
DOCTORAL THESIS

Peirce’s Existential Graphs and
the Logic of String Diagrams

Nathan Joseph Haydon

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2024

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

31/2024

Peirce’s Existential Graphs and the Logic
of String Diagrams

NATHAN JOSEPH HAYDON

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy (in
Computer Science) on 21 May 2024

Supervisor: Professor Paweł Sobociński,
Department of Software Science, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Professor Ahti-Veikko Pietarinen,

Opponents:

Department of Religion and Philosophy
Hong Kong Baptist University
Hong Kong, China

Dr. David Corfield,
University of Kent
Kent, United Kingdom

Dr. Todd Trimble,
Western Connecticut State University
Danbury, U.S.A

Defence of the thesis: 6 June 2024, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Nathan Joseph Haydon
signature

Copyright: Nathan Joseph Haydon, 2024
ISSN 2585-6898 (publication)
ISBN 978-9916-80-158-1 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-159-8 (PDF)
DOI https://doi.org/10.23658/taltech.31/2024
Printed by Koopia Niini & Rauam

Haydon, N. (2024). Peirce’s Existential Graphs and the Logic of String Diagrams [TalTech
Press]. https://doi.org/10.23658/taltech.31/2024

https://digikogu.taltech.ee/et/Item/f7f55e15-7a58-4e7f-a112-910d6a943f7f

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ
31/2024

Peirce’i eksistentsiaalsed graafid ja
nöördiagrammide loogika

NATHAN JOSEPH HAYDON

Contents

List of Publications . 6

Author’s Contributions to the Publications . 7

Abstract . 8

Kokkuvõte . 9

Acknowledgements . 11

Introduction . 13
Motivation . 15
Background and Related Work. 17
Contribution and Results . 19
Outline . 22

References . 23

1 Article 1 - Compositional Diagrammatic First-Order Logic . 27

2 Article 2 - Residuation in Existential Graphs . 47

3 Article 3 - C.S. Peirce’s Early Developments in Linear Logic . 57

4 Article 4 - Diagrammatic Algebra of First Order Logic . 107

Appendix (Article 5 - The Blot) . 143

Curriculum Vitae . 159

5

Elulookirjeldus 161

List of Publications
The present Ph.D. thesis is based on the following publications that are referred to in the
text by Roman numbers.

I N. Haydon and P. Sobociński. Compositional diagrammatic first-order logic. In A.-
V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, and S. Linker,
editors, Diagrammatic Representation and Inference, pages 402–418, Cham, 2020.
Springer International Publishing

II N. Haydon andA.-V. Pietarinen. Residuation in existential graphs. In A. Basu, G. Staple-
ton, S. Linker, C. Legg, E. Manalo, and P. Viana, editors, Diagrammatic Representation
and Inference, pages 229–237, Cham, 2021. Springer International Publishing

III N. Haydon. C.S. Peirce’s early developments in linear logic. 2023
IV F. Bonchi, A. D. Giorgio, N. Haydon, and P. Sobocinski. Diagrammatic algebra of first

order logic. To appear at LICS, 2024
V A.-V. Pietarinen, F. Bellucci, A. Bobrova, N. Haydon, and M. Shafiei. The blot. In A.-

V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, and S. Linker,
editors, Diagrammatic Representation and Inference, pages 225–238, Cham, 2020.
Springer International Publishing

6

Author’s Contributions to the Publications
I In Article I, the author shared in writing the manuscript with the coauthor, shared in
the main contribution of presenting a new set of string diagrammatic inference rules
for Peirce’s ‘cut’, and contributed the historical interludes in the text.

II In Article II, the author identified the significance of the topic, developed the main
contribution of presenting residuation in Peirce’s Beta graphs, and wrote the main
sections of the manuscript.

III In Article III, the author was solely responsible for the manuscript, including iden-
tifying the proposed perspective in Peirce’s work, the significance of the result and
historical contributions, and the connection to bilinear and cyclic logic.

IV In Article IV, the theory presented was identified and articulated by the author over
the previous three years. Coauthors contributed to the categorical presentation and
contributed substantially to the completeness result.

V In Article V, the author contributed a perspective on the interpretation of Peirce’s
‘blot’. Pietarinen then provided context and summary for each coauthor’s contribu-
tion.

7

Abstract
Peirce’s Existential Graphs and the Logic of String Diagrams
String diagrams are a viable alternative to more traditional algebraic syntax, often yield-
ing an elegant presentation of the relational features under consideration and one that
allows for the treatment of variables and algebraic operations in a compositional manner.
Following the pioneering work of Charles S. Peirce, who developed a graphical logic of
relations over 100 years ago in his Existential Graphs, we treat here and extend the logical
aspects of string diagrams. The key developments follow from a renewed emphasis on
Peirce’s scroll— a sign of two nested circles serving at once as an inclusion and an invo-
lution — that allows us to capture various logical connectives and other operations. The
result is a contemporary graphical relational calculus sufficient to serve as a foundation
for large portions of mathematics and for applications to logic and fields like knowledge
representation.

8

Kokkuvõte
Peirce’i eksistentsiaalsed graafid ja nöördiagrammide loogika
Nööridiagrammid on asjalik alternatiiv traditsioonilisemale algebralisele süntaksile. Sageli
võimaldavad nad uuritavate relatsiooniliste atribuutide elegantset esitust, kus muutujad
ja operatsioonid on käsitletud kompositsiooniliselt. Järgides Charles S. Peirce’i, kes üle saja
aasta tagasi oma teedrajavas töös “Eksistentsiaalsed graafid” arendas välja graafilise relat-
sioonide loogika, käsitleme ja arendame selles töös nööridiagrammide loogikalisi aspek-
te. Põhilised edasiarendused tulenevad uuendatud rõhuasetusest Peirce’i “rullraamatu-
le", märgile, mis koosneb kahest teineteise sees asetsevast ringist, tähistades ühekorraga
sisalduvust ja involutsiooni. “Rullraamat” võimaldab esitada erinevaid loogilisi tehteid ja
teisi operatsioone. Tulemuseks on kaasaegne graafiline relatsiooniarvutus, mis on piisav
toimimaks matemaatika suurte osade alusena ning rakendusteks loogikas ja valdkondades
nagu teadmiste esitamine.

9

Acknowledgements
This PhD was a rare opportunity. Credit to Pawel, my supervisor, for his initial belief that
Peirce’s graphs had something to offer contemporary categorical logic. Thanks also to my
co-supervisor, Ahti, for his willingness to always chat about Peirce and his philosophical
views. It was a rare opportunity indeed to work with two outstanding researchers at the
same time. Tallinn is a special place.

To other members of our group — Chad, Diana, Elena, Mario, and Matt — the time
spent during retreats, saunas, travel to conferences, and in the coffee room has led to
many fond memories. Special thanks to Chad and Matt for hosting dinner parties when I
was in town, and Ed who always found time to chat about logic over coffee or dinner. As
a researcher, the kindness and patience shown by all of you is not lost on me.

Special thanks also to Nicollò, who spent time reading my work and chatting about
related papers and proof theory. Nicollò added general encouragement and motivation
that helped the completion of this thesis. Further thanks to Niels for the good company
during said dinner parties and outings.

To other members of the department — Amar, Andrea, Cheng-Syuan, Clémence, Eka-
terina, Fosco, Michele, Philipp, and Tarmo— though we had fewer conversations in num-
ber I remember and appreciate time spent with you all. To everyone, I wish you the best
of luck in the future.

And finally, if my family reads this in the future — heya! — you are the best and I love
you all.

11

Introduction
The logic of relations is applicable to a wide range of fields and areas of inquiry. One of
the key contributors to the early study of relations, Charles S. Peirce, thought the study of
the logic of relations was akin to studying the essence of scientific reasoning. Extensive
appeal to relations is also found throughout much of mathematics and the study of nat-
ural language. Relational thinking is so pervasive that it is perhaps more accurate to say
that very little falls outside its scope. This thesis develops and extends a contemporary
graphical language for reasoning about relations.

The study of relations goes back to the mid-19th and early 20th centuries with Boole
and others in the early algebraic logic tradition such as De Morgan, Peirce, and Schröder.
Since that time the explicit study of relationswitnessed a resurgence following thework of
Tarski and the study of relation algebras in the 1940s [70]. Relations have since served as
a key setting for algebraic and logical study in the foundation of mathematics [71, 62, 66],
in computer science [26, 22, 64, 18], and for advances in concept analysis and cognitive
science [42, 73, 69]. Work extending the logic and algebra of relations in this thesis is
directly applicable to its use in these areas.

There is furthermore a long history of trying to developmethods of diagrammatic rea-
soning — imagine Venn diagrams or Feynman diagrams — with the aim of helping us
better represent concepts on the page. The broad idea is that better diagrams can help us
hone the most important aspects of our conceptions, avoid other extraneous features or
calculations, and all the while make the system more intuitive and easier to learn. While
the foundational nature of the logic of relations gives rise to an extensive list of appli-
cations, this thesis is first and foremost about creating and developing a diagrammatic
syntax. Along these lines this thesis develops a novel diagrammatic calculus that helps us
intuitively and more effectively reason about the logic of relations.

The graphical calculus presented in this thesis is inspired by two directions — one as-
pect is very recent, employing string diagrams in category theory [57, 8, 9, 7], and another
very old, going back to Charles S. Peirce’s neglected graphical calculus called the Existen-
tial Graphs. These two directions combine for a contemporary logic of relations sufficient
for the study of algebraic and mathematical theories.

String diagrams— see [67, 1] for background— have increasingly been used to reason
about a wide range of theoretical contexts, including electrical circuits [5], control the-
ory [2], concurrency and Petri nets [3], probability theory [37], linear algebra [53], natural
language [28], neural networks [32], and concept analysis and cognition [6]. These are in-
stances of applied category theory (ACT) and there is good reason to think string diagrams
will play important roles in the future of these fields [34].

While the rigorous formalization of string diagrams is a fairly recent development, aris-
ing in the late 20th century, the study of relations via string diagrams in a broader logical
and algebraic context goes back to the pioneering work of Charles S. Peirce and the de-
velopment of his Existential Graphs (EGs) a century prior.

Peirce’s Existential Graphs are noteworthy in several respects:

variables as strings: Peirce understood that variables could be replacedby ‘wires’ or ‘strings’
— what he called ‘lines of identity’ — serving as continuous, bifurcating represen-
tations of the identity relation.

primacy of conjunction: Peirce chose conjunction to be the default connective imbued
by the ‘sheet of assertion’, which is Peirce’s term for the page upon which diagram-
matic reasoning takes place and graphs are scribed. The ‘sheet’ possesses the prop-
erties of a product with corresponding projections (which Peirce calls ‘erasures’),

13

where the unit of conjunction (i.e. ‘True’) is absorbed into the ‘blank’ on the page.

‘cut’: Additional logical connectives are captured by adding one further symbol — a sim-
ple circle or ‘cut’, as Peirce calls it — to the string diagrammatic syntax. The ‘cut’
adds a remarkable amount of further logical expressivity. It allows one to capture
negation and, when multiple cuts are varyingly nested together, can express rela-
tional inclusion and disjunction.

These features give rise to the common presentation of EGs as first-order logic with iden-
tity as found in Roberts [61] and Zeman [74] and much of the work on the graphs that
followed [68, 29] and [55, see introduction].

Aside from the ‘cut’ symbol, which we return to below, these features are shared by
contemporary string diagrams and Peirce should be seen as one of the earliest — if not
the first — to present string diagrams as we more or less know them today.

As an example, we show in Figure 1 a series of graphs given by Peirce in 1903. The
graphs are reproduced from the recent collection on Peirce’s graphs in [56, p. 156] and
are notable for their remarkable similarity to contemporary string diagrams. Peirce uses

(a) (b) (c) (d)

Figure 1 – An early instance of strings diagrams in Peirce’s work that express ‘sum’ operation, asso-
ciativity and commutativity of ‘sum’, and the existence of negative quantities.

the ‘s’ in the node to represent ‘sum’ or ‘addition’. In Peirce’s own words the meaning
of Figure 1(a) expresses: “that w is equal to a result of adding something equal to u to
something equal to v”. With the ability to express inequations with nested ‘cuts’, Peirce
goes on to express further properties related to addition. In Peirce’s own words Figure
1(c) expresses the “commutativeness of addition,” Figure 1(d) expresses “the existence of
negative quantities,” and Figure 1(b) expresses the “associativity of addition”.

One should compare Peirce’s versions of these properties in EGs with the contempo-
rary presentation using string diagrams in Figure 2. We note immediately that the dia-

Figure 2 – String diagrams for the ‘addition’ operation, along with the associativity and commuta-
tivity of addition.

grams match iconically — i.e. by shape or outline — the contemporary presentation in
string diagrams.

14

We add that the surface of the sheet provides additional topological freedom in ex-
pressing the same equations. The freedom of the wires allows one to express the ‘type’-
requirement requisite of reading contemporary equations in string diagrams. The ‘minus’
operation — often expressed with an additional labeled node, as in Figure 3 — can be
expressed in the inclusion with a sort of ‘feedback’ of the variable wire. Finally, commu-

Figure 3 – String diagram for ‘minus’ operation.

tativity can be represented — if one wants — with no ‘twisting’ or ‘braiding’ of the wires.
We find this additional topological freedom and the emphasis on inclusion to be unique
to Peirce’s graphs.

This brings the earliest use of string diagrams to as far back as the 1880s when Peirce
began developing the Existential Graphs. Peirce knew the Existential Graphs were of
logical and algebraic importance — boldly, he described the graphs as “the logic of the
future”— and the main question that occupied the start of this thesis is whether and to
what extent contemporary mathematics and the expression of various logics in string di-
agrams can be aided by Peirce’s insights into graphical calculi.

We state upfront our belief — and the thesis goes on to substantially demonstrate
the point — that the relatively unknown algebraic studies and graphical syntax found in
Peirce’s Existential Graphs is a valuable resource for developing and extending a contem-
porary logic of string diagrams.

Motivation
The connection between Peirce’s Existential Graphs and string diagrams has two natu-
ral starting points. The first is to connect Peirce’s treatment of variables using ‘lines of
identity’ with string diagrams. The second is to add Peirce’s ‘cut’ symbol representing
complement or negation — and which, in some sense, is the only additional symbol in
the graphs — to contemporary string diagrammatic presentations. The simplified ‘cut-as-
negation’ story has been the predominant story in Peirce’s work on EGs and subsequent
studies of the graphs. It follows the earliest work of Roberts and Zeman cited above and
seemingly Peirce himself, who in his public presentations of the graphs often writes of
the importance of the single ‘cut’. This is the direction taken in Article I (“Compositional
Diagrammatic First-Order Logic”) and is a key first step in situating Peirce’s graphs within
contemporary graphical and algebraic terms.

This ‘cut-as-negation’ story is, however, neither logically (from the perspective of con-
temporary work) nor historically (from the perspective of the rest of Peirce’s philosophical
and logical work) the end of the story. Peirce took the ‘double cut’ — picture two nested
‘cuts’ as in Figure 4— to be the more primitive logical operation. In fact if one only uses
the inference rules Peirce gave for the graphs, then one can seemingly never draw a single
cut! On this account the single ‘cut-as-negation’ story developed in Article I is merely an
approximation and is a first step towards a more general presentation.

Peirce referred to this ‘double cut’ as the scroll and amain contribution of this thesis is
developing the ‘scroll’ as a key element of the syntax and as a key inferential connective.

15

Figure 4 – Peirce’s ‘double cut’ rule (left) and ‘scroll’ (right)

As an example of the logical connectives in the Beta variant of Peirce’s EGs, we show in
Figure 5 the Boolean operations and relational inclusion. Of particular interest to us here,

Figure 5 – The Boolean operations of intersection and union (left), along with relational inclusion
(right)

is to note how the inclusion shares the same shape as the involution and ‘double cut’ in
Figure 4. Indeed Peirce’s ‘scroll’ serves at one and the same time as an involution and an
inclusion.

We can summarize this turn to the ‘scroll’ as moving in the following directions: (i) as
emphasizing the importance of relational inclusion and inequational over equational rea-
soning, (ii) as emphasizing the further function of the ‘scroll’ as an involution, along with
additional connectives that follow from this, and (iii) as stressing additional topological
freedoms that follow from the larger surface that is the ‘sheet’. In this thesis we connect
these features of the ‘scroll’ to presentations of linear logic and the involution to that of
*-autonomous categories. This thesis can be seen as restoring the ‘scroll’ to its place of
primary importance both diagrammatically and as a logical connective.

There is one further motivations that is worth mentioning upfront. Peirce insisted
on the importance of triadic relations over mere binary or dyadic relations in syntax and
with respect to presenting inference rules. Commenting on the need to go beyond the
presentation of binary relations in his ‘Note B’, Peirce writes:

The criticism which I make on [my] algebra of dyadic relations, with which I
am by no means in love, though I think it is a pretty thing, is that the very
triadic relations which it does not recognize, it does itself employ. [CP 8:331]

The emphasis on triadic relations follows from Peirce’s insistence on teridentity—Peirce’s
term for forming a branch on the identity relation — and what has been called Peirce’s
reduction thesis, whereby higher n-ary relations can be reduced to a combination of 1-,
2-, and 3-ary relations [20]. While binary relations have more-or-less persisted as the tra-
ditional form of presentation, we take the work here (and contemporary string diagrams
more generally) to affirm Peirce’s insistence on teridentiy and triadic relations. This is im-
plicitly seen in Article I in this thesis, where the syntax and rules employ branching (i.e.
triadic) terms, but is also more explicitly employed to yield the key result in Article IV
(“Diagrammatic Algebra of First Order Logic”), where triadic relations play a key role in
generalizing Tarksi’s relation algebra to full first-order logic.

What this means for Peirce scholarship is that his assumptions about variables being
captured by wires or strings, his emphasis on conjunction as absorbed into the syntax, his
turn towards triadic relations and teridentity, his simplified inference rules and emphasis

16

on (relational) composition, and the involution that is the ‘scroll’, are all shared in the
motivations found in contemporary categorical logic and the use of string diagrams.

The aim of the thesis is to develop these motivations, to begin to formalize these no-
tions where possible, and — better yet — to extend these features to contemporary ap-
plications of string diagrams. Similar to the importance one might place on the (positive)
implicational fragment, our take in the end is that Peirce spent a great deal of time in his
later studies focusing on and developing the linear implicational fragment. In the end, we
argue that Peirce understood the relational setting corresponding to the Lambek calculus
and the operations from what is called bilinear logic [46].

Background and Related Work
We mention two approaches to the logic of relations that followed the century after
Peirce’s work. Relation algebra has been studied and developed in the context of more
classical set-theoretic mathematics. This goes back to Tarski’s seminal [70]— a paper that
we like to stress is actually a return to Peirce—and culminateswith Tarski andGivant’s [71]
in the 1970s (see also [50]). We will not attempt a summary of the last 80+ years of work
on relation algebra, and will simply note that relation algebra persists — either explicitly
or implicitly — as a predominate field of study in computer science, in the foundations
of mathematics, and in logic and cognitive science. A more contemporary direction along
these lines is worth particular mention, and that is the work following Schmidt’s ‘Rela-
tional Mathematics’ [62]. This includes work in relational mathematics by Winter, Kahl,
Berghammer, and others [65, 66]. We come back to this direction again below.

The advent of category theory brought another notable direction in the logic of rela-
tions. Two perspectives on the (categorical) study of relations are the relationally-inspired
presentation of allegories [36] and Carboni and Walters presentation of cartesian bicate-
gories of relations (CBRs) [21]. The theory presented here is often directly inspired by the
latter. Significant to us here, we note the approach taken in CBRs is (i) closely related to
the rules Peirce himself used to describe relations (see Article I), (ii) motivates the work
on essentially algebraic theories that serve as a further backdrop for the view we employ
here [15, 11, 30], and (iii) also serves as the backdrop for further, related approaches in ap-
plied category theory [48, 27, 44, 13, 14]. Finally, the CBR axioms are also highly amenable
to a string-diagrammatic presentation [12, 35], which is often employed in the applications
listed above and will (again) be discussed substantially in the thesis to come.

Freyd and Scedrov’s allegories [36] are a similar categorical axiomization of the logic
of relations. An aim in developing allegories was to show that a large amount of category
theory itself is amenable to a presentation in terms of relations (regular categories, Heyt-
ing categories, and toposes each correspond to a development in allegories and so in a
categorical presentation of relations). While allegories are often recognized as a signifi-
cant presentation in the field, it appears to have produced few direct descendants.

Allegories offer an axiomization that can be thought of as halfway between that found
in CBR and relation algebras in that the approach emphasizes more traditional relational
operations, such as meet, inclusion, and converse. The characteristic feature of allegories
is the use of themodular law. Given relational composition (;), meet (u), relation inclusion
(v), and converse (˘), the modular laws states that for three given relations: Q;Ru S v
Q;(Ru Q̆;S).

There is substantial overlap in the two categorical approaches above, as cartesian bi-
categories of relations exactly coincide with the notion of a unitary pretabular allegory.
The modular law above can also be derived using the CBR axioms. Both allegories and
CBRs should be thought of as characterizing a positive fragment of relations — i.e. rela-

17

tions without a complement operation—which is historically difficult to implement in the
categorical setting.

Relation algebras are related to the characterization of allegories and CBRs. The over-
lap between the (positive) operations emphasized in RAs and the approaches given above
means that results in the setting of RAs often have direct correspondence to presentations
found in allegories and CBRs. In the context of relation algebra, themodular law is also re-
ferred to as the Dedekind equation. As we go on to discuss below, the Dedekind equation
and modular law is also closely related to the Schröder equivalences. We prefer the pre-
sentation in terms of the Schröder equivalences here, as we think residuation — which is
characterized by the Schröder equivalences — ought to be stressed as logically essential.
As we will see, a key contribution in the thesis is presenting residuation in the graphs.

The inclusion of the complement in relation algebra is a key difference that adds ex-
pressive power and often extends to a broader range of (practical) applications. At the
same time, and a point we come back to below, more fundamental logics are often asso-
ciated with omitting negation as a primitive operation.

The connection between relation algebra and categories has been established with
the move to heterogenous relation algebras, which allows relational composition (as in
categories) to be partially defined (see [63, 64, 43]). In general, themove to heterogenous
relation algebras tends to require little update to the syntax and inference rules (needing
only to keep track of typing information, which in our graphical syntax, for example, is
handled quite naturally). We take this to further solidify the substantial overlap between
the relation algebraic and categorical approaches.

We leave it as an open questionwhether and towhat extent the categorical or relation
algebraic perspective ought to be taken. Our readers may perhaps side with the categori-
cal, but from another direction the categorical can be seen as a logical culmination of the
relation algebraic. We simply refer broadly to a logic of relations to refer to the study of
relational operations that is shared by both approaches. Regardless, such a core logic of
relations offers a rich underlying foundation upon which these fields and their resulting
applications rest. We state that the diagrammatic theory here can capture many of the
developments from these three approaches.

Each of these three approaches are just starting to develop and leverage the benefits
of a graphical syntax. CBRs have gone the farthest in this direction, as the axioms of CBRs
have been given a straightforward graphical and string-diagrammatic syntax. Allegories
have seen less development since their initial presentation, which despite appealing to
traditional relational operations also uses its own, somewhat idiosyncratic, syntax. A no-
table exception of a graphical treatment of allegories appears in [19], which shows its close
connection to the axioms of relation algebra. Recent work on relation algebras empha-
size visualizations of relations as matrices, matrix operations, as well as corresponding
graphs [64, 62], but the advantages of a further graphical syntax have yet to be realized.
With respect to advances in string diagrams, the categorical and relational approaches
seem to have functioned largely independently of each other. We note again that the di-
agrammatic syntax and relational operations given in this thesis, as well as many related
fragments, are applicable to each of these areas.

Other graphical treatments found in categorical logic are worth mentioning, such as
proof nets and wiring diagrams for linear distributive categories [38, 4, 23]. Alternative
graphical approaches that extend string-diagrammatic syntax in other applications include
the ZX calculus [72] and dagger linear logic [25]. Examples more explicitly in the logical
direction can be found in [33, 35, 45, 54, 1]. These approaches all add various additions
(often multiple) to the string diagrammatic syntax. Of interest to us here, is whether and

18

to what extent Peirce’s ‘scroll’ can be employed to better express these directions.
Turning now to Peirce’s work, aside from Brady and Trimble’s initial work on Peirce’s

graphs [17, 16] there is little work on the contemporary development of Peirce’s graphs in
the context of relation algebra and category theory. Again, no approach that we are aware
of has focused on the modern advantages accrued by nested ‘cuts’ using Peirce’s ‘scroll’.
Vaughan Pratt [60, 59] has given a promising initial comparison of Peirce’s early algebraic
work with linear logic, but this connection has not been situated diagrammatically or in
the context of Peirce’s later developed EGs. A key direction in the thesis is to make explicit
this connection to linear logic in the graphs and in Peirce’s work. The work in this thesis
solidifies Brady and Trimble’s approach, moving as they do to *-autonomy and the multi-
plicative case. Our approach has the advantage of making explicit the par’d context and
linear rules, connecting these directly to Pierce’s ‘scroll’ rather than the single ‘cut’, and
in general connecting these back historically to Peirce’s early work on the graphs.

It is also worth mentioning the work of Ahti Pietarinen and collaborators, who have
beenworking for quite some time to extend the philosophical and logicalmerits of Peirce’s
graphs [55, 51]. The latter, along with [52], are notable for moving towards intuitionistic
variants of the graphs. We address this move but from a very different direction, as we
prefer the perspective from linear logic. The intuitionistic case can then in theory be re-
covered as a fragment, such as by defining intuitionistic implication with residuation and
the !-exponential. Work in [51] and more recently in [31] also connects Peirce’s rules to
deep inference systems. This perspective, too, find support in the direction taken here.

While relation algebra has seen steady advances since the field was resurrected by
Tarski, category theory and the turn towards string diagrams offer a powerful, fresh per-
spective on the subject. Growing interest and accessibility of Peirce’s writings — from
within philosophy, but also from those interested in formal diagrammatic reasoning and
graph rewriting more generally — offers a further timely motivation. This thesis aims at a
contemporary logic of relations in accord with the best of these recent developments.

Contribution and Results
Regular logic — employing existential quantification, > (True), and logical conjunction
— is well understood to be represented graphically in string diagrams. When this thesis
began, we took regular logic and the corresponding CBR axioms as our starting point. The
broad aim was to extend this logic of string diagrams beyond regular logic.

In Article I we show that Carboni and Walters’ axiomization of CBRs correspond to
the positive fragment of Peirce’s Beta graphs. We extend the CBR axioms to include a
complement or negation operation— by including, in terms of our graphs, Peirce’s notion
of the ‘cut’ — and the result extends regular logic to first-order logic. The rules for the
behavior of the ‘cut’ involve Peirce’s ‘double cut’ rule, the principle of contraposition, and
a third rule for iteration/deiteration. Two further remaining rules guarantee that ‘lines of
identity’, which serve to keep track of variables in the syntax, do not interact with the ‘cut’.
The calculus serves as a modern presentation of Peirce’s full Beta calculus with the single
‘cut’ taken as negation.

While adding negation to regular logic is the key step to first-order logic, the presenta-
tion in Article I has two drawbacks. It defines negation as a unary operation, which limits
the potential expressivity towards other logics. It also relies on an ‘egg-shell’ notation,
outside the defined syntax, that serves as a syntactic hack for presenting a generic con-
text inside a ‘cut’. While the ‘egg-shell’ is shown to accomplish its intended purpose later
in Article IV, its original use and presentation was less than ideal.

Our next step was to move away from the ‘cut-as-negation’ story and focus specif-

19

ically on the fragment with the ‘scroll’ or ‘double cut’. A seemingly natural next step —
suggested by history and contemporary importance—was tomove towards the intuition-
istic case and to define negation as R →⊥. Perhaps surprisingly, Peirce already has this
connection built directly into the graphs. This is seen clearly with a simple application of

Figure 6 – Peirce’s ‘cut’ and intuitionistic negation.

the ‘double cut’ rule inside the inclusion that is the ‘scroll’, as in the Figure 6.
Two issues nonetheless arose in the initial pursuit of the intuitionistic case that are

worth noting. The first is a broad appreciation of the fact that a standard presentation of
the intuitionistic case has more or less been solidified in the literature (such as the requi-
site “Introduction to Higher Categorical Logic” [47] by Lambek and Scott). We hope — at
least as an ideal — that other advantages are accrued by the novel graphical presentation
in Peirce’s graphs, and so we came to look elsewhere.

The second issue is more significant. Arguably the key feature of the intuitionistic
case is that intuitionistic implication is defined (in categorical terms) as right adjoint to
conjunction. This is straightforwardly shown in the propositional case seen in Figure 7.
Note, also, the similarity to intuitionistic negation, where both consist in adding a ‘double

Figure 7 – Peirce’s ‘scroll’ and intuitionistic implication.

cut’ or ‘scroll’ within the inclusion. The issue is an ambiguity in how this is presented with
‘lines of identity’, where one can choose between a parallel or sequential presentation.
The parallel, or non-relative case (similar to that shown), corresponds to the Booleans,
while the sequential case corresponds to relational composition. Much of thework on the
intuitionistic case does not distinguish between these, but our graphical syntax in some
sense demands it, and we found the direction worth exploring. At the same time wewere
studying topological equivalences specific to the compositional case and wondering how
best to characterize them.

These directions led us to residuation and to the graphical presentation of residuation
in Article II (“Residuation in Existential Graphs”). In terms of allegories, the addition of
residuation yields a corresponding division allegory. In terms of relation algebra, a more
concise characterization of relation algebra can also be given by replacing most of the
relational axioms with residuation in the form of the Schröder equivalences. Graphically,
Article II shows how residuation and these equivalences are captured by Peirce’s ‘scroll’
and straightforward string deformations. Much of the subsequent work in the thesis can
be traced back to this original development. We note, for example, that the key equation
inArticle IV for the linear adjoints and residuation is already given as an example inArticle
II.

20

Article III (“C.S. Peirce’s Early Developments in Linear Logic”) and Article IV present
the full picture of these developments. Both return attention to Peirce’s remarkable early
presentation of the logic of relations in ‘Note B’ from 1883. Article IV generalizes the
presentation in ‘Note B’ to include triadic relations and to include a contemporary treat-
ment with strings as in Peirce’s original Existential Graphs. Following Peirce, the key to
the theory is presenting the dual of relational composition, the rules for linear distribu-
tivity, and the further equations for linear negation. The paper offers the first instance of
linking cartesian with linear structure in this way in string diagrams. In terms of Peirce’s
early work and relation algebra, these are the links between the Boolean and Peircean, or
relative, operations. Significantly, negation then emerges out of the interaction of these
other operations. The paper furthermore provides a completeness result worked out in
collaboration with coauthors.

Further historical connections to Peirce’s early work is left out of Article IV, as is the
connection to bilinear logic, which we find is perhaps the closest modern direction to
Peirce’s early studies. Article III importantly fills in this gap. The article goes on to compare
Peirce’s graphs to other contemporary notations, such as Cockett et al.’s ‘circuit diagrams’
in [24], and presents Peirce’s innovations towards linear logic.

We end these introductory comments with a brief summary of the directions that
Peirce appears to have been right about. For starters, Pierce’s adoption of lines of identity
(LOIs) for capturing variables is confirmed in string-diagrammatic presentations. In par-
ticular, ‘lines of identity’ and variable manipulation obeys the laws of a special Frobenius
algebra. Peirce seemed to have understood the basic intuitions behind this structure. The
inference rules of the ‘sheet’ (i.e. evenly enclosed areas or the logical fragment without
‘cut’) correspond to the rules given by Carboni and Walters for cartesian bicategories of
relations. This includes Peirce’s rules for ‘erasure’ and ‘iteration’. Within a ‘cut’ context
the directions of these rules are reversed — a key instance of what Peirce refers to as
the principle of contraposition, which he stresses as one of the most basic features of the
graphs— and this leads to a corresponding presentation of cocartesian structure in these
areas. Finally, and returning to Peirce’s earlier algebraic work from ‘Note B’ in 1883, we
stress the importance in the graphs of the dual of relational composition and the linear
distributive and linear negation laws. The latter leads to stressing additional connectives
in the graphs, including the apartness or diversity relation, the combined complement-
converse relation that corresponds to linear negation, and the residual that corresponds
to linear implication. These correspond in turn to categorical notions and presentations,
such as found in linear distributive categories (and linear bicategories), bilinear logic, and
other significant fragments, like categorial grammar and the logic of residuation that is
the Lambek calculus.

One might ask how such an old theory could be the source of inspiration and even
source of progress over a hundred years after its initial development. We will not spend
much time on this question, but point out that some of this follows from unavailability
of Peirce’s original texts and a persistent perception that diagrammatic reasoning or non-
traditional forms of graphical reasoning is somehow ‘less formal’. Our work here is not
historical, but we do cite relevant passages sufficient to defend our point and claims about
Peirce. We find Peirce’s perspective — in particular his emphasis on compositionality,
relational operations, and the importance of good syntax — to be remarkably modern.

Going further still, we believe that Peirce’s work will continue to be a worthwhile di-
rection of further study, along with contemporary inspiration and advances for some time
to come. While string diagrams are still quite novel, Peirce spentmuch of his mature intel-
lectual life — some thirty years of study — not only working on the theory but espousing

21

its diagrammatic advantages. Even for a lifetime(s) ago, this rivals the time spent by many
of us today on these new issues. Peirce’s foresight and conviction in undertaking such a
task over a hundred years ago should not go unnoticed.

Outline
The following chapters — more or less in the ordered they have been written — have
a natural order. For the reader interested in skipping ahead, we had appropriate short
introductions.

Article I is the first approximation of presenting Peirce’s Existential Graphs in contem-
porary string diagrams. Here, we connect the inference rules for Existential Graphs with
those of cartesian bicategories. We add to this the notion of negation and in-so-doing
extend the existential-conjunctive fragment of regular logic to first-order logic. This re-
quires three rules all motivated by Peirce’s presentation in the graphs: a ‘double cut’ or
‘scroll’ rule, a principle of contraposition, and an iteration/deiteration rule. To this we add
a rule (not stated in Peirce, but understood) that ‘lines of identity’ pass freely through
‘cuts’. The above article takes negation as a primitive operation. We next move to relax
this condition.

Article II gives a graphical presentation of residuation. This direction arises from look-
ing at the ‘scroll’ as an inclusion and other topological features of the ‘scroll’. This is sub-
stantial for two reasons. The first is historical, showing that Peirce both understood resid-
uation, drew graphs of the residual, and — we add here — appears to have spent much
of his later time on the graphs exploring this direction. The second is that the rules for
residuation-introduction and -elimination correspond to linear implication, linear nega-
tion, and to the adjoint conditions that play a significant role in the last two articles.

Article III serves as a historical interlude and introduction for the fourth. It introduces
the key features of Peirce’s earlier algebraic work in the context of the graphs and his early
presentation of the rules behind cyclic bilinear logic. The paper also serves as a summary
of the new perspective on Peirce’s studies presented here. While the other papers follow
a natural historical progression, this paper can alternatively be read as an introduction to
the new perspective on Peirce’s work that is established in this thesis.

The project outlined in Article II and Article III is brought to a culmination in Article
IV, which presents the modern neo-Peircean calculus of relations. This includes a com-
pleteness result worked out with coauthors. The corresponding string diagrams for the
existential-conjunctive fragment is here extended with a dual universal-disjunctive frag-
ment, and these are in turn linked — as in Peirce’s original presentation in ‘Note B’ from
1883 — via linear distributivity and the linear negation laws. Among other advances, we
note Article IV vindicates Peirce’s use of the single ‘cut’ as negation (negation now being
defineable), vindicates his use of the iteration/deiteration rule, and confirms the connec-
tion between Peirce’s diagrammatic rules and deep inference and the calculus of struc-
tures (as first suggested in [49]).

Finally, an appendix is included as aArticle V. This article contains Peirce’s work on the
diagrammatic presentation of absurdity that Peirce calls the ‘blot’. We do not spend as
much time on the intuitionistic case — preferring, as we do, the linear one— but this last
article fits between the first and second articles as a way of relaxing the ‘cut-as-negation’
story, where negation is taken as a primitive as in Article I.

22

References
[1] J. Baez and M. Stay. Physics, topology, logic and computation: A rosetta stone. Lec-

ture Notes in Physics, pages 95–172, 2010.

[2] J. C. Baez and J. Eerbele. Categories in control. Theory and Applications of Categories,
30(24):836–881, 2015.

[3] J. C. Baez and J. Master. Open Petri nets. Math. Struct. Comput. Sci., 30(3):314–341,
2020.

[4] R. Blute, J. Cockett, R. Seely, and T. Trimble. Natural deduction and coherence for
weakly distributive categories. Journal of Pure and Applied Algebra, 113(3):229–296,
1996.

[5] G. Boisseau and P. Sobociń ski. String diagrammatic electrical circuit theory. Elec-
tronic Proceedings in Theoretical Computer Science, 372:178–191, nov 2022.

[6] J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden, and R. Piedeleu. Interacting
conceptual spaces i : Grammatical composition of concepts, 2017.

[7] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. String Diagram
Rewrite Theory III: Confluence with and without Frobenius. arXiv e-prints, page
arXiv:2109.06049, Sept. 2021.

[8] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. String diagram rewrite
theory i: Rewriting with frobenius structure. J. ACM, 69(2), mar 2022.

[9] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. String diagram rewrite
theory ii: Rewriting with symmetric monoidal structure. Mathematical Structures in
Computer Science, 32(4):511–541, 2022.

[10] F. Bonchi, A. D. Giorgio, N. Haydon, and P. Sobocinski. Diagrammatic algebra of first
order logic. To appear at LICS, 2024.

[11] F. Bonchi, D. Pavlovic, and P. Sobocinski. Functorial semantics for relational theories.
https://arxiv.org/abs/1711.08699, 2017.

[12] F. Bonchi, J. Seeber, and P. Sobocinski. Graphical conjunctive queries, 2018.

[13] F. Bonchi, P. Sobocinski, and F. Zanasi. Full abstraction for signal flow graphs. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 515–526, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[14] F. Bonchi, P. Sobociński, and F. Zanasi. Interacting hopf algebras. Journal of Pure and
Applied Algebra, 221(1):144–184, 2017.

[15] F. Bonchi, P. Sobociński, and F. Zanasi. Deconstructing lawvere with distributive laws.
Journal of Logical and Algebraic Methods in Programming, 95:128–146, 2018.

[16] G. Brady and T. Trimble. A string diagram calculus for predicate logic. Preprint avail-
able at http://people. cs. uchicago. edu/˜ brady/beta98. ps, 626:631, 1998.

[17] G. Brady and T. Trimble. A categorical interpretation of C.S. Peirce’s propositional
logic alpha. Journal of Pure and Applied Algebra - J PURE APPL ALG, 149:213–239, 06
2000.

23

[18] C. Brink, W. Kahl, and G. Schmidt, editors. Relational Methods in Computer Science.
Advances in Computing. Springer-Verlag, Wien, New York, 1997. ISBN 3-211-82971-7.

[19] C. Brown and G. Hutton. Categories, allegories and circuit design. In Pro-
ceedings Ninth Annual IEEE Symposium on Logic in Computer Science, pages
372,373,374,375,376,377,378,379,380,381, Los Alamitos, CA, USA, jul 1994. IEEE Com-
puter Society.

[20] R. W. Burch. A Peircean Reduction Thesis: The Foundations of Topological Logic.
Texas Tech University Press, 1991.

[21] A. Carboni and R. F. Walters. Cartesian bicategories i. Journal of pure and applied
algebra, 49(1-2):11–32, 1987.

[22] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the Ninth Annual ACM Symposium on The-
ory of Computing, STOC ’77, pages 77–90, New York, NY, USA, 1977. Association for
Computing Machinery.

[23] J. Cockett, J. Koslowski, and R. A. Seely. Introduction to linear bicategories. Mathe-
matical Structures in Computer Science, 10(2):165–203, 2000.

[24] J. Cockett, R. A. G. Seely, and M. Barr. Proof theory for full intuitionistic linear logic,
bilinear logic, and mix categories. 1997.

[25] R. Cockett, C. Comfort, and P. Srinivasan. Dagger linear logic for categorical quantum
mechanics, 2020.

[26] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, jun 1970.

[27] B. Coecke and A. Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[28] B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foundations for a Composi-
tional Distributional Model of Meaning. arXiv e-prints, page arXiv:1003.4394, Mar.
2010.

[29] F. Dau. Mathematical logic with diagrams - based on the existential graphs of peirce.
http://dr-dau.net/Papers/habil.pdf.

[30] I. Di Liberti, F. Loregian, C. Nester, and P. Sobociński. Functorial semantics for partial
theories. Proceedings of the ACM on Programming Languages, 5(POPL):1–28, 2021.

[31] P. Donato. The Flower Calculus. working paper or preprint, Feb. 2024.

[32] B. Fong, D. Spivak, and R. Tuyéras. Backprop as functor: A compositional perspec-
tive on supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, 2019.

[33] B. Fong and D. I. Spivak. Graphical regular logic, 2019.

[34] B. Fong and D. I. Spivak. An Invitation to Applied Category Theory: Seven Sketches in
Compositionality. Cambridge University Press, 2019.

24

[35] B. Fong and D. I. Spivak. Regular and relational categories: Revisiting ’cartesian bi-
categories i’, 2019.

[36] P. J. Freyd and A. Scedrov. Categories, Allegories. North-Holland Mathematical Li-
brary, 1990.

[37] T. Fritz. A synthetic approach to markov kernels, conditional independence and the-
orems on sufficient statistics. Advances in Mathematics, 370:107239, 2020.

[38] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[39] N. Haydon. C.S. Peirce’s early developments in linear logic. 2023.

[40] N. Haydon and A.-V. Pietarinen. Residuation in existential graphs. In A. Basu, G. Sta-
pleton, S. Linker, C. Legg, E. Manalo, and P. Viana, editors, Diagrammatic Represen-
tation and Inference, pages 229–237, Cham, 2021. Springer International Publishing.

[41] N. Haydon and P. Sobociński. Compositional diagrammatic first-order logic. In A.-
V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, and S. Linker,
editors, Diagrammatic Representation and Inference, pages 402–418, Cham, 2020.
Springer International Publishing.

[42] P. N. Johnson-Laird. Mental models: Towards a cognitive science of language, infer-
ence, and consciousness. Number 6. Harvard University Press, 1983.

[43] W. Kahl. Refactoring heterogeneous relation algebras around ordered categories and
converse. J. Relational Methods in Comp. Sci, 1:277–313, 2004.

[44] D. Kartsaklis, M. Sadrzadeh, S. Pulman, and B. Coecke. Reasoning about meaning
in natural language with compact closed categories and Frobenius algebras, pages
199–222. Lecture Notes in Logic. Cambridge University Press, 2016.

[45] A. Kissinger and D. Quick. A first-order logic for string diagrams, 2015.

[46] J. Lambek. From categorial grammar to bilinear logic. Department of Mathematics
and Statistics, McGill University, 1991.

[47] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986.

[48] A. D. Lauda and H. Pfeiffer. Open–closed strings: Two-dimensional extended tqfts
and frobenius algebras. Topology and its Applications, 155(7):623–666, Mar 2008.

[49] M. Ma and A.-V. Pietarinen. Proof analysis of peirce’s alpha system of graphs. Studia
Logica, 105(3):625–647, 2017.

[50] R. D. Maddux et al. Relation algebras. Elsevier Amsterdam, 2006.

[51] M. Minghui and A. Pietarinen. A graphical deep inference system for intuitionistic
logic. Logique et Analyse, 245:73–114, Jan. 2019.

[52] A. Oostra. Equivalence proof for intuitionistic existential alpha graphs. In A. Basu,
G. Stapleton, S. Linker, C. Legg, E. Manalo, and P. Viana, editors, Diagrammatic Rep-
resentation and Inference, pages 188–195, Cham, 2021. Springer International Pub-
lishing.

25

[53] J. Paixão, L. Rufino, and P. Sobociński. High-level axioms for graphical linear algebra.
Science of Computer Programming, 218:102791, 2022.

[54] E. Patterson. Knowledge representation in bicategories of relations, 2017.

[55] C. S. Peirce. The Logic of the Future: History and Applications, volume 1. De Gruyter,
Berlin, Boston, 2020.

[56] C. S. Peirce. The Logic of the Future: The Logical Tracts, volume 2/1. De Gruyter, 2021.

[57] R. Piedeleu and F. Zanasi. An introduction to string diagrams for computer scientists,
2023.

[58] A.-V. Pietarinen, F. Bellucci, A. Bobrova, N. Haydon, and M. Shafiei. The blot. In A.-
V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter, and S. Linker,
editors, Diagrammatic Representation and Inference, pages 225–238, Cham, 2020.
Springer International Publishing.

[59] V. Pratt. The second calculus of binary relations. In International Symposium on
Mathematical Foundations of Computer Science, pages 142–155. Springer, 1993.

[60] V. R. Pratt. Origins of the calculus of binary relations. In LICS, volume 92, pages
22–25. Citeseer, 1992.

[61] D. D. Roberts. The Existential Graphs of Charles S. Peirce. De Gruyter Mouton, 1973.

[62] G. Schmidt. Relational Mathematics. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2010.

[63] G. Schmidt, C. Hattensperger, andM.Winter. Heterogeneous Relation Algebra, pages
39–53. Springer Vienna, Vienna, 1997.

[64] G. Schmidt and T. Ströhlein. Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. Springer-Verlag, Berlin, Heidelberg, 1993.

[65] G. Schmidt and M. Winter. Relational mathematics continued, 2014.

[66] G. Schmidt and M. Winter. Relational Topology, volume 2208. Springer, 2018.

[67] P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289–
355. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[68] S.-J. Shin. The Iconic Logic of Peirce’s Graphs. The MIT Press, 05 2002.

[69] J. F. Sowa. Conceptual graphs. Foundations of Artificial Intelligence, 3:213–237, 2008.

[70] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

[71] A. Tarski and S. R. Givant. A formalization of set theory without variables, volume 41.
American Mathematical Soc., 1988.

[72] J. van de Wetering. Zx-calculus for the working quantum computer scientist, 2020.

[73] R. Wille. Concept lattices and conceptual knowledge systems. Computer & Mathe-
matics with Applications, 23(6):493–515, 1992.

[74] J. J. Zeman. The graphical logic of CS Peirce. PhD thesis, The University of Chicago,
1964.

26

1 Article 1 - Compositional Diagrammatic First-Order Logic

I

N. Haydon and P. Sobociński. Compositional diagrammatic first-order logic.
In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter,
and S. Linker, editors, Diagrammatic Representation and Inference, pages
402–418, Cham, 2020. Springer International Publishing

27

Compositional Diagrammatic First-Order
Logic

Nathan Haydon and Pawe�l Sobociński(B)

Tallinn University of Technology, Tallinn, Estonia
{nathan.haydon,pawel.sobocinski}@taltech.ee

Abstract. Peirce’s β variant of Existential Graphs (EGs) is a diagram-
matic formalism, equivalent in expressive power to classical first-order
logic. We show that the syntax of EGs can be presented as the arrows of
a free symmetric monoidal category. The advantages of this approach are
(i) that the associated string diagrams share the visual features of EGs
while (ii) enabling a rigorous distinction between “free” and “bound”
variables. Indeed, this diagrammatic language leads to a compositional
relationship of the syntax with the semantics of logic: we obtain models
as structure-preserving monoidal functors to the category of relations.

In addition to a diagrammatic syntax for formulas, Peirce developed
a sound and complete system of diagrammatic reasoning that arose out
of his study of the algebra of relations. Translated to string diagrams
we show the implied algebraic structure of EGs sans negation is that
of cartesian bicategories of relations: for example, lines of identity obey
the laws of special Frobenius algebras. We also show how the algebra of
negation can be presented, thus capturing Peirce’s full calculus.

1 Introduction

Peirce’s Existential Graphs (EGs) arose out of his continued study and develop-
ment of the algebra of relations. As a diagrammatic calculus, EGs use lines to
represent identity, conjunction and existence and nested circles (Peirce’s notion
of the “cut”1) to capture negation. These graphical elements are drawn on the
sheet of assertion: the blank page upon which a graph is scribed. Our focus is
on the algebra of the β variant of EGs, which we treat as string diagrams. The
resulting language, which we call Dβ, shares the same visual features of EGs.

We argue that Peirce’s β is closely related to the algebraic structure of carte-
sian bicategories of relations [7]. Indeed, lines of identity, as string diagrams,
obey the laws of special Frobenius algebras, while derivations in the negation-free
fragment are the 2-cells of free cartesian bicategories. We identify the additional
rules needed to handle negation, which are adapted from Peirce’s calculus of

1 In this paper, we use “cut” in the Peircean sense to mean negation, not the standard
notion of cut from proof theory.

This research was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001).

c© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 402–418, 2020.
https://doi.org/10.1007/978-3-030-54249-8_32

Compositional Diagrammatic First-Order Logic 403

diagrammatic reasoning. Throughout, we argue that Peirce’s seminal studies led
him to intuitions that suggest that he—at least implicitly—identified the very
same algebraic structures.

While Dβ is visually similar—we joke that a diagram in Dβ looks like an EG if
you squint—it is important to highlight some differences. Making the Frobenius
structure explicit in Dβ imposes more rigour on lines of identity. Relations in
Dβ have left and right wires corresponding to arity/co-arities of the relations.
This may actually help the presentation of graphs in EGs as Peirce sometimes
imposes an order on relations that is not directly read off the ligatures. An
explicit Frobenius structure gives the flexibility of rearranging wires as needed,
so expressivity is not lost, but also allows us to have a definite ordering, which
is useful in many examples. This amendment, maintaining the visual features
while being more definite/exact, may very well be a welcome addition.

Perhaps more significantly, in order to achieve compositionality, the string
diagrammatic account forces us to keep track of bound and free variables in a
more precise way than in Peirce’s original EGs. Indeed the existential in the
name of EGs means that scribing a graph on the sheet of assertion is to assert
the existence (i.e. the quantification) of the respective predicate/variable. EGs
have, as Zeman has put it, “implicit quantification” [19]. Treatment of free and
bound variables in modified versions of EG (see [4,10]) equip EGs with additional
structure. The string diagrammatic language Dβ makes this treatment quite
natural—the result is less cumbersome than the technology of variable manage-
ment (e.g. α-conversion, capture-avoiding substitution) often waved through at
the start of many traditional courses on predicate logic.

Brady and Trimble have previously developed a string diagrammatic account
of EGs [2,3], relying as we do on monoidal categories and in particular, the poset-
enriched monoidal category of relations as a semantic universe for logic. However,
their string diagrams are geometric/topological entities. Instead, we emphasize
their syntactic nature, which allows, e.g. to define the notion of model as simple
inductive procedure, not unlike Tarski’s compositional semantics for predicate
logic. Moreover, we work in the framework of (poset enriched) props [11], which
emphasizes the algebraic structure borne by the underlying monoidal category.

In the discussion below we assume some familiarity with the reading and
transformation (i.e. inference) rules of EGs. For a lengthier introduction to
Peirce’s EGs, and one that includes a description of Peirce’s transformation
rules, see [17]. Further accounts can be found in [4,9,18], and the introduction
in [15]. For an introduction to Peirce’s compositional/valental account of rela-
tions, see [17, p. 113–118]. A contemporary presentation can be found in [5].

Structure of the Paper. In Sect. 2 we introduce Dβ and show how to translate it
to and from traditional syntax. In Sect. 3 we introduce the structure of cartesian
bicategories, which informs the notion of model of the logic, introduced in Sect. 4.
We identify iteration laws of this structure with the cut in Sect. 5 and conclude
with a worked example of diagrammatic reasoning in Sect. 6.

404 N. Haydon and P. Sobociński

2 String Diagrams as Syntax

We start with Peirce’s valental theory of relations, inspired by the theory of
valence in chemistry, where elements have open bonds that act as attachment
points from which more complex compounds and molecules can be built. Rela-
tions are thus seen as having analogous open bonds that can be filled and com-
bined with other relations to form more complex relations.

Consider the ‘loves’ relation, which in usual FOL syntax is written loves(x, y).
The relation remains indefinite insofar as the objects/subjects of the relation
are unspecified, i.e. the variables x and y remain free. Peirce adds “blanks” or
“hooks” as graphical placeholders to represent the unspecified objects/subjects,
which when filled, “complete the relation”. In our example ‘loves’ is a dyadic
relation, and we represent hooks as “dangling” wires, arriving at loves . Filling
in the hooks/connecting the wires in the diagrammatic notation is an analogous
operation to passing from free to bound variables in the usual FOL syntax.

Specific relations are combined by joining free hooks together with what
Peirce calls a line of identity. A line of identity asserts the identity of each
object/subject at its endpoints. We represent lines of identity with the generators
{ , , , } of a monoid-comonoid pair. Consider the diagrams below.

is a pear

is ripe

is a pear

is ripe

is a pear

is ripe

is a pear

is ripe

Reading from left to right, the first diagram is the conjunction of the is a pear and
is ripe relations where the hooks are unfilled/wires are dangling. In usual FOL
syntax, is a pear(x)∧ is ripe(y). In the second diagram the hooks are filled/wires
are capped off with a unit generator. In usual FOL syntax, ∃x. is a pear(x) ∧
∃y. is ripe(y). In the third, using the comultiplication generator the two wires
have been equated but there is a dangling wire to the left; is a pear(x)∧is ripe(x).
In the final diagram the wire has been capped off: ∃x. is a pear(x) ∧ is ripe(x).

The syntax of Dβ below follows Peircean considerations. Let Σ be a monoidal
signature: symbols R each with an arity ar(R) ∈ N and coarity coar(R) ∈ N.

Example 1. The signature for our running example is

Σ = {adores, is a woman, is a catholic}

with ar(adores) = coar(adores) = 1, ar(is a woman) = ar(is a catholic) = 1,
coar(is a woman) = coar(is a catholic) = 0. The diagrammatic convention for an
element R ∈ Σ is to draw it as a box, with ar(R) wires, ordered from top to
bottom, “dangling” on the left and, similarly, coar(R) wires on the right. Thus:

Σ = { adores , is a woman , is a catholic } .

Compositional Diagrammatic First-Order Logic 405

Below we define our recursively defined syntax using BNF notation. These
are the basic syntactical elements from which terms in DβΣ are constructed.2

c ::= | | | | R ∈ Σ (1)

| | | (2)

| c ⊕ c | c ; c | c− (3)

At this point, the diagrammatic elements of the syntax in (1) and (2) ought to
be considered as mere symbols that denote constants. The operations are given
in (3): two binary operations ‘;’, ‘⊕’ and one unary operation •−. These have their

own diagrammatic convention: c ; c′ is drawn c c′...
...

... , c ⊕ c′ is drawn
c

c′ ...

...
...

...
,

and c− is drawn ...
...c . Roughly the operations here can again be seen in terms

of our relational story from above. ‘⊕’ allows us to scribe relations adjacent to
each other (i.e. in parallel) on the sheet, ‘;’ allows us to wire relations together in
series (similar to connecting relations via lines of identity), and placing a relation
inside a cut expresses its negation/complement.

: (1, 0) : (1, 2) : (0, 1) : (2, 1) : (0, 0) : (1, 1) : (2, 2)

R : (ar(R), coar(R))

c : (n, z) d : (z, m)

c;d : (n, m)

c : (n, m) d : (r, z)

c⊕d : (n+r, m+z)

c : (n, m)

c− : (n, m)

Fig. 1. Sort inference rules.

As opposed to the usual syntax of FOL, ours (1) (2) (3) does not have
variables, nor variable binding. The price is an inductive discipline, given in
Fig. 1. Intuitively, it keeps track of “dangling” wires—terms are associated with
a sort, a pair of natural numbers (n, m) that counts the wires on the left and
on the right—and ensures that for a term c ; c′, c and c′ have the right number
of wires on their corresponding boundaries so that ‘;’ as “connecting wires” to
make sense. It is easy to prove that if a term has a sort, it is unique.

Example 2. The term ; has no sort and no diagrammatic depiction. On
the other hand ⊕ : (2, 0). Given the signature of Example 1, consider

the term ((;) ; ((adores ; is a woman)
− ⊕ is a catholic))

−
with sort (0, 0).

2 Henceforward we will not write the subscript Σ, assuming a fixed ambient monoidal
signature.

406 N. Haydon and P. Sobociński

Using the diagrammatic conventions yields the following, where the dotted-line
boxes play the role of the parentheses.

adores is a woman

is a catholic

It is not difficult to see that sorted terms are in 1-1 correspondence with such
diagrams, provided that enough dotted-line boxes are inserted to disambiguate
the associativity of ‘;’ and ‘⊕’ and the priority between them.

2.1 Translating to and from Traditional Syntax

The (traditional) syntax below is expressive enough to capture first order logic,
containing equality, relation symbols, existential quantification and negation.

Φ ::= � | Φ ∧ Φ | xi = xj | R(
→
x) | ∃x.Φ | ¬Φ (FOL)

To ease the translation between the diagrammatic and the traditional, we intro-
duce a half-way formalism that constraints the syntax FOL with explicit free-
variable management. This is a mild extension of a similar calculus in [1, Sec. 2]
where an analogous translation is given, albeit without the presence of negation.

(�)
0 � �

R ∈ Σ ar(R) = n
(Σ)

n � R(x0, . . . , xn−1)

n � Φ
(∃)

n − 1 � ∃xn−1.Φ

(=)
2 � x0 = x1

m � Φ n � Ψ
(∧)

m + n � Φ ∧ (Ψ [
→
x [m,m+n−1]/

→
x [0,xn−1]])

n � Φ
(¬)

n � ¬Φ

n � Φ (0 ≤ k < n − 1)
(Swn,k)

n � Φ[xk+1, xk/xk, xk+1]

n � Φ
(Idn)

n − 1 � Φ[xn−2/xn−1]

n � Φ
(Nun)

n + 1 � Φ

The idea is that a judgment n � Φ expresses the fact that Φ is a formula with
free variables from the set {x0, x1, . . . , xn−1}. Indeed, we have the following:

Proposition 1. A formula Φ with free variables in {x0, x1, . . . , xn−1} is deriv-
able from (FOL) if and only if n � Φ.

Using the above, we can present a translation Θ from (FOL) to Dβ by induction
on the derivation of n � Φ. The rules are given in Fig. 2. A similar translation
can be given from Dβ to (FOL). Another important fact is that the translations
respect the underlying semantics of the logics—due to space restrictions we are
not able to show this here. We shall introduce the semantics of Dβ in Sect. 4.

Compositional Diagrammatic First-Order Logic 407

Θ (0 � �) = (�) Θ (n � φ[xk+1, xk/xk, xk+1]) = Θ(n � φ)

k

n − k − 2 (Swn,k)

Θ (2 � x0 = x1) = (=) Θ (n − 1 � φ[xn−2/xn−1]) = Θ(n � φ)

n − 2

(Idn)

Θ (n � R(x0, . . . , xn−1)) = R
n (Σ) Θ (n − 1 � ∃xn−1.φ) = Θ(n � φ)

n − 1
(∃)

Θ (n + 1 � φ) = Θ(n � φ)
n

(Nun) Θ (m + n � φ ∧ (ψ[. . .])) =
m Θ(m � φ)

n Θ(n � ψ)
(∧)

Θ (n � ¬φ) = Θ(n � φ)n (¬)

Fig. 2. Translation Θ from FOL to Dβ.

Example 3. Referring to Example 2, the formula expressed by the diagram is

¬(∃x. is a catholic(x) ∧ ¬(∃y. adores(x, y) ∧ is a woman(y)))

≡ ∀x. (¬is a catholic(x) ∨ (∃y. adores(x, y) ∧ is a woman(y)))

≡ ∀x. is a catholic(x) → ∃y. adores(x, y) ∧ is a woman(y).

2.2 String Diagrams

In order not to clutter diagrams with dotted-line boxes, we will not consider
raw terms, but terms quotiented by the laws of symmetric strict monoidal cat-
egories [11,12] of a particularly simple nature: the set of objects is the natural

numbers and m ⊕ n
def
= m + n. Such categories are called props. Some care has

to be taken with the •− operation, which is not standard: we introduce a simple
extension to the usual definition below.

Definition 1. A prop X with a unary operation on homsets (uoh-prop) is a
prop with a family of operations −

m,n : X[m,n] → X[m,n], where m,n ∈ N.

We are ready to define the notion of syntax we will use throughout the paper.

Definition 2. (Syntax). Let Dβ be the uoh-prop where arrows m → n are
(m,n)-sorted terms, modulo the laws of symmetric monoidal categories. The
additional unary operation on homsets is given by •−.

408 N. Haydon and P. Sobociński

While Definition 2 emphasises the construction of terms from the grammar, Dβ
has an extremely concise mathematical description: it is the free uoh-prop on
Σ. The characterisation of Dβ as a free algebraic structure is important: first,
it means that our string diagrams are a bona fide notion of syntax, not unlike
usual syntax trees. Second, just as syntax admits elegant inductive definitions
(not unlike, for instance, Tarski’s semantics of first order logic), in order to
define a structure preserving translation (homomorphism of uoh-props) from
Dβ to some target semantic universe (some uoh-prop), it suffices to define the
target of the constants (1). We shall use this for the concept of model in Sect. 4.

Example 4. For the category-theory uninitiated reader, let us give an intuitive
summary of the algebraic structure given by Definition 1, used in Definition 2.

– the two composition operations are strictly associative, e.g.

is a catholic

is a womanadores

=
is a catholic

is a womanadores
.

This means the result is the same irrespective of the order we compose, i.e.
whether we start with the adored woman or the adoring catholic.

– the two composition operations are compatible, e.g.

is a woman

is a catholic

adores

adores
= is a woman

is a catholic

adores

adores
.

– the first two constants of (2) are identities; the first the identity on 0, the
second the identity on 1. This means, e.g.

is a woman

= is a woman = is a woman = is a woman

adores = adores = adores .

The combination of identity laws and the compatibility of ‘;’ with ‘⊕’ means
that unconnected components can be “slid” past each other, e.g.

is a womanadores

is a catholic
=

is a womanadores

is a catholic
.

In Peirce’s EGs these features are built directly into the conventions of the
sheet of assertion. The identities follow from the properties of composition
with a blank sheet or with a line of identity. In regards to composition and
associativity on the sheet itself, Peirce writes: “If two propositions are writ-
ten, detached from one another, on the sheet of assertion, both are asserted,
regardless of whether one is to the right, to the left, at the top, or at the
bottom of the other. . . If three or more propositions are all written, detached
from one another, on the sheet of assertions, the logical relation of any pair
of them is the same as that of any other pair” [16, p. 488].

Compositional Diagrammatic First-Order Logic 409

– the last constant of (3) is a symmetry. This means that diagrams constructed
from it and the identity “behave” as permutations, e.g.

= ,

and arbitrary diagrams can “slide” across symmetries3, e.g.

is a woman

adores is a catholic
=

is a womanadores

is a catholic
.

3 The Algebra of Lines of Identity

In this section we identify some of the algebraic structure of Dβ that will, in
Sect. 5, result in a calculus for diagrammatic reasoning. In addition, the structure
introduced here will allow us to specify the correct concept of model in Sect. 4.

Figure 3 depicts the laws of cartesian bicategories (of relations) [7]. Equations
(coas), (coco), (counl) say that (,) is a cocommutative comonoid, while (as),
(co), (unl) say that (,) is a commutative monoid.

The three equations (fr) are the Frobenius equations. While any two of the
three can be used to derive the others, all three are useful in diagrammatic
reasoning. The equation (sp) is the so-called “special” law. The equations thus far
define what is usually referred to as a (commutative) special Frobenius bimonoid.

It is worth reflecting on how these laws are captured in Peirce’s EGs. As
mentioned previously, associativity and commutativity are built into the con-
ventions of the sheet of assertion, where the order of composition of relations on
the sheet is immaterial. Each of the other rules can be seen as following from
the combination of monadic, dyadic, triadic identity elements. (unl) and (counl) are
equivalent to being able to add a branch to any line of identity. Peirce called

(coas)
=

(coco)
=

(counl)
=

(as)
=

(co)
=

(unl)
=

(fr)
=

(fr)
=

(sp)
=

R
m

n

n

(wh1)
≤

R

R

m

n

n

R
m n

(wh2)
≤ m

Fig. 3. The laws of cartesian bicategories of relations.

3 These equations are examples of naturality of the symmetry.

410 N. Haydon and P. Sobociński

this triadic identity element, where a branch forms a point with three extending
wires, the teridentity relation. Peirce’s interpretation of this rule in EGs, given
in a letter to Lady Welby, is worth quoting: “every line of identity ought to be
considered as bristling with microscopic points of teridentity” [14].4

The (fr) and (sp) equations can be seen as observations about the composition
of teridentity relations. Two teridentity relations brought together by connecting
two of each of the three wires is equivalent to a single (dyadic) line of identity.
This yields the (sp) equation. Similarly, the various combinations of two teriden-
tity relations connected through one wire likewise yield the (fr) equalities. Peirce
is explicit about the interpretation of this rule in his EGs. He writes: “Qua-
teridentity [Peirce’s term for a point with four extending wires] is obviously

composed of two teridentities; i.e. This is or or ” [14]. Clearly,

Peirce had the topological intuitions conveyed by the Frobenius structure.5

Notice that (wh1) and (wh2) are not equalities and as such, in subsequent dia-
grammatic reasoning, derivations can only use them left-to-right. Moreover, they
use the diagrammatic convention where a wire with a natural number label m
stands for m wires stacked on top of each other. The inequations (wh1) and (wh2)

specify that all arrows are weakly homomorphic w.r.t. the comonoid structure.
In cartesian bicategories, moreover, the monoid structure is required to be right
adjoint to the comonoid structure. This means the following inequalities:

(ra1)

≤
(ra2)

≤

(ra3)

≤
(ra4)

≤ .

In the context of Frobenius bimonoids that satisfy (wh1) and (wh2), all of (ra1)-
(ra4) are redundant. As we will see, (wh1) and (wh2) (along with the redundant
(ra1)-(ra4)) give rise to Peirce’s transformation rules in EGs. Peirce’s assertion,
for example, that any graph scribed on the sheet itself (i.e. that is not scribed
within a cut) can be erased can be proved as follows.

Lemma 1. R
m n

(er)

≤ .

Proof. R
m n

(ra3)

≤ R

(wh2)

≤ .

4 See, also, [CP 4:583]: “the line of identity. . . must be understood quite differently.
We must hereafter understand it to be potentially the graph of teridentity by which
means there will virtually be at least one loose end in every graph”.

5 Elsewhere Peirce writes: “There is no need of a point from which four lines of identity
proceed; for two triple points answer the same purpose ” [16, p. 357].

Compositional Diagrammatic First-Order Logic 411

Remark 1. It is well-known that the Frobenius equations induce a self-dual com-
pact closed structure. Roughly speaking, this allows us to “rewire” diagrams,
moving wires between the boundaries. We have used this already in the first
diagrams of Example 4, on the is a catholic relation.

4 Models

Recal uoh-props, introduced in Definition 1. Below we identify an important
class of uoh-props, which together serve as the semantic universe for Dβ.

Definition 3. Let X be a set. The uoh-prop RelX has, as arrows m → n, rela-
tions Xm → Xn (subsets of Xm×Xn), where Xm is the m-fold cartesian product
of X. Given a relation R : Xm → Xn, R− is the (set-theoretical) complement
of R as a subset of Xm × Xn.

Composition in RelX is relational composition: given R : m → k and S : k →
n, R ; S = { (x,y) | ∃z ∈ Xk. (x,z) ∈ R ∧ (z,y) ∈ S } ⊆ Xm × Xn. The
monoidal product is cartesian product of relations.

It is well-known that RelX is a cartesian bicategory of relations, that is, it
satisfies all of the equations of Fig. 3. In the setting of RelX , is the diagonal
relation {(x,

(
x
x

)
) | x ∈ X} while is the relation {(x, �) | x ∈ X}, where � is

the unique element of the singleton set X0. The relations denoted by and
are, respectively, the opposite relations. Henceforward we will call these four

relations the canonical Frobenius structure of RelX .

The following is the central definition of this section.

Definition 4. A model for Dβ consists of a set X and a morphism of uoh-props

[[−]] : Dβ → RelX

that maps { , , , } to the canonical Frobenius structure of RelX.

Referring back to the syntax definition (1), to give such a morphism is to
give, for each σ : (m, n) ∈ Σ, a relation [[σ]] ⊆ Xm×Xn. The rest of the mapping
is induced compositionally.

Remark 2. Note that closed diagrams, that is those of sort (0, 0) map to relations
of type 0 → 0, that is, subsets of X0 × X0. Since X0 is a singleton, there are
precisely two such relations – the empty (∅) and the full ({(�, �)}). We identify
these with truth values – ∅ with ⊥ (false) and {(�, �)} with � (true).

Example 5. Take the signature of Example 1. Let X = {m,w}. To define
[[−]] : Dβ → RelX we need only choose valuations of adores , is a woman ,
and is a catholic as relations. Let is a woman ⊆ X1 × X0 = {(w, �)}. Similarly,
let is a catholic = {(m, �)}. If we set adores ⊆ X1 × X1 = {(m,w)}

412 N. Haydon and P. Sobociński

then �
adores is a woman

is a catholic

� ⊆ X0 × X0 = {(�, �)} = �.

On the other hand, if we assign adores = {(m,m)} then

�
adores is a woman

is a catholic

� ⊆ X0 × X0 = ∅ = ⊥.

Having established the notion of model, we introduce the notions of soundness,
completeness and logical equivalence. Two terms t, u of Dβ are said to be logically
equivalent if they have the same semantics in all models, [[t]] = [[u]]. An equation
is sound if it preserves logical equivalence. A calculus is complete if it equates all
logically equivalent terms. Note that the fact that RelX is a cartesian bicategory
of relations means that all of the laws introduced in Sect. 3 are sound.

5 The Algebra of Cut

In Sect. 3 we began the process of axiomatising logical equivalence. Thus far,
negation has not played a significant role in our exposition. In Fig. 4 we identify
a calculus that is sound, and—taken in conjunction with the laws of Fig. 3—
we conjecture to be complete. The equations of Fig. 4 describe the interactions
between the algebraic structure of Fig. 3 and Peirce’s cut (negation). First, we
explain the jagged-line notation, which emphasizes the local nature of the inter-
actions. It is shorthand for an arbitrary context inside the cut. For example,
(frcut) stands for

R

S

T
m1

m2

n1

n2k
l

=
R

S

T
m1

m2

n1

n2

k
l

for arbitrary R, S and T . Thus with (frcut) we can, roughly speaking, “rewire” a
cut to move wires between its left and right boundaries. Indeed (frcut) is a kind
of Frobenius law for cuts. In short, the combination of (symcut) and (frcut) means
that the cut boundary is permeable to “wiring” and the permutation structure.

Compositional Diagrammatic First-Order Logic 413

(symcut)
=

(frcut)
=

R
m n (dcut)

= R
m n

R ≤ S

(ctrpos)

S ≤ R

R
m n (it-deit)

=
R

R

m
n

Fig. 4. The algebra of cut.

(dcut) is a diagrammatic representation of Peirce’s rule for adding or erasing
a double cut around any partial graph. Of course, this is a non-constructive
rule; in this paper we only consider classical logic. Some progress has been made
recently [13] in the study of how EGs can be used as an intuitionistic logic and
we plan to investigate this in our framework in future work.

The (ctrpos) judgement single-handedly captures much of the behavior of the
transformation rules within the cut. Peirce explains it as follows: “Of whatever
transformation is permissible on the sheet of assertion, the reverse transforma-
tion is permissible within a single cut.” [16, p. 353]. While our presentation of
(ctrpos) represents this point with respect to a single cut, it is worth noting that
the reversal continues within subsequent nested cuts. The result is that the same
transformation rules that apply on the sheet itself (i.e. to graphs that are not
within a cut) also apply to graphs within an even number of cuts.6 As a rule the

6 Following the passage quoted above, Peirce writes: “In short, whatever transforma-
tion is permissible on the sheet of assertion is permissible on the sheet of assertion
within any even number of cuts while the reverse transformation is permissible within
any odd number of cuts” [16, p. 353] Or alternatively: “All illative processes are sub-
ject to the apagogical principle, or principle of contraposition, which, as applied to
graphs, is as follows: If any illative process is valid within an even number of enclo-
sures, its reverse is valid within an odd number, and vice versa” [15, p. 94]. See also
[16, p. 257-8, p. 478-9, & p. 539].

414 N. Haydon and P. Sobociński

principle of contraposition has been markedly absent from other presentations
of Peirce’s transformation rules in the literature. The latter point is all the more
significant in that Peirce often emphasizes the principle at the beginning of his
presentations of EGs and often motivates the other transformation rules from
it.7 Our presentation situates the principle in its position of primary importance.

Intuitively, the principle of contraposition captures the symmetry between
the valid twin inference rules of modus ponens and modus tollens. If we can
infer the transformation from R to S then we can likewise infer from the denial
of S the denial of R. In terms of Dβ and Peirce’s EGs, and as stated above,
the principle of contraposition allows us to perform the reverse transformations
when working within a cut. Our previous proof of the erasure rule, which states
that any graph written on the sheet itself (i.e. in an even area) can be erased,
can be reversed using (ctrpos) to yield Peirce’s insertion rule. Likewise, Peirce’s
rule that a line of identity can be broken on the sheet itself (ra3) can be reversed
using (ctrpos) to yield his rule that a line of identity can be joined in an odd area.8

The rule (it-deit) is a statement of Peirce’s principle of iteration/deiteration. In
Peirce’s own words the rule is stated as follows: “. . . any partial graph, detached
or attached, may be iterated within the same or additional cuts provided every
line or hook of the iterated graph be attached in the new replica to identically
the same ligatures as in the primitive replica; and if a partial graph be already
so iterated it can be deiterated by the erasure of one of the replicas which must
be within every cut that the replica left standing is within” [16, p. 358]. This
rule applies in the same area as the partial graph—i.e. the same rule holds in
the case where no cut is present. For us, it is useful to separate the two ideas
conceptually, since the latter is implied by the algebraic structure in Sect. 3.

It is worth noting that our (it-deit) rule is similar to Burch’s presentation of
“Dopplegänger pairs” that form when a line of identity crosses a cut (or two
lines of identity abut each other at a cut) [6]. Our rule is more general, as it
applies not simply to lines of identity but to relations and partial graphs. Each
case is unified under the same rule here.

While the soundness of the other rules in Fig. 4 is straightforward, (it-deit) is
more involved and less intuitive.

7 See, for example, the passages in the previous footnote.
8 In Peirce’s words: “. . . it is to be noted that a line of identity may be broken within

an even number of cuts or on the sheet of assertion, while two lines may be joined
within an odd number of cuts” [16, p. 358].

Compositional Diagrammatic First-Order Logic 415

Lemma 2. (it-deit) is sound.

Proof. Since we can “rewire” any cut so that it only has wires on its left bound-
ary, without loss of generality it suffices to show that:

R

S =
R

R
S

is sound for all possible valuations of R and S. Using traditional syntax, and
simplifying somewhat, this is to show the following logical equivalence:

∃z. R(x2,z) ∧ ¬S(x1,z)
≡ ∃z1. R(x1,z1) ∧ ¬(∃z2,z3. R(x1,z2) ∧ z1 = z3 ∧ z2 = z3 ∧ S(x1,z3))

Instead of dealing with the complicated formulas above, we instead directly use

the definition of model introduced in Sect. 4. Suppose for some model,

(
x1

x2

)

is on the LHS. This happens exactly when there is some y2 s.t. x2Ry2 and(
x1

x2

)
/∈ S.

Suppose now that

(
x1

x2

)
∈ RHS. This happens exactly when there is some y2

s.t. x2Ry2 and

⎛
⎝

x1

x2

y2

⎞
⎠ /∈

R
S . This non-inclusion happens exactly

when it is not the case that x2Ry2 or

(
x1

x2

)
/∈ S. Since x2Ry2 by assumption,

it happens precisely when x2Ry2 and

(
x1

x2

)
/∈ S.

It follows that LHS and RHS denote the same relation in all models. ��

We can use (it-deit) to obtain two similar laws that are useful in diagrammatic
proofs. We omit proofs for space reasons but note that Peirce can be seen using
an instance of (ii) in his 1903 Lowell Lectures [16, p. 358-9].

416 N. Haydon and P. Sobociński

Lemma 3.

(i)
S

(it-deit2)
=

S

S

(ii)
R

(it-deit3)
= R

R

We can also use (it-deit) to extend a line of identity into a cut. Note that
Lemma 4 follows from (it-deit2) when S is the counit.

Lemma 4. (pencut)
= .

Both Lemma 3 and Lemma 4 show how (it-deit) captures both iteration for a line
of identity and for a relation/partial graph.

6 Diagrammatic Reasoning in Action

Example 6. We return to our running example and conclude with a complete
diagrammatic derivation of the judgement

isacatholic(Charles) ∧ ∀x. isacatholic(x) → ∃y. adores(x, y) ∧ isawoman(y)

∃y. adores(Charles, y) ∧ isawoman(y)
.

In the derivation we use the triangle notation9 to denote a constant symbol of
the logic, that is, a relation that is guaranteed to have singleton models. This
(and similarly function symbols) are easily encoded in the graphical formalism
and do not add expressivity; it suffices to assert that:

Charles =

Charles

Charles

Charles =

9 Borrowed from the notation for states in categorical quantum mechanics [8].

Compositional Diagrammatic First-Order Logic 417

We proceed with the derivation below:

adores is a woman

is a catholic

is a catholicCharles

((c)unl)
=

adores is a woman

is a catholic

Charles

is a catholic

(pencut)
=

adores is a woman

is a catholic

Charles

is a catholic

(ctrpos)

≤ adores is a woman

is a catholic

Charles

is a catholic

(fr)
= adores is a woman

is a catholic

Charles
is a catholic

(it-deit2)
=

adores is a woman

is a catholic

Charles

≤ adores is a womanCharles
(dcut)
= adores is a womanCharles

7 Conclusion

Peirce’s EGs arose out of his continued study of the algebra of relations and
his concern for developing an efficient graphical notation. Seen through con-
temporary string diagrams, Peirce’s lines of identity obey the rules of special
Frobenius algebras, while Peirce’s inference rules for lines of identity are the
axioms of cartesian bicategories of relations. Moreover, diagrammatic reasoning
can be extended to cover negation in a straightforward manner.

The category theoretic account of EGs presented here yields a diagrammatic
calculus that is as expressive as first-order logic. We summarize the specific ben-
efits of the graphical logical language when we say that it is compositional. The
syntax is string diagrams, the semantics is RelX , and models structure-preserving
maps. In particular sub-formulas (sub-diagrams) have their own meaning as rela-
tions, with the meaning of the entire formula (diagram) obtained by composing
these. In these respects our approach follows Peirce’s original intentions.

In regards to Peirce scholarship, our presentation suggests new means of
interpreting the transformation rules in EGs. Following Peirce, this presentation
showcases contraposition as the governing duality between positive and negative
contexts on the sheet. We also clarify the rule of iteration. Robert’s presentation
[17, pp. 57-8] includes important but fairly ad hoc clauses to the Beta rules of
iteration. These clauses, as well as Burch’s more recent developments in [6], are
unified here with a single principle of iteration. Finally, situating Peirce’s EGs
in contemporary category theory [2,3] allows for further study and comparisons.

418 N. Haydon and P. Sobociński

References

1. Bonchi, F., Seeber, J., Sobociński, P.: Graphical conjunctive queries. In: Computer
Science Logic 2018 (CSL 2018) (2018)

2. Brady, G., Trimble, T.: A categorical interpretation of C. S. Peirce’s propositional
logic alpha. J. Pure Appl. Algebra 149, 213–239 (2000)

3. Brady, G., Trimble, T.: A string diagram calculus for predicate logic and C. S.
Peirce’s system beta (2000)

4. Burch, R.W.: A Peircean Reduction Thesis. Texas Tech University Press, Lubbock
(1991)

5. Burch, R.W.: Valental aspects of peircean algebraic logic. Comput. Math. Appl.
23(6), 665–677 (1992). https://doi.org/10.1016/0898-1221(92)90128-5. http://
www.sciencedirect.com/science/article/pii/0898122192901285

6. Burch, R.W.: The fine structure of Peircean ligatures and lines of iden-
tity. Semiotica 186, 21 (2020–01-22T12:56:46313+01:00 2011). https://doi.org/
10.1515/semi.2011.045. https://www.degruyter.com/view/j/semi.2011.2011.issue-
186/semi.2011.045/semi.2011.045.xml

7. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49,
11–32 (1987)

8. Coecke, B., Kissinger, A.: Picturing Quantum Processes - A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press, Cam-
bridge (2017)

9. Dau, F.: Mathematical logic with diagrams based on the Existential Graphs of
Peirce (2005)

10. Hereth Correia, J., Pöschel, R.: The power of peircean algebraic logic (PAL). In:
Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 337–351. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0 29

11. Lack, S.: Composing PROPs. Theor. Appl. Categories 13(9), 147–163 (2004)
12. Mac Lane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965)
13. Minghui, M., Pietarinen, A.: A graphical deep inference system for intuitionistic

logic. Logique et Analyse 245, 73–114 (2019). https://doi.org/10.2143/LEA.245.
0.3285706

14. Peirce, C.S.: Letters to Lady Welby. MS [R] L463, from the Commens Bibli-
ography. http://www.commens.org/bibliography/manuscript/peirce-charles-s-nd-
letters-lady-welby-ms-r-l463

15. Pietarinen, A.V.: The Logic of the Future, vol. 1. De Gruyter, Berlin (2019)
16. Pietarinen, A.V.: The Logic of the Future, vol. 2 & 3. De Gruyter, Berlin (forth-

coming) (cited page numbers are from a previous draft copy)
17. Roberts, D.D.: The Existential Graphs of Charles S. Peirce. Mouton, The Hague

(1973)
18. Shin, S.: The Iconic Logic of Peirce’s Graphs. MIT Press, Cambridge (2002)
19. Zeman, J.J.: A system of implicit quantification. J. Symb. Logic 32(4), 480–504

(1967). http://www.jstor.org/stable/2270176

2 Article 2 - Residuation in Existential Graphs

II

N.Haydon andA.-V. Pietarinen. Residuation in existential graphs. In A. Basu,
G. Stapleton, S. Linker, C. Legg, E. Manalo, and P. Viana, editors, Diagram-
matic Representation and Inference, pages 229–237, Cham, 2021. Springer
International Publishing

47

Residuation in Existential Graphs ⋆

Nathan Haydon1 and Ahti-Veikko Pietarinen1,2

1 Tallinn University of Technology, Tallinn, Estonia
{nathan.haydon,ahti.pietarinen}@taltech.ee

2 Research University Higher School of Economics, Moscow, Russia

Abstract. Residuation has become an important concept in the study
of algebraic structures and algebraic logic. Relation algebras, for exam-
ple, are residuated Boolean algebras and residuation is now recognized
as a key feature of substructural logics. Early work on residuation can
be traced back to studies in the logic of relations by De Morgan, Peirce
and Schröder. We know now that Peirce studied residuation enough to
have listed equivalent forms that residuals may take and to have given
a method for arriving at the different permutations. Here, we present
for the first time a graphical treatment of residuation in Peirce’s Beta
part of Existential Graphs (EGs). Residuation is captured by pairing the
ordinary transformations of rules of EGs—in particular those concern-
ing the cuts—with simple topological deformations of lines of identity.
We demonstrate the effectiveness and elegance of the graphical presenta-
tion with several examples. While there might have been speculation as
to whether Peirce recognized the importance of residuation in his later
work, or whether residuation in fact appears in his work on EGs, we can
now put the matter to rest. We cite passages where Peirce emphasizes
the importance of residuation and give examples of graphs Peirce drew
of residuals. We conclude that EGs are an effective means of enlightening
this concept.

Keywords: Residuation · Existential Graphs · Charles Peirce · Cuts
· Lines of Identity.

1 Introduction

As discussed by Pratt [19] and Maddux [13], De Morgan described the residua-
tion laws in the form of Theorem K in 1860 [3, 6]. The resulting equivalences state
that given any three relations—a, b, and c—and well known relation operations—
relational composition (;), complement (¯), converse (˘) and relational contain-
ment/inclusion (⊑)—the following are equivalently defined:

a; b ⊑ c ⇐⇒ ă; c̄ ⊑ b̄ ⇐⇒ c̄; b̆ ⊑ ā . (1)
⋆ Supported by (Haydon) the ESF funded Estonian IT Academy research measure
(2014-2020.4.05.19-0001) and (Pietarinen) the Basic Research Program of the HSE
University and the TalTech grant SSGF21021.

2 N. Haydon & A.-V. Pietarinen

Residuation can broadly be thought of as an inverse operation, much like how
division is inverse to multiplication and subtraction to addition. In the context
of relations discussed here, residuation gives a remainder when relational com-
position is denied or converted (as in the equivalences above).

Another example is found in what is called the residuation property (RES),
which shows how residuation also acts like implication:

(RES) p ∧ q ⊑ r ⇐⇒ q ⊑ p → r.

This is related to the deduction theorem (and to currying), and the property
plays an important role in characterizations of a range of implications from
classical to intuitionistic (Heyting algebra) implication. Residuation is now rec-
ognized as a key property of substructural logics [14] and, following Lambek, of
categorical grammar [7, 8].

Given the significance that has been placed on residuation in the study of
relations since, it is perhaps curious that Charles S. Peirce, who studied De
Morgan’s work closely and who went on to make significant contributions to
the algebra of relations (e.g. his ‘dual’ and ‘general’ algebras of relatives), seems
to have placed little emphasis on it in his later work. Maddux even describes
the omission of residuation (De Morgan’s Theorem K) in Peirce’s later work as
“puzzling” [13, p. 435].

We now know that Peirce did emphasize the residuation property above in
his characterization of propositional logic as occurs in his 1880 algebra of the
copula paper, §4, which presents a calculus of the consequence relation [11]. In
it, two meanings of the copula (or) are delineated by using two signs:
(1) the consequence relation (Peirce’s sign of illation) ⇒; and (2) the material
implication →. An expression of the form x ⇒ y is called a sequent, according
to the proof-theoretic terminology. Then the calculus of the copula (a Boolean
algebra) consists of the following axiom and rules:

1. Identity: (Id) x ⇒ x
2. Peirce’s Rule:

x ∧ y ⇒ z
(PR)

x ⇒ y → z

3. Rule of Transitivity:
x ⇒ y y ⇒ z

x ⇒ z
(Tr)

The double line in (PR) means that the lower sequent can be derived from the
upper sequent and vice versa. The second rule, here renamed as Peirce’s Rule,
is probably the first formulation of the law of residuation: that the material
implication is a right residual of conjunction.

We also now know that Peirce studied residuation enough to have listed
equivalent forms residuals may take and to have given a method for arriving
at the different permutations [CP 4.343] [19]. While this helps confirm Peirce’s
awareness of residuation and to assuage some doubts about the scope of his
insights, it does not help explain why Peirce seems to have placed much less

Residuation in Existential Graphs 3

emphasis in his later work on a concept whose importance he had—and when
looking back on it perhaps should have—so emphasized.

Pursuing Peirce’s potential connection to residuation from another direc-
tion, it is equally curious that Peirce makes no direct mention of his earlier
algebraic studies of residuation in his later presentation of Existential Graphs
(EGs). Given that Peirce often cites EGs as the culmination of his earlier work
on relations (with his algebraic studies of residuation, no doubt, as one), along
with his insistence that EGs should be the “logic of the future” [18], it would be
problematic if such a concept was left without representation.

Of course this is not the case. We remedy the seeming omission here by show-
ing how residuation is naturally presented in EGs. Given the relatively sparse
syntax of the graphs and that residuation can easily be represented without any
changes to the syntax or transformation (i.e., inference) rules, it would seem
rather that Peirce’s supposed omission might be due to a belief that the other
rules of EGs suffice to enlighten the concept. The presentation of residuation in
EGs given here is the first of its kind—in particular, the first for its quantifica-
tional Beta extension that includes lines of identity.

This paper presents residuation in the context of relations and relational
operations and sets aside for the time the functional characterization in terms of
Galois connections.3 The aim is to help situate Peirce’s work in the development
of residuation (following, in particular, the work of Maddux and Pratt cited
above), to present the beginnings of a graphical presentation of residuation, and
to address the connection between residuation and Peirce’s work on Existential
Graphs.

2 Beta Graphs and Relational Operations

We begin with a short introduction to EGs and the diagrammatic presentation
of the operations needed to represent residuation in a logic of relations. We as-
sume basic familiarity with the interpretation and transformation rules of EGs.
Helpful introductions to Peirce’s EGs can be found in [18, 20]. The richer alge-
braic/categorical framework upon which this work relies can be found in [5]. We
save an extended treatment of residuation in the latter context for subsequent
work. Here, we stick rather to the perspective from relation algebra, leveraging
the more traditional notation for relation algebras found for example in [4, 21,
1]. Though it predates Peirce’s EGs, a helpful introduction along these lines is
given by Peirce in his “Note B” [15]. What follows can be seen as a graphical
treatment á la the later EGs of the algebraic work given in this note.

A general binary relation is scribed on the sheet with an ingoing ‘wire’ serving
as a placeholder for the domain of the relation and an outgoing wire signalling
the codomain. These wires represent the collection of individuals who might
satisfy/stand in the relation presented.

R (a) R S (b) R (c) (2)
3 On the history of residuation (adjunctions) and its relation to Galois connections,
see [2].

4 N. Haydon & A.-V. Pietarinen

Operations from relation algebra and their corresponding EGs are given in (2),
where (a) is a general relation R, (b) is relational composition R; S, and (c)
is complement R̄. Given the loves and benefits relations we can for example
express ‘lovers of benefactors’ as loves benefits and ‘lovers of non-benefactors’ as
loves benefits .

Relations have a definite order such that reversing the domain and codomain
gives a different relation. Changing the domain and codomain of the “x loves y”
relation, for example, forms the converse relation “y is loved by x”.4 In [5] it is
shown that lines of identity in fact obey the equations of a special Frobenius
algebra. Graphically, this involves the addition of ‘cups’ and ‘caps’ (• • , • •)
that serve as markers for keeping explicit track of the bending of wires and the
respective domain and codomain for each relation. For example, EGs of (a) a
relation R, (b) its converse R̆, and (c) relation inclusion/containment R ⊑ S are
given below in (3).

R (a)
• •

R • • (b) • •
R
S

• • (c) (3)

The addition of cups and caps are important since the initial presentations of
residuation in De Morgan’s and Peirce’s works depend on tracking the converse
(and other) relations. Importantly, whereas the single cut represents comple-
ment/negation, a nested cut represents inclusion/containment relation (Peirce’s
“scroll”). The use of ‘cups’ and ‘caps’ as endcaps in this context is to show that
the domain of R is preserved in the domain of S and that the codomain of R is
preserved in the codomain of S.

More discussion on relation algebras can be found in [4]. For a detailed trans-
lation of the EG syntax into first-order logic, relation algebras, and a discussion
of the transformation rules in this context, see [5]. With relational composition,
complement, converse, and inclusion expressible graphically in the syntax, we
have the relational operations needed to present residuation in EGs.

3 Residuation in Existential Graphs

Given relational composition (;), left and right residuals take the form of division.

a ⊑ c/b ⇐⇒ a; b ⊑ c ⇐⇒ b ⊑ a\c. (4)

Peirce enumerated several equivalent forms residuals may take (Schröder lists
many more in [22]). The list depends on which operations are taken as primitive.
We begin by adding to (4) the residuals in terms of complement (¯) and converse
(˘) relations. This allows us to fairly directly convert the residuation laws into
4 While Peirce emphasizes this ordering in his algebraic work, he says little about
reading such an ordering off the graphs. The few such places on the ordering of the
‘hooks’ around the relation terms appear in the early drafts of EGs from late 1886, in
which Peirce notices how the connections of the lines to the relations should be read
“clockwise” or “counterclockwise” (their converses) “beginning at the left/right”
of the relation term; see [18, pp.220,263,295,302,303]. A further advantage of the
notation in [5] is that the ordering is always explicit.

Residuation in Existential Graphs 5

a form amenable to the syntax of the EGs. We also use (†) to represent what
Peirce calls relative sum, which is the dual to relative composition.

a ⊑ c/b ⇐⇒ a; b ⊑ c ⇐⇒ b ⊑ a\c (4)
a ⊑ (c̄; b̆)¯ ⇐⇒ a; b ⊑ c ⇐⇒ b ⊑ (ă; c̄)¯ (5)

a ⊑ c † ˘̄b ⇐⇒ a; b ⊑ c ⇐⇒ b ⊑ ˘̄a † c (6)
.

Example 1 (Residuation laws in EGs). Let us begin with EGs of (4) that corre-
spond to the row of equations in (5).

• •

a

c
• • b

• •

• •

a ⊑ c/b
[

= a ⊑ (c̄; b̆)
]̄

• •
a b

c

• •

a; b ⊑ c

• •

b

• •
a • •

c

• •

b ⊑ a\c [= b ⊑ (ă; c̄)¯]

Relational composition (;) is represented in the graphs by connecting, via a line
of identity, the respective outgoing and ingoing wire for the relations a and b.
Relational inclusion/containment is captured by nested cuts, i.e. Peirce’s scroll,
and complement and converse are likewise represented as discussed in Section 2.

Only two graphical transformations are needed to represent the residuals in
the side columns of (5), depicted by the left and right graphs above. One trans-
formation is to add an S- or Z-shaped bend to a line of identity (cf. ‘cups’ and
‘caps’ producing converses). The other is to add a double cut around subgraphs.
This has the effect of changing the consequent in the newly directed implication
(see Remark 2). Both are straightforward transformation rules in EGs.

• • a b

c

• •

• • a
• •

• • b

c

• •

Insert ‘S’-bend

• •

• •
b

a• •
c

• •

(Reposition a…)

• •
b

• •
a • •

c

• •

(…by moving a down)

• •

b

• •
a • •

c

• •

Add Double Cut

The right residual is derived as follows.
The transformation to the final graph be-
gins by inserting an S-shaped bend in
the line of identity (employing ‘cups’ and
‘caps’) between the composition of a and
b. We then grab a and pull it down to
the left. Finally, add a double cut around
the bottom subgraph to form the conse-
quent of the new implication. Notice that
in the process we switch the endcap that
preserves the codomain of the relation.
This topographical deformation yields the
converse on a. Performing similar oper-
ations (now with a Z-shaped bend) on
b yields the graph on the left in Ex. 1.
The simple transformations of bending
wires to reposition subgraph relations and
adding/removing a double cut are suffi-
cient to capture the long list of equiva-
lences given by Peirce in [CP 3.341].

6 N. Haydon & A.-V. Pietarinen

Remark 1. Peirce’s Rule of 1880 (residuation) is of particular importance, as the
full distributivity laws can be deduced from it and the standard lattice rules [9].
The rules of Modus Ponens, LEM and Ex Falso are deducible similarly.

Remark 2. Peirce’s Rule of 1880 has a particularly clear representation in EGs.
Graphical representation of logical constants brings out the relation between
logical connectives as adjunctions. The following rules are provable in EGs (Al-
pha):

A B C
(RG1)

A B C

A B C
(RG2)

A B C

The rule (RG1) is immediate from the observation that it is permissible to add
a double cut, namely the scroll with blank areas. The other direction (RG2)
follows from the observation that permits removing that scroll. Hence Peirce’s
Rule is justified by the observational element that entitles the addition/removal
of scrolls with blank areas. Indeed according to Peirce, “every copula is so closely
connected with a conjunction that the notation should show the connection” [18,
p. 428], concluding that “copulas are nothing but conjunctions” [18, p. 426].

Remark 3. On one loose manuscript leaf (RS 104, c.1903) Peirce formulated
residuation as the pair of AB C and A C B. Here his algebra of logic
notations (aggregate) and (vinculum) correspond to logical disjunction
and negation, respectively. Above and below these two consequence relations he
wrote in the language of EGs: “AB C” and “A C B ”, respectively. Taking
the blank to mean the derivation along the consequence relation, one can move
between these two graphs solely by an addition (top-down) or erasure (bottom
up) of a blank scroll.

Example 2. We give Peirce’s rule for the cyclic permutation of terms [19] in
graphs. In Peirce’s words the rule is: “the three letters may be cyclically advanced
one place in the order of writing, those which are carried from one side of the
copula to the other being both negatived and converted” [CP 3.341].

• •
a b

c

• •

a; b ⊑ c

⇐⇒ ••

•• c
• • a

• • b
• •

• •

˘̄c; a ⊑ ˘̄b

Again the equivalent expression is captured by the transformation rules in EGs—
in this case rotating the subgraphs clockwise by pulling b down and around now
also raising c around and up.

It is worth comparing the topological transformations used in the derivations
above with an equivalent derivation using first-order logic.5 When these moves
5 One such derivation is [21, p. 42] which we forego here due to space limitations.
Schmidt speculates that equational reasoning using predicate logic results in deriva-

Residuation in Existential Graphs 7

are put into graphical notation many steps are found to be either roundabout or
to have little content, such as to introduce, label, re-label, and eliminate excess
variables.

4 Two Further Examples of Residuation in EGs
Two further examples highlight the efficiencies gained by the graphical treatment
of residuation for derivations and for further thought.

It is known that in axiomizations of relation algebras, such as by [23], Theo-
rem K can replace the axioms governing the rules between involution and distri-
bution over Boolean join [12, p. 25]. One version of the key axiom is x̆; x; y ⊑ ȳ.

In “Note B” [15] Peirce also presents the following important equations: I ⊑
x̆; ȳ and x; ˘̄x ⊑ Ī, where I is the identity relation for relational composition.
These equations correspond to the linear negation operation in linear logic [19].
Example 3. We show that these equations follow from simple identities on x and
the topographical moves described in Section 3.

• •
x y

x y
• •

• •
y

• • x • • x y

• •

Graphical transfor-
mation of x̆; x; y ⊑ ȳ

• • x
x

• •

• • • • x • • x
• •

• • • • x • • x
• • or • • • • x • • x

• •

Graphical transformation of
I ⊑ x̆; ȳ or x; ˘̄x ⊑ Ī

The equations for the right residual, a\b, are given by the following [19]:
a\b = ¯̆a † b = (ă; b̄)¯ (7)

Example 4. The rightmost equation is expressed by the EG below left. We clearly
see that the residual has the form of an implication.

• •
a • • b (ă; b̄)¯

• •

a
• •

b

5 Concluding Remarks
This last example brings us back to a common place where Peirce draws specific
attention to residuation. He singles out the graph on the right, equivalent to the
one on the left and which has a very nice vertical symmetry, to represent the
key feature of necessary reasoning. In this sense, residuation is a general logical
principle that has a maximum level of abstractness. Being maximally abstract
means that such principles add nothing to the premises of the inference which
they govern (NEM 4:175, 1898).

tions that are six times longer than the corresponding algebraic handling of rela-
tions [p. xi].

8 N. Haydon & A.-V. Pietarinen

References

1. Brink, C., Kahl, W., and Schmidt, G.: Relational methods in computer science.
Springer-Verlag, Wien, New York. ISBN 3-211-82971-7. (1997)

2. Erné, M. Adjunctions and galois connections: Origins, history and development. In
Denecke, K., Erné, M., and Wismath, S., editors, Galois connections and applica-
tions, pages 1–138. Springer. (2004)

3. De Morgan, A.: On the Syllogism, no. IV, and on the Logic of Relations. Trans.
Cambridge Phil. Soc. 10:331–358 (2016)

4. Givant, S.: Introduction to Relation Algebras. Springer. (2017)
5. Haydon, N., Sobocinski, P.: Compositional Diagrammatic First-Order Logic. 11th

International Conference on the Theory and Application of Diagrams (2020)
6. Heath, P.: On the Syllogism, and Other Logical Writings. Routledge, London (1966)
7. Lambek, J.: The Mathematics of Sentence Structure. American Math. Monthly

65(3):154–170 (1958)
8. Lambek, J.: Pregroups and natural language processing. The Mathematical Intelli-

gencer, 28(2):41–48 (2006)
9. Ma, M., Pietarinen, A.-V.: Peirce’s Sequent Proofs of Distributivity. Lecture Notes

in Computer Science 10119, Springer, Cham, 168–182 (2017)
10. Ma, M., Pietarinen, A.-V.: A Graphical Deep Inference System for Intuitionistic

Logic. Logique & Analyse 245:73–114 (2018)
11. Ma, M., Pietarinen, A.-V.: Peirce’s Calculi for Classical Propositional Logic. The

Review of Symbolic Logic 13(3):509–540 (2020)
12. Maddux, R.D.: Relation Algebras. In Brink C., Kahl W., Schmidt G. (eds) Re-

lational Methods in Computer Science. Springer-Verlag, Wien, New York. ISBN
3-211-82971-7. (1997)

13. Maddux, R.D.: The Origin of Relation Algebras in the Development and Axiom-
atization of the Calculus of Relations. Studia Logica 50:421–455 (1991)

14. Ono, H.: Substructural Logics and Residuated Lattices: An Introduction. In V.F.
Hendriks, J. Malinowski (eds.) Trends in Logic 20:177–212 (2003)

15. Peirce, C.S.: Note B. In C.S. Peirce (ed.) Studies in Logic by Members of Johns
Hopkins University. Boston, Mass.: Little, Brown, pp. 187–203 (1883)

16. Peirce, C.S.: The Collected Papers of Charles S. Peirce (CP). Hartshorne, C., Weiss,
P., Burks, A.W. (eds.) Cambridge, Mass.: Harvard University Press. (1931–66)

17. Peirce, C.S.: The New Elements of Mathematics by Charles S. Peirce (NEM).
Eisele, C. (ed.) The Hague: Mouton (1976)

18. Peirce, C.S.: Logic of the Future: Writings on Existential Graphs. Pietarinen, A.-
V. (ed.). Vol.1: History and Applications, 2019; Vol. 2/1: The Logical Tracts; 2/2:
The 1903 Lowell Lectures; Vol.3: Pragmaticism and Correspondence. De Gruyter
(2019-21)

19. Pratt, V.: Origins of the Calculus of Binary Relations. Proc. Seventh Annual IEEE
Symposium on Logic in Computer Science. 1:248–254 (1992)

20. Roberts, D.D.: The Existential Graphs of C.S. Peirce. The Hague: Mouton (1973)
21. Schmidt, G.: Relational Mathematics. Cambridge: Cambridge University Press.

(2010)
22. Schröder, E.: Vorlesungen über die Algebra der Logik (Exakte Logik). Dritter Band:

Algebra und Logik der Relative. B.G. Teubner, Leipzig (1895)
23. Tarski, A.: On the Calculus of Relations. J. Symbolic Logic 6:73–89 (1941)

3 Article 3 - C.S. Peirce’s Early Developments in Linear Logic

III

N. Haydon. C.S. Peirce’s early developments in linear logic. 2023

57

C.S Peirce’s Early Developments in Linear Logic

Nathan Haydon1

Tallinn University of Technology, Tallinn, Estonia {nathan.haydon}@taltech.ee

Abstract. Early developments of linear logic can be traced back to
Barr’s *-autonomous categories and Lambek’s bilinear logic. We show
here that C.S. Peirce’s early work on the logic of relations should be
placed within this tradition. Peirce understood linear distributivity and
the linear negation laws, understood linear implication in the form of
residuation, and emphasized the dialogical nature of the linear connec-
tives. Much of this can be found in Peirce’s early algebraic work on the
study of relations going back as early as the 1880s. Peirce eventually
went on to develop a diagrammatic calculus — what he called the Exis-
tential Graphs — he thought better suited for the purpose. We go on to
show graphs corresponding to these notions and confirm that many of
Peirce’s later studies in the graphs employ these concepts. The result is
a dramatic revision of our understanding of the Existential Graphs, as
well as Peirce’s place in the logic tradition.

Keywords: Linear Logic · Bilinear Logic · Cyclic Linear Logic ·
Relation Algebra · Existential Graphs · Charles Peirce · History of
Logic

Linear logic is one of the most general logics we have. De Morgan dual-
ity, often associated with classical logic, is restored in the linear case, while
intuitionistic logic, associated in turn with constructive mathematics and the
lambda calculus, can be recovered as an important fragment [51]. Further, the
ability of linear logic to keep track of resources makes it an attractive logic for
explorations in computation and proof theory.

Relations and relation algebra provide a significant setting for linear logic.
Relation algebra has a history going back to Tarski’s paper on the subject [75]
— a paper that, and we come back to this point below, is really a return to the
work of C.S. Peirce — and has been developed in many contexts, including the
foundation of mathematics [76] and programming theory [68,18,9], and continues
in the present day in relational mathematics [69,67], relational algebraic theories
[15,29], and in other (relational) categorical settings like allegories [30].

The explicit connection between linear logic and the relational model goes
back at least to Pratt [61,62,63], who noticed — and again, it should be noted,
after returning to the work of C.S. Peirce — that the combined complement-
converse relation is analogous to linear negation and that residuation is analogous
to linear implication. The relational model is also given as a key example in
Lambek’s presentation of bilinear logic [42] and is the motivating example behind
Cockett et al.’s introduction of linear bicategories [24]. In such examples one

2 N. Haydon

needs to express the dual of relational composition, which importantly serves as
the par’d (`) context in the linear case. The connection between relation algebra
(RA) and linear logic (LL) is summarized by Desharnais et al. in Figure 1 [27].
Of note, the additives correspond to the Boolean or non-relative terms, while

LL RA

1 I
⊥ ¯̆I
0 ⊥⊥
⊤ ⊥⊥

LL RA

r⊥ ¯̆r
!r !r
?r ?r

LL RA

r ⊗ s r; s
r ` s r † s
r ⊸ s r\s

LL RA

r ⊕ s r ⊔ s
r&s r ⊓ s
r

⊸

s r/s

Fig. 1: Correspondence between linear connectives and relation algebra.

the multiplicatives correspond to the relative terms.1 The multiplicative units
include the identity relation (I) as the unit of relational composition and its
linear dual (I⊥, which is the complement-converse of I). The latter corresponds
to the difference or diversity relation, which we will come back to below. The
additive units for union (⊔) and intersection (⊓) are ⊥⊥ and ⊥⊥, respectively.

A further key feature about the relational model is that it provides a natural
setting for non-commutative variants of linear logic [27]. Two points are worth
highlighting about this setting. The first is that the sequentiality of relational
composition is naturally non-commutative. Swapping the order of composed re-
lations in general leads to a different relation, and the resulting left and right
residuals — serving as they do as linear implications — have this direction-
ality and non-commutativity built in. Certain other relational operations, like
union and intersection, are commutative. The result is that relation algebra of-
fers a natural setting for combining both commutative and non-commutative
operations. The second point is that while sequential composition is generally
non-commutative, certain cyclic permutations within inclusions are allowed so
long as an overall ordering is preserved. This rule is the significant feature behind
what is called cyclic linear logic and early examples include the presentation by
Yetter [78] and Abrusci [2,3]. The relational model also provides a natural setting
for studying this cyclicity.

While precursors of these views can be found earlier, we note that these
directions only began to see systematic development in the 1990s. The non-
commutative setting, often taken to be more involved (Girard even calling it
a ‘far-west’ [31]) is still arguably finding the adherents and developments it
deserves.

1 Unfortunately, almost all of the sources cited here use different notations and we
continue to do so. We tend to follow the categorically-minded presentations of Lam-
bek and Cockett et al., but are still left choosing the relational symbols. Where
appropriate we follow Peirce, otherwise we follow Schmidt in [67].

C.S Peirce’s Early Developments in Linear Logic 3

It is remarkable then that C.S. Peirce’s studies in the logic of relations as
far back as the 1880s led him to understand and present the essential rules for
(cyclic) bilinear logic. This includes recognizing the importance of the dual to
relational composition, presenting linear distributivity and the linear negation
laws, and also recognizing the further cyclicity condition. The subject of this
paper is to situate Peirce’s early developments and studies in cyclic bilinear
logic.

We note upfront that the major developments in this direction are already
present in Peirce’s ‘Note B’ [57] from 1883. Proper recognition of this fact re-
quires a dramatic revision of Peirce’s subsequent understanding of the logic of
relations. Peirce later went on to develop a graphical calculus — what he termed
the Existential Graphs — that generalized the theory of relations given in ‘Note
B’. We similarly argue, and this paper goes on to demonstrate the point, for a
dramatic revision of Peirce’s subsequent graphical calculus.

There are numerous further ramifications for Peirce studies and for his place
in the logic tradition. We finish this introduction section by listing three broad
themes:

• Historically, this work places the developments of bilinear logic — and so also
key aspects of linear logic — significantly earlier than recognized precursors
to the view,

• Peirce’s early insights into bilinear logic occurred prior to the Existential
Graphs (EGs) and our readings of the graphs must likewise be revised: we
cite, as key examples, an awareness in the graphs of the dual of relational
composition, of linear distributivity and linear negation, as well as renewed
significance in regarding Peirce’s sign of the ‘double cut’ or ‘scroll’ as an
involution,

• Finally, in terms of contemporary graphical developments, we note that the
corresponding EGs still compete favourably with modern graphical presen-
tations of these rules, such as Cockett et al.’s circuit diagrams.

Subsequent sections contain lengthier discussions of these points.
While we give the historical and logical significance of Peirce’s developments

here, we note that a modern algebraic formulation has been given — with a
sound and complete axiomization for full first order-logic — and can be found
in [14]. The modern account does not discuss the details of Peirce’s work and
the historical importance, which is our primary aim here. Neither does that
account compare these developments to the cyclic bilinear case, a connection we
find important to stress as we find it to be perhaps the closest extant theory to
Peirce’s own. All of this is to say that Peirce’s work continues to reveal itself as
remarkably ahead of its time.

As an overview, in Section 1 we give a background of bilinear logic and the
connection to Peirce’s Existential Graphs. Section 2 introduces the graphical
syntax and the corresponding linear connectives in the graphs. Section 3 focuses
more specifically on linear implication. Discussion of linear implication shows
that Peirce’s ‘scroll’ is an efficient presentation of the equivalences that charac-
terize the bilinear operations. In Section 4 we compare the resulting graphical

4 N. Haydon

presentation with Cockett et al.’s circuit diagrams in the literature. The ‘scroll’
can be seen as providing — as a type of dual presentation — the ‘inner workings’
of the nodes in a circuit diagram. Some of Peirce’s derivations of the linear laws
above were motivated by studies of intuitionistic negation, as well as a concern
for the refutation clauses of the linear connectives. In Section 5 we give an ex-
ample of the refutation clauses of the connectives and how some of the linear
equivalences are directly captured in the graphs. Finally, in Section 6 we give a
few examples of resource sensitivity and the linear modalities.

The work here is just the beginning of this undertaking. Following Tarski and
Pratt, we hope this return to Peirce renews interest in this direction of work.
The last paragraph of Tarski’s seminal paper on relation algebra is still as fitting
today as 80 years ago when it was written:

The aim of this paper has been, not so much to present new results, as
to awaken interest in a certain neglected logical theory, and to formulate
some new problems concerning this theory. I do believe that the calculus
of relations deserves much more attention than it receives. For, aside
from the fact that the concepts occurring in this calculus possess an
objective importance and are in these times almost indispensable in any
scientific discussion, the calculus of relations has an intrinsic charm and
beauty which makes it a source of intellectual delight to all who become
acquainted with it. [75, p. 89]

1 Bilinear Logic: History, Contemporary Context, and
Relation to EGs

While the first significant early presentation of linear logic is attributed to Gi-
rard’s paper from 1987 [32], other forerunners to linear logic can be found in
*-autonomous categories [6,7] and the Lambek Calculus [40,41]. *-autonomous
categories arose from a categorical study of an involution that behaves like nega-
tion does in the classical case. *-autonomy corresponds to the multiplicative
fragment of linear logic, which is generally taken to be the most novel and inter-
esting in the linear case. The Lambek calculus is the (non-commutative) logic
of linear implication. It is a substructural logic with only residuation.

The connection between *-autonomy and linear logic was not known immedi-
ately, as the connection between linear distributivity and linear logic took time
to spell out. Cockett and Seely’s work on linearly distributive categories (LDCs)
in [25] (and again with the addition of Blute and Trimble in [12]) is perhaps the
first systematic treatment. The intuitive idea is that linear distributivity medi-
ates between the two multiplicative connectives by giving a rule of inference that
preserve linear sequence and resources, i.e. it does not duplicate a premise.

In addition to linear distributivity, the linear negation laws are perhaps just
as essential to the characterization of linear logic. The intuitive idea here is that
these rules enforce that every introduction of a logical term contains a positive
and negative context that keeps track of how the term can be ‘used up’ as a
resource is used up.

C.S Peirce’s Early Developments in Linear Logic 5

While one could take linear distributivity as the more primitive concept, as
in Cockett and Seely’s early work cited above, linear negation should arguably
be taken to be just as logically essential. One reason for this is that while linearly
distributive categories can be discussed without linear negation laws, it is known
that the latter can be added as a conservative extension [12]. The intuitive
(again) idea here is that categorical composition can be broken down into a two
step process of linear distributivity followed by a linear negation, so adding linear
negation when composition is already presumed adds no further expressivity. A
second reason comes from the move to proof theory, where the linear negation
laws find renewed significance. This includes the importance such rules have
found within deep inference [28] and the calculus of structures [34]. In short,
linear distributivity and the linear negations laws are increasingly seen as key
ingredients to linear logic.

Following Lambek in [42], we give a summary of the key morphisms char-
acteristic of bilinear logic. We show a first key set of rules in Figure 2. These
correspond to the key morphisms of linearly distributive categories with negation
and to *-autonomous categories [12]. The rules include (i) associativity and unit

(i) (R ⊗ S) ⊗ T ⇐⇒ R ⊗ (S ⊗ T) (R ⊕ S) ⊕ T ⇐⇒ R ⊕ (S ⊕ T)
I ⊗ R ⇐⇒ R ⇐⇒ R ⊗ I d⊕ R ⇐⇒ R ⇐⇒ R ⊕ d

(ii) R ⊗ (S ⊕ T) =⇒ (R ⊗ S) ⊕ T (R ⊕ S) ⊗ T =⇒ R ⊕ (S ⊗ T)

(iii) R⊥ ⊗ R =⇒ d I =⇒ R ⊕ R⊥

R ⊗ R⊥ =⇒ d I =⇒ R⊥ ⊕ R

Fig. 2: Key Rules for LDC with Negation

laws for both tensor and co-tensor, (ii) the left and right linear distributivity
laws, and (iii) the additional linear negation laws.

We take the additional linear negation laws to be of prime importance here.
We add that the aim — or at least our aim in doing so — is not so much to
emphasize negation but to emphasize linear implication. The linear negation
laws can be thought of as a linear implication introduction rule along with a
(linear) contrapositive elimination rule that leads into the dualizing object.

The resulting logical theory, emphasizing as it does both linear implication
and its dual, goes by the name bilinear logic. The key rules for the two linear
implications of bilinear logic are given in Figure 3. Cockett and Seely return
to linear negation and these bilinear operations — and now preferably so — in
later generalizations of linearly distributive categories into linear bicategories in
[24] and for developing the corresponding proof theory in [26]. Lambek similarly
comes back to linear negation laws in a later axiomization of the bilinear case in
the system BL2 [42].

To these Lambek discusses further rules for cyclic linear logic, which charac-
terizes his system BL3 [42]. The additional rules are given in Figure 4.

6 N. Haydon

R ⊗ S =⇒ T iff R =⇒ T/S iff S =⇒ R\T

and
T =⇒ R ⊕ S iff T ⊘ S =⇒ R iff R ⊘T =⇒ S

Fig. 3: Key Rules for Bilinear Operations

A ⊗ B =⇒ d iff B ⊗ A =⇒ d

and
I =⇒ A ⊕ B iff I =⇒ B ⊕ A

Fig. 4: Key Rules for Cyclic Conditions

The rules given in Figures 2-4 will be our main concern here. We refer
throughout to this key set of rules as bilinear logic and then stress the added
cyclicity condition when called upon.

We note this system above crops up in close connection to quantales [66],
polycategorical composition [74], in characterizing adjunctions [72], in the evo-
lution of quantum systems [13,73], and in linguistics [21]. We believe a strong
case can be made that this forms the basis of an extremely important logical
system.

The relational setting is often cited as a key example of bilinear logic.2 In this
setting the tensor is relational composition and the dual to relational composition
serves as the par or cotensor. Suggestively, we have already written the unit of
the tensor above as I for the identity relation and the unit of the cotensor as d
for the diversity relation. Linear distributivity and the linear negation laws can
then be clearly stated via relational inclusion, as can the linear implications in
the form of residuation.

Given the emphasis on linear distributivity and linear negation has only seen
consistent development since the 1990s, it is (again) remarkable that C.S. Peirce
presented all of these rules in his early work on the logic of relations. The key
presentation is found in Peirce’s ‘Note B’ from 1883 [57], which also served as
the principle inspiration behind Tarski’s presentation of relation algebra [75] (for
historical context, see [46]). But while Pierce stressed the importance of both
linear distributivity and linear negation — going so far to state that they are
“highly important” and “so constantly used that hardly anything can be done
without them” [57, p. 192 & 190, respectively] — these rules were not emphasized
in Tarski’s presentation and much of the work that followed. Who knows how
the history of logic may have differed without this omission.

Around the same time as the studies around ‘Note B,’ Peirce expressed linear
(and intuitionistic) intuitions about the linear connectives, including game-style
semantics of the connectives, and studied linear implication. We show these,
almost all for the first time, within the linear context.
2 See Section 12 in Lambek’s [42] and Section 1 in [24].

C.S Peirce’s Early Developments in Linear Logic 7

Peirce continued his work on the logic and algebra of relations for almost
thirty years after his original presentation in ‘Note B.’ Peirce was dissatisfied
with his presentation in ‘Note B’ as it only dealt with binary relations, and went
on to develop his Existential Graphs (EGs) as an alternative for a calculus of
relations. EGs employ a graphical syntax akin to contemporary string diagrams
in category theory that emphasize triadic relations over binary relations [36].
EGs employ an additional sign — a circle called the ‘cut’ — that can surround
a graph and that serves as a complement or negation operation. A question is
whether Peirce continued to discuss and present these linear rules in his later
work on the graphs.

A preliminary response would answer in the negative. Peirce does not men-
tion the linear rules in his most well known descriptions of the inference rules for
the Existential Graphs. This is also the predominant story told in the literature.
Robert’s original presentation on EGs focuses on the classical case of first-order
logic with the ‘cut’ as negation [64], and almost all of the subsequent literature
has followed suit (such as in [79,19,70,45] and the overview in [54]). Peirce’s pre-
sentation of modus ponens, which is one of the most common examples Peirce
discusses in EGs, also begins by duplicating a premise — and in so doing seem-
ingly goes against the linear rules — and then requires an extra erasure (i.e.
projection) to end up with the required result. Finally, many of Peirce’s own
descriptions take negation or complement as primitive and leave out the more
nuanced, linear case.

We show here, however, that this is not the case. The traditional reading
of the EGs with ‘cut-as-negation’ is misguided. Peirce continued to insist on
the importance of the linear rules after ‘Note B’ and continued to develop his
understanding of the linear connectives. This becomes clear when we look at
Peirce’s later EGs, which contain — and even predominately so — linear rules
in the form of linear implication and its (linear) dual.

Our judgment of Peirce’s later studies in EGs is that, analogous to the im-
portance one might place on the implicational fragment in the classical case,
Peirce appears to have made considered effort to emphasize and develop the
linear implicational fragment. We present for the first time these linear rules in
Peirce’s later graphs and show corresponding graphs drawn by Peirce. All of this
should make us see Peirce’s work and his Existential Graphs in a new light.

Several contextual remarks are in order. Much as implication can be seen
as the most primitive inferential connective, Peirce insisted on the importance
of the ‘scroll’ — imagine two circles or ‘cuts’ nested inside the other — as the
most primitive connective. We note that this emphasis is often lost in the single
‘cut-as-negation’ story. In fact, if one only employs the inference rules and graph
rewrites as Peirce describes, then one can seemingly never write a single cut!
Adding to this perspective here, we return the ‘scroll’ to its position of prime
importance.

Some work has tried to extend Peirce’s EGs with ‘cut-as-negation’ towards
the intuitionistic case and towards *-autonomy and LDCs. Extending EGs to
the intutionistic case can be found in [48,52]. The work presented here flips this

8 N. Haydon

direction around, as the intuitionistic case can be seen as being recovered from
the linear one and not as having to extend the classical one. Residuation, as
with Peirce’s understanding of the sequentiality of negation, already captures
the intuitionistic case. We save this development of the intuitionsitic case for
future work, but the bilinear case presented here is the groundwork for this
approach.

A second noteworthy approach by Brady and Trimble [16,17], and one moti-
vated by categorical considerations, suggests that Peirce’s inference rules can be
construed by linear strengths (like LDCs) and by an involution along the lines
of *-autonomy. The work here affirms this direction and shows that Pierce him-
self had a much more extensive knowledge of these directions than previously
known. We elaborate Peirce’s historical developments and connect these to areas
in contemporary logic like LDCs and to circuit diagrams.

In terms of other connections to linear logic, we give an example from Peirce
of how the ‘scroll’ mediates between the proof and refutation cases of the con-
nectives. As another example, we show how the linear equivalences are straight-
forwardly captured — just like the De Morgan duality in propositional EGs —
in the graphs.

Finally, we stress that while Peirce appears to have foreseen much of the
structure that is cyclic bilinear logic, there are aspects of full linear logic that
fall outside this scope. For example, while Peirce seems to have understood
some of the key topological intuitions behind the !-exponential (see Section 6),
we as of yet know of no place where Peirce draws attention to what would be
the significant developments that follow from the linear modalities and to other
intuitionistic developments that have been so significant over the last 100+ years.
In the end much further study is needed.

Neither do we want to suggest that Peirce understood further aspects of
category theory or that motivate linearly distributive categories or the theory
of adjunctions. Peirce was concerned with compositionality and took it to be
one of the main puzzles EGs helped resolve.3 Given that category theory is so
concerned with compositionality, and that other approaches to category theory,
such as allegories, rely so much on relational operations, we find that Peirce’s
view is surprisingly modern and prescient. A good example is the symmetric
quotient and the straightness condition given in Section 3, which do not appear
in modern literature until the early 1990s. Our takeaway of Peirce’s studies is
that it offers a good reminder of where an interest in relational operations, and a
concern for both better syntax and a better understanding of topological features,
can lead.

2 Linear Distributivity and Linear Negation

*-autonomous categories provide the semantics for the multiplicative fragment
of linear logic. Cockett and Seely showed that *-autonomy can be characterized
3 See ‘Recent Developments of Existential Graphs and their Consequences for Logic’
[56, Selection 45].

C.S Peirce’s Early Developments in Linear Logic 9

by linear distributivity and linear negation laws [25,12]. Peirce clearly stated
both in his original presentation of a logic of relations in ‘Note B’ [57] and goes
on to give numerous derivations that we now recognize as corresponding to the
Lambek Calculus and to the logic of residuation. We discuss this connection to
linear implication in the next section and in this section introduce rules for linear
distributivity and the linear negation laws. In this section we follow closely the
order of Peirce’s presentation in ‘Note B.’ The appropriate conclusion is that
Peirce’s studies in the logic of relations led him, as far back as 1883, onto the
rules that correspond to the multiplicative fragment of linear logic.

We also use this section to introduce the graphical syntax. The syntax is
the same as Peirce’s Existential Graphs, but the exposition will emphasize re-
lation algebraic operations and the linear laws. This follows the work found in
[36] and [35], where the compositional features of the graphs are emphasized.
This is a departure from most introductions to Peirce’s EGs in terms of the
‘cut’ as negation and Peirce’s descriptions of the graphs and rules in terms of
natural language. It has the advantage of being more algebraic and more com-
positional, as each graph can be decomposed into smaller relational components,
e.g. relational composition, intersection, union, etc.

We assume some basic familiarity with EGs as can be found in [36] and
[35] (with further background found in [64]). It should (again) be noted that
this syntax and corresponding presentation have recently been formalized as a
calculus of generalized relations in [14].4 Though the formal theory mentioned
above in [14] extends to n-ary relations, all of our examples here are, for matter
of economy, taken from the setting of binary relations. Readers interested in
more algebraic treatments are encouraged to look in the citations above.

To begin, a relation is represented as in Figure 5 with a corresponding ingoing
and outgoing wire representing the domain and codomain of the relation. The
leftmost expression is a relation, between say x and y, such that xRy. We use

R R R [= R]

[R] [R̄] [R̆]

Fig. 5: Primitive (Unary) Relational Operations.

brackets when stating the equivalent relational expression or equivalent graphical
expressions. The further relational expressions in Figure 5 show the complement
(¯) relation, xR̄y that uses the single ‘cut’ (graphically drawn as around the
relation) and the converse (˘) relation, yR̆x. In regards to the converse, one could
wrap the ‘wires’ around the other way in a ‘z’-shape instead of an ‘s’-shape and
4 A further difference is worth stating. The general calculus given in [36] uses ‘dots’
along the wires to allow the treatment of ‘free’ vs ‘bound’ variables. The distinction
matters little for our purposes here.

10 N. Haydon

achieve the same purpose. We often write a shorthand version of converse that
takes the mirror (left-right) image of R as in the rightmost figure. If R is the
‘loves’ relation then the converse can be read as the ‘loved by’ relation, reading
now the rightmost wire first, which has been wrapped around to the leftmost
position, as in ‘y is loved by x’. We often omit the typing information (x, y) and
just read the relational operations.

There are several graphs we stress that are specific to the linear case. In
place of the single ‘cut’ we emphasize the ‘double cut’ or ‘scroll’ in Figure 6.
Peirce suggests the ‘scroll’ as a means of writing continuously and in one motion

R R

[
= R

]

[R] [¯̄R]

Fig. 6: Involution in EGs and Peirce’s scroll.

two nested ‘cuts’, as shown in the rightmost graph of Figure 6. The ‘scroll’
corresponds to an involution — the same motivation and the key feature behind
the development of *-autonomous categories — and so it should perhaps come
as little surprise that these are related. While many introductions to Peirce’s
EGs introduce the ‘cut’ as a key element of the graphical syntax, Peirce himself
often states that the ‘scroll’ or ‘double-cut’ is of more fundamental importance.5

A variant of the single ‘cut’ remains meaningful in the linear case. The com-
bined complement-converse relation (˘̄R) is shown in Figure 7. This corresponds
to the linear negation of R, or R⊥. The primacy of such an operation over

R
[
= R

]

[˘̄R] [= R⊥]

Fig. 7: Linear Negation

compliment or the ‘cut’ alone may seem surprising. We return to motivate this
graphically in Section 3. Related to the comment regarding Figure 5, there is no
difference between an ‘s’ or ‘z’ shaped bending of the wires. We also note that

5 One such key discussion occurs in ‘Selection 8: On Logical Graphs [Euler and EGs]
(R 481)’ in [54].

C.S Peirce’s Early Developments in Linear Logic 11

whether the converse is outside or inside the cut similarly has not effect, i.e. (R̄)˘

is the same as (R̆)¯.6
Where a relation is represented with corresponding ingoing and outgoing

wires, relational composition (;) is represented in the string diagrammatic syntax
by connecting the wire with a shared codomain-domain, such as in Figure 8. As

R S

[R;S]

Fig. 8: Relational Composition

is usual with relational composition, there is an implicit existential quantification
over the shared domain wire. We point this out as it will be recalled in the dual
case.

We find it convenient to represent graphs of the Booleans vertically, in con-
trast to the horizontal (sequential) composition of relations above. The way to

R
S

R
S

R
S

[R ⊓ S] [R ⊔ S] [R ⊑ S]

Fig. 9: Boolean Operations

read these parallel terms in Figure 9 is that the domain on the left and codomain
on the right are shared, i.e. they are the same type. The nexus of the shared
branch is Peirce’s tri-identity or teridentity relation (,), which ensures that
the shared (co)domain are the same. Sans cut, the way to read the parallel term
in ⊓, is that both R and S hold together (i.e. conjunctively), as in xRy ∧ xSy.
The reading of the dual, given as ⊔, is that both R and S hold disjunctively, as
in xRy ∨ xSy.7

6 This is all that is needed for the relational setting described in this paper. We note
that these follow, as shown in [36], from the lines of identity obeying the laws of a
special Frobenius algebra. In [36] it is also shown that the bending of the wires can
freely pass through a ‘cut’. Of further note, these laws also allow for commutativity
in the parallel connectives but not necessarily the sequential ones, and allow us, as
we will observe in Section 5, to derive the linear equivalences.

7 We note that Peirce includes the lattice operations in ‘Note B’ on p. 109 and that
these correspond to the additive or non-relative terms in the linear case. Our dis-
cussion will mostly focus on the multiplicatives or relative terms, however, as these
tend to be considered most interesting for the linear case.

12 N. Haydon

Much like how implication can be seen as the most primitive inferential con-
nective, the ‘scroll’ serves the same purpose in Peirce’s EGs. The rightmost
graph of relational inclusion (⊑) therefore deserves special mention. Note that
the shape of inclusion (omitting the R in Figure 9, for example) is the same
shape as the ‘scroll’. This means that the involution R is the same as the
blank inclusion R .8 That the ‘scroll’ manages to be both an involution and
an inclusion at one and the same time is perhaps not emphasized enough. We
will see that in the linear case this takes on a further meaning, as the ‘scroll’
mediates between the linear contexts and connectives.

The graphical syntax automatically captures associativity of composition and
the unit of composition, which is the identity relation (I) and gives meaning
directly to Peirce’s expression ‘the line of identity’. Notice the meaning of the
center graph in Figure 10 is the same irrespective of the order of parenthesis
(graphically depicted as dashed boxes) used for ordering the composition. The

R S T = R S T = R S T

[(R; S); T] [R; S; T] [R; (S; T)]

Fig. 10: Associativity of Relational Composition

identity relation, i.e. the unit of relational composition, is captured directly by
the wire as seen in Figure 11. Again, the center graph is the same irrespective
of ordering composition with the unit.

R = R = R

[I; R] [R] [R; I]

Fig. 11: Unit of Relational Composition

The two tensors forming the multiplicatives correspond in our relational set-
ting to relational composition and its De Morgan dual, an operation Peirce called
relative sum. We sometimes, following the linear logic tradition, also refer to this
as the par’d (as in ‘`’) context. Relational composition in EGs is well known,
though it is not (perhaps) the way Peirce’s graphs are typically presented. On
the other hand, the dual to relational composition is virtually absent in the
literature in Peirce’s graphs. This is unfortunate.
8 One may read the blank in the outer scroll as ⊤, or ‘True’, where a scroll around
a relation means primitively that the relation follows from ‘True’ or from whatever
follows, as Peirce would say, from the blank that is the sheet of assertion.

C.S Peirce’s Early Developments in Linear Logic 13

Relative sum, the De Morgan dual of relational composition, is represented
in the graphs by adding a ‘cut’ around each sub-composed term and a ‘cut’
around the whole expression as in Figure 12. We prefer to see this as a primitive

R S

[R † S]

Fig. 12: Relative Sum

n-ary scroll (as in [48]), with multiple inner cuts.9 While relative composition
implicitly existentially quantifies over the shared domain-codomain, relative sum
implicitly universally quantifies over the shared domain-codomain. One familiar
with Peirce’s EGs will recognize this reading and will also recognize that relative
sum shares the shape as disjunction.10 Rather than disjunction in parallel, rela-
tive sum is disjunction in sequential or compositional order. The meaning of the
expression in Figure 12 is thus: a relation from x to y, such that ∀z(xRz ∨ zSy).
Just as one can choose to read off an implication from the form of a disjunction,
if one has negation then one can also read off a (sequential) implication from
the relative sum. An alternative reading of relative sum is then the following: a
relation from x to y, such that ∀z(xR̄z ⇒ zSy) or a relation from x to y, such
that ∀z(xRz ⇒zS̄y).

Like relational composition, the dual is both associative and has a unit. Here
we see another hint of the good behavior of the ‘double cut’ or ‘scroll’, which
captures associativity and a nested hierarchy of the par’d context. As the ‘double
cut’ is an involution it (as usual) is similarly extraneous, and we can capture the
meaning by the one graph in the center of Figure 13. As in the case of relational
composition, associativity of relative sum is similarly absorbed by the graphical
syntax.

R S T = R S T = R S T

[(R † S) † T] [R † S † T] [R † (S † T)]

Fig. 13: Associativity of Relative Sum

9 The main difference is that we are in the Beta variant of the graph with lines of
identity, and we connect n-ary scrolls to the par’d context from multiplicative linear
logic. We go further in the next section to draw generalized entailment relations
consisting in a list of composed terms in the antecedent of the inclusion and a list
of dually composed, i.e. par’d, terms in the consequent of the inclusion.

10 Consider the intersection and join operations, where the latter is De Morgan dual
to the former and is read disjunctively as in Figure 9.

14 N. Haydon

Less obvious, but fitting, is that the ‘double cut’ also makes explicit the unit
of relative sum. While the unit of relational composition is simply the wire itself,

R = R = R

[d † R] [R] [R † d]

Fig. 14: Unit of Relative Sum

the unit of relative sum is what Peirce calls the diversity or difference relation
() as seen in Figure 14. Following Peirce’s naming we use d for this relation,
as it asserts that two things are not the same. We conclude that the ‘scroll’ as an
involution mediates between the twin tensors: it makes explicit a nesting for the
associativity of par and makes explicit the par unit. The ‘scroll’ also re-associates
in the implicational context, a point we return to in the next section.

We have now introduced relational composition and its dual. While Peirce
stresses the operations in ‘Note B’ and states their importance, we know of
no emphasis given to the par’d context in the literature on EGs. As far as we
know, the observation that the ‘scroll’ serves as a par-unit introduction and to
reassociate within the par’d context has also not been made before.

Once we have relational composition and its dual we can express linear dis-
tributivity and the linear negation laws. Peirce does so on p. 190 and p. 192 in
‘Note B’. We express these rules here for the first time in the syntax of EGs.
Given relational composition and its dual, left and right linear distributivity are
expressed in Figure 15:

R S T =⇒ R S T (left linear distributivity)

[R; (S † T) ⊑ (R; S) † T]

R S T =⇒ R S T (right linear distributivity)

[R † (S; T) ⊒ (R † S); T]

Fig. 15: Equations for linear distributivity.

Peirce sometimes shaded positive and negative regions of the graphs. We
show linear distributivity in this way in Figure 16. It perhaps helps to show
that linear distributivity takes the outermost composed relation and pushes it
inwards to ‘tunnel’ into an inner par’d context.

C.S Peirce’s Early Developments in Linear Logic 15

R S T =⇒ R S T

R S T =⇒ R S T

Fig. 16: Equations for linear distributivity with shaded regions.

In addition to the linear distributive laws, Peirce states what we now recog-
nize as the linear negation laws. We first give the introduction rule for left and
right linear implication in Figure 17. We call these introduction rules because

R R =⇒ =⇒ R R

[R † R⊥] [I] [R⊥ † R]

(/-introduction) (\-introduction)

Fig. 17: Equations for linear implication introduction.

taken out of the par’d context they express the residual, which corresponds to
linear implication. We show the equivalent residuals in the coloured form in Fig-
ure 18. We return to Peirce’s study of residuation in the next section. Lastly,

R R =⇒ =⇒ R R

[R/R] [I] [R\R]

Fig. 18: Equations for linear implication introduction with shaded regions.

we give the corresponding elimination rules that follow directly as the (linear)
contrapositive in Figure 19.

Peirce goes on to give a number of examples of the rules (pp. 195-198),
all of which we now recognize as examples from categorial grammar and the
Lambek calculus. Peirce also demonstrates some of the requisite morphisms in
the commuting diagrams for LDCs. Before moving to discuss residuation and
linear implication, we give in Figure 20 one paradigmatic example highlighting
how linear negation can interact with linear distributivity. This is known as
one of the ‘zig-zag’ equations in categorical logic. Peirce was both aware of this
connection, as he employs the steps often in derivations, but also draws explicit
mention to it in ‘Note B.’ Following linear distributivity, he notes that when the

16 N. Haydon

R R =⇒ =⇒ RR

[R; R⊥] [d] [R⊥; R]

(⊘-elimination) (⊘-elimination)

Fig. 19: Additional equations for linear negation.

A

A A A

\-introduction

A A A

linear distributivity

A

linear negation

A

unit elimination

Fig. 20: The ‘zig-zag’ equation in EGs.

C.S Peirce’s Early Developments in Linear Logic 17

relative to be eliminated has been replaced by a unit then it “can often be got
rid of” (pp. 193-194).

Finally, we add that Peirce was also aware of admissible cyclic permutations.
He observes on p. 194 that the following permutations of the sequent in Figure
21 are equivalent. This is the key feature of the further rule emphasized in cyclic

I ⊑ R † S ⇐⇒ I ⊑ S † R

Fig. 21: Allowed (Cyclic) Permutations in the †-context

linear logic in Figure 4. Immediately proceeding this passage, he points out that
such cyclicity is not possible when relational composition is in the conclusion
of the sequent, for which case only the regular converse operation applies. We
will return to these cyclic permutations in the context of the graphs in the next
section.

The rules discussed so far — in particular relational composition and its dual,
associativity and corresponding units, and left and right linear distributivity —
form the foundation of Cockett and Seely’s linear distributive categories (LDCs).
Adding the linear negation laws, in turn, form the foundation of *-autonomous
categories. As mentioned in Section 1, Peirce’s characterization of the logic of
relations via these rules in ‘Note B’ places historically the awareness of these
rules much earlier.

We also reiterate that Peirce’s previous algebraic work on the logic of rela-
tions in ‘Note B’, and in particular his awareness of relative sum and of linear
distributivity and linear negation above, has not be been made or addressed
in subsequent studies of the graphs. Peirce himself seems to have made little
mention of these rules in his later algebraic work (though exceptions can be
found, such as in [54, p. 240 & p. 281], where he refers, as linear distributivity
is sometimes referred to today, as reassociation.)11 In subsequent sections we
show, however, that many of the graphs Peirce went on to draw employ these
concepts.

3 Residuation and Linear Implication

After Peirce introduces linear distributivity and the linear negation laws, he
then proceeds in ‘Note B’ to give a number of examples. Many of these exam-
ples show the interplay of linear implication. As has been pointed out in [35],
Peirce systematically studied linear implication in the form of residuation and
drew corresponding graphs of residuals in EGs. The standard account of the de-
velopment of residuation traces it back to Dilworth [77] and Birkhoff [10], then
11 In the latter passage Peirce also presents the rule in EGs and also adds a further

operation, graphically motivated, called fusion, which adds the ‘double-cut’ to the
outer term first and then ‘fuses’ the two ‘scrolls’ together.

18 N. Haydon

on to Lambek [40] and Grishin [33]. The concept of residuation sees substantial
development through Galois connections and adjunctions in category theory.

We begin this section with a brief discussion of residuation in the context
of conjunction, then move to instances with composition that correspond to the
(multiplicative) linear case. The conclusion to draw is that Peirce’s developments
of residuation and his emphasis on linear implication (along with its dual, both
forming the bilinear operations) were far more extensive than previously thought.

As has been pointed out before in [45], Peirce may have been the first to
write about residuation in connection to conjunction. In the propositional case,
residuation comes from adding a ‘double cut’ or ‘scroll’ inside the inclusion
as shown in Figure 22. This is perhaps the simplest expression of ‘currying’
and ‘uncurrying’.12 For future discussion, we also note in Figure 23 the similar

A
B
C

⇐⇒
A
B
C

A ∧ B → C A → (B ⇒ C)

Fig. 22: Intuitionistic Entailment in Alpha

connection between the operation and intuitionistic negation. The move ensures

A ⇐⇒ A

¬A A ⇒ ⊥

Fig. 23: Intuitionistic Negation in Alpha

that the intuitionistic implication is analogous to the standard ‘cut’ as negation.
As we will see, Peirce was explicitly aware of this notion of intuitionistic

negation. We add to this story here by noting that the intuitionistic case em-
ploying the ‘double cut’ was actually Peirce’s motivation for the single ‘cut’ as
negation and not the other way around. In one of several passages drafted for
the purpose, and a passage worth quoting in full, Peirce makes this clear.
12 A Beta variant is easily given. The difference in the lines of identity is a simple

application of associativity.

A
B
C

⇐⇒
A
B
C

C.S Peirce’s Early Developments in Linear Logic 19

[The failing... lies in its] encouraging the idea that negation, or denial,
is a relatively simple concept, and that the concept of Consequence is a
special composite of two negations. In opposition to that, all my writ-
ings upon formal logic have been based on the belief that the idea of
sequence in reasoning and in judgment, whether conditional or categor-
ical, could in no wise be replaced by any composition of ideas. Now this
view inevitably leads to a negative predication, say “is not P” being re-
garded as the assertion that upon the supposition of the affirmation “is
P” there would be sequent the essence of falsity; and I regard this essence
of falsity to consist in permitting the interpreter to opine whatever he
may choose. I thus analyze the negation of P into a positing of P as a
mere idea together with the assertion that falsity is sequent upon it. As a
matter of fact, this idea was the starting-point in my mind of the notion
of logical graphs;—not merely those of the existential kind, but also of
the earlier entitative kind. The simple Cut is a scroll... [56, p. 353n10,
emphasis added]

The “essence of falsity” Peirce refers to above is the notion of absurdity familiar
to us from the intuitionistic case (where anything follows, or, as Peirce says,
where the asserter is allowed to “opine whatever”).13 Peirce goes on to sug-
gest two ways this can be interpreted (given the position with respect to the
scroll) and to express doubts about how best to iconically capture the process
diagrammatical in EGs.

We take the above passage as substantial evidence that the intuitionistic
negation is not a further development needing to be added to the theory of EGs,
but is rather at the heart of Peirce’s understanding of the graphs and has been
since the beginning.14 Further, in the passage Peirce makes clear his belief that
negation (at least when taken as a primitive) is not compositional. Regardless,
Peirce is emphatic that the single ‘cut’ really is a ‘scroll’ and that ¬P is really
P ⇒ ⊥.

A natural question is whether and to what extent Peirce understood what
we know about intuitionistic negation and its role in constructive mathematics.
Further work is needed to answer this question but given that the linear case is
more general, and Peirce appears to have had a surprising understanding of the
linear case, we suspect the answer may also surprise us.

Peirce also understood residuation with respect to relational composition.
A preliminary discussion of residuation in this context, i.e. in the Beta variant
of EGs, and an overview of Peirce’s historical developments along these lines
can be found in [35]. We extend this development in three ways here. First, the
motivation for adding converse inside the scroll in [35] was given by topolog-
ical considerations governing the line of identity: a line of identity can freely
13 See also Peirce’s discussion of the ‘the blot’ in [59].
14 See similar passages in [54, p. 169, p. 288, & p. 582] and [56, p.356]. Another note-

worthy passage occurs in [CP 4.564] where Peirce describes the single ‘cut’ as a
degenerate implication that lacks a specified consequent. Further connections be-
tween Peirce’s views and constructivism more generally can be found in [60].

20 N. Haydon

be deformed (into an ‘s’ or ‘z’) and doing so makes the graphs topologically
equivalent. Here we give a derivation that shows how these equivalences can
also be motivated directly by linear distributivity and the linear negation laws
given above. Second, we show that Peirce was aware of coresiduation and so to
the operations that give rise to bilinear logic and the multiplicative fragment of
non-commutative linear logic. To this we highlight the ability of the ‘scroll’ to
represent, in an effective way, these bilinear operations. Third, we add further
instances of graphs Peirce drew of residuation and identify them with contem-
porary notions in the literature.

The important change in the move to the Beta graphs is keeping track of
lines of identity for relational composition. One can summarize the equivalences
for residuation in EGs with the Schröder equivalences shown in Figure 24.

S
RT ⇐⇒ R S

T
⇐⇒ R

T S

[S ⊑ R\T] [R; S ⊑ T] [R ⊑ T/S]

Fig. 24: Schröder Equivalences in EGs

Note that the left and right residuals can be expressed as in Figure 25. These
are the expression in the consequent location — i.e. read from the inner most,
concluding ‘cut’ — within the ‘scroll’ from Figure 24. R\T is a relation from

RT T S

[R\T] [T/S]

Fig. 25: Left and Right Residuals

x to y, such that ∀z(zRx ⇒ zTy). Peirce sometimes refers to residuation as
“the relation of inclusion of correlates”. In his own words (and adapted to our
example) “it implies that everything that R stands in any fixed relation to is
included among the things to which T stands in that same relation” [55, p. 286].

Peirce was not only aware of the above equivalences but also stated a method
for arriving at different permutations in 1882:

Hence the rule is that having a formula of the form [R; S ⊑ T], the three
letters may be cyclically advanced one place in the order of writing, those
which are carried from one side of the copula to the other being both
negatived and converted. [53, p. 341]

The citation is from around the same time as ‘Note B’ and is before Peirce
substantially develops and presents the graphs. Given that linear negation is the

C.S Peirce’s Early Developments in Linear Logic 21

combined complement-converse relation (see Figure 7), Peirce is stating exactly
the well known rule from linear logic that one can move a term from one side of
the entailment to the other by adding a linear negation.

In Figure 26 we show that the equivalences can be derived from linear dis-
tributivity and linear negation. We derive both sides of the right-most equiva-
lence in Figure 24. The other side follows from symmetry.

R

R S S

/-introduction

R S S

linear distributivity

T S

assumption

T S

scroll introduction

(a) If R; S ⊑ T
then R ⊑ T † S⊥

R S

T S S

assumption

T S S

linear distributivity

T

linear negation

T

unit elimination

(b) If R ⊑ T † S⊥

then R; S ⊑ T

Fig. 26: Derivations of one side of the Schröder Equivalences

We add two additional derivations in Figure 27 to show how these rules
work in Peirce’s EGs. The first is the linear contrapositive, i.e. If R ⊑ S then
S⊥ ⊑ R⊥. We also derive, as an example of a key inference rule, a modus
ponens-like inference rule for the residual, i.e. R; R\S ⊑ S.

Peirce himself tended to write residuation vertically, as in the right side of
Figure 28. Turning back to show the full converse relation, it is clear that these
are topologically the same.

Once aware of residuation in the graphs, we find examples often in his later
work. In a draft of Lowell Lecture V from 1903, Peirce derives the transitivity
of residuation, i.e. A\C from A\B and B\C.15 At one point, Peirce refers to
the residual as the “graph of inclusion” and says it has “the shape of necessary
reasoning,” for necessary reasoning “is that whose conclusion is true of whatever
15 Reprinted in [55, p.305-307]. We note that Peirce previously derives the transitivity

of linear implication in his earlier algebraic studies in [CP 4:94].

22 N. Haydon

S

R R S

\-introduction

R S S

assumption

R S S

linear distributivity

R

linear negation

R

unit elimination

(a) If R ⊑ S then S⊥ ⊑ R⊥

R R S

R R S

scroll introduction

R R S

linear distributivity

S

linear negation

S

unit elimination

(b) R; R\S ⊑ S

Fig. 27: Further Derivations in EGs

S R
[
=

R
S

]

[S/R]

Fig. 28: Horizontal and Vertical Presentations of the Residual

C.S Peirce’s Early Developments in Linear Logic 23

state of things there may be in which the premise is true” [55, p. 287].16 The

Fig. 29: The Graph of Inclusion in Peirce’s hand.

graph, reprinted from a copy in Peirce’s hand, is given in Figure 29. In fact,
many of the more complicated graphs given by Peirce in Lowell Lecture III and
V consist in and can be expressed in terms of residuals.

As a final example, we draw attention to the first three graphs Pierce de-
scribes in Lowell Lecture III, here reprinted again in Peirce’s hand in Figure 30.17

The first graph states the existence of a residual, the second is the dual of what

Fig. 30: Graphs Containing Residuals.

is called the symmetric quotient [8] and the third is the straightness condition
found in Freyd and Scedrov’s “Categories and Allegories” [30]. The symmetric
quotient is (R\S)⊓(R\S)˘and the straightness condition is (R/R)⊓(R/R)˘⊑ I.18

16 Rendering taken from Jukka Nikulainen and can be found in the same section Lowell
Lectures V cited above.

17 Image taken from MS 464-645 as part of the Jeffrey Downard’s ‘Scalable Peirce
Interpretation Network’ (SPIN) project at: http://fromthepage.com/collection/
show?collection_id=16.

18 When analyzing the conception of quantity in [CP 4:96], Pierce states an analogous
straightness condition and offers the following (contrapositive) reading: “if A and B
are not identical, either A can do something B cannot or B can do something A
cannot.”

24 N. Haydon

Both play roles in domain constructions and, in the latter case, moving from a
division allegory towards a power allegory.

As far as we know, Peirce presentation of these relations precedes any other
presentation of them in the literature — work on the symmetric quotient in
the above works not appearing until the late 1980s. While Peirce describes the
meaning of the graphs in the Lowell Lectures, he unfortunately does not describe
his means of arriving at them. We are left wondering how he came to place so
much importance on the five graphs in Figure 30. More work needs to be done
to characterize these and the remaining two graphs.

The logic of residuation, which forms the core of the Lambek calculus, plays
a key role in categorial grammar and other non-commutative logics. The non-
commutativity comes from having distinct left and right residuals. The intuitive
idea behind categorial (or type) grammar is that the words that go on to form
a complete sentence do so by either becoming ‘more complete’ when combined
with further words on the left or becoming ‘more complete’ when combined with
further words on the right. Like a chemical molecule, nouns and other phrases
are ‘built up’ into submolecules, and a sentence is complete if the submolecules
combine to form a larger compound in the right way. Lambek did not seem
to be aware of Peirce’s developments early in his studies but eventually cites
in [39] features of Peirce’s valental account of relations, which Peirce based on
the same chemical analogy [54, pp. 212-7], as anticipating aspects of these type
grammars. This section shows the connection to be much stronger as Peirce
understood residuation — a fact almost certainly not known by Lambek at the
time — and already drew many graphs and derivations employing residuation.

Finally we show the dual to residuation, what is sometimes called coresidu-
ation, in Figure 31.19 Whereas the starting point for residuation is when com-
posed relations fall under (i.e. are ⊑) a ‘shortcut’ relation, the starting point
for coresiduation is when a relation falls under dually composed relations. As

R T
S ⇐⇒ T

R S ⇐⇒ T S
R

[R ⊘T ⊑ S] [T ⊑ R † S] [T ⊘ S ⊑ R]

Fig. 31: Coresiduation Equivalences

residuation is the right adjoint to relational composition, coresiduation is left
adjoint to relative sum. Looking back at Figure 30, one sees that these graphs
really contain instances of residuals and coresiduals.

The rule Peirce gives for permuting the terms in the inclusion captures both
the case of residuation and of coresiduation. After Peirce states the cyclic rule
19 As of yet there seems to be no standard name or symbol given to the dual of residu-

ation. Moortgat calls them right and left difference in [49], which is where we adopt
the symbols ⊘ and ⊘.

C.S Peirce’s Early Developments in Linear Logic 25

given above, he goes on to list over a dozen further examples of which some
include the coresiduation case. We also find examples where Peirce specifically
studied the par’d context that is the basis for coresiduation. We reproduce two
sample graphs from R488 in Figure 32.20 Given the ‘lover of’ (−l−), ‘servant

Fig. 32: Sample graphs from R488

of’ (−s−), and ‘benefactor of’ (−b−) relations, in Peirce’s words, sub-Figure 56
reads: “Whoever loves any benefactor of any man serves that man” or “Every
lover of any man serves everybody benefitted by that man”, or “Any benefactor
of any man is loved only by servants of that man”. The sub-Figure 57 is the
center graph that is the start of coresiduation. In Peirce’s words the meaning of
the graph reads: “Whoever serves any man loves everybody but the benefactors
of that man” or “Any man benefits every man served only by lovers of him”.
The multiple readings of these graphs shows an awareness that one can freely
interpret the orientation within the ‘scroll’, and shows clearly that Pierce studied
the par’d context inside the ‘scroll’. These graphs are also related to Cockett et
al.’s circuit diagrams that we discuss in the next section.

Coresiduation plays an important role in Moortgat’s categorial grammar [49]
and in the bilinear case emphasized by Cockett and Seely [26]. It is indeed
this second linear implication that is the characteristic feature of bilinear logic.
Lambek originally notes coresiduation and the par’d context in the presentation
of bilinear logic, but goes on to downplay its linguistic importance. He writes:

the distinction between the tensor product and its de Morgan dual, called
par by Girard, seemed to be irrelevant for linguistic purposes. We there-
fore decided to drop it (see [22]) and turn to what is now known as
compact bilinear logic and its algebraic presentation in the form of pre-
groups. [43, p. 672]

While it does not add expressivity over the linear implication with linear negation
— it is in fact the linear dual of linear implication, i.e. R ⊘T = (T\R)⊥ — it
does aide as an important connective for the proof theory (e.g. proof nets) and
for characterizing inference rules. It appears that Peirce, contra Lambek, would
side decisively with Moortgat here.

20 Reprinted in [54, p. 266]. See also R480 (and again in [54, p. 270].

26 N. Haydon

A question was posed in the last Section 2 about why the combined complement-
converse relation (the ˘̄R or R⊥ shown in Figure 7) could have more fundamental
importance than complement itself. These bilinear operations give the answer:
taking the inclusion as prime importance, the bilinear operations produce equiv-
alences within the inclusion that induce the combined complement-converse re-
lation.

We add two further points about Pierce’s understanding of residuation. First,
we repeat a significant passage where Peirce stresses the importance of residua-
tion.

Yet really, the form l † ¯̆
l is all-important, inasmuch as it is the basis of

all quantitative thought. For the relation expressed by it is a transitive
relation…[It] is not only a transitive relation, but it is one which includes
identity under it. That is, I l † ¯̆

l. But it is further demonstrable that
every transitive relation which includes identity under it is of the form
l † ¯̆

l. [CP 4:94]

Peirce goes on to demonstrate the last claim. The passage shows that Peirce
understood that any derivation from the identity can be put in this form.21

Peirce makes a similar claim on p. 194 in ‘Note B’:

When we have only to deal with universal propositions, it will be found
convenient so to transpose everything from subject to predicate as to
make the subject I. Thus, if we have been given l b we may relatively
add ¯̆

l to both sides; whereupon we have I l† ¯̆
l b† ¯̆

l. Every proposition
will then be in one of the forms: I b † l or I b; l .

Note, first, that Peirce is (again) making a claim analogous to moving to the
one-sided sequent calculus. Further, Peirce is aware that in this calculus both
relational composition and the dual is sufficient to express all the ‘universal’
propositions. We believe these passages demonstrate a turn towards proof the-
ory, as they suggest i) placing importance on those constructions only from
the unit/identity, ii) placing importance, not just on the linear negation rules
given above that are so crucial to proof theory, but suggest an awareness of the
sufficiency of these rules for such an undertaking.

We summarize to this point. Peirce understood linear distributivity and linear
negation laws and states them clearly as far back as 1883 in ‘Note B’. At around
the same time, Peirce carried out a systematic study of residuation that includes
a rule for permuting terms to arrive at various equivalencies. This rule works
21 The omitted line in the ‘…’ above is also of interest: “By a transitive relation, we

mean a relation like that of the copula. If A be so related to B, and B be so related
to C, then A is so related to C. The ‘copula’ is Peirce’s sign for illation or inference
— it is formally like that of implication — but the passage is significant in that
Peirce sides decisively with the linear case and that the sign of inference ought to be
based on sequence and not just inclusion. We come back to the importance Peirce
places on sequence in Section 6.

C.S Peirce’s Early Developments in Linear Logic 27

for both residuation and coresiduation and, in an example we return to later in
Figure 35, captures the cyclicity condition behind cyclic linear logic. Peirce also
states the cyclicity condition in ‘Note B’ and goes on to give in ‘Note B’ and
elsewhere many examples employing these rules. We also have given numerous
examples demonstrating that Peirce continued to develop and draw graphs of
residuation. We conclude that Peirce presented and understood the same relation
algebraic structure that models cyclic bilinear logic.

We now turn to his Existential Graphs and situate the resulting diagrammatic
syntax in more contemporary terms.

4 Existential Graphs and Circuit Diagrams

We showed in the last section how Pierce had an understanding of the bilinear
operations corresponding to linear implication and its linear dual. Because the
‘scroll’ also serves as an inclusion, we suggestively showed — primarily in Figure
24 and Figure 31 — how these equivalences are captured graphically inside the
‘scroll’. The residuation equivalences given in [35] were motivated by topological
considerations governing Peirce’s ‘lines of identity’. We go further in this section
and make explicit how these equivalences can arise directly from topological
features of the ‘scroll’ itself. As a key source of examples, we go on to compare
Peirce’s notation to Cockett et al.’s circuit diagrams in the literature.

To begin, we note that the ‘scroll’ allows the bilinear operations to be ef-
ficiently presented as topological moves. Two examples in Figure 33 show how
relations can be freely rotated inside the inclusion. These are the same deriva-

R S
T

R S
T

↶

↶

SRT

↶

↶

SRT

‘scroll’-intro.

(a) \-introduction

R
T

R

T

↶

↶

T
R

↶

↶

T
R

‘scroll’-intro.

(b) the linear contrapositive

Fig. 33: Topological derivations inside the ‘scroll’

28 N. Haydon

tions as those given in Figure 24(a) and Figure 27(a). The added ‘scroll’ in each
of the last steps makes explicit the change in direction of the inclusion.

Rather than present converse as mirror image (R), in these examples the
the relation is ‘wrapped around’ so that it becomes inverted as in R. One can
similarly imagine rotating the page itself and looking at the graphs upside down.
In the case of binary relations, this inverted relation is topologically equivalent
to the converse in Figure 5 (it is as if one grabs both outermost wires and
pulls, leaving the left and rightmost wires the same).22 Given the derivations
from linear distributivity and linear negation above in Figure 26, we can freely
associate these re-orientations with derivations. Regardless, we note that Peirce’s
‘scroll’ presents various ways of capturing these logical operations via topological
moves.

With these topological considerations, it is worth comparing the ease of pre-
senting the Schröder equivalences with similar diagrammatic approaches in the
literature found in [67, p. 159] and [30, p. 259] (and the FOL derivation found,
for example, on [67, p. 42]). We find the cyclic presentation within the ‘scroll’ to
be a simple and elegant means of capturing the underlying logical relationship:
the ‘scroll’ allowing clear presentations of the tensor’d and par’d context, along
with the variety of linear implications that mediate them in the bilinear context.
Given it is well understood that linear sequents can be so permuted, it is perhaps
a wonder why a graph with these cyclic connections has not been so used for the
purpose.

We summarize all of the relevant operations to this point. Figure 34 offers
a shorthand notation for representing residuation and coresiduation via rota-
tions inside the ‘scroll’. These moves make clear the various introductions (or

⊸ -introduction ↶

R S
T V

↷ ⊸-introduction

⊘-introduction ↷
↶ ⊘-introduction

Fig. 34: Summary of Bilinear Operations

eliminations) of bilinear terms while preserving the overall cyclic order.
As a final example, we note that one can use the residuation and coresid-

uation rules to perform a ‘full cycle’ and move a par’d context from one side
of the sequent to the other side as in the cyclic rules in Figure 4 from Section
1. We show the rule in EGs in Figure 35. At first glance this may look like
22 One must be more careful in the n-ary case, where the overall top-to-bottom ordering

matters. In this more general case it is perhaps better to see the ‘scroll’ as a sphere,
like an 8-ball, where the antecedent is brought around from the back of the 8-ball
to the front.

C.S Peirce’s Early Developments in Linear Logic 29

A B
[I ⊑A†B]

B
A

[B⊥ ⊑A]

↶ ⊘-introduction

B A
[I ⊑B†A]

↶ \-introduction

Fig. 35: Cyclic Law via Bilinear Operations

commutativity, as it appears analogous to a (binary) swapping of the order of
the consequent. The empty antecedent, however, ensures that the total order-
ing is (cyclically) preserved. Graphically, this rule corresponds to taking a par’d
expression from the bottom right of a ‘scroll’ and moving it to the upper part
(using coresiduation), and then moving it down again to the lower left (now
using residuation).23 This was, as stated in Section 2 and Figure 21, known by
Peirce and given algebraically in ‘Note B.’

We claim that Peirce’s Existential Graphs can represent the ‘geometric’
graphs of the residuation laws and their respective equivalences in [4] and [5].
It would also be worth comparing the presentation in EGs to the version with
quantification in [50]. We will save these developments for another time.

With these topological features of the ‘scroll’ now emphasized, we return to
the contemporary significance of these graphs and moves. Presently we compare
the resulting graphs to Cockett et al.’s circuit diagrams for the bilinear case as
found in [26].24

The key to reading a Cockett et al.’s circuit diagram is that the topmost,
incoming wires are implicitly tensored and the output, bottom-most wires are
implicitly par’d. See the comparison in Figure 36. In a ‘scroll’, the inputs are
captured by composed terms in the antecedent position, and the outputs are
captured by terms in the dual composition, which are captured by separate ‘cut’
contexts inside the inclusion.

A further, telling comparison is given in Figure 37. Here a standard deduction
takes the generic morphism from Figure 36 and introduces a linear implication
(think, again, of the example of currying) to the output port. Notice the addition

23 An involution is introduced during the last step with the residuation introduction,
but in our setting the involution is again superfluous. One can also express this rule
with left and right (linear) negations. We come back to this point at the end of this
section.

24 Further summaries can be found in [23] and [24].

30 N. Haydon

A ⊗ Γ ⊢ B ⊕ ∆

A Γ
B ∆

Fig. 36: A comparison of a generic
morphism in Cockett et al.’s circuit
diagrams (left) and Peirce’s EGs

(above)

Γ ⊢ (A ⊸ B) ⊕ ∆

Γ

AB ∆

Fig. 37: Another comparison of a mor-
phism in Cockett et al.’s circuit diagrams
(left) and Peirce’s EGs (above)

of a ‘scope box’ on the left side in the circuit diagram that keeps track of the
original position and type of the wire.

The logical conception that motivated Cockett et al.’s circuit diagrams —
almost certainly without any awareness of Peirce — and Peirce’s analogous pre-
sentation in EGs is remarkable. Even more striking, perhaps, is the description
Cockett et al. give of the scope box. They write that “the ‘opaque’ side of the
box ought to be regarded as the wire A bent to join the ⊸ node at the bottom
of the box” [24, p. 18]. This is given explicit meaning in the topological features
of Peirce’s ‘scroll’. We give an example of the linear negations below, but we note
that each of the component circuits given by Cockett et al. in [26] can be given
correspondingly simple expressions in terms of Peirce’s ‘scroll’.

We draw a further connection to circuit diagrams. Peirce was aware that
inclusion graphs like the the ‘scroll’ can be composed using inference rules for
EGs. We give an example in Figure 38 that follows Pierce’s graphical depiction
of the process in Lowell Lecture II from 1903. [55, p. 201-2]. The steps are as
follows. A ‘scroll’ is first ‘iterated’ or nested inside the consequent of another.
Notice that the iteration that yields the nested ‘scrolls’ has the effect of lining
up the antecedent of the inner scroll with the consequent of the outer scroll.
‘Lines of identity’ are then similarly ‘iterated’ and extended inwards to join the
shared term. Composition or cut (now emphasized and with the usual meaning
from the sequent calculus) is then performed to eliminate the middle term. In
Pierce’s words this involves the shared middle term (i.e. ‘A’) being ‘deiterated’
and then ‘erased’. The result is a new ‘scroll’ with the requisite antecedents and
consequents.

C.S Peirce’s Early Developments in Linear Logic 31

Γ1

A ∆1

Γ2 A
∆2

Γ1 ∆1

A
A
Γ2 ∆2

rotate

Γ1 ∆1

A
A
Γ2 ∆2

iterate

Γ1 ∆1

A
A
Γ2 ∆2

extend

Γ1 ∆1

Γ2 ∆2

Cut

Γ1 ∆1

Γ2 ∆2

rewrite

Γ1 ∆1

Γ2 ∆2

‘scroll’ elim.

Γ2 Γ1

∆2 ∆1

rotate

Fig. 38: Derivation of comp4.

We could also perform the cut or composition step by employing linear dis-
tributivity followed by a elimination using the linear negation law. Similarly,
while Peirce often nests the graphs vertically, as we have shown, we could use
a ‘one-sided’ presentation where we reorient the ‘scrolls’ as following from the
unit (i.e I) and again perform linear distributivity and linear negation.

Four significant variations of cut or composition of ‘scrolls’ are given in Fig-
ure 39. These are the rules for planar polycategorical composition (see [23, p.14
& 16]). In terms of the general proof theory, these operations ensure that the
respective (planar) ordering of the composed terms is preserved. All the condi-
tions, however, are captured by using the bilinear operations and cut. We add
that the four variants of planar composition in Figure 39 fall under Pierce’s
rule that any graph, a ‘scroll’ included, can be iterated within any ‘positive’
area. This includes in general the multiple locations allowed by consequents in
the par’d context. This is a feature Peirce’s Existential Graphs share with deep
inference.25

Cockett et al. refer broadly to this relational setting as the logic of generalized
relations. The Γ is a placeholder for a list of tensored (or, in our case, relationally
composed terms), while the ∆ is a placeholder for a list of par’d terms (in the
dual presentation). Both are straightforwardly captured by lists in EGs, such as
in Figure 40. Given the preceding discussion in this and the previous section, we
would argue the Peirce understood this setting.
25 See discussions of the comparison in [48,44] and in [14]. A further worthwhile direc-

tion between deep inference and cyclic linear logic is found in [28].

32 N. Haydon

Γ
A

Γ1 A Γ2

∆

Γ1 Γ Γ2

∆

comp1

Γ

∆1 A ∆2

A
∆

Γ

∆1 ∆ ∆2

comp2

Γ1

∆1 A
A Γ2

∆2

Γ1 Γ2

∆1 ∆2

comp3

Γ1

A ∆1

Γ2 A
∆2

Γ2 Γ1

∆2 ∆1

comp4

Fig. 39: ‘Scroll’ (i.e. planar) composition rules.

Γ1 Γ2 Γ... Γn

∆1 ∆2 ∆... ∆m

Fig. 40: A Generalized Entailment Relation

An advantage of circuit diagrams, like any wiring diagram, is the ease of
expressing composition. A further question is whether nesting ‘scrolls’ can serve
the same function. We believe it can, and that doing so has several advantages,
but we are not yet convinced of its efficiency in this particular purpose.

The circuit diagrams from Cockett et al. were created following two major
developments: (i) the circuits allowed for treating the units in terms of what are
called ‘thinning links’ that include a variety of coherence conditions and rewrites,
and (ii) the scope boxes, again with corresponding coherences and rewrites, were
needed to keep track of the bounds of the currying operations in the context of
derivations. As hinted at above, Peirce’s ‘scroll’ serves the same function as the
scope box. Further, in regards to the use of thinning links to keep track of the
units, we note that Peirce’s ‘lines of identity’ not only keep track of the position
of the (possible) units but the cyclic presentation meets the exact coherence
conditions given for treating the thinning links.

We point out a further advantage the ‘scroll’ has for linking connectives to
their corresponding inference rules. When expressing tautologies for the logical
connectives, the resulting introduction and elimination rules are captured (topo-
logically) by these bilinear moves. As an example, we show how the tautology
from the residual/linear implication (i.e. A\B ⊑ A\B, which we write sugges-
tively as idA\B) yields a corresponding modus ponens rule for its elimination
in Figure 41. A further example comes from a basic tautology A ⊑ A, which
leads to the linear negation laws in Figure 42. The requisite inference rules for

C.S Peirce’s Early Developments in Linear Logic 33

AB

AB

(↷ ⊸-elimination)
(=⇒)

⇐⇒

(=⇒)
(↶ ⊸-introduction)

A AB
B

[idA\B] [A; A\B ⊑ B]

Fig. 41: Corresponding elimination rule from tautology.

A
A [idA]

AA

↶

AA

‘scroll’-intro.

[I ⊑ A\A]

A
A [idA]

A A

↶

A A

‘scroll’-intro.

[A; A⊥ ⊑ d]

Fig. 42: (Topological) Derivations of Linear Negation Laws from A ⊑ A

34 N. Haydon

the bilinear case are all fashioned in this way: arising, as they do, out of the
residuation operations from tautologies on the connectives.

We note these (again) correspond to the required rewrites in Cockett et
al.’s circuit diagrams. Figure 43 shows the circuits corresponding to the bottom

[I =⇒ A⊥ ⊕ A]
[A ⊗ A⊥ =⇒ d]

Fig. 43: A comparison of Cocket et al’s circuit diagrams for linear negation
circuits.

graphs in 42. Peirce would have been aware of the manipulations that went
into these circuit diagrams. Like a dial, the ‘scroll’ allows us to see the ‘inner
workings’ of the operations that turn wires around in the more general setting.

As mentioned in Section 2, ‘scrolls’ can be added varyingly around the par’d
contexts to reassociate (i.e. nest) par’d terms, add a par’d unit, or (as seen above)
reorder an inclusion to yield the linear negation laws. ‘Scrolls’ can also be added
to reassociate implicational terms. We give the following example in Figure 44,
which expresses the key morphism for what Cockett et al. call a Bilinear Category
[26, p. 103]. The addition of the ‘scroll’ in each respective location is (again) a

AB C ⇐⇒ AB C ⇐⇒ A B C

[(A ⊸ B) † C] [A ⊸ B † C] [A ⊸ (B † C)]

Fig. 44: Key morphisms for a Bilinear Category

simple way of expressing re-associativity. Cockett et. al recognize the morphisms
as such, but we add that this is built into the rules of Peirce’s original EGs.

We add a final example for posterity. In the bilinear case the left and right
residuals and corresponding duals give rise to four different linear negations
[42]. These are expressed, like a sequential variation of the intuitionistic case in
Figure 23, by adding a ‘scroll’ on the requisite side to introduce a par unit. One
can imagine, for example, adding these units to the derivations in Figure 42.
While the connectives as presented in Figure 45 have the same meaning with
the involution, they are distinguishable in the larger cyclic context and proof

C.S Peirce’s Early Developments in Linear Logic 35

[R\d] R R [d/R]

[R ⊘I] R R [I ⊘ R]

Fig. 45: Bilinear negations.

theory by how they behave, i.e. by keeping track of locations for corresponding
expansion and elimination rules.26 Again, and similar to the question above
about whether nesting ‘scrolls’ can serve the same purpose as proof nets, this is
a further direction worth making precise.

Peirce’s ‘scroll’ simultaneously serves as a graph of inclusion and an invo-
lution. In this section we have demonstrated a number of further effects from
adding a ‘scroll’ at various locations inside the inclusion. Adding ‘scrolls’ out of
the unit wire or around a unit wire yields the variety of linear negation rules.
Adding a ‘scroll’ can also reassociate in the implicational context, as in Figure 44,
yielding the distinguishing morphism of Cockett et al.’s Bilinear Categories. In
this section we have shown further that the bilinear operations can take the form
of topological moves inside the ‘scroll’. We continue demonstrating the graphical
efficiencies of Peirce’s ‘scroll’ in the next section, and show how the ‘scroll’ also
keeps track of refutations.

5 Proofs and Refutations

While the multiplicative fragment of linear logic is characterized by *-autonomy,
and in particular by linear distributivity and linear negation, another common
characterization of the ‘linear-ity’ of linear logic is in terms of separate proof and
refutation clauses for the linear connectives. While intuitionistic logic is said to
be about proofs, linear logic can be thought of as a dialogical back and forth
between a ‘prover’ and ‘refuter’. This can be found, for example, as far back as
[11], and also more recently in the anti-thesis interpretation by Shulman [71].
One of the first completeness proofs for linear logic is based on such a prover vs
refuter approach in [1].

The intuitive idea behind this approach is that in a derivation the linear
negations laws require every atomic expressions to have a linear dual. An ap-
propriate proof then, such as those given in a valid a proof net, has the right
number of ‘pairs’ of atomic expressions and in the right locations to ensure that
the linear rules were followed.

Peirce often emphasized the importance of dialogical reasoning — both in
thought and in signs [37,58,60].27 Consider the following passage as one example:
26 Further discussion on negation in the bilinear context and some further directions

can be found in [47].
27 Burch discusses one of the few instances of game semantics in EGs in [20]. See also

[65].

36 N. Haydon

The answer I am reporting now goes on to show, what will hardly be
disputed, that all deliberative meditation, or thinking proper, takes the
form of a dialogue. The person divides himself into two parties which
endeavour to persuade each other. [56, p. 180]

We note in particular that Hintikka’s developments in game-theoretic se-
mantics are based in part on the early ideas found in Peirce [37,38,58]. While
the emphasis on proofs and refutations was not around at Peirce’s time, he was
aware of the refutation-clauses of the connectives, including the linear connec-
tives. In fact Peirce’s early derivations of linear distributivity were motivated
from considerations of the refutation clauses of the connectives [53, see ‘On the
Logic of Relatives’]. We also show, for the first time, how linear contraposition
captures the well known linear equivalences in the graphs.

The refutation clauses of the Boolean connectives are well known. What we
take to be interesting about the examples in Peirce’s graphs is (i) that they show
how the ‘scroll’ is an effective means of moving to the refutation context, and
(ii) that the same principle works for the sequential/compositional terms, i.e. for
the multiplicatives. We mention again that Peirce clearly employs intuitionistic
reasoning about negation in these examples.

As a simple preliminary example, we show a more subtle presentation of
the law of contraposition in Figure 46, stating “A ⊑ B ⇔ B̄ ⊑ Ā”. This is a

A
B ⇐⇒ A

B

A ⊑ B Ā ⊒ B̄

Fig. 46: The Law of Contraposition

straightforward transformation in the graphs that follows from adding a ‘double
cut’ around A. We reverse the direction of implication, ⊒, to signal reading the
inclusion from the reverse direction and from bottom to top.

In the examples discussed below, Peirce adds more meaning to contraposition
by recognizing that the implication A ⊑ B means that if B were to ‘vanish’, as
he says, then A must also vanish. The vanish here is to go to False or absurdity,
as in B ⇒ ⊥ (and graphically: B). Such a meaning can be captured in the
graphs, too, and involves making explicit an extra ‘double cut’ as seen below.
We liken this, as in Section 2, to using the ‘scroll’ to add a par’d (or disjunctive)
unit in the context of the graphs — the ‘scroll’ simply making explicit what is,
or could be there — but now as a refutation. As in Figure 46, Figure 47 makes
this explicit.

A further generalization is needed for the Beta case with sequential compo-
sition. We again, though, simply reason in the same manner about what would
happen if a consequent were false. We now move to the main example from Peirce

C.S Peirce’s Early Developments in Linear Logic 37

A

B

Fig. 47: (A ⇒ ⊥) ⊒ (B ⇒ ⊥)

[53, p. 338-9] and start with the graph of “every lover of a servant is a benefactor
of”. Using −l− for the ‘loves’ relation, −s− for ‘serves’, and −b− for ‘benefac-
tor’, this graph is given in the top of Figure 48. Following the discussion above,

l s
b

l s

b

... if b ⇒ ⊥

l s

b

... then l; s ⇒ ⊥

l s

b

... then (l ⇒ ⊥) or (s ⇒ ⊥)

Fig. 48: Establishing the Refutation Clauses

Peirce notes that the meaning of this graph includes that if the consequent b
were to vanish, then the antecedent must also vanish. Graphically, this sequence
begins in the second derived line in Figure 48, where b ⇒ ⊥ is represented by
introducing within the consequent. We next capture the vanishing antecedent
by adding further ‘scrolls’. The larger ‘double cut’ around l; s is needed because
the orientation of the implication is reversed. The outermost ‘cut’ signals that

38 N. Haydon

we ‘peer inside’ the first ‘cut’ to see what the consequent would be, and the
consequent now reads (like the b before it) that l; s ⇒ ⊥. Finally, notice that
all we have done (and even all we will continue to do) is to add double cuts in
or around various subgraphs. This is always appropriate, though the meaning of
the graph only changes subtly.

The first important step is done. The next involves thinking about what it
means for relational composition to vanish. The composition fails when either
of the composed relations vanishes. Again, all we need to express the condition
‘Either l ⇒ ⊥ or s ⇒ ⊥’ is to add ‘double cuts’ in or around subgraphs, as in
the third line in Figure 48.

At this point we have successfully traced the consequences of the refutation,
i.e. what the result would be if the consequent were to vanish and the antecedent
were likewise forced to vanish as well. ‘l; s ⊑ b’ implies that ‘if b ⇒ ⊥ then either
(l ⇒ ⊥) or (s ⇒ ⊥)’. And all this is shown in the graphs by making the series
of additional ‘double cuts’ explicit.

The example shows that the ‘scroll’, standing as it does for an involution,
is an effective means of tracking the move to the refutation context. The same
principle also extends to relational composition, and its dual, and to the other
linear connectives. Peirce goes on to use the same style of reasoning to derive
the associativity of the dual of composition, to derive linear distributivity, and
to derive the residuation equivalences. For example, when listing the Schröder
equivalences Peirce points out that their refutation clauses are all the same and
so concludes that these are equivalent expressions (or in our case, equivalent
graphs).28

As a further example, we show how linear equivalences are captured in the
graphs as instances of linear contraposition (as given in the derivation in Fig-
ure 42). In the linear case, the contrapositive also induces a converse as in the

R S

R S
⇐⇒ S R

S R

[idR†S]
[
id(R†S)⊥

]
[
= id(S⊥;R⊥)

]

Fig. 49: R † S ∼= S⊥; R⊥

28 We mention again that this is for the binary/dyadic relations. The generalization to
triadic relations requires that teridentity — the identification of three terms being
the same — to be given a refutation where at least one is different. Peirce calls this
the triad of diversity. This triad involves adding ‘scrolls’ as well. We also mention
that falsity can be replaced with ⊥⊥, which like ⊥⊥can be thought of as keeping track
of the type of the wire. These are employed in the recent neo-Peircean calculus of
relations given in [14].

C.S Peirce’s Early Developments in Linear Logic 39

example shown in Figure 27(a). Note that the graph on the left in Figure 49 is
the result of transforming the graph on the right by first rotating and inducing
the converse, and then by adding a double cut to redirect the order of the inclu-
sion. Following the modified converse in Figure 33, one could similarly turn the
page upside down. We give relational composition — the other multiplicative —
as another example in Figure 50. Finally, we show one of the additives as well

R S
R S

⇐⇒
S R

S R

[idR;S]
[
id(R;S)⊥

]
[
= id(S⊥†R⊥)

]

Fig. 50: R; S ∼= S⊥ † R⊥

in Figure 51. Parallel operations are commutative, and so the final equivalence

R
S

R
S

⇐⇒

S
R

S
R

[idR⊔S] [id(R⊔S)⊥][
= id(R⊥⊓S⊥)

]

Fig. 51: R ⊔ S ∼= (R⊥ ⊓ S⊥)

follows from an application of commutativity. This is a key difference from the
sequential case, where the involution anti-distributes rather than distributes.
Regardless, the topological features of the scroll captures the difference. The
key takeaway is that, given the residuation equations, the ‘scroll’ displays these
topologically as the same graphs.

We list other well-known linear equivalences below in Figure 52. All can be
captured in a similar manner topologically in EGs. Note, again, how the cyclic
presentation naturally keeps track of the order and any necessary converses. We
will come back to the listed exponentials in the next section.

The novelty here is: (i) that these have not been shown in the graphs, (ii)
the examples show how the ‘scroll’ mediates between the proof and refutation
contexts, and (iii) that the linear equivalences can be topologically captured by
the same graph. The key takeaway is that the De Morgan duality commonly

40 N. Haydon

(R † S)⊥ ∼= S⊥; R⊥ (R ⊓ S)⊥ ∼= R⊥ ⊔ S⊥

(R ; S)⊥ ∼= S⊥ † R⊥ (R ⊔ S)⊥ ∼= R⊥ ⊓ S⊥

(R⊥)⊥ ∼= R⊥⊥⊥ ∼= ⊥⊥
I⊥ ∼= d

(B ⊘A)⊥ ∼= A ⊸ B ∼= A⊥ ⊸

B⊥

(A ⊘ B)⊥ ∼= B

⊸

A ∼= B⊥ ⊸ A⊥

(!R)⊥ ∼= ?(R⊥)
(?R)⊥ ∼= !(R⊥)

Fig. 52: Various linear equivalences.

recognized as captured by EGs also extends to the multiplicative (and so linear)
case.

We note that these equivalences also follow from the line of identity following
the laws of a special Frobenius algebra, and can be derived from those laws. The
version of the modern graphical syntax presented in [36,14], based on Peirce’s
account, develops this view. Of interest here is the addition that the ‘scroll’
provides; namely, that with residuation the topological features of the scroll
already capture these equivalences.

We have shown how the ‘scroll’ reassociates the par’d context and linear
implication, the role it plays in capturing the linear negation rules, and we have
now shown how the ‘scroll’ captures the contrapositive and linear contrapositive
case. Indeed the only location in the inclusion we have not discussed is the
location corresponding to the Boolean contrapositive and the single negation or
complement. In [14] it is shown how negation as a unary connective arises out
of requisite linear adjunctions as the converse of linear negation.

In this and the previous sections we have greatly generalized the function
and purpose of the ‘scroll’, including its relation to the linear operations and
connectives. In the penultimate section we turn towards resource sensitivity.

6 Resource Sensitivity

Linear logic is also described as the logic of resources. The linear negation laws
allow for only strict resource production and annihilation, so that specific re-
sources cannot be freely copied or duplicated. As we have made clear, Peirce
was well aware of these rules as he arrived at and stated these very laws. We use
this last section to mention how Peirce took these notions further and recognized
that a notion of quantity follows from them. Finally, linear exponentials can be
used to add selective copying or duplicating back into the logic. We end with a
few remarks on what the linear exponentials look like in the graphs.

Peirce was aware that the linear negation laws, and in particular, the dif-
ference or diversity relation, allowed for a notion of quantity. We give an early

C.S Peirce’s Early Developments in Linear Logic 41

example from Peirce’s algebraic work. Peirce states that from “Some A is B”
and “Some A is not-B”, we can conclude that “There are at least two A’s” [CP
4:88]. This follows from the linear negation laws, where a B composed with a
not-B asserts the difference of the remaining terms. The key point Peirce is em-
phasizing is that some A not being the same as some (other) A means that there
are at least two A’s.

As seen in the quotation about negation in Section 3 and Footnote 21, Peirce
often emphasized that logic is a linear series of inferences. In the passage with
the example given above, Peirce goes on to state that this derivation relies on the
principle of contradiction, which he writes as “the non-identity of A and not-A”.
We note that this appears explicitly to be the multiplicative case, relying as it
does on the diversity relation, and Peirce is reading the principle of contradiction
specifically in terms of sequential or linear order. Peirce goes on to discuss the
transitivity of linear implication, the role it plays in comparative relations, and
eventually discusses multitudes, which is Peirce’s term for expressing the size of
a collection. We remind the reader of the earlier passage where Peirce states that
linear implication “form[s] the basis of all quantitative thought”. Indeed each of
these developments arises from Peirce’s study of the linear negation laws (and in
particular the diversity relation) and the notions of quantity that he interprets
to follow from them.

In the relational model, the linear exponentials are given by the relations in
Figure 53.29 Discussion of the exponentials, some of their properties, and their

R R
!R ?R

[= I ⊓ R] [= d ⊔ R]

Fig. 53: Exponentials

representation in the relational model can be found in Section 14 in [42]. We
know of no place where Peirce calls out these relations and emphasizes their
significance as we might, at least with respect to the intuitionistic fragment,
motivate them today. One noteworthy passage, however, is worth discussing
below.

Perhaps the key feature of the !-exponential is that it converts a multiplicative
into an additive. Equationally, this is expressed by the following: !A⊗!B ⊢!(A ∧
B). We show this graphically in Figure 54. Surprisingly, Peirce makes the same
observation in MS 430 and reprinted in part below in Figure 55.30 Peirce goes
on to finish the passage by noting that the last two graphs, equivalent to those
in Figure 54, are the same. Peirce is identifying, via topological features, the key
29 We note again that d = I⊥ and have left out the converse.
30 We thank Jukka Nikulainen again for the digitization and presentation in the figure.

42 N. Haydon

A B ⇐⇒ A
B

!A; !B !(A ⊓ B)

Fig. 54: Key property of !-exponential.

Fig. 55: Peirce’s identification of a key feature of the !-exponential.

property of the !-exponential. This is a remarkable example of where a concern
for graphical syntax and topological features can lead.

A list of well known linear equivalences were given in the previous section in
Figure 52. One can show the equivalences for the linear exponentials using the
‘scroll’ in the same topological manner. We claim that one can express various
further properties of exponentials described by Lambek in [42] using the graphs
and Pierce’s rules.31 Finally, a key feature of the !-exponential is that it allows
one to express intuitionistic implication [42, p. 233]. It is interesting to note how
the !-exponential combines with residuation in this case. The additional identity
relation has the effect of topologically turning a sequential, linear implication
into a graph closer to the vertical (i.e. parallel) inclusion. These directions and
their corresponding graphical outcroppings are all worth further study.

7 Conclusion

C.S. Peirce’s early work on the logic of the relations has been absorbed into
the relation algebraic tradition (following Tarski) and into the development of
first-order logic (following his contribution to the discovery of quantifiers, for
example). Much of this follows from an awareness of Peirce’s earlier algebraic
work. At the same time much of the work on Peirce’s later Existential Graphs has
remained outside the larger logic tradition and has remained, following Robert’s
initial systematic treatment of the subject, in the confines of first-order logic.
This is slowly changing as alternative methods of diagrammatic reasoning —
most notably the advent of string diagrams in category theory, but also the
focus on graph rewriting more generally — have brought awareness back to
Pierce’s earlier work in diagrammatic reasoning.

This paper continues in this changing direction and calls attention to Peirce’s
early developments in linear logic. Peirce’s presentation of the calculus of rela-
tions from 1883 is noteworthy for emphasizing the dual to relational composition,
31 Such as, for example, using the rules and syntax found in [14].

C.S Peirce’s Early Developments in Linear Logic 43

linear distributivity, and the linear negation laws. Around the same time Peirce
also carried out a systematic study of residuation and stated a rule for how com-
posed terms can be rotated to the dual context on the other side of the inclusion.
These are the key rules for bilinear logic and we conclude that Peirce understood
these aspects of the relational model of bilinear logic.

This work on the calculus of relations occurred before Peirce’s later devel-
opment of the Existential Graphs. We further showed that these concepts play
key roles in his later studies in the graphs. This includes derivations involving
linear implications, studies of the par’d context involving the dual of relational
composition, and more complicated expressions involving multiple residuals. We
have shown some of these graphs, many of which have not been written about
in the context of EGs before, and do so for the first time within the context of
these bilinear operations.

We reiterate that this is the beginning of such work. Further directions that
arose during the exposition include comparisons to the Lambek calculus and cat-
egorial grammar, potential generalizations towards proof nets and proof circuits,
and new directions for intuitionistic variants of EGs. All of these we believe are
worth further study.

We end with a takeaway comment about Peirce scholarship. Peirce empha-
sized the importance of the ‘scroll’ both as a key graphical feature of EGs and as
a sign of the most primitive logical connective. This work restores the ‘scroll’ to
a place of primary importance in the study of the graphs. The ‘scroll’ serves at
one and the same time as a sign of involution and as a sign of inclusion. Much
of this emphasis on the ‘scroll’ appears to be vindicated in the *-autonomous
and bilinear settings, which emphasize these features.

In the introduction, we wrote of the hope that this work returns interest back
to Peirce’s early studies and contributions. We add here the hope that this work
returns interest to what a concern for diagrammatic reasoning and corresponding
topological features is capable of. We suspect Peirce’s contribution along these
lines to have a bright future.

References

1. Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. The Journal of Symbolic Logic, 59(2):543–574, 1994.

2. V. Michele Abrusci. Non-commutative intuitionistic linear logic. Mathematical
Logic Quarterly, 36(4):297–318, 1990.

3. V. Michele Abrusci. Phase semantics and sequent calculus for pure noncommuta-
tive classical linear propositional logic. The Journal of Symbolic Logic, 56(4):1403–
1451, 1991.

4. V. Michele Abrusci and Claudia Casadio. A geometrical representation of the basic
laws of categorial grammar. Studia Logica: An International Journal for Symbolic
Logic, 105(3):479–520, 2017.

5. V. Michele Abrusci and Claudia Casadio. Lambek’s Syntactic Calculus and Non-
commutative Variants of Linear Logic: Laws and Proof-Nets, pages 1–37. Springer
International Publishing, Cham, 2021.

44 N. Haydon

6. Michael Barr. *-autonomous categories and linear logic. Mathematical Structures
in Computer Science, 1(2):159–178, 1991.

7. Michael Barr. Nonsymmetric ∗-autonomous categories. Theoretical Computer Sci-
ence, 139(1):115–130, 1995.

8. Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quotients and
domain constructions. Information Processing Letters, 33(3):163–168, 1989.

9. Richard Bird and Oege De Moor. The algebra of programming. NATO ASI DPD,
152:167–203, 1996.

10. Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.
11. Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied

Logic, 56(1):183–220, 1992.
12. R.F. Blute, J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble. Natural deduction

and coherence for weakly distributive categories. Journal of Pure and Applied
Algebra, 113(3):229–296, 1996.

13. Richard F. Blute, Alessio Guglielmi, Ivan T. Ivanov, Prakash Panangaden, and
Lutz Straßburger. A Logical Basis for Quantum Evolution and Entanglement,
pages 90–107. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

14. Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski.
Diagrammatic algebra of first order logic. https://arxiv.org/abs/2401.07055, 2024.

15. Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. Functorial semantics for
relational theories. https://arxiv.org/abs/1711.08699, 2017.

16. Geraldine Brady and Todd Trimble. A string diagram calculus for predicate logic.
Preprint available at http://people. cs. uchicago. edu/~ brady/beta98. ps, 626:631,
1998.

17. Geraldine Brady and Todd Trimble. A categorical interpretation of C.S. Peirce’s
propositional logic alpha. Journal of Pure and Applied Algebra - J PURE APPL
ALG, 149:213–239, 06 2000.

18. Chris Brink, Wolfram Kahl, and Gunther Schmidt, editors. Relational Methods
in Computer Science. Advances in Computing. Springer-Verlag, Wien, New York,
1997. ISBN 3-211-82971-7.

19. Robert W. Burch. A Peircean Reduction Thesis: The Foundations of Topological
Logic. Texas Tech University Press, 1991.

20. Robert W. Burch. Game-theoretical semantics for peirce’s existential graphs. Syn-
these, 99(3):361–375, 1994.

21. Claudia Casadio. Non-commutative linear logic in linguistics. Grammars, 4(3):167–
185, 2001.

22. Claudia Casadio and Joachim Lambek. A tale of four grammars. Studia Logica:
An International Journal for Symbolic Logic, 71(3):315–329, 2002.

23. J. R. B. Cockett and R. A. G. Seely. Proof theory of the cut rule. In Categories
for the Working Philosopher. Oxford University Press, 11 2017.

24. J.R.B. Cockett, Juergen Koslowski, and Robert AG Seely. Introduction to linear
bicategories. Mathematical Structures in Computer Science, 10(2):165–203, 2000.

25. J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure
and Applied Algebra, 114(2):133–173, 1997.

26. J.R.B. Cockett, Robert A. G. Seely, and Michael Barr. Proof theory for full intu-
itionistic linear logic, bilinear logic, and mix categories. 1997.

27. Jules Desharnais, Bernard Hodgson, and John Mullins. Linear Logic, pages 106–
114. Springer Vienna, Vienna, 1997.

28. Pietro Di Gianantonio. Structures for multiplicative cyclic linear logic: Deepness vs
cyclicity. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science
Logic, pages 130–144, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

C.S Peirce’s Early Developments in Linear Logic 45

29. Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński. Functorial
semantics for partial theories. Proceedings of the ACM on Programming Languages,
5(POPL):1–28, 2021.

30. Peter J. Freyd and Andre Scedrov. Categories, Allegories. North-Holland Mathe-
matical Library, 1990.

31. J.-Y. Girard. Linear Logic: its syntax and semantics, pages 1–42. London Mathe-
matical Society Lecture Note Series. Cambridge University Press, 1995.

32. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
33. Vyacheslav N Grishin. On a generalization of the ajdukiewicz-lambek system.

Studies in nonclassical logics and formal systems, 315:315–334, 1983.
34. Alessio Guglielmi. A system of interaction and structure. ACM Trans. Comput.

Log., 8, 01 2007.
35. Nathan Haydon and Ahti-Veikko Pietarinen. Residuation in existential graphs. In

Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo,
and Petrucio Viana, editors, Diagrammatic Representation and Inference, pages
229–237, Cham, 2021. Springer International Publishing.

36. Nathan Haydon and Paweł Sobociński. Compositional diagrammatic first-order
logic. In Ahti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria
Giardino, James Corter, and Sven Linker, editors, Diagrammatic Representation
and Inference, pages 402–418, Cham, 2020. Springer International Publishing.

37. Risto Hilpinen. On C.S. Peirce’s theory of the proposition: Peirce as a precursor
of game-theoretical semantics. The Monist, 65(2):182–188, 1982.

38. Jaakko Hintikka. The Principles of Mathematics Revisited. Cambridge University
Press, 1996.

39. J. Lambek. From word to sentence: a pregroup analysis of the object pronoun
who(m). Journal of Logic, Language and Information, 16(3):303–323, 2007.

40. Joachim Lambek. The mathematics of sentence structure. The American Mathe-
matical Monthly, 65(3):154–170, 1958.

41. Joachim Lambek. On the calculus of syntactic types. 1961.
42. Joachim Lambek. From categorial grammar to bilinear logic. Department of Math-

ematics and Statistics, McGill University, 1991.
43. Joachim Lambek. Logic and grammar. Studia Logica: An International Journal

for Symbolic Logic, 100(4):667–681, 2012.
44. Minghui Ma and Ahti-Veikko Pietarinen. Proof analysis of peirce’s alpha system

of graphs. Studia Logica, 105(3):625–647, 2017.
45. Minghui Ma and Ahti-Veikko Pietarinenen. Peirce’s calculi for classical proposi-

tional logic. The Review of Symbolic Logic, 13(3):509–540, 2020.
46. Roger D. Maddux. The origin of relation algebras in the development and axiom-

atization of the calculus of relations. Studia Logica: An International Journal for
Symbolic Logic, 50(3/4):421–455, 1991.

47. Paul-André Melliès. A micrological study of negation. Annals of Pure and Applied
Logic, 168(2):321–372, 2017.

48. Ma Minghui and Ahti Veikko Pietarinen. A graphical deep inference system for
intuitionistic logic. Logique et Analyse, 245:73–114, January 2019.

49. Michael Moortgat. Symmetries in natural language syntax and semantics: The
lambek-grishin calculus. In Daniel Leivant and Ruy de Queiroz, editors, Logic,
Language, Information and Computation, pages 264–284, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

50. Richard Moot. Partial Orders, Residuation, and First-Order Linear Logic, pages
37–67. Springer International Publishing, Cham, 2021.

46 N. Haydon

51. Mitsuhiro Okada. Linear logic and intuitionistic logic. Revue Internationale de
Philosophie, 58(230 (4)):449–481, 2004.

52. Arnold Oostra. Equivalence proof for intuitionistic existential alpha graphs. In
Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo,
and Petrucio Viana, editors, Diagrammatic Representation and Inference, pages
188–195, Cham, 2021. Springer International Publishing.

53. Charles Peirce. Writings of Charles S. Peirce: A Chronological Edition, Volume 4:
1879–1884. Indiana University Press, 1989.

54. Charles S. Peirce. The Logic of the Future: History and Applications, volume 1.
De Gruyter, Berlin, Boston, 2020.

55. Charles S. Peirce. The Logic of the Future: The 1903 Lowell Lectures, volume 2/2.
De Gruyter, 2021.

56. Charles S. Peirce. The Logic of the Future: Pragmaticism, volume 3/1. De Gruyter,
2022.

57. Charles Sanders Peirce. Studies in logic. By members of the Johns Hopkins uni-
versity. Little, Brown, and Company, 1883.

58. Ahti-Veikko Pietarinen. Logical and linguistic games from peirce to grice to hin-
tikka. Teorema: Revista Internacional de Filosofía, 33(2):121–136, 2014.

59. Ahti-Veikko Pietarinen, Francesco Bellucci, Angelina Bobrova, Nathan Haydon,
and Mohammad Shafiei. The blot. In Ahti-Veikko Pietarinen, Peter Chapman,
Leonie Bosveld-de Smet, Valeria Giardino, James Corter, and Sven Linker, editors,
Diagrammatic Representation and Inference, pages 225–238, Cham, 2020. Springer
International Publishing.

60. Ahti-Viekko Pietarinen. Signs of Logic: Peircean Themes on the Philosophy of
Language, Games, and Communication. Springer, Dordrecht, Netherland, 2006.

61. Vaughan Pratt. The second calculus of binary relations. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 142–155. Springer,
1993.

62. Vaughan Pratt. Chu spaces as a semantic bridge between linear logic and mathe-
matics. Theoretical Computer Science, 294(3):439 – 471, 2003. Linear Logic.

63. Vaughan R Pratt. Origins of the calculus of binary relations. In LICS, volume 92,
pages 22–25. Citeseer, 1992.

64. Don D. Roberts. The Existential Graphs of Charles S. Peirce. De Gruyter Mouton,
1973.

65. Don D. Roberts. A decision method for existential graphs. Studies in the Logic of
Charles Sanders Peirce, pages 387–401, 1997.

66. K.I. Rosenthal. Quantales and Their Applications. Pitman research notes in math-
ematics series. Longman Scientific & Technical, 1990.

67. Gunther Schmidt. Relational Mathematics. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2010.

68. Gunther Schmidt and Thomas Ströhlein. Relations and Graphs: Discrete Mathe-
matics for Computer Scientists. Springer-Verlag, Berlin, Heidelberg, 1993.

69. Gunther Schmidt and Michael Winter. Relational Topology, volume 2208. Springer,
2018.

70. Sun-Joo Shin. The Iconic Logic of Peirce’s Graphs. The MIT Press, 05 2002.
71. Michael Shulman. Affine logic for constructive mathematics. Bulletin of Symbolic

Logic, 28(3):327–386, 2022.
72. Mike Shulman. The polycategory of multivariable adjunctions.

https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2992.
73. Will Simmons and Aleks Kissinger. Higher-order causal theories are models of

bv-logic. https://arxiv.org/abs/2205.11219v1, 2022.

C.S Peirce’s Early Developments in Linear Logic 47

74. M.E. Szabo. Polycategories. Communications in Algebra, 3(8):663–689, 1975.
75. Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–

89, 1941.
76. Alfred Tarski and Steven R Givant. A formalization of set theory without variables,

volume 41. American Mathematical Soc., 1988.
77. Morgan Ward and R. P. Dilworth. Residuated lattices. Proceedings of the National

Academy of Sciences of the United States of America, 24(3):162–164, 1938.
78. David N. Yetter. Quantales and (noncommutative) linear logic. The Journal of

Symbolic Logic, 55(1):41–64, 1990.
79. Joseph Jay Zeman. The graphical logic of CS Peirce. PhD thesis, The University

of Chicago, 1964.

4 Article 4 - Diagrammatic Algebra of First Order Logic

IV
F. Bonchi, A. D. Giorgio, N. Haydon, and P. Sobocinski. Diagrammatic algebra
of first order logic. To appear at LICS, 2024

107

Diagrammatic Algebra of First Order Logic
Filippo Bonchi

Alessandro Di Giorgio
filippo.bonchi@unipi.it

alessandro.digiorgio@phd.unipi.it
University of Pisa

Pisa, Italy

Nathan Haydon
Paweł Sobociński

nathan.haydon@taltech.ee
pawel.sobocinski@taltech.ee

Tallinn University of Technology
Tallinn, Estonia

ABSTRACT
We introduce the calculus of neo-Peircean relations, a string dia-
grammatic extension of the calculus of binary relations that has the
same expressivity as first order logic and comes with a complete
axiomatisation. The axioms are obtained by combining two well
known categorical structures: cartesian and linear bicategories.

CCS CONCEPTS
• Theory of computation→ Logic; Categorical semantics.

KEYWORDS
calculus of relations, string diagrams, deep inference

1 INTRODUCTION
The modern understanding of first order logic (FOL) is the result
of an evolution with contributions from many philosophers and
mathematicians. Amongst these, particularly relevant for our ex-
position is the calculus of relations (CR) by Charles S. Peirce [62].
Peirce, inspired by De Morgan [55], proposed a relational analogue
of Boole’s algebra [12]: a rigorous mathematical language for com-
bining relations with operations governed by algebraic laws.

With the rise of first order logic, Peirce’s calculus was forgotten
until Tarski, who in [80] recognised its algebraic flavour. In the
introduction to [81], written shortly before his death, Tarski put
much emphasis on two key features of CR: (a) its lack of quantifiers
and (b) its sole deduction rule of substituting equals by equals. The
calculus, however, comes with two great shortcomings: (c) it is
strictly less expressive than FOL and (d) it is not axiomatisable.

Despite these limitations, CR had —and continues to have— a
great impact in computer science, e.g., in the theory of databases [20]
and in the semantics of programming languages [2, 38, 45, 47, 74].
Indeed, the lack of quantifiers avoids the usual burden of bindings,
scopes and capture-avoid substitutions (see [25, 30, 33, 40, 68, 70]
for some theories developed to address specifically the issue of bind-
ings). This feature, together with purely equational proofs, makes
CR particularly suitable for proof assistants [43, 71, 72].

Less influential in computer science, there are two others quantifiers-
free alternatives to FOL that are worth mentioning: first, predicate
functor logic (PFL) [75] that was thought by Quine as the first order
logic analogue of combinatory logic [22] for the 𝜆-calculus; second,
Peirce’s existential graphs (EGs) [77] and, in particular, its fragment
named system 𝛽 . In this system FOL formulas are diagrams and the
deduction system consists of rules for their manipulation. Peirce’s
work on EGs remained unpublished during his lifetime.

Diagrams have been used as formal entities since the dawn of
computer science, e.g. in the Böhm-Jacopini theorem [3]. More

recently, the spatial nature of mobile computations led Milner to
move from the traditional term-based syntax of process calculi
to bigraphs [53]. Similarly, the impossibility of copying quantum
information and, more generally, the paradigm-shift of treating
data as a physical resource (see e.g. [31, 59]), has led to the use [1,
5, 6, 10, 21, 26, 27, 32, 56, 69] of string diagrams [42, 79] as syntax.
String diagrams, formally arrows of a freely generated symmetric
(strict) monoidal category, combine the rigour of traditional terms
with a visual and intuitive graphical representation. Like traditional
terms, they can be equipped with a compositional semantics.

In this paper, we introduce the calculus of neo-Peircean relations,
a string diagrammatic account of FOL that has several key features:

(1) Its diagrammatic syntax is closely related to Peirce’s EGs,
but it can also be given through a context free grammar
equipped with an elementary type system;

(2) It is quantifier-free and, differently than FOL, its compo-
sitional semantics can be given by few simple rules: see
(8);

(3) Terms and predicates are not treated as separate syntactic
and semantic entities;

(4) Its sole deduction rule is substituting equals by equals, like
CR, but differently, it features a complete axiomatisation;

(5) The axioms are those of well-known algebraic structures,
also occurring in different fields such as linear algebra [11]
or quantum foundations [21];

(6) It allows for compositional encodings of FOL, CR and PFL;
(7) String diagrams disambiguate interesting corner caseswhere

traditional FOL encounters difficulties. One perk is that we
allow empty models —forbidden in classical treatments—
leading to (slightly) more general Gödel completeness;

(8) The corner case of empty models coincides with proposi-
tional models and in that case our axiomatisation simplifies
to the deep inference Calculus of Structures [15, 34].

By returning to the algebraic roots of logic we preserve CR’s bene-
fits (a) and (b) while overcoming its limitations (c) and (d).

Cartesian syntax. To ease the reader into this work, we show how
traditional terms appear as string diagrams. Consider a signature
Σ consisting of a unary symbol 𝑓 and two binary symbols 𝑔 and ℎ.
The term ℎ(𝑔(𝑓 (𝑥3), 𝑓 (𝑥3)), 𝑥1) corresponds to the string diagram
on the left below.

𝑓

𝑓

𝑔
ℎ

𝑓 𝑔
ℎ𝑓

A difference wrt traditional syntax tree is the explicit treatment of
copying and discarding. The discharger informs us that the

ar
X

iv
:2

40
1.

07
05

5v
1

 [
cs

.L
O

]
 1

3
Ja

n
20

24

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

𝑐 F | | 𝑅 | | | | | | 𝑐 𝑐 |
𝑐

𝑐
|

| | 𝑅 | | | | | | 𝑐 𝑐 |
𝑐

𝑐

OO

lin. adj.
��

left adj.
//

OO

lin. adj.
��

spec. Frob.

lin. Frob.

right adj.oo

spec. Frob.

lin. Frob.

Figure 1: Diagrammatic syntax of NPRΣ (left) and a summary of its axioms (right)

variable 𝑥2 does not appear in the term; the copier makes clear
that the variable 𝑥3 is shared by two sub-terms. The string diagram
on the represents the same term if one admits the equations

𝑐 =
𝑐

𝑐 and 𝑐 = . (Nat)

Fox [28] showed that (Nat) together with axioms asserting that
copier and discard form a comonoid ((◀◦-as), (◀◦-un), (◀◦-co) in
Fig. 2) force the monoidal category of string diagrams to be carte-
sian (⊗ is the categorical product): actually, it is the free cartesian
category on Σ.

Functorial semantics. The work of Lawvere [48] illustrates the
deep connection of syntax with semantics, explainingwhy cartesian
syntax is so well-suited to functional structures, but also hinting
at its limitations when denoting other structures, e.g. relations.
Given an algebraic theory T in the universal algebraic sense, i.e.,
a signature Σ with a set of equations 𝐸, one can freely generate a
cartesian category LT.Models –in the standard algebraic sense– are
in one-to-one correspondence with cartesian functors M from LT
to Set, the category of sets and functions. More generally, models
of the theory in any cartesian category C are cartesian functors
M : LT → C. By taking C to be Rel◦, the category of sets and
relations, one could wish to use the same approach for relational
theories but any such attempt fails immediately since the cartesian
product of sets is not the categorical product in Rel◦.

Cartesian bicategories. An evolution of Lawvere’s approach for
relational structures is developed in [7, 9, 78]. Departing from carte-
sian syntax, it uses string diagrams generated by the first row of the
grammar in Fig. 1, where 𝑅 is taken from a monoidal signature Σ – a
set of symbols equipped with both an arity and also a coarity – and
can be thought of as akin to relation symbols of FOL. The diagrams
are subject to the laws of cartesian bicategories [16] in Fig. 2:
and form a comonoid, but the category of diagrams is not carte-
sian since the equations in (Nat) hold laxly ((◀◦-nat), (!◦-nat)). The
diagrams and form a monoid ((▶◦-as), (▶◦-un), (▶◦-co))
and are right adjoint to copier and discard. Monoids and comonoids
together satisfy special Frobenius equations ((S◦),(F◦)). The category
of diagrams CBΣ is the free cartesian bicategory generated by Σ
and, like in Lawvere’s functorial semantics, models are morphisms
of cartesian bicategories M : CBΣ → Rel◦. Importantly, the laws
of cartesian bicategories provide a complete axiomatisation for
Rel◦, meaning that 𝑐, 𝑑 in CBΣ are provably equal with the laws of
cartesian bicategories iff M(𝑐) = M(𝑑) for all modelsM.

𝑃

𝑄The (co)monoid structures allow one to ex-
press existential quantification: for instance,
the FOL formula ∃𝑥2 .𝑃 (𝑥1, 𝑥2) ∧𝑄 (𝑥2) is depicted as the diagram
on the right. The expressive power of CBΣ is, however, limited to
the existential-conjunctive fragment of FOL.

Cocartesian bicategories. To express the universal-disjunctive
fragment, we consider the category CBΣ of string diagrams gen-
erated by the second row of the grammar in Fig. 1 and subject to
the laws of cocartesian bicategories in Fig. 3: those of cartesian
bicategories but with the reversed order ≥. The diagrams of CBΣ

are photographic negative of those in CBΣ. To explain this change
of colour, note that sets and relations form another category: Rel•.
Composition ,• in Rel• is the De Morgan dual of the usual relational
composition: 𝑅 ,◦ 𝑆 def

= {(𝑥, 𝑧) | ∃𝑦.(𝑥,𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆} while
𝑅 ,•𝑆 def

= {(𝑥, 𝑧) | ∀𝑦.(𝑥,𝑦) ∈ 𝑅∨(𝑦, 𝑧) ∈ 𝑆}. While Rel◦ is a cartesian
bicategory, Rel• is cocartesian. Interestingly, the “black” composi-
tion ,• was used in Peirce’s approach [61] to relational algebra.

Just as CBΣ is complete with respect to Rel◦, dually, CBΣ is com-
plete wrt Rel•. The former accounts for the existential-conjunctive
fragment of FOL; the latter for its universal-disjunctive fragment.
This raises a natural question:

How do the white and black structures combine to form a
complete account of first order logic?

Linear bicategories. Although Rel◦ and Rel• have the same ob-
jects and arrows, there are two different compositions (,◦ and ,•).
The appropriate categorical structures to deal with these situations
are linear bicategories introduced in [17] as a horizontal categori-
fication of linearly distributive categories [19, 23]. The laws of
linear bicategories are in Fig. 4: the key law is linearly distribu-
tivity of ,◦ over ,• ((𝛿𝑙), (𝛿𝑟)), that was already known to hold for
relations since the work of Peirce [61]. Another crucial property
observed by Peirce is that for any relation 𝑅 ⊆ 𝑋 × 𝑌 , the relation
𝑅⊥ ⊆ 𝑌 × 𝑋

def
= {(𝑦, 𝑥) | (𝑥,𝑦) ∉ 𝑅} is its linear adjoint. This op-

eration has an intuitive graphical representation: given 𝑐 , take
its mirror image 𝑐 and then its photographic negative 𝑐 . For
instance, the linear adjoint of 𝑅 is 𝑅 .

First order bicategories. The final step is to characterise how
cartesian, cocartesian and linear bicategories combine: (i) white
and black (co)monoids are linear adjoints that (ii) satisfy a “lin-
ear” version of the Frobenius law. We dub the result first order
bicategories. We shall see that this is a complete axiomatisation for

Diagrammatic Algebra of First Order Logic

first order logic, yet all of the algebraic machinery is compactly
summarised at the right of Fig. 1.

Functorial semantics for first order theories. In the spirit of func-
torial semantics, we take the free first order bicategory FOBT gen-
erated by a theory T and observe that models of T in a first order
bicategory C are morphisms M : FOBT → C. Taking C = Rel, the
first order bicategory of sets and relations, these are models in the
sense of FOL with one notable exception: in FOL models with the
empty domain are forbidden. As we shall wee, theories with empty
models are exactly the propositional theories.

Completeness. We prove that the laws of first order bicategories
provide a complete axiomatisation for first order logic. The proof
is a diagrammatic adaptation of Henkin’s proof [37] of Gödel’s
completeness theorem. However, in order to properly consider
models with an empty domain, we make a slight additional step to
go beyond Gödel completeness.

A taste of diagrammatic logic. Before we introduce the calculus
of neo-Peircean relations, we start with a short worked example to
give the reader a taste of using the calculus to prove a non-trivial
result of first order logic. Doing so lets us illustrate the methodology
of proof within the calculus, which is sometimes referred to as
diagrammatic reasoning or string diagram surgery.

𝑅 ≦ 𝑅

Let 𝑅 be a symbol with arity 2
and coarity 0. The two diagrams
on the right correspond to FOL
formulas ∃𝑥 .∀𝑦. 𝑅(𝑥,𝑦) and ∀𝑦. ∃𝑥 . 𝑅(𝑥,𝑦): see § 9 for a dictionary
of translating between FOL and diagrams. It is well-known that
∃𝑥 .∀𝑦. 𝑅(𝑥,𝑦) |= ∀𝑦. ∃𝑥 . 𝑅(𝑥,𝑦), i.e. in any model, if the first for-
mula evaluates to true then so does the second. Within our calculus,
this statement is expressed as the above inequality. This can be
proved by mean of the axiomatisation we introduce in this work:

𝑅 = 𝑅

(𝜂¡•)
≤ 𝑅

Prop. 6.4
=

𝑅
(𝜖¡•)
≤ 𝑅 = 𝑅

(1)

The central step relies on the particularly good behaviour of maps,
intuitively those relations that are functional. In particular is
an example. The details are not important at this stage.

Synopsis. We begin by recalling CR in § 2. The calculus of neo-
Peircean relations is introduced in § 3, together with the statement
of our main result (Theorem 3.2). We recall (co)cartesian and linear
bicategories in § 4 and § 5. The categorical structures most impor-
tant for our work are first-order bicategories, introduced in § 6. In
§ 7 we consider first order theories, the diagrammatic version of the
deduction theorem (Theorem 7.7) and some subtle differences with
FOL that play an important role on the proof of completeness in
§ 8. Translations of CR and FOL into the calculus of neo-Peircean
relations are given in § 8.1 and § 9. The encoding of PFL and addi-
tional material omitted due to space restrictions are in Appendix B.
All proofs are in the remaining appendices.

2 THE CALCULUS OF BINARY RELATIONS
The calculus of binary relations, in an original presentation given
by Peirce in [61], features two forms of relational compositions ,◦
and ,•, defined for all relations 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑌 × 𝑍 as

𝑅 ,◦ 𝑆 def
= {(𝑥, 𝑧) | ∃𝑦 ∈𝑌 . (𝑥,𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆} ⊆ 𝑋 × 𝑍 and

𝑅 ,• 𝑆 def
= {(𝑥, 𝑧) | ∀𝑦 ∈𝑌 . (𝑥,𝑦) ∈ 𝑅 ∨ (𝑦, 𝑧) ∈ 𝑆} ⊆ 𝑋 × 𝑍

(2)

with units the equality and the difference relations respectively,
defined for all sets 𝑋 as
𝑖𝑑◦𝑋

def
= {(𝑥,𝑦) |𝑥 = 𝑦} ⊆𝑋×𝑋 and 𝑖𝑑•𝑋

def
= {(𝑥,𝑦) |𝑥 ≠ 𝑦} ⊆𝑋×𝑋 . (3)

Beyond the usual union ∪, intersection ∩, and their units ⊥ and ⊤,
the calculus also features two unary operations (·)† and (·) denoting
the opposite and the complement: 𝑅† def

= {(𝑦, 𝑥) | (𝑥,𝑦) ∈ 𝑅} and
𝑅

def
= {(𝑥,𝑦) | (𝑥,𝑦) ∉ 𝑅}. In summary, its syntax is given by the

following context free grammar
𝐸 F 𝑅 | 𝑖𝑑◦ | 𝐸 ,◦ 𝐸 | 𝑖𝑑• | 𝐸 ,• 𝐸 |

𝐸† | ⊤ | 𝐸 ∩ 𝐸 | ⊥ | 𝐸 ∪ 𝐸 | 𝐸
(CRΣ)

where 𝑅 is taken from a given set Σ of generating symbols. The
semantics is defined wrt a relational interpretation I, that is, a set
𝑋 together with a binary relation 𝜌 (𝑅) ⊆ 𝑋 × 𝑋 for each 𝑅 ∈ Σ.

⟨𝑅⟩I def
= 𝜌 (𝑅)

⟨𝐸† ⟩I def
= ⟨𝐸⟩†I

⟨𝐸⟩I def
= ⟨𝐸⟩I

⟨𝑖𝑑◦ ⟩I def
= 𝑖𝑑◦

𝑋

⟨𝑖𝑑• ⟩I def
= 𝑖𝑑•

𝑋

⟨⊥⟩I def
= ∅

⟨⊤⟩I def
= 𝑋 × 𝑋

⟨𝐸1 ,◦ 𝐸2 ⟩I def
= ⟨𝐸1 ⟩I ,◦ ⟨𝐸2 ⟩I

⟨𝐸1 ,• 𝐸2 ⟩I def
= ⟨𝐸1 ⟩I ,• ⟨𝐸2 ⟩I

⟨𝐸1 ∪ 𝐸2 ⟩I def
= ⟨𝐸1 ⟩I ∪ ⟨𝐸2 ⟩I

⟨𝐸1 ∩ 𝐸2 ⟩I def
= ⟨𝐸1 ⟩I ∩ ⟨𝐸2 ⟩I

(4)

Two expressions 𝐸1, 𝐸2 are said to be equivalent, written 𝐸1 ≡CR 𝐸2,
if and only if ⟨𝐸1⟩I = ⟨𝐸2⟩I , for all interpretations I. Inclusion,
denoted by ≤CR, is defined analogously by replacing = with ⊆. For
instance, the following inclusions hold, witnessing the fact that ,◦
linearly distributes over ,•.

𝑅 ,◦ (𝑆 ,•𝑇) ≤CR (𝑅 ,◦ 𝑆) ,•𝑇 (𝑅 ,• 𝑆) ,◦𝑇 ≤CR 𝑅 ,• (𝑆 ,◦𝑇) (5)
Along with the boolean laws, in ‘Note B’ [61] Peirce states (5)
and stresses its importance. However, since 𝑅 ,• 𝑆 ≡CR 𝑅 ,◦ 𝑆 and
𝑖𝑑• ≡CR 𝑖𝑑◦, both ,• and 𝑖𝑑• are often considered redundant, for
instance by Tarski [80] and much of the later work.

Tarski asked whether≡CR can be axiomatised, i.e., is there a basic
set of laws from which one can prove all the valid equivalences?
Unfortunately, there is no finite complete axiomatisations for the
whole calculus [54] nor for several fragments, e.g., [4, 29, 39, 73, 76].

Our work returns to the same problem, but from a radically
different perspective: we see the calculus of relations as a sub-
calculus of a more general system for arbitrary (i.e. not merely
binary) relations. The latter is strictly more expressive than CRΣ –
actually it is as expressive as first order logic (FOL)– but allows for
an elementary complete axiomatisation based on the interaction of
two influential algebraic structures: that of linear bicategories and
cartesian bicategories.

3 NEO-PEIRCEAN RELATIONS
Here we introduce the calculus of neo-Peircean relations (NPRΣ).

The first step is to move from binary relations 𝑅 ⊆ 𝑋 × 𝑋 to
relations 𝑅 ⊆ 𝑋𝑛 ×𝑋𝑚 where, for any 𝑛 ∈ N, 𝑋𝑛 denotes the set of
row vectors (𝑥1, . . . , 𝑥𝑛) with all 𝑥𝑖 ∈ 𝑋 . In particular, 𝑋 0 is the one

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

Table 1: Typing rules (top); inductive definitions of syntactic sugar (middle); structural congruence (bottom)

𝑖𝑑•◦0 : 0 → 0 𝑖𝑑•◦1 : 1 → 1 𝜎•◦
1,1 : 2 → 2

◀•◦1 : 1 → 2 !•◦1 : 1 → 0 ▶•◦1 : 2 → 1 ¡•◦
1 : 0 → 1

𝑎𝑟 (𝑅) = 𝑛 𝑐𝑜𝑎𝑟 (𝑅) = 𝑛

𝑅◦ : 𝑛 →𝑚

𝑎𝑟 (𝑅) = 𝑛 𝑐𝑜𝑎𝑟 (𝑅) =𝑚

𝑅• : 𝑚 → 𝑛

𝑐 : 𝑛1 →𝑚1 𝑑 : 𝑛2 →𝑚2
𝑐 �⊗ 𝑑 : 𝑛1 +𝑛2 →𝑚1 +𝑚2

𝑐 : 𝑛 →𝑚 𝑑 : 𝑚 → 𝑜

𝑐 ,•◦𝑑 : 𝑛 → 𝑜

◀•◦0= 𝑖𝑑•◦0 ◀•◦𝑛+1= (◀•◦1�⊗◀
•◦
𝑛) ,•◦ (𝑖𝑑•◦1 �⊗ 𝜎•◦

1,𝑛 �⊗ 𝑖𝑑•◦𝑛)
▶•◦0= 𝑖𝑑•◦0 ▶•◦𝑛+1= (𝑖𝑑•◦1 �⊗ 𝜎•◦

1,𝑛 �⊗ 𝑖𝑑•◦𝑛) ,•◦ (▶•◦1�⊗▶
•◦
𝑛)

!•◦0 = 𝑖𝑑•◦0 !•◦𝑛+1 = !•◦1 �⊗ !•◦𝑛
¡•◦
0 = 𝑖𝑑•◦0 ¡•◦

𝑛+1 = ¡•◦
1 �⊗ ¡•◦

𝑛

𝑖𝑑•◦0 = 𝑖𝑑•◦0
𝑖𝑑•◦𝑛+1 = 𝑖𝑑•◦1 �⊗ 𝑖𝑑•◦𝑛

𝜎•◦
0,0 = 𝑖𝑑•◦0 𝜎•◦

1,0 = 𝜎•◦
0,1 = 𝑖𝑑•◦1

𝜎•◦
1,𝑛+1 = (𝜎•◦

1,𝑛 �⊗ 𝑖𝑑•◦1) ,•◦ (𝑖𝑑•◦𝑛 �⊗ 𝜎•◦
1,1) 𝜎•◦

𝑚+1,𝑛 = (𝑖𝑑•◦1 �⊗ 𝜎•◦
𝑚,𝑛) ,•◦ (𝜎•◦

1,𝑛 �⊗ 𝑖𝑑•◦𝑚)

𝑎 ,•◦ (𝑏 ,•◦ 𝑐) = (𝑎 ,•◦𝑏) ,•◦ 𝑐 𝑖𝑑•◦𝑛 ,•◦ 𝑐 = 𝑐 = 𝑐 ,•◦ 𝑖𝑑•◦𝑚 (𝑎 �⊗ 𝑏) �⊗ 𝑐 = 𝑎 �⊗ (𝑏 �⊗ 𝑐) 𝑖𝑑•◦0 �⊗ 𝑐 = 𝑐 = 𝑖𝑑•◦0 �⊗ 𝑐 (𝑎 �⊗ 𝑏) ,•◦ (𝑐 �⊗ 𝑑) = (𝑎 ,•◦ 𝑐) �⊗ (𝑏 ,•◦𝑑) 𝜎•◦
1,1 ,•◦ 𝜎•◦

1,1 = 𝑖𝑑•◦2 (𝑐 �⊗ 𝑖𝑑•◦𝑜) ,•◦ 𝜎•◦
𝑚,𝑜 = 𝜎•◦

𝑛,𝑜 ,•◦ (𝑖𝑑•◦𝑜 �⊗ 𝑐)

element set 1 def
= {★}. Considering this kind of relations allows us to

identify two novel fundamental constants: the copier ◀◦𝑋 ⊆ 𝑋 × 𝑋 2

which is the diagonal function ⟨𝑖𝑑◦𝑋 , 𝑖𝑑◦𝑋 ⟩ : 𝑋 → 𝑋 ×𝑋 (considered
as a relation) and the discharger !◦𝑋 ⊆ 𝑋 × 1 which is, similarly, the
unique function from 𝑋 to 1. By combining them with opposite
and complement we obtain, in total, 8 basic relations.

◀◦𝑋
def
= {(𝑥, (𝑦, 𝑧)) | 𝑥 = 𝑦 ∧ 𝑥 = 𝑧} !◦𝑋

def
= {(𝑥,★) | 𝑥 ∈ 𝑋 }

▶◦𝑋
def
= {((𝑦, 𝑧), 𝑥) | 𝑥 = 𝑦 ∧ 𝑥 = 𝑧} ¡◦

𝑋
def
= {(★, 𝑥) | 𝑥 ∈ 𝑋 }

◀•𝑋
def
= {(𝑥, (𝑦, 𝑧)) | 𝑥 ≠ 𝑦 ∨ 𝑥 ≠ 𝑧} !•𝑋

def
= ∅

▶•𝑋
def
= {((𝑦, 𝑧), 𝑥) | 𝑥 ≠ 𝑦 ∨ 𝑥 ≠ 𝑧} ¡•

𝑋
def
= ∅

(6)

Together with 𝑖𝑑◦𝑋 and 𝑖𝑑•𝑋 and the compositions ,◦ and ,• from (3),
there are black and white symmetries: 𝜎◦𝑋,𝑌

def
= {((𝑥,𝑦), (𝑦, 𝑥)) |

𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 } and 𝜎•𝑋,𝑌
def
= 𝜎◦𝑋,𝑌 . The calculus does not feature the

boolean operators nor the opposite and the complement: these can
be derived using the above structure and two monoidal products ⊗
and �×, defined for 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑉 ×𝑊 as

𝑅 ⊗ 𝑆
def
= {((𝑥, 𝑣), (𝑦,𝑤)) | (𝑥,𝑦) ∈ 𝑅 ∧ (𝑣,𝑤) ∈ 𝑆}

𝑅 �× 𝑆
def
= {((𝑥, 𝑣), (𝑦,𝑤)) | (𝑥,𝑦) ∈ 𝑅 ∨ (𝑣,𝑤) ∈ 𝑆} . (7)

Syntax. Terms are defined by the following context free grammar

𝑐 F ◀◦1 | !◦1 | 𝑅◦ | ¡◦1 | ▶◦1 | 𝑖𝑑◦0 | 𝑖𝑑◦1 | 𝜎◦1,1 | 𝑐 ,◦ 𝑐 | 𝑐 ⊗ 𝑐 |
◀•1 | !•1 | 𝑅• | ¡•1 | ▶•1 | 𝑖𝑑•0 | 𝑖𝑑•1 | 𝜎•1,1 | 𝑐 ,• 𝑐 | 𝑐 �× 𝑐

(NPRΣ)

where 𝑅, like in CRΣ, belongs to a fixed set Σ of generators. Differ-
ently than in CRΣ, each 𝑅 ∈ Σ comes with two natural numbers:
arity 𝑎𝑟 (𝑅) and coarity 𝑐𝑜𝑎𝑟 (𝑅). The tuple (Σ, 𝑎𝑟, 𝑐𝑜𝑎𝑟), usually sim-
ply Σ, is a monoidal signature. Intuitively, every 𝑅 ∈ Σ represents
some relation 𝑅 ⊆ 𝑋𝑎𝑟 (𝑅) × 𝑋𝑐𝑜𝑎𝑟 (𝑅) .

In the first row of (NPRΣ) there are eight constants and two
operations: white composition (,◦) and white monoidal product (⊗).
These, together with identities (𝑖𝑑◦0 and 𝑖𝑑◦1) and symmetry (𝜎◦1,1)
are typical of symmetric monoidal categories. Apart from 𝑅◦, the
constants are the copier (◀◦1), discharger (!

◦
1) and their opposite

cocopier (▶◦1) and codischarger (¡◦1). The second row contains the
“black” versions of the same constants and operations. Note that
our syntax does not have variables, no quantifiers, nor the usual
associated meta-operations like capture-avoiding substitution.

We shall refer to the terms generated by the first row as the
white fragment, while to those of second row as the black fragment.
Sometimes, we use the gray colour to be agnostic wrt white or
black. The rules in top of Table 1 assigns to each term at most one
type 𝑛 →𝑚. We consider only those terms that can be typed. For
all 𝑛,𝑚 ∈ N, 𝑖𝑑•◦𝑛 : 𝑛 → 𝑛, 𝜎•◦𝑛,𝑚 : 𝑛 +𝑚 → 𝑚 + 𝑛, ◀•◦𝑛 : 𝑛 → 𝑛 + 𝑛,
▶•◦𝑛 : 𝑛+𝑛 → 𝑛, !•◦𝑛 : 𝑛 → 0 and ¡•◦𝑛 : 0 → 𝑛 are as in middle of Table 1.

Semantics. As for CRΣ, the semantics of NPRΣ needs an inter-
pretation I = (𝑋, 𝜌): a set 𝑋 , the semantic domain, and 𝜌 (𝑅) ⊆
𝑋𝑎𝑟 (𝑅) × 𝑋𝑐𝑜𝑎𝑟 (𝑅) for each 𝑅 ∈ Σ. The semantics of terms is:

I♯ (◀•◦1)
def
=◀•◦𝑋 I♯ (!•◦1)

def
= !•◦𝑋 I♯ (▶•◦1)

def
=▶•◦𝑋 I♯ (¡•◦1)

def
= ¡•◦

𝑋

I♯ (𝑖𝑑•◦
0)

def
= 𝑖𝑑•◦

1
I♯ (𝑖𝑑•◦

1)
def
= 𝑖𝑑•◦

𝑋 I♯ (𝜎•◦
1,1)

def
= 𝜎•◦

𝑋,𝑋 I♯ (𝑅◦) def
= 𝜌 (𝑅)

I♯(𝑐 ,•◦𝑑) def= I♯ (𝑐) ,•◦I♯ (𝑑) I♯(𝑐 �⊗𝑑) def= I♯ (𝑐) �⊗ I♯ (𝑑) I♯(𝑅•) def= 𝜌 (𝑅)†
(8)

The constants and operations appearing on the right-hand-side
of the above equations are amongst those defined in (2), (3), (6), (7).
A simple inductive argument confirms that I♯ maps terms 𝑐 of type
𝑛 →𝑚 to relations 𝑅 ⊆ 𝑋𝑛 × 𝑋𝑚 . In particular, 𝑖𝑑•◦0 : 0 → 0 is sent
to 𝑖𝑑•◦

1
⊆ 1 × 1, since 𝑋 0 = 1 independently of 𝑋 . Note that there

are only two relations on the singleton set 1 = {★}: the relation
{(★,★)} ⊆ 1 × 1 and the empty relation ∅ ⊆ 1 × 1. These are, by
(3), 𝑖𝑑◦

1
and 𝑖𝑑•

1
, embodying truth and falsity.

Example 3.1. Take Σ with two symbols 𝑅 and 𝑆 with arity and
coarity 1. From Table 1, the two terms below have type 1 → 1.

!◦1 ,◦ ¡◦1 ◀◦1 ,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦1) (9)

For any interpretation I = (𝑋, 𝜌), I♯ (!◦1 ,◦ ¡◦1) is the top 𝑋 × 𝑋 :

I♯ (!◦1 ,◦ ¡◦1) = !◦𝑋 ,◦ ¡◦𝑋 = {(𝑥,★) | 𝑥 ∈ 𝑋 } ,◦ {(★, 𝑥) | 𝑥 ∈ 𝑋 }
= {(𝑥,𝑦) | 𝑥,𝑦 ∈ 𝑋 } = 𝑋 × 𝑋 = ⟨⊤⟩I .

Similarly, I♯ (◀◦1 ,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦1) = 𝜌 (𝑅) ∩ 𝜌 (𝑆) = ⟨𝑅 ∩ 𝑆⟩I .
Remark 1. NPRΣ is as expressive as FOL. We draw the reader’s

attention to the simplicity of the inductive definition of semantics com-
pared to the traditional FOL approach where variables and quantifiers
make the definition more involved. Moreover, in traditional accounts,
the domain of an interpretation is required to be a non-empty set. In
our calculus this is unnecessary and it is not a mere technicality: in
§ 7 we shall see that empty models capture the propositional calculus.

Two terms 𝑐, 𝑑 : 𝑛 → 𝑚 are semantically equivalent, written
𝑐 ≡ 𝑑 , if and only if I♯ (𝑐) = I♯ (𝑑), for all interpretations I.
Semantic inclusion (≦) is defined analogously replacing = with ⊆.

By definition≡ and ≦ only relate terms of the same type. Through-
out the paper, we will encounter several relations amongst terms of
the same type. To avoid any confusion with the relations denoted
by the terms, we call them well-typed relations and use symbols
I rather than the usual 𝑅, 𝑆,𝑇 . In the following, we write 𝑐I𝑑 for
(𝑐, 𝑑) ∈ I and pc(I) for the smallest precongruence (w.r.t. ,◦, ,•, ⊗ and
�×) generated by I, i.e., the relation inductively generated as

𝑐I𝑑

𝑐 pc(I) 𝑑 (𝑖𝑑) −
𝑐 pc(I) 𝑐 (𝑟) 𝑎 pc(I) 𝑏 𝑏 pc(I) 𝑐

𝑎 pc(I) 𝑐 (𝑡)

𝑐1 pc(I) 𝑐2 𝑑1 pc(I) 𝑑2
𝑐1 ,•◦ 𝑑1 pc(I) 𝑐2 ,•◦ 𝑑2

(,•◦) 𝑐1 pc(I) 𝑐2 𝑑1 pc(I) 𝑑2
𝑐1 �⊗ 𝑑1 pc(I) 𝑐2 �⊗ 𝑑2

(�⊗)
(10)

Diagrammatic Algebra of First Order Logic

Axioms. Fig. 9 in App. B illustrates a complete system of axioms
for ≦. Let FOB be the well-typed relation obtained by substituting
𝑎, 𝑏, 𝑐, 𝑑 in Fig. 9 with terms of the appropriate type and and call its
precongruence closure syntactic inclusion, written ≲. In symbols
≲= pc(FOB). We will also write �def

=≲ ∩ ≳. Our main result is:

Theorem 3.2. For all terms 𝑐, 𝑑 : 𝑛 →𝑚, 𝑐 ≲ 𝑑 iff 𝑐 ≦ 𝑑 .

The axiomatisation is far from minimal and is redundant in
several respects. We chose the more verbose presentation in order
to emphasise both the underlying categorical structures and the
various dualities that we will highlight in the next sections.

Diagrams. We confined the complete axiomatisation to the ap-
pendix because the axioms in Fig. 9 appear also in Figs. 2, 3, 4, 5 in
diagrammatic form. This allows a more principled, staged presenta-
tion and place each axiom in its proper context, highlighting their
provenance from one of the categorical structures involved.

Diagrams, inspired by string diagrams [42, 79], take centre stage
in our presentation. A term 𝑐 : 𝑛 →𝑚 is drawn as a diagram with 𝑛
ports on the left and𝑚 ports on the right; ,•◦ is depicted as horizontal
composition while �⊗ by vertically “stacking” diagrams. The two
compositions ,◦ and ,• and two monoidal products ⊗ and �× are
distinguished with different colours. All constants in the white
fragment have white background, mutatis mutandis for the black
fragment: for instance 𝑖𝑑◦1 and 𝑖𝑑

•
1 are drawn and . Indeed,

the diagrammatic version of (NPRΣ) is the grammar in Fig.1.
To better grasp the correspondence between terms and diagrams,

the reader may compare the diagrammatic version of the axioms
(Fig.s 2, 3, 4, 5) with the term-based one (in Figure 9).

𝑅

𝑆

Note that one diagram may correspond to more
than one term: for instance the diagram on the right
does not only represent the rightmost term in (9),
namely ◀◦1 ,◦((𝑅◦ ⊗ 𝑆◦) ,◦ ▶◦1), but also (◀◦1 ,◦(𝑅◦ ⊗ 𝑆◦)) ,◦ ▶◦1 . In-
deed, it is clear that traditional term-based syntax carries more
information than the diagrammatic one (e.g. associativity). From
the point of view of the semantics, however, this bureaucracy is
irrelevant and is conveniently discarded by the diagrammatic nota-
tion. To formally show this, we recall that diagrams capture only
the axioms of symmetric monoidal categories [42, 79], illustrated
in Table 1; we call structural congruence, written ≈, the well-typed
congruence generated by such axioms and we observe that ≈⊆≡.

Proofs as diagrams rewrites. Proofs in NPRΣ are rather different
from those of traditional proof systems: since the only inference
rules are those in (10), any proof of 𝑐 ≲ 𝑑 consists of a sequence
of applications of axioms. As an example consider (1) from the
Introduction (see App. B.1 for a proof not using Prop. 6.4). Note
that, when applying axioms, we are in fact performing diagram
rewriting: an instance of the left hand side of an axiom is found
within a larger diagram and replaced with the right hand side. Since
such rewrites can happen anywhere, there is a close connection
between proofs in NPRΣ and work on deep inference [15, 34, 41] –
see Ex. 7.6.

4 (CO)CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts
considered in this paper are actually quite simple. We consider

poset enriched symmetric monoidal categories: every homset carries
a partial order ≤, and composition ,•◦ and monoidal product �⊗ are
monotone. That is, if 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑 then 𝑎 ,•◦ 𝑐 ≤ 𝑏 ,•◦ 𝑑 and
𝑎 �⊗ 𝑐 ≤ 𝑏 �⊗ 𝑑 . A poset enriched symmetric monoidal functor
is a (strong, and usually strict) symmetric monoidal functor that
preserves the order ≤. The notion of adjoint arrows, which will play
a key role, amounts to the following: for 𝑐 : 𝑋 → 𝑌 and 𝑑 : 𝑌 → 𝑋 ,
𝑐 is left adjoint to 𝑑 , or 𝑑 is right adjoint to 𝑐 , written 𝑑 ⊢ 𝑐 , if
𝑖𝑑•◦𝑋 ≤ 𝑐 ,•◦ 𝑑 and 𝑑 ,•◦ 𝑐 ≤ 𝑖𝑑•◦𝑌 .

For a symmetric monoidal bicategory (C, �⊗, 𝐼), we will write
Cop for the bicategory having the same objects as C but homsets
Cop [𝑋,𝑌] def

= C[𝑌,𝑋]: ordering, identities and monoidal product
are defined as in C, while composition 𝑐 ,•◦𝑑 in Cop is 𝑑 ,•◦ 𝑐 in C. Sim-
ilarly, we will write Cco to denote the bicategory having the same
objects and arrows of C but equipped with the reversed ordering ≥.
Composition, identities and monoidal product are defined as in C.
In this paper, we will often tacitly use the facts that, by definition,
both (Cop)op and (Cco)co are C and that (Cco)op is (Cop)co.

All monoidal categories considered throughout this paper are
tacitly assumed to be strict [50], i.e. (𝑋 �⊗ 𝑌) �⊗ 𝑍 = 𝑋 �⊗ (𝑌 �⊗ 𝑍)
and 𝐼 �⊗ 𝑋 = 𝑋 = 𝑋 �⊗ 𝐼 for all objects 𝑋,𝑌, 𝑍 . This is harmless:
strictification [50] allows to transform any monoidal category into
a strict one, enabling the sound use of string diagrams. These will be
exploited in this and the next two sections to describe the categori-
cal structures of interest. In particular, in the following definition
◀◦𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 , !◦𝑋 : 𝑋 → 𝐼 , ▶◦𝑋 : 𝑋 ⊗ 𝑋 → 𝑋 and ¡◦𝑋 : 𝐼 → 𝑋 are
drawn, respectively, as 𝑋

𝑋

𝑋 , 𝑋 , 𝑋
𝑋

𝑋 and 𝑋 .

Definition 4.1. A cartesian bicategory (C, ⊗, 𝐼 , ◀◦, !◦, ▶◦, ¡◦), short-
hand (C, ◀◦, ▶◦), is a poset enriched symmetric monoidal category
(C, ⊗, 𝐼) and, for every object 𝑋 in C, arrows ◀◦𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 ,
!◦𝑋 : 𝑋 → 𝐼 , ▶◦𝑋 : 𝑋 ⊗ 𝑋 → 𝑋 , ¡◦𝑋 : 𝐼 → 𝑋 s.t.
1. (◀◦𝑋 , !◦𝑋) is a comonoid and (▶◦𝑋 , ¡◦𝑋) a monoid (i.e., (◀◦-as),
(◀◦-un), (◀◦-co) and (▶◦-as), (▶◦-un), (▶◦-co) in Fig. 2 hold);
2. arrows 𝑐 : 𝑋 → 𝑌 are lax comonoidmorphisms ((◀◦-nat), (!◦-nat));
3. (◀◦𝑋 , !◦𝑋) are left adjoints to (▶◦𝑋 , ¡◦𝑋) ((𝜂 ◀◦), (𝜖 ◀◦), (𝜂!◦), (𝜖!◦));
4. (◀◦𝑋 , !◦𝑋) and (▶◦𝑋 , ¡◦𝑋) form special Frobenius algebras ((F◦), (S◦));
5. (◀◦𝑋 , !◦𝑋) and (▶◦𝑋 , ¡◦𝑋) satisfy the coherence conditions:1

◀◦𝐼 = 𝑖𝑑◦𝐼 ◀◦𝑋⊗𝑌 = (◀◦𝑋 ⊗◀◦𝑌) ,◦ (𝑖𝑑◦𝑋 ⊗ 𝜎◦𝑋,𝑌 ⊗ 𝑖𝑑◦𝑌)
▶◦𝐼 = 𝑖𝑑◦𝐼 ▶◦𝑋⊗𝑌 = (𝑖𝑑◦𝑋 ⊗ 𝜎◦𝑋,𝑌 ⊗ 𝑖𝑑◦𝑌) ,◦ (▶◦𝑋 ⊗▶◦𝑌)
!◦𝐼 = 𝑖𝑑◦𝐼 !◦𝑋⊗𝑌 = !◦𝑋 ⊗ !◦𝑌 ¡◦

𝐼 = 𝑖𝑑◦𝐼 ¡◦
𝑋⊗𝑌 = ¡◦

𝑋 ⊗ ¡◦
𝑌

C is a cocartesian bicategory if Cco is a cartesian bicategory. A
morphism of (co)cartesian bicategories is a poset enriched strong
symmetric monoidal functor preserving monoids and comonoids.

The archetypal example of a cartesian bicategory is (Rel◦, ◀◦
, ▶◦). Rel◦ the bicategory of sets and relations ordered by inclusion
⊆ with white composition ,◦ and identities 𝑖𝑑◦ defined as in (2) and
(3). The monoidal product on objects is the cartesian product of
sets with unit 𝐼 the singleton set 1. on arrows, ⊗ is defined as in
(7). It is immediate to check that, for every set 𝑋 , the arrows ◀◦𝑋 ,
!◦𝑋 defined in (6) form a comonoid in Rel◦, while ▶◦𝑋 , ¡

◦
𝑋 a monoid.

Simple computations also proves all the (in)equalities in Fig. 2.

1Note that the coherence conditions are not in Fig. 2 since they hold in NPRΣ , given
the inductive definitions of Tab. 1.

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

𝑋
𝑋
𝑋
𝑋

(◀◦-as)
= 𝑋

𝑋
𝑋
𝑋

𝑋
𝑋

(◀◦-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(◀◦-co)
= 𝑋

𝑋

𝑋
𝑋𝑋

(S◦)
= 𝑋 𝑋 𝑐

𝑌

𝑌
𝑋

(◀◦-nat)
≤

𝑐

𝑐

𝑌
𝑌

𝑋

𝑋
𝑋
𝑋
𝑋

(▶◦-as)
= 𝑋

𝑋
𝑋
𝑋

𝑋
𝑋

(▶◦-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(▶◦-co)
= 𝑋

𝑋

𝑋 𝑋

𝑋
𝑋

𝑋 (F◦)
= 𝑋

𝑋
𝑋

𝑋
𝑐𝑋

(!◦-nat)
≤ 𝑋

𝑋
(𝜖!◦)
≤ 𝑋 𝑋

(𝜂!◦)
≤ 𝑋𝑋

𝑋

𝑋

𝑋

𝑋

(𝜖 ◀◦)
≤ 𝑋

𝑋

𝑋

𝑋
𝑋 𝑋

(𝜂 ◀◦)
≤ 𝑋𝑋

Figure 2: Axioms of cartesian bicategories

𝑋
𝑋
𝑋
𝑋

(◀•-as)
= 𝑋

𝑋
𝑋
𝑋

𝑋
𝑋

(◀•-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(◀•-co)
= 𝑋

𝑋

𝑋
𝑋𝑋

(S•)
= 𝑋 𝑋

𝑐

𝑐

𝑌
𝑌

𝑋
(◀•-nat)

≤ 𝑐
𝑌

𝑌
𝑋

𝑋
𝑋
𝑋
𝑋

(▶•-as)
= 𝑋

𝑋
𝑋
𝑋

𝑋
𝑋

(▶•-un)
= 𝑋 𝑋 𝑋

𝑋

𝑋
(▶•-co)
= 𝑋

𝑋

𝑋 𝑋

𝑋
𝑋

𝑋 (F•)
= 𝑋

𝑋
𝑋

𝑋

𝑋

(!•-nat)
≤ 𝑐𝑋

𝑋𝑋

(𝜖¡•)
≤ 𝑋 𝑋

(𝜂¡•)
≤ 𝑋

𝑋𝑋

(𝜖 ▶•)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋

(𝜂 ▶•)
≤ 𝑋

𝑋

𝑋

𝑋

Figure 3: Axioms of cocartesian bicategories

The fact that relations are lax comonoid homomorphisms is the
most interesting to show: since 𝑅 ,◦ ◀◦𝑌= {(𝑥, (𝑦,𝑦)) | (𝑥,𝑦) ∈ 𝑅}
is included in {(𝑥, (𝑦, 𝑧)) | (𝑥,𝑦) ∈ 𝑅 ∧ (𝑥, 𝑧) ∈ 𝑅} =◀◦𝑋 ,◦(𝑅 ⊗ 𝑅)
and 𝑅 ,◦ !◦𝑌 = {(𝑥,★) | ∃𝑦 ∈ 𝑋 . (𝑥,𝑦) ∈ 𝑅} in {(𝑥,★) | 𝑥 ∈ 𝑋 } = !◦𝑋
for any relation 𝑅 ⊆ 𝑋 ×𝑌 , (◀◦-nat) and (!◦-nat) hold. The reversed
inclusions are interesting to consider: 𝑅 ,◦ ◀◦𝑌 ⊇◀◦𝑋 ,◦(𝑅 ⊗ 𝑅) holds
iff the relation 𝑅 is single valued, while 𝑅 ,◦ !◦𝑌 ⊇ !◦𝑋 iff 𝑅 a total.
That is, the two inequalities in Definition 4.1.(2) are equalities iff
the relation 𝑅 is a function. This justifies the following:

Definition 4.2. An arrow 𝑐 : 𝑋 → 𝑌 is a map if

𝑐
𝑌

𝑌
𝑋 ≥

𝑐

𝑐

𝑌
𝑌

𝑋 𝑐𝑋 ≥ 𝑋

It is easy to see that maps form a monoidal subcategory of C [16],
hereafter denoted by Map(C). In fact, it is cartesian.

Given a cartesian bicategory (C, ◀◦, ▶◦), one can take Cop, swap
monoids and comonoids and thus, obtain a cartesian bicategory
(Cop, ▶◦, ◀◦). Most importantly, there is an identity on objects
isomorphism (·)† : C → Cop defined for all arrows 𝑐 : 𝑋 → 𝑌 as

𝑐† def
= 𝑐

𝑌

𝑋

(11)

Proposition 4.3. (·)† : C → Cop is an isomorphism of cartesian
bicategories, namely the laws in the first three rows of Table 2.(a) hold.

Hereafter, we write 𝑐 for 𝑐
† and we call it the mirror image

of 𝑐 . Note that in § 2, we used the same symbol (·)† to denote the
converse relation. This is no accident: in the cartesian bicategory
(Rel◦, ◀◦, ▶◦), 𝑅† as in (11) is exactly {(𝑦, 𝑥) | (𝑥,𝑦) ∈ 𝑅}.

In a cartesian bicategory, one can also define, for all arrows
𝑐, 𝑑 : 𝑋 → 𝑌 , 𝑐 ⊓ 𝑑 and ⊤ as follows.

𝑐 ⊓ 𝑑
def
=

𝑐

𝑑
𝑋 𝑌 ⊤ def

= 𝑋 𝑌 (12)

We have already seen in Example 3.1 that these terms, when in-
terpreted in Rel◦, denote respectively intersection and top. It is
easy to show that in any cartesian bicategory C, ⊓ is associative,

commutative, idempotent and has ⊤ as unit. Namely, C[𝑋,𝑌] is a
meet-semilattice with top. However, C is usually not enriched over
meet-semilattices since ,◦ distributes only laxly over ⊓. Indeed, in
Rel◦, 𝑅 ,◦ (𝑆 ∩𝑇) ⊆ (𝑅 ,◦ 𝑆) ∩ (𝑅 ,◦𝑇) holds but the reverse does not.

Let us now turn to cocartesian bicategories. Our main example is
(Rel•, ◀•, ▶•). Rel• is the bicategory of sets and relations ordered
by ⊆ with composition ,•, identities 𝑖𝑑• and �× defined as in (2), (3)
and (7). Comonoids (◀•𝑋 , !•𝑋) and monoids (▶•𝑋 , ¡•𝑋) are those of (6).
To see that Rel• is a cocartesian bicategory, observe that the com-
plement (·) is a poset-enriched symmetric monoidal isomorphism
(·) : (Rel◦)co → Rel• preserving (co)monoids.

We draw arrows of cocartesian bicategories in black: ◀•𝑋 ,!
•
𝑋 ,

▶•𝑋 and ¡•
𝑋 are drawn 𝑋

𝑋

𝑋 , 𝑋 , 𝑋
𝑋

𝑋 and 𝑋 .
Following this convention, the axioms of cocartesian bicategories
are in Fig. 3; they can also be obtained from Fig. 2 by inverting both
the colours and the order.

It is not surprising that in a cocartesian bicategory C, every
homset C[𝑋,𝑌] carries a join semi-lattice with bottom, where 𝑐 ⊔𝑑
and ⊥ are defined for all arrows 𝑐, 𝑑 : 𝑋 → 𝑌 as follows.

𝑐 ⊔ 𝑑
def
=

𝑐

𝑑
𝑋 𝑌 ⊥ def

= 𝑋 𝑌 (13)

5 LINEAR BICATEGORIES
We have seen that Rel◦ forms a cartesian, and Rel• a cocartesian
bicategory. Categorically, they are remarkably similar — as evi-
denced by the isomorphism (·) — but from a logical viewpoint they
represent two complimentary parts of FOL: Rel◦ the existential
conjunctive fragment, and Rel• the universal disjunctive fragment.
To discover the full story, we must merge them into one entity and
study the algebraic interactions between them. However, the coex-
istence of two different compositions ,◦ and ,• brings us out of the
realm of ordinary categories. The solution is linear bicategories [17].
Here ,◦ linearly distributes over ,•, as in Pierce’s calculus. To keep

Diagrammatic Algebra of First Order Logic

𝑑 𝑒𝑐𝑋 𝑌

(𝛿𝑙)≤ 𝑑 𝑒𝑐𝑋 𝑌 𝑑𝑐 𝑒𝑋 𝑌

(𝛿𝑟)≤ 𝑑𝑐 𝑒𝑋 𝑌
𝑋

𝑌

𝑋

𝑌

(�×◦)
≤ 𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

(⊗•)
≤ 𝑋

𝑌

𝑋

𝑌

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈◦𝑙)≤
𝑎 𝑏

𝑐 𝑑

𝑋

𝑍

𝑌

𝑊

𝑎 𝑏

𝑐 𝑑

𝑋

𝑍

𝑌

𝑊

(𝜈•𝑙)≤ 𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑊

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈◦𝑟)≤ 𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

(𝜈•𝑟)≤ 𝑏𝑎

𝑑𝑐

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑌

𝑋

𝑌

(𝜏𝜎◦)
≤

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋
(𝛾𝜎◦)
≤ 𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

(𝜏𝜎•)
≤

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

𝑋
(𝛾𝜎•)
≤ 𝑋

𝑌

𝑋

𝑌

𝑋 𝑋
(𝜏𝑅◦)
≤ 𝑅 𝑅𝑋 𝑋 𝑅 𝑅𝑌 𝑌

(𝛾𝑅◦)
≤ 𝑌 𝑌

𝑌 𝑌
(𝜏𝑅•)
≤ 𝑅𝑅 𝑌𝑌 𝑅𝑅 𝑋𝑋

(𝛾𝑅•)
≤ 𝑋 𝑋

Figure 4: Axioms of closed symmetric monoidal linear bicategories

our development easier, we stick to the poset enriched case and
rely on diagrams, using white and black to distinguish ,◦ and ,•.

Definition 5.1. A linear bicategory (C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•) consists of
two poset enriched categories (C, ,◦, 𝑖𝑑◦) and (C, ,•, 𝑖𝑑•) with the
same objects, arrows and orderings but possibly different identities
and compositions such that ,◦ linearly distributes over ,• (i.e., (𝛿𝑙)
and (𝛿𝑟) in Fig. 4 hold). A symmetric monoidal linear bicategory
(C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•, ⊗, 𝜎◦, �×, 𝜎•, 𝐼), shortly (C, ⊗, �×, 𝐼), consists of a lin-
ear bicategory (C, ,◦, 𝑖𝑑◦, ,•, 𝑖𝑑•) and two poset enriched symmetric
monoidal categories (C, ⊗, 𝐼) and (C, �×, 𝐼) such that ⊗ and �× agree
on objects, i.e., 𝑋 ⊗ 𝑌 = 𝑋 �× 𝑌 , share the same unit 𝐼 and
1. there are linear strengths for (⊗, �×), (i.e., (𝜈◦

𝑙
), (𝜈◦𝑟), (𝜈•𝑙), (𝜈

•
𝑟));

2. �× preserves 𝑖𝑑◦ colaxly and ⊗ preserves 𝑖𝑑• laxly ((⊗•), (�×◦)).
A morphism of symmetric monoidal linear bicategories F : (C1, ⊗

, �×, 𝐼) → (C2, ⊗, �×, 𝐼) consists of two poset enriched symmetric
monoidal functors F ◦ : (C1, ⊗, 𝐼) → (C2, ⊗, 𝐼) and F • : (C1, �×
, 𝐼) → (C2, �×, 𝐼) that agree on objects and arrows: F ◦ (𝑋) = F • (𝑋)
and F ◦ (𝑐) = F • (𝑐).

Remark 2. In the literature ,◦, 𝑖𝑑◦, ,• and 𝑖𝑑• are written with the
linear logic notation ⊗,⊤, ⊕ and⊥. Modulo this, the traditional notion
of linear bicategory (Definition 2.1 in [17]) coincides with the one in
Definition 5.1 whenever the 2-structure is collapsed to a poset.

Monoidal products on linear bicategories are not much studied
although the axioms in Definition 5.1.1 already appeared in [57]. They
are the linear strengths of the pair (⊗, �×) seen as a linear functor
(Definition 2.4 in [17]), a notion of morphism that crucially differs
from ours on the fact that the F ◦ and F • may not coincide on arrows.
Instead the inequalities (⊗•)and (�×◦)are, to the best of our knowledge,
novel. Beyond being natural, they are crucial for Lemma 5.2 below.

All linear bicategories in this paper are symmetric monoidal. We
therefore omit the adjective symmetric monoidal and refer to them
simply as linear bicategories. For a linear bicategory (C, ⊗, �×, 𝐼),
we will often refer to (C, ⊗, 𝐼) as the white structure, shorthand C◦,
and to (C, �×, 𝐼) as the black structure, C•. Note that a morphism F
is a mapping of objects and arrows that preserves the ordering, the
white and black structures; thus we write F for both F ◦ and F •.

If (C, ⊗, �×, 𝐼) is linear bicategory then (Cop, ⊗, �×, 𝐼) is a linear
bicategory. Similarly (Cco, �×, ⊗, 𝐼), the bicategory obtained from C
by reversing the ordering and swapping the white and the black
structure, is a linear bicategory.

Our main example is the linear bicategory Rel of sets and rela-
tions ordered by ⊆. The white structure is the symmetric monoidal

category (Rel◦, ⊗,1), introduced in the previous section and the
black structure is (Rel•, �×,1). Observe that the two have the same
objects, arrows and ordering. The white and black monoidal prod-
ucts ⊗ and �× agree on objects and are the cartesian product of sets.
As common unit object, they have the singleton set 1. We already
observed in (5) that the white composition ,◦ distributes over ,• and
thus (𝛿𝑙) and (𝛿𝑟) hold. By using the definitions in (2), (3) and (7), the
reader can easily check also the inequalities in Definition 5.1.1,2.

Lemma 5.2. Let (C, ⊗, �×, 𝐼) be a linear bicategory. For all arrows
𝑎, 𝑏, 𝑐 the following hold:

(1) 𝑖𝑑•𝐼 ≤ 𝑖𝑑◦𝐼 (2) 𝑎 ⊗ 𝑏 ≤ 𝑎 �× 𝑏 (3) (𝑎 �× 𝑏) ⊗ 𝑐 ≤ 𝑎 �× (𝑏 ⊗ 𝑐)
Remark 3. As ⊗ linearly distributes over �×, it may seem that

symmetric monoidal linear bicategories of Definition 5.1 are linearly
distributive [19, 23]. Moreover (1), (2) of Lemma 5.2 may suggest that
they are mix categories [18]. This is not the case: functoriality of ⊗
over ,• and of �× over ,◦ fails in general.

Closed linear bicategories. In § 4, we recalled adjoints of arrows
in bicategories; in linear bicategories one can define linear adjoints.
For 𝑎 : 𝑋 → 𝑌 and 𝑏 : 𝑌 → 𝑋 , 𝑎 is left linear adjoint to 𝑏, or 𝑏 is
right linear adjoint to 𝑎, written 𝑏 ⊩ 𝑎, if 𝑖𝑑◦𝑋 ≤ 𝑎 ,•𝑏 and 𝑏 ,◦𝑎 ≤ 𝑖𝑑•𝑌 .

Next we discuss some properties of right linear adjoints. Those of
left adjoints are analogous but they do not feature in our exposition
since in the categories of interest — in next section — left and right
linear adjoint coincide. As expected, linear adjoints are unique.

Lemma 5.3. If 𝑏 ⊩ 𝑎 and 𝑐 ⊩ 𝑎, then 𝑏 = 𝑐 .

𝑋
𝑎 // 𝑌

𝑍

𝑏

??

𝑏 ,•𝑎⊥
OO

𝑐

>>By virtue of the above result we can write
𝑎⊥ : 𝑌 → 𝑋 for the right linear adjoint of
𝑎 : 𝑋 → 𝑌 . With this notation one can write
the left residual of 𝑏 : 𝑍 → 𝑌 by 𝑎 : 𝑋 → 𝑌
as 𝑏 ,• 𝑎⊥ : 𝑍 → 𝑋 . The left residual is the greatest arrow 𝑍 → 𝑋
making the diagram on the right commute laxly in C◦, namely if
𝑐 ,◦ 𝑎 ≤ 𝑏 then 𝑐 ≤ 𝑏 ,• 𝑎⊥. This can be equivalently expressed as:

Lemma 5.4 (Residuation). 𝑎 ≤ 𝑏 iff 𝑖𝑑◦𝑋 ≤ 𝑏 ,• 𝑎⊥.
Definition 5.5. A linear bicategory (C, ⊗, �×, 𝐼) is said to be closed

if every 𝑎 : 𝑋 → 𝑌 has both a left and a right linear adjoint and the
white symmetry is both left and right linear adjoint to the black
symmetry, i.e. (𝜏𝜎◦), (𝛾𝜎◦), (𝜏𝜎•) and (𝛾𝜎•) in Fig. 4 hold.

Rel is a a closed linear bicategory: both left and right linear
adjoints of a relation 𝑅 ⊆ 𝑋 ×𝑌 are given by 𝑅† = {(𝑦, 𝑥) | (𝑥,𝑦) ∉
𝑅} ⊆ 𝑌 × 𝑋 . With this, it is easy to see that 𝜎• ⊩ 𝜎◦ ⊩ 𝜎• in Rel.

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

Observe that if a linear bicategory (C, ⊗, �×, 𝐼) is closed, then also
(Cop, ⊗, �×, 𝐼) and (Cco, �×, ⊗, 𝐼) are closed. The assignment 𝑎 ↦→ 𝑎⊥
gives rise to an identity on objects functor (·)⊥ : C → (Cco)op.

Proposition 5.6. (·)⊥ : C → (Cco)op is a morphism of linear
bicategories, i.e., the laws in the first two columns of Table 2.(b) hold.

Hereafter, the diagram obtained from 𝑐 , by taking its mirror
image 𝑐 and then its photographic negative 𝑐 will denote 𝑐

⊥.

6 FIRST ORDER BICATEGORIES
Here we focus on the most important and novel part of the ax-
iomatisation. Indeed, having introduced the two main ingredients,
cartesian and linear bicategories, it is time to fire up the Bunsen
burner. The remit of this section is to understand how the carte-
sian and the linear bicategory structures interact in the context
of relations. We introduce first order bicategories that make these
interactions precise. The resulting axioms echo those of cartesian
bicategories but in the linear bicategory setting: recall that in a
cartesian bicategory the monoid and comonoids are adjoint and
satisfy the Frobenius law. Here, the white and black (co)monoids are
again related, but by linear adjunctions; moreover, they also satisfy
appropriate “linear” counterparts of the Frobenius equations.

Definition 6.1. A first order bicategory (C, ⊗, �×, 𝐼 , ◀◦, !◦, ▶◦, ¡◦, ◀•
, !•, ▶•, ¡•), shorthand fo-bicategory (C, ◀◦, ▶◦, ◀•, ▶•), consists of
1. a closed linear bicategory (C, ⊗, �×, 𝐼),
2. a cartesian bicategory (C, ⊗, 𝐼 , ◀◦, !◦, ▶◦, ¡◦) and
3. a cocartesian bicategory (C, �×, 𝐼 , ◀•, !•, ▶•, ¡•), such that
4. the white comonoid (◀◦, !◦) is left and right linear adjoint to
black monoid (▶•, ¡•) and (▶◦, ¡◦) is left and right linear adjoint to
(◀•, !•), i.e. the inequalities on the left of Figure 5 hold;
5. white and black (co)monoids satisfy the linear Frobenius laws,
i.e. the equalities on the right of Fig. 5 hold.

Amorphism of fo-bicategories is a morphism of linear bicategories
and of (co)cartesian bicategories.

We have seen that Rel is a closed linear bicategory, Rel◦ a carte-
sian bicategory and Rel• a cocartesian bicategory. Given (6), it is
easy to confirm linear adjointness and linear Frobenius.

Now if (C, ◀◦, ▶◦, ◀•, ▶•) is a fo-bicategory then (Cop, ▶◦, ◀◦
, ▶•, ◀•) and (Cco, ◀•, ▶•, ◀◦, ▶◦) are fo-bicategories: the laws of
Fig. 5 are closed under mirror-reflection and photographic nega-
tive. The fourth condition in Definition 6.1 entails that the linear
bicategory morphism (·)⊥ : C → (Cco)op (see Prop. 5.6) is a mor-
phism of fo-bicategories and, similarly, the fifth condition that also
(·)† : C → Cop (Prop. 4.3) is a morphism of fo-bicategories.

Proposition 6.2. Let (C, ◀◦, ▶◦, ◀•, ▶•) be a fo-bicategory. Then
(·)† : C → Cop and (·)⊥ : C → (Cco)op are isomorphisms of fo-
bicategories, namely the laws in Table 2.(a) and (b) hold.

Corollary 6.3. The laws in Table 2.(c) hold.

The corollary follows from (12) and (13) and the laws in Tables
2.(a) and (b). For instance, (𝑎 ⊓ 𝑏)⊥ = 𝑎⊥ ⊔ 𝑏⊥ is proved as follows.

𝑎

𝑏

⊥
=

⊥
,•

𝑎

𝑏

⊥
,•

⊥
= ,•

𝑎

𝑏
,• =

𝑎

𝑏

The next result about maps (Definition 4.2) plays a crucial role.

Proposition 6.4. For all maps 𝑓 : 𝑋 → 𝑌 and arrows 𝑐 : 𝑌 → 𝑍 ,
𝑓 ,◦ 𝑐 = (𝑓 †)⊥ ,• 𝑐 and thus

𝑐 = 𝑐 𝑐 = 𝑐 𝑐 = 𝑐 𝑐 = 𝑐

For fo-bicategory C, we have the four
isomorphisms in the diagram on the right,
which commutes by Corollary 6.3. We can
thus define the complement as the diagonal
of the square, namely (·) def

= ((·)⊥)†.

C
(·)† //

(·)⊥
��

Cop

(·)⊥
��

(Cco)op
(·)†

// Cco

In diagrams, given 𝑐 , its negation is (𝑐
⊥)† = 𝑐

† = 𝑐 .
Clearly (·) : C → Cco is an isomorphism of fo-bicategories. More-

over, it induces a Boolean algebra on each homset of C.

Proposition 6.5. Let (C, ◀◦, ▶◦, ◀•, ▶•) be a fo-bicategory. Then
every homset of C is a Boolean algebra: the laws in Tab. 2.(d) hold.
Further, (C, ⊗, 𝐼) is monoidally enriched over ⊔-semilattices with ⊥,
while (C, �×, 𝐼) over ⊓-semilattices with ⊤: the laws in Tab. 2.(e) hold.

The monoidal enrichment is interesting: as we mentioned in § 4,
the white structure is not enriched over ⊓, but it is enriched over
⊔. In Rel, this is the fact that 𝑅 ,◦ (𝑆 ∪𝑇) = (𝑅 ,◦ 𝑆) ∪ (𝑅 ,◦𝑇).

We conclude with a result that extends Lemma 5.4 with five
different possibilities to express the concept of logical entailment.

Lemma 6.6. In a fo-bicategory, the following are equivalent:

(1) 𝑎𝑋 𝑌 ≤ 𝑏𝑋 𝑌 (2) 𝑋 𝑋 ≤ 𝑏 𝑎𝑋 𝑋

(3) 𝑌 𝑌 ≤ 𝑎 𝑏𝑌 𝑌 (4) 𝑋 𝑌 ≤ 𝑎

𝑏
𝑋 𝑌

(5) ≤ 𝑏𝑎

6.1 The calculus of neo-Peircean relations as a
freely generated first order bicategory

We now return to NPRΣ. Recall that ≲ is the precongruence ob-
tained from the axioms in Fig.s 2, 3, 4 and 5. Its soundness (half of
Theorem 3.2) is immediate since Rel is a fo-bicategory.

Proposition 6.7. For all terms 𝑐, 𝑑 : 𝑛 →𝑚, if 𝑐 ≲ 𝑑 then 𝑐 ≦ 𝑑 .

Next, we show how NPRΣ gives rise to a fo-bicategory FOBΣ.
Objects are natural numbers andmonoidal products �⊗ are defined as
addition with unit object 0. Arrows from 𝑛 to𝑚 are terms 𝑐 : 𝑛 →𝑚

modulo syntactic equivalence �, namely FOBΣ [𝑛,𝑚] def
= {[𝑐]� |

𝑐 : 𝑛 →𝑚}. Observe that this is well defined since � is well-typed.
Since � is a congruence, the operations ,•◦ and �⊗ on terms are well
defined on equivalence classes: [𝑡1]� ,•◦[𝑡2]� def

= [𝑡1 ,•◦𝑡2]� and [𝑡1]� �⊗
[𝑡2]� def

= [𝑡1 �⊗ 𝑡2]� . By fixing as partial order the syntactic inclusion
≲, one can easily prove the following.

Proposition 6.8. FOBΣ is a first order bicategory.

A useful consequence is that, for any interpretation I = (𝑋, 𝜌),
the semantics I♯ gives rise to a morphism I♯ : FOBΣ → Rel of
fo-bicategories: it is defined on objects as 𝑛 ↦→ 𝑋𝑛 and on arrows
by the inductive definition in (8). To see that it is a morphism, note
that, by (8), all the structure of (co)cartesian bicategories and of

Diagrammatic Algebra of First Order Logic

Table 2: Properties of first order bicategories.

(a) Properties of (·)† : (C, ◀◦, ▶◦, ◀•, ▶•) → (Cop, ▶◦, ◀◦, ▶•, ◀•)

if 𝑐 ≤ 𝑑 then 𝑐† ≤ 𝑑† (𝑐†)† = 𝑐

(𝑐 ,◦𝑑)† = 𝑑† ,◦ 𝑐† (𝑖𝑑◦
𝑋

)† = 𝑖𝑑◦
𝑋

(▶◦
𝑋

)† =◀◦
𝑋

(¡◦
𝑋

)† = !◦
𝑋

(𝑐 ⊗ 𝑑)† = 𝑐† ⊗ 𝑑† (𝜎◦
𝑋,𝑌

)† = 𝜎◦
𝑌,𝑋

(◀◦
𝑋

)† =▶◦
𝑋

(!◦
𝑋

)† = ¡◦
𝑋

(𝑐 ,•𝑑)† = 𝑑† ,• 𝑐† (𝑖𝑑•
𝑋

)† = 𝑖𝑑•
𝑋

(▶•
𝑋

)† =◀•
𝑋

(¡•
𝑋

)† = !•
𝑋

(𝑐 �× 𝑑)† = 𝑐† �× 𝑑† (𝜎•
𝑋,𝑌

)† = 𝜎•
𝑌,𝑋

(◀•
𝑋

)† =▶•
𝑋

(!•
𝑋

)† = ¡•
𝑋

(b) Properties of (·)⊥ : (C, ◀◦, ▶◦, ◀•, ▶•) → ((Cco)op, ▶•, ◀•, ▶◦, ◀◦)

if 𝑐 ≤ 𝑑 then 𝑐⊥ ≥ 𝑑⊥ (𝑐⊥)⊥ = 𝑐

(𝑐 ,◦𝑑)⊥ = 𝑑⊥ ,• 𝑐⊥ (𝑖𝑑◦
𝑋

)⊥ = 𝑖𝑑•
𝑋

(▶◦
𝑋

)⊥ =◀•
𝑋

(¡◦
𝑋

)⊥ = !•
𝑋

(𝑐 ⊗ 𝑑)⊥ = 𝑐⊥ �× 𝑑⊥ (𝜎◦
𝑋,𝑌

)⊥ = 𝜎•
𝑌,𝑋

(◀◦
𝑋

)⊥ =▶•
𝑋

(!◦
𝑋

)⊥ = ¡•
𝑋

(𝑐 ,•𝑑)⊥ = 𝑑⊥ ,◦ 𝑐⊥ (𝑖𝑑•
𝑋

)⊥ = 𝑖𝑑◦
𝑋

(▶•
𝑋

)⊥ =◀◦
𝑋

(¡•
𝑋

)⊥ = !◦
𝑋

(𝑐 �× 𝑑)⊥ = 𝑐⊥ ⊗ 𝑑⊥ (𝜎•
𝑋,𝑌

)⊥ = 𝜎◦
𝑌,𝑋

(◀•
𝑋

)⊥ =▶◦
𝑋

(!•
𝑋

)⊥ = ¡◦
𝑋

(c) Interaction of ·† and ·⊥ with ⊓ and ⊔

(𝑐 ⊓𝑑)† = 𝑐† ⊓𝑑† ⊤† = ⊤
(𝑐 ⊔𝑑)† = 𝑐† ⊔𝑑† ⊥† = ⊥
(𝑐 ⊓𝑑)⊥ = 𝑐⊥ ⊔𝑑⊥ (⊤)⊥ = ⊥
(𝑐 ⊔𝑑)⊥ = 𝑐⊥ ⊓𝑑⊥ (⊥)⊥ = ⊤

(𝑐†)⊥ = (𝑐⊥)†

(d) Laws of Boolean algebras

𝑐 ⊓ (𝑑 ⊔ 𝑒) = (𝑐 ⊓𝑑) ⊔ (𝑐 ⊓ 𝑒)
𝑐 ⊔ (𝑑 ⊓ 𝑒) = (𝑐 ⊔𝑑) ⊓ (𝑐 ⊔ 𝑒)
(𝑐 ⊓𝑑) = 𝑐 ⊔𝑑 ⊤ = ⊥
(𝑐 ⊔𝑑) = 𝑐 ⊓𝑑 ⊥ = ⊤

𝑐 ⊓ 𝑐 = ⊥ 𝑐 ⊔ 𝑐 = ⊤

(e) Enrichment over
join-meet semilattices

𝑐 ,◦ (𝑑 ⊔ 𝑒) = (𝑐 ,◦𝑑) ⊔ (𝑐 ,◦ 𝑒) (𝑑 ⊔ 𝑒) ,◦ 𝑐 = (𝑑 ,◦ 𝑐) ⊔ (𝑒 ,◦ 𝑐) 𝑐 ,◦ ⊥ = ⊥ = ⊥ ,◦ 𝑐 𝑐 ⊗ (𝑑 ⊔ 𝑒) = (𝑐 ⊗ 𝑑) ⊔ (𝑐 ⊗ 𝑒) (𝑑 ⊔ 𝑒) ⊗ 𝑐 = (𝑑 ⊗ 𝑐) ⊔ (𝑒 ⊗ 𝑐) 𝑐 ⊗ ⊥ = ⊥ = ⊥ ⊗ 𝑐
𝑐 ,• (𝑑 ⊓ 𝑒) = (𝑐 ,•𝑑) ⊓ (𝑐 ,• 𝑒) (𝑑 ⊓ 𝑒) ,• 𝑐 = (𝑑 ,• 𝑐) ⊓ (𝑒 ,• 𝑐) 𝑐 ,• ⊤ = ⊤ = ⊤ ,• 𝑐 𝑐 �× (𝑑 ⊓ 𝑒) = (𝑐 �× 𝑑) ⊓ (𝑐 �× 𝑒) (𝑑 ⊓ 𝑒) �× 𝑐 = (𝑑 �× 𝑐) ⊓ (𝑒 �× 𝑐) 𝑐 �× ⊤ = ⊤ = ⊤ �× 𝑐

𝑋 𝑋
(𝜏 ◀◦)
≤ 𝑋𝑋

𝑋 𝑋
(𝜏 !◦)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋

(𝜏 ▶◦)
≤

𝑋

𝑋

𝑋

𝑋

(𝜏 ¡◦)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 ◀◦)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 !◦)
≤

𝑋 𝑋
(𝛾 ▶◦)
≤ 𝑋 𝑋

𝑋 𝑋
(𝛾 ¡◦)
≤ 𝑋 𝑋

𝑋 𝑋
(𝜏 ◀•)
≤ 𝑋 𝑋

𝑋 𝑋
(𝜏 !•)
≤ 𝑋𝑋

𝑋

𝑋

𝑋

𝑋

(𝜏 ▶•)
≤

𝑋

𝑋

𝑋

𝑋

(𝜏 ¡•)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 ◀•)
≤ 𝑋

𝑋

𝑋

𝑋

𝑋
(𝛾 !•)
≤

𝑋𝑋
(𝛾 ▶•)
≤ 𝑋 𝑋

𝑋𝑋
(𝛾 ¡•)
≤ 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋
(F•◦)
=

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

(F◦•)
= 𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋
(F ◦•)
=

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

(F •◦)
= 𝑋

𝑋

𝑋

𝑋

Figure 5: Additional axioms for fo-bicategories

linear bicategories is preserved (e.g. I♯ (◀◦1) =◀◦𝑋). Moreover, the
ordering is preserved by Prop. 6.7. Note that, by construction,

I♯ (1) = 𝑋 and I♯ (𝑅◦) = 𝜌 (𝑅) for all 𝑅 ∈ Σ. (14)

Actually, I♯ is the unique such morphism of fo-bicategories.
This is a consequence of a more general universal property: Rel
can be replaced with an arbitrary fo-bicategory C. To see this, we
first need to generalise the notion of interpretation.

Definition 6.9. Let Σ be a monoidal signature and C a first order
bicategory. An interpretation I = (𝑋, 𝜌) of Σ in C consists of an
object 𝑋 of C and an arrow 𝜌 (𝑅) : 𝑋𝑛 → 𝑋𝑚 for each 𝑅 ∈ Σ[𝑛,𝑚].

With this definition, we can state that FOBΣ is the fo-bicategory
freely generated by Σ.

Proposition 6.10. Let Σ be a monoidal signature, C a first order
bicategory and I = (𝑋, 𝜌) an interpretation of Σ in C. There exists
a unique morphism of fo-bicategories I♯ : FOBΣ → C such that
I♯ (1) = 𝑋 and I♯ (𝑅◦) = 𝜌 (𝑅) for all 𝑅 ∈ Σ.

7 DIAGRAMMATIC FIRST ORDER THEORIES
Here we take the first steps towards completeness and show that
for first order theories, fo-bicategories play an analogous role to
cartesian categories in Lawvere’s functorial semantics [48].

A first order theory T is a pair (Σ, I) where Σ is a signature and I
is a set of axioms: pairs (𝑐, 𝑑) for 𝑐, 𝑑 : 𝑛 →𝑚 in FOBΣ. Amodel of T
is an interpretation I of Σ where if (𝑐, 𝑑) ∈ I, then I♯ (𝑐) ⊆ I♯ (𝑑).

Example 7.1. The simplest case is Σ = I = ∅. An interpretation
is a set: all sets, including the empty set ∅, are models.

Next take Σ = ∅ and I = {(,)}. An interpretation I
is a set 𝑋 . By (8), I♯ () = {(★, 𝑥) | 𝑥 ∈ 𝑋 } ,◦ {(𝑥,★) | 𝑥 ∈ 𝑋 },

so I♯ () = {(★,★)} if 𝑋 ≠ ∅, but ∅ if 𝑋 = ∅. Instead,
I♯() = {(★,★)} always, since 𝑋 0 is always 1. Succinctly,
I♯() ⊆ I♯ () iff 𝑋 ≠ ∅: models are non-empty sets.

Finally, take Σ = {𝑅 : 1 → 1} and let I be as follows:
{ (, 𝑅), (𝑅 𝑅 , 𝑅), (𝑅

𝑅
,), (, 𝑅

𝑅
) }.

An interpretation is a set 𝑋 and a relation 𝑅 ⊆ 𝑋 × 𝑋 . It is a model
iff 𝑅 is an order, i.e., reflexive, transitive, antisymmetric and total.

Monoidal signatures Σ, differently from usual FOL alphabets, do
not have function symbols. The reason is that, by adding the axioms
below to I, one forces a symbol 𝑓 : 𝑛 → 1 ∈ Σ to be a function.

𝑓

𝑓
𝑛 ≤ 𝑓𝑛 𝑛 ≤ 𝑓𝑛 (M𝑓)

Indeed, as we remarked in § 4, 𝑓 ⊆ 𝑋𝑛 ×𝑋 satisfiesM𝑓 if and only
if it is single valued and total, i.e. a function. We depict functions
as 𝑓𝑛 and constants, being 0 → 1 functions, as 𝑘 .

The axioms of a theory together with ≲ form a deduction system.
Formally, the deduction relation induced by T = (Σ, I) is the closure
(see (10)) of ≲ ∪ I, i.e. ≲Tdef

= pc(≲ ∪ I). We write �T for ≲T ∩ ≳T.
Proposition 7.2. Let T = (Σ, I) be a theory. If 𝑐 ≲T 𝑑 , then

I♯ (𝑐) ⊆ I♯ (𝑑) for all models I.
Example 7.3. Consider the theory T with Σ = {𝑘 : 0 → 1} and

axiomsM𝑘 . By the definitions of ◀◦0 and !◦0 in Tab. 1, these are:

𝑘

𝑘 ≤ 𝑘 ≤ 𝑘 (M𝑘)

An interpretation I of Σ consists of a set𝑋 and a relation 𝑘 ⊆ 1×𝑋 .
An interpretation is a model iff 𝑘 is a function of type 1→ 𝑋 . One
can easily prove that in all models the domain is non-empty:

(M𝑘)
≲T 𝑘

(𝜂!◦)
≲T 𝑘

(!◦-nat)
≲T (15)

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

𝑐
(◀◦-nat)

≤ 𝑐

𝑐
,

𝑐

𝑐

(◀•-nat)
≤ 𝑐 , 𝑐

(!◦-nat)
≤ ,

(!•-nat)
≤ 𝑐 , 𝑏 𝑐𝑎

(𝛿𝑙)
(𝛿𝑟)≤ 𝑏𝑎 𝑐 ,

(𝜏𝑅◦)
(𝜏𝑅•)
≤ 𝑅 𝑅 , 𝑅 𝑅

(𝛾𝑅◦)
(𝛾𝑅•)
≤

Figure 6: The axioms in Figures 2, 3 and 4 reduce to those above for diagrams of type 𝐼 → 𝐼

Contradictory vs trivial theories. The distinction between contra-
dictory and trivial theories is so subtle that, as shown in Remark 5,
it is invisible in FOL. Let us start with the definition.

Definition 7.4. A theory T is contradictory if ≲T . It is
trivial if ≲T .

Triviality implies all models have domain∅:I♯ () = {(★, 𝑥) |
𝑥 ∈ 𝑋 } is included in ∅ = I♯ () iff 𝑋 = ∅. On the other hand,
contradictory theories cannot have a model, not even when 𝑋 = ∅:
since I♯ () = {(★,★)} and I♯ () = ∅ independently of 𝑋 .
Every contradictory theory is trivial (see Prop. F.1 in App. F).

In trivial theories diagrams of type 0 → 0 can be quite interesting
(see Example 7.6), while those with a different type collapse:

Lemma 7.5. Let T be a trivial theory and 𝑐 : 𝑛 →𝑚+1, 𝑑 : 𝑚+1 →
𝑛 be arrows in FOBΣ. Then ⊤ ≲T 𝑐 ≲T ⊥ and ⊤ ≲T 𝑑 ≲T ⊥.

Example 7.6 (The trivial theory of propositional calculus). Let
T = (Σ, I) be the theory where Σ contains only symbols 𝑃,𝑄, 𝑅 . . .

of type 0 → 0 and I = {(,)}. In any model of T, the
domain 𝑋 must be ∅, because of the only axiom in I. A model
is a mapping of each of the symbols in Σ to either {(★,★)} or ∅.
In other words, 𝑃,𝑄, 𝑅, . . . act as propositional variables and any
model is just an assignment of boolean values. By Lemma 7.5 all
arrows collapse, with the exception of those of type 0 → 0, that
are exactly propositional formulas (see Prop. B.1 in App. B.2). Our
axiomatisation reduces to the one in Fig. 6. The reader can check
App. B.2 to see that this is the deep inference system SKSg in [15].

Diagrams 𝑐 : 0 → 0, which can be thought of as closed formu-
las of FOL, also play an important role in the following result: a
diagrammatic analogue of the deduction theorem (the reader may
check App. F.1 for a detailed comparison with theories in FOL).

Theorem 7.7 (Deduction theorem). Let T = (Σ, I) be a theory
and 𝑐 : 0 → 0 in FOBΣ. Let I′ = I ∪ {(𝑖𝑑◦0 , 𝑐)} and let T′ denote the
theory (Σ, I′). Then, for every 𝑎, 𝑏 : 𝑛 →𝑚 arrows of FOBΣ,

if 𝑎 ≲T′ 𝑏 then
𝑐

≲T 𝑏 𝑎 .

Proof. By induction on the rules of (10). We show only the case
for (,◦). The remaining ones are in App. F.

Assume 𝑎 = 𝑎1 ,◦ 𝑎2 and 𝑏 = 𝑏1 ,◦ 𝑏2 for some 𝑎1, 𝑏1 : 𝑛 →
𝑙, 𝑎2, 𝑏2 : 𝑙 → 𝑚 such that 𝑎1 ≲T′ 𝑏1 and 𝑎2 ≲T′ 𝑏2. By induction
hypothesis 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏1 ,• 𝑎⊥1 and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏2 ,• 𝑎⊥2 . Thus:

𝑐 (◀◦-nat)
≲T

𝑐

𝑐

Ind. hyp.
≲T

𝑏1 𝑎1

𝑐

≈
𝑏1 𝑎1

𝑐 (𝜈◦𝑟)
≲T

𝑏1 𝑎1

𝑐

≈

𝑏1 𝑎1
𝑐

Ind. hyp.
≲T 𝑏1 𝑏2 𝑎2 𝑎1

(𝛿𝑙)
≲T 𝑏1 𝑏2 𝑎2 𝑎1 □

Corollary 7.8. Let T = (Σ, I) be a theory, 𝑐 : 0 → 0 in FOBΣ

and T′ = (Σ, I ∪ {(𝑖𝑑◦0 , 𝑐)}). Then 𝑖𝑑◦0 ≲T 𝑐 iff T′ is contradictory.

7.1 Functorial semantics for first order theories
Recall that the notion of interpretation of a signature Σ in Rel has
been generalised in Definition 6.9 to an arbitrary fo-bicategory. As
expected, the same is possible also with the notion of model.

Definition 7.9. Let T = (Σ, I) be a theory and C a first order
bicategory. An interpretation I of Σ in C is a model iff, for all
(𝑐, 𝑑) ∈ I, I♯ (𝑐) ≤ I♯ (𝑑).

For any theory T = (Σ, I), one can build a fo-bicategory FOBT:
this is like FOBΣ, but homsets are now FOBT [𝑛,𝑚] = {[𝑑]�T | 𝑑 ∈
FOBΣ [𝑛,𝑚]} ordered by ≲T. Since, by definition, ≲⊆≲T, FOBT is a
fo-bicategory. Thus, one can take an interpretationQT of Σ in FOBT:
the domain 𝑋 is 1 and 𝜌 (𝑅) = [𝑅◦]�T for all 𝑅 ∈ Σ. By Prop. 6.10,
QT induces a fo-bicategory morphism Q♯

T
: FOBΣ → FOBT.

Proposition 7.10. Let T = (Σ, I) be a theory, C a fo-bicategory
andI an interpretation of Σ inC.I is amodel ofT inC iffI♯ : FOBΣ →
C factors uniquely through Q♯

T
: FOBΣ → FOBT.

FOBΣ

I♯

$$

Q♯
T // FOBT

I♯
T
��
C

In other words, there is a unique fo-bicategory
morphism I♯

T
: FOBT → C s.t. the diagram on

the right commutes. The assignment I ↦→ I♯
T

yields a 1-to-1 correspondence between models and morphisms.

Corollary 7.11. To give amodel of T inC is to give a fo-bicategory
morphism FOBT → C.

By virtue of the above, we can tacitly identify models and mor-
phisms. Proposition 7.10 can also be used to obtain the following
result, useful for showing completeness in the next section.

Lemma 7.12. LetT = (Σ, I) andT′ = (Σ′, I′) be theories s.t. Σ ⊆ Σ′
and I ⊆ I′. Then there exists an identity on objects fo-bicategory
morphism F : FOBT → FOBT′ mapping each 𝑑 of FOBT to [𝑑]�T′ .

8 BEYOND GÖDEL’S COMPLETENESS
Let T = (Σ, I) be a theory. First, we prove Gödel completeness

if T is non-trivial, then T has a model (Gödel)
by adapting Henkin’s [37] proof to NPRΣ. We begin with two addi-
tional definitions. Note that when referring to arrows in the context
of T, we mean arrows of FOBT (or of FOBΣ, it is immaterial).

Definition 8.1. T is syntactically complete if for all 𝑐 : 0 → 0 either
𝑖𝑑◦0 ≲T 𝑐 or 𝑖𝑑◦0 ≲T 𝑐 . T has Henkin witnesses if for all 𝑐 : 1 → 0
there is a map 𝑘 : 0 → 1 s.t. 𝑐 ≲T 𝑐𝑘 .

These properties do not hold for the theories we have considered
so far. In terms of FOL, syntactic completeness means that closed

Diagrammatic Algebra of First Order Logic

formulas either hold in all models of the theory or in none. A
Henkin witness is a term 𝑘 such that 𝑐 (𝑘) holds: a theory has
Henkin witnesses if for every true formula ∃𝑥 .𝑐 (𝑥), there exists
such a 𝑘 . We shall see in Theorem 8.3 that non-trivial theories can
be expanded to have Henkin witnesses, be non-contradictory and
syntactically complete. The key idea of Henkin’s proof, Theorem 8.6,
is that these three properties yield a model.

To add a witness for 𝑐 : 1 → 0, one
adds a constant 𝑘 : 0 → 1 and the ax-
iomW𝑐

𝑘
, asserting that 𝑘 is a witness.

This preserves non-triviality.

W𝑐
𝑘

def
= {(,

𝑐

𝑐

𝑘)}

Lemma 8.2 (Witness Addition). Let T = (Σ, I) be a theory and
consider an arbitrary 𝑐 : 1 → 0. Let T′ = (Σ ∪ {𝑘 : 0 → 1}, I ∪M𝑘 ∪
W𝑐

𝑘
). If T is non-trivial then T′ is non-trivial.
Remark 4. Observe that the distinction between trivial and contra-

dictory theories is essential for the above development. Indeed, under
the conditions of Lemma 8.2, it does not hold that

if T is non-contradictory, then T′ is non-contradictory.
As counter-example, take as T the theory consisting only of the triv-
ialising axiom (𝑡𝑟) def

= (,). By definition T is trivial but
non-contradictory. Instead T′ is contradictory:

(15)
≲T

(𝑡𝑟)
≲T

(𝛾 !◦)
≲T (16)

This shows that adding Henkin witnesses to a non-contradictory
theory may end up in a contradictory theory. Therefore, the usual
Henkin proof for FOL works just for our non-trivial theories.

By iteratively using Lemma 8.2, one can transform a non-trivial
theory into a non-trivial theory with Henkin witnesses. To obtain
a syntactically complete theory, we use the standard argument
featuring Zorn’s Lemma (see Prop. G.4 in App. G). In summary:

Theorem 8.3. Let T = (Σ, I) be a non-trivial theory. There exists
a theory T′ = (Σ′, I′) such that Σ ⊆ Σ′ and I ⊆ I′; T′ has Henkin
witnesses; T′ is syntactically complete; T′ is non-contradictory.

Before introducing Henkin’s interpretation, observe that any
map 𝑐 : 0 → 𝑛 can be decomposed as 𝑘1 ⊗ . . . ⊗ 𝑘𝑛 where each
𝑘𝑖 : 0 → 1 is a map (see Prop. G.1 in App. G). We thus write such 𝑐
as ®𝑘 , depicted as ®𝑘 𝑛 , to make explicit its status as a vector.

Definition 8.4. Let T = (Σ, I) be a theory. The Henkin interpreta-
tion H of Σ, consists of a set 𝑋 def

= Map(FOBT) [0, 1] and a function
𝜌 , defined for all 𝑅 : 𝑛 →𝑚 ∈ Σ as:

𝜌 (𝑅) def
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑅®𝑘 ®𝑙 }

The domain is the set of constants of the theory. Then 𝑅 : 𝑛 →𝑚

is mapped to all pairs (®𝑘, ®𝑙) of vectors that make 𝑅 true in T. The
following characterisation of H ♯ : FOBΣ → Rel is crucial.

Proposition 8.5. Let T = (Σ, I) be a non-contradictory, syntacti-
cally complete theory with Henkin witnesses. Then, for any 𝑐 : 𝑛 →𝑚,
H ♯ (𝑐) = {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 ®𝑙 }.

Theorem 8.6. If T is non-contradictory, syntactically complete with
Henkin witnesses, then H is a model.

Proof. We show that 𝑐 ≲T 𝑑 gives H ♯ (𝑐) ⊆ H ♯ (𝑑). If (®𝑘, ®𝑙) ∈
H ♯ (𝑐) then ≲T 𝑐®𝑘 ®𝑙 by Prop. 8.5. Since 𝑐 ≲T 𝑑 , ≲T

𝑐®𝑘 ®𝑙 ≲T 𝑑®𝑘 ®𝑙 and by Prop. 8.5, (®𝑘, ®𝑙) ∈ H ♯ (𝑑). □

Theorems 8.3 and 8.6 give us a proof for (Gödel).

Proof of (Gödel). Let T′ = (Σ′, I′) be obtained via Theorem 8.3.
Since Σ ⊆ Σ′ and I ⊆ I′, by Lemma 7.12, we have F : FOBT →
FOBT′ . Since T′ has Henkin witnesses, is syntactically complete
and non-contradictory, Theorem 8.6 gives H ♯

T′ : FOBT′ → Rel. We
thus have a morphism FOBT → Rel. □

Now,wewould like to conclude Theorem 3.2 bymeans of (Gödel),
but this is not possible since, for the former one needs a model for
all non-contradictory theories, while (Gödel) provides it only for
non-trivial ones. Thankfully, the Henkin interpretationH gives us,
once more, a model (see Prop. in App. G) that allows us to prove

if T is trivial and non-contradictory, then T has a model. (Prop)

From (Prop) and (Gödel) we can prove general completeness

if T is non-contradictory, then T has a model (General)

and thus deduce our main result.

Proof of (General) and Theorem 3.2. To prove (General) take
T to be a non-contradictory theory. If T is trivial, then it has a model
by (Prop). Otherwise, it has a model by (Gödel). Now, by means of
traditional FOL arguments exploiting Corollary 7.8, one can show
that (General) entails Theorem 3.2 (see Prop.G.14 in App. G). □

8.1 The Calculus of Binary Relations (revisited)
The map E(·) defined in Table 3 is an econding of the calculus of
relations into NPRΣ. Since E(·) preserves the semantics (see Prop.
G.15 in App.G.4), from Theorem 3.2 follows that one can prove
inclusions of expressions of CRΣ by translating them into NPRΣ
via E(·) and then using the axioms in Fig.s 2, 3, 4 and 5.

Corollary 8.7. For all 𝐸1, 𝐸2, 𝐸1 ≤CR 𝐸2 iff E(𝐸1) ≲ E(𝐸2).

9 FIRST ORDER LOGIC WITH EQUALITY

As we already mentioned in the introduction the white fragment
of NPRΣ is as expressive as the existential-conjunctive fragment
of first order logic with equality (FOL). The semantic preserving
encodings between the two fragments are illustrated in [9]. From
the fact that the fullNPRΣ can express negation, we get immediately
semantic preserving encodings between NPRΣ and the full FOL. In
this section we illustrate anyway a translation E(·) : FOL → NPRΣ
to emphasise the subtle differences between the two. To go in the
other way, the reader is referred to App. B.4.

To ease the presentation, we consider FOL formulas𝜑 to be typed
in the context of a list of variables that are allowed (but not required)
to appear in 𝜑 . Fixing x𝑛

def
= {𝑥1, . . . , 𝑥𝑛} we write 𝑛 :𝜑 if all free

variables of 𝜑 are contained in x𝑛 . It is standard to present FOL in
two steps: first terms and then formulas. For every function symbol
𝑓 of arity𝑚 in FOL, we have a symbol 𝑓 : 𝑚 → 1 in the signature
Σ together with the equations M𝑓 forcing 𝑓 to be interpreted as

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

Table 3: The encoding E(·) : CRΣ → NPRΣ

E(𝑅) def
= 𝑅◦ E(𝑖𝑑◦) def

= 𝑖𝑑◦
1 E(𝐸1 ,◦ 𝐸2) def

= E(𝐸1) ,◦ E(𝐸2) E (⊤) def
= !◦1 ,◦ ¡

◦
1 E(𝐸1 ∩ 𝐸2) def

=◀◦1 ,◦(E (𝐸1) ⊗ E (𝐸2)) ,◦ ▶◦1 E(𝐸) def
= E(𝐸)

E (𝐸†) def
= E(𝐸)† E(𝑖𝑑•) def

= 𝑖𝑑•
1 E(𝐸1 ,• 𝐸2) def

= E(𝐸1) ,• E(𝐸2) E (⊥) def
= !•1 ,• ¡

•
1 E(𝐸1 ∪ 𝐸2) def

=◀•1 ,•(E (𝐸1) �× E(𝐸2)) ,• ▶•1

E(𝑛 :𝑥𝑖) def
=

𝑖 − 1

𝑛 − 𝑖

E(𝑛 : 𝑓 (𝑡1, .., 𝑡𝑚)) def
=

E(𝑛 : 𝑡1)
𝑛

E(𝑛 : 𝑡𝑚)
𝑓

...

E(𝑛 :𝜑1 ∧ 𝜑2) def
=

E(𝑛 :𝜑1)
𝑛

E(𝑛 :𝜑2) E (𝑛 :𝜑1 ∨ 𝜑2) def
=

E(𝑛 :𝜑1)
𝑛

E(𝑛 :𝜑2) E (𝑛 :𝑅 (𝑡1, .., 𝑡𝑚)) def
=

E(𝑛 : 𝑡1)
𝑛

E(𝑛 : 𝑡𝑚)
𝑅

...

E(𝑛 :⊤) def
= 𝑛 E(𝑛 :⊥) def

= 𝑛 E(𝑛 : 𝑡1 = 𝑡2) def
=

E(𝑛 : 𝑡1)
𝑛

E(𝑛 : 𝑡2)

E (𝑛−1 : ∃𝑥𝑛 . 𝜑) def
= E(𝑛 :𝜑)𝑛 − 1 E(𝑛−1 : ∀𝑥𝑛 . 𝜑) def

= E(𝑛 :𝜑)𝑛 − 1 E(𝑛 :¬𝜑) def
= E(𝑛 :𝜑)𝑛

Figure 7: FOL encoding in NPRΣ.

𝑝

𝑞
𝑝 ↭

𝑝

𝑞
𝑝 𝑐 𝑑 �

𝑐
𝑑

𝑐

Figure 8: An EG and its encoding in NPRΣ (left); Peirce’s (de)iteration rule in NPRΣ (middle) and in [36] (right).

a function. The translation of 𝑛 : 𝑡 to an NPRΣ diagram 𝑛 → 1 is
given inductively in the left part of Fig. 7.

Formulas 𝑛 : 𝜑 translate to NPRΣ diagrams 𝑛 → 0. For every
𝑛-ary predicate symbol 𝑅 in FOL there is a symbol 𝑅 : 𝑛 → 0 ∈ Σ.
In order not to over-complicate the presentation with bureaucratic
details, we assume that it is always the last variable that is quanti-
fied over. Additional variable manipulation can be introduced: see
App. B.3 for an encoding of Quine’s predicate functor logic.

The full encoding in Fig. 7 should give the reader the spirit of
the correspondence between NPRΣ and traditional syntax. There is
one aspect of the above translation that merits additional attention.

Remark 5. By the definition of !•◦𝑛 in Table 1, we have that:

E(0 :⊤) def
= E(0 :⊥) def

=

Thus ⊤ and ⊥ translate to, respectively 𝑖𝑑◦0 , 𝑖𝑑
•
0 in the absence of

free variables or to !◦𝑛 , !•𝑛 , respectively, when 𝑛 > 0. This can be seen
as an ambiguity in the traditional FOL syntax, which obscures the
distinction between inconsistent and trivial theories in traditional
accounts, and as a side effect requires the assumption on non-empty
models in formal statements of Gödel completeness. Instead, the syntax
of NPRΣ ensures that this pitfall is side-stepped.

10 CONCLUDING REMARKS
The diagrammatic notation of NPRΣ is closely related to system
𝛽 of Peirce’s EGs [64–66, 77]. Consider the two diagrams on the
left of Fig. 8 corresponding to the closed FOL formula ∃𝑥 . 𝑝 (𝑥) ∧
∀𝑦. 𝑝 (𝑦) → 𝑞(𝑦). In existential graph notation the circle enclosure
(dubbed ‘cut’ by Peirce) signifies negation. To move from EGs to
diagrams of NPRΣ it suffices to treat lines and predicate symbols
in the obvious way and each cut as a color switch.

A string diagrammatic approach to existential graphs appeared
in [36]. This exploits the white fragment of NPRΣ with a primitive
negation operator rendered as Peirce’s cut, namely a circle around
diagrams. However, this inhibits a fully compositional treatment
since, for instance, negation is not functorial. As an example con-
sider Peirce’s (de)iteration rule in Fig. 8: in NPRΣ on the center, and
in [36] on the right. Note that the diagrams on the right require
open cuts, a notational trick, allowing to express the rule for ar-
bitrary contexts, i.e. any diagram eventually appearing inside the
cut. In NPRΣ this ad-hoc treatment of contexts is not needed as
negation is not a primitive operation, but a derived one. A proof of
the law in the middle of Fig. 8 can be found in App. B.1.

Other diagrammatic calculi of Peirce’s EGs appear in [52] and [14].
The categorical treatment goes, respectively, through the notions of
chiralities and doctrines. The formers consider a pair of categories
(Rel•,Rel◦) that are significantly different from our Rel◦ and Rel•:
to establish a formal correspondence, it might be convenient to
first focus on doctrines. To this aim, we plan to exploit the equiva-
lence in [8] between cartesian bicategories and certain doctrines
(elementary existential with comprehensive diagonals and unique
choice [51]). Preliminary attempts suggests the same equivalence
restrict to fo-bicategories and boolean hyperdoctrines but many
details have to be carefully checked. The connection with alle-
gories [29] is also worth to be explored: since cartesian bicategories
are equivalent to unitary pretabular allegories, Prop. 6.5 suggests
that fo-bicategories are closely related to Peirce allegories [58].

Through the Introduction, we have already emphasized the key
features of the calculus of neo-Peircean relations. We hope that the
reader has also appreciated its beauty. Quoting Dijkstra [24]:

“When we recognize the battle against chaos, mess and
unmastered complexity as one of computing science’s major

challenges, we must admit that Beauty is our Business.”

Diagrammatic Algebra of First Order Logic

REFERENCES
[1] John Baez and Jason Erbele. 2015. Categories In Control. Theory and Applications

of Categories 30 (2015), 836–881. http://www.tac.mta.ca/tac/volumes/30/24/30-
24abs.html

[2] Richard Bird and Oege De Moor. 1996. The algebra of programming. NATO ASI
DPD 152 (1996), 167–203.

[3] Corrado Böhm and Giuseppe Jacopini. 1979. Flow Diagrams, Turing Machines
and Languages with Only Two Formation Rules. In Classics in Software Engi-
neering. Yourdon Press, USA, 11–25. https://dl.acm.org/doi/abs/10.5555/1241515.
1241517

[4] Benedikt Bollig, Alain Finkel, and Amrita Suresh. 2020. Bounded Reachabil-
ity Problems Are Decidable in FIFO Machines. In 31st International Confer-
ence on Concurrency Theory (CONCUR 2020) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 171), Igor Konnov and Laura Kovács (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 49:1–
49:17. https://doi.org/10.4230/LIPIcs.CONCUR.2020.49

[5] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio
Zanasi. 2022. String Diagram Rewrite Theory I: Rewriting with Frobenius Struc-
ture. J. ACM 69, 2 (2022), 14:1–14:58. https://doi.org/10.1145/3502719

[6] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio
Zanasi. 2019. Diagrammatic Algebra: From Linear to Concurrent Systems. Pro-
ceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 25:1–25:28.
https://doi.org/10.1145/3290338

[7] Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. 2017. Functorial Se-
mantics for Relational Theories. CoRR abs/1711.08699 (2017). arXiv:1711.08699
http://arxiv.org/abs/1711.08699

[8] Filippo Bonchi, Alessio Santamaria, Jens Seeber, and Paweł Sobociński. 2021.
On Doctrines and Cartesian Bicategories. In 9th Conference on Algebra and
Coalgebra in Computer Science (CALCO 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.

[9] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. 2018. Graphical Conjunctive
Queries. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 119), Dan Ghica and
Achim Jung (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 13:1–13:23. https://doi.org/10.4230/LIPIcs.CSL.2018.13

[10] Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. 2015. Full Abstraction for
Signal Flow Graphs. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 515–526. https://doi.org/10.1145/
2676726.2676993

[11] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. 2017. Interacting Hopf
Algebras. Journal of Pure and Applied Algebra 221, 1 (2017), 144–184.

[12] George Boole. 1847. The mathematical analysis of logic. Philosophical Library.
[13] Geraldine Brady and Todd Trimble. 2000. A categorical interpretation of C.S.

Peirce’s propositional logic Alpha. Journal of Pure and Applied Algebra - J PURE
APPLALG 149 (06 2000), 213–239. https://doi.org/10.1016/S0022-4049(98)00179-0

[14] Geraldine Brady and Todd H. Trimble. 1998. A String Diagram Calculus for
Predicate Logic and C. S. Peirce’s System Beta. (1998). https://ncatlab.org/nlab/
files/BradyTrimbleString.pdf.

[15] Kai Brünnler. 2003. Deep inference and symmetry in classical proofs. Ph. D.
Dissertation. Dresden University of Technology, Germany.

[16] A. Carboni and R. F. C. Walters. 1987. Cartesian Bicategories I. Journal of
Pure and Applied Algebra 49, 1 (Nov. 1987), 11–32. https://doi.org/10.1016/0022-
4049(87)90121-6

[17] J. Robin B. Cockett, Jürgen Koslowski, and Robert AG Seely. 2000. Introduction
to linear bicategories. Mathematical Structures in Computer Science 10, 2 (2000),
165–203.

[18] J Robin B Cockett and Robert AG Seely. 1997. Proof theory for full intuition-
istic linear logic, bilinear logic, and mix categories. Theory and Applications of
categories 3, 5 (1997), 85–131.

[19] J Robin B Cockett and Robert AG Seely. 1997. Weakly distributive categories.
Journal of Pure and Applied Algebra 114, 2 (1997), 133–173.

[20] Edgar Frank Codd. 1983. A relational model of data for large shared data banks.
Commun. ACM 26, 1 (1983), 64–69.

[21] Bob Coecke and Ross Duncan. 2011. Interacting Quantum Observables: Cate-
gorical Algebra and Diagrammatics. New Journal of Physics 13, 4 (April 2011),
043016. https://doi.org/10.1088/1367-2630/13/4/043016

[22] Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and
Jonathan P Seldin. 1958. Combinatory logic. Vol. 1. North-Holland Amster-
dam.

[23] Valeria de Paiva. 1991. The Dialectica Categories. University of Cambridge.
Computer Lab Technical Report, PhD thesis 2 (1991), 3.

[24] Edsger W Dijkstra. 1980. Some beautiful arguments using mathematical induc-
tion. Acta informatica 13 (1980), 1–8.

[25] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract syntax and
variable binding. In Proceedings. 14th Symposium on Logic in Computer Science
(Cat. No. PR00158). IEEE, 193–202.

[26] Brendan Fong, Paweł Sobociński, and Paolo Rapisarda. 2016. A Categorical
Approach to Open and Interconnected Dynamical Systems. In Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).
Association for Computing Machinery, New York, NY, USA, 495–504. https:
//doi.org/10.1145/2933575.2934556

[27] Brendan Fong and David Spivak. 2020. String Diagrams for Regular Logic
(Extended Abstract). In Applied Category Theory 2019 (Electronic Proceedings in
Theoretical Computer Science, Vol. 323), John Baez and Bob Coecke (Eds.). Open
Publishing Association, 196–229. https://doi.org/10.4204/eptcs.323.14

[28] T. Fox. 1976. Coalgebras and Cartesian Categories. Communications in Algebra
4, 7 (1976), 665–667. https://doi.org/10.1080/00927877608822127

[29] Peter Freyd and Andre Scedrov. 1990. Categories, Allegories. North-Holland
Mathematical Library, Vol. 39. Elsevier B.V.

[30] Murdoch Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract
Syntax with Variable Binding. Formal Aspects Comput. 13, 3-5 (2002), 341–363.
https://doi.org/10.1007/s001650200016

[31] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and
Tarmo Uustalu. 2016. Combining effects and coeffects via grading. ACM SIGPLAN
Notices 51, 9 (2016), 476–489.

[32] Dan R. Ghica and Achim Jung. 2016. Categorical semantics of digital circuits.
In 2016 Formal Methods in Computer-Aided Design (FMCAD). 41–48. https:
//doi.org/10.1109/FMCAD.2016.7886659

[33] Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning
Urbat. 2023. Towards a higher-order mathematical operational semantics. Pro-
ceedings of the ACM on Programming Languages 7, POPL (2023), 632–658.

[34] Alessio Guglielmi. 2007. A system of interaction and structure. ACM Transactions
on Computational Logic (TOCL) 8, 1 (2007), 1–es.

[35] Nathan Haydon and Ahti-Veikko Pietarinen. 2021. Residuation in Existential
Graphs. In Diagrammatic Representation and Inference, Amrita Basu, Gem Staple-
ton, Sven Linker, Catherine Legg, Emmanuel Manalo, and Petrucio Viana (Eds.).
Springer International Publishing, Cham, 229–237.

[36] Nathan Haydon and Paweł Sobociński. 2020. Compositional Diagrammatic First-
Order Logic. In 11th International Conference on the Theory and Application of
Diagrams (DIAGRAMS 2020).

[37] Leon Henkin. 1949. The completeness of the first-order functional calculus. The
Journal of Symbolic Logic 14, 3 (1949), 159–166. https://doi.org/10.2307/2267044

[38] CARHoare and He Jifeng. 1986. The weakest prespecification, Part I. Fundamenta
Informaticae 9, 1 (1986), 51–84.

[39] Ian Hodkinson and Szabolcs Mikulás. 2000. Axiomatizability of Reducts of
Algebras of Relations. Algebra Universalis 43, 2 (Aug. 2000), 127–156. https:
//doi.org/10.1007/s000120050150

[40] Martin Hofmann. 1999. Semantical analysis of higher-order abstract syntax. In
Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
IEEE, 204–213.

[41] Dominic JD Hughes, Lutz Straßburger, and Jui-Hsuan Wu. 2021. Combinatorial
proofs and decomposition theorems for first-order logic. In 2021 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–13.

[42] André Joyal and Ross Street. 1991. The Geometry of Tensor Calculus, I. Advances
in Mathematics 88, 1 (July 1991), 55–112. https://doi.org/10.1016/0001-8708(91)
90003-P

[43] Alexander Krauss and Tobias Nipkow. 2012. Proof Pearl: Regular Expression
Equivalence and Relation Algebra. Journal of Automated Reasoning 49, 1 (2012),
95–106. https://doi.org/10.1007/s10817-011-9223-4

[44] Steven T. Kuhn. 1983. An axiomatization of predicate functor logic. Notre Dame
Journal of Formal Logic 24, 2 (1983), 233 – 241. https://doi.org/10.1305/ndjfl/
1093870313

[45] Ugo Dal Lago and Francesco Gavazzo. 2022. A relational theory of effects and
coeffects. Proc. ACM Program. Lang. 6, POPL (2022), 1–28. https://doi.org/10.
1145/3498692

[46] Daniel Lascar and Donald H Pelletier. 2001. Mathematical Logic: A Course with
Exercises Part I: Propositional Calculus, Boolean Algebras, Predicate Calculus, Com-
pleteness Theorems. Oxford University Press.

[47] Søren B Lassen. 1998. Relational reasoning about contexts. Higher order opera-
tional techniques in semantics 91 (1998).

[48] F. W. Lawvere. 1963. Functorial Semantics of Algebraic Theories. Ph. D. Disserta-
tion. Columbia University, New York, NY, USA.

[49] Minghui Ma and Ahti-Veikko Pietarinen. 2017. Proof Analysis of Peirce’s Alpha
System of Graphs. Studia Logica 105, 3 (2017), 625–647. https://doi.org/10.1007/
s11225-016-9703-y

[50] S. Mac Lane. 1978. Categories for the Working Mathematician (second ed.).
Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York. https:
//www.springer.com/gb/book/9780387984032

[51] Maria Emilia Maietti and Giuseppe Rosolini. 2013. Quotient completion for the
foundation of constructive mathematics. Logica Universalis 7 (2013), 371–402.

[52] Paul-André Melliès and Noam Zeilberger. 2016. A bifibrational reconstruction of
Lawvere’s presheaf hyperdoctrine. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science. 555–564.

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

[53] Robin Milner. 2009. The space and motion of communicating agents. Cambridge
University Press.

[54] Donald Monk. 1964. On representable relation algebras. Michigan Mathematical
Journal 11, 3 (1964), 207 – 210. https://doi.org/10.1307/mmj/1028999131

[55] Augustus De Morgan. 1860. On the Syllogism, No. Iv. And on the Logic of Relations.
Printed by C.J. Clay at the University Press.

[56] Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica. 2018. The Geometry of
Computation-Graph Abstraction. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
Anuj Dawar and Erich Grädel (Eds.). ACM, 749–758. https://doi.org/10.1145/
3209108.3209127

[57] Shayesteh Naeimabadi. [n. d.]. Constructing Cartesian Linear Bicategories.
([n. d.]).

[58] Jean-Pierre Olivier and Dany Serrato. 1997. Peirce allegories. Identities involving
transitive elements and symmetrical ones. Journal of Pure and Applied Algebra
116, 1-3 (1997), 249–271.

[59] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quanti-
tative program reasoning with graded modal types. Proceedings of the ACM on
Programming Languages 3, ICFP (2019), 1–30.

[60] Charles Peirce. 1989. Writings of Charles S. Peirce: A Chronological Edition, Volume
4: 1879–1884. Indiana University Press. http://www.jstor.org/stable/j.ctt16gz8j1

[61] Charles Sanders Peirce. 1883. Studies in logic. By members of the Johns Hopkins
university. Little, Brown, and Company.

[62] Charles S. Peirce. 1897. The logic of relatives. The Monist 7, 2 (1897), 161–217.
http://www.jstor.org/stable/27897407

[63] Charles Sanders Peirce. 1958-1966. Collected Papers of Charles Sanders Peirce.
Cambridge, MA: Harvard University Press.

[64] Charles S. Peirce. 2020. The Logic of the Future: History and Applications. Vol. 1.
De Gruyter, Berlin, Boston. https://doi.org/doi:10.1515/9783110651409

[65] Charles S. Peirce. 2021. The Logic of the Future: The 1903 Lowell Lectures. Vol. 2/2.
De Gruyter. https://doi.org/doi:10.1515/9783110740462

[66] Charles S. Peirce. 2021. The Logic of the Future: The Logical Tracts. Vol. 2/1. De
Gruyter. https://doi.org/doi:10.1515/9783110651423

[67] Charles S. Peirce. 2022. The Logic of the Future: Pragmaticism. Vol. 3/1. De
Gruyter.

[68] Frank Pfenning and Conal Elliott. 1988. Higher-order abstract syntax. ACM
sigplan notices 23, 7 (1988), 199–208.

[69] Robin Piedeleu and Fabio Zanasi. 2021. A String Diagrammatic Axiomatisation
of Finite-State Automata. In Foundations of Software Science and Computation
Structures (Lecture Notes in Computer Science), Stefan Kiefer and Christine Tasson
(Eds.). Springer International Publishing, Cham, 469–489. https://doi.org/10.
1007/978-3-030-71995-1_24

[70] Andrew M Pitts. 2013. Nominal sets: Names and symmetry in computer science.
Cambridge University Press.

[71] Damien Pous. 2013. Kleene algebra with tests and Coq tools for while programs.
In Interactive Theorem Proving: 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings 4. Springer, 180–196.

[72] Damien Pous. 2016. Automata for relation algebra and formal proofs. Ph. D.
Dissertation. ENS Lyon.

[73] Damien Pous. 2018. On the Positive Calculus of Relations with Transitive
Closure. In 35th Symposium on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France (LIPIcs, Vol. 96), Rolf Niedermeier
and Brigitte Vallée (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
3:1–3:16. https://doi.org/10.4230/LIPIcs.STACS.2018.3

[74] Vaughan R Pratt. 1976. Semantical considerations on Floyd-Hoare logic. In 17th
Annual Symposium on Foundations of Computer Science (sfcs 1976). IEEE, 109–121.

[75] W.V. Quine. 1971. Predicate-Functor Logics. In Proceedings of the Second Scan-
dinavian Logic Symposium, J.E. Fenstad (Ed.). Studies in Logic and the Founda-
tions of Mathematics, Vol. 63. Elsevier, 309–315. https://doi.org/10.1016/S0049-
237X(08)70850-4

[76] Valentin N Redko. 1964. On defining relations for the algebra of regular events.
Ukrainskii Matematicheskii Zhurnal 16 (1964), 120–126.

[77] Don D. Roberts. 1973. The Existential Graphs of Charles S. Peirce. De Gruyter
Mouton.

[78] Jens Seeber. 2020. Logical completeness for string diagrams. (2020).
[79] P. Selinger. 2010. A Survey of Graphical Languages for Monoidal Categories. In

New Structures for Physics, B. Coecke (Ed.). Lecture Notes in Physics, Vol. 813.
Springer, Berlin, Heidelberg, 289–355. https://doi.org/10.1007/978-3-642-12821-
9_4

[80] Alfred Tarski. 1941. On the Calculus of Relations. The Journal of Symbolic Logic
6, 3 (Sept. 1941), 73–89. https://doi.org/10.2307/2268577

[81] Alfred Tarski and Steven R Givant. 1988. A formalization of set theory without
variables. Vol. 41. American Mathematical Soc.

[82] Max Zorn. 1935. A remark on method in transfinite algebra. Bull. Amer. Math.
Soc. 41, 10 (1935), 667–670.

A A TRIBUTE TO CHARLES S. PEIRCE
We have chosen the name “Neo-Peircean Relations” to emphasize
several connections with the work of Charles S. Peirce. First of all,
NPRΣ and the calculus of relations in ‘Note B’ [61] share the same
underlying philosophy: they both propose a relational analogue to
Boole’s algebra of classes.

Second, Peirce’s presentation in ‘Note B’ contains already several
key ingredients of NPRΣ. As we have stressed, it singles out the
two forms of composition (,◦ and ,•), presents linear distributivity
((𝛿𝑙) and (𝛿𝑟)) and linear adjunctions ((𝜏𝜎◦), (𝜏𝜎•), (𝛾𝜎◦), and (𝛾𝜎•)),
and even the cyclic conditions of Lemma 6.6.(2)-(3). With respect
to the rules for linear distributivity and linear adjunction, Peirce
states that the latter are “highly important" and that the former
are “so constantly used that hardly anything can be done without
them" (p. 192 & 190).

At around the same time as ‘Note B’ Pierce gave a systematic
study of residuation [60, see “On the Logic of Relatives"] and listed
a set of equivalent expressions that includes the discussion given
after Lemma 5.3, where 𝑐 ,◦ 𝑎 ≤ 𝑏 iff 𝑐 ≤ 𝑏 ,• 𝑎⊥. In Peirce’s words:

Hence the rule is that having a formula of the form
[𝑐 ,◦ 𝑎 ≤ 𝑏], the three letters may be cyclically ad-
vanced one place in the order of writing, those
which are carried from one side of the copula to the
other being both negatived and converted. [60, p.
341]

Peirce took the principal defect of the presentation in ‘Note B’ to
be its focus on binary relations [63, 8:831]. He went on to emphasize
the teri- or tri-identity relation, arising from adding a ‘branch’ to
the identity relation, as the key to moving from binary to arbitrary
relations. Having the advantage now of “treating triadic and higher
relations as easily as dyadic relations... it’s superiority to the human
mind as an instrument of logic", he writes, “is overwhelming" [67,
p. 173].

By moving from binary to arbitrary relations, Peirce felt the
importance of a graphical syntax and developed the existential
graphs.

“One of my earliest works was an enlargement of
Boole’s idea so as to take into account ideas of rela-
tion, — or at least of all ideas of existential relation. . .
I was finally led to prefer what I call a diagrammatic
syntax. It is a way of setting down on paper any
assertion, however intricate. . . “ [MS 515, emphasis
in original, 1911]

We refer the reader to [36] for a detailed explanation of Peirce’s
topological intuitions behind the Frobenius equations and the corre-
spondence of some inference rules for EGswith those of (co)cartesian
bicategories. Moreover, we now know that Peirce continued to study
and draw graphs of residuation [35] and — as affirmed in Fig. 6 —
we know the rules for propositional EGs comprise a deep inference
system [49].

In short, Peirce’s development of EGs shares many of the features
that NPRΣ has over other approaches, such as Tarski’s presenta-
tion of relation algebra. We like to think that if Peirce had known
category theory then he would have presented NPRΣ.

Diagrammatic Algebra of First Order Logic

◀◦1 ,◦(𝑖𝑑◦1 ⊗◀◦1)
(◀◦-as)
= ◀◦1 ,◦(◀◦1⊗ 𝑖𝑑◦1) (𝑖𝑑◦1 ⊗▶◦1) ,◦ ▶◦1

(▶◦-as)
= (▶◦1⊗ 𝑖𝑑◦1) ,◦ ▶◦1

◀◦1 ,◦(𝑖𝑑◦1 ⊗ !◦1)
(◀◦-un)

= 𝑖𝑑◦1 (𝑖𝑑◦1 ⊗ ¡◦
1) ,◦ ▶◦1

(▶◦-un)
= 𝑖𝑑◦1

◀◦1 ,◦𝜎◦1,1
(◀◦-co)
= ◀◦1 𝜎◦1,1 ,◦ ▶

◦
1

(▶◦-co)
= ▶◦1

(◀◦1⊗ 𝑖𝑑◦1) ,◦ (𝑖𝑑◦1 ⊗▶◦1)
(F◦)
= (𝑖𝑑◦1 ⊗◀◦1) ,◦ (▶◦1⊗ 𝑖𝑑◦1) ◀◦1 ,◦ ▶◦1

(S◦)
= 𝑖𝑑◦1

¡◦
1 ,◦ !◦1

(𝜖!◦)
≤ 𝑖𝑑◦0 ▶◦1 ,◦ ◀◦1

(𝜖 ◀◦)
≤ (𝑖𝑑◦1 ⊗ 𝑖𝑑◦1)

𝑖𝑑◦1
(𝜂!◦)
≤ !◦1 ,◦ ¡◦1 𝑖𝑑◦1

(𝜂 ◀◦)
≤ ◀◦1 ,◦ ▶◦1

𝑐 ,◦ ◀◦𝑚
(◀◦-nat)

≤ ◀◦𝑛 ,◦(𝑐 ⊗ 𝑐)
𝑐 ,◦ !◦𝑚

(!◦-nat)
≤ !◦𝑛

◀•1 ,•(𝑖𝑑•1 �×◀•1)
(◀•-as)
= ◀•1 ,•(◀•1�× 𝑖𝑑•1) (𝑖𝑑•1 �×▶•1) ,• ▶•1

(▶•-as)
= (▶•1�× 𝑖𝑑•1) ,• ▶•1

◀•1 ,•(𝑖𝑑•1 �× !•1)
(◀•-un)

= 𝑖𝑑•1 (𝑖𝑑•1 �× ¡•
1) ,• ▶•1

(▶•-un)
= 𝑖𝑑•1

◀•1 ,•𝜎•1,1
(◀•-co)
= ◀•1 𝜎•1,1 ,• ▶

•
1

(▶•-co)
= ▶•1

(◀•1�× 𝑖𝑑•1) ,• (𝑖𝑑•1 �×▶•1)
(F•)
= (𝑖𝑑•1 �×◀•1) ,• (▶•1�× 𝑖𝑑•1) ◀•1 ,• ▶•1

(S•)
= 𝑖𝑑•1

!•1 ,• ¡•1
(𝜖¡•)
≤ 𝑖𝑑•1 ◀•1 ,• ▶•1

(𝜖 ▶•)
≤ 𝑖𝑑•1

𝑖𝑑•0
(𝜂¡•)
≤ ¡•

1 ,• !•1 ▶•1 ,• ◀•1
(𝜂 ▶•)
≤ (𝑖𝑑•1 �× 𝑖𝑑•1)

◀•𝑛 ,•(𝑐 �× 𝑐)
(◀•-nat)

≤ 𝑐 ,• ◀•𝑚
!•𝑛

(!•-nat)
≤ 𝑐 ,• !•𝑚

𝑎 ,◦ (𝑏 ,• 𝑐)
(𝛿𝑙)≤ (𝑎 ,◦ 𝑏) ,• 𝑐 (𝑎 ,• 𝑏) ,◦ 𝑐

(𝛿𝑟)≤ 𝑎 ,• (𝑏 ,◦ 𝑐)

𝑖𝑑◦𝑛+𝑚
(𝜏𝜎◦)
≤ 𝜎◦𝑛,𝑚 ,• 𝜎•𝑚,𝑛 𝜎•𝑛,𝑚 ,◦ 𝜎◦𝑚,𝑛

(𝛾𝜎◦)
≤ 𝑖𝑑•𝑛+𝑚

𝑖𝑑◦𝑛+𝑚
(𝜏𝜎•)
≤ 𝜎•𝑛,𝑚 ,• 𝜎◦𝑚,𝑛 𝜎◦𝑛,𝑚 ,◦ 𝜎•𝑚,𝑛

(𝛾𝜎•)
≤ 𝑖𝑑•𝑛+𝑚

𝑖𝑑◦𝑛
(𝜏𝑅◦)
≤ 𝑅◦ ,• 𝑅• 𝑅• ,◦ 𝑅◦

(𝛾𝑅◦)
≤ 𝑖𝑑•𝑚

𝑖𝑑◦𝑚
(𝜏𝑅•)
≤ 𝑅• ,• 𝑅◦ 𝑅◦ ,◦ 𝑅•

(𝛾𝑅•)
≤ 𝑖𝑑•𝑛

𝑖𝑑◦𝑛+𝑚
(�×◦)
≤ 𝑖𝑑◦𝑛 �× 𝑖𝑑◦𝑚 𝑖𝑑•𝑛 ⊗ 𝑖𝑑•𝑚

(⊗•)
≤ 𝑖𝑑•𝑛+𝑚

(𝑎 ,• 𝑏) ⊗ (𝑐 ,• 𝑑)
(𝜈◦𝑙)≤ (𝑎 ⊗ 𝑐) ,• (𝑏 �× 𝑑) (𝑎 �× 𝑐) ,◦ (𝑏 ⊗ 𝑑)

(𝜈•𝑙)≤ (𝑎 ,◦ 𝑏) �× (𝑐 ,◦ 𝑑)
(𝑎 ,• 𝑏) ⊗ (𝑐 ,• 𝑑)

(𝜈◦𝑟)≤ (𝑎 �× 𝑐) ,• (𝑏 ⊗ 𝑑) (𝑎 ⊗ 𝑐) ,◦ (𝑏 �× 𝑑)
(𝜈•𝑟)≤ (𝑎 ,◦ 𝑏) �× (𝑐 ,◦ 𝑑)

𝑖𝑑◦𝑛
(𝜏 ◀◦)
≤ ◀◦𝑛 ,• ▶•𝑛 ▶•𝑛 ,◦ ◀◦𝑛

(𝛾 ◀◦)
≤ 𝑖𝑑•𝑛+𝑛

𝑖𝑑◦𝑛
(𝜏 !◦)
≤ !◦𝑛 ,• ¡•𝑛 ¡•

𝑛 ,◦ !◦𝑛
(𝛾 !◦)
≤ 𝑖𝑑•0

𝑖𝑑◦𝑛
(𝜏 ◀•)
≤ ◀•𝑛 ,• ▶◦𝑛 ▶◦𝑛 ,◦ ◀•𝑛

(𝛾 ◀•)
≤ 𝑖𝑑•𝑛+𝑛

𝑖𝑑◦𝑛
(𝜏 !•)
≤ !•𝑛 ,• ¡◦𝑛 ¡◦

𝑛 ,◦ !•𝑛
(𝛾 !•)
≤ 𝑖𝑑•0

𝑖𝑑◦𝑛+𝑛
(𝜏 ▶◦)
≤ ▶◦𝑛 ,• ◀•𝑛 ◀•𝑛 ,◦ ▶◦𝑛

(𝛾 ▶◦)
≤ 𝑖𝑑•𝑛

𝑖𝑑◦0
(𝜏 ¡◦)
≤ ¡◦

𝑛 ,• !•𝑛 !•𝑛 ,◦ ¡◦𝑛
(𝛾 ¡◦)
≤ 𝑖𝑑•𝑛

𝑖𝑑◦𝑛+𝑛
(𝜏 ▶•)
≤ ▶•𝑛 ,• ◀◦𝑛 ◀◦𝑛 ,◦ ▶•𝑛

(𝛾 ▶•)
≤ 𝑖𝑑•𝑛

𝑖𝑑◦0
(𝜏 ¡•)
≤ ¡•

𝑛 ,• !◦𝑛 !◦𝑛 ,◦ ¡•𝑛
(𝛾 ¡•)
≤ 𝑖𝑑•0

(◀•𝑛⊗ 𝑖𝑑◦𝑛) ,◦ (𝑖𝑑◦𝑛 ⊗▶◦𝑛)
(F•◦)
= (𝑖𝑑◦𝑛 ⊗◀◦𝑛) ,◦ (▶•𝑛⊗ 𝑖𝑑◦𝑛) (◀◦𝑛⊗ 𝑖𝑑◦𝑛) ,◦ (𝑖𝑑◦𝑛 ⊗▶•𝑛)

(F◦•)
= (𝑖𝑑◦𝑛 ⊗◀•𝑛) ,◦ (▶◦𝑛⊗ 𝑖𝑑◦𝑛)

(◀◦𝑛�× 𝑖𝑑•𝑛) ,• (𝑖𝑑•𝑛 �×▶•𝑛)
(F ◦•)
= (𝑖𝑑•𝑛 �×◀•𝑛) ,• (▶◦𝑛�× 𝑖𝑑•𝑛) (◀•𝑛�× 𝑖𝑑•𝑛) ,• (𝑖𝑑•𝑛 �×▶◦𝑛)

(F •◦)
= (𝑖𝑑•𝑛 �×◀◦𝑛) ,• (▶•𝑛�× 𝑖𝑑•𝑛)

Figure 9: Axioms for NPRΣ. Here 𝑎, 𝑏, 𝑐, 𝑑 are diagrams of the appropriate type.

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

B ADDITIONAL MATERIAL
In Figure 9 we give a term-based version of the axioms of NPRΣ.
In the rest of this appendix we give some additional diagrammatic
proofs; some more details on the trivial theory of Propositional
Calculus (Example 7.6); an encoding of Quine’s PFLΣ in NPRΣ; and
a translation of NPRΣ diagrams into (typed) FOL formulas.

B.1 Additional proofs
In Figure 10 we give a completely axiomatic proof of the inclusion
in (1). In Figure 11 we prove Peirce’s (de)iteration rule (Figure 8),
showing the two inclusions separately.

B.2 The trivial theory of Propositional Calculus
(Example 7.6)

In this appendix we revisit the propositional case shortly illustrated
in Example 7.6.

First, we better details why the axioms of fo-bicategories (in
Fig.s 2, 3, 4, 5) collapse to those in Fig. 6 for arrows of type 0 → 0.
Consider for instance (◀◦-nat): by definition of ◀◦0 in Tab. 1, the
two diagrams of (◀◦-nat) in Fig. 2 reduce to those in Fig. 6. The
rules (𝜈◦

𝑙
), (𝜈◦𝑟), (𝜈•𝑙) and (𝜈

•
𝑟) become redundant since, by the axioms

of symmetric monoidal categories, ,•◦ and �⊗ coincide on diagrams
0 → 0 and are associative, commutative and with unit 𝑖𝑑•◦0 .

Then, we draw reader attention toward the correspondence
with [15]: this is illustrated in Figure 12. We expect that there exists
also a strong connection with Peirce’s system 𝛼 and its categorical
treatment given in [13] by means of *-autonomy.

We conclude with the following proposition ensuring that dia-
grams 0 → 0 are exactly propositional formulas.

Proposition B.1. Let T = (Σ, I) be the theory of Example 7.6.
For every diagram 𝑎 : 0 → 0 in FOBΣ there exists a �T-equivalent
diagram generated by the following grammar where 𝑅 ∈ Σ.

𝑐 ::= | | 𝑅 | 𝑅 | 𝑐 𝑐 | 𝑐 𝑐

Proof. By induction on 𝑎 : 0 → 0. Observe that there are only
four base cases: 𝑖𝑑◦0 , 𝑖𝑑

•
0 , 𝑅

◦ and 𝑅•. These already appear in the
grammar above. We have the usual four inductive cases:

(1) 𝑎 = 𝑐 ,◦ 𝑑 . There are two sub-cases: either 𝑐, 𝑑 : 0 → 0 or
𝑐 : 0 → 𝑛 + 1 and 𝑑 : 𝑛 + 1 → 0. In the former we can use
the inductive hypothesis to get 𝑐′ and 𝑑′ generated by the
above grammar such that 𝑐′ �T 𝑐 and 𝑑′ �T 𝑑 . Thus 𝑎
is �T-equivalent to 𝑐′ ,◦ 𝑑′ that is generated by the above
grammar.
Consider now the case where 𝑐 : 0 → 𝑛+1 and 𝑑 : 𝑛+1 → 0.
By Lemma 7.5, 𝑐 �T ¡◦

𝑛+1 and 𝑑 �T !•𝑛+1. By axiom (𝛾 !•),
¡◦
𝑛+1 ,◦ !•𝑛+1 � 𝑖𝑑•0 . Thus 𝑎 � 𝑖𝑑•0 .

(2) 𝑎 = 𝑐 ⊗ 𝑑 . Note that, in this case both 𝑐 and 𝑑 must have
type 0 → 0. Thus we can use the inductive hypothesis to
get 𝑐′ and 𝑑′ generated by the above grammar such that
𝑐′ �T 𝑐 and 𝑑′ �T 𝑑 . Thus 𝑎 �T 𝑐′ ⊗ 𝑑′ ≈ 𝑐′ ,◦𝑑′. Note that
𝑐′ ,◦ 𝑑′ is generated by the above grammar.

(3) 𝑎 = 𝑐 ,• 𝑑 . The proof follows symmetrical arguments to the
case 𝑐 ,◦ 𝑑 .

(4) 𝑎 = 𝑐 �× 𝑑 . The proof follows symmetrical arguments to the
case 𝑐 ⊗ 𝑑 . □

B.3 Quine’s predicate functor logic
Inspired by combinatory logic, Quine [75] introduced predicate
functor logic, PFLΣ for short, as a quantifier-free treatment of first
order logic with equality. Several flavours of the logic have been
proposed by Quine and others, here we focus on the treatment
by Kuhn [44]. Using the terminology of that thread of research,
for each 𝑛 ≥ 0 there is a collection of atomic 𝑛-ary predicates,
corresponding to traditional FOL predicate symbols together with
an additional binary predicate 𝐼 (identity). The term (predicate)
constructors are called functors – here the terminology is unrelated
to the notion of functor in category theory. These are divided into
unary operations p, P, [,] called combinatory functors that, in the
absence of explicit variables, capture the combinatorial aspects of
handling variable lists as well as (existential) quantification. To get
full expressivity of FOL, there are two additional alethic functors: a
binary conjunction and unary negation.

The syntax is reported on the top of Table 4 where 𝑅 belong
to Σ, a set of symbols with an associated arity. Similarly to NPRΣ,
only the predicates that can be typed according to the rules in
Table 4 are considered. The semantics, on the bottom, is defined
w.r.t. an interpretation I consisting of a non-empty set 𝑋 and a
set 𝜌 (𝑅) ⊆ 𝑋𝑛 for all 𝑅 ∈ Σ of arity 𝑛. For all predicates 𝑃 , ⟨𝑃⟩I
is a subset of 𝑋𝜔 def

= {𝜏1 · 𝜏2 · · · | 𝜏𝑖 ∈ 𝑋 for all 𝑖 ∈ N+}. From
I = (𝑋, 𝜌), one can define an interpretation of NPRΣ I𝑝 def

= (𝑋, 𝜌𝑝)
where 𝜌𝑝 (𝑅) def

= {(𝑥,★) | 𝑥 ∈ 𝜌 (𝑅)} ⊆ 𝑋𝑛 × 1 for all 𝑅 ∈ Σ of arity
𝑛. The encoding of PFLΣ into NPRΣ is given in Table 5 where ...

...

...
...

is a suggestive representation for the permutation formally defined
as 𝜎◦1,𝑛−1 ,◦ (𝜎◦𝑛−2,1 ⊗ 𝑖𝑑◦1) for 𝑛 ≥ 2, 𝑖𝑑◦𝑛 for 𝑛 < 2.

Proposition B.2. Let 𝑃 : 𝑛 be a predicate of PFLΣ. Then ⟨𝑃⟩I =

{𝜏 | ((𝜏1, . . . , 𝜏𝑛),★) ∈ I♯
𝑝 (E(𝑃))}.

Proof. The proof goes by induction on the typing rules:
Base cases:

• 𝐼 : 2. By definition ⟨𝐼 ⟩I = {𝜏 | 𝜏1 = 𝜏2} and I♯
𝑝 (E(𝐼)) =

{((𝑥1, 𝑥2),★) | 𝑥1 = 𝑥2}. Thus ⟨𝐼 ⟩I = {𝜏 | ((𝜏1, 𝜏2),★) ∈
I♯
𝑝 (E(𝐼))}.

• 𝑅 : 𝑛. Assume𝑎𝑟 (𝑅) = 𝑛. By definition ⟨𝑅⟩I = {𝜏 | (𝜏1, . . . , 𝜏𝑛) ∈
𝜌 (𝑅)} and I♯

𝑝 (E(𝑅)) = {((𝑥1, . . . , 𝑥𝑛),★) | (𝑥1, . . . 𝑥𝑛) ∈
𝜌 (𝑅)}. Thus ⟨𝑅⟩I = {𝜏 | ((𝜏1, . . . , 𝜏𝑛),★) ∈ I♯

𝑝 (E(𝑅))}.
The inductive cases follow always the same argument. We report
below only the most interesting ones.

• 𝑃1 ∩ 𝑃2. Assume 𝑃1 : 𝑛, 𝑃2 : 𝑚 and 𝑛 ≥ 𝑚.

⟨𝑃1 ∩ 𝑃2⟩I
= ⟨𝑃1⟩I ∩ ⟨𝑃2⟩I (def. ⟨·⟩I)

=
{𝜏 | ((𝜏1, . . . , 𝜏𝑛),★) ∈ I♯

𝑝 (E(𝑃1))}
∩ {𝜏 | ((𝜏1, . . . , 𝜏𝑚),★) ∈ I♯

𝑝 (E(𝑃2))}
(ind. hyp.)

=
{𝜏 | ((𝜏1, . . . , 𝜏𝑛),★) ∈ I♯

𝑝 (E(𝑃1))
∧ ((𝜏1, . . . , 𝜏𝑚),★) ∈ I♯

𝑝 (E(𝑃2))}
= {𝜏 | ((𝜏1, . . . , 𝜏𝑛),★) ∈ I♯

𝑝 (E(𝑃1 ∩ 𝑃2)} (def. E(·) and I♯
𝑝 (·))

Diagrammatic Algebra of First Order Logic

𝑅 ≈ 𝑅

(𝜂¡•)
≤ 𝑅 ≈ 𝑅

(𝜂!◦)
≤ 𝑅

(𝛿𝑙)≤ 𝑅

(𝛾 !•)
≤ 𝑅 ≈ 𝑅 ≈ 𝑅

(𝛿𝑙)≤ 𝑅

(𝜈•𝑟)≤ 𝑅

≈ 𝑅

(𝛾 ¡•)
≤ 𝑅 ≈ 𝑅

Figure 10: Completely axiomatic proof of (1).

𝑐 𝑑

(◀◦-un)
(▶•-un)
�

𝑐
𝑑

Prop. 6.4
�

𝑐
𝑑

Prop. 6.5
≲

𝑐
𝑑

𝑐

𝑐
𝑑

𝑐
Lemma
E.12
≲

𝑐
𝑐 𝑑

𝑐 (𝛿𝑙)
≲ 𝑐

𝑐 𝑑
𝑐

(𝑐⊥⊩𝑐)
≲ 𝑐 𝑑

Figure 11: Proof of Peirce’s (de)iteration rule in Figure 8.

Table 4: PFLΣ: (top) syntax; (mid) typing rules; (bottom) semantics w.r.t. an interpretation I = (𝑋, 𝜌).

𝑃 ::= 𝑅 | 𝐼 | p𝑃 | P𝑃 | [𝑃 |]𝑃 | 𝑃 ∩ 𝑃 | ¬𝑃, where 𝑅 ∈ Σ

−
𝐼 : 2

𝑎𝑟 (𝑅) = 𝑛

𝑅 : 𝑛
𝑃 : 𝑛 𝑛 ≥ 2

p𝑃 : 𝑛
𝑃 : 1
p𝑃 : 2

𝑃 : 0
p𝑃 : 2

𝑃 : 𝑛
P𝑃 : 𝑛

𝑃1 : 𝑛 𝑃2 : 𝑚 𝑛 ≥ 𝑚

𝑃1 ∩ 𝑃2 : 𝑛
𝑃1 : 𝑛 𝑃2 : 𝑚 𝑛 <𝑚

𝑃1 ∩ 𝑃2 : 𝑚
𝑃 : 𝑛
¬𝑃 : 𝑛

𝑃 : 𝑛
[𝑃 : 𝑛 + 1

𝑃 : 𝑛 + 1
]𝑃 : 𝑛

𝑃 : 0
]𝑃 : 0

⟨𝑅⟩I
def
= {𝜏 | (𝜏1, . . . , 𝜏𝑛) ∈ 𝜌 (𝑅) } ⟨𝐼 ⟩I

def
= {𝜏 | 𝜏1 = 𝜏2}

⟨𝑃1 ∩ 𝑃2⟩I
def
= ⟨𝑃1⟩I ∩ ⟨𝑃2⟩I ⟨¬𝑃 ⟩I

def
= {𝜏 | 𝜏 ∉ ⟨𝑃 ⟩I }

⟨]𝑃 ⟩I
def
= {𝜏 | 𝜏2 · 𝜏3 · · · ∈ ⟨𝑃 ⟩I) }

⟨[𝑃 ⟩I
def
= {𝑥0 · 𝜏1 · 𝜏2 · · · | 𝑥0 ∈ 𝑋,𝜏1 · 𝜏2 · · · ∈ ⟨𝑃 ⟩I }

⟨P𝑃 ⟩I
def
= {𝜏 | 𝜏𝑛 · 𝜏2 · · · 𝜏𝑛−1 · 𝜏1 · 𝜏𝑛+1 · · · ∈ ⟨𝑃 ⟩I } ⟨p𝑃 ⟩I

def
= {𝜏 | 𝜏2 · 𝜏1 · · · ∈ ⟨𝑃 ⟩I }

Table 5: The encoding E(·) : PFLΣ → NPRΣ

−

E(𝐼) =

𝑎𝑟 (𝑅) = 𝑛

E(𝑅) def
= 𝑅𝑛

𝑃 : 𝑛 𝑛 ≥ 2

E(p𝑃) def
= E(𝑃)

𝑛 − 2

𝑃 : 1

E(p𝑃) def
= E(𝑃)

𝑃 : 0

E(p𝑃) def
=

E(𝑃)

𝑃 : 𝑛

E(P𝑃) def
=

.

.

.

.

.

.

.

.

.

.

.

.

E(𝑃)

𝑃1 : 𝑛 𝑃2 : 𝑚 𝑛 ≥ 𝑚

E(𝑃1 ∩ 𝑃2)
def
= E(𝑃2)

E (𝑃1)
𝑚

𝑛 −𝑚

𝑃1 : 𝑛 𝑃2 : 𝑚 𝑛 <𝑚

E(𝑃1 ∩ 𝑃2)
def
=

E(𝑃1)

E (𝑃2)
𝑛

𝑚 − 𝑛

𝑃 : 𝑛

E(¬𝑃) def
= E(𝑃)𝑛

𝑃 : 𝑛

E([𝑃) def
= E(𝑃)𝑛

𝑃 : 𝑛 + 1

E(]𝑃) def
= E(𝑃)

𝑛

𝑃 : 0

E(]𝑃) def
= E(𝑃)

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

𝑐
(◀◦-nat)

≤ 𝑐

𝑐
(c↑)

𝑐

𝑐 ∧ 𝑐
𝑐

(!◦-nat)
≤ (w↑)

𝑐

⊤

𝑐

𝑐

(◀•-nat)
≤ 𝑐 (c↓)

𝑐 ∨ 𝑐

𝑐

(!•-nat)
≤ 𝑐 (w↓)

⊥
𝑐

(𝜏𝑅◦)
(𝜏𝑅•)
≤ 𝑅 𝑅 (i↓)

⊤
𝑐 ∨ 𝑐

𝑅 𝑅

(𝛾𝑅◦)
(𝛾𝑅•)
≤ (i↑)

𝑐 ∧ 𝑐

⊥

𝑏 𝑐𝑎

(𝛿𝑙)
(𝛿𝑟)≤ 𝑏𝑎 𝑐 (s)

𝑎 ∧ (𝑏 ∨ 𝑐)
(𝑎 ∧ 𝑏) ∨ 𝑐

Figure 12: Correspondence between axioms in Figure 6 and
rules of SKSg in [15]. By the laws of symmetric monoidal
categories ,◦ and ⊗ coincide: they both correspond to ∧. More-
over they are associative, commutative and with unit 𝑖𝑑◦𝐼 ,
corresponding to ⊤. Symmetrically ,• and �× coincide and cor-
respond to ∨.

• p𝑃 : 2. Assume 𝑃 : 1.

⟨p𝑃⟩I = {𝜏 | 𝜏2, 𝜏1, 𝜏3, 𝜏4 · · · ∈ ⟨𝑃⟩I } (def. ⟨·⟩I)
= {𝜏 | 𝜏2, 𝜏1, · · · ∈ {𝜏 | (𝜏1,★) ∈ I♯

𝑝 (E(𝑃))} } (ind. hyp.)

= {𝜏 | (𝜏2,★) ∈ I♯
𝑝 (E(𝑃))}

= {𝜏 | ((𝜏1, 𝜏2),★) ∈ I♯
𝑝 (E(p𝑃))} (def. E(·) and I♯

𝑝 (·))
•]𝑃 : 0. Assume 𝑃 : 0.

⟨]𝑃⟩I = {𝜏 | 𝜏2, 𝜏3, · · · ∈ ⟨𝑃⟩I } (def. ⟨·⟩I)
= {𝜏 | 𝜏2, 𝜏3, · · · ∈ {𝜏 | (★,★) ∈ I♯

𝑝 (E(𝑃))} } (ind. hyp.)

= {𝜏 | (★,★) ∈ I♯
𝑝 (E(𝑃))}

= {𝜏 | (★,★) ∈ I♯
𝑝 (E(]𝑃))} (def. E(·) and I♯

𝑝 (·))
□

B.4 Translation from NPRΣ to FOL
In § 9 we show how to translate typed formulas of FOL into dia-
grams ofNPRΣ. Here we show the translation in the other direction.

Note that in general terms of NPRΣ feature “dangling” wires
both on the left and on the right of a term. While this is inconse-
quential from the point of view of expressivity, since terms can
always be “rewired” using the compact closed structure of cartesian
bicategories, this separation is convenient for composing terms in a
flexible manner. Therefore, in the translation in Figure 13, we keep
two separate lists of free variables in the context, denoted as 𝑛;𝑚,
where 𝑛 and𝑚 are the lenghts of the two lists.

C PROOFS OF SECTION 4
Lemma C.1. Let (C, ◀◦, ▶◦) be a cartesian bicategory. The follow-

ing holds

(1) For all objects 𝑋 , 𝑖𝑑◦𝑋 : 𝑋 → 𝑋 , ◀◦𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 and
!◦𝑋 : 𝑋 → 𝐼 are maps;

(2) For maps 𝑎 and 𝑏 properly typed, 𝑎 ,◦ 𝑏 and 𝑎 ⊗ 𝑏 are maps;
(3) If 𝑎 : 𝐼 → 𝐼 is a map, then 𝑎 = 𝑖𝑑◦𝐼 ;
(4) If 𝑎 : 𝐼 → 𝑋 ⊗ 𝑌 is a map, then there exist maps 𝑐 : 𝐼 → 𝑋

and 𝑑 : 𝐼 → 𝑌 such that 𝑎 = 𝑐 ⊗ 𝑑 .

Proof. See Theorem 1.6 in [16]. □

Proof of Proposition 4.3. See Theorem 2.4 in [16]. □

Lemma C.2. Let F : C1 → C2 be a morphism of cartesian bicate-
gories. Then, for all 𝑐 : 𝑋 → 𝑌 , F (𝑐)† = F (𝑐†).

Proof. See Remark 2.9 in [16]. □

Proof of Proposition C.3. See Lemma 2.5 in [16]. □

The following generalises thewell-known fact that𝑅 is a function
iff it is left adjoint to 𝑅†.

Proposition C.3. In a cartesian bicategory, an arrow 𝑐 : 𝑋 → 𝑌
is a map iff 𝑐† ⊢ 𝑐 .

D PROOFS OF SECTION 5
Several results stated in §5 (e.g., Lemmas 5.3, 5.4 and D.1) are well-
known from [17]. However, for convenience of the reader, we group
in this appendix the proofs of all the results stated in §5.

Proof of Lemma 5.2. The proof of (1) is on the left and (2) on
the right:

𝑖𝑑•𝐼 = 𝑖𝑑•𝐼 ,◦ 𝑖𝑑◦𝐼
= 𝑖𝑑•𝐼 ,◦ (𝑖𝑑•𝐼 ,• 𝑖𝑑◦𝐼)
≤ (𝑖𝑑•𝐼 ,◦ 𝑖𝑑•𝐼) ,• 𝑖𝑑◦𝐼 (𝛿𝑙)
= (𝑖𝑑•𝐼 ⊗ 𝑖𝑑•𝐼) ,• 𝑖𝑑◦𝐼 (SMC)
≤ (𝑖𝑑•𝐼 �× 𝑖𝑑•𝐼) ,• 𝑖𝑑◦𝐼 (⊗•)
= 𝑖𝑑◦𝐼

𝑎 ⊗ 𝑏

= (𝑎 ,• 𝑖𝑑•) ⊗ (𝑏 ,• 𝑖𝑑•)
≤ (𝑎 �× 𝑏) ,• (𝑖𝑑• ⊗ 𝑖𝑑•) (𝜈◦𝑟)
≤ (𝑎 �× 𝑏) ,• (𝑖𝑑• �× 𝑖𝑑•) (⊗•)
= 𝑎 �× 𝑏

The proof of (3) is given diagrammatically as follows:

𝑎

𝑐

𝑏
=

𝑎

𝑐

𝑏
=

𝑎

𝑐

𝑏

(𝜈◦𝑟)≤
𝑎

𝑐

𝑏

(𝛿𝑟)≤
𝑎

𝑏

𝑐

Lemma
5.2.(2)
≤

𝑎

𝑏

𝑐

=
𝑎

𝑏

𝑐

□

Proof of Lemma 5.3. By the following two derivations.

𝑏 = 𝑏 ,◦ 𝑖𝑑◦𝑋
≤ 𝑏 ,◦ (𝑎 ,• 𝑐) (𝑐 ⊩ 𝑎)
≤ (𝑏 ,◦ 𝑎) ,• 𝑐 (𝛿𝑙)
≤ 𝑖𝑑•𝑌 ,• 𝑐 (𝑏 ⊩ 𝑎)
= 𝑐

𝑐 = 𝑐 ,◦ 𝑖𝑑◦𝑋
≤ 𝑐 ,◦ (𝑎 ,• 𝑏) (𝑏 ⊩ 𝑎)
≤ (𝑐 ,◦ 𝑎) ,• 𝑏 (𝛿𝑙)
≤ 𝑖𝑑•𝑌 ,• 𝑏 (𝑐 ⊩ 𝑎)
= 𝑏

□

Diagrammatic Algebra of First Order Logic

(𝑖𝑑◦)
⇝ 0;0 :⊤

(𝑖𝑑•)
⇝ 0;0 :⊥

(𝑖𝑑◦1)
⇝ 1;1 :𝑥1=𝑦1

(𝑖𝑑•1)
⇝ 1;1 :𝑥1≠𝑦1

(𝜎◦)
⇝ 2;2 :𝑥1=𝑦2∧𝑥2=𝑦1

(𝜎•)
⇝ 2;2 :𝑥1≠𝑦2∨𝑥2≠𝑦1

(◀◦)
⇝ 1;2 :𝑥1=𝑦1∧𝑥1=𝑦2

(!◦)
⇝ 1;0 :⊤

(𝑅◦)
𝑅𝑛 𝑚 ⇝ 𝑛;𝑚 :𝑅 (𝑥𝑛,𝑦𝑚)

(◀•)
⇝ 1;2 :𝑥1≠𝑦1∨𝑥1≠𝑦2

(!•)
⇝ 1;0 :⊥

(𝑅•)
𝑅𝑛 𝑚 ⇝ 𝑛;𝑚 :¬𝑅 (𝑥𝑛,𝑦𝑚)

𝑝𝑛 𝑘 ⇝ 𝑛;𝑘 :𝜑 𝑞𝑘 𝑚⇝ 𝑘 ;𝑚 :𝜓

𝑝 𝑞𝑛 𝑚 ⇝ 𝑛;𝑚 : ∃z𝑘 . 𝜑∧𝜓
(,◦)

𝑝𝑛 𝑘 ⇝ 𝑛;𝑘 :𝜑 𝑞𝑘 𝑚⇝ 𝑘 ;𝑚 :𝜓

𝑝 𝑞𝑛 𝑚 ⇝ 𝑛;𝑚 : ∀z𝑘 . 𝜑∨𝜓
(,•)

𝑝𝑛 𝑚 ⇝ 𝑛;𝑚 :𝜑 𝑞𝑙 𝑘 ⇝ 𝑙 ;𝑘 :𝜓
(⊗)

𝑝

𝑞

𝑛 𝑚

𝑙 𝑘

⇝ 𝑛+𝑙 ;𝑚+𝑘 :𝜑∧𝜓

𝑝𝑛 𝑚 ⇝ 𝑛;𝑚 :𝜑 𝑞𝑙 𝑘 ⇝ 𝑙 ;𝑘 :𝜓
(�×)

𝑝

𝑞

𝑛 𝑚

𝑙 𝑘

⇝ 𝑛+𝑙 ;𝑚+𝑘 :𝜑∨𝜓

Figure 13: Encoding of NPRΣ diagrams as FOL formulas.

Proof of Lemma 5.4. In the leftmost derivation we prove 𝑎 ≤
𝑏 ⇒ 𝑖𝑑◦𝑋 ≤ 𝑏 ,• 𝑎⊥ and in the rightmost 𝑎 ≤ 𝑏 ⇐ 𝑖𝑑◦𝑋 ≤ 𝑏 ,• 𝑎⊥

𝑖𝑑◦𝑋 ≤ 𝑎 ,• 𝑎⊥ (𝑎⊥ ⊩ 𝑎)
≤ 𝑏 ,• 𝑎⊥ (𝑎 ≤ 𝑏)

𝑎 = 𝑖𝑑◦𝑋 ,◦ 𝑎
≤ (𝑏 ,• 𝑎⊥) ,◦ 𝑎 (𝑖𝑑◦𝑋 ≤ 𝑏 ,• 𝑎⊥)
≤ 𝑏 ,• (𝑎⊥ ,◦ 𝑎) (𝛿𝑟)
≤ 𝑏 ,• 𝑖𝑑•𝑌 (𝑎⊥ ⊩ 𝑎)
= 𝑏

□

Lemma D.1. Let F : C1 → C2 be a morphism of closed linear
bicategories. Then, for all 𝑎 : 𝑋 → 𝑌 , F (𝑎)⊥ = F (𝑎⊥).

Proof. Consider the following two derivations witnessing that
𝐹 (𝑎⊥) is right linear adjoint to 𝐹 (𝑎).

𝑖𝑑◦𝑋 = 𝐹 (𝑖𝑑◦𝑋)
≤ 𝐹 (𝑎 ,• 𝑎⊥) (𝑎⊥ ⊩ 𝑎)
= 𝐹 (𝑎) ,• 𝐹 (𝑎⊥)

𝐹 (𝑎⊥) ,◦ 𝐹 (𝑎)
= 𝐹 (𝑎⊥ ,◦ 𝑎)
≤ 𝐹 (𝑖𝑑•𝑌) (𝑎⊥ ⊩ 𝑎)
= 𝑖𝑑•𝑌

Thus, by Lemma 5.3, (𝐹 (𝑎))⊥ = 𝐹 (𝑎⊥). □

Proof of Proposition 5.6. First, we prove that for all𝑎, 𝑏 : 𝑋 →
𝑌 it holds

(0) if 𝑎 ≤ 𝑏 then 𝑎⊥ ≥ 𝑏⊥

The proof is illustrated below.

(0)

𝑏⊥ = 𝑏⊥ ,◦ 𝑖𝑑◦𝑌
≤ 𝑏⊥ ,◦ (𝑎 ,• 𝑎⊥) (𝑎⊥ ⊩ 𝑎)
≤ (𝑏⊥ ,◦ 𝑎) ,• 𝑎⊥ ((𝛿𝑙))
≤ (𝑏⊥ ,◦ 𝑏) ,• 𝑎⊥ (𝑎 ≤ 𝑏)
≤ 𝑖𝑑•𝑌 ,• 𝑎⊥ (𝑏⊥ ⊩ 𝑏)
= 𝑎⊥

We next illustrate that for all 𝑎 : 𝑋 → 𝑌 and 𝑏 : 𝑌 → 𝑍

(1) (𝑖𝑑◦𝑋)⊥ = 𝑖𝑑•𝑋
(2) (𝑖𝑑•𝑋)⊥ = 𝑖𝑑◦𝑋
(3) (𝑎 ,◦ 𝑏)⊥ = 𝑏⊥ ,• 𝑎⊥
(4) (𝑎 ,• 𝑏)⊥ = 𝑏⊥ ,◦ 𝑎⊥

The proofs are dispayed below.

(1) Observe that 𝑖𝑑◦𝑋 = 𝑖𝑑◦𝑋 ,• 𝑖𝑑•𝑋 and 𝑖𝑑•𝑋 ,◦ 𝑖𝑑◦𝑋 = 𝑖𝑑•𝑋 . Thus,
by Lemma 5.3, (𝑖𝑑◦𝑋)⊥ = 𝑖𝑑•𝑋 .

(2) Similarly, 𝑖𝑑◦𝑋 = 𝑖𝑑•𝑋 ,• 𝑖𝑑◦𝑋 and 𝑖𝑑◦𝑋 ,◦ 𝑖𝑑•𝑋 = 𝑖𝑑•𝑋 . Again, by
Lemma 5.3, (𝑖𝑑•𝑋)⊥ = 𝑖𝑑◦𝑋 .

(3) The following two derivations

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

𝑖𝑑◦𝑋
≤ 𝑎 ,• 𝑎⊥ (𝑎⊥ ⊩ 𝑎)
= (𝑎 ,◦ 𝑖𝑑◦𝑌) ,• 𝑎⊥

≤ (𝑎 ,◦ (𝑏 ,• 𝑏⊥)) ,• 𝑎⊥ (𝑏⊥ ⊩ 𝑏)
≤ ((𝑎 ,◦ 𝑏) ,• 𝑏⊥) ,• 𝑎⊥ (𝛿𝑙)
= (𝑎 ,◦ 𝑏) ,• (𝑏⊥ ,• 𝑎⊥)

(𝑏⊥ ,• 𝑎⊥) ,◦ (𝑎 ,◦ 𝑏)
= ((𝑏⊥ ,• 𝑎⊥) ,◦ 𝑎) ,◦ 𝑏
≤ (𝑏⊥ ,• (𝑎⊥ ,◦ 𝑎)) ,◦ 𝑏 (𝛿𝑟)
≤ (𝑏⊥ ,• 𝑖𝑑•𝑌) ,◦ 𝑏 (𝑎⊥ ⊩ 𝑎)
= 𝑏⊥ ,◦ 𝑏
≤ 𝑖𝑑•𝑍 (𝑏⊥ ⊩ 𝑏)

show that (𝑏⊥ ,•𝑎⊥) ⊩ (𝑎 ,◦𝑏). Thus, by Lemma 5.3, (𝑎 ,◦𝑏)⊥ =
𝑏⊥ ,• 𝑎⊥.

(4) The following two derivations

𝑖𝑑◦𝑋
≤ 𝑎 ,• 𝑎⊥ (𝑎⊥ ⊩ 𝑎)
= 𝑎 ,• (𝑖𝑑◦𝑌 ,◦ 𝑎⊥)
≤ 𝑎 ,• ((𝑏 ,• 𝑏⊥) ,◦ 𝑎⊥)

(𝑏⊥ ⊩ 𝑏)
≤ 𝑎 ,• (𝑏 ,• (𝑏⊥ ,◦ 𝑎⊥)) (𝛿𝑟)
= (𝑎 ,• 𝑏) ,• (𝑏⊥ ,◦ 𝑎⊥)

(𝑏⊥ ,◦ 𝑎⊥) ,◦ (𝑎 ,• 𝑏)
= 𝑏⊥ ,◦ (𝑎⊥ ,◦ (𝑎 ,• 𝑏))
= 𝑏⊥ ,◦ ((𝑎⊥ ,◦ 𝑎) ,• 𝑏) (𝛿𝑙)
≤ 𝑏⊥ ,◦ (𝑖𝑑•𝑌) ,• 𝑏)

(𝑎⊥ ⊩ 𝑎)
= 𝑏⊥ ,◦ 𝑏
≤ 𝑖𝑑•𝑍 (𝑏⊥ ⊩ 𝑏)

show that (𝑏⊥ ,◦𝑎⊥) ⊩ (𝑎 ,•𝑏). Thus, by Lemma 5.3, (𝑎 ,•𝑏)⊥ =
𝑏⊥ ,◦ 𝑎⊥.

Next, we illustrate that for all 𝑎 : 𝑋1 → 𝑌1 and 𝑏 : 𝑋2 → 𝑌2

(5) (𝑎 ⊗ 𝑏)⊥ = 𝑎⊥ �× 𝑏⊥
(6) (𝑎 �× 𝑏)⊥ = 𝑎⊥ ⊗ 𝑏⊥
(7) (𝜎◦)⊥ = 𝜎•
(8) (𝜎•)⊥ = 𝜎◦

The proofs are shown below.

(5) The following two derivations

𝑖𝑑◦𝑋1⊗𝑋2

=𝑖𝑑◦𝑋1
⊗ 𝑖𝑑◦𝑋2

≤(𝑎 ,• 𝑎⊥) ⊗ (𝑏 ,• 𝑏⊥)
(𝑎⊥ ⊩ 𝑎 , 𝑏⊥ ⊩ 𝑏)

≤(𝑎 ⊗ 𝑏) ,• (𝑎⊥ �× 𝑏⊥) (𝜈•𝑟)

(𝑎⊥ �× 𝑏⊥) ,◦ (𝑎 ⊗ 𝑏)
≤(𝑎⊥ ,◦ 𝑎) �× (𝑏⊥ ,◦ 𝑏) (𝜈•

𝑙
)

≤𝑖𝑑•𝑌1 �× 𝑖𝑑•𝑌2
(𝑎⊥ ⊩ 𝑎 , 𝑏⊥ ⊩ 𝑏)

=𝑖𝑑•𝑌1�×𝑌2
show that (𝑎⊥ �× 𝑏⊥) ⊩ (𝑎 ⊗ 𝑏). Thus, by Lemma 5.3,
(𝑎 ⊗ 𝑏)⊥ = 𝑏⊥ �× 𝑎⊥.

(6) The following two derivations

𝑖𝑑◦𝑋1⊗𝑋2

=𝑖𝑑◦𝑋1
⊗ 𝑖𝑑◦𝑋2

≤(𝑎 ,• 𝑎⊥) ⊗ (𝑏 ,• 𝑏⊥)
(𝑎⊥ ⊩ 𝑎 , 𝑏⊥ ⊩ 𝑏)

≤(𝑎 �× 𝑏) ,• (𝑎⊥ ⊗ 𝑏⊥) (𝜈◦𝑟)

(𝑎⊥ ⊗ 𝑏⊥) ,◦ (𝑎 �× 𝑏)
≤(𝑎⊥ ,◦ 𝑎) �× (𝑏⊥ ,◦ 𝑏) (𝜈•

𝑙
)

≤𝑖𝑑•𝑌1 �× 𝑖𝑑•𝑌2
(𝑎⊥ ⊩ 𝑎 , 𝑏⊥ ⊩ 𝑏)

=𝑖𝑑•𝑌1�×𝑌2
show that (𝑎⊥ ⊗ 𝑏⊥) ⊩ (𝑎 �× 𝑏). Thus, by Lemma 5.3,
(𝑎 �× 𝑏)⊥ = 𝑏⊥ ⊗ 𝑎⊥.

(7) By axioms (𝜏𝜎◦) and (𝛾𝜎◦).
(8) By axioms (𝜏𝜎•) and (𝛾𝜎•).

□

E PROOF OF SECTION 6
E.1 Proofs of Proposition 6.2
In this appendixwe illustrate several results to prove Proposition 6.2.
We first focus on (·)† : C → Cop (Lemma E.6) and then (·)⊥ : C →
(Cco)op (Lemma E.8).

In order to prove that (·)† : C → Cop is a morphism of fo-
bicategories, it is convenient to define, for all arrows 𝑐 : 𝑋 → 𝑌 ,
𝑐‡ : 𝑌 → 𝑋 as

𝑐‡ def
= 𝑐

𝑌

𝑋

The assignment 𝑐 ↦→ 𝑐‡ gives rise to an identity on object func-
tor (·)‡ : C → Cop which preserves the stucture of cocartesian
bicategories.

Proposition E.1. (·)‡ : C → Cop is an isomorphism of cocarte-
sian bicategories, that is the rules in the first three rows of Table 6
hold.

Proof. See Theorem 2.4 in [16]. □

Table 6: Properties of ·‡ : C → Cop

if 𝑐 ≤ 𝑑 then 𝑐‡ ≤ 𝑑‡ (𝑐‡)‡ = 𝑐

(𝑐 ,◦𝑑)‡ = 𝑑‡ ,◦ 𝑐‡ (𝑖𝑑◦
𝑋

)‡ = 𝑖𝑑◦
𝑋

(▶◦
𝑋

)‡ =◀◦
𝑋

(¡◦
𝑋

)‡ = !◦
𝑋

(𝑐 ⊗ 𝑑)‡ = 𝑐‡ ⊗ 𝑑‡ (𝜎◦
𝑋,𝑌

)‡ = 𝜎◦
𝑌,𝑋

(◀◦
𝑋

)‡ =▶◦
𝑋

(!◦
𝑋

)‡ = ¡◦
𝑋

(𝑐 ,•𝑑)‡ = 𝑑‡ ,• 𝑐‡ (𝑖𝑑•
𝑋

)‡ = 𝑖𝑑•
𝑋

(▶•
𝑋

)‡ =◀•
𝑋

(¡•
𝑋

)‡ = !•
𝑋

(𝑐 �× 𝑑)‡ = 𝑐‡ �× 𝑑‡ (𝜎•
𝑋,𝑌

)‡ = 𝜎•
𝑌,𝑋

(◀•
𝑋

)‡ =▶•
𝑋

(!•
𝑋

)‡ = ¡•
𝑋

Lemma E.2. The following hold:

(1) = (2) = (3) =

Proof. Point (1) is proved by the following derivation:

(◀◦-un)
=

(F◦•)
= .

For point (2) observe that the left to right inclusion is (𝛾 ▶◦) and
the other inclusion is proved as follows:

(S•)
= ≈ (S◦)

=

(𝛿𝑟)≤
(𝛾 ◀•)
≤

Proof of point (3) is analogous to the one above, except that one
exploits (𝛿𝑟) and (𝛾 ▶•). □

Lemma E.3. The following hold: 𝑖𝑑•𝑋 = (𝑖𝑑•𝑋)† and 𝑖𝑑◦𝑋 = (𝑖𝑑◦𝑋)‡

Diagrammatic Algebra of First Order Logic

Proof. Here we show only 𝑖𝑑•𝑋 = (𝑖𝑑•𝑋)†, the other follows a
similar reasoning.

Lemma
E.2.2=

(▶◦-as)
=

(F•◦)
=

Lemma
E.2.1=

(F•◦)
=

(◀◦-un)
=

Lemma
E.2.3=

□

Lemma E.4. For all 𝑎 : 𝑋 → 𝑌 it holds (𝑎†)⊥ = (𝑎⊥)‡

Proof. The proof follows from the fact that (◀◦, !◦) is right
linear adjoint to (▶•, ¡•), Proposition 5.6 and the definition of (·)†
and (·)‡. □

Lemma E.5. For all 𝑎 : 𝑋 → 𝑌 it holds 𝑎† = 𝑎‡

Proof. We prove the inclusion 𝑎† ≤ 𝑎‡ (left) by means of
Lemma 5.4 and the other inclusion (right) directly:

(𝑎‡ ,• (𝑎†)⊥)
= 𝑎‡ ,• (𝑎⊥)‡ (Lemma E.4)

= (𝑎⊥ ,• 𝑎)‡ (Table 6)

≥ (𝑖𝑑◦𝑌)‡ (𝑎⊥ ⊩ 𝑎)
= 𝑖𝑑◦𝑌 (Lemma E.3)

𝑎‡

= ((𝑎†)†)‡ ((·)† is an iso)

≤ ((𝑎†)‡)‡ (𝑎† ≤ 𝑎‡)

= 𝑎† ((·)‡ is an iso)

□

Lemma E.6. (·)† : C → Cop is an isomorphisms of fo-bicategories,
namely all the laws in Table 2.(a) hold.

Proof. Follows from Lemma E.5 and the fact that (·)† pre-
serves the positive structure (Proposition 4.3) and (·)‡ preserve
the negative structure (Proposition E.1). For instance, to prove that
(𝑎 ,• 𝑏)† = 𝑏† ,• 𝑎†, it is enough to observe that (𝑎 ,• 𝑏)† = (𝑎 ,• 𝑏)‡
and that (𝑎 ,• 𝑏)‡ = 𝑏‡ ,• 𝑎‡. □

Lemma E.7. For all 𝑎 : 𝑋 → 𝑌

(1) (𝑎⊥)⊥ = 𝑎

Proof. The following two derivations

𝑖𝑑◦𝑌
=(𝑖𝑑◦𝑌)† (Proposition 4.3)

≤(𝑎† ,• (𝑎†)⊥)† ((𝑎†)⊥ ⊩ 𝑎†)
=(𝑎† ,• (𝑎⊥)†)† (Corollary 6.3)

=((𝑎⊥ ,• 𝑎)†)† (Lemma E.6)
=𝑎⊥ ,• 𝑎 (Proposition 4.3)

𝑖𝑑•𝑋
=(𝑖𝑑•𝑋)† (Lemma E.6)

≥((𝑎†)⊥ ,◦ 𝑎†)† ((𝑎†)⊥ ⊩ 𝑎†)
=((𝑎⊥)† ,◦ 𝑎†)† (Corollary 6.3)

=((𝑎 ,◦ 𝑎⊥)†)† (Proposition 4.3)
=𝑎 ,◦ 𝑎⊥ (Proposition 4.3)

prove that the right linear adjoint of 𝑎⊥ is 𝑎. Thus, by Lemma
5.3, (𝑎⊥)⊥ = 𝑎.

□

LemmaE.8. (·)⊥ : C → (Cco)op is an isomorphisms of fo-bicategories,
namely all the laws in Table 2.(b) hold.

Proof. By Proposition 5.6, (·)⊥ : C → (Cco)op is a morphism
of linear bicategories. Observe that (Cco)op carries the structure
of a cartesian bicategory where the positive comonoid is (▶•, ¡•)
and the positive monoid is (◀•, !•). By Definition 5.1.4, one has
that (◀◦)⊥ =▶•, (!◦)⊥ = ¡• and (▶◦)⊥ =◀•, (¡◦)⊥ = !•. Thus
(·)⊥ : C → (Cco)op is a morphism of cartesian bicategories.

By Lemma E.7, we also immediately know that (◀•)⊥ =▶◦,
(!•)⊥ = ¡◦ and (▶•)⊥ =◀◦, (¡•)⊥ = !◦. Thus, (·)⊥ : C → (Cco)op is
a morphism of cocartesian bicategories. Thus, it is a morphism of
fo-bicategories.

The fact that it is an isomorphism is immediate by Lemma E.7.
□

Proof of Proposition 6.2. By Lemmas E.6 and E.8. □

E.2 Proofs of the other results
Proof of Corollary 6.3. (𝑐†)⊥ = (𝑐⊥)† is immediate from

Proposition 6.2 and Lemma D.1. The other rules follow from the def-
initions of⊓,⊤,⊔,⊥ in (12) and (12), and the laws in Tables 2.(a) and
2.(b). For instance (⊥)⊥ = (!• ,•¡•)⊥ = (¡•)⊥ ,◦ (!•)⊥ = !◦ ,◦¡◦ = ⊤. □

Proof of Proposition 6.4. Recall that, by Proposition C.3 an
arrow 𝑓 : 𝑋 → 𝑌 is a map iff it is a left adjoint, namely

𝑖𝑑◦𝑋 ≤ 𝑓 ,◦ 𝑓 † 𝑓 † ,◦ 𝑓 ≤ 𝑖𝑑◦𝑌 (17)

The following two derivations prove the two inclusion.

𝑓 ,◦ 𝑐
= 𝑖𝑑◦𝑋 ,◦ 𝑓 ,◦ 𝑐

≤ ((𝑓 †)⊥ ,• 𝑓 †) ,◦ 𝑓 ,◦ 𝑐
(𝑓 † ⊩ (𝑓 †)⊥)

≤ (𝑓 †)⊥ ,• (𝑓 † ,◦ 𝑓 ,◦ 𝑐) (𝛿𝑟)

≤ (𝑓 †)⊥ ,• (𝑖𝑑◦𝑌 ,◦ 𝑐) (17)

= (𝑓 †)⊥ ,• 𝑐

𝑓 ,◦ 𝑐
= 𝑓 ,◦ (𝑖𝑑•𝑋 ,• 𝑐)
≥ 𝑓 ,◦ ((𝑓 † ,◦ (𝑓 †)⊥) ,• 𝑐)

((𝑓 †) ⊩ (𝑓 †)⊥)
≥ 𝑓 ,◦ 𝑓 † ,◦ ((𝑓 †)⊥ ,• 𝑐) (𝛿𝑙)

≥ 𝑖𝑑◦𝑋 ,◦ ((𝑓 †)⊥ ,• 𝑐) (17)

= (𝑓 †)⊥ ,• 𝑐
Note that 𝑓 † ⊩ (𝑓 †)⊥ holds since, by Proposition 6.2, in any fo-
bicategory left and right linear adjoint coincide (namely (𝑎⊥)⊥ = 𝑎).

To check the four equivalences, first observe that

𝑐 ,◦ 𝑓 † = (𝑓 ,◦ 𝑐)† = ((𝑓 †)⊥ ,• 𝑐)† = 𝑐 ,• 𝑓 ⊥

and conclude by taking as map 𝑓 either ◀◦ or !◦. □

Lemma E.9. Let C be a fo-bicategory. Then, (C, ,◦, ⊗) and (C, ,•, �×)
aremonoidally enriched over⊔-semilattices with⊥ and⊓-semilattices
with ⊤, respectively. Namely, the following hold:

(1) 𝑎 ,◦ (𝑏 ⊔𝑐) = (𝑎 ,◦𝑏) ⊔ (𝑎 ,◦𝑐) and (𝑏 ⊔𝑐) ,◦𝑎 = (𝑏 ,◦𝑎) ⊔ (𝑐 ,◦𝑎)
(2) 𝑎 ,• (𝑏 ⊓𝑐) = (𝑎 ,•𝑏) ⊓ (𝑎 ,•𝑐) and (𝑏 ⊓𝑐) ,•𝑎 = (𝑏 ,•𝑎) ⊓ (𝑐 ,•𝑎)
(3) 𝑎 ,◦ ⊥ = ⊥ = ⊥ ,◦ 𝑎
(4) 𝑎 ,• ⊤ = ⊤ = ⊤ ,• 𝑎
(5) 𝑎 ⊗ (𝑏 ⊔ 𝑐) = (𝑎 ⊗ 𝑏) ⊔ (𝑎 ⊗ 𝑐) and (𝑏 ⊔ 𝑐) ⊗ 𝑎 = (𝑏 ⊗

𝑎) ⊔ (𝑐 ⊗ 𝑎)
(6) 𝑎 �× (𝑏 ⊓ 𝑐) = (𝑎 �× 𝑏) ⊓ (𝑎 �× 𝑐) and (𝑏 ⊓ 𝑐) �× 𝑎 = (𝑏 �×

𝑎) ⊓ (𝑐 �× 𝑎)
(7) 𝑎 ⊗ ⊥ = ⊥ = ⊥ ⊗ 𝑎
(8) 𝑎 �× ⊤ = ⊤ = ⊤ �× 𝑎

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

Proof. We prove the two inclusions of the first equation in (1)
separately.

𝑏

𝑐
𝑎

Prop.
6.4=

𝑏

𝑐
𝑎

(◀◦-nat)
≤ 𝑏

𝑐

𝑎

𝑎

Prop.
6.4=

𝑏

𝑐

𝑎

𝑎

(𝜈◦𝑙)≤
𝑏

𝑐

𝑎

𝑎

Prop.
6.4=

𝑏

𝑐

𝑎

𝑎

𝑏

𝑐

𝑎

𝑎

(◀•-un)
(▶•-un)
=

𝑏
𝑎

𝑐
𝑎

(!•-nat)
≤

𝑏
𝑎

𝑐
𝑎

𝑐

𝑏

(𝜖¡•)
≤

𝑏
𝑎

𝑐
𝑎

𝑐

𝑏

(◀•-nat)
≤ 𝑏

𝑐
𝑎

(S•)
=

𝑏

𝑐
𝑎

For the second equation, namely the one with the composition
on the right, it suffices to apply the properites of (·)† in Tables 2.(a)
and 2.(c) and the drivation above to get that:

(𝑏 ⊔ 𝑐) ,◦ 𝑎 = (((𝑏 ⊔ 𝑐) ,◦ 𝑎)†)† = (𝑎† ,◦ (𝑏† ⊔ 𝑐†))†

= ((𝑎† ,◦ 𝑏†) ⊔ (𝑎† ,◦ 𝑐†))† = (((𝑏 ,◦ 𝑎) ⊔ (𝑎 ,◦ 𝑐))†)†
= (𝑏 ,◦ 𝑎) ⊔ (𝑎 ,◦ 𝑐)

The proofs for (2) are analogous to those of (1).
We prove the left to right inclusion of the first equation in (3).

The other inclusion holds since ⊥ is the bottom element.

𝑎
Prop. 6.4

= 𝑎
(!◦-nat)
≤ Prop. 6.4

=

For the second equation, namely the one with the composition
on the right, it suffices to apply the properites of (·)† in Tables 2.(a)
and 2.(c) and the drivation above to get that:

⊥ ,◦ 𝑎 = ((⊥ ,◦ 𝑎)†)† = (𝑎† ,◦ ⊥†)† = (𝑎† ,◦ ⊥)† = ⊥† = ⊥

The proofs for (4) are analogous to those of (3).
The right to left inclusion of the first equation in (5) is proved

by the universal property of ⊔, namely: if 𝑎 ⊗ 𝑏 = 𝑎 ⊗ (𝑏 ⊔ ⊥) ≤
𝑎 ⊗ (𝑏 ⊔ 𝑐) and 𝑎 ⊗ 𝑐 = 𝑎 ⊗ (⊥ ⊔ 𝑐) ≤ 𝑎 ⊗ (𝑏 ⊔ 𝑐), then
(𝑎 ⊗ 𝑏) ⊔ (𝑎 ⊗ 𝑐) ≤ 𝑎 ⊗ (𝑏 ⊔ 𝑐).

For the other inclusion, the following holds:

𝑏

𝑐

𝑎 ⊓
idemp.
=

𝑏

𝑐

𝑎

𝑎

≈
𝑏

𝑐

𝑎

𝑎

≈
𝑏

𝑐

𝑎

𝑎

≈ 𝑏

𝑐

𝑎

𝑎

Prop.
6.4=

𝑏

𝑐

𝑎

𝑎

≈ 𝑏

𝑐

𝑎

𝑎

Lm.
5.2≤ 𝑏

𝑐

𝑎

𝑎

Lm.
5.2≤

𝑏

𝑐

𝑎

𝑎

Prop.
6.4=

𝑏

𝑐

𝑎

𝑎

≈ 𝑏

𝑎

𝑎

𝑐

Prop.
6.4= 𝑏

𝑎

𝑎

𝑐

For the second equation, namely (𝑏⊔𝑐) ⊗ 𝑎 = (𝑏 ⊗ 𝑎) ⊔ (𝑐 ⊗ 𝑎),
the proof follows the exact same reasoning.

The proofs for (6) are analogous to those of (5).
We prove the left to right inclusion of the first equation in (7).

The other inclusion holds since ⊥ is the bottom element.

𝑎 (𝜖¡•)
≤

𝑎 (!◦-nat)
≤ ≈

Prop
6.4=

For the second equation, namely ⊥ = ⊥ ⊗ 𝑎, the proof follows
the exact same reasoning.

The proofs for (8) are analogous to those of (7). □

Lemma E.10. The following hold:

≤ and ≤

Proof.
Lemma
E.2.1=

(𝜂!◦)
≤

Prop.
6.4=

(𝜖!◦)
≤ (▶◦-un)

=

The proof of the other inequality is analogous. □

Lemma E.11. The following hold:

≤ and ≤

Proof. We prove it by means of Lemma 5.4 as follows:

(𝜏 ◀◦)
≤

(𝜂!◦)
≤ (𝜂!◦)

=

Lm.
E.10≤

Diagrammatic Algebra of First Order Logic

The proof of the other inequality is analogous. □

Lemma E.12. The following hold:

𝑐 ≤ 𝑐
𝑐

𝑐
𝑐 ≤ 𝑐

Proof. The inclusion on the left is usually known as "wrong
way" and it holds in any cartesian bicategory. See for example [7]
for a detailed proof. The inclusion on the right is the "negated"
version holding in any cocartesian bicategory. □

Lemma E.13. The following hold:
(1) 𝑎 ⊓ 𝑎 ≤ ⊥
(2) ⊤ ≤ 𝑎 ⊔ 𝑎

Proof. We prove (1). The proof for (2) is analogous.

𝑎

𝑎

Lm.
E.12≤ 𝑎

𝑎
𝑎 𝑎⊥⊩𝑎≤ 𝑎

Lm.
E.11≤ 𝑎

Lm.
E.9≤

□

Proof of Proposition 6.5. The enrichments have been proved
in Lemma E.9.

The first six laws of Boolean algebras in Table 2.(d) are proved
below:

𝑐 ⊓ 𝑑
Def. (·)
= ((𝑐 ⊓ 𝑑)⊥)† Cor. 6.3

= (𝑐⊥)† ⊔ (𝑑⊥)† Def. (·)
= 𝑐 ⊔ 𝑑,

⊤ Def. (·)
= (⊤⊥)† Cor. 6.3

= ⊥,

𝑐 ⊔ 𝑑
Def. (·)
= ((𝑐 ⊔ 𝑑)⊥)† Cor. 6.3

= (𝑐⊥)† ⊓ (𝑑⊥)† Def. (·)
= 𝑐 ⊓ 𝑑,

⊥ Def. (·)
= (⊥⊥)† Cor. 6.3

= ⊤,

𝑎 ⊔ (𝑏 ⊓ 𝑐) (12)
= ◀• ,•(𝑎 �× (𝑏 ⊓ 𝑐)) ,• ▶•

Table 2.(𝑒)
= ◀• ,•((𝑎 �× 𝑏) ⊓ (𝑎 �× 𝑐)) ,• ▶•

Table 2.(𝑒)
= (◀• ,•(𝑎 �× 𝑏) ,• ▶•) ⊓ (◀• ,•(𝑎 �× 𝑐) ,• ▶•)
(12)
= (𝑎 ⊔ 𝑏) ⊓ (𝑎 ⊔ 𝑐),

𝑎 ⊓ (𝑏 ⊔ 𝑐) (12)
= ◀◦ ,◦(𝑎 ⊗ (𝑏 ⊔ 𝑐)) ,◦ ▶◦

Table 2.(𝑒)
= ◀◦ ,◦((𝑎 ⊗ 𝑏) ⊔ (𝑎 ⊗ 𝑐)) ,◦ ▶◦

Table 2.(𝑒)
= (◀◦ ,◦(𝑎 ⊗ 𝑏) ,◦ ▶◦) ⊔ (◀◦ ,◦(𝑎 ⊗ 𝑐) ,◦ ▶◦)
(12)
= (𝑎 ⊓ 𝑏) ⊔ (𝑎 ⊓ 𝑐)

The remaining two laws are proved in Lemma E.13. □

It is worth emphasising that the following result stands at the
core of our proofs. Once again, the diagrammatic approach proves
to be an enhancement over the classical syntax. In this specific case
we are looking at five (of many) different possibilities to express the
ubiquitous concept of logical entailment. (1) expresses 𝑎 implies 𝑏
as a direct rewriting of the former into the latter. We have already
seen that (2) corresponds to residuation. (3) corresponds to right

residuation. (4) asserts the validity of the formula ¬𝑎 ∨ 𝑏, thus
it corresponds to the classical implication. Finally, (5) may look
eccentric but it is actually a closed version of (3) that comes in
handy if one has to consider closed diagrams.

Proof of Lemma 6.6. (1) iff (2) is Lemma 5.4.
(1) iff (3) is proved as follows: 𝑎 ≤ 𝑏 iff 𝑏⊥ ≤ 𝑎⊥ by the property

of (·)⊥ in Table 2.(b). By Lemma 5.4, 𝑏⊥ ≤ 𝑎⊥ iff 𝑖𝑑◦𝑌 ≤ 𝑎⊥ ,• (𝑏⊥)⊥
where (𝑏⊥)⊥ = 𝑏 by the property of (·)⊥ in Table 2.(b).

(1) implies (4) follows from the fact that every homset carries a

Boolean algebra: 𝑎 ⊔ 𝑏
(1)
≥ 𝑎 ⊔ 𝑎

Table 2.(𝑑)
= ⊤.

(4) implies (1) is proved by the following derivation:

𝑎

(◀◦-un)
(▶◦-un)
=

𝑎 (4)
≤

𝑎

𝑎

𝑏

Lm.
5.2.3≤

𝑏

𝑎

𝑎

Table
2.(d)
=

𝑏

(◀•-un)
(▶•-un)
= 𝑏

(1) iff (5): observe that in any fo-bicategory 𝑎 ≤ 𝑏 iff

𝑎
(∗1)≤ 𝑏

(∗2)≤ 𝑏 .

Where (∗1) holds in any cartesian bicategory and (∗2) is proved
below:

𝑏

Lemma
E.10≤ 𝑏

(𝛿𝑙)≤ 𝑏

(𝜈•𝑟)≤ 𝑏 ≈ 𝑏

Thus, we conclude from (1) iff (3) and 𝑎
⊥
= 𝑎 .

□

E.3 Proofs of Section 6.1
Proof of Proposition 6.7. Let I = (𝑋, 𝜌) be an interpretation

of Σ. Recall that ≲ is defined as pc(FOB). We prove by induction
on the rules in (10), that

if 𝑐 ≲ 𝑑 then I♯ (𝑐) ⊆ I♯ (𝑑).
By definition of ≦, the above statement is equivalent to the propo-
sition.

The proof for the rules (𝑟) and (𝑡) is trivial. For the rule (,•◦),
suppose that 𝑐 = 𝑐1 ,•◦ 𝑐2 and 𝑑 = 𝑑1 ,•◦ 𝑑2 with 𝑐1 ≲ 𝑑1 and 𝑐2 ≲ 𝑑2.
Then

I♯ (𝑐) = I♯ (𝑐1 ,•◦ 𝑐2)
= I♯ (𝑐1) ,•◦ I♯ (𝑐2) (8)

⊆ I♯ (𝑑1) ,•◦ I♯ (𝑑2) (ind. hyp.)

= I♯ (𝑑1 ,•◦ 𝑑2) (8)

= I♯ (𝑑)

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

The proof for (�⊗) is analogous to the one above. The only interesting
case is the rule (𝑖𝑑): we should prove that if (𝑐, 𝑑) ∈ FOB, then
I♯ (𝑐) ⊆ I♯ (𝑑). However, we have already done most of the work:
since all the axioms in FOB – with the only exception of the four
stating 𝑅• ⊩ 𝑅◦ ⊩ 𝑅• (axioms (𝜏𝑅◦), (𝛾𝑅◦), (𝜏𝑅•) and (𝛾𝑅•) in Figure
4) – are those of fo-bicategories and since Rel is a fo-bicategory, it
only remains to show the soundness of those stating 𝑅• ⊩ 𝑅◦ ⊩ 𝑅•.
Note however that this is trivial by definition of I♯ (𝑅•) as 𝜌 (𝑅)⊥ =
(I♯ (𝑅◦))⊥. □

In order to prove Proposition 6.8 is convenient to use the follow-
ing function on diagrams and then prove that it maps every diagram
in its right (Lemma E.15) and left (Lemma E.18) linear adjoint.

Definition E.14. The function 𝛼 : NPRΣ → NPRΣ is inductively
defined as follows.

𝛼 (𝑖𝑑◦0)
def
= 𝑖𝑑•0 𝛼 (𝑖𝑑◦1)

def
= 𝑖𝑑•1 𝛼 (𝑅◦) def

= 𝑅• 𝛼 (𝜎◦1,1)
def
= 𝜎•1,1

𝛼 (◀◦1)
def
=▶•1 𝛼 (!◦1)

def
= ¡•

1 𝛼 (▶◦1)
def
=◀•1 𝛼 (¡◦1)

def
= !•1

𝛼 (𝑐 ,◦ 𝑑) def
= 𝛼 (𝑑) ,• 𝛼 (𝑐) 𝛼 (𝑐 ⊗ 𝑑) def

= 𝛼 (𝑐) �× 𝛼 (𝑑)

𝛼 (𝑖𝑑•0)
def
= 𝑖𝑑◦0 𝛼 (𝑖𝑑•1)

def
= 𝑖𝑑◦1 𝛼 (𝑅•) def

= 𝑅◦ 𝛼 (𝜎•1,1)
def
= 𝜎◦1,1

𝛼 (◀•1)
def
=▶◦1 𝛼 (!•1)

def
= ¡◦

1 𝛼 (▶•1)
def
=◀◦1 𝛼 (¡•1)

def
= !◦1

𝛼 (𝑐 ,• 𝑑) def
= 𝛼 (𝑑) ,◦ 𝛼 (𝑐) 𝛼 (𝑐 �× 𝑑) def

= 𝛼 (𝑐) ⊗ 𝛼 (𝑑)
Lemma E.15. For all terms 𝑐 : 𝑛 →𝑚 in NPRΣ, 𝑖𝑑◦𝑛 ≲ 𝑐 ,•𝛼 (𝑐) and

𝛼 (𝑐) ,◦ 𝑐 ≲ 𝑖𝑑•𝑚 .

Proof. The proof goes by induction on 𝑐 . For the base cases of
black and white (co)monoid, it is immediate by the axioms in the
first block of Figure 5.For 𝑅◦, 𝑅•, 𝜎◦ and 𝜎•, it is immediate by the
axioms in the bottom Figure 4. For 𝑖𝑑◦ and 𝑖𝑑• is trivial. For the
inductive cases of ,◦, ,•, ⊗ and �× one can reuse exactly the proof of
Proposition 5.6. □

Lemma E.16. For all term 𝑐 : 𝑛 →𝑚 in NPRΣ, 𝛼 (𝛼 (𝑐)) = 𝑐 .

Proof. The proof goes by induction on 𝑐 . For the base cases,
it is immediate by Definition E.14. For the inductive cases, one
have just to use the definition and the inductive hypothesis. For
instance 𝛼 (𝛼 (𝑎 ,◦𝑏)) is, by Definition E.14, 𝛼 (𝛼 (𝑎) ,•𝛼 (𝑏)) which, by
Definition E.14, is 𝛼 (𝛼 (𝑎)) ,◦ 𝛼 (𝛼 (𝑏)) that, by induction hypothesis,
is 𝑎 ,◦ 𝑏. □

Lemma E.17. For all terms 𝑐, 𝑑 : 𝑛 → 𝑚 in NPRΣ, if 𝑐 ≲ 𝑑 , then
𝛼 (𝑑) ≲ 𝛼 (𝑐).

Proof. Observe that the axioms in Figures 2, 3, 4 and 5 are
closed under 𝛼 , namely if 𝑐 ≤ 𝑑 is an axiom also 𝛼 (𝑑) ≤ 𝛼 (𝑐) is an
axiom. □

Lemma E.18. For all terms 𝑐 : 𝑛 → 𝑚 in NPRΣ, 𝑖𝑑◦𝑚 ≲ 𝛼 (𝑐) ,• 𝑐
and 𝑐 ,◦ 𝛼 (𝑐) ≲ 𝑖𝑑•𝑛 .

Proof. By Lemma E.15, it holds that
𝑖𝑑◦𝑛 ≲ 𝑐 ,• 𝛼 (𝑐) and 𝛼 (𝑐) ,◦ 𝑐 ≲ 𝑖𝑑•𝑚 .

By Lemma E.17, one can apply 𝛼 to all the sides of the two inequal-
ities to get

𝛼 (𝑐 ,• 𝛼 (𝑐)) ≲ 𝛼 (𝑖𝑑◦𝑛) and 𝛼 (𝑖𝑑•𝑚) ≲ 𝛼 (𝛼 (𝑐) ,◦ 𝑐).

That, by Definition E.14 gives exactly

𝛼 (𝛼 (𝑐)) ,◦ 𝛼 (𝑐) ≲ 𝑖𝑑•𝑛 and 𝑖𝑑◦𝑚 ≲ 𝛼 (𝑐) ,• 𝛼 (𝛼 (𝑐)).

By Lemma E.16, one can conclude that

𝑐 ,◦ 𝛼 (𝑐) ≲ 𝑖𝑑•𝑛 and 𝑖𝑑◦𝑚 ≲ 𝛼 (𝑐) ,• 𝑐 .

□

Proof of Proposition 6.8. By Lemmas E.15 and E.18, the dia-
gram 𝛼 (𝑐) is both the right and the left linear adjoint of any diagram
𝑐 . Thus FOBΣ is a closed linear bicategory.

Next, we show that (FOB◦Σ, ◀◦, ▶◦) is a cartesian bicategory: for
all objects 𝑛 ∈ N, ◀◦𝑛 , !◦𝑛 , ▶◦𝑛 and ¡◦

𝑛 are inductively defined as in
Table 1. Observe that such definitions guarantees that the coher-
ence conditions in Definition 4.1.(5) are satisfied. The conditions in
Definition 4.1.(1).(2).(3).(4) are the axioms in Figure 2 (and appear
in the term version in Figure 9) that we have used to generate ≲.

Similarly, (FOB•Σ, ◀•, ▶•) is a cocartesian bicategory: for all ob-
jects 𝑛 ∈ N, ◀•𝑛 , !•𝑛 , ▶•𝑛 and ¡•

𝑛 are inductively defined as in Table 1.
Again, the coherence conditions are satisfied by construction. The
other conditions are the axioms in Figure 3 (and appear in the term
version in Figure 9) that, by construction, are in ≲. To conclude
that FOBΣ is a first order bicategory we have to check that the
conditions in Definition 6.1.(4),(5). But these are exactly the axioms
in Figure 5 (and appear in the term version in Figure 9). □

Proof of Proposition 6.10. Observe that the rules in (8) defin-
ing I♯ : FOBΣ → Rel also defines I♯ : FOBΣ → C for an interpre-
tation I of Σ in C by fixing I♯ (𝑅•) = (I♯ (𝑅◦))⊥. To prove that I♯

preserve the ordering, one can use exactly the same proof of Propo-
sition 6.7. All the structure of (co)cartesian bicateries and linear
bicategories is preserved by definition of I♯ . Thus, I♯ : FOBΣ → C
is a morphism of fo-bicategories. By definition, it also holds that
I♯ (1) = 𝑋 and I♯ (𝑅◦) = 𝜌 (𝑅).

To see that it is unique, observe that a morphism F : FOBΣ → C
should map the object 0 into 𝐼 (the unit object of �⊗) and any other
natural number 𝑛 into F (1)𝑛 . Thus the only degree of freedom for
the objects is the choice of where to map the natural number 1.
Similarly, for arrows, the only degree of freedom is where to map
𝑅◦ and 𝑅•. However, the axioms in FOB obliges 𝑅• to be mapped
into the right linear adjoint of 𝑅◦. Thus, by fixing F (1) = 𝑋 and
F (𝑅◦) = 𝜌 (𝑅), F is forced to be I♯ . □

F PROOFS OF SECTION 7
Proof of Proposition 7.2. By induction on (10). For the rule

(𝑖𝑑), we have two cases: either (𝑐, 𝑑) ∈≲ or (𝑐, 𝑑) ∈ I. For ≲, we
conclude immediately by Proposition 6.7. For (𝑐, 𝑑) ∈ I, the inclu-
sion I♯ (𝑐) ⊆ I♯ (𝑑) holds by definition of model. The proofs for
the other rules are trivial. □

Lemma F.1. Let T be a theory. If T is contradictory then it is trivial.

Diagrammatic Algebra of First Order Logic

Proof. AssumeT to be contradictory and consider the following
derivation.

¡◦1 = 𝑖𝑑◦0 ,◦ ¡◦1
≤ 𝑖𝑑•0 ,◦ ¡◦1 (T contradictory)
= 𝑖𝑑•0 ,• ¡•1 (Proposition 6.4)
= ¡•1

□

Proof of Lemma 7.5. First observe that the following holds:

𝑛
𝑚

Prop.
6.4
�T 𝑛

𝑚

T
trivial
≲T 𝑛

𝑚 ≈ 𝑛
𝑚 (18)

Then, a simple derivation proves the statement:

𝑛
𝑚

(18)
≲T 𝑛

𝑚
(!•-nat)
≲T

𝑚𝑚
𝑐𝑛

(𝜖¡•)
≲T

𝑚
𝑐𝑛

�T
𝑚

𝑐𝑛

(𝜂!◦)
≲T

𝑚𝑚
𝑐𝑛

(!◦-nat)
≲T 𝑛

𝑚

(18)
≲T 𝑛

𝑚

The proof for !◦𝑛+1 ,◦ ¡◦𝑚 ≲T 𝑑 ≲T !•𝑛+1 ,• ¡•𝑚 follows a similar
reasoning. □

F.1 Theories in FOL and NPRΣ

Once a first order alphabet is fixed, a theory in FOL is usually de-
fined as a set T of closed formulas that must be considered true.
Intuitively, closed formulas corresponds in our language to dia-
grams 𝑑 of type 0 → 0. Indeed the semantics I♯ assigns to such
diagrams a relation 𝑅 ⊆ 1×1: either {(★,★)} (i.e., 𝑖𝑑◦

1
) representing

true or ∅ (i.e., 𝑖𝑑•
1
) representing false. The fact that 𝑑 must hold in

any model is forced by requiring (𝑖𝑑◦0 , 𝑑) ∈ I. This motivates the
following definition.

Definition F.2. A theory T = (Σ, I) is said to be closed if all the
pairs (𝑐, 𝑑) ∈ I are of the form (𝑖𝑑◦0 , 𝑑).

For instance, the theory of sets and the theory of non-empty sets
in Example 7.1 are closed, while the third theory – the one of order
– is not closed. By means of Lemma 6.6, one can always translate an
arbitrary theory T = (Σ, I) into a closed theory T𝑐 = (Σ, I𝑐) where

I𝑐
def
=

{(
, 𝑑𝑐

)
| (𝑐, 𝑑) ∈ I

}
.

Proposition F.3. Let T = (Σ, I) be a theory and 𝑎, 𝑏 : 𝑛 →𝑚 be
diagrams in FOBΣ. Then 𝑎≲T𝑏 iff 𝑎≲T𝑐𝑏.

Proof. By induction on the rules in (10). The base case (𝑖𝑑) is
given by means of Lemma 6.6 and in particular from the fact that:

𝑎 ≲T 𝑏 iff ≲T 𝑏𝑎 for any (𝑎, 𝑏) ∈ I.

The base case (𝑟) and the inductive cases are trivial. □

This result allows us to safely restrict our attention to closed
theories, but this fact is not used in our proof of completeness.
More interestingly, it tells us that while theories as introduced in
§7 appear to be rather different from the usual FOL theories, they
can always be translated into closed theories which are essentially
the same as the FOL ones. Indeed from a closed theory I, one can
obtain the of set of closed formulas {𝑑 | (𝑖𝑑◦0 , 𝑑) ∈ I} and, from a
set of closed formulas T one can take I as {(𝑖𝑑◦0 , 𝑑) | 𝑑 ∈ T }.

The fact that a closed formula 𝑑 is derivable in T , usually written
as T ⊢ 𝑑 , translates in NPRΣ to 𝑖𝑑◦0 ≲T 𝑑 . In particular, when 𝑑

is an implication 𝑐 ⇒ 𝑏, we have 𝑖𝑑◦0 ≲T 𝑏 ,• 𝑐⊥ that, by Lemma
5.4, is equivalent to 𝑐 ≲T 𝑏. In FOL it is trivial – by modus ponens
– that if T ⊢ 𝑐 ⇒ 𝑏 then T ∪ {𝑐} ⊢ 𝑏. In NPRΣ, this fact follows
by transitivity of ≲T: fix T′ = (Σ, I ∪ {(𝑖𝑑◦, 𝑐)}) and observe that
𝑖𝑑◦0 ≲T′ 𝑐 ≲T′ 𝑏. The converse implication, namely if T ∪ {𝑐} ⊢ 𝑏
then T ⊢ 𝑐 ⇒ 𝑏, is known in FOL as deduction theorem. It can be
generalised in NPRΣ as in Theorem 7.7.

F.2 Deduction Theorem
Proof of Theorem 7.7. The base cases are trivial. We show the

case for (,◦) in the main text. We show here the remaining inductive
cases:

(𝑡) Assume 𝑎 ≲T′ 𝑑 and 𝑑 ≲T′ 𝑏 for some 𝑑 : 𝑛 →𝑚. Observe
that 𝑎 ≲T′ 𝑏 by (𝑡) and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑑 ,•𝑎⊥ and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏 ,•
𝑑⊥ by inductive hypothesis. To conclude we need to show:

𝑐 (◀◦-nat)
≲T

𝑐

𝑐 ≈
𝑐𝑐 Ind. hyp.

≲T 𝑏 𝑑 𝑑 𝑎

(𝛿𝑙)
≲T 𝑏 𝑑 𝑑 𝑎

(𝛿𝑟)
≲T 𝑑𝑑𝑏 𝑎

𝑑⊥⊩𝑑
≲T 𝑏 𝑎

(,•) Assume 𝑎1 ≲T′ 𝑏1 and 𝑎2 ≲T′ 𝑏2 such that 𝑎 = 𝑎1 ,• 𝑎2 and
𝑏 = 𝑏1 ,• 𝑏2 for some 𝑎1, 𝑏1 : 𝑛 → 𝑙, 𝑎2, 𝑏2 : 𝑙 →𝑚. Observe
that 𝑎1 ,• 𝑎2 ≲T′ 𝑏1 ,• 𝑏2 by (,•) and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏1 ,• 𝑎⊥1 and
𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏2 ,• 𝑎⊥2 by inductive hypothesis. To conclude
we need to show:

𝑐 (◀◦-nat)
≲T

𝑐

𝑐

Ind. hyp.
≲T

𝑏1 𝑎1

𝑐

≈
𝑏1 𝑎1

𝑐

(𝜈◦𝑙)
≲T

𝑎1𝑏1

𝑐

≈ 𝑎1𝑏1
𝑐

Ind. hyp.
≲T 𝑎1𝑎2𝑏2𝑏1

(𝛿𝑟)
≲T 𝑎2𝑎1𝑏2𝑏1

(⊗) Assume 𝑎1 ≲T′ 𝑏1 and 𝑎2 ≲T′ 𝑏2 such that 𝑎 = 𝑎1 ⊗ 𝑎2
and 𝑏 = 𝑏1 ⊗ 𝑏2 for some 𝑎1, 𝑏1 : 𝑛′ → 𝑚′, 𝑎2, 𝑏2 : 𝑛′′ →
𝑚′′. Observe that 𝑎1 ⊗ 𝑎2 ≲T′ 𝑏1 ⊗ 𝑏2 by (⊗) and 𝑐 ⊗
𝑖𝑑◦𝑛 ≲T 𝑏1 ,• 𝑎⊥1 and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏2 ,• 𝑎⊥2 by inductive

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

hypothesis. To conclude we need to show:

𝑐 (◀◦-nat)
≲T 𝑐

𝑐

≈
𝑐

𝑐 Ind. hyp.
�T

𝑏1 𝑎1

𝑏2 𝑎2

(𝜈◦𝑙)
≲T

𝑏1 𝑎1

𝑏2 𝑎2

(�×) Assume 𝑎1≲T′𝑏1 and 𝑎2 ≲T′ 𝑏2 such that 𝑎 = 𝑎1 �× 𝑎2
and 𝑏 = 𝑏1 �× 𝑏2 for some 𝑎1, 𝑏1 : 𝑛′ → 𝑚′, 𝑎2, 𝑏2 : 𝑛′′ →
𝑚′′. Observe that 𝑎1 �× 𝑎2 ≲T′ 𝑏1 �× 𝑏2 by (�×) and 𝑐 ⊗
𝑖𝑑◦𝑛 ≲T 𝑏1 ,• 𝑎⊥1 and 𝑐 ⊗ 𝑖𝑑◦𝑛 ≲T 𝑏2 ,• 𝑎⊥2 by inductive
hypothesis. To conclude we need to show:

𝑐 (◀◦-nat)
≲T 𝑐

𝑐

≈
𝑐

𝑐 Ind. hyp.
�T

𝑏1 𝑎1

𝑏2 𝑎2

(𝜈◦𝑟)
≲T

𝑎1𝑏1

𝑎2𝑏2

□

Proof of Corollary 7.8. Suppose thatT′ is contradictory, namely
𝑖𝑑◦0 ≲T′ 𝑖𝑑

•
0 . By the deduction theorem (Theorem 7.7), 𝑐 ≲T 𝑖𝑑•0 and

thus 𝑖𝑑•0 ≲T 𝑐 , that is 𝑖𝑑◦0 ≲T 𝑐 . The the other direction is trivial:
since 𝑖𝑑◦0 ≲T′ 𝑐 and 𝑖𝑑

◦
0 ≲T′ 𝑐 , then 𝑖𝑑◦0 ≲T′ 𝑐 ⊓ 𝑐 ≲T′ ⊥ = 𝑖𝑑•0 . □

F.3 Proofs of Section 7.1
Proof of Proposition 7.10. First, observe that a simple induc-

tive argument allows to prove that, for all diagrams 𝑐 in FOBΣ,

Q♯
T
(𝑐) = [𝑐]�T . (19)

Now, suppose that there exists I♯
T
: FOBT → C making com-

mutes the following diagram

FOBΣ

I♯

$$

Q♯
T // FOBT

I♯
T
��
C

and consider (𝑐, 𝑑) ∈ I. By definition, 𝑐 ≲T 𝑑 and, by (19),

Q♯
T
(𝑐) ≲T Q♯

T
(𝑑). (20)

Then, the following derivation confirms that I is a model of T in C.

I♯ (𝑐) = I♯
T
(Q♯
T
(𝑐)) (I♯ = Q♯

T
;I♯
T
)

≤ I♯
T
(Q♯
T
(𝑑)) ((20) and I♯

T
is a morphism)

= I♯ (𝑑) (I♯ = Q♯
T
;I♯
T
)

Viceversa, suppose thatI is a model of T inC. Then by definition
of model, for all (𝑐, 𝑑) ∈ I, I♯ (𝑐) ≤ I♯ (𝑑). A simple inductive
argument on the rules in (10) confirms that, for all diagrams 𝑐, 𝑑 in
FOBΣ,

if 𝑐 ≲T 𝑑 then I♯ (𝑐) ≤ I♯ (𝑑).
In particular, if 𝑐 �T 𝑑 then I♯ (𝑐) = I♯ (𝑑). Therefore, we are
allowed to define I♯

T
([𝑐]�T)

def
= I♯ (𝑐) for all arrows [𝑐]�T of FOBT

and I♯
T
(𝑛) def

= I♯ (𝑛) for all objects 𝑛 of FOBT. The fact that I♯
T

preserves the ordering follows immediately from the above impli-
cation. The fact that I♯

T
preserves the structure of fo-bicategories

follows easily from the fact that I♯ is a morphism. Therefore I♯
T

is a morphism of fo-bicategories. The fact that the above diagram
commutes is obvious by definition of I♯

T
and (19).

Uniqueness follows immediately from the fact thatQ♯
T
: FOBΣ →

FOBT is an epi, namely all objects and arrows of FOBT are in the
image of Q♯

T
. □

Proof of Corollary 7.11. To go from models to morphisms
we use the assignment I ↦→ I♯

T
provided by Proposition 7.10.

To transform morphisms into models, we need a slightly less
straightforward assignment. Take a morphism of fo-bicategories
F : FOBT → C and consider Q♯

T
;F : FOBΣ → C. This gives rise

to the interpretation IF defined as

the domain 𝑋 is Q♯
T
;F (1) and 𝜌 (𝑅) is Q♯

T
;F (𝑅◦) for all 𝑅 ∈ Σ.

By Proposition 6.10, I♯
F = Q♯

T
;F and thus, by Proposition 7.10, IF

is a model.
Since I♯

F = Q♯
T
;F , by the uniqueness provided by Proposition

7.10, (IF)♯T = F .
To conclude, we only need to prove that I(I♯

T)
= I. Since

Q♯
T
;I♯
T

= I♯ , then I(I♯
T)

(𝑅◦) = Q♯
T
;I♯
T
(𝑅◦) = I♯ (𝑅◦) = 𝜌 (𝑅)

for all 𝑅 ∈ Σ. Similarly for the domain 𝑋 .
□

Proof of Lemma 7.12. By Proposition 7.10, it is enough to give
a model of T in FOBT′ . Define the interpretation I having as do-
main 𝑋 the object 1 of FOBT′ and 𝜌 (𝑅) def

= [𝑅◦]�T′ for each 𝑅 ∈ Σ.
A simple inductive arguments confirms that I♯ (𝑐) = [𝑐]�T′ for all
diagrams 𝑐 in FOBΣ. Since I ⊆ I′ is obvious that, for all (𝑐, 𝑑) ∈ I,
I♯ (𝑐) ≲T′ I♯ (𝑑). Thus I is a model of T in FOBT′ . □

G PROOFS OF SECTION 8
Proposition G.1. In any cartesian bicategory an 𝑛-ary map

®𝑘 : 0 → 𝑛 can always be decomposed as:

®𝑘 = 𝑘1 ⊗ 𝑘2 ⊗ . . . ⊗ 𝑘𝑛 where each 𝑘𝑖 : 0 → 1 is a map.

Proof. Follows from Lemma C.1.(4). □

Lemma G.2. For any 𝑐 : 𝑛 →𝑚 in FOBΣ the following hold

H ♯ (𝑐†) = (H ♯ (𝑐))†, H ♯ (𝑐⊥) = (H ♯ (𝑐))⊥, H ♯ (𝑐) = (H ♯ (𝑐))

Proof. SinceH ♯ is a morphism of fo-bicategory the proof for
(·)† and (·)⊥ follows from Lemma D.1 and Lemma C.2.

Negation is preserved as well, since (·) = (·†)⊥.
□

Proposition G.3. Let 𝐼 be a linearly ordered set and for all 𝑖 ∈ 𝐼
let T𝑖 = (Σ𝑖 , I𝑖) be first order theories such that if 𝑖 ≤ 𝑗 , then Σ𝑖 ⊆ Σ 𝑗

and I𝑖 ⊆ I𝑗 . Let T be the theory (⋃𝑖∈𝐼 Σ𝑖 ,
⋃

𝑖∈𝐼 I𝑖).
(1) If all T𝑖 are non-contradictory, then T is non-contradictory.
(2) If all T𝑖 are non-trivial, then T is non-trivial.

Diagrammatic Algebra of First Order Logic

Proof. By using thewell-known fact that pc(·) preserves chains,
one can easily see that

≲T=
⋃
𝑖∈𝐼
≲T𝑖 (21)

The interested reader can find all the details in Appendix H.1,
Lemma H.12.

(1) Suppose that T is contradictory. By definition 𝑖𝑑◦0 ≲T 𝑖𝑑
•
0

and then, by (21), (𝑖𝑑◦0 , 𝑖𝑑•0) ∈
⋃

𝑖∈𝐼 ≲T𝑖 . Thus there exists
an 𝑖 ∈ 𝐼 such that 𝑖𝑑◦0 ≲T𝑖 𝑖𝑑

•
0 . Against the hypothesis.

(2) Suppose that T is trivial. By definition ¡◦
1 ≲T

¡•
1 and then,

by (21), (¡◦1, ¡•1) ∈
⋃

𝑖∈𝐼 ≲T𝑖 . Thus there exists an 𝑖 ∈ 𝐼 such
that ¡◦1 ≲T𝑖 ¡

•
1 . Against the hypothesis.

□

Proposition G.4. Let T = (Σ, I) be a non-contradictory theory.
There exists a theory T′ = (Σ, I′) that is syntactically complete, non-
contradictory and I ⊆ I′.

Proof of Proposition G.4. The proof of this proposition relies
on Zorn Lemma [82] which states that if, in a non empty poset
poset 𝐿 every chain has a least upper bound, then 𝐿 has at least one
maximal element.

We consider the set Γ of all non-contradictory theories on Σ that
include I, namely

Γ
def
= {T = (Σ, J) | T is non-contradictory and I ⊆ J}.

Observe that the set Γ is non empty since there is at least T which
belongs to Γ.

Let Λ ⊆ Γ be a chain, namely Λ = {T𝑖 = (Σ, J𝑖) ∈ Γ | 𝑖 ∈ 𝐼 } for
some linearly ordered set 𝐼 and if 𝑖 ≤ 𝑗 , then J𝑖 ⊆ J𝑗 . By Proposition
G.3, the theory (Σ,⋃𝑖∈𝐼 J𝑖) is non-contradictory and thus it belongs
to Γ.

We can thus use Zorn Lemma: the set Γ has a maximal element
T′ = (Σ, I′). By definition of Γ, I ⊆ I′ and, moreover, T′ is non-
contradictory.

We only need to prove that T′ is syntactically complete, i.e., for
all 𝑐 : 0 → 0, either 𝑖𝑑◦0≲T′𝑐 or 𝑖𝑑

◦
0≲T′𝑐 . Assume that 𝑖𝑑◦0≴T𝑐 . Thus

I′ is strictly included into I′ ∪ {(𝑖𝑑◦0 , 𝑐)}. By maximality of T′ in Γ,
we have that the theory T′′ = (Σ, I′ ∪ {(𝑖𝑑◦0 , 𝑐)}) is contradictory,
i.e., 𝑖𝑑◦0≲T′′𝑖𝑑

•
0 . By the deduction theorem (Theorem 7.7), 𝑐≲T′𝑖𝑑•0 .

Therefore 𝑖𝑑◦0≲T′𝑐 . □

G.1 Proofs for Lemma 8.2 and Theorem 8.3
In order to prove Lemma 8.2 and then Theorem 8.3, we need to
showing that adding constants to a non-trivial theory results in a
non-trivial theory. To do this, it is useful to have a procedure for
erasing constants. This is defined as follows.

Definition G.5. Let Σ be a signature and Σ′ = Σ ∪ {𝑘 : 0 → 1}.
The function 𝜙 : FOBΣ′ [𝑛,𝑚] → FOBΣ [1 + 𝑛,𝑚] is inductively

defined as follows:

𝜙 (𝑘◦) def
= 𝜙 (𝑘•) def

=

𝜙 (𝑔◦) def
= 𝑔 𝜙 (𝑔•) def

= 𝑔•

𝜙 (𝑐 ,◦ 𝑑) def
= 𝜙 (𝑐) 𝜙 (𝑑) 𝜙 (𝑐 ,• 𝑑) def

= 𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐 ⊗ 𝑑) def
=

𝜙 (𝑑)
𝜙 (𝑐)

𝜙 (𝑐 �× 𝑑) def
=

𝜙 (𝑑)
𝜙 (𝑐)

where𝑔◦ ∈ {◀◦1 , !◦1, 𝑅◦, ¡◦1, ▶◦1 , 𝑖𝑑◦0 , 𝑖𝑑◦1 , 𝜎◦1,1} and𝑔• ∈ {◀•1 , !•1, 𝑅•, ¡•1, ▶•1
, 𝑖𝑑•0 , 𝑖𝑑

•
1 , 𝜎

•
1,1}.

Lemma G.6. Let 𝑐 : 𝑛 → 𝑚 be a diagram of FOBΣ, then 𝜙 (𝑐) =
𝑐 .

Proof. The proof goes by induction on the syntax.
The base cases are split in two groups. For all generators 𝑔◦ in

NPR◦Σ, 𝜙 (𝑔◦) = 𝑔◦ by definition, while for those 𝑔• in NPR•Σ,

𝜙 (𝑔•) = 𝑔• ≈ 𝑔•
Prop. 6.4

= 𝑔• .
The four inductive cases are shown below:

𝜙 (𝑐 ,◦ 𝑑)
Def.
G.5= 𝜙 (𝑐) 𝜙 (𝑑)

Ind.
hyp.
=

𝑐 𝑑

(◀◦-un)
=

𝑐 𝑑

𝜙 (𝑐 ,• 𝑑)
Def.
G.5= 𝜙 (𝑐) 𝜙 (𝑑)

Ind.
hyp.
=

𝑐 𝑑

Prop.
6.4=

𝑐 𝑑

≈
𝑐 𝑑

(◀•-un)
=

𝑐 𝑑

Prop.
6.4= 𝑐 𝑑

≈ 𝑐 𝑑

𝜙 (𝑐 ⊗ 𝑑)
Def.
G.5=

𝜙 (𝑑)
𝜙 (𝑐)

Ind.
hyp.
=

𝑑

𝑐 (◀◦-un)
=

𝑑

𝑐

𝜙 (𝑐 �× 𝑑)
Def.
G.5=

𝜙 (𝑑)
𝜙 (𝑐)

Ind.
hyp.
=

𝑑

𝑐
Prop.
6.4=

𝑑

𝑐

≈
𝑑

𝑐 (◀•-un)
=

𝑑

𝑐

Prop.
6.4=

𝑑

𝑐 ≈
𝑑

𝑐

□

Lemma G.7 (Constant Erasion). Let T = (Σ, I) be a theory
and T′ = (Σ′, I′) be the theory where Σ′ = Σ ∪ {𝑘 : 0 → 1} and
I′ = I ∪M𝑘 . Then, for any 𝑐, 𝑑 : 𝑛 → 𝑚 in FOBΣ′ if 𝑐 ≲T′ 𝑑 then
𝜙 (𝑐) ≲T 𝜙 (𝑑).

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

Proof. The proof goes by induction on the rules in (10).
For the rule (𝑖𝑑)wehave three cases: either (𝑐, 𝑑) ∈ I or (𝑐, 𝑑) ∈≲Σ′

or (𝑐, 𝑑) ∈ M𝑘 .
If (𝑐, 𝑑) ∈ I then, by Lemma G.6, 𝜙 (𝑐) = 𝑐 ≲T 𝑑

= 𝜙 (𝑑).
If (𝑐, 𝑑) ∈≲Σ′ then (𝑐, 𝑑) has been obtained by instantiating the

axioms in Figures 2,3 and 4 with diagrams containing 𝑘 . Therefore,
we need to show that 𝜙 preserves these axioms. In the following we
show only (◀◦-nat), (!◦-nat), (𝜏𝑅◦), (𝛾𝑅◦), (𝛿𝑙) and (𝜈◦𝑟). The remaining
ones follow similar reasonings.

𝜙 (𝑐) Def.𝐺.5
�T 𝜙 (𝑐)

(◀◦-un)
�T 𝜙 (𝑐)

(◀◦-nat)
≲T

𝜙 (𝑐)
𝜙 (𝑐)

(◀◦-un)
�T

𝜙 (𝑐)
𝜙 (𝑐)

Def.𝐺.5
�T 𝜙 (

𝑐

𝑐)

𝜙 (𝑐) Def.𝐺.5
�T 𝜙 (𝑐)

(◀◦-un)
�T 𝜙 (𝑐)

(!◦-nat)
≲T

Def.𝐺.5
�T 𝜙 ()

𝜙 ()
Def.
G.5
�T ≈

(𝜂¡•)
≲T

Prop.
6.4
�T

Tab.
2
�T

Def.𝐺.5
�T 𝜙 (𝑘 𝑘)

𝜙 (𝑘 𝑘) Def.𝐺.5
�T

(𝜂!◦)
≲T

(▶◦-un)
�T

Prop.6.4
�T

(𝜖¡•)
≲T

Lemma
E.2.1
�T

(𝛾 ▶◦)
≲T

≈ Prop.6.4
�T

Def.𝐺.5
�T 𝜙 ()

𝜙 (𝑑 𝑒𝑐)

Def.𝐺.5
�T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

Prop. 6.4
�T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

(𝛿𝑙)
≲T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

(𝜈◦𝑙)
≲T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

≈ 𝜙 (𝑑)
𝜙 (𝑒)

𝜙 (𝑐)
(◀◦-co)
�T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

Prop. 6.4
�T 𝜙 (𝑑)

𝜙 (𝑒)
𝜙 (𝑐)

Def.𝐺.5
�T 𝜙 (𝑑 𝑒𝑐)

𝜙 (
𝑑𝑐

𝑑′𝑐′
)

Def.𝐺.5
�T

𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐′) 𝜙 (𝑑′)

Prop. 6.4
�T

𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐′) 𝜙 (𝑑′)

(𝜈◦𝑟)
≲T

𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐′) 𝜙 (𝑑′)
≈ 𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐′) 𝜙 (𝑑′)

Prop. 6.4
�T

𝜙 (𝑐) 𝜙 (𝑑)

𝜙 (𝑐′) 𝜙 (𝑑′)
≈ 𝜙 (𝑐)

𝜙 (𝑑)

𝜙 (𝑐′)
𝜙 (𝑑′)

Prop. 6.4
≲T 𝜙 (𝑐)

𝜙 (𝑑)

𝜙 (𝑐′)
𝜙 (𝑑′)

Def.𝐺.5
�T 𝜙 (

𝑑𝑐

𝑑′𝑐′
)

Similar to the previous argument, if (𝑐, 𝑑) ∈ M𝑘 then it is enough
to show that 𝜙 preserves the axioms inM𝑘 .

𝜙 (
𝑘

𝑘) Def.𝐺.5
�T

𝜙 (𝑘)
𝜙 (𝑘) Def.𝐺.5

�T ≈ Def.𝐺.5
�T 𝜙 (𝑘)

(◀◦-un)
�T 𝜙 (𝑘)

Def.𝐺.5
�T 𝜙 (𝑘)

𝜙 () Def.𝐺.5
�T ≈ Def.𝐺.5

�T 𝜙 (𝑘)
(◀◦-un)
�T 𝜙 (𝑘)

Def.𝐺.5
�T 𝜙 (𝑘)

Diagrammatic Algebra of First Order Logic

The base case (𝑟) is trivial, while the proof for the remaining
rules follows a straightforward inductive argument. □

Proof of Lemma 8.2. We prove that if T′ is trivial, then also T
is trivial. Let T′′ = {Σ ∪ 𝑘, I ∪M𝑘 } and assume T′ to be trivial, i.e.
≲T′ , then:

(1) by theDeduction Theorem (7.7) we have
𝑐

𝑐

𝑘
≲T′′ ;

(2) thus, by Lemma G.7, 𝜙 (𝑐

𝑐

𝑘) ≲T 𝜙 ();

(3) and, by Def. G.5 and Lemma G.6,
𝑐

𝑐
≲T .

To conclude, apply Lemma 6.6 and observe:

≲T
𝑐

𝑐

Prop.
6.4
�T

𝑐

𝑐

≈
𝑐

𝑐

(∗)
≲T

(𝜖¡•)
≲T

which, by Lemma 6.6 again, is exactly that ≲T . Namely
T is trivial.

Note that in the step (∗) above we used the following derivation
which holds for any 𝑐 : 0 → 1:

𝑐

𝑐

(◀◦-un)
≲T

𝑐

𝑐

Tab. 2.(𝑒)
�T

𝑐

𝑐

Prop.
6.4
�T

𝑐

𝑐

≈
𝑐

𝑐

Lemma
5.2
≲T 𝑐

𝑐
Tab. 2.(𝑑)
�T

□

Proof of Theorem 8.3. This proof reuses the well-known ar-
guments reported e.g. in [46].

We first illustrate a procedure to add Henkin witnesses without
losing the property of being non-trivial.

Take an enumeration of diagrams in FOBΣ [1, 0] and write 𝑐𝑖 for
the 𝑖-th diagram.

For all natural numbers 𝑛 ∈ N, we define
Σ𝑛

def
= Σ ∪ {𝑘𝑖 : 0 → 1 | 𝑖 ≤ 𝑛} I𝑛

def
= I ∪M𝑘𝑖 ∪

⋃
𝑖≤𝑛W

𝑐𝑖
𝑘𝑖

T𝑛
def
= (Σ𝑛, I𝑛)

By applying Lemma 8.2 𝑛-times, one has that T𝑛 is non-trivial.
Define now

Σ0
def
=
⋃
𝑖∈N

Σ𝑖 I0
def
=
⋃
𝑖∈N
I𝑗 T0

def
= (Σ0, I0)

Since T0 ⊆ T1 ⊆ · · · ⊆ T𝑛 ⊆ . . . are all non-trivial, then by
Proposition G.3.2, we have that T0 is non-trivial. Onemust not jump
to the conclusion that T0 has Henkin witnesses: all the diagrams
in FOBΣ [1, 0] have Henkin witnesses, but in T0 we have more
diagrams, since we have added the constants 𝑘𝑖 to Σ0.

We thus repeat the above construction, but now for diagrams in
FOBΣ0 [1, 0]. We define

Σ1
def
= Σ0 ∪ {𝑘𝑐 | 𝑐 ∈ FOBΣ0 [1, 0]} I1

def
= I0 ∪M𝑘𝑐 ∪W𝑐

𝑘𝑐

T1
def
= (Σ1, I1)

The theory T1 is non-trivial but has Henkin witnesses only for the
diagrams in FOBΣ0 .

Thus, for all natural numbers 𝑛 ∈ N, we define
Σ𝑛+1

def
= Σ𝑛 ∪ {𝑘𝑐 | 𝑐 ∈ FOBΣ𝑛 [1, 0]} I𝑛+1

def
= I𝑛 ∪M𝑘𝑐 ∪W𝑐

𝑘𝑐

T𝑛+1
def
= (Σ𝑛+1, I𝑛+1)

and
Σ′ def

=
⋃
𝑖∈N

Σ𝑖 I′ def
=
⋃
𝑖∈N
I𝑖 T′ def

= (Σ′, I′)

Since T0 ⊆ T1 ⊆ · · · ⊆ T𝑛 ⊆ . . . are all non-trivial, then by
Proposition G.3.2, we have that T′ is also non-trivial. Now T′ has
Henkin witnesses: if 𝑐 ∈ FOBΣ′ [0, 1], then there exists 𝑛 ∈ N such
that 𝑐 ∈ FOBΣ𝑛 [0, 1]. By definition of I𝑛 , it holds thatW𝑐

𝑘𝑐
⊆ I𝑛+1

and thusW𝑐
𝑘𝑐

⊆ I′.
Summarising, we manage to build a theory T′ = (Σ′, I′) that has

Henkin witnesses and it is non-trivial. By Lemma F.1, T′ is non-
contradictory. We can thus use Proposition G.4, to obtain a theory
T′′ = (Σ′, I′′) that is syntactically complete and non-contradictory.
Observe that T′′ has Henkin witnesses, since the signature Σ′ is
the same as in T′ and I′ ⊆ I′′. □

G.2 Proofs for Proposition 8.5
Proposition 8.5 is the second key to prove Gödel completeness.
Before illustrating its proof, we need an additional lemma.

Lemma G.8. Let T be a theory with Henkin witnesses. For all

𝑐 : 𝑛 → 0 there is a map ®𝑘 : 𝑛 → 1 s.t. 𝑐 ≲T 𝑐®𝑘 .

Proof. The proof goes by induction on 𝑛. For 𝑛 = 0, take 𝑖𝑑◦0 as
®𝑘 . For 𝑛 + 1, we have the following:

𝑐𝑛 + 1 Table 1
�T 𝑐𝑛 ≈ 𝑐𝑛

T has
H. wit.
≲T 𝑐

𝑘
𝑛 ≈ 𝑐

𝑘
𝑛

Ind. hyp.
�T 𝑐

𝑘
𝑛®𝑘′

≈ 𝑐
𝑘

𝑛®𝑘′

Prop.𝐺.1
�T 𝑐𝑛 + 1®𝑘

□

Proof of Proposition 8.5. The proof goes by induction on 𝑐 .
The white base cases are easy, we show three representative cases
below.

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

H ♯ () Def. H♯

= 𝑖𝑑◦
1
= {(★,★) ∈ 1 × 1}

= {(★,★) ∈ 1 × 1 | ≲T }

H ♯ () Def. H♯

= 𝑖𝑑◦𝑋 = {(𝑘, 𝑘) ∈ 𝑋 × 𝑋 }
Prop.𝐶.3

= {(𝑘, 𝑘) ∈ 𝑋 × 𝑋 | ≲T 𝑘 𝑘 }

H ♯ () Def. H♯

= ◀◦𝑋= {(𝑘,
(
𝑘
𝑘

)
) ∈ 𝑋 × 𝑋 2}

Prop.𝐶.3
= {(𝑘,

(
𝑘
𝑘

)
) ∈ 𝑋 × 𝑋 2 | ≲T

𝑘

𝑘

𝑘

𝑘
}

(M𝑘)= {(𝑘,
(
𝑘
𝑘

)
) ∈ 𝑋 × 𝑋 2 | ≲T 𝑘

𝑘

𝑘
}

For the base case suppose that there are maps 𝑘, 𝑙 : 0 → 0
such that ≲T 𝑘 𝑙 . However the only map of type
0 → 0 is and thus we have that ≲T ≈

which contradicts the hypothesis that T is non-contradictory.

Therefore, {(𝑘, 𝑙) ∈ 1 × 1 | ≲T 𝑘 𝑙 } = ∅ Def. H♯

=

H ♯ ().
The proof of the remaining base cases follows a recurring pattern.

For this reason we show only the case of 𝑅𝑚 𝑛 .

H ♯ (𝑅) Def. H♯

= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | (®𝑘, ®𝑙) ∉ H ♯ (𝑅)}

H♯ (𝑅◦)
= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | ̸≲T 𝑅®𝑘 ®𝑙 }

T is s.c.
= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | ≲T 𝑅®𝑘 ®𝑙 }

Table 2.(𝑎)
= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | ()† ≲T (𝑅®𝑘 ®𝑙)†}

Table 2.(𝑎)
= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | ≲T 𝑅®𝑙 ®𝑘 }

Prop. 6.4
= {(®𝑙, ®𝑘) ∈ 𝑋𝑚 × 𝑋𝑛 | ≲T 𝑅®𝑙 ®𝑘 }

For the inductive case 𝑐 ,◦𝑑 we prove the two inclusions separately.
Suppose 𝑐 : 𝑛 → 𝑜 and 𝑑 : 𝑜 →𝑚, then

H ♯ (𝑐 𝑑)
Def. H♯

= H ♯ (𝑐) ,◦H ♯ (𝑑)

Ind. hyp.
=

{(®𝑘, ®𝑡) ∈ 𝑋𝑛 × 𝑋𝑜 | ≲T 𝑐®𝑘 ®𝑡 }
,◦{(®𝑡, ®𝑙) ∈ 𝑋𝑜 × 𝑋𝑚 | ≲T 𝑑®𝑡 ®𝑙 }

(2)
=

{(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T 𝑐®𝑘 ®𝑡

∧ ≲T 𝑑®𝑡 ®𝑙 }
(◀◦-nat)
(!◦-nat)
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T

𝑐®𝑘 ®𝑡
𝑑®𝑡 ®𝑙

}

≈ {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T 𝑐®𝑘 ®𝑡 𝑑®𝑡 ®𝑙 }
Prop. 𝐶.3

⊆ {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 𝑑 ®𝑙 }

For the other inclusion the following holds:

{(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 𝑑 ®𝑙 }
(11)
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T

𝑑 ®𝑙

𝑐 ®𝑘 }

Lemma𝐺.8⊆ {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T
𝑑 ®𝑙

𝑐 ®𝑘®𝑡 }

(M𝑘)= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T
𝑐®𝑡 ®𝑘
𝑑®𝑡 ®𝑙

}
(◀◦-nat)
(!◦-nat)
=

{(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ∃®𝑡 ≲T 𝑐®𝑡 ®𝑘

∧ ≲T 𝑑®𝑡 ®𝑙 }

(2)
=

{(®𝑘, ®𝑡) ∈ 𝑋𝑛 × 𝑋𝑜 | ≲T 𝑐®𝑡 ®𝑘 }
,◦{(®𝑡, ®𝑙) ∈ 𝑋𝑜 × 𝑋𝑚 | ≲T 𝑑®𝑡 ®𝑙 }

Table 2.(𝑎)
=

{(®𝑘, ®𝑡) ∈ 𝑋𝑛 × 𝑋𝑜 | ≲T 𝑐®𝑘 ®𝑡 }
,◦{(®𝑡, ®𝑙) ∈ 𝑋𝑜 × 𝑋𝑚 | ≲T 𝑑®𝑡 ®𝑙 }

Ind. hyp.
= H ♯ (𝑐) ,◦H ♯ (𝑑)

Def. H♯

= H ♯ (𝑐 𝑑)

The inductive case 𝑐 ⊗ 𝑑 is proved as follows:
Suppose 𝑐 : 𝑛 →𝑚 and 𝑑 : 𝑜 → 𝑝 , then

Diagrammatic Algebra of First Order Logic

H ♯ (𝑐

𝑑
)

Def. H♯

= H ♯ (𝑐) ⊗ H ♯ (𝑑)

Ind. hyp.
=

{(®𝑘1, ®𝑙1 ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘1 ®𝑙1 }
⊗{(®𝑘2, ®𝑙2) ∈ 𝑋𝑜 × 𝑋𝑝 | ≲T 𝑑®𝑘2 ®𝑙2 }

(7)
=

{(
(®𝑘1
®𝑘2

)
,
(®𝑙1
®𝑙2

)
) ∈ 𝑋𝑛+𝑜 × 𝑋𝑚+𝑝 | ≲T 𝑐®𝑘1 ®𝑙1

∧ ≲T 𝑑®𝑘2 ®𝑙2 }
(◀◦-nat)
(!◦-nat)
= {(

(®𝑘1
®𝑘2

)
,
(®𝑙1
®𝑙2

)
) ∈ 𝑋𝑛+𝑜 × 𝑋𝑚+𝑝 | ≲T

𝑑 ®𝑙2

𝑐 ®𝑙1®𝑘1
®𝑘2

}

Prop. 𝐺.1
=

{(®𝑘, ®𝑙) ∈ 𝑋𝑛+𝑜 × 𝑋𝑚+𝑝 | ≲T
𝑐 ®𝑙
𝑑

®𝑘 ,

®𝑘 = ®𝑘1 ⊗ ®𝑘2, ®𝑙 = ®𝑙1 ⊗ ®𝑙2}

The inductive case 𝑐 ,• 𝑑 is proved as follows:
Suppose 𝑐 : 𝑛 → 𝑜 and 𝑑 : 𝑜 →𝑚, then

H ♯ (𝑐 𝑑)
Lemma 𝐺.2

= H ♯ (𝑐 𝑑)
Ind. case 𝑐 ,◦𝑑

= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 𝑑 ®𝑙 }
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ̸≲T 𝑐®𝑘 𝑑 ®𝑙 }

T is s.c.
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 𝑑 ®𝑙 }

Prop. 6.4
= {(®𝑘, ®𝑙) ∈ 𝑋𝑛 × 𝑋𝑚 | ≲T 𝑐®𝑘 𝑑 ®𝑙 }

The proof above relies on Lemma G.2 and the previous inductive
case of 𝑐 ,◦ 𝑑 . The case of 𝑐 �× 𝑑 follows the exact same reasoning
but, as expected, this time one has to exploit the proof of 𝑐 ⊗ 𝑑 . □

G.3 Proofs from Gödel completeness to
Theorem 3.2

After having proved (Gödel), we show how to obtain a proof for
Theorem 3.2. The main step is to prove (Prop).

Lemma G.9. Let T = (Σ, I) be a theory that is trivial and non-
contradictory and let H be the Henkin interpretation of Σ. Then,
the domain 𝑋 of H is ∅ and 𝜌 (𝑅) = {(★,★)} if 𝑖𝑑◦0≲T𝑅

◦ and ∅
otherwise.

Proof. Recall by Definition 8.4, that the domain 𝑋 ofH is de-
fined as the set Map(FOBT) [0, 1]. This set should be necessarily
empty since, if there exists some map 𝑘 : 0 → 1, then by (16), T
would be contradictory, against the hypothesis. Thus Map(FOBT) [0, 1] =
∅. By Proposition G.1, one has also that Map(FOBT) [0, 𝑛 + 1] = ∅.

We thus have only one map in FOBT, that is 𝑖𝑑◦0 : 0 → 0 (depicted
as).

Recall that by Definition 8.4, 𝜌 (𝑅) = {(®𝑘, ®𝑙) ∈ 𝑋𝑛×𝑋𝑚 | ≲T

𝑅®𝑘 ®𝑙 } for all 𝑅 ∈ Σ. Since our only map is 𝑖𝑑◦0 : 0 → 0, we
have that 𝜌 (𝑅) = {(★,★) ∈ 1 × 1 | 𝑖𝑑◦0 ≲T 𝑅◦}. □

Lemma G.10. Let T = (Σ, I) be a theory and let 𝑐 : 𝑛 →𝑚 + 1 and
𝑑 : 𝑛 + 1 →𝑚 be arrows of FOBT. ThusH ♯ (𝑐) = ∅ andH ♯ (𝑑) = ∅.

Proof. Recall that for any interpretation I, I♯ (𝑐) ⊆ 𝑋𝑛 ×
𝑋𝑚+1 = 𝑋𝑛 × 𝑋𝑚 × 𝑋 . For H , 𝑋 = ∅ by Lemma G.9 and thus
H ♯ (𝑐) ⊆ ∅ × ∅𝑛 × ∅𝑚 , i.e., H ♯ (𝑐) = ∅. The proof for H ♯ (𝑑) is
identical. □

Lemma G.11. Let T be a trivial theory that is syntactically com-
plete. Let 𝑐 : 0 → 0 be an arrow of FOBT. If H ♯ (𝑐) = {(★,★)} then
𝑐 =T 𝑖𝑑◦0 .

Proof. We proceed by induction on 𝑐 .
For the base cases, there are only four constants 𝑐 : 0 → 0.

• 𝑐 = 𝑖𝑑◦0 . Then, it is trivial.
• 𝑐 = 𝑖𝑑•0 . ThenH ♯ (𝑐) = ∅ against the hypothesis.
• 𝑐 = 𝑅◦. If H ♯ (𝑅◦) = {(★,★)}, then by definition of H ,

𝑖𝑑◦0 =T 𝑅◦.
• 𝑐 = 𝑅•. If H ♯ (𝑅◦) = {(★,★)}, then by definition of H ♯ ,

{(★,★)} ∉ 𝜌 (𝑅). Thus, by definition ofH , 𝑖𝑑◦0≴T𝑅
◦. Since

T is syntactically complete 𝑖𝑑◦0≲T𝑅
•.

We now consider the usual four inductive cases.
• 𝑐 = 𝑐1 ⊗ 𝑐2. Since 𝑐 : 0 → 0, then also 𝑐1 and 𝑐2 have

type 0 → 0. By definition, H ♯ (𝑐) = H ♯ (𝑐1) ⊗ H ♯ (𝑐2).
By definition of ⊗ in Rel both H ♯ (𝑐1) and H ♯ (𝑐2) must
be {(★,★)}. We can thus apply the inductive hypothesis to
deduce that 𝑐1 =T 𝑖𝑑◦0 and 𝑐2 =T 𝑖𝑑◦0 . Therefore 𝑐 = 𝑐1 ⊗
𝑐2 =T 𝑖𝑑◦0 ⊗ 𝑖𝑑◦0 =T 𝑖𝑑◦0 .

• 𝑐 = 𝑐1 ,◦ 𝑐2. There are two possible cases: either 𝑐1 : 0 →
𝑛 + 1 and 𝑐2 : 𝑛 + 1 → 0, or 𝑐1 : 0 → 0 and 𝑐2 : 0 → 0. In
the former case, we have by Lemma G.10, that H ♯ (𝑐) =
H ♯ (𝑐1) ,◦H ♯ (𝑐2) = ∅ ,◦∅ = ∅. Against the hypothesis. Thus
the second case should hold: 𝑐1 : 0 → 0 and 𝑐2 : 0 → 0. In
this case we just observe that 𝑐1 ,◦ 𝑐2 is, by the laws of
symmetric monoidal categories, equal to 𝑐1 ⊗ 𝑐2. We can
thus reuse the proof of the point above.

• 𝑐 = 𝑐1 �× 𝑐2. Since 𝑐 : 0 → 0, then also 𝑐1 and 𝑐2 have type
0 → 0. Consider the case where H ♯ (𝑐1) = ∅ = H ♯ (𝑐2).
Thus H ♯ (𝑐) = ∅, against the hypothesis. Therefore ei-
therH ♯ (𝑐1) = {(★,★)} orH ♯ (𝑐2) = {(★,★)}. IfH ♯ (𝑐1) =
{(★,★)}, then by induction hypothesis 𝑐1 =T 𝑖𝑑◦0 . Therefore
𝑐 = 𝑐1 �× 𝑐2 = 𝑐1 ⊔ 𝑐2 =T 𝑖𝑑◦0 ⊔ 𝑐2 =T ⊤ ⊔ 𝑐2 =T ⊤ =T 𝑖𝑑◦0 .
The case for H ♯ (𝑐2) = {(★,★)} is symmetric.

• 𝑐 = 𝑐1 ,•𝑐2. There are two possible cases: either 𝑐1 : 0 → 𝑛+1
and 𝑐2 : 𝑛+1 → 0, or 𝑐1 : 0 → 0 and 𝑐2 : 0 → 0. In the former
case, we have by Lemma 7.5 that 𝑐1 =T ¡•

𝑛+1 and 𝑐2 =T !◦𝑛+1.
Thus 𝑐 =T ¡•

𝑛+1 ,• !◦𝑛+1 =T 𝑖𝑑◦0 . For the last equivalence
observe that 𝑖𝑑◦0 ≲T ¡•

𝑛+1 ,• !◦𝑛+1 since (¡•𝑛+1)⊥ = !◦𝑛+1. The

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

other inclusion is ¡•𝑛+1 ,• !◦𝑛+1 �T (¡•𝑛+1 ,• !◦𝑛+1) ,◦ 𝑖𝑑◦0
Def. !◦
�T

(¡•𝑛+1 ,• !◦𝑛+1) ,◦ !◦0
(!◦-nat)
�T !◦0

Def. !◦
�T 𝑖𝑑◦0 . Consider now the case

where 𝑐1 : 0 → 0 and 𝑐2 : 0 → 0. In this case 𝑐1 ,•𝑐2 is, by the
laws of symmetric monoidal categories, equal to 𝑐1 �× 𝑐2.
We can thus reuse the proof of the point above.

□

Lemma G.12. Let T be a trivial theory that is syntactically com-
plete. Let 𝑐 : 0 → 0 be an arrow of FOBT. IfH ♯ (𝑐) = ∅ then 𝑐 =T 𝑖𝑑•0 .

Proof. If H ♯ (𝑐) = ∅, then by Lemma G.2, H ♯ (𝑐) = ∅ =
{(★,★)}. Thus by Lemma G.11, 𝑐 =T 𝑖𝑑◦0 and thus 𝑐 =T 𝑖𝑑•0 . □

Proposition G.13. if T is trivial, syntactically complete and non-
contradictory, then H is a model. Namely, for all 𝑐, 𝑑 : 𝑛 → 𝑚 in
FOBΣ, if 𝑐≲T𝑑 , then H ♯ (𝑐) ⊆ H ♯ (𝑑).

Proof. Recall that by definitionH is a model iff for all 𝑐, 𝑑 : 𝑛 →
𝑚 in FOBΣ, if 𝑐≲T𝑑 , thenH ♯ (𝑐) ⊆ H ♯ (𝑑).We prove that ifH ♯ (𝑐) ⊈
H ♯ (𝑑), then 𝑐≴T𝑑 .

If 𝑐 : 𝑛 →𝑚+1 or 𝑐 : 𝑛+1 →𝑚, then by Lemma G.10,H ♯ (𝑐) = ∅
and thus it is not the case thatH ♯ (𝑐) ⊈ H ♯ (𝑑). Thus we need to
consider only the case where 𝑐, 𝑑 : 0 → 0.

For 𝑐, 𝑑 : 0 → 0 if H ♯ (𝑐) ⊈ H ♯ (𝑑), then H ♯ (𝑐) = {(★,★)} and
H ♯ (𝑑) = ∅. By Lemmas G.11 and G.12, we thus have that 𝑐 =T 𝑖𝑑◦0
and 𝑑 =T 𝑖𝑑•0 . Since T is non-contradictory, then 𝑐≴T𝑑 . □

Proof of (Prop). SinceT = (Σ, I) is non-contradictory, by Propo-
sition G.4 there exists a syntactically complete non-contradictory
theory T′ = (Σ, I′) such that I ⊆ I′. Since ¡◦1≲T¡•1 , then ¡◦

1≲T′
¡•
1 , T

′
is also trivial. We can thus use Proposition G.13, to deduce that
T′ has a model. Since I ⊆ I′, then by Lemma 7.12, also T has a
model. □

Proposition G.14. (General) entails Theorem 3.2.

Proof. Assuming that (General) holds, one can prove that, for
all theories T = (Σ, I) and diagrams 𝑐 : 0 → 0 in FOBΣ,

if, for all models I of T, {(★,★)} ⊆ I♯ (𝑐) then 𝑖𝑑◦0 ≲T 𝑐 . (22)

Suppose indeed that 𝑖𝑑◦0 ̸≲T 𝑐 . Then, by Corollary 7.8, T′ = (Σ, I ∪
{(𝑖𝑑◦0 , 𝑐)}) is non-contradictory. Thus, by (General), T′ has a model,
namely, there exists a morphism of fo-bicategories G : FOBT′ →
Rel. By Lemma 7.12, we have a morphism F : FOBT → FOBT′ and
thus we have a model F ;G : FOBT → Rel. Observe that since G is
a model of T′, then G([𝑐]�T′) = {(★,★)} and, by construction of F ,
F ;G([𝑐]�T) = {(★,★)}. By Lemmas C.2 and D.1, F ;G([𝑐]�T) = ∅.
Thus, there is a model assigning ∅ to 𝑐 , against the hypothesis of
(22).

By (22) and Lemma 6.6 one can easily conclude Theorem 3.2.
Consider a theory T = (Σ, ∅) for some monoidal signature Σ.

Let 𝑐, 𝑑 : 𝑛 →𝑚 be diagrams in FOBΣ. For any interpretation I, if
I♯ (𝑐) ⊆ I♯ (𝑑) then, Rel is a fo-bicategory and Lemma 6.6, it holds
that

{(★,★)} ⊆ I♯ () ⊆ I♯ (𝑑𝑐).

If, for allI,I♯ (𝑐) ⊆ I♯ (𝑑) then, by (22), ≲T
𝑑𝑐 .

Again, by Lemma 6.6, 𝑐 ≲T 𝑑 . Since T = (Σ, ∅), 𝑐 ≲ 𝑑 . □

G.4 Proofs for Corollary 8.7
Proposition G.15. For all expressions 𝐸 of CRΣ and interpreta-

tions I, ⟨𝐸⟩I = I♯ (E(𝐸)).

Proof. The proof is by induction on 𝐸. The base cases are trivial.
The inductive cases are shown below.

I♯ (E(𝐸1 ,◦ 𝐸2)) Table 3
= I♯ (E(𝐸1) ,◦ E(𝐸2))

(8)
= I♯ (E(𝐸1)) ,◦ I♯ (E(𝐸2))
Ind. hyp.

= ⟨𝐸1⟩I ,◦ ⟨𝐸2⟩I
(4)
= ⟨𝐸1 ,◦ 𝐸2⟩I

I♯ (E(𝐸1 ,• 𝐸2)) Table 3
= I♯ (E(𝐸1) ,• E(𝐸2))

(8)
= I♯ (E(𝐸1)) ,• I♯ (E(𝐸2))
Ind. hyp.

= ⟨𝐸1⟩I ,• ⟨𝐸2⟩I
(4)
= ⟨𝐸1 ,• 𝐸2⟩I

I♯ (E(𝐸1 ∩ 𝐸2)) Table 3
= I♯ (◀◦1 ,◦(E(𝐸1) ⊗ E(𝐸2)) ,◦▶◦1)

(8)
= I♯ (◀◦1) ,◦ (I♯ (E(𝐸1)) ⊗ I♯ (E(𝐸2))) ,◦ I♯ (▶◦1)
(8)
=◀◦𝑋 ,◦(I♯ (E(𝐸1)) ⊗ I♯ (E(𝐸2))) ,◦ ▶◦𝑋
Ind. hyp.

= ◀◦𝑋 ,◦(⟨𝐸1⟩I ⊗ ⟨𝐸2⟩I) ,◦ ▶◦𝑋
(12)
= ⟨𝐸1⟩I ∩ ⟨𝐸2⟩I
(4)
= ⟨𝐸1 ∩ 𝐸2⟩I

I♯ (E(𝐸1 ∪ 𝐸2)) Table 3
= I♯ (◀•1 ,•(E(𝐸1) �× E(𝐸2)) ,•▶•1)

(8)
= I♯ (◀•1) ,• (I♯ (E(𝐸1)) �× I♯ (E(𝐸2))) ,• I♯ (▶•1)
(8)
=◀•𝑋 ,•(I♯ (E(𝐸1)) �× I♯ (E(𝐸2))) ,• ▶•𝑋
Ind. hyp.

= ◀•𝑋 ,•(⟨𝐸1⟩I �× ⟨𝐸2⟩I) ,• ▶•𝑋
(13)
= ⟨𝐸1⟩I ∪ ⟨𝐸2⟩I
(4)
= ⟨𝐸1 ∪ 𝐸2⟩I

I♯ (E(𝐸†)) Table 3
= I♯ ((E(𝐸))†)

Lemma𝐶.2
= (I♯ (E(𝐸)))†

Ind. hyp.
= ⟨𝐸⟩†I

(4)
= ⟨𝐸†⟩I

I♯ (E(𝐸)) Table 3
= I♯ ((E(𝐸)))

Diagrammatic Algebra of First Order Logic

Def. (·)
= I♯ (((E(𝐸))⊥)†)

Lemmas𝐶.2,𝐷.1
= (I♯ (E(𝐸))⊥)†

Ind. hyp.
= ((⟨𝐸⟩I)⊥)†

Def. (·)
= ⟨𝐸⟩I

(4)
= ⟨𝐸⟩I

□

Proof of Corollary 8.7.

𝐸1 ≤CR 𝐸2 ⇐⇒ ∀I . ⟨𝐸1⟩I ⊆ ⟨𝐸2⟩I (Def. of ≤CR)

⇐⇒ ∀I . I♯ (E(𝐸1)) ⊆ I♯ (E(𝐸2)) (Prop. G.15)
⇐⇒ E(𝐸1) ≦ E(𝐸2) (Def. of ≦)
⇐⇒ E(𝐸1) ≲ E(𝐸2) (Theorem 3.2)

□

H SOMEWELL KNOWN FACTS ABOUT
CHAINS IN A LATTICE

A chain on a complete lattice (𝐿, ⊑) is a family {𝑥𝑖 }𝑖∈𝐼 of elements
of 𝐿 indexed by a linearly oredered set 𝐼 such that 𝑥𝑖 ⊑ 𝑥 𝑗 whenever
𝑖 ≤ 𝑗 . A monotone map 𝑓 : 𝐿 → 𝐿 is said to preserve chains if

𝑓 (
⊔
𝑖∈𝐼

𝑥𝑖) =
⊔
𝑖∈𝐼

𝑓 (𝑥𝑖)

We write 𝑖𝑑 : 𝐿 → 𝐿 for the identity function and 𝑓 ⊔ 𝑔 : 𝐿 → 𝐿 for
the pointwise join of 𝑓 : 𝐿 → 𝐿 and 𝑔 : 𝐿 → 𝐿, namely 𝑓 ⊔ 𝑔(𝑥) def

=
𝑓 (𝑥) ⊔ 𝑔(𝑥) for all 𝑥 ∈ 𝐿. For all natural numbers 𝑛 ∈ N, we
define 𝑓 𝑛 : 𝐿 → 𝐿 inductively as 𝑓 0 = 𝑖𝑑 and 𝑓 𝑛+1 = 𝑓 𝑛 ; 𝑓 . We fix
𝑓 𝜔

def
=
⊔

𝑛∈N 𝑓 𝑛 .

Lemma H.1. Let 𝑓 , 𝑔 : 𝐿 → 𝐿 be monotone maps preserving chains.
Then

(1) 𝑖𝑑 : 𝐿 → 𝐿 preserves chains;
(2) 𝑓 ⊔ 𝑔 : 𝐿 → 𝐿 preserves chains;
(3) 𝑓 𝜔 : 𝐿 → 𝐿 preserves chains.

Proof. (1) Trivial.
(2) By hypothesis we have that 𝑓 (⊔𝑖∈𝐼 𝑥𝑖) =

⊔
𝑖∈𝐼 𝑓 (𝑥𝑖) and

𝑔(⊔𝑖∈𝐼 𝑥𝑖) =
⊔

𝑖∈𝐼 𝑔(𝑥𝑖). Thus

𝑓 ⊔ 𝑔(
⊔
𝑖∈𝐼

𝑥𝑖) = 𝑓 (
⊔
𝑖∈𝐼

𝑥𝑖) ⊔ 𝑔(
⊔
𝑖∈𝐼

𝑥𝑖)

=
⊔
𝑖∈𝐼

𝑓 (𝑥𝑖) ⊔
⊔
𝑖∈𝐼

𝑔(𝑥𝑖)

=
⊔
𝑖∈𝐼

(𝑓 (𝑥𝑖) ⊔ 𝑔(𝑥𝑖))

=
⊔
𝑖∈𝐼

(𝑓 ⊔ 𝑔) (𝑥𝑖)

(3) We prove 𝑓 𝑛 (⊔𝑖∈𝐼 𝑥𝑖) =
⊔

𝑖∈𝐼 𝑓 𝑛 (𝑥𝑖) for all 𝑛 ∈ N. We
proceed by induction on 𝑛.
For 𝑛 = 0, 𝑓 0 (⊔𝑖∈𝐼 𝑥𝑖) =

⊔
𝑖∈𝐼 𝑥𝑖 =

⊔
𝑖∈𝐼 𝑓 0 (𝑥𝑖).

For 𝑛 + 1, we use the hypothesis that 𝑓 preserves chain and
thus

𝑓 𝑛+1 ((
⊔
𝑖∈𝐼

𝑥𝑖) = 𝑓 (𝑓 𝑛+1 ((
⊔
𝑖∈𝐼

𝑥𝑖))

= 𝑓 (
⊔
𝑖∈𝐼

𝑓 𝑛 (𝑥𝑖)) (induction hypothesis)

=
⊔
𝑖∈𝐼

𝑓 (𝑓 𝑛 (𝑥𝑖))

=
⊔
𝑖∈𝐼

𝑓 𝑛+1 (𝑥𝑖)

□

Lemma H.2. Let 𝑓 , 𝑔 : 𝐿 → 𝐿 be monotone maps preserving chains
such that 𝑔 ⊑ 𝑓 . Then 𝑓 𝜔 ;𝑔 ⊑ 𝑓 𝜔

Proof. For all𝑥 ∈ 𝐿, 𝑓 𝜔 ;𝑔(𝑥) = 𝑔(⊔𝑛∈N 𝑓 𝑛 (𝑥)) = ⊔
𝑛∈N 𝑔(𝑓 𝑛 (𝑥)) ⊑⊔

𝑛∈N 𝑓 𝑛+1 (𝑥) ⊑ ⊔
𝑛∈N 𝑓 𝑛 (𝑥) = 𝑓 𝜔 (𝑥). □

Lemma H.3. Let 𝑓 : 𝐿 → 𝐿 be a monotone map preserving chains.
Thus 𝑓 𝜔 = 𝑓 𝜔 ; 𝑓 𝜔

Proof. 𝑓 𝜔 = 𝑓 𝜔 ; 𝑖𝑑 ⊑ 𝑓 𝜔 ; 𝑓 𝜔 . For the other direction we prove
that 𝑓 𝜔 ; 𝑓 𝑛 ⊑ 𝑓 𝜔 for all 𝑛 ∈ N. We proceed by induction on 𝑛. For
𝑛 = 0 is trivial. For 𝑛 + 1, 𝑓 𝜔 ; 𝑓 𝑛+1 = 𝑓 𝜔 ; 𝑓 𝑛 ; 𝑓 ⊑ 𝑓 𝜔 ; 𝑓 ⊑ 𝑓 𝜔 . For
the last inequality we use Lemma H.2. □

Lemma H.4. Let 𝑓 , 𝑔 : 𝐿 → 𝐿 be monotone maps preserving chains.
Then (𝑓 ⊔ 𝑔)𝜔 = (𝑓 𝜔 ⊔ 𝑔)𝜔

Proof. Since 𝑓 = 𝑓 1 ⊑ 𝑓 𝜔 and since (·)𝜔 is monotone, it holds
that (𝑓 ⊔ 𝑔)𝜔 ⊑ (𝑓 𝜔 ⊔ 𝑔)𝜔 .

For the other inclusion, we prove that (𝑓 𝜔 ⊔ 𝑔)𝑛 ⊑ (𝑓 ⊔ 𝑔)𝜔
for all 𝑛 ∈ N. We proceed by induction on 𝑛 ∈ N. For 𝑛 = 0,
(𝑓 𝜔 ⊔ 𝑔)0 = 𝑖𝑑 ⊑ (𝑓 ⊔ 𝑔)𝜔 .

For 𝑛 + 1, observe that 𝑓 𝜔 ⊑ (𝑓 ⊔ 𝑔)𝜔 and than 𝑔 ⊑ (𝑓 ⊔ 𝑔)𝜔 .
Thus

(𝑓 𝜔 ⊔ 𝑔) ⊑ (𝑓 ⊔ 𝑔)𝜔 (23)
We conclude with the following derivation.

(𝑓 𝜔 ⊔ 𝑔)𝑛+1 = (𝑓 𝜔 ⊔ 𝑔)𝑛 ; (𝑓 𝜔 ⊔ 𝑔)
⊑ (𝑓 ⊔ 𝑔)𝜔 ; (𝑓 𝜔 ⊔ 𝑔) (Induction Hypothesis)
⊑ (𝑓 ⊔ 𝑔)𝜔 ; (𝑓 ⊔ 𝑔)𝜔 ((23))
= (𝑓 ⊔ 𝑔)𝜔 (Lemma H.3)

□

H.1 Some well known facts about
precongruence closure

Let 𝑋 = {𝑋 [𝑛,𝑚]}𝑛,𝑚∈N be a family of sets indexes by pairs of
natural numbers (𝑛,𝑚) ∈ N×N. A well-typed relation R is a family
of relation {𝑅𝑛,𝑚}𝑛,𝑚∈N such that each 𝑅𝑛,𝑚 ⊆ 𝑋 [𝑛,𝑚] × 𝑋 [𝑛,𝑚].
We consider the set WTRel𝑋 of well typed relations over 𝑋 . It is
easy to see thatWTRel𝑋 forms a complete lattice with join given
by union ∪. Hereafter we fix an arbitrary well-typed relation I and
the well-typed identity relation Δ.

We define the following monotone maps for all R ∈ WTRel𝑋 :
• (𝑖𝑑) : WTRel𝑋 → WTRel𝑋 defined as the identity function;

Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Paweł Sobociński

• (I) : WTRel𝑋 → WTRel𝑋 defined as the constant function
R ↦→ I;

• (𝑟) : WTRel𝑋 → WTRel𝑋 defined as the constant function
R ↦→ Δ;

• (𝑡) : WTRel𝑋 → WTRel𝑋 defined asR ↦→ {(𝑥, 𝑧) | ∃𝑦.(𝑥,𝑦) ∈
R ∧ (𝑦, 𝑧) ∈ R};

• (𝑠) : WTRel𝑋 → WTRel𝑋 defined asR ↦→ {(𝑥,𝑦) | (𝑦, 𝑥) ∈
R};

• (,•◦) : WTRel𝑋 → WTRel𝑋 defined as R ↦→ {(𝑥1 ,•◦ 𝑦1, 𝑥2 ,•◦
𝑦2) | (𝑥1, 𝑥2) ∈ R ∧ (𝑦1, 𝑦2) ∈ R};

• (�⊗) : WTRel𝑋 → WTRel𝑋 defined asR ↦→ {(𝑥1 �⊗ 𝑦1, 𝑥2 �⊗
𝑦2) | (𝑥1, 𝑥2) ∈ R ∧ (𝑦1, 𝑦2) ∈ R};

Observe that the function (𝑖𝑑), (𝑟), (𝑡), (,•◦) and (�⊗) are exactly
the inference rules used in the definition of pc(·) given in (10). In-
deed the function pc(·) : WTRel𝑋 → WTRel𝑋 can be decomposed
as

pc(·) = ((𝑖𝑑) ∪ (𝑟) ∪ (𝑡) ∪ (,•◦) ∪ (�⊗))𝜔
where 𝑓 𝜔 stands the 𝜔-iteration of a map 𝑓 defined in the standard
way (see Appendix H for a definition).

Similarly the congruence closure c(·) : WTRel𝑋 → WTRel𝑋 can
be decomposed as

c(·) = ((𝑖𝑑) ∪ (𝑟) ∪ (𝑡) ∪ (𝑠) ∪ (,•◦) ∪ (�⊗))𝜔

These decompositions allow us to prove several facts in a modular
way. For instance, to prove that pc(·) preserves chains is enough to
prove the following.

Lemma H.5. The monotone maps (𝑖𝑑), (I), (𝑟), (𝑠), (𝑡), (,•◦) and
(�⊗) defined above preserve chains.

Proof. All the proofs are straightforward, we illustrate as an
example the one for (�⊗).

Let 𝐼 be a linearly ordered set and {R𝑖 }𝑖∈𝐼 be a family of well-
typed relations such that if 𝑖 ≤ 𝑗 , then 𝑅𝑖 ⊆ 𝑅 𝑗 . We need to prove
that (�⊗)(⋃𝑖∈𝐼 R𝑖) =

⋃
𝑖∈𝐼 (�⊗)(R𝑖).

The inclusion (�⊗)(⋃𝑖∈𝐼 R𝑖) ⊇ ⋃
𝑖∈𝐼 (�⊗)(R𝑖) trivially follows

from monotonicity of (�⊗) and the universal property of union. For
the inclusion (�⊗)(⋃𝑖∈𝐼 R𝑖) ⊆

⋃
𝑖∈𝐼 (�⊗)(R𝑖), we take an arbitrary

(𝑎, 𝑏) ∈ (�⊗)(⋃𝑖∈𝐼 R𝑖). By definition of (�⊗), there exist 𝑥1, 𝑥2, 𝑦1, 𝑦2
such that

𝑎 = 𝑥1 �⊗ 𝑦1 𝑏 = 𝑥2 �⊗ 𝑦2 (𝑥1, 𝑥2) ∈
⋃
𝑖∈𝐼
R𝑖 (𝑦1, 𝑦2) ∈

⋃
𝑖∈𝐼
R𝑖

By definition of union, there exist 𝑖, 𝑗 ∈ 𝐼 such that (𝑥1, 𝑦1) ∈ 𝑅𝑖
and (𝑥2, 𝑦2) ∈ 𝑅 𝑗 . Since 𝐼 is linearly ordered, there are two cases:
either 𝑖 ≤ 𝑗 or 𝑖 ≥ 𝑗 .

If 𝑖 ≤ 𝑗 , then 𝑅𝑖 ⊆ 𝑅 𝑗 and thus (𝑥1, 𝑦1) ∈ 𝑅 𝑗 . By definition
of (�⊗), we have (𝑥1 �⊗ 𝑥2, 𝑦1 �⊗ 𝑦2) ∈ 𝑅 𝑗 and thus (𝑎, 𝑏) ∈ 𝑅 𝑗 .
Since 𝑅 𝑗 ⊆ ⋃

𝑖∈𝐼 R𝑖 , then (𝑎, 𝑏) ∈ ⋃
𝑖∈𝐼 R𝑖 . The case for 𝑗 ≤ 𝑖 is

symmetric. □

Proposition H.6. The monotone maps pc(·), c(·) : WTRel𝑋 →
WTRel𝑋 preserve chains.

Proof. Follows immediately from Lemma H.5 and Lemma H.1
in Appendix H. □

LemmaH.7. For all well-typed relations J, themap pc(J ∪ ·) : WTRel𝑋 →
WTRel𝑋 preserves chains.

Proof. Follows immediately from Lemma H.5 and Lemma H.1
in Appendix H. □

LemmaH.8. For all well-typed relations I and J, pc(I ∪ J) = pc(pc(I) ∪ J)
Proof. Let (J) : WTRel𝑋 → WTRel𝑋 be the constant function

to J and define 𝑓 , 𝑔 : WTRel𝑋 → WTRel𝑋 as

𝑓
def
= (𝑖𝑑) ∪ (𝑟) ∪ (𝑡) ∪ (,•◦) ∪ (�⊗) 𝑔

def
= (J)

From Lemma H.5 and Lemma H.1, both 𝑓 and 𝑔 preserve chains.
Observe that 𝑓 𝜔 (I) = pc(I), that (𝑓 ∪𝑔)𝜔 = pc(I ∪ J) and that (𝑓 𝜔∪
𝑔)𝜔 (I) = pc(pc(I) ∪ J). Conclude with Lemma H.4 in Appendix
H. □

Lemma H.9. Let T = (Σ, I) be a first order theory. Then ≲T=
pc(FOB ∪ I)

Proof. By definition ≲T= pc(≲ ∪I). Recall that ≲= pc(FOB).
Thus ≲T= pc(pc(FOB) ∪ I). By Lemma H.8, ≲T= pc(FOB ∪ I).

□

Lemma H.10. Let 𝐼 be a linearly ordered set and, for all 𝑖 ∈ 𝐼 , let
T𝑖 = (Σ, I𝑖) be first order theories such that if 𝑖 ≤ 𝑗 , then I𝑖 ⊆ I𝑗 . Let
T be the theory (Σ,⋃𝑖∈𝐼 I𝑖). Then ≲T=

⋃
𝑖∈𝐼 ≲T𝑖 .

Proof. By definition ≲T= pc(≲ ∪⋃
𝑖∈𝐼 I𝑖). Since I𝑖 form a chain,

by Lemma H.7, pc(≲ ∪⋃
𝑖∈𝐼 I𝑖) =

⋃
𝑖∈𝐼 pc(≲ ∪I𝑖). The latter is, by

definition,
⋃

𝑖∈𝐼 ≲I𝑖 . □

Lemma H.11. Let 𝐼 be a linearly ordered set and, for all 𝑖 ∈ 𝐼 , let
T𝑖 = (Σ𝑖 , I) be first order theories such that if 𝑖 ≤ 𝑗 , then Σ𝑖 ⊆ Σ 𝑗 .
Let T be the theory (⋃𝑖∈𝐼 Σ𝑖 , I). Then ≲T=

⋃
𝑖∈𝐼 ≲T𝑖 .

Proof. By Lemma H.5, the monotone map pcr(·) def
= ((𝑖𝑑) ∪

(I) ∪ (𝑡) ∪ (,•◦) ∪ (�⊗))𝜔 preserves chains. Let Δ𝑖 be the well-typed
identity relation on FOBΣ𝑖 . Observe that ≲T𝑖= pcr(Δ𝑖) and that
≲T= pcr(⋃𝑖∈𝐼 Δ𝑖). To summarise:

≲T = pcr(
⋃
𝑖∈𝐼

Δ𝑖)

=
⋃
𝑖∈𝐼

pcr(Δ𝑖) (preserve chains)

=
⋃
𝑖∈𝐼
≲T𝑖

□

Lemma H.12. Let 𝐼 be a linearly ordered set and, for all 𝑖 ∈ 𝐼 , let
T𝑖 = (Σ𝑖 , I𝑖) be first order theories such that if 𝑖 ≤ 𝑗 , then Σ𝑖 ⊆ Σ 𝑗 and
I𝑖 ⊆ I𝑗 . Let T be the theory (⋃𝑖∈𝐼 Σ𝑖 ,

⋃
𝑖∈𝐼 I𝑖). Then ≲T=

⋃
𝑖∈𝐼 ≲T𝑖 .

Proof. Immediate by Lemma H.11 and Lemma H.10. □

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Appendix (Article 5)

V
A.-V. Pietarinen, F. Bellucci, A. Bobrova, N. Haydon, andM. Shafiei. The blot.
In A.-V. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino, J. Corter,
and S. Linker, editors, Diagrammatic Representation and Inference, pages
225–238, Cham, 2020. Springer International Publishing

143

The Blot

Ahti-Veikko Pietarinen1,2(B), Francesco Bellucci3, Angelina Bobrova4,
Nathan Haydon1, and Mohammad Shafiei5

1 Tallinn University of Technology, Tallinn, Estonia
{ahti-veikko.pietarinen,nathan.haydon}@taltech.ee

2 HSE University, Moscow, Russia
3 Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23,

40122 Bologna, Italy
francesco.bellucci4@unibo.it

4 Moscow University for the Humanities, Moscow, Russia
angelina.bobrova@gmail.com

5 Shahid Beheshti University, Tehran, Iran
m.shafiyi@gmail.com

Abstract. The blot is a sign in Peirce’s diagrammatic syntax of existential graphs
that has hitherto been neglected in the literature on logical graphs. It is needed
in order to trigger the cut-as-negation to come out from the scroll, namely from
the implicational sign of a positive implicational (paradisiacal) logic. Since the
cut-as-negation presupposes the blot and the scroll, what does the blot represent?
On the one hand, it stands for constant absurdity, but on the other hand, Peirce
takes it to be an affirmative sign. This paper explores the blot and its logical
and conceptual properties from the multiple perspectives of notation, rules of
transformation, icons, and scriptibility of graphs. It explains the apparent conflict
in the blot’s meaning in its capacity of giving rise to the pseudo-graph that exploits
positive character of absurdity. In effect, the blot is the mirror image of the sheet
of assertion, not its complementation. On the sheet, it acts as a non-juxtaposable
singularity.

Keywords: Blot · Pseudo-graph · Scroll · Existential graphs · Absurdity ·
Scriptibility

1 Introduction

The blot is a constant logical sign (the pseudograph) in Peirce’s diagrammatic syntax of
existential graphs. Studies of its nature and even the very existence have hitherto been
neglected in the literature on logical graphs (with the sole exception of Roberts 1973,
p. 36). The blot is needed in order to trigger the cut-as-negation to come out from the

A.-V. Pietarinen—The paper was prepared within the framework of the HSE University Basic
Research Program and funded by the Russian Academic Excellence Project ‘5-100’.
N. Haydon—Research supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001).

© Springer Nature Switzerland AG 2020
A.-V. Pietarinen et al. (Eds.): Diagrams 2020, LNAI 12169, pp. 225–238, 2020.
https://doi.org/10.1007/978-3-030-54249-8_18

226 A.-V. Pietarinen et al.

scroll, namely from the implicational sign of a positive implicational (what Peirce calls
paradisiacal) logic. Since the cut-as-negation presupposes the blot and the scroll, what
does the blot represent? On the one hand, it stands for constant absurdity, but on the
other hand, Peirce takes it to be an affirmative sign. Either way, it is a pseudo-graph
because it ought to be an “expression to which the interpreter shall be free to give any
propositional meaning he pleases” (R 492, 1903). A pseudo-graph represents no possible
or conceivable state of the universe.

This paper explores the blot and its logical and conceptual properties from the multi-
ple perspectives of diagrammatic notation, rules of transformation, icons, and scriptibil-
ity of graphs. It explains the apparent conflict in the blot’s meaning by its capacity of
giving rise to the pseudo-graph that exploits the positive character of absurdity. In effect,
the blot is the mirror image of the sheet of assertion, not its complementation. On the
sheet, it acts as a non-juxtaposable singularity.

2 Peirce on the Blot

The blot was a new addition to Peirce’s theory of existential graphs introduced during
his preparation of the 1903 Lowell Lectures. In the unpublished “Logical Tracts. No. 1”
(R 491) he described it (without yet naming it as the blot) as a pseudograph which “is a
construction out of elements like those of graphs, but which, owing to the way in which
these are put together, has no meaning as a diagram of the system to which it belongs”.
The need for it arises from the need of depicting absurdity in graphs in some suitably
quasi-diagrammatic fashion. Substitute a pseudo-graph “What is false is true” in place of
c in Fig. 4, and it may be read, “If b is true the false is true”. This, Peirce states, “reduces
b to absurdity, and is equivalent to a denial of b”. He proposes to simplify the scribing
of these graphs by making the inner enclosure “indefinitely small, or be suppressed; so
that Fig. 2 denies b; and generally, a single enclosure has the effect of denying the whole
graph which it contains”. Hence, Peirce tells, “Fig. 3 asserts that b is true and c false;
while Fig. 4 denies this, that is, asserts that either b is false or c is true, or, in other words,
that if b is true, so is c” (ibid).1

In a long follow-up treatise also produced during 1903, entitled “Logical Tracts.
No. 2” (R 492), Peirce explains the procedure by introducing “alogoid” conditional
propositions, namely those that express “If anything, then everything”:

Whichever method of expressing conditionals be used, it will sometimes be desirable to
place in one of the compartments a proposition either absurd or well-understood between
the graphist and his interpreter to be false, which may be called an alogoid proposition (I
prefer this form, because alogous might be wanted to mean logically absurd). If we say
that two propositions which will always be true or false together are equivalent, then any
alogoid proposition is equivalent to “If anything, then everything”. For logic has no purpose

1 The caption numberings in quotations preserve those in Peirce’s original writings.

The Blot 227

unless some consequence is false; and therefore this must be well-understood between the
graphist and his interpreter.

Alogoid propositions are expressed by blackening the respective compartmentwithin
which the alogoid proposition is located:

In order to express an alogoid proposition, therefore, we need only an expression to which
the interpreter shall be free to give anypropositionalmeaninghepleases. Such an expression,
introduced into our system of graphs, will not be a graph because it does not represent any
possible state of the universe. I shall call it the pseudograph; for, however it be written, it
remains the same in its equivalence. Since it is the assertion of all propositions, nothing can
be added to it; and therefore it may be represented by blackening the whole compartment
within which it is placed. Let this convention be adopted. The compartment so blackened
may then be made very small or thin. Thus … Fig. 8 and Fig. 9 will express “If a is true,
everything is true”; that is, “a is not true”.

In practice, Fig. 10 would naturally be drawn in place of either Fig. 8 or Fig. 9. Following
this practice, Fig. 11 will in either system be another way of writing the pseudograph. (ibid.)

Peirce soon formulates this idea as a specific convention of existential graphs:

ConventionNo. 10.The pseudograph, or expression in this system of a proposition implying
that every proposition is true, may be drawn as a black spot entirely filling the close in which
it is. Since the size of signs has no significance, the blackened close may be drawn invisibly
small. Thus Fig. 33 as in Fig. 34, or even as in Fig. 35, Fig. 36, or lastly as in Fig. 37.

Interpretational Corollary 1. A scroll with its contents having the pseudograph in the
inner close is equivalent to the precise denial of the contents of the outer close. (ibid.)

In the lecture notes related to this convention, Peirce had characterised the writing of
the pseudograph on the sheet of assertion as “equivalent to burning up the sheet, since
the sheet only exists, as such, in the minds of the graphist and the interpreter, and that by
virtue of the agreement which the writing of the pseudograph destroys”. He notes that it
is nevertheless “useful to write the pseudograph in the inner close of a graph” (R 450).
For example, the graph

228 A.-V. Pietarinen et al.

says “If Washington was a commonplace man, then every assertion is false”,2 which
is the same as to say that “Washington was not a commonplace man”. Convention 10
tells that filling up a close leaves no room in it, which means that the pseudograph is
inserted in the close. To deny that Washington was a commonplace man, Peirce scribes
the corresponding graph as follows:

Since the size of a sep (the inner loop) is not a significant feature, Peirce scribes this
equivalently as

“Making the loop infinitesimal”, Peirce continues, “we shall understand a sep as
denying what is written in its close” (R 450). In the related 1903 text “Syllabus of
Logic” (R 478) Peirce described the “filling up of any entire area with whatever writing
material (ink, chalk, etc.)” to amount to “obliterating that area”. Notice that it is the area
that is obliterated, not the loop itself. It follows from the obliteration as a corollary that,
“[s]ince an obliterated area may be made indefinitely small, a single cut will have the
effect of denying the entire graph in its area. For to say that if a given proposition is true,
everything is true, is equivalent to denying that proposition” (R 478).

The pseudograph is the sign of nothing.Yet is asserts that “everything is true” (R455).
Peirce explains: “Were every graph asserted to be true, there would be nothing that could
be added to that assertion”, and that accordingly, “our expression for it may very appro-
priately consist in completely filling up the area onwhich it is asserted” (ibid.). Here (and
this happens during his second Lowell Lecture), Peirce introduces the term “blot” for the
first time: “Such filling up of an area may be termed a blot”. We can learn from his notes
that there are thus “two peculiar graphs”: the blank place “which asserts only what is
already well understood between us to be true, and the blot which asserts something well
understood to be false” (ibid.). In addition, in the Alpha graphs one then only needs “two
signswhich are not graphs.” First, “the putting of two graph-replicas upon the same area,”
where (recall that a blank is a graph), includes “the scribing of a single graph as a special
case”. Peirce rightly takes the idea that “scribing a graph is a transformation of a graph
already accepted” to be a “very useful one” (ibid.). Second, the other sign is the scroll.

There are only a few further occasions in which Peirce revisits the blot and provides
some further analyses and explanations of it. The idea of the blot surfaces in R 693
(1904) and in the related glossary of graphs in terms of oppleted graphs: “An area is said
to be oppleted, or opplete, when it is virtually quite filled up, all graphs having replicas
upon it. This is represented by completely blackening it. An enclosure whose area is

2 The consequent should be “…then every assertion is true”. The meaning of the “red blot” as
“…then every assertion is false” comes from an earlier lecture draft (R 450), which Peirce soon
in his next draft (R 455) corrects to the original meaning of the blot as in Convention 10.

The Blot 229

opplete is equivalent to a blank”. The last couple of definitions (33–40) in the glossary
of 40 technical terms relate to this filling up of areas:

An area so affected is said to be opplete (33) or to be oppleted (34) (from opplëere, to stuff
up). Or we may prefer to say that it is the annulus (35), or annular space, comprising all
that area except that occupied by the replica that effects the oppletion (36) that is oppleted
(37). Or again, we may say that the enclosure in the area of which the opplent (38) replica
occurs is opplete (39). Connected with this conception is that of a vacant enclosure (40),
which is an enclosure whose area is entirely blank. (R S-26)

Another occasion is found among the many copy-texts and segments prepared for
his 1906 “Prolegomena” paper but not included in the published version (R S-30,
“Copy T”):

[T]he Scroll affords me no other means of denying any Graph, say A, than by scribing
that if A be true, everything is true. Now since it is impossible by any addition to increase
Everything, this I can suitably express by completely filling with a blot the Inner Close of a
Scroll that carries only A (and the Blank) in its Outer Close, so that there shall be no more
room in that Inner Close for anything else.

I can then make this blackened Inner Close as small as I please, at least, so long as I can
still see it there, whether with my outer eye or in my mind’s eye (Horatio). Can I not make
it quite invisibly small, even to my mind’s eye? “No”, you will say, “for then it would not
be scribed at all”. You are right. Yet since confession will be good for my soul, and since
it will be well for you to learn how like walking on smooth ice this business of reasoning
about logic is,—so much so that I have often remarked that nobody commits what is called
a “logical fallacy”, or hardly ever does so, except logicians; and they are slumping into
such stuff continually,—it is my duty to say that this error of assuming that, because the
blackened Inner Close can bemade indefinitely small, therefore it can be struck out entirely,
like an infinitesimal. That led me to say that a Cut around a graph-instance has the effect
of denying it. I retract: it only does so if the Cut encloses also a blot, however small, to
represent iconically the blackened Inner Close. I was partly misled by the fact that in the
Conditional de inesse the Cut may be considered as denying the contents of its Area. That
is true, so long as the entire Scroll is on the Place. But that does not prove that a single Cut,
without an Inner Close, has this effect. On the contrary, a single Cut, enclosing only A and
a blank, merely says: “If A”, or “If A, then” and there stops. If what? You ask. It does not
say. “Then something follows”, perhaps; but there is no assertion at all. This can be proved,
too. For if we scribe on the Phemic Sheet the Graph expressing “If A is true, Something is
true”, we shall have a Scroll with A alone in the Outer Close, and with nothing but a Blank
in the Inner Close. Now this Blank is an Iterate of the Blank-instance that is always present
on the Phemic Sheet; and this may, according to the rule, be deiterated by removing the
Blank in the inner close. This will do, what the blot would not; namely, it will cause the
collapse of the Inner Close, and thus leaves A in a single cut. We thus see that a Graph, A,
enclosed in a single Cut that contains nothing else but a Blank has no signification that is
not implied in the proposition, “If A is true, Something is true”.

This long passage from “Copy T” deserves a comment, in part because its reading of
the single cut differs from the standard presentation (i.e. as simple negation) in existential
graphs. The conditional is used in denying a graph, A, by scribing that “If A be true,
everything is true”. The consequent cannot be represented in Alpha graphs, because in

230 A.-V. Pietarinen et al.

Alpha graphs there is no way to assert “everything”. In Beta (first-order) graphs, on the
other hand, there is no way of quantifying over assertions. Peirce’s solution is to have
the whole area of the inner close of the scroll saturated by the blot, which conveys the
idea that nothing else can be added to that area (Fig. 1). The “blotted area” signifies that
what is placed in it “is true”, but since nothing else can be added to the blotted area,
nothing else in it is true, namely everything in it is true. Now “everything in it” amounts
to “everything”, since no further specification needs to be given. The filling of the area
of the inner close of the scroll is therefore an icon of the assertion “everything is true”.

A

Fig. 1.

A

Fig. 2.

Peirce then explains that the “blotted inner close” of a scroll can be made infinitesi-
mally small (Fig. 2) though it never completely disappears (it leaves two opposite turning
points on the boundary, and so is not the “unknotted knot” in the sense of knot theory).
The reason, he explains, is that a single cut (here taken in the sense of a simple closed
boundary curve with no intersection points, that is, as the “trivial knot”) does not signify
negation; negation can only be signified by a “blotted cut” (a scroll with a blotted inner
close, however small). To show the difference between the single cut and the blotted cut
he imagines a scroll like in Fig. 3:

A

Fig. 3.

A

Fig. 4.

The inner close of the scroll in Fig. 3 contains a blank, which may be considered as
the result of an iteration of the blank that lies outside of the scroll, which here as always
may be the blank of the sheet. This is the new thought that Peirce develops in “Copy T”:
The sheet means “Something is true,” and so does any portion of it that is the result of an
application of the rule of iteration. The graph in Fig. 3 therefore means “If A, something
is true.” But since it is iterated, the blank in the inner close of that scroll can also be
de-iterated. What would be the result of such de-iteration? Peirce says that this will do
something that the blot does not do: “it will cause the collapse of the Inner Close, and
thus leaves A in a single cut” (R S-30). The de-iteration of the blank from the inner close
of the scroll does not turn the graph in Fig. 3 into that of Fig. 1. It causes the collapse of
the inner close, turning Fig. 3 into Fig. 4, that is, into the single cut. But then the single
cut does not signify negation. It only signifies what the graph in Fig. 3 signifies before the
de-iteration, namely “If A, then something is true.” This, Peirce suggests, amounts to the
truncated statements “If A…” or “If A, then…” These are not complete assertions but
non-well-formed, deformed parts that violate the grammar of the diagrammatic syntax.
They do not mean the same as the negation of A, which is properly represented by the
graphs as depicted in Figs. 1 and 2.

The Blot 231

We may then restate the argument above in “Copy T” as follows. The primary
notational function of the oval is to group propositions together. That is, it is a collectional
sign like parentheses are in a non-diagrammatic syntax (R 430, 1902; R 670, 1911;
Bellucci and Pietarinen 2016a, 2016b). In a system whose primitive operations are those
of conjunction and conditional, collectional signs are only needed to distinguish the
antecedents of the conditionals from their consequents (for conjunction is associative).
The collectional oval is only needed in Alpha graphs in this role. In a scroll, the outer
loop marks the area of the antecedent and the inner cut marks the area of the consequent.
Thus the meaning of the graph in Fig. 4 is simply “If A, then…”, because since there is
no inner cut there is no consequent.

The meaning of the single cut is purely collectional. In a complete scroll, with the
blot (the pseudograph or absurdum) appearing in the inner close, themeaning of negation
is added to the collectional meaning of the cut, and this results in a sign of negation (the
blotted cut). In other words, Peirce realised around 1906 that negation is represented
in existential graphs by the blotted cut, and that the single cut simply functions as a
collectional sign devoid of truth-functional meaning.

3 Positive and Negative Absurdity

We are not done yet. If there is a difference between a single cut and a blotted cut,
however small or invisible this blot may be, what justifies using them interchangeably
in the diagrammatic system, one of whose aims is to make the differences observable?
Further analysis is needed in order to clarify the meaning of absurdity and accordingly
the iconic generation of the cut.

First of all, the notion of absurdity is supposed to be a basis for that of negation;
thus it itself has to be formed in a positive manner. When the system has only positive
forms, that is, contains no notion of falsity, and no sign for negation, either, how can
one express that a proposition, A, is false? Peirce’s answer was to go on to assert, “If
A is true, then everything is true”. Such conditionals have no negation as a constituent.
But notice that to say that “A is true only if everything is true” is also a rather strong
refutation of the possibility of A being the case. Thus, to form negative propositions
is to assign a sign for the proposition “Everything is true”. This is what the blot does.
Does it need to fill up the entire area then? As any instance of a graph in an area means
its presence everywhere on that area (graphs can be scribed at any position in an area,
i.e. all those positions are isotopy-equivalent), both the graphs in Figs. 5 and 6 equally
express that absurdity implies P.

P

Fig. 5.

P

Fig. 6.
The blot as shown in Fig. 6 is the preferred notation, however, for one should dis-

tinguish between the blot and the scroll with both areas filled with black. Also, the blot

232 A.-V. Pietarinen et al.

should not be confused with a cut filled with black stuff. The blot with radiating, blurred
boundaries is, we propose, to be preferred as the notation for it. This is consistent with
Peirce’s Convention 10, since we fill the inner close with a blot. A blot is in the inner
close, it is not the filled inner close itself. The loop around the blot is not part of the
blot. Roberts (1973, p. 36) describes the pseudo-graph to be “a cut entirely filled in, or
blackened”, but this is not the best possible choice of words.

The sign for negation, namely the scroll with a blot in its inner close, may be con-
sidered as a simple oval, the cut, since “the blackened close may be drawn invisibly
small”. The justification of this is not to be derived from the behavior of the permissive,
deductive rules of transformation, since there is no cut in such language as yet. The
blackened inner close remains on the boundary. However, if the aim of this language is
to sustain diagrammatic syntax and the virtues of the iconization of reasoning (Bellucci
and Pietarinen 2017), we should be wary of apropos conventions and remain mindful
of the genealogy of the cut. What is it that justifies the equation between the cut and
the scroll with a blot in its inner close? A further look at the notion of absurdity may be
helpful here.

The definition of “negation of P” as “P implies absurdity” was known to Peirce since
his 1885 “Algebra of Logic” paper. In the context of the further development of algebra
into graphs, we find reasons for defining negation as a shorthand for P → ⊥ becoming
increasingly clear precisely when Peirce is moving on to an interpretation of absurdity
as “Everything is true.” This “positive” characterization of absurdity is one of Peirce’s
profound insights into negation. If the negation of P is to be understood as P implying
any absurdity, this “negative” sense of absurdity, namely absurdity understood as any
false (or necessarily false) proposition, introduces no real insight into the embryonic
development of the idea of negation. In some sense, it presupposes negation, while at
the same time being that from which negation is developed.

However, in order to explore all possible iconic possibilities we have to consider
other conceptions of absurdity. An alternative to absurdity (taken as a proposition) is the
statement “There is no truth” or “Nothing is true”. How can we state “Nothing is true”
in existential graphs? We have the sheet of assertion, which represents the truth. When
nothing is scribed on any position on the sheet, the blank asserts “Something is true”.
As the sheet is the place for truths, perhaps we can show that there is no place for truth
by “closing off” the sheet of assertion or some parts of it. There are two problems: how
can one denote the collapse of the sheet of assertion? As soon as that is somehow done,
one would be asserting that “Nothing is true”. But we also need that as a proposition to
be used in other graphs. Therefore, we need to separate the scopes and then collapse one
of them. According to the rule of the scroll, the scroll with blank outer and inner closes
can be scribed and erased around any graph. Thus any part of the sheet of assertion
enclosed within such a scroll would mean the same as it did before. The graph says
“If something is true then something is true”.

Now since the inner close is the place of truth, if we were to completely obliterate it,
it would diagrammatise the state in which there is no place for truth. This would result
in the proposition, “If something is true then nothing is true”. The following sequence
is intended to show how a proposition “If P then something is true” morphs into the
proposition “If P then nothing is true” by obliterating the inner close (Fig. 7):

The Blot 233

P P P P

Fig. 7.

As far as the inner close exists and thus possesses a blank area, however small,
the graph still means “If P then something is true”. But when the inner close is com-
pletely dissolved, the meaning changes to “If P then nothing is true”. Hence there is an
equivocation in the above sequence; it does not display a meaning-preserving process
of transformations.

Now we have a graph for “If P then nothing is true” but not a graph for “Nothing is
true”. But “Nothing is true” is equivalent to “If something is true, then nothing is true”.
Therefore the cut with a blank area is read “Nothing is true”. Provided that “If P, then
nothing is true” is synonymous with the negation of P, then a cut with P in its scope
means not-P, as does the scroll with P in the outer close and the blot in the inner close,
which states “If P, then everything is true”.

To show something of the nature of absurdity by closing off some scopes is a real-
ization of what Peirce had termed “unscriptibility” of some graphs in another slightly
earlier and unpublished work of his (R 501, 1901; Ma and Pietarinen 2019). We pro-
pose to endow absurdity with this meaning. Both the blot and the collapsed inner close
partake of the character of unscriptibility. Nothing is scriptible in a collapsed close: no
space exists in a collapsed close at all. Nothing is scriptible in a close with the blot,
either, since everything is already scribed in that blackened area. Miniaturising the inner
close would not affect the character of unscriptiblity, since even if it were to dissolve
into the boundary, the character of unscriptibility will be preserved. Therefore, although
the sequence of graphs in Fig. 7 is not a meaning-preserving transformation, the one in
Fig. 8 is:3

P P PP

Fig. 8.

There are now two ways to introduce the cut. In the first, absurdity is “Everything
is true”, in the other it is “Nothing is true”. Peirce’s preference lies with the former,

3 In Peirce’s hand, a similar sequence looked like this (R 455(s)):

Peirce intended this to show that “the impossibility [that existswithin the inloop] destroys the
cut and all it contains” (ibid.). By this, Peirce is preparing ground for his decidability operations
for the Alpha system (Roberts 1997).

234 A.-V. Pietarinen et al.

since it analyses falsity and negation without assuming it. The proposition “Everything
is true” will do that work well. Absurdity should be of the nature of affirmation, not
denial. “Everything is true” is absurdity as an affirmative, “There is no truth” as a denial.
Indeed “affirmation is psychically the simpler”, confirms Peirce, and “I therefore make
the blot an affirmation”. That is, he makes the absurdity an affirmation and then equates
it with the blot, namely “Everything is true”.

Taking absurdity as “Everything is true” has some other conceptual and formal
advantages that we briefly list. (1) It explains ex falso: If everything is true then P
also is true. There is no need for an axiom or a rule and no need to appeal to proofs by
disjunctive syllogisms, which are known to be circular. (2) The Law of ExcludedMiddle
(LEM) and the elimination of double cut are laws not inherent in the nature of negation,
which is a desirable feature intuitionistically (Peirce came close to intuitionistic logic
in many related senses).4 (3) The double cut rule is to be derived, if justified, from
more primitive, observational considerations. If the cut were defined as reversing its
area, then the double cut rule would be immediate by symmetry. But symmetry, though
advantageous in calculus, is an unfavorable guidelinewhen the purpose is logical analysis
(CP 4.375).

On the other hand, although the absurdities “Everything is true” and “There is no
truth” are semantically equivalent, the latter is gotten from the former: rules like the
elimination of double cut are not eligible at this level of analysis. From “Everything
is true” it follows that “It is true that there is no truth”. But from “There is no truth”
it follows, for example, that “It is wrong that something is wrong”, which means that
everything is true. However, we need an extra move here. Thus from negative absurdity
we cannot directly derive the positive absurdity (its justification would need another rule
or an axiom, such as LEM). But from positive absurdity other facets of absurdity follow.

Another candidate for the meaning of absurdity is unassertibility: It is irrational to
assert absurdity. Or, one may say that absurdity is whatever is rationally unassertible.
How can we scribe such absurdity in graphs? How can we assert the unassertible?
A meaningless sign or nothing would not do because they express nothing; we want to
express absurditywhen its assertion is rationally forbidden. It is notmeaningless activity:
it just has a meaning that is to be avoided at all costs. One has a right to be irrational, but
penalties will be visited upon one who chooses to be so. Asserting the unassertible is
possible but risky. In existential graphs, three candidates could be thought of: (1) to close
off a loop by collapsing an area so that no space remains for any assertion, (2) to fill the
area so that no assertion can fit there, (3) to police an area by flagging it, such as a cross
mark ×, that forbids any assertion in that area. The last option is not that promising as
one has to use an ad hoc mark for unassertibility, yielding little iconic harvest. The first
two resort to diagrammatic unscriptibility to effect unassertibility. Peirce’s option was
the second. Maybe something can be reaped from (1), too, as it preserves diagrammatic
results and features no further conventions.

4 See Oostra (2010) on Alpha System with the scroll that agrees with propositional intuitionistic
logic. In this case, new graph for disjunction needs to be introduced as in intuitionistic logic,
logical connectives are not interdefinable. How such modifications demonstrate the potential
insights of Peirce’s EGs has been discussed in Shafiei (2019). Moreover, Ma and Pietarinen
(2018) have offered an EGs version for intuitionistic logic analyzing the nature of deep inference.

The Blot 235

Considering the pragmatistic office of existential graphs, yet another conception
for the absurdity may be proposed. In comparison to the pragmatistic motto “do not
block the way of enquiry”, we might say in existential graphs, and in logic as such, we
have the principle: “do not block the way of inference”. The way of inference would
be blocked when we have a graph from which no consequences follow or a graph that
cannot be antecedently motivated, i.e. that cannot be taken to be the consequence of
an inference. This situation is exactly that of absurdity. Therefore, in order to show
absurdity we show a case when inference is blocked. The smallest part of inference, an
illation, is diagrammatized by the scroll. To obliterate the inner close would prevent the
consequence being asserted. Therefore, if we put P in the outer close and close off the
inner close it means “From P nothing follows” (not even itself), and this amounts to
taking P as an expression of absurdity. The case has been discussed above. On the other
hand, placing P in the inner close and closing off the outer oval, which results in a cut
enclosing P, means that P follows from nothing, or that P is true under no assumptions.
This equally amounts to taking P as absurd. Notice that here we are not saying “P is true
under any assumption” which would be to consider P as a logical truth; rather we say “P
is true under no assumption”. In order to iconize the former one should leave the outer
close, i.e. the place of assumption, blank and receptive for any graph; for the latter case
one should totally close down the place of assumption, which is to dissolve the outer
close in the boundaries of the inner close. Such new analysis now leads to a different
type of a generation of the cut, but results in the same meaning as the previous ones
did. In this new respect, the cut is the inner close of the scroll in whose boundaries the
outer oval has been dissolved. (Peirce had a similar argument in another “Copy Text”
of R S-30 not quoted in the previous section.) Notice that this case states that “Under
no assumption P is true”, which is different from “Under the assumption of nothing, P
is true”, for it is the place of assumptions that is obliterated instead of being filled with
nothingness or absurdity.

4 The Blot and the Sheet of Assertion

This returns us back to some basic questions about notation. Why can a blank scroll be
made to appear and disappear on the sheet? The sheet is a tautology and the blank scroll
does not make any transformations of it. The sheet embraces all tautologies and true
propositions that may ever be scribed on it.

There is one more element in the genealogy of negation to be pointed out. As briefly
mentioned, Peirce proposes the original element of reasoning to be paradisiacal (R 493,
c.1899; R 669, 1911): only the scroll is presented on the sheet. This positive, proto-
reasoning operates without the presence of falsity or negation. Anything implies any-
thing. Take one-valued logic (Hamblin 1967) or positive implicational logic as similarly
paradisiacal proposals. There is not even any juxtaposition and hence no conjunction
in positive implicational logic. In existential graphs, proto-reasoning has a paradisiacal
scroll, in which the inner scroll may be blackened to contain all possible assertions, so
that nothing could be added to it. Paradisiacal reasoning is in a highly unstable state,
however, since “it will soon be recognized that not every assertion is true; and that once
recognized, as soon as one notices that if a certain thing were true, every assertion would

236 A.-V. Pietarinen et al.

be true, one at once rejects the antecedent that lead to that absurd consequence” (R 669;
Pietarinen 2015, p. 920). Any small perturbation and the blackened area atrophies to the
first, primordial cut; a serpent appears in the paradise of pure reason.

Since the blot has the power of tipping the sheet off the equilibrium, the result is a
scroll that promulgates cuts endowed with the meaning of negation. The blot is strictly
speaking then not part of the logical vocabulary of the theory at all. It operates prior to
the formation of logical systems (such as classical or some non-standard Alpha, Beta,
etc.). The blot generates falsity and loses its signification and power (which are now
hidden) in the process. Contrast this with the sheet of assertion. The blot has an opposite
behavior to that of the sheet: white–black, blank–filled, scriptible–non-scriptible (seeMa
and Pietarinen 2019). This area signifies the space of all possible consequences, which
means that “non-scriptibility” is not identical to falsity or negation, and scriptibility is not
identical to that of truth. These are Peirce’s proposed generalisations of values (R 501).
Likewise, the blot is not a logical complementation of the sheet. Both areas are positive.
One more confirmation of this affirmative nature of the blot is found in a fragment of
Peirce’s late letter to J. Kehler 1911:

The simplest part of speech which this syntax contemplates, which, as scribed, I
shall term a blot is itself an assertion. Ought it to be an affirmation or a denial? A denial
is logically the simpler, because it implies merely that the utterer recognizes, however
vaguely, some discrepancy between the fact and the speech, while an affirmation implies
that he has examined all the implications of the latter and finds no discrepancy with the
fact. This is a circumstance to be borne in mind; but since the denial implies recognition
of the affirmation, while the affirmation is so far from implying recognition of the denial,
that one might imagine a paradisaic state of innocence in which men never had the idea
of falsity, and yet might reason, wemust admit that affirmation is psychically the simpler.
Now I think that upon this point wemust prefer psychical to logical simplicity. I therefore
make the blot an affirmation. (RL 376, 1911)

Strictly the blot is not placed on the sheet at all and thus is not to be asserted. Rather
it is a mirror image of the sheet of assertion: assertible/non-assertible. The blot may
appear to the field of vision from within the sheet, but it does so only when confined to
the areas of the scroll. The sheet alone has no blots in it. What is more, any juxtaposition
of a graph with the blot would result in an annihilation of that graph, including any blank
graph such as the sheet. On the dark side of the sheet, there are no juxtapositions.5

Zaitsev andGrigoriev (2011) have proposed a generalisation of logical values beyond
a Cartesian divide of them as either epistemological or ontological. Something of this
sort is happening at Peirce’s paradisiacal level of existential graphs. Zaitsev and Shramko
(2013) call the truth-values from the ontological perspective “referential”, and the truth-
values treated as characteristic of statements involved in reasoning “inferential”, which
“means that a sentence is taken as (i.e., considered) true (and thus accepted) or false
(and thus rejected)” (Zaitsev and Shramko 2013, p. 1302). A combination of two sets
of truth-values has one of them interpreted referentially by 2T = {T, F} and the other
inferentially by 21 = {1, 0}. In Peirce’s case, this project should be read as a way (may

5 When things are unscriptible, it is even not clear whether deduction works as the right mode of
reasoning in that dark realm (Peirce once talked about the mode of reasoning of “correction”,
which is not “deduction” when all propositions are unscriptible (Ma and Pietarinen 2019).

The Blot 237

not be the only one) to clarify how the initial paradisiacal logic, which is implicational
without juxtaposition, operates. These values are initially limited to two singletons {T}
and {1}, since the paradisiacal state of mind is not acquainted with falsity. Now the
value {1} may be assigned to the sheet while the value {T} may be assigned to the
blot. These values are not juxtaposable, although the areas to which they are assigned
are not unrelated: Something that is considered as true {1} is objectively true {T}. The
consequence reminds one of stereotypical thinking in which agents’ objective truth is
aligned with anything they are about to observe. Paradisiacal scroll relates these two
values, stating that anything that is scribed and considered true implies anything that
has to be objectively true. The scroll is the connection between the white and the black
sheet. The border of the scroll is the place where two types of truth meet, and can be
treated as the limit case of {T, 1}.

5 Conclusion

This paper surveyed Peirce’s notion of “blot” and explained some of its main characteris-
tics: logical notation, twokinds of absurdities, paradisiacal logic of the scroll, obliterating
loops, and the relation of the blot to the rules of transformations. A few ways forward
along the last point may be added. As it stands, negation in existential graphs is often
treated as an ordinary graph-instance where the other inference/transformation rules still
apply (such as iteration and de-iteration, or modus ponens and modus tollens). This is
fine if negation is meant as a type of complement or inversion of truth-values, but in the
case of absurdity a pragmatic elucidation would have to go further, because absurdity
suggests that the rules themselves, including both the permissive transformations and
the conventions, begin to break down. This is where the notion of absurdity begins to
have a deeper meaning, and it is here that the blot gives us a valuable way forward. One
interesting feature of the blot is that because of its nature of being non-vacant, com-
pletely occupied area, adding a scroll (or scribing a scroll on top of the blot as it were)
does nothing to the graph. What this means is that the ordinary dualities and symmetries
start to degrade. Maybe the idea of deduction has to go over the board, too. What would
be interesting is to trace this effect to the origins of the inference rules to see at which
stage, when retrogressing towards our proto-logical paradise, the rules themselves start
to degrade.

References

Bellucci, F., Pietarinen, A.-V.: Existential graphs as an instrument of logical analysis: Part I. Alpha.
Rev. Symb. Log. 9, 209–237 (2016a)

Bellucci, F., Pietarinen, A.-V.: From Mitchell to Carus. Fourteen years of logical graphs in the
making. Trans. Charles S. Peirce Soc. 52, 539–575 (2016b)

Bellucci, F., Pietarinen, A.-V.: Two dogmas of diagrammatic reasoning: a view from existential
graphs. In: Hull, K., Atkins, R. (eds.) Peirce on Perception and Reasoning: From Icons to Logic,
pp. 174–195. Routledge, London (2017)

Hamblin, C.L.: One-valued logic. Philos. Q. 17, 38–45 (1967)
Ma, M., Pietarinen, A.-V.: Peirce’s Logic of Dragon Head, manuscript (2019)

238 A.-V. Pietarinen et al.

Ma, M., Pietarinen, A.-V.: A graphical deep inference system for intuitionistic logic. Logique
Analyse 245, 73–114 (2018)

Oostra, A.: Los gráficos alfa de Peirce aplicados a la lógica intuicionista. Cuadernos de Sistemática
Peirceana 2, 25–60 (2010)

Peirce, C.S.: On the algebra of logic: a contribution to the philosophy of notation. Am. J. Math.
7(2), 180–196 (1885)

Peirce,C.S.: Charles Sanders Peirce Papers (MSAm1632).HoughtonLibrary,HarvardUniversity.
Catalogued in Robin, Richard S. 1967. Annotated Catalogue of the Papers of Charles S. Peirce.
University of Massachusetts Press, Amherst (1967)

Peirce, C.S.: Collected Papers of Charles Sanders Peirce. (8 vols. Hartshorne, Charles; Weiss, P.,
eds., vols. 1–6; Burks, A.W., ed. vols. 7–8.). Harvard University Press. Mass (1931–1958)

Peirce, C.S.: Prolegomena to an apology for pragmaticism. Monist 16, 492–546 (1906)
Peirce, C.S.: Logic of the future: Peirce’s writings on existential graphs. In: Pietarinen, A.-V. (ed.)

vol. 1–3. Mouton De Gruyter, Berlin (2020)
Pietarinen, A.-V.: Two papers on existential graphs by Charles Peirce. Synthese 192, 881–922

(2015)
Roberts, D.D.: The Existential Graphs of Charles S. Peirce. The Hague, Mouton (1973)
Roberts, D.D.: A decision method for existential graphs. In: Houser, N., Roberts, D., Evra, J.V.

(eds.) Studies in the Logic of Charles Sanders Peirce. Indiana University Press, Bloomingtom
(1997)

Shafiei, M.: Peirce’s existential graphs as a contribution to transcendental logic. In: Shafiei, M.,
Pietarinen, A.-V. (eds.) Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cog-
nition. LEUS, vol. 46, pp. 97–122. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25800-9_6

Zaitsev, D.V., Grigoriev, O.M.: Two kinds of truth – one logic. In: Logical Investigations, vol. 17,
pp. 121–139 (2011)

Zaitsev, D., Shramko, Y.: Bi-facial truth: a case for generalized truth values. Stud. Logica 101(6),
1299–1318 (2013)

Curriculum vitae
Personal data

Name: Nathan Haydon
Date of birth: December 3, 1986
Place of birth: Arkansas, USA

USA
Contact data

E-mail: njhaydon@gmail.com
Educa3on

2019–2024 Tallinn University of Technology, PhD
2011–2017 University of Waterloo, PhD Philosophy
2010–2011 University of Waterloo, MA Philosophy
2005–2009 Montana State University, BSc Physics
2005–2009 Montana State University, BA Philosophy

Language competence
English naBve

Employment
2019–2024 Early Stage Researcher at Tallinn University of Technology,

School of InformaBon Technologies
Scien3fic work
Papers

2024–Diagramma+c Algebra of First Order Logic with Filippo Bonchi, Alessandro Di
Giorgio, and Pawel Sobocinski. Forthcoming, LiCS. 2024.

2023–Book Review “Handbook of Cogni+ve Mathema+cs, ed. by Marcel Danesi”.
TransacBons of the Charles Peirce Society. 59 (2), p243−248.

2021–Residua+on in Existen+al Graphs with AhB-Veikko Pietarinen. Proceedings of
DiagrammaBc RepresentaBon and Inference: 12th InternaBonal Conference
Diagrams 2021. Springer. p. 229-237.

2020–Composi+onal Diagramma+c First-order Logic with Pawel Sobocinski.
Proceedings of DiagrammaBc RepresentaBon and Inference: 11th InternaBonal
Conference Diagrams 2020. Springer. p. 402-418.

2020–The Blot with AhB-Veikko Pietarinen, Francesco Bellucci, Angeline Bobrova,
and Mohammad Shafiei. Proceedings of DiagrammaBc RepresentaBon and
Inference: 11th InternaBonal Conference Diagrams 2020. Springer. p. 225-238.

Conference Presenta3ons
At the 2022 Applied Category Theory (ACT) Conference, and on behalf of the Adjoint
School, I co-presented work on ‘tape diagrams’.

At the 2022 FMCS workshop, I presented work on Peirce’s ‘Note B’ and his early
presentaBon of linear distribuBvity and linear negaBon in the ExistenBal Graphs.

159

Citizenship:

At the 2022 World Day event in Tallinn, I presented work on Peirce’s ‘Note B’ and his
early presentaBon of linear distribuBvity and linear negaBon in the ExistenBal
Graphs.

At the 2020 Diagrams conference, I presented work on residuaBon in the ExistenBal
Graphs.

160

Elulookirjeldus
Isikuandmed

Nimi: Nathan Haydon
Sünniaeg: 3.12.1986
Sünnikoht: Arkansas, USA
Kodakondsus: USA

Kontaktandmed
E-post:

Hariduskäik
2019–2024
2011–2017
2010–2011
2005–2009
2005–2009

Keelteoskus
Inglise keel

Teenistuskäik
2019–2024

njhaydon@gmail.com

Tallinna Tehnikaülikool, PhD
University of Waterloo, PhD, filosoofia
University of Waterloo, MA, filosoofia
Montana State University, BSc, füüsika
Montana State University, BA, filosoofia

emakeel

Tallinna Tehnikaülikool, infotehnoloogia teaduskond,
tarkvarateaduse insBtuut, doktorant-nooremteadur

Teadustegevus
TeadusarBklite ja konverentsiteeside loetelu on toodud ingliskeelse elulookirjelduse
juures.

161

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-159-8 (PDF)

