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Abstract 

Usage of digital signatures became an important part of our lives. The main security of 

digital signatures is a storage of private keys. If private key gets corrupted adversary will 

be able to impersonate legitimate owner of the stolen private key by forging their digital 

signature. To address the issue of secure private key storage it is possible to use threshold 

cryptography. Using this approach one part of the private key can be stored on a client 

side, other part – on a server, and valid digital signature can be created only with 

interaction between client and server. One of the most widely used digital signature 

schemes nowadays is ECDSA because it fast and efficient. Still, there is no optimal 

threshold ECDSA developed, however it is currently active area of cryptographic 

research. 

The purpose of this thesis is to implement and analyse one of the proposed threshold 

ECDSA schemes created by Northeastern University and compare implementation with 

existing solutions. The scheme was implemented in Java, which is the first 

implementation of this scheme this programming language. Developed implementation 

shows quite competitive results for client-server communication and can be used in 

further research. 

During the work, it was revealed that chosen scheme is the most efficient in terms of key 

generation and signature generation. However, it requires higher network bandwidth 

compared to other schemes. 

This thesis is written in English and is 60 pages long, including 6 chapters, 10 figures and 

5 tables. 
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Annotatsioon 

 

Digitaalallkirja kasutamine on saanud tähtsaks osaks meie elus. Digitaalallkirjaga 

seonduv peamine turvaülesanne on privaatvõtmete haldus. Kui privaatvõti lekib, siis on 

võimalik võltsida võtme omaniku digitaalallkirja. Privaatvõtme haldusega seotud riskide 

maandamiseks võib kasutada lävikrüptograafiat, kus osa privaatvõtmest salvestatakse 

kasutaja seadmesse, teine aga serverisse, kusjuures korrektse digitaalallkirja saab 

moodustada üksnes kliendi seadme ja serveri koostöös. Üks tänapäeval laialdasemalt 

kasutatavaid digitaalallkirja skeeme on Elliptkõverail põhinev ECDSA, sest ta on kiire ja 

efektiivne. Seni teadaolevate lävikrüptograafia meetodite kasutamise efektiivsus ECDSA 

korral aga jätab aga soovida, ehkki selles vallas käib aktiivne teaduslik uurimistöö.    

Selle magistritöö eesmärk on programselt teostada ja analüüsida üht efektiivseimat 

ECDSA lävikrüptograafial põhinevat meetodit, mille esitasid Northeastern University 

teadurid, ja võrrelda selle efektiivsust teiste teadaolevate meetodite ja nende teostustega. 

Skeem programmeeriti Javas, mis on esmakordne selles keeles teostus nimetatud 

skeemile. Teostuse analüüs näitab, et skeem on praktikas kasutatav klient-server tüüpi 

lahendustes ja seda võib kasutada nimetatud skeemi efektiivseid teostusi käsitlevates 

edasistes uurimistöödes.  

Töö selgitas välja, et valitud skeem on väga efektiivne võtme genereerimise ja samuti 

digitaalallkirja moodustamise seisukohalt, kuid jääb oluliselt alla teistele skeemidele 

võrgusuhtluse mahu poolest.    

Lõputöö on kirjutatud [mis keeles] keeles ning sisaldab teksti 60 leheküljel, 6 peatükki, 

10 joonist, 5 tabelit. 
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1 Introduction 

1.1 Research Motivation 

The Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the most used 

cryptographic designs in modern IT infrastructure. ECDSA is the predominant algorithm 

used in protection of data exchange, bank transactions, secure communication, and 

national electronic identification documents such as the Estonian ID card. As ECDSA is 

based on asymmetric cryptography, there exists security issues due to the storing of 

ECDSA private keys. The private key should not be known to anyone besides the author 

of the digital signature. For many years there were mostly two ways to keep private keys 

secure: storage of private keys protected by the filesystem security model, where it is 

exposed to privilege escalation vulnerabilities, or, compiled inside software binary code, 

where it could be decompiled by malicious adversary.  

Threshold signatures bring new solution for the previously stated issue. Instead of having 

one private key, which can be stolen, there can be numerous parts of private keys 

distributed to different parties that can group up to create one signature. For example, first 

part of the private key is given to a server, second part is given to a client. Only through 

combining both parts of the private key the digital signature can be created. Executing 

threshold signatures in a secure manner is challenging due to the mathematical design of 

ECDSA, unlike, other less used signature schemes.  

Due to the prevailing interest of blockchain technology and cryptocurrency, in past four 

years, there were several academic papers proposed on the topic of Threshold ECDSA 

schemes. The main motivation for this research comes from Northeastern University 

“Secure Two-party Threshold ECDSA from ECDSA Assumptions” [1].  This paper 

proposed one of the first solutions that required only elliptic curve primitives and elliptic 

curve assumptions. Still, there was no research conducted on the topic of testing this 

scheme in terms of server-client scenario. The motivation of this paper is to provide new 

contribution in the area of threshold Two-Party signatures. 
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1.2 Scope 

This paper concentrates on a client-server scenario and excludes Threshold Multiparty 

ECDSA scheme from the research’s scope, due to the fact most of them were developed 

for blockchain application with multiple amounts of communicating parties. 

1.3 Research Questions 

The following research questions are to be answered: 

1. What are two-party ECDSA solutions already existing beside [1]? 

2. Which one has fastest key generation? 

3. Which one has fastest signature creation process? 

4. Which one does require the lowest network bandwidth? 

1.4 Research Goals 

Author’s goal is to implement “Secure Two-party Threshold ECDSA from ECDSA 

Assumptions” [1] for client-server scenario using Java programming language. After that 

compare it with the original code of scheme written in Rust. Additionally, compare the 

code with other two-party implementations of ECDSA. 

1.5 Student’s contribution 

The schemes were researched in this thesis were created by Northeastern University. I 

contribute implementation of scheme [1] and comparison of existing two-party schemes 

with my implementation. 

1.6 Thesis Structure 

This thesis is organized in six chapters. Chapter 1 is the introduction and motivation of 

this work. Chapter 2 details the background of cryptographic primitives and digital 
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signatures. Chapter 3 consist of explaining of concepts of Threshold Signatures and 

related work. Chapter 4 explains principles of Secure Two-party Threshold ECDSA from 

ECDSA Assumptions scheme. Chapter 5 explains the implementation of Secure Two-

party Threshold ECDSA from ECDSA Assumptions scheme. Chapter 6 is the conclusion 

and the future work. 

2 Background 

This chapter summarizes the background information, concepts and algorithms used 

during the analysis, development, and evaluation of the present research. 

2.1 Field theory 

Cryptography relies on numerous areas of mathematics. Without an understanding of the 

mathematics behind cryptography, it is impossible to understand cryptography itself. 

Field theory is one of the essential mathematical topics implied in modern cryptography. 

The following part of the thesis contains definitions and explanations of the basic field 

theory concepts that are needed for understanding Elliptic Curve Cryptography (ECC) 

and ECDSA. 

2.1.1 Set 

Definition 2.1.1. (Set): Defined collection, compilation, or assemblage of definite objects 

in mathematics is called set. Examples of sets: set of natural numbers, set of Latin 

symbols, set of TalTech students’ names. 

Definition 2.1.2. (Subset): Let A and B be some sets. Set B called subset of A if and only 

if all elements of B belong to the set A. 

Definition 2.1.3. (Empty set): Set consisting of zero elements is called empty set.  

Definition 2.1.4. (Binary operation): Computation implicating two elements of the set 

to produce another element of the set is binary operation. Examples: addition, 

multiplication, exponentiation in the set of natural numbers. 
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Definition 2.1.5. (Cardinality): Number of elements in a set is called cardinality. 

Definition 2.1.6. (Finite and infinite sets): If set consist of finite number of elements, it 

is called finite set. Otherwise the set is infinite. 

2.1.2 Group 

Definition 2.1.7. (Group): Let G be a non-empty finite or infinite set with a defined 

binary operation (•), this set is called a group if and only if the following properties are 

satisfied: 

• Closure. If two elements belong to a set G, the result of binary operation also 

belong to set G: ∀𝑎, 𝑏 ∈ 𝐺: 𝑎 • 𝑏 ∈ 𝐺; 

• Identity element. There is a unique element 𝑒 ∈ G, called identity element such 

that for all other elements in a set we have: ∃𝑒 ∈ 𝐺, ∀𝑎 ∈ 𝐺: 𝑎 • 𝑒 = 𝑒 • 𝑎 = 𝑎; 

For additive operation identity element is usually denoted as 0; for multiplicative 

operation as 1. 

• Inverse element. For every element of a set there is a unique element in a set called 

an inverse element: ∀𝑎 ∈ 𝐺 ∃𝑏: 𝑎 • 𝑏 = 𝑏 • 𝑎 = 𝑒;. For additive operation 

inverse element for an element 𝑎 ∈ 𝐺 is denoted as -a; for multiplicative operation 

inverse of an element 𝑎 ∈ 𝐺 is 𝑎−1. 

• Associativity. ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 ⇒ (𝑎 • 𝑏) • 𝑐 = 𝑎 • (𝑏 • 𝑐) 

A group with defined addition operation is notated as (G, +) and called additive group, a 

group with multiplication operation – (G, *), +) and called multiplicative group. Example 

of additive group: group of integers. Example of multiplicative group: 

Definition 2.1.8. (Abelian group): Let G be a group with an operation (•). The group is 

called abelian or commutative, if for every element of a group following is true: ∀𝑎, 𝑏 ∈

𝐺 ⇒ 𝑎 • 𝑏 = 𝑏 • 𝑎 

Definition 2.1.9. (Cyclic group): Let G be a group with an operation (•). The group is 

called cyclic, if every element of G can be calculated by repeated utilization of the group 

operation over one exact element, which is called a generator. 
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Definition 2.1.10. (Subgroup): Let H be a non-empty subset of group G with an 

operation (•). Set H is a subgroup of group G, if H forms a group with an operation (•). 

Definition 2.1.11. (Order of a group): Let G be a group. The number of elements of a 

group G is called an order of a group. In other words, the order of a group is a cardinality 

of a group. 

Definition 2.1.12. (Order of an element): Let G be a group. The order of element 𝑎 ∈

𝐺 is the smallest integer n, such that 𝑎𝑛 = 𝑒  in multiplicative notation;(𝑎 + 𝑎+. . . +𝑎
𝑛

) =

𝑒 in additive notation, where e is the identity element of group G. 

2.1.3 Field 

Definition 2.1.13. (Field): Let F be a non-empty finite or infinite set with two defined 

binary operations (+ and *), the set is called a field, if and only if the following properties 

are met: 

• Additive group: F forms an abelian group with operation + (addition). This group 

(F, +) is called an additive group of the field. 

• Multiplicative group: F without 0 (F \ {0}) forms an abelian group with operation 

* (multiplication). This group (F, *) is called a multiplicative group of the field. 

• Distributivity:∀𝑎, 𝑏, 𝑐 ∈ 𝐹 ⇒ (𝑎 + 𝑏) ∗ 𝑐 = 𝑎 ∗ 𝑐 + 𝑏 ∗ 𝑐 

Definition 2.1.14. (Finite and infinite fields): Let F be a field. It is called a finite field 

if it consists of finite numbers of elements. Otherwise, F is an infinite field. 

Examples of infinite fields: rational numbers (ℚ), real numbers (ℝ), complex numbers 

(ℂ). Examples of infinite fields: residues of modulo p (0 mod p, 1 mod p, 2 mod p, …, p-

1 mod p), where p is a prime number.  

Definition 2.1.15. (Field characteristic): Let F be a field. If there exists an integer 

number p such that for every element of the field F (𝑎 ∈ 𝐹), the equation 𝑎 ∗ 𝑝 = 0 holds, 

then the smallest p is called field characteristic. Field characteristic can be an only prime 

number. The field characteristic of F is denoted as char(F)=p. 

Definition 2.1.16. (Order of a field): Let F be a field. The number of elements of finite 

field is called order of a field F. Finite field of order q is usually denoted as 𝔽q. The field 

only exists if q = char(F)n , where n ≥ 1. 
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Definition 2.1.17. (Finite field of modulo p): Finite field of modulo p consists of 

integers from 0 to p-1, where p is a prime number. It is denoted as 𝔽p. Additive group is 

formed with modular addition (a, b ∈ 𝔽p;  a + b mod p, where mod p denotes the 

remainder of division by p) and integers from 0 to p-1. Multiplicative group is formed 

with modular multiplication (a, b ∈ 𝔽p;  a ∗ b mod p, where mod p is remainder of 

division by p) and integers from 1 to p-1. 

 

2.2 Elliptic curves 

Since ECDSA uses elliptic curves, the following section will introduce the basic concepts 

of the elliptic curves: elliptic curves over real numbers, elliptic curves over finite fields 

and operation over elliptic curves. 

2.2.1 Elliptic curves over real numbers 

Definition 2.2.1. (Curve): curve is a set of points, which could be described by some 

mathematical equation in Euclidian plane. This mathematical object is similar to a line, 

however it does not need to be straight. 

Definition 2.2.2. (Slope): a value that describes both the direction and steepness of the 

line is called slope. 

Definition 2.2.3. (Tangent): line that touches curve in the one point is called tangent 

[Figure 1] line to that point.  

 

Figure 1: Tangent line to parabola 
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Definition 2.2.4. (Point at infinity): the point at the edges of all lines parallel to the y-

axis.  

Definition 2.2.5. (Elliptic curve over real numbers): elliptic curve [Figure 2] is a curve 

defined with equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, where 𝑦, 𝑥, 𝑎, 𝑏 ∈  ℝ and 4𝑎3 + 27𝑏2  ≠

0 with defined point at infinity (noted as O). Definition also can be redefined: 

{(𝑥, 𝑦) ∈  ℝ2 | 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 4𝑎3 + 27𝑏2 ≠ 0}  ∪ {𝑂} 

If 4𝑎3 + 27𝑏2 = 0 it will be impossible to draw tangent line to every point of elliptic 

curve.  

 

Figure 2: Graphs of elliptic curves 

Group [Definition 2.1.7] can be defined for elliptic curve over real numbers: 

1. Points of a curve and point at infinity O are elements of a group. 

2. Binary operation is geometric addition (+): for two non-zero points P and 

Q draw a line passing through P and Q, which will intersect a curve in 

third point R. Inverse of third point (point symmetrical to X-axis) is result 

of geometric addition: 𝑃 + 𝑄 = −𝑅 [Figure 3] 

3. Point at infinity O is defined as neutral element of this group. For a point 

P on a curve -- 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃 [Figure 4] 
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4. For any point P exists point Q, which is inverse element, such as 𝑄 = −𝑃 

and 𝑃 + 𝑄 = 𝑂, where O is point at infinity. [Figure 5] 

5. To add point to itself tangent line is built in point P. Result of this 

geometric addition will be inverse point of intersection between the curve 

and the line tangent in point P. [Figure 6] 

 

 

Figure 3: Geometric point addition 𝑃 + 𝑄 = −𝑅 over the elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 
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Figure 4: Geometric point addition 𝑃 + 𝑂 = 𝑃 over the elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 
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Figure 5: Geometric point addition 𝑃 + 𝑄 = 𝑃 − 𝑃 = 𝑂 over the elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 

 

Figure 6: Geometric point addition 𝑃 + 𝑃 = −𝑅 over the elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 
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Geometric addition can be represented with algebraic addition for points P and Q with 

Euclidian coordinates 𝑥𝑝, 𝑦𝑝 and 𝑥𝑞, 𝑦𝑞 accordingly: 

• For a point P with coordinates (𝑥𝑝, 𝑦𝑝) and point at infinity O the result of addition 

will be: P + O = P 

• For points P and -P with coordinates (𝑥𝑝, 𝑦𝑝) and (−𝑥𝑝, 𝑦𝑝): P - P=O 

• For points P and Q (P≠Q) with coordinates (𝑥𝑝, 𝑦𝑝) and (𝑥𝑞, 𝑦𝑞): 

o Calculate slope [Definition 2.2.2] with formula: 𝑠 =
𝑦𝑝−𝑦𝑞

𝑥𝑝−𝑥𝑞
 

o Coordinates of a point R: 

𝑥𝑟 = 𝑠2 − 𝑥𝑝 − 𝑥𝑞 

𝑦𝑟 = 𝑦𝑝 + 𝑠(𝑥𝑟 − 𝑥𝑝) 

o Find inverse point -R by negating 𝑥𝑟. The result of addition P+Q=-R with 

coordinates (−𝑥𝑟 , 𝑦𝑟) 

• For points P and Q (P=Q) with coordinates (𝑥𝑝, 𝑦𝑝): 

o Calculate slope with formula: 𝑠 =
3𝑥𝑝

2+𝑎

2𝑦𝑝
, where a is one of parameter of 

elliptic curve [Definition 2.2.5.] 

o Coordinates of a point R: 

𝑥𝑟 = 𝑠2 − 𝑥𝑝 − 𝑥𝑞 

𝑦𝑟 = 𝑦𝑝 + 𝑠(𝑥𝑟 − 𝑥𝑝) 

o Find inverse point -R by negating 𝑥𝑟. The result of addition P+Q=-R with 

coordinates (−𝑥𝑟 , 𝑦𝑟) 

 

Definition 2.2.6. (Scalar multiplication): Let P be a point on defined elliptic curve. P is 

an element of a group G with operation + (geometric/algebraic addition). Scalar 

multiplication is operation defined with formula: 𝑘 ∗ 𝑃 = 𝑘𝑃 = (𝑃 + 𝑃 +. . . + 𝑃
𝑘

) = 𝑄, 

where 𝑄 is point of elliptic curve and element of group G. 

2.2.2 Elliptic curves over field of prime numbers. 

There is a problem of storing real numbers in binary due to the rounding. Therefore, in 

cryptography, and ECDSA specifically, elliptic curves are specified over finite fields of 

modulo p, where p is prime number. 
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Definition 2.2.7. (Elliptic curves over 𝔽p): elliptic curve over 𝔽p [Figures 7-9] is a 

curve defined with equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏(𝑚𝑜𝑑𝑝), where 𝑦, 𝑥, 𝑎, 𝑏 ∈

 𝔽p, char(𝔽p,) ≠ 2n, 3n;  where n ≥ 1 and 4𝑎3 + 27𝑏2 ≢ 0(𝑚𝑜𝑑𝑝)with defined point 

at infinity (noted as O). Definition also can be redefined: 

{(𝑥, 𝑦) ∈  (𝔽p) 2 | 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝), 4𝑎3 + 27𝑏2 ≢ 0 (𝑚𝑜𝑑 𝑝)}  ∪ {𝑂} 

In case of char(𝔽p,) = 2n, where n ≥ 1,  elliptic curve will be: 

{(𝑥, 𝑦) ∈  (𝔽p) 2 | 𝑦2 + 𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝), 4𝑎3 + 27𝑏2 ≢ 0 (𝑚𝑜𝑑 𝑝)}  ∪ {𝑂} 

In case of char(𝔽p,) = 3n, where n ≥ 1,  elliptic curve will be: 

{(𝑥, 𝑦) ∈  (𝔽p) 2 | 𝑦2 + 𝑦 = 𝑥3 + 𝑐𝑥2 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝), 4𝑎3 + 27𝑏2

≢ 0 (𝑚𝑜𝑑 𝑝)} ∪ {𝑂} 

 

Figure 7: Graph of elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 over 𝔽7 
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Figure 8: Graph of elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 over 𝔽31 

 

Figure 9: Graph of elliptic curve 𝑦2 = 𝑥3 − 7𝑥 + 10 over 𝔽211 

Like with elliptic curves of real numbers, points of elliptic curve over 𝔽p form a group 

with binary operation of algebraic point addition: 

• For a point P with coordinates (𝑥𝑝, 𝑦𝑝) and point at infinity O the result of addition 

will be: P + O = P 

• For points P and -P with coordinates (𝑥𝑝, 𝑦𝑝) and (−𝑥𝑝, 𝑦𝑝): P - P=O 

• For points P and Q (P≠Q) in 𝔽p with coordinates (𝑥𝑝, 𝑦𝑝) and (𝑥𝑞, 𝑦𝑞): 

o Calculate slope with formula: 𝑠 = (𝑦𝑝 − 𝑦𝑞)(𝑥𝑝 − 𝑥𝑞) −1 𝑚𝑜𝑑 𝑝 . 

(𝑞−1𝑚𝑜𝑑 𝑝 – is modulo inverse operation) 

o Coordinates of a point R: 

𝑥𝑟 = (𝑠2 − 𝑥𝑝 − 𝑥𝑞) 𝑚𝑜𝑑 𝑝 

𝑦𝑟 = 𝑦𝑝 + 𝑠(𝑥𝑟 − 𝑥𝑝) 𝑚𝑜𝑑 𝑝 
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o Find inverse point -R by negating 𝑥𝑟. The result of addition P+Q=-R with 

coordinates (−𝑥𝑟  𝑚𝑜𝑑 𝑝, 𝑦𝑟) 

• For points P and Q (P=Q) in 𝔽p with coordinates (𝑥𝑝, 𝑦𝑝): 

o Calculate slope with formula: 𝑠 = (3𝑥𝑝
2 + 𝑎)(2𝑦𝑝)

−1
 𝑚𝑜𝑑 𝑝, where a is 

one of parameter of elliptic curve [Definition 2.2.7.] 

o Coordinates of a point R: 

𝑥𝑟 = (𝑠2 − 𝑥𝑝 − 𝑥𝑞) 𝑚𝑜𝑑 𝑝 

𝑦𝑟 = (𝑦𝑝 + 𝑠(𝑥𝑟 − 𝑥𝑝)) 𝑚𝑜𝑑 𝑝 

Find inverse point -R by negating 𝑥𝑟. The result of addition P+Q=-R with coordinates 

(−𝑥𝑟  𝑚𝑜𝑑 𝑝, 𝑦𝑟) 

Definition 2.2.8. (Scalar multiplication in 𝔽p): For an elliptic curve over 𝔽p point P and 

integer k ≥ 1, define scalar multiplication in 𝔽p: 𝑘𝑃 = (𝑃 + 𝑃 +. . . + 𝑃
𝑘

) = 𝑄, where 

+ is geometric/algebraic addition. 

Scalar multiplication over points for elliptic curves in 𝔽p allows to generate cyclic 

subgroups of elliptic points. [Definitions 2.1.9-10] 

Definition 2.2.9. (Order of a point): Let P be a point on defined elliptic curve over 𝔽p. 

P is an element of a group G with operation + (geometric/algebraic addition). The smallest 

natural number n such as 𝑛𝑃 = 𝑂, where is a point at infinity, is called order of a point. 

P generates cyclic subgroup of order n [Definition 2.1.11]. Point P is called based point 

(generator). 

Definition 2.2.10. (Cofactor of a subgroup): Let N be an order of 𝔽p additive group. 

Let n be an order of cyclic subgroup generated by point P of elliptic curve over 𝔽p. The 

number h =  
N

n
 is cofactor of the subgroup. 

2.3 Digital Signatures 

In the case of transmitting documents through insecure channels, there is a risk of their 

interception. An attacker can get access to a digital document, modify it and resend it to 

the original addressee in order to gain benefit. To avoid such scenario, a concept of digital 

signatures was introduced. In 1976, Whitfield Diffie and Martin E. Hellman in their paper 
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"New Directions in Cryptography" proposed an idea of system that could replace written 

signatures called "digital signatures". [2] The main property of their proposal was that it 

must be easy to verify the signature, but not legitimate signer should not be able to 

reproduce it. 

The eIDAS, a European Union regulation on electronic identification, gives the following 

definitions on digital signatures [3]: 

• electronic (digital) signature – data in electronic form which attach to or 

logically associated with other data in electronic form and which is used by the 

signatory to sign” (Article 3). This definition of signature is quite broad and could 

mean as sophisticated cryptographic scheme, as person’s initials at the end of 

digital document, as checkbox click of user agreement. 

• advanced electronic (digital) signature – an electronic signature which is 

uniquely linked to signatory (Articles 3,24). The way to achieve uniqueness 

requires usage of cryptographic methods. 

• qualified electronic (digital) signatures – advanced electronic signature that is 

created by a qualified electronic signature creation device, and which is based on 

a qualified certificate for electronic signatures (Article 3). For creation of such 

signature is important to use hardware security modules and the signature must be 

certified by the trusted authority. For example, signatures created using Estonian 

ID card are qualified electronic signatures.  

Most digital signatures based on cryptographic means are advanced electronic signatures, 

and most of them could be turned into qualified electronic signatures. Cryptographic 

digital signatures should satisfy the following properties [4]: 

1. Authentic. Digital signature must convince verifier that the signer wilfully made 

exact digital signature. 

2. Non-reusable. Digital signature must be a part of document, it cannot be 

duplicated on another document. 

3. Unforgeable. No one else besides the original signer can produce valid digital 

signature on behalf of the original signer. 
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4. Unchangeable. After producing digital signature, the document to which it was 

applied, cannot be changed, or altered in any way. 

5. Non-Repudiated. The signer of digital signature cannot deny that they are the 

author of the document and signature. 

Even though there are many different digital signature algorithms, they all can be divided 

in two groups: based on symmetric cryptography or asymmetric (public-key) 

cryptography. The first group uses block ciphers, hash functions or non-interactive zero-

knowledge proofs to achieve properties listed before, in the second group signature 

schemes are based on highly complex mathematical problems (NP-Problems). As the 

topic of this paper is directly related to ECDSA, further the focus will be only on 

asymmetric signatures, to which ECDSA belongs. 

A digital signature scheme consists of the following algorithms: 

1. Key generation. The signer creates two keys - private and public. 

2. Signature generation (signing). Signer uses their private key to make digital 

signature connected to document or message. 

3. Signature verification. Anyone who obtained public key can verify the 

authorship and authenticity of the signature. 

2.4 RSA signature 

RSA is asymmetric cryptosystem proposed in 1977 by Ron Rivest, Adi Shamir, and 

Leonard Adleman [5]. Even though RSA was not the first proposed asymmetric 

cryptosystem and not only one, nowadays it is the most popular algorithm being used. 

The main purpose of RSA system is encryption; however, it could be used as digital 

signature scheme.  

Definition 2.4.1. (Greatest common divisor): Let x and y be natural numbers. Greatest 

common divisor is the largest natural number that divides both of x and y. It is denoted 

as gcd(x, y). 
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Definition 2.4.2. (Coprime number): Let x and y be natural numbers. The numbers are 

coprime if and only if gcd(x,y)=1. 

Definition 2.4.3. (Euler's totient function): Euler’s totient function for any natural 

number p calculates the amount of natural numbers that are coprime to p and less than p. 

It is denoted as 𝜑(n), where n is natural number. The formula for the function: 

𝜑(𝑛) = 𝑛 ∏ (1 −
1

𝑝
)𝑝|𝑛 . 

Definition 2.4.4. (Modulo inverse): Let a, n be integers. The inverse of an integer a 

modulo n is an integer b such that: 𝑎𝑏 ≡ 1 𝑚𝑜𝑑 𝑛. Modulo inverse is denoted as 

𝑎−1 𝑚𝑜𝑑 𝑛. 

Definition 2.4.5. (Hash function): a function that maps input of arbitrary size to fixed-

sized output. Input is called message and output – message digest. Examples of hash 

functions: SHA, MD5, Streebog. Taking hash value for message M is denoted as H(M). 

RSA key generation  

• Generate randomly two big random prime numbers p and q. 

• Calculate a product of p and q: 𝑁 = 𝑝 ∗ 𝑞. 

• Choose value e known as RSA public exponent in range of [1 < e < 𝜑(n)]. The 

𝜑(N) equal to (p-1)(q-1). If e and 𝜑(N) are not coprime, in other words 

gcd(x,y)≠1, new e must be generated until this statement is satisfied. 

• Calculate value d known as RSA private exponent s.t. 𝑑 ∗ 𝑒 ≡ 1 (𝑚𝑜𝑑 𝜑(N)). 

• Pair of values (e, N) is RSA public key, pair of values (d, 𝜑(N)) is RSA private 

key. 

RSA signature generation (signing) 

• Let M be message. Calculate hash value of the message h=H(M) 

• Message is signed with private exponent d using formula: 𝑠 = ℎ𝑑𝑚𝑜𝑑 𝑁 

• Value s is RSA digital signature on message M 
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RSA signature verification 

• Let M be message. Calculate hash value of the message h=H(M) 

• Calculate ℎ′ = 𝑠𝑒𝑚𝑜𝑑 𝑁 

• Signature s is valid if and only if values h and ℎ′ are equal 

Security of RSA signature 

RSA signature scheme security and unforgeability are based on assumption that there is 

no efficient algorithm for big integer factorization. If adversary finds factorization of RSA 

parameter N=p*q, they can calculate Euler's totient function, 𝜑(N), and RSA private 

exponent d.  At the moment, there is no polynomial-time method for factoring integers 

using classical computers. However, there is Shor's algorithm [6] that can find factors of 

any integer, but it works only on quantum computers, which are yet meant to be built.  

It is important to note, that ‘textbook’ RSA, described above is not secure for practical 

use due to the several reasons, in practice modified versions are used. Additionally, RSA 

is not secure, if p and q are not big enough numbers: there are already works that show 

240-digit number factorization [7].  

2.5 The Digital Signature Algorithm (DSA) 

DSA (Digital signature Algorithm) is a public key algorithm for creating digital 

signatures proposed by National Institute of Standards and Technology (NIST) in 1991 

and published as a part of Digital Signature Standard (DSS) in December 1998. [8]  

DSA key generation  

The DSA makes use of the following parameters: 

• p - a prime number (modulus) generated in range 2𝐿−1 <  𝑝 < 2𝐿 for 512 ≤ 𝐿 ≤

1024 and L is multiple of number 64. 

• q - prime divisor of (p – 1) in range 2159  <  𝑞 <  2160  

Key generation algorithm works as follows:  
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• Calculate value g with formula: 𝑔 = ℎ
𝑝−1

𝑞 𝑚𝑜𝑑 p, where h is generated integer in 

range 1 < h < (p – 1) such that [(ℎ
𝑝−1

𝑞 ) 𝑚𝑜𝑑 𝑝] > 1  

• Generate integer x: (pseudo)randomly in range 0 < 𝑥 < 𝑞 

• Calculate value y using formula: 𝑦 = 𝑔𝑥𝑚𝑜𝑑 𝑝 

• The integers p, q, and g can be publicly known and can be common to a group of 

users. DSA user's private key is x and DSA public key is y. The keys are usually 

fixed for a period of time. 

DSA signature generation (signing) 

• Generate (pseudo)randomly integer parameter k in range 0 < 𝑘 < 𝑞. Parameter k 

must be regenerated for each signature and must be kept in secret. 

• Let M be message. Calculate hash value of the message h=H(M) 

• The signature on a message M is the pair of numbers (r, s) computed according to 

the formulas:  

o 𝑟 = (𝑔𝑘 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞 

o 𝑠 = (𝑘−1(𝐻(𝑀) + 𝑥𝑟)) 𝑚𝑜𝑑 𝑞, where 𝑘−1 is inverse of parameter k 

modulo q. 

If either r, or s is equal to zero, signature was generated incorrectly, and it must 

be generated again with the new parameter k. The pair (r, s) is DSA signature on 

message M. 

DSA signature verification 

• Let M be a message, let (r, s) be DSA signature that needs to be verified. Check 

if 0 < 𝑟 < 𝑞 and 0 < 𝑠 < 𝑞. In case either condition is not satisfied the signature 

must be rejected. 

• Calculate value w according to the formula: 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑞 
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• Calculate 𝑢1 = (𝐻(𝑀)𝑤) 𝑚𝑜𝑑 𝑞 and 𝑢2 = (𝑟𝑤) 𝑚𝑜𝑑 𝑞 

• Calculate verification value 𝑣 = ((𝑔𝑢1𝑦𝑢2) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞. If 𝑣 = 𝑟, then the 

signature (r, s) is verified and the verifier can have enough confidence that the 

received message was sent by the party holding the DSA private key x 

corresponding to public key y. 

Both signing and verification processes are presented in Figure 10. 

 

Figure 10: DSA signature generation and verification [8] 

DSA Security (Discrete logarithm problem) 

 

Security and unforgeability of DSA signature scheme are based on discrete logarithm 

problem (DLP). The computational hardness of this problem is not only essential for 

security of DSA, but for many other cryptographic protocols and primitives (for example 

ElGamal scheme [9] or Diffie-Helman key exchange [2]). 

Definition 2.5.1 (Discrete logarithm problem): Let G be a cyclic multiplicative group, 

g – generator of group G of order p, and h – element of the cyclic group G (ℎ ∈ G). The 

discrete logarithm problem is to find such integer x that 𝑔𝑥 ≡ ℎ 𝑚𝑜𝑑 𝑝 .  
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Provided level of security by Definition 2.5.1 of DSA problem is not sufficient, therefore, 

additional assumptions related to the DLP are used to prove security of DSA and similar 

cryptographic schemes. 

Definition 2.5.2. (Computational Diffie-Hellman Assumption): Let G be a cyclic 

multiplicative group of order p, g – randomly chosen generator of group G, and a,b – 

randomly generated elements of the cyclic group G (𝑎, 𝑏 ∈ G). Computational Diffie-

Hellman Assumption (CDH) assumption states that given to adversary values 

(𝑔, 𝑔𝑎 , 𝑔𝑏), they cannot compute 𝑔𝑎𝑏 in polynomial time.  

Definition 2.5.3. (Decisional Diffie-Hellman): Let G be a cyclic multiplicative group of 

order p, g – randomly chosen generator of group G, and a, b, c – randomly generated 

elements of the cyclic group G (𝑎, 𝑏, 𝑐 ∈ G).  Decisional Diffie-Hellman (DDH) 

assumption states given values 𝑔𝑐  and 𝑔𝑎𝑏 to adversary are computationally 

indistinguishable. 

DLP, CDH assumption and DDH assumption are providing security DSA with correct 

chosen security parameters. 

2.6 ECDSA 

Neal Koblitz [10] and Victor Saul Miller [11] independently proposed an idea Elliptic 

Curve Cryptography (ECC), in other words cryptosystems based on using elliptic curves. 

The Elliptic Curve Digital Signature Algorithm (ECDSA) is elliptic curve version of DSA 

[12]. It was approved in 1999 as ANSI standard, and was accepted in year 2000 as IEEE 

and NIST standards.  

ECDSA Domain Parameters 

ECDSA requires that the private/public key pairs used for digital signature generation 

and verification be generated with respect to a distinct set of domain parameters. These 

domain parameters may be common to a group of users and may be public. Domain 

parameters may remain fixed for an extended time. [12] ECDSA parameters are: 

• q – order of the elliptic curve field 𝔽p  

• a, b – parameters of elliptic curve equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
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• G – base point generating cyclic subgroup 

• n – an order of cyclic subgroup generated by G 

• h – a cofactor of cyclic subgroup generated by G 

ECDSA Domain Parameters generation 

Chosen domain parameters directly affects security of the scheme. Certain types of 

elliptic curves are rather weak and allow the use of special algorithms for efficiently 

solving the discrete logarithm problem [13]. In computer systems and cryptographic 

protocols using ECDSA usually recommended elliptic curve domain parameters are 

implemented. The most widely used ECDSA Domain Parameters are NIST P-256 

(secp256r1), NIST P-384 (secp384r1), NIST P-526 (secp521r1), Curve25519. [14] 

ECDSA Key Generation  

1. ECDSA private key d – is randomly chosen integer from a range 1 < 𝑑 <

(𝑛 − 1), where n an order of cyclic subgroup generated by G 

2. ECDSA public key Q – is a point on elliptic curve over 𝔽p calculated with 

formula: 𝑄 = 𝑑𝐺, where G is base point generating cyclic subgroup 

ECDSA signature generation (signing) 

• Generate (pseudo)randomly integer parameter k in range 1 < 𝑑 < (𝑛 − 1). 

Parameter k must be regenerated for each signature and must be kept in secret. 

• Calculate point using scalar multiplication 𝑃 = 𝑘𝐺 

• Let M be message. Calculate hash value of the message h=H(M) 

• The signature on a message M is the pair of numbers (r, s) computed according to 

the formulas:  

o  𝑟 = 𝑥𝑝 𝑚𝑜𝑑 𝑛, where 𝑥𝑝 – x-coordinate of point P. 

o 𝑠 = (𝑘−1(ℎ + 𝑟𝑑)) 𝑚𝑜𝑑 𝑛, where 𝑘−1 is inverse of parameter k modulo 

n. 
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If either r, or s is equal to zero, signature was generated incorrectly, and it must be 

generated again with the new parameter k. The pair (r, s) is ECDSA signature on 

message M. 

ECDSA signature verification 

• Let M be a message, let (r, s) be ECDSA signature that needs to be verified. Check 

if 0 < 𝑟 < 𝑛 and 0 < 𝑠 < 𝑛. In case either condition is not satisfied the signature 

must be rejected. 

• Calculate values 𝑢1 = (𝑠−1ℎ) 𝑚𝑜𝑑 𝑛 and 𝑢2 = (𝑠−1𝑟) 𝑚𝑜𝑑 𝑛 

• Calculate point using scalar multiplication 𝑃′ = 𝑢1𝐺 + 𝑢𝑄 

• If 𝑟 = 𝑥𝑃′ 𝑚𝑜𝑑 𝑛, then the signature (r, s) is verified and the verifier can have 

enough confidence that the received message was sent by the party holding the 

ECDSA private key d corresponding to public key Q. 

ECDSA security. 

Security of ECDSA relies on the ECDLP problem. 

Definition 2.6.1. (Elliptic Curve Discrete Logarithm Problem): Let E be elliptic 

curve over finite field 𝔽p with defined operation of algebraic addition, P and Q are point 

of E and elements of 𝔽p. The elliptic curve discrete logarithm problem is to find such 

integer n that 𝑛𝑃 = 𝑄.  

At the moment of conducting this research, there is no non-quantum algorithm capable 

of computing discrete logarithms in polynomial time.  

2.7 Security level 

Definition 2.7.1. (Security level): If a symmetric cryptographic system with n-bit keys 

has no general attack faster than exhaustive key search (so called bruteforce), then it is 

traditionally said to have security level n. In general, a cryptographic system has security 

level n if a successful general attack of retrieving key can be expected to require effort 

approximately to operations 2𝑛. [15] 
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For cryptographic systems like Advanced Encryption Standard (AES) and Data 

Encryption Standard (DES) the length of a key equals level of security. [Table 1] 

 

Name Key length (bits) Security level 

DES 56 56 

AES-128 128 128 

AES-192 192 192 

AES-256 256 256 

Table 1: Security level table for AES and DES [15] 

 

Digital signatures algorithms described in Sections 2.4-2.6 to achieve security level of n 

require larger key length than n. The reasoning for that these digital signatures rely on 

mathematical problems. Even though currently there is no efficient polynomial-time 

algorithms for breaking factorization problem, DLP and ECDLP, there are algorithms to 

solve these problems faster than exhaustive key search. [16] [17] [18]. 

Following table comparing RSA, DSA and ECDSA  key sizes required to obtain exact 

security level [Table 2]. RSA and DSA key sizes are bigger than ECDSA keys with same 

level of security. ECDSA keys not only uses less memory space, but key and signature 

generation are faster than RSA and DSA.  
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Date Security 

Strength 

Symmetric 

algorithms 

Factoring 

modulus 

(RSA) 

Discrete 

Logarithm 

(DSA) 

(Key/Group) 

Elliptic 

Curve 

(ECDSA) 

2019-2030 112 AES-128 

(3TDEA) 

2048 224/2048 224 

2019-2030 

& beyond 

128 AES-128 3072 256/3072 256 

2019-2030 

& beyond 

192 AES-192 7680 384/7680 384 

2019-2030 

& beyond 

256 AES-256 15360 512/15360 512 

Table 2: NIST key size recommendations [19] 

2.8 Multiparty computation 

Multiparty computation (MPC) is a joint computation of some function that is 

performed by several parties. [20] There are different techniques to perform multiparty 

computation with secret sharing being one of these techniques. Intuitively, it can be seen 

as dividing input value between the several parties and allowing them to collaborate to 

obtain the evaluations of some function. These results can be combined to reconstruct the 

output value (final evaluation) of the function.  

Oblivious transfer (OT) is a cryptographic primitive that is widely used in multiparty 

computation.  The simplest version is 1-out-of-2 oblivious transfer that is an interactive 

protocol between sender and receiver. Sender has two different messages 𝑥1 and 𝑥2 and 

receiver wants to get one of these messages without revealing to the sender which 

message exactly they want to get. [21]   

Gilboa OT-Multiplication : this function takes two inputs from each party, and returns 

these inputs to each party as additive secret shares of the product of those two inputs. (G-
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OT(𝑎, 𝑏) = 𝑘1, 𝑘2, where 𝑎 and 𝑏 are inputs from parties, 𝑘1, 𝑘2 − additive secret shares 

such as 𝑘1 + 𝑘2 [22] 

2.9 Zero Knowledge Proof 

Zero-knowledge proof (ZKP) is an interactive protocol between prover and verifier that 

enables to prove knowledge of secret data without revealing the data. The prover and 

verifier both have common input 𝑥, prover has additional private input (witness) 𝑤 that 

satisfies the relation (𝑥, 𝑤) ∈ 𝑅. The example of such relation could be hash function 𝑥 =

𝐻(𝑤), in this case witness is input to the hash function. During the execution of protocol 

prover attempts to prove the knowledge of witness to the verifier without telling the 

verifier any additional information about data needed to be proven [23]. ZKP should 

satisfy the following properties [24]: 

• Completeness: the proof succeeds, if both parties are honest and run the protocol 

according to the definition. 

• Soundness: prover cannot prove something wrong, only with some negligible 

probability. 

• Zero-knowledge:  verifier learns nothing except that the statement being proven is 

true or false.  

For example, assume having secure public key encryption scheme, where public key is 

used to encrypt data and secret key is used to decrypt ciphertext. Prover wants to show 

verifier that they have access to the secret key that corresponds to the public key that 

verifier has, the protocol works as follows: 

• Verifier encrypts some message of their choice with prover’s public key and sends 

the ciphertext to the prover. 

• Prover uses their secret key to decrypt ciphertext and sends the result of decryption 

back to the verifier. 

• Verifier compares the message received from the prover and the message that was 

originally encrypted. Verifier accepts the proof if and only if both messages are 

equal. [23] 
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Commitments 

The concept that is closely related to ZKP is a commitment scheme, interactive protocol 

between prover and verifier. Commitment enables prover to commit to some value, 

without immediately revealing that value and without being able to change the value 

inside the commitment after it was outputted. Later, prover can reveal the value that was 

inside the commitment and verifier can check if revealed value corresponds to the initial 

commitment [23]. Two properties that should be satisfied in commitment scheme are: 

• Binding property: after outputting the commitment, prover should not be able to 

change the value inside the commitment. 

• Hiding property: after receiving the commitment from prover, verifier cannot 

tell what is inside the commitment until prover opens the commitment. 

Example of a commitment scheme could be illustrated with hash functions. Prover has 

some message m what they want to commit to, prover hashes the message H(m) and sends 

it to the verifier. Verifier, seeing only hash H(m), cannot tell what message is inside the 

commitment. Later, prover can open the commitment by sending the message m to the 

verifier. Verifier hashes the message received from the prover and compares that hash 

with the initial commitment, if these hashes are equal, verifier accepts commitment. 

2.10 Paillier Cryptosystem 

Definition 2.12.1. (Additive homomorphism): property of a ciphertext when encrypting 

two messages a and b and then adding ciphertexts together gives the same result as adding 

messages together and only then encrypting them, Enc(a) + Enc(b) = Enc(a+b) 

Definition 2.12.2. (Multiplicative homomorphism): property of a ciphertext when 

encrypting two messages a and b and then multiplying ciphertexts together gives the same 

result as multiplying messages together and only then encrypting them, Enc(a) * Enc(b) 

= Enc(a*b) 
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Paillier encryption scheme is not as widely used as for example [25] encryption scheme, 

but it is very useful in some applications. More specifically, Paillier encryption scheme 

has additive homomorphic property (Definition 2.12.1). Due to the additive 

homomorphic property, Paillier encryption scheme is used in many multi-party 

computation applications, including threshold signatures. Paillier encryption scheme uses 

multiplicative group 𝑍𝑁2
∗  and it is defined as follows: 

Key Generation: 

1. generate two distinct odd prime numbers p and q of equal length 

2. compute 𝑁 = 𝑝𝑞 and ϕ(N) = (p − 1)(q − 1) 

3. Paillier public key is N, Paillier private key is (𝑁, ϕ(𝑁)). 

Encryption: 

1. Plaintext should be 𝑚 < 𝑁 

2. Choose random 𝑟 ← 𝑍𝑁
∗ , s.t. gcd(r, N) = 1 

3. Compute ciphertext as 𝑐 ≔ [(1 + 𝑁)𝑚 ⋅ 𝑟𝑁  𝑚𝑜𝑑 𝑁2] 

Decryption: 

1. Ciphertext should be 𝑐 < 𝑁2 

2. Compute plaintext as 𝑚 ≔ [
[[𝑐ϕ(𝑁)𝑚𝑜𝑑𝑁2]−1]

𝑁
⋅ ϕ(𝑁)−1 𝑚𝑜𝑑 𝑁] 

Security  

Definition 2.12.3. (Decisional Composite Residuosity Assumption): Let 𝑛 be a 

composite number, 𝑧 be an integer. Decisional Composite Residuosity Assumption 

(DCRA) states that it is hard to find integer 𝑦 such as 𝑦 ≡ 𝑧𝑛 (𝑚𝑜𝑑 𝑛2) (it is hard to 

decide whether 𝑧 is an 𝑛-residue modulo 𝑛2. Pallier cryptosystem security relies on 

DCRA.  



40 

Definition 2.12.4. (Subgroup membership problem): Let 𝐺 be a group, let 𝐻 be its 

subgroup. Subgroup membership problem (SMP) states that it is hard to decide 

whether a given element  𝑔 ∈ 𝐺 belongs to H. [26] 
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3 Two-party ECDSA  

3.1 Threshold signatures schemes (TSS) 

Threshold signature schemes is a special case of MPC. In threshold signature scheme 

(TSS) several parties share a private key between them. Only when an authorized subset 

of parties is met, they can produce a digital signature. This topic was initially studied in 

1990, but due to the lack of interest, it was abandoned until recent years of cryptocurrency 

popularization. For scenario t parties of m needed, TSS is divided in three steps: 

• Key Generation: there must be a public key generated, which will be used by 

anyone to verify signatures. Additionally, an individual secret for each party must 

be created, which will be a secret share, must be created. For generated public key 

available to all parties and secret shares for each party the following properties 

must be met:  

o Privacy: no secret shares data is leaked between the parties. 

o Correctness: the public key should always correspond to generated secret 

shares. 

• Signature generation (signing): Using either t or more party secret shares, a 

digital signature is created for some abstract message with the property of privacy 

ensures that no leakage of secret shares occurred during the computation. The 

signing guarantees that a quorum t parties is needed to sign message.  

• Verification: to be compatible with non-threshold signatures, everyone with 

knowledge of the public key should be able to verify and validate the digital 

threshold signature. 

Due to the scope of this research, further I will use term TSS for two party scenarios 

(Two-Party Signature). In this scenario two parties (the client and the server) jointly: 

• Generate secret shares with corresponding public key 
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• Produce digital signature. This signature can be produced only by both 

parties’ cooperation. 

• Periodically refresh parties’ sharing of the secret key.  

The Two-Party Signature generation remains secure if both parties are not compromised 

between successive refreshes. 

3.2 Problem of Threshold ECDSA 

The implementation of ECDSA in TSS in a secure manner is challenging. For ECDSA 

threshold scheme, the goal is to create secret shares for client and server. Recall the 

formula for ECDSA signature: 

𝑠 = (𝑘−1(𝐻(𝑀) + 𝑟𝑑)) 𝑚𝑜𝑑 𝑛 

where M is a message, H is a hash function, d is the ECDSA private key, n is order of 

cyclic subgroup, k is the instance key, 𝑘−1 is inverse modulo n, r is the x-coordinate of 

the elliptic curve point 𝑅 = 𝑛𝐺 (G being the generator for the curve). 

In ECDSA signing, the equation for computing ECDSA signature includes 𝑘−1. Assume 

we made shares of k, instance key, to client (share 𝑘1) and server (share 𝑘2). This brings 

two scenarios: 

1. 𝑘 = 𝑘1 + 𝑘2 𝑚𝑜𝑑 𝑛. (Additive sharing) In this case it is believed difficult to 

compute secret shares 𝑘1
′ , 𝑘2

′  such that met condition: 𝑘1
′ + 𝑘2 

′ = 𝑘−1 𝑚𝑜𝑑 𝑛 

2. 𝑘 = 𝑘1 ∗ 𝑘2 𝑚𝑜𝑑 𝑛. (Multiplicative sharing) In this case it is possible to compute 

by each party locally 𝑘𝑖
′ = 𝑘𝑖

′ 𝑚𝑜𝑑 𝑛. But it brings up the problem of combing 

𝑘1
′ , 𝑘2

′  to k securely over the channel of communication between server and client. 
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3.3 Related work 

3.3.1 Two-Party Generation of DSA Signatures (P. MacKenzie, M. K. Reiter) 

This paper was proposed in 2001 by Philip MacKenzie and Michael K. Reiter [27]. Until 

2017 it was the most efficient DSA/ECDSA two-party threshold signature scheme. It was 

based on multiplicative secret shares of ECDSA private key 𝑑 and instance key  𝑘. 

Signature generation 

Each party (𝑃1 and 𝑃2) has secret shares 𝑑1, 𝑑2 and 𝑘1, 𝑘2 such as 𝑘 = 𝑘1 ∗ 𝑘2 and 𝑑 =

𝑑1 ∗ 𝑑2. Authors of the scheme proposed using Paillier encryption, due to its additive 

homomorphic property, to produce d and k securely: 

1. Party 𝑃1 computes 𝑐1 = 𝐸𝑛𝑐𝑝𝑘1
(𝑘1

−1 ∗ 𝐻(𝑚)), 𝑝𝑘1 – party 𝑃1 public key 

2. Party 𝑃1 computes 𝑐2 = 𝐸𝑛𝑐𝑝𝑘1
(𝑘1

−1 ∗ 𝑑1 ∗ 𝑟) 

3. Party 𝑃1 sends 𝑐1 and 𝑐2 to party 𝑃2 

4. Party 𝑃2 computes 𝑐 = (𝑘2
−1 ⊗ 𝑐1) ⊕ ((𝑘2

−1 ∗ 𝑑2) ⊗ 𝑐2) = 𝐸𝑛𝑐(𝑘2
−1(𝑘1

−1 ∗

𝐻(𝑚)) + (𝑘2
−1 ∗ 𝑑1) ∗ (𝑘1

−1 ∗ 𝑑1 ∗ 𝑟) = 𝑘−1 ∗ (𝐻(𝑚) + 𝑟 ∗ 𝑑)) (encryption of 

ECDSA signature), where ⊗ - scalar multiplication, ⊕ - homomorphic addition 

Security  

However, using Paillier encryption requires ZKP to protect from malicious adversaries. 

One of the issue is party 𝑃1 Paillier encryptions 𝑐1 and 𝑐2 include 𝑘1
−1 when party 𝑃2 only 

knows 𝑅1 = 𝑘1𝐺, but not 𝑅2 = 𝑘1
−1𝐺. Another issue is party 𝑃1 must prove that the 

Paillier encryptions 𝑐1 and 𝑐2 exist in the exact range. Such ZKP causes this scheme to 

work inefficiently: digital signature generation takes several seconds, which is not 

appropriate for modern communication.  

Due to such low-efficient characteristic, Philip MacKenzie and Michael K. Reiter 

threshold ECDSA scheme, only relevance was to future TSS academic research. It has 

not been used in any industry protocols, programmes, or cryptocurrencies. These issues 

are the reason it is excluded from Chapter 5 comparison. 
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3.3.2 Fast Secure Two Party ECDSA Signing (Yehuda Lindell) 

In 2017 Yehuda Lindell proposed a Two-Party ECDSA protocol [28] which had better 

performance compared to [27], but was partly based on it. The main Lindell’s approach 

was to remove as much ZKP as possible improving signature generation speed with 

similar security of P. MacKenzie, M. K. Reiter approach. 

Key Generation 

1. 𝑃1 generates random 𝑑1 and calculates commitment 𝑄1 = 𝑑1𝐺 

2. 𝑃1 sends commitment 𝑄1 to party 𝑃2 along with ZKP of its discrete log.  

3. 𝑃2 generates random 𝑑2 and calculates 𝑄2 = 𝑑2𝐺  

4. 𝑃2 sends commitment 𝑄2 to party 𝑃1 along with ZKP of its discrete log 

5.  𝑃1 decommits, generates a Paillier key pair (𝑝𝑘, 𝑠𝑘) and computes 𝑐𝑘𝑒𝑦 =

𝐸𝑛𝑐𝑝𝑘(𝑑1). 

6. 𝑃1 sends encrypted key 𝑐𝑘𝑒𝑦  to party 𝑃2 

7. 𝑃1 proves to 𝑃2 that a value encrypted in a given Paillier ciphertext is the 

discrete log of a given Elliptic curve point ((𝑐𝑘𝑒𝑦,  p𝑘,  𝑄1)  ∈ 𝐿𝑃𝐷𝐿) 

8. 𝑃2 verifies the proof. If proof was not verified - 𝑃2 aborts key generation 

process. 

9. Both parties locally compute the output, elliptic curve point 𝑄 =  𝑑1 ∗ 𝑄1  =

 𝑑2 ∗ 𝑄1  =  𝑑1 ∗ 𝑑2 ∗ 𝐺 = 𝑑𝐺 

Signature generation (signing) 

Parties 𝑃1 and 𝑃2 hold multiplicative secret shares such as 𝑑 = 𝑑1 ∗ 𝑑2. Party 𝑃2 holds 

𝑐𝑘𝑒𝑦 − a Paillier encryption of party’s 𝑃1 secret share 𝑑1. 

1. 𝑃1 and 𝑃2 locally generate random 𝑘1 and 𝑘2  

2. 𝑃1 sends commitment 𝑅1 = 𝑘1𝐺 to party 𝑃2 along with ZKP of its discrete log.  
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3. 𝑃2 sends commitment 𝑅2 = 𝑘2𝐺 to party 𝑃1 along with ZKP of its discrete log 

4. 𝑃2 verifies the proof. If proof was not verified - 𝑃2 aborts key generation process. 

5. Both parties locally compute 𝑅 = 𝑘1 ∗ 𝑘2 ∗ 𝐺 and 𝑟 = 𝑟𝑥  𝑚𝑜𝑑 𝑛 

6. Party 𝑃2 locally computes following: 

a. 𝑐1 = 𝐸𝑛𝑐𝑝𝑘((𝑘2
−1 ∗ 𝐻(𝑚) 𝑚𝑜𝑑 𝑛), where 𝑝𝑘 − party′s 𝑃1 Paillier public 

key 

b. 𝑣 = (𝑘2
−1 ∗ 𝑟 ∗ 𝑑2) 𝑚𝑜𝑑 𝑛 

c. 𝑐2 = 𝑣 ⊗ 𝑐𝑘𝑒𝑦  

d. 𝑐′ = 𝑐1 ⊕ 𝑐2 

7. Party 𝑃2 sends 𝑐′ to party 𝑃1.  

8. Party 𝑃1 decrypts 𝐷𝑒𝑐𝑠𝑘(𝑐′) = 𝑠′, 𝑠𝑘 − party’s 𝑃1 Paillier private key.  

9. Party 𝑃1 calculates 𝑠 = 𝑘1
−1 ∗ 𝑠′ and outputs ECDSA signature   (𝑟, 𝑠) 

 

Figure 11 : Fast Secure Two Party ECDSA Signing [28] 



46 

Security 

The main difference between Lindell’s scheme and [27]: security of the protocol relies 

that party 𝑃2 and only party 𝑃2 obtain during key generation 𝑐𝑘𝑒𝑦 = 𝐸𝑛𝑐𝑝𝑘(𝑑1): ECDSA 

private key secret share of party 𝑃1 encrypted with 𝑃1 Paillier public key. That brings 

another issue – using ZKP prove to party 𝑃2 that 𝑐𝑘𝑒𝑦  contains the discrete log of a given 

Elliptic curve point G. If such proof is not performed, information may be revealed about 

𝑃2 secret share to a malicious P. That is the reason Lindell proposed new highly efficient 

zero-knowledge proof for the language LPDL in this paper [28]. 

In case of malicious 𝑃1: party 𝑃1 only participates in the generation of ECDSA parameter 

R. If we assume ZKP used is efficient (need to break ECDLP), corrupted party cannot do 

anything malicious and at the same time no additional zero-knowledge proofs are needed. 

In case of malicious 𝑃2: the main risk is party 𝑃2 can send invalid (corrupted) value 

𝑐′ to party 𝑃1. If it happens, then 𝑃1 gets the ciphertext 𝑐′, decrypts it’s Paillier private 

key and multiplies it with 𝑘1
−1. Produced value is ECDSA signature and 𝑃1 can verify 

whether the obtained signature is correct. Thus, no additional ZKP is required. 

Lindell’s proposed scheme could be used for client-server scenario; however it is patented 

[29] which limits its usage in open-source projects. 

 

3.3.3 Two-Party ECDSA from Hash Proof Systems and Efficient Instantiations  

In 2019 Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and 

Ida Tucker proposed their scheme for Two-Party ECDSA [30]. Their scheme is built on 

Lindell’s paper [28]. The authors were trying to fix following shortcomings in Lindell’s 

scheme: 

1. Lindell used artificial and interactive assumption on Paillier scheme proving 

security of protocol under malicious party 𝑃2. In the other terms, uses guessing 

aborting a protocol under malicious 𝑃2 
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2. Sending encrypted secret share 𝑑1 with Paillier requires additional highly cost 

range checks: 𝑑1 must be both in message space of Paillier cryptosystem and 

less than n (an order of cyclic subgroup generated by point G). 

Main goals of authors’ proposed scheme were: 

• Secure scheme not relying on artificial and interactive assumptions. 

• Tight security proof of the scheme 

• No range proofs for message space  

To achieve these goals authors decided to use variation of Paillier cryptosystem proposed 

in [31] also known as Hash Proof System (HPS). This system relies on Subgroup 

Membership Problem (SMP, Definition 2.12.4.). Using this cryptosystem does not 

compromise the system the way Paillier does in Lindell’s approach [28]. 

Key generation. 

1.  𝑃1 and 𝑃2 randomly generate 𝑑1 and 𝑑2 accordingly. 

2. 𝑃1and Bob computes 𝑄1 = 𝑑1𝐺 and 𝑄2 = 𝑑2𝐺 accordingly. 

3. 𝑃1sends commitment 𝑄1 to party 𝑃2 along with ZKP of its discrete log.  

4. 𝑃2 sends commitment 𝑄2 to party 𝑃1along with ZKP of its discrete log.  

5. If none of the previous commitments were sound – protocol aborts. 

6. 𝑃1and 𝑃2 compute ECDSA public key 𝑄 = 𝑑1 ∗ 𝑄2 = 𝑑2 ∗ 𝑄1 

7. 𝑃1 generates HPS key pair (sk, pk) and send 𝐸𝑛𝑐𝑝𝑘(𝑥1) to 𝑃1 

Signing 

1. 𝑃1 and 𝑃2 randomly generate 𝑘1 and 𝑘 accordingly. 

2. 𝑃1and Bob computes 𝑅1 = 𝑘1𝐺 and 𝑅2 = 𝑘2𝐺 accordingly. 

3. 𝑃1sends commitment 𝑅1 to party 𝑃2 along with ZKP of its discrete log.  
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4. 𝑃2 sends commitment 𝑅2 to party 𝑃1 along with ZKP of its discrete log 

5. If none of the previous commitments were sound – protocol aborts. 

6. 𝑃1and 𝑃2 compute ECDSA public key 𝑅 = 𝑘1 ∗ 𝑅2 = 𝑘2 ∗ 𝑅1 

7. Party 𝑃2 homomorphically calculate 𝐸𝑛𝑐𝑝𝑘(𝑠′) = 𝐸𝑛𝑐𝑝𝑘(𝑘2
−1(𝐻(𝑚) + 𝑟𝑥𝑥1)) 

8.  Party 𝑃1 decrypts 𝐷𝑒𝑐𝑠𝑘 (𝐸𝑛𝑐𝑝𝑘(𝑠′)) = 𝑠′ and calculates signature 𝑠 =

𝑘1
−1𝑠′𝑚𝑜𝑑 𝑛.  

9. Party 𝑃1 verifies signature output. (r,s) 

4 Algorithm Specification (Secure Two-party Threshold 

ECDSA from ECDSA Assumptions) 

This paper was proposed by Jack Doerner and Yashvanth Kondi and Eysa Lee and abhi 

shelat in 2018 [1]. Authors criticize Lindell’s scheme dependence upon the Paillier 

encryption, since security of it relies upon DCRA, which is alien to ECDSA.,The Paillier 

cryptosystem contains computationally expensive operations compared to Elliptic Curve 

operations. They address this issue by developing the first Two-Party ECDSA scheme 

that is based solely upon Elliptic Curves and the assumptions that the ECDSA signature 

scheme itself already makes. 

Once again recall the formula for ECDSA signature: 

𝑠 = (𝑘−1(𝐻(𝑀) + 𝑟𝑑)) 𝑚𝑜𝑑 𝑛 

where M is a message, H is a hash function, d is the ECDSA private key, n is order of 

cyclic subgroup, k is the instance key, 𝑘−1 is inverse modulo n, r is the x-coordinate of 

the elliptic curve point 𝑅 = 𝑛𝐺 (G being the generator for the curve). Q=dG is the 

ECDSA public key.  
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Main difference of this scheme from the previous – authors decided to use Gilboa OT 

multiplication [22] to compute secret shares. 

4.1.1 Key generation 

Let party 𝑃1 be called Alice, let party 𝑃2 be called Bob. 

10. Alice and Bob randomly generate 𝑑𝐴 and 𝑑𝐵 accordingly. 

11. Alice and Bob computes 𝑄𝐴 = 𝑑𝐴𝐺 and 𝑄𝐵 = 𝑑𝐵𝐺 accordingly. 

12. Alice sends commitment 𝑄𝐴 to Bob along with ZKP of its discrete log.  

13. Bob sends commitment 𝑄𝐵 to Bob along with ZKP of its discrete log.  

14. If none of the previous commitments were sound – protocol aborts. 

15. Alice and Bob compute 𝑄 = 𝑑𝐴 ∗ 𝑄𝐵 = 𝑑𝐵 ∗ 𝑄𝐴 

 

4.1.2 Signature generation 

Signing can be split in 4 logical (not proceeding) steps: 

• Multiplication: Alice and Bob using Gilboa OT-based multiplication protocol 

[32] calculate their multiplicative shares in additive shares. 

• Instance Key Exchange: Alice and Bob calculate point R for ECDSA signature 

• Consistency check: Alice and Bob verify that the first Gilboa multiplication uses 

inputs consistent with the value R from Instance Key Exchange step. In protocol 

it is concatenating a random padding 𝜑 to Alice’s input, and then combining the 

padding with the Gilboa multiplication output and the known value R in such a 

way that Bob can retrieve the padding only if he is not malicious adversary. 

Second check is need for multiplications being consistent with each other and with 

the generated public key 𝑄. 

• Signature and Verification: The parties reconstruct the signature, which is given 

to Bob. If the signature is verified with ECDSA public key, then Bob outputs it. 
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Two-party signing algorithm is: 

1. Bob randomly generates his secret share 𝑘𝐵 of instance key 𝑘 and computes point 

𝐷𝐵 = 𝑘𝐵 ∗ 𝐺. After that Bob sends 𝐷𝐵 to Alice. 

2. Alice randomly generates instance key seed 𝑘𝐴
′  and calculates her secret share 

𝑘𝐴 = 𝐻(𝑅′) +  𝑘𝐴
′ , where 𝑅′ = 𝑘𝐴

′ ∗ 𝐷𝐵. After that Alice computes point 𝑅 =

𝑘𝐴 ∗ 𝐷𝐵 

3. Alice generates random padding φ (1< φ <𝑛) and calculates with Bob using 

Gilboa OT-Multiplication (𝐹𝑀𝑢𝑙) two additive shares 𝐹𝑀𝑢𝑙(φ + k𝐴
−1, 𝑘𝐵

−1) = φ ∗

k𝐵
−1 +  k𝐴

−1 ∗ 𝑘𝐵
−1 = 𝑡𝐴

1 + 𝑡𝐵
1 receiving their padded joint inverse instance key. 

4. Alice and Bob calculates using Gilboa OT-Multiplication (𝐹𝑀𝑢𝑙) two additive 

shares 𝐹𝑀𝑢𝑙(𝑑𝐴 ∗ k𝐴
−1, 𝑑𝐵 ∗ 𝑘𝐵

−1) = φ ∗ k𝐵
−1 +  k𝐴

−1 ∗ 𝑘𝐵
−1 = 𝑡𝐴

2 + 𝑡𝐵
2 receiving 

their joint private key over their joint instance key. 

5. Alice send 𝑅′ to Bob 

6. Bob calculates 𝑅 = 𝐻(𝑅′) ∗ 𝐷𝐵 + 𝑅′. Now both Alice and Bob share point R with 

coordinates (𝑟𝑥 , 𝑟𝑦). 

7. Alice using ZKP proves discrete log of 𝑅 and 𝑘𝐴. Bob receives a bit indicating 

whether the proof was sound. If it was not, he aborts 

8. Alice and Bob compute 𝑚′ = 𝐻(𝑚) 

9. Alice computes check value using padding from step 3: Г1 = 𝐺 +  φ ∗ kA ∗ 𝐺 −

𝑡𝐴
1 ∗ 𝑅 

10. Alice sends calculated encryption ηφ = 𝐻(Г1 +  φ) + to Bob 

11. Alice computes her signature share 𝑠𝐴 = (𝑚′ ∗ 𝑡𝐴
1) + (𝑟𝑥 ∗ 𝑡𝐴

2) and the second 

check value Г2 = (𝑡𝐴
1 ∗ 𝑄) − (𝑡𝐴

2 ∗ 𝐺). Alice encrypts 𝑠𝐴  with Г2 and then sends 

the encrypted value to Bob: ηs = 𝐻(Г2) + 𝑠𝐴 

12. Bob computes check values Г1 and Г2 and reconstructs the signature: 
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• Г1 = 𝑡1 ∗ 𝑅 

• φ = ηφ − 𝐻(Г1) 

• 𝜃 = 𝑡𝐵
1 − φ ∗ kB

−1 

• 𝑠𝐵 = (𝑚′ ∗ 𝜃) + (𝑟𝑥 ∗ 𝑡𝐵
2) 

• Г2 = (𝑡𝐵
2 ∗ 𝐺) − ( 𝜃 ∗ 𝑄) 

• 𝑠 = 𝑠𝐵 + ηs − 𝐻(Г2) 

13. Bob verifies value (𝑠, 𝑟𝑥) with 𝑄 if it is valid ECDSA signature on message m. If 

the verification fails, Bob aborts protocol. If verification succeeds, he outputs 

(𝑠, 𝑟𝑥)=𝜎 

 

Figure 12: Illustrated Two-party Signing Scheme. Operations are color-coded according to the logical 

component with which they are associated Gilboa Multiplication , Instance Key Exchange Consistency 

Check , and Verification/Signing. [1] 
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4.1.3 Security 

In the papers author proves this scheme is secure under CDH (Definition 2.5.2.) and the 

assumption that the resulting signature is itself secure. These two assumptions do not 

require no additional assumptions relative to ECDSA itself. 

5 Implementation 

This chapter introduces the details of this research implementation as well as the 

benchmark results of the proposed implementation. 

5.1 Proposed implementation 

5.1.1 Programming language and libraries 

The author created proof-of-concept implementation of 2-of-2 protocol proposed in 

“Secure Two-party Threshold ECDSA from ECDSA Assumptions” [1]  in Java 

programming language, version 1.8. [33]. The code to implementation can be accesses 

using this link (https://github.com/Animehater/thesis). To implement client-

communication author used standard libraries of Java Core and Java EE. For 

implementing cryptographic and mathematical operations used in protocol author used: 

1. Java Cryptography Extension (JCE) and Java Cryptography Architecture 

(JCA): standard Java API is created to provide an abstraction layer for 

application developers. Their architecture is called provider-based architecture. 

JCE and JCA provide a set of classes and interfaces that a program/application 

developer writes to, together with factories that allows the creation of the objects 

that conform to the interfaces and classes. The collections of classes that provide 

these implementation objects are called cryptographic providers. [34] In 

implementation JCE and JCA are only used as level of abstraction. 

2. BouncyCastle: cryptographic library developed by a group of volunteers and 

cryptology enthusiasts. Includes a lightweight cryptographic API, a provider for 

the JCE and JCA, a library for reading and writing encoded ASN.1 objects and 

https://github.com/Animehater/thesis
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different generators/processors for X.509 certificates, S/MIME and CMS, 

OpenPGP, etc. [35].  

In implementation author used elliptic curve primitives. finite fields, ECDSA key 

pairs, secure random generation, hash functions. 

 

Figure 13: JCE and JCA communication with provider [34] 

Self-implemented cryptographic primitives: unfortunately, BouncyCastle does not 

support primitives like Paillier encryption, Oblivious Transfer, ZKP, Gilboa OT-

Multiplication, hash functions that can take elliptic curve point’s coordinates as input. 

Eventually, all important primitives were implemented during this research [36] 

5.1.2 Technical Environment 

For conducting research, the author used following laptops: 

• Lenovo Yoga 300 with 2 core Intel(R) Celeron(R) CPU N3060 @ 1.60GHz CPU 

as a client (Ubuntu 18.04). 

• Lenovo X1 Carbon with 2 core Intel Core i5-3337 CPU N3060 @ 1.80GHz CPU 

as a server (Windows 10). 

All communication was conducted in LAN using WiFi Pineapple with following 

characteristics: 

• CPU: 533 MHz MIPS 74K Atheros AR9344 SoC 

• Memory: 64 MB DDR2 RAM 

• Disk: 2 GB NAND Flash 
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• Wireless: Atheros AR9344 + Atheros AR9580, both IEEE 802.11 a/b/g/n with quad 

integrated skybridge amplifiers and included 5 dBi antenna for a high 29 dBm gain EIRP 

• Ports: (4) SMA Antenna, RJ45 Fast Ethernet, Ethernet over USB, Serial over USB, 

USB 2.0 Host, 12V/2A DC Power 

5.1.3  Implementation protocol parameters 

As ECDSA parameters for implementation testing author chose - NIST P-256 

(secp256r1), NIST P-384 (secp384r1), NIST P-526 (secp521r1) curves. Alice (first party) 

– was chosen as client, Bob (second party) – was chosen as server. Such decision is 

motivated that in [1] scheme, Bob outputs signature or aborts protocol (4.1.2 Step 13). 

Even though both client and server can be compromised – author made assumption that 

server has less chances to be compromised giving him ability to abort protocol more often 

than client. 

For each curve, the author ran 2000 execution of signing generation and 250 executions 

key generation.  

5.2 Northeastern University implementation  

Authors of [1] created a proof-of-concept implementation of their 2-of-2 ECDSA signing 

protocol in the Rust language. Implementation was benchmarked by Amazon instances 

from Amazon’s Virginia datacentre, both running Ubuntu 16.04 with Linux kernel 4.4.0. 

The code was compiled in Rust 1.27. The bandwidth between their instances was 

measured to be 5GBits/Second, and the round-trip latency to be 0.2 ms. They used P-256 

curve standardised by NIST [12]. 

Since their implementation is proof-of-concept of protocol, this Rust implementation 

does not support P-384 and P-521 curves and does not compile on Windows or Mac 

without additional software installations. [37] 

5.3 Key Generation 

Due to the fact [37] does not support P-384 and P-521, there is no data on result for these 

curves from Northeastern paper [1]. Lindell [28] and Castagnos [30] papers provided data 

for all three standard curves. 
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Curve / Mean 

time 

Lindell [28] Castagnos [30] Northeastern 

[1] 

This paper 

P-256 2456 ms 9 350 ms 43.41 ms 50 ms 

P-384 2440 ms 35 491 ms - 713 ms 

P-521 3535 ms 103 095 ms - 1322 ms 

Table 3:Running times for key generation 

Due to the fact [37] does not support P-384 and P-521, there is no data on result for these 

curves from Northeastern paper [1]. Lindell [28] and Castagnos [30] papers provided data 

for all three standard curves. 

Curve / Mean 

Time 

Lindell [28] Castagnos [30] Northeastern 

[1] 

This paper [36] 

P-256 36.8 ms 170 ms 3.77 ms 8.32 ms   

P-384 47.11 ms 649 ms - 26.21 ms 

P-521 78.19 ms 1888 ms - 68.91 ms 

Table 4:Running times for signature generation 

5.4 Bandwidth 

All three papers [1] [28] [30] provided data for signing communication costs. 

Table 5: Signing communication costs 

Curve / Mean 

Time 

Lindell [28] Castagnos [30] Northeastern 

[1] 

This paper [36] 

P-256 769 B 178 KiB 169.8 KiB 172.3 KiB 

P-384 897 B 35 491ms 350.7 KiB 373.5 KiB 

P-521 1043 B 103 095ms 615.3 KiB 665.3 KiB 
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6 Conclusion and Future work 

In this work, the author implemented Secure Two-party Threshold ECDSA from ECDSA 

Assumptions scheme. The implementation of the code demonstrated support for, not only, 

P-256 curve, but additionally P-384 and P-521. Support of P-384 and P-521 gives higher 

level of security to author’s implementation. Moreover, my implementation was tested 

on both Ubuntu/Windows, Northeastern university implementation [37] only managed to 

work on Ubuntu 16.04 operation system.  

Compared to results of [28] and [30] the author’s implementation showed best 

performance in signature generation and key generation, which makes [1] perfect for 

client-server scenario. However, author’s implementation requires high network 

bandwidth, making it impossible to run in low bandwidth scenarios. 

Additionally, during the research the author implemented various cryptographic 

primitives which can be transformed in full working API/Library for a further 

cryptographic research. 

Moreover, it is first Java implementation of Secure Two-party Threshold ECDSA from 

ECDSA Assumptions. [36] 

For future research author am planning: 

• Analyze TSS ECDSA signatures for Java Card 

• Make comparison of Multiparty ECDSA schemes 

• Improve bandwidth latency in scheme [1] 
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