
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

IAPM02/18
Ian Erik Varatalu 203952IAPM

F# Type Provider and Compiler for the AL
Programming Language

Masters’s Thesis

Supervisor: Juhan-Peep Ernits

PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Tarkvarateaduse instituut

IAPM02/18
Ian Erik Varatalu 203952IAPM

F# tüübitekitaja ja kompilaator AL
programmeerimiskeelele

Magistritöö

Juhendaja: Juhan-Peep Ernits

PhD

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, the literature
and the work of others have been referenced. This thesis has not been presented for
examination anywhere else.

Author: Ian Erik Varatalu

08.05.2022

3

Abstract

The AL language is a Pascal-based programming language used in the Enterprise Re-
source Planning (ERP) system Microsoft Dynamics 365 Business Central, that was
shaped during the development of Navision 3.x in the 1990s and has since been further
developed under the constraint of maintaining backwards compatibility.

The language is good for database queries and business logic, as it is easy to learn and
master, and remains relevant with its large network of partners, who customize the plat-
form further to fit the needs of customers. On the other hand, because of its long heritage
and the requirement of remaining backwards compatible, the language has many limita-
tions and missing safety-checks compared to modern programming languages.

In the current thesis we analyze the limitations of the AL programming language by defin-
ing 13 issues, and set out to address the limitations by embedding the development into
a modern .NET language – F#. The goal of the embedding is to provide developer con-
venience and type safety features of F#, while still remaining compatible with the large
existing codebase. The issues have been aggregated into 8 requirements which constitute
the specification of the proposed solution.

Within the thesis, we develop a compiler for transforming the F# programming language
to AL. Using the compiler we implement modern features that were previously not pos-
sible in the AL language, such as type inference, inheritance and deserialization, and
guarantee type safety in places where it previously was not done. Then we compare the
created alternative development workflow to the traditional AL development workflow.

In order to utilize the large existing AL code base we additionally develop an AL type
provider for convenient integration of existing code with the developed application.

The outcome of the work is demonstrated and evaluated in 2 end-to-end use cases, one
involving the development of HTTP requests involving type provider assisted type safe
processing of structured data in JSON format and the other one involving designing tables
with shared fields and procedures by making use of Object-oriented design of Record
types.

The thesis is written in English and is 74 pages long, including 6 chapters, 7 figures,
30 code listings, and 3 tables.

4

Annotatsioon

AL on Pascalil põhinev programmeerimiskeel, mida kasutatakse ettevõtte ressursside pla-
neerimise (ERP) süsteemis Microsoft Dynamics 365 Business Central. Keel kujunes
1990. aastatel Navision 3.x arendamise käigus ning seda on sellest ajast täiendatud pi-
dades oluliseks tagasiühilduvust.

AL põhitugevus on kasutajate sihtgrupile päringute ja äriloogika kirjeldamiseks, kuna
keel on lihtne ning seda kasutab suur partnerite võrgustik, kes kohandavad AL keeles
rakendusi klientide vajadustele vastavaks. Teisest küljest on sellel keelel tagasiühilduvuse
nõude tõttu palju puudujääke, mida oleks tänapäevastes programmeerimiskeeltes lihtne
saavutada.

Käesolevas töös analüüsime AL-i programmeerimiskeele piiranguid defineerides 13 prob-
leemi ja loome võimaluse arendada AL rakendusi moodsa .Neti põhise programmeer-
imiskeele F# keskkonnas. F# kasutuse eesmärk on pakkuda arendajale mugavust ning
automaatseid turvalisusfunktsionaalsusi, jäädes samas ühilduvaks suure olemasoleva AL
koodibaasiga. Probleemid on koondatud 8-ks nõudeks, mis moodustavad pakutava lahen-
duse.

Lõputöö raames töötame välja kompilaatori F# programmeerimiskeele teisendamiseks
AL-i. Kasutades kompilaatorit rakendame tänapäevaseid keele funktsioone, mis polnud
varem võimalikud, nagu tüübi järeldamine, pärimine ja deserialiseerimine, ning tagame
tüübiohutust kohtades, kus seda varem ei tehtud. Seejärel võrdleme loodud alternatiivset
arendustöövoogu traditsioonilise AL-i töövooga.

Suure olemasoleva AL koodibaasi kasutamiseks arendame lisaks välja AL tüübitekitaja
olemasoleva koodi mugavaks integreerimiseks arendatud rakendusega.

Töö tulemust demonstreeritakse ja hinnatakse kahel algusest-lõpuni kasutusnäitel. Es-
imene näide hõlmab HTTP päringute väljatöötamist, kasutades tüübitekitaja abiga struk-
tureeritud andmete töötlemist JSON formaadis. Teine näide hõlmab jagatud väljade ja
protseduuridega tabeli kujundamist, kasutades objektorienteeritud disaini.

Lõputöö on kirjutatud inglise keeles keeles ning sisaldab teksti 74 leheküljel, 6 peatükki,

5

7 joonist, 30 koodinäidist, 3 tabelit.

6

List of abbreviations and terms

.NET Open source developer platform by Microsoft

AL Application Language - the language used to develop applications for Business
Central

API Application Programming Interface

Business Central An ERP business software previously known as Dynamics NAV

C/AL Client Server Application Language - AL’s predecessor used in 2018 and before

ERP Enterprise Resource Planning

F# Modern .NET programming language used as the primary development language
in the current work

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

XML Extensible Markup Language

7

Contents

1 Introduction 15

2 The Problem 17

2.1 The Type System of AL . 18

2.2 Procedures and Variables . 22

2.3 Dynamic Inputs . 24

2.4 Code Reuse and Type Safety . 25

2.5 Interfaces . 29

2.6 Constructors . 29

2.7 Data Relations . 31

2.8 Reading and Writing Data . 32

2.9 Legacy . 33

3 The Requirements 35

3.1 Functional Requirements . 35

3.2 Requirements for Enhanced Code Quality 36

3.3 Sample End-to-end Use Cases . 37

4 Design and Development 38

4.1 High-level Overview of Development 38

4.2 Metadata for Objects . 40

4.2.1 App Packages . 41

4.2.2 Business Central Database . 41

4.3 Metadata for the Runtime . 41

8

4.3.1 The AL Language Extension . 42

4.3.2 Business Central Docker Container Artifacts 42

4.4 Transformation of App Packages to F# 42

4.4.1 Generative and Erased Types . 43

4.4.2 Creating Strongly Typed Functions via Type Provider 44

4.4.3 Further Considerations for the Type Provider 44

4.5 The AL Runtime Types . 45

4.6 .NET Implementations . 46

4.7 The Compiler Implementation . 47

4.7.1 Importing Files and References 48

4.7.2 Type Checking . 50

4.7.3 F# Code Generation . 50

4.7.4 Translation to an Intermediate Form 51

4.8 Language Expressions and Data Structures 53

4.9 AL Code Generation . 53

4.10 JSON Type Provider . 54

4.11 F# Modules . 54

4.12 Inheritance for Tables . 55

4.13 Legacy Mapping . 55

5 Demonstration and evaluation 57

5.1 HTTP requests with JSON . 57

5.1.1 API specification . 57

5.1.2 Testing Responses . 58

5.1.3 Error-handling . 59

9

5.1.4 Navigating the Data Structure 60

5.2 Object-oriented Design for Record Types 63

5.3 Additional Features . 65

5.3.1 Strong Typing . 65

5.3.2 Constructors . 66

5.3.3 Pattern-matching . 67

5.4 Future Work . 68

5.5 Summary of the Proof of Concept . 69

6 Conclusion 71

References 73

Appendix 1 Non-exclusive Licence for Reproduction and Publication of a
Graduation Thesis 75

Appendix 2 Code Samples 76

2.1 JSON API Request . 76

2.2 Code Duplication . 76

2.3 Dynamically Typed Code . 77

Appendix 3 Metadata Samples 79

10

List of Figures

1 BNF grammar of AL Types updated since Hvitved, 2009 21

2 High-level overview of the AL development cycle 39

3 High-level overview of the alternative F# development cycle 40

4 F# Compiler phases - (F# Software Foundation, 2022) 48

5 Autocomplete with types generated from Listing 12 58

6 Example of a strongly typed Get procedure in F# 65

7 Respective AL to example shown in Figure 6 66

11

Listings

1 Local variable declarations . 23

2 Assigning the fields of a Sales Invoice Line object 29

3 The (obsolete) with statement assigning fields without explicit declaration 30

4 Related table key definition . 31

5 F# abstractions for the AL type system 45

6 The fsproj file for our sample project . 49

7 Intermediate data structure for generating AL 52

8 A F# module that compiles into a single instance Codeunit 54

9 Single instance codeunit compiled from Listing 8 55

10 Example Codeunit with 0-based indexes in F# 56

11 Codeunit with 1-based indexes compiled from Listing 10 56

12 Generating API spec from JsonProvider 58

13 Sample HTTP request for interactive console testing 58

14 Interactive testing for Listing 13 . 59

15 Equivalent API response error handling to the chosen example 60

16 Compiled output of Listing 15 . 60

17 Navigating JSON in F# . 61

18 Resulting AL compiled from Listing 17 61

19 Inheritance example in F# . 63

20 Result 1 inherited from Listing 19 . 64

21 Result 2 inherited from Listing 19 . 64

22 Example of pattern-matching in F# . 67

23 Pattern-matches compiled from Listing 22 67

12

24 JSON API Request from the book Mastering Microsoft Dynamics 365
Business Central . 76

25 Duplicated, but strongly typed code . 76

26 Dynamically typed code combining the functionality of Listing 25 77

27 Usage of the Field table for serialization 78

28 Sample app package symbols for Record Company 79

29 Sample generated Record Company decompiled into C# 79

30 Sample runtime method stubs for the AL Record type 80

13

List of Tables

1 AL Types that support procedures . 23

2 NAV Table Design patterns from (Hvitved, 2009) and their current imple-
mentation counts . 27

3 Duplicate field declarations in Ledger Entry tables 28

14

1 Introduction

AL is a database specific programming language based on Pascal and is primarily used
for retrieving, inserting and modifying records in a Microsoft Dynamics 365 Business
Central application database.

The language is only used for building Enterprise Resource Planning (ERP) applications
for the Business Central platform, but such applications are very popular, and currently in
use in close to 200 000 companies worldwide.

The language is good for specifying database operations and business logic, and having
such a language for easy customization is one of the main reasons for its success. On the
other hand, because of its long history and Pascal-based syntax, the AL language and type
system has many limitations, lacks many safety-checks that could easily be achieved, and
is very verbose for complex solutions: a scenario it is often used in.

The official solution to these limitations is to call cloud functions over the HTTP proto-
col. However, calling and reading the results of these external web services is also made
difficult by the problems stated above.

The goal of the current thesis is to provide an alternative to develop AL code in F# in
a way that is versioned, can integrate with the existing AL codebase, guarantee safety
from more types of bugs than the AL compiler, and most importantly, is more concise
and hopefully also clearer.

The current thesis is an elaboration of the ideas "Translation of C/AL to an object-oriented
programming language" and "Extend C/AL with polymorphism/type inference or explicit
subtyping" (Hvitved, 2009).

The source language, F#, is chosen for two reasons: First, the F# language lives in the
same .NET ecosystem as AL, and second, F# is a common language to write compilers
with, previously used for projects such as Fable1, the F# to JavaScript compiler. Fable is
also an inspiration for this project.

The steps for achieving the goal are as follows:

1Fable (2021). Fable - JavaScript you can be proud of! Accessed: 2021-11-23. URL: https://fable.io/.

15

https://fable.io/

■ Describe typical issues an AL developer encounters during development

■ Describe how these issues could be mitigated

■ Establish requirements for an alternative solution

■ Implement a way to use existing AL code in F#

■ Implement a compiler turning F# into working AL Code

The approach is not intended to replace the entire AL language, but rather mitigate aspects
of development that are very time-consuming and prone to errors in AL, and can later be
integrated directly into the AL codebase.

16

2 The Problem

In the current chapter we discuss the background of AL, and present issues, to which we
refer to as an important topic for debate or discussion in the AL Language.

We will largely rely on the paper Architectural Analysis of Microsoft Dynamics NAV
(Hvitved, 2009) for technical explanations, as it is currently the only report about Mi-
crosoft Dynamics NAV (as Business Central was previously called) known by the author
that is published in the computer science literature.

Some other important details to keep in mind:

■ No formal specification of the AL language is public, but there is a formalization
of an older version called C/AL in (Hvitved, 2009).

■ Almost all functionality of Business Central is currently written in AL (over 2 mil-
lion lines of source code in AL).

■ AL (and C/AL) was not originally targeted at computer scientists / software engi-
neers, and most AL developers do not have a background in software development.

■ The application has to maintain backwards compatibility, and Microsoft has to be
very careful to not break any existing code - so it’s important to remember that
many of these upcoming issues exist purely for preserving legacy code.

The book Programming Microsoft Dynamics 365 Business Central (Brummel, M. et al.,
2019) has a good overview of the initial design philosophy behind C/AL and AL. As
stated by the developer of the original AL compiler, runtime and IDE, Michael Nielsen,
in (Brummel, M. et al., 2019), the goals of the language design included:

■ Allowing the developer to focus on design rather than coding, but still allowing
flexibility

■ Providing a syntax based on Pascal stripped of complexities, especially relating to
memory management

■ Providing a limited set of predefined object types and reducing the complexity and
learning curve

17

■ Implementing database versioning for a consistent and reliable view of the database

■ Making the developer and end user more at home by borrowing a large number of
concepts from Office, Windows, Access, and other Microsoft products

As C/AL started out very simple, many features have been added to the language as an
afterthought - and many features have been deprecated. Because of these gradual changes,
there are some design quirks in the system.

As another side effect of the long history of developing the system in a certain way,
the application has an unnormalized database design. According to (Hvitved, 2009), the
tables in the application were very large (the Item table had 175 columns) and sparse
(many null values). Bear in mind that these 175 columns were there in 2009 before any
custom development. Today, 13 years later, this number of columns in the Item table is
down to 145, and still sparse.

Like these giant tables, some patterns are so deeply engrained into the ecosystem, that it
is not worth forcing them into a new design. For these reasons, the upcoming solutions
are oriented towards alleviating the issues in the current setting, rather than starting from
scratch.

2.1 The Type System of AL

AL is a statically typed language, that is object-based (not to be confused with object-
oriented), which means that there are no custom-defined types, but developers can create
subtypes of Objects, such as Table, Page or Codeunit (which is an object type for business
logic). There is no further subtyping, but there is a recently added Interface type, which
we will describe later.

All types fall into one of two categories - Simple Types and Complex Types. Simple
Types are data structures that can be serialized into a single database column. Complex
Types are everything else. For a more complete description refer to Figure 1.

As the AL language is currently implemented in C# (previously in C++ (Brummel, M.
et al., 2017)), many types are imported directly from the .NET ecosystem using thin
wrappers, e.g. the type TextBuilder is a .NET StringBuilder under the hood. Since there
have been some major changes from C/AL to AL, we marked the differences between the

18

grammar of C/AL (Hvitved, 2009) and the current grammar of AL below.

The types listed in bold (e.g. JsonValue) have been added to the language since the
change from C/AL to AL. Types with struck out text (e.g. Form) have been removed
since the change from C/AL to AL. A full reference of types with descriptions in AL can
be found in the official documentation1.

1Microsoft Docs (2022a). Data Types and Methods in AL. en. Accessed: 2022-4-6. URL: https :
//docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/library.

19

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/library
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/library

⟨Type⟩ ::= ⟨SimpleType⟩
| ⟨ComplexType⟩

⟨SimpleType⟩ ::= Integer
| Text[n]
| Code[n]
| Char
| Decimal
| Option
| Boolean
| Date
| Time
| DateTime
| Binary[n]
| Char
| BLOB
| DateFormula
| TableFilter
| BigInteger
| Duration
| GUID
| RecordID
| legacy enum types
| List of SimpleType
| Dictionary of Key, Value
| TextBuilder
| HttpHeaders
| JsonValue
| JsonObject
| JsonArray
| JsonToken
| XmlAttribute
| XmlAttributeCollection
| XmlText
| XmlNamespaceManager
| XmlDocument
| XmlElement
| XmlNode
| XmlNodeList
| other XML types

String of size n
String of size n - case-insensitive

Binary type - removed in AL

Binary object of size n
Multilanguage date calculation
Type used for security filtering

Time between two DateTime’s
Global Unique Identifier

Built-in enumeration types
.NET List for simple types
.NET Dictionary for simple types
.NET StringBuilder wrapper
.NET Dictionary wrapper

JsonValue, -Object or -Array
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrappers

20

⟨ComplexType⟩ ::= Action
| RecordRef
| Dialog
| Variant
| InStream
| OutStream
| FieldRef
| KeyRef
| File
| ⟨ObjectType⟩
| array [n1,...,nk] of Type
| ControlAddIn n
| HttpContent
| HttpRequestMessage
| HttpResponseMessage
| HttpClient
| Label text
| *DotNet n
| various other types

Reference to any record
UI Dialog window
Dynamic type

Reference to any field
Reference to any key on a table

See: ObjectType (below)
Fixed-size array
Client-side JavaScript plugin
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
.NET equivalent wrapper
Multilanguage text constant
.NET type (*removed in Cloud)
Unknown

⟨ObjectType⟩ ::= Record n [temporary]
| Codeunit n
| Form n
| Page n
| Report n
| XmlPort n
| Query n
| Automation n
| OCX n
| MenuSuite n
| Enum n
| PermissionSet n
| Profile n
| EnumExtension n
| PageExtension n
| TableExtension n
| ReportExtension n
| ProfileExtension n
| PermissionSetExtension n

Cursor for a database type n
Business logic object of id n
Legacy Windows client page n
Modern web-client page n
Report printing definition n
Xml import or export definition n
Strongly-typed query definition n
Windows integration module type
Windows ActiveX module type
Custom user-interface menu
Enumeration type n
Collection of user permissions

Extension for Enum n
Extension for Page n
Extension for Record n
Extension for Table n
Extension for Profile n
Extension for PermissionSet n

Figure 1. BNF grammar of AL Types updated since Hvitved, 2009.

21

With the type system defined, we can now look into the first issue.

Issue 1. Collections, except fixed size arrays, can only contain simple types.

For a better understanding, consider the following collection variable declarations in the
example below.

■ ListOfIntegers - List of simple types, valid

■ ListOfLists - List containing Lists of simple types, valid

■ ListOfUris - List of complex types, not allowed

■ MultidimensionalArrayOfUris - Fixed size array of complex types, valid

1 ListOfIntegers: List of [Integer];

2 ListOfLists: List of [List of [List of [Integer]]];

3 ListOfUris: List of [Codeunit Uri];

4 MultidimensionalArrayOfUris: array[500,500] of Codeunit Uri;

A special case of collections is the (Complex) Record type, which allows access to
database table rows through a cursor-based iterator. Most commonly it is used like in
the following example, first finding a set of records, and iterating over them inside a re-
peat loop.

1 if CustomerIterator.FindSet() then repeat

2 // function body

3 until CustomerIterator.Next() = 0;

The limitation means that there is no easy place to store instances of Complex types in
code. For Codeunits non-fixed size storage is impossible. For Records there exists a
special in-memory table structure where they can be re-inserted to.

2.2 Procedures and Variables

Methods, or procedures, as they’re called in AL terminology, can be defined on the fol-
lowing types in Table 1 (below). The syntax of procedures has remained unchanged since
(Hvitved, 2009).

There is another kind of procedure called trigger, that can be used for easy implementation

22

of business logic, such as modification triggers - invoked every time a table is modified,
or a validation trigger, invoked every time a user changes the value of a field. It is also
possible to declare more triggers for extensibility of an application.

AL Type Description

Table Database table, referred to as Record in AL code

Page Client-side page in the web application

Codeunit Object type for encapsulating business logic

Report Object type for printing documents, sometimes used as a user
interface for procedures (i.e. "processing only reports")

XmlPort Object type for importing and exporting large data structures via
XML files

Query Strongly typed database query that can be used as an Applica-
tion Programming Interface (API) endpoint or a data source in
code

Table Extension Extension to a table in the application, used for customization

Page Extension Extension to a page in the application, used for customization

Report Extension Extension to a report in the application, used for customization

ControlAddIn Client-side JavaScript plugin with AL interoperability

Table 1. AL Types that support procedures.

Issue 2. All local variables used in a procedure must be explicitly declared at the top.

Declarations of all local variables is something derived from the Pascal-based roots of
the AL language, and while it is not a functional limitation, most modern programming
languages do not require such declarations. One notable quirk about these variables is that
the list often grows long, as many constructs in the language, such as for-loops, require
explicit variable declarations for temporary storage.

1 local procedure CreateReservations(var OrderPromisingLine: Record ...

2 var

3 ReqLine: Record "Requisition Line";

4 SalesLine2: Record "Sales Line";

5 ServLine2: Record "Service Line";

6 JobPlanningLine2: Record "Job Planning Line";

7 SalesLineReserve: Codeunit "Sales Line-Reserve";

8 ServLineReserve: Codeunit "Service Line-Reserve";

23

9 JobPlanningLineReserve: Codeunit "Job Planning Line-Reserve";

10 ReservMgt: Codeunit "Reservation Management";

11 SourceRecRef: RecordRef;

12 ReservQty: Decimal;

13 ReservQtyBase: Decimal;

14 NeededQty: Decimal;

15 NeededQtyBase: Decimal;

16 FullAutoReservation: Boolean;

17 begin

18 ...

Listing 1. Local variable declarations.

Issue 3. Procedures can only return a single variable

While a return value can be any variable, the amount of data that can be returned from a
procedure is bound by the same limitations stated in Issue 1. It requires developers to pass
mutable variables into functions for even simple tasks, and often requires the developer
to declare the same variable multiple times - for every procedure it passes through.

For example, a common pattern in AL, as shown below, is to return a boolean value
indicating whether the procedure succeeded, and storing results in reference parameters.

1 procedure ProcedureThatCanFail(var MutableValue:Integer) : Boolean

2.3 Dynamic Inputs

Issue 4. Dynamic parameter arrays

An issue adversely affecting the reliability of AL code is that AL makes it relatively
easy to compile and publish code that does not work, as procedures often take dynamic
parameter arrays for input.

For example consider one of the most used procedures in the entire AL codebase - "Get".
Get is an instance method on the Record iterator type that gets a table row by its primary
key fields.

In the following code example, a Company Record type is queried from the database
using its primary key, "Name".

24

1 procedure Example()

2 var Company : Record "Company";

3 begin

4 Company.Get(’COMPANYNAME’)

5 ...

But the following example will also compile and execute without any warning messages
– that results in an exception at runtime.

1 procedure Example2()

2 var Company : Record "Company";

3 begin

4 Company.Get(1,’asdasd’,CurrentDateTime(),45)

5 ...

In addition, the latter issue introduces new issues:

Issue 5. It is not safe to change table keys.

Issue 6. Lack of parameter hints.

While changing a table key is a very rare occasion, looking up what parameters the Get
procedure for a table requires is something that developers will encounter every single
day. Since there are more than a thousand tables in the base application, and even more
in Client-tailored applications, the AL developer will have to add many unnecessary steps
to writing database queries.

There are more examples of such dynamically typed input problem, but some more no-
table ones are common user interface prompts, such as "StrMenu" or state changes for the
Record iterator type, like "CalcFields", which can only be used on Calculated Fields – a
different type of field, which acquires its value from a calculation formula.

2.4 Code Reuse and Type Safety

Issue 7. Strict type annotations.

As was shown in (Hvitved, 2009), a lot of code duplication in C/AL could be attributed
to the lack of polymorphism, as strict type annotations do not allow code reuse between
similar table objects. It is still the case today, as tables still do not have support for

25

subtyping.

For example, consider the 3 similar procedures in Listing 25 in Appendix 2 on page 76,
that return a list of unique product categories from a sales document, a purchase document
and a sales invoice document. Each of these functions strictly take an input parameter of
one singular record type (lines 1, 16 and 31).

To avoid such repetitions, AL developers often use the Variant type, which is a dynamic
type.

Issue 8. Common use of the Variant type

Dynamic functions in AL are built on Table Id-s and Field Id-s – Integers, that are unique
to the specific table or field that is accessed.

But dynamic code some introduces some caveats. While it solves the maintainability
problem caused by the need for duplication, there are some issues with it, namely:

■ Loss of expressiveness (as it is necessary to track integers)

■ Loss of compile time safety checks

■ Loss of performance

For example, Listing 26 combines the 3 procedures of Listing 25 into one, but it comes
with the cost of drawbacks stated above and having to know the specific Field Id’s.

Issue 9. Code duplication on Object types

There are many similar objects in Business Central, which due to restricted code reuse
implement the same fields, procedures and patterns.

In (Hvitved, 2009) there are some design patterns as input for a future object-oriented
design of the language. Table 2 lists some of these patterns and how many times these
patterns are implemented in the current base application (version 19.5) of Business Cen-
tral.

The objects are counted by the name of the object, e.g. "Item Template" is considered an
object of type Template and an "Item Journal Line" is considered an object of the type
Journal Line). Abbreviations, such as Jnl. (Journal) are also counted.

26

Design pattern Count (Pattern) Description

Master tables not counted Primary/master data such as customers and items - can
be thought of as entities

Templates 41 (Template) Used in connection with journals, describes common
control information such as type of journal, number-
ing series, account numbers etc.

Journals 12 (Journal Line)
10 (Journal Batch)
5 (Jnl. Line)
1 (Jnl. Batch)

Unposted data, i.e. information that may change be-
fore it is posted to the ledger

Ledgers 18 (Ledger Entry)
2 (Ledg. Entry)
3 (Entry Buffer)

Posted data, i.e. events that cannot and should not be
deleted by law. Used as accounting data.

References not counted Data that is always referred not copied e.g. Post Code

Registers 14 (Register) Used to group entries in ledger tables that belong to
the same posting

Posted
documents

20 Only used for easier reference to the posted data, used
to group ledger entries

Virtual tables not counted Tables that do not exist in SQL, e.g. Table Integer
contains all integers, Table Date contains all dates

Table 2. NAV Table Design patterns from (Hvitved, 2009) and their current implementation counts.

To illustrate the issue, there are 20 Ledger Entry pattern implementations mentioned in
Table 2 (above), and these tables each separately define the fields listed in Table 3. The
obvious issue here is that many fields are declared n times, once for each table, which
expands the size of the codebase and increases the cost of refactoring.

The same kind of duplication exists for procedures as well, e.g. there are 15 declarations
of GetLastEntryNo and 14 declarations of ShowDimensions, which all have the same
method body.

27

Field name Type [Length] Declarations (out of 20)

Entry No. Integer 20

Posting Date Date 18

Document No. Code[20] 18

Amount Decimal 16

Description Text[100] 15

User ID Code[50] 15

Global Dimension 1 Code Code[20] 14

Global Dimension 2 Code Code[20] 14

Dimension Set ID Integer 14

Document Type Enum 13

Source Code Code[10] 13

Journal Batch Name Code[10] 13

Reason Code Code[10] 13

Shortcut Dimension 3 Code Code[20] 13

Shortcut Dimension 4 Code Code[20] 13

Shortcut Dimension 5 Code Code[20] 13

Shortcut Dimension 6 Code Code[20] 13

Shortcut Dimension 7 Code Code[20] 13

Shortcut Dimension 8 Code Code[20] 13

External Document No. Code[35] 12

Amount (LCY) Decimal 11

Document Date Date 11

Currency Code Code[10] 10

Table 3. Duplicate field declarations in Ledger Entry tables.

28

2.5 Interfaces

For the kind of tasks mentioned in the previous section, modern programming languages
provide Interfaces, the use of which facilitates both code reusability and type safety.

The Interface type was added to AL recently, namely in 20201, but because of legacy
limitations it has one major restriction – Interfaces can only be implemented on Codeunits.

While the current interface type provides easily changeable components to the applica-
tion, such as price calculation logic or various kinds of barcodes, it does not solve the
duplication problem highlighted in the previous section.

As there is no subtyping to build the interface on, the best an interface could do to reduce
duplicated code is a procedure with a (dynamic) Variant parameter.

The Interface Line With Price (below) is implemented in exactly this way in the AL base
application with the following signature consisting of dynamic parameters:

1 interface "Line With Price"

2 procedure GetTableNo(): Integer

3 procedure SetLine(PriceType: Enum "Price Type"; Line: Variant)

4 procedure SetSources(var NewPriceSourceList: codeunit "Price Source

List")

5 procedure GetLine(var Line: Variant)

6 procedure GetLine(var Header: Variant; var Line: Variant)

7 ... 10 other procedures

Such approach further contributes to the amount of dynamic parameters highlighted in
Issue 4.

2.6 Constructors

Issue 10. Constructing objects and assigning fields is unnecessarily verbose

Object types in AL are constructed like in the following example, repeating the name of
the constructed object on each line.

1https : / /docs.microsoft.com/en- us /dynamics365- release- plan/2020wave1/dynamics365- business-
central/al-interfaces

29

https://docs.microsoft.com/en-us/dynamics365-release-plan/2020wave1/dynamics365-business-central/al-interfaces
https://docs.microsoft.com/en-us/dynamics365-release-plan/2020wave1/dynamics365-business-central/al-interfaces

1 procedure Example()

2 var

3 SalesInvoiceLine: Record "Sales Invoice Line";

4 begin

5 SalesInvoiceLine.Init();

6 SalesInvoiceLine.Type := SalesInvoiceLine.Type::Item;

7 SalesInvoiceLine."No." := ’100100’;

8 ... rest of the procedure

Listing 2. Assigning the fields of a Sales Invoice Line object.

It is currently intentionally like this, as there was a way to set fields without writing the
object name for each field using the with statement, but that feature is deprecated because
of the situation in the following example.

On line 16 in Listing 3, the Name field is not assigned in the Sales Invoice Line object
(defined on line 9), but instead in the Company (defined on line 5) object. The reason
being that the field names are looked up from multiple places, including recursive with

statements and the SourceTable expression.

As the field Name does not exist in Sales Invoice Line, the field is assigned for the next
object that has Name defined. Thus, the with statement was deprecated, to prevent the
confusion of recursive definitions and accidental field assignments. For more information
on with statements refer to the official documentation 1.

1 page 60001 CompanyPage

2 {

3 Caption = ’CompanyPage’;

4 PageType = Card;

5 SourceTable = Company;

6
7 procedure Example()

8 var

9 SalesInvoiceLine: Record "Sales Invoice Line";

10 begin

11 SalesInvoiceLine.Init();

12 with SalesInvoiceLine do

13 begin

14 "No." := ’100100’;

1https : / / docs.microsoft.com / en - us / dynamics365 / business - central / dev - itpro / developer / devenv -
deprecating-with-statements-overview

30

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-deprecating-with-statements-overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-deprecating-with-statements-overview

15 Type := SalesInvoiceLine.Type::Item;

16 Name := ’name’;

17 end;

18 end;

19 }

Listing 3. The (obsolete) with statement assigning fields without explicit declaration.

2.7 Data Relations

Issue 11. No member access expression for relations

Nested object structures are not supported in AL. To store nested object structures, they
are commonly defined in the format of a Table relation, as shown in the following exam-
ple.

In the following example there a Record Sales Header containing many Sales Line
Records by a composite key of "Document No." and "Document Type".

1 table 37 "Sales Line"

2 {...

3 fields

4 {...

5 field(3; "Document No."; Code[20])

6 {

7 Caption = ’Document No.’;

8 TableRelation = "Sales Header"."No."

9 WHERE("Document Type" = FIELD("Document Type"));

10 }

11 ...

Listing 4. Related table key definition.

As an alternative way of storing nested object structures, it could also be possible to use
XML or JSON objects.

What makes these relations different to a modern language, is that:

■ Usually all table relations (i.e. SQL joins) in AL are written by hand

■ The developer has to know these relations exist, as these relations are not linked by

31

a navigation property and therefore lack code-completion

■ The programming style of AL makes accessing nested structures verbose

So what would be a single line in a modern programming language:

1 SalesHeader.Lines

Is commonly written in the following way in AL:

1 //...first declaring the variable

2 SalesLines : Record "Sales Line";

3 //...in the code

4 SalesLine.SetRange("Document No.", SalesHeader."No.");

5 SalesLine.SetRange("Document Type", SalesHeader."Document Type");

6 SalesLine.FindSet()

Of course, a Header table accompanied by a Line table is a very common design pattern in
the Business Central database, where the Header is to store information about a document,
that should not be duplicated on every single line. Thus, the name of the table itself is
indicative of having a Line table.

2.8 Reading and Writing Data

Issue 12. No support for serialization or deserialization.

Another unusual part of the AL language is reading data and writing data from and to
external sources. The most common data formats used in Business Central are XML,
JSON and XLSX files.

In most modern languages these tasks are handled through serialization and deserializa-
tion into a strongly typed data structure. For the reasons stated in Issue 11, deserial-
ization is not possible in AL without writing the deserialization code manually using
workarounds.

The reason being that parent Records are not linked to children and doing so manually
would bring questionable benefits, as each nested object type will then have to be stored
into a separate variable, that will also have to be manually filtered and queried from, as
there is no member access navigation. Automatic serialization of non-nested objects is

32

possible and could be implemented using the same functions used for writing dynamic
code through field IDs.

In Listing 27 in Appendix 2 on page 76 is an example of how deserialization can be done
today. There is a Field Record type defined on line 3, that contains all fields and their
respective IDs for a table, which can then be used with the help of the dynamic FieldRef
(see: Figure 1) type for JSON serialization.

But because most data structures are nested, reading JSON data in AL is written by hand,
making development of web requests time-consuming by requiring explicit type casting
and property navigation.

An example of a JSON request can be found in Listing 24, that we will later use for
comparison with the proposed improvement.

2.9 Legacy

As the language is old in its core, and has undergone many changes, it has some unex-
pected behavior. The unexpected behavior may even be depended on in some cases, if
the codebase has remained the same for a long time. However, when writing new code, it
would be preferable to bypass or avoid such cases.

Issue 13. Legacy code behavior

Bear in mind that many of these quirks are already highlighted by the compiler, but still
allowed to not break existing partner code. Here is a non-exhaustive list of examples:

1. Inside repeat loops - changing a key property value of the Record also changes the
cursor position of the loop, may result in infinite loops if not careful.

2. Procedures may be called with or without brackets, meaning Rec.Insert and
Rec.Insert() are equivalent - Version with brackets is preferred as it’s safe against
field naming collisions.

3. There can be a global and a local variable with the same name - e.g. Event Sub-
scribers consistently use global variables when calling procedures.

4. Legacy with statements will implicitly use the SourceTable variable as explained in
Issue 10.

33

5. Certain variable names should be avoided, for example setting the TableNo property
for a Codeunit will override the Rec variable and DotNet assemblies can not import
a value named Value.

6. A Record parameter passed without a reference cell will not pass existing filters.

Another quirk in the language is inconsistent array indexing. While the majority of the
AL language is 1-based, e.g. the function StrPos(1) refers to what a computer scientist
would understand as index 0, there are exceptions to this.

For example, when accessing the nodes of XmlNodeList, the following code gets the first
child element – using a 1-based index.

1 NodeListVariable.Get(1, TempNode);

But when accessing the nodes of JsonArray, the following code will get the second child
element – using a 0-based index.

1 JsonArrayVariable.Get(1, TempToken);

34

3 The Requirements

In the current chapter we define the requirements for a viable solution to the issues defined
in Chapter 2.

As discussed in Chapter 1 the source language chosen for the compiler is F#, as it has
been successfully used for supporting other target languages, for example Javascript1,
Python2, and PHP3. Using a language from the same ecosystem also allows to reuse some
tools, that were originally written in C#, and eases type-mapping, as many AL types
have .NET equivalents as shown in Figure 1. It also satisfies the domain constraint of
using an officially supported .Net language maintained by Microsoft to provide long term
perspective to the proposed solution.

3.1 Functional Requirements

Requirement 1. Versioning

As Business Central and AL is regularly updated with new features, an alternative solution
must explicitly support specific versions of the AL runtime (see: Chapter 4) to provide
maintainability under further updates to AL and Business Central. Such versioning should
be supported with minimal manual adjustments, to help with the maintainability of the
project.

Requirement 2. Integration with existing AL libraries (i.e. app packages) and providing
functionality to libraries written in AL

The AL codebase is massive, and writing code that does not use any existing AL library
would severely limit the functionality and viability of a solution, meaning that thousands
of object types from AL must be usable in F# as they would in AL. It should also be
possible to use the library developed in F# from libraries written in AL.

Requirement 3. The AL core library

1Fable (2021). Fable - JavaScript you can be proud of! Accessed: 2021-11-23. URL: https://fable.io/.
2Fable Python (2021). Python bindings for Fable. Accessed: 2021-11-23. URL: https://github.com/

fable-compiler/Fable.Python.
3Peeble (2021). Peeble. A F# -> PHP transpiler. Accessed: 2021-11-24. URL: https://github.com/

thinkbeforecoding/peeble.

35

https://fable.io/
https://github.com/fable-compiler/Fable.Python
https://github.com/fable-compiler/Fable.Python
https://github.com/thinkbeforecoding/peeble
https://github.com/thinkbeforecoding/peeble

The developer must be able to write F# code that uses the same functions used in AL, as
AL has a large library of domain-specific features, that may need to be used directly from
F#.

Requirement 4. Type mapping

The AL runtime and type system is implemented in C# with wrappers around primitive
types. A viable solution should map these types to the semantic equivalents automatically,
letting the user write code that could (to certain extent) also be tested in F#.

3.2 Requirements for Enhanced Code Quality

Requirement 5. Reduce boilerplate for readability

As shown in the issues 2, 10, 11 and 12, a major goal for readability is to remove unnec-
essary formalities from the code and reduce noise around relevant code for the developer.

Requirement 6. Type safety

In issues 4, 5, 6, and 8 we showed that there are possibilities for bugs to be introduced due
to loosely typed functions and that in certain cases type safety comes at the cost of code
duplication. A viable solution should guarantee type safety without such drawbacks.

Requirement 7. Stable and consistent interface around legacy code

As shown in the Issue 13, AL has certain quirks and inconsistencies on the language level
that can not be changed as it would break legacy code. An alternative solution should
provide a stable and intuitive interface, that handles these cases in the background.

Requirement 8. Introduce code reuse where possible

Issue 9, shows an issue with a lot of similar objects, that have no shared code between
them - inheritance or composition would allow for shared architecture and reduce the
amount of code required asymptotically.

36

3.3 Sample End-to-end Use Cases

As the AL language has a large ecosystem for a domain-specific language and providing
the full functionality of AL is not attainable in the scope of this thesis, we need to narrow
the proposed approach down to a few significant end-to-end use cases, that would be
illustrate the effect of the solution immediately.

Use case 1. HTTP requests with JSON

As the entire Business Central platform is moving away from .NET code and .NET ex-
tensions will not be supported in the near future, one major point that could be improved
is integration with external services, that are used to replace this existing .NET code. It
will make it possible to utilize modern F# features like Type Providers and providing
autocomplete to the developer, and preventing spelling mistakes and false type casts.

Use case 2. Object-oriented design for Record types

In Issue 9 we showed that Business Central has many design patterns, that are imple-
mented purely by duplication, without language level support. Designing tables with
shared fields and procedures via inheritance would greatly increase maintainability and
speed of development, also eliminating the possibility for inconsistencies, that may appear
with mass duplication of code.

37

4 Design and Development

In the current chapter we will first go over a high-level overview of the current AL and
planned F#-to-AL development cycle, then describe the tools used to develop the compiler
and then go into further detail about design and development. The source code of the
project will be publicly available on GitHub1 and some examples will refer to the source
code directly.

For further reference, we use the following tools and packages for development:

■ AL Language extension version 8.4.8.62398 (i.e. runtime version 8.0)

■ Base Application version 19.5.36567.36700

■ System Application version 19.5.36567.36700

■ Business Central sandbox artifacts for version 19.5.36567.36700

4.1 High-level Overview of Development

AL development is done in Visual Studio Code, using the AL Language2 extension. The
AL development cycle is illustrated in Figure 2 (below),

1. The AL developer downloads symbols (i.e. app packages) from a Business Central
server.

2. The symbols (contained in a compressed .app file) are extracted and read by Visual
Studio Code.

3. The developer now has access to the full AL source code and any dependencies
inside the versioned app package files for development.

4. The developer compiles the project into another app package file.

5. The developer publishes the app package to the server, which is then compiled into
C# during runtime.

1Ian Erik Varatalu (2022). FSAL - F# to AL compiler. URL: https://github.com/fsal- compiler/fsal-
compiler.

2AL Language (2022). Accessed: 2022-4-28. URL: https : / / marketplace . visualstudio . com / items ?
itemName=ms-dynamics-smb.al.

38

https://github.com/fsal-compiler/fsal-compiler
https://github.com/fsal-compiler/fsal-compiler
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al

6. The development environment launches a web browser, opening a page for an AL
object specified in a launch.json file.

7. If a debugger is launched, then the developer can now step through breakpoints in
AL.

Figure 2. High-level overview of the AL development cycle.

To develop an app package in F#, two steps will be added to the development cycle as
shown in Figure 3:

1. The downloaded app package’s contents must be translated to F# for development

2. The written F# must be translated back into AL before compilation and publishing

39

Figure 3. High-level overview of the alternative F# development cycle.

Note that the downloaded app packages do not contain all the development information,
some built-in types and procedures are provided directly by the AL Language extension.

4.2 Metadata for Objects

As we explained in Requirement 1, versioning the AL language is an important design
choice for the compiler. Before going more in depth about the tools chosen for versioning
and generating the AL core library, we will go over what is possible.

40

4.2.1 App Packages

Some versioned components are distributed via app packages, for example the entire base

application consisting of 1476 Tables, 2686 Pages, 1422 Codeunits and many other types.
App packages are also used to distribute the system application, that contains essential
Business Central components, such as virtual tables (see: Table 2) and system tables (e.g.
File). The rest of the AL Language is versioned via the version of the Business Central
runtime.

When defining the manifest of the app package, the developer specifies a runtime version
(currently 8.0), that the package is for. Then, the package can be published to Business
Central servers, that have the same, or an earlier version (e.g. 9.0) of the runtime.

App packages are the standard way to distribute metadata to the AL Developer. An app
package is a compressed archive, that contains the JSON symbols for all objects, proce-
dures, fields and other relevant information. App packages can also optionally contain the
AL source code, that can be used for debugging or development. App packages are avail-
able for both Cloud and On-Premises versions of Business Central. These app packages
are also openly versioned with source code on GitHub1, where it’s easy to track changes.

4.2.2 Business Central Database

Alternatively, a more-detailed XML metadata format exists in the Business Central
database, that is stored for each object in an SQL column. In the "Application Object
Metadata" table, accessible only on the On-Premises versions of Business Central, there
are 3 BLOB type columns for each object, "Metadata" containing XML metadata, "User
Code" containing C# code, and "User AL Code" containing the original AL code. Since
the Cloud version of Business Central is the primary target for this compiler, the app
packages are the better option.

4.3 Metadata for the Runtime

Versioning the runtime functionality is much harder, as there is no publicly available
repository or list for types and procedures.

1Stefan Maron (2022). Business Central Code History Repository. Accessed: 2022-04-30. URL: https:
//github.com/StefanMaron/MSDyn365BC.Code.History.

41

https://github.com/StefanMaron/MSDyn365BC.Code.History
https://github.com/StefanMaron/MSDyn365BC.Code.History

Runtime versioned functionality includes:

■ All graphical user interface procedures, like menus

■ All built-in procedures for objects, like Insert or Delete for records

■ List of all built-in types, like HttpClient or JsonValue

4.3.1 The AL Language Extension

To make tools that are compatible with changes to the runtime, many AL development
extensions depend directly on the AL Language extension (closed-source), as this allows
the extension to work with newer versions that come out. Some examples of this are
third-party refactoring tools, analyzers and language-server integrations, like AL XML
Documentation1 and AZ AL Dev Tools2 extensions. The AL Language extension is also
a reliable source of versioning for our compiler.

4.3.2 Business Central Docker Container Artifacts

Microsoft regularly publishes versioned artifacts for every Business Central version to
their container registry3. A popular development tool, BCContainerHelper4, can use these
artifacts to install any version of Business Central into a Docker container along with other
useful data, including AL source code, legacy DLL’s, many Powershell scripts and devel-
oper tools. The artifacts package also contains a compatible version of the AL Language
extension.

4.4 Transformation of App Packages to F#

To import existing AL code, as discussed in Requirements 1 and 2, we need to turn AL
app packages into a format, that is usable from F#. For this transformation we use a
feature of F# called Type Providers (Syme et al., 2012), that can generate code during

1365 business development (2022). AL XML Documentation. Accessed: 2022-04-30. URL: https :
//marketplace.visualstudio.com/items?itemName=365businessdevelopment.bdev-al-xml-doc.

2Andrzej Zwierzchowski (2022). AZ AL Dev Tools/AL Code Outline. Accessed: 2022-04-30. URL:
https://marketplace.visualstudio.com/items?itemName=andrzejzwierzchowski.al-code-outline.

3Docker Hub (2022). Dynamics 365 Business Central Sandbox. Accessed: 2022-04-30. URL: https:
//hub.docker.com/_/microsoft-businesscentral-sandbox.

4Freddy Kristiansen (2022). BcContainerHelper. Accessed: 2022-04-30. URL: https:/ /github.com/
microsoft/navcontainerhelper.

42

https://marketplace.visualstudio.com/items?itemName=365businessdevelopment.bdev-al-xml-doc
https://marketplace.visualstudio.com/items?itemName=365businessdevelopment.bdev-al-xml-doc
https://marketplace.visualstudio.com/items?itemName=andrzejzwierzchowski.al-code-outline
https://hub.docker.com/_/microsoft-businesscentral-sandbox
https://hub.docker.com/_/microsoft-businesscentral-sandbox
https://github.com/microsoft/navcontainerhelper
https://github.com/microsoft/navcontainerhelper

design time.

To create a Type Provider, there is a tutorial available at Microsoft Docs1 and F# Type
Provider SDK on GitHub2.

With the type provider, we can integrate the following steps seamlessly into the develop-
ment cycle, without having to rely on external conversion tools:

■ The developer creates a type provider instance and specifies a path on disk

■ The type provider extracts the app package symbols from the specified path and
generates F# in the background

■ The developer now has full autocomplete support with code generated from the app
package

4.4.1 Generative and Erased Types

There are two kinds of provided types - erased types and generative types. Erased types
are used for massive schemas, where high performance is preferred over having the exact
same runtime representation3. Generative types have the benefit of generating real .NET
types in the compiled DLL file, meaning that it’s possible use inheritance and metapro-
gramming features such as reflection for further code generation. Erased type providers
have an additional use case for providing a simpler interface to code, that compiles into
a different syntax, which we will later demonstrate with a third party Type Provider in
Section 5.1.

Having real .NET types in the resulting DLL also allows for interoperability with Pow-
erShell using the command Import-Module, and C#, using a DLL reference. Another
benefit of interoperability, is that AL developers are already accustomed to PowerShell,
which is the AL developer’s go-to tool for automation, as Business Central configuration
requires extensive use of PowerShell.

1Microsoft Docs (2022b). Tutorial: Create a Type Provider. Accessed: 2022-04-30. URL: https :
//docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider.

2Don Syme (2022). The F# Type Provider SDK. Accessed: 2022-04-30. URL: https : / /github.com/
fsprojects/FSharp.TypeProviders.SDK.

3Microsoft Docs (2022b). Tutorial: Create a Type Provider. Accessed: 2022-04-30. URL: https :
//docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider.

43

https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://github.com/fsprojects/FSharp.TypeProviders.SDK
https://github.com/fsprojects/FSharp.TypeProviders.SDK
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider

As the AL Language is close to object-oriented in its design, and thousands of types
inherit the same procedures (e.g. all Records can be inserted and deleted), we chose
generative types, which have certain caveats in regard to performance, that we will discuss
later in this chapter.

4.4.2 Creating Strongly Typed Functions via Type Provider

In Issue 4, we showed that some procedures in AL are loosely typed, even though all the
necessary information is available during design time. The downloaded app package with
symbols (as shown in Figure 3) contains the primary key information for all tables in the
application. Using this information, we can generate a strongly typed Get (see: Issue 4)
procedure directly from the app package. In Business Central, by convention, the primary
key for a table is always the first key defined1.

In Listing 28, Appendix 2 on page 76, there is a JSON symbols definition extracted from
an AL app package for Record Company, that was used as an example in Issue 4. On line
21 are the table fields used for the primary key, which refers to a field "Name". This field
"Name" is defined on lines 3 to 16, and specified a type definition Text with maximum
length 30 on line 5.

From this information in the symbols, we can generate a strongly typed Get procedure
for the Record Company. As the Text type is equivalent to the .NET String type, we will
generate a strongly typed Get function for the Company Record, that takes a single input
parameter of string. We can also generate this parameter with an explicit name, to show
the developer which field is the primary key via a parameter hint.

The use of strongly typed functions will be demonstrated in Section 5.3.

4.4.3 Further Considerations for the Type Provider

Because we chose the less performant generative types in Section 4.4.1 and there are thou-
sands of types that need to be generated, as shown in Section 4.2.1, the code generation
process for large packages requires a lot of computation.

Listing 29 in Appendix 3 on page 79 shows an example of the generated code. As shown

1Microsoft Docs (2022). URL: https://docs.microsoft.com/en-us/dynamics365/business-central/dev-
itpro/developer/devenv-table-keys.

44

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-table-keys
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-table-keys

in Listing 29, we inherited all the generated records from a common ALRecord class
(line 1), from which the records inherit common methods, such as Insert or Delete. The
ALRecord itself is defined later in Section 4.5. We also override a get_ObjectId() method,
to support using Table Id-s (see: Issue 8). Field Id-s are not yet implemented, but still
usable by the FieldNo procedure inherited from ALRecord.

In the scope of this thesis, we only generated F# types for tables, which for the base
application took about 3 minutes to compile, and resulted in a DLL containing 231 355

lines of (decompiled) code. As this code generation process would slow down the IDE, a
better way to use the base application is to first compile it in a separate project and then
use the compiled output with a NuGet package or a reference. This way we could use the
entire base application without any noticeable slowdowns.

4.5 The AL Runtime Types

To avoid defining the entire core library manually, we considered some options in Section
4.3. We first implemented some essential abstractions for the AL type system manually,
shown in Listing 5 below, including a base class for SimpleType, ComplexType and Ob-
jectType (see: Figure 1).

1 [<AbstractClass>]

2 type ALSimpleValue() = do ()

3
4 [<AbstractClass>]

5 type ALComplexValue() = do ()

6
7 [<AbstractClass>]

8 type ALObjectValue() =

9 inherit ALComplexValue()

10 abstract member ObjectId : int

Listing 5. F# abstractions for the AL type system.

Then, using these abstractions as base classes, we used the .NET Reflection capability, to
extract procedure signatures from the assembly, that defines the AL Runtime. An example
of the end result can be found on Listing 30 in Appendix 3 on page 79.

The process of extracting signatures is as follows:

45

1. Load the assembly using .NET System.Reflection.Assembly.LoadFrom method.

2. Categorize the types in the assembly by subclasses, into simple types and complex
types.

3. Categorize all members of each type into properties and methods.

4. Map the types of methods into their semantic equivalents, e.g. convert Text to
String.

5. Generate unimplemented method stubs for all properties and methods, that have the
same parameters and return types as in AL.

After the process, it was necessary to make further manual changes, such as inheriting
ALRecord from the ALObjectValue type (above), to support the restrictions of the type
system and defining an Object Id. Using the procedure above, we generated a total of
around 5000 lines of code, which. For more examples see the stubs in the source code
directly 1 2.

The process above could be much further refined into a stable pipeline for each version,
but for the scope of this thesis, we found it more attainable to do the final modifications
manually. For the same reason, certain parts of the AL Library, requiring heavy modi-
fication, were not generated. As our knowledge of the type system and language server
is limited, perhaps it’s best to consult Microsoft directly on how to approach this, if the
process is to be turned into a real pipeline in the future.

4.6 .NET Implementations

As we described in use case 1 in Chapter 3, we consider simplifying development external
web requests one of the main use cases for the compiler being developed. To make con-
necting to external web services more comfortable for the developer, we can implement
certain parts of the code generated in the previous section into directly into F#.

For example when testing the connection and output of an Azure Function, the AL devel-
opment workflow (see: Figure 2) currently has some amount of overhead when making
changes. The most common way to develop web services and other repetitive tasks, is
to set up a Page object for development, then add an OnPageOpen trigger for this page,

1https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ALSimpleValues.fs
2https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ALComplexValues.fs

46

https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ALSimpleValues.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ALComplexValues.fs

with the code being developed, and set it as the launch object after publish. This way, the
AL Code that was written will hit a breakpoint as soon as it’s published and loaded in the
browser.

As this inner-cycle of development still takes some seconds, depending on the app pack-
age size, to upload the package, compile and launch, an interactive console could be
helpful here. With an interactive console, the developer will have some new options for
development, namely:

■ Evaluating code line-by-line

■ Skipping the overhead of publishing

The optimal way to do this, would be to integrate to the real .NET engine behind Business
Central, as this would guarantee the function to have the same effect. As this requires
knowledge and access to the engine, which we do not have, we instead, implemented the
signatures of the following object types in F# (see source code1):

■ HttpHeaders

■ HttpContent

■ HttpRequestMessage

■ HttpResponseMessage

■ HttpClient

With the signatures implemented, we can test functions line-by-line during development
and then compile them into AL. The use of this feature is also demonstrated in Section
5.1.

4.7 The Compiler Implementation

The F# to AL compiler is built on top of the F# Compiler2. Before going further into
detail, we will explain the high-level overview of the process, to help in understanding we

1https : / / github.com / fsal - compiler / fsal - compiler / blob / main / src / Fs.AL.Core /
ImplementedBcComplexValues.fs

2F# Software Foundation (2022). F# Compiler Docs. Accessed: 2022-4-6. URL: https://fsharp.github.
io/fsharp-compiler-docs/.

47

https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ImplementedBcComplexValues.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ImplementedBcComplexValues.fs
https://fsharp.github.io/fsharp-compiler-docs/
https://fsharp.github.io/fsharp-compiler-docs/

also included a diagram from the compiler documentation in Figure 4.

Figure 4. F# Compiler phases - (F# Software Foundation, 2022).

4.7.1 Importing Files and References

The compilation process starts with finding the source code to compile. The F# compila-
tion process is different from AL, as it references all files sequentially, meaning there are
no cyclical references between files, and all files used for the compilation of the current
file must be declared before, in a top-down fashion.

To maintain this order of compilation, there is a list of included files in a .fsproj file, which
will be compiled in the exact order that they are specified in. In Listing 6 is the fsproj file
for the sample project we are using to demonstrate the upcoming compilation process and
code samples. Lines 7 to 18 specify the order of files.

48

1 <Project Sdk="Microsoft.NET.Sdk">

2 <PropertyGroup>

3 <OutputType>Exe</OutputType>

4 <TargetFramework>net6.0-windows</TargetFramework>

5 </PropertyGroup>

6 <ItemGroup>

7 <Compile Include="RecordTest01SimpleRecord.fs" />

8 <Compile Include="RecordTest02Inheritance.fs" />

9 <Compile Include="CodeunitTest01SimpleMethods.fs" />

10 <Compile Include="CodeunitTest02PatternMatches.fs" />

11 <Compile Include="CodeunitTest03Constructors.fs" />

12 <Compile Include="CodeunitTest04SingleInstanceModule.fs" />

13 <Compile Include="CodeunitTest05StrongTypedFunctions.fs" />

14 <Compile Include="CodeunitTest06JsonProvider.fs" />

15 <Compile Include="CodeunitTest07Legacy.fs" />

16 <Compile Include="Demo01HTTPRequests.fs" />

17 <Compile Include="Program.fs" />

18 </ItemGroup>

19
20 <ItemGroup>

21 <PackageReference Include="Fable.JsonProvider" Version="1.0.1"

/>

22 <PackageReference Include="Fs.AL.Core" Version="1.0.1" />

23 <PackageReference Include="Fs.AL.Packages.BaseApplication"

Version="19.5.36567.36700" />

24 <PackageReference Include="Fs.AL.Packages.System" Version="

19.0.36528.36625" />

25 </ItemGroup>

26 </Project>

Listing 6. The fsproj file for our sample project.

The fsproj file also contains a list of references. For the references in this project, we used
NuGet packages, containing the pre-compiled contents of the base application and system
packages.

49

4.7.2 Type Checking

Using the F# files from Listing 6, we create a FSharpProjectOptions data structure speci-
fied by the F# Compiler1, and specify the libraries and (optionally) DLLs used. With the
first 3 phases of compilation from Figure 4 handled by the F# Compiler, we can create an
instance of a FSharpChecker, that performs the steps in the Type checking phase.

This phase will transform all F# pattern matches2 into if-else statements before further
processing. Additionally, here is where the types of unspecified parameters will be re-
solved - known as type inference. Pattern matching is an F# feature that ensures all
possible cases are handled in conditional branches.

4.7.3 F# Code Generation

In this phase, we can use two more built-in F# compiler features:

1. Optimization. This will replace inefficient code with equivalent expressions, for exam-
ple replacing unnecessary function calls with the body of the called function, a process
known as inline expansion (Appel, 1997).

2. Quotation translation. This process is what makes the Type Provider we created in
Section 4.4 work. Quotations are a metaprogramming feature in F#, that lets you generate
an AST (Abstract Syntax Tree) instead of evaluating code, used to write code for another
language, this has been used for example for an F# to OpenCL compiler (Cocco and
Cisternino, 2015), to generate optimized GPU code on fly.

For a recap, here’s what we have, provided by the F# compiler, that we can transform into
compiled AL as well:

■ Quotations

■ Pattern-matching

■ Type inference

■ Optimization by the F# compiler (optional)

1F# Software Foundation (2022). F# Compiler Docs. Accessed: 2022-4-6. URL: https://fsharp.github.
io/fsharp-compiler-docs/.

2https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching

50

https://fsharp.github.io/fsharp-compiler-docs/
https://fsharp.github.io/fsharp-compiler-docs/

■ Any compile-time constants such as nameof expressions or literal strings

4.7.4 Translation to an Intermediate Form

Because F# and AL have very different syntax at times and a single expression in one lan-
guage may be equivalent to multiple in the other, we transform the syntax tree generated
by the compiler to an intermediate form. This section provides a concise overview of the
code transformation process, that we will further elaborate on in the upcoming sections.

Using the BNF grammar of AL defined in (Hvitved, 2009) as basis, we define our own
syntax, and start reading F# declarations, that we got from the previous phase of the F#
Compiler.

First we create our representation of an AL Object in Listing 7 (below), that contains all
contextual information that we use when generating AL. This information includes:

1. F# entity (line 2), used for quick reference to attributes and interfaces

2. F# members (line 3), containing the identifier, arguments and function body for
each member

3. Shared cache (line 4), this contains abstractions and base types, that we will later
use to implement inheritance

4. AL members (line 5), this is where we collect information about each AL proce-
dure before code generation

5. AL fields (line 6), this contains all contextual information about fields

6. Object ID (line 7), the AL object ID

7. Next field ID (line 8), this is to auto-generate sequential field ID’s for temporary
tables, where persistent storage (i.e. having consistent field ID’s) is not important

51

1 type ALObjectBuilder = {

2 fsharpEntity : FSharpEntity

3 fsharpMembers : (FSharpMemberOrFunctionOrValue *

FSharpMemberOrFunctionOrValue list list * FSharpExpr)[]

4 sharedCache : SharedBuilderContext

5 alMembers : ALMemberBuilder list

6 alFields : ALFieldBuilder list

7 objectId : int

8 nextFieldId : int

9 }

Listing 7. Intermediate data structure for generating AL.

Then, the process of transforming declarations to intermediate form goes as follows:

1. Generate typed AST from all F# files using FSharpChecker.

2. Optimize the syntax tree using the F# Compiler (optional).

3. Select F# declarations that implement one of the base classes we made at Section
4.5.

4. Extract method declarations and group them by Entity symbols (i.e. Types).

5. Set up cache with shared declarations.

6. Resolve the Object ID for all declarations, either by a property or an attribute.

7. Resolve inherited fields for all declarations (implemented in Section 4.12).

8. Generate intermediate data structure for generating AL fields.

9. Extract signatures from declared F# members, i.e. identifiers, parameters and return
types.

10. Transform F# member AST to intermediate AST and map function calls to their
equivalents.

11. Generate intermediate data structure for generating AL members (i.e. procedures
and triggers).

52

4.8 Language Expressions and Data Structures

The most complex part of compilation is converting the function body to a different lan-
guage. To stay within a reasonable scope for the thesis, the F#-AL compiler does not yet
support many features of the F# language. In this section, we give an overview of the
steps taken to convert (relatively simple) F# to AL.

Here are the main steps of converting an F# function to an AL procedure.

■ Generating variable declarations from the function body, like shown in Listing 1.

■ Transforming F# core library functions to equivalent AL functions.

■ Expand F# assignment expressions as there are semantic differences.

■ Transforming all member self-references, i.e. removing this references from F#.

■ Transforming certain F# expressions, like JSON property accesses or pattern
matches to multiple AL statements.

■ Flattening F# let expressions to a single level, as AL does not support multiple
levels.

4.9 AL Code Generation

Instead of generating IL code, like in Figure 4, we will generate AL code. This AL code
generation is built using the AL Language extension.

Using the Microsoft.Dynamics.Nav.CodeAnalysis assembly, that comes included with the
extension, which is used by the language server for linting and refactoring, we can trans-
form our intermediate data structure to real AL code. This ensures that our compiler
generates code for the same version of AL and keeps up with changes to the AL runtime.

The mapping functions between our intermediate language and the AL Language exten-
sion assembly can be found at https://github.com/fsal-compiler/fsal-compiler/blob/main/
src/Fs.AL.Core/ImplementedBcComplexValues.fs

53

https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ImplementedBcComplexValues.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Core/ImplementedBcComplexValues.fs

4.10 JSON Type Provider

Using the quotations Section 4.7.3, we can also add support for third party Type Providers.
To make development for external web services even more comfortable, we can add Type
Provider support for JSON.

Using the strongly typed AST, that we get from Section 4.7.3, we can translate these
statements to AL in the background, granting the following possibilities:

■ Full autocomplete during development for arbitrary data structures

■ Correct type-casting by default without having to do it explicitly (e.g. AsInteger)

4.11 F# Modules

Because modules are the most common way to organize F# code, then a developer coming
from an F# background may want to use modules. Since there are no static classes in AL,
the closest equivalent to a static class is a Codeunit with the property SingleInstance set
to true.

To compile F# modules into AL, we introduce an ALSingleInstanceCodeunit (possibly
renamed in the future) attribute, where the developer can also specify the Id for the created
object. For example, Listing 8 (below) shows a very minimal F# module that compiles
into the AL shown in Listing 9.

1 [<ALSingleInstanceCodeunit(60004)>]

2 module SingleInstanceModule =

3 let add2 x = x + 2

Listing 8. A F# module that compiles into a single instance Codeunit.

54

1 codeunit 60004 SingleInstanceModule

2 {

3 SingleInstance=true;

4 procedure add2(x: Integer): Integer

5 var

6 begin

7 exit(x + 2);

8 end;

9 }

Listing 9. Single instance codeunit compiled from Listing 8.

4.12 Inheritance for Tables

As shown in Issue 9, and (Hvitved, 2009), AL currently has no form of code sharing for
Record types. To share code between multiple records we implement inheritance.

Using the shared cache in Listing 7, we pre-process all abstract implementations, and
combine the fields and methods into a full object. An example of inheritance is demon-
strated in Section 5.2.

4.13 Legacy Mapping

Another possibility we can leverage, as we are not restricted by breaking changes, is
changing legacy behavior. For example, we can change all the 1-based indexes of AL to
a more common 0-based index. To implement this, we set up mapping functions during
compile time, that match functions by their full name in F#. In Listing 10 (below) we
convert the 0-based index of the .NET function System.String.Substring to its 1-based
index implementation in AL (Listing 11). For more examples of function mapping, see
the implementation in source code1.

We can also provide the functions with context-sensitive tooltips and examples of the
differences.

1https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Compiler/IntermediateLanguage/
TypeReplacements.fs

55

https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Compiler/IntermediateLanguage/TypeReplacements.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.Compiler/IntermediateLanguage/TypeReplacements.fs

1 [<ALSingleInstanceCodeunit(60007)>]

2 module Legacy =

3
4 let substrings(content:string) =

5 let substring1 = content.Substring(2)

6 let someInteger = 6

7 let substring2 = content.Substring(someInteger)

8 substring2

Listing 10. Example Codeunit with 0-based indexes in F#.

1 codeunit 60007 Legacy

2 {

3 SingleInstance=true;

4 procedure substrings(content: Text): Text

5 var

6 substring1: Text;

7 someInteger: Integer;

8 substring2: Text;

9 begin

10 substring1 := content.Substring(3);

11 someInteger := 6;

12 substring2 := content.Substring(1 + someInteger);

13 exit(substring2);

14 end;

15 }

Listing 11. Codeunit with 1-based indexes compiled from Listing 10.

56

5 Demonstration and evaluation

In the current chapter we will demonstrate the usage of the compiler in the use cases
specified in Chapter 3 and discuss the benefits and drawbacks of the proposed solution.
There is also a discussion of features that were out of scope of the current thesis, but
which would be beneficial to implement as part of future work.

5.1 HTTP requests with JSON

The first use case for the compiler is easing integration with external services. To fascili-
tate such integrations, we implemented multiple features that will be demonstrated in this
section. We will use the sample AL implementation in Listing 24 in Appendix 2 on page
76 for comparison. The sample originates from the book Mastering Microsoft Dynam-
ics 365 Business Central (Demiliani and Tacconi, 2019) and can also be found online on
GitHub1.

Our demonstration is also available on GitHub2 with the rest of the source code. Com-
pared to the original implementation, certain functions are put into separate procedures,
to point out the required variables from each step of the implementation.

5.1.1 API specification

An example output for the request can be found on the documentation site3 for the API.
We will save this output for use inside a file named api-response.json. Using this example
response, we can generate a strongly typed data structure for navigation. For example,
the Listing 12 (below) provides us full autocomplete suggestions with types in Figure 5

1Stefano Demilani (2022). TranslationManagement.al. Accessed: 2022-05-05. URL: https://github.
com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/
TranslateCustomers/TranslationManagement.al.

2https : / / github.com / fsal - compiler / fsal - compiler / blob / main / src / Fs.AL.SampleProject / fsharp /
Demo01HTTPRequests.fs

3FullContact (2022). Company Enrich Overview. Accessed: 2022-05-05. URL: https://docs.fullcontact.
com/docs/company-enrich-overview#look-up-company-domain.

57

https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.SampleProject/fsharp/Demo01HTTPRequests.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.SampleProject/fsharp/Demo01HTTPRequests.fs
https://docs.fullcontact.com/docs/company-enrich-overview#look-up-company-domain
https://docs.fullcontact.com/docs/company-enrich-overview#look-up-company-domain

1 // generate strongly typed code for the json sample response

2 let [<Literal>] JsonSample =

3 __SOURCE_DIRECTORY__ + "/Samples/api-response.json"

4 type APIResponseProvider = Fable.JsonProvider.Generator<JsonSample>

Listing 12. Generating API spec from JsonProvider.

Figure 5. Autocomplete with types generated from Listing 12.

5.1.2 Testing Responses

An important part of API integrations is testing sample requests for output. In Section
4.6, we implemented .NET signatures, that would allow us to test requests over HTTP
protocol in an interactive console.

For these tests, we implement the request equivalent to our example, as shown in Listing
13 (below). Note that AL var variables (i.e. reference cell variables) are declared in
F# using the ref function and accessed using the Value property. In AL this reference
cell does not have to be specified at the call site. The reference cell is used to be fully
compatible with all AL reference nuances.

1 // this is to test with replexample.fsx

2 member this.ProcedureForTesting(input: string) =

3
4 let httpContent = ALHttpContent()

58

5 httpContent.WriteFrom("{\"domain\":\"" + input + "\"}")

6 let httpClient = ALHttpClient()

7 httpClient.DefaultRequestHeaders.Add("Authorization", "Bearer <YOUR

KEY>")

8 let httpResponse = ref (ALHttpResponseMessage())

9 httpClient.Post("https://api.fullcontact.com/v3/company.enrich",

httpContent, httpResponse)

10
11 if not httpResponse.Value.IsSuccessStatusCode then

12 failwith "Error connecting to the Web Service."

13 // just to declare a string in a reference cell

14 let responseText = ref ""

15 httpResponse.Value.Content.ReadAs(responseText)

16
17 "the response:" + responseText.Value

Listing 13. Sample HTTP request for interactive console testing.

Using the above sample, we can now test it directly in the console. In Listing 14 (below)
we can evaluate every line of code one-by-one without publishing, which allows us to see
changes much quicker compared to the current workflow (see: Figure 2). For example, we
can change "testing" on line 5 to something else and immediately re-run it to see differ-
ences. This also lets us retain the state of any previous variables, allowing for a speed-up
to development similar to Hot Module Replacement1 used in front-end development.

1 // load everything in the project including references

2 #load "./imports.fsx"

3 open Fs.AL.SampleProject.Demo01HTTPRequests

4 let translationManagement = TranslationManagement()

5 translationManagement.ProcedureForTesting "testing"

Listing 14. Interactive testing for Listing 13.

5.1.3 Error-handling

In comparison to the AL example used (Listing 24), we could not improve the equivalent
error-checking scenarios. If exhaustive error-checking is to be achieved, then it could
be implemented using pattern matches, but it was considered to be out of scope for the
current thesis.

1Webpack (2022). Hot Module Replacement. Accessed: 2022-05-05. URL: https://webpack.js.org/
concepts/hot-module-replacement/.

59

https://webpack.js.org/concepts/hot-module-replacement/
https://webpack.js.org/concepts/hot-module-replacement/

Thus, in the F# version in Listing 15 and in the respective compiled form (Listing 16),
we implemented error handling in the way suggested in the book (Demiliani and Tac-
coni, 2019). The getTokenAsObject, getTokenAsArray and getArrayElementAsObject
methods are also implemented in the same way in the source code1:

1 member this.handleErrors(jContent: ALJsonObject) =

2 let details =

3 this.getTokenAsObject(jContent, "details", "Invalid response

from Web Service")

4 let locations =

5 this.getTokenAsArray(details, "locations", "No locations

available")

6 let location =

7 this.getArrayElementAsObject(locations, 0, "Location not

available")

8 ()

Listing 15. Equivalent API response error handling to the chosen example.

1 procedure handleErrors(jContent: JsonObject)

2 var

3 details: JsonObject;

4 locations: JsonArray;

5 location: JsonObject;

6 begin

7 details := getTokenAsObject(jContent,’details’,’Invalid response

from Web Service’);

8 locations := getTokenAsArray(details,’locations’,’No locations

available’);

9 location := getArrayElementAsObject(locations,0,’Location not

available’);

10 end;

Listing 16. Compiled output of Listing 15.

5.1.4 Navigating the Data Structure

As we already checked the errors in the previous section. We can now utilize the generated
data structure in Figure 5, and traverse the JSON structure without explicit type casting

1https : / / github.com / fsal - compiler / fsal - compiler / blob / main / src / Fs.AL.SampleProject / fsharp /
Demo01HTTPRequests.fs

60

https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.SampleProject/fsharp/Demo01HTTPRequests.fs
https://github.com/fsal-compiler/fsal-compiler/blob/main/src/Fs.AL.SampleProject/fsharp/Demo01HTTPRequests.fs

or intermediate variable declarations.

This means that one expression in F# can be equivalent to multiple statements in AL. For
example, the following F# code in Listing 17 compiles into the respective AL code in
Listing 18.

Note that the used implementation of JsonProvider1 is implemented for the Javascript
ecosystem and does not allow for error checking done in the same way as the book ex-
ample2, as error checking is done by null-checks rather than an if-else statement during
parsing.

1 member this.ReadJsonUsingTypeProvider(json:string,customer:byref<

Customer>) =

2 let response = APIResponseProvider(json)

3
4 let details = response.details

5 let location = details.locations.[0]

6 let phone = details.phones.[0]

7
8 customer.Name <- response.name

9 customer.Address <- location.addressLine1

10 customer.’’Post Code’’ <- location.postalCode

11 customer.’’Country/Region Code’’ <- location.countryCode

12 customer.County <- location.country

13 customer.’’Phone No.’’ <- phone.value

Listing 17. Navigating JSON in F#.

1 procedure ReadJsonUsingTypeProvider(json: Text; var customer: Record

Customer)

2 var

3 response: JsonToken;

4 details: JsonToken;

5 _jtoken: JsonToken;

6 location: JsonToken;

7 _var4: JsonArray;

8 phone: JsonToken;

9 _var6: JsonArray;

1Maxime Mangel (2022). Fable.Jsonprovider. Accessed: 2022-05-05. URL: https://github.com/fable-
compiler/Fable.JsonProvider.

2Stefano Demilani (2022). TranslationManagement.al. Accessed: 2022-05-05. URL: https://github.
com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/
TranslateCustomers/TranslationManagement.al.

61

https://github.com/fable-compiler/Fable.JsonProvider
https://github.com/fable-compiler/Fable.JsonProvider
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al

10 _var7: Text;

11 _var8: Text;

12 _var9: Text;

13 _var10: Text;

14 _var11: Text;

15 _var12: Text;

16 begin

17 response.ReadFrom(json);

18 response.SelectToken(’details’,_jtoken);

19 details := _jtoken;

20 details.SelectToken(’locations’,_jtoken);

21 _var4 := _jtoken.AsArray();

22 _var4.Get(0,_jtoken);

23 location := _jtoken;

24 details.SelectToken(’phones’,_jtoken);

25 _var6 := _jtoken.AsArray();

26 _var6.Get(0,_jtoken);

27 phone := _jtoken;

28 response.SelectToken(’name’,_jtoken);

29 _var7 := _jtoken.AsValue().AsText();

30 customer.Name := _var7;

31 location.SelectToken(’addressLine1’,_jtoken);

32 _var8 := _jtoken.AsValue().AsText();

33 customer.Address := _var8;

34 location.SelectToken(’postalCode’,_jtoken);

35 _var9 := _jtoken.AsValue().AsText();

36 customer."Post Code" := _var9;

37 location.SelectToken(’countryCode’,_jtoken);

38 _var10 := _jtoken.AsValue().AsText();

39 customer."Country/Region Code" := _var10;

40 location.SelectToken(’country’,_jtoken);

41 _var11 := _jtoken.AsValue().AsText();

42 customer.County := _var11;

43 phone.SelectToken(’value’,_jtoken);

44 _var12 := _jtoken.AsValue().AsText();

45 customer."Phone No." := _var12;

46 end;

Listing 18. Resulting AL compiled from Listing 17.

62

5.2 Object-oriented Design for Record Types

For our second use case, we aim to reduce duplicated code, as mentioned in Issue 9. For
this purpose we introduced inheritance in Section 4.12. An example of inheritance is
demonstrated in the following code sample in Listing 19.

On line 5 of the listing we specify that the type is abstract, meaning it will not compile
into a separate record, then we add 3 fields (lines 8 to 11) and a shared function, that all
inherited types will implement by default.

Then we declare 2 F# types (lines 14-18 and 21-24), that implement the abstract type. On
each of these records we add a single field and specify the object Id, that gets compiled
into AL. The compiled AL from these types is shown in Listing 20 and 21 below.

1 // the values will not be initialized in AL

2 // so we use the default value

3 let t<’t> = Unchecked.defaultof<’t>

4
5 [<AbstractClass>]

6 type SharedRecordType() =

7 inherit ALRecord()

8 member val Id = t<int> with get, set

9 [<MaxLength(200)>]

10 member val Shared1 = t<string> with get, set

11 member val Shared2 = t<int> with get, set

12 member this.SharedProcedure() = DateTime.Now

13
14 type Inherited1() =

15 inherit SharedRecordType()

16 override this.ObjectId = 60002

17 [<MaxLength(500)>]

18 member val String = t<string> with get, set

19
20
21 type Inherited2() =

22 inherit SharedRecordType()

23 override this.ObjectId = 60003

24 member val Int = t<int> with get, set

Listing 19. Inheritance example in F#.

63

1 table 60002 Inherited1

2 {

3 fields

4 {

5 field(1;Id;Integer)

6 {

7 }

8 field(2;Shared1;Text[200])

9 {

10 }

11 field(3;Shared2;Integer)

12 {

13 }

14 field(4;String;Text[500])

15 {

16 }

17 }

18 procedure SharedProcedure():

DateTime

19 var

20 begin

21 exit(CurrentDateTime());

22 end;

23
24 }

Listing 20. Result 1 inherited from Listing 19.

1 table 60003 Inherited2

2 {

3 fields

4 {

5 field(1;Id;Integer)

6 {

7 }

8 field(2;Shared1;Text[200])

9 {

10 }

11 field(3;Shared2;Integer)

12 {

13 }

14 field(4;Int;Integer)

15 {

16 }

17 }

18 procedure SharedProcedure():

DateTime

19 var

20 begin

21 exit(CurrentDateTime());

22 end;

23
24 }

Listing 21. Result 2 inherited from Listing 19.

A full example of this shared-implementation requires prior analysis of object hierarchies,
which we have not done in the scope of this thesis, but we have demonstrated that it is
possible to mitigate code duplication by inheritance.

Considering the extension oriented architecture of the application, a future implementa-
tion should support inheritance for extension types (see: Table 1), which could be used for
reuse with modular extensions. Another available solution would be to implement shared
fields via composition, as composition would allow to mix-and-match any group of fields
or procedures.

64

5.3 Additional Features

5.3.1 Strong Typing

In Section 4.4.2 we introduced strongly typed functions, that we can use for enhanced
reliability of the resulting AL. The two following figures demonstrate the differences
between our strongly typed function and the current implementation.

In Figure 6, the developer can use the context-sensitive tooltip to know exactly what the
primary key for a Record is, which in our case is a field named "No." of type Code. Ad-
ditionally, using wrong input parameters will be highlighted by the compiler and raise an
error, which means producing the respective AL in Figure 7 from our F# implementation
is not possible.

Note that the XML documentation from the AL procedure was not transferred over to
the F# library. This limitation is due to the current generation of function signatures in
Section 4.5 and will be resolved in the future.

Figure 6. Example of a strongly typed Get procedure in F#.

65

Figure 7. Respective AL to example shown in Figure 6.

5.3.2 Constructors

We also implemented F# constructor expressions, that allow the following syntax for
concisely assigning multiple properties of a Record similar to the with statement shown
in Listing 3, but is strictly limited to a single object’s fields. This constructor expression
and its output are demonstrated with the two following samples.

1 let createEmployee (firstname:string) (lastname:string) =

2 Employee(

3 ’’No.’’ = lastname,

4 ’’First Name’’ = firstname,

5 ’’E-Mail’’ = firstname + "." + lastname + "@business.com",

6 ’’Phone No.’’ = "123123123"

7)

1 procedure createEmployee(firstname: Text; lastname: Text): Record

Employee

2 var

3 returnVal: Record Employee;

4 begin

5 returnVal."No." := lastname;

6 returnVal."First Name" := firstname;

7 returnVal."E-Mail" := firstname + ’.’ + lastname + ’@business.com’;

8 returnVal."Phone No." := ’123123123’;

9 exit(returnVal);

10 end;

66

5.3.3 Pattern-matching

And finally, a feature that the F# compiler translates to if-else statements by default,
pattern-matching. As stated in Section 4.8, there are semantic differences between as-
signment statements in F# and AL, which we handle in the background in the compiler.
Illustrated by Listing 22, an identifier can be assinged (line 2) from any expression, which
in our case is the match expression spanning lines 3 to 7.

In AL this match expression is expanded into multiple assignment statements (Listing 23)
on lines 8, 10, 12, 14 and twice on line 15. Note that AL does support a case statement1,
which can be used similarly to the 3 cases on line 4 in Listing 22. Also note that the if-else
cases in Listing 23 form a single 8-line long statement, which ends with a semicolon on
line 15.

1 member this.patternmatch2 someText =

2 let result =

3 match someText with

4 | "a" | "b" | "c" -> "a, b or c"

5 | v when v.StartsWith "d" -> "starts with d"

6 | v when v.EndsWith "e" -> "ends with e"

7 | _ -> "other text"

8 ALDialog.Message ("matched result:" + result)

Listing 22. Example of pattern-matching in F#.

1 procedure patternmatch2(someText: Text)

2 var

3 result: Text;

4 v: Text;

5 begin

6 v := someText;

7 if (someText = ’a’) then

8 result := ’a, b or c’ else

9 if (someText = ’b’) then

10 result := ’a, b or c’ else

11 if (someText = ’c’) then

12 result := ’a, b or c’ else

13 if (v.StartsWith(’d’)) then

14 result := ’starts with d’ else

1https : / /docs.microsoft.com/en- us/dynamics365/business- central /dev- itpro/developer /devenv- al -
control-statements

67

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-control-statements
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-control-statements

15 if (v.EndsWith(’e’)) then result := ’ends with e’ else result := ’

other text’;

16 Dialog.Message(’matched result:’ + result);

17 end;

Listing 23. Pattern-matches compiled from Listing 22.

5.4 Future Work

As we strived for a working proof of concept, it was necessary to prioritize features to
be implemented to make the work feasible timewise. Therefore there are many areas of
improvement left for the compiler. As stated in Section 4, the future plan for this compiler
is to make it available publicly, and make it a viable alternative, mainly targeted at .NET
developers or senior AL developers, as AL retains a big value proposition for being easy
to learn for business consultants.

To make the finished product a real viable alternative to AL, the following should be
considered:

■ Implement missing features. Throughout development, we left many cases unim-
plemented to save time – A proper implementation would need to consult the full
F# specification and either implement or restrict them. For example, we left for
loops unimplemented, as they are rare in the language. For more information on
missing and edge cases features see Section 5.5.

■ Develop a Visual Studio Code extension for the development environment, to ease
getting started with an F# to AL project.

■ Improve the AL runtime library generated from signatures. The AL library, that we
used for this thesis has certain missing features due to lack of knowledge about the
language implementation. With some guidance we could implement the full AL
library and possibly improve the interactive console as well.

■ Implement lambda functions. Lambda functions are a big part of F# and functional
programming, which we left out completely. We consulted Microsoft if they plan
on implementing delegate types in AL the future, which could be a possibility to
bring more F# features to AL.

■ Provide support for higher order functions (such as e.g. map and fold). An imple-

68

mentation depends on how lambda functions will be chosen to be supported.

■ Develop AL ControlAddIns (see: Table 1) using Fable1. F# already has an
JavaScript compiler and AL supports client-side JavaScript integrations, Putting
both of these together would create a modern framework for developing client-side
extensions for Business Central.

■ Consult other F# compiler implementations for design choices. Making a compiler
is not a trivial task and throughout developments we noticed many pitfalls. Making
adjustments inspired by other implementations would prove very beneficial before
extending to the rest of the AL functionality.

5.5 Summary of the Proof of Concept

We currently support only two Object Types: Tables (i.e. Records) and Codeunits. Setting
properties other than SingleInstance Codeunits is also not yet supported. Assigning prop-
erties for fields (other than MaxLength for Text and Code types) is also not yet supported.

As we implemented features selectively to achieve the use cases shown, following is a
list of currently tested and supported features in F# with known edge cases. For more
information, a list of working samples and their respective outputs can be found in the
source code 2.

■ Inheritance

■ Type Providers (*assuming functions used in the type provider are implemented)

■ Pattern Matching* (not all patterns implemented)

■ If-else statements* (not all cases implemented)

■ Literal expressions, nameof expressions (any compile time constants)

■ Constructors* (except certain edge cases with let expressions)

■ Recursion (no other loops were implemented)

■ Mapping certain F# expressions, e.g. Console.Writeline compiles into Dia-

log.Message and String.Substring will map a 0 based index to 1 (see: Listing 10)

1Fable (2021). Fable - JavaScript you can be proud of! Accessed: 2021-11-23. URL: https://fable.io/.
2https://github.com/fsal-compiler/fsal-compiler/tree/main/src/Fs.AL.SampleProject

69

https://fable.io/
https://github.com/fsal-compiler/fsal-compiler/tree/main/src/Fs.AL.SampleProject

■ Type-casting for JsonProvider values* (tested with int/string)

■ Translating let bindings to variables (and ref/byref types to AL var parameters)

■ Variable assignments and most operators (excluding "MOD", "+=", "*=", "-=")

■ Calling procedures from other object types* (limited implementation, see example
in source code)

■ Using AL .app files with Type Provider* (currently only compiles AL Records into
F#)

■ Using procedures derived from the AL runtime* (lack of knowledge about runtime
for completeness)

In the current state of development, we managed to support two end-to-end AL devel-
opment use cases. The F# development environment can use existing AL code via app
packages and the resulting AL code can be compiled into its own app package (see: Figure
3) and used from other AL applications as a dependency.

70

6 Conclusion

In the current thesis we presented a proof of concept compiler implementation for the AL
programming language, that provides a mitigation for the 13 issues listed in Chapter 2.
The work is an elaboration of the C/AL language redesign idea from Hvitved, 2009.

We started off with highlighting 13 issues in the AL language and development environ-
ment provided for Business Central developers that can be improved by utilizing pro-
gramming language technology available in F#. The issues are illustrated with concrete
code examples. The issues were then synthesized into 8 requirements which we started
off implementing using F# language and related tools.

Using the created tools, we presented an alternative end-to-end development workflow,
that can transform AL to F# and F# back to AL, which allows interoperability with exist-
ing AL development.

The first contribution of this work is a Type Provider, which generates F# source code
from existing AL code via app packages. Our Type Provider implementation can also
transform certain dynamic functions to strongly typed functions, which notify the devel-
oper of issues during development. Generating source code this way also lets us version
the F# code by the version of the AL app packages and use AL dependencies in F#.

The second contribution is a proof of concept compiler, which is built on the existing
F# compiler implementation1 and translates the code to AL. We also versioned the AL
runtime used in the compiler by the Visual Studio Code extension for AL language. This
ensures that our solution is compatible with future versions of AL. Using F# as a source
language also introduces many new features that could benefit the developer’s productiv-
ity such as inheritance, JSON deserialization and line-by-line code evaluation.

Type Providers allow our code to have constructs in the language, that compile to a dif-
ferent runtime representation. This feature is what allowed us to implement JSON dese-
rialization in a way that compiles to explicit property navigation, as deserialization to a
nested data structure is not currently possible in the AL language.

Our approach allows for fundamental changes to the AL language, while still remaining

1F# Software Foundation (2022). F# Compiler Docs. Accessed: 2022-4-6. URL: https://fsharp.github.
io/fsharp-compiler-docs/.

71

https://fsharp.github.io/fsharp-compiler-docs/
https://fsharp.github.io/fsharp-compiler-docs/

fully compatible with legacy code. While the current implementation is already usable for
the first end-to-end use cases, the functionality could be greatly enhanced and extended
to other uses of the platform.

As the AL language will not have an alternative in the near future and the platform has a
large ISV (Independent Software Vendor) market with technically complex solutions, the
instantiation created in the thesis could fill a missing niche and accelerate the transition
to the cloud-based software, that was previously solved by on-premises .NET integra-
tions. As we fulfilled the requirements stated in Chapter 3 with our proof of concept, we
conclude that F# can provide a promising modern workflow to current AL development.

The source code of the project is publically available on GitHub1.

1Ian Erik Varatalu (2022). FSAL - F# to AL compiler. URL: https://github.com/fsal- compiler/fsal-
compiler.

72

https://github.com/fsal-compiler/fsal-compiler
https://github.com/fsal-compiler/fsal-compiler

References
Hvitved, Tom (Apr. 2009). “Architectural Analysis of Microsoft Dynamics NAV”. In:

Proc. Workshop on 3d Generation ERP Systems, November 2008. URL: https://citesee
rx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.5118&rep=rep1&type=pdf.

Fable (2021). Fable - JavaScript you can be proud of! Accessed: 2021-11-23. URL: https:
//fable.io/.

Brummel, M. et al. (2019). Programming Microsoft Dynamics 365 Business Central:
Build customized business applications with the latest tools in Dynamics 365 Business
Central, 6th Edition. Packt Publishing. ISBN: 9781789131031. URL: https : / / books .
google.ee/books?id=YiyWDwAAQBAJ.

– (2017). Programming Microsoft Dynamics NAV. Packt Publishing. ISBN:
9781786468192. URL: https://books.google.ee/books?id=iCVQvgAACAAJ.

Microsoft Docs (2022a). Data Types and Methods in AL. en. Accessed: 2022-4-6. URL:
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/
methods-auto/library.

Fable Python (2021). Python bindings for Fable. Accessed: 2021-11-23. URL: https : / /
github.com/fable-compiler/Fable.Python.

Peeble (2021). Peeble. A F# -> PHP transpiler. Accessed: 2021-11-24. URL: https : / /
github.com/thinkbeforecoding/peeble.

Varatalu, Ian Erik (2022). FSAL - F# to AL compiler. URL: https : / / github . com / fsal -
compiler/fsal-compiler.

AL Language (2022). Accessed: 2022-4-28. URL: https://marketplace.visualstudio.com/
items?itemName=ms-dynamics-smb.al.

Stefan Maron (2022). Business Central Code History Repository. Accessed: 2022-04-30.
URL: https://github.com/StefanMaron/MSDyn365BC.Code.History.

365 business development (2022). AL XML Documentation. Accessed: 2022-04-30. URL:
https : / / marketplace . visualstudio . com / items ? itemName = 365businessdevelopment .
bdev-al-xml-doc.

Andrzej Zwierzchowski (2022). AZ AL Dev Tools/AL Code Outline. Accessed: 2022-04-
30. URL: https://marketplace.visualstudio.com/items?itemName=andrzejzwierzchows
ki.al-code-outline.

Docker Hub (2022). Dynamics 365 Business Central Sandbox. Accessed: 2022-04-30.
URL: https://hub.docker.com/_/microsoft-businesscentral-sandbox.

Freddy Kristiansen (2022). BcContainerHelper. Accessed: 2022-04-30. URL: https://gith
ub.com/microsoft/navcontainerhelper.

Syme, Don et al. (Sept. 2012). F#3.0 - Strongly-Typed Language Support for Internet-
Scale Information Sources. Tech. rep. MSR-TR-2012-101. URL: https://www.microso
ft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-
scale-information-sources/.

Microsoft Docs (2022b). Tutorial: Create a Type Provider. Accessed: 2022-04-30. URL:
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-
type-provider.

Don Syme (2022). The F# Type Provider SDK. Accessed: 2022-04-30. URL: https : / /
github.com/fsprojects/FSharp.TypeProviders.SDK.

Docs, Microsoft (2022). URL: https://docs.microsoft.com/en-us/dynamics365/business-
central/dev-itpro/developer/devenv-table-keys.

F# Software Foundation (2022). F# Compiler Docs. Accessed: 2022-4-6. URL: https :
//fsharp.github.io/fsharp-compiler-docs/.

Appel, Andrew W. (1997). “Modern Compiler Implementation in ML”. In: Cambridge
University Press, pp. 309–343. DOI: 10.1017/CBO9780511811449.

Cocco, Gabriele and Dott Antonio Cisternino (2015). “Homogeneous programming,
scheduling and execution on heterogeneous platforms”. PhD thesis.

73

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.5118&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.5118&rep=rep1&type=pdf
https://fable.io/
https://fable.io/
https://books.google.ee/books?id=YiyWDwAAQBAJ
https://books.google.ee/books?id=YiyWDwAAQBAJ
https://books.google.ee/books?id=iCVQvgAACAAJ
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/library
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/library
https://github.com/fable-compiler/Fable.Python
https://github.com/fable-compiler/Fable.Python
https://github.com/thinkbeforecoding/peeble
https://github.com/thinkbeforecoding/peeble
https://github.com/fsal-compiler/fsal-compiler
https://github.com/fsal-compiler/fsal-compiler
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al
https://github.com/StefanMaron/MSDyn365BC.Code.History
https://marketplace.visualstudio.com/items?itemName=365businessdevelopment.bdev-al-xml-doc
https://marketplace.visualstudio.com/items?itemName=365businessdevelopment.bdev-al-xml-doc
https://marketplace.visualstudio.com/items?itemName=andrzejzwierzchowski.al-code-outline
https://marketplace.visualstudio.com/items?itemName=andrzejzwierzchowski.al-code-outline
https://hub.docker.com/_/microsoft-businesscentral-sandbox
https://github.com/microsoft/navcontainerhelper
https://github.com/microsoft/navcontainerhelper
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider
https://github.com/fsprojects/FSharp.TypeProviders.SDK
https://github.com/fsprojects/FSharp.TypeProviders.SDK
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-table-keys
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-table-keys
https://fsharp.github.io/fsharp-compiler-docs/
https://fsharp.github.io/fsharp-compiler-docs/
https://doi.org/10.1017/CBO9780511811449

Demiliani, Stefano and Duilio Tacconi (2019). Mastering Microsoft Dynamics 365 Busi-
ness Central: Discover extension development best practices, build advanced ERP in-
tegrations, and use DevOps tools. Birmingham, England: Packt Publishing.

Stefano Demilani (2022). TranslationManagement.al. Accessed: 2022-05-05. URL: https:
//github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/
blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al.

FullContact (2022). Company Enrich Overview. Accessed: 2022-05-05. URL: https : / /
docs.fullcontact.com/docs/company-enrich-overview#look-up-company-domain.

Webpack (2022). Hot Module Replacement. Accessed: 2022-05-05. URL: https://webpac
k.js.org/concepts/hot-module-replacement/.

Maxime Mangel (2022). Fable.Jsonprovider. Accessed: 2022-05-05. URL: https://github.
com/fable-compiler/Fable.JsonProvider.

74

https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://github.com/PacktPublishing/Mastering-Microsoft-Dynamics-365-Business-Central/blob/master/Chapter%206/TranslateCustomers/TranslationManagement.al
https://docs.fullcontact.com/docs/company-enrich-overview#look-up-company-domain
https://docs.fullcontact.com/docs/company-enrich-overview#look-up-company-domain
https://webpack.js.org/concepts/hot-module-replacement/
https://webpack.js.org/concepts/hot-module-replacement/
https://github.com/fable-compiler/Fable.JsonProvider
https://github.com/fable-compiler/Fable.JsonProvider

Appendix 1 – Non-exclusive Licence for Reproduction
and Publication of a Graduation Thesis

I, Ian Erik Varatalu

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis "F# Type Provider and Compiler for the AL Programming Language", su-
pervised by Juhan-Peep Ernits

1.1 to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Tech-
nology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

08.05.2022

75

Appendix 2 – Code Samples

2.1 JSON API Request
1 procedure LookupAddressInfo(Name: Text; var Customer: Record Customer)
2 var
3 Client: HttpClient;
4 Content: HttpContent;
5 ResponseMessage: HttpResponseMessage;
6 Result: Text;
7 JContent: JsonObject;
8 JDetails: JsonObject;
9 JLocations: JsonArray;

10 JLocation: JsonObject;
11 JPhones: JsonArray;
12 JPhone: JsonObject;
13 begin
14 Content.WriteFrom(’{domain":"’ + Name + ’"}’);
15 Client.DefaultRequestHeaders().Add(’Authorization’, ’Bearer <YOUR

KEY>’);
16 Client.Post(’https://api.fullcontact.com/v3/company.enrich’,

Content, ResponseMessage);
17 if not ResponseMessage.IsSuccessStatusCode() then
18 Error(’Error connecting to the Web Service.’);
19 ResponseMessage.Content().ReadAs(Result);
20 //Result containt the ws response
21 //Replace <YOUR KEY> with an API key from http://www.fullcontact.

com
22 //Web Services result is a string in json format.
23
24 if not JContent.ReadFrom(Result) then
25 Error(’Invalid response from Web Service’);
26 JDetails := GetTokenAsObject(JContent, ’details’, ’Invalid response

from Web Service’);
27 JLocations := GetTokenAsArray(JDetails, ’locations’, ’No locations

available’);
28 JLocation := GetArrayElementAsObject(JLocations, 0, ’Location not

available’);
29 JPhones := GetTokenAsArray(JDetails, ’phones’, ’’);
30 JPhone := GetArrayElementAsObject(JPhones, 0, ’’);
31 Customer.Name := GetTokenAsText(JContent, ’name’, ’’);
32 Customer.Address := GetTokenAsText(JLocation, ’addressLine1’, ’’);
33 Customer.City := GetTokenAsText(JLocation, ’city’, ’’);
34 Customer."Post Code" := GetTokenAsText(JLocation, ’postalCode’, ’’)

;
35 Customer."Country/Region Code" := GetTokenAsText(JLocation, ’

countryCode’, ’’);
36 Customer.County := GetTokenAsText(JLocation, ’country’, ’’);
37 Customer."Phone No." := GetTokenAsText(JPhone, ’value’, ’’);
38 end;

Listing 24. JSON API Request from the book Mastering Microsoft Dynamics 365 Business Central.

2.2 Code Duplication
1 procedure GetUsedProductCategories1(Document: Record "Sales Header") :

List of [Text];
2 var
3 lineIterator : Record "Sales Line";
4 categories : List of [Text];
5 begin
6 lineIterator.SetRange("Document No.",Document."No.");
7 lineIterator.SetRange("Document Type",Document."Document Type");
8 lineIterator.SetRange(Type,lineIterator.Type::Item);
9 if lineIterator.FindSet() then repeat

10 if not categories.Contains(lineIterator."Item Category Code")

76

then
11 categories.Add(lineIterator."Item Category Code");
12 until lineIterator.Next() = 0;
13 exit(categories);
14 end;
15
16 procedure GetUsedProductCategories2(Document: Record "Purchase Header")

: List of [Text];
17 var
18 lineIterator : Record "Purchase Line";
19 categories : List of [Text];
20 begin
21 lineIterator.SetRange("Document No.",Document."No.");
22 lineIterator.SetRange("Document Type",Document."Document Type");
23 lineIterator.SetRange(Type,lineIterator.Type::Item);
24 if lineIterator.FindSet() then repeat
25 if not categories.Contains(lineIterator."Item Category Code")

then
26 categories.Add(lineIterator."Item Category Code");
27 until lineIterator.Next() = 0;
28 exit(categories);
29 end;
30
31 procedure GetUsedProductCategories3(Document: Record "Sales Invoice

Header") : List of [Text];
32 var
33 lineIterator : Record "Sales Invoice Line";
34 categories : List of [Text];
35 begin
36 lineIterator.SetRange("Document No.",Document."No.");
37 lineIterator.SetRange(Type,lineIterator.Type::Item);
38 if lineIterator.FindSet() then repeat
39 if not categories.Contains(lineIterator."Item Category Code")

then
40 categories.Add(lineIterator."Item Category Code");
41 until lineIterator.Next() = 0;
42 exit(categories);
43 end;

Listing 25. Duplicated, but strongly typed code.

2.3 Dynamically Typed Code
1 procedure GetUsedProductCategories4(Document: Variant): List of [Text];
2 var
3 dynamicHeaderReference: RecordRef;
4 dynamicLinesReference: RecordRef;
5 dynamicFieldReference: FieldRef;
6 dataTypeManagement: Codeunit "Data Type Management";
7 currentCategoryCode: Text;
8 categories: List of [Text];
9 begin

10 if not Document.IsRecord() then
11 Error(’Document is not a Record type’);
12
13 // cast variant type to dynamic record type
14 dataTypeManagement.GetRecordRef(Document, dynamicHeaderReference);
15
16 // switch case statement based on the Table ID of the dynamic

record
17 // set the table number of the dynamic lines iterator
18 case dynamicHeaderReference.RecordId.TableNo() of
19 Database::"Sales Header":
20 dynamicLinesReference.Open(Database::"Sales Line");
21 Database::"Purchase Header":
22 dynamicLinesReference.Open(Database::"Purchase Line");
23 Database::"Sales Invoice Header":
24 dynamicLinesReference.Open(Database::"Sales Invoice Line");
25 else
26 Error(’Invalid Document type %1’, Document);

77

27 end;
28
29 case dynamicHeaderReference.RecordId.TableNo() of
30 Database::"Sales Header", Database::"Purchase Header":
31 begin
32 // get the field "Document Type" dynamically by ID
33 // this ID happens to be the same for both tables.
34 dynamicFieldReference := dynamicLinesReference.Field(1)

;
35 // dynamically constrain "Document Type"
36 dynamicFieldReference.SetRange(dynamicHeaderReference.

Field(1).Value);
37 end;
38 // this table doesnt have a document type field
39 Database::"Sales Invoice Header":
40 begin
41 end
42 end;
43
44 case dynamicHeaderReference.RecordId.TableNo() of
45 Database::"Sales Header", Database::"Purchase Header", Database

::"Sales Invoice Header":
46 begin
47 // get the field "Document No." dynamically by ID
48 // this field ID also happens to be the same for all

tables
49 dynamicFieldReference := dynamicLinesReference.Field(3)

;
50 // dynamically constrain "Document No."
51 dynamicFieldReference.SetRange(dynamicHeaderReference.

Field(3).Value);
52 // set another constraint to only return items
53 dynamicFieldReference := dynamicLinesReference.Field(5)

;
54 // this 2 refers to the enumerable value of "Item"
55 dynamicFieldReference.SetRange(2);
56 end;
57 end;
58
59 if dynamicLinesReference.FindSet() then
60 repeat
61 // field number 5709 is "Item Category Code" for all tables
62 currentCategoryCode := dynamicLinesReference.Field(5709).

Value;
63 if not categories.Contains(currentCategoryCode) then
64 categories.Add(currentCategoryCode);
65 until dynamicLinesReference.Next() = 0;
66 exit(categories);
67 end;

Listing 26. Dynamically typed code combining the functionality of Listing 25.

1 procedure SerializeJson(var recRef: RecordRef) jObject: JsonObject;
2 var
3 field: Record Field;
4 fieldRef: FieldRef;
5 begin
6 // finds all fields for a table
7 field.SetRange(TableNo, recRef.Number);
8 if field.FindSet() then begin
9 repeat

10 // adds a json property dynamically
11 // (cast to a json string for simplicity)
12 fieldRef := recRef.Field(field."No.");
13 jObject.Add(fieldRef.Name, format(fieldRef.Value));
14 until field.Next() = 0;
15 end;
16 exit(jObject);
17 end;

Listing 27. Usage of the Field table for serialization.

78

Appendix 3 – Metadata Samples
1 {
2 "Fields": [
3 {
4 "TypeDefinition": {
5 "Name": "Text[30]",
6 "Temporary": false
7 },
8 "Properties": [
9 {

10 "Value": "Name",
11 "Name": "Caption"
12 }
13],
14 "Id": 1,
15 "Name": "Name"
16 },
17 // rest of the fields omitted for brevity
18]
19 "Keys": [
20 {
21 "FieldNames": [
22 "Name"
23],
24 "Properties": [
25 {
26 "Value": "1",
27 "Name": "Clustered"
28 }
29],
30 "Name": "Key1"
31 }
32],
33 "ReferenceSourceFileName":

↪→ "System%20Tables/Table%20-%20Company.al",
34 "Properties": [
35 {
36 "Value": "Company",
37 "Name": "Caption"
38 },
39 {
40 "Value": "0",
41 "Name": "DataPerCompany"
42 },
43 {
44 "Value": "Cloud",
45 "Name": "Scope"
46 },
47 {
48 "Value": "0",
49 "Name": "ReplicateData"
50 }
51],
52 "Id": 2000000006,
53 "Name": "Company"
54 },

Listing 28. Sample app package symbols for Record Company.

1 public sealed class Company : ALRecord
2 {
3 private string _Name;
4 private bool _Evaluation\u0020Company;
5 private string _Display\u0020Name;
6 private string _Id;
7 private string _Business\u0020Profile\u0020Id;
8
9 override int get_ObjectId() => 2000000006;

79

10
11 public bool Get(string Name) => true;
12
13 [TypeProviderXmlDoc("<summary>Corresponds to property \"Name\" in

object</summary>")]
14 public string Name
15 {
16 get => this._Name;
17 set => this._Name = value;
18 }
19 // rest of the fields omitted for brevity

Listing 29. Sample generated Record Company decompiled into C#.

1 [<AbstractClass>]
2 type ALRecord() =
3 inherit ALObjectValue()
4 member this.SetRecFilter () : unit = failwith "todo"
5
6 member this.SetPermissionFilter () : unit = failwith "todo"
7
8 member this.ClearMarks () : unit = failwith "todo"
9

10 member this.Get (values:obj[]) : unit = failwith "todo"
11
12 member this.GetSafe (compilerHashCode:int,values:’t[]) : unit =

failwith "todo"
13
14 member this.GetBySystemId (systemId:Guid) : bool = failwith "todo"
15
16 member this.SetCurrentKey (fields:int[]) : bool = failwith "todo"
17
18 member this.SetLoadFields (fields:int[]) : bool = failwith "todo"
19
20 member this.AddLoadFields (fields:int[]) : bool = failwith "todo"
21
22 member this.AreFieldsLoaded (fields:int[]) : bool = failwith "todo"
23
24 member this.LoadFields (fields:int[]) : bool = failwith "todo"
25
26 member this.CalcFields (fields:int[]) : bool = failwith "todo"
27
28 member this.SetAutoCalcFields (fields:int[]) : bool = failwith "

todo"
29
30 member this.CalcSums (fields:int[]) : bool = failwith "todo"
31
32 member this.ChangeCompany () : bool = failwith "todo"
33
34 member this.ChangeCompany (companyName:string) : bool = failwith "

todo"
35
36 member this.Insert () : unit = failwith "todo"
37
38 member this.Insert (runApplicationTrigger:bool) : unit = failwith "

todo"
39
40 member this.Insert (runApplicationTrigger:bool,insertWithSystemId:

bool) : unit = failwith "todo"
41 // 120 other members omitted

Listing 30. Sample runtime method stubs for the AL Record type.

80

	Introduction
	The Problem
	The Type System of AL
	Procedures and Variables
	Dynamic Inputs
	Code Reuse and Type Safety
	Interfaces
	Constructors
	Data Relations
	Reading and Writing Data
	Legacy

	The Requirements
	Functional Requirements
	Requirements for Enhanced Code Quality
	Sample End-to-end Use Cases

	Design and Development
	High-level Overview of Development
	Metadata for Objects
	App Packages
	Business Central Database

	Metadata for the Runtime
	The AL Language Extension
	Business Central Docker Container Artifacts

	Transformation of App Packages to F#
	Generative and Erased Types
	Creating Strongly Typed Functions via Type Provider
	Further Considerations for the Type Provider

	The AL Runtime Types
	.NET Implementations
	The Compiler Implementation
	Importing Files and References
	Type Checking
	F# Code Generation
	Translation to an Intermediate Form

	Language Expressions and Data Structures
	AL Code Generation
	JSON Type Provider
	F# Modules
	Inheritance for Tables
	Legacy Mapping

	Demonstration and evaluation
	HTTP requests with JSON
	API specification
	Testing Responses
	Error-handling
	Navigating the Data Structure

	Object-oriented Design for Record Types
	Additional Features
	Strong Typing
	Constructors
	Pattern-matching

	Future Work
	Summary of the Proof of Concept

	Conclusion
	References
	Appendix Non-exclusive Licence for Reproduction and Publication of a Graduation Thesis
	Appendix Code Samples
	JSON API Request
	Code Duplication
	Dynamically Typed Code

	Appendix Metadata Samples

