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Introduction

... all models are approximations.
Essentially, all models are wrong, but
some are useful. However, the
approximate nature of the model must
always be borne in mind....

George G. E. Box [1]

Motivation and background

The reliability of electricity transmission has improved significantly since the beginning
of the electrical era in the 19th century and most of today’s economic sectors rely on the
quality of supply where even short interruptions can cause major economic losses. There
have been severe economic consequences caused by blackouts in transmission systems
where the costs associated with them have reached billions. The North American blackout
in August 2003 affected nearly 50 million people with a total economic cost of eight to
ten billion dollars [2]. In the same year there were two consecutive blackouts in Europe.
The first started on September 23 in Denmark resulting nearly four million customers
without electricity. Another blackout started on September 28 in Italy which left most of
the country without electricity. Both blackouts started with a regular failure in the grid
but cascaded into blackouts due to malfunctions of the relay-protection systems. A large
amount of investments and additional training has been done to prevent similar blackouts
such as described in [3] but those situations vividly present how a single transmission
system element can cause a catastrophic failure of the system in general.

Transmission systems in Europe have mostly been built after World War Il with an
expected lifetime of around 60 years. As a large amount of assets are reaching their life
expectancy, transmission system operators (TSOs) will be facing a significant wave of asset
replacements in the next decade. According to the ENTSO-E [4] it is expected that European
TSOs will have to invest around 53 billion euros before 2030 to maintain the current level
of security of supply. It is noticeable that nearly 80% of the expenses will be for the
refurbishment of overhead lines (OHLs). This is leading TSOs to develop cost-effective
methodologies for asset management decision-making. The old age of transmission assets
does not always refer to critical asset condition and more sophisticated methodologies
should be used to increase their cost-effectiveness. In some cases there are assets that
are reaching the end of their projected lifetime, but do not exhibit significant degradation.
Many TSOs are moving towards a life cycle management (LCM) system of OHLs to minimize
long-term operating costs and to maximize the useful lifetime of assets by using more
advanced condition monitoring methods that would allow them to move to sophisticated
approaches such as condition- or risk-based maintenance. The key factor in effective
asset management relies in precise investments in assets that are in the most critical
condition or affect the network reliability the most. In addition to condition assessment of
technically sophisticated assets, traditional consumption and production patterns have
also changed noticeably since their installation due to the growth of renewable production
units in electrical systems. Therefore, it is also essential to take into account the economic
consequences associated with possible failures.

The most difficult and also the most critical tasks in improved asset-management
decision-making are seemingly the simplest ones. The determination of actual assets
technical condition and the risks associated with the possible failure of individual assets is a

13



sophisticated process due to the peculiarities of transmission OHLs. A transmission OHL is
a complex group of assets consisting of a large amount of individual components that may
span hundreds of kilometers and cross harsh terrain. That makes the manual inspection
of OHLs’ components relatively costly compared to the cost of a single component. The
key element in an unambiguous and cost-effective asset-management decision-making
methodology is the determination of the optimal moment to replace or repair the asset
just before the failure occurs. For that, the technical condition of OHLs must be monitored
to prevent failures from happening, but also to avoid investments in assets with good
technical condition.

Hypothesis

The thesis is structured to analyze the following hypotheses and to overcome the most
common problems among TSOs regarding asset management of transmission OHLs.

e Classical time-based maintenance (TBM) is not cost effective for OHLs and can be
improved significantly.

e Age is an inaccurate parameter for assets technical condition assessment.

e The unambiguity of traditional visual inspection results can be improved without
additional economic costs.

e Itis possible to predict the Health Index (HI) of assets with high accuracy without
any additional measurements.

e |t is possible to automate visual inspections of OHLs cost effectively using deep
learning techniques.

e Object detection enables to detect defects from images of the same quality as the
visual inspections.

Main objectives and tasks of the thesis

The main purpose of this thesis is to develop a data-driven asset management decision-
making methodology for transmission OHLs to improve the efficiency of current approaches
where assets are usually replaced once they reach the end of their expected lifetime.
Traditionally, transmission OHLs are assets with a lack of condition information due to
their high reliability. Transmission OHLs can reach hundreds of kilometers in length and
cross difficult terrain that makes condition assessment expensive. Therefore, it was quickly
concluded that a reliable condition assessment methodology of OHLs is required to achieve
the objectives. This leads to the development of condition assessment methodologies
for OHLs that are cost effective and produce reliable results. The majority of this thesis
focuses on the general principles of an unambiguous OHL condition assessment with the
aim of using state-of-art machine learning and deep learning technologies to achieve cost
saving of OHL inspections. The backbone of the proposed methodology is a comprehensive
deterioration analysis of OHL and its components where every detectable visual sign
matches a certain period of its life stage. That leads to the development of component-
specific condition indicators that can be used by asset managers to ease the assessment
process and reduce the human factor.

The backbone of the proposed condition assessment methodology enabled to de-
termine the HI of each OHL tower and its component separately, but there was still a
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significant workload placed on maintenance personnel to visit OHL towers individually.
Almost a third of the thesis focuses on the automatic condition assessment of OHLs using
object detection approaches to overcome the burden of manual inspections. First, a single
and the most critical defect was selected to be detected from close-up images. As it proved
to be successful, more advanced methods were developed to acquire detailed information
from the images. A methodology to detect all visual indicators from close-up images that
can also be detected from manual inspections was developed for reinforced concrete poles
and structures. As both of those methods were relying on good quality close-up images, a
third and the most sophisticated methodology was proposed to detect all critical defects
of OHL towers using super-high-resolution images taken from high altitude produced as
by-product of right of way (ROW) inspections. Using object detection approaches enabled
to determine the HI of each OHL tower and its component separately, but there was still
an issue with gathering condition information about assets which were not assessed previ-
ously or where the data was lost. To overcome this concern, a novel asset HI prediction
methodology was proposed that allowed to include assets without previous HI data in the
decision-making.

A novel risk-based asset management methodology was developed to reflect the
realistic determinations of probability of failure (PoF) and consequences of failure (CoF) in
the grid. PoF is strongly affected by the technical condition of assets, and therefore, reliable
information from condition assessment is used as an input data. CoF determination is
principally based on economic consequences that can be represented by using the value
of lost load (VOLL). VOLL is determined individually for each asset in the grid to reflect
the realistic situation and to provide transparency on a single asset level. The proposed
methodology is developed to explain investments and maintenance budget allocation by
determining the most critical assets in the grid and comparing their risk against the cost
of renewal. Mathematical optimisation is used to further increase the efficiency of the
methodology by determining the optimal combination of assets to focus on in terms of
limited budget.

Contribution of the thesis and dissemination

Theoretical novelty of the work
¢ A novel HI determination methodology is proposed for transmission OHLs based
on advanced visual inspections with mobile applications using predefined visual
indicators.

e New condition indicators are developed to achieve unambiguous results and de-
crease the subjectivity of traditional visual inspections done by foot patrols.

e Machine learning models are developed to predict the HI of missing assets and
model the aging of assets.

e Object detection models based on deep learning are used in OHLs condition as-
sessment process to enhance the efficiency of OHL inspections by automatically
detecting defects from images of OHL towers.

e PoF of assets is determined for each voltage level and HI class separately by using
survival analysis.

e VOLL together with outage combination and estimated duration determination is
used to determine the consequences of failure.

15



¢ A holistic decision-making model is created to support risk-based decisions.
e Results are mathematically optimised in terms of limited budget.

Practical originality of the work

This thesis proposes solutions for the following widespread issues among TSOs:

¢ Traditional visual inspections using foot patrols are usually subjective due to the
human factor and a new unambiguous methodology is proposed.

¢ In addition to labor-intensive visual inspections two novel and cost-effective ap-
proaches are proposed.

e An HI prediction model is created to predict OHL tower HI without additional mea-
surements.

¢ HIldetermination using object detection models is used to detect condition indicators
from close-up and fly-by photos taken during OHL inspections.

e PoF of a single tower is calculated according to its technical condition.
e Realistic assessment of CoF.

e Risk is calculated on comparable parameters.

e The most critical assets in the grid are determined.

e The proposed asset management decision-making methodology outperformed all
widespread approaches.

Thesis outline

This thesis is divided into four main chapters to give a complete overview of the proposed
methodology from the data collection to the decision-making. Chapter 1 focuses on the
asset management decision-making using risk determination. Chapter 2 focuses on the
condition assessment of transmission OHLs using visual inspection and HI prediction
for assets without condition information. Chapter 3 proposes three approaches for the
automatic HI determination of OHLs using object detection techniques and Chapter 4
presents a case study supporting the use of real data from the actual transmission network.
The thesis is concluded in the final part with recommendations for further works.
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1 Asset Management of Transmission Overhead Lines

Asset management of transmission OHLs is a sophisticated task as there are currently no
common approaches to assess the timeframe and urgency of the replacements. Various
methodologies are used among TSOs. Traditionally, the most widespread approach among
TSOs is to replace assets once they reach the end of their expected lifetime. It is easy to
implement, but may lead to overinvestments as the expected lifetime of assets is usually
selected with considerable safety margins to prevent failures. In addition to economic
inefficiency, using traditional maintenance approaches would generate a significant wave of
replacements. This could be dispersed or postponed with more advanced decision-making
methodologies as many of them were constructed in a small timeframe after World War Il.

This chapter focuses on the framework of an asset-management decision-making
methodology that enables to increase the cost-efficiency and determines the most critical
elements in the grid by using a sophisticated, but transparent approach. The methodology
is based on comprehensive PoF and CoF determination using asset HI and VOLL. Condition
assessment of OHLs is explained in detail in Chapter 2 and Chapter 3, where different
approaches are proposed to acquire accurate results cost effectively. The main framework
of this chapter is based on the publication VI and the VOLL determination is based on the
publication II.

1.1 General Overview

1.1.1 Asset Management of Transmission Overhead Lines

The simplest asset management decision-making principle in electricity systems is pre-
sented in Fig. 1. It is impossible to reach the ideal quality of supply even in terms of
unlimited costs as random failures tend to happen. An increase in the quality of supply
causes higher costs due to excessive maintenance and lowering the quality of supply causes
an increase in failure-related costs. A simplified optimum can be drawn where costs to
maintain certain level of quality of supply and costs associated with failures are balanced.
However, determining that exact point in a real system is an extremely sophisticated task
as there is a large number of individual assets in the grid that can fail and cause an outage
to customers.

N Optimum

Cost

Quality of supply

Figure 1: The simplified optimization principle where the solid line is presenting costs related to
maintenance and the dashed line shows costs related to failures. [5]
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The general principles of asset management are described in standard series 1ISO 55000
[6-8] and PAS 55 [9,10]. They give generalized guidelines to implement an effective asset
management in the companies, but both lack details, especially in condition assessment
and decision-making methodologies. PAS 55 focuses on the asset management process
of physical assets and is developed for the oil and petrol industries where ISO 55000 is a
further development of PAS 55 for all asset types. For optimal decision-making it is essential
to accurately determine the actual need for maintenance and possible consequences
after a failure occurs. To overcome this issue, it is essential to develop methodologies
that take into account the real condition of assets using precise condition assessment
of OHLs. There has been an increase in the condition assessment methodologies for
transmission assets in the last few decades, but the majority of these methods focus on
substation equipment as they are the most expensive assets in the grid. Some examples of
these methodologies include power transformers [11-13], large electrical machines [14],
cables [15] and circuit breakers [16] where condition assessment is done to determine the
actual technical condition and, therefore, to prevent failures.

1.1.2 Lifecycle Management

Transmission OHLs are complex assets to maintain as they cover large distances, consist
of large number of individual towers, thousands of kilometers of conductors and have a
lifespan of more than 60 years. OHLs are not just individual towers or wires that require
attention to ensure the safety and reliability of OHLs throughout their lifecycle. LCM is
used to optimize the total cost of maintenance, investments and condition assessment
costs throughout the complete period of in-use OHLs. Fig. 2 gives a brief overview of OHL
LCM works that can be divided into three main component classes. The first class consists
of everything related to the ROW such as vegetation management or safety margins to
structures or crossings with other infrastructures. The second class is related to line objects
such as conductors and grounding wires. The third consists of individual support structures
such as towers.

In the past decade it has become more widespread to use light detection and ranging
(LIDAR) [18] technology to acquire point-clouds of OHLs due to the high accuracy and
relatively low cost per inspection kilometer. Point-clouds consist of up to billions of precise
geographical coordinates (X,Y,Z) where each of these points represents a single point in 3D
space with corresponding categories that distinguish assets, ground, buildings, vegetation,
roads, etc. It is recommended to use a LiDAR Aerial Survey (LAS) [19] format as it is an
industry standard file format defined by the American Society of Photogrammetry and
Remote Sensing that includes a system of point classification. Using aerial vehicles to collect
point-clouds with LiDAR enables, after data processing, to acquire the precise distance
from one object to another to cover almost all ROW LCM activities. Condition assessment
for LCM of ROW mainly consists of vegetation analysis and detection of structures in the
ROW. The ROW by itself does not affect the technical condition of OHLs but it must be
maintained to eliminate outage because of vegetation flash-overs. Preventing vegetation-
related outages also improves the safety of the OHLs as flash-overs may cause fires or even
dangerous step-voltage for humans and animals. In addition to vegetation analysis LIDAR
data is also used to determine the minimal ground clearances of each span or crossing
with infrastructures by modeling conductor thermal behaviour for allowed conductor
temperature ranges as explained in [20]. This ensures the required safety margins for
agricultural machines, structures in the ROW and crossings with roads by measuring
distance to the conductor. Fig. 3 presents an example of vegetation analysis using collected
LiDAR point-clouds after data processing where purple dots represent dangerous trees
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Figure 2: Principle scheme of OHL condition assessment where solid lines present condition assessment
process that is covered in the thesis and dotted lines that are not covered in the thesis. Rectangles
represent process steps and round shapes the start and end of the process. [17]

and other colors represent the vegetation height classes of polygons. Dangerous trees
refers to trees that might cause a flash-over as they are tall enough to reach conductors
or danger zones once they fall. Darker green colors represent vegetation up to 2 meters
and dark orange vegetation with a height up to 15 meters. This approach is widely used
as it allows to determine vegetation height accurately using distance measurements and




provides excellent input to vegetation management. Condition assessment of conductors,
grounding wires and towers is described in Section 2.1.2.

Figure 3: An example of OHLs ROW vegetation analysis using processed LiDAR data. Black dots
represents dangerous trees and green to orange vegetation height classes of polygons from low to
high.

1.1.3 Maintenance strategies

The most widespread approaches of maintenance are corrective maintenance (CM), and
preventive maintenance (PM) including TBM, CBM, and RBM. A comprehensive comparison
of different maintenance strategies is conducted in [21]. The most widespread approach
among TSOs, due to its simplicity, is TBM where assets are usually replaced once they
reach the end of their expected lifetime. It is easy to implement, but may lead to overin-
vestment and does not provide condition information about assets. The RBM methodology
is proposed as the most cost-effective technique, but is also the most sophisticated to
implement. Asset management decisions using RBM are usually made on the basis of
risk matrices [22] that combine two main factors associated with risk, PoF and CoF, into
decisions. PoF represents the technical condition of assets and CoF everything that oc-
curs once the asset fails. The use of risk matrices is widespread among TSOs as it allows
to justify investments and enables simplified visualization of PoF and CoF, but the main
disadvantage to this approach is the lack of transparency. A thoughtful review of using
risk matrices is done in [23] where it is concluded that many companies use risk matrices
without ensuring their efficiency on improved decision-making. As decisions are done by
using multiple levels of weighting factors on aggregation of assets or results then there is a
high probability of losing the transparency of the methodology.

The simplified selection process of an asset specific maintenance strategy is presented
in Fig. 4. The selection process starts with the failure mode effect analysis (FMEA) for
each asset to determine its criticality and the most crucial failure modes. FMEA was first
applied in the aircraft industry in the 1960s and was used to determine all possible failure
modes of individual components of the Boeing 747 as the technical complexity of 747s
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overwhelmed maintenance engineers. This approach provides the opportunity to focus on
the most critical failure modes for further analysis and therefore focuses first on failures
modes that affect the asset and the grid in general the most.

Mainetenance
strategy selection

Perform FMEA
Yes: Critical asset? No
Predictive Corrective
mainetenance maintenance
Condition N, Time-Based
assessment? o maintenenace

Failure-based
Yes .
mainteneance

Condition-based
maintenence

Risk assessment? No

Risk-based

Y .
mainteneance

Figure 4: The simplified maintenance strategy selection process. Rectangles represent process steps,
rhombuses decision points and round shapes the start and end of the process.

Maintenance strategies can be divided into two main branches, PM and CM, according
to mitigation of the impact of operational failures. CM is the simplest approach where assets
are replaced as they fail and is mainly used by distribution systems as risks associated with
failures are lower than in the transmission system. PM is the most common maintenance
strategy among TSOs and it usually focuses on replacing or maintaining assets based on
fixed intervals or operations. PM is usually implemented for TSOs as a TBM where assets
will be refurbished or replaced after a certain amount of time. CBM is also a part of PM, but
it relies on the assessment of the asset’s technical condition, and maintenance decisions
are done according to the asset’s actual condition, not assumptions. RBM is formed on
the basis of an asset’s importance in the system and assessment of its technical condition.
It can be considered as a further development of a CBM strategy where investments are
not only performed on assets with a bad technical condition but also those that will have a
significant impact on the grid once they fail. Based on [21,24-31] the RBM methodology is
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proposed as the most cost-effective for expensive high-voltage equipment and its principles
are further used in the thesis.

1.2 Asset Management using a Risk-based Maintenance Framework

The simplest principle for decision-making to determine whether to replace the asset or
not is by using (1). To use that approach, a well-explained and transparent risk assessment
methodology is required for reliable results. The RBM approach provides an additional
parameter for decision-making that enables decisions to be made based on the cost of
an asset’s calculated risk. That also enables to detect individual assets in the grid that
influence the performance of grid the most.

Risk > Cost (1

According to [21], risk in a transmission system can be stated in its simplest form by
using (2), where PoF is the probability of failure and CoF the consequences of the failure.

Risk = PoF x CoF (2)

It is an extremely simple equation, but in order to implement it in decision-making, its
usage becomes sophisticated as PoF and CoF values are complicated to determine. That
leads to risk assessment which is heavily dependent on the input data where errors in the
first steps affect the final result drastically.

A general overview of the proposed asset management decision-making methodology
is presented as a flowchart in Fig. 5. It is a data-driven methodology that relies on the PoF
and CoF determination where condition assessment and VOLL results are input parameters
for risk assessment. As decisions are based on the data, an additional layer to increase
the data quality is applied by using an outlier detection model to detect invalid condition
assessment information before risk assessment. Once PoF and CoF are calculated for
each tower it is possible to move to decision-making. Decision-making uses the risk of
each tower as an input and enables mathematical optimisation to achieve the best results
according to the cost of maintenance works and limitations such as budget or planned
outages.

1.2.1 Risk Assessment

Risk of each tower is calculated based on the PoF and CoF of each asset as presented in Fig.
6. Risk assessment starts with full-scale grid calculations where all possible combinations
that will cause an outage or limitation in the transmission grid, for consumers or producers,
will be saved. Then VOLL for each affected substation will be calculated based on the
consumption profiles in parallel with PoF determination for each tower. Risk calculation
for each tower ends with a list of all possible combinations of failures where a single OHL
tower participates. All those combinations will be compared and the the combination with
the highest risk will be selected as a tower risk.

As a single failure in transmission grid does not usually cause any outages due to the N-1
requirement in grid planning, the number of circuits sharing the same OHL tower must be
checked. For example, in some cases there are two circuits connecting the same substation
sharing the same individual tower. In the case of a tower failure, there will be an outage
in the substation even though the classical N-1 requirement is satisfied. Once there is a
single OHL that will cause an outage in the substation, all towers of the OHL will acquire
the VOLL of the substation with individual estimated outage duration based on the tower
parameters as described in more detail in Section 1.4. In cases where there is more than
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Figure 5: Principle scheme of an asset management decision-making methodology. Rectangles
represent process steps, parallelograms data and round shapes the start and end of the process. [32]

one OHL in the outage combination, it is checked whether there are towers that share
the circuits of both OHLs. If that requirement is satisfied, all towers that share those OHL
circuits are saved with substation VOLL using the individual estimated outage duration
for each tower. In cases where more than a single tower involved in the combination of
outage, the PoF of each tower will be calculated by using the probabilities for the selected
tower and the maximum PoF value of other OHLs in the combination according to (3). VOLL
of that tower will be calculated on the basis of the substation VOLL that will be affected
by the failure and the estimated outage duration is selected for the tower that was under
selection. Due to the large amount of different outage combinations, a single OHL tower
can participate in more than one combination and, therefore, the risk of an individual
tower in all possible combinations is calculated and saved. The maximum risk among
all combinations for each tower is selected for further sections to find the worst-case
scenarios for each asset. For the purpose of simplicity, up to two individual towers are used
simultaneously to find possible outage combinations. Increasing the number of towers in
a single outage combination will increase the computational complexity significantly but
will marginally improve the results as probabilities are unpretentious values.
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Figure 6: The risk determination flowchart to find risk for each tower in the grid. Rectangles represent
process steps, parallelograms data, rhombuses decision points and round shapes the start and end
of the process. [32]
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the selected tower according to its Hl, n is the number of towers in the combination and
PoFyj, is the PoF of each tower in the combination according to the HI.

1.2.2 Increasing Input Data Quality

Even the most sophisticated models may lead to inaccurate results if there are incorrect
values in the raw data. To minimize errors in the data, an outlier detection model is used.
It is also possible to detect and fix all anomalies manually, but as soon as the amount
of data increases, it will become overwhelming. A more effective approach is to use an
outlier detection model that is based on unsupervised machine learning algorithms and
detects incorrect values in the data automatically, even at big data level. As seen in Fig. 5,
the outlier detection model is implemented right after condition assessment to minimize
the risk of incorrect values in further steps by detecting suspicious values in the data. As
the outlier detection model detects all assets that have the largest deviations in technical
features compared to the Hl, this does not always mean that the data is incorrect. For
example, in some cases there might only be few-year-old towers with mechanical defects
from heavy machinery that results in the end-of-life criteria of towers represented with
the maximum HI value. That is not correlated with aging, but an outlier detection model
highlights those towers as an anomaly in the dataset. Highlighted values can be double
checked by experts to determine whether the value is incorrect or just abnormally different.
This minimizes the data validation workload of experts by only double-checking a short list
of highlighted assets, not the full dataset.

Outlier detection sometimes called anomaly detection algorithms are well described
in [33]. Anomaly scores are used to decide whether the data point is an anomaly or not, as
illustrated in Fig. 7 where different anomaly score levels are presented around data points.
Decisions are usually made based on following rules:

¢ If anomaly score is close to 1it indicates an anomaly.
¢ |f anomaly score is close to O it indicates a normal data point.

¢ If anomaly scores for all data points are close to 0.5 it indicates that there are no
anomalies in the data.

o7 | P8

0.7

D.6

D4

0.7

Figure 7: An example of the anomaly score boundaries using outlier detection models. [34]
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One of the most accurate and widely used outlier detection algorithms is the Isolation
Forest [34], that is built on an ensemble of decision trees for a given dataset. It is explicitly
developed to isolate anomalies in the data instead of profiling normal points. It is ideal for
high-volume datasets due to the low memory requirement and it works well even when
there are no anomalies present in the training set. Fig. 8 presents a simple example of
anomaly detection using the unsupervised machine learning algorithm Isolation Forest
where straight black lines describe random partitions generated by the model. Anomaly
score for Isolation Forest defined is by (4).

E(h(x

_E(h(x)
s(x,m) =27 < (@)

where h(x) is the path length of data point x, c(n) is the average path length of unsuccessful
search in a Binary Search Tree and n is the number instances in the dataset.
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Figure 8: An example of the anomaly point detection (Xy) using Isolation Forest. Straight black lines
describe random patrtitions by the model and circles individual data points. [34]

For successful outline detection, information about all assets that have technical con-
dition information and HI data will be used to train the model and the output is a list of
assets that might have data quality issues. An outlier detection model is composed and
integrated into the full framework using the scikit-learn [35] toolbox in Python. Technical
features to describe OHL towers and their parameters in the thesis are:

e Number of circuits (1to 4).
e Tower type (suspension or tension).
e Voltage level (110 kV and 330 kV).

e Tower material (reinforced concrete, zinced, painted and uncoated steel lattice
tower).

e Manufacturer (6 manufacturers).
e Tower configuration (214 configurations).

e OHL direction changes (angle of deviation).
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e Existence of a perch guard (yes or no).
e Age (1to 67 years).

1.2.3 Optimisation

To maximize the efficiency of the proposed RBM decision-making methodology under
budget limitations, mathematical optimisation is used. Budget and replacement optimi-
sation is described as a simple knapsack problem [36] that is mathematically expressed
as (5) where Cost; is the cost of replacement and Risk; risk of i-th element. The output of
decision-making optimisation is a list of assets that require maintenance.

n
maximize Z Cost; * Risk; <= Budget (5)

i=1
Solving a small knapsack is relatively simple, as after determining all possible combina-
tions, the best one can be chosen. Solving a large knapsack however, becomes extremely
computationally expensive as the number of combinations to find the best solution grows
exponentially. To overcome this issue, different approaches are used to solve complex
knapsacks using more effective methods than simple brute-force, where all possible com-
binations are tested. In [36] different approaches are proposed to solve complex knapsack
problems using more effective methods than simple brute-force when all possible combi-
nations are tested to find the best solution. Dynamic programming from [37] is used to
solve the knapsack problem in the thesis. Linear programming [30] can be used to choose

further optimisation algorithms that are computationally effective.

1.3 Probability of Failure

The framework of PoF determination for each individual tower is presented in Fig. 9. Inputs
for PoF determination are HI data determined in Chapter 2, critical replacements and
historical failures. Cumulative hazard functions are calculated for each predefined asset
category using survival analysis [38]. Different voltage levels are differentiated to acquire
more reliable results due to different reliability requirements for 110 kV and 330 kV OHLs
as described in OHL standard for Estonian National Normative Aspects [39] where 330 kV
OHLs are at reliability level 3 and 110 kV OHLs at reliability level 2. Different reliability levels
are used by designers to select weather parameters such as wind and ice load that the
OHL has to withstand. A higher level of reliability reflects more durable OHLs.

1.3.1 Historical failures

Failure data is used to describe the historic performance of various assets. TSOs have
traditionally used PM where a large number of assets will never reach their end-of-life
condition or fail in service. When scaling historical failures to TSO level then it is also
essential to take into account not only failures but also critical defects and just-before-
failure replacement of assets. For the use of historical data on a comparable basis then
standardized failure reports should be used to record asset HI before failure or critical
replacement. There are examples of failure reports by CIGRE for OHLs [24] or IEC 62271[40]
for substation switchgear. In addition to a comparison of different failures on a common
basis, standardized failure reports also enable asset technical condition to be registered at
all. As HI presents the technical condition of the asset, it also enables asset-specific PoF
for each Hl class to be found by using survival analysis and composing cumulative hazard
functions.
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Figure 9: The flowchart of PoF determination for each tower from Fig. é. Rectangles represent process
steps, parallelograms data, rhombuses decision points and round shapes the start and end of the
process. [32]

1.3.2 Cumulative Hazard Functions

Cumulative hazard functions are used to determine the mortality of individuals for certain
time intervals based on historical data as described in detail in [38]. Using a cumulative
hazard function provides the opportunity to visually examine distributional model assump-
tions for reliability data of assets and to have a similar interpretation as probability plots.
This thesis uses survival analysis to determine cumulative hazard functions for selected
asset categories over HI values based on their historical performance and registered tech-
nical condition. Failures are rare in TSO’s grid due to preventive maintenance approaches
and, therefore, using parametric functions may lead to over- or underestimations using
wrongly selected parameters. Non-parametric methods are used instead of parametric or
semi-parametric functions because the assumptions made on parametric functions are
not always justified by the data and determining parameters on a small dataset may distort
the results. In cases where there is a sufficient amount of failure data such as in a distri-
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bution system’s (DSO) grid, Weibull, exponential model, gamma or the Cox proportional
hazard models can be more detailed and accurate compared to non-parametric models.
Both Kaplan Meier (KMe) and Nelson Aalen estimators (NAe) can be used to estimate
the cumulative hazard function, but according to [41] NAe is slightly superior in terms of
increasing failure rates. Cumulative hazard functions are composed for each selected asset
category. The NAe is used to directly estimate the cumulative hazard function given by
(6). An example of composed cumulative hazard functions for 110 kV and 330 kV OHLs is
presented in Fig. 58 in Chapter 4.

Hya(t) =Y di _ Y hvai(ni) (6)
i<t hi
where n; corresponds to the number of towers present at time #; and d; is the number of
failures at time 7.

In order to perform a survival analysis, it is essential to record the time to event. But
sometimes this is not possible because of the limitations in the real world and, therefore,
only partial information about time to event is available. In that case, censoring is used
and in the context of asset management, it might happen for several reasons. For instance,
it may be that asset was replaced before there was a failure or the asset Hl is not known.
Such situations require data to be excluded about those assets for more accurate results.
The methodology used here uses one-year inspection data about OHL towers as an input
combined with historical failure data. As there is only data about those assets that still
exist and age and HI are known, censoring is not used for that data, but for further years it
is recommended to use censoring when assets are taken out of service.

1.4 Consequences of Failure

The consequences of the failure in the methodology are based on the VOLL and replacement
costs of towers after failure. These can be expressed financially and are measurable. In the
literature there are various other parameters that are commonly used in CoF determination,
but they are ignored as they are based on non-comparable values and each utility has
its own risk mitigation strategies. Such parameters can be CoF in safety, environmental
issues or loss of reputation. For example, if one TSO includes loss of human life in CoF with
great value and the other TSO does not, then the results are significantly different. These
additional parameters could be included in further studies to increase the accuracy of
the methodology, but as the main aim is to present a complete methodology to combine
HI and VOLL for decision-making then they are ignored here. CoF of an outage can be
calculated according to (7), but only direct cost and VOLL parameters are used in the thesis
due to the simplifications and therefore Y CoF; = 0.

CoF =VOLL~+ CoFpirec: + Y ,CoF; 7)

where CoFp;..; are costs associated directly with the outage such as cost of repair works,
CoF; is consequences related to safety, environment, and publicity for the company or
even political pressure.

1.4.1 Value of Lost Load

Value of lost load [42] is used as a monetary indicator to express the cost associated with
an interruption of electricity supply. VOLL is determined through multi-step approaches
that usually start with dividing consumers into predefined categories and assessing cost of
energy not supplied (CENS) for each customer sector separately. VOLL can be calculated
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using (8), where CENS(¢); is cost of energy not supplied for the sector i at estimated
outage duration r.

ZCENS(I)I' X load,; «
Y load,;

VOLL reflects the total cost of electricity outage for a single substation based on the
price of the consumer-specific energy units, consumption, and estimated duration of the
possible outage. It should be noted that it is impossible to predict failure occurrences with
an exact timeframe and therefore average consumption of substations is used in this thesis.
VOLL determination also covers the selection of consumer categories, finding CENS values
for each category and assumption of the estimated duration of the outage.

Substation CENS calculations are usually performed based on multi-step approaches
that are discussed more in [26,43-47]. There are several studies about CENS determination
where a comprehensive comparison is done in [26, 42]. It states that there is a large gap
between the cost of two most widely used approaches, macroeconomic and willingness-
to-pay. It is also concluded that by using different methods, economic environments or
consumer categories it is possible to receive up to tens of times different CENS results
for the same customer sectors. Simple analytical methods such as the macroeconomic
approach are easy to implement, but produce the most inaccurate results due to the lack
of accurate data. Detailed customer survey methods such as willingness-to-pay require
considerable work to implement, but produce more reliable results as they describe each
consumer separately. The main disadvantage of the willingness-to-pay method is its high
cost due to the customer surveys required. CENS is time dependent and can be expressed
as functions illustrated in Fig. 10. As seen in the figure it is thus essential to define the
estimated outage duration as accurately as possible as it affects CENS significantly. A
simplified method selection for the substation CENS determination process is illustrated
in Fig. 11. As presented in Fig. 11 the method selection is mostly influenced by input data
availability.

VOLLgpstation = (8)

1.4.2 Classification of Consumers

It is not practical to involve every single consumer one by one into CENS determination
as each customer has specific consumption, dependence of supply and financial status.
Therefore, it is reasonable to classify consumers into groups that are compiled on similar
basis and are comparable. To do this, it is recommended to use standardized international
classification to enable the comparison of among various countries. For example, CEER has
developed a guideline document [49] for CENS calculations where they recommend using
NACE Rev.2 [47] classification to group consumers into categories. There is also the possi-
bility to develop alternative groupings, depending on the country-specific factors affecting
the input data or chosen methodology, but it is recommended to use an international
approach for comparable results. The theory behind NACE groups and sub-categories is
explained in more detail in [50].
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1.4.3 Estimated Outage Duration

It is important to determine the estimated outage duration precisely as it affects VOLL
results on a large scale. For an example, assuming an eight hour outage duration as a
replacement time instead of 24 hours results in significant differences in VOLL values and,
therefore, in risk assessment. To overcome the issue, a sophisticated methodology is
proposed instead of using average values for all towers. For OHLs, the estimated outage
duration is usually determined by the type of the failure and the complexity and repair
time of assets. This is especially the case for transmission OHLs that cover large distances
in remote areas. Outage duration is also strongly affected by the geographical location as
there are areas that are impossible to reach due to the large distance from the nearest
roads, but there are also towers that are next to roads. Estimated outage duration can
be modified by using (9) as some towers may be located on difficult terrain where it is
significantly more challenging to replace a tower. It must be noted that Cr.; 4, is an
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empirical constant that should be selected according to a country’s geography. But as
Estonia is relatively flat, is not influenced by the terrain type as strongly as countries that
are mountainous. Estonia also has a high infrastructure coverage all around the country
and, therefore, the distance from the nearest road in combination with tower type is used
as an indicator of possible outage duration, where Creprgin = 1.

Toutage = CTerrain X Teslimated (9)

where Cr.,rqin is constant that takes into the account terrain type and T,y inar0q the esti-
mated outage duration according to Table 2.

Table 2 presents estimated repair times of OHL tower failures that are developed
empirically on the best practice from the Estonian TSO. It must be noted that estimated
outage duration times are heavily influenced by the TSO, which defines those times due to
country-specific geographical features and availability of repair personnel or spare parts.
Table 2 is based on the knowledge where the full tower failure is expected as a worst-case
scenario. In addition to the distance from the nearest road, different voltage levels and
materials are also distinguished as they influence the complexity of repair works.

The acquisition of a minimal distance from an OHL tower to the nearest road is solved
through the use of the tower’s geographical location and road information from Open-
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Table 2: Estimated outage duration principles for OHL towers based on the tower type, voltage level
and distance from the nearest road. [32]

Time to replace (h)

Distance (m) 110 kv 330 kv
Steel Concrete Steel Concrete
<100 12 8 16 12
101-1000 24 12 24 24
1001-10 000 36 24 48 36
>10 000 72 72 72 72

StreetMap [51]. For calculation simplicity, four different proximity zones according to Table
2 around OHL towers are used to determine the individual distance from the nearest road
to the tower. These proximity zones are generated based on the best practice and empirical
values from the Estonian grid and can be selected based on country-specific features. The
first proximity zone has a radius of 100 m around the tower, the second has 1 000 m, the
third 10 000 m and the fourth 10 000 m or more. To determine a single proximity zone for
each tower, the following steps are used:

1. Select a single OHL tower with its geographical location.

2. Make a query with a proximity zone from Table 2 around the tower to acquire road
data.

3. Check if there is a road for vehicles in the zone.
4. If no then select larger radius for the zone and make a new query.
5. If there is a road in the zone then return road ID with distance to the nearest road.

The methodology is explained in Fig. 12, where an OHL (marked with dashed line) with
two selected towers (Tower X and Tower Y) and two roads (Road1 and Road?2) is presented.
It must be noted that, two towers are selected from the OHL for the simplified example and
the span between two towers is not 20 000 m. Proximity zones are marked with colours
that represent the following: red - <100 m, orange - 100 m to 1000 m, yellow - 1001 m to
10 000 m. The Tower X, Road1 enters into that tower’s orange proximity zones and Road2
is not the in aforementioned zones. For Tower Y there is Road2 in the yellow proximity
zone and Road1does not enter into the aforementioned zones. That simplified example
shows that it is possible to determine distance according to proximity zones where for the
Tower X the distance is 1 000 m and for Tower Y 10 000 meters.
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Figure 12: The simplified example of the OHL tower’s distance determination from the nearest roads
using predefined proximity zones. The OHL is marked with dashed line with two individual towers
TowerX and TowerY. Red represents a proximity zone with a radius of 100 m, orange 1000 m and
yellow a zone with a radius of 10 000 m. Two roads, Road1 and Road2, are colliding proximity zones.
The radii of the proximity zones is not in a linear scale to provide a clearer example.

34



2 Condition Assessment of Transmission Overhead Lines

Condition assessment of high-voltage equipment is a challenging task due to the technical
complexity of individual assets and even more challenging for the OHLs as they cover large
areas with limited physical access. They also consist of tens of thousand of individual towers
and components with only a few measurable or comparable parameters. Sophisticated
condition assessment with physical measurements is not as widespread for transmission
OHLs as it is for substation equipment because OHLs are considered a priori to have high
reliability and a long expected lifespan. Condition assessment of OHLs still predominantly
relies on manual visual inspections that are costly in such a geographically expansive
system.

This chapter presents novel condition assessment methodologies to increase the ef-
ficiency of visual inspections and to predict HI of assets that do not have any condition
information. Automatic condition assessment using image recognition methodologies is
discussed separately in Chapter 3. Condition assessment using advanced visual inspections
is based on publication I and HI prediction using machine learning methods is based on
publication IV.

2.1 General Overview

2.1.1 Condition Assessment

Condition assessment of transmission OHLs is usually performed using periodic visual
inspection as described in [52] by foot patrols that provide information about the technical
condition of OHLs in the grid. Foot patrols physically visit each tower in the grid and record
all detected defects. The downside of using foot patrols is that they usually only note down
critical defects and do not focus on the condition assessment of assets. Also, there is a
large workload involved in assessing each tower individually in a TSO’s grid and a human
factor that causes individuals to see the same thing differently based on the previous
experience of the assessor. In addition to traditional visual inspection, there are several
technical publications about OHL condition assessment such as [24, 25, 53-61] which focus
only on the determination of critical defects or failures. Others, [62, 63], have developed
specific, predetermined criteria lists for each component of OHL to determine the technical
condition of assets by using the HI. A range of studies [64-68] describe the condition
assessment of wooden poles. It must be noted that wooden poles are not used in the
Estonian transmission grid, but they provide a brief overview of condition monitoring
mechanisms using invasive and noninvasive methods of structural health monitoring of
OHL towers.

Visual inspection is only the first indication to detect critical defects and the technical
condition of OHLs as it is usually carried out by ground personnel that do not have expert
knowledge in the field of OHL structural integrity and aging phenomena. For a more
precise condition assessment, multiple level inspections should be carried out as done
in [69]. A potential decision process to determine the actual condition of an OHL tower
is divided into four levels, which starts with the traditional visual inspection, moves on
to mobile and laboratory measurements and ends with full-scale tests. All levels differ
from each other in the level of detail and the cost that increased rapidly. However, in that
four-level approach, further levels after visual inspection are rarely used due to the high
cost of testing. As the visual inspection is the first level of inspection and it is the most
cost-effective method compared to other methods, visual inspections should give reliable
and unambiguous results before further steps. There are also statistical approaches to
transmission OHLs’ condition assessment using bathtub curve [70] or statistical approaches

35



as done in [71]. The bathtub curve was developed for United Airlines in 1978 [70] as a
decision-making indicator by using reliability engineering. Paper [71] focuses on statistical
trends in data mixed with expert opinions, environmental factors and the weighting of
different parameters to determine the HI of OHLs. Both approaches are easy to implement,
but they assume that there is a strong correlation between an asset’s age and its failure
rates, especially bathtub curve. CIGRE has conducted a study on substation switchgear [16]
that illustrates a situation whereby the majority of failures for high-voltage assets are
random. A study of OHL conductors [72] also concludes that the estimated remaining
life of OHL conductors varies significantly when comparing approaches based on age and
measurements. That leads to a focus on the condition assessment methodologies whereby
the condition of OHLs is received on reliable data not just assumptions.

2.1.2 Health Index

The health index is a simple yet powerful indicator implemented in electricity grids to
describe the technical condition of complex assets as a simple value. The HI expresses an
asset’s technical condition from good to bad and estimates expected remaining fault-free
service life in a specified timeframe. There are multiple ways to represent the Hl, with
the most common being using numbers on a linear scale from 0-100 [73,74] and 0-5 [24].
As aggregation of assets with their sub-assets loses crucial information for assets while
operating with linear values, then logarithmic HI scores with a base of three or ten are
also widespread. Color codes according to traffic lights [21] or letters [11] are also used in
various studies. Well explained and detailed HI determination options are provided in the
technical brochure for power transformers [13], where other indices such as maintenance
and refurbishment are also used. However, many papers [11, 70, 73-75] are using HI to
express the remaining lifetime of assets using statistical approaches such as Weibull or
bathtub [70] curves. Those approaches link HI directly with PoF using asset age and
historical failure rates, but should be used extremely carefully as old age does not always
equate to bad technical condition. These approaches are widespread because the age of
assets is almost always known where other more precise approaches require additional
measurements for the HI determination. In some cases asset actual age is modified by
various parameters that could be environmental or technical. The output of studies as
done in [74-76], is a value that will be compared against the expected lifetime of the
asset. Once the modified age is greater than the expected lifetime of the asset it indicates
that the asset should be replaced. It can be concluded from the previous studies that
condition assessment of transmission OHLs is not widespread and it is usually done by
using manual visual inspections or statistical approaches. That leads to the issue where
there is subjective or even no information at all about an OHL's technical condition and
it is impossible to make precise investment or maintenance decisions due to the lack of
data. To overcome this problem, it is essential to determine an OHL's technical condition
precisely and cost effectively.

The thesis combines three proposed HI determination methodologies into a single
model to provide precise input for PoF determination. Fig. 13 presents an overview of
the combined HI determination model. It allows to determine the HI of OHL elements
using visual inspections described in Section 2.2 or to use image recognition described
in Chapter 3. The selection of the methodology is based on the input data. The output
of both approaches is data where HI and technical data of assets is combined. Anomaly
detection is used to highlight suspicious values in the data as described in Section 1.2.2. All
assets that do not have corresponding HI data will be sent to asset HI prediction model,
described in Section 2.3, to acquire HIl values. The output of the combined model is a list
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of towers where all towers in the grid have corresponding Hl values.
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Figure 13: The flowchart of the asset health index determination using the proposed combined model.

Rectangles represent process steps, parallelograms data, rhombuses decision points and round
shapes the start and end of the process.

2.1.3 Dividing Overhead Line into Components

Each OHL is composed of tens or hundreds of individual towers and hundreds or thou-
sands of kilometers of conductors. This leads to an issue where it is extremely difficult to
determine the technical condition of an OHL as it is an aggregation of individual assets. To
increase the accuracy of condition assessment of OHLs, each OHL is observed individually
on the tower level and each tower is divided into smaller observable parts - components.
Components differ from others by construction, material, purpose or cost of replacement.
That enables to differentiate each OHL into components that might have different life
expectancies or could be replaced separately. That also enables to assess each component
individually and therefore, acquire the technical condition of each tower in greater detail
compared to more general approaches. It is possible to differentiate components that are
tower specific such as foundation, grounding system, crossbar, support, insulation and guy
wires and components that are span specific such as grounding wire and conductors. It is
also possible to list ROW as an individual OHL component but, as the condition assessment
is focused on the technical aspects of OHLs, then it is not done here. The components of
OHLs include the following:
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e Foundation

e Support

e Crossbar

e Guy-wire

e Insulation

e Conductor

e Grounding wire

e Grounding system

OHLs can be divided into components in other ways, but it must be noted that the
division increases the accuracy of condition assessment in general. The downside of the
division is that it increases the workload of inspections drastically but using a smart appli-
cation such as inspections using specially designed tablet applications or object detection
from images should decrease the extra workload while providing improved results.

2.2 Condition Assessment Based on Advanced Visual Inspections

2.2.1 The basic principles

Traditional visual inspections of OHLs are time consuming and costly due to the long
distance of transmission OHLs. Without specific assessment criteria, it can be subjective
due to the fact that the evaluation results from different inspection patrols can vary
between regions and assessors on a large scale. There is a strong dependence on results
based on the assessor’s previous experience in the field that needs to be minimized to
increase the accuracy of visual inspections. Therefore, highly specific and unambiguous
evaluation criteria are developed for all OHL components that not only describe defects
but also give an indication of the technical condition of the selected components. The
main idea behind the advanced visual inspections is to describe all possible defects of
OHL components in relation to their occurrence in the asset’s lifecycle. The backbone of
the methodology is the unambiguous determination of an asset’s HI using foot patrols to
classify the OHL'’s condition. To do that, all OHLs are divided into components, where visual
indicators will be developed for each component separately. The detection of existing
defects using a standardized data entry methodology increases the results, as assessors
do not have to know the background or physical processes behind the assessment but
only need to find predetermined visual indicators. That enables to gather homogeneous
results from inspection patrols after just a short training period without the increase of
visual inspection costs.

2.2.2 Health Index Determination

The basic principle of the advanced visual inspection method for OHLs is the development
of such assessment criteria where every detectable visual sign of a selected component
matches a certain period of the same component’s life stage. That requires the devel-
opment of a HI behind every visually identifiable assessment criteria that describes a
selected component’s technical condition in the range of zero to five. Hl values are in the
range of zero to five and divided linearly from excellent technical condition to the end
of its operational lifetime at HI=5. Nearly 150 different criteria were developed to define
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the technical condition of all OHL components including towers, foundations, insulators,
grounding systems, cross-bars, guy-wires and conductors.

Reinforced-concrete structures such as foundations and tower poles are a vivid example
to understand the basic changes in the material’s physical properties due to aging. The
aging of reinforced concrete is described thoroughly in [77]. In general, reinforced-concrete
structures are very durable by construction and their potential lifetime is primarily influ-
enced by the external environment such as the climate or corrosion rate. The main factor
in the aging process of reinforced-concrete structures is concrete’s surface pH level as the
concrete protects steel reinforcements from corrosion. When the pH becomes lower than
8.3 then concrete loses its corrosion protective properties and with sufficient humidity
and oxygen in the environment, steel starts to oxidize, i.e. rust. The rust’s volume is up
to ten [78] times more than the steel’s volume resulting in cracks due to the concrete’s
inner stress. This process will accelerate in time as more humidity and air will reach the
reinforcements and eventually the concrete cover will fall off. Once there are cracks and
the concrete starts to fall off then it may lead to structural breakage of the pole in severe
weather conditions. Of course, mechanical damage from heavy transport or agricultural
equipment leads to instant changes of HI from good to poor, but as the Hl is designed to
show linear decrease of components’ exploitation resources then mechanical damages
rapidly accelerate the aging process.

Predefined visual indicators of a reinforced concrete pole correlated to His are presented
in Table 3 and Fig. 14. A similar approach was implemented for steel lattice towers, where
the HIl was determined based on the presence of mechanical defects, bolt condition, rust
level and cross-sectional reduction. The HI values are based on the impact to overall
reliability of the pole and, therefore, HI determination is based on the maximum function
of all detected defects according to (10).

HI =max{HI(x):x=1...n} (10)

where HI(x) is a function that looks for the HI value of selected defects in Table 3 and
n is the total number of detected defects. For example, if there are cracks and micro
longitudinal cracks detected on the asset then according to Table 3, a "crack" corresponds
to HI4 and "micro longitudinal cracks" to HI2. By using the maximum function in (10), the
overall HI of that asset is four.

Table 3: A list of visual indicators presented in Fig. 14 and their corresponding Hl values. [79]

Visual indicator Health Index
Hole (Fig. 14a) 5
Loss of cross section > 20% (Fig. 14b)
Concrete is falling off (Fig. 14c)
Loss of cross section < 20% (Fig. 14d)
Crack (Fig. 14e)
Visible reinforcements (Fig. 14f)
Micro longitudinal cracks (Fig. 14g)
Hair-like cracks (Fig. 14h)
Other minor Defects (Fig. 14i)
No visible defects

Ol == N Wb~ Olu

The asset HI values are defined as a set of discrete HI categories from zero to five.
The value itself is linked to the asset’s technical condition with respect to its projected
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Figure 14: An example presenting reinforced concrete pole and foundation visual indicators according
to their severity as listed in Table 3. [79]

lifetime by using the linear equation (11). The HI determination indicators were developed
according to the moment of occurrence in the asset’s lifecycle. Therefore, the developed
asset Hl represents the expected remaining lifetime of asset.

Hlypax — HI;
Hlypax

where HI,,,, is the maximum value of the HI, HI; is the HI of the selected asset, and
Lpyojectea 1s the projected lifetime of the asset.

To achieve unambiguous assessment results and effective data management, a specially
designed mobile application was developed to support the convenient assessment of
OHLs. Fig. 15 presents the user interface of the designed mobile application. It is made as
intuitive and simple as possible to ensure homogeneous results from different assessors. An

Lexpected = * Lpry jected (1 1 )
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assessment tool is developed on the basis of the proposed methodology and all assessment
criteria in eight component groups are present in the application. Additional component
"markings" are also present as these do not represent the technical condition of an OHL
tower, but is still important to record defects associated with markings using foot patrols.
In order to perform visual inspection using the assessment tool inspectors have to select
all defects that they identify on the field and the HI determination process is done in the
background of the application according to (10). That approach eliminates the human
factor in the assessment process as humans tend to give opinions based on the worst
defects and ignore not critical defects. If no visual indicators are identified, the component
will get the assessment result "no visual defects". It is also possible to add photos of each
component with additional free-text comments. Photos taken with the assessment tool
are used further in Section 3 for object detection model training.

FRONT PAGE INSULATORS FOUNDATION MARKINGS CROSSBAR GUY-WIRE CONDUCTOR

GROUNDING GROUNDING
SYSTEM wil

Minor defects, but reinforcements are not visible

Defects where crosswise-reinforcements are visible

Hair-like cracks on the pole

Defects where cross-reinforcements are visible

Micro longitudinal cracks on the pole

Longitudinal cracks with width 0.3 to 0.6 mm on the pole

10-20% of passing through defects in the pole’s cross section

Qver 20 % of passing through defects in the poles cross section

Longitudinal cracks with width over 0.6 mm on the pole

Over the length of 3m longitudinal cracks on the pole

Figure 15: The user interface of the designed application. [80]

2.2.3 Health Index Aggregation

In some cases it is important to compare different OHL towers or OHLs with each other
to present the worst elements in the grid. As merely using summed average values of
towers will lose important information about each element then this section proposes a Hl
aggregation methodology that uses exponential values of His for clearer comparison. To do
that, Hls on a linear scale will first be converted to exponential using (12). It should be noted
that it is suggested to use individual component Hls in further asset management decision-
making as then there is no loss in the data due to the averaging. Also, using individual
component Hls enables to focus on individual asset rather than not on associations of
assets.

HI, = "3 #Hlnax _ 1 (12)

where HI,,,, is the maximum value of the HI.
Table 4 presents an example of HI conversion from linear to exponential scale using
(12) when HI,,,, = 5.
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Table 4: A health index comparison table by using equation (12) between linear and exponential
scales.

Linear Exponential
0 0
1 1.52
2 5.33
3 14.94
4 39.13
5 100

As an OHL tower is composed of different individual components then calculationg the
HI of a single tower using the combination of all components’ His according to (13).

6
Hly =Y (Hlon wy) (13)
n=1

where n is number of components on a single OHL tower, HI,, is HI of n-th component in

exponential scale and w,, the weighting factor of n-th component.
Weighting factors used in this thesis are composed based on the best practice from Es-
tonian TSO's according to the proportional replacement cost of that component compared

to full renovation. Weighting factors are presented in Table 5.

Table 5: Weighting factors of OHL components according to the proportional replacement cost.

Component Weighting factor (%)

Foundation 22
Support 22
Crossbar 4

Guy-wire 2

Insulation 10
Conductor 35
Grounding wire 2.5
Grounding system 2.5

The HI expressing a single OHL can be calculated using (14).

Ny, 3
L2 Hlon

Ntowers

Hlpy = (14)
where 7;pyvers is total number of towers on the OHL and H1,;,, is HI of n-th tower.

For an example of why to use exponential scale instead of linear scale is presented as a
single OHL with five towers. The Hls of each tower are the following: HI; =0, HI, =0,
HL =1,HL, =5,HI5 =5.

04+0+1+5+5
Hlpinear = f =2.2 (15)
0+0+1.514100+ 100
HIExp(mential = =40.3 (16)

5
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While comparing results OHL HI calculated according to (15) and (16), using exponential
scale highlights critical towers much more easily than a linear scale. When looking at Table
4, the results from (12) are worse than when the OHL had all towers with HI4 accordingly
40.3 and 39.1. In contrast, on the linear scale, the same OHL had total HI just above two
and this reflects the fair condition of all towers. It must be noted that if OHLs consist of a
large number of individual towers then peak values or critical towers will be highlighted
less. Nevertheless, the use of an exponential scale highlights critical values much more
clearly than a linear scale.

2.3 Condition Prediction and Aging Modeling

The proposed methodology for transmission OHL HI prediction is based on supervised
machine learning classification algorithms combined with a HI determination framework
using predefined visual indicators to predict the technical condition of OHLs on unseen data.
The overview of the methodology can be found in Fig. 16. The asset HI prediction starts
with the collection of OHL towers’ technical features and HI data gathered as in Section
2.2. The technical features of each asset are collected and saved. After that technical data
features and HI data are used as training data for the HI prediction model. The data of each
OHL tower used in the training process is a combination of collected HI values and technical
features as listed in Table 6. Assets that do not have complete list of technical features
or HI data will not be included in the training data. This enables the trained prediction
model to have already existing and relevant training data and therefore improved overall
prediction accuracy by not using random variables. After model training data selection,
the missing asset HI prediction and the asset aging behaviour modeling is separated. The
output of both individual branches in the methodology is HI prediction results for each
selected tower.

The aging behaviour modelling is also used to compare the current situation against
future scenarios to detect potential situations where it might be more beneficial to hold or
speed up investments. Such situations could be a complete renovation of the OHL instead
of changing just a single tower or allocating resources for future investments. If in the
near future a majority of assets on the OHL need to be replaced then the proposed model
indicates an increase in the budget. That enables a comparison of the current situation
against future scenarios to see what assets need additional resources in the near future.
It also enables the replacement wave of assets to be flattened as the replacement time
can be extended for longer periods to minimize peaks in annual investments. By nature,
HI prediction and aging modeling are similar, however the main difference is the step
where the selected asset age parameter is modified by n-years for the aging modeling
while all other features remain unchanged. As long as modified time intervals are not
unrealistic and there is a sufficient amount of training samples that support the modified
age parameter in the grid, this approach enables to predict asset HI based on the best
knowledge and a similar performance of assets. It is difficult to determine the realistic
time interval for aging modeling, but once the limits are exceeded, the model becomes
inaccurate as there is a lack of data to support accurate predictions. For example, if there
are towers up to of 50 years age in the grid, then it is possible to model the selected OHL
in those limits. The model does not have information about performance of towers that
are older than 50 years and predictions will be done based on unrealistic data.
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Figure 16: The flowchart of the asset HI prediction model and its input data. Rectangles represent
process steps, parallelograms data, rhombuses decision points and round shapes the start and end
of the process. [81]

2.3.1 Input data

The input data for the HI prediction model consists of HI data combined with the asset’s
technical information and specifications. Technical features used for OHLs are collected
during the asset design and the construction phases are listed in Table 6. Features are
selected according to the possible influence to the speed of OHLs' aging process, construc-
tion quality or mechanical stresses. All these features are fixed at the beginning of the OHL
lifecycle and do not change during service. The parameters used in this work as technical
features are the number of circuits on a single tower, the tower type where the support
and tension tower are separated, the nominal voltage level of the OHL (110 kV or 330 kV),
presence of bird protection, and tower material (reinforced concrete poles, colored steel
lattice towers, zinc-coated steel or untreated steel lattice towers). The total number of data
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features is presented in Table 6 where these assets encompass six different manufacturers
and 214 different tower configurations. Angled towers are distinguished from vertical OHL
segments due to the increased mechanical stresses they experience. The final feature is
the current age of the tower, calculated from the installation date.

Table 6: A list of features used by the health index prediction model.

Feature name Number of different features

Number of circuits 4
Tower Type 2
OHL voltage level 2
Tower material 4
Tower manufacturer 6
Tower configurations 214
OHL direction changes 2
Existence of a perch guard 2
Age 1to 67
Total 303

The model training and testing data is collected from periodical visual inspection as
described in Section 2.2. As up to 150 individual condition criteria were used, for the
simplified example, HI values were aggregated on tower level and used according to (10)
for OHL-supporting components such as poles, foundations and crossbars. It is possible to
increase the accuracy of this methodology further by scaling it to a more detailed approach
where the HI of each component is predicted individually. The input data is manually
cleaned and errors are fixed in the database. However, it is also possible to detect incorrect
values in the data automatically by using outlier detection algorithms as described in [33]
and done in Section 1.2.2. The data used in this paper consists of 26 273 rows described in
Table 7 and presented in Fig. 17.

Table 7: Training and testing data split of the health index prediction model.

Health Index Class  Training Testing Total % of Total
HIO 6217 1555 7772 29.58
HI1 1799 450 2249 8.56
HI2 8 964 2241 11205 42.65
HI3 2770 692 3462 13.18
Hl4 1182 295 1477 5.62
HI5 86 22 108 0.41
Total 21018 5255 26273 100

The distribution of data is presented in Fig. 17 and Fig. 18. In Fig. 17, there is no strong
relationship for OHL assets between the Hl and age. Table 7 also supports this, whereby HI
data is concentrated around HI2 with extremely imbalanced classes with 108 samples in
the HI5 class and 11 205 samples in the HI2 class. There are some HI5 assets with just ten
years of service and some HIO towers even after 60 years. The regression line based on
linear regression on the graph demonstrates that there is a slight aging tendency where
Hl is increasing as the asset ages, but it never exceeds HI2 even after 60 years of service.
Fig. 18 presents a data description chart where a majority of assets in the grid are 40 to
60 years old with HI2. There is also a larger concentration of HIO towers with an age of
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around ten years.
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Figure 17: The scatter graph to observe relationships between tower’s health index and their age.
Blue is representing data point and red the linear regression line.

The data is divided into training and testing data with a ratio of 80:20 by using stratifi-
cation to maintain equal class proportions for each class. That enables the percentage of
samples for each class to be preserved and therefore ensures that both datasets include
the necessary samples for all classes. Stratified re-sampling [82] is easy to implement
and has a positive effect on both the variance and bias, especially in the case of a class
imbalance. Table 7 shows that the imbalance data tendency remains the same after training
and testing data split and all classes include a proportional number of training samples.

2.3.2 Class-imbalance

Fig. 18 accurately presents the impact of an interval-based preventive maintenance strategy
on class imbalance that is used by TSOs to minimize risks associated with failures. As TSOs
do not run their assets until failure then only a small proportion of assets reach high Hl
values. HI4 and especially HI5 are considered as minority classes and other Hl values, such
as HIO and HI2, are considered as majority classes. This produces a significant imbalance
between high and low HI classes resulting in classifiers that have poor predictive accuracy
towards the minority class compared to the other classes. According to [82] and [83], class
imbalance occurs when classes exhibit significant imbalances in the order of 100:1, 1 000:1
and even 10 000:1 between majority and minority classes. As looking at Table 7 there are
11 205 towers with HI2 and only 108 towers with HI5, this results in a ratio of majority vs
minority class of 104:1.
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Figure 18: The concentration of overhead line towers according to health index and age. Denser
distribution of towers is presented in darker colors.

In the case of class imbalance the classification prediction models are not the same as
when using balanced data for model training and tend to classify most unseen samples
in the majority classes. A decrease in model performance is caused by the model’s loss
functions, which attempt to optimize error rate or the accuracy of the model across all
classes and without considering the real distribution. Thus, the model is achieving optimal
results with majority classes. As this decreases the performance of the model for minority
classes different methods are thus used to minimize the results of imbalanced data in
prediction model learning processes. The three most widespread methods to eliminate
the effects of imbalanced data are a down-sampling of majority classes [82] using random
sampling, up-sampling of minority classes using random sampling and up-sampling minority
classes [83] using the Synthetic Minority Oversampling TEchnique (SMOTE) [84].

Up-sampling of minority classes means that the class with the most instances is selected
as a reference number and all minority classes are multiplied until all reach the same
number as the majority class. In this data the majority class is HI2 with 8 964 samples
in training data. There are two main ways to perform up-sampling, where the first is to
multiply minority class samples by randomly duplicating existing samples in the selected
class until it reaches the required population. SMOTE is a very popular oversampling
method in multiple field of studies such as genetics. It was proposed to improve random
oversampling by combining two similar linear samples of data from the minority class and
therefore producing new data that is similar to the class average but not exactly the same
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data as already present in the database. Down-sampling of majority classes is similar to
random up-sampling but in this case instances are deleted instead of duplicated in the
dataset. It is done by selecting the class with the least instances to randomly delete all
instances of larger classes until all classes have the same number of samples as the minority
class. In this paper all classes are down-sampled until each class has the same amount
of instances as the minority class. Training data for each HI class after up-sampling using
SMOTE and down-sampling compared to unmodified data are presented in Fig. 19, where
there are 86 instances in every class for down-sampling and 8 964 for SMOTE.
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Figure 19: Training data distribution after training and testing data split for each health index class
using different re-sampling techniques.

There are also other methods to reduce class imbalance that are related to balancing the
training weights of models as can be done for certain algorithms such as Logistic Regression
(LR) and Support Vector Machine (SVM). Some algorithms handle class imbalance better
than others such as Decision Trees (DT), K-Nearest Neighbor (KNN), Random Forest (RF)
and Gradient Boosting (GB) [85].

2.3.3 Steps Before Model Training

Parameter Tuning

For parameter tuning it is also important to keep track of the model learning process to
prevent under- or over-fitting of models by using learning curves [86]. From Fig. 20, the
GB model reaches its maximum accuracy for cross-validated score faster than RF, but the
overall performance of RF is better. Also, RF improves its generalization accuracy to a larger
magnitude compared to the GB model while increasing training set size. These trends
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show that neither model is over-fitted and the GB model is generalizing training data more
compared to the RF model by reaching almost optimum training and cross-validation score
ratio at the end of training process.
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Figure 20: Learning curves for Gradient Boosting and Random Forest prediction models.

Data Cross-Validation
There are always impurities in the training dataset and not all samples are equally dis-
tributed even in the case of stratification. To overcome this issue, especially in small
and imperfect datasets, nested cross-validation is used to reduce the bias for both hyper-
parameter tuning and model evaluation. Nested cross-validation and its benefits in training
and testing split and k-fold cross-validation are thoroughly described in [87] and [88]. In
terms of computational complexity, a relatively simple 5X2 setup is used in the thesis.
That means a, 5-fold cross-validation is implemented in the outer loop, and 2-fold cross-
validation in the inner loop. As shown in Fig. 21, the inner loop is responsible for the model
selection process, and the outer loop is responsible for estimating the generalization error.
For both inner and outer loops k-fold cross-validation described in [88] are used. The
training data is divided into training and validation sub-datasets by using cross validation
with five folds for the outer loop and with two folds for the inner loop. The data is divided
into smaller subsets and one set is considered as validation data, and all others as training
data. The model is trained using training data and performance metrics are calculated
using the validation set. This is iterated as many times as are folds and mean with standard
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Figure 21: 5X2 setup of the nested cross-validation. [87]

deviation is calculated over all iterations. In order to preserve the ratio of minority and
majority classes in subsets stratified cross-validation is used. The theory behind nested
cross-validation and its benefits in over simple training and testing split or k-fold cross-
validation are thoroughly described in [88] and [87].

Feature Importance

It is possible to determine the most important features of the dataset that affects model
output the most. The most important features of two different and best performing
prediction models, RF and GB, are presented on Fig 22. According to [89] boosting usually
ignores some variables or features completely and RF should maximise the use of different
features. This occurs because there is candidate split-variable selection built in RF that
increases the chance of the variable being included in the model. In this case, both models
are producing similar results but GB is less dependent on the features that have a low
impact on the results. All features have a similar importance score for both models, where
the most important feature is the age followed by tower type.

2.3.4 Supervised Machine Learning Classification Model Selection

The most common supervised machine learning classification algorithms are used to
compose prediction models where the most of the major approaches are represented. The
classification algorithms used are LR, SVM, Naive-Bayes Classifier (NBC), KNN, Multi-Layer
Perceptron from Neural Networks (NN) and DT. There are also combined algorithms using
multiple methods to improve prediction accuracy compared to a single algorithm by to
converting a set of weak learners to a single strong ensemble model. Ensemble methods
are used in supervised machine learning in order to obtain better predictive results from
the model by using multiple learning algorithms in a single model rather than using any of
the learning algorithms alone. RF [90] and GB [91] are widely used ensemble algorithms
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Figure 22: The feature importance of Random Forest and Gradient Boosting models.

that are also used for model selection. RF [90] is a bagging classification and regression
algorithm that is based on decision trees and it has grown in popularity over the last few
years because of its great performance. It is developed on an ensemble of unpruned
trees, induced from bootstrap samples with random feature selection in the tree induction
process of the training data. A prediction is made by using a majority vote to aggregate the
predictions of the ensemble models. To overcome the class imbalance issue [85] proposes
to use balanced or weighted RF models that are both evaluated during hyper-parameter
tuning.

2.3.5 Performance metrics

To evaluate the performance of models, the test dataset is processed by the prediction
model and compared manually to the ground truth data. The results are then classified
into three categories:

e True Positive (TP) - Where the network has correctly predicted the value or identified
a defect.

e False Positive (FP) - Where the network has predicted the value or detected a defect
where none existed.
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e False Negative (FN) - Where the network has failed to predict the value or detect an
existing defect.

The aggregated values in these categories are used to calculate accuracy (17), precision
(18), recall (19), F1-score (20) and specificity (21).
TP+TN

A - 17
Uy = T p {FP+TN+FN ()

Precision or confidence, is a measure of the proportion of predicted positive cases that
are correctly classified as real positives and is given by:

TP
Precision = Confidence = ——— (18)
TP+FP
Recall or sensitivity, is a measure of the proportion of real positive test cases that are
correctly predicted positive.

TP
Recall = Sensitivity = ——— (19)
TP+ FN
Precision x Recall
Fi=2% — (20)
Precision + Recall
TN
S i ficity = ———— 21
pecificity TN+ FP (21)

Widespread performance metrics Receiver Operator Characteristic (ROC) [92] and
Precision-Recall (PR) curves [89] were left out of the scope because they required to
use of a One-vs-All approach that amplified the class imbalance issue and decreased the
performance of models.

2.3.6 Model evaluation

Each selected classification algorithm is tested using a number of hyper-parameters specific
to the algorithm. Hyper-parameters are modifiable parameters of algorithms, which
affect the performance of models drastically. These could be such as the number of trees
in RF or the regularization strength of an L2 penalty in the loss function of LR. As the
selection of hyper-parameters relies heavily on the input data, usually this process is done
manually. It requires a great number of experimentation to identify best values out of
all combinations for each algorithm. This process is extremely computationally intense
and time-consuming, but essential in order to increase model performance by selecting
the best hyper-parameters to maximize the performance of models. Practical selection of
hyper-parameters and different approaches are described in [87]. Also, three previously
mentioned different datasets (unmodified, SMOTE and down-sampled) are used to test
each algorithm and hyper-parameter set. Modelling and data processing is done in the
Python 3.7 environment with Scikit-learn module [35]. The theory and implementation of
supervised machine learning algorithms in practice is discussed thoroughly in [93], [94]
and [88].

Model evaluation is done through model hyper-parameter optimization using a random
search with nested 5x2 cross-validation to find the most suitable model for the used dataset
and algorithm and to reduce the bias of training data. That enables the determination
of the best hyper-parameters for each classification algorithm and therefore, their best
performance to be compared to actual data. Model parameter optimization is performed
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by using random search combined with nested cross-validation. According to [95], random
search over the same domain is able to find hyper-parameters for models that are as good
or better within a small fraction of the computation time of a pure grid search where all
possible combinations are tested. The possible number of combinations with selected
limits for each models is presented in Table 8, while the random search limits tested
combinations for each model by 100. A relatively simple 5x2 nested cross-validation setup
is used to reduce the bias for both hyper-parameter tuning and model evaluation with a
low level of computational complexity.

Table 8: Hyper-parameter combinations of the tested prediction models.

Algorithm Tested models

Naive-Bayes Classifier -
Neural Network 72
Random Forest 72
Logistic Regression 80
K-Nearest Neighbor 372
Support Vector Machine 400
Gradient boosting 576
Decision Trees 1440
Total 3012

Model evaluation results of 24 individual models are presented in Fig. 23, where
accuracy, precision, recall and F1score are used. Precision, recall and F1scores are calculated
by taking the average of all class values instead of the average across all results over all
testing samples to indicate class imbalance more effectively. Six models RF, GB, NN, KNN
with SMOTE data, RF with SMOTE data and KNN clearly perform better than the other
18 models. All models have an accuracy over 60%. The accuracy of the best performing
models was almost 70% based on training data. The poorest performing models are NBC
and LR algorithms, which are the most sensitive to the imbalance of the data. In terms of
input data, the best results were achieved by using unmodified data. The SMOTE approach
outperformed the down-sample and is comparable with unmodified data in terms of recall
and F1, but worse in terms of precision. Down-sampling of training data performed worse
than SMOTE and unmodified data.

Six models with the best performance are selected for more detailed analysis where
the performance metrics of each class are presented individually. Fig. 24 illustrates the
precision of RF and GB outperforming all other models in all classes. It is also seen that NN
was not able to detect some classes at all, especially minority class HI5.

Figure 25 presents recall results for the top six models where all models that used
SMOTE datasets outperformed models with unmodified data, especially the RF model with
SMOTE. RF and GB with unmodified data perform poorly on minority classes compared
to RF using SMOTE data and KNN algorithm. The NN model was again unable to classify
minority classes correctly. Figure 26 presents the F1 scores of the top six models and the
best performing models are RF, GB and KNN with unmodified training data.

53



RF

GB

NN

KNN-SMOTE

RF-SMOTE

KNN

4

|

NN-SMOTE

GB-SMOTE

GB-down

SVM

RF-down

SVM-down

KNN-down

NN-down

DT-SMOTE

DT-down

SVM-SMOTE

LR

LR-SMOTE

LR-down

I F1-score
B Recall

I Precision
[ Accuracy

NBC-down

NBC

NBC-SMOTE

R

(=)
(=]
—
(=]
(S}
(=)
w
<
~
(=]
(9,
=]
(@)}
(=]
QG

0.8 0.9

Figure 23: Performance metrics of tested models according to health index.
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Figure 26: F1-score for top six models according to health index.

RF with unmodified training data outperformed all other models according to Fig. 24
to Fig. 26 on all performance metrics except recall, where the best performing model
was the RF algorithm using SMOTE dataset. Due to the advantages in computational
requirements and that RF with unmodified data outperformed other models in nearly all
aspects, especially in precision, the RF model is implemented as a case study in Chapter 4.
The best model was based on Random Forest algorithm and it used unmodified data. The
selected hyper-parameters are:

e Number of estimators = 100.
e Minimum samples leaf = 1.
e Maximum features = sqrt.

e Class weight = None.
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3 Automatic Condition Assessment using Object Detection

Implementing LiDAR technology to acquire precise data about ROW and OHL enables
TSOs to take images of each OHL tower as a by-product to point-clouds at a marginal cost.
Also, due to the rapid developments of drone technology, cost-effective data collection
approaches emerge through the use of unmanned aerial vehicles (UAVs) and automatic
flight routes, as seen in [96, 97]. As technological advancements make it possible to collect
a large number of images about the grid cost effectively, there is still a large workforce
required just to examine each image individually. In recent years, object detection method-
ologies using deep learning techniques in the field of computer vision have become a
hot topic of research as they enable the possibility to detect a large variety of different
objects from images. That makes it possible to process large amounts of data automatically
with a fraction of the workforce compared to manual inspection. Object detection itself is
the method of both recognizing an object class and predicting the location of the object
via a bounding box. These techniques have been applied in the fields of medicine [98],
intelligent vehicles [99], agriculture [100] and have begun to be implemented for damaged
aerial power lines [101,102] to detect the most critical defects.

This chapter presents an automated condition assessment methodology for OHLs
based on deep learning object detection networks. Three object detection approaches are
proposed that differ from each other by the level of detail of input images and number
of defects to detect. The first object detection model is based on the publication 11l and
is described in Section 3.2. It focuses on the detection of a single critical defect and it is
trained on a small number of images. The second object detection model is based on
the publication V and is described in Section 3.3. It focuses on the detection of nine
different defects and is trained on larger number of images that are taken close from
reinforced-concrete poles and foundations. The third model described in Section 3.4
is the most sophisticated one that uses multi-staged approach to detect defects from
super-high-resolution images (>100 MP).

3.1 General Overview

A general overview of automatic HI determination from images is presented in Fig. 27,
where the most important processes are presented. The list of poles that are inspected
is based on the restrictions from the maintenance strategy. Regardless of the specific
object detection methodology, the automatic condition assessment of transmission OHLs
starts with the input for a OHL inspection and image collection using handheld devices,
helicopters or UAVs. Each image should be saved with a geotag for further automatic
image-asset correlation. If captured images do not have geotag information, they will be
marked as unknown assets by the model and they are required to link with assets manually.
Once all images have been collected they will be pre-processed for object detection models.
Object detection models are used to detect all defects which occur in images and the
output of each object detection model is a list of defects with bounding boxes. Once the
defects are detected, they must be combined and mapped to a single HI of the image or
component.

To support the automatic condition assessment process a simple CSV database is
used. It consists of five columns and the structure is presented in Table 9. For automatic
image-asset correlation at least three columns should exist: UID of the asset, latitude
and longitude coordinates. HI and defects columns are used to store detections and to
determine the overall HI.
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Figure 27: The flowchart of the automatic condition assessment model. Rectangles represent process
steps, parallelograms data, rhombuses decision points and round shapes the start and end of the
process. [79]

Table 9: A simple example of CSV database used for the automatic health index determination.

(V») Lat Long HI Defects
Number Coordinate Coordinate Value List

3.1.1 Data Pre-processing

The data used to train and validate object detection models is pre-processed to decrease
the computational complexity and to increase the accuracy of models. Data pre-processing
is performed through the following steps:

e Resizing to required resolution.

e Manual labelling of each image.
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e Splitting data into training and testing.
¢ Training data augmentation.

The main limitation to the usage of object detection networks is the maximum input
image size as each pixel of the images is used in models. State-of-art object detection
networks are optimised on input images up to 1536x1536 pixels as done for EfficientDet
[103], but that increases the computational complexity of models compared to 512x512
pixels around 10 times. In order to reduce the computational complexity, each original
high-resolution image was resized to 300x300 pixels for a single defect detector in Section
3.2 and 512x512 pixels for multiple defect detection models in Section 3.3 and Section 3.4.
Original resolution images that were used in the model training and validation ranged from
5 MP to 100 MP before the resizing. After the resizing, bounding boxes were manually
placed on each of the degradation artefacts to act as the ground truth for training and
testing data. The number of individual bounding boxes for object detection models in input
data is presented in Section 3.2, Section 3.3 and Section 3.4 separately. For the training
and testing data split, a holdout cross validation method was used. From the dataset, 80%
of the randomly chosen data was used for training and the remaining for testing.

Data augmentation is used to introduce data variability on the features and improve
learning [104] without additionally collected training data. Training images of each model
were augmented by varying the contrast, saturation, hue, magnification, brightness and
horizontal flipping. This resulted in a higher number of training images without the require-
ment of additional images. To generate correct bounding boxes of augmented images,
the K-medoids clustering algorithm [105] using the Intersection over Union (loU) distance
metric (22) was used to generate the anchor box sizes automatically.

IANB|
AUB

where A denote the ground truth and B estimated bounding boxes.

In some cases several detections may be present in the near area of a single ground-
truth object. In order to compensate for this, the proposal with the highest confidence
score is usually selected through a process called Non-Max Suppression (NMS) as described
in [106]. This approach has the potential to reduce the number of false positives and to
increase the number of false negatives as the number of total detections is reduced through
this process. In many cases NMS increases the precision and recall metrics and improves
the overall of performance of the object detection network.

IoU = (22)

3.1.2 The Deep Learning Object Detection Networks

The Faster Region-based Convolutional Neural Network (Faster R-CNN) The Faster R-
CNN deep learning algorithm [107] is a region-proposed object detection network which
uses a two-stage framework that first scans the image and then focuses on regions of
interest. The faster-RCNN technique advances from fast-RCNN since it does not rely on
additional methods to generate a candidate pool of isolated region proposals. This results
in reduced training and detection time due to the reduced computational complexity of
the algorithm. As Faster R-CNN is much faster in detection than its predecessors (R-CNN
and Fast R-CNN) it can even be used for near real-time object detection but it is still slower
than single-stage networks due to its architecture. The faster-RCNN architecture comprises
of a feature detection network (the Inception V2 model [108]), a Region Proposal Network
(RPN) and a classifier. The RPN is a fully-convolutional network that generates proposals
and can be trained via supervised learning techniques.
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The You Only Look Once (YOLO) v2 YOLOv2 [109] real-time algorithm accomplishes
object detection via fixed-grid regression. It is a one-stage framework that maps the image
pixels to bounding box coordinates and class probabilities in a single step using a global
regression technique, whilst region proposal frameworks such as fast/faster-RCNN, have
several correlated stages that are each trained separately. The idea is to make object
predictions on each feature map location without the cascaded region classification step.
The feature extraction network consists of 23 convolutional, 5 max pooling, 2 routing and
1 reorganization layers. The main disadvantage of using YOLOV2 is the poor detection
accuracy of small objects.

The Single Shot Detector (SSD) The SSD [110] object detection algorithm is similar to
YOLOvV1 as it is also a single stage network. SSD is more advanced than the YOLOv1 algorithm
which results in better accuracy and faster detection times. It has also aimed to overcome
some of the inabilities of the YOLOv1 algorithm, namely detecting small objects in groups.
According to [111] the main issue with SSD networks their lower detection accuracy but due
to the use of a single network it can be used in real-time. The feature extraction network for
the SSD algorithm uses the RetinaNet backbone [112]. The RetinaNet architecture consists
of a Feature Pyramid Network [113] on top of a feedforward Residual Network [114]. This
topology has the benefit of using a focal loss feature which deals with the class imbalance
problem.

The You Only Look Once (YOLO) v5 YOLOVS5 [115] is an anchor based one-stage algorithm
based on modifications of YOLOv4. The architecture consists of a backbone, neck and
head. YOLOV5 uses the Cross Stage Partial Network (CSPNet) [116] as the backbone. CSPNet
reduces model size and increases the speed of the model by addressing the problem of
repeated gradient information in large-scale backbones. The Prototype Alignment Network
(PANet) [117] method is used as a method of feature aggregation. PANet improves the
location accuracy of objects by utilizing the localization signals in lower layers. Finally,
the data is passed to the head layer of YOLOvV5. Three feature-maps of different sizes are
generated to achieve multi-scale prediction.

EfficientDet EfficientDet [118] is a single-stage object detection network that achieves
efficient multi-scale feature fusion via a bi-directional feature pyramid network (BiFPN)
and model scaling via compound scaling rather than using a larger input size or a bigger
backbone. The EfficientDet backbone is constructed with 9 stages consisting of 18 layers.
The backbone feeds into 3 BiFPN layers with 64 channels and finally the object detection
network, which consists of 3 class/box prediction layers. The model consists of 3.9M
parameters and has an input size of 512.

CenterNet The name CenterNet is built on the CornerNet pipeline [119] and [120]. The
detection pipeline consists of the stacked hourglass-104 backbone [121] which consists of
convolutional and max pooling layers to down-sample the image 4 x. The image is then
passed into two hourglass modules. Each hourglass module is a 5 layer down and 5 layer
up sequence convolutional network. The information then flows into a down-sampling
layer and then simultaneously to three heads: the heatmap head which estimates the
keypoints for some input image, the dimension head which predicts the dimensions of the
boxes and the offset head which recovers the discretization error caused by the output
stride.
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Models used in the thesis A list of deep learning object detection networks used in this
thesis is Table 10. Faster R-CNN, YOLOv2 and SSD networks with their training parameters
are further explained in [79]. YOLOVS5, EfficientDet, CenterNet and the proposed ensemble
model are further explained in [17].

Table 10: A list of deep learning object detection networks used in the thesis.

Used in Section Number of models used Name of the Network
Section 3.2 1 YOLOV2 [109]
Section 3.3 1 YOLOvV2 [109]
Section 3.3 1 SSD [110]
Section 3.3 1 Faster-RCNN [107]
Section 3.4 4 EfficientDet [118]
Section 3.4 4 CenterNet [120]
Section 3.4 4 YOLOV5 [115]
Section 3.4 3 Ensemble model

3.1.3 Automatic Image-Asset Correlation

The majority of modern photo cameras, smartphones, drones and tablets save geographical
information as geotags to images using Global Positioning System (GPS) receivers that can
be used to link images with assets automatically. Geotaging of images ensures that the
latitude and longitude are recorded while each image is taken. The automatic image-asset
correlation describes a method where images taken of OHL towers during visual inspections
or using UAVs are linked together with physical assets that have geographical information
stored in a database by calculating the minimum distance of each image to all physical
assets. Geographical information about assets the in the thesis is already gathered in
an asset database by using LiDAR technology during airborne inspection. This results in
precise coordinates of each individual tower and by comparing that data against an image’s
geotag it is possible to determine the distance between the asset and the image. The
distance between two different points on the Earth’s sphere can be accurately calculated
using Haversine formula (23) [122].

lat, — lat; lon, — lon;
D, a1 = 2rarcsin \/sin2 (aazal) + cos(lat;) cos(lat,) sin® (0%20”’) , (23)

where D,,,; is the distance between two points, lat,, lon,, lat; and lon; are the latitude
and the longitude of the asset and the image respectively. And r is the radius of the Earth
(r = 6731km). It should be noted that lon and lar of the image and the asset must be
both in the same coordinate system. In this example all coordinates in the database are in
EPSG : 3301 coordinate system and geotags are in EPSG : 4326 system. Therefore to use
(23), all coordinates are first converted to EPSG : 4326.

In addition to distance calculation, it is also important to assess possible errors in
GPS accuracy to determine possible confidence thresholds for the successful image-asset
correlation. For the successful mapping of potential towers with images, the distance
between two points must be less than the specified threshold value D,,,, that can be
expressed by using (24). Once the D, is chosen to be too large then there might be an
issue whereby more than one asset may be linked with the image. If D,,,, is chosen to be
too small then no asset may be in the radius and image-asset correlation is not giving the
expected results.
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Dcalculaled < Dinax (24)

Where D, jcuiareq 1S the calculated distance between the asset and taken image and D,
the maximum allowed distance based on the grid configuration and GPS error.

Determining distances between image and all assets and filtering all calculated distances
by using limit value reduces errors that may be incurred from erroneous GPS data. The
reliable value of D,,,,, for OHLs must be determined empirically and it is primarily influenced
by two components that are caused by the grid configuration and GPS error. Influences
from the grid configuration can be caused by different OHL span distances and geographical
peculiarities of terrain and the presence of parallel OHLs in the same right-of-way. The
assessment of GPS errors is affected most by the used technology and disturbance of GPS
signal by the environment. Transmission OHLs can be considered as open areas for GPS
receivers since tall vegetation must be cut in the right-of-way to prevent flashovers from
conductor to vegetation and safety distances from buildings and structures are usually
measured in tens of meters. All this is beneficial in terms of GPS position accuracy as there
are no disturbances caused by trees or tall buildings. Most smartphones and tablets, as
used by the assessment tool in Section 2.2, use assisted GPS (A-GPS), where the mobile
networks’ signals are used in addition to satellites to receive the geographical position of
the device by triangulating the signal. Based on [123], an open field’s A-GPS mean error can
be estimated at 4 meters, the consumer-grade GPS’s mean error is under two meters. The
standard deviation was approximately two meters for both, A-GPS and GPS. In addition
to A-GPS, dual-frequency GPS receivers are used in state-of-the art smartphones that
have increased accuracy compared to A-GPS. Even though A-GPS uses a network signal in
addition to the GPS signal to increase the accuracy in environments where it is difficult
to receive a GPS signal, it has worse accuracy in open fields compared to regular GPS
that uses at least four satellites to determine the device’s position. Based on that it is
possible to conclude that A-GPS’s parameters can be used for the D,,,, determination as
the worst-case-scenario.

3.1.4 Defect Detection and Health Index mapping

Once the defects are detected using object detection models, they must be combined
and mapped to a single HI for an asset to use them in PoF determination. As the HI of
assets should reflect the impact to overall reliability by its actual technical condition, HI
calculation is based on maximum function of all determined defects according to (10) as
done in Section 2.2. There is also a possibility to count all detected defects individually to
compile custom warnings if predefined criteria are exceeded but in this chapter this was
not studied further as it depends on the end-user preferences. If there is more than one
image detected per asset then the proposed model adds new defects to selected asset
database and calculates new Hl according to all determined defects using 10. That means
if there are defects with HI2 in one image and defects with HI5 in another image then the
asset HI=5.

3.2 Detection of a Single Defect Using Close-up Images

This section presents the simplest object detection model in the thesis, which is trained
to detect a single defect from close-up images. The selected defect to detect is holes in
reinforced-concrete poles. Images for the object detection model training and testing data
are taken from additional periodic visual inspections by foot patrols described in Section
2.2

62



3.2.1 Data Description

The dataset used in this section comprises 150 images of concrete poles with varying
degrees of holes. As images were taken by foot patrols while doing visual inspections as
described in Section 2.2 there was no standardization of image requirements. This resulted
in the images presented in Fig. 28 that exhibited high background variability, various pole
orientations, different picture angles, shadows and the presence of external objects on
images such as hands, vegetation and pens.

(c) (d)

Figure 28: The input variability of images with vegetation (a), earth (b), clear sky (c) and with an
hand in the foreground (d). [124]

Training and testing data is described in Table 11. A total of 150 images were used where
images were split to training and testing with the ratio of 80:20. 20% of images in training
were augmented. The final training dataset comprised of 144 original and augmented
images with total 180 individual defects describing distinct variations of holes in reinforced-
concrete poles as seen in Fig. 28. Testing dataset comprised 37 images with 43 individual
identifications of holes in reinforced-concrete poles.
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Table 11: Training and testing data of a single defect detection model.

Class Augmented Training Testing
training
Hole 180 132 43
Images 144 113 37

3.2.2 Performance of Networks

Performance of object detection networks is analysed by comparing its detection bounding
box to all ground truth bounding boxes of the same class in the image. This determines
whether a detection is true positive, false positive or false negative and precision together
with recall can be calculated.

Fig. 29 presents the average precision of the object detection model as a function of
various loU thresholds. At loU 0.4, there is also a point below which the precision does
not improve while decreasing the loU threshold. The precision and recall over the whole
set of data for loUs less than or equal to 0.4 is approximately 0.69 and 0.83 respectively.
Higher loUs indicate better detection localization, but this is not that important for this
particular defect detection model as the main goal is to detects holes on the pole or not.
The loU for the object detection model should be selected according to the highest recall
and precision scores and defect localization on the image is not that important. By using
a lower confidence threshold it is possible to increase the recall to minimize defects not
detected, but that usually results in a decrease in precision as more FP will be detected.

3.3 Detection of Multiple Defects Using Close-up Images

3.3.1 Health Index Overestimation and Underestimation Performance Metric

In addition to the performance metrics used in Section 2.3, the loU and Confusion Matrix are
used to evaluate the performance of object detection models. loU performance measure
gives a similarity between the predicted region and the ground-truth region for an object
present in the image. It is defined as the size of the intersection divided by the union of
the two regions and calculated using (25).

B area(B,(\By)

area(B,UBy) (25)

where B, is the predicted bounded box and B, is the ground truth bounding box.

A Confusion Matrix, presented as a Table 12, is a useful metric to accurately present the
outcome of classification in image recognition problems. Each row denotes the instances of
an actual class and each column gives the instances of the prediction. Confusion matrices
for object detection algorithms are evaluated in a similar way, however they utilise multi-
class instances where the matrix compiles each object class from the same image on a
single table.

For the object detection issues used for multiple defects, it is more important to analyse
the network’s performance in relation to estimation of the Hls and not only individual
defects, which are derived from TP, FP, FN and FP performance metrics.

Two new general performance metrics for the object detection algorithm are defined as
overestimation and underestimation scores of the image HI, given in (26). Usually defects
escalate smoothly from one to another followed by using maximum HI value of detections
as the reference point to assess networks’ performance produces more realistic results
than just using detections. Overestimation O; is a measure of how much the network
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Figure 29: Average precision vs loU of the single defect detection model.
Table 12: Confusion matrix based on estimated and actual health index. [79]
Estimated
HI1 Hi 2 HI 3
S HI 1 A aip ai
E HI 2 a1 A a3
HI 3 asy asn A3

detects and classifies defects as higher Hls than they actually are, and underestimation U;
is the converse. A Confusion Matrix is then generated with these scores as shown in Table
12. The rows of the table gives the true HI, while the column gives the estimated HI. The
diagonal of the table, A;, therefore, represents the correctly estimated indices, the lower

triangle the under-estimated Hls and the upper triangle, over-estimated Hls.

5 i—1
Z a,-j Za,’j
— = 100, U= %100

5 5
Za,’j Zaij
j=1 j=1

O;

where q;; is the element in the i-th row and j-th column of the confusion matrix.
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3.3.2 Data Description

Images for training and testing data to train the object detection model were collected
during the visual inspections explained in Section 2.2. A total of 1 008 images were
labelled manually, which resulted in 3 544 individual labels in nine classes. Detailed input
data division is listed in Table 13. Some classes such as visible reinforcements and minor
defects include significantly more defects than in classes that describe end-of-life condition
indicators such as significant loss of cross section and holes. This imbalance occurs because
there are few critical defects in the grid and large amount of minor defects due to the PM
strategy.

Table 13: Training and testing data description of multiple defect detection models according to defect
types.

Defect Training Testing

Loss of cross section 1 9
> 20%

Hole 66 18
Loss of cross section 69 20
< 20%

Concrete is falling off 289 72
Hair-like cracks 351 78
Crack 356 76
Micro-longitudinal cracks 418 89
Other minor Defects 620 155
Visible Reinforcements 643 174
Total number of labels 2853 691
Total number of images 808 200

3.3.3 Performance of Networks

Threshold values of an loU between 0.1 and 0.9 are used for the bounding boxes to
determine whether the detection corresponds to the ground truth or if the detection is
not associated with the defect present in an image. Sweeps of NMS and loU thresholds
were done between 0.1 and 0.9 for each of the nine classes resulting in a 9x9x9 array for
each of the detector networks (Faster R-CNN, YOLOv2, SSD). Fig. 30 to Fig. 32 present
precision and recall vs loU graphs for each object detection network separately. Based
on thoughtful examination of the arrays, the NMS did not have a negligible effect on the
results and its presentation on graphs was omitted out.

Fig. 30ato Fig. 31b indicate that the networks give the best precision-recall performance
at low values for loU thresholds. The effect of low loU thresholds is likely to be due to
the irregular defect shapes and obscure edges of artefacts such as the shape of cracks or
unequal edges of various defects. That leads to increased complexity of manual labelling of
bounding boxes for the ground-truth data. That kind of noisy labelling is a well known issue
for multiple image classification problems and its effects have been studied in [125, 126].
While an IoU threshold of 0.5 is usually considered standard for object detection with
well-defined input data boundaries, a significantly lower loU of 0.1 was found to perform
best for the defect detection problem. As the main purpose was to detect all defects on
images and their exact location in image was secondary, loU of 0.1 can be used in further
detections. In further studies, methods to minimize noise in the ground-truth data should
be examined to increase the performance of models. Noisy, or even wrongly labeled
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detection model.
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ground-truth data is inevitable in some cases where visual boundaries between different
defects are marginal. For example, hair-like cracks and micro-longitudinal cracks may be
extremely similar in some cases as one defect progresses to another.

HI confusion matrices are generated by comparing the ground truths and detected
defects for each asset using under- and overestimation metrics. That is done for each
network and the results are presented as Table 14 for the Faster R-CNN, Table 15 for the
SSD and Table 16 for the YOLOv2.

Table 14: The confusion matrix of the faster R-CNN multiple defect detection model. [79]

Estimated HI
HI1 HI 2 HI 3 HI 4 HI'5
HI 1 5 7 4 13
I HI 2 1 5 1 7 5
S| HI3 0 1 9 3 23
g HI 4 1 0 0 14 1
HI'5 0 0 2 4 83

Table 15: The confusion Matrix of the SSD multiple defect detection model. [79]

Estimated HI

HI1 HI 2 HI 3 HI 4 HI 5
HI1 1 3 2 2 12
I HI 2 0 7 2 6 4
S [ HI3 4 2 7 8 15
g HI 4 0 1 2 19 4
HI 5 7 2 2 9 69

Table 16: The confusion matrix of the YOLOv2 multiple defect detection model. [79]

Estimated HI

HI1 HI 2 HI 3 HI 4 HI 5
HI1 19 2 3 0 6
I HI 2 1 13 4 1 0
S| HI3 2 1 23 1 9
3 HI 4 0 0 1 22 3
HI 5 0 0 1 0 88

Table 17 summarizes the overestimation and underestimation scores for each network
according to (26). The networks perform better for more serious defects and the networks
have a tendency to overestimate instead of underestimate. The first result is expected as
the more severe defects, such as holes or concrete is falling off, have more distinguishable
contours and visual changes compared to minor defects, such as hair-like cracks. Object
detection networks’ tendency to overestimate Hl values is beneficial in terms of reliability
of the grid as more critical values and defects will be highlighted and there is a smaller
chance for serious damage to be left unchecked. On the bad side it leads to additional time
spent manually double checking-pictures for faults to confirm the presence of a defect.
As is evident, the networks have a very low underestimation score which is important to
ensure that critical defects will be detected and crucial information is not ignored.
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Table 17: The health index overestimation and underestimation of multiple defect detection models.

Overestimation (%) Underestimation (%)
R-CNN SSD YOLO R-CNN SSD YOLO
HI1 96.7 63.3 36.7 0 0 0
HI 2 68.4 63.2 26.3 5.3 0 5.3
HI 3 72.2 63.9 27.8 2.8 16.7 8.3
HI 4 42.3 15.4 1.5 3.8 11.5 3.8
HI 5 0 0 0 6.7 22.5 11
Average 55.9 41.2 20.5 3.7 1041 3.7

To conclude the performance of three different networks, the YOLOv2 detector shows
considerably better performance than both the RCNN and SSD detectors with Precision
and Recall over 85% for all categories of objects. YOLOv2 has good performance when the
results are mapped to the His as it underestimates Hl4 defects in less than 4% of cases
and HI5 defects in less than 2% of cases. This can be attributed to YOLOv2 scanning the
entire image as opposed to regions as done by other networks, therefore extracting more
contextual information for each bounding box prediction. The best performance of YOLOv2
can be also explained by the convolutional backbone architecture that was pre-trained on
higher resolution images from ImageNet. This results in as the pre-trained weights being
more sensitive to capturing fine-grained information such as ill-defined defect edges and
incipient fault conditions such as micro-cracks.

3.4 Detection of Multiple Defects Using High-altitude Fly-by Images

Section 3.2 and Section 3.3 were trained and tested on using close-up images of OHL
towers. They have a good performance on images taken from close range, but are unable
to detect defects from high-altitude fly-by images as the relative size of the defect is very
small compared to the size of the original image. In order to increase the applicability of
the object detection methodology, a novel approach is proposed that uses images with
resolutions of up to 100 MP (11 680x 8 708 pixels) and higher as input. At these large
resolutions the computational cost of object detection is prohibitively high, but as the
OHL inspections are done from high altitude due to the LiDAR then they are taken as a
by-product where images are taken at multiple angles and various distances.

3.4.1 Multi-Stage Approach

In object detection, the current practice is to prepare all images (training, testing and live)
for detection by resizing them to a much smaller resolution to achieve lower computational
cost. Resizing the original > 100 MP images to resolutions of 512x512 or 1024 x 1024 pixels
as a whole will lose crucial details of the defect and certain defects would not be visible.
To overcome the issue, a multi-stage approach is proposed that integrates multiple levels
of features, object detections, cropping of relevant information from the original image
and calculating the HI of assets. The multi-stage approach is explained in Fig. 33, where
the proposed methodology focuses on each level of the model in the different parts of the
image. Image-asset correlation module is used from Section 3.3 and HI determination from
Section 3.3. For all stages images are down-sampled to size 512 x 512 pixels and fed to the
object detectors. However, the region of interest (Rol) must be cropped from the original
image to ensure no loss of artefact details (for the 2nd and 3rd layers). The algorithm
creates a map between the relative coordinates, which are the coordinates of the bounding
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boxes on the original image, and the absolute coordinates, which are the bounding box
coordinates on the detected image. The proposed methodology can be separated into
three cascaded levels:

1. Level 1: Tower detection layer - Detection and image cropping of transmission OHL
towers using Rol.

2. Level 2: Component detection layer - Disaggregation of transmission OHL into the
components using Rol.

3. Level 3: Defect detection layer - Insulator and concrete pole defect detection using
image patching and ensemble modeling.

Table 18 lists all used object detection models for fly-by images’ defect detection and
number of detection classes for each model.

Table 18: Object detection models used in the multi-layered approach.

Object detection model Number of classes Number of used models
Tower detection 1 3
Component detection 3 3
Reinforced-concrete 3 3
defect detection
Insulator defects detection 1 3

3.4.2 Image Disaggregation and Defect Detection

Bounding box of an object detection model consists of four coordinates: x,in, Xmaxs Ymin
and yuax Where x,,;, and x4, are linked with the width of the image and y,,;,;, and yyax
with the height of the image. In Fig. 34 Xiiny,;..iion® Xmaxgeection® Ymingerection AN Ymax oecsion A€
absolute coordinates of that bounding box respectively 100, 200, 300 and 400 pixels. As
the image itself is 512x 512 pixels then width,,s;.q = 512 and height,zgizeq = 512.

To calculate relative coordinates of the bounding box (27) to (34) are used. Absolute
coordinates in Fig. 34 result in relative coordinates, respectively 0.1953125, 0.5859375,
0.390625 and 0.78125. Assuming the original image is 1500 x 2000 pixels then the bound-
ing box will be displayed on the original image with coordinates Xitoriginal = 390.625,
Xmaxyriging = 8718-90625, Yiming,ging = 781.25 and yimax,iging = 1171.875.

xmindetez‘/ion
Ximittyetative = idth.,.: (27)
WIA Nyesized
xmindetectian
'xmaxrelative - dth . (28)
wi resized
'xmjndetection
Yminyetative = height,,.: (29)
el8Myesized
xmindetectian
ymaxrelarive - h . ht . (30)
€18 N resized
Xmingriginal = Xminyeiarive * Wldthariginal (31)
'xmaxoriginal = Xmaxyeiarive * Wldthorigi”al (32)
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Figure 33: The flowchart of the multi-stage object detection model used for the fly-by image defect
detection. Rectangles represent process steps, parallelograms data and round shapes the start and
end of the process. Dashes arrows illustrate the flow of original size images.
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Figure 34: A simplified graph about the relative and absolute coordinates where the red square
represents a bounding box.

Ymingriginat = Yminyearive * heightoriginal (33)

ymax,,,ig,-,,a[ = Ymax,eiarive ¥ heightoriginul (34)

To run the three-level defect detection model on high resolution images successfully,
the image’s width, height and detected bounding box coordinates with both absolute and
relative coordinates are used. Switching from absolute to relative coordinates and back
enables to detect towers, components and defects on resized images that are supported
by the object detection models and to crop detections based on Rol for further levels using
the maximum resolution images. It also enables to display higher level detection on the
original images where it is possible to get the full overview with all detections of the tower.
The method for describing this multi-stage approach is given in Algorithm 1.

Level 1: Tower detection At this level transmission towers are detected to pass onto
the second stage. As there is a large variety of different angles and heights where the
image was taken, then for some images the tower is only 10% of the image and in some
cases the tower covers almost the whole image. The input into this level is the original
images O, in the range of sizes up to 11,680 x 8,708 pixels. The system resizes the image to
512x 512 pixels, saves the mapping and inputs the resized image &, into stage 1's detector.
The output of the detector constructs bounding boxes 4, around the towers as the Rol. It
calculates from the mapping the relative coordinates of the towers for the original image
and crops the towers into a new image file &, by using modified Rol where the coordinates
are transformed. Note that if multiple towers (N, ) are detected on an original image, then
multiple cropped images from the multiple detections are saved.

Level 2: Component detection This stage disaggregates the transmission tower &; given
by Level 1into insulator strings and the concrete pole. A similar process as in Level 1 applies
here, but the result is the detection of individual components. First, the tower images are
resized into 512x 512 pixel images @, and these are fed into the level 2 multi-class object
detector. The output of the detector gives the bounding boxes of the insulator strings
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Algorithm 1: Transmission overhead line disaggregation into components and
defect detection.

Require : Original Image for Processing, &,
Return :Defect Bounding Boxes and Health Index of System

(O,

end

end
fori

end

%] +— Function Resize(image:0,,)
if (0, Height > 512 OR O, Width > 512) then
Resize Image to 512 x 512 pixels — O
Set ., < Scaling Factors
end
return: .%,, 0, ;

[%,,N;] < Function TowerDet(image: 0})

return: array of tower Bounding Boxes in relative coordinates, 4,, & no. of towers N;;
Level 1 Detection

=0to N, do

O} < Function Scale&Crop(Bounding Boxes: %, (i), factor: .,, image: 0,)

Crop tower from O, using the relative coordinates %, (i) and scaling factor ./
return: Cropped tower Image &y ;

end

Oc,%4)] < Resize(image: O})

[Ber, Ocs, O] < Function ComponentDet(image:0.)

return: component Bounding Boxes in relative coordinates, 4., & component

tower cropped image, &, component string cropped images, O,; Level 2
Detection

end
forx=0to O, do
(O, 7)) < Resize(image: Oy)

[64,D;] < Function DefDetStr(image: O,)
return: Defect Class, %, & total number of defects per component D;;
fory=0to D, do

H(y) < Function Hi(class:%(y))
| return: Health Index H (y);
end
end
end

end
forx=0to O, do
[O¢, 7)) + Crop(image: O)
[€4,D;] < Function DefDetTwr(image: 0,)
return: Defect Class, %, & total number of defects per component Dy;
fory=0to D, do
H(y) <+ Function Hi(class:€;(y))
| return: Health Index H (y);
end
end

end
end
return: max {H(x):x=1---n};
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and the concrete pole using Rol, 4,,. From the resized mapping these components are
cropped images 0., O, from the Level 1 output images &, with the maximum resolution
using the modified Rol similarly to Level 1. These components are passed to Level 3.

Level 3: Insulator and transmission tower defect detection Level 3 comprises 2 main
computations: the insulator and tower defect detections and transmission tower HI compu-
tation. The defect detection is divided into separate defect detection models that are cho-
sen according to Level 2 detection class. The insulator string defect detector De fDetStr(-)
is trained to detect missing insulators, and the concrete pole defect detector De f Det Twr ()
is concerned with the most critical structural defects in the reinforced-concrete OHL tower
such as cracks, holes and concrete is falling off. The insulator string detector operates
similarly to Levels 1 and 2 with the actions of scaling and object detection. The classes
%, and number of defects D; are stored for the HI calculation. The concrete pole defect
detection is more involved as poles are usually in the ratio of 20:1 when comparing the
height and width. Therefore, the tower images cannot be resized to 512x 512 pixels as
major details would be lost from the image due to the re-scaling and noticeable image
stretching. In this case image patching is used to divide the tower into several 512x 512
pixel images and passed into the tower defect detector consecutively. Here the class of
defects 4 and number of defects D, are more important than the bounding boxes. The
detected classes of faults for both the insulator string and concrete pole are sent to HI
determination where the HI of the image and its components is determined.

3.4.3 Data Description

Table 19 shows Level 1 tower detection training and testing data with the used detection
classes. A total of 331 images were used to train and test the model. 80% of images were
randomly chosen as training and 20% as testing, where all training images were augmented,
resulting in total of 526 training images with 554 labels.

Table 19: The level 1 tower detection training and testing data.

Class Augmented Training Testing
training
Tower 554 277 67
Images 526 264 67

Table 20 shows Level 2 component detection training and testing data with the used
detection classes. Three different detection classes are used as they represent different
components of OHL. A total of 689 images were used and split into training and testing as
80% and 20%. Training images were augmented, resulting in total of 1098 training images
with 8 378 labels.

Table 21 shows Level 3 concrete defect detection and Table 22 Level 3 broken insulator
detectors training and testing data. A total of 249 images were used in the concrete defect
detector training process and 509 images for broken insulator detector. All the data is split
into training and testing as 80% and 20%, where training data is augmented. That results
in 399 images and 613 labels for concrete defect detection, and 814 images and 882 labels
for broken insulator detector.
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Table 20: The level 2 component detection training and testing data.

Class Augmented Training Testing
training
Insulation 5566 2783 727
Concrete pole 904 452 12
Steel structure 1908 954 231
Total 8 378 4189 1070
Images 1098 550 139

Table 21: The level 3 concrete defect detection training and testing data.

Class Augmented Training Testing
training
Concrete is falling 102 52 14
off
Crack 222 m 23
Hole 289 146 36
Total 613 309 73
Images 399 199 50
Table 22: Level 3 broken insulator detection training and testing data.
Class Augmented Training Testing
training
Broken insulator 882 441 110
Images 814 407 102

3.4.4 Ensemble Model

To improve the results of the individual networks, an output-based ensemble technique
is used to compose a novel ensemble model to exploit the diversity in feature extraction
techniques employed by the different networks. The idea behind the ensemble model is
depiced in Fig. 35, where precious detectors’ results can be combined as they are failing on
different images. The increase in confidence levels produces more missing detections for
each network, but reduces the amount of false positives. The proposed ensemble model
enables to increase precision and recall, as different networks do not always miss the same
images, and when combining them there will be more positive detections. To increase the
precision and to minimize the amount of false positives, NMS was used to retain only the
highest confidence detections among the networks.

3.4.5 The Performance of Object Detection Models

The performance of tested Level 1 object detection models is presented in Fig. 36, where
all networks have nearly perfect performance, except Centernet with 0.8 recall, even at a
high loU threshold. Fig. 37 illustrates the performance of Level 2 models, where recall was
almost perfect for all models, but precision was around 0.8 for insulator detection. YOLOv5
performed nearly perfectly, while Centernet had the worst performance. Examination of
erroneous predictions shows that they primarily occur in steel structure towers where the
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Figure 35: The principle scheme of an ensemble detection using outputs of individual detectors. [17]

dense lattice image makes detection difficult. As Level 1 and Level 2 are image cropping
layers, it is important to use a high loU threshold to increase the accuracy of lower level
models.

The performance of Level 3 models is presented in Fig. 38 and 39, where the perfor-
mance of concrete defect detection is significantly worse at high loU threshold than for
Level 1, Level 2 and broken insulator detection. Level 3 differs from previous layers as the
objects being detected are much less defined, subject to more labelling noise and those
detections will not be used for further image cropping. Therefore, loU and confidence
thresholds should be set low for Level 3 models as the precise localization of detections is
not required. Since it is important to detect all defects as they may affect OHL condition
significantly, recall is more important than precision to minimize the amount of missed
detections. A higher amount of false positives will increase the workload of asset managers,
but increases the reliability of OHLs.

Fig. 36 to Fig. 39 present that Level 1 detector has nearly perfect performance, while
Level 3 concrete pole defect detectors have poor precision and recall on some defects,
such as cracks. Fig. 40 illustrates the results of ensemble models for Level 2 and Level 3
detection. An loU of 0.9 is tested for Level 2 since it is a cropping layer and 0.1 for Level 3
since it is the defect identification layer. Using the ensemble model enabled nearly perfect
performance of Level 2 and Level 3 broken insulator detectors and significantly increased
the performance of Level 3 concrete defect detector. At low confidence thresholds the
results of all detection models improved significantly.
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Figure 36: Precision vs loU (a) and Recall vs loU (b) for fly-by Level 1tower detectors.
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Figure 40: Precision vs Confidence (a) and Recall vs Confidence (b) for ensemble models.
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4 The Practical Implementation of the Methodology in a Case
Study

In order to illustrate the theoretical methodology proposed in the thesis, a case study
using Estonian TSO data is created. The case study starts with the condition assessment of
transmission OHLs and ends with the analysis of the proposed asset management decision-
making methodology. The case study proposed three individual condition assessment
methods of OHLs to determine the Hl based on the input data type as described in Section 2
and illustrated in Fig. 13. After the OHL condition assessment, PoF and CoF are determined
as done in Section 1.3 and Section 1.4. PoF is calculated based on the asset HI values using
survival analysis and historical failure data. CoF is determined by VOLL and direct costs
related to the failure elimination.

A brief overview of the data used is presented in Table 23. HI prediction model’s
training and testing data is collected from visual inspection conducted with the proposed
assessment tool in Chapter 2.1. Close-up images from OHL towers and foundations are
also collected from visual inspections by using the assessment tool and object detection
models are trained as described in Chapter 3.

Table 23: The input data used in the case study.

Explanation Count
Number of OHLs 200
Number of substation 131
Total number of individual towers 16 823
Number of towers with HI data used to train prediction model 26 206
Number of towers with deleted HI data 67
Number of recorded historical failures 277

The proposed risk-based asset management methodology is compared against the most
widespread approaches among TSOs that are TBM and CBM. As there are variations of
exact replacement strategies in TBM and CBM then the following approaches are compared
in the case study:

e Time-based maintenance (TBM) where assets will be replaced after 50 years of
service

e Time-based maintenance (TBM) where assets will be replaced after 60 years of
service

¢ Condition-based maintenance (CBM) where assets will be replaced when reaching
HI=5

e Condition-based maintenance (CBM) where assets will be replaced when reaching
HI=4 or HI=5

e The proposed risk-based maintenance (RBM) where assets will be replaced according
to risk
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4.1 Condition Assessment of Transmission Overhead Lines

Condition assessment of transmission OHLs is divided into three different approaches that
all have the same aim - to determine the health index of OHL tower and its components.
First a HI determination methodology is tested by using specially designed tablet applica-
tions combined with visual inspections done by foot patrols. As there is always missing
data from inspections then a HI prediction methodology is tested in this case study to
predict Hls of missing assets using supervised machine learning algorithms. Automatic HI
determination using deep learning techniques on images of OHL towers is performed in
Section 4.2.

4.1.1 Health Index Determination Using Visual Inspection

Health index determination using visual inspections methodology was implemented by
an Estonian TSO and a pilot project to assess the full grid was successfully done in 2018.
Additional full grid inspection using the same methodology was also performed in 2019.
Inspections were carried out by foot patrols using specially designed tablet applications
where inspectors had only to select noticed defects and HI determination took place in the
background of the system as described in Section 2.2 in nearly 100% of the grid. Predefined
defect lists consisting of 150 assessment criteria divided between nine component classes
enabled to minimize the subjectivity in the assessment process. With additional images
and comments it produced 186 rows of data for nearly 17 000 towers resulting in almost 3.1
million columns of new data relating to OHLs. Combined, this allowed to compare different
towers and OHLs on the same basis and highlighted OHLs and individual towers that are in
a bad technical condition.

Fig. 41 depicts the condition assessment results of a single OHL in the grid. Every tower
on that OHL is presented separately with three different component classes: support,
foundation, insulation. Fig. 41 shows that this OHL is in relatively bad technical condition
as there are eight towers with critical supports and six with critical foundations. That
enables to easily see the technical condition of each tower and its components and gives
the first hints for the decision-making process. If assuming OHLs’ projected lifetime of all
components is 50 years then according to 11 it is possible to plan new investments in a
certain time-frame. That means replacing or renovating eight towers and six foundations
with HI5 will increase the lifetime of OHL by ten years as the remaining lifetime of other
towers is at least ten years due to the HI4 and lower. That enables to acquire invaluable
information for potential further investments by knowing the exact technical condition
on a common basis of each component individually. Therefore it is possible to minimize
total expenditures by only renovating those components that are in the worst technical
condition.

Fig. 42 presents a comparison of different OHLs according to their technical condition
aggregated on an exponential scale. Such an approach does not give an intuitive technical
condition of given OHLs but it enables comparison on the same basis where OHLs in the
worst condition will be highlighted. In order to look into each OHL in more detail and plan
for further maintenance works it is recommended to investigate each OHL on linear scale
with all towers as done in Fig. 41.

In addition to showing all OHLs on an exponential scale aggregated to OHL level, it is also
possible to present each OHL tower individually using geographical data as done in Fig. 43.
That approach requires additional tower coordinates and a geographic information system
(GIS), but it enables to plot each tower individually while selecting a single component’s HI
or aggregated HI as done using (13). A brief glimpse of Fig. 43 will provide a total overview
of the grid and provide the opportunity to intuitively highlight all critical towers in the grid.
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Figure 41: Health index of each tower for a single OHL where foundation (red), towers (blue) and
insulators (green) are assessed separately.

50

N
[es]

(%)
o

[\
(@]

Aggreageted OHL Health Index

—_
o

30

0 10 20 40 50
Overhead line number

Figure 42: Aggregated health index values of overhead lines.
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Figure 43: Health index values of each tower in the grid where red represents HI5 and green HIO. HI1
to HI4 are distributed smoothly from green to red.

4.1.2 Health Index Prediction Using Machine Learning
The health index prediction model uses the results of the visual inspection in the previous
section as input data to train and validate the prediction model. As these visual inspections
produced nearly two million individual defects in OHLs then they were aggregated on the
tower level. Nearly all towers in the grid were assessed and a single Hl value of each tower
was generated on the basis of detected defects according to 11. This resulted in a dataset
described in Table 23 with 16 071 individual towers with corresponding HI values. All towers
were linked in the asset database to associate the technical features of each tower with Hl.

The training data for the HI prediction model is described in Table 24. For the training
data 26 206 samples of data of OHL towers were selected along with a single OHL to test
the prediction model. All remaining towers in the grid were used to train the prediction
model using the proposed methodology. To test a proposed methodology a single OHL
that had HI values from visual inspections was selected and all data about His was deleted.
This resulted in a OHL without HI data consisting of 67 individual towers while all technical
features remained unchanged. The selected OHL for testing had a variety of different tower
types and installation dates as it had been constructed and renovated in sections and in
different timeframes. The age of these OHL towers is in the range of 13 to 61 years, and
ten different tower configurations are used. The asset HI prediction model is tested using
a Random Forest algorithm with optimal hyper-parameters using unmodified data as it
provided the best results for the model validation in Section 2.3.

The results from health index prediction model compared with the results from actual
visual inspections are presented in Fig. 44, where it can clearly be seen that 80% of OHL
towers have identical HI with actual values. Based on those results it is possible to conclude
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Table 24: Training and testing data of HI prediction model for a case study. [81]

Health Index Class Selected OHL Training
HIO 15 7757
HIM 0 2249
HI2 2 11203
HI3 32 3430
Hl14 16 1461
HI5 2 106
Total 67 26206

the HI prediction model is performing significantly better than classifying towers into six Hi
classes randomly. The model had an accuracy of around 80% in predicting the HI of OHL
towers that the model has not previously seen while randomly classifying towers into six
different categories only gives an accuracy of around 16.6%. Out of 67 towers, 54 were
predicted correctly by the model and 13 incorrectly.

I Actual mmm Prediction

Health Index

0 I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Tower number

Figure 44: An actual and the predicted health index of the selected overhead line using the random
forest prediction model.
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4.1.3 Modeling of Aging Behaviour

The aging behaviour model works best on the basis of the HI prediction model where
the age parameter will be modified and Hls of each tower will be predicted based on the
new age of the tower while all other technical features of assets remain unmodified. To
present a clear example of aging behaviour modeling in the grid, then the age parameter
of the same OHL with 67 towers in Section 4.1.2 was used, but the age of each tower was
increased by ten years. The results are presented in Fig. 45, where it is clearly seen that for
nearly all towers HI values increased compared to the results presented in Fig. 44. It is also
seen that not a single HI of towers decreased, even the towers with maximum HI value five
remained the same. In some cases where towers were in the age of 50 to 67 years, Hl was
increased more than just a single step as expected according to a linear increase of the HI
in the methodology. That can be explained by the prediction process where the model
does not just linearly increase the HI of the towers but rather predicts the most probable
output based on the data.

I Actual mmm In 10 years
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Figure 45: The comparison of an actual and the modelled health index in ten years using the prediction
model with Random Forest algorithm.

One part of the TSO's grid is modeled to predict the distribution of HI values in ten
years. That situation is presented as a 3D chart in Fig. 46. The number of towers with HIO
and HI2 has decreased while the number of towers with higher HI values such as HI4 and
HI5 has increased. In the medium HI range such as HI1 and HI3 the number of towers in
those categories has remained almost unchanged. It is clearly seen that the age of the
grid has increased and concentrations of assets have moved from lover HI values to higher
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HI values such as from HIO and HI2 to HI4 and HI5. This reflects the situation where the
overall condition of the grid has decreased and the reliability of the grid has decreased as
there are more towers with critical or end-of-life than before.
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Figure 46: The 3D chart of health index and age distribution according to the aging modeling. [81]

The aging behaviour modeling reflects a realistic situation where no investments are
done in the grid. Due to the insufficient data about old assets, there are limitations for
the implementation of that methodology where towers with an old age are difficult to
model accurately as there is no data about assets of that age. As there are always limits to
obtaining a sufficient amount of data and there are impurities in the input data for the grid,
this case works well on large datasets where there are many samples from different HI and
age ranges but it should be noted that predicting far into the future will cause inaccuracies
due to the lack of reliable data.

4.2 Automatic Condition Assessment using Object Detection

4.2.1 Automatic Image-asset Correlation

Image-asset correlation was performed by using data about all 16 823 individual towers
with their geographical coordinates. The minimal distance from each tower to the nearest
tower was calculated using (23) where the minimal distance for each tower was saved.
The results are visualised in Fig. 47 and in Fig. 48 where the cumulative distribution of the
tower-to-tower distances is presented. It is clearly seen that 71% of OHL towers in the grid
are more than 100 meters from their nearest neighbour. That value also corresponds to
the average span length in 110 kV OHLs. It is also seen that around half of the towers are
further than 200 m from each other, which is also in the correlation with 330 kV OHL span
lengths. 4% of towers are less than 30 m apart and around 1% of towers are within 20 m

91



500
400

300

Distance (meters)

200

100

Q \} Q Q \} \} Q
\) \) \) \ \ \)
WQ » ‘OQ 00Q \QQ \WQ \P‘Q

Tower number

Figure 47: The cumulative distribution of minimal distances between the two nearest towers in the
grid.

of the nearest tower. That is well explained by the usage of parallel OHLs in Estonia that
are sharing ROW. In some cases the nearest tower is not exactly the tower of the same
OHL but rather the tower from parallel OHL.

Next, 1 871 images taken from periodic visual inspections of the transmission grid were
used to determine an appropriate value for D,,,,. All images were taken by using the
assessment tool described in Section 2.2. Visual inspections were carried out by using
tablets that enabled geotaging of images using the A-GPS technology and the geographical
location of each tower was saved into the asset database from LiDAR inspections. By
knowing the coordinates of each tower and image with the association to asset it was then
possible to calculate geographical distance from each image to corresponding asset by
using (23). The results of that calculation for each image/asset pair are presented in Fig. 49.
89% of the images were identified to be in the range of 20 meters of the corresponding
assets. 82% of images were taken less than 15 meters from the assets and 60% of the
images were less than ten meters. As those images were taken during visual inspections
then those results are expected because all images were taken next to the tower itself.
Around 9% of images were further than 100 meters from the OHL tower and in some cases
almost up to five kilometers from the asset. The reason for these large offsets is likely to
be due to a GPS drift on tablets or the GPS signal being lost while taking the picture. It
must also be noted that image-asset correlation using images taken from visual inspections
with tablets using A-GPS can be considered as baseline accuracy when compared to more
precise technologies that are widespread with modern drones.

Even using input data from tablets, a threshold value of D, for image-asset correlation
in the range of 10 to 15 meters could be used for asset identification with an accuracy of
about 90%.
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Figure 48: The cumulative distribution of minimal distances between the two nearest towers limited
with the closest 800 towers.
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Figure 49: The calculated minimal distance between taken images and towers and between two
individual towers.
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4.2.2 Detection of a Single Defect Using Close-up Images

Fig. 50 shows example outputs for different backgrounds with the bounding boxes overlaid
on the images and their corresponding confidence scores. The threshold confidence score
assigned to a positive detection was set as 0.5. The object detection model successfully
detected all holes in reinforced concrete poles and similarly across the entire dataset was
able to the detect all instances of damage as long as the hole was up close.

(a)

(b)

(c) (d)

Figure 50: Detections with different backgrounds of pole (a), forest and sky (b), field (c) and hand in
the foreground (d). [124]

When images were taken at a distance, so that the damaged areas were difficult to
distinguish due to the image size, several instances of missed detections were noted as in
Fig 51a and Fig. 51b. For some cases the confidence threshold for a successful detection
was reduced to a very low value such as 0.2, but even then the hole could not be detected
although false positive detections began showing up in other images. The occurrence of
poor performance for detections of small objects is a recognized issue with the used YOLOv2
algorithm, and would have to be taken into consideration when specifying guidelines for
taking images.

Manual inspection of the boxes indicates that higher ground truth labelling noise leads
to variations in bounding box sizes or multiple detections of a single damaged area, as
presented in Fig. 52. Irregularity in hole shape, backgrounds, shadows and lack of defined
boundaries in damaged areas also increase the ground truth labelling noise. Since the
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(a) Single hole (b) Multiple holes

Figure 51: Missed detections of far taken images with single hole (a) and multiple holes (b) where
green box represents ground truth. [124]

intersection between the bounding boxes is limited to the area of the smaller box, a small
predicted bounding box which perfectly overlaps with a larger ground truth box would
have a small loU even thought it is detected correctly.

Figure 52: Multiple detection of the single damaged area. [124]

If the aim of defect detection model is to highlight all possible critical defects and detect
all possible holes then a lower threshold confidence score can be used. It may be desirable
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but could also increase the number of false positives or multiple detections and flags more
defects for maintenance personnel to double-check. Using higher threshold confidence
values will decrease false positives but then some holes will be not detected.

4.2.3 Detection of Multiple Defects Using Close-up Images

An example image from the Faster R-CNN object detection model output is presented in
Fig. 53 showing the overlays of bounding boxes of the ground truth data (green), and the
bounding boxes of detector (red). Three different defects (holes, micro-longitudinal cracks
and minor defects) were successfully detected by the Faster R-CNN algorithm for an loU of
0.1 that were also marked manually as ground truth. The example gives a good indication
of a detector’s performance to an image with multiple classes of features.

Figure 53: Bounding boxes overlayed on a concrete pole image where green is the ground truth and
red is the detection. [79]

Table 25 lists all detected defects from Fig. 53 and links corresponding HI values using
Table 3’s defects list. Maximum HI of the selected image is calculated according to all
detections and by using (10).

Table 25: Detected defects in Fig. 53 using object detection model.

Detected defect Health Index Class
Holes 5
Micro-longitudinal cracks 2
Minor defects 1
Maximum HI value 5
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4.2.4 Detection of Multiple Defects Using High-altitude Fly-by Images

Results from the multiple defect detection model using high-resolution fly-by images are
presented in multiple steps where each level of detection is explained. Fig. 54 presents a
tower detection from high-resolution image where a single tower from the high-resolution
image is detected and cropped for further steps. The tower is successfully detected with a
confidence level of 100%. After this, the detection bounding box’s coordinates are used
to crop tower section out of the full-resolution image. There is also another 330 kV OHL
tower seen in the image, but as it is not entirely fit, it is correctly not considered as a tower
detection. If the proposed model detects more than one OHL tower on the image then all
detections will be extracted to Level 2 models.

Figure 54: Level 1tower detection from the input image. Green box is representing detection of the
tower.

After successful Level 1 tower detection, Level 2 component detection is used. Fig. 55
presents a component detection where six different insulator strings, concrete pole and
three crossbars that are considered as steel structures are detected. Confidence levels of
each detection are over 90%, except for the top crossbar that had a confidence level of 68%.
By decreasing the confidence level, more detections will appear that might also produce
false-positive detections that should be eliminated in Level 1 and Level 2 detections. Each
individual detection’s labels with bounding box coordinates are used to crop only detected
components of full-resolution images to perform Level 3 detections without sacrificing
quality. All Level 2 detections are used by component specific Level 3 defect detectors.

Detected components are saved according to bounding box coordinates as individual
images for the Level 3 defect detection model. Individual insulator strings are presented
as in Fig. 56 where all images are detailed and give a good overview of the condition of
glass insulators. There are no broken insulators in the insulator string but two different
insulator types are seen.

All Level 3 detections for the reinforced-concrete pole are presented in Fig. 57. Fig.
57d and Fig. 57e are false-positive detections of cracks on the background noise with
confidence around 50%. Concrete is falling off and holes are all correctly detected with
high confidence levels. In Fig. 57h cracks are detected with 27% confidence and there
is doubtful existence of cracks in Fig. 57f. The accuracy of severe and clearly bordered
defects, such as holes and concrete falling off, is promising as all detections on the test
images are correct. Cracks are a difficult defect to detect because of the variety of the visual
appearance of cracks. In this section all different crack types such as micro-longitudinal,
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Figure 55: Level 2 component detection from the cropped image according to the Level 1detection’s
bounding box coordinates. Green boxes are representing detected insulators, blue concrete pole and
cyan steel structures.

hair-like cracks or large cracks are also combined into a single class. A larger amount of
training data is required to detect cracks of reinforced concrete poles accurately.

Health index determination of the fly-by image is done according to all detected defects
using (10). The results of defect detection model for fly-by image are simplified in Table 26
where all detected defects are counted and Hl of the image is determined. False-positive
detections are also counted in the HI determination process as the model is producing
results automatically. False positives could be minimized by increasing the confidence
thresholds of defect detection models but that may result in missed detections.

Table 26: Detected defects from the fly-by image and overall health index of the image.

Detected defect Number of detections Health Index Class
Hole 4 5
Concrete is falling off 1 5
Cracks 3 4
Maximum health index 5

4.3 Probability of Failure

Probability of failure of each tower is calculated based on the methodology described in
Section 1.3. Survival analysis is used to find each tower’s PoF according to the asset’s Hi
and historical failures and critical replacements. PoF for OHLs is divided into two categories
based on voltage levels where for both voltage levels a separate hazard curve is composed
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Figure 56: Cropped insulator images using the Level 2 component detection model with the original
resolution image.
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Figure 57: Defect detection using the Level 3 reinforced-concrete pole model.

as presented in Fig. 58. It is clearly seen that PoF values for 110 kV towers are higher at all
HI levels compared to 330 kV towers. At higher HI values the PoF icreases rapidly where
it reaches a maximum value of 0.89 at HI5 for 110 kV and 0.36 for 330 kV towers. PoF
for other HI classes is significantly lower, where at HI4 it is respectively 0.08 and 0.02, at
HI3 0.02 and 0.03, at HI2 0.007 and 0.001. At low HlI classes such as HI1 and HIO values
are almost zero for 330 kV towers and for 110 kV towers they are at HI1 0.002 and at HIO
0.0008. It is also seen that PoF for 330 kV network is lower compared to 110 kV towers
at the same Hl classes. It is also an expected result as 330 kV grid has higher reliability
requirements. These results reflect a realistic situation of extremely reliable assets such as
transmission OHLs that are in service for 50 or more years without a single failure. Once
these assets reach critical technical condition, they are prone to failures while assets in a
good condition will have PoF nearly zero due to the good technical condition. That is also
explained from the results by the PoF of HIO to HI3 where it increases only marginally but
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once reaching Hl4 and especially HI5 then PoF increases rapidly. That can be explained with
the exponential nature of degradation processes where mechanical strength decreases
rapidly at the end of their lifetime. It is also seen at HI5 that confidence intervals of 95% are
increasing significantly by reaching almost 20% of the initial value due to the uncertainties
in the data and lack of assets with bad technical condition. This mainly explained with
the usage of predictive maintenance in the TSOs grid where the majority of assets will be
replaced before reaching their end-of-life condition.
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Figure 58: The probability of failure of 110 kV and 330 kV towers based on the health index. 95%
confidence intervals are represented with light-colors. [32]

4.4 Consequences of Failure

Consequences of failure are calculated here according to (7) where the expected outage
duration is determined individually for each tower. VOLL calculation example of a single
substation is done based on a 110 kV substation’s real consumption. CoF for each tower
is calculated on the basis of replacement of the asset and VOLL. Replacement costs are
determined based on the best knowledge from the TSO and values used in this case study
for different tower configurations are presented in Table 27.

4.4.1 Estimated Outage Duration

To acquire the estimated outage duration for each tower it is essential to find the nearest
distance from roads. To achieve this, each OHL tower’s geographical coordinates were
compared against the OpenStreetMaps road network and minimal distances from the
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Table 27: Expected replacement costs for OHL towers according to tower types and voltage levels
used in the case study.

Cost of replacement (€)

Tower type 110 kv 330 kv

Steel Concrete Steel Concrete
Suspension tower 16 000 8 000 60 000 20 000
Tension tower 16 000 8 000 60 000 20 000

nearest road were saved according to predefined proximity zones. The results of this are
presented in Fig. 59.
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Figure 59: Summarized minimal distances from the nearest roads of each tower according to prede-
fined proximity zones.

Expected outage duration values based on the distance from the nearest road, tower
type and voltage level for each tower are presented in Table 2. Realistic results of possible
outage durations according to predefined rules are presented in Fig. 60. The estimated
outage duration based on the repair times is usually 24 hours for 8 947 towers or 12 hours
for 4 829 towers. For 187 towers the estimated outage duration time is longer than 24
hours, 36 hours for 80 towers, 48 hours for 79 towers and 72 hours for eight towers. It
seems to be a logical distribution of estimated outage durations as Estonia is well covered
with road networks. This approach can be further improved by defining more and smaller
proximity zones with additional rules.
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Figure 60: The estimated outage duration of each tower based on the rules from the Table 2.

4.4.2 Value of Lost Load

Distribution of each customer sector is calculated according to annual load distribution
between different sectors of final consumers. Customer sectors and each sector’s CENS
values are acquired from Section 1.4.1. CENS for substations in general is calculated by
using (8), where weighted average CENS of the substation is calculated for each substation.
An example of a single substation’s CENS determination with the distribution of different
sectors according to consumption of five years is presented in Table 28. In that substation
the majority of consumers are from commercial services, which has the highest cost of
CENS per sector. It is also affecting the substation CENS the most, as weighting factor
of that sector is almost 83%. There are no agricultural consumers and only a marginal
proportion, 0.36%, of industrial consumers connected to the substation.

Table 28: Customer’s structure, consumption and CENS values of the selected substation according
to Fig. 10 for the estimated 8 hour outage.

Customer sector Consumption of 5 Distribution (%) CENS (€/MWh)

years (MWh)
Industry 1539 0.36 10 890
Commercial services 349 151 82.77 25210
Agriculture 0 0 13 570
Households 71156 16.87 17 520
Substation 421847 100 23 861
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Figure 61: Calculated value of lost load in an hour values for all substations.

Fig. 61 presents all substations with calculated VOLL values in an hour. VOLL in an hour
values are used here because the expected outage duration is determined with the tower
failure and its repair time. VOLL/hour is calculated according to (8) for all substations with
the outage duration of one hour as shown in Table 28 based on five-year consumption
data for each sector. The results show large variations between different substations
where the maximum VOLL/hour is nearly 140 000 € and minimum ones just around 300 €.
This is because there are some substations with large consumption and some substations
with nearly no consumption at all. Those VOLL values for substations are further used in
combination with estimated outage duration to calculate CoF.

4.5 Risk-based Decision-making

Risk determination results of all individual towers are presented in Fig. 62. It clearly
illustrates that the proposed methodology enables to determine the most critical towers
in the grid. That enables to move to the efficient asset management decision-making
where towers 1032, 13 854, 15 207 and 15 319 should be focused upon first as they have
significantly higher risk values. As the majority of towers have the risk just around a few
euros due to the good technical condition and therefore low PoF then some towers have
bad technical condition in combination with great CoF leading to risk values exceeding
0.25 M€,

The final results of the proposed risk-based approach are presented in Fig. 63. Different
AM strategies are compared in parallel and the proposed RBM achieved the best results in
terms of remaining risk and in the lowest total cost of replacements in the grid. As expected,
the TBM scenario where all assets were replaced after 50 years of service produced the
highest cost of replacement resulting in 161 M€. The TBM approach, where all assets that
are older than 60 years were replaced, produced a replacement cost of around 41 M€ while
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Figure 62: Calculated risk values of each tower in the grid.

the cost of remaining risk remained higher than at the TBM50. The remaining risk of the
grid for the TB60 is 8.84M<€ and for the TBM50 6.43 M€ when doing no replacements in
the grid produced the remaining risk of 8.94 M€. For the CBM scenarios replacement costs
are lower compared to the TBM approaches while the cost of remaining risk is also less than
in TBM approaches. Replacing all assets that have a higher HI than four requires around
25 M€ compared to the CBM5 with 1.9 M€ where only assets with HI5 will be replaced.
That results in remaining risk, respectively 4.9 M€ and 7.75 M€ for the CBM4 and the
CBMS. The proposed RBM methodology produces replacement costs comparable with the
CBMS5 strategy while providing risk reduction in the grid similarly to the CBM4. This clearly
illustrates that the proposed RBM approach produces the lowest cost of replacement with
the lowest cost of remaining risks as it takes into account both, technical condition of
assets and their importance in the transmission system.

4.6 Optimisation

The results of using dynamic knapsack optimisation are presented in Fig. 64. The optimi-
sation gives only a slight benefit compared to selecting the towers with the highest risk.
But still, all optimised scenarios from 250 000 € to 1500 000 € are one percentage point
better than not optimised. It must be noted that this kind of knapsack optimisation is really
computationally resource expensive and the increase in efficiency is small. However, using
more advanced optimisation algorithms will most probably produce similar results with
less computational resources.
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Figure 64: Optimised decision-making under budget restrictions vs non-optimised.
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5 Conclusions and Further Work

The thesis presents a complete framework of asset management decision-making method-
ology for transmission OHLs to increase the efficiency of condition assessment and LCM
of OHLs. All the hypotheses of this thesis were thoroughly confirmed and proved to be
possible. The proposed methodology substantially increases decision-making efficiency
compared to TBM and CBM approaches and clearly determines the most critical towers
in the grid. The proposed asset management decision-making methodology is a RBM
approach that enables to overcome the main issues related to classical RBM implemen-
tations such as the transparency related to input parameters and decision-making. The
main drawbacks of classical RBM methodologies are eliminated by using tower-specific
PoF determination based on the actual technical condition of assets and CoF based on
precise VOLL determination. For the more cost-effective decision making, each tower in
the grid is treated separately with tower-specific PoF, CoF and risk. Focusing on a tower
level enables a well-argued and transparent asset-management decision-making process,
as each element in the grid can be observed separately.

Sophisticated condition assessment methodologies of OHLs were developed, where
it was proven that the age alone is an inaccurate parameter for technical condition as-
sessment, given that, when focusing on the towers of the same age, some were in good
condition and others in poor condition. The unambiguity of traditional visual inspection
was reduced by using predefined visual indicators and specially designed mobile appli-
cations to ease the assessment process. The health index prediction methodology of
overhead transmission lines using supervised machine learning models demonstrated that
it is possible to predict missing HI values of high voltage OHL towers based on the asset’s
technical features and Hl results of already existing data with the accuracy of 80%.

Object detection networks demonstrate a significant potential in the near future to
replace traditional visual inspections with aerial inspections as they provided the opportu-
nity to detect the most critical defects from concrete poles while mapping them to a HI.
The multi-stage approach shows even greater potential in the future to be implemented
as it enabled the possibility to use super-high-resolution images taken during LiDAR data
collection as an input to determine the technical condition of OHL towers. The results
imply that automated state-of-the-art methodologies such as HI prediction and object
detection demonstrated cost-effective and reliable results, that could potentially enable to
decrease the workload of maintenance engineers.

Practical Implementations

For the practical implementation of the proposed methodology, it is essential to focus on
the collection of input data. The condition information of assets is required for accurate
PoF determination together with grid topology such as possible outage combinations of
OHLs and division of consumers into groups. The cost of asset replacements and VOLL
determination using estimated outage duration of OHL towers are TSO specific, where
input parameters are specified using the best practice.

The most practical and also cost-effective approaches to determine the technical con-
dition of OHL elements is by using multi-stage object detection model described in Section
3.4. To acquire the technical condition of assets that were not assessed it is recommended
to use HI prediction model as described in Section 2.3. Training and validation process of
all models should be done based on the real TSOs’ data as images of OHL towers, manual
labelling of defects and a large-scale use of technical data about the grid and technical
condition of assets.
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Further Work

The proposed methodology is developed for transmission OHLs, but it is possible to use
the framework for other infrastructure systems as well. To implement the methodology
for other infrastructure elements it is essential to develop reliable condition assessment
methodologies for the selected assets and analyse the results of possible failures.

The most critical part of the methodology is the condition assessment of asset, which
affects the PoF and Risk assessment results significantly. It is possible to develop precise
and well analysed condition assessment criteria for all OHL components and to increase
the accuracy of the proposed decision-making methodology by focusing on the component
level instead of tower level. More parameters could be involved in the CoF determination
to also assess the CoF arising from the hazards to safety. However, it must be taken with
extreme care, as it may distort results, when using unrealistic parameters.

To increase the accuracy of the HI prediction model, it is possible to involve additional
training data of multiple-year inspections. Using the model to predict the HI of each OHL
component or even defects, similarly as done for OHL towers, might have a positive effect
on the final results. That also enables to move to a more detailed asset management
approach where all decisions are done on the component level.

The proposed multi-stage object detection model should be used to increase the
efficiency of airborne OHL inspections. Additional Level 3 object detection models should
be developed for other OHL components such as steel structures to detect all critical
defects of OHLs. It is also important to develop guidelines to take fly-by images of OHLs to
cover all sides of assets. Standardized guidelines also enable to increase the accuracy of
object detection models by using images taken from similar angles.
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Abstract
Data-driven Asset Management and Condition Assessment
Methodology for Transmission Overhead Lines

Electrical systems all around Europe are aging, resulting in a significant replacement wave
of assets in the next decade. The majority of those costs will be for the replacement
of overhead lines (OHLs) that consist of up to millions of individual elements and cross
harsh terrain. Due to the changes in the historical consumption and generation pattern
since the construction of OHLs, the replacement of worst-condition assets in modern
electricity grids may lead to ineffective decision-making. Traditionally, transmission system
operators (TSOs) have used time-based maintenance that is easy to implement, but may
lead to overinvestments. This thesis presents a holistic framework of a cost-effective asset-
management decision-making methodology including state-of-art condition assessment
approaches.

Cost-effective risk-based maintenance (RBM) approaches are becoming widespread
among TSOs but usually lack transparency in terms of decision-making. The thesis proposes
an improved RBM approach, where the probability of failure and consequences of failure
are based on the actual technical condition of assets and precise value of lost load. The
proposed framework is a data-driven approach, where it is essential to ensure the quality
of the input data. The proposed methodology outperformed the most widespread asset-
management decision-making methodologies. It also enabled to detect critical assets in
the grid and optimise lifecycle costs of transmission OHLs.

Condition assessment of OHLs predominantly relies on manual visual inspections that
are costly and may produce vague results on such a geographically expansive system.
Unambiguous results of visual inspections are achieved by dividing OHLs into components.
Specific visual indicators are developed according to the material’s physical fatigue that
represent different life-stages of each component using asset health index (HI). To acquire
the HI of not evaluated assets, an asset HI prediction methodology based on supervised
machine learning is developed and used. The proposed methodology was applied in the
case study based on Estonian TSO data, where it enabled to determine Hl of each tower
in the grid. The HI prediction methodology achieved nearly 80% accuracy without any
additional measurement.

TSOs are moving to aerial inspections using high-resolution imaging, but there is still
an enormous data processing burden that falls to the asset managers. The thesis proposes
an automatic condition assessment methodology based on image recognition using deep
learning techniques. The proposed methodology automatically detects transmission poles,
disaggregates their components and detects defects on concrete structures and insulators.
Detections are mapped onto established Hls of each component. Various state-of-the-art
deep learning networks are tested and new performance metrics, specific to this problem,
are defined to evaluate their performance based on HI. Automatic condition assessment
approaches allowed to determine HI of individual OHL components from high resolution
images.

The results illustrate that the proposed methodology enables TSOs to significantly
reduce costs related to OHLs' lifecycle management. The novel methodologies hold promise
for significantly reducing cost and manual labour associated with condition assessment
of transmission OHLs, especially using HI prediction and automatic defect detection from
images. The proposed methodology enables to minimize risks cost effectively in the grid
compared to traditional approaches and highlights the most critical elements.
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Kokkuvote
Ulekandevérgu dhuliinide andmepéhine varahalduse ja seisun-
di hindamise metoodika

Euroopa elektrisiisteemide vananemine toob jargmise kiimnendi jooksul kaasa margatava
seadmete valjavahetamise laine. Valdav enamus teostatavatest investeeringutest tuleb
suunata korgepinge ohuliinide tehnilise seisukorra parandamiseks. Elektri Gilekandevork-
ude hooldamisel on traditsiooniliselt kasutatud ajapohist Iahenemisviisi, mida on lihtne
rakendada, kuid mis viib olemuslikult ileinvesteerimiseni. Samuti ei pruugi tinapaeva elekt-
rislisteemides investeeringud koige halvemas seisus olevatesse seadmetesse tidhendada
koige kuluefektiivseimaid otsuseid, sest nii tarbimise kui ka tootmise mustrid on vorkude
ehitamise ajast tugevalt muutunud. See [6put66 hdlmab endas terviklikku ja kuluefek-
tiivset 6huliinide varahalduse raamistikku, mis sisaldab ka tinapievastel tehnoloogiatel
pohinevaid seisundihindamise metoodikaid.

Riskipohised varahalduse lahenemisviisid muutuvad tGlekandevorkudes jarjest enam
laialdasemalt kasutatavaks ja on kuluefektiivsed, kuid nende suurimaks puuduseks on
otsuste labipaistmatus. Selles 16putdos esitletakse andmetel tuginevat riskipohise varahal-
duse lahenemisviisi, kus sisendandmete kvaliteet mojutab tugevalt otsuste efektiivsust.
Rikke tekkimise tdeniosuste arvutamisel kasutatakse dhuliinide terviseindekseid, mis on
maaratud igale liksikelemendile, tuginedes nende tegelikul seisukorral. Rikete tagajargede
maaramiseks on vélja pakutud andmata jaanud energial pohinev metoodika, mis hélmab
endas ka eeldatava rikke kestvuse prognoosimist ja kaudsete kulude arvestamist.

Traditsiooniliselt tugineb tilekandevorkude éhuliinide seisundi hindamine manuaalsetel
visuaalsetel lilevaatustel, mida on kulukas l3bi viia ning mis voivad anda subjektiivseid
tulemusi. Paremate tulemuste saavutamiseks jagatakse kaesolevas [6put66s ohuliinid vaik-
semateks vaadeldavateks osadeks, kus igale komponendile t66tati vilja selle eluetappe
kirjeldavad hindamiskriteeriumid. Sellise lahenimisviisi rakendamine véimaldas tosta vi-
suaalsete lilevaatuste kvaliteeti ja vihendada subjektiivsust. Lisaks to6tati valja masindppel
pohinev terviseindeksi prognoosimise mudel, mis voimaldas prognoosida Eesti (ilekande-
vorgu andmetel koostatud juhtumiuuringus mastide tehnilist seisukorda ligikaudu 80%
tapsusega ilma taiendavate tegevusteta.

Ohuliinide Ulevaatustel kasutatakse aina rohkem &huséidukite abi, mis véimaldavad
holpsasti koguda suurel hulgal kérge kvaliteediga pilte. Piltide automaatseks ja efektiivseks
kasutamiseks pakub see [6put66 vilja siigavoppe narvivorkudel pohinevad pildituvastuse
meetodid. Valjapakutud ldhenemised suudavad automaatselt tuvastada piltidelt ohuliini
defekte ilma kdidupersonali abita ja nende alusel hinnata komponentide tegelikku sei-
sukorda. Terviseindeksi maaramise tapsuse hindamiseks arendati t66 raames valja uued
seadmete vananemise eriparasid arvestavad tulemuslikkuse moodikud.

Loputdd tulemused naitavad, et valjapakutud metoodika véimaldab 6huliinide elutsiikli
halduse kulusid Gilekandevérkudes margatavalt vihendada. Uute seisundihindamise me-
toodikate rakendamise tulemused annavad lootust, et nende abil on véimalik oluliselt
vahendada 6huliinide llevaatuste ja hindamise aega ning maksumust, seejuures samal ajal
suurendades tulemuste usaldusvaarust. Praktilise rakendatavuse osas on suure potent-
siaaliga terviseindeksi prognoosimise mudel ning pildituvastusel pohinevate metoodikate
kasutuselevott ohuliinide ja nende komponentide seisundi hindamiseks. Viljapakutud
metoodika véimaldas juhtumiuuringus minimeerida elektrivorgu riske kuluefektiivsemalt
vorreldes tldlevinud metoodikatega ja samuti voimaldas see tuvastada koige kriitilisemad
elemendid vorgus.

127



Mairksonad: Andmata jaanud energia hind, Elulemusanaliits, Kérgepinge 6huliinid, Masindpe, Pildi-
tuvastus, Rikke tdendosus, Riskide madramine, Sisundi hindamine, Stigavope, Terviseindeks, Vanane-
mine, Varahaldus

128



Appendix 1

H. Manninen, J. Kilter, and M. Landsberg, “Advanced condition monitor-
ing method for high voltage overhead lines based on visual inspection,” in
2018 IEEE Power Energy Society General Meeting (PESGM), pp. 1-5, Aug 2018

©2018 IEEE. Reprinted, with permission

129






Advanced condition monitoring method for high
voltage overhead lines based on visual inspection

Henri Manninen
and Jako Kilter

Department of Electrical Power Engineering and
Mechatronics
Tallinn University of Technology
Tallinn, Estonia
Henri.Manninen@ttu.ee, Jako.Kilter@ttu.ee

Abstract - This paper presents the advanced condition monitoring
method for high voltage overhead lines (OHLs) using visual
inspection without the need of highly qualified overhead line
experts. The method is for technical condition assessment by
minimizing subjectivity in the assessments process and thus
maximizing the efficiency of visual inspections. Unambiguous
results between inspection patrols are achieved by dividing OHL
into assessable components with specific predetermined criteria.
This enables to extend OHL’s expected lifetime with minimal
resources by replacing only components that are in critical
technical condition and therefore minimizing life-cycle costs.
Methodology is designed for reinforced concrete and steel lattice
towers using inspection patrols with specially designed tablet
computer (tablet) applications. The aim of the proposed
methodology is to minimize risks associated with poor technical
condition and optimize replacement strategies throughout life-
cycle of an OHL. This paper includes the results of implementing
the methodology in Estonian transmission system.

Index Terms - Asset management, health index, life-cycle
management, overhead line, visual inspection

I.  INTRODUCTION

The availability and reliability of electrical energy has
become the backbone of our society and requirements for
electrical energy have increased rapidly in last decades with
possible severe economic consequences from short
interruptions and technical malfunctions. The most common
way to transfer electrical energy from producers to consumers
is by using high voltage overhead lines (OHLs) that are well
described in [1]. Projected lifetime of OHLs is commonly
between 50-80 years [2], but it depends on various conditions
such as material, construction quality, climate, maintenance
quality etc. At the same time majority of the European
transmission grid (110 kV and higher voltage) has been built in
1960s to 1980s [2] and therefore the expected lifetime of OHLs
is reaching the final phase of its lifecycle. In Europe alone
transmission system operators (TSOs) have to spend over 52
billion euros before 2030 just to maintain the current reliability
level and up to 77% (over 40 billion euros) of that budget will
be spent on overhead lines replacements or refurbishments [2].

Mart Landsberg
Grid Maintenance Department
Elering AS
Tallinn, Estonia
Mart.Landsberg@elering.ee

Aging of OHLs and how to overcome the problem of
infrastructure deterioration is discussed in papers [3-7]. One of
the most complicated challenges is determining the actual
technical condition of OHLs, because reaching the final phase
of OHLs projected lifetime is not always inferring to its
deteriorated technical condition. Therefore more advanced
methods to define operational lifetime and real technical
condition of OHLs needs to be used in order to obtain more
precise assessment than just using age as a deterioration
characteristic. One possibility is to use the condition index of
OHL by applying fuzzy systems theory as discussed in paper
[7]. However, as technical condition of OHL is the basis of all
possible further calculations and decisions, then it is important
to determine it as accurately as possible.

The most common method to estimate technical condition
of OHLs by network operators is using visual inspection
performed by inspection patrols. They record detected defects
and majority of the maintenance works will be planned based
on their information. However, visual inspection is considered
as an ineffective way to assess technical condition of OHLs
because line inspectors usually note only major defects such as
broken insulators or mechanical defects and therefore will not
give full information to TSOs about the aging of the OHLs.
Improving the visual inspection of overhead lines using
reliability-centered maintenance (RCM) is discussed in paper
[8], where the key element for success is outlined as education
of the line inspectors. There are mainly two options to enhance
the quality of visual inspection, where the first is using experts
as line inspectors and the second one is to improve assessment
technique and use self-explanatory assessment criteria as it is
discussed in the aforementioned paper. Visual inspection of
OHLs is time consuming and costly and without specific
assessment criteria, it can be subjective, depending on
assessor’s previous experience on the field. Therefore
evaluation results from different inspection patrols can vary
between regions and assessors on a large scale and that makes
comparison of different OHLs inadequate. In order to decrease
subjectivity in the assessing process the most inaccurate link,
human’s capability to see same thing in different angles, needs



to be minimized. Therefore, it is essential to introduce highly
specific and unambiguous evaluation criteria for all OHL
components that not only describe defects but also give
indication of the technical condition of the selected component.
In doing so, assessors do not have to know background or
physical processes behind the assessment but only need to find
predetermined visual indicators and record them in the specially
designed tablet application. This enables to get good quality
results from inspection patrols after just short training and
consequently total expenses for inspection patrols decrease,
which is further enhanced with possibility to use unmanned
aerial vehicles (UAVs) coupled with machine learning
techniques to replace foot patrols in the near future.

This paper presents the advanced condition assessment
method for reinforced concrete and steel lattice towers based on
visual inspection with detailed example of reinforced concrete
poles. The paper is divided into five main topics that cover the
following: introduction, overview of the new methodology,
assessment tool for OHL’s condition monitoring, case study in
Estonian transmission system and conclusion.

Il.  OVERVIEW OF THE METHODOLOGY

Advanced condition monitoring method for high voltage
OHLs based on visual inspection is a new and unique
methodology that combines the best of asset management,
engineering and material science to achieve reliable results
from visual inspections and optimize the lifecycle cost of
OHLs. This is achieved by dividing OHLs into components,
developing health index (HI) that describe different lifecycle
stages for each component and then assessing the components
separately to obtain technical condition of all elements in the
grid. As the aim of the methodology is to reduce the subjectivity
of visual inspection and enhance the quality of results then it is
important to ease the assessment process for the line inspectors.
That has been achieved by developing a tablet application based
on the same methodology that has ancillary online capability of
sending all data to the asset database.

It should be noted that visual inspection is only the first
indication of OHL’s technical condition. Possible decision
process is described in paper [9] where inspections are divided
into 4 levels e.g. visual inspection, mobile measurements,
laboratory measurements, full-scale tests. All levels differ from
each other by the level of detail and cost. As visual inspection
is the first level of inspections then after receiving critical
values from visual inspection it is important to investigate the
critical component on next levels to confirm the actual technical
condition before committing to expensive investments.

A. Components of high voltage overhead line

In order to get results that are accurate and less biased while
simplifying assessors’ job on the field, the OHL is divided into
smaller observable parts — components. Each component differs
from others by construction or by the task it performs and thus
it is possible to examine and assess them separately. In this
method the OHL is divided into eight different groups of
components according to Fig. 1 [10].

Each group of components will be assessed individually
using different assessment criteria for every component group.
Variety of different materials and designs of the same

component turns the assessments of different OHLs into
complex task where all alternative materials of same
components (for example glass insulators versus composite
insulators or reinforced pole versus steel towers) need different
assessment criteria but the output must be HI in the range of 0
to 5. In order to assess different alternatives of the component
or different components it is essential to focus on the physical
processes that occur in the materials as they are aging such as
carbonization of reinforced concrete or loss of zinc coating in
steel structures and thus describe component’s visual image and
appearance in selected life stage.

Grounding

system Support
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Figure 1. Overhead line structure

As OHL is divided into components then it is important to
determine weighting factors for each component to calculate
the overall condition index. The current paper proposes values
for weighting factor calculated on the cost proportion of
selected component to OHL in general based on Estonian
practice. This gives opportunity to estimate replacement costs
of OHL components as they will be in reality and therefore
there is no need to focus on each component separately.
Weighting factors for components are the following:
foundation — 22%, support — 22%, crossbar — 4%, guy-wire —
2%, insulation — 10%, conductor — 35%, grounding wire — 2.5%
and grounding system 2.5%.

B. General description of the methodology

The basic principle of the advanced visual inspection
method for OHLs is development of such assessment criteria
where every detectable visual sign of selected component
matches certain period of the same component’s life stage.
Therefore, there is HI behind every developed assessment
criteria that describes selected component’s technical condition
in the range of 0 to 5. HI 5 means that selected component is in
poor technical condition and its operational lifetime has reached
its final stage, while HI 0 means that selected component is in
excellent technical condition and its operational lifetime is at its
maximum value. HI values are in the range of 0 to 5 are divided
linearly and describe technical condition of selected component
in that range. Since the basis of the methodology is knowing of
what visual signs will emerge when asset ages, then it is
possible to deduce current technical condition and residual
lifetime of the asset. Calculating the predicted lifetime of the
OHL’s component is done by using (1).

5—HI;

Apredicted= 5 *Aprujectedr (1)



Where A,qjectea 1 the projected lifetime of the component in
the beginning of its lifecycle and HI; is health index of the same
component.

C. Development of health index for reinforced concrete
foundations and poles

Methodical example of the derivation of the HI by visual
inspection results is done with reinforced concrete structures
such as foundations and tower poles. In order to understand the
aging of reinforced concrete structures it is important to explain
the basic changes in the material’s physical properties. The
aging of reinforced concrete is described thoroughly in [11],
but in general reinforced concrete structures are very durable by
construction and their potential lifetime is influenced mostly by
external environment. The aging of reinforced concrete
structures is determined by the decrease of structural strength
in time and it is caused by the change of the concrete’s
properties that protect steel reinforcements from corrosion.
When concrete’s surface pH value becomes lower than 8.3 then
concrete loses corrosion protective properties for steel
reinforcements and when there is enough humidity and oxygen
in the environment then steel reinforcements start oxidizing, i.e.
rusting. As the rust’s volume is up to 10 [12] times more than
steel’s volume then material’s inner stress will causing cracks
in the concrete. After time passes this process will accelerate as
more water and oxygen will reach the reinforcements and
eventually the concrete cover falls off. This will weaken the
structure and may lead to breakage of the pole in severe weather
conditions.

All kind of defects on the concrete will accelerate the aging
of the reinforced concrete structure and hence it is important to
identify them. By knowing the most important factor of
reinforced concrete’s aging, this paper focuses on the different
visual signs of the protective layer of reinforced concrete in its
life stages. Of course, mechanical damage from heavy transport
or agricultural equipment can lead to instant change of technical
condition from good to poor, but as the HI is designed to show
linear decrease of components’ exploitation resources and that
means mechanical damages accelerate rapidly the aging
process. Example of visual inspection criteria and responding
HI values of reinforced concrete poles is presented in Table 1
and sample pictures in Fig.2.

Table | Determination of the HI for reinforced concrete poles
Description of the visual identifier Health index

There are no defects on the pole (Fig. 2a) 0
Minor defects, but reinforcements are not visible 1
Defects where crosswise-reinforcements are visible 2
Hair-like cracks on the pole (Fig.2b) 2
Defects where cross-reinforcements are visible 3
Micro longitudinal cracks on the pole (Fig.2c) 3
Longitudinal cracks with width 0.3 to 0.6 mm on the pole 4
(Fig.2d)

10-20% of passing through defects in the pole’s cross 4
section

Over 20 % of passing through defects in the pole’s cross 5
section

Longitudinal cracks with width over 0.6 mm on the pole 5
(Fig.2e)

Over the length of 3m longitudinal cracks on the pole 5
Concrete is falling off from reinforcements (Fig.2f) 5

Similar approach as shown for reinforced concrete poles
was applied for all components of OHL and as a result of 149
visually identifiable criteria were developed that determine the
technical condition of OHLs.

)
Sample pictures of reinforced concrete poles (see Table 1).

Figure 2.

D. Determination of overhead line’s general health index

A large amount of data has been gathered after assessing all
OHL’s components separately that is processed to compare
different OHLs and to get general overview of the grid. For
more susceptible comparison to extreme values the exponential
scale is used to convert HI in the range of 0 to 5 to range
between 0 and 100. Equation (2) is used to make the conversion.

In101

Hl,=e¢ s g, ®)

where HI, is the component’s HI in exponential scale and HI,,
is HI of the same component in linear scale.

After that overall HI of selected tower is calculated
according to (3), where conductors and grounding-wires are left
out from the calculations because it is nearly impossible to
assess their technical condition from the ground level.

Hlpe = Zg=1(H1en * Wy), (€)]




where HI,, is the HI of selected component n in exponential
scale, w,, weighting factor of component n and n is the number
of components.

In order to find summary HI of the whole OHL, (4) is used.

n
Hlpy, = 2i=1.:”etn’ ()
where H,, ,, is overall HI of the one single tower and n number
of towers.

The main advantage using exponential scale to compare
different OHLs is the property of exponential scale that
highlights the most critical OHLs. To highlight the advantage
two identical OHLs are compared in exponential and linear
scales with both consisting of five towers and the Hls for each
towers are the following: HI1=0, HI,=0, Hl3=1, HI4=5, HI5=5.

04+0+14+5+5
Hljpeqr = ———————— = 2.2

Using linear scale to calculate average HI of OHL gives the
result HI=2.2. That means overall technical condition of the
OHL is relatively good because the HI of the OHL is in the first
half of the scale.

0+0+1,51+ 100+ 100

HIexpanential = =403

5

Using exponential scale [all HI from normal scale to
exponential using (2)] to calculate average HI the OHL gives
result HI1=40.3 and that means overall technical condition of the
OHL is in bad condition. It is because using (2) converting
HI=4 from linear scale to exponential scale HI=39.1 and
therefore average HI of the OHL is determined to be worse than
on the line where all towers are assessed with HI =4.

I11.  ASSESSMENT TOOL FOR OHL CONDITION MONITORING

Specially designed tablet application has been developed
for convenient assessment of OHLs and easier data
management. The application was created based on the
proposed methodology and it includes all assessment criteria in
eight component groups with additional group that covers
defects in markings of OHLs. Group markings are included
because it does not affect technical condition of the OHL, but it
is efficient to mark up all defects with one single foot patrol.
The designed application user interface is presented on the
Fig. 3.

As it is seen from the Fig. 3 then the user interface of the
designed application is very intuitive to provide assessors
convenient user experience and therefore to ensure the most
accurate results. All the aforementioned component groups are
in the top row as selectable tabs and under every component
group, there are all the assessment criteria that describes the
selected component. In order to perform the visual inspection
the OHL assessor has to select all identifiable assessment
criteria on the field for every component group and specify all
the HI assignments. The calculations are performed on the
background of the application without line inspector’s
interventions. This enables to reduce subjectivity of assessors
by eliminating the possibility to determine “poor” or “good”
technical condition on their own. If there are no identifiable
visual signs of the component then the default value of
selections is “no visual defects”. In addition, there is possibility
to add free text comments and take picture of each component.
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There are no defects on the pole

Minor defects, but reinforcements are not visible

Defects where crosswise-reinforcements are visible

Hair-like cracks on the pole

Defects where cross-reinforcements are visible

Micro longitudinal cracks on the pole

Longitudinal cracks with width 0.3 to 0.6 mm on the pole
10-20% of passing through defects in the pole’s cross section
Over 20 % of passing through defects in the pole's cross section
Longitudinal cracks with width over 0.6 mm on the pole

Over the length of 3m longitudinal cracks on the pole

Concrete is falling off from reinforcements
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Figure 3. User interface of the designed application

IV. CASE STUDY

All Estonian TSO Elering’s overhead lines were assessed in
2017 summer with previously described visual inspection
method and as a result new information for about 17 000 OHL
towers successfully reached the database. 186 rows of new data
was generated for each tower, a total of over 3.1 million new
data fields that consist of all aforementioned criteria with
additional pictures and free text comments.

Summarizing and processing all the data with (2)-(4)
enabled to visualize the whole grid as shown on the Fig.4.
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Figure 4. Overhead lines and their overall health indices converted to
exponential scale in one part of Estonian transmission network 110 kV- 330
kv

As we can see from the Fig. 4, which includes all assessed
OHLs with their calculated health indices in exponential scale.
Such an approach does not give specific technical condition of



given OHLs but it enables comparison on the same basis and
highlights OHLSs that are in the worst condition in the grid. For
more detailed information about single OHL it is important to
represent the whole OHL with all components in linear scale as
shown on Fig.5 because that enables to deduce residual
lifetime of components according to (1).

Health index

0 3 6 9 121518212427 30 3336 39 42 45 48 51
Tower number

Figure 5. Single overhead line health indices in linear scale (blue — poles,
red — foundation and green — insulation)

As seen in Fig.5 the OHL is in relatively poor technical
condition due to high HI for 12 towers (HI 5 — end of life
criteria). Assuming the OHLs projected lifetime of all
components is 50 years then it is possible to plan new
investments on the selected OHL because when renovating all
components that have HI over four exceeds its predicted
lifetime for 10 years. That means changing seven poles and six
foundations will give extra 10 years for the OHL lifetime
according to (1). Renovating all components with HI over three
will exceed predicted lifetime of OHL for 20 years and so on.
Knowing the exact technical condition of OHL components
will give invaluable information for potential further
investments and therefore it is possible to minimize total
expenditures by renovating only those components that are in
the worst technical condition.

V. CONCLUSION

Advanced condition monitoring method for high voltage
overhead lines (OHLs) based on visual inspection proposes new
methodology for OHL condition assessment and health index
determination. In order to enhance the quality of visual
inspection OHL is divided into components and each
component is assessed with predetermined criteria that are
developed on the basis of describing different life stages of the
components. Implementation of the new method in Estonian
transmission grid enabled to gather precise and unambiguous
results from inspection patrols. The whole grid was assessed on
the same basis and hence it allowed to compare different OHLs
across the system for the very first time, (potentially) improving
the accuracy and cost-efficiency/effectiveness of future
investment plans. Random checks by experts have shown that

assessment results are convergent. The proposed methodology
will reduce the cost of visual inspections and the subjectivity
of results by using component specific and unambiguous
assessment criteria without the need of highly qualified
personnel to acquire reliable results.

To improve further the methodology and increase the
accuracy of the results it is planned to integrate visual
inspection results with study on aging of conductors [13] and
the GIS database of airborne laser scanning data for all Estonian
OHLs. Therefore, the data that determines the need for
replacement of components or maintenance would be in same
database, which would enable easy access by asset management
personnel. Since composed visual inspection method for high
voltage overhead lines is developed with the assumption that in
near future all Estonian TSO’s OHLs will be assessed with
UAVs, then the developed methodology is designed for
implementation with automatic picture recognition and
machine learning algorithms that could give more homogenous
and cost effective results.
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Abstract—This paper presents advanced method to estimate
expected VOLL based on equipment specific health index (HI)
values for the determination of probability of failure (PoF). PoF
calculations are traditionally based on historical failure data
and in order to increase the accuracy of the VOLL in this paper,
a new method based on equipment specific HI values is
introduced. The aim of the proposed methodology is to increase
the accuracy of expected VOLL estimation, especially for high
voltage overhead lines (OHLSs), where there is little to no asset
failures in the grid and therefore relying on historical failure
data may cause significant errors in the asset management
decision-making. This paper includes case study of
implementing the methodology in Estonian transmission
system.

Keywords—asset management, health index, value of lost
load, probability of failure, transmission grid

. INTRODUCTION

European electricity system has been built mostly in 1960s
to 1980s with expected lifetime of 50 to 60 years [1]. That
reflects situation where in the following decades there will be
inevitable replacement wave of equipment just to ensure the
current reliability of electrical supply. Increase in the quality
of electrical system affects directly consumers and their
market competitiveness because investment funding comes
from electricity tariff. High reliability of electricity system
implies low outage costs for customers, but high reliability of
grid might turn out to be financially irrational due to too
excessive investment costs. In addition to aging grid, there are
also major transformations in the generation and consumption
patterns in European electricity systems that are alternating
the direction of investments on large scale. Therefore, it is not
cost-effective to renovate all assets that are reaching end of
their lifetime because renovating assets that have very low
impact on grid’s overall reliability is not financially eligible.
As the investment decisions are not related only to technical
condition of assets then it is essential to use suitable decision-
making methods that ensure optimal investments and reliabil-
ity of electrical system today, tomorrow and in 30 years’ time.
High reliability of electrical system is one of the most
important key factors in investment decision-making because
total cost of outages may exceed the cost of electrical energy
and assets tens of times.

There have been several large blackouts in North America
and Europe that have been analysed in [2]-[4] and they
indicate potential risks of large-scale electrical energy inter-
ruptions affecting tens of millions of people. For example,
North-American blackout in August 2003 affected more than
50 million people and the total economic cost of the blackout

978-1-7281-2650-0/19/$31.00 ©2019 IEEE

varies between 7 and 10 billion dollars [5]. Therefore, it is
essential to determine optimum that ensures consumers with
sufficient electrical system reliability while maintaining mini-
mal maintenance and investment expenses. Such criteria is
illustrated on Fig. 1, where we can see that optimum between
failure and outage related costs and expenses to increase asset
quality is defined by minimizing total cost of both curves.

Optimum

Cost
td

Quality of supply

Fig. 1. Simplified optimization principle. Solid line is presenting asset
investment and maintenance related costs and dashed line outage and failure
related costs [6].

There are various number of methods to estimate financial
consequences of outages developed since 1980s to present day
that are thoroughly analysed in various literature reviews and
publications such as [7]-[11]. The most commonly used
method is VOLL and it enables to link financial dimensions
with potential outage consequences for asset management
decision-making by estimating the price of energy unit that
will not be supplied to end-customers. Traditionally outage
cost indicator, VOLL, has been used to justify investment
decisions by estimating what could be possible consequences
when outage in the system happens. Unfortunately, estimating
outage cost based only on statistical data and assumptions will
cause significant errors for transmission system operators
(TSOs) because they are using predictive maintenance and do
not have sufficient historical failure data to predict future
events. In this paper, it is proposed to use alternative method-
ology in addition to traditional statistical approach for estima-
tion of expected value of lost load (EVOLL) using asset
specific health index (HI) values. HI is fictive parameter that
expresses actual technical condition of sophisticated devices
in simple manner, usually by the number from 0 to 5. Compo-
sition of HI is mostly challenging in technical point of view
and it is determined by equipment specifics. By the nature, HI
reflects residual lifetime of equipment and therefore deter-
mines likelihood of failure. Using HI as a part of VOLL
enables to use more advanced PoF calculation methods than



statistical probabilities or expert opinions because it has direct
link with technical condition of assets.

This paper is divided into five main sections that cover
introduction, overview of developed methodology, case study,
discussion and followed with conclusions. General overview
of methodological explaniation of VOLL assessment is
presented in Section Il and case study is carried out in Section
III. Estonian TSO’s data for substation that is connected to
electrical system with two OHLs is used for EVOLL
estimation.

Il. VALUE OF LOST LOAD AND PROBABILITY OF FAILURE
CALCULATION METHODOLOGY

A. Value of Lost Load

The main objective for outage cost assessment is to
determine total economic damage due to electricity outage on
a common basis regarding different consumers and volumes
of energy not supplied. It is relatively sophisticated process
because the output is affected by various parameters that are
difficult to determine such as consumers profile, expected
consumption, duration and time of the outage and even geo-
graphical peculiarities of the grid. Outage cost is also affected
by customers’ risk mitigation measures, frequency of outages
and by the state of living in the area under observation.
Electricity outages can produce two major types of financial
damages where one is directly monetarized such as loss of
value caused by direct loss of assets, products or goods, the
other is indirectly monetarized such as a loss of time or
productivity. There are also damages that are very difficult to
monetarize such as social impact on the outage and therefore
there are various methods for outage cost calculations based
on specific point of view of the methodological focus.
Regarding selected method, the output of different approaches
remains the same — cost of energy not supplied in € MWh or
$/KWh.

There are mainly two approaches for VOLL calculations
and they are based on the collected input data. First approach
is using analytical data and second to conduct outage cost
functions based on customer surveys. Customer survey
methods are most common methods in practice because they
enable assessment of outage costs related to parameters that
are financially difficult to value in addition to monetarized
parameters. The main disadvantage of the method is expen-
sive cost of client surveys and it is time-consuming to gather
source data. Analytical methods use economic parameters that
are easy to gather from statistical databases and therefore they
are easier and cheaper to implement because there is no need
for time and money consuming customer surveys but they
might not reflect the real behaviour of consumers in the case
of electricity outage. Implementations and outcomes using
different methods of VOLL calculations is thoroughly ana-
lysed in [7] where it is concluded that there is possibility to
receive up to tens of times different results for the price of
energy unit not supplied just by using different methods,
economic environments or consumer categories.

1) Classification of consumers

For VOLL calculations, it is difficult to take into account
each customer’s individual costs because outage costs are
depending on various indistinct parameters such as personal
consumption, dependence of supply and financial status. As
the number of consumers in electricity system is large then it
is not practical to involve every single consumer one by one.
Therefore, it is reasonable to classify consumers according to

rules that enables to compare different consumers on the same
basis. In order to achieve comparable results and availability
of needed information it is recommended to use international
classificatory. CEER (Council of European Energy Regula-
tors) has developed guideline document [12] for VOLL
calculations where they recommend using NACE Rev.2 [13]
classificatory for electricity outage cost calculations. The
NACE groups and sub-categories are explained more detailed
in [9]. Based on this approach, CEER recommends the
following grouping for a cost-estimation study regarding
interruptions.

e Households

e Commercial services (without infrastructure)
o Public services (without infrastructure)

¢ Industry (without large customers)

e Large customers

e Infrastructure

There is also possibility to develop alternative groupings,
depending on the chosen objective of the cost-estimation
study or country-specific factors but it is recommended to use
international approach for comparable results.

2) Methodology of value of lost load assessment

VOLL calculations are usually done based on multi-step
approaches that are discussed more in [3], [7], [8], [11], [12],
and [14]. Calculation of VOLL reflects the total cost of
electricity outage, based on the price of consumer specific
energy unit in that consumption point and expected durations
of possible outage using (1).

VOLL(r;) = % )

LFx7;

where C; ;(r;) is cost of energy not supplied, LF is load factor
and r; outage duration for consumer i.

Irrespective to the selection of methodology, usually
outage cost calculation consists of at least three steps that are
following.

e Processing of raw collected data (analytical or survey
based).

¢ Developing customer specific interruption cost
functions.

e Calculation of VOLL.

Simplified selection process for applicable VOLL method
based on input data is proposed in this paper according to
Fig. 2 that is composed according to [3] and [8]-[11]. Simple
analytical methods are the easiest to implement but relates to
the most inaccurate results and detailed customer survey
methods produces most accurate results but require also most
detailed input data.

Irrespective on that what method is used for VOLL calculation
the output of the calculation will be expressed in financial
dimensions of possible outage that is determined by
consumers, outage duration and frequency. That calculation
also covers determination of consumer categories, finding
average outage cost values for each category and assumption
of the duration of the outage. Because of that, it is possible to
reach monetary value that indicates outcome of potential
electricity outage in the system.
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Fig. 2. Simplified selection of VOLL methodology based on input data.

3) Expected value of lost load for investment decision-
making

In order to use VOLL in investment decision-making
process, it is required to determine additional parameter, POF
that links expected outage cost with probable event in the
future. VOLL and PoF relationship is discussed more in [3]
and is expressed according to (2).

EVOLL = ¥X, VOLL(%y) - p(ry), )

where p(r;) is outage r; occurrence probability and N is the
number of customers.

In addition to improving accuracy of EVOLL calculations,
it is essential to specify PoF calculation methodology because
inaccurately calculated PoF has potential to influence results
on large scale. Without reliable PoF calculations, it is impossi-
ble to use EVOLL results in investment decision-making
because differences in PoF may alter the results radically.

B. Probability of Failure Using Asset Health Index Values

Usually average historical data is used in system reliability
and PoF calculations but it does not take into account the
actual technical condition of equipment. At the same time, it
must be said that assessment of technically complicated
equipment’s condition and thereby estimation of PoF in X
years is sophisticated challenge. In addition to the usual
statistical approach as done in [15], is to use HIs to determine
failure rate of assets. There are several publications for PoF
calculations based on HIs and failure rates, where most
common methodologies are described in [16], [17], and [18].
Intersection of those studies is methodology that enables to

link failure rates and the actual technical condition of
equipment using historical data with asset specific Hls.

1) Determination of equipment condition score
For this purpose, the equipment is considered as a one and
single condition score describing the device is aggregated
based on the sub-components condition scores. For example,
an entire OHL with all its towers may be under observation,
and the overall condition score is calculated as the weighted
average of all towers with individual HIs according to (3).
n
Condition score = % 3)
i=1Wi
where w; is weighting factor of the sub equipment and ; is
normalized HI of the same sub equipment between 0 and 1.

Result of that approach is one condition score for one asset
in the range of 0 to 1 where zero means perfect condition and
one end-of-life condition.

2) Failure rate using condition scores and historical
failure data

For the determination of failure rate using condition scores
and historical failure data exponential model is used to
calculate failure rate for average, perfect and end-of-life
condition scores. Exponential equation for failure rate
calculations is based on empirical studies and is described
according to (4).

A(x) = 4eP* + C, 4)

where A is failure rate and x is condition score of asset.

Parameters A, B, and C are calculated according to histori-
cal failure statistics (0), A(0.5) and A(1) that are failure rates
for perfect, average and end-of-life assets. While average
value for failure rate A(0.5) is relatively simple to calculate
from historical data then for A(0) and A(1) it is important to use
more detailed statistical analysis or heuristic assumptions to
gather reliable input data. Parameters A, B, and C are calcu-
lated according to (5), (6) and (7).

(A(0.5)-1(0))?

= A D-2205)+A(0) ®)

_ A(0.5)+A+A(0)
B=2In (f) (6)
C=210)—4 %)

3) Failure rate calculation example using historical data

In order to demonstrate calculation methods for perfect
and end-of-life for failure rates, Estonian TSO’s historical
failure data is used. In addition to average failure rates for
110 kV and 330 kV OHLs in Estonia, the perfect and end-of-
life failure rates are calculated. For both 110 kV and 330 kV
OHLs A(0) and A(1) values are modified by 10 and 2 times
from statistical averages. That means end-of-life condition has
10 times higher failure rate than average asset and perfect
condition asset has 10 times lower failure rate than average
asset. That is also done with multiplier 2 as recommended in
the study [16]. Failure rates depending on modifiers 10 and 2
for 110 kV and 330 kV OHLs based on previously described
asset condition relationship are illustrated on Fig. 3.
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Fig. 3. Failure rates for selected multipliers. Blue line shows 110 kV OHLs
M0) and A(1) difference of 10 times from statistical average score and green

line 2 times difference from average. Red and yellow line shows 330 kV
OHLs A(0) and A(1) difference from average values by 10 times and 2 times.

As we can see from the Fig. 3 then modifying failure rates
A(0) and A(1) changes shape of graphs and failure rates up to
20 times. The larger is the difference from statistical average
the steeper is the line on the figure and therefore, technical
condition affects failure rate more than where values A(0),
A(0.5) and A(1) converge.

4) Probability of failure for overhead liness using health
indices of individual components

Based on methodology described in [19] it is possible to
determine HI for each tower or component of OHL that
represents actual technical condition of selected component.
As possible failures of different components of OHLs are
causing outages with different duration then additional
knowledge can be used when calculating component specific
VOLL values. By doing so, it is important to determine
expected outage durations for each component group. By
going more into the detail then every company can determine
specific outage duration for all towers, because there are huge
differences in the repair works when comparing towers in
forest area or next to road.

For results that are more accurate it is recommended to use
component specific historical failure data for each component
and determine failure rates for each component group
separately. As A(0) and A(1) values affect PoF calculations
largely then it is crucial to determine reliable values for those
parameters as well.

5) Component specific failure rates

In order to use component specific failure rates for each
component it is essential to find average failure rates for each
component group separately. In order to increase the accuracy
of perfect and end-of-life failure rates it is possible to use
definition of HI to determine end-of-life failure rate.
According to [19] expected remaining lifetime of component
is related to HI value and projected lifetime described with (8).

Hlmax—HI;

Apredicted = * Aprujected' (8)

Hlnax

where HI; is component’s HI in the range of 0 to Hl,4, and
Aprojectea 15 the projected lifetime of the same component.

End-of-life condition failure rate (1) is described with
value of HI and observation period that is defined by maxi-
mum value of HI. It should be mentioned that such approach

requires linear growth of the HI throughout its life cycle,
which again makes HI determination sophisticated. Failure
rate for end-of-life condition is calculated according to (9).

1
Apra jected
Hlmax

A = ©)

Even if the equipment is in excellent technical condition,
there is possibility that there may occur a failure in the event
of unexpected conditions. Therefore, A(0) should not be
considered as a zero because there may happen random
failures that are impossible to avoid. As an example, there is
possibility to use return period of climatic limit load and OHL
reliability level values from standard IEC 60826 Design
criteria of overhead transmission lines [20] as a failure rate
for a perfect condition A(0). When using return period value
of 500 years for OHL with reliability level three as perfect
condition failure rate value A(0) then failure rate for one year
is according to (9) 0.002.

6) Converting failure rate into probability of failure

PoF is significantly affected by the selection of mathemati-
cal methods that are used to determine probabilistic distribu-
tions of failures and available statistical data. One possible
solution to convert failure rate to PoF is by using (10) accord-
ing to approach in [20] for the determination of the PoF in
observed period.

P= 1—(1—$)A, (10)

where T is the duration of period when single outage occurs
and A is the number of years under observation.

Another possible approach is to use more sophisticated
and accurate hazard rate functions for the determination of
PoF for OHL components as it is described more detailed in
[21] but in this paper simplified method is used.

I11. CASE STUDY IN ESTONIAN TRANSMISSION GRID

For a case study, one substation in Estonian transmission
system is used to demonstrate calculation example of pro-
posed VOLL assessment methodology. Selected substation is
connected to transmission grid by two OHLs that are sharing
same towers, foundations and crosshars but have two different
circuits, therefore classical N —1 is covered, but in reality,
failure of tower’s structure will cause outage to that substa-
tion. Source data and customers’ structure with VOLL values
of the selected substation is presented in Table | and Table II.

TABLE I. SOURCE DATA OF SELECTED SUBSTATION
Excepted outage duration (h) 24
Number of years observed 7
Number of outages (technical) on selected voltage level 21
for OHLs

Total number of towers on selected voltage level 12410

Selected return period 500

Number of towers on selected OHL 59
Maximum consumption (MW) 31.56
Average consumption (MW) 15.78




TABLE Il. CUSTOMERS' STRUCTURE AND VOLL VALUES FOR

SELECTED SUBSTATION

Customer sector Distribution (%) (gﬁl\;vl‘h)
Industry 0.36 4030
Commercial services 82.77 5700
Agriculture 0 3750
Households 16.87 3720
Substation 100 5360

To illustrate how different failure rates affect EVOLL
values, four different scenarios are modelled using methodol-
ogy described in Section I1.

e New proposed methodology — average failure rate is
used for A(0.5), failure rate based on HI of towers for
(1) and return period value for end-of-life failure rate
70).

e 10X difference —average failure rate is used for A(0.5),
failure rate 10 times higher for (1) and failure rate 10
times lower for 1(0).

e 2X difference — average failure rate is used for A(0.5),
failure rate two times higher for A(1) and failure rate
two times lower for A(0).

e No relation with HI — outage cost is calculated based
on VOLL, consumption and outage duration, no
relation to HI.

Outage cost calculations are done in following steps:

e Step one — Calculate base failure rates for each
scenario using (5), (6), and (7).

e Step two — Calculate failure rates for each HI value and
scenario using (4).

e Step three — Calculate PoF for each HI value and
scenario using (10).

e Step four — Calculate EVOLL for each tower according
to actual HI value and for each scenario.

e Step five — Sum of each individual tower EVOLL for
each scenario.

EVOLL values from calculations are presented on Fig. 4
where blue line is EVOLL for new proposed methodology,
orange for EVOLL of statistical average with modifier 10,
yellow for EVOLL of statistical average with modifier 2 and
grey for EVOLL of conventional calculation where HI values
are not used. It must be noted that EVOLL value for the
proposed methodology using HI 5 for all towers is not shown
on Fig. 4 and it is almost 80 million euros.

As we can see from the Fig 4, then the proposed methodol-
ogy is producing similar values of EVOLL as 10X and 2X
until HI 2. After HI 3, the proposed methodology is producing
much higher EVOLL than other three scenarios and at HI 5
the difference can be in tens of times. When looking more into
detail then the proposed methodology is producing more
realistic results than other three scenarios because it is calcu-
lating individual PoF for each tower separately and according
to actual end-of-life criteria. When all towers of selected OHL
are in bad technical condition then most probably more than
one tower will fail in case of emergency or in selected obser-
vation period and outage duration is longer than 24 hours for
single tower replacement. Other three scenarios are not so
end-of-life criteria responsive due to relatively low statistical
failure rates in transmission grid.

10€ J
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3€ 10X difference
w2 2X difference
S . .
2 e No relation with HI
E
3
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>
w
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e
0€ — =
0 1 2 Actual 3 4 5
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Fig. 4. EVOLL values for four different scenarios.

IV. DISCUSSION

PoF determination is one of the key parameters for VOLL
estimation but it has a potential to cause the largest mis-
understandings because of its sophisticated nature. As the
VOLL calculation has already established framework for
decades and dispersion of results is mostly due to different
economic backgrounds or selection of implementation
methods then PoF is causing inaccuracy in EVOLL due to lack
information. It is inevitable to use PoF for investment
decision-making, but different approaches such as input from
statistics or PoF based on HI is producing scattering results
and may alter results on large scale. In order to increase the
accuracy of EVOLL it is essential to move to PoF calculation
methodology that is based on HI values of assets. This
approach is especially useful for TSOs as usually they do not
run assets to failure and therefore have little or even no
relevant information to predict failures using historical data.
In addition, there are always anomalies in the statistical data
that can distort historical data sets and therefore produce
inaccurate results or unrealistic assumptions in decision-
making.

New proposed methodology is especially useful for TSOs
that have already determined HI for their assets and it is
producing more realistic results than conventionally used
methods as it focuses on every asset PoF individually. There-
fore, using this methodology enables to have more accurate
and timely investment decision by using actual technical
condition of assets as the basis of PoF calculations instead of
statistical presumptions.

V. CONCLUSION

Advanced methodology for estimation of expected VOLL
using equipment specific HIs proposes an alternative to
traditional historical failure based approach. New methodol-
ogy is more suitable for TSOs because it focuses on actual
technical condition of assets and lack of failure data does not
decrease the accuracy of results for investment decision-
making. In order to enhance the accuracy of methodology,
VOLL assessment process was thoroughly analysed. In this
paper, new PoF method based on HI values of assets
combined with statistical failure rates for EVOLL is intro-
duced. That enables to rely more on technical condition of
assets and therefore eliminate probable unrealistic assump-
tions from statistical data.

Case study based on Estonian transmission grid presented
that new methodology is functioning at low HI values simi-
larly to methods that are using statistical data, but at high HI



values EVOLL price is increasing rapidly due to high HI
values that are affecting PoF largely. That outcome is follow-
ing realistic causes as when all towers for single OHL are in
end-of-life condition then most probably more than one tower
will fail in case of emergency and outage elimination will take
more time than fixing single tower. Therefore, it is possible to
conclude that the proposed methodology is following realistic
situations because it is using HI values that are the reflection
of actual asset condition not pure presumptions.
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Abstract—As infrastructure ages, grid operators across the
world are becoming more cognizant of the need for monitoring
their transmission infrastructure. The geographic extent of the
transmission system, however, makes this a difficult and expensive
task with thousands of components requiring visual inspection
to identify faults which can lead to potentially catastrophic
failures. This paper describes the use of Deep Neural Networks to
automatically detect areas of concrete damage on utility poles in
a European utility from photographs. This is beneficial to reduce
time spent in the field as well as variability in between human
assessment. The results show that even with a small dataset for
training, the network is able to identify new damage with a high
level of precision.

Index Terms—Deep Learning, Object Detection, condition
monitoring, high voltage, critical infrastructure.

I. INTRODUCTION

The most effective method to transfer high amounts of
energy to large distances is by using high voltage overhead
lines (HVOHLs). Consequently, a large number of HV OHLs
have been built worldwide since the Second World War. The
majority of HVOHLs in Europe were built from 1960s to
1980s with expected lifetime between 50-80 years [1], thus
a large part of the European transmission system reaching
the end of the projected asset life. Since the actual condition
of the infrastructure is affected by various parameters such
as maintenance policy or climate conditions it is important
to base asset decisions on the the actual condition of the
infrastructure rather than the age alone.

The most common solution for condition assessment is to
use statistical approaches with failure rates of different asset
types, with this data it is possible to determine the hazard
rate of assets and develop limits for maintenance actions. The
approach works well for distribution system operators (DSOs)
but not for transmission system operators (TSOs) as they lack
relevant failure data. TSOs do not run their assets until failure
due to high risks in the electric system and prefer to use
preventive maintenance techniques to minimize risks associ-
ated with failures in the electricity system. Therefore, TSOs
focus on preventive methods that enables the determination
of critical defects before failures, such as visual inspection
carried out by foot patrols.

Foot patrols are classically the most common method for
TSOs to detect defects of HV OHLs and prevent catastrophic
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failures of the grid by physically examining whole grid.
Foot patrol specialists are trained experts that visit towers of
OHLs and write down determined defects. This approach is
widespread because it gives reliable inputs for maintenance
work but it usually lacks the determination of actual technical
condition of the OHL and focuses more on critical defects.
In addition, major drawbacks for this method are the heavy
workload of foot patrols and human factor that enables to
assess the same defect differently due to inter-rater variance.

One of the possible solutions to minimize human factor
variances and improve technical condition assessment is well
explained in [2], where predefined checklists are used to
describe visual indicators that determine different life stages of
OHL’s components. Therefore, foot patrols identify and record
predefined visual indicators such as cracks in the concrete
and do not give judgement about the technical condition; this
is given in the background of the asset management system.
Nevertheless, someone still must go to the field and do the
assessment of OHLs.

In the last decade, it has become more widespread to
perform visual inspections by using airborne vehicles such as
helicopters or drones to gather detailed images about OHLs.
On one hand, it is relatively easy to gather images about OHLs
airborne but on the other hand, assessing technical conditions
based on images requires good image quality and a large
number of experts that have to review collected images. For
example, on average, there are about four towers for each
kilometer of 110 kV OHL and solely to assess 100 km of that
OHL requires experts to look through at least 1600 images
when there is one image taken from each side of the tower. In
order to increase the accuracy, the number of images taken
from different angles must be increased and therefore, the
amount of work to gather reliable information from airborne
inspections expands rapidly.

Wooden utility pole condition monitoring mechanisms have
been studied in [3]-[7], which give invasive and noninvasive
methods of structural health monitoring. There are also prac-
tical technical brochures [8]-[10] for metal and reinforced
concrete HV OHLs condition assessment by CIGRE that lists
most common condition assessment methods of OHLs. These
are, however, more focused on the basic framework of the
assessment process and provide a list of possible methods



instead of specific health index criteria such as magnitude of
cracks on reinforced structures that could be used in automatic
condition assessment process.

This paper builds on the framework of [2] to determine asset
conditions based on visually identifiable defects of OHLs by
using machine learning techniques to identify cracks and holes
in concrete utility poles to reduce time spent by maintenance
personnel in the field and in manually inspecting pictures
and minimize variability between human inspections. Several
object detection techniques such as fast Region-based Convo-
lutional Neural Network (fast R-CNN) [11], faster Region-
based Convolutional Neural Network (faster R-CNN) [12],
the region-based fully convolutional networks (R-FCN) [13],
single shot detector [14] and you only look once [15]-[17]
(YOLO vl, v2, v3), have revolutionized applications such as
autonomous driving and face detection through their ability to
quickly and accurately classify and localize several classes of
objects on images. Foot patrol data has been used in this paper
due to data restrictions, however, the potential benefits lie in
using ultra high resolution images from fly-by assessments.
This would allow thousands of images to be processed and
tagged automatically.

This paper is structured as follows, section II presents the
description of the data used for training and testing, method of
data preprocessing and the networks architecture and training
parameters. In order to analyze the performance of the object
detection algorithm, a series of tests with popular detection
metrics are implemented on the testing data and given and
discussed in section III, finally the article concludes in section
Iv.

II. METHODOLOGY

A. Data Description

The full data set comprised 150 images of concrete poles
with varying degrees of damage. The samples were taken from
pre-existing foot-patrol data so there was no standardization
of image requirements. As a result, the data exhibited high
levels of variability in terms of backgrounds (i.e., trees, sky,
ground), pole orientation and distance, picture angle, shadow
and presence of external objects (i.e., transmission lines,
insulators and even hands and pens where they were used to
give a sense of scale on the pictures). Examples are given in
Fig. 1.

B. Data Pre-processing

In order to reduce the computational complexity in training,
each image was reduced to a size of 300x300 pixels. Data
augmentation was employed to introduce data variability on
the features and improve learning [18]. Twenty percent of the
training images were randomly selected and augmented by
varying the contrast, saturation, hue, magnification, brightness
and horizontal flipping. The resulting augmented dataset was
180 images. Bounding boxes were manually placed on each of
the degradation artefacts to act as the ground truth for training

[d]

Fig. 1. Input variability (a) vegetation growing across pole (b) earth in the
background (c) distant shot with sky background (d) up-close shot with hand
in foreground

and validation data. The K-medoids clustering algorithm [19]
using the Intersection-over-Union distance metric given by:
|[AN B|
|AU B
was used to generate the anchor box sizes, where A and
B denote the ground truth and estimated bounding boxes,
respectively. A holdout cross validation method was used to
train and test the neural network. From the data set, 80% of
randomly chosen data was used for training and the remaining
for testing.

IoU = )

C. Network Architecture

The network architecture consists of a feature extraction
network and a classification network. For this study the
chosen object detection network was the You Only Look
Once (YOLO) V2 object detection model [16]. YOLO frames
object detection as a regression problem and unlike Faster
R-CNN which uses multiple neural networks to generate
potential bounding boxes and classifiers, YOLO unifies the
entire pipeline into a single neural network model. The YOLO
v2 model extends the original YOLO algorithm by including
features such as convolutions with anchor boxes, batch nor-
malization, direct location prediction and dimension clusters
etc. These guarantee faster training and a more robust network
for object detection. In designing the YOLO system model, the
GoogleNet classifier [20] was used as the feature extraction
network, with the “inception 4c-output” layer chosen as the
feature extraction output layer to the YOLO detection network.
The final model comprises 91 layers and 105 connections.

D. Performance Metrics

When an network is fed an image, it returns a set of
bounding boxes corresponding to predicted hole locations.
These detections can be classified as follows:



o True Positives (TP) - Where the network has correctly
identified a defect

« False Positives (FP) - Where the network has detected a
defect where none existed

« False Negatives (FN) - Where the network has failed to
detect an existing defect

A true positive is determined by the IoU, equation 1,
between the predicted bounding boxes with the defined ground
truth boxes. If a predicted bounding box does not sufficiently
overlap with any Ground truth it is recorded as a false positive.
Conversely, if a Ground truth box does not sufficiently overlap
with any predicted bounding box it is recorded as a false
negative. Note that True Negatves (TN) do not have bounding
boxes, either in Ground truth data or predictions and as such
they cannot be counted. This study uses average precision
benchmark to evaluate the performance of the object detection
network. The Average precision value is a numerical metric
based on the precision-recall curve, calculated by interpolating
and taking the area under the curve. To calculate the average
precision the following definitions of precision and recall are
needed:

Precision = L
TP+ FP
TP
Recall = TPTEN
The AP is expressed as:
n—1
AP = Z(TH—I — 74) Pinterp (Ti-i—l) 2)

i=1

where the interpolated precision is given by:
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and r is the recall level.

E. Network training

The object detection network designed was trained using
the following algorithms and parameters. The stochastic gra-
dient with momentum (SGDM) method is the chosen training
technique. (SGDM) accelerates convergence by replacing the
actual gradient by an estimate, calculated from a randomly
selected subset of the data. The momentum, minibatch size,
epochs and initial learning rate were chosen as 0.9, 16, 40
and 0.001 respectively. The training dataset comprised of 144
original and augmented images.

III. RESULTS AND DISCUSSION

The testing dataset comprised 37 images of damaged poles
with a total of 43 damaged areas. The classifier outputs a
vector of bounding box sizes and locations for each image,
corresponding to the estimated hole locations. Figure 2 shows
example outputs for different backgrounds with the bounding
boxes overlaid on the images and their corresponding confi-
dence scores. The threshold confidence score for the detector
to assign a positive detection was 0.5.

For the examples shown, the classifier successfully detected
all the damaged areas and similarly across the entire dataset,
was able to the detect all instances of damage as long as the
hole was up close. When images were taken at a distance, so
that the damaged areas were very small compared to the image
size, several instances of missed detections were noted, e.g.
Figs 3—4 . In some cases even when the confidence threshold
for detection was reduced to a very low value such as 0.2 the
damage could not be detected although several false positives
began showing up in other images. This poor performance for
small objects is a recognized issue with the YOLO algorithm,
and would have to be taken into consideration when specifying
guidelines for taking images.

[c] [d]

Fig. 2. Example outputs from detector with different backgrounds

Fig. 6 illustrates the precision-recall performance for var-
ious IoU thresholds for the hole detection system. The final
point on each graph represents the Precision and Recall for
the entire set of data at the given IoU. As evident, both the
precision and recall increase with decreasing IoU till a value of
0.4, below which the graphs overlay perfectly. Fig. 7 illustrates
the average precision as a function of the IoU threshold.
As seen for the dataset, while decreasing the IoU threshold
increases the precision (and average precision) performance
of the system, there is a point below which the precision does
not improve, or improves marginally. The precision and recall
over the whole set of data for IoUs less than or equal to 0.4 is
approximately 0.69 and 0.83 respectively. Higher IoUs indicate
better detection localization. However, this is not as important
as detection for this particular problem. In fact, the IoU should
be selected based on highest Recall and Precision and localiza-
tion dealt with only in as a secondary matter of concern. The
present study has shown that the lower IoU thresholds(0.4-0.1)
give classifications commensurate with classification by visual
inspection. Manual inspection of the boxes indicate that this
may be primarily due to the irregularity in hole shape and lack
of defined boundaries in damaged areas leading to intrinsically
higher ground truth labelling noise. This in turn leads to



Fig. 4. Far from view Hole missed detection (multiple holes)

variations in bounding box sizes or multiple detections of a
single damaged area. Fig. 5. Since the Intersection between
the boxes is limited to the area of the smaller bounding box,
a small predicted bounding box which perfectly overlaps with
a larger ground truth box would have a small IoU.

Given the context of the application, more relaxed criteria
for detecting a hole may be desirable even though it may
increase the number of false positives or multiple detections

Fig. 5. Multiple detection of single damaged area

since it would allow more actual holes to be flagged for
maintenance.
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Fig. 6. Precision vs Recall Graph for IoU threshold sweep(0.1-0.9)

IV. CONCLUSION AND FURTHER WORK

The object detection method was successful in detecting
cracks and holes in utility poles from non-standardized im-
ages gained from foot patrols with variations in background,
foreground, shadowing and distance. The network performed
poorly in instances when the pole was very far and the size
of the hole was small compared to the overall image. This,
however, can be dealt with by creating photograph guidelines
for data collection. In industrial application, Ultilities should
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Fig. 7. Average Precision vs threshold IoU sweep(0.1-0.9)

test a small sample of their data to gain insight into the
appropriate confidence thresholds used for detection.

Further work should include testing with various feature
extraction networks for detecting varying degrees of degrada-
tion which may be difficult to differentiate by using multiple
classes of objects. Additionally, to determine suitable confi-
dence and IoU thresholds, a framework for cost-based tradeoff
analysis should be developed to investigate selection criteria
for this application space.
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Health Index Prediction of Overhead Transmission
Lines: A Machine Learning Approach

Henri Manninen, Member, IEEE, Jako Kilter, Senior Member, IEEE, and Mart Landsberg, Member, IEEE

Abstract—This paper presents an asset health index (HI)
prediction methodology for high voltage transmission overhead
lines (OHLs) using supervised machine learning and structured,
unambiguous visual inspections. We propose a framework for
asset HI predictions to determine the technical condition of
individual OHL towers to improve grid reliability in a cost-
effective manner. The paper focuses on asset HI prediction and
the selection of the most parsimonious model. Based on the
technical specifications and HI data, our methodology allows
for the prediction of a HI for OHLs without HI data, and
models asset aging behaviour. Technical specifications and the
HI as defined in this paper are taken from the Estonian TSO
periodical visual inspections implemented in 2018. The case study
successfully demonstrates that the proposed methodology can
predict tower HI values for a single OHL with nearly 80 percent
accuracy without the need for additional measurements.

Index Terms—Aging, Asset Management, Classification, Health
Index, Modelling, Prediction Model, Supervised Machine Learn-
ing.

I. INTRODUCTION

VERHEAD transmission lines are the backbone of the
electricity system, enabling the transportation of large
amounts of electric energy across large distances in a cost-
effective manner. The majority of European electricity systems
are aging [1], and alternative ways are urgently needed to
maintain and increase the reliability of this critical infrastruc-
ture. It is financially impossible to refurbish all old assets
or to build all new assets; investments are made only for
assets with a poor technical condition. Assest management
has become a major challenge for most transmission (TSO)
and distribution (DSO) system operators, creating the need for
alternative opportunities to maximise the remaining lifetime
of their assets. Historically, the most common approach has
been to use interval-based maintenance, where assets were
replaced after certain years in service, but that can lead to
over-investing. Another approach is to determine the actual
technical condition of assets by using condition monitoring
techniques and maintenance instead of using age as the key
indicator for investment decisions. The age of an asset does not
automatically imply a poor technical condition, but is rather
dependent on the type of asset, manufacturer, material, climate,
weather events, air pollution in the area, etc.
The most common means to describe the technical condition
of assets is via a health index (HI) [2] and [3]. Specifically,
the HI is a number indicating the asset’s technical condition

H. Manninen, J. Kilter and M. Landsberg are with Department of Electrical
Power Engineering and Mechatronics, Tallinn University of Technology,
Estonia e-mail: henri.manninen@taltech.ee

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

using predefined categories. However, there are a vast num-
ber of assets in the actual grid, and few have measurable
parameters. Therefore, a HI is rarely used for OHLs or
towers because OHLs are considered apriori to have high
reliability, a long lifespan, and they cover large areas with
limited physical access. Traditionally, condition assessment
of OHLs is performed by periodical visual inspection, where
critical defects are recorded; a comprehensive overview can
be found in [4], [5], [6] and [7]. In [8] for example, foot
patrols are used to detect and record all predefined visual
indicators found on site. An alternative to traditional human
inspections, visual indicators are used to determine HI values
via mobile applications instead of relying on a human rater.
In the last decade, areal inspections using helicopters and
unmannded aerial vehicles (UAV) have gained in popularity
due to advances in short range remote sensing, however aerial
monitoring remains prohibitively expensive for full network
coverage.

An exhaustive assessment of individual assets is therefore
infeasible, and methodologies are needed which focus on de-
termining HI without direct measurements, or using statistical
approaches. One of the most widely used methods taken from
reliability engineering uses a bathtub curve developed for
United Airlines in 1978 [9] as a decision-making indicator.
Bathtub curves are widespread because of their straightforward
implementation. Unfortunately, it has been shown by [3]
that when considering high voltage substation equipment, the
curves are suitable for use on a small portion of assets with
very specific failure modes. In addition to the bathtub curve,
electrical equipment condition assessment can also make use
of stochastic simulations using the Monte Carlo method as
well as machine learning algorithms including artificial neu-
ral networks. Usually, these models are used to predict the
technical condition of the most expensive assets; transformers
[10], electrical machines [11], cables [12] and circuit breakers.
These assets usually have condition monitoring systems that
provide measurements of critical parameters. Based on the
measurements and technical information, the remaining life-
time is predicted using a model. An example of a mathematical
approach to overcome OHL’s HI determination is proposed
in [13] where trends in data, expert opinions, environmental
factors and the weighting of different parameters are combined
to determine the HI of OHLs. To overcome issues affected by
statistical anomalies, we have developed a novel HI prediction
methodol based on supervised machine learning combined
with structured visual inspection data. The approach is suitable
to predict HI in a cost-effective and reliable manner, and can
be implemented to improve decision-making and model asset

0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Taﬂinn University of Technology. Downloaded on January 17,2022 af19:58:32 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2021.3052721, IEEE

Transactions on Power Delivery

aging behaviour.

This paper is divided as follows: Section II outlines the pro-
posed methodology, Section III compares the performance of
supervised machine learning models, and Section IV presents
the findings of our case study and discusses the applicability
of the proposed methodology to predict the HI and model asset
aging on the Estonian TSO grid.

II. METHODOLOGY

Here, we propose a new method using supervised classifica-
tion algorithms combined with a HI determination framework
using predefined visual indicators to predict the technical
condition of OHLs on unseen data. The backbone the method-
ology is the unambiguous determination of an asset’s HI using
foot patrols to classify OHL condition. First, all OHLs were
divided into towers and components, where each component
was assessed separately using a tablet application to enter
the visual criteria. This enabled the detection of existing
defects using a standardized data entry methodology. HI values
were then calculated by the application itself to minimize the
human factor in the assessment process, to ensure consistency
between different inspectors. Table. I and Fig. 1 present
an example of a reinforced concrete pole HI determination
based on predefined visual indicators. A similar approach
was implemented for steel lattice towers, where the HI was
determined based on the presence of mechanical defects, bolt
condition, rust level and cross-sectional reduction. In [8],
nearly 150 different criteria were used to define technical
condition of all OHL components. The components included
towers, foundations, insulators, grounding systems, cross-bars,
guy-wires and conductors. In this paper, a single HI value of
the OHL tower was determined using the maximum HI value
for the tower and foundation combined. For example, if there
is a single defect with a HI value of 5, on the foundation or
on the tower, then the HI of the tower is 5.

TABLE I. Description of visual indicators presented in Fig. 1 and
corresponding HI values [8]

Visual indicator Health Index

There are no defects on the pole (Fig.la) 0
Hair-like cracks on the pole (Fig.1b) 2
Micro longitudinal cracks on the pole (Fig.Ic) 3
Longitudinal cracks with width 0.3 to 0.6 mm on the 4

pole (Fig.1d)

Longitudinal cracks with width over 0.6 mm on the 5
pole (Fig.le)
Concrete is falling off from the reinforcements (Fig.1f) 5

The asset HI values used in this paper are defined as a set
of discrete HI categories from O to 5. Classification algorithms
were applied to predict the corresponding HI categories in lieu
of the remaining lifetime. The asset’s HI is defined as a number
representing the expected remaining lifetime, which is a stan-
dard input variable used in investment decision-making (1).
The value therefore describes the asset’s technical condition
with respect to its projected lifetime. The HI determination
indicators used in [8] were developed according to the moment
of occurrence in the asset life-cycle, and thereby the following

()

Fig. 1. Examples of reinforced concrete pole visual indicators.
Clarifications for the indicators are given in Table I [8].

linear equation (1) can be used to calculate the expected
lifetime of a given asset:

HImaz - HL,
Hlpmax

where HI,,,. is the maximum value of the HI, HI; is the HI
of the selected asset, and Lp,ojecteq is the projected lifetime
of the asset.

In addition to the HI classification, the asset’s technical
information and specifications are used for HI prediction for
assets not in the training or testing data sets. These assests
were used for validation because all OHLs in the Estonian
TSO database are described with a number of technical
features during the asset design and construction phases.
Although this information does not change during service,
it can affect the speed of the OHL’s aging process. Features
that influence the technical condition, construction quality or
mechanical stresses of the OHLs are presented in Table II.
The parameters used in this work are the number of circuits
on a single tower, the tower type where the support and
tension tower are separated, the nominal voltage level of
the OHL (110 kV or 330 kV), presence of bird protection,
tower material (reinforced concrete poles, colored steel lattice
towers, zinc-coated steel or untreated steel lattice towers). In
total, these assets encompass six different manufacturers and
214 different tower configurations. In addition, angled towers
are distinguished from vertical OHL structures due to the
increased mechanical stresses which they experience. The final
feature in our methodology is the current age of the tower,
calculated from the installation date.

The framework of the asset HI prediction model used in this
paper is presented in Fig. 2. Asset HI prediction starts with
the collection and comparison of an asset’s technical features

Lezpected = * LProjected (€Y
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TABLE II. Model input data description

Feature name Number of different features
Number of circuits 4
Tower Type 2
Voltage 2
Material 4
6
1
2
2

Manufacturer
Configurations 2
Angle

Bird protection system
Age

p

1 to 67

and HI data. All assets in the database must have technical
feature data because that information is collected and saved
as a requirement at the beginning of each OHL’s life-cycle.
Assets that have both technical features and HI data are used
as model training data. That means the data of each OHL tower
used in the training process is the combination of collected HI
values and nine features that describe the technical parameters
of the OHL tower. All assets that do not have HI data but
have technical features will not be included in the training
process; HI values of those assets will be predicted by using a
trained prediction model. That approach enables the prediction
model to have as much relevant training data as possible from
already excising data and therefore improved overall prediction
accuracy. On the right side of the chart it is seen that the
methodology is divided into two parallel sections after model
training data selection. The first branch is the missing asset
HI prediction and the second is the asset aging behaviour
modeling. The output of both branches in the methodology
is HI prediction results for each tower that was selected for
HI prediction.

The main difference between the missing asset HI prediction
and asset aging behaviour modeling is the step where the se-
lected asset age parameter is modified while all other features
remain unchanged. That allows, in terms of sufficient input
data, to predict asset HI based on the best knowledge and a
similar performance of assets. As long as the modified time
intervals are not unrealistic and there is a sufficient number
of training samples in the grid, this approach enables different
scenarios to be modeled in the near future. For example, if
the input data has samples of towers distributed evenly from
the age of 1 year to 80 years, then it is possible to model
the aging of the selected OHL in those limits. After the limits
are exceeded, the model will become inaccurate due to the
missing references in the population. The prediction model is
trained using all existing data from the facts and measurements
similarly as in the missing data approach.

A. Input Data

Input data for this paper is collected from periodical visual
inspections in one part of the Estonian TSO grid. The afore-
mentioned HI determination methodology was implemented
in the Estonian transmission grid in 2018 and all identified
defects were noted using a specially designed tablet applica-
tion, while the HI assessment was made in the background.
That resulted in a determination of individual HI values for
each component of each tower separately. For the simplified
example, this paper uses HI values that are aggregated to tower

Finding missing
HI data

l

Start

Asset Model training Asset HI
technical data selection data
features

Training data

Assets without Select assets
HI data
Model training —  Prediction model Modify age
parameter

l

HI predictions

Fig. 2. Flowchart of the asset HI prediction process that enables the
prediction of missing asset HI values and model aging behaviour of
selected assets based on asset technical features and HI data.

level based on the maximum function of OHL supporting
components such as poles, foundations and crossbars. In terms
of HI data, it is possible to scale this methodology for a more
detailed approach where the HI of each component is predicted
separately. After inspection, the HI data was cleaned and errors
were fixed in the database manually. It is also possible to use
outlier detection algorithms to detect incorrect values in the
data automatically as described in [14]. However, as the input
data was already pre-processed manually, outlier detection is
not used in this paper. The data used in this paper consists
of 26,273 rows described in Table III and presented in Fig.
3. As seen in Table III, HI data is concentrated around HI2

TABLE III. Count of different health index values for training and
testing data after train/test split

Health Index Class Training Testing Total
HIO 6217 1555 7772
HIT 1799 450 2249
HI2 8964 2241 11205
HI3 2770 692 3462
HI4 1182 295 1477
HI5 86 22 108

Total 21018 5255 26273

with extremely imbalanced classes with 108 samples in the
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HIS class and 11,205 samples in the HI2 class. For model
training purposes, data is divided into training and testing
with a ratio of 80:20, using stratification to maintain equal
class proportions for each class. That enables the percentage
of samples for each class to be preserved and therefore ensures
that both data sets include the necessary samples for all
classes. As described in [15], stratified re-sampling is easy to
implement and has a positive effect both on the variance and
bias. It is especially beneficial in the case of a class imbalance
as it is present in this data set. If stratification is not used, then
there may be a possibility that the test or training sets may
not contain any instance of a minority class at all. In Table
I11, it is also seen that the same imbalanced data tendency is
still present after the data is split for training and testing using
stratification.

The distribution of data in different HI classes according to
the age of the assets is presented in Fig. 3. As seen from the
scatter graph (left), there is no strong relationship for OHL
assets between the HI and age. There are even a few assets
with HI = 5 after only 10 years in service, and some assets
have HI = 0 even after 60 years. The regression line on the
graph demonstrates that there is light tendency for an asset’s
HI to increase after a long time in service, but based on that
graph it will not exceed HI2 even after 60 years of service.
From the data description chart (right) it is seen that a majority
of assets in the fleet are 40 to 60 years old with HI2. There
is also a larger concentration of assets with an age of around
10 years and HI = 0.

Health Index

20 40 60
Age (years)

Age (years)

Fig. 3. Description of used data based on HI and age. The scatter
graph with linear regression line (red) on the left presents each tower’s
HI values in relationship to their age. The graph on the right shows
the distribution of assets with different HI values and age where the
darker color reflects a denser distribution.

B. Class-Imbalance

TSOs have usually implemented interval-based preventive
maintenance strategies and do not run their assets until failure.
This is shown in Fig. 3, where high HI values, such as HI5S
and HI4, are considered as minority classes and where low
and medium HI values are considered as majority classes. It
is typical for TSOs because a large amount of assets with a
critical technical condition have already been replaced or will
never reach their end-of-life condition to minimize the risks
associated with loss of load. As this paper focuses on the asset
HI prediction and not on criticality analysis, there is no need
to highlight one class over another, and therefore, all classes
will be treated equally.

According to [15] and [16], class imbalance of data occurs
when data sets exhibit significant imbalances on the order
of 100:1, 1,000:1 and even 10,000:1 between majority and
minority classes. When we look at Table III there are 11,205
towers with HI2 and only 108 towers with HI = 5. This means
that the ratio of majority vs minority class in this data set
is 104:1. In the case of class imbalance, the results from
classification prediction models are not the same as using
balanced data for model training. Use of imbalanced data in
the training process usually causes classifiers to have poor
predictive accuracy towards the minority class compared to
the other classes and results in a tendency to classify most
unseen samples in the majority classes. A decrease in model
performance in the case of class imbalance is caused by the
model’s loss functions, which attempt to optimize error rate
or the accuracy of the model without considering the real dis-
tribution of different classes. This decreases the performance
of the model, and therefore different methods are used to
minimize the results of imbalanced data in prediction model
learning processes. It is usually made by three methods that are
a downsampling of majority classes using random sampling,
upsampling of minority classes using random sampling and
up-sampling minority classes using the Synthetic Minority
Oversampling TEchnique (SMOTE) [17]. SMOTE was first
proposed to improve random oversampling by combining two
similar linear samples of data from the minority class and
therefore producing new data that is similar to the class
average but not exactly the same data as already present in the
database. Training data for each HI class after up-sampling
using SMOTE and down-sampling compared to unmodified
data are presented in Fig. 4, where it is seen that there are
86 instances in every class for down-sampling and 8,964 for
SMOTE. In addition to data pre-processing, there are other

-10*

1 I Unmodified B SMOTE Il Down-sample

0.8

0.6

0.4

Number of Towers

0.2

HIO HI1 HI2 HI3 HI4 HI5

Fig. 4. Model training data for each class after training and testing
data split using different re-sampling techniques. Blue is unmodified,
green is upsampling using SMOTE and red is down-sampling data.

options for reducing class imbalance issues, which are the
balancing of training weights for models such as Logistic
Regression (LR) and Support Vector Machine (SVM) or use

0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Taﬂinn University of Technology. Downloaded on January 17,2022 ar19:58:32 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2021.3052721, IEEE

Transactions on Power Delivery

classification algorithms that handle class imbalance better
such as Decision Trees (DT), K-Nearest Neighbor (KNN),
Random Forest (RF) and Gradient Boosting (GB) [18]. All
those approaches are further tested in Section III.

III. SELECTION OF PREDICTION MODEL

Prediction models in this paper are composed using the most
common supervised machine learning classification algorithms
so that most major approaches are represented. Each algo-
rithm is tested using a number of different hyper-parameters
and the three different data sets mentioned in the previous
section. All models and data processing are done in the
Python 3.7 environment, where models are created using the
Scikit-learn module [19]. Classification algorithms used in this
paper are Logistic Regression (LR), Support Vector Machine
(SVM), Naive-Bayes Classifier (NBC), K-nearest neighbors
(KNN), Multi-Layer Perceptron from Neural Networks (NN)
and Decision Trees (DT). There are also algorithms that are
combined together from multiple methods to convert a set
of weak learners to a single strong ensemble model that
delivers improved prediction accuracy compared to a single
algorithm. In this paper two widespread ensemble algorithms
called Random Forest (RF) [20] and Gradient Boosting (GB)
[21] are used. The theory and implementation of supervised
machine learning algorithms are discussed thoroughly in [22],
[23] and [24].

Ensemble methods are used in supervised machine learning
to obtain better predictive results from the model by using
multiple learning algorithms in a single model rather than
using any of the learning algorithms alone. Random forest
[20] is an ensemble algorithm that has grown in usage over
the last few years because of its great performance. By nature,
it is a bagging classification and regression algorithm that
is based on decision trees. It is developed on an ensemble
of unpruned trees, induced from bootstrap samples of the
training data. It uses random feature selection in the tree
induction process in addition to bootstraping. A prediction is
made by using a majority vote to aggregate the predictions
of the ensemble models. As RF loss function is constructed
to minimize the overall error rate, it will tend to focus more
on the prediction accuracy of the majority class. That will
often result in poor accuracy for the minority class result
similar to most classifiers when they are trained on imbalanced
training data sets. To alleviate the problem, [18] proposes to
use balanced or weighted RF models that are both evaluated
during hyper-parameter tuning in this paper.

A. Model Selection

For many of the algorithms, there are modifiable parameters
called hyper-parameters, such as the number of trees in RF
or the regularization strength of an L2 penalty in the loss
function of LR, which affect the performance of models
drastically. Those parameters and their optimal selection are
usually done manually because they rely on specific data
and require experimentation to identify appropriate values
used for model training. Due to the large amount of possible
combinations for each algorithm, this process is extremely

computational and time-consuming but essential to increase
model performance by selecting best hyper-parameters to
maximize the performance of model on actual data. Selection
of hyper-parameters is described more detailed in [25].

In this paper model parameter optimization is performed
by using random search [26] combined with nested cross-
validation to reduce the bias of training data. Nested cross-
validation is used to reduce the bias for both hyper-parameter
tuning and model evaluation. In terms of computational com-
plexity, relatively simple 5 x 2 setup is used in this paper.
That means there is a 5-fold cross-validation implemented in
the outer loop and 2-fold cross-validation in the inner loop.
The inner loop is responsible for the model selection process,
and the outer loop is for estimating the generalization error.
The theory behind nested cross-validation and its benefits over
simple training and testing split or k-fold cross-validation are
thoroughly described in [24] and [25]. According to [26],
random search over the same domain is able to find models
that are as good or better within a small fraction of the
computation time of a pure grid search. This means in terms
of computational budgets, a random search finds better models
compared to grid and manual searches by effectively searching
a larger configuration space. For each model there is a large
number of different combinations of hyper-parameters to select
the best model for each algorithm. The number of combi-
nations for each models is presented in Table IV, while the
implemented random search is limited by 100 combinations
for each model.

TABLE IV. Number of hyper-parameter combinations for tested

models

Algorithm Tested models
Logistic Regression 80
Support Vector Machine 400
Naive-Bayes Classifier -
K-Nearest Neighbor 372
Neural Network 72
Decision Trees 1440
Gradient boosting 576
Random Forest 72

B. Model evaluation

Model evaluation was done through model hyper-parameter
optimization using a random search with nested 5 x 2 cross-
validation to find the most suitable model for the used data
set and algorithm. That enabled the determination of the
best hyperparameters for each classification algorithm and
therefore their best performance to be compared on actual
data. The performance metrics used in this paper for model
performance evaluation are accuracy, precision, recall and F1-
score, which are calculated using (2) to (5). The One-vs-
All approach that enables us to use non-binary classifiers to
acquire the Receiver operator characteristic (ROC) [27] and
Precision-Recall (PR) curves [28] was left out of the scope
because it decreased the performance of the models due to
the amplified class imbalance problem.

TP+TN

Ac - 2
Y = TPy FP+TN + FN @
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. TP
Precision = TP+ FP 3)
TP
Recall = TP FN “4)
Fl =24 Precision x Recall )

Precision + Recall
where TP, is the number of true positives, F'P, is the false
positives, T'N, is the number of false positives and F'IN is
false negatives from the confusion matrix [28].

C. Performance metrics

An overview of all tested models using four different
performance metrics (accuracy, precision, recall and F1) is
presented in Fig. 5. It must be noted that precision, recall
and F1 scores presented in Fig. 5 are calculated by taking
the average of all class values, and therefore they indicate
class imbalance better compared to taking the average over
all testing samples. It is seen that six models clearly perform
better than the other 18 models. Those models are RF, GB,
NN, KNN with SMOTE data, RF with SMOTE data and
KNN. All those models have an accuracy over 60 percent.
The poorest performing models are NBC and LR algorithms,
which are the most affected by imbalance of the data. It is also
seen that the best overall performance of models was achieved
using unmodified data. The SMOTE data set performed better
than the down-sample but is comparable with unmodified data
in terms of recall and F1 but worse in terms of precision.
Down-sampling of training data produced more ambiguous
results over all classes, but overall they performed worse
than SMOTE and unmodified data. The accuracy of the best
performing models was almost 70 percent based on training
data. Six models with the best performance are given a more
detailed analysis where the performance metrics of each class
are presented individually. Fig. 6 presents the precision of the
top six models, where it is seen that RF and GB outperform
all other models in all classes. It is also seen that NN was not
able to detect some classes at all, especially HI = 5. On the
recall results graph Fig. 7 it is seen that all models that used
SMOTE data sets outperform models with unmodified data in
terms of recall values, especially the RF model with SMOTE.
RF and GB with unmodified data perform poorly on minority
classes compared to RF using SMOTE data and KNN model.
The NN model was again unable to detect minority classes.
From Fig. 8 it is seen that the best performing models are
RF, GB and KNN, where RF with unmodified training data
outperformed all other models according to all performance
metrics except recall, where the best performing model was
RF using SMOTE. Due to the advantages in computational
requirements and the facts that RF with unmodified data
outperformed other models in nearly all aspects, especially in
precision, then it was selected for implementation in the case
study. As in precision and recall figures, NN was not able
to detect minority classes. The random forest model (hyper-
parameters: number of estimators = 100, minimum samples
leaf = 1, maximum features = sqrt, class weight = None) with
unmodified data is used in Section IV for asset HI prediction
and aging behaviour modeling.

NBC-SMOTE
NBC
NBC-down
LR-down
LR-SMOTE
LR
SVM-SMOTE
DT-down
DT-SMOTE
NN-down
KNN-down
SVM-down
RF-down
SVM
GB-down
GB-SMOTE
NN-SMOTE
DT

KNN
RF-SMOTE
KNN-SMOTE
NN

GB

RF

I Fl-score
I Recall

I Precision
[ Accuracy

0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8

ot

Fig. 5. Performance metrics of each tested model. Black presents
accuracy, blue precision, red recall and orange the Fl-score.
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Fig. 6. Precision score for each class of top six models. Each class is
presented separately where HIO is blue, HI1 is green, HI2 is yellow,
HI3 is orange, HI4 is red and HIS is black.

IV. CASE STUDY

The following case study presents two different approaches
for methodology implementation. The first case shows the HI
prediction for missing assets and the second case the approach
for modeling the aging behaviour of assets. For the asset
HI prediction, input data is presented in Table V. It can be
seen that the training data consists of 26,206 samples and
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Fig. 7. Recall score for each class of top six models. Each class is
presented separately where HIO is blue, HI1 is green, HI2 is yellow,
HI3 is orange, HI4 is red and HIS5 is black.
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Fig. 8. Fl-score for each class of top six models. Each class is
presented separately where HIO is blue, HI1 is green, HI2 is yellow,
HI3 is orange, HI4 is red and HIS5 is black.

an OHL with 67 towers is tested. The same training data is
also used for the asset aging behaviour modeling. The asset
HI prediction methodology is tested using the best model
with optimal hyper-parameters selected in Section III. The
selected model is based on the Random Forest algorithm
that will be trained using unmodified data as it provided the
best results for the model validation. Hyper-parameters for
the model are also selected according to the best results in
the model validation process. Input data for the case study
is collected in 2018 from periodical visual inspections in
Estonian transmission grid using specially designed tablet
application based on the methodology described in the Section
II. Those inspections produced nearly two million individual

defects about OHLs that were aggregated on the tower level.
Nearly all towers in Estonian transmission grid were assessed
and a single HI value of each tower was generated on the
basis of detected defects. That resulted in a situation where
nearly all towers had a corresponding HI value in addition to
individual asset technical features that were collected from the
asset database. For the HI prediction a single OHL with 67
towers that had variety of different tower types was selected.
That OHL was constructed and renovated in sections and in
different time-frames. To achieve the HI prediction situation,
all HI data about the selected OHL was deleted from the HI
database while information about technical features remained
unchanged. This produced a single OHL with 67 towers with
missing HI data as a testing data set and all remaining towers
in the grid were used to train the prediction model using the
proposed methodology. It is seen from the Table V that there
are no towers with HI2, and nearly half of the towers are with
HI3. The age of these OHL towers is in the range of 13 to 61
years, and 10 different tower configurations are used.

TABLE V. Training and testing data for case study

Health Index Class Selected OHL Training
HIO 15 7757
HI1 0 2249
HI2 2 11203
HI3 32 3430
HI4 16 1461
HIS 2 106
Total 67 26206

A. Prediction of Asset Health Index

A comparison of actual and predicted HI of the selected
OHL is presented in Fig. 9, where it is clearly seen that the
asset HI prediction model performs well with around an 80
percent accuracy to predict the HI of each tower that it has not
seen before. There are a total of 67 towers on that OHL, where
54 of those were predicted correctly and 13 incorrectly. That
means the accuracy of the prediction model is much better
than randomly classifying towers into six different categories.

B. Modeling of Aging Behaviour

For modeling of aging asset behaviour, the age parameter
was increased by 10 years while all other technical features
remained unmodified. Results from the single OHL example
are presented in Fig. 10, where it is clearly seen that for
nearly all towers HI values increased compared to the results
presented in Fig. 9. It is also seen that for some towers in
the range of 50 to 67 years, the HI was increased more
than expected in one class according to a linear increase of
the HI in the methodology. That is because the model does
not just linearly increase the HI of the towers but rather
predicts the most probable output based on the data of all
towers in the grid. Also it is seen that not a single tower
HI decreased in terms of aging and even the maximum HI
value 5 remained the same. That reflects a realistic situation
where no investments were done in the grid. But there are
limitations for the implementation of that methodology. As
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Fig. 9. Comparison of actual and predicted HI for each tower of a

real OHL where the blue bars are HI values from field inspections
and orange bars predictions from the RF model.
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Fig. 10. Comparison of actual and predicted HI for each tower of a
real OHL in the case of an extra 10 years of service where the blue
bars are HI values from field inspections and orange bars predictions
from the RF model.

there are always limits to obtaining a sufficient amount of
data and there are impurities in the input data for the grid,
this case works well on large data sets where there are a lot
of samples from different HI and age ranges. Results of one
part of the Estonian TSO’s grid is modeled to predict the
distribution of HI values in 10 years. That is presented in
Fig. 11, where it is clearly seen that towers with HIO and HI2
have decreased and the number of towers with HI4 and HIS
has increased. The overall number of towers for HI1 and HI3
has remained the same. The age of the grid has increased and
concentrations of assets have changed from smaller HI values
to larger HI values. That means the overall condition of the
grid has decreased and there are more towers with critical
or end-of-life than conditions than in present scenario. This
reflects the logical aging behaviour of the grid where there

are no additional refurbishments or replacements made.
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Fig. 11. The 3D chart presents HI and age distribution. Red is the
unmodified situation that uses actual HI data periodic inspections and
blue the modified situation where HIs in the grid are predicted using
modified age parameter with prediction model.

V. CONCLUSION AND FURTHER WORK

The health index prediction methodology of overhead
transmission lines using supervised machine learning models
demonstrated that it is possible to predict missing HI values
of high voltage OHL towers based on the asset’s technical
features and HI results of already existing data. The accuracy
here was around 70 percent based on the training data and
around 80 percent in the case study. This paper also showed
that in addition to missing asset HI predictions, there is
the possibility to model the aging behaviour of OHLs using
supervised machine learning models on structured technical
and HI data. This enables efficiency to be increased in as-
set management decision-making through the use of more
accurate data as an input. It also enables the cost of annual
inspections to be decreased because the proposed methodology
enables the prediction of the HI values of towers without
physically visiting them every year. In addition, if there are a
few missing OHLs or towers, then it is possible to predict the
HIs of those assets instead of conducting a re-inspection. Even
though prediction models have an accuracy of 70 percent, they
produce much better results compared to randomly classifying
towers into six classes.

For further work, it is recommended to increase the training
data of the prediction model by including inspection results
from multiple years. Data used in this paper was from a
one-year pilot project performed by Estonian TSO. It is also
recommended to increase the number of tower features to take
into account various parameters that affect aging behaviour of
assets. Those parameters can be the distance from roads or sea,
soil type or even vegetation in the area. It must be noted that
after adding additional features, it is important to re-perform
the feature importance analysis to detect features that affect the
accuracy of the results the most and to remove features that can
be considered as a noise. That enables to use more generalized
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models to perform more accurate predictions on the data it
has not seen before. It is also possible to predict the HI of
each OHL component separately by using this methodology
but for the simplification purposes this paper used aggregated
HI values of towers. Performing the HI prediction of each
component separately might produce results where there is
an increased prediction accuracy of some components and a
decreased accuracy of others because of possible inconsisten-
cies of predefined visual indicators and their corresponding
HI values. That approach must be thoroughly investigated in
the further studies as there might be a significant potential
to increase the accuracy of the methodology but this requires
to re-check the basis of HI determination of each OHL com-
ponent. The component specific HI prediction of OHLs also
enables more detailed investment decision-making. Moreover,
as there is usually limited to no technical failures in the TSO
grid, then all failures and critical defects that cause the tower
or component to be refurbished needs to be recorded with
corresponding asset technical features at the point where the
event happened. That might give better results in predicting
aging behaviour and the possibility of the failure of the grid
because HI transition phases from one value to another are
being recorded. In terms of structural long-term data collection
and usage, excellent results may be achieved through the use
of the methodology proposed in this paper.
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Electrical Transmission System Operators (TSO) are trusted with ensuring the safety and reliability of trans-
mission infrastructure which can span thousands of kilometers. Maintenance of such a geographically expansive
system is naturally a matter of concern and companies invest heavily in tracking infrastructure state which still
relies predominantly on visual inspection. This paper presents an automated condition assessment methodology
for concrete poles supporting overhead conductors based on deep learning object detection networks. Nine defect
conditions ranging from incipient to severe are automatically detected from infrastructure photographs and
mapped onto established Health Indices used by maintenance personnel. Three different deep learning networks
are tested and new metrics, specific to this problem, are defined to evaluate their performance based on asset
Health Index (HI) values. Results indicate that deep learning object detection networks hold promise for
significantly reducing manual labour associated with visual inspection, especially when combining with auto-
matic asset identification based on image geotag. This paper shows acceptable performance on more severe

defect types.

1. Introduction

Overhead transmission lines (OHL) are among the most important
assets in the electricity system and usually span thousands of kilometers.
They consist of conductors and hundreds of individual poles that support
the electrical circuits with expected lifetimes in the order of 60 to 80
years. As the infrastructure ages, it is met with varying environmental
conditions which can cause unexpected degradation and compromise
the reliability and security of the system. Proper asset management
demands regular monitoring of the physical condition of OHLs which is
usually done by periodic visual inspections, carried out by trained field
crews who visit each pole and OHL’s right-of-way. However, it is not
economically feasible to carry out inspections regularly. Even annual
inspections may be a strain on the TSO budgets. Compounding this
problem is the ineffectiveness of statistical methods for lifetime esti-
mation given the paucity of data arising from historically low trans-
mission infrastructure failures.

There are several technical publications about OHL condition

* Corresponding author at: Ehitajate tee 5, 19086 Tallinn, Estonia.

assessment and determination of critical defects such as [1-7] which
focus on the detection of immanent failure. Others, [8-10], develop a
Health Index (HI) system based on a wider set of pole conditions in order
to estimate the likelihood of asset failure in a certain time frame. While
they developed specific, predetermined criteria lists for each component
of OHL, the approach still requires data collection via the foot patrol
inspections.

In the last decade, there has been an increase in the use of aerial
vehicles such as helicopters or drones to carry out inspections. Aerial
inspections are usually performed with cameras and LiDAR [11] to ac-
quire 3d models, photos and geographical information such as point
cloud of the OHL and its right-of-way as described in [12]. Unfortunately
those inspections usually lack the input about OHL defects on the level
that foot patrols provide and the main focus is on the vegetation and
conductor ground clearance analysis instead of technical condition
assessment. In [13] object detection based on video and images from
aerial surveys are used to detect line components but no assessment of
condition is performed.
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This paper examines the applicability of deep learning object
detection networks in detecting degradation artefacts on tubular type
concrete transmission line poles and on steel lattice tower foundations.
Recently, deep learning object detection methodologies in the field of
computer vision, has become a hot topic of research. Object detection is
the technique of both recognizing an object class and predicting the
location of the object via a bounding box. These techniques have been
applied in the fields of medicine [14], intelligent vehicles [15], agri-
culture [16] and in damaged aerial power lines [17,18]. Current deep
learning object detectors can be categorized into multi-stage region
proposal techniques [19-21] and in single-stage global regression al-
gorithms [22,23]. In this study a region proposed object detection
network: Faster Region-based Convolutional Neural Network (Faster R-
CNN) [24], and two global regression networks: You Only Look Once
(YOLOv2) [25] and the Single Shot Detector (SSD) [26] are the chosen
detectors for the automatic condition assessment problem. These
detection networks find a compromise between training and detection
speed and accuracy and are some of the more popular detection net-
works currently used in academia and industry.

For the present study visual inspection data by foot patrols from the
Estonian Power System is used in lieu of aerial survey data to illustrate
the efficacy of the methods. The produced base neural network from this
study can be adapted using transfer learning as high resolution aerial
survey data (> 100 megapixel images) becomes more available.
Therefore this study is the first step in bridging the gap from manual to
automated condition assessment of concrete pole infrastructure. This
paper is divided into three main sections where Section 2 explain the
background of the methodology, Section 3 describes object detection
models used in this paper and Section 4 presents results of used object
detection models for individual defect detection and HI assessment on
pole level.

2. Methodology

The overview of proposed methodology is presented on Fig. 1 and
can be divided into four main processes:

1. Pole selection

2. Image acquisition

3. Image-Asset correlation

4. Defect detection and Health Index Mapping

The process starts with a specific subset of poles selected for in-
spection based on the maintenance policy of the Utility. For this subset, a
set of corresponding images must be taken using UAVs or handheld
devices. Geo-tagged images can be automatically correlated to assets but
those that are not, must be manually associated with their relevant as-
sets. Once all images are correctly associated with their assets they move
to the object detector for defect detection. The detected defects are then
classified according to severity using a health index and the results saved
in the asset database.

2.1. Pole selection

The set of structures selected for inspection is a function of the time
since the last inspection, the last recorded infrastructure state, criticality
of the line to system security and any external events that may be cause
for concern. Typically, assets with critical condition or high risks are
more frequently assessed than assets that have a low impact on system
reliability or are in good condition.

2.2. Image acquisition
Clear images of sufficient quality must be taken at multiple angles so

that the entire structure can be assessed. In this paper images for the
object detection models training and testing data are taken from
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Fig. 1. Principle scheme of automatic condition assessment model where
rectangles represent process steps, parallelogram data, rounded shapes start
and end of the process and rhombus decision point. The list of poles that are
inspected is based on the restrictions from the maintenance strategy.

periodic visual inspections by foot patrols.

2.3. Image-asset correlation

This subsection describes the method of linking concrete pole images
that are taken via foot patrols with their physical asset, which is stored in
a database platform. Geotagging ensures that the latitude and longitude
coordinates at the location of the foot patrol are saved with the concrete
pole’s images. This geotagged data together with the LiDAR information
from the asset database can be used to calculate the distances between
each image location and each asset location. First a list of potential
candidates of concrete pole images mapped to the physical assets are
generated, by matching the minimum distance of each image to that
physical asset. The distance between two different points on the Earth’s
sphere can be accurately calculated using Haversine formula (1) [27]:

Dyt = 2 % 1 X arcsin x V/sin>x

latger — latiygge
x\/<7w 3 s ) + cos(latigge) X (1)
. o (longsser — loNimage
Xy [c0s(latse:) X sin — )

where Dy is the distance between two points, lat and lon are the lati-
tude and the longitude and r is the radius of the Earth (r = 6731 km). It
should be noted that lon and lat should be used in the same coordinate
systems. In this example all coordinates in the database are in EPSG :
3301 coordinate system and geotags are in EPSG : 4326 system. There-
fore to use (1), all coordinates are converted to EPSG : 4326 first.
Next, to verify each potential mapped candidate, the distances must
be less than a specified threshold, Dpgy. Filtering the mapped candidates
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in this way, reduces errors that may be incurred from erroneous GPS
data.

In order to determine an appropriate value for Dy, three factors
must be considered: The distribution of tower spans; the distance that
images are being taken from the poles and GPS error. If Dy is chosen to
be too large compared to the tower spans then more than one asset may
be in the radius of the image. If Dpqy is chosen to be too small then no
asset may be in the radius due to the distance at which the picture is
being taken. The presence of GPS errors place additional constraints on
the value of Dngy since images may appear to be at incorrect locations
and may be associated with the wrong pole. Dy,q, must be chosen small
enough so that a GPS error is not likely to place an image of one pole in
the valid space for another pole. This may mean that there are some
poles which are not associated with any images and these would have to
be manually associated. Practically, the value of Dy, was determined
empirically by looking at the distribution of image-tower distances
compared to tower-tower distances and choosing a value which balances
the number of poles falling within the distance with the number of pole
spans that were smaller than the distance.

High voltage OHLs are considered as open areas for GPS receivers
since tall vegetation must be cut in the right-of-way to prevent flash-
overs from conductor to vegetation. This is beneficial in terms of GPS
position accuracy. Most smartphones and tablets use assisted GPS (A-
GPS), this technology uses the mobile networks’ signals in addition to
satellites to receive the geographical position of the device. This is
beneficial in environments where it is difficult to receive a GPS signal
but may cause more errors in open fields than regular GPS that uses at
least four satellites to determine the device’s position. Based on [28], an
open field’s A-GPS mean error can be estimated at 4 meters, the
consumer-grade GPS’s mean error is under 2 meters. In both cases, the
standard deviation was approximately 2 meters. As state-of-the art
smartphones are using dual-frequency GPS receivers that have better
accuracy than A-GPS, it is possible to conclude that A-GPS’s parameters
should be used as the worst-case-scenario as it relates to calculating
minimum distances.

2.4. Defect detection and health index mapping

Defects are detected using trained deep learning object detection
networks and are discussed in more detail in Section 3. Once the defects
are detected, they must be combined and mapped to a single HI for a
pole. The theory of concrete pole condition assessment and usage of HIs
in this paper are based on [10] which was implemented on the Estonian
transmission grid in 2018. Predefined visual indicators correlated to HIs,
Table 1 and Fig. 2, reduce the variability associated with unstructured
appraisals by assessors typical of traditional inspection. The HI values
are based on the impact to overall reliability of the pole and therefore,
HI calculation is based on maximum function of all determined defects
according to (2).

HI = max{HI(x) : x = 1...n} (2

Table 1
List of visual indicators presented in Fig. 2 and responding HI values.

Visual indicator Health Index

(Hole Fig. 2: a)

Loss of cross section > 20% (Fig. 2: b)
Concrete is falling off (Fig. 2: ¢)

Loss of cross section < 20% (Fig. 2: d)
Crack (Fig. 2: e)

Visible reinforcements (Fig. 2: Fig. 2: f)
Micro longitudinal cracks (Fig. 2: g)
Hair-like cracks (Fig. 2: h)

Other minor Defects (Fig. 2: i)

No visible defects

O = NWA RUoGW
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Fig. 2. Examples of reinforced concrete pole and foundation visual indicators
listed in Table 1.

where HI(x) is a function that looks for the HI value of selected defects in
Table 1 and n is the total number of defects in the object detection
model’s output. For example, according to Table 1, a “crack” corre-
sponds to HI 4 and “micro longitudinal cracks” to HI 2. By using the
maximum function in (2), the overall HI of that asset is 4.

3. The deep learning object detection networks

This section describes the neural network architectures, data,
methods of preparing the images for training and testing, and the
various performance metrics used in this study. Three object detection
networks are used with differing detectors and feature extraction layers.
They include the Faster R-CNN network, the YOLOv2 network and the
SSD network. For all networks, transfer learning was performed on the
same dataset to learn the features of the concrete pole defects and the
hyper-parameters were tuned using a Manual Search tuning method.

3.1. Network architectures

3.1.1. The Faster Region-based Convolutional Neural Network (Faster R-
CNN)

The Faster R-CNN deep learning algorithm [24] uses a two-stage
framework that at first scans the image and then focusses on regions
of interest. The faster-RCNN technique advances from fast-RCNN since,
it does not rely on additional methods to generate a candidate pool of
isolated region proposals, thereby reducing the computational
complexity of the algorithm and time of training.

The faster-RCNN architecture comprises of a feature detection
network, a Region Proposal Network (RPN) and a classifier. The RPN is a
fully-convolutional network that generates proposals and can be trained
via supervised learning techniques. In this study the feature detection
network chosen is the Inception V2 model [29] which consists of 6
convolutional layers, 2 max pooling layers, 3 Inception modules, 1 linear
and 1 softmax layer. The training technique chosen was the stochastic
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gradient with momentum (SGDM) method. SGDM accelerates conver-
gence by replacing the actual gradient by an estimate, calculated from a
randomly selected subset of the data. The momentum, minibatch size
and initial learning rate were chosen as 0.9, 1 and 0.0002 respectively.

3.1.2. The You Only Look Once (YOLO) v2

The YOLO v2 technique [25] is a real-time algorithm that accom-
plishes object detection via fixed-grid regression. Whilst region proposal
frameworks such as fast/faster-RCNN, have several correlated stages,
that are each trained separately. YOLOV2 is a one-stage framework that
maps the image pixels to bounding box coordinates and class probabil-
ities in a single step using a global regression technique. The idea is to
make objection prediction on each feature map location without the
cascaded region classification step.

The feature extraction network consists of 23 convolutional, 5 max
pooling, 2 routing and 1 reorganization layer. The K-means clustering
algorithm using the Intersection-over-Union distance metric is given by:

_|AnB|,

ToUy =
oY= A UBl,

3)

This method was used to generate the anchor box sizes, where A and B
denote the ground truth and estimated bounding boxes, respectively.
The Adam stochastic optimization technique [30] was chosen for
training this network. Adam is an adaptive learning rate optimization
algorithm that combines the benefits of RMSprop and Stochastic
Gradient Descent with momentum. The momentum, minibatch size,
epochs, initial learning rate and decay factor were chosen as 0.9, 4, 160,
0.001 and 0.0005 respectively.

3.1.3. The single shot detector

The SSD object detection system [26] can be classed as a single stage
network, similar to that of YOLOv1. SSD however, aims to overcome
some of the inabilities of the YOLOV1 algorithm namely detecting small
objects in groups, and with certain data sets is more accurate and faster
than the YOLOv1 algorithm.

In this study the feature extraction network for the SSD algorithm
uses the RetinaNet backbone [31]. The RetinaNet architecture consists
of a Feature Pyramid Network [32] on top of a feedforward Residual
Network [33]. This topology has the benefit of using a focal loss feature
which deals with the class imbalance problem. For the focal loss feature
values of y = 2 and a = 0.25 were chosen for this study. The Stochastic
Gradient Descent with Warm Restarts (SGDR) optimization technique
[34] was used for training this network. SGDR is a variant of learning
rate annealing, that aids in improving the rate of convergence and
anytime performance. The momentum, minibatch size, base learning
rate, warm up learning rate and warmup steps were chosen as 0.9, 64,
0.04, 0.01333 and 2000 respectively, for 25000 total steps and a cosine
decay learning rate.

3.2. Data and performance metrics

3.2.1. Data pre-processing

The data consisted of foot-patrol concrete pole images with no image
requirement standardization. Therefore aspects such as resolution,
background, lighting, pole orientation, distance, shadow and presence
of external objects varied considerably. To prepare the images for use by
the object detection networks, ground-truth bounding boxes for each
class defect were placed on the original images by an expert. All images
were then resized to 512x512 pixels, to reduce computational
complexity of neural network training. The input neuron size of the
feature extraction layer of all object detection algorithms used in this
study accepts images of the resized format. It is important to note that all
bounding boxes are saved as relative coordinates on images, such that
after object detection, the bounding box edges can be resized to map to
the original un-scaled images. This enables ease of follow-up inspections
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by experts, where they can compare the bounding boxes of the ground-
truth and detector on the original image. The dataset comprised of 1008
images with a total of unique 3,544 features. Each feature can be classed
into one of 9 classes, and the feature decomposition of the training and
test datasets are given in Table 3. A hold-out cross validation method
was used to train and test the detection networks. From the dataset, 80%
of randomly chosen data was used for training with 2,853 defects, and
20% allocated for testing, making up the remainder 691 features.

3.2.2. Performance metrics
The Intersection over Union (IoU) performance measure gives the
similarity between the predicted region and the ground-truth region for
an object present in the image. It is defined as the size of the intersection
divided by the union of the two regions.
 area(B,(By)

B area(B,|JB) @

where B, is the predicted bounded box and By is the ground truth
bounding box. The IoU metric is used in the calculations to determine
True (False) Positives (Negatives). Precision or confidence, is a measure of
the proportion of predicted positive cases that are correctly classified as
real positives and is given by:

P

TP + FP ®)

Precision =

Recall or sensitivity, is a measure of the proportion of real positive test
cases that are correctly predicted positive. Eq. (6) gives the formula for
recall.

TP

Recall = ——
TP + FN

6)

A Confusion Matrix is a useful metric to give the outcome of classification
in image recognition problems. Each row denotes the instances of an
actual class and each column gives the instances of the prediction.
Confusion matrices for object detection algorithms are evaluated in a
similar way, however they utilise multi-class instances where the matrix
compiles each object class from the same image on a single table.

In this study, it is more important to analyse the network’s perfor-
mance in relation to estimation of the health indices, which are derived
from the true(false) positives(negatives) metrics. We define two general
performance metrics for the object detection algorithm as over-
estimation and underestimation scores, given in (7). Overestimation O;
is a measure of how much the network detects and classifies defects as
higher fault indices than they actually are, and underestimation U; is the
converse.

i—1
Zla,-,- ;a,-,-
0, =" x 100, Uy =—x 100 @
> a; >ay
=1

where q; is the element in the i-th row and j-th column of the confusion
matrix. A confusion matrix is then generated with these scores as shown
in Table 2. The rows of the table gives the true Health Index, while the
column gives the estimated Health Index. The diagonal of the table, ;,
therefore, represents the correctly estimated indices, the lower triangle

Table 2
Confusion matrix based on estimated and actual Health Index.
Estimated
HI 1 HI 2 HI 3
g HI'1 A a, a3
g HI 2 a,, Ay a4
HI 3 as, as, Ay




H. Manninen et al.

the under-estimated health indices and the upper triangle, over-
estimated health indices.

4. Results and discussion
4.1. Image-asset correlation

For the image-asset correlation, all minimum distances of 16823
individual OHL towers to the nearest physical asset were calculated.
Next, 1871 images taken from periodic visual inspections of the Estonian
transmission grid were used to determine an appropriate value for Dpqy.
Fig. 4 shows the cumulative distribution of the tower to tower distances.
The majority (71 percent) of OHL towers in the grid, are more than 100
meters from their nearest neighbour, while 4% are less than 30 m apart
and less than 1% are within 20 m of the nearest tower.

Each OHL tower’s geographical coordinates were accessed from
LiDAR inspections, and each tower’s images were taken by foot patrols
using tablets that enabled geotagging of images using the A-GPS tech-
nology. The distance between each image and all assets were calculated
using 1 and the minimal separation used to associate an image to its
associated asset, Fig. 3. The majority (89 percent) of images were
identified to be in the range of 20 meters of the corresponding assets. 82
percent of images were taken less than 15 meters from the assets and 60
percent of the images were less than 10 meters. Around 9 percent of
images were further than 100 meters from the OHL tower (up to 5 km in
some cases). The reason for these large offsets is likely due to a GPS drift
on tablets or GPS signal lost while taking the picture. Image-asset cor-
relation using tablets and foot patrols can be considered as baseline
accuracy when compared to more precise technologies that are wide-
spread with modern drones. However, even using input data from tab-
lets, a threshold value of Dy, for image-asset correlation in the range of
10 to 15 meters could be used for asset identification with an accuracy of
about 90%.

4.2. Performance evaluation of detectors

To evaluate the performance of the network, the test dataset is
processed by the detector and compared to the ground truth data
(manual inspection). The detections are then classified into three
categories:

e True Positives (TPs) - Where the network has correctly identified a
defect
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Fig. 3. Calculated minimal distance between taken images and towers in blue
with axis on the left and minimal distances between two towers in red with axis
on the right.
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Fig. 4. Cumulative distribution of minimal distances between two nearest
towers in the grid (a) and the nearest 1000 towers (b). Blue represents towers
that have a distance of 30 m or greater from each other, green towers are within
20 to 30 meters from their nearest neighbour and red towers have a minimum
distance of less than 20 meters from each other.
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Table 3
Composition of training and testing data by defect type.
Defect # in Training # in Testing

Hole 66 18
Loss of cross section > 20% 41 9
Concrete is falling off 289 72
Loss of cross section < 20% 69 20
Crack 356 76
Visible Reinforcements 643 174
Micro-longitudinal cracks 418 89
Hair-like cracks 351 78
Other minor Defects 620 155

Fig. 5. Bounding boxes overlayed on a concrete pole image, where green is the
ground truth and red is Faster-RCNN detector.

e False Positives (FPs) - Where the network has detected a defect where
none existed

o False Negatives (FNs) - Where the network has failed to detect an
existing defect

The aggregated values in these categories are then used to calculate
the precision and recall metrics as given in (5) and (6) respectively,
giving an indication of the accuracy of the object detector. Once the
detectors are trained, the test data in Table 3 is input into the detection
algorithms and results are recorded and compared to the ground-truth
dataset. Fig. 5 gives an example concrete pole image, showing the
overlays of bounding boxes of the ground truth data represented in
green, and the bounding boxes of the Faster-RCNN detector in red. Three
different faults namely, holes, micro-longitudinal cracks and minor de-
fects were successfully detected by the Faster-RCNN algorithm for an
IoU of 0.1. The example, gives a good indication of a detector’s perfor-
mance to an image with multiple classes of features. Several proposal
detections may be present in the vicinity of a single ground-truth object.
To compensate for this, the proposal with the highest confidence score is
usually selected through a process called Non-Max Suppression [35].
Since the number of detections is reduced through this process, it has the
potential to reduce the number of false positives and increase the
number of false negatives which will affect the Precision and Recall
metrics respectively.

To determine whether a detection is a True Positive, False Positive or
False negative its bounding box is compared to all ground truth

Precision

Precision

Precision
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bounding boxes of the same class in the image. An Intersection over
Union (IoU) threshold (between 0 and 1) for the bounding boxes is used
to determine whether the detection corresponds to the ground truth. For
the present study, sweeps of Non-max suppression and IoU thresholds
were done between 0.1 and 0.9 for each of the nine classes resulting in a
9x9x9 array for each one of the detector networks (RCNN, YOLOvV2,
SSD). Based on examination of the arrays, the Non-max suppression was
found to have negligible effect. For each of the classes, the graphs of
Precision and Recall vs IoU are presented for each of the detector net-
works, Figs. 6-11.

Figs. 6-11 indicate that the networks gives the best precision-recall
performance at low values for IoU thresholds. This is likely due to the
irregular shapes and obscure edges of the defects which leads to
considerable subjectivity in properly setting the boundaries of bounding
boxes of the ground-truth data. This is known as noisy labelling of
ground truth data and its effects have been studied for image classifi-
cation problems in [36,37]. In this study, noisy ground-truth data leads
to, among other things, mismatches in ground truth and detected
bounding box sizes and centre locations. Defects that are detected may
show up with bounding boxes shifted from their ground truth counter
parts and with different sizes. While an IoU threshold of 0.5 is usually
considered standard for objects with well defined boundaries, a signif-
icantly lower IoU of 0.1 was found to perform best for the defect
detection problem. Following from [10], the defects detected map
directly to health indices for the pole as given in Table 1. These indicies
are used by Maintenance Engineers to determine what action should be
taken with the Asset. A health index of 4 or above indicates immediate
attention is required, while 3 and below indicate that the pole requires
only monitoring. Multiple defects may be present on a pole leading to a
variety of Health Indices associated with that pole. In such cases the
highest index (most severe damage) is taken as the overall Health Index
for the pole. By comparing the ground truths and detected defects for
each pole, using the precision and recall calculations in (5), (6) and the
overestimation and underestimation in (7) a confusion matrix of health
indices can be generated for each network, Table 4-6. Table 7 summa-
rizes the overestimation and under estimation scores for each network.
Two important details show up through this analysis. Firstly, the net-
works perform better for more serious defects. This is expected since the
more severe faults such as holes show more definite changes in the pole
as when compared to minor defects such as micro-longitundinal cracks.
Secondly, the networks have a tendency to overestimate instead of un-
derestimate. Although over-estimation leads to additional time spent
manually double checking pictures for faults, underestimation may see
serious damage if left unchecked. As evident, the networks have a very
low under-estimation score which is important to ensure that compro-
mised infrastructure is not ignored.

The YOLOvV2 detector shows considerably better performance than
both the RCNN and SSD detectors with Precision and Recall over 85%
for all categories of objects. Additionally when mapped to the HIs,
YOLOv2 underestimates level 4 damage in less than 4% of cases and
level 5 damage less than 2% of cases. This can be attributed to YOLOv2
scanning the entire image as opposed to regions therefore extracting
more contextual information for each bounding box prediction. YOLOv2
convolutional backbone architecture was pre-trained on higher resolu-
tion images from ImageNet and therefore the weights are more sensitive

Table 4
Health Index Confusion Matrix for RCNN.

Estimated HI

HI 1 HI 2 HI 3 HI 4 HI 5
_[HI1 1 5 7 4 13
T HI2 1 5 1 7 5
T HI3 0 1 9 3 23
;td HI 4 1 0 0 14 11
HI 5 0 0 2 4 83
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Table 5
Health Index Confusion Matrix for SSD.

Estimated HI

HI'T [ HI2 | HI3 | HI4 | HI5
_[ HI1 11 3 2 2 12
I HI2 0 7 2 6 4
T HI3 4 2 7 8 15
S Hia 0 1 2 19 4
HI 5 7 2 2 9 69
Table 6

Health Index Confusion Matrix for YOLOv2.
Estimated HI

HIT [ HI2 [ HI3 | HI4 | HI5
_[ HI1 19 2 3 0 6
I HI2 1 13 4 1 0
T HI3 2 1 23 1 9
g HI4 0 0 1 22 3
HI 5 0 0 1 0 88
Table 7

Health index overestimation and underestimation percentages.

Overestimation (%) Underestimation (%)

RCNN SSD YOLO RCNN SSD YOLO
HI1 96.7 63.3 36.7 0 0 0
HI 2 68.4 63.2 26.3 5.3 0 5.3
HI3 72.2 63.9 27.8 2.8 16.7 8.3
HI 4 42.3 15.4 11.5 3.8 11.5 3.8
HI 5 0 0 0 6.7 22.5 11

to capturing fine-grained information such as ill-defined defect edges
and incipient fault conditions such as micro-cracks.

5. Conclusion

The study indicates that even with modest amounts of data, using
geotagging methods to identify towers via images captured near tower
locations, and using deep learning for object detection can be quite
effective for automatic asset condition monitoring. This problem differs
from traditional object detection applications, since there is a high de-
gree of artefact irregularity and an inherent amount of ground truth
noise due to subjectivity in bounding the defected objects. New metrics
for assessing rank-ordered objects, namely overestimation and under-
estimation percentages have been defined to give a more accurate pic-
ture of the practical applicability of the networks. Although this study
presents object detection with foot patrol data, the image resolution is
relatively low and therefore, the images can be substituted with those
from ultra high-resolution images taken from fly-by missions. The re-
sults of this study implies that the combination of both data sources and
automatic image detection can revolutionize transmission pole moni-
toring techniques by significantly reducing manual inspection time and
cost.
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ARTICLE INFO ABSTRACT

Keywords: European transmission system operators are facing challenging times in the next decade as majority of
Condition assessment their transmission overhead lines are reaching the end of their projected lifetime. Traditional maintenance

Health index

approaches would generate a significant wave of replacements that could be dispersed or postponed with
Probability of failure

X more advanced decision-making methodologies. This paper presents a holistic risk-based maintenance decision-
Risk assessment . . . . . . . .
Survival analysis ma'kmg m.ethodology for tra.nsmlssu)n overh.ead lines z.mc'l its practical 1mplementat'10n. The' framewx?rk is
Value of lost load refined with anomaly detection and health index prediction models that use machine learning algorithms

to improve the input data quality. Asset health indices are used to determine the actual technical condition of
each transmission overhead line tower separately and to calculate the probability of failure for each asset using
survival analysis. The proposed methodology takes into the account transmission grid specific features where
usually a failure in a meshed networks will not cause an electricity outage for customers and therefore a novel
value of lost load approach is proposed. This paper also presents a case study based on Estonian transmission
system where the proposed methodology enables to minimize risks in more cost-effective manner compared
to traditional approaches and highlights the most critical elements in the grid.

1. Introduction As stated in [12], many companies use risk matrices without ensuring

their efficiency on improved decision-making. For the useful decision-

Transmission system operators (TSOs) around the globe are fac- making, it is essential to determine input parameters, PoF and Cof, as
ing a significant wave of asset replacements due to the old age of accurately and transparently as possible.

their electricity systems. According to the ENTSO-E [1] it is expected PoF of OHLs can be calculated directly using statistical approaches

European TSOs have to invest around 53 billion euros to maintain such as Weibull and bathtub [13] curves or through a health index (HI)

the current level of security of supply, where nearly 80% of the ex- as done in [14-18]. As in TSOs grid there is usually low number of

penses will be for the refurbishment of overhead lines (OHL). There
are currently no common approaches to assess the time-frame and
urgency of the replacements for overhead lines but various method-
ologies are used among TSOs. According to [2,3] the most widespread
approaches are corrective maintenance (CM), time-based maintenance
(TBM), condition-based maintenance (CBM), and risk-based mainte-
nance (RBM). Based on [2-10] the RBM methodology is proposed as
the most cost-effective but also as the most sophisticated to implement.
In TBM assets are usually replaced once they reach their expected
lifetime. It is the most widespread approach among TSOs as it is easy
to implement, but may lead to over investments. Decisions using RBM
are usually made on the basis of risk matrices [11], where probability
of failure (PoF) and consequences of failure (CoF) are combined. That
approach is widespread as it enables simplified visualization of PoF and should rely on parameters that are reflecting the actual technical
CoF, but unfortunately it lacks transparency on replacement decisions. condition or deterioration of assets instead of age dependency. It must

failures and they may happen randomly then determining PoF using
parametric or semi-parametric functions may lead to over- or under-
estimations in terms of insufficient data. The use of non-parametric
survival analysis [19] is proposed to calculate PoF on the basis of HI
data and historical failures. There are various ways to represent HI, but
the most common ones divide HI linearly from 0 to 100 [15,17] or O to
5 [4,20], to describe the technical condition of complex assets. CIGRE
has conducted a study [21] where it is seen that the majority of failures
for high-voltage assets are random and [22] illustrates that estimated
remaining life of OHL conductors varies significantly when comparing
approaches based purely on age against approaches with additional
measurements. To improve results, HI determination methodologies
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be noted that this paper is not focusing on the development of HI assess-
ment methodology, rather it uses HI as the input in PoF determination
from author’s previous works done in [20,23], where HI is determined
for each OHL tower and its component separately. That enables to
determine PoF on the basis of its actual technical condition instead of
age.
Value of loss load (VOLL) [24] is widely used to express CoF in
monetary terms. It is difficult to determine VOLL in transmission grids
as networks are planned using the n-1 requirement, where usually a
failure of a single OHL will not cause directly any outage for customers.
But in some cases a failure of a single OHL tower may cause an
outage for customers, especially when multiple circuits are sharing the
same towers or some OHLs are disconnected from the grid due to the
maintenance works. To overcome this issue, it is proposed to consider
each tower in the grid as an individual element instead of aggregating
all towers and circuits on OHL level. OHLs can span up to hundreds of
kilometers and its towers can be built on various terrain types such as
fields or mountains. To improve CoF results, a novel OHL tower specific
VOLL determination methodology is proposed using tower specific
expected outage duration that takes into account geographical location
and complexity of assets. As the proposed methodology relies on the
input data then unsupervised machine learning is used for anomaly de-
tection to improve input data quality and supervised machine learning
is used to predict HI for assets without HI data to involve them in the
risk assessment process.

In order to overcome of the main limitations of existing RBM ap-
proaches, a holistic methodology, based on HI and VOLL, is proposed.
It enables transparent asset-management decision-making and presents
a clear overview of all individual elements in the grid and how it affects
reliability in general. The proposed methodology focuses thoroughly on
the determination of RBM input parameters and presents an approach
where each element in the grid will acquire a HI and corresponding
VOLL values.

This paper is divided into seven main sections. Section 3 describes
the overview of the proposed methodology. The framework of PoF
determination is in Section 4 and HI determination of OHLs in Sec-
tion 5. Section 6 explains CoF assessment methodology using VOLL
with estimated outage duration. Section 7 presents a case study done
in Estonian transmission grid. Conclusions and future work are given
in Section 8.

2. Life-cycle management of transmission overhead lines

Life-cycle management (LCM) of transmission OHLs is the process
of optimizing the maintenance, investment and condition assessment
costs throughout the life-cycle. Transmission OHLs are complex assets
to maintain as they cover large distances, consist of large amount of
individual towers, thousands of kilometers of conductors and have a
lifespan more than 60 years. In addition to maintaining the technical
condition of assets it is also important to ensure the safety of OHLs
throughout its life-cycle. Fig. 1 gives a brief overview of OHL LCM
works that can be divided into three main component class that are
right of way (ROW), conductor and grounding wires, and towers.

It is possible to cover almost all ROW LCM activities by using
light detection and ranging (LiDAR) technology where data is collected
using aerial vehicles and collected point-clouds are processed to acquire
precise distance from one object to another. Condition assessment of
ROW consists mainly of vegetation analysis and detection of structures
in the ROW. The ROW by itself does not affect the technical condition
of OHL but it must be maintained to eliminate outage because of
vegetation flash-overs. Preventing vegetation-related outages improves
also the safety of the OHLs as flash-overs may cause fires or even dan-
gerous step-voltage for human and animals. In addition to vegetation
analysis, LiDAR data is also used to determine the minimal ground
clearances of each span or crossing with infrastructures by modeling
conductor thermal behavior for allowed conductor temperature ranges

International Journal of Electrical Power and Energy Systems 137 (2022) 107767

Condition

r 7777777 assessment
|
1 k'S
. - Conductorand| Towers
Righ of way - —— T Wire I
: \ T I
" 1 - |
| LiDAR data analysis ‘ I
< 4 L |
3 Building and s |
Vegetation Sag analysis
= structures & Y :
| I I |
¥ ¥ ¥ |
Height and Distance to Distance to |
trees conductor ground |
T T T |
\ [ \ |
. 1viding into
|- — — 5 Direct results ¢ — — —' | s
| components
|
|
________ Condition o JI
: assessment
| |
5 L HI
Laboratory Statistical Ceteznination
tests approaches
I I
| |
| |

| S S
e HI to describe
condition

Fig. 1. Principle scheme of OHL condition assessment where dotted lines presents
process parts that are also part of OHL condition assessment process but left out of the
scope of this paper.

as explained in [25]. That enables to ensure the safety of all agricultural
machines, structures in the ROW and crossings with roads by measuring
distance from the conductor to the specific point to ensure the required
safety margin. Using LiDAR technology has became widespread among
TSOs due to the high accuracy and relatively low cost per inspection
kilometer. Using LiDAR technology also enables to precisely measure
distance from conductors or any point from ROW to structures, ground
and crossings. As those results are from distance measurements and not
affected by the technical condition of OHLs then they are left out of the
scope of this paper.

OHL components that are usually covered with HI in LCM are con-
ductors, grounding wires, insulators and towers with its sub-
components such as foundations, supports and cross-bars. HI is used
for those components as they have long lifespan, they are prone to
aging effects due to the material’s deterioration and there are no direct
measurements to assess technical condition of them accurately. The HI
of conductors and grounding wires is usually determined through sta-
tistical approaches or laboratory tests such as tension and torque tests
as there are almost no visual indicators of conductor and grounding
wire aging as done in [22,26].

3. Methodology

A general overview of the developed methodology focusing on
transmission OHL towers and is presented in Fig. 2. The process is
divided into two parallel branches where the first starts with HI de-
termination of OHLs and another one with VOLL determination. PoF of
each tower is calculated on the basis of HI data and historical failures as
explained in Section 4, where HI determination process is more detailed
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Fig. 2. Principle scheme of an asset management decision-making methodology where
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in Section 5. CoF of each tower is calculated on the basis of VOLL and
cost to eliminate defects in Section 6. The full model for the RBM of
OHLs including all sub-models is composed in Python.

3.1. Risk-based maintenance

In order to reach optimal decisions in RBM, it is essential to calcu-
late the risk on a common and precise basis. The simplest principle for
decision-making to determine whether to replace the asset or not is by
using (1), where asset should be replaced once the risk is greater than
the cost of repair works. Implementing that approach requires, a well-
explained and transparent risk assessment methodology for reliable
results.

Risk > Cost (€8}

This methodology relies heavily on the input data, where all errors
in the first steps drastically affect final results. Also, compared to
TBM or CBM approaches, the RBM approach provides an additional
parameter that enables decisions to be made based on the cost of an
asset and risk associated to that asset if the failure occurs. It also enables
to determine the most critical assets that influence the reliability of grid
the most. According to [3], risk in a transmission system can be stated
in its simplest form by using (2).

Risk = PoF x CoF 2
where PoF is the probability of failure and CoF the consequences of
the failure.

3.2. Risk determination of individual towers

Risk of each tower is calculated based on the (2), but combining
together PoF and CoF that are based on HI and VOLL is more sophis-
ticated task. The framework of a risk assessment of each tower in the
transmission grid is presented in Fig. 3. Risk assessment starts with grid
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calculations, where all possible combinations that will cause an outage
or a limitation to customers in the grid will be saved. After that, all
calculations are reviewed individually and it is checked if the outage
was caused by only a single OHL or if there is a combination of more
than one OHL. If there is a single OHL that is causing the outage, then
all towers of this OHL will acquire the VOLL of the substation where
the outage occurs. If there is more than one OHL, then it is checked if
there are towers that share circuits of both OHLs. When this happens
then all towers that satisfy the criteria are saved with substation VOLL.
PoF of each tower is determined in Section 4 and PoF including VOLL
determination in Section 6.

As a single OHL can cause an outage in more than on a one
combinations, all possible combinations are calculated and saved. The
maximum risk across all combinations for each tower is selected for
further sections to find the worst-case scenarios for each individual
tower. If there is more than one tower involved in the combination
with circuits on separate towers, then the PoF of each tower will be
calculated by using the joint probabilities for selected tower and the
maximum PoF value of OHLs in the combination according to (3). In
this paper up to two individual towers are used simultaneously to find
possible outage combinations. N-1 and N-2 situations are calculated
where up to two simultaneous faults in the grid might occur. The
network was modeled until N-2 situation as N-3 and further scenarios
increase the computational complexity in a meshed network signifi-
cantly while increasing the risk assessment only marginally. Increasing
the number of towers in an outage combination will increase the
computational complexity significantly but improves results marginally
as probabilities are unpretentious values.

n
PoF;p = PoFyepeieq X max(PoFy ) 3)

where PoF;p is the joint probability of the combination, PoFg,.;cq
is the PoF the selected tower according to its HI, » is the number of
towers in the combination and PoFy, is the PoF of each tower in the
combination according to HI.

3.3. Decision-making under budget restrictions

In an ideal world, there is always a sufficient budget to replace all
the assets that are required, but that is not always possible. To maxi-
mize the efficiency of the proposed RBM decision-making methodology
under budget limitations, optimization task is described as a knapsack
problem [27] that is mathematically expressed as (4).
n

maximize E Cost; % Risk; <= Budget (€]
i=1

where Cost; is the cost of replacement and Risk; risk of ith element.

Solving a small knapsack is relatively simple as after calculating
all possible combinations the best one can be chosen. Solving a large
knapsack problem becomes extremely computationally expensive as
the number of combinations to find the best solution grows expo-
nentially. To overcome this issue, different approaches are used to
solve complex knapsack problems using more effective methods than
simple brute-forcing, where all possible combinations are tested. In this
paper, dynamic programming from [28] is used to solve the knapsack
problem.

4. Probability of failure

Probability of failure determination for each asset in the grid is
based on the asset HI information and combined failure data of that
asset type. Fig. 4 presents an overview of PoF determination, where it
is seen that HI data, critical replacements, and historical failures are
input for the PoF determination. Based on the data, cumulative hazard
functions using survival analysis [19] are calculated for each asset
category based on the HI of assets. Output of the PoF model determines
a corresponding PoF value for each individual tower according to its
categories historical performance and condition.
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4.1. Historical failures

Historical failure data is an important input parameter for PoF
calculations as it reflects the historical behavior of assets. As this paper
focuses on TSO level, it is important to take into account not only
failures, but also critical defects and just-before-failure replacement of
assets. It is important to fix the last recorded asset HI before failure
or replacement by using standardized failure reports such as CIGRE
recommendation for OHLs [4] or IEC 62271-1:2017 [29] for substation
switchgears. The usage of standardized failure reports enables the
comparison of different failures on a common basis, and it also enables
asset technical condition to be registered. As HI presents the technical
condition of the asset, it also enables asset-specific PoF for each HI class
to be found.

4.2. Probability of failure using survival analysis

Survival analysis and its application are well described in [19]. In
this paper, non-parametric survival analysis is used to calculate the PoF
for each tower since no distributional assumptions are known. Different
voltage levels are differentiated to acquire more reliable results due to
different reliability requirements for 110 kV and 330 kV voltage levels
in Estonia. PoF is calculated for each tower individually as is done
in [30], where the parametric exponential model based on average,
perfect, and end-of-life failure rates was used. Weibull, exponential,
gamma or the Cox proportional hazard models can be more detailed
compared to non-parametric models once there is a sufficient amount
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of data involved. This paper focuses on TSO level, where failures in the
grid are rare due to preventive maintenance approaches and therefore,
there is lack of data to use parametric models, which can be considered
as alternatives for the survival analysis in the future. Cumulative hazard
functions are composed for each selected asset category using the
Nelson-Aalen [31] (NA) estimator. The NA estimator is used to directly
estimate the cumulative hazard function given by (5).

d.
HNA(I)Z%’T:ZZ}'NAJ(I’) (5)
where n; corresponds to the number of towers present at time 7; and d;
is the number of failures at time ;.

It is also possible to use Kaplan-Meier estimator, but according
to [31] NA is slightly superior in terms of increasing failure rates such
as aging assets in transmission grid. For better results censoring should
be used when assets are taken out of service before failure occurs. Using
the NA estimator to compose a cumulative hazard function enables
visually to examine distributional model assumptions for reliability
data of assets and have a similar interpretation as probability plots.
Fig. 10 in Section 7 presents an example of cumulative hazard functions
for 110 kV and 330 kV OHL towers.

5. Health index determination

Fig. 5 presents a complete HI determination process that is com-
bined from authors’ previous works to overcome the main issues regard-
ing the input data collection for RBM implementation. It must be noted,
this section illustrates a HI determination approach for transmission
OHLs to determine HI, but various other methodologies that support
tower based approach from literature could also be used to implement
the general methodology presented in Fig. 2. Two different approaches
are used to determine HI of transmission OHLs: visual inspections ac-
cording to [20] and automatic condition assessment of OHLSs using deep
learning techniques according to [23]. To increase the data quality, an
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Table 1
Asset technical features used in this paper for anomaly detection and health index
prediction.

Feature Variations
Number of circuits 1to4
Tower type Suspension or tension

110 kV and 330 kv
4 options

6 manufacturers
214 configurations

Voltage level

Tower material
Manufacturer
Tower configuration
OHL direction changes Angle of deviation
Existence of a perch guard Yes or no

Age 1 to 67 years

anomaly detection and HI prediction models are integrated in the HI
determination process that is described in Section 5.1 and HI prediction
model is described in Section 5.2. Anomaly detection model is based
on unsupervised machine learning and prediction model is based on
supervised machine learning algorithms. Both models use HI and asset
technical data to improve input data quality for PoF determination as
described in Table 1.

HI determination approaches used in the paper are based on pre-
defined visual indicators that are composed according to material’s
physical fatigue and visual indicators that describe different life-stages
of OHL components. Table 2 presents predefined visual indicators with
corresponding HI classes for reinforced concrete poles that are used
in [23] to determine HI automatically from images using deep learning.
The data collection methodology is different for both branches, but they
both use the same backbone where there is almost 150 condition indi-
cators for condition assessment of OHL components according to [20].
Technical condition from excellent to poor is divided linearly between
six classes. HI class with a perfect technical condition is HIO and assets
that have end-of-life criteria detected have HI class HI5.
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Table 2
List of visual indicators for reinforced concrete poles and responding HI values [23].

Health index

Visual indicator

Hole

Loss of cross section > 20%
Concrete is falling off

Loss of cross section < 20%
Crack

Visible reinforcements
Micro longitudinal cracks
Hair-like cracks

Other minor defects

No visible defects

O = NWABG GO

5.1. Increasing input data quality using anomaly detection

There are always impurities in the raw data that may lead to
inaccurate results even with the most sophisticated models. As this
paper presents a methodology, where decisions are based on the input
data, it is essential to improve data quality. One option is to detect
and fix all anomalies manually, but as soon as the amount of data
increases, it will become overwhelming. To improve input data quality,
unsupervised machine learning algorithms are used to detect incorrect
values in the data automatically. Outlier detection or anomaly detection
algorithms described in [32] enable to minimize the risk of incorrect
values in further steps by outlining suspicious values in the data for the
double check. For outline detection, information about all assets that
have technical and HI data will be used to train the model as seen in
Table 1. The outline detection model is implemented right after HI data
import to minimize errors. The anomaly detection model is composed
and integrated into the full framework using scikit-learn [33] toolbox
in Python. As the anomaly detection model detects all assets that have
the largest deviations in technical features compared to the HI, this
does not always mean that the data is incorrect. For example, in some
cases there might be relatively new assets with high HI values due to
mechanical defects not caused by aging, but those will be highlighted
as anomalies in the data by the anomaly detection model. The output
of the anomaly detection model is a list of assets that might have
data quality issues and the output of HI prediction model is a list of
assets with corresponding HI values. As there are possibilities where the
model detects correct values as anomalies, this approach requires the
results to be validated by experts. That minimizes the data validation
workload of experts by only double-checking a short list of highlighted
assets, not the full data set.

One of the most accurate and widely used anomaly detection algo-
rithms is Isolation Forest [34], which explicitly isolates anomalies in the
data instead of profiling normal points. Isolation Forest is an anomaly
detection algorithm that is built on an ensemble of decision trees for a
given data set. It is ideal for high-volume data sets due to the low mem-
ory requirement and it works well even when there are no anomalies
present in the training set. Fig. 6 presents a simple example of anomaly
detection using Isolation Forest where straight black lines describe
random partitions generated by the model. Detailed description of the
Isolation Forest algorithm and its properties is in [34]. Similarly to
other anomaly detection models, Isolation Forest uses anomaly scores
for decisions. Decisions are done based on following rules:

+ Anomaly score close to 1 indicates anomaly

» Anomaly score close to 0 indicates normal data point

» Anomaly scores for all data points are close to 0.5 indicates there
are no anomalies in the data

The selection of hyper parameters for Isolation forest:

» Number of estimators - 100
+ Contamination - 0.01
+ Bootstrap - enabled
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Fig. 6. An example of the anomaly detection (X,) using Isolation Forest [34].

» Number of features - 9 as in stated in Table 1

The contamination parameter is affecting the results of using
anomaly detection model the most. It is describing the expected pro-
portion of outliers in the data and by selecting a certain value, the
model will output a selected amount of data that is closest to anomalies.
For example, in the implemented model contamination is set 0.01 and
therefore, the model output 1% of towers that are the most suspicious
based on their features. That approach still requires an expert to
double-check the results, but it eliminates the danger of automatically
marking correct data as anomalies. Unfortunately there are always
possibilities where a really new tower has a significantly bad technical
condition or vice-versa. By using the anomaly detection model with
a fixed and relatively small contamination parameter, it is possible to
minimize the workload of experts by validating only a small partition
of the data. Other hyper parameters used by the model are selected
according to manual hyper parameter tuning where the model detected
the most suspicious values in the data set such as 5 years old tower with
HI 5 that was hit by an agricultural equipment.

5.2. Health index prediction

The HI prediction methodology was developed in [35] to predict
HI of assets without HI data, where the most widespread supervised
machine learning algorithms were analyzed. Random Forest [36] using
unmodified data provided the most accurate results and it is also
implemented in the framework of HI determination to predict HI of
missing assets. A detailed analysis, performance metrics and hyper-
parameters of tested models are presented in [35]. That approach
enables maintenance decision-making to be implemented on the full
grid and not only on assets that have HI data. It also decreases the
inspection requirement and budget as it enables HI values to be gotten
for towers with a relatively high accuracy without physically visiting
them. Fig. 7 presents an example of HI prediction of OHL towers that
did not have HI data associated with them. According to [35] it is
possible to predict the HI of missing OHL towers with 70% to 80%
accuracy in six different HI classes without additional measurements or
site visits in an accurate and cost-effective manner. The implementation
of the missing HI prediction is based on the technical parameters of
the assets combined with the corresponding HI values acquired from
periodic visual inspections. To predict the missing values of assets, it
is important first to determine all assets in the data set that do not
have corresponding HI values. After detecting assets with missing HI
values, all assets that have HI values will be used to train the prediction
model. The HI prediction for assets without HI will be done based on
the technical features of those assets and the HI value is acquired.

6. Consequences of failure

Consequences of failure are based on VOLL and direct costs asso-
ciated with the repair of the failure. All other widespread parameters
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Fig. 7. An example of health index prediction model results of OHL without health
index from [35].

to assess CoF such as safety, environmental issues or loss of reputation
are not considered in this paper as they are not comparable between
different companies. Total consequences of an outage can be calculated
according to (6), but only direct cost and VOLL parameters are used in
this paper and therefore Y, CoF; = 0.

CoF = VOLL + CoFpyyeey + 3, CoF,; (6)

where CoFp,,,., are costs associated directly with the outage such as
cost of repair works, CoF; is consequences related to safety, environ-
ment, and publicity for the company or even political pressure.

For further studies, it is possible to add additional parameters to
assess all possible CoF, but as the main aim of this paper is to present
a full methodology to combine HI and VOLL for decision-making,
this item is not studied further here. The main reason why all other
parameters for the failure consequences assessment are ignored is that
they are based on non-comparable values and each utility has its own
risk mitigation strategies. For example, if some TSOs include loss of
human life in the consequences with great value and the other TSO
does not, then the results are significantly different. It is possible to
include those consequences in this methodology as well, but they have
to be first monetized and must be calculated on a standardized basis.

6.1. Value of lost load

VOLL is used as a monetary indicator that expresses the cost as-
sociated with an interruption of electricity supply. VOLL is deter-
mined through multi-step approaches that usually start with dividing
consumers into predefined categories and assessing cost of energy
not supplied (CENS) for each customer separately. A comprehensive
comparison of VOLL values and different methodologies in various
countries is presented in [24]. It is seen that there is a large gap
between macroeconomic and willingness-to-pay approaches. In this
paper, the VOLL of a single substation is determined based on the con-
sumer profiles in the Estonian transmission system where VOLL values
for each main sector are determined in [37]. Using the substation’s
historical load for the previous years, it is possible to calculate weighted
average VOLL for a substation when there is sufficient data for each
consumer connected with that substation.

VOLL can be calculated using (7) where it reflects the total cost
of electricity outage for a single substation based on the price of the
consumer-specific energy units, consumption, and expected duration
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Fig. 8. CENS for different estimated outage durations. Blue line represents commercial
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outage with duration of 8 h. [37]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

of the possible outage. It should be noted that it is impossible to
predict failure occurrences with an exact time frame and therefore
average consumption is used in this paper. For the worst-case scenario,
maximum consumption of the substation could be used as it is reflecting
the maximum possible VOLL in the substation, but it may result in
over-investments.

Y CENS(t), X load,
VOLLsubslmion - T Xt )
where CENS(t); is cost of energy not supplied for the sector i at
expected outage duration 7.

CENS is time dependent and can be expressed as functions in
Fig. 8. Those functions are composed according to surveys conducted
in Estonia [38] and converted to today’s value in [37]. As seen in
the figure then it is essential to define the estimated outage duration
as accurately as possible as it affects CENS significantly. The black
vertical line represents an estimated outage duration of 8 h. For further
VOLL calculations CENS values should be used as function of estimated
outage duration.

6.2. Estimated outage duration

Duration of the outage is usually determined by the type of the
failure, the complexity and time of repair works of assets. The distance
from the nearest road is crucial parameter for the outage duration
estimation as there are towers that are next to easily accessible infras-
tructure and in the middle of nowhere. For the simplicity, this paper
assumes the worst-case-scenario, where the most critical component
of the tower fails. Voltage level and material are used to distinguish
assets by their complexity as for example steel towers require additional
foundations and reinforced concrete poles does not. Usually higher
voltage levels refer to more complex assets as higher voltage level
require more safety margins and therefore are larger. Values in Table 3
present estimated repair times of OHL tower failures based on the best
practice from the Estonian TSO. Estimated outage duration values are
heavily influenced by TSOs that defines those times due to asset types,
country-specific geographical features and maintenance policies. The
estimated outage duration is also significantly affected by organiza-
tional aspects such as the availability of manpower and weather, but for
the simplification purposes the most pessimistic approaches are used.
It is also possible to expand Table 3 with more options and decision
points to increase the accuracy of the estimated outage duration while
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Table 3
Estimated outage duration for OHLs according to tower type, voltage level and distance
from roads.

Distance (m) Estimated outage duration (h)

110 kv 330 kv

Steel Concrete Steel Concrete
<100 12 8 16 12
100-1000 24 12 24 24
1001-10000 36 24 48 36
>10000 72 72 72 72

taking into the account more parameters. Table 3 presents simplified
estimated outage duration times that characterize average values ac-
cording to tower type, voltage level, and distance from the nearest road.
Those values are determined empirically based on the best knowledge
about historical outages in the grid.

As OHLs usually cover significant distances and are in remote areas,
the repair time to eliminate the outage is also significantly influenced
by terrain type. Outage duration of OHLs is also affected by the
geographical location as there are some areas where it is impossible
to reach due to the large distance from the nearest roads or they are
located on difficult terrain. Estimated outage duration can be calculated
by using (8). It must be noted that Cr,,,,;, is empirical constant that
should be selected according to countries geography. As it is signif-
icantly more challenging to replace a tower in the mountainous or
swamp area compared to field then Cy,,,,, can vary up to multiple
times. But as Estonia is relatively flat and has high infrastructure
coverage all around the country, the distance from the nearest road in
combination with tower type is used as an indicator of possible outage
duration and therefore Cr,,,, = 1.

T,

outage = Crerrain

X Temmaled @

where Cr,,,..i, is constant that takes into the account terrain type and
T,imareqa the estimated outage duration according to Table 3.

To acquire a minimal distance from an OHL tower to the nearest
road, the tower’s geographical location is used with road information
from OpenStreetMap [39]. For the simplicity, each individual distance
from the nearest road to towers is not used but is divided into four
proximity zones around the tower. Proximity zones can be generated
based on country-specific features. In this paper, four zones are used
and the radius of each is determined based on the best knowledge by
the Estonian TSO. The first proximity zone has a radius of 100 m around
the tower, the second has 1000 m, the third 10,000 m and the fourth
10,000 m or more.

The methodology is explained in Fig. 9, where are two OHL towers,
two roads and proximity zones around the towers. It must be noted that
only single towers from both OHLs are used and OHL spans with other
towers are ignored to present a clear and simplified example. Proximity
zones are marked with colors that represent the following: green —
<100 m, yellow — 100 m to 1000 m, red — 1001 m to 10 000 m.
It is seen that for the Towerl only Roadl collides into that tower’s
proximity zones. To be more precise then Roadl collides with Towerl
green proximity zone that is less than 100 m. It is clearly seen that it is
possible to select proximity zone <100 m for Towerl. In case of Tower2,
it is seen that there are no roads in the green and yellow zones, but
there are two roads in the red zone. That means it is possible to select
1001 m to 10 000 m proximity zone for that tower.

7. Case study

The case study presents an example of implementing the proposed
methodology in the Estonian transmission grid for OHLs. For the case
study, three approaches are compared based on the rules from the
corresponding strategy. The first approach is time-based maintenance
(TBM), where all assets will be replaced once the expected lifetime is
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OHL2

Fig. 9. Simplified example of the OHL tower’s distance determination from the nearest
roads. There are two OHLs (OHL1 and OHL2) marked with dashed lines where just
individual towers (Towerl and Tower2) with corresponding proximity zones (green,
yellow and red) and two roads (Roadl and Road2) are used in this example. Green
represents a proximity zone with a radius of 100 m, the yellow zone a radius of 1000 m
and the red zone a radius of 10 000 m. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 4

Input data for a case study.
Explanation Count
Number of OHLs 200
Number of towers 16071
Number of substation 139
Number of towers with HI data 15971
Number of towers without HI data 100
Number of failures in grid 277

exceeded. In this case study, 50 and 60 years will be chosen for replace-
ments as those values are commonly used by TSOs. The next approach
is condition based maintenance (CBM), where assets will be replaced
after reaching a certain condition from the condition assessment. In this
paper, HI values are used for the replacement decisions, where, in the
first case, all assets with HI5 will be replaced and in the second case all
assets with HI4 and HI5 will be replaced. The third approach is using
the proposed risk-based methodology (RBM) where all assets that have
higher risk than the cost of replacement will be replaced.

7.1. Input data

Input data about towers technical condition in this case study is
collected in 2018 from periodical visual inspections in Estonian trans-
mission grid. Specially designed mobile tablet application were used
based on the methodology described in [20] to acquire HI data about 16
000 individual OHL towers. Further more, inspections produced nearly
two million individual defects about OHLs that were aggregated on the
tower level. For the simplicity of the proposed methodology HI data
was aggregated on tower level and a single HI value of each tower was
generated on the basis of detected defects. For the simplification in the
decision-making, a full tower replacement is chosen as a maintenance
decision once a critical tower is detected from aggregated data. Asset
technical features, grid topology, substation historical consumption and
failures is from Estonian TSOs databases.

Input data for the case study is presented in Table 4. It is seen
that there are 200 different OHLs connecting 139 substations. The total
number of OHL towers with HI is around 16 000 and without HI is
just a single OHL with 100 towers that were deleted from the HI data
base to illustrate the HI prediction model. Historical data about critical
replacements and failures is recorded for 277 towers with HI and other
technical parameters.

The anomaly detection model described in Section 5 was used on the
whole dataset, where 10 of the most abnormal values were highlighted.
Those values included an 11-year-old tower with HI5 that has critical
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Fig. 10. Probability of failure of 110 kV and 330 kV towers based on the health index
values. Light-colored areas around the lines represent 95% confidence intervals. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

defects. As all the data has been previously cleaned then all HI values
remained unchanged.

For the towers without HI values, an HI prediction model was used.
As the model used exactly the same input data as in [35] then the
results were also identical and can be further studied in [35]. Using
HI prediction model enabled missing HI values to be predicted for 100
missing towers in the grid and for further calculations all towers in the
grid had a HI value to find PoF.

7.2. Probability of failure

Survival analysis using Nelson-Aalen [31] estimator is used to cal-
culate asset PoF based on asset HI and historical failures and critical
replacements in the grid. PoF is calculated for each tower and all towers
are divided into two categories based on 110 kV and 330 kV voltage
levels. For both voltage level a separate cumulative hazard curve is
composed. In Fig. 10 it is clearly seen that the PoF of 330 kV towers is
greater than for 110 kV towers on all HI classes. Also by increasing the
HI of the asset, PoF increases, especially for HI5 where it reaches almost
0.89 for 110 kV and 0.38 for 330 kV towers. PoFs for all other HI classes
are much lower compared to HI5. That reflects realistic situation where
assets with critical technical condition are prone to failures and assets
with good condition are extremely reliable. It is interesting to see that
PoF for HIO to HI3 increased only marginally while HI4 and especially
HI5 have much higher PoF compared to other HI classes. That can be
explained with the exponential nature of degradation processes where
mechanical strength decreases rapidly at the end of their lifetime.

7.3. Consequences of failure

7.3.1. Estimated outage duration for each tower

Estimated outage duration is calculated on the basis of the distance
from the towers to the nearest roads. Proximity zones for each tower
in the Estonian TSOs grid are calculated using tower geographical
coordinates and comparing them against the OpenStreetMaps road
network. In addition to distance, different tower types are used to
determine realistic outage durations. As Estonia is relatively flat with
accessible ROW then Cy,,,.;, = 1 in (8). The results of estimated outage
duration in this case study are presented in Fig. 11. It is seen that the
estimated outage duration for a majority of towers is either 24 h (8947)
or 12 h (4829). There are only 187 towers for which it is expected to
have repair time longer than 24 h.
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Fig. 11. Summarized outage duration of each tower based on the rules from Table 3.

Table 5
Customer’s structure and VOLL values for the selected substation according to Fig. 8
for estimated 8 h outage.

Customer sector Distribution (%) VOLL (EUR/MWh)

Industry 0.36 10 890
Commercial services 82.77 25210
Agriculture 0 13570
Households 16.87 17 520
Substation 100 23 861

7.3.2. Value of lost load

VOLL values for each sector in Estonia used in this paper are
from [37]. An example of a single substation’s VOLL values for each
connected customer sector and substation in general are calculated
using (7) and are presented in Table 5 for a 8 h outage according to
Fig. 8. Similar tables are calculated for each substation and estimated
outage duration from Table 3 resulting in nearly 1000 possible VOLL
values.

Fig. 12 presents all substations with calculated VOLL values. VOLL/
hour is calculated according to (7) for all substations with the outage
duration of eight hours as done in Table 5 based on five year consump-
tion data for each sector. Results are showing large variances between
different substations where the maximum VOLL/hour is nearly 140 000
EUR and minimum ones just around 300 EUR. This is because there are
some substations with large consumption and some substations have
nearly no consumption at all. Those VOLL values for substations are
further used in combination with expected outage duration to calculate
CoF.

7.4. Results

Risk determination results of all individual towers are presented in
Fig. 13. It is seen that some towers have significantly higher risk values
than others, especially towers 1032, 13854, 15207 and 15319 where
risk values exceed 0.2 MEUR compared to towers with risk of only few
euros. That illustrates clearly that the proposed methodology enables
to determine the most critical towers in the grid for the effective
maintenance decision-making.

A comparison of different asset management strategies is presented
in Fig. 14. It is seen that TBM scenarios produced the highest cost of
replacement, replacing, in particular, all assets after 50 years of service
with the cost of 161 MEUR. To replace all assets that are older than
60 years requires around 41 MEUR. For the CBM scenarios it is seen
that replacement costs are less, but to replace all assets that have higher
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Fig. 13. Calculated risk values of each tower in the grid.

HI than 4 requires around 25 MEUR compared to CBM5 with 1.9 MEUR
where only assets with HI5 will be replaced. The proposed risk-based
approach requires around 1.7 MEUR to replace all critical assets. When
looking into the cost of the remaining risk, TBM60 has around the same
risk level as when doing nothing. CBM5 has remaining risk around 7.8
MEUR and TB50 6.4 MEUR. CBM4 and RBM produce similar results
in terms of remaining risk, respectively 4.9 MEUR and 4.8 MEUR,
where RBM has significantly lower cost compared to CBM4. It is clearly
seen that the proposed risk-based approach produces the lowest cost of
replacement with the lowest cost of remaining risks compared to other
strategies.

8. Conclusions and further work

This paper presents a holistic RBM methodology for transmission
OHLs that enables to overcome the main issues related to classical
RBM implementations such as the transparency related to input pa-
rameters and decision-making. The main drawbacks of classical RBM
methodologies are eliminated by using tower specific PoF determina-
tion based on the actual technical condition of assets and CoF based
on precise VOLL determination. The proposed methodology increases
substantially decision-making efficiency compared to TBM and CBM
approaches and clearly determines the most critical towers in the
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Fig. 14. Comparison of different asset management strategies. TBM50 and TBM60 are
time-based scenarios where assets will be replaced in 50 and 60 years, and CBM5
and CBM4 are condition-based scenarios where assets with corresponding HI will be
replaced and RBM is the proposed risk-based approach.

grid. That enables well-argumented and transparent asset-management
decision-making as each element in the grid can be observed separately.
The case study presents that the proposed methodology determined
the most critical towers in the grid while outperforming all other
approaches in terms of decision-making efficiency. The total cost of
replacements was up to 100 times lower using the proposed method-
ology compared to TBM and up to 14 times lower compared to CBM
approach where only towers with the end-of-life criteria were replaced.
That indicates the efficiency of the proposed methodology as it enables
to reduce substantially risks in the grid by detecting the most critical
towers.

In further work, it is recommended to scale up the methodology by
including conductors, grounding wires and insulators into the frame-
work for effective LCM of OHLs in a single decision-making model.
Non-monetized parameters can be added into the CoF determination
process, but it requires common grounds for safety, environment, etc.
risk assessment. It is also recommended to increase the quality of
asset HI and failure data by collecting them for several years in a
standardized manner. Decision-making process can be further improved
by using component specific HI and defects in combination of op-
timization algorithms such as linear programming [9] or knapsack
optimization [27] to find the most cost effective solutions based on the
data. It must be noted that using mathematical optimization will lead
to better results but majority of the preciseness lies on the assessment
of model input parameters.
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