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Abstract

Deep learning applications are achieving extraordinary results in different fields,
mostly due to the rapid rate of innovation and the amount of research involved in
this area. One fundamental aspect to consider when implementing deep learning
techniques, particularly inside mission-critical fields, is to be able to guarantee the
robustness of the models, meaning that there is a measurable and precise certainty
that the application will behave as expected.

Robustness evaluation is an extensive and ongoing study with many research gaps,
such as; determining the informativeness of a data set, defining which metrics should
be used, and the lack of interpretability of the results obtained. Due to the vast
amount of rapidly changing research around these topics, having a clear understating
of state of the art regarding how to improve or measure the robustness of a model
can be quite challenging.

For this thesis the author will do a thorough analysis of the current state of the art in
robustness evaluation for deep neural networks with a focus in computer vision, this
work includes deep learning background, current robustness methodologies, analysis
of research gaps and concludes with an experiment that will illustrate a practical
example and tools available to measure robustness.

The thesis is in English and contains 57 pages of text, 11 chapters, 23 figures, 9
tables.
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Nomenclature

DNN Deep Neural Network
NNs Neural Network
CNN Convolutional Neural Network
GPU Graphics Processing Unit
ReLU Rectified Linear Unit
CUDA Compute Unified Device Architecture
x′ Adversarial instance
ε Epsilon
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1. Introduction

Deep Neural Networks (DNNs) remarkable success is notorious among different fields
such as computer vision [15, 16] audio [17, 18] and natural language processing [19, 20].

However, starting with Szegedy et al. [21] many studies have demonstrated that
deep neural networks are highly vulnerable to slightly perturbed inputs, while being
imperceptible to the human vision, can induce specific and unintended behaviour.
After this discovery, a vast amount of research is focused on ensuring the robustness
of the models against these perturbations.

The analysis presented in this thesis is centred around image classification robustness,
image classification is tightly related to human perception, as can be observed when
a model misclassifies an image is an indication that its robust features are mapped to
a class which according to the human vision is considered not to be the correct class.
Robustness inside image classification domain demands to be treated differently
from other domains since most domains do not care about what the human vision
system considers, such as malware classification. This might be the key motive why
understanding the robustness of a computer vision model is a complex endeavour.
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2. Background

2.1. Biological Vision

Neural Networks neurons are inspired by biological ones inside our nervous system [2],
a biological neuron has thousands of dendrites, dendrites receive signals from other
neurons as witnessed in Figure 1, when this signal is passed along a dendrite it
causes a slight change in the voltage difference between the cell’s interior and its
surroundings, some signals provoke a small positive variation in voltage and other a
small negative variation. If the cumulative effect of these signals reaches a threshold,
the neuron will fire an action potential away from its cell body conveyed by its axon,
meaning that it will transmit a signal to other neurons in the network.

Figure 1. The anatomy of a biological neuron [1]

Some history

Five hundred fifty million years ago, the total number of species on the planet suffered
an incremental explosion [2], there is evidence that this explosion of new species was
driven by the development of light detectors in the trilobites, this is the first record
of a primitive visual system, this system provided a large advantage compared to
the other species such as the ability to facilitate the location of food and preys, the
hypothesis concludes that the trilobite’s prey, as well as its predators, had to evolve
rapidly to survive.

After the trilobites, the complexity of the vision system has increased considerably;
for instance, in mammals, a large proportion of the outer grey matter of the brain
is involved in visual perception. In the 1950s at Johns Hopkins University, the
physiologists David Hubel and Torsten Wiesel began executing pioneering research
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on how visual information is processed in the cerebral cortex, the results of this
research [22] contributed to their later awarded Nobel Prize. Hubel and Wiesel’s
methodology consisted of using a projector to display specific images to anaesthetized
cats while simultaneously recording the activity of individual neurons connected to
the primary visual cortex, which the first section that receives visual input from the
eyes. The results exposed that straight edge lines produced an electric activation
in the neurons, as can be witnessed in Figure 2 with this finding Hubel and Wiesel
comprehended that the neurons that receive visual input from the eye are most
responsive to simple straight-edged, which they denominated simple neurons.

Figure 2. A simple cell in the visual cortex of a cat that fires at different rates
depending on the orientation of the line shown to the cat. The line’s orientation
is shown in the left-hand column, while the right-hand column shows the electrical
activity in the cell over one second [2]

Biological vision profoundly influences computer vision; computer vision tries to
emulate human perception, which is a challenging task. Thus, by understanding the
functioning of human perception, it might conduct to achieve the desired behaviour
inside computer vision. The timeline milestones of both fields can be witnessed in
Figure 3.
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Figure 3. Timeline of biological and machine vision [1]

2.2. Deep Learning

Deep Learning is a subfield of machine learning; machine learning algorithms rely on
feature engineering [23] which is a common practice used to extract desired features
from the data, this process is a manual time consuming and labour-intensive task
mainly when used for non-linear problems such as computer vision and natural
language processing. This is one of the critical areas in which deep learning excels
because algorithms inside deep learning can generate these features automatically [24].

Neural networks are the building block of deep learning systems, the most common
type of architecture is feedforward neural networks that accept several inputs, com-
putes a weighted sum, and applies a step function to obtain a final prediction as
denoted in Figure 4.

Deep neural networks can be seen as stacked neural networks, resulting in a network
composed of several layers.

Deep Neural Networks (DNNs), in contrast to traditional algorithms, do not have
explicitly programmed steps, DNNs employs algorithms that learn from previous
experience and common patterns observed to map an instance among a finite set of
classes. These sort of algorithms are additionally referred to as a model.
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y =
∑

(weight ∗ input) + bias

Figure 4. Neuron definition

The concept of Neural Networks is not a recent discovery, it dates back to the
mid-1950s, the main reason deep learning research exploded in the recent years
is due to the amount of data available, cost drop of computation resources and
hardware advances, especially Graphical Processing Units GPUs performance and
their increasing affordability.

GPUs excels in performing parallel computations, GPUs are generally used to
perform millions of matrix operations per second to render polygons used in gaming.
Madhavan et al. [25] indicated that training neural networks was based on performing
numerous matrix operations, and introduced the idea of using these graphics cards to
accelerate training, by this addition, deep neural networks architectures were feasible
for the first time. Some common Deep Learning concepts can be observed in Table 1,
it is essential to understand these topics to be able to proceed with the robustness
evaluation of a model.
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Deep Learning Concepts

Loss Function Measures the accuracy of the model, if the loss function is very
small, the model is accurate.

Activation Function The activation function determines if the neuron triggers or not.
Traditionally the Sigmoid and Tanh functions have been used to
train networks; however, since Hahnloser et al. [26], the ReLU
function has been used more often. Currently, ReLU is by far the
most popular activation function used in deep learning.

Optimizer Ensures the neural network is performing fast and correctly by
updating the biases and weights accordingly.

Gradient Descent Optimization method to discover the minimum of a function.

Learning Rate One of the most important parameters to tune for training a
Neural Network represents the rate at which the model updates the
network’s weights.

Batch Subset of the total data used for training, the data is divided in
several groups of equal size.

Batch
Normalization

Normalization technique to improve stability of the network, takes
the mean and standard deviation of the activation layer and use
those to normalize the activations. Additionally improves
generalization.

Generalization Refers to the ability of the model to infer predictions to new
previously unseen data. High generalization is always desired.

Epoch One iteration where the model sees the whole training set to
update its weights, in other words, one complete forward and
backward pass for all the training samples.

Dropout Rate Normalization technique used to throw away activations at random,
so that no activation can memorize any part of the input, it helps
over-fitting.

Table 1. Additional Deep Learning concepts

Tuning a neural network can be a daunting task due to the vast amount of hyper-
parameters available and the math surrounding them. It has been proven by empirical
efforts, some default parameters that present excellent results, and most of the existing
deep learning libraries already have these default values.
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2.3. Model Architectures

The architecture of a model can be seen as the blueprints of the Deep Neural Network.
It defines the internal structural components, such as the number of layers, loss and
activation functions. Several commonly used architectures specialize in specific tasks.

Convolutional Neural Network (CNN) is a special type of Neural Network that has
shown remarkable performance on image classification, they have been used on visual
tasks since the late 1980s [27] the architectural design of the CNN was inspired by
Hubel and Wiesel’s work [22].

According to Jeremy Howard [28], selecting the architecture of the model should not
be an important part of the Deep Learning process since there are many available
architectures as can be witnessed in Table 2, these architectures will work on most
common scenarios. Only for specific tasks, a finely crafted model should be required.
This is one of the reasons the amount of Deep Learning applications are increasing
since now is simpler to develop a functional model, most Deep Learning libraries
such as TensorFlow and Pytorch already include utility methods to import these
common architectures with a single line of code.

Table 2. Common architectures [14]

Name Year Parameters Depth

LeNet 1998 0.060 M 5

AlexNet 2012 60 M 8

VGG 2014 138 M 19

GoogleNet 2015 4 M 22

Inception-V4 2016 35 M 70

ResNet 2016 25.6 M 152

DenseNet 2017 25.6 M 190

Each of these architectures can have different versions such as ResNet and ResNet-50,
50 refers to the total number of layers of this architecture, ResNet additionally has
18, 34, 101, and 152 versions.

By increasing the number of layers inside the architecture, the amount of time
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required to train the model additionally increases, architectures with more layers
are more prone to over-fitting when having limited amount of data and tend to be
more accurate when using more data. Over-fitting is a problem of Machine Learning
(ML), not just Deep Learning (DL), the problem refers when a function is too closely
fit to a particular dataset, specific for DL it means that the model has memorized
the data presented during the training process and is not able to generalize to new
data, the accuracy is high on the trained data. However, it is low when new unseen
data is presented.

Transfer learning

Transfer learning or pre-trained models is a commonly used technique that allows
models to use the weights that have been trained on a different model, usually with
a more complex architecture and bigger dataset such as ImageNet, which requires
plenty of time and resources to train, this means that the model can use less data and
train more accurate results in less time. One crucial aspect to consider before using
pre-trained models is to observe the data similarity of both models, for instance,
using MNIST pre-trained weights in a model that uses x-ray images may not provide
any performance in the results.

Pre-train models usually remove the last layer, which is the layer that specializes
in a particular classification task such as ImageNet classification and replacing it
with one or multiple layers with randomized weights. The importance and deep
understanding of how to use pre-trained models is ongoing research. He et al. [29]
concludes that pre-trained models provide no performance benefits on various task
and architectures, argues that both pre-trained and training from scratch results in
models with similar accuracy. Hendrycks et al. [30] demonstrate that this is true
only for unperturbed data, showing that pre-train models substantially improves the
quality of various complementary model components such as the model adversarial
robustness while training for longer on a clean dataset allow models without pre-train
to display similar results, training for more epochs on a corrupted dataset conduct
to the model deterioration.
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2.4. Datasets

Data is the cornerstone of any deep learning application. It is of high importance, the
anatomy of the data being used inside the model to interpret the results obtained.

When training a model, the data is required to be split among training set, valida-
tion set and optionally a test set, the accuracy of the model should be measured
only on the validation set otherwise, the results are not valid. When the model does
not have enough data and is trained for many epochs, the accuracy of the model
tends to drop; due to over-fitting, some mitigation techniques for over-fitting include
adding a dropout rate. This means randomly throwing away activations so that the
model will not memorize any part of the inputs rate, increasing the amount of data
by augmentation and reducing the complexity of the architecture.

ImageNet

ImageNet [31] dataset is one of the most popular datasets among Deep Learning
research, is an extensive collection of human-annotated images, it has 14 million
images spread across 22,000 categories, and it commenced with ILSRC (ImageNet
Large Scale Visual Recognition Challenge) [32] in 2010.

The objective of the contest is to label and categorize an image among multiple
classes. The method these classes were generated was the result of WordNet, an
open-source word classification database using hierarchically synonyms.

ILSRC competition lasted for seven years (2010 - 2017) its primary goal was to
promote the development of improved computer vision techniques and to benchmark
state of the art. In the year 2011, ImageNet best results obtained 75% accuracy with
no Neural Networks, in 2012 first place achieved 85% accuracy, the winning team
was the only one that implemented Neural Networks as witnessed in Figure 5, the
following years all the teams that had a top submission were using Neural Networks.

Deep Learning revolution is widely attributed to have its origin inside the ILSVRC
challenge after the 2012 results.
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Figure 5. ILSVRC timeline milestones [2]

3. Computer Vision Robustness

Computer Vision Robustness is a broad, rapidly changing research, the number of
scientific papers in this field is drastically increasing each year as it can be witnessed
from Figure 6. To facilitate the comprehension of this field, the author created a
diagram shown in Figure 7 that represents a high-level representation of the main
areas.

Figure 6. Cumulative number of adversarial papers [3]
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Why adversarial instances exist?

Szegedy et al. [21] work, concluded that the main reason that the models can be
fooled is due to the lack of generalization in low probability space of data, which
may be caused by the high complexity of the deep neural network model structures.
However, Goodfellow et al. [33] demonstrate that even linear models are vulnerable to
adversarial attacks. Some additional insight can be gained by studying the decision
boundary of the model’s; the adversarial examples are, in most cases, close to the
decision boundary, which may be because the boundary is too flat [34], curved [35],
or inflexible [36]. Understanding why adversarial or corrupted instances are capable
of provoke a model misclassification is a research gap that can guide us towards more
robust models.

4. Model Interpretability

Interpretability refers to the ability to understand the reasoning behind a model,
current state of Deep Neural Networks could be considered a black box statistics
model [37] that can generate results based on patterns it learns through many
iterations. Understanding the decisions that lead to those results is a difficult task
that is becoming a hot topic for research [38, 39] Fan et al. [38] work states that
the main reasons behind the complexity of interpretability are due to the lack
of human expertise when handling an intricate problem such as pseudo-random
predictions, commercial cost, there are strong motives for big corporations to hide
their models to avoid being reverse-engineered and interpretability high financial cost
that is required in terms of computational resources, real-world data has many levels
of dimensions that are not easy to interpret. Finally, the algorithms complexity,
Deep Learning relies highly on nonlinear algorithms and recursiveness, resulting in a
non-convex optimization problem that is complicated to comprehend.

Several works around DNNs interpretability [4, 40, 41], provide rich visual representa-
tions of what the neurons across each layer perceives from the robust features, as can
be observed in Figure 8, understanding how the DNNs interprets the results is of high
importance in the field of robustness since the reason behind the neuron’s activation
to specific patterns or textures to provoke a decision boundary misclassification is
the foundation of adversarial attacks.
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Figure 8. Comparison of how a neuron visualize a feature [4]

Adversarial robustness could be correlated to interpretability Ross et al. [5], demon-
strated that an adversarial defence using gradient smoothing additionally increased
the interpretability in the input gradients of the model as can be witnessed in Fig-
ure 9, their findings concluded that when the gradients are interpretable, adversarial
instances may be used as explanations. If the victim model had more interpretable
input gradients, then the adversarial examples which are generated directly from
their input gradients would be more interpretable as well, resulting in an adversarial
example that is more obviously transformative away from the original class label and
towards another.
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Figure 9. Input gradients of MNIST dataset, distilled models at T=50 (third from
top), adversarial trained (fourth from top) and gradient regularization (bottom top).
Regularized model gradient appears smoother and easier to interpret by human
perception [5]

5. Robustness Metrics

Having a standardized metric to measure the robustness of a model is a research
gap that does not have a consensus answer. Currently, most research uses these
two approaches, Lp − norms distances, used to determine the minimum distance
from the original instance to the closest adversarial example, this is called minimum
adversarial distortion [42] and testing the accuracy of the model under adversarial
attacks [43].

L0 quantify the number of pixels that are different between two images, L2 additionally
known as Euclidean distance which is the shortest distance between two vectors,
computes the squared difference between two images and L∞ quantify the largest
difference between corresponding pixels in the images, determines the maximum
value in a vector.

Both approaches have some significant drawbacks, Lp − norms are not able to
capture the human similarity perception accordingly, and measuring the accuracy
under adversarial attacks is highly affected by the attack specifications and cannot
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comprehensively reflect the actual robustness regarding model-intrinsic properties.

Several works [6, 7, 44] have concluded that Lp−norms are not suitable for defining
similarity as can be observed in Figure 10, and may lead one to conclude that an
adversarial example is similar to a benign instance when it is not.

Figure 10. Images equally far away from a reference image in the L2 distance [6]

Sharif et al. [7] created an experiment where they presented three sets of images
as witnessed in Figure 11, to 399 participants, each image has three variants CB

(Benign) is the benign non-adversarial instance, CAI (Adversarial Imperceptible)
shows an adversarial instance that fool state-of-the-art DNNs and was not designed
to mislead humans, and finally CAP (Adversarial Perceptible) which is an adversarial
instance that fool state-of-the-art DNNs, designed to mislead humans. Both CAP and
CAI share same Lp− norms distance with respect of CB, the results indicated that
the humans were able to have high accuracy in the CB and CAI instances and low
accuracy for the CAP instances, demonstrating that Lp− norms can be insufficient
for ensuring perceptual similarity in some cases.
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Figure 11. Set of images with similar Lp-norms perturbation [7]

For these reasons the author consider this topic should be of main priority on
the robustness research, even though the numbers of scientific papers related to
adversarial robustness is increasing each year as can be witnessed on Figure 6, if
there is not an standardized robustness metric, the validity of the new proposals to
enhance robustness cannot be ensured.

There is a vast amount of ongoing research [45, 46, 47, 48, 7] around electing new
robustness metrics, selecting which metric should be used as a standardized measure
of robustness is not a straightforward endeavour, nevertheless, one conclusion from
the ongoing metric research is that the selected metric should have at least the
following attributes: it should be able to generalize across different data sets,
models, defence and attacks, invariance under re-parameterization and acceptable
computing complexity.
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6. Adversarial Robustness

Adversarial examples are slightly modified versions of a correctly classified input
instance that are carefully crafted with the whole purpose of generating a class
misclassification inside the targeted model, which additionally report high confidence
on the wrong prediction. The formalized definition of adversarial in most research [33,
49, 50] defines adversarial instance as x′, that is a slightly modified version of a
regular instance x, such that a neural network model classifies them differently.

An adversarial examples x′ satisfies two properties [51]: (1) for some d(·), distance
metric d(x, x′) < ε, but (2) for the neural network, f(x) 6= f(x′). As long as ε is set
to be small enough, the adversarial perturbation introduced should not change the
actual true classification of the object in the image.

The term adversarial example was first used in 2013 by Szegedy et al. [21] they
generated small perturbations on a particular image that was previously correctly
classified and were able to tool the state of the art deep neural networks with high
probability, these misclassified samples were named as adversarial examples.

Deep Learning is usually considered a black box technique since it is not evident how
to interpret the decision behind a particular output. From adversarial examples, some
knowledge concerning the internal working of a DNN could be acquired, especially
since adversarial attacks are focused on finding problematic decision boundaries.

Adversarial examples represent worst-case domain shift, in Deep Learning domain
shifts occur when training data and test data do not have the same distribution,
with adversarial examples, the adversary maliciously on purpose does this worst-case
domain shift and causes the model to behave poorly. Figure 12 represents the variety
of adversarial examples that can be crafted using different attack mechanisms.
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Figure 12. Examples of adversarial images, (a) shows indirectly encoded images [8],
(b) shows directly encoded images [8], (c) shows perturbed adversarial images [9], (d)
example of a patch attack [10], (e) shows 3D objects that can be printed in real-world
and produce misclassification [11]. Figure from [12]

6.1. Adversarial Attacks

There are several methods to generate adversarial instances; a summary of the
most common adversarial attacks can be observed inside the Table 3. Adversarial
attacks can be classified by their threat model [52], the threat model defines the
rules of the attacker, the capabilities and the end goal of the attack. The goal defines
what the adversarial instance seeks from the attack, such as confidence reduction,
misclassification, and targeted misclassification. An attacker can have single or
multiple goals. Capabilities refer to what resources are available to the attacker such
as training data, architecture and model parameters, and this additionally includes
some boundaries where the attacker claim that is able to produce misclassification
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such as specifying the type of Lpnorms and their upper and lower bounds.

Inside black-box attacks the attacker has limited knowledge. The limited capa-
bilities of the adversary are the most common on real-world scenarios and often
considered as more practical-research. These attacks are bounded around querying
the model on inputs and observing the labels and accuracy returned. In order
to alleviate the lack of knowledge, black-box attacks usually rely on adversarial
transferability [53], where the attacker craft adversarial examples using a substitute
model A, submit the same examples to model B which is the victim, and model A is
likely to misclassify the inputs. Most mitigation techniques for black-box attacks are
based on limiting the number of queries and information a deployed model provides
and reducing the transferability property of the victim model [54]. White-box
attacks have complete knowledge of the targeted model, such as the architecture,
parameters, learned weights and in some cases even labeled trained data. For this
type of attacks the common strategy of the attacker is to model a replica using the
victim weights and derive the adversarial instances. Evasion attacks are the most
common attacks, the adversary aims to provoke a misclassification by crafting an ad-
versarial instance, evasion attacks can be either white-box or black-box. Poisoning
attacks refer to attacks directly on the model training data, affecting the training
of the model itself, these variety of attacks attempt to poison the training data by
injecting adversarial instances to compromise the learning process, as expected, all
poisoning attacks require a white-box setting, where the attacker has full access to
the victim model. Extraction attacks are black-box attacks that do not influence
the training dataset. Their main goal is to explore and extract knowledge of the
learning algorithm such as parameters and type of architecture.
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Table 3. Common adversarial attacks

Attack Name Description Year
Threshold Attack [55] evasion, black-box, un-targeted, L∞ 2019

Pixel Attack [56] evasion, black-box, un-targeted, L0,
low-cost, easy-implementation

2019

HopSkipJump Attack [57] evasion, black-box, targeted, un-targeted,
L2L∞, only requires class predictions,
advanced version of Boundary Attack

2019

Projected Gradient Descent
(PGD) [58]

evasion, iterative extension of FGSM,
similar to BIM, main difference is that
PGD projects the attack results back on
the ε− norm ball around the original

input at each iteration

2017

NewtonFool [59] evasion, un-targeted, tries to decrease the
probability Fy(x) of the original class
y = C(x) using gradient descent

2017

Elastic Net Attack (EAD) [60] evasion, L1, modification of (C&W) 2017
Spatial transformation Attack [61] evasion, performs a combination of

exactly one rotation and one translation
to the input image to craft the adversarial
instance, same rotation and translation
parameters are used for all the input

batch

2017

Query-Efficient Attack [62] evasion, black-box version of (C&W) 2017
Zeroth-Order Optimization Attack

(ZOO) [63]
evasion, black-box, only has access to the
input images and the confidence scores.

2017

Boundary Attack [64] evasion, black-box, only requires queries
of the output class

2016

Adversarial Patch [65] evasion, used to create printable
adversarial instances for the real-world

2016

Carlini & Wagner Attack
(C&W) [66]

evasion, white-box, targeted, un-targeted,
L2L∞,

2016

Basic Iterative Method (BIM) [67] evasion, extension of FGSM, applies the
attack multiple times, iteratively.

2016

Jacobian Saliency Map (JSMA) [9] evasion, targeted, L0 2016
Universal Perturbation [68] evasion, un-targeted, creates a constant

perturbation that successfully alters the
classification of a specified fraction of

inputs.

2016

DeepFool [45] evasion, un-targeted, L2, projects the
input into the nearest decision boundary,

iteratively.

2015

Fast Gradient Sign Method
(FGSM) [33]

evasion, targeted, un-targeted, L1L2L∞,
very efficient to compute, only one

gradient evaluation is required, popular
choice for adversarial training.

2014

Functionally Equivalent
Extraction [69]

extraction, direct extraction, no training,
focus on accuracy and high fidelity

2019

Copycat CNN [70] extraction, learning, has a goal of
accuracy and fidelity, query labels

2018

KnockoffNets [71] extraction, learning, has a goal of
accuracy and query probabilities

2018

Poisoning Attack on SVM [72] poisoning, used for Support Vector
Machines

2013

Backdoor Attack [73] poisoning, attacks training dataset and
corresponding ground-truth labels

2017
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6.2. Countermeasures

As the number of adversarial attacks increases, there is additionally an increment
in defence mechanisms to countermeasure them. A summary of common defence
strategies can be observed in Table 4. There is not a single universal defence that
will improve the robustness of a model for all types of attacks. Each defence is robust
against a specific attack under certain specific conditions such as the Lp− norms
bounds one defence that claims to be robust for a certain attack on a specific type of
Lp−norms may not improve the robustness against the same attack with a different
Lp− norms type or boundary.

Countermeasures for adversarial attacks can be grouped in three main categories:
gradient masking; since most attacks exploit back-propagation to use gradients
to craft the adversarial instance, gradient masking consists on hiding gradient
information to the attacker by obfuscating them, robust optimization consists of
different techniques that can enhance the model performance against adversarial
instances, such as regularization, adversarial training, adding random noise, ensemble
training, and gradient smoothing, adversarial detection this type of defences
specialize in detecting in runtime adversarial instances among the inputs.

One of the most common techniques is adversarial training which consists on aug-
menting the training data with adversarial examples to improve the robustness of
the network, there are some drawback with this approach, the attack used by the
victim model to defend and the one used by the adversary should be the same, if the
attackers adapt its strategy with a different attack, the defence is not very effective
anymore, this is the case for most defences and remains an open research gap. Is
harder to generalize model robustness to adaptive attacks, since the classifier is
required to be aware of all attacker strategies.
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Table 4. Common adversarial defences

Defence Name Description Year
Thermometer
Encoding [74]

robust optimization, data pre-processing, input
discretization, encodes each feature as a fixed-size

binary vector

2018

Total Variance
Minimiza-
tion [75]

robust optimization, data pre-processing,
randomly selects a small set of pixels to

reconstruct an image, reconstructed image does
not contain adversarial perturbation since these

perturbation are small and localized

2018

Pixel
Defend [76]

robust optimization, purifies a maliciously crafted
image by moving it back towards the distribution
seen in the training data, can be used to protect
already deployed models in combination of other

defences

2017

Gaussian Data
Augmenta-
tion [77]

robust optimization, data pre-processing,
augmentation technique that additionally improve

adversarial robustness

2017

Feature
Squeezing [78]

robust optimization, data pre-processing, reduces
the precision of the components of x by encoding

them on a smaller number of bits

2017

Spatial
Smoothing [78]

filter out adversarial signal using local spatial
smoothing

2017

JPEG
compression [79]

robust optimization, data pre-processing,
dramatically reduce adversarial attacks

2016

Label
Smoothing [80]

modifies the labels during the training, the
difference between maximum and minimum

components is reduced, thus reducing gradients

2016

Virtual
Adversarial
Training [81]

robust optimization, data augmentation, is not
used to create adversarial instances, it creates
samples that, if included in the training set for
adversarial training, result in local distributional

smoothness of the trained model

2015

Reverse
Sigmoid [82]

robust optimization, data post-processing, limits
the information provided to the adversary,

omitting real probability scores, provides useful,
yet misleading class probabilities, forcing the
attacker to discard the probabilities score

2018

Random
Noise [83]

robust optimization, data post-processing,
extraction defence

2018

High
Confidence [84]

robust optimization, data post-processing,
extraction defence, avoid returning rich outputs,

omit confidence values

2016

Rounding [84] robust optimization, data post-processing, similar
to High Confidence, extraction defence, round the
confidence scores returned to avoid giving out to

much information

2016

Adversarial
training [21, 58]

robust optimization, data augmentation, generate
adversarial inputs and add them to the train set

2013

Defence
Distillation [85]

gradient masking, transform data, uses distillation
training, broken by (C&W) attack

2015

Fast Generalizes
Subset Scan
Detector [86]

detection, finds anomalous patterns in general
categorical data sets

2018

Activation
Analysis

Detector [87]

poisoning attack detection, backdoor detection,
works on text and images, model does not require

a verified dataset

2018

Data
Provenance
Detector [88]

poisoning attack detection, uses contextual
information about the origin and transformation

of data point in the training set to identify
poisonous data

2018
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7. Perturbation Robustness

Deep Neural Networks exhibit unexpected instability on common perturbations;
common perturbations can be considered as small changes that can be encounter in a
real-life situation such as rotation, snow, fog, brightness, contrast and pixelation. One
contribution that allowed to increase the research around this area is the perturbation
benchmark introduced in Hendrycks et al. [13] additionally known as ImageNet-C
benchmark due to the name of the new dataset introduced, which was generated by
adding a set of 15 types of algorithmically generated visual corruptions as witnessed
in Figure 13.

Figure 13. ImageNet-C perturbations[13]

There has been some research [89, 90, 13] to determine if adversarial and common
perturbations are correlated, the results demonstrate that a fully augmented model
is not more robust than the regular model to adversarial attacks, indicating that
robustness to common perturbation does not protect the model from adversarial
attacks. The results additionally concluded that some viable mitigation techniques
to improve common perturbation robustness are: histogram equalization, multi-scale
architectures, and data augmentation with common perturbations data.
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8. Tools Available for Measuring Robustness

Robustness benchmarking tools gather known attacks and defences and implement
them in the form of a library agnostic to the type of DL framework. To the author’s
knowledge, the amount of benchmark tools is limited.

Some of the most popular open-source libraries are Cleverhans [91], Foolbox [92],
and IBM Adversarial Robustness Toolbox (IBM ART) [93].

IBM ART was selected to perform the experiments in this work since among the
others, it has a bigger variety of attacks, defences and even metrics implemented, is
compatible with PyTorch, the framework used by the author, has great documentation
and finally it has excellent community support, the author had several discussions
with the creators of the library using IBM Slack channel with a positive and rapid
response.

9. Proposed Methodology

For the experimental part of this research multiple tests were conducted to analyze
the required level of difficulty to provoke a model misclassification. The experiment
consists of the workflow described inside Figure 14.
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Figure 14. Workflow of the experiment.

Key points of the experiment:

1. The architecture for all the experiments is ResNet-50. ResNet-50 was selected
since is one of the state-of-the-art architectures that has shown excellent results
inside the literature reviewed.

2. Four datasets were selected; each dataset has unique characteristics that are
explained in the following chapter.

3. Before testing robustness, the models should have at least 90% accuracy to
ensure there is not a misclassification due to the model’s poor performance.

4. One image per class is selected from the validation set to test against common
perturbation and adversarial attacks.

5. All four datasets have ten classes, due to this, on each evaluation, the test
dataset consists of ten images.

6. Four metrics are analyzed for each test L1, L1,L∞, and accuracy.

(a) Lpnorms are gathered to understand if there is a correlation among
accuracy and level of Lpdistance.
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(b) accuracy indicates the level of robustness of the model.

7. Five types of common perturbations are applied, each perturbation is applied
in a range of different magnitudes as witnessed in Figure 7.

8. The adversarial attack selected is Projected Gradient Descent (PGD), since
PGD is recommended as good entry to measure robustness [58].

Projected Gradient Descent (PGD) attack is an iterative method in which, after
each iteration the perturbation is projected on an Lpnorms to find an adversarial
instance. For this experiment IBM ART library is used to generate the attack using
its default parameters, the default parameters for the attack can be observed in
Table 5.

Table 5. PGD default parameters

Name Value Description
norm np.inf The Lp norm of the

adversarial
perturbation.

eps 0.3 Maximum
perturbation the
attacker can
introduce.

eps_step 0.1 Attack step size at
each iteration

max_iter 100 Maximum number of
iterations to craft
the adversarial

instance.
targeted False Targets or

untargeted attack.
num_random_init 0 Number of random

initializations within
the epsilon ball.

batch_size 1 Size of the batch on
which adversarial

samples are
generated.

random_eps False When True, epsilon
is drawn randomly
from truncated

normal distribution.
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10. Experiment and Evaluation

Environment setup

The models were trained in a server provided by the Department of Computer
Systems of Tallinn University of Technology with the following specification: CPU
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 16GB DDR4, 1TB HDD, GPU NVIDIA
GeForce GTX 1080 with a clean installation of Ubuntu 20.04 LTS as OS.

For this experiment 60GB of HDD space was utilized to store the different datasets
and save the model weights.

The sever was accessed principally remotely, using SSH connection with Ngrok Pro
client [94] to facilitate the tunnelling from outside Tallinn University of Technology
VPN. Since each time the server rebooted Ngrok VPN client was shutdown, Ngrok was
configured to autostart using the YAML file shown in Figure 15, the remote_addr
and subdomain are paid features from the Pro version, by using the free version
Ngrok domains will be randomized on each restart, besides that, they share similar
functionality.

Nvidia drivers were installed using CUDA Toolkit 10.2 [95] and UEFI Secure Boot
had to be disabled in order to allow remote drivers installation.

authtoken : {ngrok_token}
reg i on : eu
tunne l s :

d e f au l t :
proto : tcp
addr : 22
subdomain : i c t_lab_server
remote_addr : 3 . tcp . eu . ngrok . i o :21832

t h e s i s :
proto : http
addr : 8888
subdomain : cnn_robustness_analys i s

Figure 15. Ngrok YAML configuration file
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Software Environment

The experiments were performed using Python + Jupyter Notebooks + Conda
environment with Fastai as DL library, the main list of dependencies are shown in
Table 6. The full Conda environment along with the Jupyter Notebooks code is
available in the author GitLab repository [96].

Table 6. Main software dependencies

Name Version
python 3.7.7
fastai 1.0.61
torch 1.4.0

torch cuda 10.1
adversarial-
robustness-
toolbox

1.2.0

jupyterlab 1.2.6
conda 4.8.3

Datasets

For this experiment the author used four datasets, Imagenette-160 [97], Imagewoof-
160 [97], MNIST [98] and Pentomino (Arcade Universe) [99].

Imagenette-160 is a subset of ten easily classified classes from ImageNet, similar to
that, Imagewoof-160 is a subset of ten ImageNet dog breed classes that are more
difficult to classify since the classes share similar characteristics. MNIST (Modified
National Institute of Standards and Technology database) is a famous handwritten
digits dataset, commonly used as a benchmark due to its small size and fast training
time. Imagenette-160, Imagewoof-160 and MNIST was downloaded from the Fastai
datasets URLs.

The last dataset, Pentomino is a dataset crafted from Arcade Universe [99] which is
an open-source library that can generate crafted datasets that are valid for image
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classification tasks, the output images have a finite set of classes and share similar
attributes such as amount of channels and size. The Pentomino dataset is a sequence
of images where each image contains exactly three shapes. Two shapes are identical,
and the third is different from the others. The target of the classification task is to
identify the third shape. There are ten possible shapes, and thus ten possible classes
for the task, an example of the dataset can be observed in Figure 18. The author
added this open-source dataset as part of this experiment to analyze the behaviour
of common perturbation on simple shapes.

Some highlights among the four datasets used in the experiment:

1. MNIST dataset has a small resolution and has a grayscale colour; classification
complexity is considered as low. Thus should, in theory, be considerably simple
to generate adversarial instances. MNIST will represent the experiment baseline
due to its simplicity.

2. Imagewoof-160 and Imagennete-160 datasets share similar characteristics. The
difference relies on Imagewoof-160 being a more challenging dataset to classify.
The author will analyze whether models that are trained to classify a more
difficult dataset present stronger robust attributes.

3. Pentomino dataset contains simple shapes which should result in a simple
classification task, however, due to the additional complexity of the dataset;
that the image class should correspond only to the shape that does not have a
duplicate element, the results obtained could be insightful.
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Figure 16. Imagenette-160 dataset, left section denotes the training accuracy and
confusion matrix, right section denotes a sample of the images.

Figure 17. Imagewoof-160 dataset, left section denotes the training accuracy and
confusion matrix, right section denotes a sample of the images.
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Figure 18. Pentomino dataset, left section denotes the training accuracy and confusion
matrix, right section denotes a sample of the images, a red circle was added to highlight
the shape that is different from the other two, this shape represent the class of the
image.

Figure 19. MNIST dataset, left section denotes the training accuracy and confusion
matrix, right section denotes a sample of the images.
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Table 7. List of perturbations applied

No. Perturbation Range Description
1 Rotation [-60, 20, 100, 180]

degrees
Rotates de image

2 Brightness [0.1, 0.3, 0.4, 0.5]
change

Change of 0 will transform image
to black, change of 1 will

transform the image to white
3 RGB Randomize Red [0.2, 0.5, 0.99]

thresh
Randomize one of the channels of
the input image, values will not

exceed the thresh
4 Jitter [-0.05, -0.03, 0.00,

0.03, 0.05]
magnitude

Changes the pixels by randomly
replacing them with pixels from

the neighborhood, which is
controlled by the magnitude

5 Contrast [0.5, 1.17, 2.74, 6.41]
scale

Scale of 0 will transform image to
gray, scale over 1 will transform
image to upper-contrast, scale of

1 does not adjust the image

Training Methods

The training of all four datasets share similar training conditions, ResNet-50 ar-
chitecture, pre-trained on ImageNet, Adam optimizer, CrossEntropyLoss, resizing
according to each data set size and data normalization with MNIST stats [0.131],
[0.308] for MNIST dataset, and ImageNet stats [0.485, 0.456, 0.406], [0.229, 0.224,
0.225] for the rest.

Results

During training, all datasets were able to reach at least 90% accuracy, additionally,
as it is expected, the time taken to train each dataset is correlated to the complexity
of the dataset, for MNIST and Imagennete-160 took one epoch and less than one
minute to reach 92% accuracy, for Imagewoof-160 took four epochs and three minutes,
finally for the most complex dataset, Pentomino, it took around ninety epochs and
one hour and thirty minutes to reach 98% accuracy for this dataset a dropout rate
of 30% had to be added to avoid over-fitting.

The results after applying the five common perturbations to each dataset can
be observed in Figure 20 for both Imagewoof-160 and Imagennete-160 and inside
Figure 21 for the MNIST and Pentomino dataset.
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Figure 20. Perturbation attack results, left section Imagewoof-160, right section
Imagennete-160. From top to bottom, mean accuracy plot in blue, mean L1 distance
plot in green, mean L2 distance plot in purple and mean L∞ distance plot in orange.
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Figure 21. Perturbation attack results, left section MNIST, right section Pentomino.
From top to bottom, mean accuracy plot in blue, mean L1 distance plot in green,
mean L2 distance plot in purple and mean L∞ distance plot in orange.
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The accuracy results can be observed inside Table 8, additionally an example of the
applied perturbation can be observed in Figure 22.

Figure 22. Representation of three perturbations applied to Imagennete-160, from
top to bottom, rotation, brightness and RGB randomize, each image with a red title
represent a misclassification from the ground truth.

Conclusions after the common perturbations attack are as follows:

• Common perturbations are valid and concerning issue in terms of accuracy,
since all datasets were reasonably simple to fool.

• The two strongest perturbations where rotation and jitter, which might be
related to patterns applied on both perturbations to change the pixels.

• Imagennete-160, presented more robust features against Imagewoof-160, which
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might indicate the similarity of the classes could lead to a lack of robustness,
further work on this could be beneficial.

• Pentomino and MNIST worst perturbation was due to RGB randomize since
they are both grayscale images, the model is not able to process colour channels,
indicating that adding a preprocessing filter such as binary thresholding before
the model inference might conduct to better results.

• Grayscale images present strong robustness against contrast and brightness
perturbations.

• Pentomino had the worst accuracy, indicating that simple shapes might lack
robust characteristics since their decision boundary might be quite close to
among classes.

• The author was not able to find a correlation between accuracy and Lpnorms,
for instance L∞ shows a high distance for the RGB randomize when there
is low accuracy such as Pentomino and MNIST. However, it has high values
aditionally with increased accuracy such as Imagennete-160 and Imagewoof-160.
Indicating that Lpnorms might not be the correct metrics for robustness.

Table 8. Common perturbations accuracy results

Dataset Name Clean Accuracy Accuracy After
Perturbation

Accuracy
difference

Pentomino 89.98% 42.816% 47.114%
Imagewoof-160 99.64% 66.56% 33.07%

MNIST 99.99% 72.50% 27.49%
Imagennete-160 99.99% 73.11% 26.87%

From the adversarial attack results, the following conclusions can be taken:

• PGD is a powerful attack can drastically drop the accuracy of a model even if
it had excellent accuracy, it was able to fool all datasets.

• Benchmark tools such as IBM ART simplify testing different attacks.

• The attack is crafted using only ten relatively small images, however, it took
more than two minutes to generate results, confirming that the attacks are
computationally expensive, meaning that, targeting bigger high-resolution
datasets might not be computationally feasible.
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• The attack was not able to provoke a misclassification for Pentomino dataset
indicating that the dataset has some unique characteristics that are able to
avoid PGD attack using default parameters, for this a more aggressive tuning
might be required, adversarial attacks tuning is an area that requires further
analysis.

Adversarial attack accuracy results can be witnessed in Table 9, and an example of
the resulting images after the attack can be observed inside Figure 23.

Table 9. Adversarial attack results

Dataset
Name

Clean
Accuracy

Accuracy
After PGD

Difference Time for the
Attack

Pentomino 89.98% 98.19% 1.45% 2min 26seconds
Imagewoof-160 99.64% 57.73% 41.91% 2min 38 seconds

MNIST 99.99% 23.96% 76.03% 2min 14seconds
Imagennete-

160
99.99% 29.99% 70% 2min 25seconds

Figure 23. Adversarial instances, from left to right and top to bottom, Pentomino,
Imagewoof-160, Imagennete-160 and MNIST dataset, red titles denote that the class
of the image was different from the ground truth.
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11. Conclusions and Future Work

After this work, the author concludes adversarial and common perturbations are an
alarming security threat that should have more research.

To the author’s knowledge there is a vast amount of adversarial robustness literature
and considerable less regarding perturbation robustness, as was concluded in the
experiment even for models that have high accuracy, the amount of effort required
to provoke a misclassification by common perturbations is considered low. Thus
the author considers more research should inquire in making models more robust to
common scenarios and not only on worst-case scenarios which are the adversarial
instances.

During this work, several research directions were considered, such as improving
interpretability and adaptive defences as mitigation mechanism, the author considers
the direction with the highest priority should be identifying a reliable, standardized
robustness metric to ensure future work is viable and accurate.

The number of attacks and defences available is drastically increasing, for each
attack, there is a defence and then a counter-defence attack that can break it, the
author acknowledges the impact of adversarial attacks and highly encourage the
research on this direction, however, the author concludes that adversarial attacks are
a representation of the worst-case scenario. By considering this, the research should
always concentrate corresponding time on common perturbation robustness, through
consolidating efforts in both fields, the research community might be capable of
coming up with a robust design against all type of adversarial instances.

Future Work

This work provides an analysis of robustness inside computer vision; future work
could address robustness inside other domains such as audio, video, natural language
processing and malware detection.

The experiment demonstrated the basic workflow of adversarial instances, with
particular focus on common perturbation using Lpnorms, in this sense, more detailed
examples could be added regarding defences and how they behave against adversarial
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attacks, likewise, further analysis on the different robustness metrics could enhance
the practical examples presented. Finally, the work presented could be converted
in a PyPI package that allows verifying the robustness accuracy of any model in a
simplified manner.

Adversarial and perturbation robustness is a rapidly changing research; the amount
of scientific papers in this field is drastically increasing each year as witnessed from
Figure 6. Nicholas Carlini, one of the key personalities around this field is a research
scientist at Google Brain and co-author of the (C&W) adversarial attack [66], created
a blog [3] that contains a starting point for robustness literature. The author highly
encourages anyone starting in this field to review the content of this blog.
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