresponding Consequent is:
oNport = True || oWport = True || oSport = True || oLport = True

Definition 6: Given a set of items I and the corresponding
dataset of D, a rule X — Y (X being the antecedent and
Y being the consequent) has support S if X and Y occur
concurrently in S percent of transactions in D.

Definition 7: Given a set of items I and the corresponding
dataset of D, the Correlation Coefficient of the rule X — Y
is the covariance of X and Y divided by the product of their
individual standard deviations.

Definition 8: Strength Measure is a product of quantities
such as Support (Definition 6) and Correlation Coefficient
(Definition 7) but with giving priority in the region of
rules/assertions with low occurrences but highly correlated
with other rules/assertions.

IV. METHODOLOGY

In order to derive cost effective hardware safety checkers
from a large number of liveness assertions, a methodology
based on a tool framework is shown in Figure 1. This
methodology is applicable independently from the way as-
sertions are defined/generated. The assumption is that they
are represented in the form of A — C where A and C

are antecedent and consequent (Definition 5), respectively.
Assertions go through an Assertion ranking phase to evaluate
their quality based on data mining metrics. The highest ranked
assertions are further forwarded to an Overlap checking phase
implementing mutation based assertion qualification to analyze
the observed faults by each assertion. As a result, a set of
high quality minimized assertions are sent to the liveness to
safety assertion conversion step. The output of this step is
a set of safety assertions. In the last step, DUV and safety
assertions are synthesized to be evaluated at the gate-level
using fault injection and simulation. So, as stated above, the
work flow of the proposed methodology is divided into 3 main
steps: assertions’ qualification, liveness to safety conversion
and checkers’ synthesis and evaluation. The three steps are
explained in more detail below.

A. Assertion qualification

This step consists of two main phases: Assertion ranking
and Overlap checking. In Assertion Ranking, an assertion
qualification tool Shayan [12] is applied on liveness assertions
to estimate their quality (Definition 4) based on data mining
metrics. The high quality assertions, selected by Shayan go
through the Overlap checking phase for fault analysis utilizing
the Synopsys Certitude qualification tool [21]. The hypothesis
is that assertions with higher degree of quality are more
effective in the verification process. Thus, Shayan selects
assertions with the degree of quality above a preset threshold
and forwards them to the Overlap Checking phase for fault
analysis. The main drawback of fault analysis approaches
is their long simulation time, since the effect of a fault
(Definition 1) that has been injected needs to be evaluated
by simulation. The above-mentioned preliminary selection by
Assertion Ranking leads to reduction of this simulation time.

Valid input
Liveness s
S
y) i Occurrence of
simulator . /> eachassertion | -
DUV L o

Step 1: Occurrence Counting

7C’reati’ng
~ Contingency
table

Step 2: Creation of Contingency table

/ Calculation metrics
and applying on
assertions.

Ranked assertions

based on their
> quality

Step 3: Metric calculation and assertion ranking

Fig. 2: Overview of Shayan (Assertion ranking)

1) Assertion Ranking: In the core of assertion ranking, a
data mining based tool called Shayan is placed. From the point
of view of general concept, data mining [22] and assertion
ranking share the same idea (extracting rules from data), but
they have several differences that make it practically different
how these metrics are computed and interpreted for evaluating

the quality of assertions. Shayan calculates a metric called
Q which is calculated individually for each assertion. Q is
the linear combination of Support (Definition 6), Correlation
Coefficient (Definition 7) and Strength Measure (Definition 8).
The higher the value of Q, the higher the quality of the
assertion would be. Figure 2 shows the internal design of
Shayan, composed of three metrics, i.e.,Occurrence counting,
Contingency table creation and Metric calculation.

e Occurrence counting: Liveness assertions and the DUV
are inputs of the work flow. In the first step, set of valid
input sequences are connected to a simulator to extract
information about occurrences of assertions during the
simulation. The number of times an assertion is holding in
the valid input sequences is computed. Then, each asser-
tion is decomposed into antecedent and consequent and
their respective frequencies in the valid input sequences
are computed.

Creation of contingency table: At this stage, the necessary
ingredients are ready for Creating contingency tables, see
(Table I).

I c | ¢]
AEREER
[fx1 | fxo || XX

TABLE I: Contingency table for A — C.

The computation of the contingency table is based on
counting occurrences of antecedent/consequent and the
assertions respectively. Given an assertion A — C, its
contingency table represents the relation between A and
C. The cells of contingency table contain the following
information (Table I): Cell f1; represents the number of
times where A is true and C is true in the valid input
patterns; Cell f1o represents the number of times where
A is true but C is false in the valid input patterns. Cell
fo1 is the dual of fig, i.e., it is the number of times where
A is false and C' is true in the valid input patterns, i.e., it
is the sum of occurrences of assertions A’ — C' included
in the considered assertion set with A # A’. In this case,
A and A’ can also be conflicting because this doest not
represent an inconsistency for the assertion set. Cell foo
is the number of times an assertion is not true through
the simulation. Cell f;x is the sum of cells f1; and fo.
Cell fox is the sum of cells fo1 and foo. Cell fx; is the
sum of cells f1; and fy1. Cell fxo is the sum of cells
f10 and foo. Cell fxx is the grand total.
The corresponding contingency tables are reported in
Table II. For example, for assertion validLB, fi1 cor-
respond to the total number of occurrences of validLB
in the analyzed valid input sequences; f1¢ is equal to 0,
since antecedent A does not appear in none of the other
assertions; fo1 is O since consequent of the assertion does
not appear in none of the other assertions; and finally, foo
is obtained by summing the occurrences of all the other
assertions except ValidL B. Similar considerations allow
computing values for all the other cells of Table II.

o Metric calculation and assertion ranking: Contingency ta-
bles provide basic ingredients for computation of Support

AssertionID | fi1 fio0 fo1 foo
validLB 468 0 0 2827
noLB 436 0 0 2859
singleLB 481 0 0 2814
switchL B 361 0 0 2934
portl 524 1 1025 0 1746
port2 516 | 1033 0 1746

TABLE II: Contingency tables of assertions reported in
Table 1.

and Correlation Coefficient, Strength Measure and their
linear combination Q. Concerning support, according to
(Definition 6), it is computed using the following formula:

Jfuu
Support =
f

O

XX

The Correlation Coefficient for an assertion according to

(Definition 7) is computed using the following formula:
oA,) = fufxx — fixfxu @

Vhix fox Fx1fxo
The computation of the Strength Measure for an assertion
according to (Definition 8) is computed by:

2
f11

3
fxol-1fix — fox| @

Strength Measure =
[fx1—

According to equation 1 the support ranks in the highest po-
sitions assertions that occur frequently in the execution traces.
However, we can have specific assertions that occur very rarely
because they refer to the corner cases and thus equation 3 has
been proposed. On the other hand, the correlation coefficient
privileges assertions where the number of occurrences of the
antecedent better matches the number of occurrences of the
consequent, but assertions where these numbers are low could
be extracted by chance without representing a real behavior of
the DUV. For this reason a combination of support, correlation
coefficient and strength measure provides a more accurate
estimation of assertion interestingness. Thus, we propose mea-
suring the quality of an assertion A through the following
formula:

Q(A) = axsp(A)+(1—a)xpp(A)+ (1 —a)xstrength, (A)
(C))
where, « € [0,1], and s,,(A) and p,, (A) are the value obtained
by normalizing , respectively, the support s, the correlation
coefficient p and Strength measure strength of A with respect
to the whole set of analysed assertions. By varying of «
the role of support becomes more or less important with
respect to the role of the correlation coefficient and strength
in determining the final estimation of assertion quality. In our
experiments best results have been obtained with o = 0.4.

In Table III the metrics with their corresponding values
for each assertion are represented. Assertions noLB, validLB,
singleLB and switchLB are rank better than assertions port2
and portl. Thus, for the next step the best 4 assertions are
selected and portl and port2 are discarded.

TABLE III: calculated metrics for each assertion

S CC Strenght Q
noLB 0.04 1.0 0.05 0.64
validLB 0.96 1.0 0.98 1.57
singleLB 0.04 1.0 0.05 0.64
switchLB 0.03 0.55 0.03 0.36
port2 0.001 | 0.45 0.001 0.27
portl 0.01 0 0.01 0.01
- Valid input
asserions b S
7 | { | . Compile
= . simulator e Certitude . <— Seript
buv i et

Step 1: Fault injection

Applying
minimization
._algorithm

Fault
table |

Minimized set of
high quality livenes:
assertion

Step 2: Fault overlap analysis

Fig. 3: Overview of overlap checking phase

2) Overlap checking: The Overlap Checking phase calcu-
lates which faults are covered by which assertions. Shayan,
which was described above, has the ability to rank the as-
sertions based on data mining metrics but it can not provide
any information whether two assertions have the same set of
covered faults (i.e. the assertions are equivalent) or one is
subset of the other assertions’ covered faults (i.e. dominated
by the other assertion) etc. Such equivalence and dominance
relationships between assertions allow minimizing the set of
assertions selected for synthesis and gate-level evaluation.
Thus, we applied the Overlap Checking framework which
consists of two steps, i.e., Fault injection and Fault overlap
analysis (See Figure 3).

As shown in Figure 3, the DUV and selected liveness
assertions together with the valid input sequence (i.e. the
verification environment) are fed into the Certitude tool that
performs the fault analysis. The output of Step 1 is the fault
table showing which assertion a; covers which faults f;.

The following algorithm is applied for minimizing the
number of assertions based on the fault table information.
The algorithm is based on iterative implication and greedy
selection operations. Two types of implications are used. First,
unique assertion aj, which cover some fault f; that is not
covered by any other assertions are identified and removed
from the table. Second, it is said that assertion a; dominates
assertion ay, if all the faults covered by ay, is a subset of the
faults covered by a;. Note, that equivalence of two assertions
a;j and ay, is a special case of dominance, where a; and aj
mutually dominate each another.

If after performing the implications the set of selected
assertions are not covering all the faults in the fault table, a
greedy selection operation is performed. The algorithm selects
an assertion that covers the greatest number of faults not yet
covered by the set of selected assertions. The algorithm will
complete when the selected assertions cover all the faults in

the fault table.

while exist faults uncovered by assertions do
while implications provide new assertions do
Select unique assertions;
Remove dominated assertions;
end
Make a greedy selection;
end
Algorithm 1: Fault table minimization

B. Converting liveness assertions to safety checkers

The next step is converting this set of high quality liveness
assertion to safety. During this step liveness assertions in
the form A — C are converted using transposition into the
equivalent safety assertions A A C.

Consider a real example of a liveness assertion for the
design LBDR which is studied in the experimental results.
The assertion is describing one of the behaviors of the design
as follows: "Whenever there is a request (i.e., the HEADER
flit contains the destination address) LBDR has to compute
at least one valid output direction (according to XY Routing)
to pass the flits from the input buffer to the respective output
port":

E_validLBDRout_liveness = !Eempty && (flit_id ==
HEADER |l flit_id == PAYLOAD |l flit_id == TAIL => oNport
Il oWport Il oSport Il oLport.

Here, !Eempty && (flit_id == HEADER |l flit_id ==
PAYLOAD |l flit_id == TAIL is the antecedent A and oNport
I oWport Il oSport Il oLport is the consequent C, respec-
tively. After transposition the liveness assertion is converted
to the following safety assertion: Eerr_validLBDRout_safety
= |Eempty && flit_id == HEADER) |l flit_id == PAYLOAD
Il flit_id == TAIL && !oNport && !oWport && loSport &&
loLport.

C. Checkers’ synthesis and evaluation

During this final step, the safety assertions obtained after
the minimization and conversion steps are synthesized to the
gate level to obtain concurrent error checkers. The checkers
along with the synthesized DUV are fault simulated using the
Turbo Tester software [23] in order to evaluate the coverage
of gate-level stuck-at faults achieved by the minimized set of
checkers.

V. EXPERIMENTAL RESULTS

This section presents the experiments carried out by apply-
ing the proposed methodology. To this end, three different
modules related to the control part of a 2D Network-on-
Chip (NoC) router are considered as examples. Three design
modules are taken into consideration for experimental study:
Logic Based Distributed Routing (LBDR), Arbiter and a
complex Arbiter with timeout. The assertions are manually
generated for two design modules: LBDR, Arbiter and are
automatically generated for Arbiter with timeout.

The fault simulation experiments in this paper are performed
on an IBM System x3500 M3 7380 with two 6-core Intel Xeon
E5690 3.47GHz processors and 96 GB RAM.

Table IV shows the number of assertions considered initially
at the beginning of each phase - assertion ranking phase
(described in Section IV-A1) and a minimized set of checkers
subsequent to the overlap checking phase (described in Section
IV-A2). As it can be seen, the initial number of assertions was
minimized to 7.14-50%.

TABLE IV: Minimization of the number of assertions

Initial AsserFion Over]gp
Ranking Checking
Example # % # % # %
LBDR 6 100 | 4 | 66.7 3 50
Arbiter 28 100 | 19 | 66.7 2 7.14
Arbiter with timeout | 139 | 100 | 94 | 66.7 | 18 | 12.95

The area consumption of the synthesized checkers from the
assertions is summarized in Table V. The synthesis of the
checkers has been performed via Synopsys Design Compiler
[24] using Class library, leading to results in terms of number
of NAND2 gate equivalents.

TABLE V: Area consumption of checkers
(number of NAND?2 gates)

VII. ACKNOWLEDGEMENT

The work has been supported by H2020 Twinning TU-
TORIAL, Estonian institutional research grant IUT 19-1, by
the Estonian Center of Excellence in IT EXCITE funded by
the European Regional Development Fund, and supported by
Estonian IT Academy program.

(11
[2]

3]

[4]

[5

REFERENCES

H. Foster and D. Lacey, Assertion-based design 2nd edition. Springer,
2004.

W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. of ACM/IEEE CAD.

L. Liu and S. Vasudevan, “Automatic generation of system level as-
sertions from transaction level models,” Journal of Electronic Testing,
vol. 29, no. 5, pp. 669-684, 2013.

A. Danese, F. Filini, T. Ghasempouri, and G. Pravadelli, Automatic
Generation and Qualification of Assertions on Control Signals: A Time
Window-Based Approach. Springer, 2016.

P. Saltarelli, B. Niazmand, R. Hariharan, J. Raik, G. Jervan, and
T. Hollstein, “Automated minimization of concurrent online checkers
for network-on-chips,” in ReCoSoC, 2015.

S. P. Azad, B. Niazmand, A. K. Sandhu, J. Raik, G. Jervan, and
T. Hollstein, “Automated area and coverage optimization of minimal
latency checkers,” in European Test Symposium (ETS), 2017.

P. K. Nalla, R. K. Gajavelly, H. Mony, J. Baumgartner, and R. Kanzel-
man, “Effective liveness verification using a transformation-based frame-
work,” in International Conference on VLSI Design and International

Example Initial set | Minimized set
LBDR 60 29 48.3%
Arbiter 128 33 25.7%

Arbiter with timeout 428 91 21.2%

Run times of each phase and the fault coverage calculated in
Checkers’ synthesis and evaluation step (explained in Section
IV-C) are summarized in Table VI. The fault model applied
was Single Event Transients (SETs) in the logic of the designs.

TABLE VI: Runtime and Fault Coverage

Assertion Overlap Checker’s Fault
Example Ranking Checking | Simulation | Coverage
LBDR 415s 110's 0.01 s 99.838%
Arbiter 3.04 s 280 s >0.01 s 100%
Arbiter with timeout 5.01 s 1293 s 126 s 99.833%

It is observable that the SET fault coverage for the initial set
of checkers was 100% and for the minimized sets it exceeded
98.83%. The run time of simulation is 0.01 seconds for the
LBDR and Arbiter, respectively and 12.6s for Arbiter with
timeout.

VI. CONCLUSIONS

This paper proposed a framework for selecting a minimal
set of high-quality liveness assertions to be implemented as
hardware checkers by combining a new data mining tech-
nique with fault analysis approaches. An assertion conversion
methodology was proposed which converts liveness assertions
into their safety equivalents, which are further synthesized to
hardware checkers to be evaluated at the gate level to provide
a cost-effective checking infrastructure. Experimental results
on example designs show that the initial checker area was
minimized to 21.2-48.3% obtaining more than 99.83% single
even transient coverage by applying the proposed approach.

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19

[20]
[21]
[22]

[23]

[24]

Confe e on Embedded Systems, Jan 2014, pp. 74-79.

S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertion
with guidance from static analysis,” IEEE Trans. on CAD, vol. 32, no. 6,
pp. 952-965, 2013.

W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. of ACM/IEEE DAC, 2010.

A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction
of assertions from execution traces of behavioural models,” in Proc. of
ACM/IEEE DATE, 2015.

M. Bertasi, G. Di Guglielmo, and G. Pravadelli, “Automatic generation
of compact formal properties for effective error detection,” in Proc. of
ACM/IEEE CODES+ISSS, 2013, pp. 1-10.

T. Ghasempouri and G. Pravadelli, “On the estimation of assertion
interestingness,” in 2015 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), Oct 2015, pp. 325-330.

T. Ghasempouri, S. P. Azad, B. Niazmand, and J. Raik, “An automatic
approach to evaluate assertions’ quality based on data-mining metrics,”
in 2018 International Test Conference in Asia (ITC-Asia), August 2018.
S. Katz, O. Grumberg, and D. Geist, “Have I written enough properties?
— A method of comparison between specification and implementation,”
in Proc. of ACM CHARME, 1999, pp. 280-297.

H. Hoskote, T. Kam, P. H. Ho, and X. Zao, “Coverage estimation for
symbolic model checking,” in Proc. of ACM/IEEE DAC.

N. Jayakumar, M. Purandare, and F. Somenzi, “Dos and don’ts of CTL
state coverage estimation,” in Proc. of ACM/IEEE DAC.

A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incompleteness eval-
uation by functional verification,” IEEE Trans. on Computers, vol. 56,
no. 4, pp. 528-544, 2007.

“Liveness checking as safety checking,” Electronic Notes in Theoretical
Computer Science, vol. 66, no. 2, pp. 160 — 177, 2002.

V. Schuppan and A. Biere, “Liveness checking as safety checking for
infinite state spaces,” Electronic Notes in Theoretical Computer Science,
vol. 149, no. 1, pp. 79-96, 2006, proceedings of the 7th International
Workshop on Verification of Infinite-State Systems (INFINITY 2005).
B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Ithaca,
NY, USA, Tech. Rep., 1986.

[Online]. Available: https://www.synopsys.com/verification/simulation/
certitude.html

P-N. Tan, V. Kumar, and J. Srivastava, “Selecting the right interesting-
ness measure for association patterns,” in ACM SIGKDD.

R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Ultra fast parallel fault
analysis on structurally synthesized bdds,” in 12th IEEE European Test
Symposium (ETS’07), May 2007, pp. 131-136.

(1994) Synopsys design compiler. http://www.synopsys.com/.

Curriculum vitae

1. Personal data

Name Ranganathan Hariharan
Date and place of birth 20 May 1987 Chennai, India
Nationality Indian

2. Contact information

Address Tallinn University of Technology, School of Information Technologies,
Department of Computer Systems,
Akadeemia tee 15A, 12618 Tallinn, Estonia

Phone +358 408209435
E-mail ranganathan.harihara@taltech.ee, ranganathanh87 @gmail.com
3. Education

2014-2019 Tallinn University of Technology, School of Information Technologies,
PhD studies

2010-2011 University of Glasgow,
M.Sc. in Telecommunication Electronics

2004-2008 RMK Engineering College (Affiliated to Anna University),
B.E. in Electronics and Communication Engineering

4. Language competence

Tamil native
English fluent
Hindi basic

5. Professional employment

2014-2014 Tallinn University of Technology, Early-stage researcher
2014-Present Nokia, SoC Verification Engineer

139

Elulookirjeldus

1. Isikuandmed

Nimi Ranganathan Hariharan
Silinniaeg ja -koht 20.05.1987, Chennai, India
Kodakondsus India

2. Kontaktandmed

Aadress Tallinna Tehnikalilikool, Usaldusvaarsete arvutististeemide keskus,
Arvutislisteemide Instituut,
Akadeemia tee 15A, 12618 Tallinn, Estonia

Telefon +358 408209435

E-post ranganathan.harihara@taltech.ee, ranganathanh87@gmail.com

3. Haridus

2014-2019 Tallinna Tehnikaiilikool, Infotehnoloogia teaduskond,

Doktoriope, arvuti- ja siisteemitehnika 6ppekava
2010-20M Glasgow Ulikool, magistrikraad telekommunikatsiooni elektroonikas
2004-2008 RMK Engineering College (Anna Ulikooli filiaal),

Elektroonika ja sidetehnoloogia bakalaureus

4. Keelteoskus

Tamili keel emakeel
Inglise keel korgtase
Hindi Keel pohitase

5. Teenistuskaik

2014-2014 Tallinna Tehnikalilikool, nooremteadur
2014-... Nokia, insener

140

	List of publications
	Other related publications
	Author's contributions to the publications
	Abbreviations
	INTRODUCTION
	Motivation
	Problem formulation
	Contributions of the thesis
	Thesis organization

	Background
	Faults
	Defect, fault, error
	Classification of faults

	Fault models
	Stuck-at faults
	Single Event Effects: SET and SEU fault models

	Fault simulation
	Mutation-based fault analysis
	Levels of abstraction
	Network-on-Chip router architecture
	Routing computation unit: LBDR
	Arbitration unit: Round-Robin arbiter
	Input buffer: FIFO
	Crossbar switch
	Even parity checkers
	Infrastructure of the complete router

	Concurrent checkers
	Metrics to evaluate fault detection capability
	Assertion based verification
	Data mining and assertion mining
	Metrics for data mining

	Online fault detection and minimization of the checkers
	Literature review
	Thesis contributions

	Checkers' evaluation and minimization flow
	Extraction of pseudo-combinational version of the circuit
	Synthesizing the checkers
	Environment generation for checkers' evaluation
	Fault-free simulation and debugging checkers/environment
	Fault simulation based evaluation of checkers
	Checkers' evaluation and minimization

	Embedded online test packets
	Experimental results
	ELBDR experiment
	ELBDR and SARBITER experiment
	Importance of the independence of checkers

	Experiments on the whole router
	Experiment considering the overall set of checkers
	Experiment considering the control part checkers only
	Experiment considering the hybrid solution

	Chapter summary

	Linking verification assertions and concurrent hardware checkers
	Literature review
	Thesis contributions

	Correlation between behavioral fault model and structural fault model
	Translation of liveness assertions to safety assertions
	Conversion of safety assertions to hardware checkers
	Experimental results
	ELBDR experiment
	SARBITER experiment

	Chapter summary

	Qualification and minimization of assertions
	Literature review
	Thesis contributions

	Assertion qualification
	Assertion ranking
	Assertion fault analysis

	Assertion minimization
	Experimental results
	Chapter summary

	Conclusion
	Future work

	List of figures
	List of tables
	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1 - Publication I
	Appendix 2 - Publication II
	Appendix 3 - Publication III
	Appendix 4 - Publication IV
	Appendix 5 - Publication V
	Appendix 6 - Publication VI
	Curriculum vitae
	Elulookirjeldus

