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Abstract 

This paper investigates the use of active learning with multiclass classification 

techniques to enhance the accuracy and efficiency of IoT botnet detection systems. The 

resource-intensive and time-consuming task of labelling data for ML solutions may be 

mitigated through active learning, which reduces the data size required for training the 

ML models. The study focuses on the utilization of both labelled and unlabelled datasets 

to train the model, with an emphasis on pool-based sampling. It explores various query 

strategies for selecting informative instances from the unlabelled dataset, evaluates their 

effectiveness, and compares their performance with traditional classification techniques. 

Multi-class classification techniques are adopted to provide detailed information on 

botnet traffic, facilitating incident analysis. Ultimately, the research aims to improve the 

effectiveness of IoT botnet detection systems through the adoption of active learning 

with multiclass classification techniques. 

This thesis is written in English and is 69 pages long, including 7 chapters, 23 figures 

and 47 tables. 
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1 Introduction 

Botnets are a type of network malware that are used to carry out a variety of malicious 

activities such as identity theft, distribution of malware or spam and primarily DDoS 

attacks. They are created by infecting a large number of devices, which allows the 

attacker to control them remotely and use them to carry out the malicious activities. 

Botnets have become huge threat in recent years, with attacks becoming more 

sophisticated and difficult to detect.  

According to the IBM article [1], DDoS attacks carried out by IoT devices have 

increased every year since the massive attack in 2016, which was used a botnet called 

Kaiten, also known as Mirai. Various types of botnets targeting IoT devices have been 

developed and discovered since then.  

As various forms of botnets continue to develop and advance using novel techniques, 

safeguarding against them using conventional and outdated strategies becomes 

progressively challenging. Traditional approaches, such as signature-based detection 

system and manual monitoring, are incapable of accurately identifying a mere 19% of 

the alerts generated by these solutions [2]. Furthermore, signature-based detection 

systems rely on pre-defined signatures to identify malicious activity, which can be 

easily bypassed by botnets that use new and unknown methods. Manual monitoring 

system is not scalable and requires a significant human resource.  

In recent years, Machine Learning (ML) has emerged as a promising alternative for 

botnet detection. ML algorithms have the ability to learn and adapt to new patterns, 

making them particularly effective in identifying unusual behaviors in network traffic. 

This is especially true for supervised models [3] [4]. 

One study, conducted by M. Stevanovic and J. M. Pedersen, proposes a novel botnet 

detection system that utilizes flow-based traffic analysis in conjunction with supervised 

ML. The system demonstrates high accuracy in classifying traffic, even with a limited 

amount of data per flow [5]. Another study, by Dau Xuan Hoang and Quynh Chi 
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Nguyen, presents a botnet detection model that employs ML techniques on DNS query 

data [6]. 

The use of ML extends to malware detection as well. A study by CSIT suggests that 

employing a machine learning approach can facilitate earlier detection of Android 

malware. By utilizing multiple classifiers, the approach improves detection accuracy 

and expedites analysis [7]. 

However, one disadvantage of supervised models is its reliance on a large amount of 

labelled data to train ML models, which can consume considerable time, human 

resources, and monetary expenses. To overcome this problem, unsupervised algorithms 

are recommended by the research community as a solution to this issue. Although, 

certain amount of labelled data is still required for some algorithms containing only 

benign.  

In the context of ML-based botnet detection, active learning has proven to be a 

workable approach to the challenge of acquiring labelled data [8] [9]. By iteratively 

selecting the most informative samples for labelling, active learning algorithms can 

reduce the human effort and resources required to label large datasets. Integrating active 

learning into the ML pipeline can lead to improved efficiency and effectiveness in 

botnet detection, while reducing the labelling effort typically associated with ML 

models.  

This study aims to benchmark the effectiveness of active learning for botnet detection 

from binary to multi-class classification, with a particular focus on identifying different 

types of bots. Accurate classification of malware is essential for identifying appropriate 

mitigation strategies and minimising the impact of the threat. In addition, the 

identification of the characteristics of malware can provide insight into future 

prevention efforts. 
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2 Background 

2.1 Active Learning 

Active learning, a form of semi-supervised learning, has been proposed as a solution to 

this shortage of labelled dataset problem. Unlike traditional supervised learning, active 

learning utilizes both labelled and unlabelled datasets to train a ML system. By 

selectively choosing the most informative unlabelled samples, active learning 

algorithms can achieve better performance with fewer training steps or instances. In 

essence, the key idea behind active learning is to optimize the selection of the most 

informative samples, leading to a more efficient training process. 

The selection of samples from the unlabelled dataset at each iteration and the updating 

of the model capabilities are based on informativeness. There are different scenarios in 

which active learning can be applied, depending on the problem setting. Some examples 

include pool-based sampling, where a fixed pool of unlabelled data is available for 

selection; stream-based sampling, where the data arrives continuously in a stream; and 

membership query synthesis, where the model can actively ask for labels from an oracle 

[10]. This paper uses pool-based sampling, which is flexible and easy to implement in 

real-life situations. This makes it an ideal choice for many types of problems. 

In the pool-based scenario, ML model trained with a small amount of data with 

sampling algorithm (query strategy) selects the most informative instance (query 

instances) from an unlabelled dataset, which can be highly effective in the iterative 

training of ML models. Subsequently, the selected sample is presented to an oracle, who 

is malware analyst in this instance, for labelling. After labelling, the labelled sample is 

added to the pool of labelled instances, which are then used for training the ML model. 

This iterative process can ultimately reduce the size of the required labelled dataset. 
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Figure 1. Pool-based active learning cycle 

The success of active learning in selecting informative instances from an unlabelled 

dataset depends heavily on the chosen query strategy. Therefore, this study evaluates 

and compares various query selection strategies. In the following paragraphs, the 

different query strategies are described in detail. 

2.2 Uncertainty Sampling 

In uncertainty sampling, the most informative instance is selected for labelling by 

evaluating the uncertainty or degree of doubt of the ML model about each instance's 

label and selecting the one with the highest uncertainty. Examples of informativeness 

scores are given below: 

2.2.1 Classification Uncertainty (𝑼) 

It measures how uncertain the ML model is about the predicted class label for each 

instance. It is calculated as: 

 

U(x) = 1 − Max(P(y|x)) 

 
where x is the instance, y is class labels and P(y|x) is the probability of each class given 

the instance x. Max function returns the highest probability value among all class labels. 

The instance with the smallest score will be selected. 
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2.2.2 Classification Margin (𝑴) 

 It selects an instance that has the smallest difference between the class with the highest 

probability and the class with the second highest probability. It is calculated as: 

 

𝑀(𝑥) = 𝑃(𝑦𝑚𝑎𝑥|𝑥) − 𝑃(𝑦𝑚𝑎𝑥−1|𝑥, ) 

 
where 𝑦𝑚𝑎𝑥 is the class with the highest probability and 𝑦𝑚𝑎𝑥−1 is the class with the 

second highest probability for a specific instance 𝑥. 

2.2.3 Classification Entropy (𝑬) 

This is a measure of how much uncertainty there is in the probability distribution over 

the possible class labels for an instance. It is calculated as:  

𝐸(𝑥) =  − ∑ 𝑃(𝑦|𝑥) log 𝑃(𝑦|𝑥)

𝑘

 

where 𝑥 is the instance and 𝑃(𝑦|𝑥) is the probability of each class 𝑦 given the instance 

𝑥. The summation calculates the sum of the negative logarithm of the probabilities of 

the possible labels. The instance with largest score will be selected. 

2.3 Query by Committee 

Query by Committee selects informative instances for labelling by training a committee 

of ML models. It takes a majority vote from multiple ML models and selects the 

instance with the most split votes. It tends to be like uncertainty sampling in the sense 

that instances are selected from uncertainty. Examples of informativeness scores are 

given below: 

2.3.1 Vote Entropy (𝑽𝑬) 

calculates the entropy of the voting result information and select the instance with the 

largest score. It is calculated as: 

𝑉𝐸 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥 − ∑
𝑉(𝑦)

𝐶
log

𝑉(𝑦)

𝐶
𝑦

 

where, I  𝑉(𝑦) represents the number of votes for a particular class and 𝐶 represents the 

size of the committee. 
𝑉(𝑦)

𝐶
 represents the consensus probability of label. 
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2.3.2 Consensus Entropy (𝑪𝑬) 

 calculates the consensus entropy of the voting result information and select the instance 

with largest score. It is calculated as: 

𝐶𝐸 =  − ∑ 𝑃𝐶𝑠 log 𝑃𝐶𝑠

𝑦

 

where 𝑃𝐶𝑠 =
1

𝐶
∑ 𝑃(𝑦𝑖)𝐶

𝐶=1  is the consensus probability.  This represents the average of 

the class probabilities of each ML model.  

2.3.3 Maximum Disagreement (𝑴𝑫) 

calculates the consensus probability by calculating average of the class probabilities. 

Kullback-Leibler divergence is calculated instead of entropy. Kullback-Leibler 

divergence calculates the difference between the model's predicted distribution of labels 

and the true distribution of labels. Instance with the highest divergence score is selected. 

It is calculated as: 

𝑀𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

1

𝐶
∑ 𝐷(𝑃𝜃𝑐||𝑃𝐶𝑆)

𝑐

𝑖

 

where 𝐷(𝑃𝜃𝑐||𝑃𝐶𝑆) =  ∑ 𝑃(𝑦𝑖|𝑥; 𝜃𝑐)𝑙𝑜𝑔
𝑃(𝑦𝑖|𝑥; 𝜃𝑐

)

𝑃𝐶𝑆
𝑖  calculates the Kullback-Leibler 

divergence. 𝜃𝑐  represents the ML model of the committee, which makes 𝑃(𝑦𝑖|𝑥; 𝜃𝑐) 

means the predicted probability of label 𝑦 by the model, and 𝑃𝐶𝑆 is the consensus 

probability. 

2.4 Ranked batch-mode Sampling 

While the standard pool-based sampling can only return one instance per query, ranked 

batch-mode sampling addresses this limitation by enabling the learner to query multiple 

instances simultaneously, thereby gathering more information and reducing the overall 

cost of labelling. Formula proposed by Cardoso et al is following: 

𝑆𝑐𝑜𝑟𝑒 = 𝛼(1 − 𝜙(𝑥, 𝑋𝑙𝑎𝑏𝑒𝑙𝑒𝑑)) + (1 − 𝛼)𝑈(𝑥) 

where 𝛼 is ratio of the training set and total available instances 𝛼 =  
𝑋𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑

𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑+𝑋𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑
 , 

𝑋𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑  is the labelled dataset and 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 is the unlabelled dataset. 
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𝜙 is a similarity function which represents the resemblance between the instances. This 

function gives higher scores to instances that are different from the already labelled 

documents, so that they can explore new areas of the instance space. 𝑈(𝑥) is the least 

confident score. Overall, this sampling method selects the highest-scoring sample, 

remove it, recalculate scores for the remaining instances, and repeat until the desired 

batch size is reached. Query and label the batch in a single training step to update the 

learning model. 
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3 Related Work 

The field of cybersecurity has witnessed continuous advancement in machine learning 

techniques over the years, with various applications including malware detection, spam 

email classification, and threat intelligence. Notably, machine learning has been 

employed in network intrusion detection, with active learning techniques being a 

particular focus to enhance labelling efficacy. 

In a previous study, Alejandro and Hayretdin conducted a benchmark experiment on 

binary classification, evaluating different active learning scenarios such as uncertainty 

sampling, query by committee, and ranked batch-mode sampling, and examining the 

impact of incorrect labelling on performance [5]. The authors concluded that active 

learning cycles produced significantly better results than passive baselines, requiring at 

least ten times less data. However, the study did not consider how a trained active 

learner might perform against datasets from other botnet domains. This aspect raises the 

question of the generalizability of the active learning approach across different domains 

and whether a model trained on one dataset can effectively detect intrusions in other 

botnet domains. To address this issue, this study explores the transferability of active 

learning models and investigate their performance on diverse datasets. Furthermore, it 

should be noted that while binary classification is important, multi-class classification is 

also a critical task in network intrusion detection. This studie explores the effectiveness 

of active learning approaches in the context of multi-class classification, as this has the 

potential to improve the accuracy of intrusion detection systems in identifying various 

types of network attacks. Additionally, investigating the transferability of active 

learning models across multiple domains is necessary to ensure their applicability in 

real-world scenarios.  
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4 Methodology 

4.1 Experiment Environment 

List of experiment tools and libraries are shown below: 

Table 1. Experiment Environment  

Programming Language Python 3.8.10 

Python Library and Usage modAL (0.4.1) Active Learning 

Scikit-learn (1.2.1) Pre-processing, ML 

algorithms, evaluation 

Matplotlib (3.5.1) Generate graphs 

Pandas (1.3.4) Pre-processing 

Numpy (1.21.4) Pre-Processing 

 

4.2 Dataset 

ML datasets play a crucial role in developing effective intrusion detection systems for 

IoT networks. Two such datasets, MedBIoT [11] and N-BaIoT [12], have been created 

to provide comprehensive and labelled data for botnet research. Both datasets contain 

benign and malicious network traffic, enabling the training of ML models to capture 

pattern of the traffic patterns and testing the trained ML model to evaluate performance.  

4.2.1 MedBIoT Dataset 

The dataset comprises network traffic data recorded from 83 authentic and emulated IoT 

devices within a medium-sized network. It encompasses 3 types of malwares (Mirai, 

Torii, BashLite) deployed during the initial stages of botnet deployment, including the 

Command & Control (C&C) phase between the botmaster and the proliferation of 

malware. This facilitates data labeling and concentrates on the early detection of threats 

and prevention of attacks. The dataset consists of 100 features derived from statistical 

methods applied sequentially to raw network packet data (e.g., packet size, packet 

count, packet jitter in 100ms, 500ms, 1.5 sec). The features are presumed to be 

inherently interpretable by a human analyst. This labelled dataset is suitable for both 

supervised and unsupervised learning and can be used for IoT botnet research and 

intrusion detection systems. The research used Sonoff Tasmota smart switch, TPLink 
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smart switch, and TPLink light bulb as real devices, and a lock, switch, fan, and light as 

emulated devices.  

4.2.2 N-BaIoT Dataset 

This other dataset on the other hand, encompasses 2 types of malwares (Mirai, 

BashLite) and benign captured network traffic from 9 devices includes doorbell, 

webcam, thermostat, baby monitor, security camera in small-sized network. The data 

was captured under the actual environment focuses on the attack phase of the botnet. 

The dataset contains 115 features. But still, structure of the dataset is the same as 

MedBIoT with additional 15 features. The dataset focusses on attack phase of the botnet 

unlike MedBIoT.  

4.2.3 Dataset Pre-processing 

The study uses the MedBIoT dataset to measure benchmark performance and the N-

BaIoT dataset to observe whether it exhibits the same characteristic as an active learner 

trained with the MedBIoT dataset. The study assumes that an Oracle can interpret the 

dataset’s features and labels, which are used to train and test ML models. Initially, 

120,000 instances are randomly extracted from the entire MedBIoT dataset, with 30,000 

instances for each of the Benign, Mirai, Bashlite, and Torii labels. The data is split into 

two parts for training and testing while maintaining a balanced class composition. The 

training dataset has 80,000 instances and is used for training ML models. The testing 

dataset has 40,000 instances and is used to evaluate generalizability. In terms of N-

BaIoT dataset, the dataset is set up to mimic MedBIoT dataset as closely as possible and 

consists of 90,000 instances with 30,000 instances each for Benign, Mirai and Bashlite 

labels. 

In addition to the dataset size, feature selection and feature scaling were performed. 

Pearson's correlation coefficient was calculated from the features, and those with 

correlation coefficients above 0.8 were excluded. After removing the features, the data 

were standardized using the Standard Scaler formula, which is given below: 

𝑍 =  
(𝑥 − 𝑢)

𝑠
 

where 𝑥 is the sample score, 𝑢 is the mean value of the set, and 𝑠 is the standard 

deviation. In the experiment, the mean and standard deviation values were calculated 
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from the training dataset. This standard scaler was applied to both the training and 

testing data. 

Since the active learning cycle requires the availability of unlabelled data (pool), the 

pool of unlabelled data was always extracted from the training dataset. The testing 

dataset was used to evaluate the accuracy of the active learning models at every 

iteration.  

4.3 Evaluation Scores 

When evaluating the performance of an ML model, statistical scoring measures are used 

to quantify its effectiveness. These scores help objectively assess how well the model 

can make predictions on new, unseen data. To ensure that all classes are treated equally, 

weighted method is used for calculating each score. The weighted accuracy method 

assigns a weight to each class in a classification problem based on its representation in 

the dataset. It then calculates the overall accuracy of the model by taking the sum of the 

product of the number of true positives and the weight for each class, divided by the 

total number of samples in the dataset. In this study, F1 score is the main evaluation 

metric because it considers both false positives and false negatives, making it a reliable 

measure of a model’s ability to correctly classify samples from all classes. The 

statistical measures used as evaluation scores are listed below: 

4.3.1 Accuracy 

Accuracy refers to the proportion of correctly classified samples out of all the samples 

in the dataset. Equation is explained below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 𝑤𝑖

𝑛

𝑖=1

 ∗  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖  

where 𝑤𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 and 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠  
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4.3.2 Precision 

Precision measures how many of the positive predictions made by the model are correct. 

As a method, micro is used for the calculation same as accuracy. Equation is explained 

below: 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑣𝑒𝑠 
 

Weighted Precesion = ∑ 𝑤𝑖

𝑛

𝑖=1

 ∗  Precesioni  

where 𝑤𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 and 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 

4.3.3 Recall 

Recall a measure of a model's ability to correctly identify all instances of a given class. 

Equation is explained below: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

Weighted Recall = ∑ 𝑤𝑖

𝑛

𝑖=1

  ∗  Recalli  

where 𝑤𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 and 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 

4.3.4 F1 

The F1 score is a metric that balances the precision and recall of a classification model 

into a single value. It provides a measure of the model's overall performance, ranging 

from 0 to 1, with higher scores indicating better performance. Equation is explained 

below: 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

4.4 Baseline Model Performance 

To evaluate the impact of active learning, it's important to compare its effects with the 

baseline performance of machine learning models. Typically, static, basic models are 
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used as the baseline for intrusion detection in production, with few updates. In our 

study, we compare 5 commonly used supervised classification algorithms, including 

Random Forest, K-Nearest Neighbours, Decision Tree, Logistic Regression, and 

Support Vector Machine, to establish a baseline performance. Based on the results, we 

select the algorithm that outperforms the others as the main algorithm for active 

learning. 

The algorithms are trained on the training set and then tested on the test set, with their 

hyperparameters set to default values without optimisation. The evaluation scores in the 

above section are measured when the model is tested on the test data set. To find out the 

best number of features to use, the top 3, 5, 10, 15, 20 features are selected from the 

dataset based on Fisher's score. To account for variations caused by the algorithm's 

random number seed, each test was performed 5 times. 

4.5 Active Learning Experiments 

After comparing and selecting baseline models, the algorithm with the best performance 

was chosen for the active learning experiment. To evaluate the active learning 

performance, each query strategy was implemented and tested 5 times, with average 

scores calculated for each test. Training dataset is used as initial seed and unlabelled 

pool to train active learner, and testing dataset is used for performance evaluation in 

each query iteration. 

Four types of query strategies were used in total for this experiment as follows: 

4.5.1 Uncertainty Sampling 

The active learning cycle uses a single ML model to generate initial detection model 

trained with initial seed. This cycle is repeated 1,000 times and one instance is chosen 

from unlabelled pool set using a query strategy in each iteration to update the model, 

hence 1,000 instances are used for the criteria. In each iteration, evaluation scores from 

section 4.2 are measured with testing dataset. The experiment employs 3 query 

strategies: classification uncertainty, classification margin, and classification entropy. In 

every iteration, the evaluation scores from the testing dataset are measured. 

Additionally, to evaluate the impact of different patterns of initial seed and unlabelled 

pool size, 4 different sizes of initial seeds (4, 12, 40, and 200 instances) and 6 different 

sizes of unlabelled pools (1000, 4000, 8000, 12000, 20000, and 50000 instances) are 
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tested. Initial seed and unlabelled pool are extracted from the training dataset randomly 

every time. For initial seed, each instance number is balanced and contains the same 

number of instances for each class, and every combination of initial seed and pool size 

is tested.  

4.5.2 Uncertainty Sampling in Binary Classification 

To compare binary class classification and multi-class classification, labels in the 

dataset used in the multi-class experiment are changed. The classes of Mirai, Bashlite, 

and Torii are labeled as one botnet. However, the ratio of the dataset by class is kept the 

same (i.e., 30,000 instances for Benign, Mirai, Bashlite, Torii equally). The data is split 

into two parts for training and testing, with a balanced class composition. The training 

dataset contains 80,000 instances, and the testing dataset contains a total of 40,000 

instances. Since the purpose of this is score comparison, only classification uncertainty 

is used as a query strategy. The same initial seed and unlabelled pool settings from the 

uncertainty sampling experiment are used. 

4.5.3 Ranked batch-mode Sampling 

Similar to uncertainty sampling, a single ML model is used to generate an initial 

detection model, and the cycle is repeated 1,000 times. However, in this case, the query 

strategy selects batches of instances from the unlabelled pool with different sizes (4, 8, 

20, 40 batch instances) in each iteration to update the ML model. Number of instances 

for each class for the batch instances are balanced. The total number of iterations 

depends on the batch size; for example, if 4 batch instances are selected every iteration, 

the iteration is repeated 250 times. The same evaluation scores are measured using a 

testing dataset, and the same initial seed and unlabelled pool patterns from uncertainty 

sampling experiment are used. 

4.5.4 Query By Committee 

Multiple ML models are used to generate a detection model in this cycle. A committee 

of models is formed, and 3 query strategies (vote entropy, consensus entropy, maximum 

disagreement) are used to query instances from the unlabelled pool in every iteration. 

The cycle is repeated 1,000 times, and one instance is chosen from the unlabelled pool 

in each iteration. The same evaluation scores are measured using a testing dataset, and 

the same initial seed patterns are used. To minimize the variable, only the best pool size 
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of the uncertainty sampling from uncertainty sampling experiment is used for the query 

by committee experiment. Different size of committee is used (2, 3, 5, 7, 10).  

4.5.5 Random Sampling 

In this experiment, a query strategy that selects instances randomly is used, in 

comparison with the active learning cycle. The cycle is repeated 1,000 times, with one 

instance being chosen from the unlabelled pool in each iteration. The same settings as 

uncertainty sampling are applied for initial seeds and unlabelled pool sizes. The same 

evaluation scores are measured using a testing dataset, along with the same initialization 

seed and unlabelled pool patterns. 

4.5.6 Testing with N-BaIoT Dataset 

To investigate the generality of the active learner model in depth, we conduct the same 

experiment using an N-BaIoT dataset. The dataset is split into 60,000 and 30,000 

instances for training and testing purposes, respectively. The training dataset is used as 

the initial seed and unlabelled pool set, just like in the previous active learning 

experiment. The testing dataset is used to measure performance at every iteration. We 

evaluate the predicted and original classes using a statistical score function. To maintain 

consistency in our research, we restrict the query strategy to random sampling, ranked 

batch-mode sampling and the top-performing methods from the previous section: 

uncertainty sampling and query by committee. Since the dataset has only 3 classes 

(Benign, Mirai and Bashlite), different initial seeds are used. As initial seed patterns, 3, 

9, 30 and 150 are used and the numbers are balanced and contain the same number of 

instances for each class. The other settings are the same. 
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5 Results 

In summary, the Random Forest algorithm outperformed all other algorithms and was 

selected as the primary algorithm for the active learning experiments. In these 

experiments, uncertainty sampling yielded the most consistent and effective results 

compared to query by committee and random sampling. The results of Ranked batch-

mode sampling were almost the same or lower than the result of random sampling. The 

following sections present the results of all experiments. 

5.1 Dataset Pre-processing 

Pre-processing aims to improve the quality of the data, making it more accurate and 

reliable for ML training. For this purpose, Pearson’s linear correlation coefficient was 

calculated on MedBIoT dataset, and features correlated each other more than 0.8 are 

removed. As a result, 20 features out of 100 features are remained in the dataset. Same 

features are extracted from N-BaIoT dataset.  

After the feature selection, feature scaling was implemented with standard scaler. The 

mean value and standard deviation value are calculated based on the training data of 

MedBIoT, and scaled data are calculated for training data and testing data of MedBIoT 

data and whole N-BaIoT dataset as second testing dataset. 

5.2 Baseline Model Performance 

5 algorithms, namely Random Forest, K-Nearest Neighbours, Decision Tree, Logistic 

Regression, and Support Vector Machine, were used as baselines. They were first 

trained with the training set and then evaluated with the testing set. To determine the 

optimal number of features, we tested the algorithms using the top 3, 5, 10, 15, and 20 

features based on Fisher’s score and this process was repeated 5 times.  
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Figure 2. Comparison of Baseline Performance 

The average score was calculated, and the results are shown in Figure 2. The graph 

indicates that the Random Forest algorithm outperformed the other algorithms in all 

cases, although only slightly better than the Decision Tree and K-Nearest Neighbours 

algorithms. Therefore, the Random Forest algorithm was chosen for the active learning 

experiments.   
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5.3 Active Leaning Experiments 

The following paragraphs shows the performance result for the active learning 

experiments described in section 4.5. 

5.3.1 Random Sampling 

The results are shown in Figure 3. Detailed score comparisons are available in Table 2-

Table 4. The graphs demonstrate that a larger initial seed results in faster convergence 

to a higher score. This is because starting point before querying phase is already well 

scored. However, the effect of pool size is not apparent since the lines in each graph 

overlap significantly. An F1 score of 90% is achieved within 100 queries with an initial 

seed of 4 or 12, and with an initial seed of 40 or 200, F1 score of over 0.9 are achieved 

even before querying from the unlabelled pool. The highest score achieved in this 

experiment is 0.98. 

 

Figure 3. Random Sampling Result 
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Table 2. Random Sampling: Highest F1 score in each initial seed 

Init Size Highest - F1 Pool Size Query 

4 0.9813294870941099 4000 984 

12 0.9823417204348603 8000 999 

40 0.98180018794845 8000 966 

200 0.9831825282961116 50000 991 

 

Table 3. Random Sampling: Number of queries when the F1 score exceeds 0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.909300349124136 1000 29 

12 0.9023976452328604 1000 17 

40 0.9344501746582596 1000 0 

200 0.9533674586553728 1000 0 

 

Table 4. Random Sampling: Highest F1 score in each unlabeled pool size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9748526424459261 969 

4000 0.9788838103232719 987 

8000 0.9823417204348603 999 

12000 0.9779469298607155 979 

20000 0.9801597337014755 974 

50000 0.9816666994192763 995 
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5.3.2 Uncertainty Sampling 

The result of the classification uncertainty is shown in Figure 4 with detailed score 

comparisons available in Table 5-Table 7 For comparison, one of random sampling 

result is shown in the graphs. 

Similar to random sampling, a larger initial seed leads to faster convergence to a higher 

score. Additionally, a larger pool size results in a higher maximum F1 score, 

demonstrating that a sufficient number of instances are required to improve the 

classifier's performance, and a relatively large unlabelled pool size is necessary to 

obtain good instances. However, the top three largest unlabelled pool sizes are slow to 

converge to their best score, indicating that the query strategy struggles to find good 

instances from the unlabelled pool. Based on these two factors, it is better to have a 

decent amount of unlabelled pool and many instances does not necessarily give a better 

score faster. The score of random sampling (8,000 unlabelled pool) is added to the 

graphs.  

 

Figure 4. Uncertainty Sampling: Classification Uncertainty Result  
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Table 5. Uncertainty Sampling (Classification Uncertainty): Highest F1 score in each initial seed 

Init Size Highest F1 Pool Size Query 

4 0.9983503530477529 50000 680 

12 0.9982203855890621 50000 795 

40 0.998230338287456 50000 817 

200 0.9981354874327671 50000 833 

 

Table 6. Uncertainty Sampling (Classification Uncertainty): Number of queries when the F1 score 

exceeds 0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.9010494971171464 1000 42 

12 0.9035725587760008 1000 9 

40 0.9035725587760008 1000 0 

200 0.9585481934647515 1000 0 

 

Table 7. Uncertainty Sampling (Classification Uncertainty): Highest F1 score in each unlabelled pool size 

in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9824130274734404 112 

4000 0.9916174442184691 175 

8000 0.9950015985313481 261 

12000 0.9958123969302564 322 

20000 0.9969513627368339 393 

50000 0.9982203855890621 795 
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The result of classification margin is shown Figure 5 with detailed score comparisons 

are available in Table 8-Table 10. For comparison, one of random sampling result is 

shown in the graphs. 

The classification margin yields slightly better results than classification uncertainty. 

Upon examining the graph for initial seed 4, the first four unlabelled pool sizes 

exceeded an F1 score of 0.95 within 100 queries, while the two largest unlabelled pool 

sizes took approximately 250 queries to reach the same score. In the graph for initial 

seed 12, all unlabelled pool sizes reached an F1 score of 0.95 within 100 queries and 

converged to 0.98 after 300 queries. However, Pool 1000 only reached a maximum of 

0.98 for every initial seed. The graphs for initial seeds 40 and 200 show almost the same 

results as classification uncertainty.  

 

 

Figure 5 Uncertainty Sampling: Classification Margin Result 
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Table 8. Uncertainty Sampling (Classification Margin): Highest F1 score in each initial seed 

Init Size Highest F1 Pool Size Query 

4 0.9984701267019821 50000 703 

12 0.9985001618738553 50000 638 

40 0.998260162994467 50000 587 

200 0.9984052317373571 50000 825 

 

Table 9. Uncertainty Sampling (Classification Margin): Number of queries when the F1 score exceeds 0.9 

for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.9069369629837702 1000 7 

12 0.9087198106648391 1000 6 

40 0.9034405775006003 1000 2 

200 0.9570015402132714 1000 0 

 

 

Table 10. Uncertainty Sampling (Classification Margin): Highest F1 score in each unlabelled pool size in 

the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9833623937767078 141 

4000 0.9921374140806629 240 

8000 0.9950421501676487 281 

12000 0.9965105274983552 345 

20000 0.997095587461186 457 

50000 0.9985001618738553 638 
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The results of the classification entropy are shown in Figure 6 with detailed score 

comparisons are available in Table 11-Table 13. For comparison, one of random 

sampling result is shown in the graphs. 

The graphs demonstrate that the patterns in each pool converge slower than other 

uncertainty sampling query strategies. In the graph with an initial seed of 4, the F1 score 

of pool sizes larger than 8000 fluctuates around an accuracy of 0.9 until 200 queries, 

after which the pool sizes converge from the smallest ones. Similarly, to other 

uncertainty sampling query methods, the pool size of 1000 reaches an F1 score of 0.98 

at the 100th query, with the pool sizes of 4000, 8000, 12000, 20000, and 50000 

converging to a score of 0.99 at 300, 350, 400, 500, and 800 queries, respectively. In the 

graph with an initial seed of 12, convergence occurs at the same query point; however, 

in the first 100 queries, the scores exceed 0.9. In the graphs with initial seeds of 40 and 

200, all pool sizes converge at the same query count as the initial seeds of 4 and 12, 

except for pool size 50000, which converges faster than the initial seed of 40. 

 

Figure 6 Uncertainty Sampling: Classification Entropy Result 
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Table 11. Uncertainty Sampling (Classification Entropy): Highest F1 score in each initial seed 

Init Size Highest F1 Pool Size Query 

4 0.9976158747699089 50000 990 

12 0.9976260310674334 50000 973 

40 0.9973859927688146 50000 996 

200 0.9977458445218123 50000 998 

 

Table 12. Uncertainty Sampling (Classification Entropy): Number of queries when the F1 score exceeds 

0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.9063903641250107 1000 73 

12 0.9010464033908141 1000 4 

40 0.9196395641216741 1000 0 

200 0.9579836773312191 1000 0 

 

Table 13. Uncertainty Sampling (Classification Entropy): Highest F1 score in each unlabelled pool size in 

the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9837432959603376 179 

4000 0.9916634552981123 304 

8000 0.9944786993514766 523 

12000 0.9955788457091777 544 

20000 0.9967170781310735 865 

50000 0.9976260310674334 973 
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5.3.3 Uncertainty Sampling in Binary Classification 

The Figure 7 displays the outcome of uncertainty sampling in binary classification when 

considering classification uncertainty and detailed score comparisons are available in 

Table 14, Table 15, Table 16.  

Regardless of the initial seed and pool size, the maximum F1 score is about 0.99. 

Comparing the graphs of binary and multi-class result with the same strategy, we 

observe that binary classification outperforms multi-class classification, as it only takes 

about 100 instances to exceed the F1 score of 0.98 regardless of unlabeled pool size. 

 

 

  

Figure 7. Uncertainty Sampling (Binary) Result 
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Table 14. Binary Uncertainty Sampling (Classification Uncertainty): Highest F1 score in each initial seed 

Init Size Highest F1 Pool Size Query 

4 0.998231819406671 50000 631 

12 0.9984212978833014 50000 551 

40 0.9982966599433704 50000 479 

200 0.9984561954062894 50000 585 

 

Table 15. Binary Uncertainty Sampling (Classification Uncertainty): Number of queries when the F1 

score exceeds 0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.9061612174750495 1000 7 

12 0.905154323766163 1000 1 

40 0.9328065825179648 1000 0 

200 0.9508481780305941 1000 0 

 

Table 16. Binary Uncertainty Sampling (Classification Uncertainty): Highest F1 score in each unlabelled 

pool size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9785984981920983 311 

4000 0.9940898618542867 214 

8000 0.9950334361671882 272 

12000 0.9962828343934642 270 

20000 0.9973189676979078 348 

50000 0.9984212978833014 551 
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5.3.4 Ranked Batch-mode Sampling 

For the experiment, 4, 8, 20, and 40 batch instances were used with the same initial seed 

and pool patterns as the other sampling method. The results for 4 batch instances and an 

initial seed of 12 instances for 8, 20, and 40 batch instances are presented in this 

paragraph. In addition, the result of random sampling is added to the graph for 

comparison. The query iteration was adjusted according to the ranked batch-mode 

sampling's iteration. (i.e., as the 4 batch instances query iteration being the average of 

every 4 iterations in random sampling) 

The result of 4 batch instances is shown Figure 8 with detailed score comparisons are 

available in Table 17-Table 20 

The first assumption was that a larger unlabelled pool size would result in better 

convergence of the F1 score. However, in this sampling method, larger pool sizes are 

struggling to achieve better results at maximum overall.   

 

Figure 8. Ranked Batch-mode Sampling: 4 Batch Instances Result 
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Table 17. Ranked Batch-mode Sampling (4 batch instances): Highest F1 score in each initial seed 

Init Size Highest F1 Pool Size Query 

4 0.9910911131668874 8000 832 

12 0.992162100783205 8000 996 

40 0.9923571561616351 8000 996 

200 0.9931023423066968 8000 992 

 

Table 18. Ranked Batch-mode Sampling (4 batch instances): Number of queries when the F1 score 

exceeds 0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

4 0.905225183697479 1000 52 

12 0.9052755351931431 1000 20 

40 0.9116688996579242 1000 0 

200 0.9580390100552684 1000 0 
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Table 19. Ranked Batch-mode Sampling (4 batch instances): Highest F1 score in each unlabelled pool 

size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9826777221322175 796 

4000 0.9919784843142804 736 

8000 0.992162100783205 996 

12000 0.9903267751770748 1000 

20000 0.9877460414451813 1000 

50000 0.9798412308506468 996 

 

Table 20. Ranked Batch-mode Sampling (4 batch instances): Number of queries when the F1 score 

exceeds 0.98 for the first time in the initial seed 12 graph  

Pool Size Highest F1 Query 

1000 0.9826777221322175 796 

4000 0.9919784843142804 736 

8000 0.992162100783205 996 

12000 0.9903267751770748 1000 

20000 0.9877460414451813 1000 

50000 0.9798412308506468 996 
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For comparison, the result of 8, 20 and 40 batch instances are shown in Figure 9. 

Detailed score comparisons are shown in Table 21-Table 26.  

As the initial seed of instances increases, the difference in scores becomes smaller. 

However, larger unlabelled pool sizes yield slightly lower scores compared to smaller 

pool sizes, and this is shown in other batch instance settings. For instance, in the case of 

initial seed of 12 instances and a pool size of 1000, a F1 score of 0.97-0.98 is achieved 

within 50 query iterations in a 4 batch instances setting, and at around 25, 10, and 5 

iterations for 8, 20, and 40 batch instance settings, respectively. This means that about 

200 instances are required to achieve the same score. When comparing bigger pool 

sizes, a pool size of 50000 requires around 800 instances to achieve the maximum score 

(0.98). This proves that the size of batch instances affects little the required number of 

instances to achieve a certain score.  

 

Figure 9. Ranked Batch-mod Sampling: 8, 20, 40 Batch Instances 
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Table 21. Ranked Batch-mode Sampling (8 batch instances): Highest F1 score in each unlabelled pool 

size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9813593164398956 512 

4000 0.9910758000395342 840 

8000 0.9923730757998293 1000 

12000 0.9902893132658521 1000 

20000 0.9877726700859174 1000 

50000 0.9793489498678432 896 

 

Table 22. Ranked Batch-mode Sampling (20 batch instances): Highest F1 score in each unlabelled pool 

size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9797463777346567 260 

4000 0.9912853350063205 760 

8000 0.9924411462660337 1000 

12000 0.9894953400067024 1000 

20000 0.9885315401864843 980 

50000 0.9843409895761951 1000 

 

Table 23. Ranked Batch-mode Sampling (40 batch instances): Highest F1 score in each unlabelled pool 

size in the initial seed 12 graph 

Pool Size Highest F1 Query 

1000 0.9798222453258779 1000 

4000 0.9902691810068175 800 

8000 0.9930345554336146 1000 

12000 0.9900777985430272 920 

20000 0.9882548057195603 1000 

50000 0.9807379341098184 960 
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Table 24. Ranked Batch-mode Sampling (8 batch instances): Number of queries when the F1 score 

exceeds 0.98 for the first time in the initial seed 12 graph 

Pool Size F1 – 0.98 Query 

1000 0.9802991896265922 176 

4000 0.9811448534555302 264 

8000 0.9805949323907892 344 

12000 0.9805823476731955 440 

20000 0.9818069249817116 608 

50000 

  

  

Table 25. Ranked Batch-mode Sampling (20 batch instances): Number of queries when the F1 score 

exceeds 0.98 for the first time in the initial seed 12 graph 

Pool Size F1 – 0.98 Query 

1000 

  

4000 0.980022017608072 260 

8000 0.9810463337800133 380 

12000 0.9801621665172174 420 

20000 0.9803308543281097 600 

50000 0.9806706983402392 880 

  

 

Table 26. Ranked Batch-mode Sampling (40 batch instances): Number of queries when the F1 score 

exceeds 0.98 for the first time in the initial seed 12 graph 

Pool Size F1 – 0.98 Query 

1000 

  

4000 0.9804330267185175 240 

8000 0.9820505547055909 400 

12000 0.9812469271820013 520 

20000 0.9803271269432401 600 

50000 0.9802889969008526 880 
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5.3.5 Query by Committee 

Based on convergence speed and the maximum F1 score from the result of uncertainty 

sampling, a pool size of 8000 unlabelled samples yielded better results and was 

therefore chosen as the fixed unlabelled pool size setting. For comparison, one of 

random sampling result is shown in the graphs.  

The result of vote entropy is shown Figure 10 with detailed score comparisons are 

available in Table 27-Table 29. What is common across all four graphs is that they 

converge to an F1 score of 0.99 at around 200 queries. The graph for the initial seed of 

4, before 200 queries, illustrates that the number of committees does not guarantee 

quick convergence. VE2, 5, and 7 reach 0.95 at around 100 queries, while VE3 and 10 

struggle to achieve 0.85 to 0.9. However, as the initial seed increases, the lines on the 

graph gradually overlap. For instance, in the graph for the initial seed of 12, the 

difference between the lines is smaller than the graph for the initial seed of 4 before 200 

queries. In the graphs for the initial seed of 40 and 200, the lines almost completely 

overlap. 

 

Figure 10. Query by Committee: Vote Entropy Result 
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Table 27. Query by Committee (Vote Entropy): Highest F1 score in each initial seed 

Init Size Highest F1 Committee Size Query 

4 0.9948018012713729 2 288 

12 0.994872516729363 7 288 

40 0.9951078454749875 3 285 

200 0.994662889185015 10 275 

 

Table 28. Query by Committee (Vote Entropy): Number of queries when the F1 score exceeds 0.9 for the 

first time 

Init Size F1 - 0.90 Committee Size Query 

4 0.9111441171973421 2 13 

12 0.9021925918929927 2 5 

40 0.9266248594862517 2 0 

200 0.9596037195310242 2 0 

 

Table 29. Query by Committee (Vote Entropy): Highest F1 score in each committee size in the initial 

seed 12 graph 

Committee Size Highest F1 Query 

2 0.9947018408442376 251 

3 0.9948584732687047 233 

5 0.9945132815371533 298 

7 0.994872516729363 288 

10 0.9948471589479071 271 
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The result of consensus entropy is shown Figure 11 with detailed score comparisons are 

available in Table 30-Table 32. 

 Similar to the vote entropy, the lines become similar as the initial seeds increase in size. 

The F1 scores converge to 0.99 after approximately 400 queries, which is 200 more 

queries than the vote entropy result. There is no regular pattern observed in the number 

of committees, as the order of F1 scores changes in every graph. 

 

Figure 11. Query by Committee: Consensus Entropy Result 
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Table 30. Query by Committee (Consensus Entropy): Highest F1 score in each initial seed 

Init Size Highest F1 Committee Size Query 

4 0.9946487613733987 3 520 

12 0.9946203939612873 7 442 

40 0.9947083729348851 10 476 

200 0.994733740559116 7 492 

 

Table 31. Query by Committee (Consensus Entropy): Number of queries when the F1 score exceeds 0.9 

for the first time 

Init Size F1 - 0.90 Committee Size Query 

4 0.9033914867143871 2 29 

12 0.9045590466658009 2 2 

40 0.910854501435472 2 0 

200 0.9579881842439683 2 0 

 

Table 32. Query by Committee (Consensus Entropy): Highest F1 score in each committee size in the 

initial seed 12 graph 

Committee Size Highest F1 Query 

2 0.9940850074287189 458 

3 0.9945303725806613 478 

5 0.9943653021091476 481 

7 0.9944242585595904 486 

10 0.9946203939612873 442 
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The result of max disagreement is shown Figure 12 with detailed score comparisons are 

available in Table 33-Table 35. 

For the graph with an initial seed of 4 and a committee of 7 and 10, the score reaches 

0.95 after 200 queries. For the committee of 3 and 5, the score reaches 0.95 after 250 

and 500 queries, respectively. The committee of 2 starts decreasing the score within 50 

queries, regardless of the initial seed. However, other than the committee of 2, all the 

other committees converge to a score of 0.99 after 1000 queries, which is the highest 

number of required queries among all the committee strategies.  

 

Figure 12. Query by Committee: Max Disagreement Res 
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Figure 13. Query by Committee: Max Disagreement - Init Seed 4 Zoom Out 
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Table 33. Query by Committee (Max Disagreement): Highest F1 score in each initial seed 

Init Size Highest F1 Committee Size Query 

4 0.9941895399314195 3 766 

12 0.9942431595378005 3 838 

40 0.9939685928428403 3 667 

200 0.9941053013205924 3 710 

 

 

Table 34. Query by Committee (Max Disagreement): Number of queries when the F1 score exceeds 0.9 

for the first time 

Init Size F1 - 0.90 Committee Size Query 

4 0.905722936372144 3 102 

12 0.9105171132658125 2 2 

40 0.9017355476087138 2 0 

200 0.955866533202794 2 0 

 

Table 35. Query by Committee (Max Disagreement): Highest F1 score in each committee size in the 

initial seed 12 graph 

Committee Size Highest F1 Query 

2 0.9285285007431217 7 

3 0.9942431595378005 838 

5 0.9905648100313555 999 

7 0.9921420613266317 991 

10 0.9921999105118665 990 
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5.4 N-BaIoT Dataset Testing 

As a query strategy, the classification margin was utilized in the experiment due to its 

superior performance in terms of convergence speed and F1 scores across all aspects. 

5.4.1 Random Sampling 

The result of random sampling is shown in Figure 14 with detailed score comparisons 

are available in Table 36, Table 37 and Table 38. The results show that the highest F1 

score is 0.996, indicating that even random sampling with the dataset can achieve a 

relatively high score. 

 

 

Figure 14. Random Samling: Tested with N-BaIoT Dataset Result 
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Table 36. Random Sampling(N-BaIoT): Highest F1 score in each initial seed  

Init Size Highest F1 Pool Size Query 

3 0.9961879549487392 8000 992 

9 0.9964345892048223 20000 978 

30 0.9966277517194528 50000 956 

150 0.9966409716357998 8000 867 

 

Table 37. Random Sampling(N-BaIoT): Number of queries when the F1 score exceeds 0.9 for the first 

time 

Init Size F1 - 0.90 Pool  Size Query 

3 0.9037804393334439 1000 23 

9 0.905120209649412 1000 27 

30 0.9219930851667533 1000 0 

150 0.981003072793575 1000 0 

 

Table 38. Random Sampling(N-BaIoT): Highest F1 score in each unlabelled pool in initial seed 9 graph.  

Pool Size Highest F1 Query 

1000 0.9956143723434732 873 

4000 0.996327078444428 967 

8000 0.9962871617858541 951 

12000 0.9964345892048223 984 

20000 0.9962474910391782 978 

50000 0.996327078444428 9939 
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5.4.2 Uncertainty Sampling: Classification Margin  

The results are presented in Figure 15, with detailed score comparisons available in 

Tables 38 and 39. For comparison, one of random sampling result is shown in the 

graphs.  

The graphs show that as the initial seed increases, the learning curve becomes steeper 

and as the pool size increases, convergence becomes slower. However, Table 39 

indicates that larger pool sizes achieve better scores than smaller pool sizes. 

  

Figure 15. Uncertainty Sampling (Classification Margin): Tested with N-BaIoT Dataset Result 
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Table 39. Uncertainty Sampling (Classification Margin): Tested with N-BaIoT Dataset 

Highest F1 score in each initial seed. 

Init Size Highest F1 Pool Size Query 

3 0.9996333559548909 50000 317 

9 0.9996200233004562 50000 256 

30 0.9996600199763881 50000 508 

150 0.9995667046045353 50000 571 

 

Table 40. Uncertainty Sampling (Classification Margin): Number of queries when the F1 score exceeds 

0.9 for the first time 

Init Size F1 - 0.90 Pool  Size Query 

3 0.9381713791941528 1000 34 

9 0.9031374172914581 1000 20 

30 0.9384857330735608 1000 0 

150 0.9879379649478708 1000 0 

 

Table 41. Uncertainty Sampling (Classification Margin): Tested with N-BaIoT Dataset 

Highest F1 score in each unlabelled pool in initial seed 9 graph.  

Pool Size Highest F1 Query 

1000 0.9833623937767078 141 

4000 0.9921374140806629 240 

8000 0.9950421501676487 281 

12000 0.9965105274983552 345 

20000 0.997095587461186 457 

50000 0.9985001618738553 638 

 

  



55 

5.4.3 Query by Committee: Vote Entropy  

The results are presented in Figure 16, with detailed score comparisons available in 

Table 42 and Table 43. For comparison, one of random sampling result is shown in the 

graphs.  

The results show that the F1 score is below 0.75 when the initial seeds are 3 and 9, and 

it improves as the number of initial seeds increases. However, even when the initial seed 

is 150, it never outperforms the random sampling score. 

 

Figure 16. Query by Committee (Vote Entropy): Tested with N-BaIoT Dataset Result 
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Table 42. Query by Committee (Vote Entropy): Tested with N-BaIoT Dataset 

Highest F1 score in each initial seed. 

Init Size Highest F1 Committee Size Query 

3 0.6307305373602503 2 2 

9 0.7970691298295212 7 8 

30 0.9437839982165437 10 9 

150 0.9936660871902324 7 236 

 

Table 43. Query by Committee (Vote Entropy): Tested with N-BaIoT Dataset 

Highest F1 score in each committee size in initial seed 9 

Committee Size Highest F1 Query 

2 0.7891392756775394 5 

3 0.7168013773921715 2 

5 0.7399560692484599 4 

7 0.7970691298295212 8 

10 0.7349928738354503 9 
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5.4.4 Ranked Batch-mode Sampling 

The results are presented in Figure 17, with detailed score comparisons available in 

Tables 40 and 41. For comparison, one of the random sampling results is shown in the 

graphs. The scores were averaged per batch number to align query lengths. The results 

show that the larger the initial size, the more stable the learning curve and the better the 

score. However, when comparing the unlabelled pool sizes, the scores of larger 

unlabelled pool sizes struggle to perform better than smaller unlabelled pool sizes.  

 

 

Figure 17. Ranked Batch-mode Sampling (4 Batch Instances): Tested with N-BaIoT Dataset Result 
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Table 44. Ranked Batch-mode Sampling (4 Batch Instances): Tested with N-BaIoT Dataset Result 

Highest F1 score in each initial seed. 

Init Size Highest F1 Pool Size Query 

3 0.9979673151737792 4000 980 

9 0.9977672419904244 4000 968 

12 0.9977142992990666 4000 956 

150 0.9976074328568284 4000 964 

 

Table 45. Ranked Batch-mode Sampling (4 Batch Instances): Tested with N-BaIoT Dataset Result 

Number of queries when the F1 score exceeds 0.9 for the first time 

Init Size F1 - 0.90 Pool Size Query 

3 0.9084481347762257 1000 252 

9 0.9008822910442262 1000 256 

30 0.9164568491784395 1000 3 

150 0.9837004186524221 1000 0 

 

Table 46. Ranked Batch-mode Sampling (4 Batch Instances): Tested with N-BaIoT Dataset Result 

Highest F1 score in each unlabelled pool in initial seed 9 graph. 

Pool Size Highest F1 Query 

1000 0.9961946165838287 564 

4000 0.9977672419904244 968 

8000 0.8311392246500559 288 

12000 0.7722355456309083 964 

20000 0.7919358158848283 4 

50000 0.7685277299347156 476 
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6 Discussion 

This study conducted a benchmark test of multi-class classification for botnets using 

active learning. The test environment was set up with a combination of labelled and 

unlabelled data, where the unlabelled data could be accurately labelled by a human 

expert. 

6.1 Uncertainty Sampling 

Among all query strategies, active learners with uncertainty sampling show the most 

stable and effective results, as shown in Figure 18. In particular, margin sampling 

outperforms other strategies and even surpasses other active learners with the largest 

initial seed setting when using the smallest initial seed setting. 

 

Figure 18. Comparison of Random Sampling and Uncertainty Sampling 

6.2 Query by Committee 

Regarding query by committee sampling, the results in section 5.3.5 indicate that a 

larger unlabelled pool size leads to better convergence speed, similar to other query 

strategies. However, the effect of the number of committees cannot be observed from 
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the results, as there are cases where a higher number of committees does not necessarily 

result in a better trend.  

Comparison of random sampling and query by committee (5 committee) is shown in 

Figure 19. In terms of stability and convergence speed, the comparison shows that vote 

entropy produced the best results among all query by committee samplings, with 

consensus entropy in second place and max disagreement in last place. 

 

Figure 19. Comparison of Random Sampling and Query by Committee 

6.3 Comparison of Uncertainty Sampling and Query by Committee 

Both Query by Committee and Uncertainty Sampling produce one query output per 

active learning iteration. This makes it important to compare the two strategies. 

The results of the comparison between uncertainty sampling and query by committee 

are displayed in Figure 20. Classification margin and vote entropy (10 committees) are 

used for each strategy and 8,000 unlabelled pool size is used as default setting. Initially, 

we assumed that query by committee would outperform uncertainty sampling due to its 

multiple query strategies. However, as depicted in the graph, the classification margin 
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demonstrates a steeper trend than the vote entropy. This proves that classification 

margin outperforms vote entropy.  

 

Figure 20. Comparison of Vote Entropy and Classification Margin 

6.4 Ranked Batch-mode Sampling 

One key characteristic of ranked batch-mode sampling is that the batch size has little 

effect on the number of queries required to achieve a certain score. Another 

characteristic is that an active learner with a smaller pool size tends to perform better 

than one with a larger pool size.  shows a comparison of random sampling and ranked 

batch-mode sampling results with different initial seed sizes (4, 12, 200) and unlabelled 

pool sizes (1000, 50000). This comparison demonstrates this characteristic. Thus, using 

an adequate initial seed size and a small unlabelled pool size can lead to better outcomes 

if the team’s objective is to prioritize teamwork, considering that a relatively small 

unlabelled pool outperforms random sampling and a small initial seed converges slowly.  
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Figure 21. Comparison of Random Sampling and Ranked Batch-mode Sampling 

6.5 Key Characteristics Observed in Experimental Outcomes. 

ML models in the active learning cycle outperformed the baseline model without active 

learning and random sampling in most cases. Random sampling achieved a score of 

0.982 with 1,011 instances (including initial seed and query instances), while the active 

learning in the best case achieved a score of 0.98-0.99 with a much smaller number of 

instances, around 200-300. This demonstrates that ML models with a query strategy in 

active learning cycles can reduce the number of instances that need to be labelled by 3 

to 4 times. 

However, there are some cases where active learning and random sampling perform 

similarly or worse, especially when the initial seed is small, and the unlabelled pool size 

is large at the same time. For instance, consider the case where the initial seed is 4 and 

the unlabelled pool size is 50,000. In this case, it costs an additional 50 instances to 

reach an F1 score of 0.95 from 0.90 for random sampling (Figure 3), while it costs an 

additional 350, 400, and 200 instances for classification uncertainty (Figure 4), 

classification entropy (Figure 6), and ranked batch-mode sampling (Figure 8), 

respectively, with the same setting. Furthermore, all the query strategies continue to 
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produce unstable figures until they converge in this case. This characteristic proves that 

when a small initial seed and large unlabelled pool are used in a setting, it causes a 

delay for the active learner to find suitable instances. This is because when the active 

learner is trained with few samples, it tends to take time for the query strategy to find 

good instances. Therefore, active learning cannot be highly effective without a 

sufficient number of samples that is not too small. 

6.6 Analysis of the N-BaIoT dataset Test Result 

Testing with the N-BaIoT dataset showed similar characteristics to the MedBIoT 

dataset, except for the query by committee result. The maximum score for random 

sampling was 0.996, indicating that this dataset can be scored better than the MedBIoT 

dataset, which had a maximum random sampling score of 0.98. The classification 

margin (uncertainty sampling) showed similar characteristics to the MedBIoT dataset 

and exceeded the random sampling score within 100 queries. This demonstrates the 

stability and good performance of the classification margin. However, the vote entropy 

(query by committee) result showed that this sampling method can be unstable and 

worse than random sampling when using different IoT botnet datasets. This suggests 

that query by committee may not be a good choice for more than two-class 

classification. The ranked batch-mode sampling result also showed similar 

characteristics to the MedBIoT dataset. Overall scores were almost the same or lower 

than other sampling strategies.  

6.7 Comparison of Binary Classification and Multi-class Classification 

A comparison of binary classification result and multi-class classification result is 

shown in Figure 22. Both active leaners used classification uncertainty. The graph 

shows that the result of binary is slightly better than the result of multi-class. Given the 

number of classes, we assumed that accuracy could fall as the number of classes 

increased. 
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Figure 22. Comparison of Binary and Multi-class Result 

6.8 Analysis of Misclassification in Multi-class Classification of 

Network Traffic 

To investigate what caused misclassification, the numbers of selected instances by class 

and predicted labels were counted in active learning with an initial seed size of 12, an 

unlabeled pool size of 8000, and 1000 queries. The results show that Mirai and Torii 

instances tend to get misclassified even though they are selected as query instances 

more than other botnet instances. This indicates that the network traffic of Mirai is 

similar to Benign traffic and Torii traffic can also be similar to Benign traffic. These 

two biases affect the F1 score, which makes the score slightly lower than the multi-class 

result. 

Table 47. Number of Selected Instance (Query) in Each Class 

Class Benign Bashlite Torii Mirai 

Count 583 32 163 222 
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Figure 23. Confusion Matrix of Multi-class Result in Percentage 
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7 Conclusion 

In conclusion, our experiments have demonstrated that active learning is an effective 

method for identifying IoT botnets and reducing the time and cost involved in labelling 

data. By using active learning, we were able to reduce the number of instances that 

required labelling by three to four times. However, it’s important to carefully consider 

the size of the initial seed and unlabelled pool to ensure that active learning is effective. 

Our results showed that classification margin was the most effective query strategy, 

outperforming other strategies even with fewer initial seeds. These findings highlight 

the potential of active learning for improving the efficiency of IoT botnet identification.  
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Appendix 2 – Python Codes for Active Learning Experiments 

All the codes used for the experiments are available in 

https://github.com/kei5uke/botnet-active-learning 
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