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1 Introduction
1.1 Background
Today, the industry is rapidly developing by integrating numerous intelligent technolo-gies and innovative systems for its process automation and optimization, thus reshapingindustrial production and warehousing. The integration of different smart solutions inthese fields aims to improve overall process efficiency, transparency, and scalability, whilebolstering workplace safety and reducing the risk of human error [7, 8, 9]. Real-time lo-calization and identification of stored products or processed materials remains one of theessential aspects of warehousing and production management. In this realm, accuratetracking ensures seamless inventory control, minimizes delays, misplacements, and op-erational bottlenecks. The increasing adoption of IoT (Internet of Things) devices and AI(Artificial Intelligence) further revolutionizes warehousing operations, allowing predictivemaintenance, intelligent resource allocation, and real-time data analytics, enhancing thedecision-making processes. Moreover, integration of automated guided vehicles (AGVs),collaborative robots, and intelligent machinery redefines traditional workflows, enhanc-ing production scale, speed, and precision [10]. These technological advancements alsolead to an increase in production sustainability by optimizing resource usage, reducingwaste, and minimizing energy consumption.
1.2 Introduction to Product Tracking Techniques
A variety of different positioning methods are actively advancing and being integrated forindustrial needs. Direct tracking of industrial equipment, personnel, machinery, products,or other objects can be considered the most straightforward and widely utilized localiza-tion approach. It unites a variety of different trackingmethods and solutions, in which thetracked object is physically marked with a piece of positioning equipment, localized by itscorresponding specialized infrastructure. Physically attached positioning units - tags, canbe classified into active and passive units, which determine their participation in the po-sitioning process and overall intelligence [11, 12]. Active tags can be mainly determinedby their capability to actively communicate with the positioning infrastructure. Passivetags, on the other hand, do not support the active data exchange with the positioning in-frastructure and only perform a passive data reception or provide a one-time predefinedresponse.Active positioning systems are used in the industry and warehousing for real-timetracking of specialized equipment, machinery, or products. Being one of the most ad-vanced industry-level localization systems, the Ultra-Wideband (UWB) indoor positioningsystem is widely used. It is designed to provide accurate and real-time tracking in the in-door environment and can be successfully used to track industrial assets or specializedequipment, as stated by Shyam et al. [13] and Volpi et al. [14] in their works. Direct equip-ment and product localization may also be based on various alternative and widely avail-able technologies, including active RFID (Radio-Frequency Identification) tags [15] toWi-Fi(Wireless Fidelity) [16], Bluetooth [17], or cellular technologies such as 5G (5th Generationof cellular technology) [18]. The use of active tag positioning systems, however, leads todifferent essential limitations and drawbacks for industrial management and warehous-ing. One of themajor limitations is the limited scalability of thosemethods, as the numberof required positioning units increases proportionally to the number of tracked products.Finally, direct tagging of a larger number of products and equipment with active trackingunits will naturally decrease the cost- and energy efficiency of this approach, as well asincrease the data processing complexity and hardware maintenance requirements.
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Passive tag-based methods are widely used in modern warehousing and industry pri-marily for product or equipment identification purposes. The broad use of product iden-tification technologies, such as passive RFID tags [19], QR (Quick-Response) codes [20],or barcodes [21], is explained by their widest availability and cost efficiency. Even thoughthese technologies also provide significant scalability in product identification, they arenot initially designed for their localization purposes. Nevertheless, according to numer-ous available/developed methods, real-time product localization based on passive tagswill require the deployment of additional, expensive, and complex supporting infrastruc-ture. This infrastructure can be deployed on the asset storage shelves and racks, as inmethods described by Poon et al. [22] and Motroni et al. [23], within the selected pro-duction area [24], or across the ceiling of the entire industrial area, as proposed by Jeon et
al. [25] andNepa et al. [26] in their works. Non-real-time localization of RFID-tagged prod-ucts can also be performed by usingmobile platforms, such as drones or robots. Equippedwith the necessary sensor setup, amobile platform performs a continuousmapping of theavailable RFID-marked products in the area, thus localizing them. This approach may relyon different techniques from base RFID scanning, as proposed by Kapoor et al. [27] andLi et al. [28], to Synthetic Aperture Radars (SAR), as developed by Motroni et al. [29] andBuffi et al. [30].Although traditional direct localization methods are actively and widely adopted inthe industry, in certain cases and scenarios, they remain inapplicable. Throughout theiractive production process, different industrialmaterials, such aswood,metal, or stone, of-ten face frequent physical processing, high temperatures, critical accelerations, or otherextreme conditions. These conditions are likely to lead to damaging or altogether de-stroying any attached tracking or identification unit, thus restricting the possible use oftraditional direct tracking methods. Accurate real-time identification and localization ofthose products requires an alternative, indirect, and fully markerless method [31, 32].
1.3 Problem Formulation & Research Questions
This research addresses the problem of accurate real-time localization of industrial prod-ucts and equipment in cases where their direct physical marking with neither active posi-tioning tags nor passive identification tags is possible. Thus, themain topic of this researchattempts to formulate and develop an Indirect TrackingMethod for Accurate, Automatic,
and Three-dimensional Localization of Fully Markerless Industrial Products. As it is fur-ther described in Section 3, the indirect tracking methodology formulation process hasalso revealed the importance of Accurate Vehicle Heading Estimation Method, Suitable
For Industrial Environments, which eventually became the separate and primary subtopicfor this research. This research aims to meet the following criteria, initially formulated forthis work from the perspective of the Industry 4.0 [33], and applicable to both topics ofthis research:

1. Tracked products and equipment must remain fully markerless. In particular cases,when the direct product marking with identification tags is acceptable, it may beintegrated as an entirely auxiliary technology.
2. A three-dimensional product tracking must be supported to cover most of the pos-sible product storage scenarios, including their stacking and shelving.
3. The proposed method must provide a possible cost efficiency and computationalincomplexity of the resulting solution. Overall criteria for the sensors & hardwaresetup include:
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• Essential set of hardware and sensors with minimized use of extra supportingand auxiliary units (the necessary minimum of sensors & hardware).
• Cost-efficiency of the chosen setup of sensors.
• Possible computational incomplexity and minimized data processing require-ments

4. The proposed method must be automated to increase the time efficiency and min-imize the impact of human error.
5. Seamless deployment of the necessary infrastructure, requiring minimal adjust-ments and changes in both the covered industrial environment and the naturalworkflow.
6. Minimal integration of the designed method components into the mechanisms ofthe used industrial machinery, such as Material Handling Equipment (MHE) (e.g.,forklifts, lifters, cranes).

Research QuestionsThis research is based on the following research questions, which cover both the maintopic and primary subtopic of this research:
• RQ1: What method should be developed in order to provide accurate automatic
real-time 3D positioning of markerless industrial products/assets?

• RQ2: Can the positioning data be reliably used in combination with inertial data
for accurate vehicle heading estimation in an industrial environment? Will this ap-
proach be sufficient for accurate heading tracking of highlymaneuverable industrial
vehicles?

• RQ3: What sensor fusion method should be developed to utilize the benefits and
overcome the limitations of positioning and inertial data in vehicle heading estima-
tion? Are the extra/additional supporting sensors required in this method? What is
a suitable sensor fusion algorithm for inertial and positioning data-based real-time
vehicle heading estimation?

1.4 Thesis Contributions
The following contributions were presented in this research to respond to the researchquestions defined in the previous section:

• Publication I contributes by addressing the primary subtopic of this research, fo-cused on the accurate heading estimationmethods for industrial vehicles. This pub-lication investigates the possibility of effectively using the positioning and inertialdata combination for reliable heading estimation in cases when the available state-of-the-art methods are inapplicable. This publication addresses the fundamentalproblem of the over time error accumulation in an inertial (gyroscope) sensor esti-mated orientation and proposes an algorithmic method for the drift correction ingyroscope estimated heading. Publication I covers the experimental testing of theproposed algorithmic method and provides the corresponding promising results.Thus, Publication I fully answers RQ2, as well as initially addresses the researchquestion RQ3. Additionally, this publication addresses the targeted real-life appli-cation for the proposedmethod and partially provides the brief background context
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of themain research topic of this work - indirect localization ofmarkerless industrialproducts, thus partially addressing the research question RQ1.
• Publication II reflects the further research on the vehicle heading estimation subtopicand practically investigates advanced features and possible use of one of the poten-tially suitable state-of-the-art fusion algorithms - the Kalman filter. This publicationcontributes by practically investigating the use of various Kalman filter algorithmversions, including their nonlinear and adaptive versions, thus partially answeringthe research question RQ3. The contribution of this publication results in the im-plementation of the Adaptive Extended Kalman Filter (A-EKF) algorithm for UWBpositioning, which practically validates the performance of the Kalman filter algo-rithm and its adaptivity features.
• Publication III concludes the research on the vehicle heading estimation subtopicand contributes by designing and implementing the Adaptive Tandem Kalman Filter(ATKF) algorithm for accurate vehicle heading estimation, based on the alternativeapproach in inertial and positioning sensor fusion. This publication covers the sim-ulated and experimental testing of the designed ATKF algorithm and provides theachieved promising results, thus answering the research questions RQ2 and RQ3.Additionally, this publication experimentally demonstrates the performance of oneof the state-of-the-art algorithms and provides its comparison with the designedATKF algorithm. Section 4.4.4 of this thesis extends the comparison of the designedmethods with multiple state-of-the-art algorithms.
• Publication IV contributes by addressing the main research topic of markerless in-direct tracking method, investigates the available methods and their limitations,as well as eventually proposes a suitable method for the indirect localization offully markerless industrial products. This publication defines the necessary require-ments, components, and algorithms for the designedmethod. This publication alsocontributes by designing and implementing a sensor fusion algorithm for an Au-tomatic payload Pick-up and Drop-down Detection (A-PDD). Publication IV coversthe conducted experimental testing of the prototype indirect tracking setup andprovides promising results on the markerless product positioning. This publicationalso provides a direct comparison of the developed indirect tracking method witha more traditional direct localization approach. Thus, Publication IV answers theresearch question RQ1 and concludes the main topic of this research.

Table 1: Formulated research questions answered in published works

ResearchQuestions Publication I Publication II Publication III Publication IV
RQ1 ✗ ✗

RQ2 ✗ ✗

RQ3 ✗ ✗ ✗

Table 1 reflects research questions, addressed and answered in particular publications.Gray markers indicate the partial (RQ1 & RQ3) or extensive (RQ2) coverage of the corre-sponding research question. The research question RQ1 is initially addressed in Publica-tion I and fully answered in Publication IV. Research question RQ2, on the other hand, is
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fully answered in Publication I, while Publication III provides an extensive answer. Partic-ular aspects of the research question RQ3 are preliminarily covered in Publications I andII, while Publication III provides a comprehensive answer to this research question.
1.5 Thesis Organization
The thesis includes two key topics in different fields, requiring separate state-of-the-artanalysis: the main research topic, which covers the indirect tracking of markerless prod-ucts, and the primary subtopic, focused on the industrial vehicle heading estimation.While the presented research is performed from the perspective of the main indirectproducts tracking topic, it starts by fully addressing the primary subtopic of vehicle head-ing estimation. Therefore, the thesis is organized as follows: The thesis starts with theintroduction to the performed research in Section 1, covering the background of the mainresearch topics, the definition of the main research problem, and the corresponding re-search questions. Section 2 is separated into two subsections, independently investigatingthe available state-of-the-art methods and solutions for both main topics of this research,as well as applying the defined research questions to determine the existing gaps in bothfields. Section 3 introduces the methodology behind the main topic of this research andselects its necessary components. This provides the background and justifies/motivatesthe primary subtopic of this research. Section 4 describes the performed work on themain subtopic, based on the defined methodology. It includes the explanation of the pro-posed methodology, a description of multiple developed algorithmic methods, their pre-liminary simulated and experimental testing, as well as the analysis of the results. Basedon methods and techniques defined in the aforementioned chapters, Section 5 proceedswith the main research topic, covering the resulting execution of the proposed method,description of developed algorithmic methods, as well as both preliminary and full-scaleexperimental test campaigns with a discussion of the corresponding results. Section 6provides the resulting discussion of this research, further development possibilities, andconcludes the thesis.
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2 State-of-the-art
The state-of-the-art section covers the literature analysis for the Indirect Tracking researchtopic, from separate contactless identificationmethods to indirect trackingmethods, avail-able in the literature and the industry. As the key subtopic of this research is related toaccurate Vehicle Heading Estimation, the second section in the state-of-the-art analysiscovers the literature overview for the corresponding field.
2.1 Indirect Tracking
According to the literature in the field of industrial positioning, the broad term "indirecttracking" refers to object positioning methods, which exclusively prohibit the direct at-tachment of any active positioning units, such as UWB or active RFID tags [34, 35, 36, 37].These methods, however, may still involve the direct marking of tracked objects usingpassive identification tags (e.g., passive RFID, QR codes, or barcodes), which in the liter-ature is considered consistent with the principles of indirect tracking. This research, onthe other hand, is focused on shifting the paradigm and removing the direct tagging alto-gether, leading to the strict definition of (markerless) indirect tracking.
2.1.1 Quasi-indirect TechniquesCertain product positioning methods may be categorized as quasi-indirect, as in these ap-proaches, the tracked product may not require direct tagging and is bound to specific ref-erence objects instead. In this case, the necessary tracking and identification informationis bound to the reference objects, such as industrial pallets, shelves, or moving platforms.For instance, as proposed by Volpi et al., the industrial equipment and assets may be lo-calized together with mobile shelves and platforms, actively tracked in real-time by usingthe UWB indoor positioning system [14]. In this case, industrial assets may be associatedwith the corresponding transportation platforms and tracked in real time.Alternatively, industrial pallets can be equippedwithmore cost-effective passivemark-ers, such as RFID tags, increasing both availability and scalability of these methods. Thedifferent approaches can then be used to monitor the movement of the pallet within thearea over time. For instance, as proposed by Rosli et al. and Motroni et al. in their re-spective works, the pallet movement between specific zones can be tracked using RFIDscanning gates, deployed between zones of interest [38, 39]. Li et al., on the other hand,have proposed a method for a more comprehensive pallet tracking between specific stor-age areas [40]. In their method, the tracked pallets and specific storage spots and shelvesare tagged with passive RFID tags, where the RIFD scanning equipment is deployed on thematerial handling equipment (i.e., forklift), used for their transportation. In this approach,the pallet and its storage spot identification information are scanned simultaneously bythe forklift at themoment of pallet interaction. Implementation variants of the analogoustracking approach are also available in the industry [41, 42].Integration of different smart technologies also supports the active development inthe field of vision-based recognition of industrial pallets. This field covers different intelli-gentmethods allowing the detection of industrial pallets, fromfiducialmarkers-supporteddetection [43] to the pallet shape recognition, based on technologies such as LiDARs (LightDetection and Ranging) [44], ML (Machine Learning) assisted rangefinders [45, 46], andintelligent vision [47, 48]. In the context of this research, however, these methods canbe considered quasi-indirect, as the presence of reference objects remains essential fortracked asset identification and localization.Visual recognition of the tracked object can also be performed without the use of ref-
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erence objects and, in the context of this research, can be considered as indirect identifi-cation. However, this approach becomes significantly limited by the variety and shapes ofdetectable objects [49]. Positioning methods, based on signal reflection sensing (e.g., byusing commonpositioning technologies, such as UWB [50], RFID [51], or ultrasonic sensing[52]), can also be considered as indirect tracking methods. These methods, however, aresensitive to all objects in the line of sight without the possibility of differentiating them. Inorder to support active positioning of specific objects, thesemethods would require com-prehensive control over the surrounding environment. This may be achieved by a pre-liminary mapping of the stationary environmental background and specifying restrictedand permitted zones for movement, such as corridors between shelving units. Meth-ods such as capacitive sensing-based positioning may provide the differentiation of thetracked object at a higher level [53]. This technology is capable of detecting non-ferrousmaterials within a range, limited to a few decimeters, which reduces the effectiveness ofthis method, especially in three-dimensional positioning.
2.1.2 Indirect Tracking MethodsSeveral methods for the indirect tracking of industrial objects, in accordance with thebroad definition, are available in the literature and are reflected in this section. Thesemethods propose different approaches and sensor setups to perform the localization ofindustrial assets, where the main part of the tracking setup is deployed on the materialhandling equipment, such as an industrial forklift. However, the available methods followthe broad definition of the "indirect tracking" term, provided in Section 3, and remain fullyor partially reliant on the direct marking of tracked assets with passive tags.One of the available methods for indirect tracking of industrial pallets was proposedby Kovavisaruch et al. [54]. This method is primarily based on the real-time location ofthe used forklift, tracked by the deployed UWB positioning system. In their approach, thetransported industrial pallets are tracked by associating their location with the real-timecoordinates of the forklift. However, the direct association of the transported pallet’s po-sition with the forklift’s coordinates introduces a substantial localization error, typicallyexceeding 1 meter in the estimated pallet location. This error is explained by the phys-ical offset between the deployed positioning unit and the transported object, which islocated in the fork (tynes) area of the forklift. The tracked forklift location is also used toidentify one of the possible predefined forklift movement routes to further improve itspositioning. In the presented method, the tracked pallets remain directly marked withbarcodes for their identification. Along with pick-up & drop-down detection, the barcodescanning routine is performed manually by the forklift operator. This significantly limitsthe automation of the described method. Nevertheless, this approach allows positioningof the barcode-marked pallets with a declared average precision of 47 cm.A similar method for automated indirect asset tracking was proposed by Zhao et al.and Frankó et al. in their respective works [34, 35]. The localization method proposed intheir works, however, follows the broad definition of indirect tracking and entirely relieson the direct marking of industrial assets with passive RFID tags to identify the particularasset and detect its pick-up for transportation. The continuous presence of a particularasset within the fork area is detected by the onboard RFID reader unit, thus confirming itstransportation status. This approach provides full automation of the tracking process ofthe transported assets for the proposedmethods. Coordinates of the transported productare then directly associated with the real-time location of the forklift, actively tracked bythe UWB indoor positioning system. However, since in the forklift body frame, the posi-tioning unit is physically deployed with a certain offset from the transported product, this
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offset becomes a constant, beyond-meter error in the resulting asset coordinates. Theindirect tracking method, proposed by Frankó et al., additionally utilizes the geofencingtechnique, in which the asset transportation is only performed between predeterminedstorage areas. This approach may partially compensate for the aforementioned offset er-ror in the tracked asset location. Also, in their method, the RFID tags scanning routine,similarly used for the payload loading detection, is triggered by the onboard accelerome-ter unit and performed only during the forklift movement periods.Barral et al. in their work discuss the theoretical approach for industrial product lo-calization by precise tracking of MHE, such as forklifts [55]. In their work, authors haveproposed a method for forklift orientation and positioning data tracking, based on thefusion of the UWB positioning system, IMU (Inertial Measurement Unit), and PX4 opticalflow camera. In simulation tests, their method has shown below 20 cm Mean AbsoluteError (MnAE) in forklift positioning, while its performance in the forklift heading estima-tion is not evaluated. Even though their work is primarily focused on the performanceenhancement of the UWB positioning system in challenging line-of-sight conditions, au-thors also briefly discuss the possibility of the product positioning. However, possibleapproaches for the transported payload positioning, further method automation, or theexpected performance of their method in the actual product localization are not coveredin their work.A different pallet monitoring system, based on the passive planar Markers-based Lo-cal Positioning System (MarLO) was proposed by Borstell et al. [36]. This method wasdesigned for vehicle and asset localization in industrial areas and is assisted by special-ized gates with additional integrated sensors, installed between sections of the industrialarea. Integrated sensors include RFID scanners and depth sensors, used for identificationand dimension measurement of the transported assets. Even though this method pro-vides extra information on the transported assets, it remains significantly dependent onthe deployment of additional complex infrastructure in the industrial area. Additionally,the automatic detection of the asset pick-up or drop-down events is not covered in theirmethod, and is performed manually by the working personnel.Motroni et al. in [56] proposed an indirect asset tracking method based on a multi-sensor setup, primarily deployed on an industrial forklift. Thismethod attempts to providean automatic indirect 2D localization of industrial assets, normally transported by forklifts.The real-time location of the transported asset is determined by the multi-sensor setupof the UWB positioning system, IMU, and Optical Flow Sensor (OFS), aided with laser dis-tance sensors. These sensors are fused to determine the position and orientation of theforklift, and therefore estimate the exact location of the transported asset. Sensor fusionis performed by a computationally heavy and reliable version of the Kalman filter algo-rithm for non-linear models - the Unscented Kalman Filter (UKF) [57, 58]. Even thoughtheir work is mainly focused on the forklift position & orientation tracking, the authorsalso theoretically discuss a possible approach for asset identification, tracking, and load-ing/unloading detection. Their discourse leads to the automatic detection of the assetloading by the ultrasonic distance sensor deployed in front of the forklift. Their method,however, requires the direct marking of assets with passive RFID tags for further identifi-cation purposes. The RFID tag of the asset is scanned by the forklift-deployed RFID readerunit during the loading process, thus identifying the interacted asset. Unfortunately, theexperimental validation and evaluation of the presented indirect tracking method werenot covered in their research.Recently, Zealabs and Sewio have developed a solution for indirect (by their defini-tion, tag-less) localization of industrial coils for the Prokab cabling factory [59, 60]. In this
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method, the industrial materials are transported by the UWB-tracked forklift, equippedwith the necessary sensors for process automation and product identification. Similar tomethods proposed by Frankó et al., Zhao et al., and Kovavisaruch et al., the location of thetransportedmaterial is directly associated with the forklift coordinates, causing the afore-mentioned fork-to-positioning unit offset error. Unlike previously describedmethods, thisapproach provides a complete three-dimensional tracking of the transportedmaterials bymeasuring the fork elevation level using an air pressure sensor. The load sensor, deployedwithin the fork area, allows real-time detection of the material loading and unloading,thus automating the tracking process. However, for material identification purposes, thismethod relies on the direct product marking with QR codes, eventually scanned by theonboard camera, which makes this method not entirely tagless.
2.1.3 Gap in State-of-the-art MethodsTable 2 reflects the key features and limitations of the state-of-the-art indirect trackingmethods, described in Section 2.1.2. Available state-of-the-art indirect tracking methodsare evaluated from the perspective of this research, based on the key requirements de-fined in Section 1.3.
Table 2: Key aspects, features and gaps in available state-of-the-art indirect trackingmethods. High-
lighted cells indicate significant deviations from the requirements defined in this work and represent
gaps in corresponding methods.
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Direct productmarking is required Yes Yes Yes - 1 Yes Yes Yes

Product identificationtechnology Barcode RFID RFID - 2 RFID RFID QR
Supported producttracking dimensions 2D 2D 2D - 1 (2D) 2D 2D 3D
Product loadingdetection technology Manual RFID RFID - 1 Manual Ultrasonicsensor Pressuresensor
Total number ofsensors used 2 2 3 3 4 6 4

Number of sensors forproduct positioning 1 1 1 - 1 (3) 1-2 4 2
Expected productpositioning accuracy Low Low Medium High 2 Low High Low

Extra productinformation collected3 None None None None Dimensions None Weight
Approximate dataprocessing complexity Low Low Low High Medium Medium

to High Medium
Adjustments inapplication environment Dedicated

storage 4 Dedicated
storage 4 Dedicated

storage 4 - 1 RFID
gates No No

Embedded sensors’deployment on MHE No No No No No Moderate Yes

1Not covered in the referred work.2Product positioning is outside the scope of the referred work, and is only briefly mentionedwith no details & clarification information provided.3Extra information collected by the proposedmethod regarding the tracked products beside thebase location and identification data.4Products are strictly stored in predefined locations.
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According to the research on state-of-the-art methods for indirect localization of in-dustrial objects, the available methods are initially determined by the broad term of "in-direct tracking", presented in the literature and defined in Section 2.1. Thus, the availablemethods remain fully or partially dependent on the direct marking of tracked productswith passive identification tags, including RFID [34, 35, 56, 36], QR codes [59, 60], and bar-codes [54], which represents the primary gap in the field of indirect tracking. Additionally,the vast majority of the available methods are unable to support three-dimensional po-sitioning, essential in warehousing and industry [54, 34, 35, 36, 56]. Among the availableindirect tracking methods, the 3D positioning of the tracked product is only supported inthe industrial solution proposed by Zealabs [59, 60].The majority of the available indirect tracking methods also require the integrationof necessary regulations or adjustments in the operating environment (e.g., warehouse).Thus, methods proposed by Kovavisaruch et al. [54], Zhao et al. [34], Frankó et al. [35],and Borstell et al. [36], for instance, strictly rely on the products’ storage only in dedi-cated areas. Additionally, the proposed approach of Borstell et al. requires the installa-tion of specialized scanning gates within the tracked environment, equipped with RFIDand depth sensors. These approaches lead to a more discrete and less flexible productstorage model, which may affect the natural industrial and warehousing workflow andbe unsuitable in certain cases. Methods, proposed by Zealabs [59, 60] and Motroni et
al. [56], on the other hand, utilize sensors, which potentially require an invasive installa-tion into the mechanisms of the used MHE, significantly limiting the setup deployment invarious cases, such as rented industrial equipment and MHE.Even though the available state-of-the-art indirect tracking methods remain primarilyincomplex, the majority of them tend to rely on insufficient data for highly accurate assetpositioning. For instance, in approaches proposed by Kovavisaruch et al. [54], Zhao et al.[34], Frankó et al. [35], and Zealabs [59, 60], the product location is directly associatedwith the coordinates of the forklift, which is expected to introduce a significant, above-meter offset error in the resulting product positioning.This work addresses the selected key limitations of the available methods and aimsto propose a fully markerless method for accurate, automatic, real-time, and indirect 3Dlocalization of industrial products. It focuses on the use of a minimal number of sen-sors, reduced computational complexity, and data processing requirements, while ensur-ing seamlessmethod integration into the natural industrial process byminimizing possibleadjustments to the used machinery, equipment, or the operating environment. This workalso aims to mitigate the aforementioned offset error in the tracked product position byusing accurate heading estimations of the utilized MHE. Section 2.2 investigates the avail-able methods and techniques for vehicle heading estimation, along with their existinglimitations.
2.2 Heading Estimation
As it was addressed in the previous section and is closely described in Section 3, this workfocuses on the use of accurate vehicle heading information in order to mitigate the offseterror in the indirectly tracked product position, addressed in the previous section. In or-der to provide the accurate heading tracking of industrial material handling equipment,this work focuses on the use of inertial sensors - MEMS (Micro-Electro-Mechanical Sys-tems) gyroscope, which is closely discussed and justified further in Section 3.2.2. It waschosen as widely available and the most suitable option for the aforementioned role inthe context of this research and the proposed markerless indirect tracking method. Thissection introduces the main drawback of the inertial gyroscope sensors, and covers the
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main available state-of-the-artmethods for itsmitigation from the perspective of themaintopic and criteria, defined in Section 1.3, as well as mentions alternative state-of-the-artheading estimation methods.
2.2.1 Drift Effect in Inertial SensorsSensor systems and measurement units are naturally prone to different internal noisesand minor errors, caused by a variety of possible factors, from expected design and buildimperfections to sensitivity to particular environmental aspects. These internal errorsmaydifferently affect a sensor’s performance, depending on the used frame of reference. Us-ing this criterion, sensors can be classified as either absolute, which perform the mea-surements with respect to a fixed reference or known standard, or relative, which operatebased on a local, changing reference or previous measurements. In the case of absolutesensors and measurements, these internal errors may often be negligible and have a mi-nor impact on the resulting sensor performance. Relative sensors, on the other hand,may require the integration of measurements, thus accumulating minor internal errorsand noise over time. This effect is also known as drift [61].Similarly, this effect may also be encountered in the case of the absolute sensors,which are utilized for relative measurements, such as inertial gyroscopes or accelerome-ters, when used respectively for orientation or linear motion tracking. MEMS gyroscopes,for instance, are widely known for their availability, compactness, and cost-efficiency, aswell as for relatively poor reliability in long-term orientation tracking. As the gyroscopesinitially measure themomentary and absolute triaxial angular velocity, the actual orienta-tion estimation requires further integration of this data. Thus, the orientation is calculatedin relation to the previous state. However, the bias instabilities and internal noise ofMEMSgyroscopes cause the occurrence of minor errors in the measured angular velocity data,which are eventually integrated and accumulated in the orientation estimations, causingthe over time drift effect, also referred to as Angular RandomWalk (ARW) [62, 63, 64].Due to their portability and cost-efficiency,MEMS gyroscopes are often available alongwith accelerometer sensors as part of 6DoF (Degrees of Freedom) inertial measurementunits [65]. Extended 9DoF IMU units, sometimes referred to as MARG (Magnetic, An-gular Rate, and Gravity) or AHRS (Attitude and Heading Reference System) units, addi-tionally include magnetometer sensors [66, 67]. These additional sensors are capable ofproviding the supporting information, reflecting the approximate absolute orientation,thus assisting the gyroscope unit. Triaxial accelerometer units are capable of sensing thegravitational acceleration of the Earth, thus reflecting the absolute Euler’s roll and pitchrotations. For this reason, the combination of gyroscope and accelerometer sensors isoften used as a balancing unit (e.g., on drones). Absolute heading (Euler’s yaw rotation)can be measured by the included magnetometer unit in relation to the magnetic northof the Earth. Fusion of the aforementioned IMU sensors is extensively investigated in theliterature and is widely used in a variety of applications [64].
2.2.2 Drift Mitigation Techniques for Inertial SensorsThis section covers the state-of-the-art methods and techniques used tomitigate the drifterrors in inertial sensors, described in the previous section. In this section, the relevantworks are separated into three main groups: gyroscope initial filtering methods, the ori-entation bias compensation approach, and sensor fusionmethods. Thesemain groups arefurther discussed in their respective subsections. Due to the diversity of available sensorfusion methods, they were also organized into subgroups within the corresponding "sen-sor fusion methods" group, based on the most widely used sensor combinations. These
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subgroups include methods of gyroscope fusion with accelerometers only, accelerome-ters & magnetometers, as well as approaches for gyroscope fusion with other sensors.
Gyroscope Filtering TechniquesOne of the most fundamental methods for drift error mitigation in inertial sensors (e.g.,gyroscopes or accelerometers) is the use of different data filtering techniques and algo-rithms. For instance, the low-pass filter can be used for relatively rudimentary processingof the gyroscope readings in the low-intensity rotations as proposed by Wang et al. intheir work [68]. They proposed using the low-pass filtering model with the first-order in-ertia link to mitigate the high-frequency noise in the gyroscope. This approach has beensuccessfully used to eliminate the gyroscope angular drift, caused by internal static noise,even though, by introducing a certain time delay in the filter response. A similar approachcan be used for noise filtering in another inertial sensor - the accelerometer. For instance,Suwandi et al. have used the combination of low-pass and Least Mean Squares filters toeliminate the accelerometer noise, caused by vehicle vibrations [69].Filtering of raw sensor data is also sometimes used for preliminary processing as partof more complex drift mitigation methods like sensor fusion, which is more closely dis-cussed later in Section 2.2.2. For instance, Ariffin et al. andMin et al. have used high-passand low-pass filtering techniques for the respective preliminary processing of the gyro-scope and accelerometer sensors’ data [70, 71]. Ariffin et al. have then used the com-plementary filter to fuse the aforementioned sensors to estimate Euler’s roll and pitchrotations. Min et al. have used the least squares-based complementary filter to fuse theaccelerometer and gyroscope sensors for the angle estimation, and compared its perfor-mance with the regular complementary filter-based fusion method. Similarly, Hoang et
al. have used the low-pass filter to initially mitigate the accelerometer noise before itsuse in their proposed Orientation Axes Crossover Processing (OACP) algorithm [72]. Thisalgorithm is used to calculate the approximate Euler’s roll & pitch rotations directly fromthe accelerometer information without the need for additional sensor fusion.Certain case-specific techniques, such as NMNI (No Motion, No Integration), thor-oughly described by Hoang in his PhD thesis, can also be classified as a filtering approach[73]. This method disables the integration of gyroscope readings, which are below thedefined threshold amplitude, thus preventing the angular drift error accumulation in sta-tionary cases. In case of sufficient motion, on the other hand, the gyroscope data inte-gration, along with the inherently present internal noise, is performed regularly. For thisreason, this technique can be labeled as a "threshold filter" or "no motion filter". Grad-ual and slow motion, however, may be entirely disregarded by this technique, which is anessential disadvantage in different applications, such as vehicle or vessel motion tracking.Nevertheless, this technique may be successfully used for the initial data processing inapplications, such as drones or robots, where only sufficiently rapid motions are encoun-tered. For instance, Hoang et al. have used the NMNI technique for the gyroscope datafiltering in the drone orientation tracking application [74] and investigated its use in com-bination with other state-of-the-art fusion algorithms in this field, such as Mahony andMadgwick filters [75].Kalman filter (KF), more closely described in Section 4.2, in its numerous variations,is one of the most versatile and widely used algorithmic methods for data filtering andfusion in a variety of different fields, including drift error mitigation in inertial sensors. Itscapability of state estimation and filtering allows the KF to be solely used as an effectivefiltering algorithm for the gyroscope data. A linear Kalman filter algorithm was used byAlfian et al. for the gyroscope and accelerometer output data filtering on an embedded
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system to investigate the algorithm performance at different configurations andwith eachsensor separately [76]. Abbasi et al. have used a modified Kalman filter for the MEMS gy-roscope denoising tomitigate long-term drift errors [77]. They have proposed to integratethe auto-regressive model (AR) into the Kalman filter to estimate and compensate for thelong-term gyroscope errors. They have validated the performance of their method by us-ing it for the tracked object Dead Reckoning (DR) in periods of GNSS (Global NavigationSatellite System) outage.Amore advanced and frequently used adaptive variation of the Kalman filter was usedby Bai et al. in their work for the gyroscope noise filtering [78]. They have used the dy-namic sensor noise model to estimate the approximate sensor noise and allow the KFalgorithm to apply adaptive filtering to the gyroscope data. A similar approach was alsoused byWang et al. for the drift error mitigation in Ring Laser Gyroscopes (RLG) [79]. Theyhave also used features of the adaptive Kalman filter, assisted by the drift noisemodel and
H∞ techniques. For a similar task,Wang et al. have used the Sage-Husa Kalman filtering in[80]. They have assessed the performance of the Sage-Husa algorithm, compared its per-formance with the regular Kalman filter algorithm, and proposed their improved versionof the Sage-Husa Kalman filter algorithm for gyroscope noise mitigation. Abdelzaher et
al. have utilized theWavelet denoising technique together with the Kalman filtering algo-rithm for the noise reduction in optical gyroscopes [81]. They have also investigated anddetermined the better-performing combination of these techniques for the given task.Chen et al. have used a similar approach of combining the Kalman filter, Wavelet denois-ing technique, and least squares method for the gyroscope data filtering [82]. In theirresearch, they have successfully used this approach to experimentally track the sway ofthe subway train.Recent advances in the inertial sensor noise filteringmethods also utilize differentma-chine learning and Neural Network (NN) techniques, aimed at improving and optimizingthe filtering quality. Zhu et al., for instance, have used the Kalman filter-based gyroscopenoise filtering method, combined with the Long Short-Term Memory (LSTM) neural net-work [83]. This approach allows for iterative updating and optimization of the Kalmanfiltering parameters for increased performance. A similar approach was used by Mi et al.in [84], where they also utilized the combination of the LSTM neural network and Kalmanfilter to mitigate the noise in the gyroscope data. For their model training, they have usedan array of multiple MEMS gyroscopes. Wand et al. have used the unscented Kalman fil-ter algorithm, combined with the Support Vector Regression (SVR) for the random noiseminimization in Fiber Optic Gyroscopes (FOG) [85]. Their method is also assisted by theAdaptive Beetle Antennae Search (ABAS) algorithm, which is used for SVR optimization.A different approach of temperature-based drift error compensation in MEMS gyro-scopes was used by Li et al. in [86]. They have used the Empirical Modal Decomposition(EMD) to select the high-, medium-, and low-frequency components in the initial gyro-scope data. Radial Basis Function Neural Network (RBF NN) and the Kalman filter com-bination were then applied to filter the selected medium-frequency component, whilethe temperature-based compensation was applied to the low-frequency component. Thegyroscope readings were then reconstructed from the medium- and low-frequency com-ponents, while the high-frequency component was disregarded as noise.Damagatla et al. in their works have proposed a machine learning-assisted MEMS gy-roscope drift mitigation method for the GNSS-supported Inertial Navigation System (INS).Within the same base method they have proposed the use of different machine learningtechniques, such as Light Gradient Boosting Machine (LightGBM) [87, 88, 89], Categori-cal Boosting (CatBoost) [88, 89], Convolutional Neural Network (CNN) [89], and Extreme
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Gradient Boosting (XGBoost) [90], for the gyroscope error filtering. In their method, thechosen ML algorithm is trained by the developed Extended Kalman Filter (EKF) algorithmand inverse kinematics model by using the available GNSS and IMU data during the GNSSdata availability periods. During the GNSS outage period, the gyroscope data is directly fil-tered by the trained machine learning algorithm and used for the inertial navigation untilthe GNSS data becomes available.Due to the chaotic nature of the inertial sensor noise, in the context of vehicle orien-tation tracking, the filtering methods may only be effective in the short-term perspective,reducing the drift error accumulation rate, without its proper elimination. Long-term andreliablemitigation of the drift error, on the other hand, requires a different approach, suchas multi-sensor fusion or proper bias compensation [91].
Drift Correction MethodsWhile the filtering methods focus on the initial sensor noise reduction, the bias compen-sation methods attempt to estimate and correct the drift errors present in the resultingdata.One of the most widely known methods in this category is the ZUPT (Zero VelocityPotential Update) algorithm, which is frequently used for inertial drift error elimination infields of human gait analysis and pedestrian tracking. This algorithm relies on the even-tual detection of the motion absence, indicating the stationary condition of the trackedobject, which allows the algorithm to perform the necessary recalibration of inertial unitsand eliminate the occurred drift errors. This makes the ZUPT algorithm highly effective inscenarios with repeating static stages, such as human gait monitoring, as it was done byShi et al. in [92]. Cho et al. and Zhao et al. have successfully used the zero velocity updatetechnique and inertial sensors for pedestrian tracking [93, 94]. Zhang et al. and Pla et al.in their works have additionally assessed and tested the applicability of this method atthe sprinting speeds [95, 96].Nevertheless, the zero velocity update method may also be used for different applica-tions outside of the field of pedestrian tracking. For instance, Zhang et al. have utilizedthis technique in the industrial pipe jacking guidance system [97]. Similar to the NMNImethod discussed earlier in this section, the ZUPT technique can also be used as a sup-portive part of the more complex fusion methods. Wang et al. have used this techniqueas part of the pedestrian positioning method, based on the particle filter fusion of IMUand UWB positioning system [98]. Li et al., on the other hand, have used the zero velocityupdate technique as part of the EKF (Extended Kalman Filter) based GNSS and IMU fusionmethod for vehicle stationary condition detection [99].Some of the recent advances in the inertial drift compensation also adopt differentmachine learning and neural network techniques to further improve the performance ofthe existing methods. For instance, An et al. have utilized the LSTM neural network tech-nique to recognize the human gait patterns and improve the performance of the previ-ously mentioned zero-velocity update method with the adaptive threshold input [100].The NN-enhanced adaptive ZUPT technique was then successfully used as part of thepedestrian tracking method. Similarly, Li et al. have utilized the LSTM neural networkto enhance the performance of the ZUPT technique for inertial data processing [101]. Thisapproach was then used as part of the inertial navigation system, utilized for inertial ve-hicle navigation.
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Sensor Fusion Methods
Gyroscope and Accelerometer-based: One of the most widely used and effective ap-proaches for gyroscope drift mitigation, especially in the field of vehicle navigation, re-lies on its fusion with different supportive sensors. Available state-of-the-art methodsare based on various sensor combinations and utilize different fusion algorithms fromcomplementary filters to Kalman filter variations and particle filters. MEMS gyroscopesare often fused with accelerometer sensors, providing available and cost-efficient estima-tion of Euler’s roll and pitch rotations, for instance, used in different applications, such asdrone balancing. Accelerometer units are used to measure linear accelerations, includ-ing the free-fall acceleration, caused by the Earth’s gravity, which makes them naturallycapable of real-time monitoring the absolute Earth’s gravity vector. Thus, from the ori-entation tracking perspective, the accelerometer unit becomes an absolute reference forgyroscope sensors in Euler’s roll and pitch rotations estimation.As, for instance, was mentioned earlier in this section, Min et al. and Ariffin et al. intheir works have used variants of complementary filters to fuse the filtered accelerometerand gyroscope units to mitigate the gyroscope drift error and reliably estimate Euler’sroll and pitch tilt angles [71, 70]. Wang et al. have also used the complementary filter-based fusion accelerometer and gyroscope sensors to estimate the Euler’s roll, pitch, andyaw rotations in stationary conditions [102]. They have tested the complementary filteralgorithmwith a double PID (Proportion Integration Differentiation) loop and investigatedits performance in triaxial rotation estimation quality.A group of sensor fusion approaches was tested by Hoang et al. in their research,where they assessed the performance of the earlier described NMNI algorithm in com-bination with the Madgwick filter, widely known in the field of orientation estimation[75, 103]. The Madgwick filter is a kinematic observer that represents the enhanced ver-sion of the complementary filter, utilizing the proportional controller for the gyroscopeerror mitigation. In these works, Hoang et al. have used this filter for gyroscope and ac-celerometer sensor fusion, and compared its performance with theMahony filter. Similarto the Madgwick filter, the Mahony filter represents an enhanced version of the com-plementary filter for gyroscope error mitigation, based on proportional and integral con-trollers. Hoang et al. have used this algorithm for accelerometer and gyroscope fusion andinvestigated its performance in combination with the earlier described NMNI algorithm[75]. Zhu et al. have also used the Mahony filter in [104] for inertial sensors fusion. Fortheir Mahony filter implementation, Zhu et al. have adopted the Allan variance methodto analyze and compensate for the gyroscope bias. Eventually, they have used the UAV(Unmanned Aerial Vehicle) to experimentally validate the performance of the proposedMahony filter-based algorithmic method.Inertial sensor fusion is also frequently performed by using different Kalman filter al-gorithm variations. For instance, Akbari et al. have implemented and used the extendedKalman filter along with the Explicit Complementary Filter (ECF) as benchmark techniquesto evaluate their proposed Linear Parameter Varying (LPV) H∞ filter [105]. Performancecapabilities of these algorithms in Euler’s roll and pitch rotation estimation, based on theaccelerometer and gyroscope data, were assessed in their work, along with the requiredcomputational time. According to the outcomes, the aforementioned algorithms havedemonstrated similar performance. The slightly higher overall performance of the EKF al-gorithm was accompanied by a higher computation time. In the field of pedestrian track-ing and gait monitoring, Luo et al. have used another Kalman filter-based algorithm forthe inertial sensor fusion [106]. To perform the pedestrian tracking, they have proposed aSquare Root Cubature Kalman Filter (SRCKF) algorithm, aided by the zero-velocity update
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technique.The main limitation of these methods, however, is their inability to reliably estimateEuler’s yaw rotation, also referred to as heading. Since the accelerometer unit is only ca-pable of detecting the tilt rotations (Euler’s roll and pitch), based on the Earth’s gravityvector monitoring, the reliable heading estimation requires the integration of additionalsupporting sensors. This is especially valid in cases, such as vehicle or robot navigation,where its movement nature prevents the effective use of certain zero velocity-based fil-tering (NMNI) or bias compensation (ZUPT) techniques. One of the most widely usedsupporting sensor options for the fusion-based heading estimation is the magnetometerunit [75, 103, 102, 104, 107]. Magnetometer sensor provides the absolute orientation in-formation in relation to the Earth’s magnetic north and is often available as part of 9DoFIMU units. The ability to provide absolute heading measurements naturally allows themagnetometer to become an absolute reference for gyroscope sensors in Euler’s yaw ro-tation estimation.
Gyroscope and Magnetometer-based: Different algorithms and techniques are usedto perform the gyroscope, accelerometer, and magnetometer fusion. Wittmann et al.have used the Madgwick algorithm to perform the drift error correction in triaxial orien-tation tracking [108]. Their method was used to track the orientation of the human arm,which was further used as a controlling input for the side software. Hoang et al. in theirworks, earlier mentioned in this section, have proposed the gyroscope and accelerometersensor fusion by using the NMNI technique integrated Madgwick filter [75, 103]. The per-formance of this method was also evaluated in comparison with a group of other fusionalgorithms, including Kalman and Madgwick filters for a fusion of gyroscope, accelerom-eter, and magnetometer sensors. Due to the specificity of the performed tests, their pro-posed method has demonstrated superior performance over the magnetometer-basedfusion method.The performance of inertial andmagnetic sensors-basedMadgwick andMahony filtersin the heading estimation was also assessed by Diaz et al. in [109]. These methods werealso compared tomultiple other commercialmethods and in the context of human-carriedIMU scenarios. Similarly, the orientation estimation performance of the Madgwick andMahony filter algorithms in the case of the foot-mounted 9DoF IMU was evaluated byLudwig et al. in [110]. They have investigated both the precision and execution time ofthese algorithms in triaxial orientation calculation. In their more comprehensive work,Ludwig et al. have evaluated the orientation estimation accuracy and precision of theaforementionedMadgwick andMahony filters in the context of the drone-deployed 9DoFIMU [111]. A significantly modified Madgwick filter algorithm was used by Justa et al. forthe AHRS sensors fusion [112]. They have proposed a Separated Correction Filter (SCF)algorithm, designed to perform the preliminary filtering for the used IMU sensors beforetheir complementary fusion.Due to itsmain advantages of state estimation and flexibility, the Kalman filter remainsthemostwidely utilized fusion algorithm in a variety ofmethods. For instance, the Kalmanfilter algorithm variations for magnetometer and inertial sensors fusion and orientationestimation were also evaluated along with Madgwick and Mahony filters by Ludwig et al.and Hoang et al. in the earlier mentioned works [111, 75]. Ludwig et al. have used theextended Kalman filter for a complete fusion of the gyroscope, accelerometer, and mag-netometer sensors. Hoang et al., on the other hand, have excluded the accelerometer unitand used a Kalman filter for a more simplified fusion of the gyroscope andmagnetometer.A fusion of three aforementioned sensors was also performed by Zhou et al. in their work
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[113]. They have used the extended Kalman filter and specifically designed a coordinateswitch algorithm for the sensor fusion-based estimation of three Euler rotations. A similarapproach was used by Farahan et al. in [114]. They have also utilized the Extended KalmanFilter for 9DoF IMU sensor fusion-based orientation estimation for camera stabilizationapplications. Among other parameters, their Kalman filter implementation also attemptsto perform the bias estimation and compensation for each of the three fused sensors.Badawy et al. have performed the gyroscope, accelerometer, and magnetometer sen-sor fusion for the orientation estimation [115]. They used the Adaptive Extended KalmanFilter (AEKF) to fuse the available inertial sensors, where the magnetometer data-basedcorrection was applied externally. The resulting orientation information was then used toenhance the accuracy of the GNSS positioning information for the resulting INS system byusing the EKF algorithm. The resulting algorithmic structure, combining AEKF and EKF forthe resulting navigation, Badawy et al. have named as Cascaded Kalman filter (CKF). Tocontrol the selective use of the supporting accelerometer and magnetometer sensors inorientation tracking, Vaitali et al. have proposed an Error-State Kalman filter (ESKF) [116].Depending on the IMU state and reading, this algorithm is capable of selecting sensors tobe used in the orientation estimation.Amethod for satellite orientation trackingwas described by Hajiyev et al. in their work[117]. They have used the Singular Value Decomposition (SVD) based extended Kalman fil-ter algorithm to fuse the gyroscope, magnetometer, and Sun detection unit for reliablesatellite orientation monitoring. Another method for satellite orientation tracking wasproposed by Chen et al. [118]. They have used a neural network-integrated method forthe gyroscope, accelerometer, and magnetometer sensor fusion, as well as for their faultdetection and isolation. An Adaptive Unscented Kalman Filter (AUKF) and Quaternion Es-timation (QUEST) algorithms were used in parallel to fuse the aforementioned sensorsand provide their orientation estimations. Based on this data, the fault detection neuralnetworks were trained to detect the faulty sensors and isolate them from the orienta-tion estimation process. The resulting orientation was then calculated by the AdaptiveComplementary Filter, combining outputs of AUKF, QUEST, and fault detection neural net-works. Another fault detection and isolation approach for IMU sensors in UAV applica-tions was proposed by D’Amato et al. in their research [119]. They have used two parallelParticle Filter (PF) algorithms for the simultaneous sensor fusion in two deployed 9DoFInertial measurement units. Results were then analyzed and utilized by the SFDI (SensorFault Detection and Isolation) algorithm.According to the conducted research, magnetometers arewidely used as auxiliary sen-sors for gyroscope drift mitigation, specifically in heading estimation. However, as it isconfirmed in [75, 102, 103, 104, 107, 108, 109, 111, 114, 116, 119, 112], magnetometers aresensitive to surrounding magnetic interferences, which significantly limit their reliabilityand performance in a variety of applications, especially in industrial areas.
Other Gyroscope Fusion Approaches: Despite the wide use of magnetometers as sup-porting sensors in state-of-the-art fusion techniques for gyroscope heading error mitiga-tion, their sensitivity to environmentalmagnetic distortionsmay significantly corrupt theirperformance in certain scenarios, such as industrial applications. In these cases, magne-tometer units may require their complete replacement with alternative sensors, such asLiDARs or vision-based options.For instance, Kaltenthaler et al. in their work on pose estimation and environmentmapping have used the LiDAR unit to possibly mitigate the orientation errors of inertialsensors [120]. For the pose estimation, they used the complementary filter, fusing the

30



LiDAR ranging data with the accelerometer and gyroscope units. Nazemipour et al. haveused the extended Kalman filter to fuse the gyroscope sensor with the camera-based vi-sual gyroscope method for accurate vehicle orientation estimation [121]. This visual gyro-scope method represents the camera-based orientation estimation, performed by visualmotionmonitoring of observed reference objects. Tao et al. in [122] have used the camera-based method for gyroscope live calibration. In their method, the camera is used for thelive motion estimation, based on the visual landmark points tracking. This information isthen used to calibrate the corresponding readings of the IMU sensors.Heading estimation is also one of the aspects in the field of vehicle state estimation,which covers comprehensive analysis and tracking of various vehicle dynamic parameters,such as vehicle kinematic parameters, side slip, or tilt for stability control applications.Aside from the inertial sensors, the field of vehicle state estimation often relies on a varietyof supporting sensors, such as steering or wheel odometry sensors. For instance, Xia et
al. in their work on the vehicle heading estimation have proposed the fusion of inertialgyroscope and accelerometer sensors with the vehicle preinstalled wheel and steeringodometry sensors [123]. Fusion was performed by using the Kalman filter algorithm withthe integrated sensors’ bias estimation functionality.Park et al. and Bersani et al. have proposed vehicle state monitoring approaches,based on the inertial gyroscope and accelerometer units, aided by the GNSS position-ing system, steering, and wheel odometry sensors [124, 125]. Park et al. have used apair of extended Kalman filters to respectively process the kinematic and bicycle modelsof the tracked vehicle. Bersani et al. have compared the performance of the extended(EKF) and unscented (UKF) variations of the Kalman Filter, separately used to combine theaforementioned sensors. Song et al. in their work have used the Square-root CubatureKalman Filter (SCKF) to combine the GNSS positioning system, gyroscope, accelerometer,and steering sensors [126]. For the error compensation in the kinematics model, theyhave additionally used the modified Elman Neural Network (ENN). To mitigate the gyro-scope noise for Autonomous Underwater Vehicles (AUV), Ramezanifard et al. have alsoutilized the set of application-specific supporting sensors [127]. They proposed the gyro-scope and accelerometer fusion with the Doppler Velocity Log (DVL) and depth sensor.In their method, the initial gyroscope filtering was performed by its fusion with the DVLunit, using the Kalman filter. The second Kalman filter algorithm was then used to fusethe aforementioned sensors’ setup to estimate the resulting pose information.An alternative approach for the heading estimation may be exclusively based on thepositioning data. For instance, Xiong et al. have used the Parallel Adaptive Kalman Filter(PAKF) algorithm, combining the readings from the gyroscope, accelerometer, and GNSSunits [128] for the vehicle side slip estimation. In their method, however, the reliableheading data was primarily provided by the dual antenna GNSS unit. A method for boatnavigation, based on inertial sensors and GNSS, was proposed by Cahyadi et al. in [129].To perform a fusion of the aforementioned sensors for boat tracking, they have used theUKF algorithm, designed to additionally monitor the variables of kinematic, dynamic, andexternal forces. The used approach for the gyroscope heading error mitigation, however,is not specified in their work.To reduce the drift error presence in the gyroscope-tracked orientation, Xu et al. haveused the GNSS positioning data. They have proposed a Kalman filter algorithm to fusethe aforementioned sensors for reliable heading estimation [130]. In their research, Xu et
al., however, conclude the unreliability of this method in the stationary scenarios, as wellas the necessity of additional supporting sensors for reliable heading estimation. Zhang
et al. have proposed a discrete Kalman filter algorithm to directly combine the heading
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information, provided by the IMU and GPS (Global Positioning System) units [131]. Theiralgorithmic method, however, is based on the simplified linear Kalman filter and does notprovide the adaptivity functionality. For these reasons, this method becomes only oper-ational at higher movement speeds and fully relies on the GPS unit-provided movementdirection. An Extended Kalman filter algorithm was proposed by Li et al. for the vehicleheading tracking [132]. Their method combines the inertial information with movementvelocities, provided by the GNSS unit. Similar to themethod proposed by Zhang et al., thisapproach significantly relies on the quality of GNSS-provided velocity information, thusrequiring higher vehicle movement speed for an accurate heading estimation. Wu et al.have proposed a Kalman filter-based fusion method to combine the GNSS, IMU, and LVC(Lateral Velocity Constraint) to estimate the road vehicle orientation, including the head-ing [133]. In multiple tests, conducted in urban conditions, their method has achieved asub-2 degrees level of tracked heading RMSE (Root Mean Squared Error). With the ex-cluded LVC, their method has demonstrated RMSE at the 5-degree level in the road vehi-cle heading tracking. As one of the most recent advances in this field, the IMU and UWBpositioning data-based heading estimation topic was also addressed in parallel with thisresearch by Oursland et al. in one of their recent works [134]. They have used the inertialand UWB positioning information, fused by an Invariant Extended Kalman filter for thedrone orientation estimation, and have achieved the drone heading RMSE of 4.6 degrees.This method and the achieved results are also briefly compared with the proposed ATKFalgorithm further in Section 4.5.
2.2.3 Gap in State-of-the-art MethodsTable 3 reflects the key features of the state-of-the-art methods for the inertial sensors-based heading estimation, described in Section 2.2.2. Chosen features were selected toreflect the key limitations of the available approaches from the perspective of this re-search in accordance with its key requirements, defined in Section 1.3.The conducted research on the state-of-the-art methods for inertial sensor drift miti-gation indicates the frequent use of inertial sensor preliminary filtering. As this approachdoes not require the use of additional supporting sensors, it provides the advantage ofcost-efficiency and relatively low computational complexity, depending on the used al-gorithmic method. For this reason, the initial data filtering approach demonstrates highfeasibility for real-time applications. However, due to the absence of absolute referenceinformation and unpredictable sensor noise behavior, filtering methods are only able todemonstrate reliable short-termdriftmitigation. In long-termmitigation schemes, inertialdata filtering typically serves as a supporting technique.Drift compensation methods, on the other hand, perform the correction of the result-ing integrated drift error, thus demonstrating higher reliability and stability in long-termapplications. Similarly, reliable drift correction requires absolute reference information,such as predictable and periodically occurring stationary cases (zero velocity), widely usedin the ZUPT technique. Thismakes themain drift correction techniques highly application-specific andwidely used only in suitable fields, such as human gait analysis and pedestriantracking. In the case of the vehicle heading estimation, this approach may only be occa-sionally used as an auxiliary technique.
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Table 3: Key aspects, features and gaps of available state-of-the-art inertial sensor-based heading
estimationmethods; Highlighted cells indicate deviations of the availablemethods from the require-
ments defined in this work, preventing their direct use within this research.
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The research on the state-of-the-art methods for inertial sensor-based heading esti-mation indicates thewide use of sensor fusionmethods and techniques. The vastmajorityof the available sensor fusion methods are based on sensors, often available in differentIMU units, which include gyroscopes, accelerometers, and sometimes magnetometers.Due to their operating nature, the accelerometer units are unable to provide suitablereference information, particularly on the sensor’s heading orientation. Therefore, theaccelerometer and gyroscope fusion methods are unable to perform the gyroscope driftmitigation for reliable heading estimation and are only used for tilt (roll & pitch) rotationstracking. Sensor fusion methods, used for the gyroscope heading drift mitigation, pri-marily rely on the use of magnetometers as the supporting units, providing the absoluteheading measurements. In the context of this research, however, the use of magnetome-ters in the industrial environment is expected to have significant performance limitationsdue to their high sensitivity to surrounding magnetic interferences and distortions, as itis previously concluded in Section 2.2.2. This limitation prevents the use of the primarystate-of-the-art method for inertial heading estimation for this research.Certain sensor fusion methods and approaches are frequently used in the field of ve-
5Results depend on the specific use case.6Machine learning and neural network aided methods may provide increased performance atthe cost of increased computational complexity.7Suitable for an industrial vehicle heading tracking as part of the indirect tracking method in thecontext of this research8Available methods focus on regular road vehicles (e.g., cars) and do not cover the intense ma-neuvering & backward movement, typical for targeted industrial machinery
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hicle state estimation and are often based on a variety of different supporting sensors,such as steering and wheel encoders. These odometry sensors provide the vehicle move-ment speed and steering, thus allowing to track its relative heading by using the propermotion model. However, as the resulting heading estimation in this approach remainsrelative, it may be unable to fully mitigate the over time accumulating drift error, thuscompromising its long-term stability. This may explain the frequent use of extra support-ing sensors aside from thementioned odometry units [124, 125, 126]. Additionally, the useof the aforementioned odometry sensors also requires their invasive integration into thevehicle mechanisms, which is avoided in the context of this research, in accordance withkey criteria defined in Section 1.3. Similarly, the use of vision- or LiDAR-based methodsfor the gyroscope error compensation is also avoided in the context of this research, dueto the high processing complexity and high volumes of the sensors’ provided data. Thisensures a reliable real-time data transmission and processing with minimal delays.According to the conducted research, the fusion of inertial and positioning informationrepresents the most suitable approach for the gyroscope heading drift error mitigation inthe context of this work. Unlike the other state-of-the-art sensor fusion techniques forheading drift mitigation, this method provides relatively low computational complexity,minor integration into the vehicle mechanisms (e.g., as wheel or steering sensors), and isfully applicable in industrial areas. The primary prerequisite of this approach is the avail-ability of the positioning infrastructure deployed in the targeted area (e.g., in the caseof the UWB indoor positioning systems). According to research on the available meth-ods for positioning and inertial sensor fusion, the vast majority of available works areentirely focused on the performance improvement of the used positioning system itself[135, 136, 137, 138, 139, 140]. Numerous publications describe the use of inertial sensorsas auxiliary units to improve the positioning quality of the primary system or performshort-term inertial positioning during periods of the primary system outage. A relativelyminor availability of publications describing the use of positioning data for inertial sensorheading drift mitigation indicates the gap in this field, as well as the wide use of otherstate-of-the-art techniques.The available positioning data-based methods in this field, such as those proposed byZhang et al. [131], Li et al. [132], and Wu et al. [133], rely on the quality of the movementdirection and velocity information provided by the positioning unit. These methods areprimarily designed and tested for the use of regular road vehicles at highmovement speedand low maneuvering intensity. Available methods, however, may not be effectively ap-plicable in the case of industrial machinery, which operates at low movement speed andhighmaneuvering intensity, where the positioning data becomes significantly less reliablefor the vehicle heading tracking. For instance, Xu et al. in [130] address the significantcomplexity of the positioning data used for the reliable heading estimation. Its high unre-liability as a reference for the IMU heading drift mitigation is reported, especially in casesof poor positioning data and the absence of movement. Their paper concludes the needfor additional sensors for reliable heading estimation. Thus, the currently available po-
sitioning and inertial data-based methods for the vehicle heading estimation focus on
the regular road vehicles and do not consider possible cases of accurate heading track-
ing at low movement speeds and intense maneuvering, including the essential aspect
of possible reverse movement.The use of positioning and inertial sensors for accurate vehicle heading estimationrequires the implementation of a reliable algorithmic fusion method, which takes intoaccount the main advantages and limitations of both fused sensors. The implementedmethod is expected to provide a reliable vehicle heading estimation even in cases of in-
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tense maneuvering, low movement speed, and potentially poor quality of the availabledata. This represents the research gap in the field of inertial and positioning sensors-basedheading estimation, addressed and filled in Section 4 of this research.
Algorithms Used in Drift Mitigation TechniquesThe research also reflects the available state-of-the-art sensor fusion algorithms, widelyused in the corresponding related literature. Table 4 reflects the prevalence of particularalgorithms and techniques in different gyroscope error handling approaches, selected inSection 2.2.2. This analysis draws on related publications cited in the state-of-the-art sec-tion of this work and reflects the overall state of this field. Obtaining more precise resultswould require a comprehensive, detailed, and systematic review of the available literatureacross other relevant fields.
Table 4: Algorithms used in different available inertial sensor (gyroscope) drift mitigation ap-
proaches. The color intensity represents the percentage of algorithm usage within a given drift
mitigation approach.

Gyroscope drift mitigation approach
Algorithm Initial filtering Drift error (bias)correction Sensor fusion Machine learningenabled methods
ZUPT - [92, 93, 94, 95, 96, 97,98, 99, 100, 101] - [100, 101]
NMNI [73, 74, 75] - - -

Band pass filters [68, 69, 70, 71, 72] - - -
Complemetaryfilter - - [71, 70, 102, 120] -
Madgwick filter - - [75, 103, 108, 109, 110,111, 112] -
Mahony filter - - [75, 104, 109, 110, 111] -

Kalman filtervariations
[76, 77, 78, 79, 80, 81,82, 83, 84, 85, 86, 87,88, 89, 90] -

[75, 105, 106, 111, 113,114, 115, 116, 117, 118,121, 123, 124, 125, 126,127, 128, 129, 130, 132,131, 133]
[83, 84, 85, 86, 87, 88,89, 90, 118, 126]

Particle filter - - [119] -

Overall, the breakdown of research presented in Table 4 on available inertial sensordrift mitigation methods illustrates the relative popularity of specific algorithms acrossdifferent drift mitigation approaches. For example, due to its nature, the zero velocity po-tential update technique for periodic drift error elimination is almost exclusively utilizedin the field of human gait analysis and pedestrian navigation. Algorithms such as NMNI,high- and low-pass filters, on the other hand, are naturally only used for inertial sensordata filtering and are frequently used for preliminary sensor filtering in different fusionmethods. Complementary filter and its advanced and application-specific versions - Ma-hony and Madgwick filters are primarily used for the fundamental fusion of IMU sensors,including gyroscopes, accelerometers, and magnetometers.Nevertheless, the literature analysis on available inertial sensor drift mitigation meth-ods clearly indicates the high popularity of the Kalman filter algorithm variations. It isjustified by multiple factors and advantages of this algorithm, including the high versatil-ity and flexibility of this algorithm, its capability for model state estimation, as well as itswide functionality and applicability. The capability for state estimation allows the Kalmanfilter algorithm to provide both filtering and sensor fusion functionality, which explains
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its wide use in a variety of applications, including both inertial sensor filtering and fusionapproaches. While the Kalman filter is initially designed for linear model estimation, itsadvanced variations, such as extended (EKF) and unscented (UKF) Kalman filters, are alsoable to effectively process the non-linear models. Kalman filter algorithm and its varia-tions also enable features of adaptive fusion, which makes this algorithm highly suitableand effective for different real-life fusionmethods. For its versatility, the Kalman filter waschosen as the primary fusion algorithm to be used in the context of this work. Addition-ally, according to the conducted research, the Kalman filter algorithm and its variationsare also frequently combined with different machine learning and neural network tech-niques, and primarily used for sensor filtering purposes.
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3 Indirect Tracking Methodology
This section introduces the methodology behind the proposed markerless indirect track-ingmethod, defines its key components, as well as selects the necessary technologies andsensors required for its implementation. This method is designed to fill the existing gap inavailable state-of-the-art approaches, previously defined in Section 2.1.3. The developedmethod directly answers the research question RQ1, as well as represents one of themaincontributions of this research and Publication IV. Background and the main concept ofthe developed indirect trackingmethod are also briefly introduced in publication I [1]. Theresulting structure of the developed indirect tracking method, developed algorithms, aswell as the experimental implementation and testing of the proposed method are pro-vided later in Section 5.
3.1 Methodology
The proposed markerless indirect tracking method is closely described in Section 5 and inPublication IV, as well as briefly mentioned as background in Publication I. This methodis based on the hypothesis that completely untagged industrial products or equipmentcan be accurately localized in real-time during their transportation by industrial materialhandling equipment, such as forklifts, lifters, or cranes. The transported object is phys-ically loaded on the specialized material handling unit of MHE, such as forklift tynes orcrane hook/magnet unit, and remains in the corresponding three-dimensional locationin the MHE body frame throughout the transportation process. Therefore, the real-time3D location of the material handling unit directly reflects the corresponding real-time 3Dcoordinates of the transported object with sufficient accuracy. Therefore, this methodonly requires an initial product coordinates assignment upon its arrival at the warehouseor production area. This, for instance, may be automatically performed during the initialproduct registration routine in a specialized area, such as an arrival dock, after its unload-ing from the transportation vehicle (e.g., logistics truck) into dedicated geofenced zoneswith pre-measured coordinates. Based on the industrial preferences, a variety of differentproduct registration approachesmay be used to assign the necessary product informationto the corresponding geofenced unloading zone (i.e., initial product coordinates), frommanual logistics information input up to the AI-enhanced vision-based methods.With reliable and time-synchronized detection of the object loading and unloadingevents, this approach may also automatically provide the exact storage location of theobject, thus fully automating the tracking process. Access to an accurate 3D positioninginformation of the tracked object during its transportation and storage additionally allowsto bind the identification information to its physical location. This mitigates the need fordirect object marking with identification tags, thus resulting in a fully markerless indirecttracking method. This approach is based on the following key assumptions:

• Objects tracked with this method are only transported by the material handlingequipment (e.g., forklift), equipped with the necessary setup of sensors for mark-erless indirect tracing.
• Objects tracked with this method must remain stationary when stored and mustnot be significantly displaced during this period.
• Uncontrolled displacement of the tracked object may require a manual positionupdate.
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Figure 1: Conceptual illustration of the designed markerless indirect tracking method.

Although this work is focused exclusively on the forklift-based application scenario,with certain adjustments, the developed method may be applicable to different indus-trial machinery, such as lifters or cranes. The conceptual representation of the proposedindirect tracking method is illustrated in Fig. 1, reflecting the key aspects of the track-ing process and deployment. In the case of the forklift, the application of the proposedmethod requires the real-time and accurate localization of the center spot of the forkarea (x,y) f ork, which reflects the approximate location of the transported product. Thecenter spot of the fork area is marked as a blue "X" in Fig. 1. Direct deployment of the
positioning unit within the tynes area, however, often may not be possible as this areaphysically interacts with heavy objects, which can eventually damage or destroy the de-ployed tracking unit. For this reason, the positioning unit is intended to be deployed ina reliable location within the forklift body frame, resulting in the constant, above-meteroffset δ

x,y
f ork between the positioning unit and the midpoint of the fork area. In Fig. 1, this(underlying) positioning unit is marked as a green dot.Compensating for this offset is essential for the accurate product position estimation,which is often overlooked in the available state-of-the-art methods, provided in Section2.1.2. The offset can be reliably compensated by using accurate real-time informationof the forklift heading Ψ, thus requiring a corresponding heading tracking unit. In Fig.1, the heading tracking unit is marked with an orange arrow. By leveraging the headinginformation, the exact fork location (x,y) f ork can be geometrically calculated from theinitially measured forklift coordinates (x,y)o as follows:{

x f ork = xo + sin(Ψ) ·δ x,y
f ork

y f ork = yo + cos(Ψ) ·δ x,y
f ork

. (1)
The detailed explanation for the resulting fork location calculation is provided in Publica-
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tion I, additionally covering the case of random placement of the positioning unit withinthe forklift body frame.Accurate tracking of the real-time forklift heading is essential, since it directly impactsthe estimation of the resulting location of the transported payload. For evaluation pur-poses, the resulting error in the indirectly tracked product location, caused exclusively bythe error in the tracked forklift heading, can be geometrically derived as shown in Fig. 2and expressed as follows:
ε f ork = 2 · sin(

εΨ

2
) ·δ x,y

f ork, (2)
where ε f ork represents the error in the forklift tynes’ position, andhence, in the position ofthe tracked payload. It is calculated from the constant offset δ

x,y
f ork between the deployedpositioning unit and the fork area, and error in the forklift heading εΨ.

True fork
location

Positioning
unit

Estimated
fork location
Estimated

fork location

Figure 2: Geometric interpretation of the fork positioning error, exclusively caused by inaccuracy in
forklift heading estimation.

In order to extend thepositioning capabilities of the proposed indirect trackingmethodand allow three-dimensional product localization, fork elevation tracking is also needed.
In the context of this work, elevation reflects the object lifting height above the ground
level. This requires the integration of the elevation tracking unit, capable of reliable andaccurate measurement of the forklift tynes elevation z f ork, which corresponds to the ver-tical coordinate of the transported product. In Fig. 1, the elevation tracking unit is markedwith a red box. Combined with the earlier determined 2D fork location, it results in 3D co-ordinates of the transported product. Integration of the fork occupancy detection unit al-lows the automatic detection and distinguishes the product loading and unloading events,thus fully automating the proposed indirect tracking method. Timely detection of theseevents allows to accurately define the corresponding pick-up (x,y,z)up and drop-down
(x,y,z)down locations, respectively marked as an empty blue rhombus and "X" in Fig. 1.Accurately detected pick-up location allows to indirectly identify the picked-up productfrom its earlier known storage location, while the confirmed drop-down location corre-sponds to the exact coordinates of the stored product.As defined in this section, the designed method for markerless indirect tracking ofindustrial products requires the following set of components, providing the correspondingreal-time information:

• Underlying positioning unit: The primary task of this unit is to provide the currentlocation of the industrial transportation machinery, which will be further used forthe exact location estimation of the tracked product. The secondary role of this unit
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is closely described in Section 4 and Publications I & III, and focuses on supportingthe heading tracking unit in the accurate forklift heading estimation.
• Heading tracking unit: This unit is used to track the real-time heading of the indus-trial transportationmachinery for its further use in the resulting location estimationof the transported product.
• Elevation tracking unit: The main purpose of this unit is an accurate measurementof the forklift tynes’ elevation to enable the accurate 3D localization of the trackedproduct, thus covering the possible scenarios of the tracked product shelving andstacking. The secondary role of this unit is focused on the support for the occupancydetection unit in the precise and reliable recognition of the payload pick-up anddrop-down events. Its role in the proposed algorithm for automatic pick-up & drop-down detection (A-PDD) is described in Section 5.2 and in Publication IV.
• Occupancy detection unit: This unit is aimed at tracking the real-time occupancystatus of the forklift tynes area anddetecting possible payload pick-up or drop-downevents, thus fully automating the proposed indirect tracking method.

3.2 Technology & Sensors’ Selection
This section justifies the selection of suitable technologies and sensors for the key infor-mation providing units, needed in the designed indirect tracking method, and previouslydefined in Section 3.1. It gives a brief overview of the available options for each requiredunit and justifies the resulting choice. In accordance with the key requirements for theproposed method, defined in Section 1.3, the sensors’ selection must meet the followingcriteria:

• Minimal viable/feasible number of sensors: The resulting setupmust include amin-imal number of sensors, sufficient to provide the necessary functionality of the pro-posed indirect tracking method. Each sensor must have a specifically defined pri-mary purpose for the designedmethod, while the use of entirely supporting sensorsis avoided. This is done to increase the cost- and energy efficiency of the designedmethod, as well as to reduce its complexity and maintenance requirements.
• Minimal data volumes and processing complexity: Chosen sensors must providelower data volumes, requiring minimal pre-processing before use in the indirecttracking process. Minimizing the size of the initially provided data reduces the re-quirements for the wireless data transmission channel between sensors and themain processing server, thus preventing possible delays and/or retransmissions inthe sensors’ data stream. Minimized data pre-processing complexity reduces thepossible delay between input data reception and its further use, thus increasing thesensor data relevance in the time domain. For instance, the data stream of vision-basedmethods requires higher transmission bandwidth and complex processing forits conversion into the relevant information, such as heading data.
• Applicability in industrial environment: Chosen sensors must provide a reliable per-formance in the application environment (e.g., industrial environment) and robust-ness against surrounding interference. The selection processmust consider existinglimitations of chosen sensors, related to the application environment.
• Minimal integration into themachinerymechanisms: Inmany cases, the directmod-ification of industrial machinery is not possible (e.g., due to the machinery rental
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regulations). For this reason, the chosen sensors must be minimally intrusive to theused industrial equipment and machinery (e.g., wheels or steering sensors).
• Minimal adjustments to the operating environment: Theuse of chosen sensorsmustrequire minimal adjustments to be made in the application environment, allowinga seamless deployment of the necessary sensors and infrastructure. This criterionis aimed at minimizing any interference of the proposed indirect tracking system onthe natural workflow of the covered warehouse or production site.
As the key requirements for the resulting setup include its possible minimization andavoidance of supportive-only sensors, this section also briefly covers the possible multi-role use of the selected sensors and technologies. Possibly maximized and combined useof the selected sensors and technologies is favored as it leads to a possible performanceincrease and potential extra features for the indirect tracking method.

3.2.1 Underlying Positioning UnitA positioning system is the central unit of the designed indirect trackingmethod, essentialto initially obtain the real-time location of the used MHE. The chosen positioning systemdirectly determines the initial expected product positioning accuracy, precision, and qual-ity of the developed method. As certain positioning systems are designed specifically foreither indoor (e.g., UWB Real-Time Location System (UWB RTLS)) or outdoor (e.g., GNSS),the selected positioning system also determines the covered operating environment forthe designed indirect tracking method. The designed method, however, is not bound toany specific positioning system and allows the use of any source of positioning data ortheir combinations as a positioning unit in the proposed method. Thus, a positioningunit in the proposed method may be replaced/represented with a seamless fusion of in-door and outdoor positioning systems, operating in a unified coordinate system for multi-environmental indirect product tracking.
GNSS & Cellular positioning: A variety of different positioning technologies can beused as a positioning unit for the designed indirect tracking method. Global NavigationSatellite System (GNSS) is one of the most widely known and used positioning technolo-gies, which includes systems, such as GPS, Galileo, GLONASS (Global Navigation SatelliteSystem), and BeiDouNavigation Satellite System [141, 142, 143]. This technology provides aglobal positioning at a relativelymoderate cost to the end user. This technology provides ameter-level accuracy positioning in outdoor environments. However, since the GNSS tech-nology is based on satellites, it naturally requires the open sky for effective positioningand remains sensitive to various high environmental obstacles, such as buildings. Openand plain areas, on the other hand, are the most optimal environmental conditions forthis technology. Introduction of the field-deployed supportive infrastructure - RTK (RealTime Kinematic) allows the GNSS technology to achieve up to centimeter-level accuracy[144]. Since this requires additional direct communication of the GNSS unit with the field-deployed base station, it leads to the area of coverage limitation of the GNSS RTK systemdown to multiple kilometers, scalable with the deployment of additional base stations.Although the GNSS RTK significantly improves positioning accuracy, the deployment ofauxiliary field infrastructure also leads to a significant cost increase.Alternatively, the outdoor and partially indoor positioning can be performed by us-ing cellular technology [142, 145]. The 5G technology is designed to support the Millime-ter Wave-based (mmWave-based) positioning with declared sub-meter accuracy in denseurban areas and partially indoors. Recent advances in this field also indicate that a sig-
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nificant positioning performance increase can be achieved by integrating various intelli-gent technologies, such as machine learning for cellular LOS/NLOS detection [6]. With thepre-deployed infrastructure, this technology is also expected to be relatively cost-efficientfor the end user. However, the required mmWave infrastructure is not widely deployed,which makes this approach currently impractical.
Ultra-Wideband: Among the indoor positioning systems, the UWB RTLS provides low-latency and high-accuracy positioning of 10 cm to 30 cm, along with a capability to coverlarge indoor areas of industrial size [141, 142, 145, 146, 147]. This technology relies on afield-deployed infrastructure, consisting of interconnected anchor units, performing thelocalization of the mobile tag unit by using the multilateration method. Similar to otherlocalization technologies, UWB positioning systems are sensitive to various line-of-sight-blocking obstacles in the environment, which may noticeably impact the resulting posi-tioning quality. Nevertheless, UWB positioning technology also provides significant per-formance reliability, allowing it to remain operational even inNLOS conditions. It is achievedby the superior obstacle penetration capabilities of UWB signals due to the wide fre-quency spectrum, as well as high resistance against multipath signal interference. A reli-able deployment of the UWB positioning infrastructure remains essential in various com-plex environments, such as industrial areas, to ensure precise positioning, minimize theimpact of numerous environmental obstacles, as well as maximize the resulting coverage.
Wi-Fi & Bluetooth positioning: Alternatively, the indoor positioning can be based onwidely available technologies such as BLE (Bluetooth Low Energy) and Wi-Fi (Wireless Fi-delity). Similar to UWB positioning, these technologies are sensitive to environmental ob-structions, affecting the resulting localization accuracy, thus requiring proper deploymentof the positioning infrastructure, such as BLE beacons and Wi-Fi access points. In com-parison with the above-described UWB indoor positioning systems, these technologiesprovide wider hardware availability and accessibility, noticeably increasing the potentialcost efficiency.Similar to the UWB technology, theWi-Fi-based positioning also allows for coverage oflarge indoor areas, while providing a significantly reduced accuracy of approximately 5-10m [141, 142, 143, 145, 146, 147, 148]. This positioning accuracy, however, is expected in thecase of RSSI-based (Received Signal Strength Indicator)Wi-Fi positioning. The use of moreadvanced techniques in Wi-Fi-based position estimation, such as FTM (Fine Timing Mea-surement), increases positioning accuracy to 1-3 m at the cost of higher computationalcomplexity.On the other hand, positioning systems based on BLE technology and its received sig-nal strength indicator initially provide a positioning accuracy of 1-5 m [141, 142, 145, 146,147, 148]. The use of more advanced and computationally complex techniques, such asAngle of Arrival (AoA) and Angle of Departure (AoD), improves the positioning accuracyto sub-meter level. However, while providing the coverage within the approximate rangeof 100 m, Bluetooth low-energy positioning systems are significantly prone to the RF (Ra-dio Frequency) interference, which noticeably limits their potential application range andenvironments.
Magnetic field-based positioning: Short-range indoor positioning can also be basedon magnetic field sensing [142, 149]. Even though in certain cases this approach mayprovide up to a centimeter-level positioning accuracy, it is significantly limited by thesmall coverage area andmultiple environmental limitations. These limitations include the
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requirement for a controlled application environment, free of different strong or time-varying magnetic noise sources and distortions, as well as preliminary mapping of theexisting magnetic fields in the area of positioning.
Vision-based positioning: Multi-environment localization can also be performed byusing Vision-based positioning or INS systems, as these methods do not directly rely onthe deployed positioning infrastructure [141, 145, 147, 148]. Vision-based methods pri-marily utilize different high-cost vision sensors, such as stereo cameras or LiDARs, com-bined with intelligent vision and ML techniques and algorithms, thus leading to higherprocessing complexity, and therefore creating a requirement for specialized vision pro-cessing hardware. This significantly decreases the possible cost and energy efficiency ofthe vision-based methods. Even though the vision-based methods are capable of per-forming the relative positioning with up to centimeter-level accuracy, the estimation ofthe absolute location additionally requires the preliminary mapping of the covered areato determine the set of reference spots. To perform properly, the camera-based meth-ods additionally require the presence of sufficient lighting and a variety of visual featureswithin the operating area.
Inertial Navigation System: Initially, the widely available inertial sensors can be usedas inertial navigation systems, providing a relative positioning by using a dead reckoningtechnique [141, 143, 146]. In this technique, a position is estimated based on the previouslyknown location of the tracked object and its kinematics, measured by inertial sensors,such as accelerometers and gyroscopes. Inertial sensors, however, are naturally proneto over time error accumulation (drift), which consequently impacts the resulting posi-tioning by gradually decreasing its accuracy. Drift error reduction requires the inclusionof additional auxiliary sensors, such as magnetometers or other odometry sensors, suchas steering sensors and wheel encoders. Additionally, for the absolute location estima-tion, inertial sensors can be combined with an absolute positioning system and used as asupporting unit. Therefore, the expected cost efficiency and positioning accuracy of INSsystems are dependent on the additional use of supplemental sensors and the presenceof over time error accumulation by inertial sensors.

DiscussionThe summarized results of the above analyzed positioning methods and technologies foruse as the underlying positioning system in the proposed indirect tracking method areprovided in Table 5, along with their main features, acceptable trade-offs, and critical lim-itations. The significance of the particular aspect is reflected by the color intensity. Asstated earlier in this section, the proposed indirect tracking method is not strictly boundto any type of positioning system, and any of the available methods or their combinationscan be used in this role. However, from the perspective of industrial use and in accor-dance with sensors’ selection requirements defined in Section 3.2, this research focuseson the use of the UWB positioning system in indoor environments and GNSS/ GNSS RTK inoutdoor environments. In cases of mixed environments, the interchanging combinationof these positioning systems is used. These positioning systemswere chosen as theymeetthe defined sensor selection requirements and provide sufficient positioning accuracy ata suitable combination of cost efficiency and computational complexity in their coveragearea.
In comparison with the UWB indoor positioning system, alternative methods, such
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as Wi-Fi or BLE (RSSI) positioning, are unable to provide sufficient positioning accuracy,while methods such as BLE or magnetic field-based positioning provide insufficient cov-erage for industrial applications. Additionally, the magnetic field-based positioning meth-ods are expected to be naturally inapplicable in the industrial environment due to majorand inconsistent magnetic distortions. Even though vision-based methods may provide amulti-environment and highly accurate positioning, they will also introduce a significantcost inefficiency and high computational and maintenance complexity to the resulting in-direct tracking method. During this research, the validation of the proposed method wasperformed by using Eliko UWB RTLS [150] while the FieldBee GNSS RTK [151] system wasused for the conducted outdoor experiments.
Table 5: Summarized results of underlying positioning system selection with highlighted features,
trade-offs, and major limitations.

Underlying Positioning System
Features Trade-offs Critical limitations

Decimeter accuracy Outdoor only
Susceptibility to obstructionsWorld-wide deployedinfrastructure *Higher cost (RTK)GNSS &

GNSS RTK
*Centimeter accuracy (RTK)

-

Cost-efficiency Primarily outdoors Sub-meter accuracyCellular Underdeveloped infrastructure
Decimeter accuracy Primarily indoors

Ultra-Wideband Moderate to highinfrastructure cost
-

Wide availability Primarily indoors 5-10 meters accuracy (RSSI)
Cost efficiency *Meter-level accuracy (FTM)Wi-Fi *Increased computationalcomplexity (FTM)
Wide availability Primarily indoors Sensitive to RF interference
Cost efficiency Meter-level accuracy (default)Bluetooth *Increased computationalcomplexity (AoA, AoD) *Sub-meter accuracy (AoA,AoD)
Centimeter accuracy Short-range High environmental sensitivity
Infrastructure-freeMagneticfield-based Operational only insupervised environments
Centimeter accuracy High-cost Environmental mapping needed
Infrastructure-free High computational complexity
Multi-environment High-end processing hardwarerequiredVision-based High data transmissionrequirements
Wide availability Supporting technology required
Cost efficiency Over time error accumulation(gradual accuracy drop)Inertial(gyro, accl)
Infrastructure-free

3.2.2 Heading Tracking UnitHeading information is one of the main aspects of vehicle navigation, along with its po-sition and speed [152]. The accurate information on the real-time heading of the usedMHE plays an essential role in the proposed indirect tracking method, allowing a signifi-cant mitigation of the earlier defined offset between the positioning unit and fork area,and therefore, achieving high accuracy of the resulting indirect product localization. Thissection gives an overview of available sensor options for heading estimation and coversthe selection of a suitable sensor for the accurate, robust, and real-time heading trackingof industrial machinery in the corresponding environment. The selection of the headingtracking unit also takes into account the presence of the previously chosen positioningsystem and its potential use for heading estimation, either independently or in combina-tion with another unit.
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Gyroscopes: Gyroscopes are one of the most prevalent and widely adopted sensortypes, allowing the real-time tracking of the relative three-dimensional orientation byfrequently measuring the instantaneous angular velocity [153, 154]. Gyroscope sensorsinclude different types, from consumer-grade and widely available MEMS gyroscopes tomore advanced optical solutions and experimental prototypes. Due to their compactnessand cost-efficiency, MEMS gyroscopes are widely used in various applications from smart-phones to robotics, as well as are often available as part ofmulti-sensor units, such as IMU(Inertial Measurement Unit). Despite their moderate sensitivity to temperature changesand mechanical vibrations, caused by their mechanical nature, MEMS gyroscopes are ca-pable of detecting minor rotations with an approximate resolution of 0.01◦ with minordata processing requirements. As it was previously discussed in Section 2.2.1, one of thekey disadvantages of MEMS gyroscopes is represented by the over time accumulated er-ror in themeasured angular data, caused by temperature-varying internal white noise andbias instability.The available types of optical gyroscopes include ring laser gyroscopes and fiber op-tic gyroscopes, based on the principle of the Sagnac effect, discovered in 1913 by GeorgeMarc Sagnac [155, 156, 63, 157]. It describes the interferometry phenomenon, when in therotating interferometer, two laser beams, propagating in opposite directions, will have aphase shift proportional to the angular velocity of the rotating interferometer. In contrastto mechanical gyroscopes, optical units offer significantly higher stability and robustnessagainst mechanical vibrations and varying temperatures. Optical gyroscopes are less sus-ceptible, although not fully immune, to the drift effect, which still may eventually cause anaccumulation of a significant error over longer periods of time. The performance advan-tages of the optical gyroscopes are also counteracted by significantly lower compactness,cost- and energy efficiency in comparison with MEMS units.
Steering & Wheel Encoders: Vehicle heading estimation can also be based on odom-etry sensors, such as steering and wheel encoders, supported by a lateral velocity con-straint model [158, 159]. These sensors measure the vehicle’s state parameters as move-ment speed and steering angle, used to estimate its relative heading. Despite the wideavailability, significant cost efficiency, andminor data processing requirements, these sen-sors are prone to different physical aspects of vehicle motion, such as the sideslip effect,and are often used in combination with inertial sensors (gyroscopes & accelerometers).Additionally, these sensors require direct integration into the vehicle mechanisms and im-plementation of the vehicle-specific lateral velocity constraint model.
Magnetometers: Another widely used method for heading tracking is based on theprinciple of magnetic field sensing by using magnetometers [160, 161, 162]. These unitsmeasure the strength of surrounding magnetic fields, which can be used to calculate theabsolute heading in relation to the magnetic north of the Earth, also referred to as bear-ing or azimuth. Widely accessible and cost-efficient types of magnetometers based onthe Anisotropic Magnetoresistance (AMR), Giant Magnetoresistance (GMR), or TunnelMagnetoresistance (TMR) effects may provide absolute heading estimation with approx-imately 1◦ resolution and precision. Improved performance can be expected from morespecialized and less accessible magnetometer types, such as Fluxgate magnetometers.However, due to the natural sensitivity of magnetometers to different magnetic distor-tions, the high-performance resultsmay only be achieved in controlled environmentswithminimized presence of magnetic noise. Since for the absolute heading measurement the
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magnetometers naturally rely on the relatively weakmagnetic field of the Earth, the pres-ence of significantly stronger magnetic distortions may entirely deny the use of magne-tometers in industrial areas, such as warehouses or production sites.
Positioning Data-based: Absolute heading information within the used coordinatesystem can also be estimated by using the positioning data. With varying accuracy, themomentary vehicle heading can be estimated by using the consecutive positioning datasamples from single- [132, 130] or multiantenna [163, 164, 165, 128] positioning units. Thismethod provides potentially high reliability in different environments, while its stability di-rectly depends on the positioning quality of the underlying positioning system. The head-ing estimation accuracy of this method is directly determined by the movement speed ofthe tracked vehicle and the precision of the used positioning system.

Tracked position
Positioning data-based
heading

X

Y

Linearly increasing movement speed

Figure 3: Illustrative example of the heading precision, based on the noisy positioning data, and at
linearly increasing movement speed.

Figure 3 illustrates the heading estimation quality, based on the noisy positioning dataat varying moment speed. Sample positioning data is shown with gray points, the corre-sponding positioning data-based heading is represented with dark red arrows, while thegreen arrow illustrates the true movement direction, accompanied by linearly increas-ing (left to right) movement speed from a stationary state. As it is illustrated, in station-ary cases and at lower movement speeds of a single antenna-based setup, the estimatedmovement direction (heading) is highly affected by positioning data errors and becomesfully unpredictable. Increasing movement speed compensates for positioning data er-rors, rapidly improving the heading estimation accuracy and precision. This significantlycomplicates the sole use of positioning data for proper heading estimation. A certain im-provement in heading estimation stability and reliability at lower movement speeds canbe expected in the case of a less cost- and energy-efficient multi-antenna positioning sys-tem. Unlike the single antenna unit, it provides synchronized information from multiple,physically separated receivers (antennas), which allows to perform the heading estima-tion within each data sample independently.
Vision based: Accurate, potentially stable, and sub-degree heading estimation canalso be performed as part of the vision-based positioning option, described in the previ-ous Section 3.2.1 by using different high-cost sensors such as stereo cameras, optical flowsensors, intelligent vision, or LiDARs [166, 167, 168]. In some cases, this approach mayprovide a 1.5-degree accuracy in the platform heading estimation [169]. Similar to thevision-based positioning, however, this heading estimation approach leads to significantprocessing complexity, specialized hardware requirements, as well as preliminary map-ping of the operating area to determine the environmental reference points, necessary
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for the absolute orientation estimation.
DiscussionTable 6 provides the summarized results of the above analyzed vehicle heading trackingtechniques from the perspective of their use as part of the proposed indirect trackingmethod. It covers the main features of the considered methods, their acceptable trade-offs, and critical limitations. Color intensity corresponds to the relative significance of thecorresponding aspect. From the perspective of industrial application and in accordancewith the sensors’ selection criteria, defined in Section 3.2, the suitable option for the head-ing estimation of industrial material handling equipment includes the inertial (gyroscope)and positioning data-based methods. Both of these methods, however, contain signifi-cant limitations, denying their sole use for accurate and reliable vehicle heading tracking.These limitations include the drift effect of the inertial unit and direct dependence on themovement speed of the positioning data-based method.Since the positioning systemwas selected earlier for use as part of the indirect trackingmethod, this research focuses on the combined use of inertial and positioning data foraccurate heading tracking. Therefore, the MEMS gyroscope unit is selected for the role ofthe heading tracking unit in this section due to its wide availability, portability, cost- andenergy efficiency in comparison to the optical gyroscopes.The use of magnetic field-based methods was avoided due to their critical sensitiv-ity to magnetic distortions and thus inapplicability in industrial environments. Odometryand vision-based heading estimation were also not considered due to their respective re-quirements for integration into themachinery mechanisms, high computational complex-ity, and cost inefficiency. The combined use of inertial and positioning data for accuratevehicle heading estimation was separately investigated as part of this research, while thedeveloped and used algorithmic method is described in the Section 4. The experimen-tal tests in this research were conducted using the MEMS gyroscope sensor of the BoschBNO055 inertial measurement unit, which also includes an accelerometer and magne-tometer [170].
Table 6: Summarized results of heading tracking unit selection with highlighted features, trade-offs,
and major limitations.

Heading Tracking Unit
Features Trade-offs Critical limitations

Wide availability
Cost efficiency

Supporting technology required
(Positioning unit available)

Over time error accumulation(drift→ gradual accuracy drop)
Gyroscope *Higher accuracy &decreased drift effect (RLG, FOG) *Significantly higher cost(RLG, FOG)

Wide availability
Cost efficiency Highly detailed motion model isrequired Direct integration into vehiclemechanismsSteering &Wheel Encoders Supporting technologies needed
Wide availability & Cost efficiency
Absolute heading measurement *Operational only in supervisedenvironments Extreme sensitivityto magnetic distortionsMagnetometer
*Possible high accuracy
Absolute heading information Accuracy & reliabilityonly at higher speedsPositioningSystem Previously selected & available
(may be used as aux. technology)

Sensitivity to positioning dataquality at low speeds
(may be supported by gyro.)

Potentially high accuracy High-cost Environmental mapping needed
Absolute heading information High computational complexity High-end processing hardwarerequiredVision-based High data transmissionrequirements
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3.2.3 Tynes’ Elevation Tracking UnitSupporting 3D product localization is essential in the majority of industrial applications,particularly those involving extensive product shelving or stacking. To extend the position-ing capabilities of the proposed indirect tracking method and enable the complete three-dimensional product positioning, accurate tynes’ elevation tracking is required. This sec-tion covers the review and selection of a suitable technology for the accurate and reliablereal-time measurement of the forklift tynes’ elevation. The availability of the previouslyselected positioning and inertial (gyroscope/IMU) technologies, as well as their possibleuse for the fork elevation tracking, is also taken into account in this section.
Barometric Pressure SensorsBarometric pressure sensors can be used for the absolute altitude estimation, by mea-suring the momentary atmospheric pressure [171, 172, 173, 174]. This technology is widelyavailable and, due to itswide altitudemeasurement range, is used in different applicationscovering higher altitude tracking, such as in drones or airplanes (barometric altimeters).Widely available pressure sensors provide altitudemeasurements with meter to centime-ter accuracy levels. The performance of the barometric pressure sensors, however, maybe significantly affected by environmental factors, including changes in the surroundingtemperature, humidity, and airflow, thus leading to performance inconsistency and re-quiring proper calibration.
Ultrasonic Distance Sensors: Centimeter to sub-centimeter accuracy in the eleva-tion measurement can be achieved by using widely available ultrasonic distance sensors[175, 176]. Although these sensors demonstrate lower susceptibility to environmental ef-fects in comparison with barometric sensors, they also provide a significantly lower oper-ating range of approximately 5 m. In the case of ultrasonic distance sensors, a higher op-erating rangemay be achieved by lowering the operating frequency of the emitted sound,which consequently leads to a decrease in measurement accuracy. The use of higher fre-quencies, on the other hand, provides higher, up to millimeter accuracy at the cost of asignificant decrease in the operating range. In the context of this work, the forklift tynes’elevation measurement additionally requires a precise and reliable installation of the ul-trasonic distance sensor within the fork area, and pointed towards the ground surface.Being a proximity detection unit, the ultrasonic sensor performs the distance measure-ment to the nearest object in its line of sight, therefore enabling various foreign objects,including forklift parts, within its coverage area to affect the resulting measurement ac-curacy.
Laser Distance Sensors: Alternatively, the elevation measurement may be performedby a laser distance sensor, providing millimeter accuracy along with higher measurementrange and measurement resolution [177, 178]. Unlike the ultrasonic distance sensors, thelaser-based unit performs the distance measurements by forming a narrow laser beam,thus avoiding the false detection of the nearest object in proximity. Laser distance sensors,however, demonstrate decreased cost-efficiency andmoderate sensitivity to different en-vironmental factors, including fog or dust, heavily present in industrial areas, as well asthe quality of the reflecting surfaces. Similar to ultrasonic distance sensors, in the contextof the forklift tynes’ elevation tracking, laser distance sensors require reliable and preciseinstallationwithin the fork area, whichmay also lead to the eventual damage of the fragilesensor parts due to impacts or vibrations present on MHE.
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IR Distance Sensors: Distance measurements can also be based on Infrared (IR) lighttechnology. IR distance sensors provide significant cost-efficiency together with centime-ter measurement accuracy and millimeter resolution, similar to ultrasonic sensors [179,180, 181]. IR sensors, however, are significantly limited to a slightly beyond 1 m detectionrange and high sensitivity to different environmental aspects, such as ambient lighting,reflection properties, and color of the reflecting surface. The requirement for a preciseinstallation of this sensor within the fork area may also lead to the inevitable damage tothe fragile sensor parts.
Wire Displacement Sensors: A variety of different mechanical approaches are used inthe industry for accurate displacementmeasurements [182, 183, 184]. However, amajorityof those sensors, such as strain gauge displacement sensors, only provide a centimeter-level measurement range, which proves their inapplicability in the context of this work.A higher measurement range can be provided by industrial-grade wire displacement sen-sors. These sensors represent the wire reel, equipped with either a rotary encoder or apotentiometer unit, respectively used tomeasure relative or absolute linearwire displace-ment. These sensors allow displacement measurements with millimeter accuracy andsub-millimeter resolution at the operating ranges of up to dozens of meters, dependingon the used configuration [185]. The build quality of the industrial-grade sensors provideshigh reliability in different environmental conditions. While the potentiometer-based sen-sors offer highmeasurement stability and robustness, the rotary encoder-based unitsmayexperience an over time error accumulation due to their relative nature ofmeasurements.In the context of forklift tynes’ elevation measurement, these sensors may require minorto moderate integration into the fork mechanisms, depending on the final deployment.
Positioning Unit: The vertical position of the forklift tynes may also be measured bythe positioning systems, such as the previously selected UWB indoor positioning system,providing the declared positioning accuracy of 10-30 cm [186, 187]. Positioning perfor-mance, however, is significantly dependent on the positioning infrastructure deploymentwithin the operating area. While the horizontal deployment of the UWB infrastructuralcomponents (anchor units) may be optimized, improving the horizontal positioning ac-curacy, the vertical deployment remains significantly limited. Higher positioning perfor-mance requires the deployment of the UWB anchor units at varying heights between theground and the ceiling levels within the operating area. However, in most cases, the posi-tioning infrastructure is mainly deployed near the ceiling level due to the lower presenceof line-of-sight blocking obstacles, which significantly affects the vertical positioning ac-curacy. Thus, in practice, depending on the particular deployment, the expected verticalaccuracy of UWB positioning systems may be reduced down to a 0.5 - 1 m level [186, 187].A similar effect of reduced vertical positioning accuracy may also be expected from otherpositioning systems, such as GNSS [188, 189].
Inertial Sensors: The previously selected MEMS gyroscope unit is often available aspart of inertial measurement units, together with an accelerometer sensor used for thelinear acceleration measurements [190, 191, 192]. As the integration of the linear accel-eration data reflects the linear displacement, accelerometer units can also be used as acost-effective method for elevation tracking, providing theoretically an unlimited mea-surement range. Even though this approach potentially allows displacement measure-ment with a sub-millimeter resolution, it is unable to provide stable and reliable accuracyfor longer periods of time. Similar to MEMS gyroscopes, the MEMS accelerometer units
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are prone to the drift effect, which causes the over time accumulated errors, thus leadingto the over time degrading accuracy of the displacement measurements.
DiscussionThe summarized results of the above provided analyzed approaches for the forklift tynes’elevation monitoring in the proposed indirect tracking method are presented in Table 7,along with their main features, acceptable trade-offs, and critical limitations. The signifi-cance of the particular aspect is reflected in the color intensity. The resulting selection oftynes’ elevation tracking unit was performed by taking into account the selection require-ments, defined earlier in Section 3.2, as well as the expected use of the selected sensorin industrial conditions, where the risk of physical damage is greatly increased. Amongthe technologies mentioned in this section, the potentiometer-based wire displacementsensor was selected for use as an elevation tracking unit in this research. Even thougha robust deployment of this sensor may require minor to moderate integration into thelifting mechanisms of the forklift, it also provides a combination of significant advantages.These include sufficient measurement range for forklift applications, high measurementaccuracy and resolution, as well as low sensitivity to environmental effects, high stability,and reliability in industrial applications.Alternative options for the elevation tracking include barometric sensors, which, com-pared to wire displacement sensors, require minimal integration into the forklift mecha-nisms, while providing lower measurement accuracy, resolution, and reliability, as well ashigher environmental sensitivity. Positioning and inertial sensor-based methods are un-able to provide reliable and stable elevation measurements at sufficient centimeter-levelaccuracy, which prevents their use in this research. As ultrasonic, IR, or laser technology-based sensors perform distance measurements against the corresponding reflecting sur-

Table 7: Summarized results of tynes’ elevation tracking unit selection with highlighted features,
trade-offs, and major limitations.

Tynes’ Elevation Tracking Unit
Features Trade-offs Critical limitations

Wide availability Calibration requirements Meter-to-centimeter accuracy
Absolute measurement Significant environmentalsensitivityBarometricPressure Sensors

Inconsistent performance
Wide availability & Cost efficiency Sensitivity to surrounding objects
*Sub-centimeter-level accuracy *Measurement accuracy tomax. operating range trade-off
Low environmental sensitivity Deployment difficulty for thegiven taskUltrasonicDistance Sensors

*Possible range limitations
Millimeter accuracy Sensitivity to vibrations& impacts
Cost efficiency Moderate sensitivity to reflectingsurfaces & environmentLaser DistanceSensors Sufficient operating range Deployment difficulty for thegiven task
Cost efficiency Limited range
Centimeter accuracy High environmental sensitivityIR DistanceSensors - Deployment difficulty for thegiven task
Absolute measurement Physical wear

Moderate cost -Displacement
(Wire) Sensors Millimeter to centimeteraccuracy & resolution Minor deployment difficulties

Absolute measurement Meter-level vertical accuracyPositioningSystem Previously selected & available
Infrastructure required
(Expected by default)

Wide availability & Cost efficiencyInertial sensors(accelerometer) Previously selected & available
- Over time error accumulation& degrading accuracy
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faces, they require precise deployment under the fork area,measuring towards the groundsurface. Aside from the other performance disadvantages of these sensors, this deploy-ment may lead to their inevitable damage. In the experimental tests, conducted as partof this research, the elevation tracking was performed by using a Miran potentiometer-based draw wire encoder [193].
3.2.4 Fork Occupancy Detection UnitReliable and real-time detection of the fork occupancy status is essential information forthe proposed indirect trackingmethod. It allows tominimize the involvement of thework-ing personnel in the product and equipment tracking process, thus minimizing the im-pact of the human factor. Synchronized use with the tracked product location also allowsfor the accurate estimation of the product pick-up or drop-down coordinates, eventuallyused for product identification. This section covers the selection of suitable technologyand sensors for the reliable detection of the forklift tynes’ occupancy status in the indus-trial environment. Sensors and technologies selected in previous Sections 3.2.1, 3.2.2, and3.2.3 are also taken into account as possible supporting units for the selected occupancytracking unit.

Load Cells: One of the most straightforward methods for the physical occupancy de-tection can be based on load cells. Although industrial-grade load cells are typically costly,they can provide a broad range of physical weight detection from a gram, and sometimes,milligram level up to dozens of tons [194, 195, 196, 197]. This weight detection range, to-gether with high reliability in industrial environments and the capability to provide extrainformation on the detected object’s weight, makes these sensors a viable option for avariety of industrial applications, including the proposed indirect tracking method. How-ever, the forklift deployment of the industrial load sensor for tynes’ occupancy detectionrequires its major integration into the lifting mechanisms. Flat load (strain gauge) sensors(e.g., based on the piezoresistive structure) may be considered as an alternative optionto load cells in weight measurement. Unlike the earlier described load cells, these unitsmay be directly deployed within the fork area, potentially requiring minimal integrationinto the lifting mechanisms. This advantage, together with the slightly increased cost ef-ficiency, however, is compensated by the noticeably lower weight detection range up toa few tons and lower durability.
Laser Distance Sensors: Object detection within a certain area may be performed us-ing various cost-efficient distance sensors, such as ultrasonic or laser distance measure-ment units [198, 199]. As these sensors are able to detect the object’s presence remotely,they do not require significant integration into the MHE mechanisms. Laser distance sen-sors are used for accurate and precise distance measurement at the expense of lowercost efficiency, higher environmental sensitivity, and data processing complexity. Fromthe perspective of general object presence detection, however, laser-based sensors offera significant operating range of dozens of meters, while the high distance measurementaccuracy and precision are not essential. The case-specific disadvantage of these sensorsis the potential requirement for precise installation, allowing the narrow laser beam toreliably detect the transported payload of any possible shape and size.
Ultrasonic Distance Sensors: Ultrasonic sensors, on the other hand, perform the dis-tance measurements to the nearest object within a relatively wide cone-shaped beam[200, 201, 202]. Although this might be considered a drawback in the field of precise dis-
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tance measurements, this feature makes ultrasonic sensors suitable for area occupancytracking and object detection. In comparison with laser distance sensors, the ultrasonicsensors provide a lower operating range within 5-10m, together with centimeter-level ac-curacy in distance measurements. These parameters can be alternated by changing theoperating frequency of the sensor as was explained in Section 3.2.3. Unlike laser-basedunits, ultrasonic distance sensors offer high cost-efficiency and low data processing com-plexity. Despite their moderate sensitivity to environmental conditions, they are oftendesigned for real-world applications, including outdoor environments.
IR/PIR sensors: Sensors, based on IR and Passive IR (PIR) technologies, are primarilydesigned and used for general object presence detection [203, 204, 205]. Despite theircost efficiency and low computational complexity, these sensors also demonstrate rela-tively high environmental sensitivity and a variety of additional method-specific limita-tions. For instance, the IR reflection-based sensors are significantly limited to below halfa meter detection range and highly sensitive to the environmental aspects, such as ambi-ent light and reflective properties of the detected object. More advanced and less cost-efficient ToF (Time-of-Flight) IR sensors, on the other hand, provide additional features,such as distance measurements with approximate centimeter accuracy and increased op-erating range up to dozens of meters. These sensors, however, keep the aforementionedenvironmental limitations of IR sensors. PIR sensors are only capable of detecting heat-emitting andmoving objects within a 10m range, which primarily narrows their main fieldof applications to various human and animal detection systems. In the context of indus-trial object detection, these sensors are expected to be highly ineffective.
Vision-Based Detection: Different vision-based methods can be used for reliable andintelligent detection of the tynes’ occupancy status, potentially allowing to detected andrecognize different reference objects, such as industrial pallets, or environmental sur-roundings within a significant range [206, 207, 208]. This, however, results in reducedcost- and energy efficiency of the vision-based object detection approach, along with in-creased environmental sensitivity, data volume, and processing complexity. The integra-tion of advanced, machine learning-based processing methods further increases process-ing complexity and results in significant cost and energy inefficiency, primarily due to theneed for high-performance computing equipment.
Capacitive/Inductive Sensors: Capacitive and inductive sensors may also be used todetect the presence of specific objects in close proximity of approximately 10 cm, which,however, is insufficient in the context of forklift tynes’ occupancy detection [209, 210, 211].Additionally, these sensors only allow the detection of specific types of objects. For in-stance, inductive sensors are only capable of detecting variousmetal objects, while capac-itive units are only sensitive to dielectric materials. Therefore, more versatile occupancydetection might require the combined use of both sensors.

DiscussionTable 8 reflects the summarized outcomes of the above-provided analysis of different ap-proaches for the fork occupancy status monitoring and a possible further use as part ofthe proposed indirect tracking method. It covers the key features, limitations, and possi-ble trade-offs of the addressed approaches. The color intensity reflects the significanceof a corresponding aspect. The resulting selection of the fork occupancy detection unitwas based on the selection criteria defined in Section 3.2 and aims for robust object de-
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tection within the forklift tynes area. Due to its wide detection area and supported op-erating range, which is sufficient to cover the entire tynes area, the ultrasonic distancesensor was chosen for the fork occupancy tracking. Its ability to perform distance mea-surements to the picked-up object with centimeter accuracy provides additional real-timeinformation regarding the payload pick-up or drop-down process. Even though ultrasonicdistance sensors have a moderate environmental sensitivity to different factors, such ashigh temperature and humidity, they remain significantly reliable in industrial and outdoorenvironments.Laser distance sensors, on the other hand, require a precise deployment for the reli-able detection of the picked-up payload. Alternatively, with proper integration into thelifting mechanisms of the forklift, industrial load sensors can also be used for the tynes’occupancy detection, providing additional weight information on the lifted payload. Op-tions, such as IR, PIR, inductive, and capacitive sensors, introduce significant limitationsfrom insufficient detection range and major environmental sensitivity to the inability todetect different materials. Vision-based sensors provide a potentially significant informa-tional capacity regarding the environmental surroundings and the occupancy status of thetracked area, which, however, is achieved at the expense of a significant computationalcomplexity, as well as low cost– and energy efficiency. Taking into account the usage ofthe previously selected tynes’ elevation tracking unit, this research focuses on its com-bination with the fork occupancy detection sensor. This provides extended real-time in-formation on detected payload pick-up and drop-down events, allowing the recognitionof the aforementioned events and their stages. Fusion of tynes’ elevation and occupancytracking units is performed by the A-PDD algorithm, proposed as part of this research andfurther described in Section 5.2, as well as in Publication IV. During the experimentaltesting, the fork occupancy tracking was performed by using a weatherproof ultrasonicdistance sensor SEN0208 [212].
Table 8: Summarized results of fork occupancy detection unit selection with highlighted features,
trade-offs, and major limitations.

Fork Occupancy Detection Unit
Features Trade-offs Critical limitations

Reliable & accurate detection Possible deployment difficultiesLoad Cells Weight information Possible physical wear Moderate to major integrationinto machinery mechanisms
Cost efficiency No areal coverage
Distance information Moderate environmentalsensitivity Sensitivity to vibrations& impactsLaser DistanceSensors Detection accuracy
Cost efficiency & Distance info.
Areal coverage Sensitivity to surroundings(false detection possibility) -Ultrasonic

Distance Sensors Low environmental sensitivity
Cost efficiency Limited rangeIR Sensors Possible distance informationat higher cost High environmental sensitivity
Cost efficiencyPIR Sensors - Detection of heat-emittingmoving objects only
High reliability High-cost
Contextual information High computational complexity High-end processing hardwarerequiredVision-BasedDetection High data transmissionrequirements
Object material information Limited rangeCapacitiveSensors - Detection of dielectricmaterials only
Object material information Limited rangeInductiveSensors - Detection of metal objects only
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4 Heading Estimation
As it was previously defined in Section 3, one of the key aspects of the proposed indirectproduct tracking method is the accurate heading estimation of the used material han-dling equipment. According to the sensors selection performed in Section 3.2.2, this re-search focuses on the use of inertial sensors, particularly the gyroscope, for the real-timeheading tracking of industrial machinery. The primary drawback (i.e., drift error accumu-lation) of inertial sensor-based heading estimation is introduced in Section 2.2.1, followedby the investigation of the current state-of-the-art methods for its mitigation in Section2.2.2. In research on the available methods for inertial sensor heading error mitigation,the rarely used positioning and inertial data fusion approach was selected as the mostsuitable method in the context of this work. This section describes the main algorithmicmethods for the positioning and inertial data-based vehicle heading estimation, proposedin Publications I & III. This section also covers a description of the algorithmic method forthe UWB positioning system enhancement, implemented as part of the publication II [2].
4.1 Positioning Data-based Approach for Vehicle Heading Estimation
This section addresses the main limitations of the positioning and inertial data-basedheading estimation, as it was also addressed by Xu et al. in one of the state-of-the-artworks [130]. The key feature of the heading estimation approach, based on the position-ing data (coordinates), is its dependence on themovement speed. Evenminor positioningdata noise and errors could lead to significant heading estimation uncertainty in stationaryor slow movement cases. As it was visually illustrated in Fig. 3, the increasing movementspeed significantly reduces the impact of positioning data errors and improves the head-ing estimation accuracy. The dependence of the positioning data-based heading errors onthe movement speed is also later discussed in Section 4.4.3.This research investigates the applicability of the positioning data for the mitigation ofinertial sensor heading drift. In order to verify the sufficiency of the positioning informa-tion for a reliable gyroscope heading drift correction, a prototype algorithmwas proposedand originally presented in Publication I. This section provides a brief description of theoriginally published algorithm and its experimental testing. This section also covers a mi-nor extension to the originally published algorithm, and not included in Publication I. Inthis work, the algorithm is hereafter referred to as the Drift Correction Algorithm (DCA).
4.1.1 Positioning Data-based IMU Heading Drift Correction AlgorithmThe proposed DCA algorithm represents a novel, positioning information-based approachfor the conditional correction of the gyroscope-accumulatedheading drift error. A flowchartof the developed DCA algorithm is demonstrated in Fig. 4, while the corresponding de-tailed pseudo-code is available in Appendix 5. Both flowchart and pseudo-code represen-tations of the DCA algorithm also include a highlighted extension, added after the originalalgorithm publication in I, and described later in this section.In this algorithm, the real-time heading of the tracked vehicle is monitored by the in-ertial (gyroscope) sensor, while the positioning data is used to conditionally estimate thenecessary heading correction. The drift correction δψ is applied to the inertial headingmeasurementψk, thus compensating for the accumulated drift error and resulting in thecorrected heading Ψk, representing the output of the algorithm. The arrival of the posi-tioning data sample (x,y)k triggers the drift correction value recalculation sequence. Thelatest positioning data sample (coordinates) is stored in the FIFO (First In, First Out) buffer
WWW of size µ for further analysis to validate the movement behavior and possibility of a
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Figure 4: Flowchart of the proposed IMU heading drift correction algorithm. A minor extension for
the originally published algorithm is highlighted with dark gray box.

reliable heading correction.In the proposed algorithm, the received positioning information is required to indicatethe movement with sufficient speed and minimal maneuvering intensity to be used forthe drift correction update. Thus, the newest positioning data, stored in the FIFO buffer
WWW is used to calculate sets of the latest movement directions ααα(k) and the coordinates’displacement in the positioning data υυυ(k), which directly reflect the speed of movement.As the next step, the algorithm verifies the sufficient movement speed of the trackedvehicle and defines the indices i ∈ III of elements in coordinates’ displacement set υυυ(k),which exceed the displacement threshold υmin (i.e., minimal required movement speedthreshold). For ith elements in the set of movement directions ααα(k), which correspond tothe verified sufficient movement speed, the algorithm calculates the averagedmovementdirection θα by using the circular mean technique.Afterward, the proposed drift correction algorithm attempts to recognize the possiblecase of reverse movement, which is essential in the case of industrial machinery tracking.To detect the reverse movement event, this algorithm separately evaluates changes ofboth inertial (ψk) and positioning (θα ) data-based heading measurements by comparingthem to their previous valid states (ψ0) and (θ0). In the case of reverse movement, thepositioning data-based heading is expected to indicate a close to 180-degree movementdirection change, while the inertial sensor-provided heading remains mainly unchanged.In this case, the absolute difference between the latest valid positioning data-based head-ings θα and θ0 is expected to be beyond the user-defined threshold value β , while theabsolute difference between the latest inertial data-based headings must be below the βthreshold. This allows to distinguish the reverse movement scenario from the case of in-tense maneuvering and apply the corresponding compensation for 180 degrees rotation
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in the resulting movement direction θα . The threshold value β represents the reversemovement detection insensitivity of the algorithm. In the published version of this algo-rithm, the resulting movement direction θα was then directly used to recalculate the driftcompensation parameter δψ . A detailed explanation of the algorithm for the correctionof the IMU heading drift is provided in Publication I.The original published version of the DCA algorithm was later extended with an addi-tional filtering of the resulting heading information. The included filtering step is selectedwith a dark grey box in Fig. 4 and is used to further reduce the impact of possible out-liers and increase the overall stability of the drift correction algorithm. After the reversemovement correction, the resulting movement direction θα is added to the secondaryFIFO buffer VVV of size η , for an additional averaging. A distribution level of the latestmovement directions Rα in the buffer VVV is then calculated by using the circular rangetechnique, which reflects the stability of the measured movement direction, and thus,the current maneuvering intensity. In case of sufficiently low maneuvering intensity withthe variance of the movement directions below the defined maximal threshold αmax, theresulting averaged movement direction θ is calculated and used to update the drift com-pensation parameter δψ . This extended version of the DCA algorithm is later used for thecomparison with the developed ATKF algorithm in Section 4.4.3 and in Publication III.
4.1.2 Experimental Testing of the Drift Correction AlgorithmThe suitability of the positioning and inertial data fusion approach for reliable vehicleheading tracking was experimentally validated by a conducted test campaign. In the con-text of this research, the proposed DCA algorithmwas developed for the accurate heading
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estimation of industrial vehicles in an industrial environment. Therefore, for the experi-mental performance evaluation of this algorithm it was chosen an operating wood man-ufacturing site, containing large industrial machinery and potentially significant magneticdistortions, preventing the use of state-of-the-art magnetometer-based methods. Thetest campaign was conducted for the originally published version of the DCA algorithm,and, along with the corresponding results, is described in Publication I. Tests were per-formed in operating industrial production site using a highlymaneuverable forklift, shownin Fig. 5c, with the deployed positioning and inertial sensors shown in Fig. 5b.The test campaign was conducted in both indoor and outdoor environments in orderto diversify the test scenario and evaluate the performanceof the proposedDCAalgorithmin different environments and at different levels of positioning quality. To cover both in-door and outdoor environments, the deployed sensors’ setup included two positioningunits (i.e., GNSS RTK and UWB), alternating based on the current operating environment.Significantly varying movement speed, intense maneuvering events, and occasional re-verse movement were used to further diversify the testing scenario for a proper methodevaluation.The visualized movement track of the corresponding test campaign is shown in Fig.5a along with the corresponding heading tracking results. Positioning data of the trackedforklift is shown with blue dots, while red, green, and gray arrows respectively demon-strate the tracked forklift heading of the sole IMU, after processing by the designed DCAalgorithm, and the true forklift heading. The zoomed-in area in Fig. 5a demonstratesthe moment of the significant positioning data quality drop, caused by the transition be-tween indoor and outdoor environments, and the corresponding switch from indoor UWBto outdoor GNSS positioning system.
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Figure 6: Cumulative error distribution function of the resulting forklift heading, initially measured
by IMU (red) and after its correction by the DCA algorithm (green).

The proposed algorithm was able to decrease the Median Absolute Error (MdAE) ofthe sole IMU provided heading by approximately 86.8%, from 44.1 degrees down to 5.9degrees. This reflects the overall improvement of IMUheading tracking accuracy, providedby the drift correction algorithm, and does not take into account the momentary outliers.The obtained heading error Standard Deviation (SD) of 23.8 degrees, however, has indi-cated a noticeable presence of outliers in the corrected forklift heading data. These resultsare also reflected by the heading error Cumulative Distribution Function (CDF), shown inFig. 6. Thus, 90% of errors in the DCA algorithm estimated heading do not exceed 30degrees, while 75% of errors reach a sub-11 degrees level. In contrast, 60% of errors inthe IMU estimated forklift heading rapidly exceed 40 degrees, with over 10% of errorsbeyond 90 degrees. Significant errors in the DCA algorithm estimated heading were pri-marily experienced during the periods of significant positioning data accuracy drops, as
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well as during the event of intense forklift maneuvering. Nevertheless, these results haveconfirmed the effectiveness of the positioning information for inertial sensor drift mitiga-tion in heading estimation applications.Evaluation of experimentally obtained results has identified two key prerequisites fora reliable use of positioning data in vehicle heading estimation. These requirements in-clude robustness against inaccurate positioning information and minimal response to theinput data. The increased reliability against the potential poor positioning data requiresa higher level of real-time adaptivity of the fusion algorithm and possible integration ofinput data filtering. The criteria of minimal response to the input data, on the other hand,requires the use of a suitable state estimator or integration of different machine learningtechniques in parallel to minimize potential response delays, naturally caused by data fil-tering methods. These identified key requirements were considered in further researchon the vehicle heading estimation topic.Publication I [1] also provides a brief introduction to the indirect tracking topic as thetargeted application of the designed heading estimation method. Afterward, it providesthe theoretical analysis of the obtained heading estimation results in the context of thistopic. According to the published results, the aforementioned reduction in median head-ing absolute error from 44.1 degrees to 5.9 degrees is a theoretical equivalent of the indi-rect product positioning accuracy improvement from 1.914 meters to 0.262 meters. Thisadditionally conforms to the necessity of accurate forklift heading tracking for indirectproduct localization methods.
4.2 Kalman Filter Background
As it was concluded in Section 4.1.2, a reliable positioning and inertial data-based methodfor vehicle heading estimation is required to provide sufficient adaptivity, state estimation,and possible data filtering features. According to the analysis of state-of-the-art inertialdata processing methods, performed in Section 2.2.3, the aforementioned required fea-tures can be provided by the different variations of the Kalman filter algorithm.
4.2.1 Linear Kalman FilterThe Kalman Filter represents a type of Bayesian filter, and is a recursive state estimationalgorithm, developed by Rudolf Kalman and described in one of his works in 1960 [213]. Inits standard linear variation, this algorithm estimates the state of the observed system byusing the prediction model, information on previous system states, noisy measurementinput data, as well as optionally available control information input. This variation of theKalman filter presumes the processed system model presumes to be linear with errors,having a Gaussian (normal) distribution.The general andwidely used structure of the standard Kalman filter is described by nu-merous authors, as, for instance, by Labbe R. or Becker A. in their books [214, 215, 216]. Thegeneral structure of the standard Kalman filter is separated into two main steps, includ-ing system state prediction and correction. As the first step, the Kalman filter performsthe prediction of the upcoming system state and its covariance by using the predictionmodel, previous system state information, and the possible control information input.The Kalman prediction step can be expressed as follows:

x̂k = A ·xk−1 +B ·uk +wk, (3)
P̂k = A ·Pk−1 ·AT +Q, (4)
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where x̂k
9 represents the Kalman filter prediction for the system state vector of the iter-ation k, which is based on the system state of the previous iteration xk−1, state transitionmodel A 10, control input vector uk, control transition matrix B 11, and the process noisevector wk. The corresponding Kalman filter prediction for the state covariance is repre-sented with P̂k

12, which is calculated by using the covariance matrix of previous iteration
Pk−1, process noise covariance matrix Q and the earlier defined state transition matrix.The correction step of the Kalman filter introduces the measurement input for thesystem and performs controlled corrections in the earlier predicted state, thus providingthe resulting state estimation. This step can be expressed as follows:

Kk = P̂k ·HT · (H · P̂k ·HT +R)−1, (5)
xk = x̂k +Kk · (zk −H · x̂k), (6)

Pk = (III −Kk ·H) · P̂k, (7)
where the Kalman gain matrix Kk is calculated by using the observation or measurementtransition matrix H 13, measurement noise covariance matrix R and the earlier predictedstate covariance matrix P̂k. The Kalman gain matrix reflects the weights proportion of thepredicted state and obtained measurements, thus defining the impact of the correctionstep. The resulting system state estimate xk and the corresponding covariance matrix Pkare then calculated by using the previously defined components and the measurementvector zk

14, which contains the measurements input of the current iteration k.
4.2.2 Nonlinear Kalman FiltersEven though all of the real-life problems and systems are inevitably nonlinear, many ofthem can be relatively effectively described by linearmodels and processed by algorithms,such as a linear Kalman filter [214, 215]. Others, however, require more advanced nonlin-ear processing methods and estimator algorithms, for example, the widely used varia-tions of the extended Kalman filter [214, 215, 216], the unscented Kalman filter [214, 215],as well as the particle filter [214, 215]. Linear Kalman filter variations provide a significantadvantage over nonlinear methods in cases when the processed model can be success-fully linearized with sufficient accuracy. The linear model processing provides noticeablylower computational time and complexity, which makes the linear Kalman filter highlysuitable for real-time applications and in cases of limited computational capability (e.g.,embedded systems).The extended Kalman filter is one of the most widely used Kalman filter algorithms,allowing the processing of various nonlinear models [217, 218]. In different EKF algorithmvariations, the nonlinear process is locally linearized and filtered by using techniques ofthe linear Kalman filter. It is often represented with the use of nonlinear estimation mod-els in the default linear Kalman filter algorithm. Depending on the used nonlinear model,the EKF may provide a significantly improved estimation accuracy over the linear Kalmanfilter at the cost of increased computational complexity and time, sometimes comparableto the UKF [218]. The use of simplified estimation models, on the contrary, allows the EKFto achieve computational time and complexity, as well as estimation accuracy levels of the

9In Section 4.4.2 of this work is alternatively notated as X10In the literature may be alternatively notated as F or ΦΦΦ11In the literature may be alternatively notated as G12In the literature may be alternatively notated as ΣΣΣ13In the literature may be alternatively notated as F or C14In the literature may be alternatively notated as y
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linear Kalman filter. Thus, Extended Kalman filters often provide a suitable compromisebetween estimation accuracy and processing complexity, and arewidely used in nonlinearapplications [217, 218].Unscented Kalman filter, also known as a Sigma Point Kalman Filter (SPKF), representsa nonlinear Bayes filter, which attempts to use the combined principles and advantagesof lower computational complexity of the Kalman filter and increased performance of theParticle filter [217, 218]. Similar to the Particle filter, the UKF algorithm is based on parti-cles - Sigma points, used to estimate the nonlinearity of the observed model and predictits future states. While the Particle filter is based on an unlimited number of randomlychosen particles (points), the UKF fully relies on a strictly dedicated number of carefullyselected sigma points. Even though, in comparison with the Particle filter, this limits thecomputational complexity of the UKF algorithm, it remains significantly complex in rela-tion to previously mentioned KF algorithms, such as EKF. The computational complexityof UKF algorithms, and especially particle filters, makes them less suitable for real-timeapplications, and thus, they were not used in the scope of this research.
4.2.3 Adaptive Kalman FilterAdaptive Kalman filters represent the class of KF algorithms, capable of dynamic adjust-ment of the algorithmic response to input data depending on the selected factors, thusactively adapting to possible changes [215]. One of themost widely used adaptivity meth-ods in Kalman filters is represented with dynamically changing process or measurementnoise covariance matrices, respectively notated as Q and R. Process and measurementnoise covariance values, respectively, represent the reciprocal weights of the Kalman filterprediction and the corresponding measurement. The relation of the corresponding noisecovariance values defines the resulting weight, given by the Kalman filter (Kalman gain),to the introduced measurement over the filter’s own prediction. It depicts how muchthe given measurement input will be trusted by the Kalman filter over its own prediction.Thus, a desired Kalman filter behavior in sensor fusion may be achieved with the continu-ous adjustment of process or measurement noise covariance values, while more detailedtuning can be performed by the simultaneous or independent adjustment of both pro-cess and noise covariance values. This feature of the Kalman filter is actively used in theproposed ATKF algorithm for vehicle heading estimation, described further in Section 4.4.More discrete adaptivity of the Kalman filter algorithm can also be performed by dy-namically adjusting other components of the algorithm, such as the process model A orthe control input vector uk. Depending on the discrete states of the observed system,certain components of the Kalman filter may be replaced with more suitable alternatives,which introduce other parameters or use the same parameters differently. Certain pro-cessing steps or inputs can also be temporarily excluded from the Kalman filter processunder specific conditions, thus adapting to the specific state of the observed system. Forinstance, in case of confirmed poor input data quality or other specific conditions, the useof the erroneous input datamay be ignored, allowing the Kalman filter to proceed by rely-ing only on its own predictions. This adaptivity approach was also used in the developedATKF algorithm to exclude gyroscope inputs and prevent accumulation of potential drifterrors during longer stationary periods.
4.3 Kalman Filter for Position Estimation
The study of the Kalman filter algorithm, conducted as part of this research, has also re-sulted in the implementation of multiple variations of the KF algorithm for different pur-poses and tasks. One of the side contributions of this thesis includes the implementation
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of the Adaptive Extended Kalman Filter algorithm (further referred to as A-EKF) for theUWB AP-TWR (Active-Passive Two-Way Ranging) protocol-based position calculation &filtering, presented in one of the publications by Laadung et al. [2].
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Figure 7: Generalized flowchart of the Adaptive Extended Kalman Filter for the AP-TWR based UWB
positioning.

The general flowchart of this algorithm is shown in Fig. 7, where the implementedA-EKF algorithm represents an adaptive filtering approach for UWB ranging data and theautomatic calculation of the resulting 3D coordinates using themultilateration technique.The implemented filter adapts to the estimated quality of the input ranging data by itera-tively recalculating the measurement noise covariance matrix Rk as a Hadamard productof the previously calculated row variance vector Sk, distance penaltyBk and intermittencypenalty Ck vectors. As the available ranging information has an over time varying cardi-nality, one of the key features of this algorithm is the adaptive size of the observationvector Zk and the observation transition Jacobian matrix Hk.Varying cardinality of the observation input vector may also be considered as the ad-ditional discrete adaptivity of the A-EKF algorithm with the dynamically changing mea-surement model over time. In combination with the AP-TWR method, this algorithm hasdemonstrated a significant, over 3 times improvement in stationary 3D positioning RMSEresults in comparison with sole SS-TWR (Single-Sided Two-Way Ranging) and AP-TWR-based positioning. In the testedmoment scenario, the A-EKF-enhanced AP-TWR position-ingmethod has demonstrated a ninefold reduction of the peak RMSE errors from 4.5m to0.5 m, over both tested sole SS-TWR and AP-TWRmethods. These results have confirmedthe importance of the Kalman filter adaptivity feature, especially in real-life and dynamicscenarios. The experience gained during the collaborative implementation of the A-EKFalgorithmwas further used during the development of the Adaptive TandemKalman Filteralgorithm for vehicle heading estimation, described in the next section.
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4.4 Adaptive Tandem Kalman Filter Algorithm for Vehicle Heading Esti-
mation

This section covers further advancements in the topic of positioning and inertial data-based vehicle heading estimation, which takes into account the results and conclusionsachieved during the research and described in previous sections. These include (advan-tages and drawbacks) of positioning data use in heading estimation, concluded in Section4.1, as well as study on the Kalman filter algorithm and its adaptivity features, describedin Section 4.2, and their implementation experience, described in Section 4.3.Further research has resulted in the development of the Adaptive Tandem KalmanFilter (ATKF) algorithm for vehicle heading estimation. This algorithm represents an adap-tive version of the Kalman filter algorithm with a custom tandem structure, designed forthe vehicle heading estimation through the competitive fusion of the inertial and posi-tioning data. Competitive fusion refers to a sensor fusion configuration, where sensorsindependently provide the information of the same property, thus allowing to improveoverall measurement reliability and accuracy [219]. The competitive fusion configurationwas chosen to allow the weighted balancing between the fused positioning and inertialunits and to utilize the strengths of both data sources.This algorithm also contributes with a non-traditional tandem structure of the Kalmanfilter. A variety of different non-traditional Kalman filter structure options can be encoun-tered in the literature, including augmented [220], dual [221], or sequential [222] versions.These versions consider integration of additional algorithms (augmented) or sections ofanother Kalman filter (dual) into the Kalman filter structure, while layouts, such as a se-quential Kalman filter, consider consecutive data processing by multiple Kalman filters.The proposed tandem structure, on the other hand, separates the Kalman filter correc-tion section into multiple phases, which allows to perform multiple consecutive process-ing steps of the input data within a single filter iteration.A thorough description of the proposed ATKF algorithm is provided in Publication III,alongwith the results of its simulated and experimental tests. This section provides a briefdescription of this algorithm, the selective results of its experimental testing, as well asthe extended results of preliminary simulated tests.
4.4.1 Adaptivity Model of the ATKF AlgorithmThis subsection provides an extended description of the adaptivity of the designed ATKFalgorithm. As the precision of the positioning data-based heading directly depends on themovement speed, this parameter was decided to be used to enable the adaptivity of thedesigned algorithm. The adaptivity of this Kalman filter algorithm is achieved by dynam-ically adjusting the corresponding weights in the process and measurement covariancematrices Q and R, as it was previously described in Section 4.2.3. To calculate the nec-essary weights for both noise covariance matrices, the ATKF algorithm uses a specificallydesigned exponential weight function f W , defined as follows:

f W
exp(υk,υthr,a,σmin,σmax) = ea·(υk+b−υthr)+σmin, (8)

b =
ln(σmax −σmin)

a
, (9)

where υk is the ongoing movement speed, υthr is the corresponding threshold value, σmin
& σmax are maximum and minimum noise covariance parameters respectively, while aand b represent input and internal function tuning coefficients. The overall increasing ordecreasing behavior of theweight function is respectively defined by a negative or positive
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value of the tuning input coefficient a, while the scalar value of this parameter definesthe increase/decrease rate. The threshold value υthr determines the inflection point ofthe weight function, while noise covariance parameters σmin & σmax define upper andlower limits of the function output f W
exp ∈ (σmin,σmax]. A visualized representation of theproposed exponential weight function for different sample values of the tuning parameter

a is shown in Fig. 8a, which reflects the roles of the main input parameters.
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Figure 8: (a) Visualized dependence of the proposed exponential weight function on its positive (ma-
genta and dark red) and negative (dark blue) tuning parameter a, velocity threshold υthr and noise
covariance parameters σmin & σmax; (b) Visualized dependence of the alternative logistic weight
function on above 1 (magenta & dark red) and below 1 (dark blue) tuning parameter d, velocity
threshold υthr and noise covariance parameters σmin & σmax at constant tuning parameter c = 0.05.

In the proposed algorithm, the exponential weight function is used for a more rapidtransition between sensors in their fusion process to minimize the use of the currentlyunreliable sensor. For a smoother transition between fused sensors’ data, the exponentialweight function can be replaced with the logistic weight function, expressed as follows:
f W
lgs(υk,υthr,c,d,σmin,σmax) =

σmax

1+ ealgs·υk−blgs
+σmin, (10)

algs =
log(σmax

c −1)
d ·υthr −υthr

, (11)
blgs = algs ·υthr, (12)

where c and d are the input tuning coefficients, while algs and blgs are the internal co-efficients of the function. The visualized dependence of this logistic weight function fordifferent sample values of the tuning parameter d and at the constant tuning parameter
c = 0.05 is shown in Fig. 8b. This logistics weight function was initially prepared as partof this research for its use in the ATKF algorithm. However, the initial testing of the ATKFalgorithm has demonstrated the requirement for a more rapid transition between fusedsensors to minimize the use of unreliable sensor data. Thus, the logistics weight functionwas eventually replaced with the aforementioned exponential weight function.In the proposed ATKF algorithm, the inverse weights of the used inertial and posi-tioning units are iteratively calculated by using the exponential weight function (8) and,
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respectively, used to form the noise covariance matrices Q and R. The exact structure ofthese matrices is provided in Appendix 6. The aforementioned noise covariance parame-ters (inverse weights) are calculated symmetrically for Q and R matrices by using, respec-tively, positive and negative tuning coefficient a. Figure 9 illustrates the fusion weights ofpositioning data-based (blue line) and inertial data-based (red line) heading information,depending on the movement speed parameter υk.
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Figure 9: Illustrative dependence of the positioning (blue) and inertial (red) input data weights
(Kalman gain) on the movement speed in the Adaptive Tandem Kalman Filter algorithm.

Since at higher movement speed the positioning data-based heading information canbe considered more reliable, the corresponding data source is assigned a higher weight,while the inertial unit data source is used in a lower proportion. Below a certain user-defined movement speed threshold υthr, the positioning data is considered unreliable foraccurate heading estimation and is assigned with a minimal weight to avoid its negativeimpact on the resulting heading estimation. In this case, the ATKF algorithm focuses onthe use of inertial gyroscope data. To avoid an unwanted accumulation of the potentialdrift error in stationary cases, the ATKF algorithm disables the integration of the inertialunit data at movement speeds below the zero movement threshold υ0
thr. This representsan integration of the zero velocity update technique into the Kalman filter as a discreteadaptivity feature, discussed in Section 4.2.3.

4.4.2 Structure of the ATKF AlgorithmThis section provides a brief overview of the proposed ATKF algorithm structure, whilea more detailed explanation of this algorithm is presented in Publication III. The overallstructure of the ATKF algorithm is shown as a flowchart in Fig. 10. The algorithm startswith the Kalman estimation step by evaluating the latest available movement speed υk−1.In cases when the movement speed of the previous iteration exceeds the defined zeromovement threshold υk−1 > υ0
thr, the algorithm calculates the predicted model state es-

timation vector X̂k for the current iteration k. It is calculated by using the previous statevector Xk−1, estimation model A, state control vector uk, and its conversion matrix B:
X̂k = A ·Xk−1 +B ·uk, (13)

X̂k =




1 0 dtx,y
k 0 0 0 0

0 1 0 dtx,y
k 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




·




xk−1
yk−1
vx

k−1
vy

k−1
υk−1
φk−1
Ψk−1




+




0
0
0
0
0
0

dtω
k




·
[
ωk

]
, (14)
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X̂k =




xk−1 + vx
k−1 ·dtx,y

k
yk−1 + vy

k−1 ·dtx,y
k

vx
k−1

vy
k−1

υk−1
φk−1

Ψk−1 +ωk ·dtω
k




=




x̂k
ŷk

vx
k−1

vy
k−1

υk−1
φk−1
Ψ̂k




, (15)

where dtx,y
k and dtω

k are respectively the delta-time values of positioning and inertial (gy-roscope) data, and ωk is the gyroscope-provided heading angular velocity. In the caseswhen the positioning data input is not available for the current iteration, a correspond-ing delta-time value can be replaced with zero. The state vector of the previous iteration
k−1 includes the tracked 2D coordinates (xk−1,yk−1), axial velocities of these coordinates
(vx

k−1,v
y
k−1), the overall movement speed υk−1 and direction φk−1 in the local coordinatessystem, as well as the resulting heading estimation of the previous iteration Ψk−1. Algo-rithm predictions on 2D coordinates and the resulting heading estimation of the currentiteration k are respectively x̂k, ŷk and Ψ̂k. The control vector uk, which contains the head-ing angular velocity ωk data input from the gyroscope unit, is only introduced in case ofsufficient movement speed, above the defined threshold υk−1 > υ0

thr.The state estimation covariance matrix P̂k is calculated by using the state covariancematrix of the previous iteration Pk−1, the estimation model A and the process noise co-variance matrix Qk as follows:
P̂k = A ·Pk−1 ·AT +Qk. (16)

Process noise covariance matrix Qk is assembled by using the predefined constant (qpos,
qv, qυ ) and dynamically adaptive (qφ

k , qΨ
k ) noise covariance parameters, as it is thoroughlydescribed in Publication III and shown in Appendix 6. By using the exponential weightingfunction, described in (8), the adaptive process noise covariance parameters are calcu-lated as follows:

qφ

k = fff W
exp(υk−1, υ

φ

thr,−aφ , qφ

min, qmax), (17)
qΨ

k = fff W
exp(υk−1, υ

Ψ
thr,−aΨ, qΨ

min,qmax), (18)
where υk−1 is the movement speed estimation of the previous iteration, aφ , aΨ, qφ

min,
qΨ

min and qmax are the predefined tuning parameters of the weighting function. Predefined
threshold parameters υ

φ

thr and υΨ
thr reflect the sufficient movement speed for reliable cal-culation of the movement direction, based on the positioning data, for its resulting fusionwith the inertial data.In iterations, when positioning data is available, the ATKF algorithm performs threeconsecutive correction steps, each using the output of the previous step as its input.. Thisalgorithm structure, referred to as Tandem, differs from the traditional Kalman Filter by al-lowing input measurement data to undergo multiple consecutive processing steps withina single iteration. This ensures the immediate use of the input data, thus reducing delaysin algorithmic response. At each correction step, the algorithm recalculates the Kalmangainmatrix nKk, state vector nXk and covariancematrix nPk by usingmeasurementmodelmatrix nH, the measurement noise covariance matrix nRk and measurement vector nzkof the corresponding correction step n, as well as state vector and its covariance matrixof the previous step n−1 as follows:

nKk =
n−1Pk · nHT · (nH · n−1Pk · nHT + nRk)

−1, (19)
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nXk =
n−1Xk +

nKk · (nzk − nH · n−1Xk), (20)
nPk = (III − nKk · nH) · n−1Pk. (21)

The measurement noise covariance matrix of each correction step nRk is preparedby using the predefined constant and dynamically adaptive noise covariance parameters:
rpos at the first step (1Rk), rυ and rφ

k at the second step (2Rk), and rΨ
k at the third step(3Rk). The adaptive measurement noise covariance parameters are calculated by using(8) as follows:

rφ

k = fff W
exp(υk−1, υ

φ

thr, aφ , rφ

min,rmax), (22)
rΨ

k = fff W
exp(υk−1, υ

Ψ
thr, aΨ, rΨ

min,rmax), (23)
where rφ

min, rΨ
min, and rmax are predefined tuning parameters for the measurement noisecovariance matrix.At the first correction step, the ATKF algorithm introduces the positioning data input(xmeas

k , ymeas
k ) in the corresponding measurement vector 1zk and performs its filtering byusing the previous positioning information. During this process, the ATKF algorithm alsoupdates the hidden variables of the corresponding axial velocities vx

k and vy
k. Axial velocityparameters are used to calculate the overall positioning data-based movement speed υ̂kand direction φ̂k as follows:

υ̂k =

√
vx

k
2 + vy

k
2 (24)

φ̂k = atan2(−vx
k,−vy

k) ·
180
π

+180 (25)
These parameters are then used as input for the second correction step of the ATKF inthe corresponding measurement vector 2zk. In the second step, the algorithm performsfiltering of these parameters, where the estimatedmovement direction φ̂k is filtered adap-tively. The filteredmovement direction φk is then used as an input for the third and the lastcorrection step in the corresponding measurement vector 3zk, while the filtered move-ment speed υk will be used in the next algorithm iteration for weights recalculation. Asthe last correction step, theATKF algorithmperforms theweighted fusion of the calculatedmovement direction φk and the gyroscope data-based predicted heading Ψ̂k. This fusionresults in the ATKF estimated heading Ψk. Key matrices of the designed ATKF algorithmare available in Publication III, as well as in Appendix 6.
4.4.3 SimulationsThis section covers the comprehensive simulated testing and comparison of the proposedATKF heading estimation algorithm and the IMU heading drift correction algorithm (DCA),respectively described in Sections 4.4.2 and 4.1.1. Simulated testing was primarily per-formed to validate and estimate the expected performance, stability, and robustness ofthe ATKF algorithm in challenging scenarios, determine its potential limitations, as wellas assess its performance in comparison with the developed DCA algorithm. Parametersfor both tested algorithms, used in simulations, are provided in Appendix 7. The key take-aways of the achieved simulation results are also presented in Publication III.As both of the tested algorithms fuse the positioning and inertial information for theheading estimation, conducted simulations evaluate the performance of the aforemen-tioned algorithms at different positioning data error standard deviations and inertial sen-sor drift rates. Both the DCA and ATKF algorithms were assessed in two simulated move-ment scenarios shown in Fig. 11a and Fig. 11b, which respectively cover the moderate
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Figure 11: Visualization of simulated movement scenarios I (a) and II (b), respectively describing
moderate and highmaneuvering intensity; Forward and reversemovement periods of the simulated
vehicle are respectively depicted with black and red arrows.

and high maneuvering intensity of the simulated vehicle. Both scenarios cover the vary-ing movement speed in the range of 0.1 - 1 m/s and occasional reverse movement of thesimulated vehicle. Simulated positioning and inertial data were respectively provided at 1Hz and 10 Hz update rates to replicate the different sampling rates of later experimentallyused sensors. Simulations were performed separately for 15 different inertial sensor driftrates in the range between 0 deg/s and 1 deg/s, as well as for 22 different positioning dataerror standard deviations between 0m and 1.5m. The selected range of simulated inertialdata drift rates was chosen primarily to evaluate the performance of the tested algorithmsat very high levels of gyroscope drift. Nevertheless, according to the literature and prac-tical observations during this research, the expected drift rates of MEMS gyroscope unitsoften do not exceed the level of 0.1 deg/s [83, 85, 74, 77, 81, 121].The selected range of positioning data error standard deviations was chosen in accor-dance with the aforementioned movement speed of the simulated vehicle. For instance,at the highest simulated movement speed υmax = 1 m/s and the update rate of 1 Hz, thedistance traveled between two positioning data samples is ∆pos = 1 m. In this scenario,at the positioning data error of ε pos = 1 m and above, the actual movement becomes fre-quently indistinguishable from the positioning data noise. This significantly increases theuncertainty of positioning data-based heading estimation, which is expected to criticallyaffect the heading accuracy and precision.As it was previously illustrated in Fig. 3, the precision of the positioning data-basedheading is directly proportional to the movement speed, as well as inversely proportionalto the positioning data error and update rate. The dependence of the positioning data-based heading error on themovement speed at the uniformly distributed positioning dataerror with the constant magnitude of ε pos = 1 m and update rate of 1 Hz is illustrated in Fig.12a. The correspondingmean absolute heading error (magenta), heading RMSE (dark red),and heading error standard deviation (dark blue) are shown with the respective graphs.The uniformly distributed positioning data error with a constant magnitude was used inthis example to clearly outline themaximal expected positioning data-based heading error
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Figure 12: Visualized dependence of the positioning data-based heading error on (a) movement
speed and (b) PNDR ratio. Mean absolute heading error, heading RMSE, heading error standard
deviation, andmaximal heading error function are respectively shownwith magenta, dark red, dark
blue and green lines.

depending on the movement speed. In Fig. 12a, this dependence is visualized with thegreen and can be described with the following function:
ε

φ
max =

{
arccos(

√
(∆pos)2−4·(ε pos)2

∆pos ) · 180
π
, if υ > 2·ε pos

dtx,y

180, if υ ≤ 2·ε pos

dtx,y

, (26)
∆

pos = υ ·dtx,y, (27)
where ε

φ
max is the maximal positioning data-based heading error in degrees, ε pos is thepositioning data error magnitude, and ∆pos is the absolute distance, traveled at the givenmovement speed υ in the delta time period dtx,y between positioning data samples.To further represent the potential error of the positioning data-based heading withinthis work, the Positioning-Noise-to-traveled-Distance Ratio (PNDR) metric is introduced.This metric reflects the impact of the positioning data error on the heading estimationat the particular movement speed and positioning data update rate. For the normallydistributed positioning data error, it can be devised as follows:

PNDR =
σ pos

∆pos =
σ pos

υ ·dtx,y , (28)
where ∆pos represents the absolute distance, traveled at the given movement speed υin the delta time dtx,y between the positioning data updates, while σ pos represents thestandard deviation of the positioning data noise errors.To be more representative in case of the real-life data, the PNDR metric presumes anormal distribution of positioning errors and thus, is based on the positioning error stan-dard deviation parameter σ pos. The key values of the PNDR metric are 0.5 and 1. At
PNDR ≥ 0.5 two neighboring erroneous positioning data samples may occur at the exact
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same coordinate, thus significantly affecting the positioning data-based heading estima-tion, while the possible heading error may reach 180 degrees. At PNDR < 0.5, on theother hand, the heading error is primarily not expected to exceed 90 degrees. At PNDRvalues beyond 1, the tracked movement potentially becomes indistinguishable from thepositioning data noise errors, thus preventing the use of the positioning information forreliable movement direction tracking.The expected positioning data-based heading error dependence on the PNDR ratioin case of the normally distributed positioning data errors is depicted in Fig. 12b, alongwith corresponding mean absolute heading error (magenta), heading RMSE (dark red),and heading error standard deviation (dark blue). The maximal positioning data-basedheading error function, previously defined in (26), is shown with a green line. It can bereparametrized as a function of the PNDR parameter:
ε

φ
max =

{
arccos(

√
1−4 ·PNDR2) · 180

π
, if PNDR > 0.5

180, if PNDR ≤ 0.5 . (29)
Therefore, the positioning data-basedheading error decreaseswith an increasingmove-ment speed as the impact of the positioning data noise becomes negligible. In the per-formed simulated testing, the movement speed varies between 1 m/s and 0.1 m/s, whichcorresponds to the accordingly changing PNDR ratio between N and N×10. Further dis-cussed results of the simulation test campaign are provided for the lowest PNDR valueof this range (i.e., N). For example, during simulations performed at a PNDR of 0.6, thePositioning-Noise-to-Traveled-Distance Ratio varied between 0.6 and 6. A set of 50 sim-ulation iterations was performed for each combination of different positioning data errorstandard deviation levels and different inertial data drift rates. This results in 16,500 simu-lations for each of the two tested algorithms and for each of the two simulatedmovementscenarios, thus totaling 66,000 simulations.Figure 13 visualizes the averaged median absolute heading error results of 50 simula-tion iterations for each of the two tested algorithms (column-wise) and at each of the twosimulated scenarios (row-wise). Additional results on the achieved mean absolute head-ing error, heading RMSE, Mean Absolute heading error Deviation (MnAD), Median Abso-lute heading error Deviation (MdAD), and heading error standard deviation are availablein the same format in Appendix 8.As shown in Fig. 13a, in the case of the first simulated movement scenario of Fig. 11a,the tested drift correction algorithm has demonstrated a rather stabile performance atsub-0.6 levels of PNDR, by primarily keeping the heading accuracy at below 10 degreeslevel. In this case, only aminor growth of themedian absolute error in the estimated head-ing can be observed with the growing inertial data drift rates. At the above 0.75 PNDR,the drift correction algorithm has demonstrated a rapid performance drop, which is ex-plained by the consistent false detection of the reverse movement. This overall behaviorof the DCA algorithm is caused by its high reliance on positioning data in the gyroscopedrift correction.Figure 13b shows the performance of the ATKF algorithm in the same simulatedmove-ment scenario. The obtained results indicate a significant stability of the ATKF algorithmin a wide range of tested gyroscope drift and PNDR ratios. In this case of moderate ma-neuvering intensity, the ATKF algorithm was able to consistently estimate the heading ofthe simulated vehicle with a sub-3.5 degrees median absolute error at PNDR ratios up to1 and at the inertial data drift rates up to 0.9 deg/s. At higher positioning data noise ratiosand higher inertial drift rates, the ATKF algorithmmay experience occasional performancedrops, primarily caused by false detections of reverse movement. In comparison with the
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Figure 13: Averaged results on themedian absolute error in the simulated vehicle heading estimation
by DCA (left) and ATKF (right) algorithms in movement scenarios I (top) and II (bottom), at different
combinations of PNDR and gyroscope drift ratios.
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drift correction algorithm, the ATKF algorithmdemonstrated exceptional stability and highperformance almost at the entire range of covered positioning data noise and gyroscopedrift rates.The second simulated movement scenario, shown in Fig. 11b, represents the vehiclemovement with continuous and intense maneuvering to maximize the potential impactof errors present in the positioning and inertial data, thus pushing both tested algorithmsto their limits. Figure 13c shows the performance of the drift correction algorithm in thissimulated scenario. Similarly to the first simulated scenario, the DCA algorithm shows astable and consistent performance in the case of low noise positioning data with a be-low 0.2 PNDR ratio, regardless of the inertial data drift error rate. In the case of highlyprecise positioning information, this algorithm was able to reduce the median absoluteerror of the tracked heading to the sub-8-degree level. At higher positioning data noiselevels of beyond 0.2 PNDR rates, the DCA algorithm has shown a significant performancedecrease, caused by the combination of even moderate positioning errors and intensemaneuvering. It is explained by the high sensitivity of this algorithm to the intense ma-neuvering, as the inertial heading drift corrections in the DCA algorithm are performedonly during the movement in a straight line. Thus, during the intense maneuvering, evenrelatively moderate positioning errors prevent the effective use of positioning data forreliable heading drift correction. In this case, the drift correction algorithm primarily pro-ceedswith the uncorrected gyroscope heading output. This indicates a significant relianceof this algorithm on positioning data quality and makes it mainly effective in combinationwith highly precise positioning systems.The performance results of the ATKF algorithm in the case of the intense maneuver-ing scenario are reflected in Fig. 13d. This algorithm has demonstrated significant stabil-ity, reliability, and high performance in the vehicle heading estimation at the realisticallyencountered positioning data noise and inertial drift rates. In this scenario, the ATKF algo-rithm was able to reliably estimate the vehicle heading with a 6-degree median absoluteheading error at the gyroscope drift ratio up to 0.4 deg/s and at a sub-1 PNDR ratio. Asthese ranges are noticeably beyond the practically expected positioning and inertial dataerror rates, this allows to expect the high performance of the ATKF algorithm even in thecase of possible drops in positioning and inertial data quality. Due to the intense maneu-vering, however, at the inertial data drift rates beyond 0.4 deg/s and at the positioningdata noise levels beyond 1.1 PNDR ratio, the ATKF algorithm experiences a significant per-formance decrease. It is caused by the failure of the reverse movement detection mech-anism in moments where the intense maneuvering can scarcely be distinguished fromextensive positioning errors and gyroscope drift rates. Nevertheless, in the case of highlychallengingmovement scenarios, the ATKF algorithmhas demonstrated significant advan-tages in stability, reliability, and overall performance over the drift mitigation algorithm.Figures 14a and 14b respectively show graphs of both ATKF (green) and DCA (blue) al-gorithms’ performance in simulated scenarios I and II, exclusively at realistically expectedgyroscope measured heading drift rate of 0.05 deg/s. Results include the averaged me-dian absolute errors in heading estimations by both algorithms, depending on different
PNDR ratios, along with their respective 95% confidence intervals, depicted with corre-sponding colored areas. The dashed red line reflects the median absolute error of thesole gyroscope-provided heading. The shaded gray area at PNDR ratios above 1 coversthe cases when the actual movement of the tracked object becomes occasionally indis-tinguishable from the positioning data noise, therefore making the positioning data un-reliable for heading estimation. These results additionally demonstrate the reliability ofthe ATKF algorithm at realistic inertial data drift rates, especially in cases of moderate ma-
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Figure 14: Averaged results on the median absolute Error of the simulated vehicle heading estima-
tions by Drift Correction algorithm (blue) and ATKF algorithm (green) with their corresponding 95%
confidence intervals at 0.05 deg/s gyroscope heading drift rate, different PNDR ratios, and in two
different movement scenarios I (a) and II (b).

neuvering intensity and even at the PNDR ratios beyond 1, as it is shown in Fig. 14a. Incases of highly intense maneuvering, the ATKF algorithm demonstrates similar stabilityand high performance even at PNDR ratios up to 0.9. Simulation results, performed at0.5 and 0.75 PNDR ratios for both tested algorithms and bothmovement scenarios, wereincluded in Publication III.
4.4.4 Experimental TestingThe proposed ATKF heading estimation algorithmwas experimentally tested as part of thefull-scale indirect tracking test campaign to validate the results of the simulated tests, de-scribed in the Section 4.4.3, and to assess its performance with real-life data and realisticmovement scenarios. The thorough description of the conducted ∼14-minute-long testcampaign in the context of the main research topic is provided further in Section 5.4.1.The movement path of the tested scenario is shown in Fig. 21f in gray. It reflects variousaspects of typical forklift operation, including relatively low speeds, varying maneuver-ing intensity such as sharp turns, instances of reverse movement, occasional stops, andextended periods of idling.A comprehensive analysis of the proposed ATKF algorithm performance in real forkliftheading estimation, along with its comparison against one of the state-of-the-art algo-rithms, sole gyroscope, and sole magnetometer sensor, is provided in Publication III. Thissection of the thesis extends the analysis of the results by additional comparison of theATKF algorithm performance with the earlier mentioned IMU heading drift correction al-
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gorithm (DCA), described in Section 4.1.1, as well as a group of additional, magnetometer-based state-of-the-art algorithms, mentioned in Section 2.2.3, such as NMNI algorithm[103],magnetometer-based complementary [223],Madgwick [224, 225] andMahony [226,225] filters. To assess the performance of the magnetometer unit and magnetometer-based algorithms in real industrial applications, the corresponding data was collected byusing a 13-bit magnetometer sensor available on the BNO055 IMU unit. In suitable envi-ronmental conditions, the used magnetometer sensor is expected to provide the headingestimates with a declared accuracy of ±2.5 degrees. Tuning parameters of the designeddrift correction and ATKF algorithms, used during the test campaign, are provided in Ap-pendix 7. The comprehensive dataset of experimentally collected forklift positioning andIMU data is available at the Taltech database repository [227].A preliminary evaluation of the positioning and inertial information collected duringthe test campaign demonstrated the approximate heading drift rate of the used gyroscopeat 0.16 deg/s. The collected positioning data demonstrated an approximate error standarddeviation of σ pos ≈ 0.022m, measured at themoments when the tracked forklift was sta-tionary. The positioning information has also shown an approximate highest movementspeed of υmax ≈ 2.2 m/s, reached by the tracked forklift during the tests. This corre-sponds to the approximate Positioning-Noise-to-Traveled-Distance Ratio ofPNDR≈ 0.05.According to the simulations’ results, discussed earlier in Section 4.4.3, at the above-mentioned parameters of the conducted test campaign (drift rate of 0.16 deg/s andPNDRratio of 0.05), both ATKF and Drift correction algorithms are expected to demonstrate areliable performance at the forklift heading estimation.
Heading Estimation ResultsVisualized results on the forklift heading estimation, based on the experimentally col-lected real-life data and performed by different tested algorithms, are shown in Fig. 15.The corresponding numerical results on the forklift heading estimation accuracy and pre-cision are provided in Table 9 for the entire duration of the test campaign, exclusively forthe periods of active forklift movement, as well as at the reference key points. These keypoints represent locations of specific momentary events, where the forklift was perform-ing payload loading or unloading, and are described in detail in Section 5.4.1.Figure 15a illustrates heading estimation results provided by the magnetometer-freemethods, including the sole gyroscope unit (red), gyroscope-based NMNI algorithm (darkred), as well as positioning and inertial data-based DCA algorithm (blue), and ATKF head-ing estimation algorithm (green), designed as part of this research. The correspondingnumerical results on forklift heading estimation accuracy and precision obtained by thesemethods are provided in the upper part of Table 9.Forklift heading estimation results based on the magnetometer information are illus-trated in Fig. 15b. These results include forklift heading estimation performed by the solemagnetometer unit (cyan), as well as magnetometer and inertial (accelerometer & gyro-scope) sensor fusion algorithms, such as the complementary filter (orange), Madgwickfilter (magenta), and Mahony filter (purple). The corresponding numerical accuracy andprecision results are provided in the bottom part of Table 9. The expected true headinggraphs on both Fig. 9a and Fig. 9b are illustrated in gray.

Sole gyroscope-based methodsThe forklift heading, tracked by the sole gyroscope unit, has demonstrated a significant,over 100 degrees drift error by the end of the test campaign, visually observed in Fig.15a (red). The accumulation of the heading error can be clearly seen at 200th second of
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Figure 15: Graphs of the resulting forklift heading, estimated during the experimental test campaign
by magnetometer-free (a) and magnetometer-based (b) methods, including sole gyroscope (red),
NMNI algorithm (dark red), DCA algorithm (blue), ATKF algorithm (green), sole magnetometer (light
blue), complementary filter (orange), Madgwick filter (magenta), Mahony filter (purple), as well
as the expected true heading (grey). Graphs exceed the natural 0 to 360 degrees range for clear
visualization purposes.
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Table 9: Accuracy and precision results of the experimental data-based forklift heading estimation, performed by the sole gyroscope, gyroscope-basedNMNI algorithm,
sole magnetometer, magnetometer, and inertial data-based complementary, Mahony & Madgwick filters, as well as designed gyroscope and positioning data-based
DCA and ATKF algorithms. Results are provided for the entire test campaign duration, for the periods of active movement, and at the reference key points.

sole Gyroscope■ NMNI alg. ■
(Gyro.)

Drift Correction alg. ■
(Gyro. & Pos.)

ATKF alg. ■
(Gyro. & Pos.)

overall
moving
only

at key
points overall

moving
only

at key
points overall

moving
only

at key
points overall

moving
only

at key
points

Acc
ura

cy
met

rics

MdAE 78.3 60.4 42.0 46.7 42.1 31.5 1.1 4.4 2.6 0.9 2.3 1.0
MnAE 65.5 51.6 44.6 42.4 35.8 29.2 6.0 9.2 5.5 2.8 3.8 1.5
RMSE 76.0 62.5 58.9 47.8 41.8 37.6 11.8 15.2 7.9 4.9 5.8 2.3
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met

rics

MdAD 26.2 28.6 36.4 16.9 14.8 26.0 1.1 4.1 2.5 0.8 1.8 0.7
MnAD 33.4 30.7 36.8 18.2 18.9 22.0 6.5 8.4 5.2 2.8 3.2 1.2

SD 38.6 35.3 38.6 22.1 21.5 23.7 10.2 12.2 5.7 4.0 4.4 1.7
sole Magnetometer ■ Complementary filter■

(Gyro. & Accl. & Mag.)
Mahony filter■

(Gyro. & Accl. & Mag.)
Madgwick filter■
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MdAE 20.8 25.3 25.7 28.7 22.0 18.3 29.2 24.6 26.4 25.4 31.1 27.4
MnAE 23.5 31.4 35.5 28.2 30.4 28.7 27.6 23.3 27.4 36.2 45.0 41.2
RMSE 32.4 39.9 45.6 34.4 39.0 39.5 30.0 25.9 28.6 46.7 57.2 50.0
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rics

MdAD 13.2 13.9 5.4 11.8 12.3 12.2 9.1 9.5 5.3 5.4 13.7 4.2
MnAD 16.5 18.7 22.3 13.9 18.8 20.6 10.1 9.3 6.5 20.4 27.9 23.9

SD 22.4 24.6 28.7 19.8 24.4 27.2 11.7 11.2 8.4 29.5 35.3 28.4
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the conducted experiment, where it rapidly exceeds 50 deg. However, in cases when theforklift remained stationary for longer periods of time, such aswithin the range of 425-525seconds or after 600th second of the test campaign, the gyroscope-based heading estima-tions were also stable. This indicates the primary accumulation of the drift error duringthe periods of active maneuvering. This effect reflects the inconsistency of IMU drift er-rors andmakes their mitigation a more complex task, especially in the case of techniques,such as NMNI, focused on drift mitigation during stationary periods.Numerically, the sole gyroscope unit has demonstrated a significant median absoluteerror of 78 degrees in the estimated forklift heading with RMSE of 76 degrees and stan-dard deviation of 38.6 deg, which indicates a systematic nature of errors, not caused byoccasional outliers. Relatively similar results were achieved exclusively in the case of ac-tive movement and at the selected key points. The impact of this level of heading errorson the performance of the indirect tracking method is additionally investigated in the cor-responding Publication IV.The performance of the NMNI algorithm is shown in Fig. 15a with dark red. It can beseen that this algorithm has only mitigated the drift errors that occurred during slow ma-neuvering or stationary periods, for instance, at the 260th second of the test campaign,while the presence ofmajor errors caused by activemaneuvering remains the same. How-ever, the inability of the NMNI algorithm to differentiate a correctly measured slow ma-neuvering from accumulated drift error leads to themitigation of both components, as forexample it can be observed at 190th, 370th, and 390th seconds of the test campaign. Thisalgorithm has reduced the initial drift error of the gyroscope-measured heading down to
∼70 deg by the end of the test campaign. As it can be seen from Table 9, the NMNI algo-rithmhas reduced themedian absolute heading error of the gyroscope-measured headingdown to 46.7 degrees with 22.1 degrees of error standard deviation. Similar to the resultsof the sole gyroscope, the RMSE results of 47.8 degrees, close to the achieved medianabsolute error, confirm the systematic nature of heading errors.

Proposed positioning data-based methodsIn the conducted experimental testing, the proposed drift correction algorithm was ableto mitigate the median error of the sole gyroscope-based heading by over 98% down to1.1 degrees, which additionally confirms the practical performance of this algorithm. Theachieved RMSE and standard deviation metrics of 11.8 deg and 10.2 deg accordingly in-dicate the presence of relatively short-term outliers in the resulting heading estimation.The blue graph in Fig. 15a visually shows the performance of this algorithm, and clearlydemonstrates the presence of two distinct outlier types. Momentary peaks, such as thoseobserved at 55th and 125th second of the test campaign,may be caused by the combinationof insufficient movement speed with noisy positioning data (e.g., in cases when PNDRratio is slightly below or close to 1), or significant maneuvering. Momentary peak errors,which occurred during the forklift’s gradual slowdown before a complete stop, may per-sist for the entire stationary period of the forklift. For instance, it can be visually observedat 260th, 360th, and 390th second of the test campaign, where the forklift remained sta-tionary after a gradual slowdown and significant maneuvering. This effect occurs, as thesufficient movement speed is one of the prerequisites for the successful heading errorcorrection in the DCA algorithm.Numerically, the proposed ATKF algorithmhas demonstrated a forklift heading estima-tion with sub-1 degree median absolute error during the overall test campaign. Achievedsub-5 degree RMSE and standard deviation results also indicate a minor presence of out-lier errors in the estimated heading, which reflects the stability of this algorithm. The
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performance of this algorithm is visualized with the green line in Fig. 15a. Minor presenceof short-term outliers can be seen at 145th, 190th, 345th, and 390th seconds of the testcampaign, potentially caused by the same factors as in the case of the drift correction al-gorithm. This confirms the high robustness of this algorithm against poor positioning data,which is essential in real-life applications. A detailed analysis of the ATKF algorithm per-formance is also available in Publication III. Sub-2 degree accuracy and precision metrics,achieved by this algorithm at the key points, directly reflect a remarkable performance ofthis algorithm in the context of indirect tracking of industrial products. The correspondingimpact of the ATKF heading estimation inaccuracy in the context of the indirect trackingmethod is further investigated in Section 5.4.2, as well as in Publication IV.
Magnetometer-based methodsThe performance of the sole magnetometer during the experimental testing in the in-dustrial environment is visualized with the cyan graph in Fig. 15b. The magnetometerdemonstrated a major, up to 90 degrees, systematic error in the forklift heading estima-tion, caused by a significant environmental magnetic interference in the industrial area.Occasional accurate heading measurements, however, can be observed at 360th and af-ter 580th seconds of the test campaign. Additionally, the magnetometer demonstrated amajor inconsistency during the first half of the experimental campaign, as it was unableto properly detect the significant maneuvering events, occurred at 70th, 140th, and 220th

seconds of the test campaign. The stability of the magnetometer-based heading estima-tion is also affected by a significant and visually recognizable noise with an approximatemagnitude of 10 degrees. Numerical results show a 20.8 deg median absolute error, 32.4deg RMSE, and 22.4 deg standard deviation, which confirm the presence of a systematicheading error in the magnetometer data. Even though, in comparison with the sole gyro-scope, themagnetometer has demonstrated a better performance in heading estimation,the high inconsistency in its response tomaneuvering events makes this sensor unreliablefor use in the industrial environment.The performance of magnetometer-based state-of-the-art heading estimation meth-ods is visually demonstrated in Fig. 15b. These methods include complementary (or-ange), Mahony (purple), andMadgwick (magenta) filter algorithms formagnetometer, ac-celerometer, and gyroscope fusion. Madgwick and complementary filters visually demon-strate the presence of the overall noise, systematic heading errors, and heading estima-tion inconsistency, similar to the sole magnetometer. This indicates the primary relianceof these algorithms on the magnetometer data. Mahony filter algorithm demonstrates amore balanced and consistent preference in the forklift heading estimation. Unlike thecomplementary and Madgwick filter algorithms, this method does not demonstrate thepresence of magnetometer noise or provide inconsistent response to the ground truthmovement, which may indicate its more gyroscope-reliant nature. Mahony filter, how-ever, shows a significant systematic error of up to 50 deg, especially before 250th secondof the test campaign, potentially introduced by the magnetometer measurements. Nu-merical performance results of the corresponding algorithms are provided in the bottompart of Table 9. The aforementioned algorithms have shown relatively similar results in themedian absolute heading estimation accuracy in the range of 25-29 deg. The significantpresence of systematic error and minor presence of outliers in the Mahony filter headingis also confirmed by lower RMSE and standard deviation metrics of 30 deg and 11.7 deg,respectively. Complementary and Madgwick filters, on the other hand, have respectivelydemonstrated 34.4 deg and 46.7 deg of estimated heading RMSE, as well as 19.8 deg and29.5 deg of standard deviation.
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Figure 16: Cumulative error distribution functions of the experimentally tracked forklift heading by
the sole gyroscope (red), sole magnetometer (cyan), gyroscope-based NMNI algorithm (dark red),
proposed gyroscope and positioning data based drift correction (blue) and ATKF (green) algorithms,
as well as magnetometer and inertial data-based of complementary filter (orange), Mahony filter
(purple) and Madgwick filter (magenta) algorithms.

Fig. 16 shows cumulative error distribution functions of the experimentally tested fork-lift heading tracking approaches. The provided graphs are marked with the same colorcode, as used in Fig. 15 and Table 9. Sole magnetometer and magnetometer-based meth-ods (Madgwick, Mahony & complementary filters) demonstrate a similar overall errorpresence in their forklift heading estimations, with the slightly lower error presence inthe case of the standalone magnetometer. Magnetometer-based fusion algorithms, suchas complementary and Madgwick filters, primarily demonstrate a presence of an errorpattern, similar to the standalone magnetometer, which also indicates a primary relianceof these algorithms on the magnetometer data. These methods also demonstrate thepresence of significant, up to 170-degree momentary errors in the estimated heading. Forthe Mahony filter, the highest errors in the estimated heading only slightly exceed 40degrees, which is a significant improvement over the other magnetometer-based meth-ods. The overall slow initial increase of CDF functions in the case of magnetometer andmagnetometer-based Mahony, Madgwick, and complementary filters, confirms the pres-ence of significant systematic errors in their heading estimations.In comparison with other methods, both proposed DCA and ATKF algorithms demon-strate a significantly improved cumulative error distribution. In the case of both algo-rithms, over 60% of errors in their heading estimations do not exceed 3 degrees. TheDrift correction algorithm (blue) demonstrates a higher presence of outlier errors, whichdo not exceed 75 degrees. Only 7% of errors in the resulting heading exceed 20 degrees,and only 1% exceed the 40-degree level. ATKF heading estimation algorithms demonstrateoutstanding performance, where 98% of errors do not exceed 15 degrees with minor out-liers reaching sub-29 degrees level.
4.5 Discussion
Section 4 covered themain subtopic of this research on the accurate real-time heading es-timation of industrial vehicles. With a total of 3 publications, it has answered the researchquestions RQ2 & RQ3. This section addressed the applicability limitations of the existingstate-of-the-art magnetometer-based methods, as well as investigated the effectivenessof positioning and inertial data fusion in reliable and accurate vehicle heading tracking.The first section of this research has contributed with an algorithmic method for IMU
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heading drift correction, designed for the conceptual validation of positioning and iner-tial data-based heading tracking. Experimental testing of the DCA algorithm has verifiedthe applicability and performance of the positioning data-based approach, which has en-abled further advancements in this subtopic. As a side contribution, further research onthe state-of-the-art methods and algorithms in this field has resulted in the developmentof the Adaptive Extended Kalman filter algorithm for the UWB positioning system perfor-mance optimization. The last part of this research section contributes with the develop-ment of the Adaptive Kalman filter-based algorithmicmethod for the road vehicle headingestimation. The designed algorithm represents an adaptive Kalman filter with a customtandem structure, which enhances its real-time performance. The developed ATKF algo-rithm performs a competitive weighted fusion of the inertial and positioning data-basedheading estimations to ensure reliable and accurate vehicle heading tracking, robust topossible erroneous input data.A comprehensive simulated testing and comparison of both developed DCA and ATKFalgorithms has defined their expected performance capabilities and limitations in differ-ent scenarios and in cases of poor input data. Both algorithms have demonstrated highperformance capabilities in vehicle heading estimation, especially in cases of realistic in-put data quality and movement scenarios. Experimental testing of both algorithms hasverified the simulations’ outcomes, demonstrating a high performance of the DCA algo-rithm and remarkable performance of the ATKF algorithm in the case of real-life data. Incomparison with tested state-of-the-art magnetometer-based methods, both of the pro-posed algorithms have shown over 95% improvement in median absolute error of theestimated heading. The ATKF algorithm has also demonstrated a significant, over 83% im-provement in heading estimation RMSE in comparison with magnetometer-based meth-ods and over 58% improvement in comparison with the proposed DCA algorithm. Theseresults have validated high performance expectations of the ATKF algorithm and indicateits remarkable reliability and stability in vehicle heading estimation.These performance results of the proposed ATKF algorithm are also highly comparablewith one of the most recent advancements in this field, presented by Oursland et al. in[134] in parallel with this research. In their work, they have also proposed an InvariantExtended Kalman Filter for the inertial and positioning data-based drone heading estima-tion. According to the available information, the proposed ATKF and the referred InEKFalgorithms have demonstrated highly similar results of 4.9 deg and 4.6 deg in terms ofheading estimation RMSE. However, in case of the ATKF algorithm, these results wereachieved in a significantly longer and complex test campaign, conducted in a real andhighly obstructed industrial environment. The referred method, on the other hand, wastested by using the available UTIL dataset, collected in the controlled test environment[228]. Additionally, in comparison with the referred InEKF algorithm, the proposed ATKFalgorithm provides a noticeably reduced complexity, as well as additional features, suchas adaptivity or compensation for the reverse movement.
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5 Indirect Tracking
This section resumes the description of the developed indirect tracking method by takinginto account the methodology, previously introduced in Section 3, results of the sensors’and technology selection, performed in Section 3.2, as well as the outcomes of the vehi-cle heading estimation subtopic, described in Section 4. Thus, this section provides theresulting structure of the developed markerless indirect tracking method, introduces thedeveloped algorithm for automatic payload pick-up and drop-down detection, as well asdiscusses the results of conducted preliminary and full-scale experimental tests.
5.1 Resulting Structure & Description of the Developed Method
The flowchart, shown in Fig. 17 reflects the resulting structure of the proposedmarkerlessindirect tracking method. It takes into account the main selected technologies and sen-sors, proposed fusion algorithms, as well as demonstrates the overall data flow, key steps,and main processing units, such as the forklift onboard MCU (Microcontroller Unit), relayunit, and the main server. The onboard setup includes the data forwarding (relay) unit,used to collect the input data stream of the onboard sensors and immediately forward itto the server by using the established wireless connection (e.g., cellular link).An additional purpose of the data forwarding unit is to ensure a complete synchroniza-tion of the collected & transmitted data. As the relay unit represents a junction point forthe collected sensors’ data, synchronization is achieved by assigning the correspondingUNIX timestamp to every forwarded data input. Since timestamps are assigned to everysensor’s data input by the single relay unit, it ensures complete data synchronization onthe server side. Due to the UWB positioning system architecture, its positioning informa-tion is initially calculated on the server side and not provided by the onboard UWB tag. Toensure the data synchronization, upon the completion of the ranging process, the UWBtag provides the unique identifier of the performed positioning cycle to the relay unit,which is then similarly assigned with the timestamp. On the server side, this synchro-nized identifier allows to immediately locate the corresponding positioning results, thussynchronizing the UWB positioning system with other sensors.Selected sensors are divided into two fusion groups, processed by two separate de-veloped fusion algorithms. Competitive fusion of the positioning and inertial units (firstfusion group) is performed on the server side by the proposed ATKF algorithm for vehi-cle heading estimation, previously discussed in Section 4 and Publication III. The resultingforklift heading information is then used to convert the initial positioning data into the ac-curate 2D location of the forklift tynes, later combinedwith themeasured tynes’ elevationfor the resulting 3D coordinates of the fork.Information from both ultrasonic and wire encoder sensors is collected on demandby the onboard MCU unit and transmitted to the server as a single data output. Com-plementary fusion of the tynes’ elevation and occupancy sensors (second fusion group) isperformed by using the A-PDD algorithm, proposed as part of this research and describedin Section 5.2 and Publication IV. This algorithm detects the occurrence of a payloadpick-up or drop-down event and provides its corresponding status information for furtheruse. Due to the incomplexity of the A-PDD algorithm, this fusionmay be immediately per-formed by the onboard MCU unit and followed by the results transmission to the serveralong with the sensors’ data.These fusion results reflect the exact moment and stage of the detected pick-up ordrop-down event, thus allowing to determine the exact 3D location of the occurred event.It is performed on the server side by using the available forklift positioning and heading
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Figure 17: Flowchart of the designed markerless indirect tracking method with sections’ separation,
based on the components’ deployment & processing.
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information, as well as tynes’ elevation. The newly picked-up payload is identified by thecomparison of the detected pick-up coordinates with known locations of stored payloads,while the detected payload drop-down coordinates determine its further storage loca-tion. Location and status information on the interacted payload is also simultaneouslyupdated in the database. Therefore, in accordance with the definition given by Haag et
al. in [229], it can be alternatively stated that the designed markerless indirect trackingmethod performs the real-time payload localization by creating and monitoring its digitaltwin.
5.2 Automatic Pick-up & Drop-Down Detection Algorithm
This section covers the Automatic Pick-up and Drop-down Detection (A-PDD) algorithm,designed to fuse the tynes’ elevation and occupancy sensors, and enable the recognitionof the occurring payload pick-up or drop-down events, performed by the forklift. The in-clusion of the elevation tracking unit into the fork occupancy detection process is aimedat increasing reliability and providing additional information on the stage of the occurredevent. This algorithm was developed as part of this research and was presented in Publi-cation IV.
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Figure 18: Flowchart of the proposed A-PDDalgorithm for automatic payload pick-up and drop-down
detection.

The proposed A-PDD algorithm performs a complementary fusion of selected wireencoder and ultrasonic distance sensors to automatically recognize the occurring payloadloading or unloading event, each separated into two main stages. The first stage of both
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pick-up and drop-down events triggers the corresponding alert, while the second stageconfirms the event occurrence. At each stage, the relevant portion of the data is storedand combined into the resulting exact location of the detected event. The flowchart ofthe A-PDD algorithm is shown in Fig. 18.The A-PDD algorithm begins with the general filtering of the distance input data sam-ple dk, measured by the ultrasonic distance sensor (fork occupancy detection unit). It isdone in order to mitigate occasional outliers in the measured distance, caused by minorobstacles and inconsistent ultrasonic signal reflections. Filtering is performed by the in-troduced hysteresis and is used to distinguish the detected vacancy of the fork area frompossible erroneous readings. It is represented with the counter loop, which computes thenumber of distance measurements id below the distance threshold dthr, counted withinthe user-defined range. In this research, the number of distance measurements belowthe given threshold was counted in the range of 0 to 10. Reaching the maximum or mini-mum value in the defined range, respectively, indicates consistently and reliably detectedpresence or absence of the transported payload, while values within the range indicate in-consistent distance measurements. Continuously measured distance below the selectedthreshold dthr indicates the object presence within the fork area, thus reflecting tynes’occupancy. Measured absolute tynes’ elevation hk is used to track momentary elevationchanges ∆h and detect significant fork movement, which may potentially indicate the par-ticular stage of the payload pick-up or drop-down.

Figure 19: An illustrative example of the payload pick-up sequence, recognized by the A-PDD al-
gorithm, with a graphical representation of the used sensors’ data over time: (a) Distance to the
approached payload, measured by the ultrasonic sensor; (b) Payload lifting moment, measured by
the wire encoder unit.

Payload transportation status in the A-PDD algorithm is reflected by the SSStttaaattt flag,while the AAAlllrrrttt flag indicates the detection of the initial stage of the potential upcom-ing pick-up or drop-down event. An illustrative example of the pick-up process is shownin Fig. 19 along with the graphs of the corresponding expected inputs from the distancesensor (blue) and elevation sensor (red).During the pick-up event, the payload is first approached by the forklift with the tyneselevated at the level of pick-up. This stage is detected by the ultrasonic distance sensor,
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thus activating the alert flag AAAlllrrrttt of the potential pick-up event and initiating the prelim-inary storage of the ongoing tynes’ elevation. In the second stage of the pick-up process,the payload is lifted by the stationary forklift. It is detected by the tynes’ elevation sensor,which triggers themerging of the current 2D fork location with its previously measured el-evation. This confirms the pick-up event at the resulting 3D coordinates and activates thepick-up status flag SSStttaaattt. Alternatively, instead of lifting the payload, the forklift may moveaway from it, which is detected by the ultrasonic distance sensor. This cancels the pick-upprocess, resets the AAAlllrrrttt flag, and omits the previously stored tynes’ elevation data.The payload drop-down process is detected in the opposite order. At the first stage ofthis process, the stationary forklift descends the payload to the storage elevation level,which is detected by the elevation tracking unit. Then the AAAlllrrrttt flag is enabled, indicatingthe potential drop-down event and triggering the 2D drop-down location storage. As thesecond step of the drop-down process, the forklift moves away from the laid-down pay-load while the tynes are elevated at the drop-down level, which is simultaneously saved.This confirms the payload drop-down event, combines the previously saved 2D locationand elevation of the event for its resulting 3D coordinate, and resets both the AAAlllrrrttt and
SSStttaaattt flags. The further storage location of the dropped-down payload is updated withthe resulting 3D coordinate. Alternatively, triggering the drop-down alert can be canceledby lifting up the payload, whereas the tynes’ elevation sensor reports a positive change,which will reset the AAAlllrrrttt flag. The continuously updated flags AAAlllrrrttt and SSStttaaattt reflect thereal-time loading/unloading status of the forklift. These flags represent the output ofthe proposed A-PDD algorithm and are used in the proposed indirect tracking method.A comprehensive description and detailed truth table for the proposed A-PDD algorithmare available in Publication IV.
5.3 Preliminary Testing
The proposed indirect tracking method was initially tested in a down-scaled format tovalidate the proposed method, as well as to determine the expected performance andpossible limitations of this method, prior to its full-scale testing. This section covers theconducted down-scaled preliminary testing and obtained results, which were eventuallyexcluded from Publication IV.Down-scaled tests were conducted in the outdoor environment by using a movingplatform mimicking a forklift maneuvering and payload lifting/transportation functional-ity, shown in Fig. 20a. The indirect tracking test setup, consisting of sensors previouslyselected in the Section 3.2, was deployed on the aforementioned platform. The GNSSRTK system with a declared positioning precision of 2 cm was used as a positioning unit[151]. Proposed ATKF and A-PDD fusion algorithms, respectively described in sections 4.4and 5.2 were used for the real-time heading tracking and automatic detection of pay-load pick-up & drop-down events accordingly. Two iterations of the same test scenariowere performed in the outdoor environment, as shown in Fig. 20b and Fig. 20c. In thetest scenario, the down-scaled payload was transported between three predeterminedreference spots, marked with magenta roman numerals indicating the sequence of move-ments, where it was picked up and dropped down. Reference key spots were preliminarilymeasured by using the laser range finder unit. Results of the indirectly tracked payloadpick-up and drop-down locations are respectively shown with green and blue crosses inFig. 20b and Fig. 20c, while gray reflects the tracked setup itself.The summarized numerical results of the absolute payload positioning performanceachieved during the down-scaled testing are provided in the upper part of Table 10. Theseresults cover the accuracy and precision metrics of the payload’s indirect positioning at
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Figure 20: (a) Indirect tracking test setup deployed on the down-scaled forklift platform; Visualized
results of the first (b) and second (c) test scenario iterations.

the moments of its pick-up & drop-down. Indirect tracking has demonstrated an averageabsolute accuracy in the payload positioning of 11 cm with 5 cm of average precision. Ac-cording to the obtained test results, absolute payload positioning errors of the indirecttracking method have primarily occurred in the two-dimensional plane, with over 70% ofthese errors caused by external factors. These external factors include the initial error ofthe used positioning system, which directly impacts the accuracy of indirect tracking, aswell as human-related factors, such as the physical misplacement of the payload duringits drop-down at the pre-measured reference points. For instance, a noticeable position-ing error, primarily caused by the human factor, occurred at reference point II. This errorresulted from the absence of a suitable physical marker (reference) to guide accurate pay-load drop-down, whereas such physical references were present at points I and III. The im-pact of the human factor at this reference point can be visually observed at the zoomed-insegments on Fig. 20b and Fig. 20c, as well as numerically assessed by using the middlepart of the Table 10. At this reference point II, the human factor has caused almost twotimes higher positioning error in comparison with the results obtained at reference pointsI & III.The bottom part of Table 10 shows the obtained repeatability results of the proposedindirect tracking method. Repeatability results reflect the relative positioning error be-tween two indirectly tracked events, which occurred at the same physical location (e.g.,pick-up of the earlier dropped-down payload) and thus are not calculated using the truelocation of the reference point. In the context of the presented preliminary test cam-
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Table 10: Averaged results on the absolute (top) and repeatability (bottom) accuracy and precision
of the indirect industrial product positioning, including errors caused by the heading estimation and
elevation measurement inaccuracy and external factors, as well as performance at each reference
spot separately (middle), achieved during the down-scaled testing.

Accuracy metrics (m) Precision metrics (m)
MnAE MdAE RMSE MnAD MdAD SD

Maxerror (m)

Abs
olut

e
per

form
anc

e 2D error caused byheading inaccuracy 0.02 0.01 0.03 0.02 0.01 0.02 0.07
Elevation error 0.02 0.02 0.02 0.01 0.01 0.01 0.03

2D error caused byexternal factors 0.11 0.12 0.12 0.04 0.04 0.05 0.18
3D overall error 0.11 0.13 0.13 0.05 0.03 0.07 0.25

Ave
rage

d
3D

erro
r at Reference spot I 0.09 0.09 0.1 0.05 0.05 0.05 0.14

at Reference spot II 0.16 0.13 0.17 0.05 0 0.05 0.25
at Reference spot III 0.05 0.05 0.06 0.02 0.02 0.02 0.08

Rep
eata

bilit
y

per
form

anc
e 2D error caused byheading inaccuracy 0.05 0.05 0.06 0.03 0.03 0.03 0.08

Elevation error 0.02 0.02 0.02 0.01 0.01 0.01 0.02
2D error caused byexternal factors 0.06 0.06 0.07 0.02 0.02 0.02 0.08
3D overall error 0.1 0.1 0.1 0.02 0.02 0.02 0.12

paign, a pair of pick-up and drop-down events has only occurred at reference point II,and therefore, the repeatability performance was calculated exclusively for these events.Provided results cover the method repeatability accuracy and precision in the overall 3Dpayload positioning, errors caused by external factors, and inaccuracies in both trackedsetup heading and payload elevation. As the repeatability performance is not bound tothe ground truth (reference point coordinates), it reflects the expected permanence of theproposed method in real-life applications while neglecting absolute human factor errors.Since the repeatability performance of the proposed method is measured betweentwo indirectly tracked locations, the impact of positioning errors, caused by external fac-tors, heading inaccuracy, and elevation errors, may be noticeably increased in comparisonwith absolute performance. This effect can be observed in the case of the repeatabilityperformance results, obtained during the preliminary test campaign (bottom part of Ta-ble 10), in comparison with the corresponding absolute performance results (upper partof Table 10). A noticeable increase, approximately by a factor of two, can be observed inthe positioning error, caused by inaccuracies in heading estimation. The impact of the ex-ternal factors on the indirect tracking repeatability performance, on the other hand, hasshown a noticeable decrease by a factor of two, which is explained by the exclusion of thehuman factor. In the preliminary test campaign, the designed indirect tracking methodhas demonstrated an overall average repeatability accuracy of 10 cm in payload localiza-tion with a centimeter-level averaged precision. Nevertheless, the conducted preliminarytest campaign has successfully validated the performance of the proposed indirect track-ing method, and demonstrated promising results on the indirect positioning accuracy ofcompletely unmarked payload. These results have enabled a further full-scale experimen-tal testing of the proposed method, described in the Section 5.4.
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5.4 Full-Scale Experimental Testing
Once the performance of the designed markerless indirect tracking method was experi-mentally validated and confirmed in the preliminary down-scaled testing, described in theprevious section, the full-scale experimental test campaign was conducted. A full-scaletest campaign was conducted in order to validate and evaluate the performance of thedesigned method in a real industrial application scenario. This section briefly describesthe conducted test campaign and essential results from the corresponding Publication IVregarding the achieved absolute and repeatability performance of the designed method,as well as performance comparison with a direct tracking approach. Sections 5.4.5 and5.4.3 respectively, provide extra results on the positioning quality comparison of testeddirect and indirect trackingmethods, and demonstrate the sample output of the designedmethod on indirectly tracked products. These sections were initially excluded from theoriginal publication to meet the manuscript volume regulations of the chosen venue.
5.4.1 Full-scale Test Campaign DescriptionA full-scale experimental test campaign was conducted in the operating industrial woodmanufacturing production site, shown in Fig. 21a, by using the forklift as a material han-dling equipment to transport the tracked industrial products. The forklift was equippedwith the necessary indirect tracking sensors’ setup, previously defined in Section 3.2. Pro-posed ATKF and A-PDD algorithms were respectively used to fuse the available sensorsfor accurate forklift heading estimation and automatic detection of payload pick-up anddrop-down events. The A-PDD algorithmwas used with the following heuristically chosenthreshold parameters: dthr = 275 mm and hthr = 62.5 mm/s. This test campaign was alsoused to experimentally evaluate the performance of the proposed ATKF algorithm in fork-lift heading estimation. Performance results of the experimentally tested ATKF algorithm,along with the used tuning parameters, are covered in Section 4.4.4.The experimental testing of the proposed indirect tracking method was performed inan indoor industrial area by using the deployed Eliko UWB RTLS system as the positioningunit for the tested indirect tracking method [150]. Figures 21b-d respectively demonstratethe deployment of the wire encoder sensor (b), ultrasonic distance sensor (c), as well asUWB tag and IMU unit (d) on the forklift. During the conducted test campaign, the forkliftwas operating in the industrial environment, performing the necessary maneuvering totransport a total of two industrial products with the size of 2 m× 1 m× 0.5 m, shown inFig. 21e, within the test area. Products were transported between a total of four referencepoints, used for their storage. Reference points were manually measured during the testcampaign by using a separate UWB tag. The laser range finder unit was used for the pre-liminary calibration of the UWB positioning system to ensure unbiased results. Figure 21ealso demonstrates the independent UWB tag, attached directly to one of the tracked pay-loads for additional assessment of the performance of the direct tracking approach andits comparison against the designed indirect tracking method. The test campaign coversvarious scenarios, including both separate and stacked transportation and storage of thetracked products. The resulting forklift route during the test campaign is shown in gray inFig. 21f, while the aforementioned reference points are highlighted with magenta. Prod-uct pick-up & drop-down events that occurred at each reference point are respectivelymarked in Fig. 21f, and include:

I Payload A picked up from the top of payload B at the reference point REF1
II Payload A dropped down at the reference point REF2
III Payload B picked up at the reference point REF1
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Figure 21: (a) Industrial production site environment; Deployment of the indirect tracking sensors’
setup on the forklift: (b)Wire encoder elevation sensor attached to the forklift mast, (c) Ultrasonic
distance sensor attached to the base of the forklift tynes (behind the fork area), (d) Positioning unit
(UWB tag) and IMU attached to the forklift roof; (e) Sample industrial products, indirectly tracked
during the experimental campaign, and the attached UWB tag to the upper product for its inde-
pendent direct tracking; (f) Visualized forklift route during conducted test campaign (gray) & four
reference points (magenta), used for products’ storage.

IV Payload B dropped down at the reference point REF3
V Payload A picked up at the reference point REF2
VI Payload A dropped down on top of payload B at the reference point REF3
VII Payloads A & B picked up at the reference point REF3
VIII Payloads A & B dropped down at the reference point REF4

The comprehensive dataset of multi-sensor information collected during the describedtest campaign is available on the Taltech database repository [230].
5.4.2 Absolute and Repeatability Performance ResultsThe absolute positioning performance of the proposed indirect trackingmethodwas eval-uated at the moments of detected product pick-up & drop-down events, listed in the pre-vious section. Visualized results on the indirect tracking of both industrial products A & Bduring the full-scale experimental campaign are shown in Fig. 22. Yellow and green dots
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respectively depict the measured storage points of payload A & B, while transportationroutes of both products are shown with orange and green lines. The dashed yellow-greenline represents the simultaneous transportation route of both stacked payloads A & B.Magenta markers represent the pre-measured reference points of payload storage.
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Figure 22: Visualized results on indirectly tracked industrial products A & B during their separate
transportation (yellow&green lines), combined (stacked) transportation (dashed yellow-green line),
and storage (orange & green dots) at the pre-defined reference points (magenta).

The summarized absolute positioning accuracy and precision results are provided inthe upper part of Table 11 alongwith the corresponding error components, caused by inac-curacies in the heading estimation, elevationmeasurements, and external factors, such ashuman factor or the precision errors of the used positioning system. According to the pro-vided numerical results, the designed indirect tracking method was able to localize bothindustrial products with an average absolute accuracy of 15 cm and an average precisionof 8 cm. This method has achieved the absolute positioning RMSE and standard devia-tion of 18 cm and 9 cm, respectively, resulting in a maximum product positioning errorof 30 cm. These achieved errors are primarily caused by external factors, which validatesthe performance results achieved in the preliminary down-scaled testing and describedin Section 5.3. Relatively minor payload positioning errors were caused by inaccuracies inthe forklift heading estimations and product elevation measurements. A more detailedevaluation of the forklift heading estimation accuracy during the full-scale test campaignwas previously provided in Section 4.4.4.The bottom part of Table 11 shows the achieved results on the repeatability perfor-mance of the proposed indirect tracking method. As it was described for the preliminarytests, the repeatability of the indirect tracking method demonstrates the positioning per-formance of multiple payload pick-up or drop-down events, which physically occurred inthe same location (e.g., pick-up of the earlier dropped-down payload). Since in the pre-sented full-scale test campaign, certain events have occurred at the same location and
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Table 11: Averaged results on the experimentally achieved absolute (top) and repeatability (bottom)
accuracy and precision of the indirect industrial product positioning, including errors caused by the
heading estimation and elevation measurement inaccuracy and external factors, as well as perfor-
mance at each reference point separately (middle).

Accuracy metrics (m) Precision metrics (m)
MnAE MdAE RMSE MnAD MdAD SD

Maxerror (m)

Abs
olut

e
per

form
anc

e 2D error caused byheading inaccuracy 0.04 0.03 0.06 0.03 0.02 0.04 0.14
Elevation error 0.02 0.02 0.02 0.01 0.01 0.01 0.04

2D error caused byexternal factors 0.12 0.08 0.16 0.09 0.07 0.10 0.30
3D overall error 0.15 0.13 0.18 0.08 0.07 0.09 0.30

Rep
eata

bilit
y

per
form

anc
e 2D error caused byheading inaccuracy 0.09 0.10 0.11 0.05 0.06 0.06 0.20

Elevation error 0.04 0.04 0.04 0.02 0.02 0.02 0.06
2D error caused byexternal factors 0.13 0.10 0.15 0.06 0.02 0.08 0.29
2D overall error 0.20 0.18 0.22 0.07 0.08 0.08 0.32

at different elevations (e.g., in case of stacking the payloads), the overall repeatability re-sults are provided for the 2D domain. The proposed indirect tracking method has demon-strated a mean absolute positioning repeatability error of 20 cm with 7 cm of mean ab-solute deviation and 32 cm of maximal observed positioning error. Similar to the prelim-inary test campaign, the results of the full-scale testing have shown an expected growthin the repeatability errors in relation to the absolute performance caused by the eleva-tion and heading measurement inaccuracies. This decrease in positioning performanceis expected, as instead of the ground truth reference point, the positioning evaluation isperformed in relation to coordinates previously measured by the same indirect trackingsystem. Unlike the results of the preliminary testing, the repeatability and absolute per-formance comparison did not demonstrate a noticeable decrease in the external factors’impact in the case of the full-scale test campaign.As the repeatability evaluation primarily neglects the possible human factor, this in-dicates an impact of different sources of external error, such as the initial precision ofthe used positioning system. In the case of the conducted full-scale test campaign, thepositioning information was provided by the Eliko UWB indoor positioning system witha declared accuracy in the range of 10 cm to 30 cm, which correlates with the obtainedabsolute external error results [150]. Publication IV provides a more comprehensive eval-uation of the absolute and relative performance of the proposed indirect trackingmethodseparately at each pick-up & drop-down event. It also investigates the expected impact ofthe sole IMU heading drift errors on the indirect tracking performance, thus demonstrat-ing the importance of accurate heading information for the proposed method.In the optimal/favorable outcome/case scenario, the positioning accuracy results ofthe proposed indirect tracking method are expected to correspond to the accuracy of theused underlying positioning system. From the perspective of the used positioning system,this will indicate the presence of negligible positioning errors introduced by the proposedmethod. In the case of the conducted test campaign and the used UWB positioning sys-tem, these results were successfully achieved.

91



From the industrial perspective, the achieved results highly depend on the particularapplication and the size of the tracked payload. To theoretically eliminate the possibility ofthe false product pick-up (i.e., pick-up of the neighboring product), the targeted absolutepositioning accuracy is expected to remain below a quarter of the payload width (smallerhorizontal dimension). In the worst outcome, when the drop-down and later pick-up po-sitioning errors of maximal magnitude align and combine, this corresponds to the highestexpected repeatability error below half of the payload width.Thus, from the perspective of the conducted test campaign, the targeted absolute po-sitioning accuracy results can be estimated from the size of tracked products (2 m × 1 m
× 0.5 m) as 0.25 m for horizontal and 0.125 m for vertical positioning. The correspondingtheoretically targeted and achieved positioning results are separately provided in Table 12for vertical and horizontal positioning. These results also include achieved heading esti-mation accuracy along with the targeted outcome. The targeted heading estimation accu-racy corresponds to the targeted horizontal positioning outcome, calculated according to(2) and by using the offset parameter δ

x,y
f ork = 1.52 m. During the conducted test campaign,the targeted accuracy level was experimentally achieved for the overall horizontal posi-tioning, while the achieved vertical positioning and heading estimation accuracy resultshave multiple times exceeded the corresponding targeted levels.

Table 12: Theoretically targeted and experimentally achieved absolute and repeatability accuracy
results in indirect payload positioning.

Absolute accuracy Repeatability accuracy
Targeted Achieved Targeted Achieved

2D positioning 25 cm Avg = 15 cm 50 cm Avg = 20 cm
Max = 30 cm Max = 32 cm

Vertical positioning 12.5 cm Avg = 2 cm 25 cm Avg = 4 cm
Max = 4 cm Max = 6 cm

Heading estimation 9.4 deg Avg = 1.5 deg 18.9 deg Avg = 4.4 deg
Max = 5.4 deg Max = 6.1 deg

5.4.3 Example of Positioning Information Flow in Indirect Tracking MethodThis subsection provides extra information on the output of the proposed indirect trackingmethod, excluded from Publication IV, and illustrates the updating positioning informa-tion of both indirectly tracked payloads during the conducted full-scale test campaign.The key information provided on the indirectly tracked payload is its location at the mo-ment of the detected pick-up or drop-down event, which respectively allows to identifythe picked-up product or define the storage location of the dropped-down payload. Tocover this side of indirect tracking, location updates for both transported payloads wereobserved for the sequence of events described in Section 5.4. Three-dimensional loca-tions of each payload were estimated by using their latest available status and location,as well as the location and type of the newly occurred event. Table 13 shows the flow ofthe payload recognition and location updates by the indirect tracking system during thetest campaign. In this example, only the starting coordinates of each payload are initiallyknown, while the further location and status updates of both payloads are fully performedby the indirect tracking method.Initially, payload A was stacked on top of payload B at the known reference locationREF1, as it was previously shown in Fig. 21e. The first detected pick-up event occurred at
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Table 13: Over time location update flow of industrial products, indirectly tracked by the designed method during the experimental testing.

Indirect tracking event location & type Payload A Payload BEventNo. & type x(m) y(m) z(m) Description x(m) y(m) z(m) Description x(m) y(m) z(m)
0 - - - Starting location: 51.55 -14.73 0.76 Starting location: 51.55 -14.73 0.00
Ipick-up 51.48 -15.02 0.77 Distance to event: 0.30 m -0.01 m Distance to event: 0.30 m -0.77 m

x, y & z matchPick-up confirmed at: 51.48 -15.02 0.77 z below pick-up pointPayload remains at: 51.55 -14.73 0.00
IIdrop-down 50.05 -32.67 1.00 Drop-downconfirmed at: 50.05 -32.67 1.00 - No change

IIIpick-up 51.5 -14.93 -0.02 Distance to event: 17.81 m 1.02 m Distance to event: 0.20 m 0.02 m
No matchPayload remains at: 50.05 -32.67 1.00 x, y & z matchPick-up confirmed at: 51.50 -14.93 -0.02

IVdrop-down 21.11 -2.79 -0.02 - No change Drop-downconfirmed at: 21.11 -2.79 -0.02
Vpick-up 50.17 -32.97 1.03 Distance to event: 0.32 m -0.02 m Distance to event: 41.89 m -1.04 m

x, y & z matchPick-up confirmed at: 50.17 -32.97 1.03 z below pick-up pointPayload remains at: 21.11 -2.79 -0.02
VIdrop-down 20.85 -2.73 0.75 Drop-downconfirmed at: 20.85 -2.73 0.75 - No change

VII
pick-up 21.01 -2.66 0.04 Distance to event: 0.18 m 0.71 m Distance to event: 0.16 m -0.06 m

z above pick-up pointPick-up in a stack at: 21.01 -2.66 0.04 + ∆z
x, y & z matchPick-up confirmed at: 21.01 -2.66 0.04

VIIIdrop-down 44.76 -37.41 -0.02 Drop-downconfirmed at: 44.76 -37.41 -0.02 + ∆z
Drop-downconfirmed at: 44.76 -37.41 -0.02
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the initial storage location of stacked payloads with slightly below 30 cm horizontal accu-racy in relation to the previously saved payload coordinates. In this event, the measuredelevation of the corresponding event has matched the elevation of the stored payloadA, confirming its pick-up. Even though payload B was also stored at the same 2D coordi-nate of the detected event, its stored elevation level was significantly below the pick-uplocation, which has prevented the simultaneous pick-up of the payload B. Payload A wasthen transported to another storage point REF2, where it was eventually dropped downin event II, which automatically updated its status and location with new storage coordi-nates.Coordinates of the detected pick-up and drop-down events III and IV have confirmedthe transportation of payload B from the initial location REF1 to another storage pointREF3. Similarly, the detected events V and VI have further confirmed the pick-up of thepreviously dropped-down payload A at reference point REF2, its consequent transporta-tion, and placement on top of payload B at storage location REF3. The coordinates ofthe detected pick-up event VII havematched the latest storage location of payload B, thusindicating its pick-up. In this case, the location of payload A alsomatched the pick-up coor-dinates while its storage elevation was significantly above the pick-up elevation. This indi-cated the pick-up of payload A as part of the stack for the transportation, and thus, its sta-tus and location were correspondingly updated by taking into consideration the elevationdifference∆z between the last known storage locations of stacked payloads. In case of thegiven example, the elevation difference is∆z = |zpayloadBIV −zpayloadAVI |= 0.75+0.02≈ 0.77.The stack of two payloads was then transported and eventually dropped down duringevent VIII at reference point REF4. Both payloads were assigned with the same drop-down coordinates with consideration of the aforementioned elevation difference in thestack.
5.4.4 Comparison With the Direct Tracking ApproachThe conducted test campaign also covers the comparison of the designed indirect track-ing method to the direct positioning approach, performed by an independent UWB tag,attached to payload B, as shown in Fig. 21e. Results on a single industrial product posi-tioning by both direct and the proposed indirect tracking methods are shown in Fig. 23.Blue and green lines respectively demonstrate the payload, tracked by direct and indirectmethods during its transportation, while blue & green dots reflect the direct and indirectpositioning of the payload, stored at reference points (magenta).Numerical results on the payload positioning accuracy and precision, achieved by bothtested methods, are provided in Table 14. The direct tracking method has demonstratedthe presence of a significant 50 cm mean error in absolute payload positioning accuracyat a standard deviation of 11 cm. Zoomed-in sections of Fig. 23 visually demonstrate thecorresponding positioning performance of the direct tracking approach near referencepoints REF1 & REF3. The highest observed absolute error of the direct tracking approachat these points reaches 94 cm. During the payload transportation to reference point REF4,the positioning quality of the directly attached tag unit has significantly decreased to aninsufficient level for reliable tag localization. For this reason, the positioning of the directlyattached tag by UWB positioning system has entirely stopped at the approximate coordi-nate of (44;-11), and was unable to recover until the end of test campaign. Therefore,the positioning performance of the direct tracking method is only evaluated at referencepoints REF1 & REF3.Compared to the direct tracking approach, the proposed indirect tracking method hasdemonstrated over four times superior absolute payload positioning accuracy. In the case
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Figure 23: Visualized results on the industrial product B tracking respectively by direct and indirect
methods during its transportation (light blue & green lines), and during its storage (blue & green
dots) at the pre-defined reference points (magenta).

of tracked payload B, this method has achieved the mean absolute positioning accuracyof 12 cm along with a 7 cm error standard deviation. The highest observed absolute posi-tioning error in the case of the indirect trackingmethodwas 21 cm. A detailed comparisonof both methods at each reference point is provided in Publication IV.
Table 14: Results of the industrial product B absolute positioning performance, experimentally
achieved by the direct and proposed indirect tracking methods.

Accuracy metrics (m) Precision metrics (m)
MnAE MdAE RMSE MnAD MdAD SD

Maxerror (m)
Indirect tracking 0.12 0.12 0.13 0.05 0.05 0.07 0.21
Direct tracking(at REF1 & REF3) 0.50 0.50 0.52 0.08 0.06 0.06 0.94

5.4.5 Positioning Quality of Direct and Indirect Tracking MethodsThis section provides extensive results on both tested indirect and direct tracking meth-ods’ positioning quality evaluation, excluded from Publication IV. This analysis was aimedat further investigation of significant performance differences between thesemethods ob-served in the previous section. In the UWB indoor positioning system used for both directand indirect tracking methods, successful tag localization depends on accurate ranging bya sufficient number of infrastructural UWB units—anchors. Themultilateration techniqueis then used to calculate the resulting coordinate of the tracked tag unit from the obtainedranging information (distances from the tag unit to the available anchors).In the case of the direct tracking approach, the successful 3D localization of the tagunit requires ranging data from at least four anchor units [231, 232]. It represents the
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minimal sufficient number of available rangings needed to successfully calculate the re-sulting payload location. In the proposed indirect tracking method, on the other hand,the underlying UWB positioning system is only used for two-dimensional forklift locationtracking, while the elevation of the mounted UWB tag remains effectively constant dueto its fixed position on the vehicle’s roof. In this case, the successful forklift positioning ina two-dimensional plane only requires the ranging information from a minimum of threeanchor units [231]. These lowered requirements for the available ranging information incase of the indirect tracking method provide increased stability and reliability during pos-sible positioning quality drops, thus representing a significant advantage of the indirecttracking method.
Table 15: Successful positioning rate and availability of UWB anchor units in direct and indirect track-
ing methods during the entire test campaign and separately at the covered reference points

REF1 REF3 REF4 Total

Indi
rect

trac
king Successful positioning rate 100% 100% 100% 99.93%

Average number of anchorsused in ranging 5.3 8 5.9 6.7
Minimal sufficient number ofanchors (3) use rate 97.4% 100% 99.8% 99.2%

Dire
ctt

rack
ing Successful positioning rate 3.2% 31.3% 0% 20.8%

Average number of anchorsused in ranging 2.5 3 1.7 2.5
Minimal sufficient number ofanchors (4) use rate 2.9% 5.6% 1.3% 8.5%

Numerical results on the UWB system positioning quality in the case of both direct andindirect trackingmethods are provided in the top and the bottomparts of Table 15, accord-ingly. The table includes the successful UWB system positioning rates, average number ofanchor units in line-of-sight (LoS) with UWB tag, as well as the presence rates of a suf-ficient number of anchors in LoS with the UWB tag throughout the overall experimentaltest campaign, as well as at each reference point separately.The indirect trackingmethod demonstrates the remarkable results of 100% of the suc-cessful positioning rate at each covered reference point and 99.93% throughout the entiretest campaign. The remaining 0.07% of the unsuccessful positioning rate represents theshort-term positioning quality drop which occurred during the payload transportation toreference point REF4 and was visually demonstrated with the dashed green line in Fig. 23at the approximate coordinates (49;-22). UWB tag, used as part of the indirect trackingmethod, was successfully positioned by a sufficient number of at least three anchors dur-ing 99.2% of the entire test campaign time. On average, this UWB tag was positioned by6.7 anchor units during the test campaign, which corresponds to 233% of the minimal re-quirement for the indirect tracking method. Depending on the particular reference point,this UWB tag was successfully positioned by an average number of 5.3 to 8 anchors, whichcorresponds to beyond 177% of theminimal requirement for this method. Between 97.4%and 100% of the time at the reference points, this tag was positioned by a sufficient num-ber of at least three anchors. Minor occasions of insufficient anchor ranging data weresuccessfully compensated by internal filters and algorithms of the used UWB system. Thisexplains the observed 100% of successful positioning rate at reference points REF1 and
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REF4, even though the presence of a sufficient number of anchors in line of sight was notobserved in 100% of the campaign time. The heatmap representation of the achievedranging coverage of the UWB positioning system infrastructure in case of the proposedindirect tracking method is shown in Fig. 30a in Appendix 9.The direct tracking method, on the other hand, has demonstrated a successful posi-tioning rate of 20.8% throughout the test campaign. According to the obtained results,in only 8.5% of the test campaign time, the UWB positioning infrastructure was able tosuccessfully obtain sufficient ranging information on the UWB tag used for direct producttracking. During the test campaign, the UWB tag, used for direct tracking, was positionedby an average of 2.5 anchors, or 62.5% of the minimal requirement for this method. De-pending on the reference point, theUWB tag of the direct trackingmethodwas positionedby 1.7 to 3 anchor units, which represents 42.5% to 75% of the minimal requirement forsuccessful positioning. At reference points REF1 & REF3, the directly attached UWB tagwas successfully positioned by a sufficient number of four anchors for only 2.9% and 5.6%of the time, respectively. This has resulted in the respective successful positioning ratesof 3.2% and 31.3%. At the reference spot REF4, this UWB tag was occasionally ranged by asufficient number of anchors for a total of 1.3% of the time, which, however, was insuffi-cient to reestablish the positioning of this tag, and therefore, resulted in 0%of a successfulpositioning rate. The heatmap of the achieved UWB positioning system ranging coveragein case of the direct tracking method is shown in Fig. 30b in Appendix 9.

Figure 24: Visualized line of sight limitation of the directly attached UWB tag in the corresponding
tracking method, caused by the tracked product.

The poor positioning quality of the direct tracking approach is generally caused bynumerous LoS blocking obstacles present in the vicinity of the directly attached trackingunit. Among others, these obstacles also include the used industrial machinery (i.e., fork-lift) and primarily, the tracked product itself as illustrated in Fig. 24. Additionally, thesesurrounding obstacles also cause a notable factor of the UWB signal reflections, poten-tially causing significant distortions and errors even in the successfully measured rangingdata and affecting the positioning precision [233]. This causes a major decrease in thesuccessful positioning rate of the direct tracking method, which, along with the increasedminimum number of required UWB anchor units in the line of sight with the tracked tag,significantly affects the reliability and performance of the direct tracking method, espe-cially in obstructed industrial areas.
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The indirect tracking method, on the other hand, has demonstrated an advantage inthe overall positioning performance and quality, explained by the physical deployment ofthe UWB tag. In this method, the UWB tag is installed on top of the ∼2 m high forklift,above the majority of the potential line of sight obstacles for the UWB anchor infrastruc-ture. An additional advantage of thismethod is the reduced requirement for theminimumnumber of anchor units for successful positioning, as the elevation of the forklift-deployedtag remains constant and only requires 2D localization. This ensures a more stable and ro-bust UWB positioning quality for the indirect tracking method.
5.5 Discussion
The research described in this section addresses the industrial need for the indirect track-ing method, allowing the real-time localization of fully markerless products, payloads &equipment. This work answers the research question RQ1 and has resulted in the devel-opment of a novel method for an accurate real-time 3D localization of industrial prod-ucts, which takes into consideration different aspects of its real-life application. The de-veloped indirect tracking method is based on widely available and reliable technologies& techniques while avoiding the use of auxiliary, high-data-volume, or computationallycomplex methods. Since in the proposed method all of the tracked products remain fullyunmarked and require no additional hardware or equipment for their localization, thismethod provides high, theoretically unlimited scalability and minimizes the maintenancerequirements with only the equipment deployed on the used industrial machinery. Theflexibility of this method also allows for its possiblemodifications and use with a variety ofdifferent industrial machinery, including different lifters, cranes, or other loading & trans-portation equipment. Additionally, this research also demonstrates the development ofthe working prototype of the designed indirect tracking setup, as well as its experimentaltesting in a real application environment, which has demonstrated exceptional perfor-mance results. This research has also contributed with the sensor fusion A-PDD algorithmfor automatic detection of the payload pick-up and drop-down by the forklift, which maysee possible applications in the industry.
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6 Conclusions & Future Work
This research has addressed the industry need for an accurate real-time indirect localiza-tion of fullymarkerless industrial products, materials & equipment by significantly advanc-ing state-of-the-art in indirect tracking approaches. Based on the research questions, thiswork has assessed the available indirect tracking techniques to define their existing limi-tations and gaps, as well as proposed a novel, practically applicable, and fully markerlessindirect tracking approach. This work has resulted in the development of a novel methodfor fully markerless indirect localization of industrial products, materials, and equipmentin modern intelligent warehousing and industry. In this method, tracked products do notrequire the direct attachment of any tracking or identification tags, thus remaining fullyunmarked. This provides significant advantages in cost efficiency, energy efficiency, andtheoretically unlimited scalability, along with significantly reducedmaintenance and com-putational requirements. Additionally, this research has further contributed to the afore-mentioned advantages of the developed method by focusing on the use of a minimal setof cost-efficient, computationally incomplex, and reliable sensors and techniques.In order to fully automate the proposed indirect tracking method, this research hasalso contributed with the algorithmic sensor fusion method for the automatic detectionof payload pick-up & drop-down events, which was effectively used throughout a seriesof experimental tests. This work has also covered a prototype implementation for theproposed markerless indirect tracking method, its experimental testing and assessmentin a real industrial application environment, as well as its comparison with a direct posi-tioning approach. In a series of down-scaled and full-scale experimental tests, the pro-posed method has demonstrated remarkable results in industrial product positioning ac-curacy, comparable to the declared performance of the underlying positioning system.Comparison of the proposed indirect tracking method with an equivalent direct position-ing approach has also revealed additional advantages of the developed method in overallpositioning quality, reliability, and stability. The achieved results have fully validated theperformance capabilities of the proposedmethod, aswell as its high potential for practicalapplicability.The research on the indirect tracking topic has also demonstrated the necessity of areliable and accurate vehicle heading estimation, suitable for use in the industrial envi-ronment, which has introduced the main subtopic for this research. The primary subtopicof this work has addressed the essential limitation of gyroscope sensors, represented bya significant over time accumulated drift error. This work has also addressed the mainlimitations of the available and widely used (e.g., magnetometer-based) drift mitigationtechniques, preventing their use in certain scenarios and applications, such as industrialland machinery. This research has investigated the possible use of positioning and iner-tial data fusion for robust vehicle heading estimation. It has resulted in the developmentof multiple algorithms, including the positioning data-based IMU heading drift correc-tion algorithm (DCA) and the Adaptive Tandem Kalman Filter (ATKF) algorithm for vehicleheading estimation.The performance of both algorithms was verified and evaluated in a series of sim-ulated and experimental tests, conducted to reflect realistic and challenging movementscenarios of highly maneuverable industrial machinery. Both of the proposed algorithmshave experimentally shownahigh performance and reliability in real-life data-based head-ing estimation with over 95% improvement in median absolute heading error over thestate-of-the-artmagnetometer-based algorithms. The testedmagnetometer-based state-of-the-art orientation tracking algorithms, on the other hand, have additionally confirmedtheir inapplicability in industrial vehicle heading tracking applications. ATKF algorithm has
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additionally shown over 83% improvement in the heading estimation RMSE in comparisonwith tested state-of-the-art algorithms, and beyond 58% improvement over the proposedDCA algorithm. ATKF algorithm has confirmed its overall high stability and robustness incase of poor input data quality, and was eventually used as part of the designed marker-less indirect product tracking method.
6.1 Research Questions
From the perspective of this research, the defined research questions can be addressedand answered as follows:

• RQ1: What method should be developed in order to provide accurate automatic
real-time 3D positioning of markerless industrial products/assets?The real-time and accurate localization of fullymarkerless industrial products is pos-sible during their transportation by the industrialmaterial handling equipment (e.g.,forklifts). The real-time location of any transported payload is directly reflected bythe real-time location of the product handling unit (i.e., forklift tynes), thus requir-ing no direct tagging of the transported payload. The real-time tynes’ location canbe accurately estimated by using the forklift position and heading information, re-spectively provided by the positioning unit (e.g., indoor or outdoor positioning sys-tem) and heading tracking unit (e.g., gyroscope sensor). An algorithmic methodis required for the accurate heading estimation and mitigation of the drift errorsaccumulated by the inertial sensor.
To enable a reliable and precise three-dimensional payload localization, the de-ployed setup also requires an additional sensor for a continuous measurement ofthe tynes’ elevation. A real-time monitoring of the fork occupancy status also en-ables the automatic payload loading and unloading detection, thus leading to theentire indirect trackingmethod automation. An algorithmic sensor fusionmethod isrequired to combine the tynes’ elevation and occupancy status information for a re-liable and real-time recognition of the exact payload pick-up& drop-downmoment.The exactly detected location of the pick-up event allows to identify the picked upmarkerless product by using its latest known storage coordinates, while the exactlydetected location of the payload drop-down event represents its further storagelocation.
The chosen approach is expected to meet the following criteria:

– Cost-efficiencyMarkerless indirect product tracking should beprimarily basedonwidely avail-able and cost-efficient sensors, and does not require the use of high-end hard-ware (e.g., military grade inertial sensors, specialized image processing equip-ment, etc). Although the cost can still vary depending on the chosen position-ing system (e.g., UWB, BLE, GNSS, GNSS-RTK, etc).
– Minimized computational complexity and data processing requirementsMarkerless indirect product tracking can rely entirely on techniques and sen-sors that generate low data volumes and requireminimal processing complex-ity—unlike vision- and ML/AI-based methods or computationally intensive al-gorithms such as Particle Filters.
– Minimal integration into the mechanisms of industrial machineryMarkerless indirect product tracking can be based on sensors requiring min-imal integration and adjustments to the used machinery. Sensors and units,
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requiring invasive integration into the industrial machinery mechanisms, suchas wheel and steering encoders, should be avoided.
– Seamless deployment with minimal adjustments in an industrial environment
or its natural workflow.Markerless indirect product tracking requires no adjustments in the industrialenvironment, such as dedicated storage points and transportation routes, oradditional interfering infrastructure (e.g., scanning gates). Indirectly trackedpayloadsmust only be transported by the industrial machinery, equippedwiththe indirect tracking setup, which represents a potential minor limitation tothe natural workflow.

• RQ2: Can the positioning data be reliably used in combination with inertial data
for accurate vehicle heading estimation in an industrial environment? Will this ap-
proach be sufficient for accurate heading tracking of highlymaneuverable industrial
vehicles?Generally, the positioning information can be used for the vehicle heading estima-tion. However, similarly to other heading tracking methods, the sole positioning in-formation cannot be effectively used for accurate heading tracking due to method-specific limitations. In the case of positioning information, this limitation is repre-sented by its high sensitivity to the movement speed of the tracked vehicle, whichprevents a reliable heading estimation at lower movement speeds and especiallyin stationary cases. Nevertheless, unlike other heading tracking methods, such asdrift error accumulating inertial sensors, magnetic interference-sensitive magne-tometers, or computationally complex and environmentally sensitive vision & laser-based methods, the positioning data-based approach may be used in any environ-ment and does not accumulate errors over time. This represents a significant ad-vantage of the positioning data-based heading estimation approach in the industrialenvironment, as well as in the context of the proposed indirect tracking method.

• RQ3: What sensor fusion method should be developed to utilize benefits and over-
come limitations/shortcomings of positioning and inertial data in vehicle heading
estimation? Are the extra/additional supporting sensors required in this method?
What is a suitable sensor fusion algorithm for inertial and positioning data-based
real-time vehicle heading estimation? A fusion of the positioning data with a sup-porting inertial (gyroscope) information allows to compensate the disadvantagesand limitations of each separate method and achieve a reliable performance in theheading tracking. In this case, the accumulated errors of the inertial sensor are mit-igated by the positioning information, while the gyroscope’s immunity to the vary-ing movement speed provides an effective support during intense maneuvering orstationary periods. Minimal environmental sensitivity of this method provides areliable heading estimation in real-life industrial applications, and requires no addi-tional auxiliary sensors for a reliable heading estimation of industrial machinery.
The required inertial and positioning sensor fusion algorithm must provide a real-time heading estimation with possibly minimal delays to back up scenarios of in-tense maneuvering, which leads to the required computational incomplexity andimmediate use of the newly arriving information. Thus, the positioning and iner-tial information samples must be processed and applied within a single algorithmiteration. Another key requirement for the fusion algorithm is its possible real-timeadaptivity to the ongoingmovement speed to effectivelymitigate the disadvantagesof the positioning information at the lower speeds. Due to the gradually changing
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nature of the vehicle heading, the developed fusion method may be based on theestimator algorithms, such as the Kalman filter, additionally enabling the estima-tion of upcoming heading changes, based on the previous information. Thus, theresulting fusion algorithm may be based on the adaptive variation of the widelyused Kalman filter algorithm, or its non-linear extended Kalman filter version. Anadditional key functionality of the developed vehicle heading estimation algorithmis the capability to reliably recognize the possible reverse movement.
6.2 Future Perspectives
This research has proposed and developed a sensor fusion method for the indirect local-ization of fully markerless industrial products, focused on the use with industrial forklifts.Although the proposed method has achieved remarkable results during the experimen-tal performance validation, its further development may start with thorough and long-term testing of this approach to define possible improvement requirements. As the scopeof this research was exclusively focused on the use of industrial forklifts, further workmay investigate the extended area of applications for the indirect tracking method andpropose necessary sensor & algorithm presets, suitable for different industrial machineryand material handling equipment, such as cranes, lifters, excavators, or other loading &transportation equipment. This may also include the development of a simplified indi-rect tracking setup version to effectively integrate smaller industrial equipment, such asmanual pallet jacks, into the indirect tracking process.As different passive identification technologies remain widely used in the industry, thefurther development of the proposed method may include the support for the optionalintegration of various case-specific or auxiliary sensors, such as cameras or passive identi-fication scanners (e.g., RFID or QR codes). This will allow a seamless integration of the pro-posed indirect trackingmethod in production and warehousing processes, where productidentificationmarkers remainwidely used. Thismay also utilize the benefits of these tech-nologies to further enhance the performance of the proposed indirect tracking method.Additional features may also include the possible compatibility of the proposed methodwith pre-deployed sensor setups. These include the available setups, from forklift CANbus (Controller Area Network) and up to numerous high-performance sensor networks ofdifferent industrial robots, unmanned vehicles and platforms. The field of unmanned ve-hicles and robots may reciprocally benefit from the integration of the presented methodsto potentially improve the effective use of sensors, thus reducing the number of requiredsensors and increasing overall efficiency. Future research may also cover the enhance-ment andoptimization of the proposed automatic pick-up&drop-downdetection (A-PDD)algorithm.Future research perspectives in the field of industrial vehicle heading estimation mayalso cover the further enhancement of the proposed positioning data-based method onboth the algorithmic and the hardware side. Future work may focus on the additionalintegration of the accelerometer unit - a second inertial sensor, widely available in IMUunits. This unit may potentially provide extended information on the real-time vehiclemovement, thus enhancing the performance of proposed positioning and gyroscope data-based heading estimation methods. Further development may also be focused on theimprovement of the proposed ATKF algorithm by its optimization and tuning for differentscenarios and machinery, as well as the possible integration of auxiliary sensors or algo-rithmic solutions. Further improvement of the ATKF algorithmmay include the integrationof different machine learning techniques into its adaptivity or estimation mechanisms forthe automatic fine-tuning of the algorithm.
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Additionally, the future work may also include the data collection and composition ofthe comprehensive dataset, containing positioning information of multiple sources, suchas UWB and GNSS, inertial information of multiple gyroscope and accelerometer sensors,as well as magnetometer information. This synchronized data, accompanied by highlyaccurate ground truth data on the real-time position and orientation, and collected indifferent environments and various movement scenarios, may then be used as an easilyaccessible benchmark dataset for further research advancements. Thismay gradually leadto more controlled and standardized validation of various algorithms and techniques inthe field of navigation and orientation tracking.
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Abstract
Advancements in Sensor Fusion Enabled Indirect Positioning
Methods
This thesis addresses the industrial need and investigates a method to enable accurateand real-time localization of completely markerless industrial products. The key motiva-tion behind the investigated method is to enable the identification and accurate trackingof various industrial products in a cost-effective manner without the direct attachmentof any tracking or identification units. Thus, the key criterion for the targeted methodis to fully avoid the direct attachment of any positioning or identification tags, includingQR codes, barcodes, or other markers to localized payloads, leaving them fully unmarked.This dissertation starts by investigating the available indirect trackingmethods to evaluatetheir key features, performance capabilities, and assess their applicability for markerlessproduct localization. Afterward, this thesis introduces a proposed fully markerless indi-rect tracking method along with its key components, including proposed vehicle headingestimation methods.As a first contribution, this research assesses the applicability of the available inertialdata-based heading estimation methods in the context of an industrial environment. Italso investigates the applicability of the positioning and inertial data-based approach inindustrial vehicle heading estimation and proposes a corresponding gyroscope headingdrift correction algorithm (DCA). This algorithm is focused on the use of the positioningdata as supplementary information to occasionally mitigate the accumulated drift errors.One of themain goals of this algorithm is to verify the reliability of positioning informationin accurate vehicle heading estimation, as well as define its primary advantages and limi-tations. In the full-scale experimental test campaign, the proposed DCA algorithm is usedfor the heading tracking of a highly maneuverable forklift in the industrial area, whereit demonstrates a significant reduction of the gyroscope median absolute heading errorfrom 44.1 degrees down to a sub-6 degree level. This confirms the effectiveness of thepositioning and inertial data fusion for the reliable industrial vehicle heading estimationand enables further research in this field.The second contribution focuses on the implementation of the Adaptive ExtendedKalman Filter (A-EKF) algorithm for the UWB AP-TWR (Active-Passive Two-Way Ranging)protocol-based positioning. In the context of this research, this contribution assesses theperformance of a non-linear state-of-the-art Kalman filter algorithm in real-life applica-tions, as well as investigates the implementation methods and advantages of the adap-tive Kalman filter algorithm for its further use in the field of vehicle heading estimation.In experimental testing, the implemented A-EKF algorithm has demonstrated a significantimprovement of the AP-TWR-based UWBpositioning over sole SS-TWR (Single-Sided Two-Way Ranging) and AP-TWR based positioning in obstructed industrial areas. The A-EKFalgorithm has shown a reduction of the peak positioning errors RMS by a factor of threein stationary 3D testing, and a ninefold RMSE reduction in the movement test scenario.These results highlight the significance of the Kalman filter adaptivity feature, especiallyin real-life applications, which is eventually used in later contributions.As a third contribution, this research proposes anAdaptive TandemKalman Filter (ATKF)algorithmic method for an accurate and reliable vehicle heading estimation. This algo-rithm represents an adaptive version of the Kalmanfilter algorithmwith a non-conventionaltandem structure. It performs a competitive fusion of inertial and positioning informationfor the real-time vehicle heading estimation in different scenarios, including intense ma-neuvering and reverse movement. The proposed DCA and ATKF algorithms are tested in
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a series of simulations to define their expected performance capabilities and reliabilitylimits. Simulated tests confirm a significant robustness of the DCA algorithm against highinertial data drift rates, alongwith high sensitivity to the positioning data quality and casesof intense maneuvering. ATKF algorithm demonstrates a balanced reliability and stabilityin case of both poor positioning data quality and high inertial drift rates, even in cases ofintense maneuvering.This contribution also covers an experimental validation of the obtained simulations’results in a live industrial environment by using a highly maneuverable forklift. The DCAalgorithmdemonstrates themedian absolute error reduction in IMU tracked forklift head-ing down to 1 degree level with moderate to high stability. The proposed ATKF algorithm,on the other hand, experimentally achieves a sub-1 degree accuracy in forklift headingestimation with exceptional stability and high robustness even in cases of poor inputdata quality. In the same test campaign, both of the proposed algorithms outperformthe tested state-of-the-art magnetometer-based heading estimation algorithms, such asMahony, Madgwick, and complementary filters.A fourth contribution of this research proposes a novel method for a sensor fusion-based automatic and three-dimensional tracking of fully unmarked industrial products.The proposed method prioritizes the positioning accuracy, cost- and energy efficiency, re-duced computational complexity and processing requirements, while achieving high scal-ability. Additionally, the proposedmethod focuses on the seamless integration into the in-dustrial environment and machinery to minimize its interference in the natural workflow.To fully automate the proposed indirect tracking method, this contribution also proposesa sensor fusion algorithm for automatic payload pick-up & drop-down detection (A-PDD).This algorithm performs a complementary fusion of multi-sensor information to detectthe exact moment of the payload loading or unloading. This enables an indirect identifi-cation of the picked up product and allows to determine the exact storage location of thedropped down payload.Conducted down-scaled and full-scale experimental tests of the proposed indirecttracking method demonstrate its high absolute and repeatability accuracy in product po-sitioning, closely comparable to the performance of the underlying positioning system.Thus, in the full-scale test campaign, the industrial product was positioned by the UWB-based indirect tracking method with sub-30 cm accuracy, which closely corresponds tothe initial declared 10-30 cm accuracy of the underlying UWB positioning system.Due to its high scalability, cost- and energy efficiency, as well as reduced maintenancerequirements andhigh potential formodifications, the proposedmarkerless indirect track-ing method is expected to be widely applicable in industry and warehousing, utilizing dif-ferent industrial machinery and material handling equipment, such as forklifts, lifters, orcranes. The developed A-PDD algorithm for automatic pick-up & drop-down detectionmay also find its use in the industry and warehousing automation. Presented contribu-tions in the field of vehicle heading tracking, including a developed positioning data-basedDCA algorithm for IMU drift correction and ATKF algorithm for vehicle heading estimation,may find their use in a wide variety of fields, such as robotics, autonomous vehicles, aswell as industry and logistics automation.
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Kokkuvõte
Andurisulandusel põhinevate kaudsete positsioneerimismee-
todite edasiarendused
Käesolev doktoritöö käsitleb tööstuslikku vajadust ja uurib meetodit, mis võimaldaks täie-likult markeriteta tööstustoodete täpset ja reaalajalist positsioneerimist. Uuritava meeto-di peamine motivatsioon on võimaldada erinevate tööstustoodete tuvastamist ja täpsetjälgimist kuluefektiivsel viisil ilma jälgimis- või identifitseerimisüksuste otsese kinnitamise-ta. Antud meetodi disainikriteerium tagab positsioneerimis- või identifitseerimisseadme-te vältimist, sealhulgas QR-koodide, triipkoodide või muude markerite otsest kinnitamisttootele, jättes need täielikult märgistamata. Käesolev töö algab olemasolevate kaudse jäl-gimisemeetodite uurimisega, et hinnata nende põhiomadusi, jõudlust ning hinnata nenderakendatavust markeriteta toodete positsioneerimiseks. Seejärel tutvustatakse käesole-vas doktoritöö raames väljapakutud täielikku markeriteta kaudset jälgimismeetodit koosselle põhikomponentidega, sealhulgas kavandatud sõiduki suuna hindamise meetodeid.Esmalt pakub doktoritöö hinnangut olemasolevate ja laialt kasutatavatemeetodite ra-kendatavust inertsiaalandurite põhinevate suuna jälgimiseks tööstuskeskkonna kontekstisja kaudse jälgimisemeetodi osana. Samuti uuritakse positsioneerimis- ja inertsiaalandme-tel põhineva lähenemisviisi rakendatavust tööstussõidukite suuna jälgimisel ning pakutak-se välja vastav güroskoobi suuna triivi korrigeerimise algoritm (DCA). See algoritm kes-kendub positsioneerimisandmete kasutamisele lisateabena, aja jooksul kogunenud triivi-vigade aegajaliseks leevendamiseks. Selle algoritmi peamine eesmärk on kontrollida po-sitsioneerimisteabe usaldusväärsust sõiduki suuna täpsel jälgimisel, samuti määratledarakendatud algoritmi peamised eelised ja piirangud. Mõõtekatsetes kasutatakse pakutudDCA-algoritmi manööverdatava tõstuki suuna jälgimiseks tööstuspiirkonnas, kus raken-datud algoritm näitas güroskoobi absoluutse mediaani suunavea olulist vähenemist 44,1kraadilt alla 6 kraadini. See kinnitab positsioneerimise- ja inertsiaal andmete liitmise tõhu-sust tööstussõidukite usaldusväärse suuna hindamiseks ning võimaldab selles valdkonnasedasisi uuringuid.Teine doktoritöö põhipanus keskendub adaptiivse laiendatudKalmani filtri (A-EKF) algo-ritmi rakendamiseleUWBAP-TWR (Active-Passive Two-WayRanging) protokollipõhise asu-koha arvutamise ja filtreerimise jaoks. Selle uurimistöö kontekstis hinnatakse selles panu-ses mittelineaarse tipptasemel Kalmani filtrialgoritmi toimivust reaalsetes rakendustes,samuti uuritakse adaptiivse Kalmani filtrialgoritmi rakendusmeetodeid ja eeliseid selleedasiseks kasutamiseks sõiduki suuna jälgimise valdkonnas. Eksperimentaalsetes katse-tes on rakendatud A-EKF algoritm näidanud AP-TWR-põhise UWB positsioneerimise olu-list paranemist võrreldes ainsuse SS-TWR-i (Single-Sided Two-Way Ranging) ja AP-TWR-põhise positsioneerimisega takistatud tööstuspiirkondades. A-EKF-i algoritm on näidanudtipppositsioneerimisvigade RMS-i kolmekordset vähenemist statsionaarses 3D-testimisesning üheksakordset RMSE vähenemist liikumistesti stsenaariumis. Need tulemused rõhu-tavad Kalmani filtri adaptiivsuse funktsiooni olulisust reaalsetes rakendustes, mille lõpukskasutatakse hilisemates kaastöödes.Järgmisena pakub käesolev doktoritöö välja Adaptiivse Tandem Kalmani Filtri (ATKF)algoritmilise meetodi täpseks usaldusväärseks ja reaalajaliseks sõiduki suuna jälgimiseks.Väljapakutud algoritm põhineb Kalmani filtril, võttes ebakonventsionaalse adaptiivse ten-demstruktuuriga vormi. ATKF algoritm teostab inertsiaalse ja positsioneerimisteabe andu-rite liitmist täpse , usaldusväärse, ja reaalajalise sõiduki suuna jälgimiseks erinevate stse-naariumides, nagu näiteks intensiivse manööverdamise ja tagurdamise korral. Kavanda-tud DCA- ja ATKF-algoritme testitakse arvutikatsete seerias, et määratleda nende eelda-
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tavad jõudlusvõimalused ja töökindluse piirid. Arvutikatsete abil kinnitati DCA algoritmimärkimisväärset vastupidavust andmete inertsiaalse triivimise vastu kannatades samaspostisioneerimisandmete müradest tingitud tundlikkuse all, eriti intensiivse manööver-damise korral. Väljapakutud ATKF algoritm seevastu näitab tasakaalustatud töökindlust jastabiilsust nii halva positsioneerimisteabe kui ka suure inertsiaalse triivikiiruse korral, isegiintensiivse manööverdamise korral.See panus hõlmab ka saadud arvutitestide tulemuste katselist valideerimist reaalsestööstuskeskkonnas rohkelt manööverdatavat tõstuki kasutades. DCA algoritm näitab IMUsuuna jälgimise absoluutse vea mediaanväärtust 1 kraadi tasemele ning mõõdukat kunikõrget stabiilsust. Väljapakutud ATKF algoritm seevastu saavutab kahveltõstuki suuna jäl-gimisel alla 1-kraadise täpsuse, kõrge stabiilsuse ja vastupidavusega isegi halva sisendand-mete kvaliteedi korral. Samas katsekampaanias ületavad mõlemad pakutud algoritmidtestitud tipptasemelisi magnetomeetril põhinevaid suuna jälgimise algoritme, seal hulgasMahony, Madgwick ja Complementary filter.Viimasena pakub antud doktoritöö välja uudse andurisulandusel põhineva meetoditäielikult märgistamata tööstustoodete, varade ja seadmete automaatseks reaalaja kol-memõõtmeliseks jälgimiseks. Pakutud meetod seab esikohale positsioneerimise täpsuse,kulu- ja energiatõhususe, töökindluse, väiksema arvutusliku keerukuse ja töötlemisnõu-ded, ning seekaudu tagab kõrge laiendatavuse. Lisaks keskendub kavandatudmeetod sellesujuvale integreerimisele tööstuskeskkonda ja kasutatudmasinatesse, etminimeerida sel-le mõju tööstusprotsessidele ja loomulikule töövoogudele. Pakutud kaudse jälgimismee-todi täielikuks automatiseerimiseks on pakutud ka andurisulandusel põhinev algoritmilinemeetod toote automaatse ülesvõtmise ja mahapaneku tuvastamiseks (A-PDD). See algo-ritm teostab mitme anduriga teabe täiendava liitmise, et tuvastada tõstuki käitumise järgitööstustoote peale- või mahalaadimise täpne hetk. See võimaldab võimaldab kaudsel jäl-gimismeetodil määratleda tööstustoote täpse asukoha.Pakutud kaudse positsioneerimismeetodi praktilised katsed näitavad selle suurt ab-soluutset ja korratavuse täpsust toote positsioneerimisel, võrdluse aluseks oleva posit-sioneerimissüsteemi jõudlusega. Seega pakutud UWB-põhinev kaudne positsioneerimis-meetod sooritatud katsekampaanias näitas tööstustoote jälgimist alla 30 cm täpsusega,mis lähidalt vastab aluseks oleva UWB positsioneerimissüsteemi deklareeritud 10–30 cmtäpsusele.Tänu suurele laiendatavusele, kulu- ja energiatõhususele, samuti väiksematele hool-dusvajadustele ning suurele muudatavusele pakutud markeriteta kaudne positsioneeri-mismeetod on laialdaselt rakendatav tööstuses ja laonduses kasutatavate erinevate töös-tusmasinatel ja materjalikäitlusseadmetel, näiteks kahveltõstukite, tõstukite või kraanadepuhul. Doktoritöö raames väljatöötatud automaatse pealevõtmise ja mahapaneku tuvas-tamis algorithm (A-PDD) võib leida oma kasutust ka tööstuses ja laoautomaatikas. Aval-datud teadusartiklid sõiduki suuna jälgimise valdkonnas, sealhulgas väljatöötatud posit-sioneerimisandmetel põhinevad DCA ja ATKF algoritmid sõiduki suuna jälgimiseks võivadleida oma kasutust paljudes valdkondades, nagu robootika, autonoomsed sõidukid, ningtööstus ja logistika automatiseerimine.
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Abstract—This paper proposes a heading drift correction
algorithm for inertial and positioning sensor fusion for indirect
localization of industrial products in warehouse management.
The tracking of objects is performed indirectly during their
transportation by constantly tracked industrial machinery (e.g.,
forklift). The fusion of inertial and positioning units provide
real-time information on position and heading of industrial
machinery, which is transformed into real-time position of the
carried payload. Within this work, a test setup was assembled
and based on the proposed inertial measurement unit (IMU)
heading correction algorithm. The performance of the solution
was assessed in an industrial production environment. Results
show that the proposed algorithm was able to reduce the heading
median error from 44.1 degrees to 5.9 degrees, which is 86.5%
improvement in measured heading accuracy. This results in an
improvement of the positioning accuracy from 1.91 m median
error to 0.26 m median error for the indirectly tracked object.

Index Terms—Tagless, indirect, tracking, IMU, GNSS, UWB
RTLS, forklift, warehousing

I. INTRODUCTION

In recent years, all aspects of industries become more
efficient through integration of various complex and smart
solutions aimed to improve its performance and assist the
working personnel in all possible ways. For instance, as part of
integrating Industry 4.0. Intelligent warehousing for instance,
is aimed to simplify, automatize and increase the awareness of
various aspects of management processes at warehouses and
production sites, especially where the manual, reliable and real
time product tracking can be challenging [1].

Variety of different publications propose different smart
solutions for products tracking in warehouses, production and
other industrial areas. Majority of them describe localization
solutions with the use of portable tracking units – tags. Direct
industrial products marking with active (e.g., UWB (Ultra
Wide-band) [2], [3]), or passive (RFID (Radio-Frequency
Identification) [4]) positioning tags, allows them to be tracked
in real-time by the corresponding infrastructure [5]. These
technologies are also often assisted with different identification
technologies used for asset recognition. It is often done with
directly attached passive RFID tags [6], barcodes or QR codes

[7]. As these technologies were originally designed for iden-
tification, they are often used to assist a primary positioning
system (e.g, UWB [8], [9]). Their use as primary technologies
for objects’ localization would require significantly more com-
plicated and expensive infrastructure to provide a base level
of objects’ localization [10].

Some sources also propose assets’ identification via recog-
nition of reference objects (e.g., forklift pallets) by using
LiDARs (Light Detection and Ranging) [11] or visual (camera
based) sensing [12], or RGB-D (Red Green Blue-Depth)
cameras [13]. Unfortunately, fragile parts of optical sensors are
naturally sensitive to minor environmental pollution (e.g., dust
or moisture), typically encountered in industrial environments.

Unfortunately, certain products cannot be directly marked
with tags, due to different environmental or physical processes
these products go through, where any attached positioning tags
have a high possibility to be physically damaged or destroyed.
For instance, in metal production sites material goes through
high temperature and physical formation processes during its
life cycle, which will instantly destroy any attached tag [14].

Industrial products can be indirectly tracked during their
transportation together with constantly tracked industrial ma-
chinery. In this case, location of the carried object measured
during its drop down event represents its storage location until
it is picked up for a further transportation. In this approach,
a real-time position of transported payload corresponds to
the position of payload carrying unit (e.g., forklift tynes).
The exact position of load carrying unit in its turn can be
determined from continuously measured position and heading
of the used carrier machinery. Tracking of this carrier ma-
chinery heading can be performed in several different ways.
For example, positioning the industrial vehicle with several
positioning units and calculating the heading vector from
measured coordinates. However, this will double the number
or increase the complexity of the required positioning units and
increase the cost of the solution. This cost is further increased
when the tracked vehicle is tracked both indoors and outdoors
[15].

This paper proposes a novel approach for indirect products
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localization within warehousing, production and industrial
areas without their direct tagging. Focus is on using an in-
ertial measurement unit (IMU) to obtain a real-time industrial
machinery heading information. Using IMU data for heading
information requires compensating for drift which is typical
for inertial measurement units [16]. IMU drift correction is
usually compensated with assistance of magnetometer sensors
[17], [18]. However, magnetometer data becomes unreliable to
use for drift compensation in industrial environments due to
its high sensitivity to magnetic interference [19]. This paper
proposes a novel coordinates-based heading correction algo-
rithm to compensate for the heading drift without requiring
magnetometer data. The paper is divided into 4 sections. The
first section defines main the problem addressed in this work
with proposed methodology. The second section describes the
proposed algorithm for heading data drift compensation. The
third section specifies the experimental setup, describes the
performed live experiments and demonstrates the results. The
last section concludes the paper.

II. PROBLEM

The main problem to be solved within this work is the fusion
of positioning data with IMU data for reliable real-time indus-
trial vehicle tracking in terms of its location and orientation.
The location and orientation of the vehicle are used for indirect
localization of completely tagless assets in an industrial area
(e.g. warehouse). During payload pick-up, transportation and
drop-down events the payload location directly corresponds
to the location of the payload carrying location (e.g., on the
forklift tynes). The positioning units in most cases cannot be
attached directly to the location of the payload on the vehicle
due to risk of damaging the unit or obstructing the unit with
the payload or environment. Therefore, the location of the
positioning unit needs to be transformed to the location of the
payload carrying location. The heading information and known
offset is utilized to define the exact location of the payload
carrying location, and consequently, a transported payload in
relation to the deployed positioning unit.

A direct use of IMU measured heading information has poor
reliability due to a presence of drift, which is the continuous
accumulation of angular errors over time. The drift of the
measurements is caused by gyroscope bias instabilities and
internal noise [16]. Several methods are often used to minimize
IMU drift including gyroscope and accelerometer output data
filtering with the use of complementary filter [20] and its
improved variations of Mahony and Madgwick filters [21].
Different variations of linear and non-linear Kalman filters are
also widely used for IMU fusion with and its drift elimination
[22]–[24].

Particularly the heading rotation (yaw Euler angle), which
corresponds to a machinery heading, is represented/described
with integrated angular velocity readings of gyroscope in two-
dimensional plane around vertical Z-axis. While the angular
drift present in IMU measured roll and pitch Euler angles
can be relatively effectively compensated with assistance of

Fig. 1. Schematic illustration of the forklift tynes’ area center relation to
the deployed setup components within forklift local (xloc,yloc) and main
coordinate systems (X , Y ).

accelerometer data, a similarly effective yaw angle drift com-
pensation requires a use of magnetometer [17], [18]. Magne-
tometers in their turn are naturally sensitive to environmental
magnetic interference [19]. It makes this sensor unreliable
for a proper yaw angle correction in industrial environmental
conditions and attached to the heavy industrial machinery [19].
For this reason, the use of magnetometer is avoided in this
work.

A. Methodology

In the case of a forklift, during the payload transportation
process, the exact location of the transported payload directly
corresponds to the position of the forklift tynes’ center. Geo-
metrically, the position of the forklift tynes’ center in relation
to the deployed positioning unit has a known constant offset
and depends on a placement of measurement units on the
forklift (i.e. their location in the local coordinate system of
the forklift body frame). As it is shown on Fig. 1, the exact
location of the tynes’ area center Xtynes and Y tynes in the
main coordinate system (X ,Y ) can be calculated with the use
of measured heading and positioning data as follows:

{
Xtynes = Xo + sin(Ψφ) · h
Ytynes = Yo + cos(Ψφ) · h

(1)

where Xo and Y o are the measured coordinates of the
positioning unit in the main coordinate system; h is the known
constant offset between the positioning unit and the center
of the forklift tynes area. Ψφ is the tynes’ direction from
the perspective of the positioning unit in the main coordinate
system. Ψφ represents the IMU measured heading of the setup
Ψ combined with the constant angular offset φ within forklift
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body frame (local) coordinate system (xloc,yloc) between
the direction of the tynes’ center from the positioning unit
perspective, and the positive yloc axis of local coordinates
system. These parameters are calculated in the following way:

h =
√

w2 + l2 (2)

Ψφ = Ψ+ φ, where φ = atan2(w, l), (3)

where w and l are tynes’ location offsets from the (xloc,yloc)
coordinate system origin respectively in xloc and yloc axes.
The forklift local coordinate system (xloc,yloc) describes the
relation of the forklift to the deployed sensors and location of
payload carrying unit (i.e. tynes). The origin of the local co-
ordinate system corresponds to the location of the positioning
unit (Xo,Y o) in the main coordinate system.

The tynes’ position error depends on the heading error,
which can be calculated as follows:

εtynes = 2 · sin(εΨ
2
) · h, (4)

where εtynes is the tynes’ position error calculated from the
heading error εΨ. Therefore, with this approach, a 1 degree
setup heading error will cause 1.75 cm error per 1 m of offset
in h.

III. PROPOSED IMU HEADING CORRECTION ALGORITHM

This section describes the proposed IMU heading correction
algorithm. The algorithm performs corrections to the over-time
accumulative errors present in the IMU measured heading.

The proposed algorithm iteratively compensates for the
angular drift present in the measured IMU heading based
on the positioning data. Within the algorithm, the measured
IMU heading (yaw Euler angle) is combined with a condi-
tionally updated correction value, which is only calculated
from the positioning data when the requirements are met for
a certain type of movement behaviour. Recent positioning
data samples are stored in limited size FIFO (first in, first
out) buffer. To calculate an updated correction value for
the IMU heading, the stored positioning data is required to
indicate a relatively straight movement above the defined
minimal speed. Actual parameters of the required movement
are preliminarily defined depending on the specific use case.
These movement requirements separate an actual movement
in clearly determined direction from possible noise present
in data and directional readings during manoeuvring. Once
these movement requirements are met the coordinates based
calculated heading is considered as valid. The change in dy-
namics in valid heading data is also tracked to detect a possible
reverse movement event. In this case the coordinates based
heading is expected to show a rapid change to the opposite
direction with a minor change in IMU measured heading.
The difference between valid movement direction calculated
from the positioning data and the raw heading provided by
IMU module is then considered as the approximately accurate
correction for the IMU measured heading. The described IMU
heading correction algorithm is demonstrated in Algorithm 1.

Algorithm 1: Horizontal plane coordinates based IMU
heading correction
Parameters: Minimal movement speed: vmin [m/s]

Maximal heading range: αmax [deg]
FIFO buffer fixed length: µ
Reverse movement threshold: β [deg]
Previous or initial correction value: δ0
[deg]
Previous or initial valid coordinates
based heading: θ0 [deg]
Previous or initial IMU heading: ψ0

[deg], measured together with θ0 [deg]
Input Data: Measured setup coordinates: (X0,Y0)

[m]
IMU measured heading: ψ [deg]

Outputs : Corrected heading: Ψ [deg]
Heading correction value: δ [deg]

1 Apply previously calculated correction to the received
IMU heading Ψ = ψ + δ0

2 Save the new coordinate reading (Xo,Y o) in the
FIFO buffer W with length µ

3 foreach consecutive coordinates pair k ∈ W do
4 Calculate the set of movement velocities v(k)
5 Calculate the set of heading angles α(k)
6 end
7 Calculate the range Rα of heading angles’ set α(k)
8 if ∀ v ∈ v(k) > vmin && Rα ≤ αmax then
9 Calculate the mean heading θ̂α from heading

angles set α(k)
10 if | θ̂α - θ0 | > 2 β && | ψ̂ - ψ0 | < β then
11 Apply the detected reverse movement

correction: θ̂α = θ̂α + 180
12 end
13 Update the previous valid coordinates based

heading: θ0 = θ̂α
14 Update the last corresponding IMU measured

heading: ψ0 = ψ
15 Calculate the new correction value for IMU

heading: δ = θ̂α – ψ
16 else
17 δ = δ0
18 end

IV. DESCRIPTION OF THE SETUP

In order to experimentally test the proposed heading drift
compensation algorithm with the proposed sensor combination
approach for industrial vehicle position and heading tracking
a test setup was assembled and deployed on the forklift. The
9-DOF 32-bit cortex M0+ microcontroller assisted Inertial
Measurement Unit BNO055 was used as the inertial mea-
surement unit for the real-time heading tracking setup [25].
As a source of positioning information on the tracked setup
it was individually used one of two separate high accuracy
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Fig. 2. Illustrative (a) and practical (b) test setup deployment on a forklift
for testing in real warehouse environment. The deployment includes an IMU
unit, a GNSS positioning unit for outdoor positioning and an UWB tag for
indoor localization.

positioning systems depending on indoor or outdoor environ-
ment. These systems are respectively UWB indoor positioning
system [26] represented with Eliko UWB RTLS system [27],
and GNSS-RTK (Global Navigation Satellite System - Real
Time Kinematic) [28], represented with and Fieldbee RTK
GNSS system [29].

An illustrative setup deployment topology for performed ex-
periments is shown on a Fig. 2 (a) with corresponding offsets
explained earlier on Fig. 1, as well as its deployment on the
actual forklift shown on Fig. 2 (b). All the gathered positioning
and heading data was then transmitted to the main server for
necessary calculations as heading corrections and resulting
tynes’ position, and further data storage. Approximate setup
heading error and corresponding correction were calculated
from collected data with the use of proposed algorithm.

A. Tests

The practical experiments were conducted using a forklift
operating in an industrial production and warehousing environ-
ment. The tests were intended to evaluate the overall capability
of proposed approach to track a position and heading of

Fig. 3. Sample images of the forklift used for practical testing (a), and sample
of payload, meant to be tracked with proposed indirect tracking approach (b).

the forklift in real-time, and more particularly, evaluate a
capability of the proposed algorithm to define and apply
valid positioning data based corrections to the IMU measured
heading. Fig. 3 (a) demonstrates the forklift with the deployed
setup of sensor units during the live tests. Fig. 3 (b) shows an
example payload from the production site, which cannot be
localized with directly attached tag and is meant to be tracked
indirectly with the proposed approach.

While constantly being tracked the forklift was moving
around the industrial production facility performing its usual
payload transportation procedures followed by corresponding
manoeuvring between different obstacles in both indoor and
outdoor areas. The real-time position and the heading of the
forklift were simultaneously tracked using the IMU unit and
one of the two deployed positioning units depending on the
operating environment. In order to properly test the perfor-
mance of the proposed approach and the IMU drift correction
algorithm the experimental movement path was altered by
different manoeuvring patterns of the forklift including a three-
point turn, short term reverse movements, an approximate 720
degrees turnaround, straight movements at different speeds and
stops.

B. Results

Fig. 4 shows the corresponding data collected during the
aforementioned test. The tracked coordinates with both raw
and the corrected forklift heading information are represented
with blue dots, red and blue arrows, respectively. The results
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Fig. 4. Visualized sample data of the position and orientation of the forklift
collected during the live test. The tracked forklift coordinates are represented
with blue dots; red and blue arrows indicate the setup heading simultaneously
measured by the onboard IMU respectively before and after applying the
proposed correction algorithm.

demonstrate the significant and visually observable improve-
ment of the IMU measured heading after the proposed al-
gorithm was applied. Result show that the performance of
the proposed algorithm is able to define and apply a proper
correction to IMU heading drift in real-time and in practical
experiments.

In order to evaluate the performance of the proposed
heading correction algorithm, the IMU heading errors were
compared to the corresponding heading data from the ground
truth before and after the proposed algorithm was applied. Fig.
5 shows graphs of averaged errors of IMU provided forklift
heading directly (colour coded with red) and the processed
heading with correction algorithm (colour coded with green).
The dashed lines demonstrate the overall median errors for
both cases. Results show that during this test the IMU has
provided the forklift orientation data with accumulated median
error of 44.1 degrees. According to (4) this heading error
would translate to potential 1.914 m error in the payload
pick up or drop down location. Nearly 2 meters error in
payload interaction location could be critical for the indirect
tracking problem. Depending on the asset size, this error can
cause a critical position error and can be misinterpreted as
potential pick up of neighbour package or error in identifying
the location of the asset.

The proposed heading correction algorithm, in its turn, has

Fig. 5. Graphs of averaged errors in IMU provided setup heading with the
corresponding error mean, median and standard deviation results before (red)
and after (green) the IMU heading correction algorithm was applied.

Fig. 6. Histogram of the tynes position errors percentage distribution obtained
during the performed test with (green) and without (red) the use of the
proposed correction algorithm. Median errors for both cases are marked with
dashed lines of respective colors.
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reduced the median error of IMU heading to 5.9 degrees,
which is approximately 86.8 % of IMU heading accuracy
improvement. The 5.9 degrees error corresponds to 0.262 m
error in package pick up location in accordance with (4) for
this particular forklift sensor deployment. This improvement
of error in package pick up & drop down location allows
a relatively precise tracking of interacted payloads. The 26
cm positioning error can be neglected in the case of payload
sizes, which are expected to be carried by forklifts. The
corresponding histogram of the percentage distribution of
tynes position errors obtained during the performed test is
shown on Fig. 6. The tynes positioning errors before and after
the correction algorithm was applied are color-coded with red
and green respectively. The median errors, the mean errors
and the standard deviations of the errors are provided for both
cases. The median errors are marked on the histogram with
the dashed lines of the corresponding colors.

V. CONCLUSIONS

In this paper, a correction algorithm was proposed to provide
heading drift compensation based on the positioning data and
IMU data for indirect localization of industrial products in
warehouse management. In this approach, the objects are
localized during their transportation by precise tracking of
position and heading of corresponding industrial machinery.
The position and heading of the industrial machine is trans-
formed into the location of the object being transported.
The capability of the sensor combination alongside with the
proposed algorithm to track the orientation of a forklift during
its routine movement and manoeuvring was practically tested
in an industrial environment. Experimental results show that
the proposed algorithm was able to estimate and apply valid
positioning data based corrections to the IMU measured head-
ing reducing accumulative IMU heading error by 86.5 % from
44.1 degrees to 5.9 degrees. This improvement corresponds to
reduction of the tracked object’s position median error from
1.9 m down to 0.26 m. Experimental results have demostrated
that the proposed method with IMU & positioning fusion is
able to be used in real industrial conditions to perform product
indirect tracking.
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“Comparison of attitude and heading reference systems using foot
mounted MIMU sensor data: Basic, Madgwick, and Mahony,” in Sensors
and Smart Structures Technologies for Civil, Mechanical, and Aerospace
Systems 2018, vol. 10598. SPIE, 2018, pp. 644–650.

[19] E. M. Diaz, F. de Ponte Müller, A. R. Jiménez, and F. Zampella,
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ABSTRACT This paper first presents a comprehensive analysis of Non-Line-of-Sight (NLoS) error cases in
the Ultra-Wideband (UWB) Active-Passive Two-Way Ranging (AP-TWR) protocol. Based on this analysis,
we then propose the Adaptive Extended Kalman Filter (A-EKF) positioning method, utilizing variances
calculated from AP-TWR range estimates, which are adapted based on the distance and intermittency of
the range estimates. The proposed method needs no training data, nor any additional information about the
environment the system is deployed in and does not yield any additional time delays. Based on experiments
conducted in an industrial environment, the results show that the proposedmethod outperforms standard non-
adaptive AP-TWR and active-only Single-Sided Two-Way Ranging (SS-TWR) methods in both stationary
and movement tests. The stationary tests show that on average the proposed A-EKF method provides
more than three times lower Root-Mean-Square-Error (RMSE) than the next best method (AP-TWR) in
3D positioning, while SS-TWR consistently performs worse by about 0.4 m in the z-axis. Additionally,
the movement tests confirm the findings of the stationary tests and show that the challenging propagation
conditions of the testing environment cause maximum errors at about 4.5 m for AP-TWR and SS-TWR,
whereas the proposed A-EKF managed to mitigate these effects and reduce the error by 9 times, resulting in
a maximum error of 0.5 m.

INDEX TERMS A-EKF, AP-TWR, EKF, position estimation, SS-TWR, UWB.

I. INTRODUCTION
Ultra-Wideband (UWB) is a term used for radio communi-
cation that covers a bandwidth of over 500 MHz or 20% of
the carrier center frequency. With the IEEE 802.15.4a-2007
amendment to the original IEEE 802.15.4-2006 standard,
additional physical layers were introduced, which enabled
precise ranging for UWB devices [1].
Utilizing UWB technology provides several benefits. The

first one is the reduced interference with other narrowband
wireless technologies thanks to the low transmission power

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Kheir .

of the wideband signal [2]. Another benefit of UWB is
the nanosecond-range duration of the signal pulses, which
reduces the effect of multipath as the signals from multi-
ple propagation paths can be determined and filtered out
accordingly [3]. Additionally, the high temporal resolu-
tion allows for centimeter-level ranging by utilizing Time
of Flight (ToF) estimation by various Two-Way Ranging
methods or using the Time Difference of Arrival (TDoA)
method [4].
Like Bluetooth or WiFi, UWB also relies on the propa-

gation of Radio Frequency (RF) waves, allowing it to func-
tion effectively even in Non-Line-of-Sight (NLoS) situations,
although with diminished performance [2], [5]. In contrast,
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indoor positioning systems based on light, vision, or infrared
technologies are unable to operate in these conditions [6].
To reduce the accuracy/precision penalties induced by

NLoS propagation conditions, numerous NLoS detection
and/or mitigation methods have been proposed [7]. In the
literature, these strategies typically fall into three distinct but
not mutually exclusive categories which are briefly discussed
in the following paragraphs.
Firstly, channel statistics-based methods exploit the addi-

tional information about the propagation channel itself.
These methods may use the various channel state parame-
ters directly supplied by UWB transceiver chips (i.e. Qorvo
DW1000 [8]) or the raw Channel Impulse Response (CIR)
values. The former provides quickly accessible values, while
the latter entails more time-consuming processes to extract
the CIR [9].
Krishnan et al. employed machine learning (ML) meth-

ods (Multi-Layer Perceptron and Boosted Decision Trees)
with the DW1000 supplied parameters of first path power
and total received power to achieve a classification accuracy
of up to 87% [10]. Similarly, [11] utilized readily avail-
able signal parameters reported by the DW1000 transceiver
chip and proposed classifiers based on Gaussian Distribution
and Generalized Gaussian Distribution models, outperform-
ing multiple state-of-the-art ML techniques. The authors
of [12] put forward a Neural Network model, which was
trained on distance measurements, the running standard
deviation of these measurements, and several received sig-
nal parameters. The purpose was to derive weights for a
weighted least squares position estimator, aiming to min-
imize the impact of NLoS. In addition to ML, various
other methods have been researched, such as fuzzy infer-
ence of NLoS parameters combined with adaptive Kalman
filtering [13], utilizing logistic regression for NLoS detec-
tion [14], and devising a power-performance metric based
on the estimated first path power and the total received
power [15].
A sizable amount of research has been conducted by

using the raw CIR: NLoS detection via Capsule Networks
[16], proposing an NLoS-induced outlier-aware position-
ing method based on multilayer perception [17], signal
decomposition by One-Dimensional Wavelet Packet Anal-
ysis in conjunction with Convolutional Neural Networks
(CNN) [18], Transformer deep learning model [19], combin-
ing theMultilayer Perceptron with CNN to reduce calculation
complexity [20], overcoming the problem of site-specific
models by conducting Long Short-Term Memory training
to predict NLoS error magnitude and variance of measure-
ments [21], to name a few of the latest. In addition to
ML and deep learning, other methods utilizing the raw CIR
are explored: NLoS detection using fuzzy comprehensive
evaluation [22], a weighted particle filter based on probabil-
ity density functions of Line-of-Sight (LoS)/NLoS correla-
tion coefficients [23], and adaptively selecting the optimal
anchors based on the channel quality indicators [24].

Although the methods based on raw CIR typically offer
higher accuracy than methods based on the readily available
channel parameters, they propose a drawback on the scalabil-
ity of a positioning system as the extraction of the raw CIR
values from the transceiver is a time-consuming process [9].
Moreover, employing ML models requires large amounts of
high-quality training data, which makes the data-gathering
process tedious, while the training and implementation of
models could turn out computationally expensive [20], [25].
Secondly, the position estimate-based category is with the

broadest reach, covering methods that use position estima-
tion residuals, redundancy of ranging estimates, environment
(geometrical and propagation) data, or time series of position
estimates.
In [26], Chen proposed the seminal Residual Weight-

ing (Rwgh) algorithm, in which the position estimates and
their residuals are calculated with every possible range esti-
mate combination. The final position estimate is found as
a residual-weighted linear combination of the intermediate
position estimates. Jiao et al. improved on the work of Chen,
lowering the computational cost by introducing an iterative
approach to residual weighting [27]. Given N range esti-
mates, this method calculates position estimates and residuals
with N − 1 combinations, choosing the one with the lowest
average residual. It then selects the subsets until possible and
calculates the final weighted position estimate based. Even
though the computational complexity is reduced compared
to Chen’s algorithm, the method still requires in the order of
tens of intermediate position estimate calculations to provide
a final estimate.
Similar to the previous methods, [28] utilized the rang-

ing residuals to propose an iterative residual test to identify
and use only the detected LoS distances for positioning.
Excluding NLoS distances, particularly in situations where
multiple anchors are affected by the NLoS conditions, may
lead to the inadvertent dismissal of crucial data for accurate
positioning. In [29], the authors detected the presence of
NLoS from statistical parameters calculated from the ranging
residuals. While the general detection of Non-Line-of-Sight
(NLoS) presence in positioning demonstrated high accuracy,
discerning individual NLoS range estimates became more
challenging as the accuracy decreased.
In [30] the authors addressed NLoS-corrupted mea-

surements by detecting points of intersection with known
obstacles present in a room. Subsequently, they computed
correction terms based on these intersections to rectify the
inaccuracies caused by NLoS effects. Similarly, Silva et al.
utilized the geometric floor plan of the positioning environ-
ment, alongside information about the surrounding walls’
composition, to propose a through-the-wall ranging model
for positioning [31]. As this information is highly specific to
the positioning environment, the setup of such a positioning
system needs extra steps, such as acquiring floor plans or site
surveying andmatching them to the specific refractive indices
of the walls of the positioning environment.
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Thirdly, range-based methods utilize the time series of
ranging values to detect and mitigate NLoS-induced posi-
tion errors, for example by using the running variance of
range estimates or a known probability density function for
LoS/NLoS detection [32]. Applying such methods requires
a priori error distributions or introduces time latency to the
detection [22]. Furthermore, without additional constraints,
the running variance method could lead to false classifica-
tion if the tag is moving during the estimation process [33].
Momtaz et al. proposed a statistical method of detecting and
eliminating the NLOS errors with lower computational com-
plexity and increased accuracy [34], allowing for a more scal-
able solution than the previously mentioned Rwgh algorithm.
As a downside, this method requires a specific online training
phase, in which the noise term has to be measured. In order
to circumvent some of the restrictions caused by extracting
the CIR samples from the transceiver chip, Barral et al. opted
to use the received signal value in conjunction with ranging
data as features for multiple ML techniques for LoS/NLoS
classification [9].

A. CONTRIBUTIONS
The advent of the UWB Active-Passive Two-Way Ranging
(AP-TWR) protocol researched in [35] and [36] opens up
a new way of providing robust positioning in the presence
of NLoS conditions. The following paragraphs outline the
contributions of this paper.
While previous studies have focused on the performance

of AP-TWR ranging, this paper goes further to examine how
AP-TWR range estimates affect positioning accuracy. The
proposed AP-TWR-based positioning method is validated
and benchmarked in a real industrial environment to assess
its performance.
The formulation of the proposed positioning method

involves a thorough analysis of different NLoS error cases of
AP-TWR, a novel contribution that has not been explored in
the existing literature. Utilizing the redundant range estimates
of AP-TWR allows for the calculation of range estimate noise
variances, which is based on the previous analysis represen-
tative of NLoS propagation conditions. The noise variance is
coupled with the proposed distance and intermittency penal-
ties and used as input parameters to an Extended Kalman
Filter (EKF) to provide a novel NLoS-robust and accurate
positioning method.
The uniqueness of the proposed method lies in its avoid-

ance of computationally expensive iterative NLoS detection
techniques, lack of reliance on channel statistics or CIR
information, independence from acquiring large datasets and
labeling for model training, retention of all ranging data by
not discarding any information, absence of latency issues
typically found in methods computing running parameters,
and the ability to operate without any knowledge about
the environment, such as the composition and placement
of walls or obstructions in a room. The proposed method
stands out as a scalable, relatively easy-to-implement, and

FIGURE 1. The Active-Passive Two-Way Ranging protocol. Tag T starts the
ranging process by transmitting a packet, to which the active anchor Ai
responds, after which T finishes the ranging sequence with a final
transmitted packet. The passive anchor Aj listens to the active
transmission in the air and calculates its passive range estimate.

accurate NLoS-robust positioning solution, capable of effi-
ciently adapting to various environments and ensuring reli-
able performance even in challenging propagation conditions.
The rest of the paper is organized as follows: Section II

gives the theoretical background of the AP-TWR protocol,
Section III presents the effects of NLoS on the AP-TWR
range estimates and formulates the proposed method based
on it, Section IV describes the environment and the param-
eter values used in the experiments, Section V provides the
analysis of the results, and Section VI concludes this paper.

II. ACTIVE-PASSIVE TWO-WAY RANGING
The AP-TWR protocol packet exchange diagram is pictured
in Fig. 1, where the mobile device (tag T) starts the ranging
sequence by transmitting a ranging request packet. Upon
receiving that packet, the current active anchor Ai responds
after its processing time tAi,T , which T promptly receives and
records the round trip time interval tT ,Ai. The final ranging
report packet sent by T is irrelevant from the standpoint of
producing time interval values; rather it is used to commu-
nicate the tT ,Ai values back to the anchors for final range
calculation. Meanwhile, the passive anchor Aj listens to the
packet exchange of T and Ai and records the time interval
between receiving T’s first packet and Ai’s response, tAj,Ai.
The resulting values are used in calculating the AP-TWR

Time of Flight (ToF) estimates via:

tT↔Aj|Ai =





tT ,Ai − tAi,T
2

, for i = j

tT ,Ai + tAi,T
2

+ tAi↔Aj − tAj,Ai, for i ̸= j,

(1)

where the first part corresponds to the active ranging by
Single-Sided Two-Way Ranging (SS-TWR), and the sec-
ond part is used to calculate the passive range estimates,
hence the name AP-TWR. The resulting term tT↔Aj|Ai is
the estimated ToF between T and Aj, calculated with the
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information acquired from listening to Ai’s active rang-
ing. The ToF between Ai and Aj, tAi↔Aj, is considered
known as the anchors are part of a fixed infrastruc-
ture, with known coordinates. Therefore tAi↔Aj can be
measured by ranging between the anchors or calculated
theoretically.
The values of the active anchor index are in the range of

1 ≤ i ≤ m and the index for passive anchors is 1 ≤ j ≤ n,
where the total number of additional passive-only anchors
is l = n − m, such that n ≥ m, meaning that the active
anchors act as passive anchors while they are not actively
transmitting.
The resulting ToF estimates are converted to range esti-

mates via the expression dj|i = c · tT↔Aj|Ai, where c is
the wave velocity in the propagation medium. In this case,
we assume the velocity to be the speed of light in vacuum
c ≈ 3 · 108 m/s, as UWB is based on radio-frequency elec-
tromagnetic waves. Designating k as the temporal measure
i.e. the ranging sequence number, we get the AP-TWR range
estimate measurement matrix at time step k as Td,k :

Td,k =



d1|1,k . . . d1|m,k

...
. . .

...

dn|1,k . . . dn|m,k


 . (2)

Previous studies [35], [36] have solely focused on evaluat-
ing the performance of the AP-TWR, based on the ranging
Root-Mean-Square Error (RMSE). However, in this paper,
we extend the evaluation to include the precision of position
estimates as the primary consideration. Additionally, a novel
position estimation algorithm based on the EKF is proposed,
aiming to further enhance the performance. The specific
contributions of this paper were explained in more detail in
Section I.

III. PROPOSED METHOD
This section provides the theoretical background and formu-
lation of the proposed AP-TWR-based Adaptive Extended
Kalman Filter (A-EKF) positioning system. The following
subsections present the essential information about the effects
of NLoS on AP-TWR range estimates, the mechanisms for
penalizing the inputs based on the distance and the intermit-
tency of the range estimates, and finally the theory and the
algorithm formulation of the proposed method.

A. EFFECT OF NLoS TO AP-TWR ESTIMATES
In order to quantify the effect of NLoS on AP-TWR esti-
mates, (1) is analytically observed when arbitrary NLoS
one-way bias factors β are introduced into the equations,
depending on the severity of the NLoS case. Noting that
for the formulation of this specific AP-TWR NLoS analysis,
all other sources of errors are omitted. Table 1 presents the
seven cases of errors possible for the trio of T, Ai, and Aj.
The different NLoS propagation paths are viewed as separate
cases between the tag and active anchor (T↔Ai), the tag and
the passive anchor (T ↔ Aj), the active and passive anchors

(Ai ↔ Aj), and all possible combinations thereof. Each case
introduces a specific set of bias factors β to the propagation
times tT↔Ai, tT↔Aj, and tAi↔Aj.
In the context of Table 1, the variables with the hat (·̂) are

affected by the NLoS bias, whereas the equivalent variables
without the hat (·) are the true values, unaffected by the bias.
The fourth column presents the NLoS-affected term(s) of
Eq. (1), referenced to Fig. 1. The final two columns present
the net effect of NLoS on the active and passive range esti-
mates of AP-TWR, respectively.
The results of Table 1 show that in Cases 1, 4, 6,

and 7, the active range estimate is additively impaired by
a factor βT↔Ai due to the existing NLoS path between
T and Ai. Interestingly, the passive range estimates are
unaffected by the NLoS between T and Ai, as its bias
term cancels out in the calculation of the passive range
estimates.
On the other hand, the passive range estimates are similarly

affected by NLoS in pairwise Cases 2 & 4, 3 & 6, and 5 &
7. Noting that an obstruction between Ai and Aj (Cases 3,
5, 6, 7) causes a negative βAi↔Aj NLoS term to emerge,
which could translate to an altogether negative NLoS bias in
the passive range estimates, as opposed to a strictly positive
NLoS bias for standard active ranging protocols [37], [38].
The effects of NLoS presented in Table 1 align with the

observed error cases for TDoA defined by Zandian and
Witkowski in [39], while also expanding on it by adding the
NLoS link between the active and passive anchor.
The presence of variable NLoS biases in the AP-TWR

estimates can be used to one’s advantage, as the rows of
(2) may contain estimates from many anchors with vari-
ous propagation conditions between them and the tag. This
translates into fluctuating range estimates in the rows of the
measurement matrix, the measure of which can be expressed
by the row variances σ 2

j|1:m,k corresponding to each time step
k , expressed in matrix form:

Sk =

[
σ 2
1|1:m,k σ 2

2|1:m,k . . . σ 2
n|1:m,k

]T
. (3)

Previous research [36] has shown that taking the medians
of the AP-TWR measurement matrix rows provides robust
range estimates for positioning, therefore we denote the final
range estimates of each time step k in matrix form as:

Nk =
[
d̃1|1:m,k d̃2|1:m,k . . . d̃n|1:m,k

]T
, (4)

where the tilde markers denote the mathematical operation of
median across each row d1|1:m,k . . . dn|1:m,k of (2). The values
of (4) act as the input to the EKF position estimation.

B. DISTANCE PENALTY
Research has shown that the accuracy of position estimation
may be impaired because the ranging error magnitude has
a distance-dependent component [7], [21]. However, some
results show that this relationship is not exactly linear [5].
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TABLE 1. The AP-TWR errors in various NLoS cases between the devices.

As a way to give higher weights to shorter distances,
we propose a parametric exponential scaling coefficient
esc·d̃j|1:m,k , where the scaling constant is defined as sc =
ln sm
sd

. It is calculated via user-set parameters sm and sd such
that the exponential scaler provides a multiplier of sm at
distance sd .
The resulting values corresponding to each distance are

then expressed as the exponential scaling vector:

Bk =

[
esc·d̃1|1:m,k esc·d̃2|1:m,k . . . esc·d̃n|1:m,k

]T
, (5)

which is used to modify the measurement noise vector in
the AP-TWR A-EKF positioning scheme. The usage of the
scaling vector is further explained in Section III-D.

C. INTERMITTENCY PENALTY
The UWB range estimates can be impaired by intermittent
noise, multipath, and obstacles in the environment the system
is operating in [40]. As a result of some or many of the
aforementioned effects, the range estimates supplied by the
UWB system might arrive intermittently.
To establish the intermittency penalty method, we hypoth-

esize that the intermittent values are inherently less accurate,
as the intermittent values show that the system works on the
edge of its detection limit in the ranging process. We set for-
ward two parameters, a positive integer ls and a non-negative
real number lm, i.e., the time history length, and the intermit-
tency multiplier, respectively.
Representing all the historical ranging values as sets on

numbers with a cardinality of ls, corresponding to all anchors
in the system A1,A2, . . . ,AN at time step k , we get:

A1,k = {dA1,k , dA1,k−1, . . . , dA1,k−ls+2, dA1,k−ls+1}

A2,k = {dA2,k , dA2,k−1, . . . , dA2,k−ls+2, dA2,k−ls+1}
...

AN ,k = {dAN ,k , dAN ,k−1, . . . , dAN ,k−ls+2, dAN ,k−ls+1}.

The elements of the sets of time history values assume
the value of 0 in the case where a specific anchor does not
produce a range estimate at that time instance. So, at each
time instance, we get the number of missing range estimates

in the history window for each anchor:

rA1,k = |x1 ∈ A1,k : x1 = 0|

rA2,k = |x2 ∈ A2,k : x2 = 0|
...

rAN ,k = |xN ∈ AN ,k : xN = 0|.

The resulting numbers of missing values are in turn used
to calculate the total set of intermittency penalty multipliers
for each anchor in the system, for each time step value k:

Lk =

{
1 +

lm
lς

· rA1,k , . . . , 1 +
lm
ls

· rAN ,k

}
. (6)

Similar to (5), the intermittency penalty multiplier vector
at time instance k is then formulated as:

Ck =
[
li1,k li2,k . . . lin,k

]T
, (7)

such that the values li1,k , li2,k , . . . , lin,k are elements of the
subset of Lk and i1, i2, . . . , in are the indices of the subset
elements, marking the specific anchors providing their corre-
sponding range estimates at time instance k .
Since only the intermittency penalty magnitude and not

the input positioning data is dependent on time series history,
no extra time-domain latency is introduced to the positioning
process.

D. EXTENDED KALMAN FILTER
The literature encompasses a wide range of position esti-
mation algorithms, spanning various Linear Least Squares
(LLS), Nonlinear Least Squares (NLS), and multiple
Bayesian Filter approaches, to name a few [41]. Among these
methods, the EKF has demonstrated excellent performance in
LoS scenarios while outperforming other methods in NLoS
conditions, on par with the performance of the Unscented
Kalman Filter (UKF) [42]. Furthermore, the EKF exhibits
lower complexity, resulting in calculation times that are more
than three times shorter than those of the UKF [39]. Consid-
ering these factors, the EKF was selected as the foundation
for the method proposed in this paper.
Furthermore, in the scope of this paper, a single-model

approach is utilized due to the absence of information
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regarding whether the tag is moving or stationary. However,
incorporating sensors that provide additional information
on the tag’s movement/stationary state could enable adopt-
ing a multi-model approach. For instance, the switch to a
zero-velocity model could be considered for cases where the
tag is detected to be stationary [43].
Following previous works [21], [44], we expand the posi-

tion, velocity, and acceleration model of EKF to three dimen-
sions (3D). We do so by expressing the corresponding values
at each time step asXk , and tying themwith information from
the previous time step k− 1 using the appropriate kinematics
equations:

Xk =




xk
yk
zk
vxk
vyk
vzk
axk
ayk
azk




=




xk−1 + Ts · vxk−1 +
T 2
s
2 a

x
k−1 +

T 3
s
6 w

x
k−1

yk−1 + Ts · vyk−1 +
T 2
s
2 a

y
k−1 +

T 3
s
6 w

y
k−1

zk−1 + Ts · vzk−1 +
T 2
s
2 a

z
k−1 +

T 3
s
6 w

z
k−1

vxk−1 + Ts · axk−1 +
T 2
s
2 w

x
k−1

vyk−1 + Ts · ayk−1 +
T 2
s
2 w

y
k−1

vzk−1 + Ts · azk−1 +
T 2
s
2 w

z
k−1

axk−1 + Ts · wxk−1
ayk−1 + Ts · wyk−1
azk−1 + Ts · wzk−1




,

(8)

where at time step k the coordinates, velocities, and accel-
eration values for each of the three axes are defined as{
xk yk zk

}
,

{
vxk v

y
k v

z
k

}
, and

{
axk a

y
k a

z
k

}
, respectively. The

kinematics equations and sampling time Ts are used to
express the dependency of values at time step k from val-
ues at k − 1. The last terms of each row represent the
position (T 3

s /6)wk−1, velocity (T 2
s /2)wk−1, and acceleration

(Ts · wk−1) noise of the model, respectively.
The process noise can be rewritten as a vector wk−1 =

wxk−1 w
y
k−1 w

z
k−1

T with a covariance matrix Qk−1 =

diag(σ 2
jx , σ

2
jy, σ

2
jz). Therefore, the state vector (8) can be

expressed as a series of matrix calculations, such that:

Xk = AXk−1 + Gwk−1, (9)

where matrix A is the state transition matrix and is written
as:

A =




1 0 0 Ts 0 0 T 2
s
2 0 0

0 1 0 0 Ts 0 0 T 2
s
2 0

0 0 1 0 0 Ts 0 0 T 2
s
2

0 0 0 1 0 0 Ts 0 0
0 0 0 0 1 0 0 Ts 0
0 0 0 0 0 1 0 0 Ts
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, (10)

and G represents the noise transition matrix as:

G =




T 3
s
6 0 0

0 T 3
s
6 0

0 0 T 3
s
6

T 2
s
2 0 0

0 T 2
s
2 0

0 0 T 2
s
2

Ts 0 0
0 Ts 0
0 0 Ts




. (11)

The AP-TWR range estimates zj,k are placed in the obser-
vation/measurement vector Zk , which consists of the sum
of the true distance vector Dk =

[
d1,k d2,k . . . dn,k

]T and
the observation noise vector Vk =

[
v1,k v2,k . . . vn,k

]T .
The latter of which has a covariance matrix of Rk =

diag(σ 2
d1,k

, σ 2
d2,k

, . . . , σ 2
dn,k ):

Zk =




z1,k
z2,k
...

zn,k


 =




d1,k + v1,k
d2,k + v2,k

...

dn,k + vn,k


 = Dk + Vk = HkXk + Vk .

(12)

The vector Dk can be rewritten in the form of circle equa-
tions, where the centers are defined by the anchor coordinates{
xj yj zj

}
:

Dk =




√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2

...√
(xk − xn)2 + (yk − yn)2 + (zk − zn)2


 . (13)

Because the resulting equations are nonlinear, the
first-order Taylor expansion is utilized for linearization,
to produce the Jacobian matrix Hk :

Hk =




∂d1,k
∂xk

∂d1,k
∂yk

∂d1,k
∂zk

0 0 0 0 0 0
∂d2,k
∂xk

∂d2,k
∂yk

∂d2,k
∂zk

0 0 0 0 0 0
...

∂dn,k
∂xk

∂dn,k
∂yk

∂dn,k
∂zk

0 0 0 0 0 0




, (14)

such that the partial derivatives are calculated at each time
step k as:

∂dj,k
∂xk

=
xk − xj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15a)

∂dj,k
∂yk

=
yk − yj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15b)

∂dj,k
∂zk

=
zk − zj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
. (15c)
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E. PROPOSED ADAPTIVE EKF METHOD
The proposed positioning method is described in the
algorithm’s pseudocode in Alg. 1, which consists of three
distinct phases: AP-TWR ranging, EKF prediction, and EKF
correction. The algorithm is also visualized as a flowchart in
Fig. 2.
As a first step, the EKF initial state and state covari-

ance matrices need to be initialized; this part is described
in more detail in Section IV. After initialization, the first
phase is launched, where the AP-TWR measurement matrix
is acquired. Since the coordinate is calculated for three axes,
a minimum of four input range estimates is needed. Other-
wise, the position estimation process is skipped for this time
step.
When the number of columns of the measurement matrix

is larger than one i.e., m > 1, the row medians (4) and
variances (3) are calculated. In the other case, the measure-
ment matrix is directly taken as the observation vector and an
appropriately-sized row variance vector Sk is constructed by
repeating a default observation noise variance, σ 2

d . Then the
distance and intermittency penalty vectors are calculated, and
the observation covariance matrix Rk is formed as a diagonal
matrix composed of the Hadamard product of vectors Sk , Bk ,
and Ck .
In the following phase, the state and its covariancematrices

are predicted, noting that the predicted values aremarkedwith
a ‘‘minus’’ superscript. Finally, the Kalman gain is computed
and used to correct the state estimate and covariance provid-
ing a position estimate for that time step.
We adopt the naming convention used in previous stud-

ies [45], [46] that refer to the Kalman Filter as adaptive
when the covariance matricesQ andR are dynamically mod-
ified. Accordingly, we introduce our approach as the Active-
Passive Two-Way Ranging Adaptive Extended Kalman Filter
(AP-TWR A-EKF) positioning method.

IV. EXPERIMENTAL SETUP
This section provides an overview of the experiments to
validate the proposed AP-TWR A-EKF positioning method.
The experiments were conducted using the AP-TWR pro-

tocol implemented in the Eliko UWB RTLS system [47],
which is based on the Qorvo DW1000 UWB transceiver
chip [8]. The true coordinates of the anchors’ and tag’s
locations were surveyed using the Leica DISTO S910
laser distance meter, which provides three-dimensional
coordinates [48].
The Eliko UWB RTLS was deployed in an industrial

environment, at the premises of Krah Pipes OÜ [49] which
specializes in producing large thermoplastic pipes. The fac-
tory premises were selected for conducting the experiments
as they provide challenging conditions for the positioning
system and the proposed method. These conditions include
1) restrictions on the placement of the anchors: most of the
anchors have to be mounted near the ceiling, thus the tag
is almost always positioned outside the 3D convex hull of

Algorithm 1 EKF Positioning for AP-TWR Protocol

Input: Td,k ∈ Rn×m, {sd , σ 2
d , σ 2

jx , σ
2
jy, σ

2
jz} ∈ R>0, {sm, lm} ∈

R≥0, ls ∈ Z>0
Output: X̂k
Initialize: X̂0, P0

1: for k = 1, 2, . . . ,∞ do
AP-TWR ranging

2: if n < 4 then ▷ Less than 4 distances in input
3: skip
4: end if
5: if m > 1 then
6: Zk = Nk ▷ Observation vector
7: Calculate Sk ▷ Row variances
8: else
9: Zk = Td,k

10: Sk =

[
σ 2
d

×n
· · · · · ·

]T
▷ Assign default variance

11: end if
12: Calculate Bk ▷ Distance penalty
13: Calculate Ck ▷ Intermittency penalty
14: Rk = diag(Sk ⊙ Bk ⊙ Ck ) ▷ Hadamard product

EKF Prediction
15: X̂−

k = AX̂k−1 ▷ Predict state
16: P−

k = APk−1AT
+ GQk−1GT

▷ Predict state cov.
EKF Correction

17: Kk = P−

k H
T
k (HkP−

k H
T
k + Rk )−1

▷ Kalman gain
18: X̂k = X̂−

k + Kk (Zk − D−

k ) ▷ Correct state estimate
19: Pk = P−

k − KkHkP−

k ▷ Correct state cov.
20: return X̂k , Pk
21: end for

FIGURE 2. The flowchart of the proposed AP-TWR A-EKF method.

the anchors; and 2) the presence of large metal and concrete
objects obstructing the propagation path, etc.
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TABLE 2. The coordinates of the anchors used in the experiments.

The factory environment of the experiments can be seen
in Fig. 3 where the Leica Disto S910 is marked in cyan, the
two visible anchors in red, and the tag in dark blue color.
Additionally, an industrial crane is mounted on rails on the
ceiling, but it cannot be seen clearly: only the hook block of
the crane is visible in the upper center part of the photo. The
Leica DISTO S910 was installed on a concrete mezzanine
floor, with a height of about 4.5 meters from the ground floor,
such that it could provide the tag and anchor’s true location
across the whole area. The locations of the anchors, measured
with the Leica DISTO S910, are given in Table 2.
The first set of tests was conducted with a stationary tag,

mounted on a tripod, at 30 separate test points across the
factory. The locations of the test points (TP), anchors (A),
and the Leica DISTO S910 can be seen in Fig. 4. At each of
the 30 test points the AP-TWR range estimates were captured
for 30 seconds, using a tag with an update rate of 10 Hz,
providing data from approximately 300 ranging sequences.
The second set of experiments was conducted to validate

the results of the stationary tests. The experiment was per-
formed with a moving tag which was mounted on a tripod,
attached to a shelf trolley. The tag was moved throughout
the factory with reference to the printed lines on the floor,
where the critical points, i.e. turning points, are previously
surveyed to provide a reference true track. The shelf trolley
and the reference lines are also visible in Fig. 3. The data was
captured throughout the movement process for 99 seconds,
resulting in data of 990 separate ranging sequences.
The parameter values of the AP-TWR A-EKF used in the

experiments are given in Table 3. The Eliko UWB RTLS was
configured such that the maximum number of active anchors
mmax of AP-TWR protocol is 6. Although the intermittency
and distance penalty parameters were chosen heuristically,
it is likely that the chosen values are sub-optimal, not provid-
ing the best achievable positioning performance for the pro-
posed method. Finding the optimal parameter values could be
considered in future work.
The default observation noise variance σ 2

d and the process
noise covariance values of Qk−1 are inferred from [21]. The
sampling time Ts was extracted from the tag’s internal clock
during each ranging sequence.
The very first step of the EKF process requires initial-

izing the values of the initial state vector X0 and the state
covariance matrix P0. The initial coordinates

{
x0 y0 z0

}
of

the state vector are given as the true coordinate measured by

TABLE 3. The parameters for the proposed AP-TWR A-EKF positioning
method used in the experiments.

the DISTO S910 for all of the tested EKF variants, which are
discussed in the following paragraphs. This is done to give
all the methods the same initial conditions and to eliminate
the additional errors from converging to the correct location
when the initial position is set to the coordinate origin, for
example. The initial speed and acceleration values for each
axis are set to zero. The initial state covariance matrix P0 is
set as a 9-by-9 identity matrix, corresponding to the size of
the state vector.
The proposed A-EKF positioning method is compared

to the baseline EKF methods, accordingly using standard
AP-TWR range estimates (4) and SS-TWR active-only range
estimates as input. The same exact dataset is utilized for all
of the compared methods, as both the SS-TWR and AP-TWR
range estimates are inherently present in it, making the results
of different methods directly comparable. The initial state,
initial covariance, and Qk−1 matrix values are the same as
stated in Table 3, whereas the diagonal of the appropriately-
sized Rk matrix is filled with the default variance σ 2

d values.
The data acquisition was performed via a custom Python

script that interfaces with the Eliko UWB RTLS server,
extracts the required UWB range estimate packets, and saves
them to a text file. Then a custom script written in R was
used to parse and process the data, as well as to calculate
the range estimates and the metrics for all three methods.
Although this specific implementation provides the results by
post-processing the range estimates, the proposed system is
able to work in real-time applications.
The comprehensive dataset with supplemental materials

and detailed explanations is uploaded to the IEEE Dataport
repository and can be found in [50].

V. RESULTS
This section provides the results of the stationary and moving
experiments and the analysis thereof.

A. STATIONARY TESTS
The results of the stationary experiments are given in Fig. 5,
where the 2D and 3D Root-Mean-Square-Error (RMSE) of
the SS-TWR, standard AP-TWR EKF, and the proposed
A-EKF positioning methods are given across all of the 30 test
points.
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FIGURE 3. Setup for the movement tests in the industrial environment. Visible anchors A1 and A6 are circled in red,
the Leica DISTO S910 in cyan, and the tripod-mounted tag on the shelf trolley in dark blue. The tag is moved in
reference to the lines on the factory floor.

FIGURE 4. The test setup plan. Test point locations are marked with numbered ‘‘TP’’ markers in dark
blue, anchor locations with numbered ‘‘A’’ markers in red, and the location of the Leica DISTO S910 laser
distance meter is marked with a cyan circle.

Firstly, focusing on the 2D results, it can be seen that
for most cases all of the tested methods provide comparable
performance at approximately 0.15 m RMSE. The SS-TWR
EKF shows a more uniform performance across the test
points, with an exception at TP1 and TP8, where the 2D
RMSE is significantly higher than usual, obtaining values of
0.49 m and 1.97 m, respectively. The higher RMSE of TP8 is

a result of the blocking of the LoS of the tag and A1, A6 due to
large pipe mandrels made of metal, visible in the upper-left
side of Fig. 3, while in TP1, the direct propagation path to
anchor A7 is obstructed by the mezzanine floor.
The differences for the standard AP-TWR EKF are more

diverse, as in test points 1, 3, 5, 8, 9, and 29 the 2D RMSE
obtains significantly higher values than normal, ranging from
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FIGURE 5. The 2D and 3D RMSE results across all the stationary test points.

0.53 m (TP1) up to 4.98 m (TP3). Although the reasons
are not as evident as for SS-TWR EKF, the analysis pre-
sented in Table 1 suggests that AP-TWR range estimates
are impaired because of the compound NLoS effects of dif-
ferent propagation paths encountered during each ranging
sequence. The effects could be a result of a combination of the
aforementioned pipe mandrels, the overhead crane blocking
propagation paths between anchors, all of the assets in the
factory, etc.
As both, the standard AP-TWR and SS-TWR, methods do

not provide the EKF with any additional information on the
measurement noise that may be present, the input distances
are treated as equal and the distances with larger error con-
tribute to an increase in the positioning error.
The proposedAP-TWRA-EKF positioningmethod, on the

other hand, is robust against the adverse propagation con-
ditions present in the industrial environment. The proposed
method typically performs at a similar or lower error level
than the baseline methods, whereas the largest differences
come into play at the previously mentioned high error test
points of the baselines. The following analysis gives an
overview of the behavior of A-EKF compared to other meth-
ods in the most significant test points.
At the high-error test points 1, 3, 5, 8, 9, and 29 of

AP-TWR, the proposed A-EKF method reduces the RMSE
respectively by 0.387, 4.902, 2.370, 1.617, 0.904, and

0.501 m, providing a large reduction in the absolute values
of errors in every one of the high error test points. One
minor drawback can be identified at test point 25, where the
proposed method provides slightly lower performance than
the baseline AP-TWR, with according RMSE of 0.445 m
and 0.220 m. In terms of 2D RMSE, the proposed method
performs better than AP-TWR in 18 of the 30 test points.
Comparing the proposed method to the SS-TWR in terms

of 2D RMSE, it can be observed that the errors at TP1 and
TP8 are reduced by 0.343 m and 1.863 m, correspondingly.
Even though the proposed method provides slightly higher
2D errors at TP5 and TP25, the opposite is true for the 3D
case where the A-EKF provides slightly better RMSE per-
formance than SS-TWR. In conclusion, the proposed method
provides a lower RMSE than SS-TWR at 17 of the 30 test
points.
Although the test points show rather similar trends in the

3D RMSE, we see that in typical cases not involving the large
error test points, the proposedmethod alongside the AP-TWR
consistently provides about 0.4 m lower RMSE.
All of the high error test points 1, 3, 5, 8, 9, and 29 of

AP-TWR are again subsequently reduced by 0.597, 4.890,
2.378, 5.117, 1.565, and 0.340 m using the proposed method.
Comparing the 3D results, it is evident that the proposed
A-EKF method provides a reduction in RMSE at half of
the test points when compared to AP-TWR, including the
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FIGURE 6. The movement paths of the second set of tests. The upper figure displays the tested methods’ x and y coordinates, while the lower figure
displays the z-coordinate across the ranging sequences. The critical points of the true movement path are marked with consecutive purple dots noted
as MP on the respective figures. Note that on the z-coordinate plot, the movement path critical points are marked approximately in regards to the
sequence number, as the shelf trolley needed to be stopped and its direction adjusted for the next segment of the movement.

previously mentioned points where the error magnitude was
reduced significantly.
Similarly, the high error points 8 and 14 of SS-TWR are

also mitigated by the proposed method, which reduces 3D
RMSE by 5.074 and 0.763 m, correspondingly. Moreover,
the A-EKF outperformed the SS-TWR positioning in 29 out
of the 30 test points, providing moderately higher RMSE at
only TP9.
On average, the tested methods achieved the following

RMSE in 2D positioning: AP-TWR 0.492 m, SS-TWR
0.238 m, and A-EKF 0.149 m, meaning that the proposed
method achieved almost 1.6 times better performance in 2D
as the next best method, the SS-TWR. The 3D results showed
the average RMSE of the methods to be AP-TWR 0.693 m,
SS-TWR 0.765 m, and A-EKF 0.224 m, showing that the

proposed method achieved over 3 times lower RMSE than
the next best method i.e, AP-TWR.

B. MOVEMENT TESTS
The experiments with a moving tag were conducted to vali-
date the results achieved by the stationary tests to show that
the initialization of the methods does not affect the position
estimates. Due to the inherent requirement of knowing the
true coordinate of the tag at each time step, the calculation
of objective error metrics becomes infeasible as the nec-
essary devices to acquire an accurate time series reference
track were unfortunately unavailable to the authors. As a
consequence, the resulting analysis should be approached
with caution as it solely presents the visual movement
paths of the tested methods without calculating objective
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performance parameters in regards to the true movement
track.
Fig. 6 presents the results of the movement tests, which

were described in detail in Section IV. Noting that although
the x-y coordinate plot is zoomed in for clarity such that
A2 is not visible, the anchor still took part in the experiments.
To facilitate the presentation of the 3D data, it was partitioned
into two distinct graphs: a two-dimensional representation
depicting the x-y plane of the factory floor, and a depiction
of the z-coordinate variation corresponding to the ranging
sequence number.
The previously surveyed critical movement points are

marked with numbered purple dots (MP), connected by pur-
ple lines to indicate the true track of the movement. The
approximate locations of arrival at the critical points are
marked with corresponding purple dots in the z-coordinate
graph. The locations on the z-coordinate figure are approx-
imate because at each critical point, the shelf trolley was
stopped to re-position it for the next section of the move-
ment, so parts of the plots also correspond to brief stationary
moments during the movement.
The movement traces in Fig. 6 support the results achieved

in the stationary test, where the proposedA-EKF and the stan-
dard AP-TWR method consistently provide more accurate
results in the z-axis, as was evident in the 3D RMSE graphs
in Fig. 5.
In the first segment of the movement, all of the methods

show slightly higher deviation from the true track, especially
in the z-axis. This increased noise can be explained by the
presence of the mezzanine floor on the right side, since in the
first segment the tag is moved in parallel and almost under
the mezzanine floor, obstructing the LoS paths to anchors 2,
5, and 7.
The next 3 movement segments show rather similar per-

formance for all of the methods, keeping in mind that the
SS-TWR method consistently shows about 0.5 m lower
z-coordinate value compared to the true track, than other
methods.
The final movement segment is impaired by the same pipe

mandrels discussed in the previous section, as can be seen by
the large deviations from the true track of the SS-TWR and
AP-TWR methods. These fluctuations achieve a maximum
of about 4.5 m in the x-y plane and about 1 m in the z-axis,
whereas the proposed A-EKF positioning method deviates by
a maximum of 0.5 m in both the x-y plane and the z-axis,
reducing the maximum errors by about 9 times.

VI. CONCLUSION
This paper presented a comprehensive overview and analysis
of the possible NLoS error cases that may be encountered
with the usage of the UWB AP-TWR protocol. This analysis
was the basis for the proposed A-EKF method, which was
experimentally tested in an industrial environment and bench-
marked against EKF position estimators based on active-only
SS-TWR and standard AP-TWR range estimates. The pro-
posed method can be used in real-time applications and does

not require any additional information on the environment,
signal properties, error models, statistics, or training data,
or cause any additional time delays in the position estimation
process.
Although in 2D the tested methods typically operated with

the same performance, a part of the test points provided
unfavorable propagation conditions for the UWB system,
inducing large errors for standard AP-TWR (maximum about
5 m error) and SS-TWR (maximum about 2 m error), which
the proposed A-EKF method mitigated, reducing errors with
a maximal of less than 0.5 m. On average, the A-EKF pro-
vided almost 1.6 times lower RMSE that the next best i.e.,
the SS-TWR positioning method.
Similar trends were apparent in the 3D RMSE results as

well, with the exception that the SS-TWR method provided
consistently about 0.4 m inferior results than the other meth-
ods. The large errors of some test points are also present in
the 3D results, with a maximum of about 5.4 m for both the
SS-TWR and AP-TWR methods, while the A-EKF provided
a maximum error of only 0.9 m. Across all of the test points,
the average RMSE of the proposed method was more than
3 times lower than the next method, AP-TWR.
The movement tests confirmed the validity of A-EKF sta-

tionary tests by showing that the largest errors of AP-TWR
and SS-TWR, caused by the presence of various assets in
the factory, are reduced ninefold. Both sets of experiments
showed the robustness of the proposed A-EKF positioning
method with its ability to drastically reduce large errors
caused by the propagation conditions.
While the current study has demonstrated the effectiveness

of the A-EKF method, further investigation is warranted
to identify and determine the optimal parameters for this
approach. In-depth analyses and experimentations should
be conducted to explore the impact of different parameter
configurations on the method’s performance, accuracy, and
robustness. This exploration will contribute to refining the
A-EKF algorithm.
The current paper has presented an overview of AP-TWR

NLoS error cases. However, a more comprehensive and
detailed analysis is required to identify and characterize spe-
cific NLoS error scenarios. In-depth investigations should be
conducted to explore the possibilities of developing strategies
to detect and mitigate these specific NLoS cases effectively.
This analysis should encompass a broader range of envi-
ronmental conditions, and diverse deployment scenarios to
enhance the understanding and mitigation of AP-TWRNLoS
errors.
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Vehicle Heading Estimation Using Positioning and
Inertial Data-Based Adaptive Tandem Kalman Filter
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Alam , Senior Member, IEEE

Abstract—This paper proposes an Adaptive Tandem Kalman
Filter (ATKF) algorithmic method for accurate, robust, and
magnetometer-free heading estimation through the competitive
fusion of inertial and positioning data. It aims to mitigate the
angular heading drift, typically present in MEMS IMU (Micro-
Electromechanical Systems Inertial Measurement Unit) sensors,
without the use of environmentally sensitive magnetometers.
Due to its adaptive nature, the ATKF algorithm is capable
of iterative estimation of the input data significance, based on
the tracked vehicle behavior, and performing a corresponding
weighted fusion. A novel tandem structure allows to perform a
series of consecutive data processing steps within a single Kalman
filter iteration, thus minimizing the delay in algorithmic response
to the input data. Series of simulated comparison tests with one
of the state-of-the-art algorithms have demonstrated the high
stability and robustness of the proposed algorithm. It has shown
a consistent 40% to 90% improvement in the estimated heading
accuracy and precision, depending on the maneuvering intensity
and the data quality. Simulation results were experimentally
validated during the full-scale test campaign, conducted in the
industrial environment using a highly maneuverable forklift.
Real-time forklift heading was tracked by the proposed ATKF
algorithm with a 1◦ overall median error and 2.3◦ median error
during the active movement periods. The proposed method has
respectively shown 95% and 93% improvement in initial IMU
heading accuracy and precision. Experimental performance eval-
uation of the magnetometer-based heading estimation methods
has practically confirmed their unreliability and inconsistency in
industrial applications. The proposed ATKF heading estimation
algorithm may find a variety of possible applications in the field
of robotics and intelligent vehicles. It is expected to be especially
useful in magnetometer-denied environments.

Index Terms—Gyroscope, Heading estimation, IMU, Kalman
filter, Magnetometer-free, Positioning, Sensor fusion, Vehicle
application.

I. INTRODUCTION

HEADING information is one of the key aspects of
vehicle navigation, along with its position and speed

information [1]. Accurate heading information plays an im-
portant role in various fields of vehicle control and is essential
for self-navigation and collision avoidance in the field of
autonomous vehicles [2]–[4].

A variety of different real-time vehicle heading tracking
methods exist. Relatively straightforward methods are based
on the measurement of the Earth’s magnetic field by using
magnetometers (i.e., a compass) [5]. Magnetometers, however,
are also naturally sensitive to random distortions in the Earth’s
magnetic field and the interference caused by the surrounding
ferromagnetic objects in the vicinity [6], [7]. Even though a

variety of calibration techniques are often used to improve
the magnetometer performance in a given environment, they
are only capable of compensating for the constant surround-
ing magnetic distortions [8], [9]. Compensation for dynamic
magnetic interference, on the other hand, represents a major
challenge in this field. For this reason, magnetometers be-
come highly unreliable in a variety of land applications and
especially in industrial environments [10]–[14]. More complex
solutions, such as optical flow or LiDAR (Light Detection and
Ranging) based methods, provide the real-time mapping of the
surrounding environment for self-navigation [15], [16].

Inertial data-based methods (i.e., gyroscopes) allow real-
time measurements of the rotational motion and are widely
used in real-time orientation tracking applications [17]. Among
other gyroscope types, MEMS (Micro-Electro-Mechanical
Systems) gyroscopes provide unique benefits of high portabil-
ity, efficiency, and availability. MEMS gyroscopes are often
encountered as part of 6-DOF (Degrees of Freedom) inertial
measurement units (IMUs) along with accelerometer sensors
[18]. 9-DOF IMU units, sometimes also referred to as MARG
(Magnetic, Angular Rate, and Gravity) or AHRS (Attitude
and Heading Reference System), additionally include a mag-
netometer sensor [19], [20]. Bias instabilities and internal
noise of MEMS gyroscopes, however, naturally cause overtime
accumulated error in the tracked heading, also known as a
drift or angular random walk (ARW) [21]. Gyroscope drift
mitigation is essential for successful real-time orientation
tracking, especially in different vehicle tracking applications.

A. Related Works

A variety of different gyroscope fusion techniques, aimed
for its drift mitigation and further heading estimation, exist
in the literature. Some of them use complementary filtering
of the initial gyroscope and accelerometer data of the IMU,
as, for example, proposed by Wang et al. [22]. This approach
provides processing simplicity and does not require additional
auxiliary sensors. Inertial data noise filtering, however, also
inevitably impacts the data itself, which becomes the limitation
of this method. This mainly affects the inertial data on the
minor movement and rotation, due to its low, close to the
noise level magnitude.

Certain case-specific methods, such as NMNI (No Motion,
No Integration), used by Hoang et al. offer an even simpler
approach for gyroscope drift elimination without assisting
sensors [10], [23]. In this method, any sensor input below the
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noise magnitude is disregarded. This consequently eliminates
a significant part of the drift component along with minor
heading adjustments, thus limiting the applicability of this
method, especially in vehicle heading tracking. A similar
ZUPT (Zero Velocity Update) method is frequently used in
human motion tracking [24]. The inability of these methods
to spot minor adjustments in vehicle heading makes them
unsuitable for vehicle heading tracking.

State-of-the-art heading drift elimination techniques propose
a gyroscope fusion with assisting sensors, by using state-
of-the-art fusion algorithms, such as Madgwick, Mahony,
or Kalman filters, as, for instance, described by Ludwig et
al. and Hoang et al. [10], [12], [13], [25]. Depending on
the application, these methods often provide state-of-the-art
performance in angular drift elimination. Specifically for the
heading drift elimination, these methods rely on the environ-
mentally sensitive magnetometer units [10], [12], [13], [25].

Vehicle heading tracking is also covered in the field of
vehicle state estimation, which covers a detailed tracking of
different vehicle dynamic parameters for its stability control
applications [26]–[29]. In this field, inertial units are mainly
assisted by various field-specific sensors, such as steering or
wheel speed sensors. Even though the diversity of sensors
allows an accurate vehicle heading estimation, it also leads
to increased computational complexity, cost, and energy con-
sumption.

An algorithmic method for IMU heading drift mitigation
was proposed in the author’s earlier studies [30]. This method
performs the IMU heading error correction, based on the vehi-
cle positioning information, and avoids the use of environmen-
tally sensitive magnetometers. Even though this algorithm has
experimentally demonstrated a good performance in IMU drift
mitigation, it also contains certain performance limitations.
These include high sensitivity to the positioning data quality
and the requirement for episodic movement in a straight line.

B. Contributions

This work offers an algorithmic method for accurate vehicle
heading estimation, based on the adaptive version of the state-
of-the-art Kalman filter algorithm with the tandem structure.
It performs a competitive fusion of inertial and positioning
data for heading estimation. Competitive configuration of the
sensor fusion combines multiple data sources of the same
property to provide an increased robustness and fault tolerance
[31].

The proposed algorithm adapts to real-time vehicle move-
ment behavior by iteratively estimating the input data signif-
icance and performing a corresponding weighted fusion of
heading data. The designed tandem structure of the algorithm
allows to perform a series of consecutive data processing steps
within a single algorithm iteration. In comparison with the
traditional Kalman filter structure, this minimizes the delay
of the algorithm’s response to the input data. This algorithm
avoids the use of environmentally sensitive magnetometers or
other auxiliary sensors. This allows the proposed method to
be used on ground vehicles without the need for extra sup-
porting sensors for heading estimation. This article provides

a performance comparison of the proposed algorithm with
the algorithm from the state-of-the-art literature in a series of
simulations. Simulations cover different data quality levels and
vehicle movement scenarios. This work also covers full-scale
experimental testing and evaluation of the proposed algorithm
by using a highly maneuverable forklift, naturally operating
in the industrial environment.

The remaining paper is organized as follows: Section II
describes the structure and key aspects of the proposed head-
ing estimation algorithm. Section III demonstrates the direct
performance comparison of the proposed algorithm with one
of the state-of-the-art algorithms in a series of simulated
tests. Section IV describes the conducted experimental test
campaign and the used sensors. Section V describes the results
of the experimental testing. Section VI concludes this paper.

II. ADAPTIVE TANDEM KALMAN FILTER FOR HEADING
ESTIMATION

The proposed algorithmic method represents an adaptive
version of the state-of-the-art Kalman filter fusion algorithm
with the custom tandem structure. It performs a competitive
fusion of the inertial and positioning data for a vehicle heading
estimation. The Adaptive Tandem Kalman Filter (ATKF) al-
gorithm, proposed in this work, represents an adaptive version
of the state-of-the-art Kalman filter fusion algorithm with
the proposed tandem structure. In this algorithm, vehicle
heading information is separately obtained from the inertial
and positioning data and further fused by using the compet-
itive configuration. This configuration provides an increased
robustness of the resulting heading and allows to avoid critical
flaws of the initial data sources (e.g., gyroscope drift).

The proposed ATKF algorithm is based on the features of
the Adaptive Kalman filter version. These features are essential
in real-life applications, as they allow the algorithm to flexibly
adapt its response to any external changes. In this work,
the adaptivity features are used for a real-time choice of a
more trusted source of heading information, depending on the
current vehicle movement behavior. Adaptivity of the ATKF
algorithm is represented with iteratively recalculated noise
covariance parameters by using a proposed weight function.

In the proposed ATKF algorithm, the standard Kalman filter
correction part is separated into three consecutive correction
steps. With this structure, the algorithm is capable of perform-
ing three consecutive processing steps of the input positioning
data within a single algorithm iteration, where the results of
the earlier correction step are immediately used in the next
correction step. In this work, this structure is referred to as a
tandem structure. It allows the ATKF algorithm to perform
multiple consecutive data correction steps within a single
Kalman filter iteration. This structure ensures a complete and
real-time use of the newly arrived data, thus possibly reducing
its relevance loss.

A flowchart of the proposed Adaptive Tandem Kalman
filter algorithm for the heading estimation is shown in Fig.
1, reflecting the main processing steps and changes to the
key parameters. Algorithm 1 demonstrates the corresponding
pseudo-code of the proposed ATKF algorithm. In this work,
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Algorithm 1: Positioning and inertial data-based
Adaptive Tandem Kalman Filter (ATKF) algorithm for
vehicle heading estimation

Parameters: Movement speed thresholds : υ0
thr , υϕ

thr , υΨ
thr

Weight function coefficients : aϕ, aΨ

Estimation model noise covariance parameters :
qpos, qv, qυ , qϕmin, qΨmin, qmax

Measurement noise covariance parameters :
rpos, rυ , rϕmin, rΨmin, rmax

Initialize : Initial state vector : X0

Initial state covariance matrix : P0 = I7
Input Data: Positioning data input : (x, y)meas

k
Delta time of the positioning data : dtxy

k
Yaw angular velocity input : ωk

Delta time of the gyroscope input data (ωk) : dtωk
Outputs : Resulting heading : Ψk

1 for k ← 1 to inf do // Estimation

2 if υk−1 > υ0
thr then

3 X̂k = Ak ·Xk−1 + Bk · uk

4 else
5 X̂k = Ak ·Xk−1

6 end

7 qϕk = fW (υk−1, υ
ϕ
thr, a

ϕ, qϕmin, qmax)

8 qΨk = fW (υk−1, υ
Ψ
thr, a

Ψ, qΨmin, qmax)

9 Compose Qk matrix, ∀i : (Qk)ii ∈ {qpos, qv, qυ, qϕk , q
Ψ
k }

10 P̂k = Ak ·Pk−1 ·AT
k + Qk

11 if New (x, y)meas
k input available then // Correction 1

12 1Kk = P̂k · 1HT · (1H · P̂k · 1HT + 1R)−1

13 1Xk = X̂k + 1Kk · (1zk − 1H · X̂k)

14 1Pk = (I7 − 1Kk · 1H) · P̂k

// Correction 2

15 υ̂k =
√

(vxk)
2 + (vyk)

2

16 ϕ̂k = atan2(−vxk,−vyk) · 180
π + 180

17 ϕ̂k =

{
ϕ̂k + 360, ϕ̂k − ϕk−1 < −180
ϕ̂k − 360, ϕ̂k − ϕk−1 > 180

18 Compose 2zk vector, 2zk =
[
υ̂k ϕ̂k

]T

19 rϕk = fW (υk−1, υϕ
thr , -aϕ, rϕmin, rmax)

20 Compose 2Rk matrix, 2Rk = daig(rυ, rϕk )

21 2Kk = 1Pk · 2HT · (2H · 1Pk · 2HT + 2Rk)
−1

22 2Xk = 1Xk + 2Kk · (2zk − 2H · 1Xk)
23 2Pk = (I7 − 2Kk · 2H) · 1Pk

24 ϕk = ϕk mod 360
// Correction 3

25 rng = {ϕk, (ϕk + 180) mod 360}
26 ϕk = argmin

α∈rng
(|α− Ψ̂k|)

27 ϕk =

{
ϕk + 360, ϕk − ϕk−1 < −180
ϕk − 360, ϕk − ϕk−1 > 180

28 Compose 3zk vector, 3zk =
[
ϕk

]

29 rΨk = fW (υk−1, υ
Ψ
thr,−aΨ, rΨmin, rmax)

30 Compose 3Rk matrix, 3Rk = diag(rΨk )

31 3Kk = 2Pk · 3HT · (3H · 2Pk · 3HT + 3Rk)
−1

32 Xk = 3Xk = 2Xk + 3Kk · (3zk − 3H · 2Xk)
33 Pk = 3Pk = (I7 − 3Kk · 3H) · 2Pk

34 Ψk = Ψk mod 360
35 else
36 Xk =

[
(Xk−1)1:6 (X̂k−1)7

]T
37 end

38 Output heading Ψk

39 end

  KF correction step I

yes

  KF estimation step  

Calculate      

Compose      

Calculate      :
Predict             and      

using previous state         
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newly predicted 

heading     

Fig. 1. Flowchart of the proposed ATKF algorithm for vehicle heading
estimation.

the angular data is measured in degrees (◦) for improved
comprehensibility.

The algorithm starts with the estimation step, aimed to
extrapolate the state estimation vector X̂k for the current
iteration k:

X̂k =




x̂k

ŷk
vxk−1
vyk−1
υk−1
ϕk−1
Ψ̂k




=




xk−1 + dtxyk · vx
k−1

yk−1 + dtxyk · vy
k−1

vx
k−1

vy
k−1

υk−1
ϕk−1

Ψk−1 + dtωk · ωk




. (1)

It contains algorithm estimations for the new positioning data
coordinates (x̂, ŷ)k and resulting heading Ψ̂k, along with the
results of the previous iteration k − 1, including positioning
data (x, y)k−1, its axial velocities (vx, vy)k−1, overall move-
ment speed υk−1, direction ϕk−1, and the resulting heading
Ψk−1. Heading angular velocity measurement is represented
as ωk, while dtxyk and dtωk respectively are delta-time values
of the positioning and inertial data measurements.

The state estimation vector is calculated as follows:

X̂k =

{
Ak ·Xk−1 +Bk · uk υk−1 > υ0

thr

Ak ·Xk−1 υk−1 ≤ υ0
thr

, (2)
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by using the state vector of the previous iteration Xk−1 and
the estimation model Ak:

Ak =




1 0 dtxyk 0 0 0 0
0 1 0 dtxyk 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, (3)

as well as the control input model Bk and control vector uk:

Bk =
[
0 0 0 0 0 0 dtωk

]T
, (4)

uk =
[
ωk

]
. (5)

In this step, the algorithm extrapolates the expected coordi-
nates (x̂, ŷ)k and resulting heading Ψ̂k for the current iteration.
The gyroscope input ωk is conditionally introduced, depending
on the latest movement speed estimation υk−1 by using the
control input Bk ·uk. In case of the negligible movement speed
(i.e., below the user-defined threshold υ0

thr), the gyroscope
input is ignored. This allows to avoid a potential impact of
the gyroscope noise in completely stationary cases.

Adaptivity of the proposed algorithm to the input data
is achieved with a real-time tuning of the model and mea-
surement noise covariance parameters. In this work, these
covariance parameters are respectively notated as q and r for
model and measurement noise covariance matrices Q & R.
These parameters are calculated for every iteration using the
exponential weighting function fW :

fW (υk, υthr, a, σmin, σmax) = ea·(υk+b−υthr) + σmin, (6)

where the weight function exists in the range between defined
upper (σmax) and lower (σmin) noise covariance parameters
fW ∈ (σmin, σmax]. The exponential weight function is based
on the input value of the ongoing movement speed υk, which
is an accessible and incomplex parameter, essential in the
positioning data-based heading estimation. It determines the
distinguishability of the actual movement from the positioning
data noise, and thus, defines the reliability of positioning data-
based movement direction, which is generally labeled as ϕ
later in this work. Within the proposed ATKF algorithm, it
justifies the reliability of both positioning and inertial data
inputs, thus preventing the fusion of expectedly unreliable
sensors. Tuning coefficients of the weight function include
the input coefficient a and internal coefficient b. The posi-
tive or negative sign of the tuning coefficient a respectively
defines the descending or ascending weight function, while its
scalar value determines the function ascent/descent rate. The
movement speed threshold parameter υthr defines the moment
of the function descent. The internal tuning coefficient b is
calculated as follows:

b =
ln(σmax − σmin)

a
. (7)

The tuning coefficient a of the opposite sign is used to
achieve synchronized and counterbalanced adaptive weighting
in model (q) and measurement (r) noise covariance param-
eters. This enables a rapid transition between heading data

sources, thus minimizing the use of a momentarily unreli-
able sensor. The adaptivity of the ATKF algorithm at lower
movement speeds may be further fine-tuned by integration of
positioning quality analysis methods. This, however, may po-
tentially bind the proposed method to the particular positioning
system. Additionally, the use of reliable positioning quality
estimation methods, such as channel impulse response (CIR),
significantly increases the algorithm complexity, thus making
it potentially unsuitable for real-life applications [32].

As demonstrated in the Algorithm 1 lines 7-8, adaptive
estimation noise covariance weights qϕk and qΨk are calculated
respectively for the positioning data-based movement direction
and the resulting heading. These weights are used to compose
the estimation model noise covariance matrix Qk:

Qk =




qpos 0 0 0 0 0 0
0 qpos 0 0 0 0 0
0 0 qv 0 0 0 0
0 0 0 qv 0 0 0
0 0 0 0 qυ 0 0

0 0 0 0 0 qϕk 0
0 0 0 0 0 0 qΨk




. (8)

State estimation covariance matrix P̂k is then calculated as
follows:

P̂k = Ak ·Pk−1 ·AT
k +Qk, (9)

by using the previous state covariance matrix Pk−1, estimation
model, and estimation noise covariance matrix. The initial state
covariance matrix represents the identity matrix I7.

This algorithm does not require the positioning and inertial
data synchronization, thus allowing the inertial unit to have a
naturally higher update rate. It is achieved by the capability of
the proposed ATKF algorithm to entirely skip the Kalman cor-
rection step and operate only with the inertial information until
the new positioning data arrives. In this case, the proposed
algorithm only updates the resulting heading parameter Ψ in
the state vector. In case of the missing positioning data, the
positioning data delta-time dtxyk remains naturally unknown
and can be replaced with a placeholder value (e.g., dtxyk = 0),
as it is not used until the actual positioning data is available.

Once the positioning data is received, the ATKF algorithm
proceeds with the correction part. It performs a total of three
consecutive correction steps by calculating the Kalman gain
matrix, state vector, and state covariance matrix for each step.
The calculated matrices can be generally expressed as follows:

nKk = n−1Pk · nHT · (nH · n−1Pk · nHT + nRk)
−1, (10)

nXk = n−1Xk + nKk · (nzk − nH · n−1Xk), (11)

nPk = (I7 − nKk · nH) · n−1Pk, (12)

where n is the sequence number of the correction step, while
n = 0 represents the Kalman estimation step. Measurement
vector nzk, measurement model nH and measurement noise
covariance matrix nRk are unique for each step and are
prepared prior their use in the algorithm.
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In the first correction step, the ATKF algorithm performs
the positioning data filtering by using the newly measured po-
sitioning data (x, y)meas

k , introduced in the first measurement
vector 1zk:

1zk =

[
xmeas
k

ymeas
k

]
, (13)

and updates the positioning data-based axial velocities vxk
and vyk in parallel. The first step Kalman gain matrix 1Kk

is calculated as shown in (10) by using the state estimation
covariance matrix P̂k, measurement model 1H:

1H =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
, (14)

and measurement noise covariance matrix 1Rk:

1R =

[
rpos 0
0 rpos

]
. (15)

The preliminary state vector of the first step 1Xk and the cor-
responding state covariance matrix 1Pk are then respectively
calculated in accordance with (11) and (12).

The second correction step of the ATKF algorithm is aimed
at calculating the current movement direction ϕk and speed υk.
The process starts with the estimation of both parameters (υ̂k
and ϕ̂k) by using the earlier updated positioning data-based
axial velocities vxk and vy

k, as demonstrated in the Algorithm
1 lines 15-16. In order to provide a smooth possible transition
between 0◦ and 360◦, the corresponding range limitation is
temporarily removed for the estimated movement direction ϕ̂k,
as it is demonstrated in the Algorithm 1 line 17. The second
measurement vector 2zk is then composed as follows:

2zk =

[
υ̂k
ϕ̂k

]
=

[ √
(vx

k)
2 + (vy

k)
2

atan2(−vxk,−vyk) · 180
π + 180

]
. (16)

The adaptive weight for positioning data-based movement
direction filtering rϕk is calculated and used in the second-step
measurement noise covariance matrix 2Rk:

2Rk =

[
rv 0

0 rϕk

]
. (17)

It is then used together with the measurement model 2H:

2H =

[
0 0 0 0 1 0 0
0 0 0 0 0 1 0

]
, (18)

and the previous step state covariance matrix 1Pk, to calculate
Kalman gain for the second correction step 2Kk. The state
vector 2Xk and state covariance matrix 2Pk of the corre-
sponding step are also respectively calculated according to (11)
and (12). This results with updated and filtered parameters of
movement speed υk and direction ϕk, respectively available
as 5th and 6th elements in the state vector 2Xk. Movement
direction ϕk is then normalized back to the default 0◦ to 360◦

angular range as shown in the Algorithm 1 line 24.
The third correction step fuses the gyroscope input contain-

ing heading estimation Ψ̂k and the movement direction ϕk,
calculated from the positioning data. Correction for a possible
case of reverse movement is then applied to the calculated
movement direction ϕk as shown in the Algorithm 1 lines 25
& 26. This correction prevents a possible sudden 180◦ flip in

positioning data-based heading, in case of occasional reverse
movement. In this algorithm implementation, this correction is
done by forming a temporary vector rng, which contains the
updated movement direction ϕk and its counterpart heading
with 180◦ offset ϕk + 180◦, normalized to the range of
0◦ to 360◦. The nearest value from the vector rng to the
current heading estimation Ψ̂k is then selected as shown in
the Algorithm 1 line 26. This calculated movement direction
ϕk is used as input for the third measurement vector 3zk:

3zk =
[
ϕk

]
. (19)

The third measurement noise covariance matrix 3Rk is formed
as follows:

3Rk =
[
rΨk

]
, (20)

and contains the adaptive weight for the resulting heading
rΨk . This adaptive weight is calculated as demonstrated in
Algorithm 1 line 29. Kalman gain matrix 3Kk, state vector
3Xk and state covariance matrix 3Pk are then calculated
for the third correction step. These matrices are calculated
using third step measurement vector 3zk, measurement noise
covariance matrix 3Rk, and measurement model 3H:

3H =
[
0 0 0 0 0 0 1

]
. (21)

The result of this correction step represents an output heading
Ψk for the current iteration and requires a final normalization
back to the default 0◦ to 360◦ angular range as shown in the
Algorithm 1 lines 34.

In case of the missing positioning data, the entire correction
section of the algorithm, described in Algorithm 1 lines 11
to 35, is skipped. Instead, the algorithm proceeds with the
sole gyroscope data-based heading update, performed in the
estimation section. The resulting state vector Xk is formed as
follows:

Xk =

[
(Xk−1)1:6
(X̂k)7

]
=




xk−1
yk−1
vxk−1
vyk−1
vk−1
ϕk−1
Ψ̂k




, (22)

by using the resulting state vector of the previous iteration
Xk−1 and the gyroscope data-based heading estimation Ψ̂k,
calculated by the algorithm in the estimation step. In the
Algorithm 1, this part is demonstrated in line 36.

III. SIMULATIONS

In a series of simulated tests, the performance of the
proposed heading estimation ATKF algorithm was compared
to the state-of-the-art IMU drift correction algorithm, further
referred to as the benchmark algorithm [30]. The simulated
vehicle was moving at varying speeds between 0.1 and 1
m/s, following one of two different movement paths, while
performing maneuvering of different intensity and occasional
reverse movement. Simulated movement paths I and II are
respectively shown in Fig. 2a and Fig. 2b, where black and
red arrows respectively indicate forward and reverse movement
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directions. To push both tested algorithms to their limits,
the positioning data for both simulated paths was generated
with internal Gaussian noise of heuristically chosen standard
deviation of σpos

ε = 0.5 m and σpos
ε = 0.75 m, thus resulting

in four test scenarios. Gyroscope data was generated with
a significant drift error of 0.05 ◦/s, resulting in a 60◦ error
by the end of each simulation. A set of 10 simulations was
done for each of the four test scenarios. Both of the tested
algorithms were heuristically tuned for each simulated path.
ATKF algorithm parameters, used in simulations, are provided
in Table III in the Appendix section.
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Fig. 2. Generated movement paths I (a) and II (b), used in a series of
simulated tests with marked periods of forward and reverse movement.

Simulation results evaluate the heading estimation accuracy
and precision of the compared algorithms. Used accuracy
metrics include the Median Absolute Error (MdAE):

MdAE = Median(|Xi −Xtru
i |), (23)

Mean Absolute Error (MnAE):

MnAE =

∑N
i=1 |Xi −Xtru

i |
N

, (24)

and Root Mean Squared Error (RMSE):

RMSE =

√∑N
i=1(Xi −Xtru

i )2

N
, (25)

where Xi represents ith observed value, Xtru
i is correspond-

ing expected value, and N is the total number of samples.
Used precision evaluation metrics include Median Absolute
Deviation (MdAD):

MdADerr = Median(|εi −MdnAE|) (26)

Mean Absolute Deviation (MnAD):

MnADerr =

∑N
i=1(εi −MAE)

N
, (27)

and Standard Deviation (σ):

σerr =

√∑N
i=1(εi −MAE)2

N
, (28)

where the error value εi of the ith sample is calculated as:

εi = |Xi −Xtru
i |. (29)

TABLE I
AVERAGED HEADING ESTIMATION ACCURACY AND PRECISION RESULTS
OF BOTH COMPARED ALGORITHMS FOR EVERY SET OF 10 SIMULATIONS.

Benchmark
alg. (◦)

ATKF
alg. (◦)

Improvement over
benchmark alg.

Pa
th

I σ
p
o
s

ε
=

0.
5

m

MdAE 3.1 2.1 34.1%
MnAE 4.1 2.5 40.3%
RMSE 5.3 3.1 41.4%
MdADerr 2.0 1.3 38.1%
MnADerr 2.8 1.6 44.0%
σerr 3.4 1.9 42.9%

σ
p
o
s

ε
=

0.
75

m

MdAE 4.2 2.6 39.4%
MnAE 5.3 3.1 41.8%
RMSE 6.7 3.9 41.2%
MdADerr 2.7 1.5 43.8%
MnADerr 3.4 1.9 43.5%
σerr 4.1 2.4 41.1%

Pa
th

II σ
p
o
s

ε
=

0.
5

m

MdAE 15.6 5.3 66.2%
MnAE 52.7 6.6 87.4%
RMSE 87.9 8.6 90.2%
MdADerr 10.0 3.1 69.3%
MnADerr 60.5 4.2 93.1%
σerr 70.3 5.4 92.3%

σ
p
o
s

ε
=

0.
75

m

MdAE 14.9 6.2 58.8%
MnAE 52.0 9.0 82.7%
RMSE 86.6 12.8 85.2%
MdADerr 10.5 4.0 61.7%
MnADerr 59.3 6.7 88.7%
σerr 69.3 9.0 87.0%

A. Simulated Path I

Generated movement path I covers a movement scenario
with average maneuvering intensity and reverse movement
cases. Averaged simulations’ results for the movement path
I are provided in the upper half of Table I, and demonstrate a
good performance of both tested algorithms at both positioning
data error levels. Depending on the positioning data quality,
the proposed ATKF algorithm has demonstrated 2.1◦ to 2.6◦

of a median absolute error, which corresponds to a 34-40%
improvement over the benchmark algorithm. Since the median
absolute error metric excludes possible short-term error peaks,
it depicts the overall accuracy of the evaluated algorithms.
Outliers’ sensitive RMSE metric has demonstrated a 3.1◦ to
3.9◦ error in the case of the ATKF algorithm, which represents
a 41% improvement in comparison with the benchmark algo-
rithm. These results indicate the minor presence of significant
heading error outliers and confirm the overall stability of
the proposed algorithm. Additionally, the ATKF algorithm
demonstrates 1.75 times lower dispersion in RMSE results
between different positioning data error rates, which indicates
its higher robustness to positioning data errors.

The precision evaluation results have demonstrated 1.3◦ to
1.5◦ of median absolute deviation in the case of the ATKF
algorithm. This represents a 38–43% improvement over the
benchmark algorithm and indicates a minor presence of noise
errors in the estimated heading. ATKF heading estimation
results demonstrate a 1.9◦ to 2.4◦ error standard deviation,
depending on the positioning data error rate. Both algorithms
have shown a relatively negligible impact of the positioning
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Fig. 3. Visualized vehicle heading, tracked in the sample simulation for the
movement path II at 0.5 m positioning data error standard deviation. Graphs
exceed the natural 0◦ to 360◦ range for clear visualization purposes.

data error on the heading estimation precision.

B. Simulated Path II

The second generated movement path covers an intense
maneuvering scenario, including varying movement speed and
reverse movement cases. Averaged results of the second path
simulations are shown in the bottom half of Table I. These
results demonstrate a dramatic performance improvement in
the case of the ATKF algorithm over the benchmark algorithm.
The benchmark algorithm has demonstrated the median head-
ing absolute error results between 14.9◦ and 15.6◦, depending
on the positioning data quality. The proposed algorithm, on the
other hand, was able to keep the median heading absolute error
at 5.3◦ to 6.2◦, which corresponds to a 59–66% improvement.
RMSE results of the ATKF algorithm, on the other hand,
have demonstrated a dramatic 85–90% improvement over
the benchmark algorithm. Depending on the positioning data
quality, the ATKF algorithm has shown 8.6◦ to 12.8◦ RMSE,
whereas the benchmark algorithm has demonstrated 87.9◦ to
86.6◦ of the same metric. This dramatic difference in RMSE
results indicates the presence of major error outliers in the
heading, estimated by the benchmark algorithm.

Precision evaluation of both algorithms has shown similar
improvement. Depending on the simulated positioning data er-
ror scale, the proposed ATKF algorithm has demonstrated 61–
69% improvement in heading error median absolute deviation.
This corresponds to the reduction from 10◦ down to the 3◦ to
4◦ range in this metric. Heading error standard deviation has
shown a dramatic reduction from the 69–70◦ range down to
the 5–9◦ range in the case of the ATKF algorithm. Depending
on the positioning data error rate, this represents an 87–92%
improvement over the benchmark algorithm.

These results are explained by the nature and structure
of both algorithms. The benchmark algorithm is naturally
dependent on the occasional movement in a straight line. Thus,
the combination of intense maneuvering and poor positioning
data of the second simulated path leads to eventual data
misinterpretation and false triggering of reverse movement
compensation, causing a 180◦ shift. This effect can be clearly
observed on the blue graph in Fig. 3, which demonstrates the
heading results of a sample path II simulation. The structure
of the proposed ATKF algorithm adapts to the data quality and
allows its initial filtering, thus providing higher robustness to
intense maneuvering and poor positioning data.
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Fig. 4. Visualized forklift movement path within the industrial area during
the experimental test campaign, along with marked momentary key spots.

IV. EXPERIMENTAL TESTING

An experimental test campaign was conducted in order to
evaluate the performance of the proposed ATKF algorithm
with real data and validate the simulations’ results, described
in Section III. A test setup of positioning and inertial sensors
was deployed on the full-scale forklift, naturally operating in
the industrial environment.

The real-time forklift localization was performed by the
Eliko UWB indoor positioning system, operating at a 5 Hz
update rate [33]. This localization system is expected to
provide positioning accuracy from 50 cm and up to 5–10 cm in
the best environmental and deployment conditions, with a 1 cm
resolution. Since the proposed ATKF algorithm is not bound to
any specific localization system, the UWB positioning system
can be substituted with any source of positioning information
from GNSS (Global Navigation Satellite System) to cellular
(e.g., 5G), WiFi, Bluetooth, or other technologies.

The 16-bit gyroscope sensor, available in a 9-DOF Bosh
BNO055 inertial measurement unit (IMU), was used as a
source of inertial heading data (angular velocity of yaw
Euler rotation) [34]. With the declared sensor resolution, it
is expected to detect angular velocity down to 0.03 ◦/s. Data
from the onboard 13-bit magnetometer unit was also collected
to evaluate its performance in a real industrial application. In
suitable environmental conditions, the used magnetometer is
expected to allow the heading estimation with the declared
accuracy of ±2.5◦. Both gyroscope and magnetometer data
were collected at a 100 Hz update rate.

Forklift positioning and inertial data were collected during a
sim14-minute-long test campaign. The forklift was naturally
operating in an industrial area, transporting payloads and
maneuvering at different speeds, including rapid turns, reverse
movements, and occasional stops. Momentary locations, fur-
ther referred to as key spots, where the forklift was directly
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Fig. 5. Visualized forklift heading, tracked in experimental test campaign by
the evaluated methods. Graphs exceed the natural 0◦ to 360◦ range for clear
visualization purposes.

interacting with payloads, were used to investigate the momen-
tary performance of the ATKF algorithm. Figure 4 shows the
forklift movement track (grey), its starting and final locations,
as well as marked key spots (magenta). The use of a highly
maneuverable forklift operating in the magnetometer-denied
industrial environment was chosen for proper testing of the
ATKF algorithm in realistic conditions, where magnetometer-
based state-of-the-art methods are expected to fail.

In order to demonstrate the unreliability of the
magnetometer-based heading estimation methods, one of
the state-of-the-art algorithms, the Mahony filter, was
implemented in this work [35], [36]. The gain parameters
kP = 0.05 and kI = 0 of this filter were heuristically tuned to
achieve better performance with the experimentally collected
data. Used tuning parameters for the tested ATKF algorithm
are provided in Table III in the Appendix section. The
comprehensive dataset of experimentally collected forklift
positioning and IMU data is available at the Taltech database
repository [37].

V. EXPERIMENTAL RESULTS

This section covers the experimentally obtained results
of the ATKF algorithm performance in the forklift heading
estimation. This section also investigates the experimental
performance of the initial IMU and the sole magnetometer in
the industrial environment. It is done for comparison purposes,
to demonstrate and justify the need for an alternative IMU drift
mitigation solution. The performance of the initial IMU, sole
magnetometer, and ATKF algorithm in heading estimation was
evaluated for the overall test campaign, periods of the active
forklift movement, and at the momentary key spots.

Figure 5 demonstrates heading graphs of the forklift, ini-
tially provided by the IMU unit (red), separate magnetometer
unit (blue), heading estimations by the Mahony filter (orange),
and the proposed ATKF algorithm (green), as well as the
expected true forklift heading (grey).

The graph of the IMU provided heading demonstrates a
significant drift error, accumulated during the test campaign,
which can be clearly observed after 200th second of the
experiment. Heading error rapidly exceeds 50◦ and reaches
over 100◦ by the end of the experimental campaign. At the
time periods of 420–530 s and 580–830 s, when the forklift
remained stationary for longer periods of time, the IMU also
demonstrates a visually stable heading. This leads to the
conclusion that the drift error is primarily accumulated during

the active maneuvering, which indicates the inconsistency of
IMU drift errors and makes their mitigation a more complex
task.

The magnetometer provided heading, visualized in Fig. 5,
demonstrates major inconsistency and poor reliability in the
first half of the experimental campaign. The first significant
maneuvering events (e.g., rapid 90◦ turns) occurred at the
test campaign time periods of 80–100 s and 120–180 s, and
were almost completely disregarded by the magnetometer. The
observed significant, over 20◦, bias in the magnetometer pro-
vided heading is possibly caused by the magnetic interference
of the forklift itself, which may be initially compensated.
Additionally, the magnetometer-based heading also demon-
strates a significant noise with an approximate 10◦ magnitude.
These performance results were expectedly caused by the
surrounding magnetic interference in the industrial area.

Heading estimations, performed by the Mahony filter,
demonstrate improved consistency and reliability compared to
the initial magnetometer-based heading. Throughout the test
campaign, the Mahony filter heading estimation demonstrates
a proper response to the actual forklift maneuvering, due to
the proper fusion of inertial (IMU) data. However, due to
significant inconsistency of the magnetometer data, a Ma-
hony filter is unable to properly compensate for the initially
present IMU drift effect, which can be clearly observed in
Fig. 5. Dynamically varying environmental distortions in the
magnetometer data are expressed with a significant drift over-
compensation by the Mahony filter at the test campaign time
period of 0–250 s, and major drift under-compensation at the
period of 400–850 s. These results additionally confirm the
unreliability of the magnetometer-based heading estimation
methods in a variety of land applications.

Visually, the ATKF algorithm estimated forklift heading
almost fully matches the expected heading during the entire
period of the test campaign. The highest heading error peaks of
approximately 10◦ can be observed at the test campaign time
periods of 140–150 s and 190–210 s. This positively depicts
the overall performance of the proposed ATKF algorithm
throughout the test campaign.

TABLE II
FORKLIFT HEADING TRACKING ACCURACY AND PRECISION RESULTS OF
THE ENTIRE TEST CAMPAIGN, PERIODS OF ACTIVE MOVEMENT, AND AT

THE KEY SPOTS

Accuracy metrics (◦) Precision metrics (◦)
MdAE MnAE RMSE MdAD MnAD σ

IMUoverall 78.3 65.5 76.0 26.2 33.4 38.6
IMUmoving 60.4 51.6 62.5 28.6 30.7 35.3
IMUkey spot 42.0 44.6 58.9 36.4 36.8 38.6
MAGoverall 20.8 23.5 32.4 13.2 16.5 22.4
MAGmoving 25.3 31.4 39.9 13.9 18.7 24.6
MAGkey spot 25.7 35.5 45.6 5.4 22.3 28.7
Mahonyoverall 29.2 27.6 30 9.1 10.1 11.7
Mahonymoving 24.6 23.3 25.9 9.5 9.3 11.2
Mahonykey spot 26.4 27.4 28.6 5.3 6.5 8.4
ATKFoverall 0.9 2.8 4.9 0.8 2.8 4.0
ATKFmoving 2.3 3.8 5.8 1.8 3.3 4.4
ATKFkey spot 1.0 1.5 2.3 0.9 1.3 1.7
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Numerical results of the IMU-measured forklift heading
are provided in the upper quarter of Table II. These results
demonstrate a major, above 60◦ error presence in accuracy
metrics, observed throughout the entire test campaign and
during the periods of active forklift movement. These cases are
respectively indexed as IMUoverall and IMUmoving . Slightly
better accuracy results of above 40◦ were achieved at the
momentary key spots (IMUkey spot). Approximately 30◦ error
in precision metrics was also observed in the mentioned cases.
These results clearly demonstrate the significance of the IMU
drift problem and the need for its mitigation.

The second quarter of Table II shows the accuracy and
precision results of the magnetometer-tracked forklift heading.
A sole magnetometer has demonstrated relatively mediocre
overall accuracy with above 20◦ mean and median heading
errors. Above 25◦ error was observed in accuracy metrics
during the active forklift movement and at the key spots,
respectively indexed as MAGmoving and MAGkey spot in the
Table II. Above 13◦ errors were observed in precision metrics
during the overall test campaign and periods of active forklift
movement. Relatively better results in a median absolute
deviation of 5◦ were achieved at the momentary key spots.
These results confirm the presence of a significant heading
bias and sensor noise.

The third quarter of Table II demonstrates the accuracy and
precision results of the Mahony filter heading estimation. Re-
sults demonstrate above 27◦ mean and median heading errors,
which represent a noticeable decrease in overall heading accu-
racy, in comparison with the sole magnetometer performance.
Approximately 25◦ error in accuracy metrics was observed
during the active forklift movement and at the key spots,
respectively indexed as Mahonymoving and Mahonykey spot

in Table II. Slightly above 9◦ errors can be observed in the
mean and median absolute deviation metrics during the overall
test campaign and active forklift movement periods. Slightly
above 5◦ errors were observed in the precision metrics at the
momentary key spots. This precision improvement over the
sole magnetometer-based heading can be explained by a major
filtering of the magnetometer data noise, performed by the
Mahony filter.

Outstanding results of below 1◦ median heading error
and median error deviation were demonstrated by the ATKF
algorithm during the conducted test campaign. Corresponding
results are provided in the bottom quarter of the Table II. These
metrics demonstrate the overall accuracy and precision in
heading estimation and exclude momentary error outliers. The
achieved sub-5◦ heading RMSE and error standard deviation
results also indicate a minor presence of significant error
outliers in the estimated heading accuracy and precision. A
minor expected increase in the heading error results can
be expectedly observed in the case of the moving forklift
(ATKFmoving), which indicates the stability of the ATKF
algorithm during the active maneuvering. Slightly above 1◦

accuracy and precision results were achieved at the momentary
key spots (ATKFkey spot), which additionally confirms the
robustness of the proposed algorithm.

Fig. 6 demonstrates the Cumulative error Distribution Func-
tions (CDF) for the forklift heading, estimated by initial IMU
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Fig. 6. Cumulative error distribution functions of the experimentally tracked
forklift heading during the entire test campaign, during periods of active
movement, and at the momentary key spots.

(red), magnetometer (blue), Mahony filter (orange), and the
ATKF algorithm (green). These functions are provided for
the three above-mentioned cases of the overall test campaign
(line), exclusively for the moving forklift (dashed line), and
at the key spots (dotted line). According to these results, the
ATKF estimated heading did not exceed 30◦ error throughout
the entire test campaign, while above 90% of the time the
heading error was kept below 10◦. Exceptional performance
was demonstrated at the stationary key spots, where errors
in the ATKF-provided heading never exceeded 5◦. These
results additionally confirm the reliability and stability of
the proposed ATKF algorithm in accurate vehicle heading
tracking. Overall results indicate an approximate 95% im-
provement in the IMU heading accuracy metrics, and 93%
in the precision metrics, provided by the proposed ATKF
algorithm. Mahony filter, on the other hand, has demonstrated
a nearly linear heading error distribution, slightly exceeding
40◦ in the maximum observed error. Even though the Mahony
filter algorithm was able to mitigate most of the above 40◦

heading errors, initially present in both fused data sources, it
was unable to improve the general performance of the fused
data sources.

VI. CONCLUSIONS

This paper addressed major limitations of the
magnetometer-based vehicle heading estimation methods,
which prevent their effective use in a variety of applications.
This work proposed a robust, accurate, and magnetometer-free
algorithmic method for vehicle heading estimation, based
on inertial and positioning data. This method represents
a custom version of the adaptive Kalman filter algorithm
(ATKF) with a novel tandem structure. Its adaptivity features
allow an iterative relevance re-estimation of each data source
for its weighted fusion, while the tandem structure enables
multiple consecutive data processing steps within a single
iteration, ensuring immediate use of input data and preventing
relevance loss.

The ATKF was compared against a state-of-the-art algo-
rithm in a series of simulated tests, covering diverse movement
scenarios and input data quality levels. Depending on the
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simulated scenario, the ATKF has shown 40% to 90% im-
provement over the compared algorithm in real-time heading
estimation accuracy. Additionally, it has also demonstrated
high stability during intense maneuvering, robustness to noisy
positioning data, and resilience to reverse movement. These
results were also experimentally validated during the full-
scale test campaign by using a highly maneuverable forklift
in an industrial environment. The ATKF has respectively
demonstrated 95% and 93% improvement in the tracking head-
ing accuracy and precision over the sole gyroscope (IMU),
maintaining a median error below 2.3◦ even in periods of ac-
tive movement. In contrast, the evaluated magnetometer-based
methods, including the sole magnetometer and the Mahony
filter algorithm, have confirmed their significant unreliability
and inconsistency under industrial conditions.

Future work is focused on long-term testing of the proposed
algorithm to identify its practical limitations, as well as its
possible improvement by refining the adaptivity process or
integration of additional auxiliary sensors, such as an ac-
celerometer. The ATKF has potential applications in robotics,
intelligent vehicles, industry automation, and advanced control
systems, particularly covering different environments with
significant magnetic interference.

APPENDIX

TABLE III
ATKF TUNING PARAMETERS, USED IN TEST SIMULATIONS AND DURING

THE EXPERIMENTAL TEST CAMPAIGN

Parameter
Value

Simulations Experimental
testsPath I Path II

qpos 1 m2 1 m2 1 m2

rpos 30 m2 40 m2 3 m2

qv 0.1 m2/s2 5 m2/s2 10 m2/s2

qv 1 m2/s2 1 m2/s2 1 m2/s2

rv 0 m2/s2 1 m2/s2 0 m2/s2

qϕmin 1 (◦)2 1 (◦)2 0 (◦)2

rϕmin 100 (◦)2 10 (◦)2 0 (◦)2

qΨmin, rΨmin 0 (◦)2 0 (◦)2 0 (◦)2

qmax, rmax 100 (◦)2 100 (◦)2 10000 (◦)2

v0
thr 0.07 m/s 0.07 m/s 0.1 m/s

vϕthr 0.3 m/s 0.4 m/s 0.5 m/s
vΨthr 0.55 m/s 0.75 m/s 1.18 m/s
aϕ 190 230 300
aΨ 33 445 710
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been a Researcher at OÜ Eliko Tehnoloogia Aren-
duskeskus in Tallinn, focusing on research regarding

Ultra-Wideband (UWB) ranging protocols and improving the robustness of
the Eliko UWB RTLS positioning system. His current research interests
include the enhancement of algorithms and methodologies for wireless indoor
tracking, positioning, and object-locating systems.

Alar Kuusik (Member, IEEE) received the Ph.D.
degree in IT from the Tallinn University of Tech-
nology (TalTech), Estonia, in 2001. He is currently
a Senior Research Scientist with the T. J. Seebeck
Institute of Electronics, TalTech, focusing on the IoT,
data acquisition, and networking technologies. He
has been involved with several international research
and innovation projects related to smart environ-
ments, smart cities, and wearable technologies. He
has published more than 50 peer-reviewed articles
and is the author of five patent families. He is the

Vice-Coordinator of the GAC of IEEE Computer Society in Region 8.

Muhammad Mahtab Alam (Senior Member, IEEE)
received the M.Sc. degree in electrical engineering
from Aalborg University, Denmark, in 2007, and
the Ph.D. degree in signal processing and telecom-
munication from the University of Rennes1 France
(INRIA Research Center), in 2013. He did his post-
doctoral research (2014–2016) at the Qatar Mobility
Innovation Center, Qatar. In 2016, he joined as the
European Research Area Chair and as an Asso-
ciate Professor with the Thomas Johann Seebeck
Department of Electronics, Tallinn University of

Technology, where he was elected as a Professor in 2018 and Tenured Full
Professor in 2021. Since 2019, he has been the Communication Systems
Research Group Leader. His research focuses on the fields of wireless commu-
nications–connectivity, mobile positioning, 5G/6G services and applications.
He has over 15 years of combined academic and industrial multinational
experiences while working in Denmark, Belgium, France, Qatar, and Esto-
nia. He has several leading roles as PI in multimillion Euros international
projects funded by European Commission (Horizon Europe LATEST-5GS,
5G-TIMBER, H2020 5G-ROUTES, NATOSPS (G5482), Estonian Research
Council (PRG424), Telia Industrial Grant etc. He is an author and co-author
of more than 100 research publications. He is actively supervising a number of
Ph.D. and Postdoc Researchers. He is also a contributor in two standardization
bodies (ETSI SmartBAN, IEEE-GeeenICT-EECH), including “Rapporteur” of
work item: DTR/ SmartBAN-0014”.





Appendix 4

IV

A. Fjodorov, S. Ulp, T. Laadung, M. M. Alam, and A. Kuusik, “Accurate Indi-rect 3D Localization of Markerless Industrial Products,” IEEE Sensors Jour-
nal, Accepted: 18.09, 2025

169





IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2025 1

Accurate Indirect 3D localization of Markerless
Industrial Products

Aleksei Fjodorov , Sander Ulp , Taavi Laadung , Alar Kuusik , Senior Member, IEEE , Muhammad
Mahtab Alam , Senior Member, IEEE

Abstract— This paper proposes a novel method
for the indirect, automatic, real-time, and three-
dimensional tracking of industrial products. The
motivation behind the proposed method is to fully
avoid the direct product marking with active or
passive tags. This method combines the tracked
forklift position and heading data with the real-time
fork elevation to obtain a complete 3D location of
the transported product. This work also proposes
a fusion algorithm for automatic product pick-up
and drop-down event detection (A-PDD). It is based
on the fusion of the fork elevation and occupancy
sensors, used for the automatic recognition of the
forklift behavior patterns during the payload pick-
up or drop-down events. This work experimentally
validates the performance of the proposed markerless indirect tracking method in an operating industrial production site.
The proposed method was able to indirectly track two industrial products with below 30 cm absolute and repeatability
errors. The experimental comparison of the proposed indirect tracking method with the traditional direct product
localization approach has shown a major advantage of the proposed method in terms of product positioning stability,
reliability, and quality, along with approximately four times higher product positioning accuracy. The proposed indirect
tracking method offers high scalability, significantly increased cost- and energy efficiency, and reduced maintenance
requirements in comparison with the direct tracking methods. It is expected to be widely applicable to different industrial
machinery and material handling equipment, from forklifts and various lifters to cranes.

Index Terms— Indirect tracking, industrial product positioning, sensor fusion, UWB, IMU, ultrasonic distance sensor, wire
encoder, intelligent warehousing

I. INTRODUCTION

AUTOMATION is one of the key aspects of industry
advancement, especially in the field of warehousing and

manufacturing. It improves the quality, efficiency, and prof-
itability of manufacturing, increases process transparency and
scalability, as well as improves workplace safety, and reduces
the risk of human error [1]. Different intelligent warehouse
management solutions are demanded in the industry nowadays,
including direct and indirect tracking methods as part of

This project has received funding from the European Union’s Horizon
Europe Research Program under grant agreement No. 101058505 -
5G-TIMBER, from the Estonian Education and Youth Board ÕÜF11
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{aleksei.fjodorov, taavi.laading, sander.ulp}@eliko.ee).

warehousing and Industry 4.0 [2], [3].
A wide variety of different solutions for product localization

are presented in the literature. One of the most straightforward
methods is direct product tracking using active positioning
systems, such as an Ultra-Wideband (UWB) indoor posi-
tioning system [4]. Even though this approach allows direct
and real-time product localization, it offers limited scalability
and remains an inefficient method in cost, computational
complexity, and maintenance requirements. The widely used
method of direct product marking with passive identification
units, such as RFID (Radio-Frequency Identification) tags [5],
on the other hand, offers a relative cost-efficiency and high
scalability. However, the real-time passive tag-based product
positioning requires a complex infrastructure, such as massive
scanning grids, deployed around the localization area [6].

Unfortunately, certain industrial products (e.g., wood, metal,
or stone materials) face frequent physical processing or ex-
treme environmental conditions (e.g., high temperatures or
accelerations), which completely prohibit their direct marking
with any type of tags. Thus, the real-time localization of these
products requires indirect methods, which fully avoid their
direct marking.
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Certain quasi-indirect methods in this field offer product
identification and localization through reference objects, such
as industrial pallets. Pallets can be either marked directly (e.g.,
with UWB tags [7]) or recognized by using intelligent vision
[8]. In this approach, however, products remain bound to their
objects of reference. On the other hand, visual recognition of
the product directly may be considered an indirect identifi-
cation method, which, however, is limited by the variety of
supported object shapes [9]. Nontraditional use of common
technologies may also be utilized for tagless object local-
ization, such as radar principle-based UWB positioning [10],
RFID-based proximity detection [11], or capacitive sensing-
based positioning [12].

A. Related Works

In the literature, the ”indirect tracking” term presumes that
the tracked object is not marked with active positioning units,
while accepting the use of passive units, such as RFID tags,
QR-, or barcodes [13]–[16]. This subsection covers the latest
available state-of-the-art works in the field of indirect asset
localization to the author’s best knowledge.

Motroni et al. have proposed a solution for indirect asset
tracking, based on UWB positioning, inertial measurement
unit (IMU), and Optical Flow (OFS) sensor, aided with laser
distance sensors [17]. Sensor fusion is performed by using
a reliable and computationally expensive variation of the
Kalman filter algorithm - the Unscented Kalman Filter (UKF)
[18]. Their method, however, relies on the direct asset marking
with passive RFID tags for its identification purposes. Asset
loading & unloading detection is performed by using an
ultrasonic sensor.

Frankó et al. [13] and Zhao et al. [14] have proposed
relatively similar approaches for indirect asset tracking. In
their approaches, direct asset marking with passive RFID tags
becomes essential, as it is used for both asset identification
and pick-up detection. A continuous detection of a particular
RFID tag within the fork area is considered as a pick-up of the
corresponding product. The location of a transported asset is
then associated with the real-time forklift coordinates, tracked
by the indoor UWB RTLS (Real-Time Locating System). In
the forklift body frame, the positioning unit is physically
deployed with a certain offset from the transported product,
which, in this case, becomes a constant, beyond-meter error in
the asset location. Frankó et al. in their work additionally use
the geofencing technique, in which assets are only transported
between predetermined storage areas. The RFID scanning
routine in their method is only triggered by the accelerometer
unit during the moments of the forklift movement.

The pallet tracking approach, proposed by Kovavisaruch et
al., is only based on the forklift-deployed UWB positioning
unit [19]. Similarly, the transported pallet location is directly
associated with the forklift position, while the pick-up & drop-
down detection routine is performed manually. Pallets are
identified by manual scanning of the directly attached barcodes
and tracked with the claimed average precision of 47 cm. The
tracked forklift location is also used to identify one of the
possible predefined forklift routes.

Barral et al. in their work have proposed a simulated multi-
sensor accurate forklift tracking method, based on the UWB
positioning system, IMU, and computationally heavy PX4
smart optical flow camera [20]. Even though their work does
not contribute to the product localization or indirect tracking
topics directly, the theoretical possibility of pallet localization
by using the forklift-deployed sensors is mentioned. However,
possible methods for the product localization, as well as their
loading and unloading detection, are not addressed in their
work.

Borstell et al. have proposed a pallet monitoring system
using vehicle and asset localization, based on a passive planar
Markers-based Local Positioning System (MarLO) [15]. This
approach is assisted by specialized gates with integrated RFID
and depth sensors, installed between sections of the industrial
area, for pallet identification and dimension measurement. In
their method, the detection of the payload pick-up & drop-
down is performed manually.

Zealabs and Sewio have developed a tagless method for in-
dustrial coils localization in Prokab cabling factory [21], [22].
By using the pressure sensor, their method offers automatic
product pick-up detection, while for identification purposes, it
still relies on direct product marking with QR codes. Similar
to methods proposed by Frankó et al., Zhao et al., and
Kovavisaruch et al., the transported product location is directly
associated with the UWB positioning system provided forklift
coordinates. This is expected to cause an earlier-mentioned
beyond-meter offset error in the product location. Unlike
other methods, this method also allows for three-dimensional
product positioning through its real-time elevation tracking.

The majority of available state-of-the-art works mainly
propose indirect asset localization methods without providing
experimental evaluation and qualitative performance results.
Available methods still fully or partially rely on direct prod-
uct marking with passive identification tags, primarily cover
only two-dimensional product positioning, and in some cases,
require more complex data processing [20]. Additionally, the
majority of the available methods associate the product loca-
tion with the forklift coordinate, which leads to a potentially
significant error in product positioning.

B. Contributions
This paper addresses the field of indirect methods for

industrial product localization in advancing areas of automated
industry and warehousing. It proposes the following contribu-
tions:
• A novel indirect tracking method for automatic and

real-time 3D localization of fully markerless industrial
products. In comparison to the available indirect tracking
approaches, the proposed method does not require the
direct marking of tracked products with either active
or passive tags. Thus, the required sensor setup does
not depend on the growing number of tracked products,
which leads to a potentially unlimited scalability, and high
cost- and energy efficiency of the proposed method. It
offers a highly accurate and three-dimensional positioning
of any product, as well as covers possible product shelv-
ing and stacking scenarios. This method avoids the use
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of computationally heavy or additional auxiliary sensors
to reduce its complexity and minimize the number of
required sensors.

• A sensor fusion algorithm for automatic payload pick-up
& drop-down detection (A-PDD), based on the elevation
and distance sensors. This algorithm recognizes the fork-
lift behavior patterns during the payload pick-up & drop-
down events to define their exact moment and location.

• Experimental testing, validation, and performance eval-
uation of the proposed indirect tracking method in an
operating industrial environment. The evaluation covers
different performance aspects of the proposed method, in-
cluding the absolute accuracy and repeatability of indirect
product positioning, as well as its quality and reliability
in the industrial area. Additionally, this paper provides
a performance comparison of the proposed method with
the UWB-based direct product localization approach.

II. PROPOSED MARKERLESS INDIRECT TRACKING
METHOD

The key hypothesis behind the proposed markerless method
for indirect tracking is that a completely unmarked industrial
object can be localized in real-time during its transportation
by any material handling equipment, such as a regular forklift.
During the product transportation process, its real-time loca-
tion can be naturally associated with the location of the forklift
tynes (i.e., the center of the fork area). Therefore, by tracking
the real-time position, elevation, and occupancy of the forklift
tynes, a fully unmarked product can be indirectly tracked in
the industrial area with the following key assumptions:
• Indirectly tracked products are only transported by spe-

cialized transportation machinery (e.g., forklift), which is
equipped with the necessary sensors for indirect tracking.

• When stored, the indirectly tracked products remain sta-
tionary until their pick-up by transportation machinery.

The proposed method is primarily focused on the larger
industrial products, which transportation naturally requires the
use of material handling equipment (MHE), such as forklifts.
These assumptions are aimed at minimizing the unauthorized
transportation of markerless products by MHE without the
deployed indirect tracking setup. Nevertheless, in the case of
occasional unregistered product displacement (e.g., by widely
used manual pallet jacks), their location may be manually up-
dated. Further planned advancements in the proposed method
also include the development of a simplified indirect tracking
setup to cover manual transportation options, such as manual
pallet jacks.

The proposed indirect tracking approach is illustrated in Fig.
1. The tynes area of the forklift, however, cannot be directly
marked with the positioning unit, as it may be damaged by
any heavy payload. For this reason, the positioning unit should
be installed in the safer areas of the forklift’s body frame.
This, however, leads to the physical offset δfork between the
positioning unit provided coordinates (x, y)0 and the actual
location of the tynes area (x, y)fork, and thus, the location of
the indirectly tracked payload. To eliminate this offset and
estimate the exact real-time location of the forklift tynes,

Fig. 1. Illustrative conceptual example of the proposed indirect tracking
method from the 2D perspective

the accurate forklift heading information Ψ is required. This
information, together with the known offset δfork between
the installed positioning unit and fork area, can then be
geometrically translated to the exact desired coordinates of
the fork area as follows:{

xfork = x0 + sin(Ψ) · δfork
yfork = y0 + cos(Ψ) · δfork

. (1)

Accurate tracking of the forklift heading is essential, as it
directly impacts the calculated location of the fork and, thus,
the location of the tracked payload. The forklift heading error
can be translated into the error in the tracked payload position
by using the following equation:

εx,yfork = 2 · sin(εΨ
2
) · δfork, (2)

where εx,yfork is the positioning error of the forklift tynes’, and
hence, of the tracked payload, and εΨ is the heading error. The
context of this approach was briefly described in the author’s
preliminary research [23].

Accurate forklift heading estimation can be performed by
widely available, highly portable, and cost-efficient MEMS
(Micro-Electromechanical Systems) gyroscope units. MEMS
gyroscopes, however, are prone to the drift effect, represented
by over-time accumulated heading errors [24]. In the majority
of the state-of-the-art IMU drift mitigation methods, inertial
units are fused with environmentally sensitive magnetometers,
particularly unreliable in industrial areas [25]. In this work,
the accurate forklift heading estimation is performed by an
alternative magnetometer-free algorithmic method, developed
in one of the author’s preliminary works [26]. This algorithm,
further referred to as the ATKF (Adaptive Tandem Kalman
Filter), represents an adaptive Kalman filter algorithm for
vehicle heading estimation, which is based on the inertial and
positioning data. It avoids the use of environmentally sensitive
magnetometers, thus making it suitable for industrial areas.
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The time- and space complexity of this algorithm corresponds
to a regular linear Kalman filter.

The corresponding article covers the simulated testing of the
ATKF algorithm, which includes different vehicle movement
scenarios with moderate and high maneuvering intensities,
occasional reverse movement, and various input data error
rates. The ATKF algorithm has demonstrated high heading
estimation accuracy and stability results, even in the case of
highly intense maneuvering scenario. Used techniques and
reliance on the absolute positioning information are expected
to enable the long-term performance of this algorithm and
prevent unwanted error accumulation during the stationary
periods.

Positioning unit placement outside of the fork area also
prohibits its use for fork elevation tracking, thus requiring
a separate sensor to fulfill this task. Real-time tracking of
the fork elevation (z)fork extends the product positioning
capabilities of the proposed method into complete 3D. Three-
dimensional positioning capability additionally allows to cover
a variety of product stacking and shelving scenarios. With
automatic detection of the payload pick-up and drop-down
events, this method allows a complete, real-time, and auto-
matic three-dimensional localization of any object in the area
without its direct tagging with any positioning or identification
unit. In this work, the automatic payload pick-up and drop-
down detection is performed by an additionally developed A-
PDD fusion algorithm. This algorithm is further described in
section III and combines the aforementioned fork elevation and
occupancy sensors to recognize the forklift behavior during
payload pick-up or drop-down routine.

The following set of sensors is needed to provide the nec-
essary information for the proposed indirect tracking method:
• Underlying positioning unit: Provides the real-time lo-

cation of the industrial transportation machinery (i.e.,
forklift). The secondary purpose of this unit is the role of
the supporting sensor for the forklift heading estimation
by the ATKF algorithm. Even though in this work,
the proposed indirect tracking method implementation is
based on the UWB indoor positioning system, it may
also be replaced with any suitable alternative positioning
system, such as GNSS, 5G-, WiFi-, and Bluetooth-based
localization methods, as well as their combinations.

• Heading tracking unit: Provides the real-time heading
tracking of the industrial machinery (e.g., forklift). This
work focuses on the use of the MEMS gyroscope unit
due to its wide availability, portability, and low processing
complexity.

• Fork elevation tracking unit: Provides the real-time and
accurate absolute elevation of the forklift tynes, and there-
fore, the elevation of the transported product. As the fork
elevation change also reflects the forklift behavior during
payload interaction events, the assistance in the payload
pick-up and drop-down detection is the secondary role
of this unit. In this work, the absolute fork elevation is
tracked by using the industrial wire encoder sensor due
to its reliability in industrial applications.

• Fork occupancy sensor: Provides the real-time fork occu-
pancy status and detects the payload emergence within the

forklift tynes area. This unit is fused with the aforemen-
tioned elevation sensor by using the A-PDD algorithm,
proposed in section III. This work focuses on the use of
the ultrasonic distance sensor primarily for its reliability
in industrial applications.

The sensors setup for the proposed indirect tracking method
was chosen to minimize the required number of sensors, while
effectively using their combination. The use of extra sup-
porting, cost-inefficient, or computationally complex sensors,
such as cameras, LiDARs, or military-grade inertial sensors,
is avoided in this work. It is done to reduce the computational
complexity, data processing time, and maintenance require-
ments of the proposed method while keeping a possibly high
cost-efficiency, product positioning accuracy, and setup robust-
ness in the industrial environment. These attributes allow for
a potential future modification and upscaling of the proposed
method for different applications and scenarios.

In the proposed indirect tracking method, the payload posi-
tioning is directly determined by the performance of the un-
derlying positioning system. Therefore, the proposed method
expects a satisfactory performance of the underlying posi-
tioning system (e.g., ensured by the appropriate deployment
of UWB infrastructure). Nevertheless, to address this aspect,
the proposed method supports the use of any positioning
system suitable for a particular application, such as GNSS
or cellular positioning, and is not bound to a specific option.
This also includes combined methods, such as GNSS & UWB
system for multi-environmental coverage, as well as a variety
of available state-of-the-art approaches for the positioning
performance enhancement, such as (machine learning) ML-
enhanced, vision & inertial data-supported sensor fusion meth-
ods. The expected horizontal (εx,yindir) and vertical (εzindir)
positioning errors of the proposed indirect tracking method
can be expressed as functions, containing the following error
components:

{
εx,yindir = f(εx,ypos, ε

x,y
fork, ε

x,y
t , εx,yexternal)

εzindir = f(εzfork, ε
z
t )

, (3)

where εx,ypos is the horizontal error of the used underlying
positioning system, εx,yfork is the payload horizontal positioning
error, caused by error in the forklift heading estimation and
determined in (2), and εzfork is the absolute error in the tynes’
elevation measurement. Horizontal and vertical errors, caused
by a potential timing error in the payload pick-up or drop-
down event detection are respectively denoted as εx,yt and
εzt , while εx,yexternal is the horizontal error, caused by external
factors, such as human error. Functional representation is used
as the included error components are not linearly additive, and
may occasionally compensate for each other.

Figure 2 shows the flow chart of the proposed indirect
tracking method process. Data processing performed by the
deployed sensor setup is highlighted in green, and processing
performed on the server side is highlighted in blue. The
data, collected and processed on the forklift setup side, is
transmitted to the server using a wireless (e.g., cellular) link,
highlighted in gray. The used sensors are divided into two
fusion pairs. Competitive fusion of positioning and inertial in-
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Fig. 2. Flowchart of proposed indirect tracking method, separated into
sections, depending on the components’ deployment/processing side.

formation is performed by using the ATKF heading estimation
algorithm. The accurate forklift heading information is then
combined with the forklift positioning data to calculate the
exact horizontal location of the forklift tynes, thus minimizing
the error component εx,yfork in (3). Complementary fusion of the
fork occupancy and elevation sensors is performed to detect
the exact moment of the payload pick-up or drop-down event.
This fusion is performed by the proposed pick-up detection
algorithm, described in Section III. Detection of one of the
mentioned events triggers the saving of the current tynes’
position and elevation, which represents the current three-
dimensional payload location.

In the case of the pick-up, the current tynes’ position is
compared to the locations of available products, previously
stored in the database. The matching payload is then labeled
as ”in transportation”, while its coordinates are bound to the
forklift tynes’ coordinates. Products, which are stacked on top
of the picked-up payload, will also be labeled as ”in transporta-
tion” with their respective elevation offsets. Automatic pick-

up of the above-located products can be disabled in predefined
shelving areas. In the case of the detected drop-down event,
the payload is labeled as ”stored” at the latest 3D tynes’
coordinates.

In the proposed indirect tracking method, the product
identification information is bound to its current coordinates,
updated in the database, and does not require any identification
markers. Thus, this method suffices for the starting coordinates
assignment to the newly arrived product during its initial
registration routine. This, for instance, may be seamlessly and
automatically performed by geofencing the specific unloading
zones with exactly defined coordinates, where the product
is eventually unloaded from the transportation vehicle (e.g.,
truck) upon arrival. Depending on the particular industrial
site preferences, a wide variety of different methods may be
used for the digital product registration routine, from manual
input or logistics tag scanning up to the AI-enhanced vision.
Assigning the obtained product information to the particular
unloading zone finalizes the initial registration and enables the
markerless tracking for the newly arrived product.

Depending on the various factors, such as the used po-
sitioning system, its configurations and specific limitations,
used server and/or onboard processing units, the proposed
indirect tracking method is expected to support dozens of
simultaneously operating material handling equipment units
(e.g., forklifts). In case of the tested indirect tracking setup,
the number of simultaneously supported forklifts may reach
15-20 units, theoretically limited by the processing capacity
of the used server unit. A distributed data processing (e.g., by
forklift onboard processing units) or the use of a server unit
with higher computational power may significantly increase
the number of simultaneously supported forklifts.

III. ALGORITHM FOR AUTOMATIC PICK-UP &
DROP-DOWN DETECTION (A-PDD)

This section describes a proposed algorithm for the auto-
matic detection of the payload pick-up & drop-down events,
in this work referred to as the A-PDD algorithm. Automatic
real-time detection of the payload interaction event is essential,
as it fundamentally determines the positioning accuracy of the
proposed indirect tracking approach. Mistimed recognition of
payload pick-up or drop-down may cause an additional, up
to a meter-level error in its resulting horizontal or vertical
positioning, respectively notated as εx,yt and εzt in (3).

The proposed A-PDD algorithm performs a complementary
fusion of the fork elevation and distance to the payload data,
respectively provided by the wire encoder and ultrasonic dis-
tance sensors. This algorithm recognizes the specific patterns
in the forklift behavior to verify the occurrence of the payload
pick-up or drop-down event. The graph representation of the
Extended Finite State Machine (EFSM) model of the proposed
A-PDD algorithm is visualized in Fig. 3. It reflects the key
states (nodes) and state transitions (edges) of the algorithm,
as well as their dependence on the input variables [27]–[29].
This model can also be mathematically formulated as follows:

MA−PDD = (S, S0, I, O,X, τ, λ, η), (4)
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Fig. 3. Extended finite state machine model of the proposed A-PDD
algorithm.

which includes set of algorithm states S with the initial state
S0, data input from the sensors X , sets of algorithm input
I and output O parameters, as well as input η, output λ,
and state transition τ functions. Algorithm iteration begins by
calculating the set of necessary input parameters I from the
available sensors’ data X . These sets are defined as follows:

X = {(dk, hk) | dk ∈ R>0, hk ∈ R}, (5)
I = {(id,∆h) | id ∈ {0, . . . , 10}, ∆h ∈ R}, (6)

where dk is the absolute distance to the object, measured by
an ultrasonic sensor, hk is the absolute tynes’ elevation, ∆h is
the tynes’ elevation difference between measurement samples,
and id is a counter of the latest distance measurements below
the minimal threshold.

The counter variable id in the user-defined range (id ∈
{0, . . . , 10} in the case of this work) is used to mitigate
the impact of possibly inconsistent distance measurements of
the ultrasonic sensor in the fork occupancy detection process.
Input parameters are calculated from the sensors’ data by using
the input function η : X → I , which can be expressed as
follows:

id = η(dk) =





id + 1, dk ≤ dthr ∧ id < 10

id − 1, dk > dthr ∧ id > 0

id otherwise
, (7)

∆h = η(hk) = hk − hk−1, (8)

where dthr is the minimal distance threshold. Previous tynes’
elevation measurement hk−1 = h0 and initial counter variable
(id)0 at the first algorithm iteration are defined as follows:
h0 = h1 and (id)0 = 0.

Available states of the algorithm are defined by boolean
pick-up/drop-down status flags Alrt and Stat, and can be
expressed as the following set:

S = s(Alrt,Stat) = {s00, s10, s01, s11}, (9)

while the initial state S0 of the algorithm is translated from

the previous use session or defined as the default starting state
s00 = (Alrt = False,Stat = False). Transitions between
available algorithm states are based on the input variables I
and the current state, and are described by the corresponding
transition function τ : S × I → S, expressed as follows:

τ(s00) =

{
s00, id < 10

s10, id = 10
, (10)

τ(s10) =





s00, id = 0

s10, (0 < id < 10) ∨ (∆h ≤ hthr)

s01, (id = 10) ∧ (∆h > hthr)

, (11)

τ(s01) =

{
s01, (0 < id < 10) ∨ (∆h ≥ −hthr)

s11, (id = 10) ∧ (∆h < −hthr)
, (12)

τ(s11) =





s01, (id = 10) ∧ (∆h > hthr)

s10, (0 < id < 10) ∨ (−hthr ≤ ∆h ≤ hthr)

s10, (id = 10) ∧ (∆h < −hthr)

s00, id = 0

, (13)

where hthr is the minimal threshold for the momentary tynes’
elevation change ∆h.

Outputs set of the A-PDD algorithm contains the afore-
mentioned Alrt and Stat status flags, and is expressed as
follows:

O = {(Alrt,Stat) | {Alrt,Stat} ∈ {False,True}}. (14)

The expected output of the algorithm depends on the current
state and can be defined by the output function λ : S×I → O
as follows:

λ(s) =





(Alrt = False, Stat = False), s = s00

(Alrt = False, Stat = True), s = s01

(Alrt = True, Stat = False), s = s10

(Alrt = True, Stat = True), s = s11

. (15)

The selected state transitions in the A-PDD algorithm also
initiate specific actions and stages in the payload pick-up and
drop-down process of the proposed indirect tracking method.
Thus, the presented algorithm model may be further extended
with the set of external data Y and external response function
µ. The external data Y represents the set of current payload
pick-up & drop-down coordinates and can be expressed as
follows:

Y = {(x, y, z)up, (x, y, z)dwn}. (16)

These coordinates are separately saved in the proposed indirect
tracking method at different state transitions of the A-PDD
algorithm, which is described by the external repose function
µ : S × I × Y → Y . This function is defined as follows:

µ(s00) =

{
(·, ·, ·)up, id < 10

(·, ·, zforkk )up, id = 10
, (17)

µ(s10) =





(·, ·,∅)up, id = 0
(·, ·, z)up, 0 < id < 10 ∨ ∆h ≤ hthr

(xfork
k , yforkk , z)up, id = 10 ∧ ∆h > hthr

, (18)
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µ(s01) =

{
(·, ·, ·)dwn, 0 < id < 10∨∆h ≥ −hthr

(xfork
k , yforkk , ·)dwn, id = 10 ∧ ∆h < −hthr

, (19)

µ(s11) =





(∅,∅, ·)dwn, id = 10 ∧ ∆h > hthr

(x, y, ·)dwn, 0 < id < 10∨
−hthr ≤ ∆h ≤ hthr

(xfork
k , yforkk , ·)dwn, id = 10 ∧ ∆h < −hthr

(x, y, zforkk )dwn, id = 0

, (20)

where (xfork, yfork, zfork)
up/dwn
k represent the current fork

location, newly assigned as payload pick-up or drop-down
coordinates, (x, y, z)up/dwn represent previously assigned co-
ordinates, while ∅ and · respectively denote the coordinates,
which were discarded or were not yet assigned.

The forklift initiates the pick-up process by approaching the
payload while keeping the tynes elevated on the payload level.
This step is detected by the ultrasonic distance sensor, which
measures the distance dk to the approached product. Once
the forklift reaches the minimal distance threshold dthr, the
A-PDD algorithm triggers the pick-up alert (Alrt = True)
and reaches the s10 state. This further initiates the saving of
the current absolute tynes’ elevation hk as a vertical pick-up
coordinate (z)up in the proposed indirect tracking method. At
this stage, the pick-up process may be canceled by the forklift
moving away from the payload without its lifting, which is
detected by consistently increased distance measurements dk
beyond the threshold dthr.

To confirm the pick-up event, the forklift is expected to lift
the payload off the ground, which is detected by the momen-
tary fork elevation change ∆h above the positive threshold
hthr. This confirms the payload pick-up event and enables
the pick-up status flag (Stat = True), thus reaching the
s01 state of the algorithm. In the proposed indirect tracking
method, this further initiates the saving of externally tracked
fork location as 2D coordinates of the detected pick-up event
(x, y)up. The reliability of these 2D pick-up coordinates is
explained, as to avoid a physical collision, the forklift ought to
remain stationary at the moment of the payload lifting off the
ground. This moment, however, is sufficient for the onboard
sensors to detect the exact moment of the pick-up and define
the corresponding event coordinates. Saved 2D and vertical
coordinates are then immediately combined into the resulting
pick-up location (x, y, z)up and used further by the indirect
tracking method to identify and track the picked-up product.

The payload drop-down process is performed in the opposite
order and is triggered by the forklift lowering the payload to
the drop-down level. Similarly, the forklift ought to remain
stationary at the moment when the payload touches the ground,
which corresponds to the final moment of the payload-lifting-
down process. Detected payload lifting down event triggers the
drop-down alert flag, resulting in the algorithm s11 state. This
initiates the saving of the tynes’ 2D coordinates (x, y)dwn,
which are then continuously updated during the entire down-
lifting process. It covers a possible case, when the payload
down-lifting was initiated prior to the full stop of the forklift.
Moving away from the laid-down payload, on the other hand,
concludes the drop-down process, returns the A-PDD algo-
rithm to the state s00, and initiates the saving of the vertical

drop-down coordinate (z)dwn within the indirect tracking
method. The resulting drop-down location (x, y, z)dwn is then
used by the indirect tracking method as a storage location for
the dropped-down product. Alternatively, lifting up the payload
without moving away from it will cancel the drop-down
process, thus discarding the drop-down (x, y)dwn coordinates.

Algorithm 1: Ultrasonic & wire encoder sensors-based
algorithm for automatic payload pick-up & drop-down
detection (A-PDD).

Initialize : Distance sensor counter: id = 0
Initial payload interaction alert flag: Alrt = False
Initial payload onboard state flag: Stat = False

Parameters: Distance to payload threshold: dthr [m]
Elevation change threshold: hthr [m]

Input Data: Measured tynes’ elevation: hk [m]
Measured distance to payload in front: dk [m]

Outputs : Payload interaction alert flag: Alrt
Payload onboard state flag: Stat

1 for k ← 1 to inf do
2 if dk ≤ dthr ∧ id < 10 then
3 id = id + 1
4 else if dk > dthr ∧ id > 0 then
5 id = id − 1
6 end

7 ∆h = hk − hk−1

8 if Stat is True then
9 if Alrt is True then

10 if id = 0 then
11 Alrt = False
12 Stat = False // Save (z)dwn = z

fork
k

// Drop-down confirmed at (x, y, z)dwn

13 else if id = 10 then
14 if ∆h > hthr then
15 Alrt = False // Discard (x, y)dwn

// Drop-down process canceled

16 else if ∆h < −hthr then
17 Alrt = True // Update (x, y)dwn = (x, y)

fork
k

// Drop-down alert re-initiated

18 end
19 end
20 else if id = 10 ∧∆h < −hthr then
21 Alrt = True // Save (x, y)dwn = (x, y)

fork
k

// Drop-down alert triggered

22 end
23 else
24 if Alrt is True then
25 if id = 0 then
26 Alrt = False // Discard (z)up

// Pick-up process canceled

27 else if id = 10 ∧∆h > hthr then
28 Alrt = False
29 Stat = True // Save (x, y)up = (x, y)

fork
k

// Pick-up confirmed at (x, y, z)up

30 end
31 else if id = 10 then
32 Alrt = True // Save (z)up = z

fork
k

// Pick-up alert triggered

33 end
34 end

35 return Alrt, Stat
36 end

The pseudo-code of the proposed A-PDD algorithm is pro-
vided in Algorithm 1, while Table I represents a detailed state
transition table of this algorithm. Arrows ↑ & ↓ respectively
denote the flag change from False to True & from True
to False. The overall complexity of this algorithm can be
represented in the (Big O) O-notation as O(1) (constant) in
terms of both execution time and used space [30]. The constant
time complexity is explained, as the algorithm represents the
defined number of conditional statements without loops or
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recursions. The strictly defined number of used variables also
determines the constant space complexity of this algorithm.

TABLE I
STATE TRANSITION TABLE OF PROPOSED A-PDD ALGORITHM ALONG

WITH THE DESCRIBED RESPONSE OF THE PROPOSED INDIRECT

TRACKING METHOD ON THE ALGORITHM OUTPUTS.

Alrt
flag

Stat
flag Action triggered

False False Idle mode; Await the pick-up alert

↑ False Potential pick-up alert; Save current tynes elevation reading
as (z)up coordinate for potential further pick-up event

True False Idle mode; Await the pick-up confirmation

↓ False Pick-up aborted; Discard a recently saved tynes elevation
reading

↓ ↑
Pick-up event confirmation; Combine current tynes 2D co-
ordinates (x, y)up with recently stored (z)up coordinate
and save as new 3D pick-up location; Reset the Alert flag
to False

False True Idle mode; Await the drop-down alert

↑ True
Potential drop-down alert; Save current tynes 2D coordi-
nates (x, y)dwn of potential drop-down event

True True
Wait for the drop-down confirmation or cancellation; Up-
date the stored 2D coordinates (x, y)dwn at every drop-
down alert reiteration

↓ True Drop-down aborted; Discard a recently saved tynes 2D
coordinates

↓ ↓
Drop-down event confirmation; Combine current tynes ele-
vation reading (z)dwn with recently stored 2D coordinates
(x, y)dwn and save as new 3D drop-down location; Reset
the Alert flag to False

False ↑ or ↓ Unused: Can be enabled to detect emergency events
(e.g., payload fell off the fork)

In comparison with payload loading/unloading detection
approaches, used in the available state-of-the-art indirect track-
ing methods, described in Section I-A, the proposed A-PDD
algorithm enables an automatic and accurate two-step pick-up
& drop-down detection of completely markerless products.

For instance, Frankõ et al. [13] and Zhao et al. [14] have
used an automatic payload pick-up detection approach, based
on the continuously tracked presence of payload-attached
RFID tags in front of the forklift, which indicates its trans-
portation. Compared to the proposed A-PDD algorithm, this
approach yields lower detection accuracy due to delayed event
recognition and possible simultaneous detections of multiple
products. Additionally, the requirement for the direct product
marking with RFID tags further limits the applicability of this
approach in markerless product tracking.

Unlike the sole ultrasonic sensor-based payload pick-up
detection approach used by Motroni et al. [17], the proposed
sensor fusion-enabled method provides the necessary data
filtering and includes a supporting sensor. This reduces pos-
sible false object detections and measurement inconsistency,
preventing delayed or false payload pick-up & drop-down
detection in the context of indirect tracking. The load cell-
based pick-up detection approach, used by Zealabs & Sewio
in their work [21], [22], is expected to offer a pick-up detection
accuracy and reliability similar to the proposed sensor fusion-
based method. The proposed method, however, provides sig-
nificantly reduced requirements for the sensors’ integration
into the forklift mechanisms. It extends the applicability of the
proposed method in cases when any modifications to industrial
machinery are prohibited. In the indirect tracking methods
proposed by Bostrell et al. [15] and Kovavisaruch et al. [19],

Fig. 4. Deployment of the sensors setup, used in the experimental
testing of the proposed indirect tracking method: a) wire encoder sensor
attached to the forklift mast; b) positioning unit (UWB tag) and IMU are
deployed on top of the forklift; c) ultrasonic distance sensor deployed
behind the fork area. d) Industrial products, tracked indirectly (using the
proposed method) and directly (using the highlighted independent UWB
tag) during the experimental campaign.

the payload loading/unloading detection is not automated and
is performed manually.

IV. EXPERIMENTAL PROOF OF CONCEPT

In order to assess the working capability of the proposed
indirect tracking method and demonstrate its performance, the
experimental test campaign was conducted in an industrial
environment. The following sensors’ setup was deployed on
the full-scale forklift for testing:
• As the underlying positioning unit, it was used Eliko

UWB indoor positioning system with the update rate of
5 Hz (sampling delta time dtx,y = 200 ms) [31]. The
declared accuracy of 10 - 30 cm reflects the underlying
positioning system error, notated as εx,ypos in (3).

• The gyroscope, available in the 9-DOF IMU model Bosch
BNO055, was used at the update rate of 100 Hz (sampling
delta time dtω = 10 ms) as the primary inertial heading
tracking unit [32].

• Miran MPS-M series draw wire encoder was used for
the absolute fork elevation tracking at the sampling rate
of 12.5 Hz (sampling delta time dth = 80 ms) [33]. The
declared 1 cm accuracy of this sensor reflects the expected
vertical tynes’ positioning error, notated as εzfork in (3).
It was also used as a supporting sensor in the payload
pickup detection.

• Ultrasonic distance sensor SEN0208 was used at the
update rate of 12.5 Hz (sampling delta time dtd = 80
ms) for the tynes’ occupancy status tracking as part of
the automatic payload pick-up detection process [34].

The high update rates of the used sensors ensure reliable
forklift monitoring and in-time detection of the occurring pick-
up & drop-down events, even at high forklift operating speeds
and intense maneuvering.

Physical sensors’ deployment on the used forklift is shown
in Fig. 4. UWB positioning unit and IMU were deployed on
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top of the forklift as shown in Fig. 4b. For the accurate forklift
heading estimation, these sensors were fused by the ATKF
algorithm, using the default tuning parameters, provided in the
appendix of the source article [26]. Figures 4a and 4c respec-
tively demonstrate the deployment of the used wire encoder
and ultrasonic distance sensors in the fork area of the forklift.
These sensors were fused by the proposed A-PDD algorithm,
earlier described in Section III, for automatic payload pick-
up & drop-down detection. This algorithm was used with the
following heuristically chosen threshold parameters, suitable
for the tynes’ length and average lifting speed of the used full-
scale forklift: distance to the payload threshold dthr = 275 mm
and momentary fork elevation change threshold hthr = 5 mm,
which corresponds to the fork elevation speed of 5 mm/dth

= 62.5 mm/s. The implemented indirect tracking prototype
setup also included a data forwarding unit, represented by
a mini-PC with an attached 4G LTE modem. This unit was
used for parallel sensors’ data reception, synchronization, and
immediate transmission to the server side by using the 4G LTE
cellular connection. For a synchronized use on the server side,
each data input was assigned with the corresponding UNIX
timestamp by the forwarding unit before transmission.

Figure 4d shows the 2 m × 1 m × 0.5 m sized industrial
payloads, used during the conducted test campaign. For later
comparison of direct and indirect tracking methods, one of the
products was also directly marked with a fully independent
UWB tag, highlighted in Fig. 4d. The chosen deployment
layout of used sensors serves conceptual testing purposes and
requires further enhancement for long-term use. This includes
a robust fixation of elevation and distance sensors, as well as
integration with the forklift power supply. The deployment
of the tynes’ elevation measurement unit may be further
optimized to cover extensive (multi-level) forklift masts. Even
though the proposed indirect tracking setup was designed for
independent use, a possible integration with the forklift CAN
bus may also be beneficial.

During the test campaign, two industrial payloads were
transported by the forklift between reference key spots for
their temporal storage, stacking, or shelving. A total of four
reference key spots (REF1-REF4) around the industrial area
were manually measured with centimeter precision during the
conducted test campaign by using an independent UWB tag of
the same UWB positioning system. To ensure unbiased results,
the UWB positioning system was also preliminarily calibrated
with the laser range finder unit. The testing scenario includes
a total of eight consecutive events of the forklift interactions
with the test payloads. These events are:

I Two test payloads (A and B) are stacked at the initial
reference location REF1; the forklift picks up the upper
payload A for transportation

II Forklift places the transported payload A on a 1 m high
shelf at the reference spot REF2

III Forklift picks up the second payload B for transportation
at the location REF1

IV Forklift drops down the transported payload B on the
ground at the reference spot REF3

V Forklift picks up payload A at the reference spot REF2
for transportation

0 10 20 30 40 50 60

−35

−30

−25

−20

−15

−10

−5

0

5

10

Tracked forklfit
Reference spot
Anchor location

X (m)

Y 
(m

)

REF1REF1

REF2REF2

REF3REF3

REF4REF4

Fig. 5. Manually acquired reference spots (magenta), marked on
the industrial environment map together with mapped UWB anchors’
locations (green), and the forklift route (grey), tracked during the test
campaign.

VI Forklift stacks payloads by placing payload A on top of
payload B at the reference spot REF3

VII Forklift picks up the stack of payloads A & B at the
reference spot REF3 for transportation

VIII Forklift drops down the stack of both transported pay-
loads at the reference location REF4

The exact locations of the aforementioned reference spots
are shown in Fig. 5 (magenta markers) along with the enumer-
ated payload interaction events that occurred at the respective
spots. The gray-colored track reflects the forklift movement
between the reference key spots during the test campaign.
Mapped locations of a total of 11 UWB anchors, deployed
in the test campaign area, are shown with green diamonds.
The comprehensive dataset of experimentally collected multi-
sensor data during the conducted test campaign is available at
the database repository [35].

V. RESULTS AND DISCUSSION

This section covers the experimental performance evaluation
of the proposed indirect tracking method in terms of absolute
(subsection V-A) and repeatability accuracy (subsection V-B)
in product localization. These subsections also demonstrate
the importance of accurate forklift heading estimation in the
proposed method. Subsection V-C provides the performance
comparison of the proposed indirect tracking method with the
traditional direct product tracking approach.

A. Absolute accuracy of the proposed indirect tracking
method

The absolute positioning accuracy of the proposed indirect
tracking method was evaluated for eight consecutive product
pick-up and drop-down events, described in Section IV. The
accuracy of the proposed method was evaluated in relation to
the reference key spots REF1-REF4, demonstrated in Fig. 5.
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TABLE II
ABSOLUTE 3D POSITIONING ACCURACY D OF THE PROPOSED

INDIRECT TRACKING METHOD BASED ON INACCURATE (INITIAL IMU)
AND ACCURATE (ATKF ESTIMATED) HEADING DATA TOGETHER WITH

PRODUCT POSITIONING ERROR CAUSED BY INACCURACY IN: HEADING

ESTIMATION (2D ERROR) A, ELEVATION MEASUREMENT (VERTICAL

ERROR) B, AND EXTERNAL FACTORS (2D ERROR) C .

Payload interaction event:
I II III IV V VI VII VIII

In
di

re
ct

tr
ac

ki
ng

at
ac

cu
ra

te
he

ad
in

g
(A

T
K

F
es

tim
at

ed
) A (m) 0.01 0 0 0.06 0.04 0.14 0.04 0.01

B (m) 0.01 0 0.02 0.02 0.03 0.01 0.04 0.02

C (m) 0.3 0.06 0.2 0.06 0.25 0.02 0.1 0.01

D (m) 0.3 0.06 0.2 0.12 0.28 0.15 0.11 0.02

In
di

re
ct

tr
ac

ki
ng

at
in

ac
cu

ra
te

he
ad

in
g

(I
M

U
pr

ov
id

ed
) A (m) 0 0.22 0.07 0.51 1.59 1.9 1.89 2.37

B (m) 0.01 0 0.02 0.02 0.03 0.01 0.04 0.02

C (m) 0.3 0.06 0.2 0.06 0.25 0.02 0.1 0.01

D (m) 0.3 0.24 0.22 0.46 1.35 1.91 1.81 2.38

The obtained absolute accuracy results of indirect product
positioning are provided in the upper half of Table II. It reflects
resulting, three-dimensional absolute errors of the tracked
product (D) together with its components, including 2D po-
sitioning error caused exclusively by errors in the estimated
heading (A), vertical error of the measured fork elevation
(B), and 2D positioning errors caused by external factors (C).
External errors include a human factor error (i.e., inconsistency
of the human-operated forklift) and internal accuracy of the
underlying UWB positioning system, respectively notated in
(3) as εx,ypos and εx,yexternal. Payload positioning errors caused
by errors in heading estimation were calculated according to
(2). The bottom half of Table II reflects these accuracy aspects
in the case when the ATKF heading estimation algorithm is
replaced with initial, inaccurate IMU heading data. It is done
in order to demonstrate the importance of accurate heading
estimation in the proposed indirect tracking method.

The proposed indirect tracking method has demonstrated
under 30 cm payload positioning accuracy in events I, III,
and V, primarily caused by external factors, and under 15 cm
accuracy in events II, IV, VI, VII, and VIII. These results
are in the range of the expected initial accuracy of the used
UWB positioning system, which indicates an overall minor po-
sitioning accuracy loss in the proposed method and positively
reflects its performance. Minor, primarily under 5 cm, errors
in product positioning were caused by inaccuracies in forklift
heading, which indicates an outstanding performance of the
used ATKF heading estimation algorithm. Below 4 cm errors
in product positioning were introduced by the fork elevation
sensor, which confirms its stability and robustness. The corre-
sponding indirect tracking performance results at the reference
spots are visualized in Fig. 6 with green color. The expected
indirect tracking results, recreated without the use of the ATKF
heading estimation algorithm, are demonstrated with red color
in Fig. 6. In this case, the forklift heading was provided by
the onboard IMU unit. Corresponding indirect tracking results
indicate an intensive growth of product positioning error up
to 2.38 m throughout the test campaign. This demonstrates
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Fig. 6. Visualized 2D Indirect tracking performance at the reference
key spots (magenta), based on the initial IMU provided heading (red)
and on the ATKF estimated heading (green). Roman numbers indicate
locations of the respective payload pick-up/drop-down events. The gray
line indicates the collected forklift tracking data.

the major impact of the over-time accumulated IMU heading
errors on the resulting indirect product positioning. Product
positioning errors, caused by deviations in the measured fork
elevation and other external factors, remain unchanged.

During the described test campaign, as well as in multiple
preliminary down-scaled tests, the proposed A-PDD algorithm
has demonstrated a remarkable performance, providing 100%
pick-up and drop-down event recognition accuracy. The false
alert cancellation mechanism of this algorithm has also demon-
strated the same performance in spotting the false pick-up &
drop-down events. Nevertheless, this algorithm may require
separate long-term testing in order to further validate its
reliability and assess its performance in a variety of different
scenarios.

B. Repeatability error evaluation of the proposed method
This subsection evaluates the repeatability performance of

the proposed indirect tracking method. The repeatability re-
sults are calculated for the pair of indirectly tracked payload
interaction events (i.e., pick-up or drop-down), occurred in the
same physical location. For the event pairs related to payload
stacking, the results are provided on a two-dimensional plane,
while in the case of the pick-up of the earlier dropped-down
payload, the results also include elevation error. It reflects
the expected performance of the proposed method in real-life
applications, where the ground truth (reference spot) of the
stored product is not available.

Repeatability errors of the proposed method were evaluated
in a total of 5 product pick-up/drop-down event pairs, which
have physically occurred at the same reference spots during
the experimental test campaign. Numerical results of the re-
peatability errors in the proposed indirect product localization
method are demonstrated in Table III. Results are provided
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separately for 2D (x, y coordinates) and vertical (z coordinate)
components of the tracked product locations. Two-dimensional
repeatability results are provided for both accurate (ATKF-
estimated) and inaccurate (sole IMU-provided) forklift heading
estimations. Results for the elevation repeatability error are not
provided for the event pairs I & III, IV & VI, and VI & VII,
as in these events, two products were physically stacked at the
same 2D locations and different elevations.

TABLE III
REPEATABILITY ERRORS IN THE INDIRECTLY TRACKED PRODUCTS’
ELEVATION AND 2D LOCATIONS, BASED ON THE ACCURATE (ATKF

ESTIMATED) AND INACCURATE (SOLE IMU PROVIDED) HEADING DATA.

Events
pair

2D error (x, y coordinates) Elevation error
(z coordinate)ATKF heading

(Accurate)
IMU heading
(Inaccurate)

In
di

re
ct

tr
ac

ki
ng

re
pe

at
ab

ili
ty

er
ro

r
(m

)

I & III 0.1 0.11 NA

II & V 0.32 1.11 0.02

IV & VI 0.27 1.52 NA

IV & VII 0.16 1.41 0.06

VI & VII 0.18 0.12 NA

The proposed indirect tracking method has demonstrated
two-dimensional repeatability errors in the range of 10 cm to
32 cm, similar to the observed absolute positioning perfor-
mance. The obtained repeatability error results in the prod-
uct elevation tracking demonstrate the presence of a minor
error in the range between 2 cm and 6 cm. Similar to the
obtained absolute positioning accuracy results, the provided
repeatability errors are primarily caused by external factors.
These include the human factor of the man-operated forklift
and the initial precision of the used UWB positioning system.
The proposed indirect product tracking method, based on
the inaccurate initial IMU provided heading, on the other
hand, has demonstrated a major repeatability error increase
reaching up to 1.52 m. These results additionally confirm a
determining contribution of the accurate heading estimation
towards minimizing the repeatability error of the proposed
indirect tracking method. These results reflect the general
stability and accuracy of the proposed indirect tracking method
in cases when the proposed method may only rely on the
earlier self-collected product positioning data. It presumes that
no additional assisting or reference data is available on the
server side as predefined reference storage spots and shelves,
or other dedicated areas.

C. Comparison of indirect and direct tracking methods
This subsection covers the performance comparison of the

proposed indirect tracking method with a direct product lo-
calization approach. The direct tracking method was used for
this comparison as it is expected to be the default approach if
real-time object localization is required. For this comparison,
one of the used industrial products was equipped with an
independent UWB positioning unit, highlighted in Fig. 4d, and
further referred to as a benchmark tag. Positioning data from
the benchmark UWB tag was collected independently during
the test campaign. The benchmarked product was picked up at
the reference spot REF1 (event III), transported, and dropped
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Fig. 7. Visualized 2D results of the industrial product tracking by
indirect (green) and direct (blue) methods. Lines of the corresponding
color indicate the path of the transported product, tracked by the
aforementioned methods. Dots of the corresponding color reflect the
positioning results of the stored product, tracked by the aforementioned
methods. Magenta markers represent the reference (true) spots for
product storage.

down at the reference spot REF3 (event IV). Later, the product
was picked up at the reference spot REF3 (event VI) and
dropped down at the reference spot REF4 (event VIII). Mean
Absolute Error (MAE)

MAE2D =

N∑
i=1

√
(xtrue − xi)2 + (ytrue − yi)2

N
, (21)

Root Mean Squared Error (RMSE)

RMSE2D =

√
N∑

i=1

(√
(xtrue−xi)2+(ytrue−yi)2

)2

N , (22)

error Standard Deviation (SD or σ)

σ2D =

√
N∑

i=1

(√
(xtrue−xi)2+(ytrue−yi)2−MAE2D

)2

N , (23)

and maximum error metrics were used to evaluate the accuracy
and precision of both addressed payload localization methods.

Visualized performance of both direct and indirect tracking
methods in a real-time industrial product localization is shown
in Fig. 7, respectively, with blue and green colors. Light blue
and dark green colors, respectively, show the active product
transportation route, tracked by the aforementioned methods.
Dark blue and light green colors indicate the stored (stationary)
product, tracked by corresponding methods. Corresponding
reference (true) spots are colored with magenta. Numerical
accuracy and precision results of the compared indirect and
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direct product tracking methods are respectively provided in
the left and right halves of Table IV. Results are separately
provided in 2D, vertical, and 3D dimensions for each of the
three covered reference spots.

TABLE IV
VERTICAL, 2D, AND 3D ACCURACY AND PRECISION RESULTS OF THE

PRODUCT POSITIONING BY DIRECT AND INDIRECT TRACKING METHODS,
PROVIDED SEPARATELY FOR EACH COVERED REFERENCE SPOT

Error
metrics (m)

Indirect tracking Direct tracking

2D Vertical 3D 2D Vertical 3D

Pa
yl

oa
d

in
te

ra
ct

io
n

sp
ot

:

R
E

F1

MAE 0.2 0.06 0.21 0.53 0.09 0.54

RMSE 0.2 0.06 0.21 0.56 0.11 0.57

SD (σ) 0 0 0 0.05 0.06 0.06

Errormax 0.2 0.06 0.21 0.79 0.2 0.79

R
E

F3

MAE 0.11 0.04 0.12 0.45 0.21 0.5

RMSE 0.11 0.05 0.12 0.46 0.22 0.51

SD (σ) 0.01 0.02 0 0.1 0.05 0.1

Errormax 0.11 0.04 0.12 0.94 0.38 0.94

R
E

F4

MAE 0.01 0.02 0.02 NA NA NA

RMSE 0.01 0.02 0.02 NA NA NA

SD (σ) 0 0 0 NA NA NA

Errormax 0.01 0.02 0.02 26.16 1.1 26.18

The proposed indirect tracking method has achieved a 3D
localization accuracy of the benchmarked product between 2
cm and 21 cm. Since in the proposed method, the location
of the payload pick-up or drop-down is measured only once
and represents a single data point, the accuracy metrics (MAE,
RMSE, and maximal error) are identical, while the precision
metric (standard deviation) equals zero. For this reason, both
direct and indirect methods are compared in terms of the
positioning accuracy, while the precision is only evaluated
for the direct tracking approach. Achieved vertical accuracy
results of the proposed method do not exceed 6 cm, which
is essential in covering the product stacking and shelving
scenarios. During the conducted test campaign, the indirect
tracking method experienced an insignificant ∼1 s gap in the
positioning data, clearly observed in Fig. 7 at the coordinates
(49; -22).

The direct tracking approach, on the other hand, has demon-
strated the mean absolute error and RMSE of the three-
dimensional positioning in the range of 50-57 cm at the
reference spots REF1 and REF3, with the maximal outliers of
79 cm and 94 cm, respectively, observed at these key spots.
The respective positioning error standard deviations at these
key spots were 6 cm and 10 cm. The vertical accuracy of
the direct tracking method at the reference spots REF1 and
REF3 does not exceed 11 cm and 22 cm, respectively. The
corresponding peak outliers in vertical product positioning
at these reference spots were 20 cm and 38 cm, with the
achieved error standard deviation in the range of 5-6 cm. These
results indicate the presence of a significant systematic error,
caused by numerous environmental obstacles. A relatively
reliable mitigation of this error may require the use of complex
techniques, such as channel impulse response (CIR) analysis
or ML-based methods. During the product transportation to the
reference spot REF4, however, the UWB positioning quality

for the benchmark tag has decreased to an insufficient level,
entirely preventing its further tracking at the REF4 spot. At
the moment of the product drop-down at the REF4 spot, its
latest directly tracked location was at a distance of 26.18 m,
which includes a 1.1 m vertical error. This location can be
visually observed in Fig. 7 at the approximate coordinates of
(44; -11).

In comparison with the direct tracking approach, the pro-
posed indirect tracking method has demonstrated major re-
liability, positioning stability, and approximately four times
higher overall product positioning accuracy. The achieved per-
formance results of both direct and indirect tracking methods
are explained by the physical deployment of their correspond-
ing UWB tags. In the proposed indirect tracking method, the
positioning unit is deployed on top of the ∼2 m high forklift,
above the majority of signal-blocking obstacles. The bench-
mark tag, attached directly to the product, on the other hand,
constantly remains in significantly challenging line-of-sight
(LoS) conditions with the UWB positioning infrastructure. In
these conditions, the directly localized product itself represents
the most significant LoS-blocking obstacle. The positioning
quality evaluation of the used UWB RTLS system for both
methods has confirmed this conclusion. The UWB positioning
system has demonstrated a 99.93% successful positioning rate
of the forklift deployed tag throughout the entire test campaign
and a 100% successful positioning rate at each of the covered
reference spots. The benchmark tag, however, has experienced
only 20.8% of a successful positioning rate throughout the
entire test campaign. At the reference spots REF1 and REF3,
the UWB positioning system has respectively demonstrated
only 3.2% and 31.3% of successful positioning rates, and 0%
at the reference spot REF4.

VI. CONCLUSION

This paper proposed a novel method for accurate three-
dimensional and real-time tracking of fully markerless in-
dustrial products, normally transported by industrial material
handling equipment such as forklifts, lifters, or cranes. In this
approach, the required indirect tracking setup components are
deployed on the used industrial machinery, while the tracked
products remain fully unmarked. As part of the proposed
indirect tracking method, this work also presented the sensor
fusion algorithm for automatic payload pick-up & drop-down
detection (A-PDD). Based on the distance and fork elevation
sensors, this algorithm monitors the forklift behavior and
recognizes the occurrence of a payload pick-up or drop-
down event. A capability of recognizing false event alerts
additionally ensures the reliability of the A-PDD algorithm.

The experimental testing of the proposed indirect tracking
method has demonstrated its capability to track an unmarked
industrial product with both absolute and repeatability ac-
curacy of below 30 cm. Experimental comparison with the
direct localization method has also demonstrated a significant
advantage of the proposed method in product positioning accu-
racy, reliability, and consistency. Since the proposed method
does not require the direct product marking, it enables the
localization of a theoretically unlimited number of products,
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while providing a significantly increased cost- and energy effi-
ciency. The overall energy consumption, cost, and maintenance
requirements in this method are significantly reduced and are
only limited by the number of operating material handling
equipment units (e.g., forklifts).

With minor adjustments, the proposed method has a signif-
icant applicability potential with different types of industrial
machinery, including tractors, forklifts, various loaders, and
cranes. Future advancements in the proposed method also
include the development of a simplified indirect tracking setup
version to cover various manual transportation units, such as
manual pallet jacks. Future perspectives also include the over-
all method optimization and further expansion of the potential
applications range. The proposed A-PDD algorithm may also
find its possible use in the field of robotics, automation, and
industry.
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Appendix 5
This appendix provides the enhanced pseudocode of the developed positioning data-based algorithm for the drift error correction in the IMU provided heading information,presented in Publication I. A minor post-publication improvement for the algorithm, rep-resented with the additional filtering (averaging) of the measured movement direction ismarked in the pseudocode with the corresponding comment "// New".
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Algorithm 1: Coordinates-based IMU heading drift correction algorithm
Parameters:Minimal movement speed threshold: υmin [m/s]Maximal heading range threshold: αmax [deg]Length of the primary FIFO buffer: µLength of the secondary FIFO buffer: ηReverse movement threshold: β [deg]Initial correction value: δψ [deg]Initial heading: Ψ0 [deg]
Input Data : Tracked 2D coordinates: (x,y)k [m]IMU measured heading: ψk [deg]
Outputs : Corrected heading: Ψk [deg]Heading correction value: δψ [deg]

1 Initialize primary FIFO bufferWWW of size µ

2 Initialize secondary FIFO bufferVVV of size η // New
3 θ0 = Ψ0

4 for k = 1 to ∞ do
5 Ψk =ψk +δψ

6 if New positioning data (x,y)k available then
7 Add new positioning data to bufferWWW : WWW = {(x,y)k,(x,y)k−1, . . . ,(x,y)k−µ}
8 υυυ(k) = (υ1, . . . ,υn, . . . ,υµ ), υn =

√
(xn − x1)2 +(yn − y1)2

9 ααα(k) = (α1, . . . ,αn, . . . ,αµ ), αn = atan2(−(xn − x1),−(yn − y1)) · 180
π

+180

10 if ∃υ ∈ υυυ(k) s.t. υ ≥ υmin then
11 III = {i | υi ∈ υυυ(k)≥ υmin, i ∈ (1, . . . ,µ)}
12 Circular mean of ith elements in ααα(k): θα = ααα(k)i, i ∈ III

13 if | θα −θ0 |≥ β && |ψk −ψ0 |< β then
14 θα = θα +180
15 end

16 Add movement direction θα to bufferVVV : VVV = {θα ,θ2, . . . ,θη} // New
17 Circular range of bufferVVV : Rα = Rcirc(VVV ) // New
18 if Rα < αmax then
19 Circular mean of bufferVVV : θ =VVV // New
20 δψ = θ −ψk
21 end

22 ψ0 =ψk
23 θ0 = θ

24 end
25 end
26 end
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Appendix 6
This Appendix provides the key matrices used by the proposed Adaptive Tandem KalmanFilter, described in Section 4.4.2:

X̂k =




x̂k
ŷk

vx
k−1

vy
k−1

υk−1
φk−1
Ψ̂k




, X1
k =




xk
yk
vx

k
vy

k
υk−1
φk−1
Ψ̂k




, X2
k =




xk
yk
vx

k
vy

k
υk
φk
Ψ̂k




, Xk =




xk
yk
vx

k
vy

k
υk
φk
Ψk




, (30)

A =




1 0 dtx,y
k 0 0 0 0

0 1 0 dtx,y
k 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, (31)

B =
[
0 0 0 0 0 0 dtω

k

]T
, uk =

[
ωk

]
, (32)

I = P0 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, (33)

Qk =




qpos 0 0 0 0 0 0
0 qpos 0 0 0 0 0
0 0 qv 0 0 0 0
0 0 0 qv 0 0 0
0 0 0 0 qυ 0 0
0 0 0 0 0 qφ

k 0
0 0 0 0 0 0 qΨ

k




, (34)

1H =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
,

2H =

[
0 0 0 0 1 0 0
0 0 0 0 0 1 0

]
,

3H =
[
0 0 0 0 0 0 1

]
,

(35)

1R =

[
rpos 0

0 rpos

]
, 2Rk =

[
rυ 0
0 rφ

k

]
, 3Rk =

[
rΨ

k

]
, (36)

1zk =

[
xmeas

k
ymeas

k

]
, 2zk =

[
υ̂k
φ̂k

]
=

[ √
vx

k
2 + vy

k
2

atan2(−vx
k,−vy

k) · 180
π

+180

]
, 3zk =

[
φk
]
. (37)
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Appendix 7
Table 16 provides the tuning parameters for both proposed IMU heading drift correctionand ATKF heading estimation algorithms, used in both test simulations and in the experi-mental test campaign, respectively described in sections 4.4.3 and 4.4.4.
Table 16: Tuning parameters for both proposed ATKF heading estimation and IMU heading drift
correction (DCA) algorithms, used in test simulations and during the experimental test campaign

Parameter
Value

Simulations ExperimentaltestsScenario I Scenario II

AT
KF

qpos 1 m2 1 m2 1 m2

qv 0.1 m2/s2 5 m2/s2 10 m2/s2

qυ 1 m2/s2 1 m2/s2 1 m2/s2

qφ

min 1 deg2 1 deg2 0 deg2

qΨ
min 0 deg2 0 deg2 0 deg2

qmax 100 deg2 100 deg2 10000 deg2

rpos 30 m2 40 m2 3 m2

rυ 0 m2/s2 1 m2/s2 0 m2/s2

rφ

min 100 deg2 10 deg2 0 deg2

rΨ
min 0 deg2 0 deg2 0 deg2

rmax 100 deg2 100 deg2 10000 deg2

υ0
thr 0.07 m/s 0.07 m/s 0.1 m/s

υ
φ

thr 0.3 m/s 0.4 m/s 0.5 m/s
υΨ

thr 0.55 m/s 0.75 m/s 1.18 m/s
aφ 190 230 300
aΨ 33 445 710

DC
A

µ 10 5 6
η 4 2 5
υmin 5 m 4 m 0.3 m
αmax 10 deg 10 deg 10 deg
β 120 deg 120 deg 120 deg
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Appendix 8
This Appendix covers the additional results of the performed simulated tests of the ATKFheading estimation algorithm and gyroscope drift mitigation algorithm. While the resultson the median absolute heading error are provided and discussed in Section 4.4.3, thisappendix covers the additional results, which include the accuracy metrics of mean ab-solute heading error (Fig. 25) and root mean squared heading error (Fig. 26), as well asprecision metrics of median absolute heading error deviation (Fig. 27), mean absoluteheading error deviation (Fig. 28), and heading error standard deviation (Fig. 29).
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Figure 25: Averaged results on theMean Absolute Error in the simulated vehicle heading, estimated
by both DCA (left) and ATKF (right) algorithms in two different movement scenarios I (top) and II
(bottom), at different combinations of PNDR and gyroscope drift ratios.
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Figure 26: Averaged results on the Root Mean Squared Error in the simulated vehicle heading,
estimated by both DCA (left) and ATKF (right) algorithms in two different movement scenarios I (top)
and II (bottom), at different combinations of PNDR and gyroscope drift ratios.
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Figure 27: Averaged results on themedian absolute error deviation in the simulated vehicle heading,
estimated by both DCA (left) and ATKF (right) algorithms in two different movement scenarios I (top)
and II (bottom), at different combinations of PNDR and gyroscope drift ratios.
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Figure 28: Averaged results on the mean absolute error deviation in the simulated vehicle heading,
estimated by both DCA (left) and ATKF (right) algorithms in two different movement scenarios I (top)
and II (bottom), at different combinations of PNDR and gyroscope drift ratios.
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Figure 29: Averaged results on the error standard deviation in the simulated vehicle heading, es-
timated by both DCA (left) and ATKF (right) algorithms in two different movement scenarios I (top)
and II (bottom), at different combinations of PNDR and gyroscope drift ratios.
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Appendix 9
This Appendix provides heatmaps of the UWB anchors’ infrastructure ranging coverage incase of the proposed indirect tracking method (30a) and direct tracking approach (30b).Multicolored line represents the positioning data of the tracked payload (B) by the corre-spondingmethod, whereas the color reflects the number ofUWBanchors used for rangingin the particular area. UWB anchors’ deployment is shown with green diamonds, whilethe used reference points, described in Section 5.4 are shown with magenta.
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Figure 30: Heatmaps of the UWB anchors’ infrastructure coverage in ranging of UWB tag in case
of proposed indirect tracking method (a) and direct tracking method (b), with mapped anchors in-
frastructure (green diamonds) and reference points (magenta).
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