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INTRODUCTION 
 
Pollen grains preserved in lake and bog deposits serve as one of the most powerful 
tools for reconstructing past vegetation and environment. Following the elaboration of 
pollen analysis in 1916 by Lennart von Post (von Post 1916), pioneering palynological 
research was also initiated in the Baltic region (Thomson 1922, 1929; Nomals 1930; 
Galenieks 1931, 1935). Numerous palynological studies from bog and lake sediment 
sequences have been carried out in Latvia since then (Danilans 1955; Levkovskaya 
1987; Lācis and Kalniņa 1998; Kalnina et al. 2004; Ozola et al. 2010; Ozola 2013). 
The majority of the postglacial sequences in Latvia, however, are still not dated and are 
described solely through comparisons of pollen zones. To-date, there are only some 
chronologically controlled pollen sequences from lakes in Latvia (Heikkilä and Seppä 
2010; Puusepp and Kangur 2010). Due to the lack of a defined time scale, uncertainty 
remains with respect to the relative timing of environmental changes in relation to 
climate variability during the LG and Holocene. Therefore, many questions remain, 
particularly regarding the succession of local and regional vegetation, 
palaeoenvironmental conditions and climate change. 

Palaeoecological records preserved in sedimentary deposits such as lakes provide 
unique insights into the history of past ecosystems and long-term plant community 
dynamics. Relatively small and closed lakes with undisturbed and continuous 
sedimentation possibly integrate the majority of the information about the changes in 
the lake basin and its catchment (Seppä et al. 2009).  

All of the sites studied for this thesis are situated in Latvia and lie between the 
oceanic and continental climate regions and in the boreo-nemoral ecotonal transitional 
zone, which is more sensitive to environmental changes and can be stronger 
represented via a variety of proxies preserved in the lake sediments. In this regard, the 
sites selected for this thesis are important in a wider regional context. Furthermore, the 
longest and most complete record of postglacial vegetation history in Latvia is 
presented to reconstruct the past millennial scale changes, which could add to further 
case studies on vegetation dynamics and be integrated into models.  

Sugita (2007) has shown that relatively small lakes and stand-scale sites better 
reflect changes in the immediate vegetation than large lakes, where long-distance 
effects of pollen cannot be overlooked (Broström et al. 2008; Kuneš et al. 2008). The 
sizes of the studied lakes vary from 13–32.6 ha, thus the pollen source areas are 
comparable. Studies of stand-scale sites situated under a closed canopy have proven to 
be useful for recording vegetation history within an approximate radius of 20–100 m 
from the site (Overballe-Petersen and Bradshaw 2011). Palaeoecological investigations 
have shown the possibilities of stand-scale sites to reflect disturbances and tree 
succession patterns that can be linked directly to past local vegetation (Bradshaw et al. 
2005; Bjune et al. 2009). Comparisons between two sites that are situated close to each 
other but have different pollen source areas may reflect differences and let us evaluate 
possible factors that control the development of vegetation at the local and regional 
scale. However, the question remains: what is the role of the local versus regional 
changes in vegetation dynamics in Latvia?  
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In addition to postglacial vegetation succession, environmental changes and 
climatic variability, lake sediments preserve evidence of the anthropogenic activity. 
Although humans have inhabited Latvia since the Paleolithic (Loze 1972, 1997, 2003; 
Levkovskaya 1987; Vasks et al. 1999; Ozola et al. 2010; Meadows et al. 2014a, 
2014b), there are few detailed studies of land-use history and human impact on local 
and regional environments in the area. Since the proposal of the “landnam” theory by 
Iversen (1941) and publication on anthropogenic pollen indicators by Behre (1981), 
detection of human presence and activities in certain areas has become possible. 
Palaeoenvironmental studies (e.g., Poska et al. 2004; Poska and Saarse 2006; Saarse et 
al. 2010; Heinsalu and Veski 2010), particularly pollen analysis, have shown that it is 
possible to recognize and reconstruct local agricultural history and human-induced 
landscape changes even when signs of early cultivation are weak. This may also serve 
to explain archaeological issues and questions by adding evidence from another 
perspective: when did the first intensive cultivation practices begin in Latvia, and what 
was their magnitude in comparison to later times? Can we differentiate the Iron Age 
cultivation pattern from medieval patterns, where in addition to new field systems and 
techniques, political change appeared with the foreign crusades (Curry 2012; Brown 
and Pluskowski 2014)? Did noticeable changes in land ownership (the crusades) 
actually change previous agricultural practises, and how different were those changes 
in Latvia compared to other regions during the invasion of the crusades?  

Human-induced changes mainly increase of agricultural and industrial 
development, has promoted nutrient overenrichment of waters (eutrophication), which 
can negatively impact water quality. Furthermore, a rise in mean air temperature can 
influence the stratification of lake water columns and initiate dominant toxic algal 
blooms of cyanobacteria (Brookes and Carey 2011; Winder and Sommer 2012; De 
Senerpont Domis et al. 2013; Lürling et al. 2013; Pätynen et al. 2014). Phytoplankton 
species are the primary producers of biomass in lakes, and they play important role in a 
variety of food-web structures. Any shift in their diversity and production has an 
impact on other aquatic life forms. Therefore, it is crucial to improve our 
understanding of how natural temperate terrestrial and aquatic ecosystems responded to 
long-term postglacial climate and environmental change, to predict their response to 
future environmental variability. There are, however, few studies on fossil 
phytoplankton (excluding diatoms), such as green algae and cyanobacteria (Veski 
1994; van Geel et al. 1996; Jankovská and Komárek 2000; Weckström et al. 2010), 
which increases the importance of other microfossil components that are visible during 
pollen analysis. Commonly these “other” microfossils are called non-pollen 
palynomorphs (van Geel 2001), and the palaeoecological community has become 
increasingly interested in examining them. 

The natural ecosystem is complex, and in many cases mono-analysis cannot truly 
reflect all environmental changes. Therefore, a multi-proxy approach was applied for 
most of the studied sites related to this thesis to determine vegetation dynamics, 
environmental and climatic change, and also human impacts on lakes and their 
surroundings. Taking a long term and multi-proxy approach offered by the 
palaeoenvironmental record, the results of this thesis allow the new data to be placed 
within a broader environmental, cultural and historical context in the eastern Baltic 
region. 
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The aims of the present thesis are as follows: 

1. to discuss the temporal and spatial magnitude of climate variability during the 
LG and the Early Holocene; 

2. to reconstruct the longest and most complete postglacial record of vegetation 
history in Latvia and discuss local and regional Holocene vegetation dynamics; 

3. to evaluate for the first time in the Baltic region which environmental factors 
influenced the dominance of specific phytoplankton communities over the last 
14,500 cal BP; 

4. to reconstruct the establishment of intensive land-use and evaluate changes in 
vegetation and environment with the start of agricultural practice in Latvia; 

5. to assess the impact of humans on the local and regional terrestrial 
environment before and after the conquest of the crusades (13th–16th century). 
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1. MATERIAL AND METHODS  

1.1. Study area and sites 

 
The geographical location of study area, Latvia, is 55°40’ to 58°05’N and 20°58’ to 
28°14’E and is bordered by Estonia to the north, Russia to the east, Belarus to the 
southeast and Lithuania to the south (Fig. 1). The western and northwestern coasts of 
Latvia are surrounded by the Baltic Sea. Latvia’s area is 64,589 km2, of which 
approximately 10% is covered by peatlands and 4% by rivers and lakes (Kalnina et al. 
2014). 
 

 
 
Figure 1. The studied sites are marked by stars and some of the sites discussed in the 
text are marked by dots. The grey dotted lines indicate the location of the VU – 
Vidzeme Upland and the ELL – Eastern Latvian Lowland. Study areas or sites related 
to certain papers are given. 
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Latvia is rather flat with an average altitude of approximately 90 m a.s.l. The 
highest point, Gaiziņkalns in the Vidzeme Upland, reaches 312 m a.s.l., but elevations 
higher than 200 m a.s.l. are restricted to less than 3% of the area (Zelčs and Markots 
2004). Although Grewingk (1879) was the first to assume that Pleistocene glaciations 
in Latvia are of different ages, it was Aleksis Dreimanis who found conclusive 
evidence for three Pleistocene glaciations in Latvia (Zelčs and Raukas 2011). The 
present-day topography has largely been formed as a result of the Pleistocene 
glaciations, particularly the last Weichselian glaciation and the following deglaciation 
(Zelčs and Markots 2004; Zelčs et al. 2011). 

The study area is located in the hemiboreal vegetation zone and is characterised by 
deciduous-coniferous (mixed) forest. The typical coniferous species are Norway spruce 
(Picea abies) and Scots pine (Pinus sylvestris), and the typical deciduous species are 
birches (Betula spp.), alders (Alnus glutinosa, Alnus incana), mountain elm (Ulmus 
glabra), ash (Fraxinus excelsior), lime (Tilia cordata) and oak (Quercus robur). 

The climate in the area is transitional from maritime to continental, therefore the 
annual frequencies of arctic and sub-polar air masses is fairly high (Draveniece 2009; 
Avotniece et al. 2010). The mean annual temperature in central Latvia (Riga) from 
1851 to 2006 was 6.2 °C, ranging from -2.6 °C (mean December temperature) to 18.0 
°C in July (Dauškane 2010). The mean annual precipitation from 1851 to 2006 in 
Latvia (Riga) was 614 mm (Dauškane et al. 2011).  

Lake Lielais Svētiņu (water depth 4 m; 56°46’N; 27°08’E) and Mazais Svētiņu Bog 
(56°45’N; 27°08’E) are located in the Rēzekne district of eastern Latvia (Fig. 1), in the 
Eastern Latvian Lowland 13 km east of Lake Lubāns. The bedrock consists of 
Devonian dolomite covered by Quaternary deposits with a thickness of 5–10 m 
consisting of sand, silt and clay. Lake Lielais Svētiņu is a drainage lake with an area of 
18.8 ha and is located at an elevation of 96.2 m a.s.l. Its catchment (~12 km2) is 
predominantly forested but also partly covered by fields. Mazais Svētiņu Bog 
represents a stand-scale site, and its catchment area is restricted to 20–100 m2. 

Lake Āraiši is located (57°15’N; 25°17’E) in central Latvia (Fig. 1), on the western 
edge of the Vidzeme Upland, 6 km south of Cēsis at an elevation of 120.2 m a.s.l. The 
area of the lake is 32.6 ha. It has a flow-through hydrological regime and a mean and 
maximum depth of 4 and 12.3 m, respectively. The size of the lake’s catchment area is 
~10 km2. The geology is Devonian sandstone overlain by 80 m of till.  

Lake Trikātas (57°32’N; 25°42’E) is situated in northern Latvia (Fig. 1), in the 
north Vidzeme lowland 17 km east of Valmiera at an elevation of 50 m a.s.l. The 
surface area of the lake is 13 ha, and the mean and maximum water depths are 1.8 and 
6.5 m, respectively. The lake is located in a 25 m deep valley with an outflow 
connected with the River Abuls on the western side. The surrounding landscape 
comprises a mixture of cultivated land and pasture overlaying sandy and podzolic soils 
(Kasparinskis and Nikodemus 2012). Quaternary glacial till and alluvial deposits in the 
Trikātas area overlie Devonian sandstone bedrock. 
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1.2.  Methods 
 
The methods that were used are described in separate papers included in the current 
thesis. The primary study method was analysis of pollen and non-pollen palynomorphs. 
Samples for pollen analysis (Papers I–III, V–VI) were performed using standard 
acetolysis procedures (Berglund and Ralska-Jasiewiczowa 1986; Fægri and Iversen 
1989). Known quantities of Lycopodium spores were added to each sample (except for 
Mazais Svētiņu Bog) to allow calculation of pollen concentration and PAR (Stockmarr 
1971; Chambers et al. 2011). Microscopic charcoal content in the pollen slides was 
estimated as in Finsinger et al. (2008). 

A wide group of other microfossils (van Geel 2001) were recorded alongside pollen 
and identified using the published literature on non-pollen palynomorphs that was 
listed in Papers III and V. 

Furthermore, a variety of analyses were performed to obtain additional information 
on related changes of and within a catchment of the studied sites. The procedures and 
descriptions of the applied methods are given in Papers I–VI. The OM content of the 
sediment was determined by LOI (Heiri et al. 2001), and the ignition residue was 
estimated as the MM content of the sediment (Papers I–III, V–VI). MS (Papers I, III, 
V–VI) showing the minerogenic particles contribution to the sediment was measured 
with a Bartington MS2E meter (Nowaczyk 2001). Plant macrofossils that provided 
information on the vegetation growing directly around the sedimentary basin (Birks 
and Birks 2006; Amon et al. 2014) was applied in Papers I and VI. The degree of 
decomposition of the Mazais Svētiņu Bog peat was determined to characterise the bog 
surface wetness (Paper II) (von Post 1924; Stanek and Silc 1977; Malterer et al. 1992). 
Diatom analysis was carried out to reconstruct past natural and human-induced 
changes on the lake trophic state (Papers I, III) (Battarbee 2001; Krammer and Lange-
Bertalot 1986-1991). To look at the sedimentation history and human impact, a wide 
range of geochemical elements were analysed by ICP-OES (Paper III) (Holliday and 
Gartner 2007; Cook et al. 2010; Hutson and Terry 2006). To characterise the climate, 
pollen-based temperature reconstructions (Twin and Tsum) were done based on the WA-
PLS regression and calibration technique (ter Braak and Juggins 1993) (Papers IV and 
V). To characterise general trends in changes to terrestrial vegetation, unconstrained 
ordination of pollen data was used – namely PCA on the covariance matrix of the 
Hellinger-transformed pollen percentages (Paper III). A study of the associations 
between the fossil phytoplankton communities and reconstructed environmental 
proxies RDA (Rao 1973) was performed in Paper V. 

To place the palaeobotanical data within a cultural context, the results were 
presented and discussed in relation to Latvian archaeological and historical periods: 
Late Paleolithic >8000 BC, Mesolithic 8000–4500 BC, Neolithic 4500–1500 BC, 
Bronze Age 1500–500 BC, Early Iron Age 500 BC–AD 400, Middle Iron Age AD 
400–800, Late Iron Age AD 800–1200, Medieval period AD 1200–1550, Postmedieval 
period AD 1550–1850 and Modern period AD 1850–present (Vasks et al. 1999; 
Graudonis 2001; Zagorska 2001). Archaeological and historical periods as well as 
BC/AD age scale were used when human impact was discussed, but cal BP was used in 
all other cases throughout the current thesis.  
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1.2.1. Sediment sampling 
 
Lake sediment samples from Lake Lielais Svētiņu, Lake Araiši and Lake Trikātas were 
obtained from ice using one-meter long Russian-type corers with diameters of 7.5 and 
10-cm. The topmost 0.5 m of unconsolidated sediment were sampled using a Willner-
type gravity sampler. Sediment cores were documented and packed into film-wrapped, 
one-meter plastic PVC semi-tubes. The topmost sediment sequence was sub-sampled 
into 1-cm slices and put in plastic bags. A 500-cm-long sediment sequence was taken 
from Mazais Svētiņu Bog using an Ejelkamp peat sampler with a 5-cm diameter and 
50-cm length. All of the samples were transported to the laboratory for further analyses 
(Table 1). 
 
Table 1. The applied analytical methods are expressed by the number of samples that 
were analysed 

Palaeoecological analyses 
Lake Lielais 
Svētiņu 

Lake 
Āraiši 

Lake 
Trikātas 

Mazais 
Svētiņu Bog 

Methods 
described in 
Papers 

AMS 14C dating 12 5 7 - I, V, VI 
Conventional 14C dating 8 12 6 3 II, III, V, VI 
SFAP - 28 - - III 
Pollen 136 42  36 41 I–III, V, VI 
Non-pollen palynomorphs 101 36 33 - III, V 
Plant macrofossils  77 - 65 - I, VI 
Diatoms 28 33  16 - I, III 
Degree of peat 
decomposition 

- - - 165 II 

LOI 1066 621  199  - I–III, V, VI 
MS 381 621  496  500  I, III, V, VI 
ICP-OES - 57 35  - III 

1.2.2. Dating 
 
For Lake Lielais Svētiņu (Papers I–II, IV and V), twelve AMS 14C dates from 
terrestrial macrofossils and eight conventional 14C dates from bulk sediment were 
determined. Macrofossils were radiocarbon-dated using the AMS method in the 
Poznań Radiocarbon Laboratory (Poz) in Poland, and bulk samples were dated by the 
conventional liquid scintillation method at the Institute of Geology, Tallinn University 
of Technology (Tln) in Estonia. In Papers I, II and IV, radiocarbon dates were 
calibrated using the IntCal09 calibration dataset (Reimer et al. 2004), and an age-depth 
model was built with an OxCal 4.1 depositional model, including visible sedimentary 
boundaries (Reimer et al. 2004; Bronk Ramsey 2008). In Paper V, an OxCal 4.1.2 
depositional model and the application of the IntCal13 calibration set (Reimer et al. 
2013) was used. 

For Lake Āraiši (Paper III), the chronology was based on 7 conventional 14C Tln 
dates from bulk sediment samples, and for the upper sequence the distribution of SFAP 
was used. The peak in SFAP at depth 35 cm was assigned to AD 1970±10 (Rose 1990; 
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Heinsalu and Alliksaar 2009). Radiocarbon dates were converted to calendar years 
using the IntCal13 calibration dataset (Reimer et al. 2013) and the Clam 2.2 
programme deposition model (Blaauw 2010), with a 95.4% confidence level. 

The chronology of the sediment sequence of Lake Trikātas (Paper VI) was 
established based on a Bayesian age-depth model constructed from 6 AMS 14C dates. 
The dated material, all of which was of terrestrial origin, was processed at the Scottish 
Universities Environmental Research Centre, United Kingdom (GU), and Poznań. In 
addition seven gyttja bulk materials were dated in Tallinn to estimate the potential hard 
water effect and dating error offset in comparison to AMS dates. Radiocarbon dates 
were converted to calendar years using the IntCal13 calibration dataset (Reimer et al. 
2013) and Clam 2.2. programme deposition model (Blaauw 2010), with a 95.4% of 
confidence level. 
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2. RESULTS 

2.1. Lithostratigraphy and chronology 
 
Descriptions of the sediments at the studied sites are given in Table 2. Lake Lielais 
Svētiņu (Papers I–II, IV and V), Lake Āraiši (Paper III) and Lake Trikātas (Paper VI) 
comprise mostly gyttja with silts and clay silts at the bottom part of the sequences. The 
Mazais Svētiņu Bog (Paper II) sequence consists mainly of peat. 
 
Table 2. Description of the sediments at the studied sites 
Depth from the water surface, 
cm 

Sediment description 

Lake Lielais Svētiņu 
400–1105 Gyttja, brown, homogeneous 
1105–1160 Gyttja, silty, greenish brown, homogeneous 
1160–1190 Silt, dark gray, with OM 
1190–1268 Silt, light gray 
1268–1317 Silt, yellowish, with diffuse OM 
1317–1332 Clay, distinctly laminated 
1332–1498 Silt, gray, increasingly dark-coloured towards the upper limit 
1498–1515 Sand, dark-coloured 
1515–1535 Sand, beige, compact 
Mazais Svētiņu Bog 
0–5  Sphagnum peat  
5–30  Wood-grass peat 
30–155  Sedge peat 
155–170  Wood-sedge peat 
170–205  Wood-grass peat 
205–360  Wood peat 
360–375  Sand  
375–410  Wood peat 
410–420  Sand  
420–425  Wood peat 
425–435  Sand 
435–450  Wood peat 
450–500  Till 
Lake Āraiši 
1230–1257 Gyttja, silty, black 
1257–1263 Gyttja, silty, dark brown 
1263–2150 Gyttja, silty, homogeneous, dark brown 
2150–2270 Gyttja, silty, light gray-brown 
2270–2320 Gyttja, gray brown 
2320–2350 Gyttja, brown, dark 
2350–2356 Clay, silty, black brown, dark 
2356–2377 Clay, silty, gray, light 
2377–2379 Clay, silty, dark gray 
2379–2400 Clay, silty, gray, dark 
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2400–2467 Clay, silty, brown gray, dark 
2467–2474 Sand with gravel, gray, light 
Lake Trikātas 
400–410 Gyttja, silty, calcareous, yellow 
410–445 Gyttja, silty, calcareous, black 
445–514 Gyttja, silty, calcareous, brown, dark 
514–537 Gyttja, silty, calcareous, brown, light 
537–575 Gyttja, silty, calcareous, gray brown, light 
575–642 Gyttja, silty, calcareous, gray brown, dark 
642–663 Gyttja, silty, calcareous, brown, dark 
663–800 Gyttja, silty, brown, dark 

 
The results of the radiocarbon dating are summarised in Table 3. The 14C dates for 

Lake Lielais Svētiņu (Papers I, II), Mazais Svētiņu Bog (Paper II), and part of Lake 
Āraiši (Paper III) have been published, but Lake Trikātas (Table 3; Paper VI) and part 
of Lake Āraiši (Table 3) are presented for the first time herein.  
 
Table 3. Radiocarbon dates from the studied sediment sequences 
Depth, 
cm 

Lab code 14C date yr 
BP 

Calibrated age, 
cal BP 

Dated material 

Lake Lielais Svētiņu 
523 Tln-3167 1848±70 2110–1725 Bulk gyttja 
593 Tln-3168 3231±70 3480–3170 Bulk gyttja 
673 Tln-3169 4091±70 4680–4420 Bulk gyttja 
743 Tln-3170 4701±70 5590–5350 Bulk gyttja 
823 Tln-3171 5822±90 6790–6500 Bulk gyttja 
893 Tln-3172 6876±90 7840–7590 Bulk gyttja 
973 Tln-3173 7974±90 9090–8730 Bulk gyttja 
1043 Tln-3174 9169±100 10,300–9900 Bulk gyttja 
1157 Poz-30426 10,100±60 11,650–11,590 Wood 
1185 Poz-36710 10,270±50 12,140–11,810 Twig 
1215 Poz-31768 10,330±50 12,400–12,120 Wood 
1261 Poz-31769 10,760±50 12,760–12,560 Twig, bark 
1315 Poz-36711 11,460±60 13,400–13,160 Bark 
1355 Poz-36712 11,670±60 13,620–13,400 Stem 
1365 Poz-36715 11,630±60 13,660–13,460 Betula nana leaf, Potentilla seed 
1400 Poz-36713 11,840±60 13,830–13,640 Twig 
1445 Poz-36714 12,410±60 14,240–13,990 Twig, Betula nana leaf 
1492 Poz-31770 12,380±60 14,400–14,040 Twig, bark 
1510 Poz-29298 12,420±60 14,590–14,150 Wooden material 
1530 Poz-31771 12,350±60 14,950–14,180 Wooden material 
Mazais Svētiņu Bog 
165 Tln-3202 2613±60 2860–2490  Bulk peat 
335 Tln-3203 5154±70 6180–5730  Bulk peat 
435 Tln-3205 7297±100 8340–7950  Bulk peat 
Lake Āraiši 
1300 Poz-53115 510±30 505–555 Bulk gyttja 
1373 Tln-3308 684±95 520–785 Bulk gyttja 
1423 Tln-3309 943±105 680–1020 Bulk gyttja 
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1473 Tln-3310 1106±95 900–1260 Bulk gyttja 
1523 Tln-3311 1280±110 970–1370 Bulk gyttja 
1573 Tln-3316 1365±60 1175–1380 Bulk gyttja 
1623 Tln-3317 1636±65 1640–1695 Bulk gyttja 
1673 Tln-3318 1843±70 1605–1930 Bulk gyttja 
1723 Tln-3312 2163±75 1995–2335 Bulk gyttja 
1773 Tln-3313 2487±75 2375–2740 Bulk gyttja 
1813 Tln-3314 2667±70 2700–2955 Bulk gyttja 
1853 Tln-3315 2951±70 2925–3270 Bulk gyttja 
1893 Tln-3319 3311±65 3400–3650 Bulk gyttja 
2052 Poz-48431 4410±35 4865–5060 Leaf 
2225 Poz-53113 6470±35 7310–7440 Bulk gyttja 
2353 Poz-53112 9970±60 11,245–11,640 Bulk gyttja 
2397 Poz-53111 12,360±60 14,110–14,750 Wood 
Lake Trikātas 
450 GU-27675 1115±35 1090–935 Bulk gyttja (hard water error) 
475 GU-27676 1200±35 1190–1050 Bulk gyttja (hard water error) 
477 GU-29839 1918±26 1930–1820 Spergula arvensis (hard water error) 
481.5 GU-29840 158±26 230–165 Ranunculus leaf fragments 
483 Poz-61639 175±30 225–135 Wood 
500 GU-27677 1535±35 1525–1350 Bulk gyttja (hard water error) 
525 GU-27678 1735±35 1720–1555 Bulk gyttja (hard water error) 
545 Poz-61640 915±30 920–760 Picea abies needles, fragment of seed 
550 GU-27679 2800±35 2990–2840 Bulk gyttja (hard water error) 
575 GU-27680 2840±35 3060–2860 Bulk gyttja (hard water error) 
577 Poz-61641 1345±30 1310–1240 Picea abies needle fragment 
689 Poz-61642 2485±30 2725–2440 Wood 
723 Poz-61643 2990±30 3250–3070 Wood 
 

2.2. Palaeobotanical analyses 
 
In the present thesis, the main emphasis is on pollen and non-pollen palynomorphs, 
therefore a short overview of the results has been given further below. Detailed results 
of the other methods can be found in Papers I–VI.   

During the LG, pollen proportions were dominated by non-arboreal pollen from 
14,560 to 13,760 cal BP (GI-1, Bølling) and 12,700–11,650 cal BP (GS-1, Younger 
Dryas), and arboreal pollen (mainly Betula and Pinus) dominated from 13,760–12,700 
cal BP (GI-1, Allerød) in the area surrounding Lake Lielais Svētiņu (Paper I). 
Furthermore, corroded and redeposited thermophilous pollen grains were recorded 
during cooling phases. The Holocene was characterized by mixed conifer forests in the 
Early Holocene (11,650–8000 cal BP). Within the expansion of thermophilous tree 
species, a sudden decline of the pollen values of all the broad-leaved taxa occurred at 
8200 cal BP. The Mid-Holocene (8000–4000 cal BP) was characterised by the 
dominance of thermophilous trees species, and the Late Holocene, from 4000 cal BP to 
the present, (Papers I–II) was dominated by mixed conifer-deciduous forest. 

Cereal pollen grains as indications of cultivation show the presence of Avena, 
Hordeum, Triticum and Secale cereale only in the Late Holocene (Papers II–III, VI). 
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The first cereal grains of Avena, Triticum and Hordeum were recorded from 500 and 
100 BC, respectively (Paper VI). Significant intensification of cultivation began in the 
Late Iron Age and Medieval period, as shown in the results presented in Papers III and 
VI, and continued to increase, with highest AR occurring from AD 1800–1900. 

2.3. Non-pollen palynomorphs analyses 
 
During the LG, the highest AR and percentage values of phytoplankton occurred in GI-
1, but overall, the LG was characterised by low phytoplankton AR (Paper V). 
Scenedesmus and Tetraedron minimum were the dominant phytoplankton during the 
LG. The Holocene had major changes in phytoplankton community with a rapid 
increase in their AR. From 11,650 to 8000 cal BP, Tetraedron minimum, Scenedesmus, 
Botryococcus and Glaucospira were the dominant taxa. Later, between 8000 and 2000 
cal BP, cyanobacteria overwhelmed other algae and had their highest AR and 
percentages (Paper V). A rapid decrease in cyanobacteria and an increase in 
Pediastrum, Botryococcus and Coelastrum occurred during the last 2000 years. 

Lake Āraiši (Paper III) had a low AR of cyanobacteria, Botryococcus and 
Pediastrum during the Early Iron Age (AD 1–400). Within fungi, the highest AR of 
Kretzschmaria deusta was recorded. Sordaria, Sporormiella and Glomus spores 
increased abruptly after AD 750 (Middle Iron Age). The Late Iron Age (AD 800–1200) 
was characterised by a rapid increase of cyanobacteria from AD 800–1000 and 
decrease afterwards. An abrupt decrease of Sordaria and Sporormiella, Glomus and 
other ascospores was recorded at AD 1050. Only Sporormiella and Podospora had 
more frequent appearance throughout Historical times (AD 1200–present). 
Botryococcus, Pediastrum, Scenedesmus and Tetraedron minimum had elevated AR 
from AD 1200–1500.  
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3. DISCUSSION 

3.1. Postglacial environmental and climatic conditions 

3.1.1. Lateglacial 
 
Palaeoecological records preserved in sedimentary deposits provide a unique insight 
into the nature of past ecosystems. Moreover, rapid fluctuations in climate and 
environmental conditions during the LG make this time period an important focus of 
studies (Lowe et al. 1999; Heikkilä et al. 2009; Kalm 2012; Amon et al. 2014; 
Feurdean et al. 2014). Relatively small closed lakes are sensitive to these changes 
because they integrate sedimentary information of the variations in the lake basin and 
its catchment. Although studies on the LG in the eastern Baltic area go back almost a 
century, they focus on ice-recession stages and chronology (Dreimanis 1935, 1947; 
Zelčs and Markots 2004; Stančikaitė et al. 2008; Koff and Terasmaa 2011; Zelčs et al. 
2011; Kalm 2012; Saarse et al. 2012); there is a paucity of studies on climatic and 
environmental change. Thus, uncertainty remains with respect to the relative timing of 
environmental changes in relation to climatic fluctuations during the LG. 

Radiocarbon dates revealed that the establishment of ice-free ground in the 
surroundings of Lake Lielais Svētiņu (Paper I) and Lake Āraiši (Table 3) occurred by 
at least 14,560 and 14,390 cal BP, respectively. These dates are in good agreement 
with the results of regional studies (Heikkilä and Seppä 2010; Amon et al. 2014; 
Stančikaitė et al. 2014) and support the idea of relatively rapid ice retreat from the 
eastern Baltic area. Furthermore, the age obtained from Lake Āraiši is considerably 
older (14,390 cal BP) in comparison with Lake Ķūžu (12,900 cal BP) (Koff and 
Terasmaa 2011), which is located only 25 km to south, and with the Raunis site 
(13,300–13,200 cal BP) (Amon 2012), which is located 10 km to northeast (Fig. 1). 
Therefore, a complex deglaciation pattern persisted which suggests differences not 
only across the eastern Baltic but also on a smaller scale restricted to the western parts 
of the Vidzeme Upland, central Latvia. Complexity is attributed also to the fact that 
several influencing landscape features, such as the survival of buried blocks of dead ice 
(Lake Ķūžu) and ice meltwater lakes (Raunis), can occur in a small area. The study by 
Nartišs (2013) on reconstructions of ice meltwater lakes supports the complexity of the 
retreat of the Late Weichselian ice sheet margin in central and northern Latvia. 
Therefore, we can argue that the geomorphological characteristics and landscape were 
not uniform during the LG. 

The complexity of deglaciation process was significantly controlled by the decaying 
ice sheet, proglacial lakes and mean air temperature throughout the LG, which also 
influenced the environmental conditions also in other regions in Europe (Birks and 
Birks 2014; Feurdean et al. 2014). Quantitative pollen based temperature 
reconstructions indicate that the mean Twin was as low as -16.8 °C during GI-1 
(14,650–12,850 cal BP) and as low as -17.5 °C during GS-1 (12,850–11,650 cal BP) in 
Latvia (Paper IV). The highest Twin (-16 to -15 °C) was reached between 13,900 and 
12,850 cal BP. Regional synthesis from multiple sites within the transect from 
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Estonia–Latvia–Lithuania–Belarus (Paper IV) revealed that during GI-1, Twin was over 
10 °C colder than today in Latvia and Estonia and approximately 8 °C colder than 
today in Belarus. A similar gradient and magnitude of temperature change was also 
recorded during the GS-1, which suggests latitudinal differences caused by the 
proximity of the Scandinavian ice sheet. Moreover, the decrease in Twin and Tsum during 
GS-1 (12,850–11,650 cal BP) and the increase in MM and fungi hyphae indicate that 
this time was characterised not only by cold climate but also by high soil erosion 
within the catchment (Papers I, II and V). Paper I highlights a parallel increase in 
corrosion of pollen grains and redeposition of thermophilous pollen grains, which 
supports the idea that soil erosion was the main cause of the increase in MM and fungi 
hyphae AR in Lake Lielais Svētiņu during the cold phases of the LG.  

 

3.1.2. The Holocene 
 
The Holocene began with a rapid transition from a cold to a generally warmer time at 
11,650 cal BP, when the mean Twin rose abruptly by nearly 10 °C in Latvia (Paper IV). 
The Early Holocene (11,650–8000 cal BP) therefore marks an improvement in the 
climate and a rise in temperature, which also initiated the change in the sediment type. 
The OM rich gyttja was sedimented instead of silts and clays (Paper II). However, 
there was a delay in the rise of Twin, and the temperatures reached modern values at 
9000 cal BP in Latvia, in comparison to the southern parts of Belarus, where modern 
values were reached 1000 years earlier (Paper IV).  

The cold event approximately 8200 cal BP (8.2 ka event) led to a drop in Twin by 2–
3 °C and an associated decrease in the OM of the Lake Lielais Svētiņu sediments and 
demonstrated a strong environmental disturbance for nearly 700 years (Paper II, IV, 
V). Moreover, Hede et al. (2010) point to strong erosional export of nutrients to Højby 
Sø in Denmark from 8500–7900 cal BP. Therefore, parallel trajectories with small 
shifts in timing and duration are indicated for both areas. The 8.2 ka event was the 
most extreme cold event after the Younger Dryas in the area (Veski et al. 2004). The 
regional cooling has been generally attributed to a temporary slow-down of the North 
Atlantic thermohaline ocean conveyor (Dawson et al. 2011), which was caused by one 
of the largest Lake Agassiz–Ojibway freshwater outbursts into the Hudson Bay 
approximately 8500 cal BP (Barber et al. 1999; Seppä et al. 2007; Daley et al. 2011). 
Climate model simulations show that the timing and duration of the 8.2 ka event varies 
geographically (Seppä et al. 2007; Wiersma et al. 2008). Duration of the 8.2 ka event 
impact on a variety of ecosystems in the northern hemisphere was ca. 300 years 
according to the climate model simulations, but proxy data from coeval stalagmites 
suggest that the climate anomaly lasted about ca. 100 years in Austria, and by the high-
resolution multi-proxy varved study ca. 150 years in central Finland, and within the ca. 
200 yr by δ18O in southern Estonia (Veski et al. 2004; Ojala et al. 2008; Wiersma et al. 
2008; Boch et al. 2009). The 8.2 ka event brought generally cold conditions to broad 
northern hemisphere regions, especially in the wintertime, when the climate was 
dominated by blocking high-pressure circulation, giving rise to cold and dry 
conditions, but greater summer precipitation and elevated lake levels (Alley and 
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Ágústsdóttir 2005; Hammarlund et al. 2005). Several other effects of the those 
circumstances might be linked to the 8.2 ka event, such as sea-level changes, lower 
sea-surface temperatures in the North Atlantic Ocean, changes in precipitation net, 
freshening of ocean water, lower methane concentration in the atmosphere, ice rafting 
and “Finse event” glacier fluctuations (Hammarlund et al. 2005; Seppä et al. 2007; 
Wanner et al. 2011; Quillmann et al. 2012). All of these factors could have affected the 
climatic and environmental conditions in the eastern Baltic. Despite fine differences in 
the length and timing of the delay in the impact of cooling at different localities, we 
can argue that the 8.2 ka event was very rapid and remarkable in Latvia as well. 

Warm (~3.5 °C above the modern temperature) (Paper V), dry and overall stable 
climate conditions with low water levels in lakes typically persisted during the HTM 
from 8000 to 4000 cal BP (Hammarlund et al. 2003; Sohar and Kalm 2008; Seppä et 
al. 2009; Heikkilä and Seppä 2010; Muschitiello et al. 2013). The high peat 
decomposition at Mazais Svētiņu Bog (Paper II) and the domination of dry and warm 
environmental conditions in Latvia support this estimation. Berbeco et al. (2012) 
showed that if soil and bog surfaces become warmer and drier, it increases 
decomposition of fine, woody debris and could induce peat decomposition in bogs as 
well. In addition, the study of Renssen et al. (2012) indicated that the HTM was 
delayed by 2000–3000 years over Europe although the highest insolation occurred 
from 11,000 to 5000 cal BP, mainly as an effect of the remnants of the Early Holocene 
Laurentide ice sheet in North America.  

The Late Holocene since 4000 cal BP was characterised by a gradual decrease in air 
temperature to the present level, and a decrease in the peat decomposition rate since 
4500 cal BP may indicate wetter conditions in Latvia (Papers II and V). This change in 
environmental conditions matches the Late Holocene cooler (Seppä and Poska 2004) 
and wetter (Hammarlund et al. 2003) phase previously shown at a regional level. 

3.2. Postglacial vegetation history 

3.2.1. Lateglacial 
 
To-date, the Lake Lielais Svētiņu sediment sequence represents the longest and most 
complete record of vegetation history since the GI-1 (14,500 cal BP) in the eastern 
Baltic (Papers I and II). Therefore, the record holds great potential for understanding 
vegetation dynamics since the first appearance of ice-free terrestrial ground and for 
improving our knowledge on taxa migration routes and vegetation succession 
throughout the postglacial time. Moreover, the comparison of two adjacent sites 
representing local and regional vegetation history (Paper II) may reflect differences 
between local and regional changes in vegetation dynamics. 

After the ice retreated from eastern Latvia not later than 14,560 cal BP (Paper I), 
environmental conditions become suitable for the establishment of pioneer vegetation 
(Paper I). At first the plant cover was scarce and characterised as treeless tundra, but 
with the increase of air temperature at GI-1 between 13,900 and 12,850 cal BP the 
landscape was predominately Betula-Pinus forest tundra. A comparable site, Lake 
Kurjanovas (Heikkilä et al. 2009), situated 60 km to the east of Lake Lielais Svētiņu 
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(Fig. 1) indicates that the Betula-Pinus forest persisted during the warmest phase of the 
LG. 

The most prominent 1000-year cooling event (GS-1) in the LG remarkably affected 
the vegetation composition in the northern hemisphere as well as in Latvia. Forest 
species declined abruptly, and the landscape was altered to treeless shrub tundra again 
(Paper I). Although harsh conditions prevailed throughout the GS-1 Picea and Pinus 
survived as suggested by stomatal finds, which might support the idea that eastern 
Latvia was close to the LG Picea and Pinus refugium (Huntley 1990; Giesecke and 
Bennett 2004). 

3.2.2. The Holocene 
 
The start of Holocene at 11,650 cal BP (Lowe et al. 2008) was marked by changes in 
climate and vegetation. Plant macrofossil data confirm the presence of mixed conifer 
forests (Paper I). In addition, the temperature increase (Papers IV and V) controlled the 
duration of the growing season, where shorter growing periods favoured conifers over 
other species in the same overall climate and on similar soils during the Early 
Holocene (Paper II) (Ellenberg 2009). 

The pattern of changes in the forest composition suggests that the dominance of 
conifers and Betula started to weaken at the end of the Early Holocene and later were 
suppressed by the thermophilous tree species. A similar pattern has been reported in 
eastern Lithuania (Gaidamavičius et al. 2011) and in northern Belarus (Novik et al. 
2010). In addition, the comparison of 7 main tree species within different pollen source 
areas of local and regional sites (Fig. 2; Paper II) suggests that during the Early 
Holocene Picea locally was replaced by Betula as the dominant tree species. Further 
dominance of Betula was suppressed by other thermophilous tree species as a result of 
the increase in air temperature (Paper V), which is one of the main limiting factors 
behind tree species competition and coexistence.  

Within the expansion of thermophilous tree species, a sudden decline of the pollen 
values of all the broad-leaved taxa occurred (Paper II), which is a reflection of the 8.2 
ka event. The vegetation response to the 8.2 ka event in the area surrounding Lake 
Lielais Svētiņu was approximately 200 years long, consistence with the data of 
Heikkilä and Seppä (2010) on Lake Kurjanovas. In addition, Seppä et al. (2007) 
showed that the vegetation in the Baltic region responded more sensitively to the 
cooling event than the vegetation at high latitudes. This contrast is attributed to the fact 
that in the sub-arctic area the vegetation was still dormant and lakes had prolonged ice-
cover. 

Due to the delay of the HTM in Europe (Renssen et al. 2012), the highest air 
temperatures in the Holocene occurred from 7500 to 5000 cal BP (Paper V), and 
eventually this time period was the height of the thermophilous forest expansion (Fig. 
2). In addition, the abundance of Quercus at local site Mazais Svētiņu Bog suggests 
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Figure 2. Main tree pollen comparison of Lake Lielais Svētiņu (black solid line) and 
Mazais Svētiņu Bog (grey solid line): (a) Picea; (b) Pinus; (c) Betula; (d) Alnus; (e) 
Ulmus; (f) Tilia; (g) Quercus. 
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strictly local changes in the forest composition and availability of light. Although at the 
stand level Quercus can persist for multiple generations under a closed canopy, it has a 
wide-spreading crown and is thus a relatively light-demanding species that regenerates 
poorly in such conditions (Lindbladh and Foster 2010; Ikauniece et al. 2012). Values 
of Quercus, Ulmus and Tilia were consistently comparable to those at Lake Lielais 
Svētiņu (Fig. 2) and showed no local vs. regional differences, suggesting that the 
regional and local sites contained uniform shares of thermophilous trees. 

The lower local abundance of Betula suggests regional pollen loading and regional 
transport at Lake Lielais Svētiņu during the Late Holocene (Dąbrowska 2008; 
Veriankaitė et al. 2010; Piotrowska and Kubik-Komar 2012). At the same time Picea 
at the local (Mazais Svētiņu Bog) and regional (Lake Lielais Svētiņu) sites (Fig. 2) 
show similar patterns with maximum populations between 4500 and 2000 cal BP and a 
decline afterwards. The local fluctuations of Betula and Picea might suggest not only 
changes in air temperature but also in humidity and water table around the lake, which 
can be supported by the variation in peat decomposition rate (Paper II). Moreover, the 
synchronicity of the increase and decrease of Picea is also supported by other regional 
studies by Heikkilä and Seppä (2010) in Lake Kurjanovas in Latvia, by Koff and 
Kangur (2003) from the small kettlehole and Lake Linajärv sediments in Estonia and 
by Gaidamavičius et al. (2011) via macrofossil evidence in Lake Bevardis in Lithuania 
(Fig. 1). Interestingly, a study on small hollows in northwestern Russia by Kuosmanen 
et al. (2014) presented similar evidence and they discussed that this was a large-scale 
phenomenon in northern Europe that was not caused by human influence, but was 
rather due to a regional climate change toward less continental, milder winters and 
drier summers, which are less favourable for Picea. 

3.3. Postglacial phytoplankton responses to environmental and climatic 
changes 

 
Phytoplankton species are the primary producers of biomass in lakes, and they play an 
important role in the variety of food-web structures. Therefore, any shift in their 
diversity and production has an impact on other aquatic life forms. The vegetation in 
surroundings of Lake Lielais Svētiņu has shown responses to climatic change that has 
transformed the landscape and environmental conditions. Air temperature can also 
affect lake water temperature, which has proven to be even stronger in lakes at lower 
altitudes (Gallina et al. 2013), as at Lake Lielais Svētiņu. To see the possible long-term 
impact of abiotic processes on the aquatic ecosystem, the current thesis presents one of 
the first attempts to investigate the influence of key environmental factors on the 
variability of phytoplankton (excluding diatoms) over the last 14,500 years (Paper V). 

An improving climate due to increasing air temperature during the GI-1 not only 
promoted development of terrestrial vegetation in the surroundings of Lake Lielais 
Svētiņu but also led to increased aquatic productivity. The warming climate, following 
a decrease in landscape openness and an increase in OM AR, could have been one of 
the main factors behind the prevalence of Botryococcus, Tetraedron minimum, 
Scenedesmus and Pediastrum among the phytoplankton species (Paper V). The 
appearance of Pediastrum in LG sediments had been previously reported by Sarmaja-
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Korjonen et al. (2006) at the classic Bølling Sø site in Denmark. In addition, our results 
reveal that Scenedesmus is positively correlated (0.74) with Tsum, which is in 
accordance with the study of Wacnik (2009). Chlorophyta dynamics follow the same 
pattern as the improvement in climate and thus directly reflect the impact of climate on 
the aquatic environment during the LG (Fig. 3; Paper V).  

The highest AR and diversity of phytoplankton was reached during the Early 
Holocene, suggesting environmental heterogeneity within a warming climate envelope. 
Chlorophyta dominated within phytoplankton. According to the RDA results, water 
tolerance – indicating moist and unstable soil conditions in the surroundings of the lake 
– was positively associated with chlorophyta, as Tetraedron minimum, Scenedesmus 
and Pediastrum (Fig. 3). 

Chlorophyta strongly responded to climate disruption at the 8.2 ka event (Fig. 4). 
Most probably, increased MM in the lake sediments between 8500 and 7900 cal BP 
accelerated nutrient input into the lake water column that led to rapid increases in 
chlorophyta AR. The study of Hede et al. (2010) on the evidence of the 8.2 ka event in 
Lake Højby Sø revealed that the alteration of the terrestrial environment from 8500 to 
7900 cal BP resulted in a major change in aquatic ecosystem with nutrient enrichment 
of the lake and enhanced productivity. These results support our data on the 
simultaneous timing and effect of the 8.2 ka event on aquatic ecosystems in Latvia. 

An abundance of chlorophyta Coelastrum reticulatum and C. polychordum during 
the 8.2 ka event was unlikely (Paper V) because these species are thermophilous and 
are related to warm climatic conditions and anthropogenic eutrophication, as described 
by Jankovská and Komárek (2000). In our case, we can rule out human-induced 
eutrophication in the Early Holocene because human impact in the surroundings of 
Lake Lielais Svētiņu is recorded relatively late, and the lake preserved natural 
conditions until 1500 cal BP (Paper II). Previously Makohonienko (2000) recorded a 
rapid increase in Coelastrum approximately at the same time in Lake Świętokrzyskie in 
Poland, and as with our results the increase was not connected with human activities in 
the vicinity. In addition, C. reticulatum already has been recorded in LG in Lake 
Miłkowskie, Poland (Wacnik 2009) and in Lake Ķikuru (Fig. 1) approximately 8000 
cal BP, and in Lake Āraiši in the LG (western and central Latvia, respectively). Due to 
their characteristic fossil features and specific abundance conditions, C. reticulatum 
and C. polychordum appear to be reliable species for characterising the 8.2 ka event or 
increased nutrient episodes in non-pollen palynomorphs studies on lacustrine 
sediments in the future.  

During the Holocene, absence and dominance of cyanobacteria was strongly related 
to climate driven increases of Tsum and OM, but negatively related to landscape 
openness that led to the suppressing of chlorophyta (Paper V). Paerl and Huisman 
(2008) noted that rising temperatures favour the abundance of cyanobacteria, giving 
them a competitive advantage at elevated temperatures compared to other 
phytoplankton. The dominance of cyanobacteria in phytoplankton biomass has been 
shown to lead to a progressive loss of phytoplankton diversity in temperate lakes 
(Elliott et al. 2006). Cyanobacteria were overwhelming dominant throughout the HTM, 
with the highest AR between 5000 and 2000 cal BP (Fig. 4). Our results therefore 
agree with various climate change modelling scenarios that predict that if aquatic 
systems experience increases in temperature, cyanobacteria will be favoured over other 



27 

 
Figure 3. Results of RDA showing the associations between the fossil phytoplankton 
communities and reconstructed environmental proxies (OPEN – landscape openness; 
OM; Tsum; Ch10 – charcoal >10 μm; Wtol – waterlogging tolerance; Fhy – fungi hyphae) 
in (a) LG and (b) Holocene. Phytoplankton names that are not displayed on the plot 
were located in the grey elongated area (Anabaena, Aphanizomenon, Rivularia, 
Gloeotrichia pisum, G. natans, Tetraedron minimum, Scenedesmus arcuatus, 
Acutodesmus obliquus, Desmodesmus opoliensis, Botryococcus neglectus, B. pila, B. 
braunii, Chlamydomonas, Pediastrum boryanum var. forcipatum, P. boryanum var. 
cornutum, P. boryanum var. longicorne, P. boryanum var. pseudoglabrum, P. 
boryanum var. brevicorne, P. orientale, P. tetras, P. angulosum var. coronatum, P. 
angulosum var. angulosum, P. argentiniense type, P. privum, Staurastrum gracile). 
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 phytoplankton (Brookes and Carey 2011; De Senerpont Domis et al. 2013). Climatic 
and environmental change could be responsible for the increase of cyanobacteria AR, 
as it suggests a rise in MM (increased nutrients) and a decrease in temperature in the 
transition from HTM to the Late Holocene (Fig. 3, 4; Paper V). The abundance of 
cyanobacteria increases with increasing nutrient input and eutrophication in lakes 
(Ferber et al. 2004). Elliott (2012) showed that the more nutrient rich the lake is, the 
greater the response of cyanobacteria populations will be. Elevated temperature and 
nutrient loading decreased approximately 2000 cal BP and thus reduced the dominance 
of cyanobacteria. This leads to a concurrence with the idea (Elliott et al. 2006; Brooks 
and Carey 2011; Pätynen et al. 2014) that high nutrient loads and turbidity were more 
important for the dynamics of cyanobacteria than the increase in temperature alone. 
The possible cause of the peak of cyanobacteria approximately 1000 cal BP can be 
attributed to the climate anomaly between ca. 900 and 1350 AD (Graham et al. 2010), 
and similar abundances also have been recorded in Lake Āraiši (Paper III). 

 

 
Figure 4. Comparison of the cyanobacteria, chlorophyta and Tsum plotted against time. 
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Despite the great number of algal pigment studies (e.g., Hede et al. 2010), our study 
shows that higher taxonomic resolution of fossil phytoplankton recovered alongside 
pollen analysis holds great potential to improve our knowledge on specific algae 
requirements, responses to stress factors, and co-occurrences of some species, and 
might be integrated in future non-pollen palynomorphs, ecological and 
palaeoecological studies. 

3.4. Human impact 

 
Mesolithic hunter-gatherers in the Baltic region preferred to settle around larger lakes, 
rivers and sea coasts; thus their economic system was constrained by the limits of 
nature, which left little margin for demographic growth (Kuneš et al. 2008; Bocquet-
Appel 2011). Climate alteration from warm and dry in the Middle Holocene to wetter 
and cooler in the Late Holocene (Paper V) favoured a forest ecosystem change from 
mixed temperate forests to conifer-dominated boreal forests (Paper II), which affected 
food availability (Tallavaara and Seppä 2011). At the same time the so-called Neolithic 
transition (Bocquet-Appel 2011; Zimmermann 2012) marked a shift in human history 
in the eastern Baltic (Bērziņš 2008). The transition was a long and complex process of 
the acquisition of social behaviours connected to sedentary settlements, development 
of new economic strategies (e.g., animal and plant domestication) and technical 
innovations (e.g., pottery, polished stone tools) (Leonardi et al. 2012). The beginning 
of the Neolithic witnessed a rapid rise in population (Shennan et al. 2007), while 
specifically hunter-gatherer populations declined (Tallavaara and Seppä 2011). The 
transition towards an agrarian way of life probably happened during a complex and 
continuous process of migration, integration and gradual assimilation between 
pioneering farmers and local hunter-gatherers (Sørensen and Karg 2014). Differential 
land access in prehistoric Europe within a varying admixture of incoming farmers and 
local hunter-gatherers had an important impact on the modern European gene pool as 
well (Bentley 2012; Pinhasi et al. 2012).  

Although Latvia has been inhabited by humans since the Paleolithic (Loze 1972, 
1997, 2003; Levkovskaya 1987; Vasks et al. 1999; Ozola et al. 2010; Meadows et al. 
2014a, 2014b), the dense forests and wetlands, especially in the Lake Lielais Svētiņu 
area, were inappropriate for farming settlements at first. The continuous presence of 
forests in the vicinity of Lake Lielais Svētiņu since the establishment of the terrestrial 
vegetation up to the present verify that this boggy area was not a suitable location for 
the human settlement or activities before 1500 cal BP (Paper II).  

Palaeovegetation records from Lake Trikātas in northern Latvia (Paper VI) also 
indicate a heavily wooded landscape until 500 BC, when the first traces of the 
continuous record of cereal pollen indicate the establishment of agricultural practices 
(Fig. 5). In comparison, a continuous record of cereal pollen grains at Lake Āraiši, 
central Latvia, is present from AD 400 (Fig. 5), and at Lake Lielais Svētiņu, eastern 
Latvia, from AD 1300. These results indicate a variation in agricultural practices 
within and between the Baltic region, wherein at least a 4000 year cultivation history is 
observed close to settlement centres and much later in peripheral areas (Vasks et al. 
1999; Kalnina et al. 2004; Poska et al. 2004; Heikkilä and Seppä 2010; Heinsalu and 
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Veski 2010; Puusepp and Kangur 2010; Reitalu et al. 2013). Crop cultivation was 
introduced in Latvia simultaneously with Estonia approximately 4000 BC (Lang 1999; 
Vasks et al. 1999). The first traces of crop cultivation appear in the Neolithic in the 
coastal area of western Latvia (Bērziņš 2008) and in the inland area at large lakes in 
eastern and northern Latvia (Vasks et al. 1999; Kalnina et al. 2004; Ozola et al. 2010). 

The clearance of woodland for agricultural purposes, pasture and meadows is most 
probably reflected as a decline in Alnus at Lake Āraiši (Paper III). Saarse et al. (2010) 
showed that the decline in Alnus observed during the Iron Age can be associated with 
human impact linked to the intensification of cultivation in the eastern Baltic area. The 
appearance of cereal pollen and declining Alnus values in the Lake Āraiši sediments is 
accompanied by pollen of ruderal habitats, coprophilous fungi and microcharcoal and 
is strongly indicative of increasing human activities around the lake. A contrary finding 
was demonstrated by Reitalu et al. (2013), where Alnus was positively associated with 
landscape openness. Černý and Strnadová (2010) reported that lethal root and collar rot 
disease of Phytophthora has rapidly spread hundreds of kilometres and caused 
considerable losses of Alnus since 2000 throughout the Czech Republic. Recorded 
occurrences of the disease were clearly restricted to bankside Alnus stands, carrs, 
mixed Fraxinus-Alnus stands and Alnus stands in periodically flooded alluvial plains. 
On the other hand, the study by Pisetta et al. (2012) on Alnus decline in the Italian Alps 
demonstrated that climate change may reduce Alnus vigour and allow fungi/parasites to 
cause decline. At the same time Pisetta et al. (2012) also reported that populations of 
Alnus have been rapidly declining in the Alps since the 1990s. Thus it cannot be 
excluded that the rapid and widespread Alnus decline event was related to climate 
change and that the spread of lethal root and collar rot had occurred previously. A 
similar synchronous pattern of Alnus decline shown by Saarse et al. (2010) within the 
time span from AD 300–1300 in Estonia also has been recorded in Latvia from AD 
400–700 at Lake Āraiši (Paper III), AD 700–900 at Lake Trikātas (Paper VI), AD 300–
800 at Lake Lielais Svētiņu (Paper II), AD 700–1400 at Mazais Svētiņu Bog (Paper II), 
and AD 400–1000 at Lake Ķūžu (Kangur et al. 2009). 

The most significant changes in vegetation and environment during the last 2000 
years occurred in Late Iron Age (Paper III) and Medieval period (Fig. 5a; Paper VI). 
The case study of Lake Āraiši (Paper III) demonstrated that there was intensive land-
use since AD 780, which was associated by the establishment of a lake-dwelling. The 
immediate surroundings of the lake were cleared for agriculture and an open landscape 
was established. 

An abrupt rise in the AR of cereal pollen grains (Fig. 5) supports rapid human-
induced landscape openness. Based on the estimation of cereal pollen AR (Paper III), 
we can conclude that there have been cereal fields within a 2 km radius of Lake Āraiši 
since AD 750. The magnitude of agricultural practice was variable by location (Fig. 5). 
For example, although cereal cultivation has been practiced at Lake Trikātas since 500 
BC (Fig. 5), an increase in cultivation occurred from AD 1200. This increase was 
accompanied by higher charcoal frequencies and declines in the surrounding woodland 
at AD 1200 and suggests a causal link between intensifying land-use and the conquest 
of Latvia by the Order of the Sword Brothers (Paper VI). The cultivation during the  
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Figure 5. Distribution of pollen cereals in Lake Trikātas, Lake Āraiši and Lake Lielais 
Svētiņu. Green solid line – percentages (%) of cereal pollen grains; grey vertical posts 
– AR of cereal grains cm-2yr-1. 

 
13th century at Lake Trikātas differs from other records in the region that generally 
show increases in cereal cultivation a century after the crusades. The study of Veski et 
al. (2005) at Lake Rõuge Tõugjärv (southern Estonia) showed agricultural activity 
from AD 1350. Data from Lake Lielais Svētiņu (Fig. 5) and also from peatlands around 
Cēsis (central Latvia) show a similar pattern of agricultural intensification from the 
mid-14th century and later (Brown and Pluskowski 2014). Moreover, Lake Āraiši 
showed a decline in cereal cultivation from the start of the Medieval period, which 
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only again increased during the 14th century (Fig. 5). We can argue that the crusades 
and conquest of former tribal lands was not accompanied by significant impacts on 
rural landscapes in Livonia, contrary to Prussia (present-day north-east Poland). 
Meanwhile, Lake Trikātas demonstrates significant woodland clearance and intensified 
land use from the early 13th century, immediately following the crusades. 

Intensification of land-use, crop cultivation and possibly more open landscape 
reached its peak during the Manor time (AD 1750–1900) in northern and central Latvia 
(Fig. 5; Paper III, VI). These results correspond well to the study of Lake Rõuge 
Tõugjärv in southern Estonia (Veski et al. 2005) that showed a pattern of extensive 
farming, where the growth in population was compensated by the increasingly large 
areas of land placed under cultivation. This pattern prevailed until the 1850’s, when 
cereal cultivation shifted from extensive to intensive farming with more effective use 
of the existing land. 
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CONCLUSIONS 
 
The thesis discusses postglacial environmental and climatic successions, vegetation 
dynamics and human impact in Latvia over the last 14,560 years. By taking a long term 
and multi-proxy approach with pollen and non-pollen palynomorphs as the main study 
methods, the new results of this thesis allow the new data to be placed in a broader 
environmental, cultural and historical context within the eastern Baltic region. The 
main results of the current work can be summarized as follows: 

 New radiocarbon dates support the relatively rapid retreat of ice and 
establishment of ice-free ground in eastern and central Latvia; 

 A complex deglaciation pattern persisted in a smaller area; therefore, the 
geomorphological characteristic and landscape were not uniform most 
probably across Latvia during the LG; 

 The Twin was more than 10 °C colder than today in Latvia and Estonia and 8 °C 
colder than today in Belarus during GI-1 between 14,650 and 12,850 cal BP 
(Bølling-Allerød); 

 Twin in southern Belarus reached modern values at 10,000 cal BP, ca. 1000 
years earlier than in Latvia and Estonia where it reached modern values at 
9000 cal BP; 

 During the 8.2 ka cold event, Twin lowered by 2–3 °C, which caused an 
environmental disturbance for ca. 700 years and altered vegetation for ca. 200 
years in eastern Latvia; 

 The high peat decomposition in the Mazais Svētiņu Bog and 3 °C above the 
modern temperature during the HTM support the dominance of dry and warm 
environmental conditions, whereas cooler and wetter conditions were 
characteristic to the Late Holocene in Latvia; 

 The first pioneer vegetation was established and a treeless tundra has existed in 
Latvia since ca. 14,560 cal BP; 

 between 13,900 and 12,850 cal BP the landscape was predominately 
characterised as Betula-Pinus forest tundra; 

 Survival of Picea and Pinus in eastern Latvia throughout GS-1 (Younger 
Dryas) might support the proximity to the LG Picea and Pinus refugium area; 

 Mixed conifer forest characterized the landscape of the Early Holocene; 
 Thermophilous forest expansion reached its height during the HTM and 

decreased in the Late Holocene;  
 The lower local abundance of Betula suggests regional pollen loading and 

regional transport at Lake Lielais Svētiņu during the Late Holocene; 
 Maximum values of Picea were reached between 4500 and 2000 cal BP and 

declined afterwards, which might support the occurrence of a large-scale 
phenomenon in northern Europe caused by a climate change toward milder 
winter and drier summers; 

 Variability in air temperature, humidity and water table changes were the main 
influencing factors of differences on local and regional vegetation dynamics; 
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 Phytoplankton dynamics followed the same pattern as increased temperatures 
led to improving climate during the LG; 

 The highest AR and diversity of phytoplankton was reached during the Early 
Holocene, suggesting environmental diversity within a warming climate 
envelope; 

 Chlorophyta demonstrated a strong reaction to the climate disruption at the 8.2 
ka cold event, which support the simultaneous timing and effect of this event 
to aquatic ecosystems; 

 Coelastrum reticulatum and C. polychordum appear to be reliable species for 
characterising the 8.2 ka cold event; 

 Climate drove increases of Tsum and OM, but negative landscape openness led 
to the dominance of cyanobacteria over chlorophyta during the HTM; 

 High nutrient loads and turbidity, not increased temperature alone, promoted 
an increase in AR of cyanobacteria; 

 Continuous agricultural practices were established from 500 BC and AD 400 
in northern and central Latvia, respectively; 

 Establishment of intensive land-use and crop cultivation occurred from AD 
780 in central Latvia, AD 1200 in northern Latvia and AD 1300 in eastern 
Latvia; 

 The most significant human-induced changes in vegetation and environment 
during the last 2000 years occurred in the Late Iron Age and Medieval period;  

 Significantly intensified land-use from the early 13th century immediately 
following the crusades is exceptionally demonstrated at Lake Trikātas; 

 Overall the crusades and the conquest of former tribal lands was not 
accompanied by significant impacts on rural landscapes in Livonia (present-
day territory of Latvia and Estonia), and the form and type of agriculture and 
land-use continued much as it had during the preceding Late Iron Age; 

 The height of agricultural land-use in Latvia was reached from AD 1800–1900. 
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ABSTRACT 
 
This thesis evaluates and presents the postglacial environmental change, vegetation 
dynamics and human-induced impact in Latvia, in the eastern Baltic area, during the 
postglacial time over 14,560 cal BP. In addition, a novel approach of non-pollen 
palynomorphs was applied to explore phytoplankton responses to environmental and 
climatic changes. Lacustrine sediment cores from three lakes (Lake Lielais Svētiņu, 
Lake Āraiši, Lake Trikātas) and one peat sequence (Mazais Svētiņu Bog) were 
sampled in Latvia. The chronology of sediment sequences was based on conventional 
and AMS 14C dates and spheroidal fly ash particles. A multi-proxy approach was 
applied in all studies, but analyses of pollen and non-pollen palynomorphs served as 
the primary study methods. The results suggest relatively rapid ice retreat and 
establishment of ice-free ground as early as 14,560 cal BP in eastern Latvia and as 
early as 14,390 cal BP in central Latvia. The winter temperature was over 10 °C colder 
than today in Latvia and Estonia and 8 °C colder than today in Belarus during GI-1 
from 14,650 to 12,850 cal BP, and latitudinal differences as an effect of the proximity 
of the Scandinavian ice sheet was one of the main controlling environmental factors. 
Winter temperatures in southern Belarus reached modern values at 10,000 cal BP, ca. 
1000 years earlier than in Latvia and Estonia, where it reached modern values at 9000 
cal BP. During the 8.2 ka cold event (approximately 8200 cal BP) winter temperature 
decreased by 2 to 3 °C, which caused environmental disturbance for ca. 700 years and 
vegetation alters for ca. 200 years in eastern Latvia. Likewise, phytoplankton 
demonstrated a strong reaction to the climate disruption, and species Coelastrum 
reticulatum and C. polychordum seem to be reliable for characterising the 8.2 ka cold 
event or increased nutrient episodes for non-pollen palynomorphs studies on lacustrine 
sediments in the future. The high peat decomposition and 3 °C above the modern 
temperature during the Holocene Thermal Maximum between 8000 and 4000 cal BP 
confirms the dominance of dry and warm environmental conditions, whereas cooler 
and wetter conditions were characteristic to the Late Holocene in Latvia. Climatic and 
environmental changes led to the dominance of cyanobacteria over chlorophyta and 
promoted thermophilous forest expansion during the Holocene Thermal Maximum. 
Shifts in climatic and environmental conditions occurred since 4000 cal BP in the Late 
Holocene. Lower amounts of birch at the local site suggest stronger regional pollen 
influx into the regional site. The decrease of spruce after 2000 cal BP in the wider 
context might support a phenomenon of large-scale decline of spruce across northern 
Europe. The results point toward variability in air temperature, variation in humidity 
and water table changes as the primary influencing factors of differences on local and 
regional vegetation dynamics. Although the first traces of crop cultivation in Latvia are 
known from the Neolithic, the palaeovegetation records indicate establishment of 
continuous intensive agricultural practices from AD 780 in central Latvia and from AD 
1200 in northern Latvia. The results reveal a causal link between intensifying land-use 
and the conquest of Latvia by the Order of the Sword Brothers in AD 1200. At the 
same time, it is likely that the crusades and conquest of former tribal lands was not 
accompanied by significant impacts on rural landscapes in Livonia (present-day 
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territory of Latvia and Estonia), and the form and type of agriculture and land-use 
continued much as it had during the preceding Late Iron Age. The height of 
agricultural land-use in Latvia was reached between AD 1800 and 1900 when 
extensive farming shifted to intensive with more effective use of the existing land. 
Taking a long-term and multi-proxy approach offered by the palaeoenvironmental 
record, the current results of this thesis allow placing the new data in a broader 
environmental, cultural and historical context within the eastern Baltic region. 
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KOKKUVÕTE 
 
Käesolevas doktoritöös analüüsitakse muutusi Baltikumi idaosa 
keskkonnatingimustes, taimestiku arengut ja inimmõju kogu pärastjääaegsel 
perioodil, so kuni ajani 14,560 kalibreeritud aastat tagasi (kal at). Selgitamaks 
keskkonna- ja kliimamuutuste mõju fütoplanktonile kasutati 
krüptomikrofossiilide (non-pollen palynomorphs) meetodit, mis on selles 
kontekstis täiesti uus lähenemine. Uuringu lähtematerjalina kasutati kolme Läti 
järve (Lielais Svētiņu, Āraiši, Trikātas) ja ühe soo  (Mazais) setteprofiile. 
Läbilõigete kronoloogia põhineb konventsionaalsetel ja AMS 14C dateeringutel 
ning sfääriliste lendtuhaosakeste loendusandmetel. Dissertatsioonis esitatud 
kronoloogia on kalibreeritud (kal at). Kogutud materjali analüüsil ja 
pärastjääaja taimestiku arengu taastuletamisel kasutati mitmeid meetodeid, 
peamiselt õietolmu- ja  mikrofossiilide analüüsi. Saadud tulemused tõendavad, 
et jää taandumine 14,560 kal at Läti idaosast ning 14,390 kal at Läti keskosast 
toimus kiiresti. Setteläbilõigetes akumuleerunud õietolmu ja surusääskede 
jäänustel põhinevad kliima rekonstruktsioonid kinnitavad, et ajavahemikul 
14,650–12,850 kal at (GI-1) olid Lätis ja Eestis enam kui 10 °C madalamad 
talvetemperatuurid, Valgevenes 8 °C madalamad, kusjuures Skandinaavia 
jääkilbi lähedus oli peamiseks määravaks teguriks, mis põhjustas temperatuuri 
põhja-lõunasuunalise erinevuse. Umbes 10,000 kal at tõusis talvetemperatuur 
Valgevenes sarnaseks tänapäevasega, see on 1000 aastat varem kui Lätis ja 
Eestis. 8200 kal at (tuntud kui 8.2 ka jahenemine) langes talvetemperatuur 2–
4 °C, mille mõju keskkonnale Läti idaosas kestis ca 700 aastat ja taimestikule 
ca 200 aastat.  Samuti mõjutas kliima jahenemine fütoplanktoni liigilist 
kookseisu järves ja liigid nagu Coelastrum reticulatum ja C. polychordum 
näivad olevat sobivad indikaatorid ka tulevikus 8.2 ka jahenemise ja/või 
toitainete suurenenud sissekande  uuringutes. Turba suur lagunemisaste ja 
tänapäevasest 3 °C kõrgem aasta keskmine temperatuur Holotseeni 
Kliimaoptimumi ajal 8000–4000 kal at tõendab valdavalt kuiva ja sooja kliima 
olemasolule, mis Hilis-Holotseenis asendus jahedama ja niiskema kliimaga. 
Muutused kliima- ja keskkonnatingimustes Holotseeni Kliimaoptimumi ajal 
põhjustasid sinivetikate vohamist ja rohevetikate vähenemist ning soosisid  
soojalembeste puuliikide kasvu. Umbes 4000 kal at toimusid muutused kliima- 
ja keskkonnatingimustes. Kase õietolmu osatähtsuse vähenemine väikestes ja 
tõus suurtes settebasseinides viitab, et viimastesse on õietolm sissekantud 
kaugemalt. Kuuse õietolmu vähenemine viimase 2000 aasta jooksul  toetab üle 
kogu põhjapoolse Euroopa täheldatud kuuse leviku laiaulatuslikku vähenemist. 
Tulemused näitavad, et temperatuuri, niiskuse ja veetaseme muutlikkus olid 
peamised põhjused, mis mõjutasid lokaalse ja regionaalse taimkatte 
dünaamikat. Kuigi esimesed jäljed teravilja kasvatusest Lätis on teada juba 
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Neoliitikumist, näitavad paleobotaanilised uuringud pidevat intensiivset 
põllundust alates AD 780 Läti keskosas ja alates AD 1200 Läti põhjaosas. 
Saadud uudsed andmed viitavad põhjuslikule seosele maaharimise 
intensiivistumise ja Läti hõivamise vahel Mõõgavendade Ordu poolt AD 1200. 
Näib, et varasem sugukondliku maa anastamine ei mõjutanud  oluliselt 
põllumajanduslikku maakasutust Liivimaal (tänapäevasel Eesti ja Läti 
territooriumil) ning maaharimine jätkus sarnaselt eelneva noorema rauaajaga. 
Põllumajandusliku maakasutuse kõrgpunkt jäi aastate 1800–1900 vahele, kui 
ekstensiivne maaviljelus asendus intensiivse, enam tõhusama maakasutusega. 
Arvestades paleoandmestikku ajalist ulatust ja kasutatud metoodika paljusust 
paigutuvad käesoleva dissertatsiooni raames saadud tulemused laiemasse 
keskkonna-, kultuurilisuse- ja ajaloolisse konteksti Balti regiooni idaosas. 
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