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Introduction

In the linear theory of heat conduction in materials with memory the constitutive
relations between the heat flux and the gradient of temperature and between the
internal energy and the temperature involve integral terms over the past history
of the material containing time-dependent convolution kernels. These memory
terms bring a certain inertia into the heat flow process and enable to model the
propagation of heat by finite speed [3, 14, 26, 27, 33, 34]. Models with memory
are used also in coupled processes, e.g. thermoelasticity [40] and phase transition
[1, 4, 5].

In case the memory kernels and other physical data are known, we can solve
the direct problem, i.e. the problem to determine the temperature function. But
sometimes it is necessary to solve an inverse problem, i.e. a problem where the
kernels are unknown. To recover the kernels in the inverse problems additional
measurements of the temperature or heat flux (so-called observation data) are used.
Inverse problems serve for two purposes:

1) testing the relevance of the model - solving the inverse problem several times
with different data, an approximate coincidence of the solutions proves the rel-

evance of the model, whereas a big difference between the solutions shows the
irrelevance;

2) practical determination of the memory kernels for particular materials.

Different inverse problems for memory kernels in heat flow in homogeneous
case have been posed and studied in a number of papers [2, 10, 11, 12, 16, 18, 19,
20, 22, 25, 29, 30, 31, 41, 42, 43]. Most of these works deal with the case when the
heat equation contains a single memory kernel of the heat flux. However, the papers
[11, 20] treat the inverse problems for two kernels, i.e. for the kernels of heatflux
and the internal energy. The character of the problem for two kernels very much
depends on the type of observation conditions. In case temperature observations
in two points are given ahead, one determinesith higher smoothness than
[20]. In case both temperature and flux observations in single points are provided,
one gets: andm with the same level of smoothness [11, 20]. The third case when
purely flux observations are given, was not covered by the papers [11, 20]. This
case turns out to be more complicated.

When the material is non-homogeneous, then the memory kernels depend on
the space variable(s), too. In this case the inverse problems require more obser-
vation data. The most general approach is to make use of a restricted Dirichlet-
to-Neumann map to determine the kernel of heat flux [15]. This requires a lot
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of measurements from different experiments. The situation simplifies in case one
possesses additional a priori information on the kernels. For instance, if the body
under consideration is stratified or satisfies other symmetry properties, it is possi-
ble to recover the kernel of heat flux from measurements obtained from a single
experiment [6, 7, 9, 17, 32].

In some contexts the non-homogeneous kernels can be degenerate, i.e. rep-
resented as finite sums of products of known space-dependent functions times un-
known time-dependent coefficients. This is so when either the medium is piecewise
homogeneous or a problem for a general kernel is replaced by a related problem for
an approximated kernel. Then the unknown coefficients can be recovered by the
measurement of temperature or heat flux in finite number of points over the time.
The problem requires only a single physical experiment. In [21, 23, 24] inverse
problems of such a type were studied. Again, these papers deal with the problems
to recover the kernel of heat flux.

The main task of the present thesis is to work out certain inverse problems to
determine both the kernel of heat flux and the kernel of internal energyin
the non-homogeneous degenerate case. We will be limited to the one-dimensional
problems. We pose and study two different problems. The first one is a problem
with purely temperature observations. We prove the existence and uniqueness of
the solution. In the solvability theorems the solution occurs with one step higher
smoothness im than inm. The results concerning the problem with tempera-
ture observations have been published in the cases of first and third kind boundary
conditions in the papers of the author [37] and [38], respectively.

The second problem is the inverse problem with purely flux observations. Treat-
ment of this problem is more complicated. First of all it is necessary to establish
a certain second order asymptotical relation for the Green function of the corre-
sponding elliptic problem in the Laplace domain. This requires a lot of technical
work. However, having this asymptotical relation already, the proof of existence
and unigueness of the solution is somewhat easier than for the problem with tem-
perature observations. The results in the case of flux observations have been pub-
lished in the papers of the author [35, 36]. Unfortunately, these papers contain a
mistake in the estimation of the Green function. Namely, the estimation of higher-
orderO-terms in proof of Lemma 3 in these papers is not right. This in turn leads
to an error in the asymptotical estimate of an integral"gf More precisely, the
estimates (2.4.7) and (2.5.7) of the thesis occur with the fa‘é%gf instead of

(‘ﬁ/((i))), in these papers. This means that they are valid only in the case of constant
(. This error is improved in the thesis. Moreover, the thesis contains the treatment
of the problem with flux observations in the case of boundary conditions of the
third kind, not published by the author so far.

The character of the inverse problem with flux observations is worse than the
character of the problem with temperature observations. In many combinations
of the data the matrix of the problem is singular. Even more, the corresponding

homogeneous problem is severely ill-posed.



Summing up, thenain novelties of the thesise as follows.

. First time inverse problems for both the kernels of heat flux and internal energy
in the non-homogeneous case are dealt with.

. First time an inverse problem to determine the kernels of heat flux and internal
energy using purely flux observations is studied.

. First time severe ill-posedness of a memory-identification problem in continu-
ous media is noticed.

Themajor results of the thesis are publishiedthe papers
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Leeds, 2005, Vol. 1, PO1, pp. 1-10.
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(2006), 427-450.

Theresults of the thesis have been preseiited
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. International Congress of Mathematicians, Madrid, 22-30.08.2006 - short com-
munication.



Let us give aroverview of the content of the thes@hapter 1 is devoted to the
formulation of the inverse problems. In Section 1.1 we pose the direct problems in
the cases of boundary conditions of the first and third kind and formulate inverse
problems with temperature and flux observations. In the inverse problems we as-
sume the kernels to be degenerate, i.e. representable in the forms (1.1.8);,where
k=1,...,Ky,andmyg, k= 1,..., Ky, areK; + K5 unknown time-dependent co-
efficients. In Section 2 we apply the Laplace transform to these problems. This sec-
tion begins with the Subsection 1.2.1 where certain basic properties of the Laplace
transform are listed. Further, in Subsections 1.2.2 and 1.2.3 we rewrite the direct
problems in the Laplace domain in the form of system (1.2.15), (1.2.18) containing
the Green functions of the elliptic operator of the problem. This system is common
both for the boundary conditions of the first and third kind. Finally, in Subsec-
tion 1.2.4 we formulate the inverse problems in the Laplace domain and define the
generalized solutions of the inverse problems in time domain. The latter ones are
simply the inverse Laplace transforms of the solutions of the inverse problems in
the Laplace domain.

Chapter 2 plays a preparative role. It starts with Section 2.1 where we collect
definitions of the functional spaces used in our analysis. Further, in Section 2.2 ba-
sic properties and asymptotical representations of the Green functions are derived.
These representations contain solutions of the corresponding Cauchy problems for
the elliptic operator. Therefore, a preliminary analysis of such Cauchy problems is
provided at the beginning of this section. Section 2.3 includes auxiliary results and
Sections 2.4, 2.5 contain further properties of the Green functions. More precisely,
in Sections 2.4, 2.5 we give estimates of integrals of Green functions and establish
asymptotical behavior of quantities of the type

1
Q- /0 Gy, p)V (y)dy

in the procesRep — +oo whereV is a given function and = pG, pG,, Gyy

with G the Green function. These results are necessary for the analysis of the
inverse problems. The estimates of integrals of Green functions are stated in The-
orems 2.1 and 2.5. Although these theorems were already proved in [23, 24], in
view of the shortness of the proofs, we repeat them. Further, the asymptotics of
Q in the casey = pG, G, was already proved in [23, 24]. Therefore, we cite
these results without proofs in the form of Theorems 2.2, 2.3, 2.6, 2.7. The case
G = pG, is not presented in the literature. We prove the asymptotics in this case in
Theorems 2.4 and 2.8. Technically complicated proofs of the latter theorems and
the preparation for these proofs fill a large part of Chapter 2.

Chapter 3 contains the study of the inverse problem with temperature observa-
tions. In Section 3.1 we reduce this problem to a fixed-point form. To this end,
we consider the asymptotics of the problem in the prodasgs — +oo. This
asymptotics gives us a linear system (3.1.3) for the initial values of the functions
nk. This system is overdetermined. For the existence of a solution, the consistency
condition (3.1.4) must hold. Assuming this condition, it is possible to extract a
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second order asymptotics from the problem to get the desired fixed point system
for unknown functions (formulas (3.1.9), (3.1.10)). More precisely, the obtained
system is written in terms of the Laplace transforms of the functignandm,.

The principal part of this system contains a mafrixformula (3.1.7)) that is as-
sumed to be regular. The proved equivalence of the inverse problem in the Laplace
domain and the fixed-point system is formulated in Proposition 3.1.

The fixed-point system (3.1.9), (3.1.10) contains operators of the Laplace trans-
forms of the functions), andm;, that correspond to the solution of the direct
problem and its derivative. In Section 3.2 auxiliary estimates for these operators
are deduced. After that, in Section 3.3 main results about the inverse problem are
proved. Firstly, Theorem 3.2 establishes existence and uniqueness for the system
(3.1.9), (3.1.10). The proof of this theorem uses fixed-point technique in half-
planesRep > o with sufficiently larges, because the right-hand side of this
system is of lower order in the proceRep — +oo. Further, in Corollary 3.1
by means of Theorem 3.2 and Proposition 3.1 the existence and uniqueness results
are extended to the generalized inverse problem in the time domain. Chapter 3 is
finished by Section 3.4 where the assumptions of Theorem 3.2 and Corollary 3.1
are interpreted. Namely, we write sufficient conditions in the time domain for the
assumptions of these sentences and give examples when theImiatregular.

Chapter 4 contains the study of the inverse problem with flux observations. It
has the same structure as Chapter 3. In Section 4.1 the inverse problem is trans-
formed to the fixed-point system (4.1.6), (4.1.7) with the maltinf the form
(4.1.4), where the unknowns are the laplace transforms,aind my. Further,
in Section 4.2 the operators corresponding to the direct problem are analysed and
Section 4.3 contains the main results. In Theorem 4.2 of Section 4.3 we prove the
existence and uniqueness for the fixed-point system and in Corollary 4.1 extend
these results to the generalized inverse problem in the time domain. Finally, Sec-
tion 4.4 contains interpretation of assumptions. There sufficient conditions in the
time domain for the assumptions of the existence theorem are given and examples
for regularl” are provided. However, it is shown that in some important cBses
singular.

Chapter 4 is complemented with the analysis of the case of sinfulano.

In Section 4.5 we describe the procedure of extracting higher order principal parts
from the inverse problems to get the fixed-point systems in cases of sifgular
However, sometimes even this procedure doesn’t work. An example is the problem
with flux observations in the homogeneous case. It is shown that then the inverse
problem is severely ill-posed.



1. Formulation of direct and inverse problems

1.1 Problems in time domain

In the linear theory of heat flow in a rigid nonhomogeneous bar consisting of a
material with thermal memory, the following system of constitutive relations holds
[11, 26, 20]

e(z ) = Blx)ulz, t) + / n(z,t — yu(z, 7)dr, (1.1.1)
0
q(z,t) = =\@)uz(z,t) —i—/o m(z,t — T)uz(x,7)dr. (1.1.2)

Here u is the temperature that is assumed toObfor ¢ < 0, e is the internal
energy,q is the heat flux,g is the product of the specific caloric coefficient and
the mass density anil is the heat conduction coefficient. Moreoverandm

are thememory kernelsf the internal energy and heat flux, respectively. These
constitutive relations can be complemented by the heat balance equation

er(x,t) + qu(x,t) = r(z,t), ze€(0,1), t>0, (1.1.3)

with r being the the heat supply. We assume the rod to be of the unit length for a
sake of simplicity.

Using (1.1.1) and (1.1.2) in (1.1.3) we arrive at the following integro-differential
equation of heat conduction:

9
X

ﬁ(x)—u 2.1) g/ (et =Yl 7) dr = - (A, 1)
0

¢
—88 /m(m,t — T)ug(z,7)dr +1r(x,t), x€(0,1),t>0. (1.1.4)
x
0

We require that the function(x, t) satisfies the initial condition
uw(z,0) = ¢(x), z€(0,1) (1.1.5)
and either the boundary conditions of the first kind
uw(0,t) = f1(t), u(1l,t) = fa(t), t>0 (1.1.6)
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1. Formulation of direct and inverse problems

or the boundary conditions of the third kind

*Q(Ovt) = al(u(ovt) - fl(t)) ) Q(la t) = a2(u(1’ t) - f2(t)) , t>0.

Herey and f;, j = 1,2 are given functions and; > 0, j = 1,2 are given
constants. In view of (1.1.2) the boundary conditions of the third kind can be
rewritten as

A0 (0. ) fm e (0,7) dr = ar (w(0,1) - Fo(1)).

0, (1.1.7)
“AD)uz(1,8) + [m(1,¢t — Tug(1,7) dr = az(u(l,t) — fo(t)), t>0.

0

Equation (1.1.4) with the initial condition (1.1.5) and the boundary conditions
(1.1.6) or (1.1.7) form thdirect problemfor the temperaturex.

In this thesis we will be concerned with the determination of the kernels
andm. We will be limited to the case, when these kernels have the following
degenerate forms

K1 K>
=S w@)n(), mat) = p(x)mit) (1.1.8)
k=1 k=1
wherevg, k = 1,..., Ky, up, k = 1,..., Ko are givenz-dependent functions
andng, k=1,..., K1, mg, k =1,..., Ky are unknown time-dependent coef-

ficients.

There are two important cases when the kernels are of the form (1.1.8). In the
first case the rod under consideration is piecewise homogeneous. Then denoting
by Ji = (yk—1,yx) With 0 = yo < y1 < ... < yg, = 1 the homogeneous pieces
of such a rod, we can séf; = K> andy, uy to be the characteristic function
of Jp. However, in our analysis we have to assume smoothmnessd 1, (see
the solvability theorems in next chapters). Therefore, in this case we have to set
v, andyy, to be some smooth approximation the characteristic functiofy oFor
instance, we can define

Vi, Uk S CI(R)7

B B 1 ifxe(ykfl-i-ﬁ,yk_f) _ _
ve(@) = (@) = { 0 ifzd(yp—1—€uyrte) ’ FeRes kL
B [ 1 ifzel0,y1—¢) (1.1.9)
1/1(1') = ul(x) = { 0 ifzd [O,yl—i—e) !
B 1 ifze(yrk—1+61]
VK, (x) - MKl(x) - { 0 ifz Q (yK1—1 -6 1]

with somel € N and smalle > 0. In the second case the sums in (1.1.8) are
certain finite-dimensional approximations of the actual non-degenerate karnels
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1.2. Problems in Laplace domain

andm. Theny; andy; form a certain basis aof-dependent functions off), 1].
For instancey;, andy;, could be the power basisy (z) = ux(z) = 2*~1 or the
weighted power basis:

vi(@) = a(@)ah L, () = bla)ak L,

Herea andb are some smooth functions such thatr)|, |b(x)| > 0 for anyz €
[0,1]. The latter one is equivalent to the usual power expansions for the functions
”a(z”z’;) and "Z((‘fc)t) Trigonometrical expansions could also be used:fandm.
In order to determine the unknown functiong andm; we have to specify
K = K+ K, additional conditions. We introduce two different types of additional

(observation) conditions.

1. Temperature observations
u(wi,t) = hi(t), t>0, i=1,..., K. (1110)
Herez; are K different points of measurement (, 1).

2. Flux observations

t
q(zi, t) = —Mx))ug (z;, t) + /m(azi,t — T)ug(x;, 7)dr = hi(t), (1.1.11)
0

t>0, i=1,...,K,
wherez; are K different points of measurement(f, 1).

Summing up, our inverse problems are as follows.

1. Inverse problem with temperature observatiorsind ny, &k = 1,..., K3
andmy, kK = 1,..., K5 such that the solution of the direct problem with
kernelsn andm of the form (1.1.8) satisfies the conditions (1.1.10).

2. Inverse problem with flux observatiorfsind n, k =1,..., K1y andmy, k =
1,..., K5 such that the solution of the direct problem with kernels and

m of the form (1.1.8) satisfies the conditions (1.1.11).

1.2 Problems in Laplace domain

1.2.1 Laplace transform and its basic properties

In this subsection we collect some basic properties of the Laplace transform that
we will use in the sequel. These properties can be found e.g. in the book [8].
The Laplace transform of a functiarit), ¢ > 0, is given by the formula

Z(p) = Lipz(t) = /000 e P2(t)dt, pecC. (1.2.1)

8



1. Formulation of direct and inverse problems

A sufficient condition of existence for the Laplace transforn: o

z € & = {z : z(t) — piecewise continuous if0, co) and

1.2.2
|z(t)| < Ce, t > 0 with someC > 0 ando € R}. ( )

In casez € & the transformed functioX (p) is holomorphic in the half-plane
Rep > o and satisfies the condition

_¢
~ Rep—o

A

|Z(p)] forRep > o. (1.2.3)

Moreover, in this case the inverse Laplace transform is given by the formula
1 1 E+ioco .

t)y =L .7 = — PZ(p)d 1.2.4

At) = LyaZ(p) = 5 e (p) dp, (1.2.4)

where¢ is an arbitrary number greater than
Let us list some further properties necessary for our analysis in next sections.

1. Letz) e &, j=0,...,k, with somek € N. Then
L’t_)pz(k)(t) = ka(p) — pkilz(O) — pk*2z'(0) e z(kfl)(O),

whereZ (p) = Li—p,z(t). Thus,

Z(p) = 7 + p2 + ...+ pkfl + V(p),
where by (1.2.3)
1 C
|4 = Eﬂz(k)t‘ﬁ for Rep > o.
| (p)| pk t—p () ]p|k(Rep—J) p

2. Letz, 2z € & Then |, z1(- — 7)z(7)dr € & and

Loy [ alt = n)alr)dr = 20)22(0) (125)
0

with Z;(p) = Li—pz(t), j = 1,2.

3. Let Z(p) be holomorphic in some half-plarfi®e p > o and have the form
Z(p) = 5 + V(p) where|V (p)| < Const [p|™* for Rep > o with a > 1.
Then there exists € C[0,00) N & such thatZ (p) = L,—.,z(t). Moreover,
z(0) =c.

4. The inverse Laplace transform is unique. Namely, let the Laplace transforms
Z;(p) of functionsz; € &, j = 1,2 satisfy the equalityZ, (p) = Z»(p) for
Rep > 0. Thenz;(t) = z(t) a.e.t € (0,00).

9



1.2. Problems in Laplace domain

Let us deduce a further property. This is related to the fractional derivative of
a functionz(t) defined by the formula

“W@)—dl/ﬂt— ) (r)dr, 0< 3 <1
i\ = vy f, ) A O <<

From (1.2.1) we easily derive the relatiaﬁ@qpﬁt*% = p*~ ! for Rep > 0
containing the main branch of the power function. Thus, from the properties 1, 2
and (1.2.3) we infer

4

5. Letv, £-v € & with somes € (0,1). ThenL,_, 4= v(t) = p*V (p) and

) dt*
V(p)| < ¢ for Rep>o
PIV= Tp(Rep — o) b=

1.2.2 Direct problem in the case of boundary conditions of the first kind
Assume a priori that
ng, my, 1, f1, fo  as functions ot belong to& (1.2.6)
and suppose that solving the direct problem has the properties
U, U, U, Uz, Uy as functions ot belong toé&’. (1.2.7)
Let us apply the Laplace transform to the equation (1.1.4). Denoting
U=Lipu, R=Lypr, My = Lipmy, Ni=Lipng,

observing the initial condition (1.1.5), the representation of the kernels (1.1.8) and
the properties 1 and 2 of the Laplace transform from Section 1.2.1 we obtain

K,
B(x) [pU (x,p) = (@)] +p > Ne(p)vr(2)U (z,p) (1.2.8)
k=1
9 ue )
= o (A\@)Us(z,p)) = kZ My(p) o~ (i (2)Us (2, p) + R(w, ).
=1

The first kind boundary conditions (1.1.6) are transformed to
U(0,p) = Fi(p), U(1,p) = Fa(p). (1.2.9)

Here F; = L., f5, j = 1,2.
We are going to reduce the direct problemfbimto a system of integral equa-
tions. To this end we represent the equation (1.2.8) in the form

Ky
(LU) (z.p) = pY_ Ni(p)vi(2)U(x,p) (1.2.10)
6
+ D Mi(p) 5 (i (0)Ua(, ) = R(w,p) = B(2) ()
k=1



1. Formulation of direct and inverse problems

with the differential operator

(LU) (2.0) = 2 (\@)Ualp) ~ B@pU(ep), 2 € (0.1).  (1211)

Further, we introduce the green functiéz, y, p) of the operatol. corresponding
to the first kind boundary conditions. This is the function satisfying the problem

LyG(z,y,p) = 6(y —x), x€(0,1),y€(0,1),

(1.2.12)
G(z,0,p) = G(x,1,p) = 0,
whereL, stands for the operatdr with respect to the variablg
Then, the solution of (1.2.8), (1.2.9) is given by
1 1
Ules) = Y Nilo) [ Glaypn(wpl (v.p) dy (1.2.13)
k=1 0
Ko 1
+ > Mi(p /G ,y,p) 5, (e)Uy(y,p)) dy — Qz,p),
where
Q(z,p) = /G z,y,0) [B)e(y) + Ry, p)] dy (1.2.14)

+ M0)Gy(z,0,p)Fi(p) — AM(1)Gy(z, 1, p) Fa(p) -
Integrating the integrals in the second sum of (1.2.13) by parts and observing the

homogeneous boundary conditiongsfve obtain the following equation far:

1
> Nilp) /pG(fU, ¥, p)vi(y)U (y,p) dy (1.2.15)
0

Ko
ZMk(p)/Gy(w,y,p)uk(y)Uy(y,p) dy — Q(x,p).
k= 0

It containsU,, in the right-hand side. Therefore, we have to derive an additional
equation forl/,,, too. To this end we differentiate (1.2.13) with respectto

1
ZNk / (z,y,P)vi(¥)U (y, p) dy (1.2.16)

K 1
+ > Mi(p) /Gx Ty, p (Mk(y)Uy(yvp)) dy — Qu(x,p).
k=1 0

11



1.2. Problems in Laplace domain

Thereupon we split the second integral in (1.2.16) into two parts, foaim = and

from = to 1, and integrate them by parts. Taking into consideration the equalities
Gy(z,0,p) = Gy(z,1,p) =0, 0 < x < 1, following from (1.2.12), and the jump
relation

1
Gy(z,z —0,p) — Gyp(z,z + 0,p) = m, 0<z<l1 (2.2.17)

(see [39], p. 169) we obtain the following equation &y

Ko
Ug(z,p) = )@;Mk(p)uk(aﬂ)lfm(x,p)
1
T ZNk / +(,y, p)ve(y)U (v, p) dy (1.2.18)

- iMk(p)/Gzy(w,y,p)uk(y)Uy(y,p) dy — Qq(z,p).
0

1.2.3 Direct problem in the case of boundary conditions of the third kind

As in the previous subsection we assume (1.2.6), (1.2.7), deduce the equation
(1.2.8) in the Laplace domain and rewrite it in the form (1.2.10) wHei® given
by (1.2.11). The third kind boundary conditions (1.1.7) are transformed to

AOU2(0,p) = an[U(0,p) — Fr(p)] + 3 0 (0) My () (0. )
k=1 (1.2.19)

AU, (1,p) = as[U(1,p) — Fa(p)] — kil 1k () My (p)Ux (1, )

with Fj = £t—>pfja 73 =1,2.
Further, let us denote b#(x, y, p) the Green function of operatdr with the
third kind boundary conditions, i.e.,

LyG(z,y,p) = d0(y —x), =€(0,1),y€(0,1), 1.2.20)
A0)Gy(z,1,p)=a1G(z,0,p), —A(1)Gy(z,0,p) =a2G(z,1,p), z €(0, 1),
whereL, is the operatol with respect to the variablg, as before.

Then, according to the Green representation in the case of the third kind bound-
ary conditions (see [24]), the solution of (1.2.8) is given by

1
Ulw,p) = pZNk /G z,y,p)vi(y)U(y, p) dy (1.2.21)
k=1 0
1
+ ZMk /G z.9,0) 5 (e(y)Uy (y, ) dy = F(x,p),
k=1 0

12



1. Formulation of direct and inverse problems

where

0
+G(z,1,p) M) U(1, p) + axU(1, p)] — G(x, 0, p)[A0)UL(0, p) — a1 U(0, p)].

Due to (1.2.19), the latter formula can be rewritten in the form

1
/G z,y,p) [B(y)¢(y) + R(y,p)] dy (1.2.22)
0

+ <a1F1 Zuk ) My (p) U (0, p)) G(0,z,p)
+ <Q2F2 +ZMk (1 p)) G(l,l’,p).

Integrating the integrals in the second sum of (1.2.21) by parts and using (1.2.22) as
well as the symmetry relation&(x,1,p) = G(1,z,p),G(z,0,p) = G(0,z,p),
we obtain the equation (1.2.15) for, where

/ G(a,v,p) [BW)el) + Rw.p) dy  (1.2.23)

+ alFl( )G(0, z,p) + asFa(p)G(1, z,p).

To derive the additional equation féf, we differentiate (1.2.21) with respect
to x:

1

Zka /Gx z,y,p)vi(y)U(y, p) dy (1.2.24)

0
1

+ ZMk ) [ Galvp)y, eV (0:) dy — Fulap)
0

As in the previous subsection we split the second integral in (1.2.21) into two parts,
from 0 to x and fromx to 1, and integrate them by parts. Noting that for the

Green function with the third kind boundary conditions the same jump relation
(1.2.17) holds as for the Green function with the first kind boundary conditions

13



1.2. Problems in Laplace domain

(see [24]), we get

Ko
Un(,p) = Aész () 14(2)Us (2, )
1
+Zka /Gx z,y,p)ve(y)U(y, p) dy
k=1 0

Gy, y, ) (y)Uy(y, p) dy — pp(1)Uz(1, p)Go(z, 1, p)

Ko
_ Z M (p (
k=1

O\H

+Nk(0)Ux(07 p)Gw($, 07 p)) —Fz(:c, p)'

Replacing herer, by (1.2.22) and observing (1.2.23) as well as the symmetry
relationsG(z,1,p) = G(1,z,p),G(z,0,p) = G(0,x, p), again, we arrive at the
equation (1.2.18) fot/,.

1.2.4 Summary. Generalized formulation of inverse problems

Summing up, thalirect problem in the Laplace domais reduced to the system

of equations (1.2.15) and (1.2.18) for the Laplace transform of the temperature
functionU(z, p). In the case of boundary conditions of the first kind this system
contains the Green function corresponding to the first kind boundary conditions
and the functior() is given by (1.2.14). In the case of boundary conditions of the
third kind this system contains the Green function corresponding to the third kind
boundary conditions and the functighis given by (1.2.23).

The systems foU/ in the cases of the first and third kind boundary conditions
have the same form. The difference occurs only in the functi@red . This
similarity enables to treat these systems in a common form in the next chapters.

Assuming thath; are measurable and exponentially bounded, the observation
conditions (1.1.10) and (1.1.11) in the Laplace domain take the forms

Ulzi,p) = Hi(p), i=1,....K (1.2.25)
and
Ko
_)\(xz)Uac(xup) + ZMk(p)ﬂk(xz)Um(xup) = Hi(p)a i=1,...,K, (1226)
k=1

respectively, wherdd;(p) = L;_.,h;.
Thus, the inverse problems in the Laplace domain are as follows.

1. Inverse problem with temperature observations in the Laplace donkainu
the functionsNy, & = 1,..., Ky and My, k = 1,..., K5 such that the
solutionU of (1.2.15), (1.2.18) satisfies (1.2.25).

14



1. Formulation of direct and inverse problems

2. Inverse problem with flux observations in the Laplace domgind the func-
tionsN,, k=1,...,K;andM;, k= 1,..., Ky such that the solutiofy of
(1.2.15), (1.2.18) satisfies (1.2.26).

On the basis of the inverse problems in the Laplace domain we can formulate
the generalized inverse problems in time domain.

1. Generalized inverse problem with temperature observations in the time do-
main. Find¢-dependent functions,, k = 1,..., Ky andmg, k=1,..., K,
such that their Laplace transforms satisfy the inverse problem with tempera-
ture observations in the Laplace domain.

2. Generalized inverse problem with flux observations in the time donféirnl
t-dependent functions,, £k = 1,..., Ky andmg, kK = 1,..., K5 such that
their Laplace transforms satisfy the inverse problem with flux observations
in the Laplace domain.

From the discussions of this chapter it follows, that in case of sufficiently reg-
ular data which guarantee the conditions (1.2.7) for the solutiah the direct
problem, any solutiomy, &k = 1,..., Ky, mg, k = 1,..., K5 of an inverse prob-
lems posed in Section 1.1 solves the corresponding generalized inverse problem,
too. The converse assertion is not right, if we consider the direct problem formu-
lated in Section 1.1 in the classical sense. Namely, the system (1.2.15), (1.2.18)
related to the generalized inverse problems doesn’t require the existence of second
derivativeU,,, in contrast to the equation (1.1.4) related to the classical inverse
problems.

15



2. Functional spaces and properties of Green function

2.1 Functional spaces

To analyse the direct and inverse problems we define the spaces
A, ={V :V(p) isholomorphicomnRep > o, |V],o <oo}, (2.1.1)

~v,0 > 0, where

Vlly.e = sup [p|"[V(p)|
Rep>o

and
(A ={V=>WV,....Vg) : Vilp) € Ay k=1,...,K}  (2.1.2)
with the norms

K
K
70 = Z Hvknv,aa Ve (A'y,a) :
k=1

These spaces are complete due to the completeness in supremum-norm of sets of

holomorphic functions. Thus, they are Banach spaces. Moreover, we note that
K K .

Ao CA oy (Ayo)” C(Ay) and| - [lye < |- [lho if 0 > 0.

Further, let us introduce the following spacesiofcomponent vector func-
tions:

V]

c

Moo = {Z 14 = » +V(p), Ve (AQ,U)K} .

Herec = (c1,...,cx) € RE is a given constant vector and > 1 is a fixed
number. We remark that any vector functigne M. ., has the unique original
z(t) = LljitZ(p) in the time domain which is continuous fore [0,00) and
2(0) = ¢ (see property 3 in Section 1.2.1).

In the next chapters we will seek for the solutions of the inverse problems such
that the vectof Zy|r—1, ..k, , Mk|k=1,. K,) With Z; being eitherV,, or a Laplace
transform of a derivative;, belongs toM.. . ,. We will always assume that the
parametety in the definition ofM. ,, , satisfies the condition

l<a< g (2.1.3)

Recall that in the previous chapter we reduced the direct problem to a system
of integral equations for the pa(t/(z, p), U,(x, p)). Therefore, we need suitable

16



2. Functional spaces and properties of Green function

spaces for pairs of- andp-dependent functions. Let us define the following Ba-
nach spaces of single functions

5’%0 ={F(x,p): F(z,) € Ay, forz € [0,1], F(-,p) € C[0,1] for Rep > o},
wherey, o > 0 with the norms

and the Banach spaces of pairs of functions:

A~

[E(z,p)l, F €By0,

=1 Rep>o

ny,o' = D~,0 X B"/—%,U’ Y 2 g 2 0,

with the norms

HFlH’Y7 + HFQH F= (FlaFQ) € B’y,a- (214)

V=307

2.2 Asymptotical representation of Green function.

2.2.1 Asymptotical representation of a solution of Cauchy problem

In this section we prove asymptotical properties of the solution of the Cauchy prob-
lem for the operatod. defined by (1.2.11). Letr = 1 (x,p) solve the Cauchy
problem

(L@b)(lﬁp) =0,z € (07 1)7 1/}(0717) = fo, wx(ovp) =0 (221)

with the differential operatak defined in (1.2.11) and some given numb#r®; <
Cindependent op. If A € C*[0,1], 3 € C[0,1] andA(z) > 0, = € [0, 1], then by
the Cauchy theorem the problem (2.2.1) has the unique solutiop) € C2[0, 1].

Lemma 2.1. Let
A\, B eC?0,1], Mx),B(x) >0, =cl0,1]. (2.2.2)

Then the solutior)(z, p) of (2.2.1)and its derivativa), (z, p) are holomorphic in
Rep > 0 for anyz € [0,1]. Moreover, the following asymptotical relations are
valid:

Wiw,p) = 2B fychsz + 20 (2 4 18(0)a'(0)) Bosh sz

T

a(
af
+“(w)b(°) Orgshsz+ 5 l(i()b(O) 012 chsz+ (’90| + %) 0(%),

)
)
)

s

Yo (z,p b(x)“(o) 0o s sh sz + b(x)a(o) <@ 4 15(0)a’ (0
(2,p) = (52 + (0}’ (0) 023

—Ib(z)d (z ))00 ch sz + bE g 61 ch sz

+b((x§( (236) Ib(x)d (2 ))91%571324— (\%H-%)O(e:)

for Re p — 400 uniformly with respect tox € [0, 1] and Im p.
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2.2. Asymptotical representation of Green function.

e,
l_/o )\(T)d : (2.2.4)

s =1l,/p for Rep >0, where,/pisthe main branch of square roo(t,2

Here

2.5)

i.e. it satisfies,/p > 0 for real p > 0.

a(x)=(B@)\ @), b(w)=B(w)/*Aw) ¥, b(a) = (=) *B(x) "/, (2.2.6)

z=z(x)= }/OI \/ fé:;d’]’ (2.2.7)

and
((z) = ;/Ox ay(7) fggdr (2.2.8)
with
v Pl (2@ N@)d (@)
0= 5 [ () + o) @29

Proof. We apply the Liouville transform replacing the argumeriy z using the
formula (2.2.7) and the unknown by v using the relation

v(z,p) = a(x)y(z,p), (2.2.10)

wherea(z) is given by (2.2.6). Then the equatidn) = 0 with € [0,1] is
equivalent to the equation

v..(z,p) — s°v(z,p) = c(2)v(z,p), z€[0,1], (2.2.11)

wherec(z) = ay(z) with a; defined in (2.2.9). The assumptions (2.2.2) imply
c € C0,1]. Note that (2.2.10) with (2.2.6) and (2.2.7) yields the formulas

1 b a(x
a(x)“(z’p)’ Yoz, p) = ——v:(2,p) — a2((x))v(z,p).(2.2.12)

Thus, the initial conditiong (0, p) = 6y, ¥,(0, p) = 0, in terms ofv take the form

Y(z,p) =

v(0,p) = Ko := a(0)bo, v2(0,p) = K1 := b(l()) (CZ(((()))) 0o + 91> . (2.2.13)
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2. Functional spaces and properties of Green function

Let us solve the equation (2.2.11) with respect to the left-hand side subject to the
initial conditions (2.2.13). We obtain the following Volterra integral equation of
the second kind fou:

v(z,p) = Kochsz + kitshsz + L [7shs(z—71)c(r)v(r,p)dr,

e 01l (2.2.14)

We are going to prove the assertions of the lemma by means of this relation and
the connections (2.2.12) betweg¢randv.

We start by proving the holomorphy assertion. Since (2.2.14) is a Volterra
equation of the first kind with a bounded kernel, its solution can be expressed in
terms of the Neumann series

ven) = fen)+ Y [ ot (2.2.15)
=1

where

2,p) = Kkochsz + Kki1tshsz, 2,7,p) = +shs(z — 1) e(T),
f(z,p) = Ko ! 15 g1 ( P? sshs(z—7)c(r) (2.2.16)
9i(z,7,p) = [ 91(2,9,0)9i1(y, T, p)dy, i=2,3,....

Let us fix somé) < 1 < 2. Observing the definition of (2.2.5) and (2.2.16) we
see that

sup | f(z,p)| =Ty < oo, sup  |g1(z,p)| =T, < oc.
0<2<1 0<2<1
71 <Re /p<7v2 v1<Re /p<7v2

Making use of the standard technique of estimation of the Neumann series we
deduce the following estimate for the remainder of this series:

e}

Z /OZ gi(Z’Tap)f(Tap)dT

i=l+1

< Ty E Z,—f—>0 as [ — 4oo.
i=l+1

sup
0<2<1
71 <Re /p<7v2

This estimate shows that the series (2.2.15) is uniformly convergent in theset

z < 1,711 < Re,/p < 7. Further, observing (2.2.16) we see that every addend
in (2.2.15) is a holomorphic function i, < Re,/p < 72 for any z € [0,1].
Since a limit of uniformly convergent sequence of holomorphic functions is also
holomorphic, the function(z, p) is holomorphic iny; < Re/p < 72 for any

z € [0, 1]. From (2.2.14) we have the relation for the derivative

v,(2,p) = Kos sh sz + Kich sz + / chs(z —7)c(r)v(r,p)dr, z € ]0,1].

0
By the proven holomorphy af and other terms in the right-hand side of this for-
mula, the functiorv (z, p) is holomorphic iny; < Re/p < 2 foranyz € [0,1].

Finally, since0 < 1 < ~2 where chosen arbitrarily anfh : Rep > 0} C {p:
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2.2. Asymptotical representation of Green function.

Re/p > 0}, by the proven holomorphy af andv, and the relation (2.2.12) we
get the holomorphy of(x, p) andw,(z,p) in Rep > 0 for anyz € [0, 1].

Let us continue proving the relations (2.2.3). To this end we derive an estimate
for v. Multiplying (2.2.14) bye—** we have

e **v(z,p) = Ko e **ch sz + k1te *sh sz
(2.2.17)
+< fo =5(z=T)sh s(z — 1) e(7)e (T, p)dr

for z € [0, 1]. Making use of the elementary relations
le%?| = eR°%* | |ch sz| < ch (Resz), |sh sz| < ch (Resz) (2.2.18)

and denotingd|v||, = m[%x} le=57v (T, p)| from (2.2.17) we get
7€|0,2

le™%%v(z,p)| < (|/~; | + |Hl|) e Reszch (Re sz)

xe Reszch (Resz) + HCH;S[?’H [1+ ores (1= 28) o]l

_'_HC“ [0,1] OZ efRes(Z T)Ch (Re S(Z — T))dT HUHZ = (’/Qo| —+ |"€T1|> (2219)

Note that due to the inequality

1
Re\/ﬁ > ﬁ\/ |p‘ fOI‘ Rep >0 (2220)

and the definition (2.2.5) of, the formula

l
s| > Res > % \/ 2\/Rep for Rep>0 (2.2.21)

is valid. Thus, from (2.2.19) in case of a sufficiently large> 0 depending o
we obtain

1
le v (z,p)| < 2 (|/~@0| + > + §||v||z for z €[0,1], Rep > o.

This implies||v]|, = max le™*Tu(, p)| < 2 (|/€0| + %)‘{‘%anz; hence|vl|. =
TE 0,z

m[ax] le=*Tu(T,p)| < 4 (|mo\ + %) for z € [0,1] andRep > o.. Thus, we ar-

7€(0,2

rive at the estimate

k1]

v(zp)] < 4<mo|+ -

>eResz for € [0,1], Rep>o.. (2.2.22)
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2. Functional spaces and properties of Green function

Now we are ready to prove (2.2.3). To this end we plug the iterative formula
(2.2.14) forv into itself to get

s

v(z,p) = Kochsz + ELshsz + ”80/ shs(z—7)c(r)ch sTdr
0

I
z

+ ; shs(z — 1) c(r)sh st dr (2.2.23)

Ip)
z

+si2 shs(z—T)c(r) /T sh s(t —y) c(y)v(y, p)dydr .
0 0

I3

Differentiating this relation we deduce the formula for the derivative, @bo:

v:(z,p) = Kosshsz + kichsz + Iio/ chs(z —7)c(T)ch sTdr
0

1y
+"“Sl/0 chs(z —7)c(r)shsTdr (2.2.24)
z }; T
+i/ chs(z—1) 0(7')/ shs(t —y)c(y)v(y, p)dydr .
0 0
Is
Let us representy, I, I, andIs in the form
1 /7 1 /7
L = 2/ c(r)dr shsz + 2/ shs(z —21)c(r)dr, (2.2.25)
0 0
17
1 [ 1 [*
I = / e(r)dr chsz — / ch s(z —27)(T)dT, (2.2.26)
2 Jo 2 Jo
I
1 /7 1 1 [* 1
I, = / c(r)drchsz + —Ig, Is= / c(t)dr shsz — —Ir. (2.2.27)
2 J 4 2 Jo 4
Observing (2.2.18) and (2.2.21) we estimate:
L], Is| < llellcpoy Jo [R5 727) 4 efesCr=2)] dr
(2.2.28)

. 2||C||C[0,1] Const _Resz
= “Ressh(Resz) < Be

foranyz € [0,1] andRep > 0. Moreover, due to (2.2.18), (2.2.21) and (2.2.22),
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2.2. Asymptotical representation of Green function.

we get

T3], 1Is] < 4llelZyq, (1m0l + 521)

X [5 ch(Res(z — 7)) [y ch(Res(t —y)) eReVdydr
(2.2.29)

R: 1+R Resz+ 2R, —1) sh (R
_4”C||001] <|"€0|—|— \m|> esz(1+Resz)e 8(Reg)2esz ) sh (Re sz)

< Const (!/@ | + |m|) Resz

foranyz € [0,1] andRep > o.. Using (2.2.28) in (2.2.25) - (2.2.27) and there-
upon (2.2.25) - (2.2.27), (2.2.29) in (2.2.23), (2.2.24) we deduce the following
asymptotical relations for andwv,:

v(z,p) = ko (chsz+ 3 [ c(r)dri shsz)

+K1 ( shsz+ 5 fo de2 ch sz) (]fi0| + %) O (6522) ’

v.(z,p) = Ko (s shsz+ 5 fo chhsz) (2.2.30)

sz

+r1 (ch sz + % [ c(T)drL shsz) + <|/€0’ + ‘m|> O (%)

S

for Re p — 400 uniformly with respect toz € [0,1] and Im p.

Plugging (2.2.30) into (2.2.12), using the formulas (2.2.13), collecting the terms
with 8y and#f, and simplifying by means of the relatioﬁb = b (see (2.2.6)) we
deduce

W(z,p) = go [ch sz + L [ c(r)dri shsz

+1b(0)a’(0) (Lsh sz + 5 [ c(T)dr % ch sz)] 6o

t+atyaly (bshsz+ 5[5 e(r)drk chsz) 1 + (|0 |+ ‘9°'+|‘91') 0(%),
bu(z,p) = MO [ssh sz 4 1 [2c(7)dr chsz

+ (16(0)a(0) — Ib(x)d' () (ch sz + L [ e(r)drL shsz)

—12B(0)a(0)b(x)a’(z) (Lsh sz + § [ c(r)dr chsz)] b

+i) [eh sz + 4 [ e(r)drL shsz

—Ib(x)a' () (Lsh sz + L |7 c(r)dr chsz)] 6

+ (160] + ) [0 () + 0 (5)]

for Re p — +oo uniformly with respect toz € [0,1] and Im p.
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2. Functional spaces and properties of Green function

Let us extract the terms of first and second order in the proBegs — +oo
inside the factors befor) and#; and shift the remaining parts into tli&terms.
Observing in addition the relations (2.2.21),

sz Re sz
¢ )' < Comste™™ e (2.2.31)

shsz, chsz = O (e*) , 'O (

5 5]

and [ ¢(r)dr = ((x) we obtain (2.2.3). The lemma is proved. O

2.2.2 Basic properties and representation of Green function in case of the first
kind boundary conditions

Recall that the Green function of the operatogiven by (1.2.11) in the interval

z € (0,1) with the first kind boundary conditions is the functiéhthat satisfies
the problem (1.2.12). This function is given by the formula (cf. [39] Section 24,
[23])

oo Y2y P (e, p) for 0<z<y<1
Glovip) = (2.2.32)

m%(y,p)%(@",p) for 0<y<z<1,

wherey;(x,p),j = 1,2 are the solutions of.¢) = 0 satisfying the initial condi-
tions

¥1(0,p) =0, Y1.(0,p) =c1, ¥a(l,p) =0, ¥2.(1,p) =c2 (2.2.33)

with arbitrarily chosen numbers, c2 # 0 andAq(p) is the Wronski determinant
at zero:

Ao(p) = ¥1(0,p)¥2,2(0,p) — ¥1.2(0,p)¥2(0,p) = —11.2(0, p)1b2(0, p). (2.2.34)

HereA(p) # 0 for Rep > 0 due to the linear independencewf and, [39].

We note that); satisfies the Cauchy problem (2.2.1) studied in the previous
subsection. The function, satisfies also the problem (2.2.1) provided we change
its argument = 1 — x. Thus, using the smoothness propepty, p) € C2[0,1],

Rep > 0, and the assertions about holomorphy of the solution of (2.2.1) in Lemma
2.1 as well as the formula (2.2.32) we deduce the following basic properties of the
Green function:

Lemma 2.2. Assume tha2.2.2)holds andG is the Green function of the oper-
ator L in [0, 1] with first kind boundary conditions. The&®(z,y,p), G.(x,y,p),
Gy(z,y,p) and Gy (z,y, p) are are holomorphic ilRep > 0 for any (z,y) €
[0,1)2, z # y, and continuous and bounded in every strip

Sy ={(z,y)€[0,1> : 2 #4y} x{peC:0<Rep<o}, o>0.
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2.2. Asymptotical representation of Green function.

Moreover, for any functioi/(x, p) such thatV'(-,p) € C]0,1], Rep > ¢ and
V(z,p) - holomorphic inRep > o for anyz € [0, 1] with somes > 0, the
functions

I3 Gy, p)V (y,p)dy, [} Gul,y,p)V (y,p)dy,

Jo Gy(x,y,p)V (v, p)dy, fo ay(@,y,0)V (y, p)dy

belong toC|0, 1] for any Rep > o and are holomorphic irRep > o for any
xz € [0,1].

Let us setr; = @ with [ andb given by (2.2.4) and (2.2.6). Thefy solves

(2.2.1) withy = 0, 6, = @ hence by Lemma 2.1 the functian and its first
derivative possess the following asymptotic behavior:

) )

i(x,p) = ﬁ%sh sz + ﬁﬁ—chsz +0 (

= hilshsz+0(%)

52

Y12z, p) = ( L eh sz + b(x) <@ — ll_)(x)a'(x)) Ishsz+0 (%) ¢ (2.2.35)

= @chsz—i—O(esz)

s

for Re p — +oo uniformly with respect toz € [0,1] and Imp

wherea, b and¢ are defined in (2.2.6) and (2.2.8) with (2.2.9). In (2.2.33) we set
co = @ Then using the change of variables

E=1—z, (&) =a(z,p), A€ = A), B(&) =Bx) (2.2.36)

the problem for), is transformed to the following Cauchy problem ot

(L") (&,p) = 0, £€(0,1), ¥'(0,p) =0, z,z)g(o,p) = —b(ll). (2.2.37)

Using Lemma 2.1 we write the asymptotical formulas (2.2.3)#6¢¢, p) and
wg(é,p). These formulas contain instead of the quantities, b, b, z and ¢ the
quantitiest, af, bf, b, 2T and¢t, respectively, where

al (§) = (BT(AT(£))M4, b (&) = BTN () =3/4,
bi(€) = A()/*8T(¢) /1, (2.2.38)

i
=7 fo \ fT(T dr, CT =7Jo CL1

anda! is defined by (2.2.9) with, \, 5 replaced by, AT, g1, Observing that

d

al(§) = a(x), a'(¢) = —d/(2), b (€) = b(z), bT(€) = b(a),
() =1 - 2(2), ¢7(€) = ¢(1) — {(2)

24
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2. Functional spaces and properties of Green function

from these formulas we obtain

o(x,p) = %%sh s(z—1) — ﬁql)gqx)s% chs(l—2z)

10 (247) = Sy tshs(z— 1)+ 0 (<%7) |

Yo 2(x,p) = @ch s(1— z)—@ (74(1);«@ —1—[1_)(30)@’(30))%5}1 s(z—1) (2.2.40)

+0 (es(sliz_z)) = @ chs(l—2)+0 (es(l_z)>

s

for Re p — 400 uniformly with respect tox € [0,1] and Imp.
Further, defining
do(p) = sA(0)R0(P) (2.2.41)

from (2.2.34) by means of (2.2.35), (2.2.40), (2.2.31) and the relatioh= %8;
we derive the following asymptotic formula fdp:

do(p) = —sA(0) [@ i) (g)} [—ﬁg shs+0 (g)}

= %sh5+0(6—:) for Rep — +oo uniformly in ITmp.

(2.2.42)

Now we are in the situation to deduce the asymptotical relation&fand its
derivatives. To this end we plug (2.2.35), (2.2.40) and (2.2.41) into (2.2.32). In case
we take into consideration only the first-order asymptotics, we get the following
representation fofs:

1 1 1f shsz-shs(w—1)+01 for z<y
Gz, y:p) = do(p) a(x)a(y) 5{ shsw-shs(z—1)+0y for y<uz, (2.2.43)
where
_ _ 1 B(r)
w=uw(y) = l/o ) dr (2.2.44)
and

S

0, =0 (M) , 02=0 (ﬁ> (2.2.45)

for Rep — +oo uniformlyin 0 <y <2 <1 and Imp.

Similarly, from (2.2.32) by means of (2.2.35), (2.2.40) and (2.2.41) for the deriva-
tivesG,, G, andG,, we have the representations

Sy z<vy
Gy(x,y;p) = ldo(p) a(y) (2.2.46)

1 b(x) [ chsz-shs(w—1)4 03 for
shsw-chs(z—1)+ 04 for y<z,
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2.2. Asymptotical representation of Green function.

v 1 bly) [ shsz-chs(w—1)+ 05 for z<y
Gy, yip) = ldo(p) a(x) { chsw-shs(z—1)4+ 0 for y<uz, (2.2.47)
o b(x)b(y) chsz-chs(w—1)+0; for z<y
Gay(z,y;p) = 12dy (p) *\ chsw-ch s(z—1)+0g for y<uz, (2.2.48)

where the term#)s, O5, O; behave likeO; and the terms)y, Og, Og like Oo,
respectively, aRe p — +oo.

To deal with the inverse problem with flux observations we have to prove cer-
tain properties of+,, that require the second-order asymptotic relation for this func-
tion. Taking the second order asymptotics in (2.2.35), (2.2.40) into account, from
(2.2.32) with (2.2.41) we deduce the formula

+ C(LC(; - lB(x)a’(x)) 1sh sz - shs(w—1)

_ M%ch sz-chs(w—1)+ %Og} for x <y,
Ga(x,y;p)= (2.2.49)

1 bz
ldo(p)% shsw-chs(z—1)

- (e lB(x)a’(aj)) Lshsw-shs(z—1)

—i—%%chswxhs(z—l)—i—%om} for y<uw

whereOg andO1y behave likeD; andO,, respectively, aRe p — +oo.

2.2.3 Basic properties and representation of Green function in case of the third
kind boundary conditions

The Green functioii of the operator. given by (1.2.11) in the interval € (0,1)

with the third kind boundary conditions is a solution to the problem (1.2.20). This
function is given by the formula (2.2.32), whepe(z, p), j = 1, 2 are the solutions

of L = 0 satisfying the initial conditions

7/11(0:]9) = Cl)\(()), 1/}/1713(0717) = (104,
1/}2(17]9) - 62)\(1)7 ¢é7p(1ap) = —C2(x2

with arbitrarily chosen numbeks andc, and Ay(p) again is the Wronski deter-
minant at zero, i.e.

Ao(p) = ¥1(0,p)¥2,2(0,p) — ¥1.2(0,p)¥2(0,p) (2.2.51)

(cf. [39] Section 24, [13] Chapter 7.2 and [24]). The assumed inequalifies, >
0 (Section 1.1) imply tha is not an eigenvalue of the operatbmwith the third
kind boundary conditions in cag® p > 0. This in turn yields that); and), are
linearly independent [39]. Thug\(p) # 0 for Rep > 0.

As in the previous subsection we deduce the following basic properti@s of

(2.2.50)
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2. Functional spaces and properties of Green function

Lemma 2.3. Assume thaf2.2.2)holds and’ is the Green function of the operator
L in [0, 1] with the third kind boundary conditions. Then the assertions of Lemma

2.2 are valid forG.

Letus set; = a(o) O) with a andb given by (2.2.6). Then using the assertion

(2.2.3) of Lemma 2.1 and observing the relattgn: ab we derive for the function
11 and its first derivative the following asymptotical formulas:

P1(z,p) = ﬁch sz—|—a(1z) [C(x)—i— )\((0)) (A(O)a’(O)—i—ala(O))] Lshsz
+0 (%) = ﬁch sz+ 0O (?) ,

e (a,p) = " s sh sz

) (2.2.52)

+47 [% — Ib(z)a'(z) + Kt (\(0)a'(0) + ala(O))} ch sz

+0 (%) = @ssh sz + O (e*?)

for Re p — 400 uniformly with respect toxz € [0,1] and Imp. |

Further, let us set ang, = m Using again the change of variables (2.2.36)
we get the following Cauchy problem for':

Qa2

L(y")(&p) =0, £€(0,1), ¥7(0,p) = (),wg( P = sy @259

Writing the asymptotical formulas (2.2.3) fgrt andwg in terms of the quantities
(2.2.38) and observing the relations (2.2.39) %‘B'Id: ab, again, we arrive at the
following representations:

Yol p) = yeh s(1 - 2)

— [M + B Cxyya(1) + a2a(1))} Lshs(z—1)

+0 (65(252)> = ﬁchs(l )—i—O( e2C” Z)) ,
1) - Yo [<<1>;<<w) (2.2.54)

Yoz (x,p) = @ sshs(z —
—l—lB(x)a'(x)—i—l):((—ll)) (—x\(l)@’(l)—i—aga(l))] chs(1—2)

+O( es(1— 2)) _ @SShs(z_l)_,'_O(es(l—z))

for Re p — +oo uniformly with respect tox € [0,1] and Im p.

We define
di(p) = SA0)Ao(p). (2.2.55)
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2.2. Asymptotical representation of Green function.

Then from (2.2.51) by means of (2.2.52), (2.2.54) with the first-order asymptotics,

(2.2.31) and the relatioh(0) = bgog we obtain

di(p) = 100) [ + O (1)] [-2Rssh s+ 0 ()]
—gA(O)ou)[ aychs+0 (2 )] (2.2.56)

- _%3h3+0(?) for Rep — +oo uniformly in Imp.

Now we can formulate the asymptotical relations €drand its derivatives.
Formulas (2.2.32), (2.2.52), (2.2.54) with the first-order asymptotics and (2.2.55)
yield

O 0= G aTam) o e 1) 0 tor 3 @257
Gutovin) = f;{ Lo ol @25
D)= T o | v shoe 1)+ Oy to < o @259
Gwyw,yam:%?fz;%)s{ MR B A L

wherew = w(y) is defined by (2.2.44) and the terrfs, O3, Os, O; behave like

01 and the term®)s, O4, Og, Os like Oo, respectively, in the procede p — +o0o

(see (2.2.45)). Moreover, using the second order asymptotics in (2.2.52), (2.2.54)
we derive the foIIowing representation fGt,:

L bz) [ sh sz - chs(w —1)

ldl(P a(y)
<CT—_ )+790>lchsz-ch3(w—1)
(C W) 191) sh sz-sh s(w — 1)+%OAg} for z <y,
Ga(z,y;p)= L b (2.2.61)
%) aly) [ch sw-shs(z—1)

L~

— (SO byl () — 01 ) Leh sw - ch s(z — 1)
+ <%y) + 19()) %sh sw-shs(z—1)+ %010} for y <u,

Vo = l;’((g)) (A(0)d’(0) + a1a(0)) , V1 = lf((ll)) (A(1)d'(1) — a2a(1)) (2.2.62)

where

andOg andO1o behave likeD; andO,, respectively, a&e p — —+oo.
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2. Functional spaces and properties of Green function

2.3 Auxiliary results

Lemma 2.4. Let\, 5 € C[0,1] and A, 5 > 01in [0,1] andG be a function that is
bounded in every strig,, ¢ > 0, and has the following asymptotical representa-
tion:

oy L p1(z,y)x1(s2)x2(s(w — 1)) + 01 for =<y
Gloyip) = do(p) { p2(z,y)xs(sw)xa(s(z — 1)) + Oy for y<z (2 3.1)

wherepy, po are some bounded functiong,, x2, x3 andyy are either sh or ch
and the termg); and O, behave likeD; and O,, respectively, aRep — +oo.
Moreover, let

do(p) = ashs+0 (i) for Rep — +oo uniformlyin Imp (2.3.2)

with somex # 0. Then the estimate

Sup V[Pl / G(z,y;p)|dy < o0 (2.3.3)
Rep>0

holds.

Proof. First, let us estimaté~0(p) from below. From (2.3.2) due to (2.2.18) and the
relation|sh s| > sh(Re s) we have

Res
sl

SinceRep — +0o = Res — +oo (see (2.2.21)), the terfre|sh(Re s) dominates
over the termD ( T ) in the proces®Rep — +oo. Thus, in case of sufficiently
largeo the estimate

do(p)| > | sh(Res) — O <€ > for Rep — +oo uniformly in Imp.

do(p)| > g‘sh(Res) for Rep>o

is valid. Due to this estimate, (2.2.18) and the relatios [,/p from (2.3.1) we
obtain

VPl fol G (z,y;p)|dy < Const% [fom ch(Res-w)chRes(z —1)dy

+ fxl ch(Res - z)ch Re s(w — 1)dy]

= ConstReSS'Z Res) [fo w,(y) dysh(Res w)dy - chRes(z —1)

+ch(Res‘z)f1 ishRes(w—l)dy} , x€][0,1], Rep>o.

z w'(y) dy
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2.3. Auxiliary results

We note that the relation
w'(y) >3x>0, yel0,1] (2.3.9)

holds due to (2.2.44) and the assumptions imposedl and 5. Using (2.3.4), the
positivity of d%sh(Re s-w), %sh Re s(w — 1), the definitions (2.2.7), (2.2.44) of
z, w and the relatios = [,/p we further obtain

1 s
VIp1 Jo 19,3 p)|dy < Const—Ll

[fo ysh (Res-w)dy-chRes(z —1)+ch(Res-z f dysh Re s(w l)dy}

= Constfie‘s sh(Res) [sh(Res-z) chRes(1 — z) + ch(Res-z) shRes(1 — z)]

:Const% for z€]0,1], Rep>o.
Due to (2.2.21) we deduce the inequality
sup /|| !gxpry<w

0<z<1
Rep>o

Finally, observing tha@ (x, y, p) is bounded in5,, this supremum can be extended
to0 <x <1, Rep > 0. This proves (2.3.3). O

Lemma 2.5. Let )\, 3 € C[0,1] and A, 3 > 0in [0,1]. LetG be a function that
has the following asymptotical representation:

[ a@p)xa(s2)xs(s(w —1))+ 01 for x <y
Gla) = | oo 1) 10 for 3 <3, @39

whereq1, ¢2, X1, x4 are some continuous functions,, p2, x2, x3 are some differ-
entiable functions and the ternd®; and O, behave likeD; and O, respectively,
asRep — +oo. Then for any € C1[0, 1] the relation

Jo Gz, y;p)V (y)dy

= [n@sihaeatw - o] Vel
1 ’ b= (23
1 [@) B xs(sw)xats D)+ Osa.v.0)| Ve |
— Jo TIV)(z, y; p)dy
holds, where
TV](z,y,p) (2.3.7)

/
1| o) (plq(f/)(‘;)(y)) xi(s2)xz(s(w — 1))+ V'(y)03 for z <y

q2(x) <p2(y)v(y))lxg(5w)x4(s(z — 1)+ V' (y)O4 for y <z,
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2. Functional spaces and properties of Green function

Yy Yy
Os(a,yp) = s / Ov(a,np)dn, Oalw,y.p) = s / o, 0. p)dy (2.3.8)
1 0

and O3, O4 behave like), O,, respectively, aRe p — +oc.

Proof. Let p, x be some differentiable functions af c;, co < 1. By means of
integration by parts we get the following auxiliary relation:

/c2 p(y)X (sw)dy = 1/62 ply) d ——X(sw)dy

1 § "(y) dy
N iui)'((yy))X(Sw)’Z_j_i/: <£,((y;)> X(sw)dy.  (2.3.9)

Further, in view of the definition (2.3.8) @3 andO, we haveO; = 1 d (93 and
Oy = sdy(94 Thus, due to (2.3.5), we can rewrite thelnteg"B]ag (z,vy, p)V(y)dy
in the form
Jo 9,5, )V (y)dy
= qu(@)xa(s2) [ o)V W)xh(s(w — 1))dy + L [} V(y)d%om, y.p)dy
+aa(2)xa(s(z = 1)) Jo p2()V (y)x5(sw)dy + L [V (y) 5 Oula,y, p)dy.

In this relation we apply to the integrals containiggandy} the formula (2.3.9)
and integrate the integrals containi®g andO, by parts. As a result we immedi-
ately obtain (2.3.6) with (2.3.7).

To complete the proof it remains to show tlia$ and O, behave likeO; and
02, respectively, aRep — +oco. To this end let us define

1" [Br)
l/o O (2.3.10)

Observing (2.3.8), the behavior 6f;, O3, (2.2.45) and the definition (2.2.44) of
w(y) and (2.3.10) of(n) we compute:

s(l—w+z) -1 Res(l—w+z) | —
_— |03(z, y,p)| = [GT} s/ J{ O1(x,n, p)dn]
Re s(1—w+z) 1 Res(l £+2z) 1 _
< Const [QT} |s| [, S dn = Const|s| [, eles(w=8)gp
COQZZ' il fy i Res(“’ S)dn for 0<z<y<1, Rep>o,
es(w+l—z) -1 eRe s(w+1—2z) -1 y
2 0@y )l = [ sl [ f 0ot mp)an)
< Const [%} s ’fl ReS(gﬂ e85 g = Const |s| JY eResE=w)ay

C _
= OﬁlzzlS' I é’%n) d%e es€wlgpy for 0<y<a<1,Rep>o0
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2.4. Asymptotical properties of Green function in case of the first kind boundary
conditions

with some sulfficiently larger > 0 independent of, y. Slnceg,( ) is bounded,
&eResw=0 < 0 and fLeReo(¢=) > 0 using the inequality (2.2.21) we obtain

es(1—w+z)
S

—1
103(z,y,p)| < — COFI{I:Zl lfl d Res(w— S)dn

= Coﬁlzts‘sl [1 — eRes(w_l)] <Const for 0<z<y<1, Rep>o,

es(w+1—z)
S

Const
|O4($ Y, p | < Olirilzs'S' fy zf7 Re9§ wdn

CO;;:Z\SI [1—eResw] < Const for 0<y<az<1,Rep>o.

This proves tha®; andO,4 behave likeO; andOs, respectively, aRep — +oo
(cf. (2.2.45)). O

2.4 Asymptotical properties of Green function in case of the first kind
boundary conditions

Let us start by proving some estimates of integral&@ind its derivatives.

Theorem 2.1. Let A, § satisfy(2.2.2) Then the Green functiof¥ of the operator
L in [0, 1] with the first kind boundary conditions satisfies the following estimates:

1

Cr= sup [p] !G(x y;p)|dy < oo, (2.4.1)
Re 0
Cy = sup +/|p| \G x,y;p)|dy < oo, (2.4.2)
0<z<1
Rep>0
C3 = sup +/|p| |G x,y;p)|dy < oo, (2.4.3)
Repso
1
Cy = sup / |Gy (z,y;p)|dy < 00 . (2.4.4)
0<z<1 Jg

Rep>0

Theorem 2.1 was proved in [23], but since the proof is short, we will present it
here.

Proof. Estimates (2.4.1) - (2.4.4) follow from Lemma 2.4 if we take the relations
(2.2.43), (2.2.46) - (2.2.48) fawr, G, Gy, Gy, the positivity and boundendness
of a andb following from (2.2.6), (2.2.2), the assumptions of Theorem 2.1 and the
equalitys = [, /p into account. O

Next we formulate without proofs two theorems proved also in [23].
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2. Functional spaces and properties of Green function

Theorem 2.2. Let \, § satisfy(2.2.2)and G be the Green function of the opera-
tor L in [0, 1] with the first kind boundary conditions. ¥ € C*[0, 1], then the
estimate

Vi(x)
Ax)

holds for anyz € [0, 1], whereCs is a positive constant.

sup
Rep>0

NG ( / Gy, p)V )y

>‘ < CsllV'lcpp  (2.4.5)

Theorem 2.3. Let \, § satisfy(2.2.2)and G be the Green function of the opera-
tor L in [0, 1] with the first kind boundary conditions. ¥ € C[0, 1], then the
estimate

1
\/m </0 pG(z,y,p)V(y)dy + ‘ﬁ/((:f)))’ < Cs()[|V[|c1jo,1) (2.4.6)

holds for anyz € (0, 1), whereCg(x) is some function bounded in every compact
subinterval of(0, 1).

sup
Rep>0

Fmally, we prove a similar theorem about the asymptotics of the derivative of
Jo G(x,y,p)V (y)dy.

Theorem 2.4. Let \, § satisfy(2.2.2)and G be the Green function of the opera-
tor L in [0, 1] with the first kind boundary conditions. ¥ € C?2[0,1], then the
estimate

VIpl Uolpch(ﬂmym)V(y)d@/+ (g((f))ﬂ

is valid for any = € (0, 1), whereC7(x) is some function bounded in every com-
pact subinterval of0, 1).

sup

< Cr(@)[|V | c2j0,1) (2.4.7)
Rep>0

Proof. We begin the proof by deducing some auxiliary relations. Similarly to
the estimation ofl, in the proof of Lemma 2.4, from (2.2.42) we géb(p)| >
% sh(Re s) for Rep > o with some sufficiently large > 0. This relation implies

sz h h le**] Res(2—1
H@ | [t | |Gny| < Constameyy = Consteles=mt
_ 1 /B(7)
= Const e Revpl, \/Mf)d‘r for Rep > o,
(2.4.8)
s(1-2) shs(z—1) chs(z 1) | S(l_z)‘ . —Ri
edo(p) ) do(p) ) ’ < Constm = Const e € 52

B 4
= Conste ¢ VP o\ X dT for Rep > o.

Due to (2.2.20) the following inequalities

“RevB [} XA ~RevB i RHdT o Clun)
e \//\( ) 0 \/A( R (2.4.9)
forany z € (0,1), Rep>0, x>0
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2.4. Asymptotical properties of Green function in case of the first kind boundary
conditions

are valid with some functio@’'(x, z) of x > 0 andz. Note that the function
C(k,-) is bounded in every compact subinterval(6f1). Moreover, by (2.2.42)

and (2.2.21) we have

shs __ lshs _ l _ 1) 1
do(p) — shs+0(< )~ 1+0(1) =140 (5)=1+0 ( |p|>
0 1> (2.4.10)

chs __ lchs _l+0(6725) o 1\
do(p) ~ shs+O(<) — 1+0(1) =1+0 (E) =+

asRep — +oo uniformly in Im p.

Due to the representation (2.2.49), we can decomggsas follows:

G2(z,y,p) = Gi(z,y,p) + G2(x, y,p) + G3(z,y, p), (2.4.11)
where
1 b(z) [ chsz-shs(w—1) for z<y
gl(x7y7p) - ld()(p) a(y) { Sh Sw - ChS(Z _ 1) for T > y’ (2412)
1 b(x)1
@) ih(x)d' (z)) sh sz - shs(w — 1 for z <y
Y (¢ , (1 | )— ( )> ( ) (2.4.13)
% - lb(az)a’(az)) shsw-shs(z—1) for z >y,
1 1
Gs(z,y,p) Qo) s
b(x —((1
x lzi‘f Pt s oD RO o ey
léfy))%chsw-chs(z—l)+02 for z>vy

and0; = S‘(”’Z) Og and Oy = %010 behave likeO; and O,, respectively, as

Rep — +o0.
We apply twice Lemma 2.5 to the integrﬁJ Gi(z,y,p)V(y)dy and use the
relation—, = [b following from (2.2.6), (2.2.44) to get

aw’

1 1
/0 Gi (.4, )V (y)dy = Dy[V](z, p) + /0 Vi@, y.p)dy  (2.4.15)
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2. Functional spaces and properties of Green function

with

DiV](2,p)= 725 {; [ch sz-chs(w — 1)b(y)V (y)

+ch sw-chs(z — 1)b(y)V (y) ‘Z::]

_ . (2.4.16)
=1
— % [ch sz - sh s(w — 1)%’?!
y:ﬂ?
(V) V=
+sh sw - ch S(Z_]‘)W‘y:() ’

T [V](z,y.p)

b(x) (B(y)V(y))/ / chsz-shs(w—1) for z<y
- s2do(p) ( > {sh sw-chs(z—1) for z>y. (2.4.17)

Applying once Lemma 2.5 to the integraﬁO% Ga(z,y,p)V (y)dy and
fol Gs(x,y,p)V (y)dy we similarly get

1 1
/0 Gu(,y, p)V (y)dy = DelV](x,p) — /0 TV, y.p)dy, k = 2.3, (2.4.18)

where

Dy [V](z,p)

_ _ =1
= 82%(:()]0){ (@ - lb(x)a’(x)) sh sz -ch s(w—1) b(y)V(y)‘z:x (2.4.19)

D3 [V](z,p)

y=1
y=s (2.4.20)

= 32%:();7) [c(y)f(l)l_)(y) ch sz - shs(w—1)+ Osz(z, y,p)} V(y)‘

+ [#5((@) sh sw-chs(z— 1)+ O4lx, y7p)} V(Q)’Z:Z} )
o)
s2do(p)
(S92 ~tb(2)a(2)) (B(n)V (1)) shsz - chs(w—1), @<y
(450 3(a)a' () (BV (1)) chsw - shs(z~ 1), = >y

LVi(z,y.p) =

(2.4.21)
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2.4. Asymptotical properties of Green function in case of the first kind boundary

conditions
1
BV](x,y,p) :m
b(x) (%5@)‘/@))/0}1 sz-shs(w—1)+V'(y)0s, <y
X _ / (2.4.22)
b(w) (SLUV (v)) shsw-chs(z = 1)+ V/(1)Os, >y

andQOs, O4 given by (2.3.8) behave lik€1, O, respectively aRe p — +oc.
Summing up, by (2.4.11), (2.4.15), (2.4.18) we have

1 1
AGMWmW@@=DMmm+ATMWMM@ (2.4.23)

whereD[V] = Di[V] + Da[V] + D3[V] and T [V] = T1[V] — T[V] — T[V].
Let us estimate the quantig&g1 T[V](z,y,p)dy using Lemma 2.4 for the integrals
of functions 7y, 75, 73 given by (2.4.17), (2.4.21), (2.4.22). This lemma with the
relations = [, /p implies

1 Const||V || 20,1
TV](z,y,p)dy| < PEE , x€[0,1], Rep>0.(2.4.24)
0 p

Further, computin@® = D; + Dy + D5 from (2.4.16), (2.4.19), (2.4.20), simpli-
fying by means of the relations(0) = 0, w(1) = 1, w(x) = z and reordering the
terms we obtain

D[V] = Dright[v] + Dleft[v] + Ddiag[v] + 5[‘/]’ (2425)

where

=
—
[—
—
=
—
S—
o
>
w
N

DyignlV1(z,p) = 28 (2.4.26)

DiegulV)(@.p) = =545 bOV (0)ch s(z ~ 1)

b(x) shs
s2do(p)

DaiaglV](@,p) = } 2.4.27)

D[V](x,p)

— % [(@ - ll_)(:v)a’(x)) sh sz b(1) + O3(x, l,p)} V(1)

(S0 5 ()al(2) shs(z — 1)B(0) + Ou(a,0,9)] V(0) CH2Y)

+ (O4(z, z,p) — O3(z, 2, p)) V(m)}.
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2. Functional spaces and properties of Green function

Letz € (0,1). From the formulas (2.4.26) by means of the inequalities (2.4.8)
and (2.4.9) with« = 1 we obtain

Cl(@) IVllo
DrignVI(@:p)l: PrelVI(wp)] < === 55505 for Rep > 0(2.4.29)

with a functionC! bounded in every compact subinterval0f1). Further, by the
behavior of03 and Oy (cf. (2.2.45)) we hav&s(z, z,p), Os(z, z,p) = O (%)
asRep — +4oo uniformly in x andIm p. Using this relation and (2.4.8), (2.4.9) in
(2.4.28) and observing the equality= [, /p and (2.4.9) withx = 1/2 we deduce

the estimate
ID[V](x,p)|

“Re B 4 . Eop
< ot | ~RevB LSy (1)) 4 RV SB Y (g)

(2.4.30)
Cz X
1| |V(7c)|} < ( @I;/llo[o,l] for R p>o,

whereC? bounded in every compact subinterval(6f1).
Finally, let us consideD ;.4 [V](x,p). Due to the definitions (2.2.6), (2.2.7),
(2.2.44) ofa, b, b, z, w we can further simplify (2.4.27) as followg;qq[V](2, p)

_ lshs V(x) !
= ke (ﬂ($)> . Thus, by (2.4.10) we have

Daiag[V1(z, p)

{HO (ﬁ)] (;{;’)/ =-1 (‘gg})l +0 () IVlicrpa(24.30)

asRep — oo uniformly inz € [0, 1] andIm p.

Let us sum up. Using (2.4.24), (2.4.25) and (2.4.29) - (2.4.31) in (2.4.23) we
obtain the estimate (2.4.7) with the inequalRy p > o instead ofRep > 0 under
the sign of supremum. But we can replace the inequility > o by Rep > 0
there, because owing to the boundedness,oin the stripS,, the estimate (2.4.7)
hold trivially in case the range of the supremunfis. Rep < o. The theorem is
proved. O

2.5 Asymptotical properties of Green function in case of the third kind
boundary conditions

First we prove estimates 6f and its derivatives.

Theorem 2.5. Let \, § satisfy(2.2.2) Then the Green functio@ of the operator
L in [0, 1] with the third kind boundary conditions satisfies the estimé2et1)-
(2.4.4) Moreover, for the boundary values @fthe relations

sup [p|"|G(x,L,p)|, sup [p|*|G(z,0,p)| < Cp(x) (25.1)

Rep>0 Rep>0
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2.5. Asymptotical properties of Green function in case of the third kind boundary
conditions

hold for anyz € (0,1) andx > 0, whereCl(z) is a function bounded in every
compact subinterval g0, 1).

Proof. The estimates (2.4.1) - (2.4.4) were proved in [24]. They follow from
Lemma 2.4, if we take into account the relations (2.2.57) - (2.2.60)fd¥ .., Gy,
G2y, the positivity and boundendnessofindb (cf. (2.2.6) and assumptions of
Theorem 2.5) as well as the equality= [, /p.

To prove (2.5.1) we use the representation (2.2.57)Jor Sincew(1) =
1,w(0) = 0, from this representation we get

G(z,1,p) = Wl(z)a(l) [chsz + Ol(xv 1717)} )

R (2.5.2)
G(z,0,p) = ——irx [ch s(z—1)+ 02(1',0,]?)] .

= sdi(p)a(@)a(0)
Comparing (2.2.56) with (2.2.42) we see thA(p) has the same asymptotical

behavior as-dy(p). This implies that the inequalities (2.4.8) hold with(p) re-
placed byd; (p) and instead of (2.4.10) we have the formulae

shs chs
di(p)” di(p)

1 . .
=—1l+0 (\/ﬁ) asRep — +oo uniformly in Im p. (2.5.3)
p

s

(2.2.45)), the inequalities (2.4.8) with (p) instead ofdy(p) and the relatiors =
l/p from (2.5.2) we deduce

Observing the relation®; (z,1,p) = O (%), Oz(z,0,p) = O (65(172)> (cf.

1 [B(r)
Gla, 1,p)] < Cemste e Vi LR

v e [ (2.5.4)
G 0 < Const ,—he /P Jq NG
|G(z,0,p)] < Vel e
foranyx € (0,1) andRep > o whereo > 0 is sufficiently large. These relations
with (2.4.9) and boundedness@fin S, imply (2.5.1). O

Next, let us formulate two theorems proved in [24].

Theorem 2.6. Let \, § satisfy(2.2.2)and G be the Green function of the operator
L in [0,1] with the third kind boundary conditions. ¥ € C1|0,1], then the
estimate

sup
Rep>0

! xT
Vel ( /O Gay(x,y,p)V (y)dy — K((x)) >‘ < Cs(@)|[Vcrpy (25.5)

holds for anyz € (0,1), whereCg(x) is some function bounded in every compact
subinterval of(0, 1).
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2. Functional spaces and properties of Green function

Theorem 2.7. Let \, 3 satisfy(2.2.2)and G be the Green function of the operator
L in [0,1] with the third kind boundary conditions. ¥ € C'|0,1], then the
estimate

! X
Vil ([ s + 50| < GlVieny @56

sup
Rep>0

holds for anyz € [0, 1], whereCy is a positive constant.

Finally, we prove the following theorem.

Theorem 2.8. Let \, 3 satisfy(2.2.2)and G be the Green function of the operator
L in [0, 1] with the third kind boundary conditions. ¥ < C?2[0,1], then the
estimate

sup
Rep>0

Vi [/olpGAx,W)V(y)d“ <g((;)>]

< Cro(@)[[Vl 20,17 (2.5.7)

is valid for anyx € (0, 1), whereCo(z) is some function bounded in every com-
pact subinterval of0, 1).

Proof is similar to the proof of Theorem 2.4. Due to the representation (2.2.61) we
can decompos€', as (2.4.11), where

1 b(x) [ shsz-chs(w—1) for z<y
gl(x,y,]?) - ldl(p) @ { ch sw - sh S(Z _ 1) for = > v, (258)
1 b(x)1
g2(x7yvp) - ldl(p)@g
@ — lE(x)a’(:c)+190> ch sz - ch s(w—1) for <y (2.5.9)
» g 5.
% — lb(x)a’(x)+191> chsw-chs(z—1) for z >y,
1 1
g3(x>yap) = mg
% %—i—ﬁl) shsz-shs(w—1)4+0; for z<y (2.5.10)
X 5.
llg(a;)) %y)—i—'ﬁo) shsw-shs(z—1)+ O for z >y,

the numbers)y, ¥; are given by (2.2.62) an@; = ll;((my)) Og and 0y = l’gé)) O10
behave likeD;, andOs, respectively, aRep — +oc.

Applying twice Lemma 2.5 to the integrg%1 Gi(z,y,p)V (y)dy and using the
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2.5. Asymptotical properties of Green function in case of the third kind boundary

conditions
relation—L; = [b we obtain (2.4.15) with
b(z) )1 7 y=1
DilV](e.p) = g5 4 |shsz-shstw— DbV ()|
+sh sw-shs(z — 1)b(y)V (y) ’yiz]
I (2.5.11)
—L |shsz-chs(w— 1)((34)/7(34))‘
s VW |y
(BwVw) [v=*
+ch sw-sh s(z — 1) T ‘yzO ,

Ti[V](z,y,p)

b(x) ((E(y)V(y))/)/ { shsz-chs(w—1) for

- s2dy(p) w'(y) chsw-shs(z—1) for
Using once Lemma 2.5 for integrqfé Gr(z,y,p)V (y)dy, k = 2,3 we get (2.4.18),
where

Da[V](2,p) = may

T<Y (2512)
x> .

% (@ — Ib(z)d (z)+9 ) ch sz-sh s(w — 1) b(y)V( )‘y:1
5 0 YV _, (2.5.13)

+ (C(x);c(l) - lE(x)a’(x)—i—ﬁl) sh sw-chs(z—1) l_)(y)V(y)‘y:m ,
y=0

(
X{ [<c<y>;<(1) +191) b(y) sh sz - ch s(w — 1) + Os(z, y,p)} V(y)‘z:l (2.5.14)
(S ko s+ ] O]
7-2[‘/] (.T, yap) S2b6§f()p)
) (@_lg(m)a'(m)wo) bWV W) chsz-shsw=1), @< y(z 5.15)
(C(x)f“) —Ib(x)a () +01) (b(u)V (y)) shsw-chs(z—1), x>y,
LlVI(z.y-p) Szbg ()p)

—_ / /
((Mwl) b(y)V(y)) shsz-chs(w—1)+ Y WO, 2 <y
5 b(x)
g (2.5.16)

€O 40 ) b(y)V (y)) chsw-shs(z — 1) + L@
0 10) BV (1)) chsw-shsz — 1) + 580, w5y
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2. Functional spaces and properties of Green function

andOs, O, given by (2.3.8) behave lik€, O, respectively aRe p — +o0.

By (2.4.11), (2.4.15), (2.4.18) we have the relation (2.4.23) Witlv] =
D1[V] + Do|V] + Ds[V] andT [V] = T1[V] — T2[V] — T3]V]. Applying Lemma
2.4 for the integrals of functiong, , 75, 75 given by (2.4.17), (2.4.21), (2.4.22) and
using the relation = [,/p we get for7 [V] the estimate (2.4.24).

Further, computingD = D; + Dy + D3 from (2.5.11), (2.5.13), (2.5.14),
simplifying by means of the relations(0) = 0, w(1) = 1, w(z) = zand{(0) = 0
(see (2.2.44), (2.2.8)) and reordering the terms we obtain

DV] = Daigg[V] + DIV], (2.5.17)
where
Diag[V](z,p) = — s2bc§f()p) sh s [l(l_)(ac))Qa'(:n)V(m) — W ,(2.5.18)
DIV](2,p) = — mat
X {_(E(ZQ}E'S))/ sh sz + 7(6(2/‘(;?))/ shs(z—1)
y=1 y=0
+ [91b(1) sh sz + O3(z,1,p)] V(1) (2.5.19)

— [90b(0)sh 5(z — 1) — O4(,0,p)] V(0)

+(Os(z,2,p) — 03(x,a:,p))V(a:)}.

Letz € (0,1). Due to the behavior o®5 and O, (cf. (2.2.45)), we have
03(37,1,]9) = O(%)a 04(1',0,])) - O( g2C)
O (£). Using these relations and (2.4.8) (de(p) instead ofdy(p)) in (2.5.19)

and observing the equality = [,/p and (2.4.9) withx = 1/2 we deduce the
estimate

, O3(x,2,p), O4(x,2,p) =

DIV, p) < St [ RPNV EG (v ()4 v

Ipl
e RIS (v )+ V(o)) (25.20)
C3(@) [Vl
1 Z T Noro.1]
+\/m]V(x)@ < PIE for Rep > o,

whereC? bounded in every compact subinterval(6f1).
Finally, we consideDg;.,4[V](x,p). As in the proof of Theorem 2.4 we sim-
plify the expression oD ;. [V](z,p). From (2.5.18) we geDg;qq[V](z,p) =

lshs (z)
s2d1 (p) ( ) Using here (2.5.3) we obtain (2.4.31).

B(x)
Summing up, the relations (2.4.24) and (2.5.17), (2.5.20), (2.4.31) with (2.4.23)
and the boundedness@Gf; in S, yield (2.5.7). The proof is complete. g

41



3. Inverse problem with temperature observations

In this chapter we study the generalized inverse problem with temperature obser-
vations.

3.1 Reduction of the inverse problem to a fixed-point form

Here we deduce a fixed-point system for the inverse problem in the Laplace do-
main and transform further the system torandU,. Recall that this problem was
formulated as the system (1.2.25) with the additional equations (1.2.15), (1.2.18).

Using the relation (1.2.15) fdv in the left-hand side of the conditions (1.2.25)
we obtain

K1 1
> M) [ pGlai,.Dp)pU 0. 5) dy
k=1 0

Ko 1
> V/PMi(p) \/ﬁ/Gy(% Y, p)kk(y)pUy(y, p) dy (3.1.1)
k=1 0

:p2[Hi(p) +Q(zi,p)l, i=1,.... K.

Conversely, using (1.2.15) in (3.1.1) we deduce (1.2.25). Therefore, the system
(1.2.25) with (1.2.15), (1.2.18), is equivalent to the system (3.1.1) with (1.2.15),
(1.2.18).

The latter system (3.1.1) is more convenient for our analysis because we can
rewrite it in a fixed-point form. The main idea is to separate the principal part of
the system in the proce$&e p — +oco. In case such a the principal part contains
unknownsN and M, we leave it to the left hand side of the system bringing the
remainder to the right-hand side. The remainder is already a term of a lower order,
i.e. a contractive mapping of the unknowns in some half-paag > o with
sufficiently larges. We note that transforming the system (3.1.1) into the fixed-
point form is rather a formal procedure and doesn’t require regularity assumptions
on the data and solutions (except for (3.1d9tT" # 0 and the decompaosition
(3.1.16) of the functior®® below). However, ideas of extracting this principal part
are based on certain proper asymptotics of the system in the piRepss: +oc.

Such an asymptotics is achieved under the conditions that the system (3.1.1) with
(1.2.15), (1.2.18) has a solutiaW|r=1,.. x,, Mk|k=1,. K,, U that satisfies the
following properties:
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3. Inverse problem with temperature observations

(1) ni(t) = £, Ni(p) andnj, belong to& implying pNy(p) — n4(0), as

Rep — +o0 (cf. property 1 of the Laplace transform in Section 1.2.1);
(2) /pMy(p) — 0, asRep — +oo (strengthened form of (1.2.3));

(3) for u(z,t) = EgitU(x,p) the relationsu(z, -), w(z, ), ug(x, ), ug(x, ) €
& hold with the initial condition (1.1.5) implying

pU(x,p) = ¢(@), pUs(z.p) —¢(z), as Rep—oo.  (3.1.2)

We emphasize that (1) - (3) are not assumptions. We only use them to explain
the ideas of the transformation of the system (3.1.1).

In case (1) - (3) hold by the assertions of Theorems 2.1, 2.3, 2.5, 2.7 we see that
the first sum on the left-hand side of (3.1.1) dominates with respect to the second
sum in the procesRep — +oo. As a result in the proce®RRep — +oo from
(3.1.1) we obtain the following system faf = n;,(0):

KI . .
_zyﬁwﬁﬁﬂ%):Rylpﬂm@%Hﬂmm»i:L”wKiBLQ
el i ep— 00

Since this system doesn’t contain the full unknow&) and M (p), we have
to compute the second approximation of the system (3.1.1) in the prBeess-
—+00, too. To this end we have to assume that (3.1.3) is solvable. According to the
Kronecker theorem the system (3.1.1) has a solution provided

X = rank((yk(xi)(p(m> , lim p? [Hi(p)+Q(xivp)]>
=1 K

ﬁ(aj’b) k=1,....K1 Rep—o0 =1,...
_ rank[ @) @) . (3.1.4)
B(w:) k=1 K

Here the matrix in the left-hand side is formed by placing two matrices left to right.

In the sequel we assume that the solvability condition (3.1.4) for the system
(3.1.3) is satisfied. In cas# = K; the solution of (3.1.3) is even unique.

Let us continue the transformation of (3.1.1). As we remarked, under the con-
ditions (1) - (3) the first sum on the left-hand side of (3.1.1) dominates with respect
to the second sum in the procddsp — +oo. This suggests that the kernels
andmy can be determined simultaneously with higher smoothnesgg ithan in
my,. Therefore, we introduce the new unknowns

ka(p)_n07 k=1,..., K,
Z=(Z1,....ZK), Z(p) = g (3.1.5)
Mk—K1(p)7 k=K +1,... K,

wheren), k = 1,..., K; solves (3.1.3). To find the second-order approximation
of (3.1.1) we multiply it byp. Then, in view of (3.1.3) and (3.1.5), (1) - (3) and
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3.1. Reduction of the inverse problem to a fixed-point form

Theorems 2.1, 2.3, 2.5, 2.7 we see that the system (3.1.1) is in the pRacess
+o0 is asymptotically equivalent to the system

=0.

Ky
S )o@+ S 2o (e (@06 @)
2 AP )

k=Ki1+1

T=x;

The left-hand side of this system represents the principal part of (3.1.1). Thus, sep-
arating the principal part we after some elementary transformations rewrite (3.1.1)
in the following equivalent form:

K K
>z g rlede@) + 30 L) g (e @ @) |
k=1 ! k=K1+1 g =
K1 1
=3 20) | [ pGlai. ) U 01) ~ ola)] dy
k=1 0

pG (i, y, p)ve(y)e(y) dy +

+
O\H

ﬁ(lxi)Vk(mi)w(mi)]

K 1
- > Zilp) / pGy(xi,y, p) -1, () [PUy (4, p) — @' ()] dy
k=Ki;+1 0
1
- [ 6600 (s 20 dy = 5o (@ @)
0
+ -1, (0)9" (0)pG (24, 0, p) — pi— i, (1) (1)pG (s, Lp)]
K, 1
+> g /pG i, ¥, P)vk(y) [PU (4, p) — o (y)] dy
k=1 0
2 Hz p)—i_Q(xu )]+ lim q [ Z(Q)J’_Q(xMQ)} ) i = 1a s 7K' (316)

Req— o0

The main reason of transformations in the right-hand side is to biifg:, p) and
pUs(x, p) to the formpU (z, p) — p(x) andpU,(z, p) — ¢’ (x) that converge to zero
in the procesRep — +oo (see (3.1.2)).

Further, let us introduce the matrix

vi(a:)p(:) _
elaelra), k=1,...,Ki,

L= (Vik)i p=1,... 1 » Vik = (1r—1c; )¢ (1)) (3.1.7)
ey k=Kit+l. K
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3. Inverse problem with temperature observations

related to the principal part and assudw ' # 0. Moreover, we introduce the
functions

B°[Z)(x,p) = pU[Z)(x,p)—¢(x), B'[Z)(x,p) = pUs[Z)(x,p)—¢'(z), (3.1.8)
whereU|[Z](z, p) is the solution of (1.2.15), (1.2.18) with the given vecibin the
form (3.1.5).

Now we are ready to rewrite system (3.1.6) in the equivalent fixed-point form

Z =T"1F2), (3.1.9)

whereF(Z) = (Fi1(2),...,Fx(Z)),

1
/ (25, 4, )vi () BY1Z) (9, p) dy

e
- 1 |
+/pG zi, Yy, )i (y)e(y) dy + M%(wi)tp(wi)]

0

1
/pGy i, Y, ) ik—rc, (¥) B [ Z)(y, p) dy
0

!/

T=x;

K
; 1
¥ 0/ PG(i.v.2) (1o 2 0) dy + o (o (@) (@)

+Mk*K1 (O)SOI(O)pG(‘%i? O,p) — Uk—K; (1)90/(1)pG($i7 1,]7)]

1

K

+ Yo [ b6 B2 dy + Bip), =L K (3.0.0)
k=1 0

and
K1 1 1
T = no xX; 14 —VL\X; xX;
¥i(p) —; K O/pG( i Y, P)VE(Y)(y) dy + ) % (2:)o( z)]
—p?*[Hi(p) + Qzs,p)] + 1m  ¢*[Hi(q) + Q(x4,q)] - (3.1.11)

Req—o0

Since the system (3.1.10) contains the quanti8§7] and B'[Z] we have
to deduce additional equations for these quantities, too. To this end we simply
rewrite the system (1.2.15), (1.2.18) farin terms of these quantities. In view of
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3.1. Reduction of the inverse problem to a fixed-point form

the definitions o7, B°[Z] and B'[Z] from (1.2.15) we have

=Y %) / G,y p)(v) [BO12)(w.0) + o(v)] dy
k=1 0

1
> Zk(p)/Gy(x,y,p)ukm(y) [B'[Z](y,p) + ¢'(y)] dy (3.1.12)
0

k=Ki1+1
Ky
" an/G £.9.9)(9) B2}y, p) dy + B(z, p)
k=1
with

K 1

O(x,p) = Zn /G z,y, p)ve(y)e(y) dy — pQ(x,p) — p(x) (3.1.13)
k=1 0

and from (1.2.18) we get
1
BZ)(z,p) = Z Zi(p) / G920 (w) [BYLZ)(wo0) + 9(v)] dy
= 0

+ Z [“’“2)()31[2](:5,;9) (3.1.14)
k=Ki+1

/Gzy 2y, Pk, () [B'1Z)(y, p) + ¢ (v)] dy
0

K K (:U) /(‘/L‘)
+ Y n / Golw,y, DI BY 2Ny ) dy + 37 Zulp)
P ) k=Ki1+1

+@' (2, p)

with
K
®!(z,p) = Zni/Gz(az, Y, D)Vk(y)p(y) dy — pQz(x,p) — ¢'(2). (3.1.15)

For the functionB°[Z], which in contrast taB![Z] doesn’t contain a space
derivative ofU, we need a certain higher regularity in the time variable. To this end
we assume that the data-dependent t@fhgiven by (3.1.13) can be decomposed
as follows:

80 (x,p) = <22 4 §0(z, p) (3.1.16)



3. Inverse problem with temperature observations

wherecg is some function inC'[0, 1]. The meaning of this decomposition is that
the termciﬁ forms the higher-order part @°(z, p) in the proces®e p — +oo.
Indeed, in the forthcoming sections we will assume thate B, o, With some
a > 1,09 > 0 implying the estimaté®®(z, p)| < €2t 4 € [0,1] Rep > 0.

‘|O¢l

But this moment such properties [d@°(z, p)| are not necessary to assume.
Let us split B°[Z] into the sum

BY[Z](z,p) = a"].@ + BYZ)(x, p). (3.1.17)

From (3.1.12) and (3.1.14) in view of (3.1.13), (3.1.15) and the definitiors of
and B[Z] we deduce the following fixed-point equation for the vedRiZ] =
(B°(z], B'[2)):

B[Z) = A[Z)B|Z] +b|Z], (3.1.18)

whereA[Z] = (A°[Z], A'[Z)]) is the Z-dependent linear operator Bfandb[Z] =
(b°[Z],b1[Z)) is theZ-dependenB-free term with with the following components:

/\

1
(A°1Z)B) (x.p) = p)+ ) [ Gy Bp) dy
0

K 1
- > Zk(p)/Gy(x,y,p)uk_xl(y)Bl(y,p)dy, (3.1.19)
0

k=Ki1+1
Kl 1
(A'Z]B) (z.p) = p) +nf) /Gm 2y, D)vi(y) B (v, p) dy
k:l 0
= Mk—K1(m) 1
+ 2 4l [T B @)
k=K1+1
1
0

1

K,
e = 340 [ Gy rm) [C‘I’lﬁy) +90(y)] dy

k=1 0

K 1
- Yz / G,y D)t res ()¢ () dy + Bz, p),  (3.1.21)
k=Ki1+1 0

a7



3.2. Analysis of direct problem system

K1 1
WA = Y 740) Gl urn [“‘P@)wy)} dy
0

k=1 P
S @)¢ (@)
i kgﬂ Zi(p) [% (3.1.22)

1

- / Gy (2, y, D) k1, (¥) ¢ (y) dy] + 3! (2, p)
0

and

K, 1
~ 1 _
B = o> 0 [ Gy + Py, (3129
N 1 & :
# (@) = Y / G,y P (y)co(y)dy + B (2, p).

Summing up, we have proved

Proposition 3.1. Let the condition(3.1.4)hold implying the existence of the solu-
tionn?, k = 1,..., K to the systen(3.1.3) Moreover, letdetI" # 0 and &°
given by(3.1.13)have the representatid|3.1.16) Then the inverse problem in the
Laplace domain with temperature observations is equivalent to equédidrd)
with F given by(3.1.10) The solutions of these two equivalent problems are re-
lated by (3.1.5)with (3.1.8) Moreover, the termB°[Z] in (3.1.8) has the form
(3.1.17)and the vectoB[Z] = (B°[Z], B![Z]) consisting of the functio®[Z]
from (3.1.17)and the termB![Z] from (3.1.8) satisfies the syste(3.1.18)with
(3.1.19)- (3.1.24)

Remark. In the case of boundary conditions of the first kind the addends con-
taining the term-(z;, 1, p) andG(x;, 0, p) in (3.1.10) vanish because in this case
G(zi,1,p) = G(x;,0,p) = 0 (see (1.2.12)).

3.2 Analysis of direct problem system

In this section we study the equation (3.1.18) whose solulig#] is connected
with the solutionl/ of the direct problem in Laplace domain.
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3. Inverse problem with temperature observations

Let us introduce the following basic assumptions on the data:

®
@

®° given by (3.1.13) admits the decomposition (3.1.16) whg
cg € C[0,1] and ¥° € B, ,,with some
oo >0 and « satisfying (2.1.3)

®! given by (3.1.15) belongs t@, .

OJ—E,UO;
v, € CI0,1), k=1,..., K1, ur € C[0,1], k=1,..., Ky;
¢ € Co,1].

(3.2.1)

We note that without restriction of generallty we can replace the conditjon
0in (3.2.1) byoy € R. Indeed, smcﬁy o1 C ZS’7 o, fOr o1 < o9, the assumption
(3.2.1) holds for anyry > 0 provided it holds for some, < 0. However, the
conditionoy > 0 simplifies the treatment of terms of the forﬁ foro > og in
forthcoming estimations (see e.g. (3.2.7)).

We start by proving some properties of the free térofithe equation (3.1.18).

Lemma 3.1. Let the assumption®.2.2) (3.2.1)hold. If Z = I% +V e Meao,

then the vector functiob Z] = (b°[Z], b'[Z]), given by(3.1.21) (3.1.22) belongs
to B,,», and satisfies the estimate

1 Vlla,o
[6[Z]]],, < Const [14— (\ | + H a” i >] (3.2.2)
0-2
with anyo > o¢ and some constant, where
K
el =) lexl. (3.2.3)
k=1

Moreover, for everys > og and Z' = £ + V', 7% = £+ V? € Mcq,o the
differenceb[Z!] — b[Z?] fulfils the estimate

[b[2") — b[2?)]|,., < Const ;5 vr-vy,, (3.2.4)
with some constant.

Proof. Let us start with the estimation df°[Z]. Substituting? + V' for Z in
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3.2. Analysis of direct problem system

(3.1.21), multiplying byjp|* and estimating we have

Pl 1)) < i(rk # RO \/]Gmyp\dy

k=1

HSO”C[O,l]

e (3.2.5)

1
X [lvkllcpo, Hﬂ Ofgafl lca (y)| +

K
Ip|“|Vi(p H‘PHC’Ol
. <|ckr ,a1 VA \G (29,2 dyllsi—rc ooy P2 C0
k=Ki+1 ‘ |

+[p|*

<I>°(:v,p)‘-

From (3.1.23) in view of the assumption (3.2.1), Lemmas 2.2 and 2.3 and the as-
sertion (2.4.1) of Theorems 2.1 and 2.5 we g@t € Ba,o, for the function 3.

Using this relation, the assertions (2.4.1), (2.4.3) of Theorems 2.1, 2.5, the assump-
tion (3.2.1) and the definitions of the norrs |, » in Aq » andl?a,g we obtain

from (3.2.5)

K1
a 70 HVkHaa leallco . llelleo
|p| ‘b [Z]( Z a—1 ClHVkHC[O?l] 3—a + 2—a
— Pl | |
a || Viella,o l¢'lc =0
Z ot C3HMk—K1HC[o,1}W+ 12" |0
=K1+ p

for Rep > o, 0 > 09, x € [0, 1]. Taking here the supremum ovBRep > o, z €
[0, 1] and observing the relatiop|” > o7 for Rep > o, which holds in the cases
y=a—-1,3-a,2—a,3/2—adueto (2.1.3), we have

HC<I>HC’[0,1} ||90HC[0,1}
U3—a + 02—a

K
Villa,o
621, < - (lel + B2 ) il
k=1

K
Villa, 1¢llco,1y
>0 (ol + ) s opa Y+ 8, (320
k=K1+1 o2

for o > oy. Finally, observing that
o7 > koY for o >0y incase v > with k= 03/_7 >0 (3.2.7)

becauser; > 0, we can take the minimal exponent®fn the nominators of the
estimate (3.2.6). Thus, in view of the definition of the normuity, ) and (3.2.3),
we arrive at the relation

Const <

1°12] o) + 1V ”“)+u¢>0uaao, oo (328)

Moo < ==

50



3. Inverse problem with temperature observations

with some constant depending on the data of the problem.
Next, we perform similar transformations witht [Z] in (3.1.22) multiplying

by |p\a*§ instead of|p|*. We have

K1

1 Vio(p
o} 5 2) ()| < Z(|ck|+‘p’ ‘|j1 )¢ / Gale,y.p)] dy
k=1
lelleo,n
X |lvkllero, |:m3_a 0213%(1 ca(y)| + W_[a]]
K
p|%| Vi (p 1
. <|Ck|+| \|p!’ak_(1)) -
k=K1+1 |p|2
e () (x 1
X W—/{) Gay(@,y,0) k-1, (¥) ' (y )dy‘ + [p*2 | (e, p)‘

From (3.1.24) in view of the assumption (3.2.1), Lemmas 2.2 and 2.3 and the asser-
tion (2.4.2) of Theorems 2.1, 2.5 we gét € B, 1 , forthe function®! . Thus,

using the assertions (2.4.2), (2.4.4) of Theorems 2 1, 2.5 and taking the supremum
overRep > o, = € [0, 1] we obtain

. < Vil lesllep  llellopay
o' 2]]] < Jexl + 5 Collvrllcron | = s=a + y2=a

b3 (o Wil Lo, | Imemdlionn g
M gat min A(x) 4 S-a a=3,00

g2

for o > 0. Since min A\(z) > 0 by assumption, this estimate due to (3.2.7)

z€0,1]
yields
Const Vila,o
Hbl[Z]Ha,%ﬂ < <| | + H H ) + Hq)1||a7, o0) 0200 (3.2.9)
02

with a constant depending on the data.

In particular, observing the estimates (3.2.8) and (3.2.9) and applying Lem-
mas 2.2 and 2.3 for the components in (3.1.21), (3.1.22) we seeb[Fat=
(W°[Z],b'[Z]) € Bao for o > oo. Moreover, we get (3.2.2). To prove (3.2.4)
we denoteZ = Z! — Z2. Observe that in this cag¢Z] = b[Z1] — b[Z?], where
the components’[Z] andb![Z] of the vectorb|Z] are expressed by the formulas
(3.1.21) with 3% = 0 and (3.1.22) withd! = 0, respectively. Using the proved
estimates (3.2.8) and (3.2.9) for the components 8f and observing thaf has
the formZ = ¢ + V, wherec = 0 andV = V1 — V2 we deduce (3.2.4). The
proof is complete. O

We continue proving properties of the operatg?] of the equation (3.1.18).
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3.2. Analysis of direct problem system

Lemma 3.2. Let the assumption@.2.2) (3.2.1)hold. If Z = % +VeMeapo,

then the linear operatori[Z] = (A°[Z], A1[Z]), defined by(3.1.19) (3.1.20) is
well-defined and bounded i, , and satisfies the estimate

L4l |, [Vl

o o

(3.2.10)

IAZ)l 25,0y < Co

for anyo > og with some constanf,. Moreover, takingZ! = o+ vl 7?2 =
I% +V2%e M.q,0, the estimate for difference

51
142" = ALZ%|| s,y < Co— vi=v2,, (3.2.11)

holds for anyo > o¢ with some constar@o.

Proof. First we show that the linear operatet{Z], is well-defined and bounded
in By,,. From (3.1.19) byZ = f) + V we get

K o
|p|a {(AO[Z]B) ({L‘,p)} < Z <‘le’ + ’p‘ ":ﬁ_(f))‘ + ‘n2’>
— |

|p|? Ip|

ey o
xw/wm%mwwwmmmu%%b@@\

ol bl Vilo
* Z ( IW“ 4 /ny“@

S\

X[l x—r | ooy Il ZOrgagl\B v.p)]| -

Using Theorems 2.1, 2.5 and taking the supremum &er > o, = € [0,1] we
deduce

K3
|iz18,, < (@’WWM+WUQ
k=1

ogatl
K
+ <a+ga Cs llmn—rcr o,y 1B Ml 1.0
k=Ki1+1

for o > o0g. This, due to the relation (3.2.7), implies

[\nol + ¢
_|_
g

HAO[Z]BHa , < Const

: ] IBlyo, o>00 (3212)

O-a

with some constant and
K1
) = [nd].
k=1
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3. Inverse problem with temperature observations

Further, from (3.1.20) we derive

K
ok |(Allz S (lel PPVl | )
pI*2[(AN[21B) (wp)| < Z( e )

p|? Ip|

<Vl / Gl )| dy - Il 1 s, [ B,

0<y<1
lexl , IpI*[Vi(p)]
" Z < W l1t—rc1ll o,y
k=K1+1 p
1 1
. W |ny #y,0)|dy | 1p°7% max [B'(v.p)] -
z€[0,1

Using Theorems 2.1, 2.5 and taking the supremum &er > o, = € [0,1] we
get

0
HAl[Z]BH 1 < Const [n” + ’C| Voo
a—3,0 o

} 1Bl o0 (3213)
0

with some constant.
Putting the estimates (3.2.12) and (3.2.13) together we have

[n° +lel |, IVllao
g o

|A[Z])B], < Const[ ] 1Bllyy> o =00. (3.2.14)
Using this relation and Lemmas 2.2, 2.3 for the components of (3.1.19), (3.1.20)
we see thatd[Z] is well-defined and bounded i, , . Moreover, (3.2.14) implies
the estimate (3.2.10).

It remains to prove (3.2.11). Denotirig = Z! — Z?2 the componentsi®[Z]
and A'[Z] of the vectorA[Z] = A[Z'] — A[Z?] are expressed by the formulas
(3.1.19) and (3.1.20), respectively, containitfy= 0. Using the estimate (3.2.14)
for A[Z] and observing thaf = £ + V, wherec = 0 andV = VI—VZ we
deduce (3.2.11). The lemma is proved. O

Now we are in the situation to prove the main result concerning the equation
(3.1.18).

Theorem 3.1. Let the assumption®.2.2) (3.2.1)hold. Then for any > oy and
Z = 193 +V € M0, satisfying the inequality

L] [Vlao 1
g

= < L.
n(Z,0) S35 (3.2.15)

where(y is the constant fronf3.2.10) equation(3.1.18)has a unique solution
B[Z]in B, This solution satisfies estimate
)} (3.2.16)

1
gl U e
o2

IBZ]|l,, < Const [1 +
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3.3. Existence and uniqueness for inverse problem

with some constant. Moreover, for every> og and Z' = ¢ + V!, 7° = ¢
V% € Mea,o suchthatn(Z7,0) < 5=, = 1,2, the differenceB[Z ] — B[Z?
fulfils estimate

+
]

1B12"] - BIZ7|,,

1 1 1% |0 1 1 9
< — |1+ + + —|Vvi-V 2.
Const{ > {1 i, <| | Sa-1 Jo H HOW (3.2.17)

a

with some constant.

Proof. Due to Lemmas 3.1, 3.2 the equation (3.1.18) is well-defineB,ig if
o >opgandZ = f} +V € M. ... Moreover, in case the relation (3.2.15) holds,

from (3.2.10) we gel{A[Z][| 45, ,) < 3. Thus, by the contraction principle
equation (3.1.18) has a unique solutih= B[Z] € B,,; -
Furthermore, from the system (3.1.18) we have

I1BZ)|ao < (1= [ AIZ)| £(80.0)) " 1B[Z]llaer

This, in view of the inequality A[Z](| &5, ,) < % and (3.2.2), yields the estimate
(3.2.16).

Finally, let us prove the estimate (3.2.17). Let> oo and Z' = ¢ +
Vi z2=¢ -+ V2 be such that (3.2.15) is valid fo¥ replaced byV! and V2,
i.e.n(Z7, ) < 20 , j = 1,2. Subtracting equation (3.1.18) fa@ = Z2 from the
corresponding equation féf = Z! we have

B[z'] - B[z?] = A[Z*|(B[Z'] - B[Z?%)) + (A[Z"] — A[Z?%)) B[Z"]
+ b[ZY - b[Z7).

This implies
IB[Z"] = B2 a0 < (1 — [AIZ%)]l 25, )
xUmwﬂfmﬁmﬂ&mwwmufuwfwwwmuA-

Using in this relation the inequalityA[Z?] 3 and the estimates (3.2.4),
(3.2.11), (3.2.16) we deduce (3.2.17). The proof is complete O

3.3 Existence and uniqueness for inverse problem

In this section we study the fixed-point equation (3.1.9) with (3.1.10) and thereupon
infer results for the generalized inverse problem with temperature observations in
the time domain.

Using the decomposition (3.1.17) B[ Z] in the term containin@% in (3.1.10)

K
we extract theZ-free adden(% >ond fol pG(zi,y,p)vk(y)ca (y)dy from this term
k=1
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3. Inverse problem with temperature observations

and add it tol; (p) to obtain the fullZ-free term of the operataF = (F1, ..., F)
in the following form:

U= (Uy,...,05), T(p)= E:nk/1pG:m4/pVA Jea(y)dy.
(3.3.18)

Recall that¥; is defined by (3.1.11).
Theorem 3.2. Assume thaf2.2.2) (3.2.1)hold and
e € C0,1, k=1,...,K1, meC?0,1],k=1,...,Ky, ¢ecC30,1].

Moreover, letdet T" £ 0 for T, given by(3.1.7) and
d
U = , +Y € Mg, (3.3.20)

with somed € R¥. Then there exists; > o, such that equatiori3.1.9) with
(3.1.10)has a solutionZ = § + V in the spaceM. , »,, Wherec = I'~1d. The
solution is unique in the union of spacds] M. q ..

o>0o1
ceR

Proof. Firstly, we prove the existence assertion of theorem. Let us sef'~1d.

Observing (3.1.10), (3.3.18), (3.3.20) we see that equation (3.1.9) f:er% +V
)K.

in M. isequivalent to the following equation fof in (A, »
V=F(V), (3.3.21)
whereF =T1F,

EOUZLJ§+V9BMD+M(§+V%LABMD+K (3.3.22)

Ly is the following bilinear operator of € M., , andB = (B, B € Be.o:
1
(Lo(Z, B)) sz ) [ pGwi ) ) B )y
0

/}Gp%ypukm@ﬂﬁwmwwi—anKwa3B)
k= K1+1 0

andL; andL, are the linear operators &f € M., , andB = (EO, Bl) ¢ Ba,o,
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3.3. Existence and uniqueness for inverse problem

given by the formulae

K1 1
(L1(Z2))i(p) = ZZk(p){/G(xi,y,p)vk(y)r:@(y)dy
k=1 0

+
O\H

pG(xi, y, p)vi(y)e(y) dy + ”’“(WW}

»3(951)
K ! (r—xc; () ()
+ > Zilp) / pG (@i, y,p) (th-r, W) (v))" dy + o=
k=Ki+1 /B(xz)
1 0
-k, (0)¢'(0)pG (24, 0,p) — pr—rc, (1) ()pG(xz,l,p)}
i=1,...,K, (3.3.24)
and
K 1
k=1
respectively.

We will make use of the fixed-point argument for the equation (3.3.21) the
following balls:

Dao(p) = {V € (Aao) : [Vap <} (3.3.26)

To this end we first deduce some estimatesfgrL; and L,. Multiplying by |p|®
in (3.3.23) and estimating we have

(LO(;+‘/’B>)i(p)’ < i(ﬁ'+%>| I/\G zi,y,p)| dy

k=1

Pl

« O
<@l cpo Ip1” gas | By.p)

K
2% Vi (p
S (\ck|+""|a1 >\/ /rG (22 ,p)| dy
k=Ki1+1

1
X | pe—k1ll g, P12 02y B w.)] -

=1,...,K.

Using assertions (2.4.1), (2.4.3) of Theorems 2.1, 2.5 and the definitions of the
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3. Inverse problem with temperature observations

norms|| - ||, in A, , and3, ,we obtain

K
¢ c Vi a,o -~
(1ol +v:5)),00] = X2 (o + ) 1@ty 150
k=1

lp|*
|p| Ip|

HVkH .
S ( S ) ool 1B oy = oo
k=Ki+1

for Rep > o, 0 > 0. Taking in this relation the supremum ovRep > o and
observing the definition of the norii ||o,» in (A,,)* as well as (3.2.3) we have

el IVl 70
<
., < Const [(U — )||B [
V
+<\c| + L
with some constant. Using here the inequality (3.2.7) witek= 0,7 = 1 and

v = a— 1,7 = a and observing the definition of the nofm ||, in B, , we
deduce the estimate

()

NIB o] 2 o2 0

HLO(5+V,B> gconst(|c|+” ”“)HBHM, >0 (3.3.27)

a,o

with some constant.
Similarly, multiplying in (3.3.24) byjp|*, observing the normj - ||o,» iN Aq »
and estimating we have

: (Ll(fw))m\

x| )( 1 1
< ’ lellero 1 1o / G,y p)ldy
Z <|p|—a N Vpl A

« guus les()|+ V1| [ 500 p)oto) -+ “HEEED

= el IVl
+ > ( + "‘"’) (vrp\
E=Ki+1 |P|7_a VPl

)

1
/0 pG (i, y, 1) (1h—1e, (V)¢ () dy

1

+5(9€z‘)

(ko rc, (2) ()

r=x;

He—rc, ()|l ()] 121G (i, 0,p) | + |r—rc, (V)]10' V)] |pI*2| G (s, 17p)|>,
i=1,...K,

for Rep > o, o > oy. Inthe case of boundary conditions of the first kind the terms
G(z;,0,p) andG(z;, 1,p) in this estimate are equal to zero (see (1.2.12)). In the
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3.3. Existence and uniqueness for inverse problem

case of boundary conditions of the third kind we make use of the assertion (2.5.1)
of Theorem 2.5 withx = 3/2 and take the assumptian € (0,1) into account.
Then we get

[pI*?G 23, 0.p)] < Cipa(wi), [pP?IG(ai 1p)| < C5pa(a), Rep>0.

Using these relations, the assertion (2.4.1) of Theorems 2.1, 2.5 and the assertions
(2.4.6) and (2.5.6) of Theorems 2.3 and 2.7, respectively, we deduce

(15 v) WX ( ol ||vk|ﬁj‘,g>

3
|p|2

Pl

C ~
X <\/|%’ 1kl 0,17 llcellero, +Ci ||’/’€90||Cl[0»1])

W) [@‘H (te-1:9") Nleroy

|ck| Vi
+ > < e

0I5, 00 O3 () + -1y (VP (DIC () )| i =1, K,

for Rep > o0, 0 > oy Where@ = Cg(x;), 8 = 0 in the case of boundary condi-
tions of the first kind an«ﬁ- = (Y, # = 1 in the case of boundary conditions of the
third kind. Taking here the supremum oep > o and observing (3.2.7) with
v =0,+" = 1/2 we obtain

[4(5+ V)]
p
with some constant.

Finally, from (3.3.25) in view of the assertion (2.2.32) of Theorems 2.1, 2.5 we
deduce

< const( el | WVlao (3.3.28)

)7 UZUO
o2 @ Vo

a,0

|L2(B)||a,c < Const ||B|la,s, 0 > 09 (3.3.29)

with some constant.

Let us return to the equation (3.3.21) with the operdfor= I'"' F}, where
I3 is given by (3.3.22). By means of (3.3.27), (3.3.28), (3.3.29) and the relation
1Y [a,o < |Y||a,0, WeE Obtain

Voo 1
IRVl < Const (14 D1e) Fyiz, +
o
1Y a0, @ > 00 (3.3.30)

with some constant depending gn. Let us suppose that” € D, ,(p). Then,
using Lemmas 2.2 and 2.3 to the components of (3.3.23) - (3.3.25) and observing
(3.3.22) and (3.3.30) we see that(V) € (Aq,)* for o > oq. If in addition, o,
p satisfy the relation
_ 1+

mlpo) = =L <o (3.3.31)
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3. Inverse problem with temperature observations

then (3.2.15) holds for andZ = © 4 V. Hence, we can apply estimate (3.2.16) of
Theorem 3.1 fof{ B[Z]||,»- Plugging (3.2.16) into (3.3.30) and estimatj{ig|| o~
by p and observing thats— < Const for o > o we have

o2~ ¢

IRVl <€ (14 225) (142 ) 4 Vo (6332

with some constant’ independent op ando. From (3.3.31) and (3.3.32), due to
the equality ” = T~'F; and the relatiom > 1, we see that for every > pg :=
I0-1(C + 1Y]l,.0,) there existsoy = o2(p) > oo such that the inequalities
no(p, o) < ﬁ and||FV|, , < phold for anyo > o2(p).

Consequently, by the definition @1, ,(p) we have

F:Duyos(p) = Dao(p) for p>po and o > o2(p). (3.3.33)

Next, we prove thatF” is a contraction inD,, »(p) with suitable parameters
ando. From (3.3.22), due to the bilinearity @fy and the linearity ofl.;, Lo, we
have

F(V) — Fi(V) = Lo(V — V, B|Z]) + L0<£ +V,B[Z] - B[Z])

+L1(V — V) + Ly(B[Z] — B|Z)),

whereZ = 1% +V, Z= g + V. Using here (3.3.27), (3.3.28) and (3.3.29) we get

~ 1 Bl Z]||la.o ~
IF (V) = () or < Const { (5 + e ) v = Pl
‘7| o, —
+(14 W) ypizy - piz) } 7> 00

with some constant depending pf Let us suppose that, Ve D, +(p), where
o > oo andp, o satisfy (3.3.31). Then we can make use of the estimates (3.2.16)
and (3.2.17) of Theorem 3.1 to get

. 1 1 1 0
_ < =
1B (V) = Fy(V)||as < Const { 75t e (1 = (1+ Ua_1)>

+(1+05_1)[;(HU;Q(HU;A))% }Hv_v

In view of the assumed inequalitiés< o < % (cf. (3.2.1), (2.1.3)), the coefficient
of ||V = V||a.c O the right-hand side of this estimate approaches zer-asx
for any fixedp > 0. Hence, for any > 0 there existsrs = o3(p) > oo such
that the inequalityy(p, o) < ﬁ holds andF’ = I'"!Fy is a contraction in the

a,o -
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3.3. Existence and uniqueness for inverse problem

ball D, ,(p) for p > 0 ando > o3(p). This together with (3.3.33) shows that the
equation (3.3.21) has a unique solutidh in every ballD, ,(p), wherep > pg
ando > o4(p) = max{o2(p);o3(p)}. This proves the existence assertion of the
theorem withoy = 04(2p9).

It remains to prove the uniqueness assertion of the theorem. We start it proving
the uniqueness in the following unionl ) M. . , Wherec = I'~!d. Suppose that

o>01
(3.1.9) has two solutiong* = ¢ + V' andZ? = ¢ 4V in this union. Observing
the relation

Meao CMeqs forany 0<o <o,

following from the definition ofM. ., we see that there exists > o; such
thatZ!, Z? € M,, 5. This implies that the components! and V2 of these

solutions belong to(Aaﬁ)N. Moreover, V! and V2 solve the equation (3.3.21).
Let us define

p = max(2p0; [[V' la5; [IV?ap) and & :=max(5;04(p)). (3.3.34)

From the left equality in this formula we hay@7|,; < p, j = 1,2. Since the
norm| - ||o.» is NoON-increasing with respect4oands > &, we derive||V7 |, <
p, 7 = 1,2. Thus, by the definition oD, ,(p) we get

V] S Da,&(ﬁ)a j: 172

But the uniqueness of the solution of the equation (3.3.21) in thelball (5) has
already been shown. This is so, because by (3.3.34) the inequalitieg, and
o > o4(p) are valid. Consequentlyy! = V2 implying Z! = Z2.

To complete the proof of the uniqueness assertion we have to show that (3.1.9)
has no solution in any space(; , , wherec # ¢ = I'''d ando > o;. Suppose
contrary that (3.1.9) has a solutiéh = g + V in some of such spaces. Then,

observing (3.1.9), (3.1.10), (3.3.18), (3.3.20) we see that comp@ﬁaﬂ(r.Aava)K
of this solution satisfies the equation

c—c

IV = Lo (5 LV, B[Z])+L1 (5 + V) +Ly(BZ) +Y + £=5, (3.3.35)
p p
where andLg, L1, Lo are given by (3.3.23) - (3.3.25). Observing the definitions
of (Aa.0), Meaor || - laos the relationV e (A, )™, the assumption (3.3.20)
and the estimates (3.3.27), (3.3.28), (3.3.29) we see that all terms in (3.3.35) except
for % are estimated by quantities of the fofA%t in the half-planeRep > oy,
where the constant is independenpand« > 1. This is not possible in the case
¢ — ¢ # 0. We reached the contradiction. The uniqueness is completely praved.

Finally, we deduce the following corollary for the generalized inverse problem
in the time domain.
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3. Inverse problem with temperature observations

Corollary 3.1. Let conditiong3.1.4)hold with# = K implying the existence of
the unique solutiomg, k=1,...,K,tothe systen3.1.3) Moreover, lef(2.2.2)
hold and the assumptior(8.2.1) (3.3.19) (3.3.20)be satisfied for the functions
Ak, U, @ and the quantitie®?, &', ¥ given in terms of the Laplace transforms
R, F1, F», H; of the datar, f1, fo, h; by formulas(3.1.13) (3.1.15) (3.3.18)
(3.1.11)and either(1.2.14)or (1.2.23)depending on the type of the boundary
conditions. Assume thatet I" # 0 for T, given by(3.1.7)

Then the generalized inverse problem with temperature observations has a
unique solution of the form

ng(t) :ng—kckt—kﬁfo ftl;o PZy(p)dpdr, k=1,...K;,
(3.3.36)
mi(t) = Chrr, + 55 i € Zei, () dp, k=1,... Ky,

wherec = (ci,...,cx) €RE, Z = (Zy,...,ZK) € (Aao)®, 0 > 0.

The functionsn;, are continuously differentiable anah; are continuous for
t > 0. Moreover, the vector in the formulas(3.3.36)is expressed by = I' 14,
whered is the component of in the assumptioi§3.3.20) In addition,n;(0) =
n%, nL(O) =c, k=1,..., K3 andmk(O) = Ck+ K> k=1,..., K.

Proof. Corollary follows from Theorem 3.2 and Proposition 3.1 together with the
inversion formula (1.2.4) of the Laplace transform, the properties 1, 3, 4 of the
Laplace transform in Section 1.2.1, the definitions of the spaég,%)K, Moo

and the formulag; ., (c) = £, Li—p (f(f w(r)d¢> = L Lipw(t). O

3.4 Interpretation of assumptions

This section consists of two parts. In the first part we interpret the regularity as-
sumptions of the existence theorem in the time domain. In the second part we
analyse the non-vanishing conditidat I" # 0.

3.4.1 Interpretation of regularity assumptions

The assumptions of Theorem 3.2 and Corollary 3.1 contain assumptions on the
Laplace transforms of the data of the inverse problem. Let us give sufficient con-
ditions in the time domain implying these assumptions.

We recall that the conditiosy > 0 in (3.2.1) can be replaced lay € R (see
the remark after (3.2.1)). Thus, let us start with the following condition in (3.2.1):

0 given by (3.1.13) satisfies (3.1.16) whexsec C[0, 1]

~0 A _ o (3.4.37)
and ®” € B, , with some o satisfying (2.1.3)

We split®? = &% + ®02 with ®%1(z,p) nk fo (z,y,p)vi(y)p(y)dy
and®%2(x,p) = —pQ(z,p) — ¢(x). In caseuk,go € C10,1] and (2.2.2) hold
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3.4. Interpretation of assumptions

Theorems 2.3 and 2.7 immediately imply

Ky
(I)O,l(x’p) _ _1 an ve()p(z) + 50’1(:1:,19)
2" ()

with @1 € By o. The latter relation yield®%! € B, , for any o satisfying
(2.1.3) ands > 0. To study®’?, let us denote by:°(z,t) the solution of the
direct problem in the case=m = 0, i.e.

B(x)ud(z,t) = & (M2)ul(z,t)) +r(z,t), z€(0,1),¢>0,
u®(2,0) = p(x), =€ (0,1), (3.4.38)
u? satisfies either (1.1.6) or (1.1.7) with = 0.
Assume
u®(z, ), ud(z,-),ud(z, ),ul,(z,-) € & foranyz € (0,1) (3.4.39)

and denote/(x,p) = L;,u’(z,t). ThenU? satisfies the equation (1.2.15)
with M;, = N, = 0. From this equation we see tha® = —Q. Thus, by
virtue of the property 1 of the Laplace transform in Section 1.2.1 and the initial
value u®(z,0) = ¢(z), we haved®?(z,p) = L;_,u(x,t). Applying again

the property 1 forl;_,u,(z,t) we get®%?(z, p) = u@0) 4 S Lo pugy(x,t).
Consequently, by the properties 1 and 5 of the Laplace transform the assumptions

ud(z,-) and Ll (x,-) with somea satisfying (2.1.3) belong t&

for z € [0, 1], where the paramete€s, o of the space’ (3.4.40)
are independent of

yield the relation

0 -
202 (z,p) = U004 Goz(g )
p

with %2 € B, ,. Summing up, (3.4.39), (3.4.40) with, » € C1[0,1],u?(z,0) €
C'[0,1] and (2.2.2) imply (3.4.37) with
S ok(@)e(@) | g
cop(x) = — kzlnkﬁ(x) + uy (z,0).
Secondly, let us consider the following assumption in (3.2.1):

! given by (3.1.15) belongs t()‘)?cw%’(7 with o satisfying (2.1.3) (3.4.41)

Comparing (3.1.15) with (3.1.13) we see tidt= 0. Thus,®! = %' + %2
In casevy, p € C?[0,1] Theorems 2.4, 2.7 imply the property (3.4.41) .
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3. Inverse problem with temperature observations

Since®Y?(z,p) = Li—,ud(z,t), due to property 5 of the Laplace transform in
§1.2.1, the conditions

ud,(z,-) and %Ugt(:ﬂ, -) with someq satisfying (2.1.3)
belong to& for x € [0, 1], where the paramete€s, o of the spaces (3.4.42)
are independent aof

yield the property (3.4.41) fob>*. Summing up, (3.4.39), (3.4.42) with,, ¢ €

C2[0,1] imply (3.4.41).

Further, we deduce a formula in the time domain for the quantity

polm P2[H;(p) + Q(xi,p)]

in the rank condition (3.1.4). In view of property 1 of the Laplace transform and
the relationd/® = —Q, u°(z,0) = ¢(z), the conditions (3.4.39), (3.4.40) with

Weg, j=01,2, i=1,.. K, (3.4.43)
imply the formula

PP[Hi(p) + Qi p)] = Li—yp [1](t) — uy (i, 1)] + p [2i(0) — ()]

(3.4.44)
+h;(0) — u (24, 0).
Assuming the consistency conditions

and observing that the Laplace transform vanishdsegs— +oco (see (1.2.3)) we
obtain the formula

o lim PP Hi(p) + Q(aip)] = Wi(0) —u)(2:,0), i=1,....K. (3.446)
e p——+00
Finally, we interpret the assumption (3.3.20) for the ve@tos (¥4, ..., Uk)

given by (3.3.18) with (3.1.11). Let us decompoBe= ¥! + 02 + @3 with
W= (¥),...,0%.), where

1 & ofrt v (i) (i)
Vo) = X nf [Jo pGlai v mhvslu)elu)dy + G5

K ~
V2 (p) = Py n9 o pG (i, v, p)vi(y) B(y, p)dy,
Vi(p) = —p*(Hi(p) + Qai,p)] + | lim  ¢*[Hi(g) + Qi )]
and study the componenis', U2, U3 separately. Let us start with'. Note that
Theorems 2.3 and 2.7 provide estimate of the otgler'/? for ¥!(p) at infinity,
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3.4. Interpretation of assumptions

which is not enough for our purposes. To get necessary higher estimate we have to
assume more regularity about the functighs,, ¢ inside¥!. We introduce these
regularity assumptions in an implicit form in terms of the solution of a certain
direct problem. Namely, leb(z, ) be the solution of the following problem:

B(x)wy(z,t) = % (Mx)wg(z,t)), xe€(0,1),t>0,

w(z,0) = — Z Q@) g e (0,1), (3.4.47)

x

w satisfies the homogeneous first or third kind boundary conditions
Assuming
w(x, ), we(z, ), ws(x, ), wez(z,-) € & foranyz € (0,1) (3.4.48)

and denotingV (z,p) = L;—,w(z,t) the transformed problem reads

£ @) ~ P (ap) = 3 rin(e)e(e), € 0.1)

W satisfies the homogeneous first or tnird kind boundary conditions
Making use of the Green function we can represent the solution of this problem in
the formW (x, p) nk fo (z,y,p)vk(y)p(y)dy. Thus, by the property 1 of

the Laplace transform we get

Ly pwi(x,t) —pW(x p) — w(z,0)
- an U PG,y P (v)oy)dy + 2L

Consequently,
Ui (p) = Limpwy(wit).

To get the condition (3.3.20) fob!, we have to assume sufficient regularity of the
solution of (3.4.47) in the interior points; € (0,1). More precisely, due to the
property 5, is sufficient to assume

al

wy(xi, ) and L wy(z;,-) with somea satisfying (2.1.3)

(3.4.49)
belongtog fori =1,..., K.

The condition (3.3.20) fo? immediately follows from (3.4.37) with the help of
assertions of Theorems 2.3 and 2.7. Here the relation (3.4.37) is the consequence
of the assumptions (3.4.39), (3.4.40),, 0 € C*0,1], u?(z,0) € C0,1] and
(2.2.2), as was shown above. To studly we note that under the assumptions
(3.4.39), (3.4.40), (3.4.43) and (3.4.45) the formulas (3.4.44) and (3.4.46) yield

VH(p) = —Li—p [h] (1) — up(zs,1)] -
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3. Inverse problem with temperature observations

By virtue of the properties 1 and 5 of the Laplace transform, the sufficient condi-
tions for¥? to satisfy the condition (3.3.20), are (3.4.40), (3.4.43), (3.4.45) and

B —uy(zs, ) and SR — ), (x5, -)] with somea

satisfying (2.1.3) belong t& fori = 1,..., K.

(3.4.50)

Summing up, sufficient conditions for the assumption (3.3.20f@re vy, ¢ €
C0,1], (2.2.2), (3.4.39), (3.4.40)2(x,0) € C[0,1], (3.4.43), (3.4.45), (3.4.48),
(3.4.49) and (3.4.50).

We gave the conditions in the time domain in the form of the smoothness of
the solutions:” andw of the problems (3.4.38) and (3.4.47). Using known results
about the regularity of solutions of parabolic problems (see e.g. [28]) it is possible
to write these conditions in terms of the datayp, fi1 , f2, v and 3 of these
problems, as well.

3.4.2 Interpretation of non-vanishing condition

Let us analyse the non-vanishing conditidst I' 4 0 for the matrixI" given by
(3.1.7) in some patrticular cases. Firstly, we consider the case of piecewise homo-
geneous rod wher; = K5, K = 2K; and the functiong, andyu, are given by
(1.1.9) with0 < y1 < y2 < ... < yg,—1 < 1 and smalle > 0. Let us choose
0<zi1 <9< ...<2KR <lsothat

71,22 € (0,1 =€), 23,74 € (1 + 642 = €)oo (3.4.51)

Tr-1,TK € (Yr,+1 T € 1).

Thenvy(zox—1) = pr(Tar—1) = vi(wak) = pr(w2r) = 1, ve(z) = pg(z:) = 0
fori & {2k — 1;2k} andp) (z;) = 0forany: =1,..., K. From (3.1.7) we get

K
detI' = H

N (
p(r1)
(22)

~

. @
x det o(z4) . O (x4)

o(rr-1) coo @R —1)
p(zK) oo @(2K)

Consequentlydet I # 0 provided the initial value of  satisfies the contition

o(zg—1) ¢ (xa-1) )
det 0 foranyl=1,..., K.
¢ (@(wm) ) )7 d :

It is not difficult to definep so that it satisfies this condition.
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3.4. Interpretation of assumptions

Secondly, let us consider the power basgiér) = ux(x) = =1, Then

x det ( (wheo(z:)) (b @)+ ket~ (1))
et ((abote0), oy (beerskt @) )

30y

Here the matrix is formed by placing two matrices left to right. It is possible to
choose the initial value and pointsz; so that the conditionet I" # 0 is valid.
For instance, in case

2
K y Kq+2
¢(x) = cos (ﬂ'K.Z‘ 12+2) , Ty = (;) '

we can represenlet I' as a constant times the Vandermonde determinant:

K2

K 2
detT = 1131 ﬂ&l)(—l)m [— <K([;1+2)> ] det (“"k) R 70

Here|[z| is the smallest integer x.
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4. Inverse problem with flux observations

In this chapter we consider the generalized inverse problem with flux observations.

4.1 Reduction of the inverse problem to a fixed-point form

Inverse problem in the Laplace domain consist of the system (1.2.26) with addi-
tional equations (1.2.15), (1.2.18).

Using the relation (1.2.18) fd¥,, in the left-hand side of the conditions (1.2.26)
we obtain

1
ZNk; /pGx iy, D)k (y)U (y, p) dy (4.1.1)
1
- B ' H;(p)
_;Mk’ O/G:ch ZiY,p .Uk’( )Uy(y,p) dy = Qx($zap) - )\(1'1)’

fori=1,...,N.

The system (4.1.1) with (1.2.15), (1.2.18) is equivalent to the system (1.2.26)
with (1.2.15), (1.2.18). We are going to transform the system (4.1.1) into a fixed-
point form extracting the principal part. As in Section 3.1 we use some proper
asymptotics of the system in the procdssp — +oo. Such an asymptotics is
achieved under the conditions that the system (4.1.1) with (1.2.15), (1.2.18) has a

lutionV; M isfying the followi i
solution Ny, ey M k:Lm’KQ,Usatlsfylngt e following properties
(1) ni(t) = £, Ni(p) andmy(t) = £, My (p) belong tos implying N, (p) —
0, My(p) — 0 asRep — +oc (cf. property 1 in Section 1.2.1);

(2) foru(zx,t) = Ep_n:U(x,p) the relationsu(z, -), w(x, ), ug(x, ), ug(x, ) €

& hold with the initial condition (1.1.5) implying (3.1.2).

We emphasize that (1) and (2) are not assumptions. We use them to explain the
ideas of transformations.
Let us introduce the new unknowns

Nk’(p)v k=1,..., K,

Z:(Zl7---7ZK)7 Zk(p): { ]\4’6_[(1(]))7 k:K1+1,,K (412)
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4.1. Reduction of the inverse problem to a fixed-point form

Now the system (4.1.1) can be rewritten in the form

3 )

T=x;

K1 /
V(%) p()
E%@% 3(x) >

K1 1
= Zi(p) {/pGx(xi, ¥, )vi(y) [pU (y, p) — (y)] dy (4.1.3)
0

T=x; }

K 1
- 3 Zup {/Gzy i,y D) —x: (y) [PUy(y, ) — ¢'(y)] dy

k=Ki1+1

vi(2)p(z) )
() )

+/MM%%M%@%M@+<
0

k=K;+1

1
+ O/ Gy (i, Y, P) -1, ()¢ (y) dy — “k—Kl)\ ((92'3)@ (Ii)}
o) ik

In view of (1), (2) and Theorems 2.2, 2.4, 2.6, 2.8 the left-hand side of (4.1.3) is the
principal part of this system in the procé®sp — +oo. Therefore, we introduce
the matrix

<uk<x)eo(w>)’
' = (77,’]6)757]6:17._.’[(7 Yik = A 1

sy @) @) (4.14)
Az;) ’

related to the principal part and assudseI" # 0.
Next we define the functions

B°(Z)(z,p) = pU[Z](z,p) — ¢(z)

. o (4.1.5)
B Z](z,p) = pUs[Z](x,p) — ¢'(x),

whereU[Z](x, p) is the solution of (1.2.15), (1.2.18) with the given vecioin the
form (4.1.2). The system (4.1.3) can be rewritten now in the fixed-point form

Z =T7'F2)), (4.1.6)
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4. Inverse problem with flux observations

whereF(2) = (F1(Z), ..., Fx(2)),
1

K
Fil2)p) = Y Zk(p) {/pGa;(xi,y,p)vk(y)BO[Z](y,p) dy

!/
T=x; }

1
+ Z Zk { /Ga:y Zi, Y, p),uk Kl( )Bl[Z](y,p) dy (417)

k=Ki+1 0

+O/1pG” (5,9, D) () (y) dy + <Vk(;();g(ﬂf)>
K

1
- / Gay(@i, Y D) —ric, ()¢ (v) dy + Mk_KlA(éj 3;0 (i) } + ¥;(p),
0

and

Hi(p)] ~1,... K. (4.1.8)

Bi) =~ [ Quloip) - 500

We need to deduce a fixed-point system for the quantitf§g] and B'[Z] too.
To this end we rewrite the system (1.2.15), (1.2.18) in terms of these quantities:

K 1
BZ)@p) = 3 Z) / PGz, 1, p)vi(v) [BO12)(9:p) + 0(w)] dy

k=1
K 1 0
- > Zk(p)/G (z,y, P) k-1, (v) [B'[Z)(y,p) + ¢ (v)] dy + ®°(,p)
k=Ki1+1 0
K 1
BUZwn) = Y20 [ pGu(on.phnw) [BU2)0.p) + o(w)] dy
k=1
K i 1
+ D Zk(p){ﬂk)\Kl /ny T, Y, P) ki~ 16, (Y)
k=Ki1+1 0
S (2)¢ (x)
x [B'Z](y,p) + ¢ (v)] dy}+ > Zk(p)%Jr@l(ﬂ:,p)
Wl ()

with
(z,p) = —pQ(z,p) — p(x),
®!(z,p) = —pQu(x,p) — ¢ (x) = B(z,p).
We obtain the following fixed-point equation for vectBiZ] = (B°[Z], B'[Z]):
B[Z] = A[Z]B[Z] +b|Z], (4.1.10)

(4.1.9)
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4.1. Reduction of the inverse problem to a fixed-point form

where A[Z] = (A°[Z], A'[Z]) is the Z-dependent linear operator & with the
components

K1 1
(A218) (wp) = > Z0) [ 060 ) B wpdy  @411)
= 0

K 1
- > Zk(p)/Gy(x,y,p)uk_Kl(y)Bl(y,p)dy,
0

k=K;+1
1
(A'[Z]B) ZZk / (2,9, p)vi(y) B (y, p) dy
0
+ i 7 {'“’f—Kl(x) 1
k(p) o) B*(z,p) (4.1.12)
k=Ki+1

1
—/Gmy(fﬂ,y,p)uk—m(y)Bl(y,p) dy}
0

andb[Z] = (1°[Z],b}[Z]) is the Z-dependenB-free term with the components

1
vl ZZk / (z,y,p)vi(y)e(y) dy (4.1.13)
0

K 1
- > Zk(p)/Gy(x,yyp)ukKl(y)so/(y)der@O(w,p),
k=K1+1 0

b sz

0
b3 26 (@)

k=Ki+1

pGe(z,y, p)vk(y)e(y) dy (4.1.14)

\H

1
/ny z, Y, ) pk—k, (V) (y) dy} + ®!(z,p),
0

with ®%(z, p) and®*(z, p) from (4.1.9). Summing up, we have proved

Proposition 4.1. LetdetT" # 0. Then the inverse problem in the Laplace domain
with flux observations is equivalent to equati@hl.6)with F given by(4.1.7)
The solutions of these two equivalent problems are relatgd ldy2)with (4.1.5)
Moreover, the paitB[Z] = (B°[Z], B[Z]) in (4.1.5)satisfies the syste(4.1.10)
with (4.1.11)- (4.1.14)
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4. Inverse problem with flux observations

4.2 Analysis of direct problem system

In this section we study the system (4.1.10). Let us introduce the following basic
assumptions:

®0 and ®' given by (4.1.9) belong td3; ,, and [3'%
respectively, with somery > 0;

v, €C[0,1], k=1,...,K1, ;€ CH0,1], I =1,...,Ko;
¢ € C?[0,1].

00’

As in Section 3.2 we note that without a restriction of generality the condition
oo > 01in (4.2.1) can be replaced lay € R.

We prove first some estimates for vectdir] = (b°[Z],b[Z]) and A[Z] =
(A°[2], 4'(2)).

Lemma 4.1. Let the assumption@.2.2) (4.2.1)hold. If Z = 1% +V e Moo,

then the vector functiob Z] = (b°[Z], b'[Z]), given by(4.1.13) (4.1.14) belongs
to B, », and satisfies the estimate

V «,0
Ul) (4.2.2)

16[Z]]|; , < Const (1 + |c| +
with anys > o(¢ and some constant, whefe is given by(3.2.3) Moreover,
for everyo > oy and Z! = S+ vl 72 = o+ V2 € M,q,. the difference

b[Z1] — b[Z?] fulfils the estimate

< Const

|6[Z1] — b]Z?] V' =V?,. (4.2.3)

My
with some constant.

Proof. TakingZ = & 4 V' in (4.1.13) and multiplying byp| we have

ol 1)) sfj(\cm L /\Gx v.0)|dy

k=1
K
<elloon + 3 (rcmp', '|Z’“1 )f / Gy ry.p)] dy
k=Ki1+1
k-1, €'l oo,

Vel

Using here the assertions of Theorems 2.1, 2.5 and definitions of the norms

+ |pl |#°(x, p)| .
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4.2. Analysis of direct problem system

| - |, and taking the supremum ov®ep > o, x € [0, 1] we obtain

iz, < 3 (1ol + 252 sl
|V a0 k-1 €'l oo
£ > (s zl)@ o 4o,

k=K1-+1
for Rep > 0,0 > o, x € [0,1]. From this relation in view of (3.2.7) with
~' =1/2,~v = 0 we get finally
12, < Comt e+ 1252 ) + 100,y o200 424

with some constant.
Next, we perform similar transformations with [Z] in (4.1.14) multiplying
by /|p| instead of|p|. We have

K
V2] < 3 (1o + 20PN )f/w (2.0 p)|dy

k=1

K
Vi) 1
< |veellopsy + D (’CkH [ple—t
k=Ki1+1 P \/H

’ f—k, ()¢’ (2)
A(z)

+ [ 1Gater vl e #
0

+v/1pl | (z,p)] -

Using here the assumption (4.2.1), the assertions of Theorems 2.1, 2.5 and taking
the supremum oveRep > o, = € [0, 1] we get

) < Vil
| [Z]H%p <> (lewl + —a-1 ) Cellrelicron

k=1

3 Willao\ (1, o\ l=rllcna g
- Z ’C ‘+ oo S ga—1 )\70—’_ 4 \/E +H H%,O’O

k=Ki+1

for o > g, where)y = m[énu A(z). Consequently,
x€|0,

HVllaa

Hbl[Z]H; » < Const <|c| + ) + H<I> H7 o O > o9 (4.2.5)
27 Nex
with some constant.
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4. Inverse problem with flux observations

Observing inequalities (4.2.4), (4.2.5) and using Lemmas 2.2, 2.3 for the terms
in (4.1.13), (4.1.14) we see theZ] = (V°[Z],b'[Z]) € By, for o > 0. More-
over, (4.2.4), (4.2.5) imply (4.2.2). To prove (4.2.3) take= Z' — Z2. Then
the components’[Z] andb![Z] of the vecton[Z] = b[Z!] — b[Z?] are expressed
by the formulas (4.1.13) and (4.1.14) wi = 0 and®! = 0, respectively. Us-
ing the estimates (4.2.4) and (4.2.5) for the componeni§ffand observing that
Z' — 72 = V! — V2 we deduce (4.2.3). The lemma is proved. a

Lemma 4.2. Let the assumption®.2.2) (4.2.1)hold. If Z = z% +V e Moo,

then the linear operator[Z] = (A°[Z], A1[Z]), defined by4.1.11) (4.1.12) is
well-defined and bounded ii; , and satisfies the estimate

A s,y < Co (19 + o) (4.2.6)

O—a
for anyo > oo with a constantCy. Moreover, takingZ! = S+ Vi 72 =

o+ V% € Meq.0, the estimate for difference

iz - Goos V' =V, @2D)

2
| P
holds for anyo > oq with a constantCy .

Proof. Taking Z = 7 + V' in (4.1.11) we get

K
lexl 1| Vi(p
p| [(A°[Z]B) (z,p)| < Bkl | P PP Ip| [ |G(x,y,p)|d
pl|( ) (,p)| ;( ) / v, p)| dy

Ip| ||~

ek | \pl"‘le(p)|>
- + [ S A

K
X [[vellcpo |p| Jnax ‘B z,p)| + z (|p| |p|*

k=Ki1+1

0<z<1

1
< /[7] / Gy (@, y.0)| dy sy oo V1] max. [BM(z,p)] -
0

Using Theorems 2.1, 2.5 and taking the supremum &er > o, = € [0,1] we
deduce

V OCU
|Z)B],, < Z('Ck' Wi )cluuk||cm,1]rBO|h,a+

K
‘Ck| HVkH )
+ > <a+aaw Cs lun-ralleo 1B M1s,0

k=Ki+1

for o > 0¢. This implies

|4°21B]|,, < Const('a‘ ”VG””>IIBH 1o 0200 (428)
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4.2. Analysis of direct problem system

with some constant.
Further, from (4.1.12) we get

M}(AI[ZJBW,M\SZI(C”HP' |'V"; )m/ra (e.9.0) dy
k=1

P

e | V)]
k
% el eron bl max [B,p)| + 3 <+)

0<z<1 w \ Pl [pl*
( /|Gzy T,Y,p \dy> | 1tk— 16, | 0,1 V/ \p max IB (z,p)].

Using Theorems 2.1, 2.5 and taking the supremum &er > o, = € [0,1] we
have

VOCU
lalziB|,, < Z('C‘“' Belos) ca g 121

Ck 1
o3 (e e g () iy,

k=Ki1+1

for o > o0g. Finally, we obtain
Vlla,o
HAl[Z]BH%’U < Const ('0‘ | H )HBHM, oc>09  (4.2.9)

with some constant.
Putting together (4.2.8) and (4.2.9) we have

HVHao—

|A[Z]B]|;, < Const <a| ) 1Bl o, o >00.  (42.10)
Observing this relation and using Lemmas 2.2, 2.3 for the termsin (4.1.11), (4.1.12)
we see thatA[Z] is well-defined and bounded i3, . Moreover, (4.2.10) yields
(4.2.6). DenotingZ = Z!' — Z2 the componentsi®[Z] and A![Z] of the vector

A[Z] = A[Z']— A|Z?] are expressed by the formulas (4.1.11) and (4.1.12) respec-
tively. Using the estimate (4.2.10) fot[Z] and observing that = ]93 + V with

c=0andV = V! — V2 we deduce (4.2.7). The lemma is proved. O

Due to Lemmas 4.1, 4.2 and the contraction principle, the equation (4.1.10) has
a unique solutionB = B[Z] € By, providedZ = I% +VeM. ando > oy
satisfy the relation

a,0 1

o o 2C)
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4. Inverse problem with flux observations

From (4.1.10) we havgB[Z]|, < (1 — HA[Z]H‘%(BM))A 16[Z]||- This, taking
into consideration (4.2.2), (4.2.6) and (4.2.11), gives the estimate for the solution
of (4.1.10)

Va0

Uafl

IBZ]|l,, < Const |1+ || + (4.2.12)

with some constant.
Next we will find an estimate foB[Z'] - B[Z?]. Leto > ogandZ' = £+V,
Z*? = ¢ + V? be such that (4.2.11) is valid fo¥" replaced byV' and V? i.e.
n(Z7,0) < ﬁ,j = 1,2. Subtracting equation (4.1.10) f& = Z2 from the
corresponding equation f&f = Z! we get
B[Z'| - B[Z%] = A[Z*)(B[Z'] - B[2®]) + (A[Z'] - A[Z%)) B[Z]
+ b[ZY - b[Z7.

This implies
IBIZY) = B2, < (1- A2 2m,.) "
<[ 1412") = ALZ2) 28, )| BIZ 1o + 1612*] = (2% 1.0

Using this relation and the estimates (4.2.3), (4.2.6), (4.2.7), (4.2.11), (4.2.12) we
obtain

|B[Z'] — B[Z?] (4.2.13)

l,0

1 oo 1
< Const{ga [14— le| + IV lla, ] + }HVl — Va0

Ja—l Ua—l

with some constant. Summing up, we have proved the following theorem.

Theorem 4.1. Let the assumption®.2.2) (4.2.1)hold. Then for anyr > oy and
Z = Z% +V e M. .., satisfying the inequalit{4.2.11) whereCy is the constant
from (4.2.6) equation(4.1.10)has a unique solutioB[Z] = (B°[Z], B'[Z]) in
B1,. This solution satisfies estima{4.2.12) Moreover, for everyoc > ¢ and
Z1 = S+ vt 72 = S+ V% € Mo, Such thatj(Z7, o) < ﬁj = 1,2, the
differenceB[Z'] — B[Z?] fulfils estimatg4.2.13)

4.3 Existence and uniqueness for inverse problem

In this section we study the inverse problem with flux observations in the fixed-
point form (4.1.6) and thereupon infer a result for the corresponding generalized
inverse problem in the time domain.
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4.3. Existence and uniqueness for inverse problem

Theorem 4.2. Assume thaf2.2.2) (4.2.1)hold and
v € C%0,1], k=1,..., K. (4.3.1)

Moreover, letdet I # 0 for I, given by(4.1.4) and the vecto® = (¥4, ..., k),
defined in(4.1.8) satisfies

d
U = v +Y € My (4.3.2)
with somed € RX. Then there exists; > og such that equatiori4.1.6)has a

unique solutiorZ = I% +V € Mcao,. Herec = I'~1d. The solution is unique in
the union of spaces )] M. q -
g>0q

ceR

Proof. Settingc = I'"'d the problem (4.1.6) inM.. ., is equivalent to the

following equation forV in (Aa,g)K:
V=F(V), (4.3.3)
where F = I'"'F and
ﬁ:i}<;+v,B[Z]>+E<;+V>+Y, (4.3.4)

Ly is the bilinear operator of € Meao, B= (B B') € B, given by

1
(Lo(2.B)) () ZZk / «(wi,y,)vi(y) B (y, p) dy
0

K 1
k=Ki1+1 0

andfl is the linear operator of € M, defined by

1

(L1 ) ZZk {/ (i, Y, D)k (Y)p(y) dy

0

/ K 1
" (Vk(;();(x)> xm} _k;—f—l Zk(p) {0/ ny(xi’y’p)uk—f(l (9)90/@) dy
Mty (%0) (i) .
Az;) } ) 1,...,K. (4.3.6)

As in the proof of Theorem 3.2 we make use of the fixed-point argument in the
balls D, +(p) defined by (3.3.26).
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4. Inverse problem with flux observations

First we obtain some estimates fﬁs, L. Multiplying by [p|* in (4.3.5) and
estimating we have

(T (S +vm)) 0] < i <’p||ck|a N rp|a%p>|>

< /17l / Gls,y, )| dy [12(2) oy | max | B, p)

p|*

0<z<1
Ck p|*|Vi(p
+ Z < ‘,,‘a ™ >/|Gwy iy, p)| dy
keki+1 \ P2 VIl
||/Lk K1||C[0 11V ’p maX ‘B €T p)‘ 1= 17"'aK'

Using the assumptions (4.2.1), thp assertions of Theorems 2.1, 2.5 and the defini-
tions of the normg - ||, - in A, -, B, , we obtain

(fo (C +V,B)> (p)‘
K1
C
<3 ( o ’ ) Ca el 1BVl
p|2~ Vpl
|ck| HVkHa,a 1
+ Z <| \/m C4HM]€*K1HC[O71} HB H%,a

k=K1 +1 p|Wa

Ip|*

fori =1,...K,Rep > 0,0 > 09, € [0,1]. Taking here the supremum over
Rep > o, x € [0, 1] we get

[ +2)
p

with some constant.
Similarly, multiplying in (4.3.6) byip|“ and estimating we have

<L~1 <p . V)) (p)' . i <‘p||ckra . \p!“\\/‘%p)!)

/ /
7| [ 6t mtptnay-+ (25052)

0
K
Vi
S ( exl , Ipl°] k<p>r>
k=Ki1+1

el Voo
< Const <g§ + NG |Blli,o, o> 00 (4.3.7)

a,o

p|®

Ip|z Vpl
1

Ip| / PGy (Tiy Yy, p) pk—r1c, ()¢’ (y) dy —
0

po— i, (24) @' ()
A(z;)
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4.3. Existence and uniqueness for inverse problem

for i =1,..., K. Using here Theorems 2.2, 2.4, 2.6 and 2.8 we get

K

—~— (cC |cx] ||VkHa0 el
L(5+v)) o] < ( o WVillor ) g
BG)), 2\ o
K
3 ekl | [Vallaw \ = , 4

+ 7 Cs Hk—K1 ¥ , i1=1,... K,

( 3_ o /‘p| H 1 Hcl[O,I]

k=Ki+1 Ip|>

p|*

Whereél = ;I{laXK{C%(.Z‘Z');ClQ(l‘i)} andég = ',I{la'XK{CE’;CS(:Ui)}' Taking

here the supremum ovBrep > o, x € [0, 1], we reach the estimate

(o)

with some constant. N

Returning to the equation (4.3.3) with the operafore= I' "' F and taking into
consideration (4.3.7), (4.3.8) and the relatjdn|| o, < [|Y||a,0,, We Obtain

o 1 HV o,
[F(V)lla.c < Const { —— + NG IB[Z][1.0 + 1]+ [[Y[la,00 (4-3.9)
o2 ¢ o

with o > 0 and some constant depending|on

Further, let us suppose th&t € D, ,(p), whereo and p satisfy

c] HVllom)
< Const + : , 020 4.3.8
< (Ug_a NG 0 (4.3.8)

a,o

~ 1
no(p, o) == Il T . (4.3.10)

o o% 2C)
and o > 0. Then, using Lemmas 2.2, 2.3 for the terms in (4.3.5), (4.3.6) and
observing (4.3.4), (4.3.9) we see thatV) € (A..»)¥. Furthermore, by (4.3.10)
the inequality (4.2.11) holds, hence we can apply the estimate (4.2.12) of Theorem
4.1 for||B[Z]||1,,. Plugging (4.2.12) into (4.3.9) and estimatifig||,,, by p we
have

(4.3.11)

a,00

~ 1 p p
< LA
| F(V)||la,e < Const (Ug_a + ﬁ) (1 + Ua—l) + Y|

with some constant depending pnando. From (4.3.11), due to the equality
F =T7'F, we see that for every > po := [T 7!|[|Y]],,, there existssy =

a2(p) > oo such that the inequalitiey(p, o) < % and |[F(V)|l,, < p hold
O 9
for any o > o2(p). Consequently,
F:Dyo(p) = Dao(p) for p>po and o > o2(p). (4.3.12)

__ Next, we prove thatf" is a contraction. From (4.3.4), due to the bilinearity of
Ly and the linearity of_,, we have

F(VY) = F(V?) = Lo(V* =V, B[Z)) + Lo( + V*, B['] - B[2?])
+Ly (V- V?),
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4. Inverse problem with flux observations

whereZ" = ¢ + V' andZ? = ¢ + V2. Using here (4.3.7) and (4.3.8) we get

F(vYH — F(v? < C w BIZ! 1
[F(V?) = F(V7)|la,e < Const Nz (IB[Z ]ll10 + 1)
1 V2 o,0
+< . \% >||B[ZW—B[ZZH|1,U}, 720
o

with some constant. Supposing thiat, V2 € D, ,(p) with o > ¢ and p such
that (4.3.10) hold, by the estimates (4.2.12) and (4.2.13) of Theorem 4.1 we obtain

IF(VY) = F(V?)||ao
1 1 1 p P 1 1 12
< R P J— —_ —
< Const { [\/E +— <03a + ﬁ)](l + aa—1> + = } VY= V?|ao

with a constant. The coefficient ¢i’! — V2|, on the right-hand side of this

estimate approaches zero,@as- oo for a fixedp > 0. Hence, for everyp > 0

there existsos = o3(p) > o9 such that the inequalityjy(p, o) < % holds and
0

F =T~'F is a contraction in the balD, ,(p) for p > 0 and o > o3(p). This
together with (4.3.12) shows that equation (4.3.3) has a unique solltionevery
ball D, »(p), wherep > pyg and o > o4(p) = max{oa(p); o3(p)}. This proves
the existence assertion of theorem with = o4(2p0).

It remains to prove the uniqueness assertion of theorem. The proof of unique-
ness in the union|J M_ ., Wherec = I'~!d is completely the same as in the

og>01

proof of Theorem 3.2. Thus, let us to show that (4.1.6) has no solution in any space
M@ a0 Whereé # ¢ = I'"'d ando > 1. Suppose contrary that (4.1.6) has a so-
lution Z = % + V in some of such spaces. Then, observing (4.1.6), (4.1.7), (4.3.2)

we see that componeit € (AQ,U)K of this solution satisfies the equation

c—cC

TV = Eo(g +V, B[Z])+E1 (}5) + V) Y (4.3.13)

where andL, and L, are given by (4.3.5), (4.3.6). Observing the assumption
(4.3.2) and the estimates (4.3.7), (4.3.8) we see that all terms in (4.3.13) except
for << are estimated by quantities of the foﬁ%@";ﬂ in the half-planeRe p > oy,

where the constant is independenpainda > 1. This is not possible in the case

¢ — ¢ # 0. We reached the contradiction. The uniqueness is proved. O

Finally, we deduce the following corollary from Theorem 4.2.

Corollary 4.1. Let(2.2.2)hold and the assumptiori4.2.1) (4.3.1) (4.3.2)be sat-
isfied for the functions\;, ., ¢ and the quantitie®?, &', ¥ given in terms of
the Laplace transform&, Fy, F», H; of the datar, f1, fo, h; by formulag4.1.9)
(4.1.8)and either(1.2.14)or (1.2.23)depending on the type of the boundary con-
ditions. Assume thadet I" # 0 for I, given by(4.1.4)
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4.4. Interpretation of assumptions

Then the generalized inverse problem with flux observations in the time domain
has the unique solutiofr, m) with coefficients:; andm,, of the form

ng(t) = cp + ok [P Z4(p)dp, k=1,... Ky, w10
mi(t) = Crrr, + 27” fé-Hoo e?Ziik,(p)dp, k=1,...Ky,

wherec = (c1,...,cx) ERE, Z = (Zy,...,2K) € (AOW)K,G > 0.

The functionsn;, and my, are continuous for > 0. Moreover, the vector
c in the formulas(4.3.14)is expressed by = I'"'d, whered is the component
of ¥ in the assumptior4.3.2) In addition, n;(0) = ¢, k = 1,...,K; and
mk(O) = Ck+Kq» k= 1, .. .,KQ.

Proof. Corollary follows from Theorem 4.2 and Proposition 4.1 together with the
inversion formula (1.2.4) of the Laplace transform, the properties 1, 3, 4 of the
Laplace transform in Section 1.2.1, the definitions of the sp@d@g)K, Moo

and the formulaC; ., (c) = 7. O

4.4 Interpretation of assumptions

4.4.1 Interpretation of regularity assumptions

In this subsection we deduce sufficient conditions in the time domain for the as-
sumptions of Theorem 4.2, given in the Laplace domain. Firstly, we consider the
assumptiongp® € B, 0o @Nd®! € 81 o0 in (4.2.1). Here we letryg be an ar-
bitrary real number (see the remark after (4.2.1)). Observing (4.1.9) and recall-
ing the discussions of Section 3.4.1 we see ttr,p) = £;—,ud(z,t) and
®l(z,p) = Li_pul,(z,t), whereu? is the solution of (3.4.38). Thus, by prop-
erties 1 and 5 of the Laplace transform in Section 1.2.1 the assumptions (3.4.39)
and

uy(z,), ug(x,-) and dtl//2 ud,(z,-) belong to& for x € [0, 1],
where the paramete(s, o of the space’ are independent aof

imply ® € B, , and®' ¢ B%’U
Secondly, we consider the assumption (4.3.2)ffor (¥4, ..., V) given by

(4.1.8). Due to the relations;_,ul (z,t) = —pQ(x, p) — ¢(x) and L hl(t) =

pH;(p) — hi(0) (see Section 3.4.1 and property 1 of the Laplace transform), we

obtain

hi(t) ] _ hi(0)

O . 2 — . — / ) —
Loy [ulaloi )+ 505 = i) — ¢/

(4.4.1)

Let us introduce the consistency conditions
—)\(ZCZ‘)QO/(.TZ‘) = hl(O), 1= 1,...,K,
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4. Inverse problem with flux observations

related to the flux data (1.1.11). In view of these conditions from the formula
(4.4.1) and properties 1 and 5 of the Laplace transform, we see that the assumptions

% [ug(xi, O+ f;))] withj =0, 1, 2, 1 + « and somex

satisfying (2.1.3) belongt# for i =1,..., K
imply (4.3.2).

4.4.2 Interpretation of non-vanishing condition

In this subsection we analyse the non-vanishing conditii® # 0 for the matrix

I" given by (4.1.4). Let us begin by the piecewise homogeneous case, i.e. when
K; = Ky andyy, . are given by (1.1.9). In this case it is natural to suppose that
the given functiongi(z) and\(z) are also piecewise homogeneous, i.e.

K K
Bx) = Brvk(x), Ax) = Apun(x) (4.4.2)
k=1 k=1

with someg,, A\ > 0. Then, choosing; like in Section 3.4.2 (see (3.4.51)), the
matrix I" is singular because it contains rows that are pairwise linearly dependent.
This means that the inverse problem with flux observations is problematic in the
piecewise homogeneous case. We could get regular miaifiwe drop the physi-

cal assumption (4.4.2), i.e. I8tand A change in the intervalg;_1 + €, yx — €).

For instance, if

/ _ Blak) , Blaksr) | _ B
B(xr) #0, k=1,..., K, Nen) # Nirey) k=1,3,..., K —1,

then settingy = 32 we have

KOG T . [Blaw)  Blwaa)
detI'=2(-1)" = ll;Ilﬂ (wo1—1)3 (x21) New) ~ M) £ 0.

Also we could get regular matrices in case we take some measurement points in
the transmission intervalg, — €, yx + €). But in these intervals the functiomg
change rapidly, hence incorporation of derivatives/pfin the matrixI' is very
inaccurate.

Next, let us us analyze the usage of power basis. Setiifig) = ux(z) =
2F~1 the matrixI" reads

(L) G

=y, A1 1=1

20ty

This is a complicated expression. It is quite difficult to see what initial functions
 and measurement points provide regulafl for given functions3 andA. Even
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4.5. The case of singular matrix. Severe ill-posedness of homogeneous problem

more, in some cases ¢of and \ the matrixI" is always singular. This is so, for
instance, whem(z) = Const andA(xz) = Const. Indeed, then the first anll;’s
column ofI" are linearly dependent. On the other hand, in some casesod A

it is possible to choose andz; so that the regularity holds. For example, when
(”ETW is a polynomial of the ordek, i.e. %f)))/ = apr® 1 +ar 2™ 4 tag,
with ag # 0 then definingp(z) = x5(z) we have

detI' = Kllaé(2 det <$f> k=0,...,K—1 7 0.
i=1,..., K

We obtain simpler determinant in case we use the weighted power basis instead
of the usual one. For instance, definingz) = a(x)z*~!, up(z) = b(x)zF!
with a(z) = B(x)e” andb(z) = A(z)e” we deduce

K
detI' = exp [Z xZ]

xdet ((xfgo/(arz)—i—(karf_l—i-xf)‘ﬂ(il?z)) (375%0/(%))

k=0,..., K11 k=0u~~-,K2—1>i:1 LK

It is not difficult to construct proper initial functions for it. For example, under
K141

the assumptiod; < Ko we can takep(x) = exp <K1+1 ) to get

K gt
deth = e [Z (ml - KZ1 + 1>] det (mf) k=0,...,K—1 7 0.

i=1

4.5 The case of singular matrix. Severe ill-posedness of homogeneous
problem

The natural question arises: what to do when the mdtrin (4.1.4) (or (3.1.7))
is singular? Such a case means that the principal part extracted form the problem
appears to be generate. One could try to overcome this difficulty separating some
higher order regular principal part from the system.

This can be done as follows. LeinkI"' = p < K. Then the systemhZ =
F(Z) contains a subsystem pfequations formed by indiceés= iy,...i = i,
such that

rank (ajk)}g 1,.H,Ip< =p where ij = Yij k-

.....

Let us denote this subsystem By.

Further, let us comput® — p different linear combinations of the equations of
the systenT'Z = F(Z) such that the left-hand sides of these linear combinations
are zero. Thereupon, we use the ideas of Section 4.1 (Section 3.1) to treat these
linear combinations. Namely we multiply them by some powep ahd separate
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4. Inverse problem with flux observations

the principal parts in the proceRe p — +oo. Suppose that for a properly chosen
power ofp, these principal parts have the forms

Yi1Z1(p) + .. . Vi Zk (p),

wherej = p+1,..., K andy;1, ..., 7,k are some numbers. Shifting the principal
parts to the left-hand sides we obtain a systenkof p equations. Denote it by
Ss.

Putting 51 and .S, together we reach the new inverse problem system

IZ=F(2)

wherell = (’ijk)j,kzlmK. In casedet T’ # (0, we can prove an existence and
uniqueness theorem for this system using the same technique as in Theorem 4.2
(Theorem 3.2). In casE is still singular, we repeat the described procedure with
the systen'Z = F(Z) and so on.

However, in some particular cases of singdlahe described method doesn't

work, because the matrices corresponding to all higher principal parts are singu-
lar. An example is the inverse problem with flux observations in the case of the
homogeneous rod. Let us analyze this problem. The@n = 3 = Const > 0,
Az) = A = Const > 0, K; = Ko = 1, v1(z) = p1(z) = 1 and the number of
unknowns reduces to twei(t) = ny(t), m(t) = mq(t). For the sake of simplicity,
let us be limited to the boundary conditions of the first kind.

The integro-differential equation in the Laplace domain (i.e. (1.2.8)) is

BlpU (z,p) — o(x)] + pN(p)U(z,p) = [A = M(p)|Usa(x, p) + R(z,p)
with z € (0,1) andN (p) = Li—pn(t), M(p) = Li—p,m(t). Let us define

w(p) = W (4.5.1)

Then we can rewrite the differential equation in the form

R(z,p) + Bp(r)
A — M(p)

Ue(z,p) —w(p)U(z,p) = — ;2 €(0,1). (4.5.2)

Let G|w](z, v, p) stand for the Green function of the opera%ff — w(p) with the
first kind boundary conditions, i.&7[w](z, y, p) solves the problem

2
(2~ ) Glollap) =y =), 2€0.1), ye©.1),
Glw](z,0,p) = Glw](z,1,p) = 0.
Then the solution of the boundary value problem (4.5.2), (1.2.9) is
1
V) = ~5—577 /. Clllevn)R(w.p) + Ae(w)ldy
—Gwly(z,0,p)Fi(p) + Glw]y(z, 1,p) Fa(p). (4.5.3)
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4.5. The case of singular matrix. Severe ill-posedness of homogeneous problem

The additional conditions in the Laplace domain (see (1.2.26)) are
[=A+ M(p)|Us(xi,p) = Hi(p), i=1,2.

Plugging (4.5.3) into these conditions we arrive at the following system for the
unknownsN andM:

1
/O Glwlz (i, y, p)[R(y, p) + Be(y)|dy

+[A = M(p)] [G[w]xy(%, 0,p)F1(p) — Glway(x:,1,p) Fa(p)
— Hip), i=1,2. (4.5.4)

It is convenient to make a change of variables in (4.5.4). Let us introduce the
new pair of unknowngi¥, S) related to( N, M) as follows:

_ AN(p) + BM(p)
V=0 w0

S(p) = M(p). (4.5.5)

Evidently, the problems fo(NV, M) to (W, S) are equivalent, because the sys-
tem (4.5.5) is uniquely solvable fquV, M'). According to the convolution rule
(property 2 of the Laplace transform in Section 1.2.1) the time domain originals
w(t) = £,%,W(p) ands(t) = £,%,5(p) are related to andm by the following
equations containing a Volterra equation of the second kind

Nw(t) = A Jym(t —T)w(r)dr = An(t) + Bm(t), t >0, (4.5.6)
s(t) = m(t).

Performing the mentioned change of variables in (4.5.4) we get
1
| Gl )G 0) + Aoty

A = S| Glelay (6,0, D) Fi(p) — Glelay (i 1, p) Fa(p)
= Hi(p), i=1,2. (4.5.7)
Due to (4.5.1) and (4.5.5) we have

wip)=p <§ + W(p)> . (4.5.8)
Thus,w depends only on the unknow#i. We see that first addend in the left-hand
side of (4.5.7) depends only on the unknoiih
In the particular case when the boundary conditions are zero, e.g., fvhen
fa =0, F1 = F» = 0, the second addend in the left-hand side of (4.5.7) vanishes.
This implies thatthe solution of the inverse problem is not uniquEhe system

84



4. Inverse problem with flux observations

contains information aboly’, but not aboutS. The componen$' of the solution
can be arbitrary. In terms of the preliminary unknowns this means that forlany
satisfying the system (4.5.7) we can assign infinitely many pairs:) satisfying
the first equation in (4.5.6) withy(t) = £, W (p).
The problem is bad in the case of non-zero boundary conditions, too. To study

this case we make use of the formula

Glw](z,y,p) = — 1 { shy/w(p)z shy/w(p)(y —1) = <y
=T ) shi/w®) | shy/oy shy/e@)@—1) @ >y

of the Green function. Herg/w(p) is the main branch of the square rootg).
We note that /w(p) is uniquely defined in some half-plaRe p > o. Indeed, due
to M(p), N(p) — 0, asRep — +oo uniformly in Im p, we havelV (p) — 0, as
Rep — +oo uniformly in Im p, hence in view of (4.5.8), we get

w(p) ~ gp, asRep — o0 uniformly in Im p. (4.5.9)

This, due to the uniquenessg@go inRep > 0, implies the uniqueness Qfw(p)
in some half-plan®e p > o.
From the formula of>[w] we immediately get

GMM%Mﬂzlxg%mW@m—m7

w(p)

-~ shy/w(p)

In view of the definition of,/w(p), the inequalitiess, A > 0 and (4.5.9), we have
Re y/w(p) > 0 for Rep > o. Thus, by means of (4.5.9) and (2.2.20), we derive
the estimates

G[w]:ry(xiyl,p) = chy/w(p)z;.

chRe v/w(p)(1—z;
|G ]y (23,0, p)| < /()] LRe VB _2:)

shRe \/@ o
S Const G_Re \/@xl S Const 6_931'\/% \/H’
(4.5.10)

chRe \/w Ti
|Glwlay(zi, 1, p)| < /|w(p)| shP:e/i\/(c%))

< Const e Re VwP)(@i—1) < Const e(xi—l)\/g\/m

forRep > o. Sincex; € (0,1) andF;(p) — 0 asRep — +oo uniformly inIm p,
from (4.5.10) we obtain the estimate

G[w]xy(xia Oap)Fl(p) - G[w]lvy(-rla ]-7p)F2(p)‘ g ET’Z ) Rep >0
foranyx > 0andi =1, 2,

(4.5.11)
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4.5. The case of singular matrix. Severe ill-posedness of homogeneous problem

whereC; are constants.

The estimate (4.5.11) shows the method of this paper is not applicable
for the problem to determine the p&i#, S). Indeed, we cannot find a factpt
with > 0 such that the equations (4.5.7) multiplied withhave principal parts
containingS(p) in the procesRep — +oo. The term withS(p) exponentially
vanishes aRep — +oo.

This means that the problem fow, s) is severely ill-posed with respect to
Indeed, in the time domain the system (4.5.7) reads

ﬂww+/gmﬁma—mh:mm,nwmsz (4.5.12)
0

where

b)) = %, [ Glla(oin. DIRG.P) + o)y
FAL, L | Gleolay (3, 0.P) Fi (0) = Gl (1 1, P) Fap)

@ ll(t) = =2, [Cloluy (@1, 0, D) Fi (p) = Gl (w0, 1.) Fo(p)|.

Therefore, by the properties 1 and 4 of the Laplace transform in Section 1.2.1 and
(4.5.11), we see that the operator that assigrshe s-dependent terms in (4.5.12)
is infinitely smoothing, i.e for any € & we have

Jo s(N@w](- — 7)dT € C*[0,00), i=1,2,

di ot . .
E%hdﬂﬁmw—TWZOZQj:QLZHWZZLZ

We also observe that in caseis a priori known, the inverse problem to deter-
mine s on the basis of a single measureménis linear and can be reduced to the
\olterra equation of the first kind with infinitely smoothing operator:

/O s(P)@lw](t = 7)dr = hi(t) — gluw](t), ¢ > 0.
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Abstract

In the present thesis inverse problems to determine kernels of heat flux and internal
energy in the one-dimensional non-homogeneous case were stiuégedonside-
red the case when these kernels are degenerate, i.e. representable as sums of the
known space-dependent functions times the unknown time-dependent coefficients.
We posed and proved existence and uniqueness of two problems of such kind. The
first one is a problem with purely temperature observations. Then the kernel of
internal energy is determined with higher smoothness than the kernel of heat flux.
The second one is the problem with purely flux observations. Then the kernels of
internal energy and heat flux are determined with the same level of accuracy. The
solvability theorems are complemented with sufficient conditions for the assump-
tions of the theorems in the time domain. Moreover, it has been shown that the
homogeneous inverse problem with flux observations is severely ill-posed.

The method involves application of the Laplace transform to the problems,
reduction of the transformed problem to a fixed-point form and application of the
contraction principle in some complex right half-plane.
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Poordilesanded mittehomogeensete mélutuumade maaramiseks soojuslevi
protsessis

Maluga materjalide korral sisaldab soojusjuhtivuse vdrrand konvolutsioonitttpi
integraale, milles on ajast s6ltuvad tuumafunktsioonid. Need aine mélu valjen-
davad liikmed po&hjustavad teatud inertsi soojusprotsessides ja vdimaldavad mo-
delleerida soojuse levimist 16pliku kiirusega [3, 14, 26, 27, 33, 34]. Maluga mater-
jalide mudelit kasutatakse ka termoelastsuse teoorias [40] ja faasitleminekuga prot-
sesside kirjeldamiseks [1, 4, 5].

Kui malutuumad on teada, siis saab lahendada pddrdilesannet, leides tund-
matud tuumafunktsioonid. P66rdiiesande lahendamiseks kasutatakse lisainformat-
siooni (vaatlusandmeid), m66tes temperatuure vOi Soojusvoogu.

Poordilesandeid kasutatakse pohiliselt kahel eesmargil:

1. Matemaatilise mudeli adekvaatsuse hindamiseks.
Kui erinevate lahteandmete korral saadakse piisavalt hasti kokkulandevad
lahendid, siis mudel to6tab. Kui aga tulemused erinevad tunduvalt, siis
kirjeldab mudel protsesse halvasti ja on kdlbmatu.

2. Konkreetsete materjalide mélutuumade leidmiseks.

Erinevaid pdordilesandeid homogeensete materjalide malutuumade leidmiseks
on uuritud paljudes artiklites, nagu [2, 10, 11, 12, 16, 18, 19, 20, 22, 25, 29, 30,
31, 41, 42, 43]. Enamus t6id vaatlevad juhtu, kui soojusv@rrand sisaldab vaid soo-
jusvoo malutuuma. Artiklites [11, 20] vaadeldakse kahe méalutuuma, nii soojusvoo
kui ka siseenergia malutuuma tUheaegset leidmist. Niisugune poordilesanne sdltub
oluliselt vaatlusandmete ttdbist. Juhul, kui m6ddetakse kahes punktis temperatuu-
re, leitakse siseenergia malutuum siledama funktsioonina, kui soojusvoo mélutuum
[20]. Kasutades Uheaegselt nii temperatuuri kui ka soojusvoo néite, leitakse malu-
tuumad sama siledusega [11, 20]. Nendes artiklites ei vaadelda Ulesannet, milles
moddetakse vaid soojusvoogu. See juhtum on keerulisem.

Kui materjal on mittehomogeenne, siis s6ltuvad méalutuumad ka ruumimuu-
tuja(te)st. Sel juhul vajavad pdordilesanded rohkem vaatlusandmeid. Koéige ldi-
sem uurimismeetod on Dirichlet-Neumanni teisenduse rakendamine soojusvoo
méalutuuma leidmiseks [15]. See meetod nduab suurt hulka vaatlusandmeid, mis
on saadud erinavatel katsetel. Olukord lihtsustub, kui malutuumade kohta on teada
tédiendavata priori informatsiooni. Naiteks, kui vaadeldav keha on kihiline voi
rahuldab teatud simmeetriatingimusi, saab soojusvoo malutuuma leida Uheainsa
katse mddtmistulemuste abil [6, 7, 9, 17, 32].

Teatud juhtudel on mittehomogeensed malutuumad kddunud, see tdhendab,
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et nad kujutavad endast 106plikku summat korrutistest, milles tuntud ruumimuu-
tuja(te)st séltuvad funktsioonid on korrutatud tundmatute ajast séltuvate korda-
jatega. Selline olukord tekib tiikati homogeense aine korral vdi siis juhul, Kkui
tegelik tuum on asendatud lihtsustatud lahendusega. Tundmatud kordajad saab
leida temperatuuri vBi soojusvoo mddtmisega I6plikus arvus punktides. Selleks
laheb vaja vaid Uhte eksperimenti. Toéddes [21, 23, 24] vaadeldakse seda tldpi
poordilesannet vaid soojusvoo malutuuma leidmiseks.

Antud vaitekirja pohieesmargiks on uurida péérdulesandeid mdlema kddunud
malutuuma Gheaegseks leidmiseks mittehomogeense aine korral. Piirdutakse the-
modtmelise juhuga ja vaadeldakse kahte erinevat Glesannet.

Esimese Ulesande korral kasutatakse vaid temperatuuri mootmisi. TOestatakse
lahendi olemasolu ja Uhesus. Seejuures saadakse siseenergia malutuum uhe tule-
tise vOrra siledam, kui soojusvoo malutuum. Selle tlesande uurimise tulemused
esimest liiki rajatingimuste korral on avaldatud autori td6s [37] ja kolmandat liiki
rajatingimuste korral t66s [38].

Teiseks poordiulesandeks on Ulesanne, mille korral kasutatakse vaid soojusvoo
mddtmisi. Seda llesannet vaadeldakse esmakordselt ja selle kasitlemine on keeruli-
sem. Laplace’i kujutiste ruumis vaadeldakse vastavat elliptilist vorrandit ja selle
Greeni funktsiooni. Greeni funktsiooni asiimptootiliste hinnangute leidmine néuab
suurt tehnilist t66d. Selle tlesande uurimise tulemused on avaldatud t66des [35,
36]. Vaitekirjas on parandatud ka ks eksitus, mis esineb neis artiklites. Hinnan-

. . S Vir) (Vo)) .

gud (2.4.7) ja (2.5.7) sisaldavad seal Iug%ég, (ﬁ(r)) asemel. Lisaks on veel
tbestatud selle Ulesande lahendi olemasolu ja Uhesus kolmandat liiki rajatingimuste
korral. Neid tulemusi pole autor veel jbudnud avaldada artiklina.

Pddrdilesannsoojusvoo mddtmisega on oma iseloomult halvem, kui tempera-
tuuri méo6tmisega tlesanne. Paljudel juhtudel on Ulesande maatriks singulaarne.
Vastav homogeenne ulesanne on isegi tugevalt mittekorrektne. Siin margitakse
seda esmakordselt.

Vaitekirja tulemumuste tutvustamiseks olid tehtud jargmised ettekanded:

1. Rahvusvaheline konverents "5-th International Conference on Inverse Problems
in Engineering”, Cambridge, 11 - 15.07.2005 — poster.

2. Seminar "Funktsionaalanaltuusi rakendused", Tallinn, 03.03.2006 — loeng.

3. 5. rahvusvaheline konverents "Simulation and Optimization in Business and
Industry”, Tallinn, 17 - 20.05.2006 — ettekanne.

4. Rahvusvaheline Matemaatikute Kongress "International Congress of Mathe-
maticians", Madriid, 22 - 30.08.2006 — luhiettekanne.
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1977 - 1978 Leningradi Riiklik Ulikool, prantsuse keele kur-

sused e o
Moskva Riiklik Ulikool, Arvutusmatemaatika ja

1970 - 1973 Kuberneetika teaduskonna aspirantuur
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6. Teenistuskaik:

Ulikooli, teadusasutuse vdi muu Orga”isatT('j(‘jtamise aeg Ametikoht
siooni nimetus

Tallinna Tehnikailikool, Matemaatika Insti-

1991 - lektor
tuut
Tallinna Polutehniline Instituut, Matemaatika1981 -1991 vanemdpetaja
kateeder
Bama_l_<o Korgem Inseneride Kool, Mall1978 - 1981 [natepjaatlka
vabariik, Aafrika Oppejoud
Tallinna Poltehniline Instituut, Matemaatika, -5 _ 1978 assistent

kateeder

Tallinna Polutehniline Instituut, Arvutus-

. 1967 - 1970 assistent
matemaatika kateeder

7. Kaitstud 18putddd:
. . Iteratsioonmeetodid silindrilise kooriku tasakaalutilesande
Diplomitd6 teemal:

vorrandiststeemi lahendamiseks diferentskujul.

8. Teadustegevus:

Enno Pais. O gladkosti sobstvenndh funktsi sZatoi plastind okolo uglovéh totSek.
Differentsialngje UravnenijaVol. 9, 9, 1700 - 1706, 1973.

Enno Pais. Identification of degenerate time- and space-dependent kernels in heat
flow. In Proc. of 5-th International Conference on nverse Problems in Engineering
(Cambridge, 11-15.07.2005), D. Lesnic ed., Leeds Univ. Press, Vol. lll, P01, ppl

- 10, 2005.

Enno Pais and Jaan Janno. ldentification of two time- and space-dependent kernels
in a parabolic equatiorklectron. J. Diff. Eqns.No. 108, 1 -20, 2005.

Enno Pais. Degenerate memory kernels identification problem with flux-type ad-
ditional conditionsJ. Inv. lll-Posed Problemsl4, 397 - 418, 2006.

Enno Pais and Jaan Janno. Inverse problem to determinate degenerate memory
kernels in heat flux with third kind boundary conditiomdath. Model. Anal.11,

427 - 450, 2006.

9. Teadustt6 pbhisuunad:
Osatuletistega diferentsiaalvdrrandid ja mittekorrektsed tlesanded.
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Curriculum vitae

1. Personal information:

Name: Enno Pais

Place and date of birth: 30.08.1944, Russia
Citizenship: Estonian

Marital status: married

Children: 3 daughters

2. Contact information:

Address: 16-140, Paekaare str, 13621 Tallinn
Telephone: (+372) 56684492, (+372) 6363975
Email; ennopais@stv.ee
3. Education:
Institution Graduation date Education

Moscow State University

1967

Parnu Secondary School No. 2 1962 secondary
4. Languages:

Language Level Language Level

Russian advanced Finnish medium

French advanced Swedish basic

English medium Spanish basic

German Basic

MSc in Mathematics

5. Further Education:

Date Institution or Organization

1977 - 1978 Leningrad State University, Courses of French
1970 - 1973 Moscow State University, postgraduate studies
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6. Professional Employment:

University or Organization Date Position

Tallinn University of Technology, Institute

1991 - Lecturer
of Mathematics u

Tallinn Polytechnic University, Depart-

. 1981 -1991 Teatcher
ment of Mathematics

Higher Eng_lnee_rlng School of Bamako,1978_1981 Lecturer
Rep. of Mali, Africa
Tallinn Polytechnic University, Depart-

. 1973-1978 Teaching Assistant
ment of Mathematics

Tallinn Polytechnic University, Depart-

ment of Applied Mathematics 1967 - 1970 Teaching Assistant

7. Theses:

._Iterative methods to solve finite difference equations describing
Master thesis L
the balance of cylindrical shells.

8. Scientific Work:

Enno Pais. On the smoothness of eigenfunctions of the clamped plate near cor-
ners. (Russian)ifferential Equations\Vol. 9, 9, 1700 - 1706, 1973.

Enno Pais. Identification of degenerate time- and space-dependent kernels in heat
flow. In Proc. of 5-th International Conference on nverse Problems in Engineering
(Cambridge, 11-15.07.2005), D. Lesnic ed., Leeds Univ. Press, Vol. Ill, P01, ppl

- 10, 2005.

Enno Pais and Jaan Janno. ldentification of two time- and space-dependent kernels
in a parabolic equatiorkElectron. J. Diff. Eqns.No. 108, 1 -20, 2005.

Enno Pais. Degenerate memory kernels identification problem with flux-type ad-
ditional conditionsJ. Inv. lll-Posed Problemsl4, 397 - 418, 2006.

Enno Pais and Jaan Janno. Inverse problem to determinate degenerate memory
kernels in heat flux with third kind boundary conditiodath. Model. Anal.11,

427 - 450, 2006.

9. Main Areas of Scientific Work:
Partial differential equations and ill-posed problems.
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