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Abstract 

Humanity is on the verge of the fourth industrial revolution, which will be centered on 

using a data-driven approach for system control and composing networks of sophisticated 

machinery. The problem is that replacing the current machinery requires significant 

investments. Cranes play an important role in the industry because there is a constant need 

to move heavy and bulky objects back and forth. Computer Vision is regarded as the most 

effective technology for acquiring information about the crane workspace. The aim of 

this thesis is to augment the existing crane control system with Computer Vision 

technology in a cost-effective way. To evaluate the viability of the proposed solution, an 

overhead crane laboratory model provided by Inteco is used. 

In this thesis, the proposed system architecture and the implemented control loop are 

discussed. The Computer Vision part of the system, as well as the underlying algorithms, 

are thoroughly explained. The Computer Vision component was implemented using two 

different approaches, and the results were evaluated and compared. An interactive and 

user-friendly application was developed to simplify the crane operation process. The 

proposed system was tested in the laboratory environment, and the performance analysis 

is presented at the end of the paper. 

This thesis is written in English and is 87 pages long, including 6 chapters, 29 figures, 7 

tables, and 2 appendices. 
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As technology advances, more and more processes are becoming automated. In industry, 

cranes are of a vital role since there is a huge need to move heavy and bulky objects in 

different directions. Previously, the crane operator had to be highly qualified and 

experienced. The reason for this is that the work is hazardous to both the environment 

and the people in the crane's operating area. However, modern cranes are equipped with 

a variety of electronic components that assist the operator and alert him in case of 

abnormal scenarios. Furthermore, due to software algorithms commonly referred to as 

“Artificial Intelligence” (AI) and significantly increased computational power, the 

process of operating the crane begins to resemble a gaming process. More broadly, the 

industry as a whole is seeing a shift toward control gamification. 

AI is an umbrella term that encompasses a wide range of research activities, including 

computer vision (CV), natural language processing, machine learning, deep learning 

(DL), etc [1]. In this paper, the author attempts to use CV technology to automate crane 

control operations. An overhead crane laboratory model provided by Inteco is used to 

evaluate the feasibility of the proposed solution. Section 3.1 provides a more detailed 

description of the experimental setup. Overhead cranes are typically used in indoor 

environments such as warehouses or assembly lines. However, there are also overhead 

cranes (with slightly different construction) that are used in outdoor environments, such 

as harbors or agriculture. The proposed solution is intended to be used indoors, where the 

environment is more predictable in terms of background noise, lighting conditions, 

camera viewpoint, and visual obstructions. 

One of the most significant advantages of CV technology is its ability to augment existing 

systems and make them more automated or even autonomous at very low cost. It means 

that by incorporating a visual system into the crane control system, the degree of its 

automation can be increased. Cranes can be classified into three types based on their 

degree of automation: manual, semi-automatic, and fully automated. The majority of 

cranes used in the industry today are semi-automatic. They assist the operator with 

1 Introduction 
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various features such as payload oscillation control, but still require manual control 

actions from the operator. However, fully autonomous cranes are also available today. To 

name a few solutions: 

▪ Integrated Autonomous Crane System (IACS) – developed by Schneider Electric 

[2] 

▪ Optilift Autonomous Crane Control System – developed by VOCA [3] 

▪ ForeSite100™, AutoSite™ technologies – developed by Intsite [4] 

▪ Konecranes offers a CV-based solution as an optional feature on its cranes [5] 

Relying on AI, the operator can delegate crane control to the computer system to handle 

repetitive or difficult tasks. The main advantages of this approach are that the settings can 

be changed remotely and that the crane's operation can be monitored remotely. It is 

especially important in demanding and hazardous environments. 

Previously, as part of his Bachelor's thesis [6], the author developed an application to 

control the Inteco 3D crane [7] with the ABB AC500 Programmable Logic Controller 

(PLC). The main task was to replace the original RT-DAC/PCI multipurpose digital 

Input/Output (I/O) board, which is managed by the 3DCrane Toolbox (integrated into the 

MATLAB®/Simulink® environment) – with the PLC (the device that is more common 

in industrial environments). The secondary task was to configure Proportional-Integral-

Derivative (PID) controllers to reduce the payload oscillations and make the cart 

movement smooth. 

In this work, the author attempts to augment the existing crane control system with CV 

technology. The main motives are: 

▪ Crane control simplification 

▪ Routine actions automation 

▪ Remote control possibility 

The resulting system aimed to be compatible with the Industry 4.0 (I4.0) standards. The 

proposed implementation should be cost-effective. 
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The paper is organized as follows. Section 2 discusses the phenomenon of Industry 4.0 

and the applicability of CV technology for crane automation. Section 3 provides an 

overview of the proposed system and describes the implemented control loop. The 

protocol used for communication between the Personal Computer (PC) and PLC, as well 

as the configuration process for both nodes, are also covered in this Section. Section 4 

discusses the advantages of both DL-based and traditional CV approaches. The proposed 

solutions, which are implemented using these two methods, are also described here. 

Section 5 is devoted to the developed crane control application. The communication logic 

between the PC and PLC, as well as their responsibilities, are described in detail. Finally, 

Section 6 summarizes the results provided by the proposed system and formulates the 

goals for future development. 

1.1 Motivation 

CV is becoming a part of our everyday lives as it finds an application in a wide range of 

areas. The author believes that AI in general, and CV in particular, have huge potential 

for automation of industrial processes. This is a relatively new and in-demand research 

area with a lot of challenging and practical problems. Recent breakthroughs in DL give 

reason to believe that success in this field will bring humanity into the new era of 

autonomous manufacturing. 

1.2 Thesis contributions 

This thesis makes the following contributions: 

▪ Computer Vision – corner points extraction algorithm for Inteco 3D crane frame 

is developed. Two methods are evaluated and compared. The first method 

employs the traditional CV approach, whereas the second uses the trained Mask 

R-CNN model. The parameters used in the classic CV implementation are 

designed to be adjustable via the Graphical User Interface (GUI). The parameter 

sets can be stored in a database. 
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▪ Control – the communication logic between the PLC and PC is established, taking 

into account their significantly different program execution speeds. The room for 

future development is preserved. The proposed control loop follows the Industry 

4.0 operating principle. 

▪ PLC programming – the program code developed within the author's Bachelor 

thesis is completely rewritten. The Modbus TCP protocol is now supported for 

communication. 

▪ GUI – all of the information and controls required to operate the crane are 

contained within the GUI. The information is displayed over the camera's captured 

frames. It is presented in an unambiguous, legible, and redundant manner. 

The CV-based system for controlling the Inteco 3D crane is implemented. The proposed 

architecture is suitable for managing an indoor warehouse. 
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As evidenced by consumer electronics, technologies are evolving at a rapid pace. Terms 

such as “smart home”, “self-driving car”, or “virtual reality” are becoming more common 

in our daily lives. Today’s smart gadgets come with software that allows swapping faces, 

augmenting reality, and there is a lot more entertainment available in the Play or App 

Store. The hardware required to run the software is becoming more affordable and 

sophisticated. The part of the story that is usually left out of the media is that industrial 

processes are also evolving due to advancements in the same research area. Similar 

technologies, however, are hotly debated in industry-specific resources, and at various 

conferences and forums, but in a slightly different context. This chapter discusses the 

ideas behind the term Industry 4.0 and the applicability of CV for crane control 

automation. 

2.1 Industry 4.0 

A growing number of researchers are discussing so-called Fourth industrial revolution, 

or Industry 4.0. The term is well accepted among both academics and industrial society 

[8]. However, to the best of the author's knowledge, there is no clear and comprehensive 

definition of what this buzzword means. This term is defined differently by various 

authors. Some of the notable ones, in the author’s opinion, are presented in Table 1. 

According to the definitions provided, most authors associate I4.0 with sophisticated 

machinery with a high level of autonomy. The majority also highlights the importance of 

effective, flexible, and standardized data exchange methods. Some authors stated that it 

is important to plan, predict, and control the entire process within the entire business, and 

that AI could be remarkably useful in this case. I4.0 is also associated with higher quality 

products, which have a high degree of customization potential. One author even stated 

that the lines between the real world and virtual reality will become blurrier. 

2 Background 
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Table 1. Definitions of Industry 4.0 

Year of 

publication 

Definition 

2020 I4.0 is a manufacturing philosophy comprised of complex automation systems 

with a high level of autonomy and flexible data exchange methods that will 

lead to the next level of manufacturing technology. This will allow for more 

agile and personalized production [8]. 

2017 I4.0 will be achieved through the integration of sophisticated machinery and 

devices with advanced software and networked sensors. The result of the 

integration could be used to improve planning, predicting, and control, 

resulting in better business and societal outcomes. It will improve the value 

chain organization and simplify the management throughout the product 

lifecycle. The optimization has to be achieved through autonomous control and 

dynamic production [9]. 

2016 The central idea of I4.0 is to use emerging technologies and the rapid 

development of machines and tools to keep up with the progressive 

improvement of human life quality by providing customers with customized, 

higher-quality products. Production can now run faster and with less downtime 

thanks to the use of information technology. The production systems will be 

more efficient and easier to maintain, resulting in cost savings for the company 

[10]. 

2016 I4.0 will be achieved by forming a new kind of intelligent, networked, and 

agile value chain. The technologies, on which the integration process will rely 

are service automation, AI, robotics, internet of things, and additive 

manufacturing. The lines between the real world and virtual reality will 

become blurrier over time, resulting in a phenomenon known as cyber-physical 

production systems [11]. 

2016 I4.0 is based upon two key design principles: interoperability and 

consciousness. The interoperability consists of digitalization, communication, 

standardization, flexibility, real-time responsibility, and customizability. It 

serves as a "connecting bridge" to ensure a reliable manufacturing 

environment. The consciousness is composed of predictive maintenance, 

decision making, intelligent presentation, self-awareness, self-configuration, 

and self-optimization. I4.0 is about intelligent manufacturing, which means 

that it discovers knowledge, makes decisions, and performs actions 

independently and intelligently. It is achieved by gathering raw data from 

manufacturing networks and intelligently analyzing it [12]. 

 

In the simplest terms, the basic idea of I4.0 is to collect data throughout the organization, 

to have access to that data from anywhere, and, most importantly, to use the data. It 

implies the presence of built-in sensing devices in almost all manufacturing components, 

equipment, and, in some cases, in products. The key difference between the Fourth 
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industrial revolution and the previous one is that the focus is shifting from individual 

computerized machines to the entire network of them. It is assumed that the autonomous 

smart machines, each equipped with different sensors, will exchange data with one 

another, forming an intelligent or smart factory. However, the idea of I4.0 goes beyond 

separate smart factories. The fourth industrial revolution is supposed to improve the entire 

supply chain by interconnecting its components. In practice, this could mean that ships 

exchange data with warehouses, which are then linked to autonomous trucks, and so on. 

The ultimate goal, as with all previous industrial revolutions, is increased efficiency, 

lower production costs, and higher product quality [12]. 

In summary, the Fourth Industrial Revolution is a very complex and broad phenomenon 

that can be defined and understood differently depending on the perspective from which 

it is viewed. However, it is a fact that it will have a significant impact on the entire society, 

and the way people live and think. The main source of concern about the ongoing 

revolution is economic factors. The problem is that the industrial machinery that is 

currently in use is very expensive, and large investments are required to renovate the 

entire factories (in contrast to consumer electronics, which initially assumes a relatively 

short service life). Such heavy investments come with the risk of going bankrupt, which 

is especially crucial for small and medium enterprises. 

As previously stated, one of the advantages of CV technology is that it allows for the low-

cost enhancement of existing systems, as demonstrated in [13]. The authors of this paper 

proposed a solution to monitor tool wear in process. They used a camera and CV to 

inspect the drill of a CNC machine. Another CV-based solution is intended to monitor 

and collect data from the Human Machine Interface (HMI) of any device with a proper 

display. This project is notable for its use of only open-source solutions and low-cost 

equipment [14]. These two examples show how I4.0 cornerstones such as predictive 

maintenance and continuous data collection could be realized by simply adding a camera 

and the corresponding software. It is true that CV cannot guarantee one hundred percent 

correct results and that errors may occur. However, such an approach could be viewed as 

a good short-term strategy for small and medium enterprises trying to mitigate the risks 

associated with heavy and single-entry investments. 
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2.2 Application of CV for crane control 

As previously noted, cranes are widely used in industry. They can be found in almost any 

sector that requires transportation. Cranes are used on land and in the water. Furthermore, 

certain activities, such as skyscraper construction, cannot be carried out without the use 

of a crane. Cranes come in a variety of shapes and sizes, each with its own intent [15]. In 

the scope of this thesis, overhead cranes are considered. To be more specific, overhead 

cranes with an incorporated runway system (see Figure 1). These cranes are typically used 

indoors, and the runway beams and support columns are tied to the building's support 

structure. The crane construction is quite simple, consisting of parallel runways connected 

by a traveling bridge. The bridge holds one or more hoists that move along it. 

Figure 1. Industrial overhead crane [16]  

The idea of automating crane operations is not new. Hyla defined the requirements for 

automating crane operations in his survey in 2012. According to Hyla, the crane control 

system should be capable of [17]: 

▪ Precise positioning of a load from its origin to its destination. 

▪ Motion speed control should be used to reduce the sway of a payload during 

movement. 

▪ Crane skew angle reduction. 

▪ Real-time obstacle detection and identification of the operating workspace. 

▪ Calculation of a safe and time-optimal path (avoiding detected obstacles). 

▪ The selected path tracking for detecting obstacles in the next real-time. 
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▪ Synchronization of tasks with other devices in the same operating area. 

He also stated that vision systems are perfect for gathering information about the crane 

workspace and potential obstacle dimensions. However, CV technology was still in its 

infancy at that time, and other researchers discussed CV-related drawbacks. They 

mentioned issues such as sensitivity to background noise and lighting conditions. 

Furthermore, discussed issues included crowded, harsh, changing environments, etc [18]. 

In 2016, researchers in the field discussed already the issues associated with the rapid 

positioning and tracking of small and key targets [19]. In this work, the authors attempted 

to detect container corner castings precisely. They stated that among researchers, CV-

based crane control is the most popular way to automatically load and unload port 

containers, and that vision systems outperform earlier encoder-based positioning 

solutions in terms of efficiency and flexibility. In [20], two CV-based methods for crane 

workspace mapping were proposed. The first relies entirely on CV algorithms, while the 

second relies on QR codes. Both methods work in near-real-time and could be combined. 

According to the author's findings, QR codes have a high potential for widespread use in 

crane workspace mapping. 

All of the preceding examples are based on so-called traditional CV (algorithmic 

approach in CV). However, due to a recent huge leap in the development of Convolutional 

Neural Networks (CNN), combined with significantly increased computing power, more 

and more researchers are trying to adopt different Deep-Neural Network (DNN) 

architectures for various tasks. For instance, in [21], an assistive early warning system for 

crane operator was proposed. It employs the Mask R-CNN model. The vision system is 

capable of calculating the safe distance to any specified object with high precision. The 

system has the potential to increase safety during crane operations.  

When compared to systems powered by traditional CV techniques, vision systems 

powered by CNNs have higher accuracy and are more flexible. Moreover, they are more 

tolerant to lighting conditions, camera viewpoint, background noise, visual obstructions, 

and intra-class variations. In terms of performance and reliability, the new approach 

allows for the same results to be obtained using a regular camera and middle-level 

hardware rather than a specialized system. However, it cannot be claimed that DNN is a 
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panacea for all problems since traditional CV has its own advantages, which will be 

discussed in Section 4.1. 

For quite a long time, researchers have been looking for ways to make the crane operator's 

job easier. In 2009, a crane control method that uses a wand as a controller was 

implemented [22]. The proposed solution allows an operator to use a wand to set the 

desired position for a crane hook. According to the authors, the proposed solution 

significantly increases operating efficiency when compared to standard pendant control. 

It is intended to assist the human operator while also improving workplace safety. 

In general, the modern approach to crane control systems considers the operator as a 

subject of the weak link. The reason for this is that the operator is exposed to unfavorable 

effects such as vibrations and a high level of noise. Furthermore, his work becomes more 

difficult in some cases due to high (or low) temperatures, toxic fumes, high pollution, or 

air dustiness. To the foregoing is added the nature of crane operation itself, as well as the 

fact that the operator's daily work requires continuous concentration. These negative 

factors make it important to find preventive solutions aimed at improving the operator's 

concentration, assisting him in making correct decisions, and avoiding so-called sensory 

deprivation. A vision system might help a lot with this by gathering and presenting 

information in an unambiguous, legible, and redundant manner [23].
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This chapter discusses the proposed system architecture. The hardware components and 

overall control loop are described first. Following that, the rationale for selecting the 

communication protocol is presented. Finally, the process of configuring two key nodes 

in the proposed architecture is described. 

3.1 Experimental setup 

The experimental setup used to evaluate the feasibility of the proposed solution consists 

of six nodes. Figure 2 shows a graphical representation that illustrates the system 

architecture. 

Figure 2. System architecture 

The proposed architecture assumes that the camera is installed near the crane's frame. The 

entire crane's working area should be visible in the camera's field of view (FOV). For 

simplicity, the placement of the camera was limited to one side. It should be installed 

against the side with the crane's "home" position. Figure 3 shows a possible camera's 

FOV.  

3 System description 
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Figure 3. Possible camera FOV 

The proposed system operates according to the following principle. The color images 

captured by the camera are sent to the PC via the USB cable for processing. The PC 

executes the algorithms required to extract all useful information from the image, display 

it, and send corresponding control signals to the PLC, which controls the crane's motors. 

For communication between the PC and PLC, the Modbus TCP protocol is used. The 

PLC is programmed as a secondary controller and is intended to receive and respond to 

commands. All time- and safety-critical functionality is implemented on the PLC since it 

is more reliable and has a higher speed of program execution. The connection between 

the rest of the nodes is established via electrical wires and cables. The detailed description 

can be found in the author’s Bachelor thesis [6]. 

Table 2 provides a summary of the devices used in the proposed system. The column unit 

reflects the name used in the overall system architecture (see Figure 2). It is important to 

note that, despite the fact that the camera used in the architecture has built-in LiDAR, it 

was decided to rely on the Red-Green-Blue (RGB) sensor only, as the author's interest is 

in finding a relatively cheap solution. 
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Table 2. Summary of devices used in the experimental setup 

Unit Description 

Camera RGB camera (Intel® RealSense™ LiDAR Camera L515 [24]) 

– Frame resolution: Up to 1920 × 1080 

– Frame rate: 30 fps (at max. resolution) 

– FOV: 70° × 43° (±3°) 

– Focus: Fixed 

PC – GPU: NVIDIA GeForce GTX 980 Ti 

– CPU: Intel Core i7-6700K @ 4.00GHz 

– Memory: 32GB RAM 

– OS: Windows 10 64-bit 

PLC ABB AC500 [25], with the following modules: 

– PM590-ETH [26]: Processor module (Memory 2MB, Serial and Ethernet 

interfaces) 

– TA524 [27]: Dummy coupler module 

– DA501 [28]:Digital/Analog I/O Module (16 digital inputs, 8 configurable digital 

I/O, 4 analog outputs, integrated fast counter) 

– (2) CD522 [29]: Encoder and PWM module (2 encoder inputs, 2 PWM outputs, 

2 digital inputs, 8 configurable digital I/O) 

Crane Inteco 3D Crane [30]:        

– Dimensions: frame (1000 × 1000 × 1000 [mm]), working area (920 × 920 

[mm]), lift-line length 920 [mm] 

– Hardware: Safety button, 3 DC motors, 3 position limit switches (indicate 

„home“ position), 5 incremental encoders (measuring the cart coordinates on the 

x, y plane, the load's lift-line length, and the load deviation angle in the x, y 

directions) 

PLC 

interface 

The interface that provides conversion between the digital I/O voltage standard 

accepted by the PLC and the voltage standard of the power interface [31]. 

Power 

interface 

The interface that amplifies the control signals sent from the PLC to the DC 

motors and converts encoder pulse signals to a digital 16-bit format that the PLC 

can read [7]. 

 

3.2 Control loop 

The overall control loop of the system is meant to be running on two controllers. These 

controllers are the PC and PLC (see Table 2). As mentioned in Section 3.1, the PC 

receives color images captured by the camera, processes them to extract useful data, 

provides all necessary information to the operator, and sends parameters to the PLC in 
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near real-time. The corresponding loop is referred to as the “Outside loop” in the scheme 

presented in Figure 4. The iteration time of this loop is much longer compared to the 

second loop, which is titled “Inside loop”, which is meant to run on the PLC. During the 

"Inside loop" loop, all received parameters are processed and new ones for controlling 

the crane's motors are generated. The PLC also sends feedback to the PC. It contains the 

current load position, as measured by the crane's incremental encoders (see Table 2), and 

the bits that indicate the current crane status. A more detailed description of these bits and 

communication logic can be found in Section 5.1. 

Figure 4. Control loop 

3.2.1 “Inside loop” 

The inside loop is implemented in Structured Text (ST). ST is a PLC programming 

language, supported by IEC-61131. This standard describes in detail, what is a PLC and 

what are the requirements that PLC must satisfy. The third part of the IEC-61131-3 

specifies five programming languages [32]. Among them, ST is the most widely used in 

Europe [33]. All these languages allow for the programming of PLC to operate in real-

time. This means that the PLC will provide fast, reliable, and deterministic results, or it 

will respond to the command within a specified time window. The execution time of each 

instruction within the code is always almost the same, with a small amount of variation. 

This is very important, especially if the PLC is performing safety-critical duties. 

However, it is also important in common cases. For example, while performing his duties, 

the crane operator expects an immediate response to his commands. These are the main 

reasons why PLCs are still widely used in the industry. Such behavior is largely 
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determined by the PLC operating principle. It is quite simple, straightforward and consists 

of three main steps [34]: 

▪ First, the PLC checks the status of all inputs and saves the values to the Random 

Access Memory (RAM). When the binary value representing all of the inputs is 

in the RAM, the user program starts to run. 

▪ Second, the PLC executes the program and prepares the output status based on the 

logic of the program. 

▪ Finally, the PLC stores the binary number representing the output status in a 

special location in memory. This location always keeps the PLC's output status. 

As a result, the outputs, which are typically connected to field devices, are updated 

with the new values. 

These three steps are executed cyclically and an iteration is called a scan cycle. The time 

the scan cycle takes is called scan time and it is typically measured in milliseconds, 

depending on the complexity of the user program. Such an operating principle makes the 

PLC especially good for handling an interface with sensors and actuators, as well as 

performing time- or safety-critical tasks. 

Considering the experimental setup (see Figure 2) during the “inside loop” the PLC 

communicates with all the sensors and actuators. More specifically, it reads encoder 

signals, position limit switches, and, if necessary, controls corresponding Direct Current 

(DC) motors by generating an appropriate Pulse Width Modulation (PWM) signal. 

Because PLCs are good for doing time-critical jobs, the PID controllers that control the 

load oscillations while the cart is moving are also implemented on PLC. All of this 

functionality is safety-critical. In the case of an experimental setup, unexpected behavior 

may damage the equipment, in the real-world scenario, it may be dangerous to any object 

within the crane's operating area, including people. Another duty of the PLC is to maintain 

the list of Modbus registers. 

3.2.2 “Outside loop” 

The outside loop is implemented in Python. Python is a high-level, dynamic, and 

interpreted programming language. It is general-purpose and it focuses on code 

readability, making it especially good for prototyping [35]. Python has a great community 
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and it is actively used by tech giants such as Facebook, Alphabet, Apple, Dropbox [36]. 

Due to its popularity, it has a great amount of diverse third-party libraries. This 

significantly reduces the time, required for project development, since most of the highly 

used programming tasks are already scripted. Among the reasons, why Python was 

selected to program the “outside loop”, the most important one is its ecosystem, with the 

modern tools and methods for effective data analysis, machine learning, and so on. 

However, Python is not a panacea and it has its own drawbacks. The most important ones 

are that Python has a relatively slow speed of execution and that it is considered as not a 

memory-efficient language [37]. Therefore, to implement a real system, it is better to use 

more favorable in these terms language, for instance, C++. 

Considering the experimental setup (see Figure 2), during the "outside loop", the PC 

performs the following duties. It runs the algorithms required to extract all of the useful 

information from the video stream captured by the camera. Within this loop, the PC 

interprets the feedback from the PLC. It displays all the relevant information on the GUI. 

As a primary controller, the PC wraps and sends user commands to the PLC. 

3.2.3 Relevance of the control logic under consideration 

The control loop, discussed in the Sections above is becoming increasingly common in 

factory control systems. Typically, during the “inside loop” all the time- and safety-

critical functionality is performed and the interaction with all the peripheral devices 

happens. The “outside loop” is mostly intended only to read out certain values or 

parameters at specific time intervals, store them, and analyze them. However, in some 

cases, the “outside loop” also gets to tweak certain parameters. Such an operating 

principle is what are the buzzwords “Industrial Internet of Things” (IIoT) or “Industry 

4.0” are practically all about. 

Continuous data collection with its further analysis has a great number of benefits and the 

industrial applications can be categorized into three domains: monitoring, optimization, 

and control [38]. An example from the monitoring domain is the concept of predictive 

maintenance that is growing rapidly right now in the factories. For instance, it is possible 

to continuously monitor the vibration of a motor and then based on that predict when it is 

going to fail. Another type of problem that might be solved effectively by taking a data-

driven approach is scheduling or process planning. They belong to the optimization 

domain. Modern factories are complex networks of goods, data, and labor. To make them 
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show up in the right place at the right time is a holistic and multilayered problem. The 

right use of data might optimize the entire workflow. Examples from the control domain 

are robotics, autonomous vehicles, or smart grids. Even the entire factories or warehouses, 

might be automated. This approach is known as lights-out manufacturing or “smart 

factory”, where different types of robots move materials and assemble goods 

autonomously, under the control of a supervisory system. 

A growing amount of data makes the selection of a communication protocol especially 

relevant. However, it is not an easy task, since in the “field” many factors must be 

considered. To the common problems, such as vulnerabilities, reliability, or speed of 

communication, industry-specific challenges are added. Very often engineers have to 

consider that in parallel with the brand-new machines work their distant predecessors. 

Moreover, when it comes to the industry, there are a lot of various policies, regulations, 

acts, etc. 

In the context of this project, there is more freedom of choice. The major constraints for 

the protocol came out from the PM590-ETH combability (see Table 2) and its 

implementation possibility in Python. Other requirements are that the selected protocol 

should provide sufficient reliability and speed of communication. Preferably, the protocol 

should be free of charge, since the author’s interest lies in the finding of a cheap solution. 

The future-looking requirement is that the protocol should be widely used. It will make 

the proposed system more flexible and friendly with other systems. 

3.3 Communication protocol selection 

A huge number of industrial communication protocols exist. They all fall into two groups. 

The first category is the ones that require specialized hardware, and the second category 

uses standard ethernet networking hardware. Modbus is the one that does not require any 

specialized hardware. It is the oldest and one of the most popular automation protocols in 

the field of process automation [39]. Modbus is an open protocol, meaning that 

manufacturers can deploy it into their equipment without the need to pay any royalties. 

Since the official Modbus specification is publicly available, it is supported with libraries 

in many programming languages, including Python [40]. 
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Modbus is a master/slave protocol, meaning that it is unidirectional. The master (or client) 

is the device that sends requests over the network in order to read or write the values 

stored in the “slave” device. The slave (or server) is the unit that keeps and maintains a 

list of values and allows other devices to read or change them through the network 

requests. The server does not initiate requests on its own and only responds to the requests 

transmitted from the client. Typically, the client is a PLC, Supervisory Control and Data 

Acquisition (SCADA) system, or accordingly programmed PC. The role of the server 

might be a sensor, another PLC, or programmable automation controller (PAC) [41]. In 

other words, Modbus is used to transmit signals from the field and control devices back 

to the main controller or data gathering system. 

There are many versions of the Modbus protocol and the most common are Modbus RTU, 

Modbus ASCII, Modbus TCP, and Modbus Plus [39]. Modbus communicates over the 

Ethernet or Serial (RS-232, RS-485, RS-422) physical media. 

3.3.1 Modbus TCP 

Considering the experimental setup (see Figure 2), it was decided to use the Modbus TCP 

version of the protocol. ABB AC500 supports Modbus RTU and Modbus TCP and there 

were several reasons for selecting the latter. The first one is related to the speed of 

communication. Since Modbus TCP uses Ethernet, it provides a faster communication 

speed. Moreover, Ethernet is considered to be a more reliable and flexible communication 

technology [42]. The cost factor, that could have been decisive in the past is now less 

relevant since the required hardware is ubiquitous and became more affordable [43]. 

Another reason is the future looking. Compared to Modbus RTU, Modbus TCP is not 

limited to a single master device. In Modbus TCP additional master devices will not 

destroy the whole network, which is the case with Modbus RTU [44]. And the last but 

not the least reason is that during the system development PLC was programmed through 

the Ethernet cable, and the use of a single cable for both purposes seemed to be more 

convenient.  

3.3.2 Description of Modbus TCP 

Modbus TCP is essentially Modbus RTU, packaged with a TCP/IP interface that runs on 

Ethernet. When comparing the formats of telegrams (see Figure 5), it can be seen that the 

Slave Identifier (ID) address at the beginning and the Cyclic Redundancy Check (CRC) 
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checksum at the end are omitted. Instead, the Modbus Application Header (MBAP 

Header) is added to each message. It contains all of the identifying information required 

to route data to the addressed device. The checksum calculation is not needed, because 

lower layers already provide mechanisms to verify an accurate delivery of a packet. 

Modbus TCP uses port 502 [45], [46]. 

Figure 5. Modbus TCP telegram  

The Modbus TCP message consists of Protocol Data Unit (PDU) and MBAP Header. As 

previously stated, the MBAP Header contains all of the information required to route data. 

It is 7 bytes long and keeps the following data [46], [47]: 

▪ 2 bytes: Transaction ID – These bytes are set by the client and are required for 

synchronization between the server and client messages. The server repeats these 

bytes in the response because the order of the server's responses is not always the 

same as the order of the client's requests. 

▪ 2 bytes: Protocol ID – These bytes are set by the client, and according to Modbus 

TCP protocol, should always be 00 00. 

▪ 2 bytes: Length field – These bytes are set by the client. They indicate the number 

of bytes that will follow in this message, starting with the Unit ID. 

▪ 1 byte: Unit ID – This byte is set by the client. It is used to identify the server to 

which the request is directed. In its response, the server repeats this byte. 
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The second part of the message is the PDU. The PDU consists of the function code, 

followed by an associated set of data. The size and contents of this field vary and depend 

on the function code. The function code itself is one byte long and tells the server what 

kind of action to perform. The size of PDU is limited to 253 bytes [41]. This constraint 

was inherited from the first Modbus implementation on the Serial line network. 

According to the Modbus specification v1.1-b3 [48], the maximum size of the RS485 

Application Data Unit (ADU) is 256 bytes. One byte takes the Slave ID, and two bytes 

represent the CRC field. Therefore, the maximum size of Modbus TCP ADU is 260 bytes.  

3.3.3 Modbus TCP vulnerabilities 

Despite all of the advantages of the Modbus TCP protocol and its widespread use in the 

field of process automation, it has several drawbacks. Modbus TCP protocol contains 

multiple vulnerabilities that could result in data leakage or allow an attacker to change 

certain system parameters. The following list of vulnerabilities is based on [49]: 

▪ Lack of Authentication – at any level of Modbus protocol, there is no 

authentication. For example, when a PC is programmed to send and receive 

Modbus messages, the PLC considers it as another PLC. 

▪ Simplistic Framing – Modbus TCP messages are sent via TCP connections. These 

connections are usually reliable, but a TCP connection does not guarantee the 

message delivery completely.  

▪ Lack of Confidentiality – all Modbus messages are transmitted in clear text over 

the communication channel. 

▪ Lack of Integrity – in the Modbus application protocol, there are no integrity 

checks. Hence, the lower layers should ensure the accuracy and consistency of the 

transferred data. 

▪ Lack of Session Structure – Modbus TCP is made up of short-lived transactions. 

The client initiates a request to the server, and the server responds, resulting in a 

single action. 

The most straightforward way to attack Modbus devices on the network is to send harmful 

commands. For instance, an attacker might craft a packet that is longer than 260 bytes 
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and send it to the client or server. As it was discussed in Section 3.3.2, the maximum size 

of Modbus TCP ADU is 260 bytes. If the attacked device was incorrectly programmed, 

it might result in a buffer overflow or denial-of-service [49]. 

3.3.4 AC500 configuration as Modbus TCP server  

The AC500 PLC can be configured to operate as both a server and a client. The server 

operating mode should be set, according to the proposed architecture (see Figure 2). The 

configuration takes place in the vendor-specific PLC programming tool ABB Automation 

Builder [50]. During the project development, version 2.3.0.847 of the software suite was 

used. 

The first step is to create and set up a new project, as described in the author's Bachelor's 

thesis [6] (Section 3.1). All of the configurations needed to interact with the crane's 

hardware are complete at this point. The next step is to create a new object to configure 

the Modbus TCP server. The object can be found by double-clicking on Protocols in the 

project tree. To open a window containing the list of available objects, click the Add 

protocol button in the opened tab. In this window, after selecting the Modbus TCP/IP 

Server, the selection should be confirmed by clicking the Add object button (See Figure 

6). After that, a new item, called Modbus_TCP_IP_Server is added to the Protocols. 

Figure 6. Adding Modbus server object 

The server should now be configured. It can be done by clicking the newly added entry. 

Set the maximum number of parallel connections allowed in the opened tab by entering 
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the desired number into the Server connections field, as shown in Figure 7. Save the 

project to apply the new value (File → Save Project). 

Figure 7. Configuring Modbus server 

As can be seen, not all of the parameters are configurable. If these settings are needed, 

they can be accessed through the generic device configuration view. This view can be 

enabled in the Options window (Tools → Options). Make sure the corresponding 

checkbox is selected in the Device editor (See Figure 8). 

Figure 8. Activating generic device configuration view 

After the Modbus TCP server has been configured, variables must be created and made 

available via Modbus. Modbus uses register addresses to identify variables in its list. 

Hence, the Modbus variables should be stored in the special memory area. 
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Since default Modbus TCP server settings were previously applied, the addressable flag 

area (%M area) is now accessible via Modbus. By default, all registers have read/write 

permissions. The read/write permissions for the register ranges can be set in the Modbus 

Server Settings tab (see Figure 7). The addressable flag area can also be changed in this 

tab. 

The local %M area is 128 kilobytes (KB), and the memory is divided into two segments 

(with the numbers 0 and 1), 64 KB each. The Modbus addresses start from 0. Each address 

points to a two-byte value in memory. Thus, Modbus address range for segment 0 is from 

0 to 32767 (0x0000 – 0x7FFF), and for segment 1, the range is from 32768 to 65535 

(0x8000 – 0xFFFF). The address assignment for variables is done in accordance with the 

IEC 61131 standard. It has the following format: 

“ %M Data type ” . ” Segment ” . ” Number ”, where 

▪ Data type – the register data type (B – byte, X – bit, W – word, D – double word) 

▪ Segment – the segment number in the controller’s memory 

▪ Number – the register number in decimal 

It is recommended that Modbus variables be defined as global variables. It can be done 

in the Codesys environment. The Global_Variables entry can be found under the project 

tree, on the Resources tab. The global variables are defined here, as shown in Figure 9. 

The Modbus variables are defined as follows. The first part of the expression is the 

variable name that is accessible in the code. The second part is the assignment of the 

Modbus address, which is formatted as described above. The following is the variable 

type and the initial value (used at PLC start-up). 

It is strongly recommended to use the variable type that corresponds to the register data 

type (for a variable of type Byte - use %MBx.x, for type Bool - %MXx.x.x). If a variable 

of type REAL should be declared, the four-byte DWORD should be used instead. Since 

Modbus registers are 16-bit, the variable of type DWORD is stored in two registers. It 

should be considered by the client when decoding the received data. 
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Figure 9. Creating Modbus variables 

It is important to note that since Modbus addresses are set manually, the development 

environment allows the intersection of memory addresses. This means that several 

variables might share a single register, which might corrupt data. The development 

environment does not identify this scenario as an error. Hence, it must be considered when 

declaring variables. Another requirement to consider is that PLC inputs and outputs 

cannot be directly assigned to Modbus registers. 

In ABB controllers, the WORD data type Modbus register corresponds to the Holding 

register. In “Modbus lingo”, the Holding register is a 16-bits register with read and write 

permissions. Thereby, the WORD data type registers can be read using the function code 

03 (0x03). Both, Write Single/Multiple Holding register commands are supported (the 

corresponding function codes – 06 (0x06) and 16 (0x10), respectively). If necessary, 

single bits (or “Coils”) can be accessed using the corresponding standard function codes 

(can be found in [46]). However, it was decided to pack the required single bits into the 

variables of type WORD and then unpack them on the PC. It increases the data transfer 

rate and gives the client more general access to the Modbus registers, which in turn 

simplifies the overall system architecture. As mentioned, the 32-bit DWORD data type 

takes 2 Modbus registers. The most significant bits are kept in the n register and the 

remaining bits are in the following (n+1) register. It should be taken into account on the 

client side when accessing particular Modbus registers. Recommendations and the overall 

concept are based on [51]. 

After the Modbus variables have been defined, they can be accessed in the program code. 

The content of these variables is available over the network while the PLC is running. No 
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additional actions are required in the Modbus server operating mode since the ABB 

AC500 handles all network traffic automatically (i.e., sends and receives Modbus 

telegrams) [47]. 

3.3.5 PC configuration as Modbus TCP client  

Modbus was developed primarily to transfer data between PLCs and field devices. When 

a PC (or server, cloud, RaspberryPi, or another device) is programmed to send and receive 

Modbus telegrams, it essentially emulates the second PLC. As mentioned in Section 

3.3.3, one of the issues with the Modbus protocol is the lack of authentication [49].  

As stated in Section 3.2.2, Python is used to implement the "outside loop", which is meant 

to run on the PC. There are several Python implementations of the Modbus protocol. 

PyModbus is by far the most popular implementation (considering the number of stars 

and downloads on GitHub [52]). It is an actively maintained library distributed under the 

BSD License. It allows for the implementation of various Modbus protocol versions, 

including Modbus TCP. The library supports "emulating" both the client and the server 

[52]. PyModbus is regarded as the implementation with the best performance / Central 

Processing Unit (CPU) load ratio [53]. Considering the benefits listed above, it was 

decided to stick with this library. 

Other implementations, however, were also being considered. For example, 

pyModbusTCP, which only supports the Modbus TCP protocol [54]. It has benefits such 

as a simple Application Programming Interface (API) and a good debug core. Another 

library under consideration was modbus-tk [55]. It is very similar to PyModbus and 

provides similar features for implementing the Modbus object. In terms of performance, 

modbus-tk is approximately two times faster than PyModbus, but it loads a CPU much 

harder [53]. Since the amount of data traveling between the PC and the PLC in the 

proposed architecture is relatively low, there was no need to try to achieve better 

performance. Hence, it was decided to reject the modbus-tk library.  

The use of an existing Python library significantly reduces the time required for project 

development because all Modbus communication functions are already implemented. The 

following is an overview of configuring and using the PyModbus library as a client. After 

installing the library, the synchronous Modbus TCP client implementation should be 

imported (line 1 in Figure 11). Following that, a client instance that connects to the PLC 
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using the Modbus TCP protocol should be created (line 2 in Figure 11). As can be seen, 

the only parameter that should be set is the Internet Protocol (IP) address of the PLC. All 

the remaining parameters stay with their default values. The IP address of the PLC can 

be checked in ABB Automation Builder by clicking Tools → IP-Configuration. In the 

opened tab the column IP Address shows the current IP address of the PLC. As can be 

seen in Figure 10, the IP address is 172.20.87.103.  

Figure 10. IP configuration tab 

After defining the host to connect to, the corresponding command can be used to connect 

to the PLC (line 3 in Figure 11). Once the PC and PLC are connected, the Modbus 

registers of the PLC that were previously configured (discussed in Section 3.3.3) can be 

read and set. It was noted that it was decided not to use Coils, but rather to pack single 

bits into variables of type WORD (or Holding registers in "Modbus lingo"). Thereby, 

using the corresponding functions, all Modbus registers can be set and read (lines 4 and 

5 in Figure 11, accordingly). 

from pymodbus.client.sync import ModbusTcpClient 

client = ModbusTcpClient(host="172.20.87.103") 

client.connect() 

write_reg = client.write_registers(address=0, values=1) 

read_reg = client.read_holding_registers(address=0, count=10) 

print("Read: ", read_reg, read_reg.registers) 

Figure 11. PyModbus basic functions 

As can be seen in Figure 9, after four variables of type WORD, there are three variables 

of type DWORD (that take two Holding registers, each). Therefore, there are ten Holding 

registers in use. Control bits are at address 0, status bits are at address 1, and so on. The 
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last register keeps the lower bits that represent the load lift-line length. Hence, in order to 

request the contents of all of the used registers, the parameters should be set as shown in 

Figure 11, line 5. Line 4 in Figure 11, assigns the value 1 (which sets the “Start” flag) to 

the register with the address 0 (that keeps the Control bits). A more detailed description 

of the flags and commands can be found in Section 5.1.  

If we run the script, shown in Figure 11 (after reading the registers with the same 

commands), then the output on the client side (PC) will be the following (see Figure 12). 

Figure 12. Modbus registers, PC side 

If we look at the PLC values in the Modbus registers, we can see that the value of 

MB_CONTROL_BITS is equal to one in decimal, which the client just set (see Figure 

13). It can also be seen that PLC changed its state to 30 (or the "Main" state). A more 

detailed description of the states of the PLC can be found in Section 5.2.2. 

Figure 13. Modbus registers, PLC side 

The maximum length of data that can be read out with a single command is 123 WORDs 

(or 61 DWORDs). The same restriction applies to the write registers command, i.e., 123 

WORDs can be set at once. These restrictions are imposed by the PLC [47].  

Similarly, any computer that can run Python code can be configured to act as a Modbus 

client. 
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As previously stated, vision systems are regarded as the most efficient method for crane 

workspace mapping. It was also noted that, despite the fact that DL has dominated the 

domain, classic CV has its own advantages. Since the proposed system (see Figure 2) is 

intended to be applied indoors, where the environment is more predictable, it was decided 

to try both conventional and DL-based CV approaches. The first part of this chapter is 

devoted to the traditional CV implementation, while the second part describes the DL-

based CV implementation. The advantages of both approaches are thoroughly discussed 

and the obtained results are presented. 

4.1 Traditional CV advantages 

Today algorithmic approach in CV is mostly used when it is not possible to deploy a large 

amount of computation power. For example, if the system is driven by a microcontroller 

or energy efficiency is a critical factor. Even more in some cases, it is much easier to 

apply simple color thresholding, instead of gathering large amounts of data, annotating it, 

and finding the right parameters for training the DNN. Based on [56], [57], [58], [59] the 

following list of classic CV advantages was compiled: 

Generality – after the features have been extracted, they will work in the same way for 

any image (in contrast to DNN, which will work only if the required object of interest 

was in the training data set). This might be especially useful for color segmentation task. 

For example, if it is required to detect some instances that have the same color (especially 

if the lighting is also stable), conventional CV is far more effective. Moreover, it is much 

easier for an engineer to find suitable parameters for the underlying algorithms, instead 

of gathering data, labelling it, and so on. Furthermore, if some global features are changed 

or something goes wrong, the engineer can easily tweak certain parameters so that 

algorithms work for a broader range of problems. 

Transparency – each image conversion is observed step by step, hence controlled and 

configured. This makes the system more flexible and allows the engineer to have better 

4 Computer Vision 
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insights into a problem. DNN in this sense, in contrast, is often a black box, especially 

for an inexperienced engineer. After the training data is prepared, it is simply loaded into 

the trainer, “magic happens”, and the solution is ready. It is very hard to understand, what 

happens under the hood since it is related to the complex mathematical operations with 

sophisticated interconnections between them. Hence in the case of classic CV, the 

learning curve is smoother. In addition to that, since state-of-the-art models are 

implemented within various frameworks, the inference possibilities are limited.  

Power efficiency – traditional CV uses far less computation resources for each frame 

processing when compared to DNN. Undoubtedly, modern-day Graphics Processing 

Units (GPUs) are very efficient and could perform millions of math operations in parallel, 

but they require an appropriate cooling system due to the heat produced during this 

process. The more sophisticated the cooling system, the more energy it consumes (or the 

more service it requires). Since all the world is striving for green energy and reasonable 

energy consumption, the use of DNN in some cases might be an overkill in terms of eco-

friendliness. Moreover, in some areas, it might be simply impossible to provide sufficient 

cooling. 

Reconfigurability – the implemented system could be adapted to the new environment. 

This is closely related to the transparency point and means that the image processing 

pipeline may be changed. Some algorithms might be included, while others excluded. 

When using the DNN, the whole network should be re-trained (that might take quite a lot 

of time). Of course, the weights of an existing model could be re-used. In other words, 

transfer learning technique applied, however, it is not enough just to additionally train the 

net. This cannot guarantee sustainable performance, which is very important in the 

industry. Moreover, re-training often requires several iterations as it entails trial and error 

with various training parameters. 

No data requirement – despite the fact that camera systems are now ubiquitous and there 

is no lack of data, the collected data should be sorted and labeled. This is a time-

consuming process. Moreover, at the beginning of the complex system implementation, 

it may not be immediately clear what the objects of interest are (in the sense that it is 
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impossible to consider everything at once). Furthermore, if the idea is to augment the 

existing system by adding a CV module, there will be no data at all in the beginning. 

Image resolution sensitivity – conventional CV is less sensitive to the RGB sensor 

resolution. As shown in Section 4.2.2, various image conversion techniques, such as blur, 

might be used throughout the pipeline. Some of these techniques reduce the initial image 

quality. In contrast, the DNN is highly dependent on the RGB sensor resolution. 

Priority – classic CV algorithms are “programmed”, which means that engineers can 

specify which features are more important for a specific task. In contrast to DNNs, which 

are trained. As previously stated, “the magic” that happens under the hood during training 

is related to complex mathematical operations, and configuring the priorities is a rather 

complex process. 

Some of the points raised above are interconnected and could have been combined. 

However, it was decided to split the items in this way in order to highlight the most 

important, in the author's opinion, points. It should also be noted that traditional CV 

techniques could be used to semi-automate the data labeling process. Since dataset 

annotation is a major bottleneck in the DL workflow, the solution implemented on 

conventional CV may be regarded as a significant investment for future system 

development. 

In general, an understanding of classic CV technology is still necessary for the engineer. 

The reason for this is that it is heavily used to artificially enlarge the available dataset. 

The process is known as dataset augmentation. It involves the generation of additional 

training data by cropping, scaling, rotating, and applying various “effects” to existing 

images. Modern tools and frameworks allow these transformations to be carried out while 

preserving the labels. Data augmentation is a common method for overcoming limited 

datasets and reducing overfitting during model training. 

4.2 Traditional CV implementation 

It was decided to use first the classic CV to implement the CV module. This module is 

intended to collect information about the crane's working area. The key motivator was the 

fact that there was no training data available at the beginning of the project development. 

The data labeling process is quite time-consuming and for the sustainable performance of 
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CNN, the amount of data should be significant. Since classic CV might semi-automate 

this routine work, the idea of the corresponding implementation seemed more appealing. 

Moreover, the proposed system is intended to be applied indoors, where the environment 

(i.e., lighting conditions) can be controlled, and the DL-based approach felt to be overkill. 

The traditional CV implementation is primarily based on OpenCV (Open Source 

Computer Vision) library. This is the most popular library in the field, with over 2500 

algorithms for various CV tasks. It is written natively in C++ and well optimized to 

accelerate the calculations at the hardware level. It provides a solid foundation for using 

the library in real-time vision applications [60]. 

4.2.1 Proposed approach 

Classic CV requires an engineer to understand the problem. It is necessary to extract the 

relevant features in order to find an appropriate solution. Since the goal is to detect a load 

and move the crane's cart to the point above, the load coordinates should be extracted. 

The found coordinates must then be mapped to the coordinate plane of the crane. It means 

that the pixels within the crane's working area should be matched with the crane's 

encoder-based positioning system. Since it was not possible to limit the camera’s FOV to 

only the working area, it was decided to use the crane’s frame as a basis to find the origin 

that would correspond to both coordinate planes (i.e., to match the “pixel coordinates” 

with “encoder coordinates”). Figure 14 illustrates the task at hand. 

Figure 14. Inteco 3D crane, illustrative cart travelling area (units – centimeters) 
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The problem is complicated by the fact that the dimensions of the frame are greater than 

the actual working area. In other words, the cart is travelling only within a limited zone. 

Moreover, the traveling zone is not centered. 

4.2.2 Description of the corner points extraction algorithm 

To extract the corner points, the following algorithm was developed. 

The first step is to extract color. During observation, it was noticed that the key feature 

that separates the crane’s frame from the background is the yellow color (See Figure 15, 

1. Original). Color filtering is a common task in a CV that consists of two steps. First, an 

image should be converted to the Hue, Saturation, Value (HSV) color space, so that the 

color of interest can be later filtered out by specifying the boundaries that best describe 

the target color (i.e., apply "Mask"). Although color space conversion is not a necessary 

step, the HSV color model allows an engineer to obtain more robust results. The reason 

for this is that in HSV, the color information (Hue and Saturation) is separated from the 

brightness, or “luma” (Value). Hence, in theory, thresholding rules could be set regardless 

of lighting changes. However, in practice, it is just a good improvement [61].  

Figure 15. Pipeline description, color extraction 

As can be seen in Figure 15, the result is far from ideal. The resulting mask (where white 

regions represent yellow color and black represents the rest of the colors) contains black 

spots. One of the spots is caused by the crane’s frame surface that reflects the light. An 
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illuminant is located right above the crane, hence part of the frame has a highly different 

shade of yellow (i.e., “white spot” in the original frame). The second spot is caused by 

the load. When the load is at its lowest point, it obscures the view of a portion of the 

frame. These problems should be considered in the following steps. 

The second step is to find edges. Since it is required to find the coordinates of internal 

corner points (see Figure 14), the inner edges of the frame should receive the most 

attention – while finding parameters to hard code. As can be seen in Figure 16, the 

proposed method includes four image conversions to find the edges. In the beginning, the 

resulting mask from the previous step (see Figure 15, 3. Mask) is blurred. This is 

necessary in order to make the edges smoother. In image processing, the blurring 

technique is typically used to reduce image noise and reduce detail. Gaussian function 

was selected for this purpose because it allows preserving more of the edges when 

compared to other methods (available in OpenCV). Bilateral blurring was rejected since 

it is considerably slower than Gaussian blur [62]. 

Figure 16. Pipeline description, edges finding 

After the frame has been blurred, the algorithm is able to find the edges. For this purpose, 

a Canny edge detector was applied. This method was selected because of the results it 

provides, which are more suitable for reaching the goals of the project. When compared 

to another popular technique widely used in the field – Sobel edge detector, Canny 

detector makes the resulting edges more precise (i.e., sharp). According to [63], Canny 
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takes the output of Sobel Operator and makes the edges thinner so that they are one pixel 

wide. Moreover, the Canny detector is considered to be more flexible, as it allows setting 

two threshold rules. Hence, in theory, an engineer can get rid of the edges, he is not 

interested in and keep only those, which are of interest. 

Analyzing the resulting image, it was noticed that the found edges (See Figure 16, 2. 

Canny) are highly discontinuous. Moreover, the problems formed during the color 

extraction made the frame’s contour inconsistent. At this stage, it was clear that the best 

way to find corner points is to artificially draw lines over the extracted contour and then 

estimate their intersection points. The main reason for such a decision is that the load may 

obscure one of the top corner points (in the cart’s top- rightmost and leftmost positions). 

As a result, it will be impossible to extract the coordinates of the obscured point since the 

contour will be inconsistent in that place. Considering the peculiarities of the algorithm, 

used for drawing the lines, it was decided to apply a combination of dilation and erosion 

on the “canny frame”, to overcome the discontinuity of contour lines. 

The basics of dilation are that it increases the area of the features. Hence, by using the 

right parameters, it is possible to “glue” the discontinuity in contour lines. The only thing 

to keep in mind is that the inner contour does not intersect with the outer contour. The 

drawback of using dilation is that by increasing the area of pixels, the inner contour 

decreases. It reduces the accuracy of estimating the coordinates of corner points. The 

erode operation is used to return the pixel's area. Erosion works in reverse to dilation. The 

“magic” of this method is that the contour remains “glued”, preserving the inner contour 

area. 

The third step is to draw lines that correspond to the frame’s inner contour. To find 

the lines, the Probabilistic Hough line transform method was applied. Hough transform 

is a popular technique used to find a geometrical representation of any shape, even if the 

shape is broken or distorted a little bit (i.e., an image has some noise). In its simplest form, 

the Hough transform is a method for detecting straight lines [64]. OpenCV provides two 

line detection implementations based on this algorithm. The probabilistic implementation 

used in this project is an optimization of the classic Hough transform. It has a simpler 

inference and uses less computation resources. The general idea behind the Hough line 

transform method is that based on the specified angle deviation accuracy, the pixels that 

are within – accumulate the score or votes. The number of votes required for the algorithm 
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to conclude that these pixels form a line can be specified. Hence, based on the parameters, 

the Hough line transform method allows for drawing of the lines that correspond to the 

specified distribution of pixels. Moreover, the algorithm accepts the presence of gaps in 

potentially detected lines [65]. 

The frame, obtained in the previous step (see Figure 16, 4. Erode) is processed using this 

technique and the result can be seen in Figure 17, 1. Raw Lines. To estimate accuracy, 

the resulting lines are placed over the original frame (See Figure 17, 2. Combined). 

Despite the fact that visually result looks satisfying, each of the lines (that form the 

frame’s contour) is made up of many separate lines, which may cause problems in the 

next step. Hence, it was decided to blur the frame, shown in Figure 17, 1. Raw Lines. To 

ensure the quality of this approach, the same image conversion sequence, namely Canny, 

Dilate, and Erode is performed (see Figure 16). This sharpens the blurred edges, which is 

required for greater accuracy. 

Figure 17. Pipeline description, artificially drawn lines 

The final step is to find the inner contour and its corner points. Identifying shape 

contours is a fairly common task in CV. OpenCV includes an implementation for 

extracting contours from images. The corresponding function is based on the “Suzuki85” 

algorithm [66]. This is a border following algorithm with a topological analysis 

capability. In general, the algorithm allows extracting the information about surroundings 

between two types of borders: the outer- and hole borders (i.e., inner borders, followed 
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by background or hole). In other words, it can estimate the surrounding relations between 

different contours. Hence, the extracted data can be used to reconstruct the entire original 

frame, as the "hierarchy" of contours is preserved. The authors state that the proposed 

method is an effective way of storing binary image data [67]. Using this algorithm, all 

contours from the last resulting image are retrieved (i.e., the image obtained after applying 

the Dilate and Erode operations over the frame shown in Figure 17, 4. Canny). 

Since the image contains a lot of contours, it was required to find a feature that best 

distinguishes the sought-for one from others. During the search for such a feature, it was 

observed that specifying the upper- and lower boundaries, which limit the range of 

contours by their area, yielded the best results. The reason for this is that the sought-for 

contour is the only one with an area that differs significantly from the rest of the contours. 

As a result, there is no need to specify the boundaries precisely. This provides more 

freedom in selecting the distance between the camera and the crane’s working area. It was 

also discovered that the proposed approach is quite tolerant to the angle at which the 

working area is captured.  

The only noticed problem is that in some cases, the “Suzuki85” algorithm sees multiple 

contours in the same place (i.e., overlapped contours). To address this issue, the contour 

with the greatest area (within the boundaries discussed above) is chosen as the origin. 

After the required contour is found, its corner points can be extracted. The problem, which 

may result in an incorrect estimation of the points of interest, is that the pixels that 

constitute the contour boards are not precisely aligned (i.e., the lines are polygonal). As a 

result, the algorithm may detect more than four corners or extract wrong coordinates. To 

overcome this issue, the lines that form contour are slightly approximated. If the contour 

was successfully detected and none of the problems mentioned in this Section occurred, 

the function used for approximation [68] returns four points (x, y coordinates) that 

describe resampled contour. 

4.2.3 Results and discussion 

Based on the results shown in Figures 18 and 19, it can be concluded that the algorithm 

discussed in Section 4.2.2 performs well in most cases. As can be seen, the algorithm is 

quite tolerant to the angle at which the working area is captured. Furthermore, the distance 

between the camera and the crane’s frame may vary. Figure 18 shows that corner points 

are extracted with reasonable accuracy. Moreover, the algorithm considers environment-
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specific problems, such as color inconsistency in the crane’s frame surface, and the 

possibility of obscuring corner points.  

Figure 18. Successful corner points extraction 

However, when we compare the results in Figure 18 (second and third image) with the 

results in Figure 19 (first and second image) – accordingly, we can see that, despite the 

same camera layout (in both cases), the algorithm may make a mistake when determining 

the inner contour. Analyzing the root of the problem, the only meaningful reason for such 

behavior is that the illuminant located directly above the crane was flickering. It caused a 

change in color, which was detected by the camera's RGB sensor, and as a result, the 

corresponding system input parameter was unstable. One of the most significant problems 

with conventional CV, as discussed in Section 4.3, is that it is highly dependent on 

environmental conditions in general, and lighting in particular. The reason for this is that 

changing environments disrupts color consistency. The proposed algorithm contains a lot 

of hard-coded parameters, including the ones used for color extraction. Since illuminant 
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flickering caused too high variations in the RGB values provided by the camera (see Table 

2), the algorithm was unable to guarantee stable results in all cases. 

Figure 19. Unsuccessful corner points extraction 

The time required for single frame processing is the most significant benefit of the 

proposed method. On average, the pipeline used for corner points extraction takes 110 

milliseconds (PC configuration can be seen in Table 2). Furthermore, since OpenCV uses 

CPU for calculations by default (this setting has not been changed), there is no need for 

a high-end GPU. As previously stated, the author’s interest lies in finding of a relatively 

cheap solution, and because GPUs are highly overpriced at the time of this writing, the 

ability to use only the CPU can be regarded as a significant advantage. 

The main disadvantage of this method is that the proposed algorithm contains a lot of 

hard-coded parameters. Each image conversion, discussed in Section 4.2.2, requires a set 

of specified parameters. As a result, the corresponding system part configuration is quite 

complex. Hence, in order to properly adjust the system, the crane operator must have 

specific skills (in case of a change in the environment). An inappropriate algorithm 

configuration may not only make the operator’s work more difficult, but it may also set 

off a dangerous scenario. Furthermore, as previously mentioned, certain parameters are 

overly sensitive to changes in the input signals. 

To simplify the configuration process, it was designed to be interactive. The parameters 

are set using sliders, and the effect of each parameter in the corner extraction algorithm 

is displayed in real-time. Section 4.2.4 provides a more detailed description of the 

configuration process. 

4.2.4 Hard-coded parameters configuration 

The crane control application allows the parameters used in the corner extraction 

algorithm to be configured. The parameters could be adjusted both offline and online, i.e., 
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using previously captured stationary images or frames captured from a live video stream. 

The configuration procedure is divided into four steps, as shown in Figure 20. These steps 

correspond to those described in Section 4.2.2. 

Figure 20. Configuration procedure 

A click on one of the configuration buttons brings up two windows. The first one contains 

sliders for configuring parameters related to the corresponding part of the corner 

extraction algorithm. Figure 21 shows the HSV values configuration window. The second 

window contains a series of images that show how the given parameters affect the 

corresponding image conversion. Figure 15 shows the image set that corresponds to the 

HSV values configuration window. After configuring the parameters, the user should 

confirm them by dragging the corresponding slider (see Figure 21). It is also possible to 

restore the initial values that were used at the start of the setup. 

Figure 21. Configuration using trackbars 

Once the parameters for the image processing pipeline have been configured, the user can 

save them in the database at the specified entry (see Figure 22). This makes the proposed 

approach more adaptable and user-friendly because different sets of parameters that work 

best for various environmental conditions can be easily restored. For instance, if the 
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warehouse is artificially illuminated only at night and there is enough street lighting 

during the day, two sets of parameters could be set up and easily switched as needed.  

Figure 22. Configured parameters management possibility 

The way the configuration procedure is divided might seem illogical, or that some steps 

should be further divided because they require too many parameters to be set. However, 

the author's experience has shown that this is the most convenient method for accurately 

setting these parameters. 

4.2.5 Load detection 

After the corner points have been found, it becomes possible to warp the perspective 

based on these points. The result can be seen in Figure 23. It is important to keep in mind 

that the function used for perspective transformation requires the points to be in strict 

order [69]. Since there is no guarantee of the order of the points found at the previous step 

(see Section 4.2.2), it is required to reorder the corresponding array. Knowing the imposed 

order for the points (top-left, top-right, bottom-right, bottom-left) the rule based on the 

difference in x and y values was applied. The bottom-right corner point is the one with 

the greatest sum of x and y, while the top-left point has the smallest sum. The bottom-left 

point has the largest difference in x and y values, whereas the top-right corner point has 

the smallest. All subsequent image processing is performed on the frame with a 

transformed perspective (see Figure 23). The reasons for this are that the frame has a 

lower resolution, which reduces the processing time, and that it is easier to match the 

extracted load location with the crane’s encoder-based positioning system. 

As mentioned in Section 2.2, QR codes have a high potential for widespread use in crane 

workspace mapping. The reason for this is that barcodes are a low-cost and widely used 

method of matching an object with machine-readable information. The widespread use of 

QR codes in our daily life gives a reason to believe that the same trend will be moved to 

industrial warehousing. Due to modern printing capabilities, attaching or printing the QR 

code over the goods holding container is quite simple. Furthermore, because of their error 
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correction capabilities, QR codes are robust to dirt and scratches [70]. Considering the 

merits of the above, it was decided to use QR codes to keep the data associated with the 

corresponding cargo in the proposed system. 

 

Figure 23. Warped perspective 

Assuming that the QR code is centered on the roof of a container, it is necessary to locate 

the center point of the barcode and send the corresponding coordinates to the crane in 

order to pick up the load. A dedicated Python library called pyzbar is used to detect and 

decode a QR code. It has all the necessary Python bindings for accessing the ZBar library. 

ZBar is an open-source software suite for reading various types of barcodes, including 

QR codes. All the performance-sensitive image processing is done in C, making it suitable 

for real-time applications [71]. 

Despite the fact that ZBar performs some image pre-processing, the performance of the 

function intended for detecting and decoding QR codes within the frame was quite poor. 

An adaptive binarization was used to improve the detection rate of barcodes. The 
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implementation from the Kraken library was chosen to binarize the frame as it produces 

good results [72]. Kraken is an open-source Optical Character Recognition (OCR) system 

[73]. However, since the image cleaning performed prior to OCR is very similar to the 

noise filtering required for barcode detection, it also works well with QR codes. The only 

disadvantage of the referred implementation is the time required to binarize an image. On 

average the algorithm takes 500 milliseconds to process a frame on CPU (PC 

configuration can be found in Table 2). Hence, it was decided to scan QR codes once 

every two seconds – to reduce the CPU load. Because cargos are expected to have low 

dynamics, the proposed resolving cannot be considered as a significant shortcoming. 

Figure 24 shows the outcome of an adaptive binarization as well as the found contours of 

QR codes. 

 

Figure 24. Binarized and QR highlighted frames 

Knowing the polygonal curves that form the contour around the QR code allows finding 

its centroid (i.e., the center of the object). OpenCV includes a function that computes all 

of the moments of a polygon up to the third order [74]. Knowing the moments, the 

centroid can be found using the following formula [75]:  

Cx=
M10

M00

; Cy=
M01

M00

                                                                                                         (1) 

In Equation (1), Cx and Cy are the x, y – coordinates of the centroid and M denotes the 

moment (that corresponds to the output of the corresponding OpenCV function). The 

resulting centroids are depicted in Figure 24 as red dots. The found x, y coordinates could 

then be mapped to the crane’s coordinate plane and used to set the desired position. 
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4.3 DL-based CV advantages 

As previously stated, more and more researchers try to adopt various DNN architectures 

for different tasks. Despite the challenges and drawbacks discussed in Section 4.1, the 

hype and widespread use of DNNs has strong reasons behind it. In tasks such as object 

detection, image classification, and semantic segmentation, DNN outperforms traditional 

CV [56]. Moreover, DL has opened many doors, and the scope of its application areas is 

likely to grow in the future. For instance, it is already possible to colorize, reconstruct, or 

even increase the resolution of an image. Furthermore, using neural networks, the style 

of one image could be transferred to another [76]. A lot of debates and concerns are 

related to the “Deepfake” technology. This technique is also associated with CV and is 

typically based on Generative Adversarial Networks (GANs) [77]. These are just a few 

examples of what the DL-based CV is capable of, and because the field is overheated 

right now, new models, as well as the application possibilities are being invented with a 

high frequency. 

Since the scope of the thesis is limited, the following list highlights the general reasons 

why CNNs became such a popular CV tool, and why, in the author’s opinion, they might 

be especially relevant for industrial purposes (the list is based on [56], [78], [58]): 

Flexibility – the same DNN architecture can be applied to a variety of tasks. DL-based 

CV models are trained but not programmed. This means that the model can be adapted to 

any specific problem. The only requirement is the corresponding training dataset. There 

is no need to look through the constituting layers of a model. For instance, the same 

architecture can be used for cancer screening or re-trained to search for defects in the road 

surface. 

Accuracy – the latest DNN architectures provide substantially higher accuracy, 

especially in tasks such as object detection, image classification, semantic segmentation. 

The general rule is to provide the model with as much training data as possible. However, 

it is important to keep in mind that the data should be diverse and qualitatively labeled. 

With a sufficient amount of diverse data and appropriate training parameters, the achieved 

accuracy could be much higher than that of conventional CV. Moreover, the DL-based 

approach can withstand a larger number of classes to classify, which is the problem in the 
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case of a traditional CV. The reason for this is that with a large number of classes, manual 

feature extraction becomes tricky. 

Human factor – the DL-based approach employs an algorithmic model that enables the 

machine to learn the underlying patterns in a given dataset on its own. DNN understands 

the pixel-level nuances that make up the parts of a larger image. This eliminates the risk 

of unmodeled variables that engineers may overlook. People tend to make mistakes due 

to ignorance or a failure to understand some complex, hidden or non-intuitive 

phenomenon. 

Data availability – in general, there is no shortage of data in the world. Camera systems 

are now ubiquitous, and if necessary, an additional camera can be mounted in the required 

location. The cost of a camera, as well as the price per data storage capacity, is low. The 

bottleneck associated with the data labeling process could be resolved if desired (for 

instance, by involving outsourcing). Moreover, as previously stated, a conventional CV 

algorithm developed in advance might semi-automate this time-consuming process. Since 

it is a global concern in the field, researchers are working to find an appropriate solution. 

Recently, a concept known as Active Learning has emerged. This technique makes use 

of the deployed system to identify problematic cases. For example, if it was found during 

system operation (or testing period) that two similar subjects are frequently mixed up 

under certain conditions, the focus should be shifted exactly to them. The process is 

iterative. It significantly reduces the time required to improve system performance [79]. 

Simplicity – people tend to make their work easier, especially engineers. Computer 

systems are very useful in this regard because they allow us to automate our daily 

routines. The same trend is observed in the field of CV. The DL-based approach allows 

features to be deduced automatically and optimally tuned for the desired outcome. The 

algorithm extracts the relevant features without being explicitly told to do so, which is 

much easier than manual feature extraction.  

High automation – due to the popularity of DL-based CV and its application simplicity, 

a large number of libraries, end-to-end frameworks, and platforms have been emerged. 

They provide modern tools and state-of-the-art models that make it easy for developers 

to build and deploy DL-powered applications. These platforms are mostly open source 

and have a large community behind them. This makes the demanding learning curve 
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smoother. The most popular ones are TensorFlow, PyTorch, and Keras [80]. Moreover, 

there are ecosystems, that allow training a model even without touching a code, for 

instance, Roboflow [81]. 

Tolerability – CNNs are more tolerant to the lighting conditions, viewpoint of a camera, 

background noise, visual obstructions, and intra-class variations. Among the many 

reasons why researchers favor the DL-based approach, the author believes that the factors 

listed above are the most important ones. As previously stated, the more diverse data 

DNN consumes, the better performance it will provide. The collected data may include 

samples taken under various lighting conditions, in different environments, and even with 

different cameras. Essentially, there is no difference, especially if the data is labeled 

manually. This is not the case, if the system is based on classic CV since these factors 

affect the color consistency (on which conventional CV is very dependent). The same 

rule applies to the viewpoint of a camera and intra-class variations. In the case of classic 

CV, the extracted features should be generalized or the algorithm should consider that, 

for instance, the camera’s FOV may vary. Moreover, as previously noted, modern tools 

provide the ability to artificially augment the training dataset (by changing the brightness, 

contrast, saturation, cropping, scaling, etc.), which provides the foundation for DNN-

based models to be more reliable in terms of tolerability. 

Computation power availability – the cost of computing dropped significantly 

nowadays. Modern GPUs can run DNN-based algorithms in near real-time. Some 

companies even started producing special purpose circuits that allow accelerating AI 

calculations. A well-known example is the Tensor Processing Unit (TPU), developed by 

Google [82]. Another example is the chip architecture, developed by Ambarella. Their 

solution – CVflow® is specifically designed for running the CNN algorithms with 

extremely low power consumption [83]. Moreover, some companies provide their 

computation resources for training a model at no cost. For instance, Google – with their 

“Google Colaboratory”, or IBM, which recently launched a similar solution, called “IBM 

Watson Studio” [84]. 

Considering the points discussed above, the author believes that the future belongs to the 

DL-based approach in CV. Traditional CV techniques are still relevant today, but 

progress is moving forward, and the benefits of DNN will outweigh the drawbacks 

discussed in Section 4.1. The values mentioned under the accuracy and tolerability points 
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motivate researchers, corporations, and governments to investigate this technology 

further. The fact that CV is one of the most active sectors for investors attests to the 

growing interest. [85]. 

The most significant issue, in the author's opinion, is the high power consumption caused 

by the high computation resource requirement. It is important to keep in mind, however, 

that AI algorithms are currently mostly processed on GPUs. In relation to AI, a GPU is a 

general-purpose processor. The problem will almost certainly be solved with the 

increased development of special-purpose processors and their widespread use. Taking 

into account all of the above, it was decided to try to implement the CV module using the 

CNN model as well. 

4.4 DL-based CV implementation 

There are many DL frameworks, and it is logical that each has its own advantages and 

disadvantages. Undoubtedly, such variability is a big plus on the global scale because it 

reduces the risk of field monopolization. Furthermore, different approaches to solving the 

same problem taken by different communities greatly increase the likelihood of new 

breakthroughs. However, such variability makes the process of selecting the best solution 

for your specific problem quite complex, especially for beginners in the area. The choice 

is complicated by the fact that each community supports the framework over which they 

develop and use. Another reason is that there is no solution that is ideal in every way. 

4.4.1 Detectron2 

After thorough research, Detectron2 was selected as the platform for developing a DL-

based CV module. Detectron2 is the Facebook AI Research library that contains a variety 

of state-of-the-art models, including Mask R-CNN, which is required to achieve the 

project's objectives. Detectron2 is implemented in PyTorch, which means that developers 

will benefit from the advantages that PyTorch has over Tensorflow [86]. The most 

important ones for this project are related to inference and training time, which is less in 

the case of PyTorch (if GPU is used for computations) [87]. According to official 

benchmarks, the training speed of Mask R-CNN in Detectron2 is faster than that of other 

popular open-source model implementations [88]. Detectron2 is designed with the 

research use-case in mind, which means it is more flexible in system configuration for 

controlling the experiments (compared to pure PyTorch) [89]. The aforementioned 
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factors were the key motivators for the author to try to implement the DL-based CV 

module using Detectron2. 

The most significant issue is that Detectron2 does not have official support for Windows 

Operating System (OS) [90]. Nevertheless, there is a way to install the latest build (v0.5) 

– at the time of this writing. This method has been validated by the author. It is about 

using specific versions of libraries and drivers. The link to the comprehensive guide can 

be found here [91]. It is important to note that the sequence of steps, as well as the 

specified versions of libraries and drivers, should be strictly followed. Otherwise, this 

method will not work, which was also verified by the author. Detectron2 installation 

instructions on Windows OS can also be found in Appendix 2. 

4.4.2 Model training 

Google Colaboratory was selected as the platform for training the model. The training 

process is straightforward and well described in the official guidelines, which can be 

found in the Detectron2 GitHub repository [92]. The most time-consuming part was the 

dataset registration because Detectron2 requires the metadata to be in a specific format 

that is similar to COCO’s annotations. The recently emerged official guide describes in 

detail what keys should be associated with an image for various tasks [93]. For image 

annotation, VGG Image Annotator (VIA) was used. It is a lightweight, web-based, open-

source tool for image, audio, and video annotations. The user interface is quite simple 

and, in the author’s opinion, very convenient. It allows metadata to be exported in .csv, 

.json, and COCO formats [94]. 

Initially, the model was trained using the default parameters specified in the official Colab 

Notebook. Since the crane’s working area extraction accuracy was poor, it was decided 

to tune the hyperparameters, as they have a significant impact on the performance of the 

model. The reason for this is that hyperparameters directly control the behavior of the 

training algorithm [95]. As previously stated, Detectron2 is a powerful platform that 

includes a variety of state-of-the-art models. It was also mentioned that the platform is 

designed with the research use-case in mind, which means that it provides more flexibility 

in the model configuration. However, when it came to configuring the hyperparameters, 

the author discovered that the things he expected to be provided out-of-the-box just were 

not. This meant that in order to properly configure the model it was required to deeply 

dive through the code. Analyzing the library, it was found that all of the configurable 
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hyperparameters are kept in the following configuration file [96]. Since Detectron2 

includes a variety of models, the list of parameters is quite vast. 

Unfortunately, due to time constraints, it was not possible to understand the impact of 

each parameter on the resulting accuracy that the trained model could provide. Moreover, 

reviewing the relevant resources, it was noticed that most researchers believe that trial 

and error is the best way to find appropriate hyperparameters. The majority also associates 

parameters tuning with adjusting a black-box function. Hence, it was decided to begin 

experimenting with the parameters included in the official tutorial, as it stands to reason 

that these parameters should have the greatest impact on the performance that the trained 

model will provide. The parameters mentioned are learning rate, number of iterations, 

batch size per image, and images per batch. The last two parameters represent the total 

number of Regions of Interest (RoI) per training minibatch (which is calculated by 

multiplying these parameters). The learning rate and the number of iterations had the 

greatest impact on the resulting accuracy. 

Table 3. The hyperparameters used to train the model 

Hyperparameter Value 

Learning rate 0.0001 

Number of iterations 1200 

Images per batch 4 

Batch size per image 512 

 

Since the amount of labeled data was limited, there was little room for experimentation. 

The resulting accuracy, shown in Figure 25, was obtained using the hyperparameters, 

listed in Table 3. 

4.4.3 Results and discussion 

Analyzing the results obtained using the models trained with various parameters, it was 

discovered that the working area borders (i.e., the borders drafted by the corresponding 

crane's frame inner contour) are wavy in all cases (see Figure 25). Furthermore, if the 

angle at which the working area is captured deviates from the ideal camera's FOV, the 

"waviness" increases. The ideal FOV is assumed to be when the lower bound of an image 

is parallel to the nearest crane frame side (see Figure 3). 
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Figure 25. Accuracy obtained using Mask R-CNN 

Investigating the root of the problem, it was discovered that the waves discussed above 

are a side effect of how the Mask R-CNN works. According to several authors, even with 

large data volumes and an increase in the number of iterations, the problem remains 

relevant [97], [98]. A promising Mask R-CNN extension was proposed to address this 

issue [99]. Unfortunately, to the best of the author’s knowledge, there are no PointRend 

implementations available on the internet. The official project's GitHub page only shows 

the usage and visualizations of the algorithm point sampling stages [100]. 

Another drawback of the DL-based approach is the time required for single frame 

processing. On average, it takes 325 milliseconds to process a frame on GPU (PC 

configuration can be found in Table 2). However, it is important to note that the working 

area, as well as the objects within it, are detected in a single step. 

In terms of object detection, the DL-based approach is expected to perform better. 

Furthermore, this method should provide better results in object recognition. The reason 

for this is that, as previously discussed, DNN can handle a greater number of classes to 

classify than conventional CV. Besides this, rather than searching for type-specific 

features, it is much easier to train the model to detect and recognize different types of 

loads. 

It is reasonable to expect that the resulting accuracy will be preserved even when the 

lighting changes. This means that even the high variations in RGB values caused by 
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illuminant flickering, which was a problem with traditional CV implementation, should 

not pose problems. The only requirement is to collect a sufficient number of frames while 

the lamp is temporarily turned off. The same requirement applies to the loss of accuracy 

when the angle at which the working area is captured varies. It is expected that the model 

will perform better with a more uniform dataset in terms of camera FOV variability. 

Because of inaccuracy in estimating the working area borders, it was decided to stick with 

the classic CV implementation, discussed in Section 4.2. Furthermore, the time required 

for single frame processing is nearly three times longer, and it is not possible to run a 

separate part of the algorithm more rarely to increase the overall speed of execution (as 

was the case with traditional CV implementation). Since the proposed system is intended 

to be used indoors, where the environment is more predictable, the classic CV 

implementation seemed to be more sustainable. 
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This chapter discusses the developed application for controlling the Inteco 3D Crane. As 

mentioned previously, the overall control loop consists of inner and outer loops. The inner 

loop is meant to be running on PLC. In this loop, all the safety- and time-critical 

functionality is implemented. The outer loop is meant to be running on a PC. In this loop, 

all the rest functionality is realized, i.e., manipulations with the database, GUI, image 

processing, and so on. The first part of this chapter describes the overall communication 

logic between the PC and PLC. The second and third parts are devoted to the PLC and 

PC implementations, respectively. Finally, at the end of this chapter, the GUI is explained. 

5.1 Communication logic between PLC and PC 

The proposed system involves the constant interaction of two computing devices (see 

Figure 4), which requires a thorough consideration of their communication. Furthermore, 

because the inner loop is significantly faster than the outer loop, some functionality, such 

as actions reliant on the status of position limit switches, should be performed entirely 

within the inner loop, without the need to wait for a response from the outer loop. Besides 

that, since the communication possibilities are limited, it is necessary to think through a 

system of checks and flags so that it could be interpreted and understood on both devices 

while leaving room for future development. 

The first two Modbus registers (each 16-bit long), named control bits and status bits –  

store the most important data for communication logic between the PC and PLC. As 

previously stated, it was decided to pack the required single bits into the variables of type 

WORD and then unpack them on the PC – in order to increase the data transfer rate and 

provide more general access to the Modbus registers. The control and status bits are 

implemented in this fashion. Each bit stored in these registers has its own meaning, which 

is listed in Tables 4 and 5. The only bits in use are described. The absence of a specific 

bit in the corresponding Table indicates that it is not currently in use and has been reserved 

for future development. 

5 Crane control app 
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Table 4 describes the contents of the control bits Modbus register. The bits in this register 

are used to set a command for the PLC to execute. When a user sets a command into GUI 

on the PC side, the PLC changes its internal state and performs the corresponding duties. 

When the command is finished, the PLC resets the corresponding control bit, indicating 

that the command was successfully completed. 

Table 4. Description of control bits 

Control bit Description 

0 The bit is used to set the “Start” flag. When the bit is set, the PLC begins 

executing commands. As a consequence, the bit should be turned on 

continuously during the crane operation. 

1 The bit is used to set the “Go home” command. The command is intended 

to move the load to the location specified by position limit switches (in the 

x, y, and z – directions). After reaching the point, the position measuring 

encoders are reset. 

2 The bit is used to set the “Go center” command. The command is intended 

to move the cart to the center of the crane’s working area (in x, y – 

directions). 

3 The bit is used to set the “Go to” command. The command is intended to 

move the cart to the desired position. The set point values (in x, y, and z – 

directions) are retrieved from the corresponding Modbus registers. 

4 The bit is used to set the “Go back” flag. After performing the "Go to" 

command, the flag indicates the need to return to the initial position. 

5 The bit is used to initiate the manual “Reset angle encoders” procedure. 

After setting the bit, the PLC waits for the user to confirm that the load is 

stable (i.e., perpendicular to the floor and not hanging). 

6 The bit is used to set the “Pick QR” command. In this semi-automatic 

mode, the crane picks up the selected load (noted by a QR code) and places 

it in the desired position. 

7 The bit is used to set the manual “Lower load” command. When the bit is 

set, the crane starts lowering the load until the bit is released or the 

maximum lift-line length is reached. 

8 The bit is used to set the manual “Lift load” command. When the bit is set, 

the crane starts lifting the load until the bit is released or the corresponding 

position limit switch is activated. 

9 The bit is used to set the “Move in z-direction” flag. The bit requires that 

the load be set to the desired height after performing the "Go to" command. 

15 The bit is used to set the “Emergency” command. Motors are immediately 

turned off once the bit has been set. Movement in any axis direction is 

prohibited until the bit is reset. 
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Table 5 contains the description of status bits Modbus register. The bits in this register 

are used to indicate the current crane status and to provide additional information to the 

PC side about what the crane is doing right now within a command. These bits are set 

(and mostly reset) by the PLC. The exception is bit ten, which is set by the user to confirm 

that the load is not hanging. The values of status bits are read-out and interpreted by the 

PC to provide all relevant information to the operator. 

Table 5. Description of status bits 

Status bit Description 

0 The bit indicates that the crane hardware has been successfully initialized. 

1 The bit indicates the need to reset position encoders. 

2 The bit indicates the need to reset angle encoders. 

3 The bit indicates the cart’s movement status. The bit rises when the cart 

moves (in x, y – directions). 

4 The bit indicates that the load has been picked. 

5 The bit indicates that the command was successfully completed. When a 

new command arrives, the PLC automatically resets the bit, indicating that 

the crane has become busy. 

6 The bit indicates that the load lift-line length is set (if the command 

required to set the load in the z-direction). 

9 The bit indicates that the cart is returning to its initial position (if the 

command required to return back after reaching set point). 

10 The bit is used as a user acknowledgement that the load is stable (i.e., 

perpendicular to the floor and not hanging). 

11 The bit indicates that the values of the angle encoders are not changing (i.e., 

the load is not hanging). 

15 The bit indicates an error. If this bit is set, the system must be reset. 

 

The following is a general description of how communication between the PC and PLC 

occurs. When an operator sets a command into the GUI (on the PC side), all of the 

associated parameters required to execute the command are sent to the PLC. The PLC 

validates the parameters and executes the command based on its internal state. When the 

command is set, it is fully processed on the PLC, ensuring safety while performing time-

critical functions. The parameters check, which occurs prior to command execution, 

ensures that the command would be executed correctly. Since the command is processed 



64 

entirely within the inner loop, any communication problems with the outer loop will not 

pose a risk (i.e., equipment damage or danger to surroundings). During command 

execution, the PLC sends continuous feedback, which is decoded on the PC and 

interpreted in a user-friendly manner on the GUI for the operator. 

5.2 PLC side development 

The programming of ABB controllers takes place in Codesys environment. Codesys itself 

is hardware-independent and free to download PLC programming environment that is 

integrated into Automation Builder. Since Codesys is not dependent on any particular 

device, all the necessary hardware configurations are gathered from the Automation 

Builder and sent to Codesys as a target file for finalization in the program. 

5.2.1 PLC responsibilities 

As discussed in Section 3.2.1, PLCs are designed to operate in real-time. This means that 

PLC can provide fast, reliable, and deterministic results. Hence, all safety- and time-

critical tasks should be performed on a PLC. In the context of the current setup, the PLC 

is responsible for the following tasks: 

▪ Maintain a list of Modbus registers 

▪ Respond to the client’s commands 

▪ Send the encoder values to the client 

▪ Provide client with the information about self-internal state 

▪ Check the associated parameters prior to command execution 

▪ Reduce load oscillations by using PID controllers 

▪ Check the status of the position limit switches 

▪ Generate an appropriate PWM signal for controlling the crane motors 
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5.2.2 PLC side implementation 

The PLC is programmed as a state machine. Table 6 provides a brief description of what 

happens inside each state and what the state is used for. A transition from one state to 

another is triggered by events represented as commands (i.e., the contents of command 

bits Modbus register). Certain status bits might also require additional state transitions. 

The interconnection between the states can be seen in Figure 26. 

Table 6. The purpose and a brief description of the states 

State Description 

0 The initial state in which the hardware is initialized. The validity and 

plausibility of the inputs connected to the encoders and DC motors are 

checked in this state. Angle encoders are automatically reset if the load was 

not hanging during initialization. 

10 The state intended to perform the “Go home” command. After initialization, 

the system enters this state to reset position encoders. Later, the 

corresponding command can be used to initiate the transition to this state. 

20 The idle state. In this state, the system is waiting for the "Start" flag to be 

set. If angle encoders were not reset automatically during initialization, the 

system asks the operator to reset them manually. Resetting the "Start" flag 

initiates the transition to this state. 

30 The main state, intended to connect the other states. When a command is 

executed successfully, the PLC returns to this state, allowing the new 

command to be set. 

40 The state intended to perform the “Emergency” command. Movement in 

any direction is prohibited in this state, and motors are kept turned off. This 

state can be entered at any time by requesting the corresponding command. 

50 The state intended to perform the “Go to” command. In this state, the PLC 

sets the desired cart position. Additional actions, such as load picking, 

might also be performed based on the flags set prior to command execution. 

All required parameters are validated before the command is executed. 

60 The state intended to perform manual lifting or lowering of the load. In this 

state, the PLC continuously lifts or lowers the load (based on the requested 

command). After the corresponding control bit is set (or reset), the 

transition to (and from) this state occurs automatically. 

61 The state intended to lift the load to its highest position. This operation is 

always performed prior to the execution of the "Go to" command to reduce 

load oscillations and avoid the risk of load collision (due to height). 
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State Description 

65 The state intended to set the load position in the z-direction. The PLC sets 

this state to adjust the load lift-line length if the corresponding flag was 

raised prior to the "Go to" command execution. When the desired height is 

reached, the PLC returns to state 50 to complete the command. 

70 The state intended to perform the manual “Reset angle encoders” procedure. 

Transfer to this state occurs automatically if angle encoders were not reset 

during initialization and can be initiated by setting the corresponding 

command. In this state, the PLC reads the angle encoder values and waits 

for the user to confirm that the load is perpendicular to the floor and not 

hanging. 

75 The state intended to automatically reset angle encoders (without the user 

acknowledgement). Due to the imperfect work of angle encoders at the 

hardware level, sometimes their values are stuck near zero. If the system 

detects a lack of load oscillations while the angle encoder values are close 

to zero, it enters this state. Since no acknowledgement from the operator is 

required, the system returns to its previous state automatically. 

900 The state intended to indicate a hardware-level problem with position or 

angle encoders, or motors. 

 

As shown in Figure 26, the program begins with hardware initialization. At this step, the 

validity and plausibility of all the used inputs and outputs (i.e., the crane's hardware) 

connected to the PLC are checked. If there is a hardware-level problem, the controller 

enters the "Error" state, indicating that wirings should be re-checked. To run the program 

again, the PLC must be reset. If the crane’s hardware works properly, the system 

determines whether or not the load is hanging. If the load is not hanging, the PLC 

automatically resets the encoders that measure the load deviation angle. Otherwise, the 

angle encoders must be manually reset later. The next step is to execute the "Go home" 

command to reset the encoders that measure the load position (in x, y, and z – directions). 

Since the Inteco 3D crane uses incremental encoders that require a reference point, both 

types of encoders must be reset at the beginning. The PLC then enters the "Idle" state, 

waiting for the operator to set the "Start" flag. If the angle encoders were not reset 

automatically during initialization, the system asks the operator to reset them. The 

preceding describes the system start-up procedure. The crane is ready to work once the 

procedure is finished. 
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Figure 26. PLC side, state machine 
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The crane control is established through the use of a GUI that is implemented on the PC 

side. A detailed description of the GUI can be found in Section 5.4. On the PLC side, all 

commands devoted to load movement are carried out using the same logic. If the PLC is 

in the "Main" state (i.e., the "Start" flag is raised), the operator can request that the load 

be moved to any point within the crane's working area. When the PLC receives the "Go 

to" command, it compares the x, y, and z – coordinates of the desired set point (stored in 

the corresponding Modbus registers) to the current load position. If the values differ, the 

PLC starts executing the command. First, it checks whether the load is in its highest 

position. If this is not the case, the crane lifts the load to reduce load oscillations and avoid 

the risk of load collision (due to height) while moving. The cart is then driven in the x 

and y – directions to the set point. When the cart reaches the desired position, the system 

checks whether or not the load has to be lowered. If the corresponding control bit is set, 

the system lowers the load to the required length of lift-line. When the system is in the 

"Pick QR" operating mode, the crane picks or releases the load automatically at the end 

of the command. 

When the system is in the "Main" state, the operator can manually lift, lower, pick, or 

release the load by pressing the corresponding buttons on the GUI. Because of the static 

error that accumulates after using the application for a while, it is necessary to reset both 

types of encoders on a regular basis. The corresponding buttons on the GUI are used to 

initiate these procedures. To handle the abnormal system behavior, there is the 

"Emergency" state. The transition to this state can be initiated from any other state 

associated with load movement (i.e., when the motors are active) by pressing the 

corresponding button. 

The description of mentioned flags and commands can be found in Table 4. 

5.3 PC side development 

As mentioned in Section 3.2.2, it was decided to use Python for programming the outside 

loop. The selected development environment is the PyCharm [101]. It has a free 

community edition that includes all of the tools needed to implement the logic according 

to the proposed architecture. 
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5.3.1 PC responsibilities 

Python is not a real-time programming language. However, due to its popularity, it has a 

great number of open-source frameworks, libraries, and development tools that 

significantly reduce the time required for project development. Python is widely used for 

prototyping, data analysis, machine learning, and etc. Furthermore, it provides effective 

methods and tools for connecting to external services. Considering the proposed 

architecture, the tasks that PC is responsible for are the following: 

▪ Process the images taken by the camera and extract all the relevant data 

▪ Receive and interpret the feedback from PLC 

▪ Provide the operator with all the useful information by means of GUI 

▪ Allow the operator to control the crane by means of GUI 

▪ Wrap and send the requested commands for controlling the crane 

5.3.2 PC side implementation 

The part of the system that is meant to run on a PC is programmed using a modular 

approach. The basic idea behind this method is to divide the program into separate sub-

programs known as modules. Each module is a self-contained piece of code that can run 

on its own and, if necessary, be called by the main script. Modular programming 

simplifies project maintenance, makes code more readable and allows modules to be 

reused in other applications [102]. Another benefit is that if a hardware component used 

in the architecture needs to be replaced, only the associated module has to be modified, 

rather than the entire program. Considering the current setup, the program is divided into 

six modules, as illustrated in Figure 27. 

The main module is at the heart of the program. It is designed to combine all of the sub-

modules into a single program. When the main module starts, the GUI with all of the 

underlying functionality appears. The GUI is described in detail in Section 5.4. The 

corresponding module is implemented in PyQt5, which is a comprehensive set of Python 

bindings for Qt v5 [103]. Qt is one of the most powerful and widely used cross-platform 

GUI libraries. It is written in C++. Qt is compatible with all major operating systems, 

including Windows, Linux, and Mac OS [104].  
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Figure 27. PC side, modular approach 

The Camera module is intended to communicate with the Intel® RealSense™ LiDAR 

Camera L515 (see Table 2). The main purpose of this module is to provide visual input 

to the system by capturing the crane's working area. The module can also be used to 

configure the RGB sensor parameters. The parameters in use can then be stored in a 

database. 

The Modbus module is intended to realize the part of communication logic for which the 

PC is responsible. This module makes it possible to connect to the PLC, retrieve the 

contents of its Modbus registers, unwrap and interpret the data that is received. 

Conversely, using this module, set commands and parameters are wrapped and sent to the 

PLC’s Modbus registers. Section 3.3.5 contains a detailed description of the Python 

library selected for this module implementation, the PC configuration process, and the 

communication possibilities with the PLC. 

The CV module is responsible for processing the frames received from the Camera 

module and extracting all relevant data from them. Section 4.2 describes in detail the 

image processing pipeline used for the required data extraction. Currently, the main 

purpose of this module is to estimate the x, y – coordinates of the load and convert them 

to the crane’s coordinate plane. The content of QR codes, which are used to match the 
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load with information about itself, is also decoded within this module.  Furthermore, the 

CV module allows setting the desired cart position with a mouse click. 

The Database module is intended to store the parameters used in the image processing 

pipeline (performed within the CV module) and the RGB sensor parameters (applied 

within the Camera module). This module is written in sqlite3, which is part of the standard 

library (since Python 2.5) [105]. SQLite is a file-based SQL database that is self-

contained, lightweight, and open-source. SQLite is implemented in C, making the 

manipulations with the database fast and reliable [106]. 

5.4 Crane control GUI 

An application with a GUI is used to control the crane. The implemented GUI is divided 

into three pages. The main page is used to send commands to the PLC and observe the 

feedback. It contains all of the information and controls required to operate the crane (see 

Figure 28). The "App" button on the left GUI panel is used to set the main page. The other 

two pages are used to configure the hard-coded parameters used in the image processing 

pipeline. The first page is intended for “online” configuration (i.e., using frames from the 

live video feed), whereas the second is designed for “offline” configuration (i.e., using 

the stationary images captured beforehand). The "online" and "offline" configuration 

pages are set using the corresponding buttons on the left GUI panel. Both pages are very 

similar. The only difference is in the controls on the bottom panel that are used to set the 

source for the image to be processed and displayed in the application. The “online” 

configuration page can be seen in Figure 29. 

There is a need for two configuration methods since initial parameter selection (from the 

ground up) is often performed much more efficiently and conveniently using stationary 

images, whereas quick tuning is more preferable using the live video feed. The main 

reason behind this is that switching between images captured from different camera 

positions takes far less time than moving the camera back and forth. The proposed system 

assumes variations in camera position, hence the parameters used in the image processing 

pipeline should be general. Furthermore, each frame contains noise that is distributed 

unevenly. In other words, the RGB values provided by the camera are not stable, primarily 

due to the changing environment (i.e., illuminant flickering). It complicates the 

configuration process, as the results provided by the algorithm at certain frames may 
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confuse the operator. The procedure for configuring hard-coded parameters is described 

in Section 4.2.4. 

Figure 28. GUI, main page 

To start operating the crane, the user should first initialize the camera and connect to the 

PLC. This can be done using the corresponding buttons on the right GUI panel of the 

main page. However, it is recommended to verify that the corner points (see Figure 14) 

are found correctly and confirm them beforehand. The operator has to go to the "online" 

configuration page to accomplish this. To initialize the camera, the “Start” button has to 

be pressed. The received frames are processed using the algorithm described in Section 

4.2.2, and the result is displayed over the original frames, as shown in Figure 29. Once 

the operator sees that the corner points have been extracted correctly, they can be 

confirmed by clicking the corresponding button. It stops the corner points extraction 

algorithm, and the last found points are then used while the application is running. The 

problem caused by illuminant flickering is thus resolved. Furthermore, it reduces the load 

on the CPU. The issue at hand is discussed in Section 4.2.3. If the camera needs to be 

replaced while the application is running, the corner points extraction algorithm can be 

restarted by pressing the "Release" button. After the corner points have been confirmed, 

the operator may return to the main page. 
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Figure 29. GUI, online configuration page 

The main page is organized as follows. The major part is taken up by an interactive image 

that depicts the crane's working area in real-time. The displayed image shows the working 

area after warping the perspective (see Figure 23). The image is clickable. It enables the 

operator to set the desired position or select the load to pick using a mouse. Within the 

corresponding entries, the selected location is shown in numeric form. The operator could 

use either metric or "pixel" units. The "Metric / Pixel" checkbox switches between them. 

Because of the possibility of a misclick, the desired position should be confirmed with 

the "Set" button. This button is used to send these values to the PLC. To clear the desired 

position on the PLC side, the "Clear" button has to be pressed. The operator can draw the 

entered set position over the displayed image by selecting the "Set point" checkbox. The 

"Load position" checkbox is used to display the current load position as measured by the 

position encoders. The desired set point is represented by a rose circle, and the current 

load position is represented by a yellow circle.  

The feedback from the PLC, which contains all of the information needed to operate the 

crane, is displayed over the main image. The information is divided into five entries, as 

shown in Figure 28. The following information is displayed: 

 

 



74 

▪ Modbus – the status of the connection between the PC and PLC 

▪ State – the internal state of the PLC 

▪ Status – the decoded contents of the status bits Modbus register (see Table 5) 

▪ Command – the command that is currently set in the Modbus register 

▪ Load position – the current load position in metric units 

To force the PLC to execute a command, the operator must either select it from a 

dropdown list or type it manually into the corresponding entry. The command should then 

be sent by pressing the "Send command" button. In the case of the "Go to" and "Go to 

and back" commands, the desired set position must be specified in advance (i.e., the 

corresponding entries should be filled). If there is no need to set the lift-line length, the 

corresponding entry can be left blank. It will automatically be filled with zero. It may be 

preferable to manually adjust the lift-line length in some cases. For this purpose, there are 

corresponding "Up" and "Down" buttons on the right GUI panel. It is also possible to lift 

or lower the load to its maximum by using the "Highest" and "Lowest" buttons, 

respectively. The "Pick / Release load" button is self-explanatory, and it is used to either 

pick or release the load, depending on the current status. In case of abnormal system 

behavior, the operator can immediately turn off all motors by pressing the “Emergency” 

button on the right GUI panel. 

As mentioned in Section 5.2.2, both types of encoders must be reset on a regular basis. 

To initiate the procedure for resetting the encoders that measure the load deviation angle, 

the “Angle” button has to be pressed. Following that, the operator must confirm in the 

pop-up window that the load is perpendicular to the floor and not hanging. To reset the 

position measuring encoders, the “Position” button has to be pressed. 

The developed application allows for the storage and retrieval of RGB sensor parameters. 

These parameters are stored in a database. The RGB sensor parameters can be adjusted 

by running the Camera module – from the command line (see Section 5.3.2). However, it 

is more convenient to configure them using the vendor's "Intel RealSense Viewer" 

application. The set parameters are preserved until the camera is reloaded. 
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The following is a description of how the semi-automated “Pick QR” command works. 

After selecting the load, its center point coordinates are placed into the entries intended 

for setting the desired position. The required lift-line length is automatically set based on 

the load height that is encoded in the QR code. The operator should confirm the set point 

by pressing the "Set" button. To initiate the cart movement to the desired position, the 

operator should send the "Pick QR" command to the PLC. It can be done by pressing the 

“Send command” button. When the crane reaches the desired position, it automatically 

picks up the selected load. Once the load is picked, the system suggests an area to move 

it based on its type. The suggested area is depicted as a blue rectangle overlaid on top of 

the main image. The operator must then enter the desired position for the load to be 

released, confirm it, and send the "Pick QR" command again. When the crane reaches the 

desired position, the load is automatically released. The "Load description" entry displays 

the load information encoded in the QR code. 
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The aim of this thesis was to integrate CV technology into the existing 3D crane control 

system. To accomplish this, two nodes (the camera and the PC) were added to the initial 

system architecture. The role of the main controller has been moved from the PLC to the 

PC. It opened up a wide range of possibilities for system improvement. For example, it 

gave more freedom in designing the GUI, making the crane operation process more 

interactive and user-friendly. 

Since the resulting system includes two computing devices (the PC and PLC) with 

significantly different program execution speeds, an appropriate control loop was 

implemented. The responsibilities of the PC and the PLC are divided so that all time- or 

safety-critical functionality is implemented on the PLC. The communication logic, which 

is primarily based on a system of checks and flags, was designed preserving the room for 

future development.  

For implementing the CV part of the system, both the DL-based and classic CV 

approaches were tried out. Since the proposed system is meant to be used indoors, and 

the traditional CV performed better in these conditions, it was decided to stick with this 

method. 

The proposed system was evaluated and tested in a laboratory environment. The results 

were satisfactory. The implemented control loop worked well, and there were no 

problems with communication between the controllers. There were no issues found with 

the corner points extraction algorithm as well. The corner points were extracted accurately 

enough, and there was no need to precisely find the right camera's FOV. The accuracy in 

estimating the coordinates of the load’s center point was high. However, the accuracy 

dropped slightly when it came to locating the center points of loads that were closer to 

the camera's nearest crane frame edge. It's very likely because of the perspective 

transformation performed prior to QR code detection. Considering the aforementioned, it 

is reasonable to conclude that the proposed system is viable. 

6 Summary 
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6.1 Future work 

Despite the good results obtained so far, the system still has a lot of room for future 

development. Currently, the system may only recognize cargos marked with a QR code. 

Since the practice of marking cargo with QR codes is not yet widespread in the industry, 

the system should also be able to detect and estimate the dimensions of an unmarked 

cargo (in order to find its center point). Another aspect to work on is detecting people in 

the working area and implementing the safe-route planner for estimating cart movement 

trajectory. The route planner should avoid situations in which the crane moves above a 

person. The author believes that the DL-based approach is preferable for resolving CV-

related issues associated with object detection (including people). Hence, it may be wise 

to consider developing an algorithm that would automatically capture the crane's working 

area under certain conditions during crane operation. This will eliminate the need to 

gather training data in the future. 

Another thing to consider is that the corner point extraction algorithm is currently highly 

dependent on hard-coded parameters that are tuned based on environmental conditions. 

To address this issue, image preprocessing should employ a color normalization 

algorithm. Hence, the color mapping function should be determined, which can be done 

using the DNN. Once the mapping function is found, even if a frame is captured under 

unknown illumination, the constituent colors could be transformed to ones as if they were 

captured under predetermined illumination.
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The project was implemented using the following development tools: 

▪ PyCharm Community Edition (version 2021.1.3) 

▪ ABB Automation Builder (version 2.3.0847) 

Table 7 lists the Python packages that should be installed in order to build the developed 

application (that runs on the PC side). All the necessary libraries are included in these 

packages. The column "Version" shows the package release version used during project 

development. Python 3.8.12 was used as an interpreter, and the virtual environment was 

created with conda 4.10.1. 

Table 7. Python packages that are required to build the application 

Package Version 

PyQt5 5.15.6 

opencv-python 4.5.4.60 

pyrealsense2 2.50.0.3812 

pymodbus 2.5.3 

pyzbar 0.1.8 

kraken 3.0.6 

 

Even though the Detectron2-based CV part implementation is not required to build the 

application, the instructions below could be useful for future development or testing. 

Since Detectron2 does not provide official support for Windows OS, the following 

software and drivers with the specified versions should be installed. It is important to note 

that the given order must be strictly followed. It allows running the latest (at the time of 

this writing) Detectron2 build (v0.5) on Windows OS. The author verified this method 

and found it to be valid. It is recommended to create a new virtual environment, even if 

the libraries installed through this method are not related to those previously installed. 

Appendix 2 – Software dependencies 
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The first step is to install Anaconda. For some reason, the use of a standard Python venv 

module fails to properly install the packages (in relation to this method). 

The second step is to install CUDA toolkit 10.2. It is required to use GPU for calculations. 

The third step is to install PyTorch. The version should be compatible with CUDA 10.2. 

The fourth step is to reinstall Microsoft Visual Studio. The only "Desktop development 

with C++" component, which can be found under the Workloads tab, is required. It is 

necessary to restart the system after the installation. 

The fifth step is to install cython and pycocotools. Since errors may occur during the basic 

pycocotools installation, the version that works only on Windows OS should be used 

instead (pycocotools-windows). 

The sixth step is to install Detectron2 from the official GitHub repository. If a new build 

will be released, version 0.5 should be specified. Otherwise, there is no guarantee that 

this method will work. 

The final step is to install OpenCV and pywin32. 

 


