
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

ITC70LT

Stefano Panarese - 165624

NESSUNO: A FRIEND-TO-FRIEND
ANONYMOUS COMMUNICATION

PROTOCOL

Master Thesis

Supervisor: Olaf Maennel

 Ph.D.

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

ITC70LT

Stefano Panarese - 165624

NESSUNO: SÕBRALT-SÕBRALE
ANONÜÜMNE KOMMUNIKATSIOONI

PROTOKOLL

Magistritöö

Juhendaja: Olaf Maennel

 Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Stefano Panarese

May 6, 2018

4

Abstract

This thesis presents Nessuno, a distributed friend-to-friend anonymous communication

protocol. This study starts with introducing the privacy and anonymity issues emerging

from the contexts of those countries with a heavy employment of surveillance. In these

contexts, the weaknesses of existing solutions to achieve anonymity in communications

are noticeable. Inspired by some of the approaches used in other solutions such as

Freenet, Retroshare, Bitmessage, PGP and mix networks, Nessuno adopts a flooding

mechanism to forward the messages to the rest of the network and asymmetric

encryption to secure the communication’s integrity and confidentiality. The friend-to-

friend policy prevents the user from establishing direct connection with untrusted nodes,

hence carefully choosing trustworthy peers to directly connect with becomes vital. This

thesis also provides guidelines for the implementation of a client for Nessuno and a

basic proof-of-concept is available on GitHub for the community. The results coming

from a theoretical performance test highlight the performance trade-off that induced by

the adoption of a flooding mechanism, however, small changes in the protocol could

lead to considerable improvements in its performance.

This thesis is written in English and is 36 pages long, including 8 chapters and 5 figures.

5

Annotatsioon

Nessuno: sõbralt-sõbrale anonüümne kommunikatsiooni

protokoll

Antud lõputöö esitleb Nessunot, hajutatud sõbralt sõbrale anonüümne

kommunikatsiooni protokoll. Antud lõputöö tutvustab privaatsus ja

anonüümsusprobleeme nendes riikides kus rakendatakse tugevat töötajate järelvalvet.

Selles kontekstis on eksisteerivate lahenduste anonüümsus märgatavalt nõrgem.

Inspireeritud teistest lahendustest näiteks nagu Freenet, Retroshare, Bitmessage, PGP ja

mix networks, siis Nessuno kasutab ülevoolavus mehhanismi, et edastada sõnumeid

kogu võrgule ning asümmeetrilist krüpteeringut, et turvata kommunikatsiooni

terviklikkust ja konfidentsiaalsust. Sõbralt sõbrale poliis väldib seda, et kasutajad

saaksid otse ühendust võtta mitteusaldusväärsete klientidega, seega hoolikalt

usaldusväärsete klientide valimine muutub oluliseks. Antud lõputöö estiab ka juhised

kuidas Nessuno klienti üles seada ning algeline ideetõestus on saadaval GitHubis kogu

turvalisuse kommuunile. Tulemused mis on saadud teoreetilistest jõudluse testidest

näitavad jõudluse kompromisse, mis tekib ülevoolavuse mehhanimsit ning väiksed

muudatused protokollis võivad oluliselt jõudluse näitajaid tõsta.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 36 leheküljel, 8 peatükki, 5

joonist.

6

List of abbreviations and terms

FBI Federal Bureau of Investigation

NSA National Security Agency

GCHQ Government Communications Headquarters

BND Bundesnachrichtendienst

P2P Peer to Peer

CC Common Criteria

ISP Internet Service Provider

IP Internet Protocol

TTL Time to Live

F2F Friend to Friend

RSS Rich Site Summary

XXE XML External Entity

SS7 Signalling System No. 7

XMPP Extensible Messaging and Presence Protocol

XML Extensible Markup Language

PGP Pretty Good Privacy

DARPA Defense Advanced Research Projects Agency

I2P Invisible Internet Project

UDP User Datagram Protocol

TCP Transmission Control Protocol

NAT Network address translation

TOFU Trust on first use

SSH Secure Shell

IV Initialization vector

AES Advanced Encryption Standard

CBC Cipher Block Chaining

UDT UDP-based Data Transfer

FIFO First in last out

7

UI User Interface

API Application programming interface

CDN Content delivery network

8

Table of contents

1 Introduction .. 11	

1.1 Definitions ... 15	

1.1.1 Privacy ... 16	

1.1.2 Anonymity ... 17	

1.1.3 Pseudonymity ... 17	

1.1.4 Unlinkability .. 17	

1.1.5 Unobservability .. 17	

1.2 Assumptions .. 18	

1.2.1 The adversary ... 18	

1.2.2 The users .. 19	

2 Related Work ... 20	

2.1 File sharing P2P solutions ... 20	

2.2 Chat protocols ... 21	

2.2.1 Signal and MTProto ... 21	

2.2.2 XMPP ... 22	

2.2.3 Ricochet ... 23	

2.2.4 Bitmessage ... 23	

2.2.5 PGP .. 24	

2.3 Anonymous routing systems ... 24	

2.3.1 Mix networks ... 24	

2.3.2 Onion routing ... 25	

2.3.3 Tor .. 25	

2.3.4 I2P .. 26	

3 Protocol Design .. 27	

3.1 Introduction to Nessuno .. 27	

3.2 Relay ... 28	

3.3 Joining the relay .. 28	

3.4 Flooding .. 28	

3.5 Choice of transport layer protocol .. 29	

9

3.6 Authentication ... 30	

3.7 Packet structure ... 31	

3.7.1 Content ... 31	

3.7.2 HMAC ... 31	

3.7.3 Header .. 32	

3.8 Identify received messages ... 32	

3.9 History of events ... 33	

3.10 Cryptography .. 33	

4 Attacks against Nessuno .. 35	

4.1 Sybil attack .. 35	

4.2 Eclipse attack .. 35	

4.3 Attack on user’s anonymity .. 35	

5 Implementation .. 37	

5.1 TCP over UDP .. 37	

5.2 Message queue .. 37	

5.3 Forwarding .. 38	

5.4 UI .. 38	

5.5 Factory .. 39	

5.6 Multithreading ... 39	

5.7 Storing the key pair ... 40	

5.8 Hole punching ... 40	

5.9 Keep alive ... 40	

5.10 Console commands ... 41	

5.11 Source code ... 41	

6 Performance ... 42	

6.1 Packet size ... 42	

6.2 Bandwidth estimation ... 43	

6.3 Results ... 44	

7 Conclusion ... 45	

8 Future work .. 46	

Bibliography ... 47	

10

List of figures

Figure 1. Message packet general structure .. 31	

Figure 2. Content block ... 31	

Figure 3. HMAC block ... 31	

Figure 4. Header block .. 32	

Figure 5. Chart representing the estimated bandwidth consumption 44	

11

1 Introduction

As the Internet evolves, new and more powerful ways to communicate digitally keep

emerging. The digital era we now live in has unleashed a wide range of opportunities

for people to connect to and communicate with each other, create various groups and

networks, and share information and digital property such as pictures and music. These

new ways of communicating are both tending the users’ various – and increasingly

diverse – needs better than ever before, but also posing as a potential threat to their

privacy at the same time. The political significance of the Internet has led to states

building architectures aimed to control this flow of communication, information and

property with tools such as laws and regulations, and by establishing cybersecurity units

in agencies such as FBI and NSA. These measures have essentially given life to the

Internet censorship.

The undisputed pioneer of Internet censorship and surveillance is China. The Chinese

government has built a system in 1998 known as the “Great Firewall of China”, by

using firewalls at the national choke points of the Internet, to establish what are

essentially its digital national borders [1]. Nowadays, this approach to Internet control

has been legitimized – at least superficially – by establishing laws and rules to justify

filtering and restricting of information flow [2].

In 2013, the Reporters Without Borders filed a report listing the “State enemies of the

Internet” [3]. This list consists of countries whose governments apply intrusive mass

surveillance on their citizens, with some of the top countries being Bahrain, China, Iran,

Syria and Vietnam – mainly developing or newly industrialized countries. During the

same year, however, Edward Snowden’s revelations on NSA’s mass surveillance

practices came about. It led to raising the US citizens’ as well as other Western peoples’

awareness of their privacy rights, making online privacy issues one of the most

discussed topics in the field of human rights as well as technology.

12

One of the fundamental human rights linked to this discussion is the freedom of speech,

protected by many multilateral treaties and conventions, such as the Universal

Declaration of Human Rights and the International Covenant on Civil and Political

Rights. Internet censorship gives rise to potential threats to freedom of speech, by

restricting what can be said and what information can be shared. In fact, the possibility

to stay anonymous online is the only possible way to go around governmental

restrictions on free speech. If the possibility to stay anonymous is weakened, one could

end up as a victim of threats and prosecution due to sharing of an unpopular or even

illegal opinions or information. The Syrian government, for example, frequently traces

and tracks dissidents by intruding their private information, in order to prosecute them

[4].

A close term with privacy, anonymity is also considered a fundamental right in today’s

society. In many democratic countries, the government has issued regulations to protect

it in every facet along with digital networks [5]. However, in countries where the

government has the interest and power to break the anonymity through lawful

techniques (court orders and regulations) or unconventional solutions especially in the

absence of a democratic authority, protecting the users’ anonymity has become a

challenging task. Telecommunication technologies have raised a considerable concern

about the preservation of privacy [6], but the definition of anonymity differs in relation

with the context and the reasons why it is needed.

Although the principle of privacy can be considered in a number of fields such as

finance, health, education or public records, this study focuses on two aspects. First, the

need of privacy and anonymity coming from political dissidents, journalists and

researchers whose freedom of speech has been denied by an oppressive regime with

high capabilities to wiretap the digital traffic in order to track and prosecute the

subjects. Second, people living in a society that applies mass surveillance justified by

protection against terrorism or other threats to the nation.

With this collision of human rights and technology, a new term depicting a sort of

activism in cyberspace has been coined: hacktivism [7]. In the Syrian case, these

hacktivists were journalists who managed to evade the government’s surveillance

through anonymous networks, all the while informing the rest of the world of the

13

internal situation, and by this, drawing the international community’s attention towards

the Syrian problem. Hacktivists can exist through technologies, that allow freedom of

speech by creating digital anonymous identities in order to stay in the blind spot of the

surveillance measures. Their perception of what is actually secure and private is

different from a company offering anonymity and security services, seeing as these

companies can be legally forced to give out the data access permission to law

enforcement agencies, disclosing all the information supposed to be private [8].

An example of this practice dates back to 2005 when Shi Tao, a Chinese journalist, was

jailed for eight years after “leaking state secrets” [9]. The secrets that led the journalist

to the arrest were about the 15th anniversary of the Tiananmen Square massacre where

the Chinese soldiers opened fire on unarmed civils. The official death toll counted 241

deaths while the numbers that Tao gave to a human rights group was in the order of

thousands [10]. What stood out from the news was the fundamental involvement of the

company Yahoo that, under a court order, handed over Tao’s account information that

were subsequently used in the case [11].

The need of journalists from all over the world to protect the identity of their sources

has become critical. According to the Ethical Journalism Network, a coalition of more

than 60 groups of journalists, editors and press owners, before the digital era, protecting

the source of confidential information was a professional matter rather than only ethical

[12]. If a journalist promises to a source to grant him anonymity, the journalist has to

honour the promise and protect the source, contrarily he would lose his trustworthiness

together with other opportunities.

Nowadays this job has to adapt to the new context in which protecting a source is not

only a matter of choice but instead, it has become a challenge. After the confidential

information that Snowden released, the impression is that the NSA has a counterpart in

many other countries like in U.K. where the Government Communications

Headquarters (GCHQ) is alleged to use a system called Tempora to intercept every

communication data passing through their U.K. network up to 30 days [13]. Likewise,

the German’s federal intelligence agency (BND) is accused by the whistle-blower in an

interview to the Spiegel to be sharing users’ information in exchange of monitoring

tools [14]. As reported by The Citizen Lab, a group of researchers based in Canada, a

14

software called FinFisher is used to monitor users in 25 countries all over the world and

used by the governments to target dissidents from the opposition group [15].

As the public’s awareness towards privacy issues keeps rising, and as more whistle-

blowers keep exposing governmental surveillance practices, there is a growing need for

a truly anonymous way to communicate. Studies have identified a variety of solutions

applicable to many different situations and anonymity needs [16]. It has to be

considered, however, that in many cases they cannot be applied in a context where the

offensive side is represented by a government, as they can demand access to private or

public devices containing its citizens’ data or force the ISP to disclose further

information.

Considering a state-level adversary model with high capabilities (specified in the

chapter 1.2.1), the current solutions available for communicating anonymously present a

variety of issues that prevent them to be used in a high-risk environment. Some

technologies like Signal are legit from the point of view of the cryptographic stability

but its architecture is centralized. As a centralized architecture can be vulnerable to the

pressure of a government, any technologies relying on a central entity will suffer from

the same weakness. Applying a peer-to-peer (P2P) approach is considerably better as a

distributed system does not present a single point of failure and allows a better control

in terms of security and anonymity. However, after analysing a wide range of

anonymous P2P solutions such as Bitmessage, Freenet, Gnutella, Retroshare not only

limited to communication but also content and file sharing, it can be concluded that

despite claiming security and anonymity, some technologies made contradictory choices

in the implementation that favour a wider range of functionality which opens the system

to more vulnerabilities as the attack surface increases. Some other projects, like

Bitmessage that takes advantage of the Tor hidden services, present a tight coupling

with a specific technology that against a state-level adversary becomes unreliable.

This study will present “Nessuno”, an anonymous communication protocol that

provides peer-to-peer messaging in a non-trusted environment, hiding sender, receiver

and content of the message. Nessuno adopts the same concepts employed in other P2P

anonymous solutions like the friend-to-friend approach used in Retroshare but aimed to

protect the user’s identity from a state-level threat. In a friend-to-friend network any

15

user can invite a known user into the network who does not have knowledge of all the

other users, moreover he will not be able to make direct communication with any of the

other users except the one that invited him in. This private approach to the P2P network

aims to give a further layer of invisibility to the users as long as only trusted “friends”

are involved.

In order to achieve the user’s identity protection, the protocol makes use of a flooding

mechanism (see the chapter 3.4) and cryptographic solutions involving asymmetric

encryption and signature. The first is used to congest the network with messages, hence

preventing an attacker to link a message to a sender or a receiver. The cryptographic

protection allows the message to be readable by the intended recipient only and not be

tampered by any other subject in the path.

From a technical viewpoint, the goal of Nessuno is to allow a small group of individuals

to safely communicate in a closed network despite living under the pressuring presence

of a state-level adversary interested in preventing or altering the communication

between the users.

The “Related Work” section analyses the existing protocols and systems for anonymous

communication, highlighting the underlying reasons for their failure in the example

contexts. In the “Description of the Protocol” section, Nessuno is presented alongside

with the core concepts which make it an ideal protocol to use to protect the user identity

when communicating under surveillance. The “Implementation” chapter contains the

guidelines for the development of a client that implements the protocol introduced in

this paper. The “Performance” chapter shows an estimation of the performance of the

Nessuno when the number of users participating changes under different network

conditions. The “Conclusions” section contains a summary of what the solution

presented in the paper and lastly, the “Future Work” section gives an insight of the

future challenges that Nessuno will tackle.

1.1 Definitions

When dealing with privacy and anonymity it is critical to give them a definition as the

concepts involved can be misunderstood. This research will derive these definitions

16

from the Common Criteria for Information Technology Security Evaluation standard

(CC) [17], hence the focus will be held in the technological environment with a

significant attention to the Internet.

1.1.1 Privacy

The concept of privacy can be spotted in the Universal Declaration of Human Rights as

one of the human rights in two different articles:

§ Art. 12: No one shall be subjected to arbitrary interference with his privacy,

family, home or correspondence […]

§ Art. 19: Everyone has the right to freedom of opinion and expression; this right

includes freedom to hold opinions without interference and to seek, receive and

impart information and ideas through any media and regardless of frontiers.

In agreement with the CC standard, Alan Westin also defines privacy as “the claim of

individuals, groups or institutions to determine for themselves when, how, and to what

extent information about them is communicated to others.” [18]. The concept of privacy

can be further defined according to the sphere of influence it resides.

The context relevant for this study belongs to the privacy in communications which

deals with the protection of the privacy of telephone, email and other channels to

establish a communication. This definition is different than the information privacy,

which is not part of the scope of this research, that instead covers the situations

involving the processing of personal data and “the individual’s claim to control the

circulation of data about himself” [19].

As stated in the CC standard, privacy concerns "user protection against discovery and

misuse of identity by other users." [17] and its requirements are represented by:

§ Anonymity

§ Pseudonymity

§ Unlinkability

§ Unobservability

17

1.1.2 Anonymity

It is clear that according to the definition of privacy above, anonymity is referenced as

one of its primary properties. This conception is also described as the property that

“ensures that a user may use a resource or service without disclosing the user’s

identity. The requirements for anonymity provide protection of the user identity. […]

Anonymity requires that other users or subjects are unable to determine the identity of a

user bound to a subject or operation.” [20]. Therefore, the definition of anonymity

adopted for this study will be the protection of the identity of the user in any step of the

communication process.

1.1.3 Pseudonymity

When considering communication is crucial to identify the user in a different way than

his real-world identity. Using a pseudonym is a solution that fits the problem and allow

the user to interact with other pseudonyms that shield other users. In this way, the real

identities are protected and an unrelated digital identity is created (see Unlinkability

below). As stated by the CC, this property “ensures that a user may use a resource or

service without disclosing g its user identity, but can still be accountable for that use.”.

1.1.4 Unlinkability

The unlinkability property is a precondition for the anonymity and the safeguard of the

user’s real-world identity. It concerns the absence of information from an attacker’s

point of view to determine whether a certain activity can be linked to the user or not.

1.1.5 Unobservability

According to the CC standard, unobservability is achieved when the attacker “cannot

determine whether an operation is being performed.”. Some more authors demand for a

differentiation with undetectability [20] affirming that a process can be unobservable

but can still be detected. This study will follow the CC standard definition.

18

1.2 Assumptions

Since the need for an anonymous protocol is present in different context as explained

above, it becomes critical to provide a formal assumption regarding the users of the

system and the adversaries that this protocol is intended to resist to.

1.2.1 The adversary

The definition of the adversary is vital for designing an anonymous protocol aimed to

resist to it. As every project involving anonymity and censorship-resistance the

adversary is highly-skilled, strongly-funded and resourceful whose aim is to intercept

and wiretap people’s communication, localize the user or deny the communication.

The adversary can be either external or internal to the anonymous communication

network. It can be active or passive. In case of an active adversary, it can be referred as

attacker while, if it applies a passive approach (eavesdropping) the adversary can be

defined as observer. The adversary can also have a global access or local access

depending on the spectre of network under its control.

The primary profile outlined in this paper involves:

§ An attacker with internal limited scope. The extend of the adversary’s

capabilities are assumed to allow it to penetrate the network and gain the trust of

a limited portion of the network.

§ An observer with global scope. It is assumed that the adversary can intercept

and observe all the traffic from the national (or possibly global) Internet

network. The realistic case considers an adversary that can control an Internet

Service Provider (ISP) for surveillance purposes.

§ An attacker with limited active scope. The adversary is assumed to be able to

create, tamper or drop Internet traffic. The capabilities however, are limited to

distinct IP addresses. This study does not contemplate an adversary that can

prevent the Internet access at a national level despite being a realistic risk.

§ An attacker with limited physical scope. In performing an attack, the

adversary is assumed to make use of coercion techniques only if the user has

been identified.

§ Ability to locate the user given his IP. It is assumed that the adversary is able to

locate the user thanks to the control over an Internet Service Provider (ISP).

However, this eventuality is possible only after his IP has been found

19

§ Computational power. The computational power available for the adversary is

considered to be greater than the aggregated power of the entire network.

Despite the greater power, the adversary is not able to break the cryptographic

concepts that lie behind the protocol.

1.2.2 The users

Further assumptions must be given about the profile of the potential user of the

anonymous protocol.

§ Access to the Internet. It is assumed that every user who uses the system

possesses the tool and the possibility to access an Internet connection. It is also

assumed that the user is using a computer that has not been compromised as if

this precondition would be broken it would make the anonymity core concept

inefficient.

§ Different level of trust. Every user connects willingly to at least one user

(called friend) in order to access (or create) a network. The friend is assumed to

be trusted by the user as this is the fundamental requirement to keep the user safe

and hidden by his trusted direct connection to his friends. Every other user who

is part of the network and is not a friend of the user is considered not trusted.

Nevertheless, the user is willing to have an indirect connection (through his

friends) in order to engage a communication with any user of the network

whether he is a friend or not. Moreover, it is not assumed that any of the users is

trusted by every other user in the network.

§ First contact is out of the system. In order to access the system a user needs to

be directly invited. The invitation is assumed to be carried out offline (physically

meeting the user) or through another system that is reciprocally considered

trustworthy.

§ Confidential content. Every message that transits in the network is assumed to

be strictly confidential.

20

2 Related Work

One of the earliest researches trying to satisfy the need for anonymous communications

is found in 1981 with the paper from David Chaum “Untraceable electronic mail, return

addresses, and digital pseudonym” [21]. Until now, the research has found a wide-range

of solutions concerning different shapes of the need of privacy and anonymity. This

chapter analyses the most important technologies that inspired and shaped the backbone

of the protocol that will be outlined in the following chapters.

2.1 File sharing P2P solutions

The huge demand for a distributed system for file sharing was answered by the

successful service called Napster [22]. The system, however, was relying on a central

server to index and link the files to their location among the peers. This led to Napster

being sued by a record company after the users started using the service to share mp3

files containing music under the company's copyrights [23]. In July 2001, Napster was

forced to shut down to comply with the injunction that included a bond of 5 million

dollars [24].

Originally developed by the IT company Nullsoft in 2000, Gnutella was the first peer-

to-peer network that allowed file sharing without the need of a server, therefore resistant

to surveillance and court orders.

In its peer-to-peer network, users connect to each other to share files and information,

making all the users equally important for the network. When a user needs a file, it will

issue a query message to its neighbours with a TTL (Time-to-leave) header set. The

peer that receives the query message forwards it and decreases the TTL by one and

forwards it in the same way until the TTL reaches zero. This method used by Gnutella

to deliver the message to all the peers in the TTL distance, is called flooding.

What ended up Gnutella’s downfalls were scalability and user-traceability. The protocol

was meant to be used by a big number of peers but the flaws in its design lead it to take

up the entire bandwidth of a 56Kbs Internet connection for 10 queries per second [25].

21

Gnutella’s flaws in its design could also leak information that could be used for tracking

users as the TTL (Time-to-Live) header is set to 6 if the sender’s is the initiator of the

query [26].

Freenet [27], was introduced as a privacy-focused alternative to Gnutella. It works by

storing an encrypted snippet of the document to be shared anonymously by each peer.

Freenet creates a self-contained network, which makes it isolated from the regular

Internet. Inside of this kind of network users can create content without any censorship

or limitation, and access it anonymously. Freenet introduced the concept of Friend-to-

Friend (F2F) rather than peer-to-peer (P2P) as it can be set to connect only to trusted

peers (friends) creating a further layer of isolation. This makes Freenet very hard for the

law enforcement to block (although not by default).

Despite having won the SUMA-award in 2015 for “surveillance and censorship-proof

Internet solution” [28], it still has some flaws in the design that can allow a content

retriever (a peer who wants to access the content) to be traced back “even if a single

request message has been issued by the retriever” [29]. This is due to the two-hop

routing lookup implemented in Freenet which allows a node to see the location of its

neighbour’s neighbours.

RetroShare, another communication and file-sharing solution, follows the footsteps of

Freenet by utilizing the same F2F concept in its backbone architecture to create an

isolated network. Its design allows multiple services to run in the network: text chat,

voice/video calls, email, social network and file sharing also via RSS feeds called

channels. However, the wide-range of features that the system can provide, increases

the attacker’s attack surface threatening anonymity and security of Retroshare’s users.

In 2016 Elttam [30], an IT security company, shared a security review of Retroshare’s

codebase highlighting critical vulnerabilities such as XXE Injection and remote heap

overflow [31].

2.2 Chat protocols

2.2.1 Signal and MTProto

Signal (formerly known as TextSecure) and MTProto are cryptographic protocols that

allow encrypted communication between users in an instant messaging application. It

22

incorporates end-to-end encryption to provide security and confidentiality, and a central

server to manage traffic and authentication. Without digging into the solid cryptography

approach used in both Signal and MTProto, the centralized structure of the systems is

the kind that cannot provide any sort of anonymity for the users when the attacker is a

state or its agency. It is not common for security agencies such as the NSA to require

companies to provide them with a backdoor to their system. According to the journalist

Glenn Greenwald, the NSA routinely receives devices before they are exported to

international customers in order to implant backdoor surveillance tools [32]. Also, the

fact that companies can publicly deny any cooperation, does not mean that we know

what is happening behind the curtains.

The biggest weakness of these protocols is the fact that their client implementations

(WhatsApp, Telegram, Signal as the most famous) rely on mobile numbers as

authentication opening the system to the drawbacks that affect SS7. Signalling System

No. 7 (SS7) is the standard protocol used in telecommunication networks for

transferring calls, messages and other information. Law enforcement agencies can

access the SS7 network to intercept calls, messages and location of a given telephone

number as part of surveillance. This system also presents critical vulnerabilities as

demonstrated by the researcher Karsten Nohl for the CBS in 2016 when he tracked the

congressman Ted Lieu just by his phone number [33].

The impact of this vulnerabilities is not limited to the user’s privacy but it also threats

his security as if the SS7 network is not reliable, the two-factor authentication that

represents an important defence against hackers, becomes easier to exploit.

2.2.2 XMPP

Extensible Messaging and Presence Protocol (XMPP) is an XML-based

communications protocol that relies to a client-server architecture but with a

decentralised model. This means that every user can run an XMPP server and there are

no authoritative central servers like in the above presented examples. Sometimes, this

creates a sense of security and anonymity which can be misleading when the server has

not been set up in a secure way. As this is still a centralized protocol, the scenario

presented in this research would expose it to all the weaknesses that a decentralised

protocol would solve.

23

2.2.3 Ricochet

Ricochet is a peer-to-peer instant messaging software that provides complete anonymity

by using end-to-end encrypted and metadata free communications.

At the core of Ricochet are Tor hidden services. Every node runs a Tor hidden service

and the traffic is routed in the Tor network and it never leaves it.

Although it provides a high level of anonymity as IPs cannot be spoofed, Ricochet relies

too heavily on Tor hidden services. This opens the system to every security flaw that

might hide in the hidden service itself [34].

2.2.4 Bitmessage

Bitmessage is a very interesting project that provides a P2P encrypted protocol used in

their own P2P network [35]. A user can send a message to an address identified as an

alphanumeric string, after which the message is replicated in the entire network, and

finally encrypted in a way that only allows the actual recipient to decrypt it. This

mechanism provides anonymity for both the sender and the receiver who will remain

hidden until somebody (the recipient) decrypts the message. Therefore, every node will

try to decrypt the message and will fail if the message was not addressed to them.

Considering the size and the computational power of the network, the system also

implements a proof-of-work system to prevent flooding.

The proof-of-work system was formalised by Ari Juels and Markus Jakobsson in their

paper in 1999 [36] but was first introduced in anarticle [37] by Cynthia Dwork and

Moni Naor in 1993. The system is based on a task (e.g. creating a hash) which is hard to

compute in terms of time and cost but easy for others to verify. In the case of

Bitmessage, it uses the proof-of-work to prevent denial-of-service attacks that need an

extraordinary computational power that cannot be afforded by most attackers.

Bitmessage can be extremely powerful for big groups of people that can take advantage

of the large network to achieve anonymity when communicating. However, in case of a

smaller group, users might not want to share their connection and messages with the

whole network. The benefits of Bitmessage’s computational power could be

reconsidered as this lead to receiving packets from an untrusted source.

Good evidence of this danger was found on the 13th February 2018, when the

Bitmessage group disclosed a remote code execution vulnerability that could de-

anonymize the users behind a node [38].

24

2.2.5 PGP

Pretty Good Privacy (PGP) is a program used for encryption of data communication that

provides authentication and privacy through cryptographic primitives that take

advantage of the asymmetric public/private key pair.

Developed in 1991 [39] by Phil Zimmermann, it can be adopted for signing and

encrypting simple texts, emails or files and it is designed for high-latency

communications.

Despite being described as close to military-grade encryption by the cryptographer

Bruce Schneier in 1995 [40], PGP has been proven to be vulnerable to a wide range of

practical and theoretical attacks such as man-in-the-middle attacks or cryptanalysis

attacks [41]. Besides, the two main issues of PGP are:

§ Missing forward secrecy. It makes sense for an attacker to collect all the

encrypted messages as compromising the private key will allow the entire record

of messages to be readable.

§ Leaking of metadata. A PGP encrypted message still leaks information that

allow a well-resourced attacker to trace the sender of the message and its

recipient as demonstrated by the senior researcher Nicholas Weaver from the

International Computer Science Institute in a pitch [42] at the security

conference Usenix Enigma.

2.3 Anonymous routing systems

2.3.1 Mix networks

The concept of mix network (mixnet) was coined in the 1981 by Chaum [43]. A mixnet

is a system made of nodes (mixes) that, based on permutation and cryptography, can

receive a certain number of messages in input before sending the encoded batch of

messages as new input to the other mixes in the network. This combined process hides

the sender and mix the messages in input to achieve the unlinkability between the

incoming and outgoing messages. High-latency mixnets like Chaum’s are more suitable

for email communications, as the delay introduced by each mix denies timing attacks.

On the other hand, low-latency networks are needed for browsing and instant

messaging.

25

2.3.2 Onion routing

Onion routing was developed first in 1990 by the U.S. Naval Research Laboratory, then

by DARPA (Defense Advanced Research Projects Agency) and finally patented by the

Navy in 1998. This mechanism was designed to protect the intelligence communications

and prevent the traffic to be intercepted [44].

While the mix networks security benefits come from mixing of the content among the

mixes, onion routing preselects the nodes in the network through which the message

will be routed. The chain of selected nodes is called circuit.

When a client sends a request to a server, the message is encrypted with the public keys

of the nodes in the circuit starting from the last node before the destination. Every layer

of encryption contains the information about what node should be next (or the server

destination if the circuit is over).

Every time the final encrypted message reaches a node, a layer of encryption related to

the specific node is read and the rest is sent to the next destination. When the server

sends data back, the nodes will travel through the circuit back to the client. As every

node is aware of the previous and the next one, the weakness of this system is

represented by the first and last node, leaking respectively the sender (client) and the

receiver (server). A global observer able to see the traffic from to the first node and

from the last node can correlate the incoming and outgoing traffic and trace the user.

2.3.3 Tor

The Tor project can be considered the second generation of onion routing. Developed in

2004, it is designed to create a network of relays aimed to route anonymous web traffic

[45]. Tor applies the principle of confidentiality on the onion routing by negotiating a

symmetric key with each node. In the first phase, the client generates the keys to be

used with each node in the circuit randomly chosen from a public list of volunteer

servers. Then, the client sends the message with the routing information to the first node

that decrypts the first layer containing the identity of the next node (as in the onion

routing) and the symmetric encryption key that will be used in the communication. At

this point the communication can start and the messages are encrypted with a symmetric

key achieving low-latency, vital to support browsing and instant messaging.

Tor can provide protection against traffic analysis attacks as the communication is

encrypted until the last node. However, the communication between the exit node (last

node) and the destination of the message is clear and it can potentially break the

26

sender’s anonymity if the message contains identifying information. The risk of being

de-anonymised is the highest when the attacker controls one of the nodes [46].

Recently, a new algorithm to select a trustworthy path of nodes has been developed by

researchers at the Naval Research Laboratory and Joan Feigenbaum from Yale

University to avoid man-in-the-middle attacks [47].

An important aspect of Tor is represented by its ‘hidden services’. A note can advertise

itself to some other nodes that will act as entry points for the server. The network will

then connect to any of the entry points and negotiate a node that will be used as a

meeting point in the node paths of the client and the hidden server. An attack against

hidden services aimed to locate them has been developed by Lasse Øverlier and Paul

Syverson in 2006. The assumption of the attack is that the adversary controls the first

node that the server selects to build the anonymous path because the clear traffic that the

node will receive will compromise the anonymity of the server. The relative

countermeasure was proposed by the same authors few months later with the

introduction of ‘valet nodes’. Valet nodes act as an additional protection layer that

guards the entry points preventing their direct communication with the hidden service.

However, in 2016 the Tor project announced that the implementation requires a

considerable amount of work, therefore the solution has not been adopted until more

volunteer developers will be found [48].

2.3.4 I2P

I2P (Invisible Internet Project) is a project started in 2003 as a censorship-resistant P2P

network similar to Tor. I2P was designed to provide the same functionalities as Tor

(P2P content sharing, end-to-end encryption and routing) but protecting the users by

keeping them inside the I2P network as opposed to Tor designed to be used as a proxy

to anonymously access the Internet. Like Tor’s hidden services, every user in the

network has two isolated paths (chain of nodes) for incoming messages and outgoing

messages to preserve the nodes’ anonymity. However hidden services can be accessed

from the regular Internet where I2P content is available only inside its own network.

In 2013 researchers have tested I2P security finding vulnerabilities that can eventually

de-anonymize the user. Once in control of a portion of the network, an attacker could

implement an Eclipse attack by blocking a resource to the node in that portion [49].

Hasib Vhora and Girish Khilari proposed a solution to prevent an Eclipse attack in 2015

with a structured overlay network [50].

27

3 Protocol Design

3.1 Introduction to Nessuno

Nessuno is a communication protocol through which a user can connect to other users in

order to exchange messages in a way that nobody, except the sender and the receiver,

can identify who sent the message, who received it and its content.

The aim of this protocol is to provide its user with a tool designed for censorship and

surveillance resistance. Every user is represented by a ‘node’ and the group of all the

interconnected nodes is defined as a ‘relay’. The messages that are sent and received by

the participants are in form of text and in any moment, new participants can join the

relay by connecting to one of the nodes in the relay. A ‘conversation’ is defined as a set

of one or more messages exchanged between two nodes that will be preserved and

stored by each participant.

The core properties that together make up the definition of secure and anonymous chat

protocol that Nessuno intends to be are:

§ Confidentiality. The content of the message is shared only with the recipient it

was addressed to.

§ End-to-end encryption. The message’s content is encrypted, hence not accessible

until it reaches the receiver.

§ Consistency. The content of the message has not been changed.

§ Anonymity. The IP addresses of both the sender and the receiver is hidden.

§ Metadata free. The source and destination of a message cannot be discovered.

§ Decentralization. The protocol does not rely on a central system but is

distributed among all the users.

§ Non-Traceability. The messages are replicated in all nodes making it difficult to

track the conversation flow (See ‘Flooding’).

§ Origin authenticity. The identity of the sender can be proven by the receiver.

§ Forward Secrecy. The confidentiality of past messages is preserved even if the

encryption has been compromised.

28

Nessuno implements the concept of friend-to-friend network (F2F) as seen in

Retroshare in order to connect directly only with trusted users. With Retroshare

however, closing the connections to just real-world trusted users will critically limit the

content available for the file sharing. Considering that Nessuno is a protocol primarily

meant for communications, it does not receive the same impact as in Retroshare.

The most important feature at the core of Nessuno is being a metadata-free protocol.

Nessuno does not send information about location or any other data related to the

message, to the sender or to the receiver in its messages and the mechanism of flooding

prevents the network to leak this information easily.

3.2 Relay

The relay consists of all the nodes that are able to send messages to each other.

A node can join a relay by connecting with one or more nodes that are already in the

relay by sending a ‘joining’ packet. If the other node accepts the joining packet, the new

node creates new private and public keys and sends the public key to the connected

node to share with the relay. A node can leave the relay by sending a ‘leave’ packet to

the relay. Alternatively, a node is considered out of the relay after some time of

inactivity. (described in ‘Keep alive’ in the ‘Implementation’ Section).

3.3 Joining the relay

Joining to an existing relay is a process that needs to be carried out simultaneously by

two users, one who is already part of the network and one who wants to join it. Prior to

joining the relay, the two users must exchange their IP addresses. This procedure is vital

as the two users need to reach from each other at the same time in order to implement

the hole punching (see chapter 3.5). The assumption made is that the two users know in

the real-world so they can find a third-party channel or communicate in person.

3.4 Flooding

Nessuno’s routing mechanism is based on a flooding algorithm.

When a node receives a packet, it forwards it to all the nodes directly connected to it

(except the one from which the message is coming).

29

This allows advantages like a certain level of ‘confusion’ in the relay that hides the

identity of both the sender and the receiver and the flow of the messages.

Since the flooding naturally uses all the possible paths, it will also take the shortest one.

Flooding the relay in this way also affects dramatically scalability, but since the

beginning, Nessuno protocol assumes that anonymity and security have to be achieved

as first priority, even when it needs a compromise with performance and scalability.

Not all the packets are forwarded but only the packets containing:

§ The public key of the new nodes joining the relay

§ A new public key from a node that renegotiate its key pair

§ A message to a node

§ Any other information that should be broadcasted to the entire relay

A consistent drawback of this approach can be the formation of loops in the routing

system. Nodes that have already received a packet that needs to be forwarded, should

not forward it again. Nessuno solves this problem by storing the information about each

packet received in each node. The information stored are the ID of the packet and the

time when the packet was received. When the packet is received, the node checks

whether the ID is present in the table and in case it is found, it compares the current

time with the time of the reception and if the validity period has expired, it forwards the

packet. Otherwise the node drops it.

3.5 Choice of transport layer protocol

The decision on implementing Nessuno over UDP or TCP requires an analysis of the

benefits and trade-offs that both implementation bring.

Although Nessuno is a protocol that implements privacy over performance, it has to be

considered that if the performances are uncontrolled or the connection is unreliable, the

communication becomes unreachable. Given the flooding logic involved, it is expected

that any node can experience high latency due to the generated congestion in the

network and some packets can be lost, therefore, it can be concluded that the protocol

needs a congestion and retransmission mechanism to make the connection reliable.

On the other hand, peer-to-peer connections happening in a real-world scenario would

be shielded by a Network Address Translation (NAT) that would drop the incoming

30

packets in absence of an established connection. Solutions involving the use of a server

to initiate the connection cannot be taken into consideration as for the distributed nature

of the protocol and the vulnerabilities that a server would introduce. The most suitable

choice for this problem is the implementation the hole punching. Hole punching is a

NAT traversal mechanism in which the peers that want to establish a connection, keep

sending packets to each other until the NAT filter identifies it as a single established

connection. This method is suitable for both TCP and UDP, however the latter is proven

to be more efficient when using hole punching [51]. Since Nessuno needs both TCP’s

reliability and UDP’s efficiency for traversing the NAT, the solution adopted is to use a

TCP over UDP approach. This method requires a custom implementation of the TCP’s

retransmission and congestion techniques in a UDP packet, therefore, is also possible to

implement only the mechanisms that are needed for the connection and reduce the

overhead of the standard TCP connection.

3.6 Authentication

The nodes in the relay are identified by a public key that is shared with the relay as soon

as the node is being accepted by one of the nodes in the relay.

The Nessuno protocol does not endeavour to link the public key of a node to the real-

world identity behind it. The authentication process is over when the presence of the

private and public keys is verified, hence, it is user’s responsibility to apply a Trust-on-

first-use (TOFU) approach like in SSH protocol to draw a line between the

cryptographic identity and a real-world persona [52].

The key pair is changed every minute to provide forward secrecy, therefore, even if the

private key has been compromised, the vulnerable messages will be limited in that

timeframe.

31

3.7 Packet structure

This section contains the description of the packet structure that is available in more

details in the Github repository of the project 1. Details about the cryptographic

primitives used are in the chapter 3.10.

In order to forge the packet that contains the message to be sent, Nessuno splits the

payload in three blocks: header, HMAC and content.

Figure 1. Message packet general structure

3.7.1 Content

Figure 2. Content block

The content block generation starts from the actual message that the node wants to send,

prepended with the UTC time [53] of the moment that it was created. This block is then

encrypted using AES-128-CBC (yellow block) and prepended with the random

Initialization Vector (IV) used for the encryption.

3.7.2 HMAC

Figure 3. HMAC block

1 Panarese, Stefano. “Crypto Module”. GitHub. Available
https://github.com/Silent93/Nessuno/blob/master/Readme.md [Online] [Accessed 7 5 2018]

32

The HMAC contains value of the content block hashed with SHA-1-HMAC using a

random key. This block is necessary in order to protect the content from tampering or

malicious attempts to alter its value.

3.7.3 Header

Figure 4. Header block

The header is used to store the keys used to encrypt the previous blocks and it is the

block that the receiver will attempt to decrypt. The construction of the header starts with

the concatenation of the key used in the HMAC block and the AES key used in the

content block. This block is then prepended by its signature (in yellow) generated with

the RSA private key of the sender to allow the verification of his identity from the

recipient and the integrity of the keys. The resulting block is prepended with the SHA-1

hashed value of the sender’s public key in order to reveal the recipient only the virtual

identity of the sender. Finally, the block is prepended with the 4-byte identification

string ‘NESS’. This last identification string is useful to verify a successful decryption.

The final block (in blue) is lastly encrypted with the RSA public key of the recipient in

order to produce the header block.

3.8 Identify received messages

Since Nessuno does not make use of end-to-end addresses to identify the recipient, each

node that receives a message should try to decrypt it in order to find out whether it was

the designed receiver. If the attempt is successful the node will be able to read the first 4

bytes of the message which are ‘NESS’. This approach is clearly the simplest and least

efficient as the computational power needed to the decryption attempt can cause a

critical overhead. An acceptable solution would be to label each message with a code

that can be recognized by the sender and the receiver of the message but which will

seem randomly generated for the other nodes in the network. Although the solution can

be effective, it introduces more complexity with the management of the labels for all the

33

nodes and the security and anonymity matters to cover when negotiating the said label,

it will not be implemented in this early version of the protocol.

3.9 History of events

It is responsibility of each node to store each event that is happened in the history of the

chat. The most important events to be stored are:

§ Messages received

§ Messages sent

§ New node joins the relay

§ Node leaves the relay

Due to the heavy traffic generated by the events in the relay, it is not convenient at the

moment to design a way to store the events when the node is offline.

This means that if a node is offline, it is not reachable by other nodes until it gets back

online again and advertise itself in the network. By using the same key pair, the other

nodes will recognize it and trust it again thanks to the TOFU approach.

3.10 Cryptography

All the messages are encrypted end-to-end using RSA public/private key pair.

The content is encrypted with the symmetric encryption algorithm AES-128-CBC with

a random key, which will be included in the same packet’s header encrypted with the

public key of the recipient.

The symmetric key approach has been chosen because of the consistent performance

gain in terms of decryption speed while keeping unaltered the level of security as the

receiver still needs the private key to get the symmetric key used.

The choice of AES-128 preferred over AES-256 is due to a better stability of the

algorithm and an unreliable design of the latter [53].

The hashing algorithm used is SHA-1 despite a collision has been found [54], the

HMAC using SHA-1 is still to be considered a secure solution [55].

These countermeasures provide security when an attacker can be in situations like:

§ Eavesdropping between nodes

§ Altering, dropping or forging messages

§ Alter consistency of the messages forwarded to different nodes

34

§ Purposely delay the packets to increase latency and make the system unstable

35

4 Attacks against Nessuno

4.1 Sybil attack

Nodes in the network rely on the assumption that a single identity is bonded with a

single computer. In Sybil attack, the attacker forges multiple identities to gain reputation

and perform actions as they were carried by multiple computers. Nessuno does not

implement a reputation system as the reputation comes from the trust of the peers,

therefore the security level depends on the trust given by the node when choosing who

to connect with. Although having a large number of friends (connected nodes) improve

the overall security it can affect negatively if the chosen nodes are malicious as they can

see the user’s IP.

4.2 Eclipse attack

If Sybil attack depends on the trust of the user who invites one to join the network, the

eclipse attack relies upon the trust of the invited user. If the user accepts to join a

network by connecting with another user, he must acknowledge the fact that all his

incoming and outgoing traffic will be controlled by that single node. When an attacker

gains that trust, he can filter or forge messages to deliver to the victim. The substantial

difference from the Sybil attack is the target. Where the Sybil attack threats the network,

eclipse attack’s target is represented by a single user.

4.3 Attack on user’s anonymity

Since the adversary could be a global observer, he can spot the node that originated the

message, especially with a small size group where nodes are often connected with a

single friend. When an attacker monitors the network, he can conduct a timing analysis

and correlate the messages coming and sent from a specific node to recognize the

difference between a forwarded message and a new message. In order to be more

effective, the attack can be carried out in two phases. During the first phase the

adversary introduces himself into the network by gaining the trust of one of the node

36

already in the network. In the second phase, the malicious node can forge a message and

monitor it while it floods the network getting information about the topology and the

distance to the other nodes by examining the time between sending the message and

receive its acknowledgement from the recipient. The impact on the user’s anonymity is

considerable only for the sender as the adversary would notice a new message created

from a node after analysing the in and out traffic. Therefore, as volume of traffic

generated in the network grows, more difficult the analysis becomes. The recipient’s

anonymity is not affected as every node would receive and forward the same message

but if the recipient replies to the message under a low traffic volume situation, the

attacker might correlate the generation of a new message to the message received from

another node. A possible solution to mitigate this threat is to use Tor as a proxy to

escape the surveillance from the ISP and limit the network visible from the attacker. As

a further improvement for the protocol, Nessuno could adopt a mechanism in which

every node has to send a dummy message after a certain random time without sending

one. This would raise the traffic volume present in the network and an observer even if

global cannot draw a line between the sender and the receiver, although this approach is

not part of this first early version of the protocol.

37

5 Implementation

The main design and features for implementing Nessuno are followed in the proof-of-

concept representing a concrete example of Nessuno. This implementation’s purpose is

to show how Nessuno works and analyse how the network congestion can change with

different topologies, node number and traffic volumes. The next chapters will break

down the structure of an ideal client that implements Nessuno’s principles in its core.

The proof-of-concept will not contain some of the following features as they solve

issues like the NAT traversing that are not beneficial to the performance analysis.

5.1 TCP over UDP

The NAT traversal matter discussed in the protocol design, forces the use of the UDP

protocol to transport the packet through a NAT. The implementation of a reliable UDP

can be completely custom or based on a third-party project. A custom solution would be

a better fit for Nessuno as the TCP mechanisms can be set for the specific situation. For

example, it would be better for the network if the congestion system does not halve the

size of the window every time a packet would fail to reach its destination. This is due to

the fact that the environment in which Nessuno runs, could often lead to failures and

errors during the transmission but they are caused by the latency between the nodes,

hence the window size should be calculated accordingly with a wider error margin.

A suggested third-party solution is UDT [56], a reliable implementation of the UDP

protocol written in C++ (but with API and wrappers for other languages available).

Among the key features of this project there is the high customisability of the

congestion control module that would help to fit Nessuno’s needs.

5.2 Message queue

The message queue is a module made of a first-in-first-out (FIFO) queue structure

containing the messages to be sent and the methods that alter the queue in order to add

or remove messages in the queue. The message object found in the queue is supposed to

be ready to send, hence already encrypted. The importance of this structure becomes

38

vital when dealing with the socket module to prevent simultaneous access from different

points of the software as queue actions such as “append” and “dequeue” must be thread-

safe methods. Furthermore, the message queue entity must implement the singleton

design pattern as it is supposed to be used by different threads at the same time. The

most important methods offered by this module are listed below.

SendToOne(message, peer)
This method appends a single message in the queue to be delivered to a single peer. In

most cases the message is operational and sometimes required when a peer is requesting

an information about the network. For example, when a node just joined the network it

can request the list of the public keys for the other nodes from the trusted friend. This

method is implicitly used also in the SendToAll method. Returns a reference to the

message in the queue so it can be manipulated before being sent.

SendToAll(message)
This method appends a message in the queue for every peer directly connected with the

user. It makes use of SendToOne multiple times and it returns an array with the

references to the messages enqueued.

Cancel(message)
This method removes a certain message from the queue. This method is rarely used as it

does not respect the normal flow of the program. However, it represents an emergency

action to take in case a message shall not be sent.

5.3 Forwarding

The forwarding mechanism seen in chapter 3.4 is implemented with the help of the

before-mentioned message queue and its SendToAll method. The aim of module is to

provide a policy for deciding whether to forward a message or not. The rule is that when

a message is received, its ID is stored in a table together with the timestamp when it was

received and is valid for a certain amount of time. Ideally this amount of time must be

calculated out of the average latency of the network but in the proof-of-concept

implementation, messages are not forwarded again for one minute.

5.4 UI

The User Interface (UI) is text based for the proof-of-concept for scope reasons but the

UI is actually an important part of the final implementation. Although a technology can

39

be disruptive and advanced, it cannot be adopted by many users if the usability is poor.

PGP was a clear example of an outstanding approach with many issues in the user

experience due to its complexity in the daily use. In order to be efficiently usable by the

user, the UI must be intuitive and easy to setup.

5.5 Factory

The factory is the core module that is responsible for forging and parsing the message.

When the clear-text message is ready, it needs to be encrypted and injected in a packet

before passing it to the message queue module for being sent over the connection. This

module also implements the different kind of messages that can be generated and takes

care of the organization of the information inside the packet so that it respects the

Nessuno’s design. When parsing an incoming packet, the factory is the main module

where the client attempts the decryption of the header in order to recognise if the user is

the desired recipient of the message. The most important methods in this module are:

Parse(packet)
This is the most important method. It gets a packet that has been received and it tries the

decryption with the user’s private key. In case of success it returns the message content

together with its information and the type of message received.

ForgeMessage(text)

This method generates an encrypted packet with the given clear-text ready to send to the

message queue for the delivery.

ForgeKeysInfo()

This method generates the information about the public keys and pseudo identities in

the network to send to the added friend in order to inform him about the other users that

he can contact via their public key. This process is will not be mandatory when Nessuno

implements a query system that will allow a new user to ask the network for the public

keys along with the pseudonyms of other users participating.

5.6 Multithreading

In order to keep the client’s performance high, some tasks must run on a separated

thread. The main thread is dedicated to user’s inputs while the majority of the workload

is left in the background. The first thread is immediately run when the application is

started and it waits for incoming messages listening on a specified port or 787 by

40

default. When a user wants to connect with another friend, a different threat is needed in

order to keep sending and forwarding messages while the hole punching technique is in

process. Multithreading is vital in this kind of applications as the protocol needs

multiple tasks to be carried out without interrupting the logical flow.

5.7 Storing the key pair

When the user generates his private and public key during the first run, the problem of

how to store them safely arises. A custom implementation in this case is definitely not

recommended as the key pair is the most sensitive information stored locally and if an

attacker can access their location, he will be able to intercept and even impersonate the

user in the network. A valid third-party solution is a wrapper for the operative system’s

keyring which supposedly is the safest part of the system where the client is run. In the

specific context of the proof-of-concept made for Nessuno, the python module loaded is

‘keyring’ [57] which offers some API to read, add and remove the secrets in the keyring

found in different operative systems.

5.8 Hole punching

The hole punching technique explained before in chapter 3 is implemented when two

users are trying to make a connection for the first time, becoming friends and directly

connected nodes. Assumed that the users do not need a rendezvous server to know each

other address and port as they are supposed to have this information. When this process

is started the application starts a separated threat that sends UDP ACK packets to the

other end waiting for a response. The client will try to send 99 datagrams with a 500ms

delay and in case it is not successful it throws an exception. Sometimes a restricted

corporate NAT might not be compatible with this technique. At the moment, the

alternative solution is to enable port forwarding and explicitly dedicate a port to

Nessuno. Once the ‘hole’ is opened, the keep alive module makes sure that the

connection does not interrupt.

5.9 Keep alive

This module is basically consisted of a task that sends an ACK packet to the nodes

which hole punching was successful in order to keep the connection active. The timeout

41

is not fixed and can vary depending on the operative systems and the NAT type.

Therefore, an ideal solution would calculate this timeout at the first connection and then

use the value found as a timeout for the keep alive packet. For the purpose of testing the

timeout is set to 10 seconds which is enough to make sure the connection is not lost.

5.10 Console commands

The interaction with the user happens via console commands that the user can type as a

message. The application parses the message as a command when the first character is a

‘\’ (backslash). The commands that are expected from the user are:

\connect [ip] [port]
This command starts the UDP hole punching with the specified IP and port

\changeID

This command generates a new key pair to use when encrypting/decrypting a message

\list

This command lists the nodes participating in the network

5.11 Source code

The project is open source and available on GitHub. 1 The goal is to involve more

experts from different fields in the improvement of Nessuno as inputs from

cryptanalysts and other cybersecurity experts are vital to bring this project to a level

where it can be used in real world scenarios where surveillance limits people’s freedom

of speech.

1 Panarese, Stefano. “Nessuno”. GitHub. Available: https://github.com/Silent93/Nessuno [Online]
[Accessed 7 5 2018]

42

6 Performance

A performance test aims to show the volume of traffic generated by a variable number

of nodes using Nessuno to communicate. Since a real-world test was not possible at the

time of writing, collecting the data needed is a demanding task. In this paper, the

method used to solve this challenge is to combine the size of the message composed by

Nessuno and the number of nodes to predict the volume of traffic that a single node will

receive.

6.1 Packet size

The size of the packet is calculated from the output of the cryptographic functions

applied in order to build the final encrypted packet containing the message.

According to the packet structure described in the 3.7 of this paper, the total size is an

aggregation of the three units composing the full packet.

Header. Considering that the header is eventually encrypted with the receiver’s public

key, the size estimation of the encrypted output depends on the size of the input. This is

due to the fact that although the output is predictable, the maximum size allowed to be

encrypted is 214 bytes as the algorithm used is RSAES-OAEP with 2048-bit key using

SHA-1 digest. The generated block to be encrypted is calculated as a sum of:

§ 32-bit from the ‘NESS’ flag prepended for identifying a successful decryption

§ 160-bit from the SHA-1 hashed public key of the sender (fingerprint)

§ 2048-bit from the signature of the HMAC and AES keys

§ 160-bit from the HMAC key

§ 128-bit from the AES key

After aggregating the values from the list above, the header of the packet considered is

316 bytes. Since the maximum size accepted by the RSA algorithm used is 214 bytes,

the solution is to split the header before applying OAEP padding and encrypt each block

separately. Finally, the encrypted blocks can be joined together to produce the header

block with a size of 428 bytes.

43

HMAC. The HMAC block is composed by the SHA-1 hashed value of the content

block, hence its size is fixed to 20 bytes.

Content. The content block generation starts with the plain-text message prepended

with a UTC time in format YYMMDDhhmmssZ compliant with ASN.1 UTCTime type

[58]. This value is encrypted via AES-128 according to the PKCS#7 standard [59],

therefore the output size depends on the length of the message. The encrypted block is

then prepended with the IV used for the encryption, adding more 128 bits (16 bytes) to

the sum. Assumed a message length of 255 characters (255 bytes), the size of the AES

generated block will be 272 bytes. Considered the prepended IV the entire content block

size is 288 bytes.

The performance test will be executed considering the size of the packet sent by

Nessuno to be the sum of the sizes listed above, hence 736 bytes.

6.2 Bandwidth estimation

A performance estimation test needs to be combined with the factors that are part of the

environment in which Nessuno is run. One of the general factors analysed is the global

average connection speed, retrieved from the traffic to the Akamai CDN platform that

counts 149 countries across the world and trillions of requests. From the latest report

available at the time of writing, the global average connection speed is 7.2 Mbps [60]. A

data visualization provided by M-Lab, gives more information about a single country

like Iran which average speed of 1.5Mbps [61] is considerably lower than the global

average. In conclusion, since a global value is not meaningful for the purpose of this

performance estimation, the connection speed is arbitrary chosen to be 1.5 Mbps to

reflect a real-world scenario like Iran.

44

6.3 Results

Figure 5. Chart representing the estimated bandwidth consumption

The results are obtained combining the bandwidth available with the traffic that can be

generated by a certain number of nodes in Nessuno’s network and received by a single

node. The estimation is purely theoretical and in a real-world scenario it would be

affected by various elements such as NAT, real latency, ISP and implementation of the

protocol. However, the representation in Figure 1 gives an understanding that the

theoretical size that a node running Nessuno can handle in this early version is around

the number of 270. Consistent improvements can be implemented in the routing system

including workarounds like a probabilistic algorithm that drops packets with a high

chance to be addressed to other nodes (explained in “Future Work”).

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

10	 30	 50	 70	 90	 110	130	150	170	190	210	230	250	270	290	310	330	350	370	390	

M
bi
t/
s

Nodes	Number

Bandwidth	consumption

Max	Bandwidth Bandwidth	used

45

7 Conclusion

This paper focused on the privacy and anonymity issues emerging from the contexts of

those countries with a heavy employment of surveillance. In a preliminary phase, it was

important to define what privacy and anonymity are and what factors in the

communication affect it. In presence of a global observer whose motivation is to

intercept and identify the authors and recipients of messages in secret communication,

users need tools to preserve their identity and make sure to be anonymous. As shown in

chapter 2, the existing solutions to protect the privacy of the user are numerous but

considering decentralised solutions only, they are not optimal for being adopted by a

restricted group of users. Solutions such as Bitmessage, Retroshare and Mixnets contain

inspiring features that led to the development of Nessuno, the protocol presented in this

work and the contribution to the research in the anonymous way of communications.

Nessuno is a friend-to-friend network where a considerable level of security and

anonymity depends on the trust in the friends, the nodes chosen to be directly connected

with the user. In order to provide confidentiality and integrity, messages sent are

encrypted using the public key of the receiver who is the only node able to decrypt the

message. The flooding mechanism applied prevents time-correlation attacks that a

global observer can execute as every node attempt to decrypt the message before

forwarding it via its friends to the rest of the network. The implementation of Nessuno

and particularly of the flooding mechanism generates a trade-off in terms of

performance showed in the “Performance” section that contains a theoretical estimation

of the bandwidth consumption. Guidelines about the client implementation of the

protocol are given in the “Implementation” section and a basic proof-of-concept has

been developed and shared with the community of GitHub

46

8 Future work

Many improvements can still be researched for Nessuno from various point of interests.

Due to the complexity of the topic, more work has to be done with the cryptographic

choices in the packet considering that despite the current solution does not contain

critical cryptographic vulnerabilities, a better solution would favour less computational

power needed without affecting the security. As shown by existent solutions [62] the

performance trade-off that results from the flooding mechanism can be reduced with the

implementation of a prediction algorithm that based on factors like the chance of being

addressed by a message or the capability of relaying that message to the friends can

decide to drop an incoming packet to reduce the overhead. This work does not include a

real-world test due to its time-consuming nature although this test is needed in order to

collect more realistic data about the performance and security impact of Nessuno. This

early version of Nessuno represents a solution that aims to involve more experts from

the open-source community that can help by developing, giving feedback and raise

awareness among the subjects that want to evade the surveillance of their country.

47

Bibliography

[1] P. Winter and J. R. Crandall, “The Great Firewall of China: How it Blocks Tor and Why it
is Hard to Pinpoint,” Login: The Usenix Magazine, vol. 37, no. 6, pp. 42-50, 2012.

[2] R. Deibert, J. G. Palfrey, R. Rohozinski and J. Zittrain, Access Controlled: The Shaping of
Power, Rights, and Rule in Cyberspace, London: The MIT Press, 2010.

[3] Reporters without borders, “Enemies of the internet 2013 Report Special Edition:
surveillance,” 2013. [Online]. Available: https://www.reporter-ohne-
grenzen.de/fileadmin/docs/enemies_of_the_internet_2013_01.pdf. [Accessed 07 05 2018].

[4] O. Tkacheva, L. H. Schwartz, M. C. Libicki, J. E. Taylor, J. Martini and C. Baxter,
“Internet Freedom and Political Space,” RAND Corporation, Santa Monica, CA, 2013.

[5] G. Serge, L. Ronald and d. H. Paul, “Reforming European Data Protection Law,” Springer,
Tilburg, 2015.

[6] W. Jisuk, “The right not to be identified: privacy and anonymity in the interactive media
environment,” New Media & Society - NEW MEDIA SOC, vol. 8, no. 6, pp. 949-967, 2006.

[7] S. Jeff and T. Jordon, Cyber Disobedience: Re://Presenting Online Anarchy, John Hunt
Publishing, 2014.

[8] Network Security, “In brief,” Network Security, vol. 2013, no. 10, p. 3, 2013.

[9] Committee to Protect Journalists, “Court upholds 10-year sentence for journalist Shi Tao,”
1 7 2005. [Online]. Available: https://cpj.org/2005/07/court-upholds-10year-sentence-for-
journalist-shi-t.php. [Accessed 7 5 2018].

[10] J. King, “Chinese journalist Shi Tao released after 8 years in prison,” 8 9 2013. [Online].
Available: https://edition.cnn.com/2013/09/08/world/asia/shi-tao-journalist-
free/index.html. [Accessed 7 5 2018].

[11] R. Mackinnon, “Shi Tao, Yahoo!, and the lessons for corporate social responsibility,” 30
12 2007. [Online]. Available:
http://www.rconversation.blogs.com/YahooShiTaoLessons.pdf. [Accessed 7 5 2018].

[12] A. White, “Protecting the People Behind the Stories That Keep Journalism Alive,” 10 6
2015. [Online]. Available: https://ethicaljournalismnetwork.org/ethics-at-source-protecting-
the-people-behind-the-stories-that-keep-journalism-alive. [Accessed 7 5 2018].

[13] C. Stöcker, “Snowden Reveals How GCHQ in Britain Soaks Up Mass Internet Data,” 7 7
2013. [Online]. Available: http://www.spiegel.de/international/world/snowden-reveals-
how-gchq-in-britain-soaks-up-mass-internet-data-a-909852.html. [Accessed 7 5 2018].

[14] Spiegel, “Edward Snowden Accuses Germany of Aiding NSA in Spying Efforts,” 7 7
2013. [Online]. Available: http://www.spiegel.de/international/world/edward-snowden-

48

accuses-germany-of-aiding-nsa-in-spying-efforts-a-909847.html. [Accessed 7 5 2018].

[15] M. Marquis-Boire, B. Marczak, C. Guarnieri and J. Scott-Railton, “You only click twice:
FinFisher’s Global Proliferation,” 13 3 2013. [Online]. Available:
https://citizenlab.ca/2013/03/you-only-click-twice-finfishers-global-proliferation-2/.
[Accessed 7 5 2018].

[16] S. Winkler and S. Zeadally, “An analysis of tools for online anonymity,” International
Journal of Pervasive Computing and Communications, vol. 11, no. 4, pp. 436-453, 2015.

[17] Common Criteria, “Common Criteria for Information Technology Security Evaluation,” 4
2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf. [Accessed 7 5
2018].

[18] A. F. Westin, Privacy and freedom, London: Bodley head, 1970.

[19] C. J. Bourn and J. Benyon, “Data protection : perspectives on information privacy,”
Leicester, 1983.

[20] A. Pfitzmann and M. Hansen, “A terminology for talking about privacy by data
minimization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity,
and Identity Management,” 18 12 2009. [Online]. Available: http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf. [Accessed 7 5 2018].

[21] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonym,”
Communications of the ACM, vol. 24, no. 2, p. 84–88, 02 1981.

[22] P. J. Honigsberg, “The Evolution and Revolution of Napster,” University of San Francisco
Law Review, vol. 36, p. 473, 2002.

[23] “U.S. Copyright Office: Brief in A&M Records v. Napster,” 2000. [Online]. Available:
https://www.copyright.gov/docs/napsteramicus.html#summary. [Accessed 7 5 2018].

[24] United States District Court, “Order against Napster Inc.,” 5 03 2001. [Online]. Available:
http://news.findlaw.com/cnn/docs/napster/napster030601ord.pdf. [Accessed 7 5 2018].

[25] M. Portman, P. Sookavatana, S. Ardon and A. Seneviratne, “The Cost of Peer Discovery
and Searching in the Gnutella Peer-to-peer File Sharing Protocol,” in IEEE International
Conference on Networks, 2001.

[26] X. Ren-Yi, “Survey on anonymity in unstructured peer-to-peer systems,” Journal of
Computer Science and Technology, vol. 23, no. 4, pp. 660-671, 2008.

[27] I. Clarke, S. O., W. B. and H. T., “Freenet: A distributed anonymous information storage
and retrieval system. In , volume 2009, pages 46–66. Springer Berlin Heidelberg, 2001.,”
Lecture Notes in Computer Science , vol. 2009, 2001.

[28] Suma-Ev, “Ausbruch aus der Monokultur, 12-ter SUMA-EV Kongress,” 2015. [Online].
Available: https://suma-ev.de/presse/Ausbruch-aus-der-Monokultur.html. [Accessed 7 5
2018].

[29] T. G., D. Z., B. T. and D. Y., “A Traceback Attack on Freenet,” IEEE Transactions on
Dependable and Secure Computing, vol. 14, no. 3, pp. 294-307, 2017.

[30] “Elttam,” [Online]. Available: https://www.elttam.com.au/. [Accessed 7 5 2018].

49

[31] D. Hodson, “RetroShare Advisory,” 10 01 2017. [Online]. Available:
https://github.com/elttam/advisories/blob/master/Retroshare/RetroShare%20Advisory%20-
%20elttam.pdf. [Accessed 7 5 2018].

[32] G. Glenn, No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveillance State,
Metropolitan Books, 2015, p. 148.

[33] S. Alfonsi, “60 Minutes: Hacking your phone,” 17 04 2016. [Online]. Available:
https://www.cbsnews.com/news/60-minutes-hacking-your-phone/. [Accessed 7 5 2018].

[34] A. Biryuko, I. Pustogarov and R.-P. Weinmann, “Trawling for Tor Hidden Services:
Detection, Measurement, Deanonymization,” in 2013 IEEE Symposium on Security and
Privacy, Berkley, 2013.

[35] J. Warren, “Bitmessage: A Peer-to-Peer Message Authentication and Delivery System,” 27
11 2012. [Online]. Available: https://bitmessage.org/bitmessage.pdf. [Accessed 7 5 2018].

[36] M. Jakobsson and A. Juels, “Proofs of Work and Bread Pudding Protocols,” in
Communications and Multimedia Security, 1999.

[37] C. Dwork and M. Naor, “Pricing via Processing, Or, Combatting Junk Mail,” in Advances
in Cryptology — CRYPTO’ 92: 12th Annual International Cryptology Conference Santa
Barbara, California, USA August 16–20, 1992 Proceedings, vol. 740, Santa Barbara,
Springer, 1992, p. 139–147.

[38] “Bitmessage Wiki,” [Online]. Available: https://bitmessage.org/wiki/Main_Page.
[Accessed 7 5 2018].

[39] P. Zimmermann, “Why I wrote PGP,” 1999. [Online]. Available:
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html. [Accessed 7 5 2018].

[40] B. Schneier, Applied Cryptography, New York: Wiley, 1995, p. 587.

[41] R. Thomas, Attacks on PGP: A User’s Perspective, Sans Institute, 2003.

[42] N. Weaver, USENIX Enigma 2016 - The Golden Age of Bulk Surveillance, 2016.

[43] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonym,”
Communications of the ACM, p. 84–88, 1981.

[44] D. Goldschlag, M. Reed and P. Syverson, “Onion Routing for anonymous and private
internet connections,” Communications of the ACM, vol. 42, no. 2, p. 39–41, 02 1999.

[45] R. Dingledine, N. Mathewson and P. Syverson, “Tor: The Second-Generation Onion
Router,” in Proceedings of the 13th USENIX Security Symposium, 2004.

[46] N. Borisov, G. Danezis, P. Mittal and P. Tabriz, “Low-Resource Routing Attacks Against
Tor,” in Workshop on Privacy in the Electronic Society, 2007.

[47] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum and P. Syverson, “Avoiding The Man
on the Wire: Improving Tor's Security with Trust-Aware Path Selection,” in Network and
Distributed Security Symposium, 2017.

[48] Tor Project, “Hidden Services need some love,” 22 04 2013. [Online]. Available:
https://blog.torproject.org/hidden-services-need-some-love. [Accessed 7 5 2018].

[49] C. Egger, J. Schlumberger, C. Kruegel and G. Vigna, “Practical Attacks against the I2P

50

Network,” in 16th International Symposium on Research in Attacks, Intrusions and
Defenses, St. Lucia, 2013.

[50] H. Vhora and G. Khilari, “Defending Eclipse Attack in I2P using Structured Overlay
Network,” International Journal of Science, Engineering and Technology Research, vol. 4,
no. 5, pp. 1515--1518, 5 2015.

[51] A. Milanović, S. Srbljić and V. Sruk, “Performance of UDP and TCP Communication on
Personal Computers,” in Electrotechnical Conference MELECON, 2000.

[52] R. P. P., L. R. Nair and T. Ijyas, “Incorporating Trust in Public Key Infrastructure
Certificates,” Advances in Computational Sciences and Technology, vol. 10, no. 5, pp. 671-
686, 2017.

[53] B. Schneier, “Another New AES Attack,” 30 07 2009. [Online]. Available:
https://www.schneier.com/blog/archives/2009/07/another_new_aes.html. [Accessed 7 5
2018].

[54] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A. P. Bianco and C.
Baisse, “Announcing the first SHA1 collision,” 23 02 2017. [Online]. Available:
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html. [Accessed 7
5 2018].

[55] H. Krawczyk, M. Bellare and R. Canetti, “ HMAC: Keyed-Hashing for Message
Authentication,” 1997. [Online]. Available: https://www.ietf.org/rfc/rfc2104.txt. [Accessed
7 5 2018].

[56] Y. Gu and R. L. Grossman, “UDT: Breaking the Data Transfer Bottleneck,” 2011.
[Online]. Available: http://udt.sourceforge.net/. [Accessed 7 5 2018].

[57] K. Zhang, “Keyring Library,” [Online]. Available: https://pypi.org/project/keyring.
[Accessed 7 5 2018].

[58] “ASN.1 - UTC Time,” [Online]. Available: https://www.obj-
sys.com/asn1tutorial/node15.html. [Accessed 7 5 2018].

[59] R. Housley, “Cryptographic Message Syntax,” 09 2009. [Online]. Available:
https://tools.ietf.org/html/rfc5652#section-6.3. [Accessed 7 5 2018].

[60] Akamai, “State of the Internet report,” 2017. [Online]. Available:
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-
of-the-internet-connectivity-report.pdf. [Accessed 7 5 2018].

[61] Measurement Lab, “Islamic Republic of Iran,” 2018. [Online]. Available:
https://viz.measurementlab.net/location/asir?aggr=year&isps=AS43754_AS12880_AS163
22&metric=download®ional=0. [Accessed 7 5 2018].

[62] R. Gaeta and M. Sereno, “Generalized Probabilistic Flooding in Unstructured Peer-to-Peer
Networks. Parallel and Distributed Systems,” Unstructured Peer-to-Peer Networks.
Parallel and Distributed Systems, vol. 22, no. 12, pp. 2055-2062, 2012.

[63] [Online]. Available: https://tools.ietf.org/html/rfc5652#section-6.3.

