
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

Tallinn 2015

IDK40LT

Kirill Strelkov 073639IASB

SELENIUM-BASED WEB TEST

AUTOMATION FRAMEWORK

DEVELOPMENT

Bachelor thesis

Kaarel Allik

MSc

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kirill Strelkov

20.05.2015

3

Abstract

Aim of this work was to develop of web test automation framework that is simple and

can be used by new users. Requirements for users should not contain programming

experience or previous experience of test automation. The framework should introduce

users to the test automation process.

Information about test automation and testing itself is out of this scope. This paper focuses

on concrete developed framework and presents main features that were implemented to

fulfil main goal. The framework was developed using Python programming language,

popular Python libraries, Page Object pattern and Selenium WebDriver.

During this work I have learned that it is very hard to create generic framework because

each framework should be modified or extended to support testing of a specific web site.

In the end we got fully functional framework which can be use by both novice and

advanced users to facilitate in test automation process of a web site.

This thesis is written in English and is 32 pages long, including 6 chapters, 13 figures and

0 tables.

4

Annotatsioon

Selenium-põhise veebi testide automatiseerimine raamistiku arendus

Käesoleva töö eesmärk oli arendada veebi testide automatiseerimise raamistikku. Kõige

tähtsam nõue oli raamistiku kasutamise lihtsus uute kasutajate jaoks. Uued kasutajad ei

pea omama erilisi programmeerimise oskusi ega eelnevat kogemust automatiseeritud

testimises. Loodud raamistiku kasutajatele peab olema arusaadav, kuidas üldse toimub

automatiseeritud testimine.

Testimise ja testide automatiseerimise teooria ei kuulu selle töö skoopi. Töö põhirõhk on

pandud arendatud raamistikule endale ja selle raamistiku võimalustele. Arenduses

kasutati programeerimiskeelt Python, populaarseid Python'i teeke, Page Object mustrit ja

Selenium WebDriver'it.

Töö tegemisel ma sain aru, et teha üldist automatiseeritud testimise raamistikku on raske

ülesanne. Kõige suurem probleem on erinevuses veebi lehte kujundamisel ja kuidas

selline lehe on tehtud. Selleks, et korrektselt testida, on mõnikord vaja laiendada valitud

raamistiku võimalusi (näiteks kui veebi leht kasutab frame'i mõistet). Abiks sellises mures

võiks olla raamistiku litsents – kasutajad võivad muuta lähtekoodi ilma piiranguteta.

Töö tulemusena on loodud täisfunktsionaalne raamistik, mida võivad kasutada nii algajad

kui ka edasijõudnud kasutajad. Raamistik toetab kasutajaid testi loomisel, käivitamisel ja

muutmisel, luues seega kasutajasõbraliku keskkonna automatiseeritud testimise

läbiviimiseks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 32 leheküljel, 6 peatükki, 13

joonist, 0 tabelit.

5

Table of abbreviations and terms

API Application programming interface

BSD Berkeley Software Distribution

CD Compact disc

CI Continuous integration

CLI Command-line interface

CSS Cascading Style Sheets

GNU GNU's Not Unix

GNU GPL GNU General Public License

GNU LGPL GNU Lesser General Public License

GUI Graphical user interface

HTML HyperText Markup Language

IDE Integrated development environment

MIT Massachusetts Institute of Technology

OOP Object-oriented programming

OS Operating system

PSF Python Software Foundation

QA Quality assurance

UI User interface

URL Uniform resource locator

XML Extensible Markup Language

6

Table of contents

1. Introduction .. 9

2. Dependencies .. 10

2.1. Python 2.7 .. 10

2.2. wxPython ... 10

2.3. Selenium WebDriver ... 10

2.4. Nose ... 11

2.4.1. nose-htmloutput plug-in ... 11

2.4.2. nose-pathmunge plug-in ... 11

3. Page Object pattern ... 12

4. Framework .. 13

4.1. Basics ... 16

4.2. Generator ... 18

4.2.1. Implementation ... 18

4.2.2. GUI ... 18

4.2.3. Problems ... 19

4.3. Editor ... 20

4.3.1. Implementation ... 20

4.3.2. GUI ... 20

4.3.3. Problems ... 21

4.4. Test runner ... 21

4.4.1. Implementation ... 21

4.4.2. GUI ... 21

4.4.3. CLI .. 22

4.5. Installation ... 23

4.6. License ... 23

4.7. IDE's compatibility .. 23

7

4.8. Example project ... 24

4.9. Browsers support ... 27

4.10. Continuous Integration support .. 27

5. Alternative – Ixonos Visual Test .. 29

6. Conclusions .. 30

References .. 31

Appendix 1 – Part of Browser class source code ... 33

Appendix 2 – Source code of the framework ... 36

8

List of figures

Figure 1. Use Case Diagram for the framework's UI ... 14

Figure 2. Activity diagram for single test creation with UI.. 15

Figure 3. BasePageObject class .. 16

Figure 4. BaseTest class ... 17

Figure 5. Screenshot of the Generator UI ... 19

Figure 6. Screenshot of the Editor UI ... 20

Figure 7. Screenshot of the Test Runner UI ... 22

Figure 8. Generated structure of the example project .. 24

Figure 9. DuckDuckGoMain class ... 25

Figure 10. DuckDuckGoFound class ... 25

Figure 11. DuckDuckGoTest class ... 26

Figure 12. Jenkins job's configuration .. 28

Figure 13. Jenkins job's report .. 28

9

1. Introduction

In this document building of web test automation framework will be considered. Main

focus of the framework is to be a starting point for a new QA test automation engineers

and support engineers thought whole test development life cycle. As migration from

manual tester to automation tester could be difficult and require a lot of different

knowledge framework should simplify this transfer.

Idea appeared when I worked at a company that tried to create their own framework. The

goal was to create generic test automation framework for web applications. Today it is

fully featured test automation framework which supports data-driven and model-based

testing but as a result the framework became over complicated.

This gave an idea to create framework with basic minimalistic features which could be

used even by manual testers. This work describes how the framework was built, what the

main features are and how they can facilitate in test automation process.

Finding correct selector for HTML element could be tricky for a new tester and even for

an experienced developer especially if legacy system is used. This will be one part of our

framework – generation of good selectors for HTML elements.

Connection between elements' selectors and the web page usually is hidden (as selectors

are located in separate code or text file). Increasing transparency between them would be

another challenge which will be resolved in current work.

Creating a test case should be easy as main audience might not have experience in

programming. Ideally a person should interact with element on web page and by this

interaction relevant code will be create inside the test case.

Last but not least execution of created test cases should be simple, configurable and

support different outputs.

At the end we should get a framework which solves previously mentioned issues and

helps tester to create, maintain and execute test cases.

10

2. Dependencies

2.1. Python 2.7

Python – programming language which emphasize on code readability [1]. Easiest to

learn, regarded as best programming language for beginners [2].

There is also a good package management system called pip [3]. It gives great flexibility

in installation of new packages for Python. As it is written in Python it can be used on

every OSes where Python could be installed. pip installs and updates packages from

remote repository called PyPI(Python Package Index) [4]. All packages which are used

in this framework can be acquired via pip.

License: PSF License [5].

2.2. wxPython

Cross platform GUI toolkit which is a Python wrapper around wxWidgets [6]. wxWidgets

is a C++ library which allows to create GUI for Windows, Linux and Mac OS [7]. Both

of these software are very popular and constantly developing.

License: wxWindows Library Licence [8].

2.3. Selenium WebDriver

Selenium is a popular web test automation framework [9]. Currently is divided into two

parts: Selenium WebDriver and Selenium IDE. Selenium IDE created test cases in its

own scripting language using capture-and-playback technique. Selenium WebDriver has

bindings for many programming language so test cases can be written in pure

programming language using your own favourite tools.

Selenium Webdriver – driver which controls browser's behaviour. There are a lot of

different implementations to support main modern browser(Firefox, Google Chrome,

Internet Explorer, Opera Browser, Safari) and even some headless

browsers(HTMLUnitDriver and PhantomJS) [10].

11

W3C currently developing specification for the WebDriver API. Current status is Editor's

Draft. Hopefully, in future it would become a standard. So that all modern browsers would

support the WebDriver API [11, 12].

Main classes of Selenium WebDriver are: WebDriver and WebElement. WebDriver

object represents an instance of a real browser's driver and controls browser's behaviour.

WebElement object represents an element on the web page.

License: Apache License 2.0 [13].

2.4. Nose

Great extension for standard unit test module in Python. Highly customizable via plug-

ins and supports a lot of useful features out-of-box (different logging levels,

multiprocessing, xUnit output, coverage report and etc.) [14]. Nose and its plug-ins will

be used in our test runner.

License: GNU LGPL [14].

2.4.1. nose-htmloutput plug-in

This plug-in is used for formatting output in HTML format [15]. The plug-in gives HTML

output capability to our framework so that no additional development is needed.

License: BSD license [15].

2.4.2. nose-pathmunge plug-in

This plug-in is used for Python system path manipulation [16]. The plug-in is needed to

support relative imports in our framework. This plug-in is used to support to add project

folder to Python path otherwise imports of the page object classes inside the test file

would not work.

License: Apache License 2.0 [16].

12

3. Page Object pattern

Page Object pattern allows to hide and simplify underlying complexity of HTML page

by splitting the page into smaller logically related groups and implementing higher level

API [17, 18]. This leads to more maintainable tests as page object API should not change

if any modifications were done to the initial web page. Secondly, higher level page object

API adds greater readability for test cases.

Basic rules:

 public method are services that the page offers

 methods usually return basic types or other Page Objects

 hide internals of the page

 should not represent the entire page

There are controversial proposals regarding to use of assertions inside a page object, but

both approaches have its good and bad points. If assertions are used inside the page object

then it could give better and simpler verification mechanism, on the contrary, this mixes

logic between verification and interaction.

In one study implementation of Page Object pattern decreased time for realigning test

suites by the factor of 3 and reduced number of lines to modify by the factor of 8 [19].

13

4. Framework

The framework is written in Python and has classes with higher level API of the Selenium

WebDriver. Main point of implementing additional level is simplification of API.

For better readability Python tuple is used to keep information about selector for a web

element. Python tuple is an immutable list of objects. First argument is selector's type and

second argument is its value. For example: FIELD_NAME = (By.ID, u'menu'), where By

– is a Selenium class which is implemented as simple enum. These locators can be used

inside page object classes or test classes.

Several useful classes were added to ease test case development: Browser, BaseTest and

BasePageObject classes. More about them will be in the next chapter. This gives ability

to use framework as a library or module.

There is also main UI that consist of 3 main parts: Generator, Editor and Test Runner

UI's. More about each of them will be in later. Use cases for the UI can be observed in

Figure 1. UI has all features to create test cases without writing a lot of code. In Figure 2

activity diagram for single test creation is shown. Produced files are pure Python files that

use OOP paradigm. The framework's UI can be executed with easyselenium_ui.py

command from terminal or command prompt.

14

Figure 1. Use Case Diagram for the framework's UI

15

Figure 2. Activity diagram for single test creation with UI

16

4.1. Basics

Main part of the framework is a Browser class. Browser class has higher level API of the

WebDriver class. It is in charge of simplified WebDriver class instantiation and contains

wrappers for most methods of the WebDriver class. Those methods simplify their usage

and have implicit logging. User can specify which browser will be used then Browser

class will try to construct correct WebDriver object for certain browser (__create_driver

method in Browser class). As Browser class code is quite long part of it is demonstrated

in Appendix 1.

Next critical parts of the framework are classes which are useful in writing page object

and test classes. For page object classes there is BasePageObject class and for test classes

– BaseTest class.

In Figure 3 implementation of BasePageObject class is presented and main points are:

constructor and inheritance of TestCase class. The constructor contains of two parameters

– browser and logger. browser is an instance of Browser class – it allows to control real

browser's behaviour and logger is an instance of Logger class – is used for enhanced

logging. TestCase class is a class from built-in unit test Python module and gives ability

to use assertions inside page object class. It is recommended that all page object classes

are subclasses of BasePageObject class.

Implementation of BaseTest class is shown in Figure 4. It is a subclass of TestCase class

so by default it will introduced as pure unit test class and is supported by most modern

test runners. It is highly recommend that all test classes will be subclasses of BaseTest

class this would guarantee that Browser creation and shut down will be done properly.

Beside mentioned features it is able to take a screenshot of the real browser's window

when a test case fails. At the start of each test class run new browser window is created

and at the end browser window is closed – is gives great isolation between test classes.

Class variable BROWSER_NAME allows to change programmatically default browser –

from unittest.case import TestCase

class BasePageObject(TestCase):
 def __init__(self, browser, logger):
 self.browser = browser
 self.logger = logger

 Figure 3. BasePageObject class

17

useful feature to easily check work of the test case with different browsers using any

modern IDE.

coding=utf8
import traceback

from unittest.case import TestCase

from easyselenium.browser import Browser
from easyselenium.utils import Logger, get_timestamp

class BaseTest(TestCase):
 BROWSER_NAME = None
 FAILED_SCREENSHOT_FOLDER = None
 logger = Logger(name='easyselenim.base_test.BaseTest')

 @classmethod
 def setUpClass(cls):
 super(BaseTest, cls).setUpClass()
 cls.browser = Browser(browser_name=cls.BROWSER_NAME,
 logger=cls.logger)

 @classmethod
 def tearDownClass(cls):
 super(BaseTest, cls).tearDownClass()
 cls.browser.quit()

 def tearDown(self):
 if (self._resultForDoCleanups.errors or
 self._resultForDoCleanups.failures):
 name = self.id()
 filename = u'_'.join([
 name,
 self.browser.get_browser_initials(),
 get_timestamp()
])
 try:
 self.browser.save_screenshot(
 self.FAILED_SCREENSHOT_FOLDER,
 filename + u'.png'
)
 except Exception:
 formatted_exc = traceback.format_exc()
 self.browser.logger.info(formatted_exc)
 TestCase.tearDown(self)

Figure 4. BaseTest class

18

4.2. Generator

Generator is used for creating page object classes that hold information about web page

(URL, path to the screenshot, interested area and elements as fields). Each element's field

has a comment with its' coordinates and size. This data is used in the Editor for element

selection on the screenshot. Generation time is different with different browsers and is

dependable on HTML structure (more elements – bigger generation time).

4.2.1. Implementation

Generator's steps:

1. Open a web page

2. Find all relevant HTML elements on the page

3. Find selector and create PageObjectClassField object for each element

4. Create PageObjectClass object with all PageObjectClassField's

5. Save PageObjectClass object to Python file and a screenshot of the web page

WebDriver uses different selectors for finding HTML element on a web page. As in our

framework we use UI to connect HTML elements with theirs position on screenshot

selectors should be unique. This requirement can be achieved with XPath selector. XPath

was designed especially for that. But finding an element with XPath is very time

consuming other selectors should be supported as well [20]. Priority for searching a good

selector for an element: id → link text → class name → CSS selector → XPath.

4.2.2. GUI

GUI interaction flow:

1. Open browser window with correct URL

2. Specify area where interested web elements are located

3. Generate page object class

Generation process is done in a separate thread because it is time consuming action and

would block main UI. After user click „Generate” button new window pops up where

overall status and additional information is shown (Figure 5).

19

Figure 5. Screenshot of the Generator UI

4.2.3. Problems

Generation could take a lot of time – depends on the size of page and its content. While

the Generator searches and filters HTML elements UI is blocked, to fix this issue

generation task should be executed in a separate thread and current status should be

visible to a user.

Next problem was related to formatting XPath for a specific web element. Firebug's code

part was used for dealing with this issue. Firebug is a web development tool which has

more features then browsers' built developer tools [21]. As Firebug uses BSD license

parts can be used in other project with a credit. WebDriver supports JavaScript execution

this feature gave an ability to retrieve XPath for a web element using JavaScript code

from Firebug project [22].

UI related problem – mouse position coordinates over a screenshot worked differently on

Linux and Windows when the screenshot was scrolled. Small fix was introduced for

Windows platform as scrolling was not implemented in similar way as for Linux.

20

4.3. Editor

Editor allows user to see generated elements and manipulate with page object and test

files. User can create test fields, test cases and page object methods. Using context menu

it is possible to insert code lines into selected file – this feature simplifies test case

development (Figure 6).

4.3.1. Implementation

Main difficulty was to develop interface which has limited number of widgets and is easy

to use. Some parts of UI components were reused from Generator UI. Most of work was

related to listeners as there are quite a lot of components that user can interact with.

4.3.2. GUI

Figure 6. Screenshot of the Editor UI

GUI has 3 main functionalities: visualization of the page object class, editing of the page

object class and editing of the test class. Editing is done in two ways – direct and via

context menu. Direct editing allows to change source code of the selected file. Editing

using context menu lets user to add generated lines of code inside the selected file.

21

To generate a code fragment user need to right click on element and choose action which

should be used for particular element (In Figure 6 code generation for „click” on „Google

otsing” button is shown).

4.3.3. Problems

The problem of screenshot coordinates which was mentioned in Generator UI section

appeared here as well.

As the Editor deals with content of text files problem with different newline character on

different operating system appeared. Small fixes where introduced to overcome this issue.

4.4. Test runner

Test runner is able to execute created test cases with different configurations. Main

requirement for the test runner was ability to specify browser that will be used for

execution. If all necessary plug-ins were installed then test runner also supports two main

reporting formats – HTML and XML. HTML is quite useful for humans and XML is used

by continuous integration tools.

4.4.1. Implementation

Nose, popular Python testing framework, was taken as a basis for our test runner [14].

Additional nose plug-in was created to support browser selection – this feature is available

in both CLI and GUI test runners.

4.4.2. GUI

GUI allows to configure the test runner – select test cases that will be executed, Additional

option of the nose framework can be specified – could be used by advanced users. GUI

also shows command that can be used to execute same tests with CLI test runner.

In Figure 7 execution of a single test case is shown. Google Chrome browser is chosen

and path to HTML output is specified. In the output window it is visible that the test case

was failed because expected and actual results are not equal.

22

Figure 7. Screenshot of the Test Runner UI

4.4.3. CLI

Command line interface of the test runner has same functionality as the GUI test runner.

Main reason for creating separate CLI is to support continuous integration tools. Both

GUI and CLI test runner produce identical results.

It can be executed by running easyselenium_cli.py command in a terminal or command

prompt.

23

4.5. Installation

Installation is done according to Python Distribution Utilities (distutils) [23]. This is a

standard tool for building and installing modules into Python installation [24].

This give us ability to distribute code to different operating systems but install it in a

similar way.

Installation flow:

4. Download latest code from GitHub as archive file

5. Unzip it

6. Open terminal or command line console

7. Navigate to extracted folder

8. Run: python setup.py install

As a result related Python modules and packages will placed to C:\Python27\Lib\site-

packages\ and scripts – C:\Python27\Scripts\ on Windows.

4.6. License

MIT License was chosen as it is simple and permissible license [25, 26]. Users can modify

source code for their needs and parts can be used in other projects without any restrictions.

Source code or its parts can be used even in commercial products.

4.7. IDE's compatibility

As our framework generates all files inside single root folder this folder can be imported

as a project to an IDE. Only thing that should be checked is that the root of the project is

added to IDE's Python path otherwise imports would not work. The framework's test

runner can be attached as external tool to an IDE for test case execution.

Test case development using modern IDEs are much faster than using this framework,

especially, if all necessary page object classes are generated. One drawback of IDEs is

that a user should have a background in programming.

24

4.8. Example project

Suppose we would like to test search functionality of https://duckduckgo.com/ web site.

This site is a search engine just like http://www.google.com/.

Here is test procedure for our test case:

1. Go to https://duckduckgo.com/

2. Search for „selenium” text

3. Verify that „selenium” text is in search input field

4. Verify that there is a link with „Selenium – Web Browser Automation” text

As a result we generated two page object classes: DuckDuckGoMain and

DuckDuckGoFound. DuckDuckGoMain class presents main search form and

DuckDuckGoFound class – fragment of a page with found results.

In Figure 8 generated structure of our project is depicted. Here you can see that

screenshots of page object classes are stored in separate „img” folder.

In Figures 9 and 10 source code of generated class are shown. In DuckDuckGoMain class

(Figure 9) we have added single method search which types text into search input field

and clicks search button. In DuckDuckGoFound (Figure 10) class we have added

verify_searched_text method which checks that correct text is inside found input field.

Note that both of these classes are subclasses of BasePageObject class.

projectduck/

├── page_objects

│ ├── duck_duck_go_found.py

│ ├── duck_duck_go_main.py

│ ├── img

│ │ ├── duck_duck_go_found.png

│ │ └── duck_duck_go_main.png

│ └── __init__.py

├── reports

└── tests

Figure 8. Generated structure of the example project

https://duckduckgo.com/
http://www.google.com/
https://duckduckgo.com/

25

Figure 9. DuckDuckGoMain class

Generated page object class contain information about URL, selected area, path of the

file itself and its' screenshot file. Page object class variables represent elements on a web

page and contain information about location and size inside comments. All information

about these variables is used in Editor UI for interaction with the screenshot.

coding=utf8
from selenium.webdriver.common.by import By

from easyselenium.base_page_object import BasePageObject

class DuckDuckGoMain(BasePageObject):
 # Please do NOT remove auto-generated comments
 # Url: https://duckduckgo.com/
 # Area: (288, 345, 739, 93)
 # File path: /tmp/projectduck/page_objects/duck_duck_go_main.py
 # Image path: /tmp/projectduck/page_objects/img/duck_duck_go_main.png
 SEARCH_FORM_INPUT_HOMEPAGE = (By.ID, u'search_form_input_homepage') #
location: (347, 374) dimensions: (562, 46)
 SEARCH_BUTTON_HOMEPAGE = (By.ID, u'search_button_homepage') #
location: (912, 377) dimensions: (52, 40)

 def search(self, text):
 self.browser.type(self.SEARCH_FORM_INPUT_HOMEPAGE, text)
 self.browser.click(self.SEARCH_BUTTON_HOMEPAGE)

coding=utf8
from selenium.webdriver.common.by import By

from easyselenium.base_page_object import BasePageObject

class DuckDuckGoFound(BasePageObject):
 # Please do NOT remove auto-generated comments
 # Url: https://duckduckgo.com/?q=selenium&ia=about
 # Area: (85, 17, 895, 476)
 # File path: /tmp/projectduck/page_objects/duck_duck_go_found.py
 # Image path: /tmp/projectduck/page_objects/img/duck_duck_go_found.png
 SEARCH_FORM_INPUT = (By.ID, u'search_form_input') # location: (111,
21) dimensions: (799, 38)
 SELENIUM_LINK = (By.LINK_TEXT, u'Selenium - Web Browser Automation') #
location: (111, 394) dimensions: (319, 22)

 def verify_searched_text(self, expected_text):
 value = self.browser.get_value(self.SEARCH_FORM_INPUT)
 self.assertEqual(value, expected_text)

 Figure 10. DuckDuckGoFound class

26

In Figure 11 DuckDuckGoTest test class is illustrated. This class and test case method are

generate using Editor UI features. In setUpClass two class variables are created

duckduckgomain and duckduckgofound, these variable are instances of generated page

object classes. Step 1 from our test procedure is implemented inside setUp – this would

open main URL before each test case. Step 2 is implemented using search method from

DuckDuckGoMain class, Step 3 is implemented using verify_searched_text method from

DuckDuckGoFound. In last 2 lines Step 4 is implemented using methods from Browser

and BaseTest classes.

Figure 11. DuckDuckGoTest class

As a result we implemented single test case and got full structure for our project which

can be used for further development in an IDE or using framework's UI and of course can

be utilized in a continuous integration tool. Implementation of interaction is mostly

hidden inside page object class and interaction with a real browser using Selenium

WebDriver is arranged by the framework's classes. The created test case is simple and

easy to read and maintain.

coding=utf8
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys

from easyselenium.base_test import BaseTest
from page_objects.duck_duck_go_found import DuckDuckGoFound
from page_objects.duck_duck_go_main import DuckDuckGoMain

class DuckDuckGoTest(BaseTest):

 @classmethod
 def setUpClass(cls):
 super(DuckDuckGoTest, cls).setUpClass()
 cls.duckduckgofound = DuckDuckGoFound(cls.browser, cls.logger)
 cls.duckduckgomain = DuckDuckGoMain(cls.browser, cls.logger)

 def setUp(self):
 self.browser.get(u'https://duckduckgo.com/')

 def test_search_for_selenium(self):
 search_text = "selenium"

 self.duckduckgomain.search(search_text)

 self.duckduckgofound.verify_searched_text(search_text)
 text = self.browser.get_text(self.duckduckgofound.SELENIUM_LINK)
 self.assertEqual(text, "Selenium - Web Browser Automation")

27

4.9. Browsers support

Currently the framework supports Internet Explorer, Firefox, Google Chrome and Opera.

Selenium WebDriver supports more browsers with additional drivers but to add them to

the framework further development is needed, mainly related to instantiation of Browser

class.

4.10. Continuous Integration support

As framework's test runner is built on Nose, this gives us benefit that xUnit compatible

XML format is supported out-of-box. Further examples will be related to Jenkins

continuous integration tool [27], mainly because it is popular and open source, but it

should work with any continuous integration tool which supports xUnit XML report files.

Two step should be done to correctly set up job on Jenkins:

 In “Build” part, easyselenium_cli.py script should be executed with correct

parameters and tests

 XML report should be published using “Publish JUnit test result report” feature

under the “Add post-build action” section

Here is example of terminal command:

easy_selenium_cli.py --with-xunit --xunit-file=output.xml -b gc --with-html --html-

file=output.html /tmp/easyselenium/tests/browser_test.py

This command will run all tests from browser_test.py file with Google Chrome browser

and produces 2 report files: output.html and output.xml. Last file will be used to publish

results on Jenkins.

In Figure 12 configuration of Jenkins jobs is shown and in Figure 13 report of the

output.xml file is shown.

28

Figure 12. Jenkins job's configuration

Figure 13. Jenkins job's report

29

5. Alternative – Ixonos Visual Test

Ixonos Visual Test – test automation framework for web and mobile applications. This

framework is based on open source components (Selenium WebDriver, Appium, Python

programming language and etc.). Selenium WebDriver is used for testing web

applications and Appium framework is used for mobile testing. Page Model approach is

used which is expanded version of Page Object pattern [28].

Mobile testing support is very demanding feature in testing nowadays and is definitely

great advantage of this framework. Another advantage is a support of data-driven and

model-driven testing [29]. Next interesting feature is a screenshot verification ability.

Last but not least, the framework has good UI to maintain both test classes and Page

Models.

Main disadvantages are complexity and commercial license. Complexity is a result of

many implemented features. Some features are difficult to use, this results in position

where some features are not used at all. Commercial license is a drawback because it

makes the framework rigid and immutable. This leads to a problem when changes should

be done to meet new requirements or introduced features. License could be costly, simple

license starts with 150€ per 3 months.

Due to copyright there are no screenshots of the framework but there is a good thesis

publish in the Internet which describes more thoroughly features of the Ixonos Visual

Test. It can be access for reading without any restrictions. The thesis title is “Model-based

acceptance testing as a part of continuous delivery, Case: Contriboard” [30].

Although Ixonos Visual Test covers most of the features of our developed framework but

two main points of test automation framework are missed – ease of use and extensibility

[29]. These two points are highly critical for users or companies that will use a framework

for their own test automation process.

30

6. Conclusions

Web sites become more and more complex in nowadays and it is very hard to develop

good generic solution for a web test automation, nonetheless, building simple solution is

possible. This simplicity and open source license add a good benefit as this framework

and/or its features could be modified and updated for a specific needs.

The current work describes developed framework and its main features. Full source code

is not included due to its size and information about it can be found in Appendix 2. In the

end, small and simple web test automation framework was created with its own

advantages and disadvantages. Advantages are: higher API of WebDriver, usage of Page

Object pattern; UI for generation, editing of the files and execution of the test cases; IDE

and continuous integration support. Disadvantages: cumbersome UI, generated structure

is not flexible and no mobile support. Created UI could be a great helper for both new

and experienced users.

As for the future plans further development of the framework should be done to get

framework in a good shape. Firstly, fix all current bugs. Then UI and test generation

process should be reconsidered for simplification. Last but not least, add support for

mobile browsers.

Work on this thesis increased my experience in programming, creating complex user

interfaces, multitasking, software distribution and knowledge of Python modules and

Selenium WebDriver.

31

References

1. Python, Wikipedia. [WWW]

http://en.wikipedia.org/wiki/Python_%28programming_language%29

(30.05.2015)

2. Which programming language should I learn first infographic? [WWW]

http://cdn2.carlcheo.com/wp-content/uploads/2014/12/which-programming-

language-should-i-learn-first-infographic.png (30.05.2015)

3. pip documentation. [WWW] https://pip.pypa.io/en/stable/ (30.05.2015)

4. PyPI – the Python Package Index. [WWW] https://pypi.python.org/pypi

(30.05.2015)

5. History and License — Python 2.7.10 documentation. [WWW]

https://docs.python.org/2/license.html (30.05.2015)

6. wxPython. [WWW] http://www.wxpython.org/ (30.05.2015)

7. wxWidgets: Cross-Platform GUI Library. [WWW] http://wxwidgets.org/

(30.05.2015)

8. Licence – wxWidgets. [WWW] http://www.wxwidgets.org/about/licence/

(30.05.2015)

9. Selenium, Wikipedia. [WWW]

http://en.wikipedia.org/wiki/Selenium_%28software%29 (30.05.2015)

10. Selenium WebDriver documentation. [WWW]

http://docs.seleniumhq.org/docs/03_webdriver.jsp#selenium-webdriver-s-

drivers (30.05.2015)

11. WebDriver specification. [WWW]

https://w3c.github.io/webdriver/webdriver-spec.html (30.05.2015)

12. WebDriver. [WWW] http://www.w3.org/TR/webdriver/ (30.05.2015)

13. Selenium License. [WWW] http://www.seleniumhq.org/about/license.jsp

(30.05.2015)

14. nose documentation. [WWW] https://nose.readthedocs.org/en/latest/

(30.05.2015)

15. nose-htmloutput Python Package Index. [WWW]

https://pypi.python.org/pypi/nose-htmloutput (30.05.2015)

16. nose-pathmunge Python Package Index. [WWW]

https://pypi.python.org/pypi/nose-pathmunge/0.1.2 (30.05.2015)

32

17. Page Object pattern on selenium Google code page. [WWW]

https://code.google.com/p/selenium/wiki/PageObjects (30.05.2015)

18. Fowler, M., Page Object. [WWW]

http://martinfowler.com/bliki/PageObject.html (30.05.2015)

19. Leotta, M., Clerissi, D., Ricca, F., Spadaro C. Improving Test Suites

Maintainability with the Page Object Pattern: An Industrial Case Study.

[WWW] http://softeng.disi.unige.it/publications/2013-leotta-ICSTW.pdf

(30.05.2015)

20. Leotta, M., Clerissi, D., Ricca, F., Spadaro C. Repairing Selenium Test Cases:

An Industrial Case Study about Web Page Element Localization. [WWW]

http://sepl.dibris.unige.it/publications/2013-leotta-ICST.pdf (30.05.2015)

21. What is Firebug? [WWW] http://getfirebug.com/whatisfirebug (30.05.2015)

22. XPath retrieve implementation in JavaScript. [WWW]

https://code.google.com/p/fbug/source/browse/branches/firebug1.7/content/fi

rebug/lib.js#1361 (30.05.2015)

23. Distributing Python Modules. [WWW] https://docs.python.org/2/distutils/

(30.05.2015)

24. Installing Python Modules. [WWW]

https://docs.python.org/2/install/index.html (30.05.2015)

25. Choosing an OSS license doesn’t need to be scary. [WWW]

http://choosealicense.com/ (30.05.2015)

26. The MIT License. [WWW] http://opensource.org/licenses/MIT (30.05.2015)

27. Jenkins CI. [WWW] https://jenkins-ci.org/ (30.05.2015)

28. Ixonos Tech Blog: Renew web & mobile automated testing with a new Page

Model -based tool. [WWW] http://techblog.ixonos.com/2014/10/renew-and-

expand-possibilities-of-web.html (30.05.2015)

29. Certified Tester Expert Level Syllabus Test Automation – Engineering.

[WWW] http://www.istqb.org/downloads/finish/18/146.html (30.05.2015)

30. Model-based acceptance testing as a part of continuous delivery, Case:

Contriboard. [WWW]

https://www.theseus.fi/bitstream/handle/10024/86172/bachelors_thesis_matil

ainen_petri.pdf (30.05.2015)

33

Appendix 1 – Part of Browser class source code

coding=utf8
several lines are skipped

class Browser(object):
 FF = 'ff'
 GC = 'gc'
 IE = 'ie'
 OP = 'op'
 DEFAULT_BROWSER = FF

 __BROWSERS = [FF, GC, IE, OP]

 def __init__(self, browser_name=None, logger=None, timeout=5):
 if browser_name:
 self.__browser_name = browser_name
 else:
 self.__browser_name = self.DEFAULT_BROWSER
 self.logger = logger
 self.__timeout = timeout
 self._driver = self.__create_driver(self.__browser_name)
 self.mouse = Mouse(self)

 def __create_driver(self, name):
 folder_with_drivers = os.path.expanduser('~')
 driver = None

 if name == self.IE:
 path_to_iedriver = os.path.join(
 folder_with_drivers,
 'IEDriverServer.exe'
)
 if os.path.exists(path_to_iedriver):
 driver = webdriver.Ie(executable_path=path_to_iedriver)
 else:
 raise Exception("IEDriver.exe wasn't found in " +
 path_to_iedriver)
 elif name == self.GC:
 path_to_chromedriver = os.path.join(
 folder_with_drivers,
 'chromedriver.exe' if is_windows() else 'chromedriver'
)
 if os.path.exists(path_to_chromedriver):
 driver = webdriver.Chrome(
 executable_path=path_to_chromedriver
)
 else:
 raise Exception("Chromedriver wasn't found in " +
 path_to_chromedriver)
 elif name == self.OP:
 path_to_selenium_server = os.path.join(
 folder_with_drivers,
 'operadriver.exe' if is_windows else 'operadriver'
)

34

 if os.path.exists(path_to_selenium_server):
 capabilities = DesiredCapabilities.OPERA.copy()
 capabilities['engine'] = 2
 driver = webdriver.Opera(
 desired_capabilities=capabilities,
 executable_path=path_to_selenium_server
)
 else:
 raise Exception(
 "Selenium server jar file wasn't found in " +
 path_to_selenium_server
)
 elif name == self.FF:
 driver = webdriver.Firefox()
 else:
 raise ValueError(
 "Unsupported browser '%s', "
 "supported browsers: ['%s']" % (
 name, "', '".join(self.__BROWSERS)
)
)

 if driver and not self.is_gc() and not self.is_op():
 driver.maximize_window()

 return driver

 def __get_webelements(self, element, parent=None):
 if isinstance(element, WebElement):
 return [element]
 elif type(element) in [list, tuple] and len(element) == 2:
 if parent:
 return parent.find_elements(*element)
 else:
 return self._driver.find_elements(*element)
 else:
 raise Exception('Unsupported element - %s' % str(element))

 def _safe_log(self, *args):
 if self.logger:
 self.logger.info(*args)

 def get(self, url):
 self._driver.get(url)

 def execute_js(self, js_script, *args):
 return self._driver.execute_script(js_script, *args)

 def find_element(self, element):
 return self.find_descendant(None, element)

 def find_descendant(self, parent, element):
 found_elements = self.find_descendants(parent, element)
 if len(found_elements) == 0:
 raise NoSuchElementException(
 "Didn't find any elements for selector - %s" % \
 str(element)

35

)
 else:
 return found_elements[0]

 def find_elements(self, element):
 elements = self.__get_webelements(element)
 if type(elements) == list:
 return elements
 else:
 return [elements]

 def find_descendants(self, parent, element):
 return self.__get_webelements(element, parent)

 def webdriver_wait(self, function, msg='', timeout=None):
 if not timeout:
 timeout = self.__timeout
 try:
 WebDriverWait(self._driver, timeout).until(function, msg)
 except:
 raise TimeoutException(msg)

 def wait_for_visible(self, element, msg=None, timeout=None):
 if not timeout:
 timeout = self.__timeout
 if not msg:
 msg = '%s is not visible for %s seconds' % \
 (self._to_string(element), timeout)

 self.webdriver_wait(lambda driver: self.is_visible(element),
 msg,
 timeout)

 def type(self, element, text):
 self.wait_for_visible(element)
 element = self.find_element(element)
 element.clear()

 self._safe_log(u"Typing '%s' at '%s'",
 text,
 self._to_string(element))

 element.send_keys(text)

 def click(self, element):
 self.wait_for_visible(element)
 element = self.find_element(element)

 self._safe_log(u"Clicking at '%s'", self._to_string(element))

 element.click()

 # several lines are skipped

36

Appendix 2 – Source code of the framework

Full source code of the framework takes quite a lot of space, but there are two options of

obtaining it:

1. From the GitHub – https://github.com/kirillstrelkov/easyselenium

2. From the attached CD

Structure of the source code is depicted here:

.

├── easyselenium

│ ├── base_page_object.py

│ ├── base_test.py

│ ├── browser.py

│ ├── __init__.py

│ ├── licenses

│ │ ├── easyselenium_license.txt

│ │ └── firebug_license.txt

│ ├── scripts

│ │ ├── easy_selenium_cli.py

│ │ └── easy_selenium_ui.py

│ ├── tests

│ │ ├── browser_test.py

│ │ ├── data

│ │ │ ├── duckduckgo_class_with_method.py

│ │ │ ├── expected_duckduckgo_class.py

│ │ │ └── pickled_po_class_object

│ │ ├── page_object_class_test.py

│ │ ├── page_object_generator_test.py

│ │ ├── parsed_class_test.py

│ │ ├── root_folder_test.py

│ │ ├── string_utils_test.py

│ │ └── utils_test.py

│ ├── ui

│ │ ├── context_menu.py

│ │ ├── editor

│ │ │ ├── editor_ui.py

│ │ │ ├── field_context_menu.py

│ │ │ ├── __init__.py

│ │ │ └── utils.py

│ │ ├── file_utils.py

│ │ ├── generator

https://github.com/kirillstrelkov/easyselenium

37

│ │ │ ├── generator_ui.py

│ │ │ ├── __init__.py

│ │ │ ├── page_object_class.py

│ │ │ └── page_object_generator.py

│ │ ├── image

│ │ │ ├── image_panel.py

│ │ │ ├── image_with_elements.py

│ │ │ ├── __init__.py

│ │ │ └── selectable_image.py

│ │ ├── __init__.py

│ │ ├── parser

│ │ │ ├── __init__.py

│ │ │ └── parsed_class.py

│ │ ├── root_folder.py

│ │ ├── string_utils.py

│ │ ├── test_runner_ui.py

│ │ └── utils.py

│ └── utils.py

├── README.md

└── setup.py

