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Introduction  

“Our nature consists in motion...” said the French physicist and philosopher 
Blaise Pascal. But how often do we ask ourselves, “What enables us to 
successfully move around in space? “We are able to plan a route to assess the 
complexity of the obstacles encountered on the way and successfully skirt them. 
Nature has given us an amazing gift that we call a word ”see”. ”Making a 
computer see” - first words in an annotation to the famous textbook on 
computer vision written by one of the pioneers in this field Olivier Faugeras. At 
the dawn of this discipline, many researchers were not aware of the complexity 
of the tasks, and considered them as relatively simple. Apparently, this is due to 
the fact that for a human seeing is an everyday, usual action. But the details of 
this process are hidden. Even today, modern science cannot explain many of the 
processes occurring in the human organism by obtaining, analyzing and 
processing images. Nevertheless, many scientists are trying to give the 
computer an opportunity to see. 

In recent years, computer vision researchers have achieved outstanding 
success. Many theoretical achievements have found their practical application. 
This thesis deals in particular with a possibility of using video information for 
navigation of a group of mobile robots. 

Background 

The term navigation is commonly understood as a technology of computing 
an optimal route. Therefore, any mobile robot requires the ability to build maps 
of an unknown environment, localize itself on it and use this map for 
navigation. Navigation of a mobile robot may be split into two levels. The first 
level is called local navigation. Such navigation is based on the information 
received from all kind of sensors. To construct a map of an interesting area 
Simultaneous Localization and Mapping (SLAM) technology is widely used. 
The robot simultaneously builds a map and localizes itself on it in real-time 
mode. 

The second level of navigation is usually called global navigation. This level 
implies the ability of effective navigation and planning of routes within the 
boundaries of the constructed map. However, in many practical applications, 
robot has to operate in different places, often without any prior knowledge 
about them at all. In such situations the robot is unable to navigate effectively. 
The key solution to this problem is a collaborative behavior of a group of 
robots. In cooperative multi-agent systems several agents make an attempt 
through their interaction to jointly solve tasks or to maximize utility. 

We start with an introduction in SLAM technology. Then we move on to 
justify the advantages of collaborative behavior of a group of robots. The last 
part of this chapter covers the aim and contribution of this thesis. 
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Simultaneous Localization and Mapping 

The movement of a mobile robot in an unknown space has become an 
integral part of its autonomous behavior. Simultaneous Localization and 
Mapping (SLAM) addresses two key problems in navigation: the estimation of 
robot position and representation of the surrounding environment. 

SLAM has developed rapidly during the last decades. It has proposed 
various solutions for the indoor and outdoor environment. Initial investigations 
focused on the implementation of estimation - theoretical methods for mapping 
and localization. The results reported in [51] show that there must be a high 
degree of correlation between the estimates of point’s position on the map. This 
correlation grows with every estimation step. A popular statistical tool for 
solving and analyzing physical time-varying systems corrupted by noise is EKF 
[26]. Such systems are represented as a single vector of states and information 
about the state is reflected in the multidimensional probability distribution. At 
each estimation step, the system carries out measurements and the results of 
these measurements are integrated into the probability distribution. EKF allows 
consistent and effective estimation of the vector of state. The computational 
complexity of the system depends on the size of the state vector. Such filtering 
methods of estimation of three-dimensional information have been used in 
SLAM. In [7] EKF based SLAM was implemented for a moving robot with 
ultrasonic sensors on board. In [39] a stereo rig was used as a sensor and EKF 
was designed to reduce triangulation errors. 

From a theoretical point of view, SLAM seems to be a solved problem, but 
many issues of practical implementation require improvement. They are mainly 
aimed for reducing the computational complexity, data association and 
environment representation.  

Visual SLAM 

For an autonomous movement in an unfamiliar area, a robot has a wide 
range of distance sensors on board. They perceive the environment and supply 
data to construct a map. First SLAM implementations made use of multiple 
sensors often combined with odometry [1]. The main representative of such 
devices is a laser rangefinder. It combines a unique and unrivaled combination 
of a wide field-of-view, high maximum range, and fast data acquisition.  
However, a major disadvantage, which limits their use in many practical 
applications, is the high price. 

In comparison, a camera-based system gives significantly more information 
about the environment than any kind of a distance sensor. From a single image, 
we can obtain information about thousands of points of the environment. 
Unique description of the points allows us to find these points in a database or 
in other images.  Sensing range of the camera tends to infinity. Needless to say 
those for navigation purposes, far points, and a star for example, are useful like 
the nearest points. In the context of visual geometry, these points are called 
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points of infinity. Such features cannot be used to estimate camera translation 
but they are a perfect bearing reference to estimate rotation [6].  

Use of video data helps to overcome one of the greatest impediments to the 
long term and robust SLAM "loop closing" problem. Visual image-feathers are 
used in conjunction with scanning laser data [20]. Solving the SLAM problem 
with a vision sensor as the only external sensor is a key area in robotics 
research. Monocular vision is beneficial as it offers a very inexpensive solution. 

Nowadays, one of the key elements of any robotic system is a machine 
vision system. It provides necessary knowledge of the environment.  The 3D 
reconstruction is one of the important issues in any SLAM implementation.  

Machine vision systems can be divided into two classes:  Active Visual 
sensing and Passive Visual sensing. The possibility of using bothsystems, 
measurement principles, estimations of 3D information methods are described 
in detail in [5].  In active visual sensing techniques, an external device is used. It 
emits light patterns that are reflected by the scene and detected by a camera.  
Two measurement methods are employed in this class of visual sensing: 
triangulation or time-of-flight. 

The other class of visual sensing is called passive sensing. Devices related to 
this class require no external projecting devices and use an ambient light for 
measurement only. This explains their low cost and attractiveness. Such passive 
techniques include stereovision, trinocular vision, and monocular vision.  

However, the reconstruction of a 3D structure from a single 2D image is an 
Ill-posed problem. Methods and algorithms from projective geometry theory 
provide the possibility to compute a 3D structure of a scene. 

Structure computation is a line of research, which allows reconstructing of 
3D information from a set of 2D corresponding points. A couple of decades 
ago, this challenging problem offered a wide field for research. Today this 
problem could be solved in two ways. One possibility is realized by reduction 
of degrees of freedom and through the use of additional constraints (for 
example, the distance from the camera to the image plane). However, with such 
assumptions a scene cannot be reconstructed in an automatic mode.  

The use of a set of images is another possibility to solve the reconstruction 
problem. The classical tool in the reconstruction is a fundamental matrix. This 
matrix represents all geometric relations which exist between two 2D images. 
The corresponding points detection process was carried out by hand. A pair of 
matching points   and    and matrix   must satisfy 

    = 0 

However, in practice, all measurements of matched points are corrupted by 
noise, i.e. measured points will not satisfy the epipolar constraint     = 0 and 
it will be impossible to estimate 3D coordinates of a space point  . Finally, a 
nonlinear optimization method was added to the processing mechanism to 
minimize a suitable cost function. 
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The need for the automation of existing reconstruction methods has activated 
the researcher to develop new robust methods for finding interesting points and 
lines, as well as full automation methods for computing matched points on 
different views. 

The result of these studies is the invention of a number of automation 
methods for scene reconstruction and camera pose estimation. The foundation 
for these methods was a theory of classical structure from the motion problem 
(SfM), which was supplemented with some kind of nonlinear optimization 
methods [59]. 

From SLAM to co-SLAM 

Recent developments of robots with autonomous behavior are substantial, 
but practical implementation needs considerable improvement. A new area of 
research into the benefits of group behavior has emerged. In such systems, focus 
is on the use of the collective capacity of a group. Before examining the 
feasibility of using systems with group behavior for solving navigation tasks, 
we will introduce a few concepts. The term “system with group behavior” 
commonly refers to a set of subsystems without centralized control that 
performs similar functions. The phenomenon associated with the transition from 
chaotic behavior to the target group behavior is called a phenomenon of self-
organization. In [32] the main advantages of the systems with group behavior 
are presented. We highlight only some of them: 

Systems without centralized control are cheap, resulting from simple, single-
type devices used in the production and maintenance of such systems. 

Self-organizing systems allow creating complex functional systems by a set 
of simple elements. The group behavior in such systems is carried out in the 
interests of the entire colony. Joint work of bees to maintain a constant 
temperature of +32o C in the hive is an example of the group behavior in 
biological systems [32]. Self-organization in artificial systems can be applied to 
solve many problems associated with exploring of a terrain, searching for 
resources. "Swarm robotics project" is a bright example of artificial self-
organizing systems. In a group of robots endowed with the ability to 
collectively solve such problems, the survivability of not only individual 
elements of the system but of the entire colony will increase.  

Self-organizing systems are invariant to the number of elements of the 
system. The number of elements of the system will not change its functionality. 
In the event of failure of one element, the performance of the whole system is 
preserved. This fact is particularly interesting. Self-organizing systems can be 
used successfully both in large enterprises and small companies. For example, 
originally a robotic system for a warehouse had acquired a centralized 
management and was very expensive. The use of such a system in small 
companies was economically infeasible. Implementation of a self-organization 
technology makes these applications accessible to a wide range of consumers.  



13 

The element of the system with group behavior is an agent. In general, an 
agent is hardware or (more commonly) a software computer-based system 
capable of acting to attain the goals stated by a user. In this thesis, an agent is 
defined as a mobile robot that has a certain set of properties as in [46]: 

 
Autonomy: An agent works as an independent, autonomous vehicle that 

sets goals and acts to attain these goals. 

Social ability: An agent can communicate with other agents. 

Mobility: The ability to transfer the agent data to a server or to other 
agents. 

 
A group of such agents builds a multi-agent system. Due to interaction 

between the agents, the multi-agent problem complexity can rise rapidly. Multi-
agent systems may consist of different kinds of robots. They can differ not only 
in hardware or software but in their behavior and tasks they perform. 

Current algorithms for solving mapping and localization problems have been 
implemented for single robots. Collaborative behavior has several advantages. 
A group of robots can solve the problem of mapping of the environment and 
completing a task or work more quickly and robustly than a single robot. 

 
Figure I.1. An example of a simple scenario  

Figure I.1 presents a simple example scheme of using self-organization to 
solve problems of autonomous movement in an unknown environment. Each 
robot exploring a space simultaneously builds its own map. For example, a 
robot 1 has explored and built a map of the green area. It should be emphasized 
that effective robot path planning is possible only within the boundaries of the 
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map due to the absence of necessary information from outside area. An 
effective solution to this problem is possible by using the missing part of the 
map, which was created by a neighboring robot as a result of mutual concerted 
action. To use these maps together it is essential to merge them accurately and, 
what is the most important for this kind of robot behavior, in real-time 
consuming less computational power, which will allow the algorithm to run 
onboard of the robots.   

An example of the practical application of such scenario is shown in Figure 
I.2. A colony of industrial robot platforms, without any central control system 
able to perform logistic tasks in autonomous mode. The system's ability to 
automatically adapt to any environment, make it available for both large and 
small warehouses [34]. 

 
Figure I.2. The colony of warehouse robots  

Other possible applications are presented in Figure I.3. 

a)  b)  
Figure I.3. a) Security patrol robot from TUT may share a map with other robots [56], 

b) Industrial robots can work on industry sharing workplace information and maps 

[17].  
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Despite the fact that the study of the individual "SLAM" has made great 
progress, group behavior, as the key to greater autonomy, is insufficiently 
studied. Due to the problem that the SLAM realizations depend greatly on the 
environment conditions, i.e. indoor or outdoor, the following research has been 
limited to indoor conditions although the approach is generally applicable for 
any conditions. 

The Scientific Objectives of the Thesis  

The Scientific Objectives of the thesis: 
 Development of an intelligent method for solving map-merging 

problem. 
 Development of a new algorithm for use the method on robots in indoor 

conditions. 
 Development of a reliable, efficient algorithm for detection overlaps of 

existing maps based on visual appearance. 
 Development of a reliable, efficient algorithm for aligning two 3D local 

maps in a common coordinate system. 
The aim of this work is to develop a reliable method for merging several 

local maps in a global map. This method will enable a step-up from the local 
autonomous robot navigation toward global navigation, toward collaboration of 
groups of robots for solving more complex problems. A visual sensor is 
considered as a sole sensor and applied purposively and selectively to acquire 
and use data.  

Structure of the Thesis 

Multi-robot systems have several advantages over a single agent case. Using 
the collective potential, a group of mobile robots can solve different tasks more 
efficiently, including those that a single robot cannot solve independently. 
Multi-robot systems are robust and invariant to the number of agents in the 
system. The use of the collective capacity allows for reducing requirements to 
the technical capabilities of a single robot. Thus, each robot becomes 
interchangeable, cheap to produce and the system technically survivable, 
reliable and easy to install. Analysis of these advantages certainly encourages us 
to develop new methods of interaction between individual robots in a multi-
robot system by solving a map- merging problem. To reduce the production cost 
of an individual robot the single camera as a sensor was used. Besides low 
production cost, the camera provides additional information about the 
surrounding environment. 

 The study consists of four parts: 
Chapter 1 – Review of existing methods:  Existing methods for the map-

merging system are briefly considered; major advantages and disadvantages of 
the presented methods are highlighted. 
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Chapter 2 – Use of global descriptors as an alternative to local 

descriptors: The map-merging problem could be split into several simple tasks. 
Some of them are partly solved in a single robot case. One of them is the loop-
closing problem. A novel technique for solving the loop-closing problem is 
presented. The proposed method enables a more efficient solution of the loop-
closing problem in a single robot case. The advantage of this method is in its 
capability to extend it to a multi-robot case and successful solution of the map-
merging problem. This strategy may be also useful in application for place or 
object recognition. 

Chapter 3 – Solution of map-merging problem in a multi-robot 

application: The author offers to use the capacity of the neural network in map-
merging applications. Some assumptions proposed by the author help to present 
this issue in more general terms. 

Conclusion: Generalizations and ideas for future work are presented. 
As stated in the introduction, the main purpose of the thesis is to develop a 

reliable method of combining several local maps created by mobile robots in a 
single global map.  

To develop this method, first, analysis of the state of art in this field is 
required. The next chapter reviews the existing methods. 
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1. Review of existing methods 

1.1 Introduction 

In the last decade, focus of research in autonomous robotics has been on 
developing and refining the algorithms of autonomous agent behavior. Many 
tasks have been solved. However, in practical applications the robot should be 
able to solve problems in collaboration with other robots. In fact, the speed and 
quality of a solution depends on the ability of robots to work in a team. 
Undoubtedly, one of such problems is the navigation. 

Existing algorithms for group behavior of robots for solving a map-merging 
problem can be broadly divided into three main classes [20]: 

 Stochastic methods: merging sensory data from multiple robots with 
known data association between features in local maps built by different 
robots. 

 Likelihood method over robots’ positions:  detecting other robots to 
determine relative position and orientation between local maps or 
assuming relative poses between robots are known. 

 Landmark-based algorithms: deriving the transformation between 
robots’ coordinate systems through the matching of landmarks. 

This chapter covers the essence of each class and reveals their advantages 
and disadvantages. The state of the art in this field and the main direction of 
work will be presented. 

1.2 Stochastic methods 

The first group of SLAM algorithms has used the stochastic methods. 
Algorithms for cooperative behavior were an expansion of the “single SLAM” 
problem to the multi-robots case. In [12] the system of a group of robots was 
represented by a single combined state vector. 

 [𝑘] =  [
 𝑣[𝑘]
 𝑙[𝑘]

] =  

[
 
 
 
 
 
 
 
 
 𝑣

𝐴[𝑘]

 𝑣
𝐵[𝑘]
⋮

 𝑣
𝑁[𝑘]

 𝑙1
[𝑘]

 𝑙2
[𝑘]

⋮
 𝑛[𝑘]]

 
 
 
 
 
 
 
 

 (1.1) 

Collaborating vehicle state estimates   𝑣[𝑘]  

  𝑣[𝑘] = [ 𝑣
𝐴[𝑘]𝑇 𝑣

𝐵[𝑘]𝑇 …  𝑣
𝑁[𝑘]𝑇], (1.2) 

where  𝑣
 [𝑘]𝑇 is the vehicle state estimate for a vehicle   at a time 𝑘.  
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The state estimate of the     landmark at time step 𝑘 is represented by the 
position estimate  𝑙 

[𝑘] and is included into the vector state of the environment  

 𝑙[𝑘]  = ( 𝑙1
[𝑘],  𝑙2

[𝑘],… ,  𝑙 
[𝑘],… ,  𝑙𝑛

[𝑘]). (1.3) 

 A single state estimate of the represented system incorporates all of the 
vehicle and feature estimates. On each estimated step, the vector state estimate 
and associated covariance matrix   of the estimation error are updated using an 
Extended Kalman Filter (EKF). 

 =

[
 
 
 
 
 
 
 
 𝐴𝐴  𝐴𝐵 ⋯  𝐴𝑁  𝐴1  𝐴2 ⋯  𝐴𝑛

 𝐵𝐴  𝐵𝐵 …  𝐵𝑁  𝐵1  𝐵2 ⋯  𝐵𝑛

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
 𝑁𝐴  𝑁𝐵 ⋯  𝑁𝑁  𝑁1  𝑁2 ⋯  𝑁𝑛

 1𝐴  1𝐵 ⋯  1𝑁  11  12 ⋯  1𝑛

 2𝐴  2𝐵 ⋯  2𝑁  21  22 ⋯  2𝑛

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
 𝑛𝐴  𝑛𝐵 ⋯  𝑛𝑁  𝑛1  𝑛2 ⋯  𝑛𝑛]

 
 
 
 
 
 
 

. (1.4) 

This method has a number of disadvantages common to all algorithms based 
on the filtering method. The main drawback is that the graph of a system’s state 
becomes fully inter-connected [54]. This leads to an increase in the 
computational cost. It is well known that computational cost of filtering 
methods is  ( 2), where   is the total numbers of landmark in the map.  
However, in [54] it was shown that in some cases the computational cost can 
grow to  (  ).  

1.3 Likelihood method over robots’ positions 

The key point of the second group of methods is the detection of position 
and orientation between two robots. The position of any mobile robot is 
uniquely defined in the fixed coordinate system of a local map. Using the 
information about the relative positions of robots, the task of map merging 
becomes feasible. In [31] the author formulates the map-merging problem as a 
decision problem in terms of likelihood over the position of the robot. The key 
aspect of solving the decision problem is using features with good 
discrimination power. A probabilistic approach to collaborative multi-robot 
localization was proposed in [13]. In this work, an implementation that uses a 
color camera and laser range finders to determine a robot’s position is 
presented. Other studies have used some assumptions, for example, relative 
poses between robots are known. Using the method outlined above, a situation 
may arise when two robots explore the same environment without being aware 
of each relative position and orientation.  It is the main drawback of the second 
group of methods.  
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1.4 Landmark-based algorithms  

New ideas to solving the map-merging problem appeared in [9]. This paper 
describes a landmark-based algorithm for map matching. The transformation 
between robots’ coordinate systems is derived through the matching of 
landmarks. In short, at the map matching steps the pair of matching points 
(   1,   

 2) is tested for possible mismatches. For all remaining candidate pairs 
the transformation components are computed. This technique can be applied to 
all other pair candidates and counting of overlapping and matching landmarks. 
Having tried all possible transformations, the winner is the transformation with 
the highest number of match-counts, also called the best match. 

The map-merging approach proposed in [20] uses visually salient features 
for local maps intersection detection. According to this work, the detected 
“similarity” can be later used for maps alignment. Despite the fact that the 
proposed method shows a good result, there are a couple of disadvantages that 
limit its use in practical applications. This method will be discussed in detail in 
the next chapter. 

1.5 Visual appearance 

The advantages derived from using of video cameras in SLAM applications 
allowed us to consider the camera as a major sensor. With equal working time 
for exploring an environment, the volume of received information has far 
exceeded the previous value.  As a result, in a number of works the map-
merging problem has been solved by using visual appearance. A novel method 
was presented in [20]. This method, the starting point of the thesis, is discussed 
in detail in this chapter.  

A group of robots starts to explore the environment from different points. 
Each robot builds its own map by using video SLAM technology. The map-
merging process is based on the comparison of two image sequences. Each 
image is described by a set of visual points. In contrast to previous methods, the 
MSER visual point’s detector has been applied [38]. Each new image feature 
extracted by the MSER detector was coded using the popular SIFT descriptor 
[36]. The MSER detector offers higher efficiency and higher speed of the 
detection of a subset of visual features with the stability to the affine 
transformation.  The SIFT descriptor raised discriminative properties of such 
points. Then, the calculated weight is assigned to different SIFT descriptors 
based on the frequency of their occurrence in the image database. A method of 
building a database is known as bag of words (BOW), first presented in the 
computer vision community in [37]. As a result, each image is represented by a 
vector   = [ 1 ⋯ 𝑛], where  𝑛 is a weighted descriptor or a visual word. The 
visual similarity matrix   constructed from such comparison between two 
image sequences is collected by different robots.  
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Figure 1.1 . Visual similarity matrix. The bright line highlights the sequence of images 

that are similar to each other – indicating that there is an overlap in the two 

environments explored. This image was taken from [20]. 

Entities of the matrix   ,  are the estimates of visual similarity between the 
two images. Since any image is represented as a vector, the similarity between 
the two images can be easily derived by using the Euclidean dot product 
formula:  

𝑆(  ,  𝑣) =
∑   ∙𝑣 

𝑛
 =1

(∑   
2𝑛

 =1 )1/2∙(∑   
2𝑛

 =1 )1/2, (1.5) 

where   = [ 1 ⋯ 𝑛],  𝑣 = [ 1 ⋯ 𝑛] are the representations of images in 
the BOW style. 

This method tested in the indoor environment at the distance of 180 meters 
has shown a good result. However, the existing shortcomings limit the 
application of this method in practice. А visual similarity matrix is constructed 
from a comparison between two images sequences collected by two robots. The 
time required to compare the type "with each other" by constructing the 
similarity matrix is highly dependent on the amount of images in the database of 
both robots and also on the dimension of visual dictionary.  But an obvious 
disadvantage of the BOW method is that it is time consuming. The use of long 
sequences of images greatly increases the time for constructing a visual 
vocabulary. As shown in Figure 1.1, the sequence of 146 images (y-axis) for 
constructing a visual dictionary is used. By increasing the distance traversed by 
the robot increases the number of collected images, respectively. If the number 
of images reaches 4000 - 6000, the calculation time may increase up to several 
hours. Because of the shortcomings, this method needs detailed research. 
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1.6 Conclusion 

This chapter has presented an overview of the existing methods for solving 
the map-merging problem. The analysis has confirmed the theoretical validity 
of those methods, but also helped to identify a number of drawbacks. 
Highlighted shortcomings limit the use of these methods in practical 
applications. The group of landmark-based algorithms deserves special 
attention. Algorithms of this class   make use of only available data that a robot 
creates during the execution of an individual SLAM. The most successful 
example of this class of algorithms is the algorithm that uses visual appearance 
for detecting “similar” intersections between local maps built by multiple 
robots. The availability of effective techniques for the detection of visually 
salient features makes this kind of algorithm more attractive.  A particular 
advantage of landmark-based algorithms is the lack of need of additional 
equipment. Finally, the multiple map intersection detection using the visual 
appearance algorithm was examined. The obvious drawback of the method is 
the image search time dependent on the number of images in the database. The 
query image is compared against every image in the database. The image 
retrieval time is increased due to increased number of images in the database. 
Such drawback limits the use of this image search strategy in practical 
applications. Along with these shortcomings, the method has several 
advantages. Each image is described by a set of local features, and this set will 
use the latter to detect similarity between the two images. In image retrieval 
systems, which are based on the principle of verification of local matching, the 
number of false positives is significantly reduced. The detected strengths and 
weaknesses of the method helped to shape the future direction of research. It 
became apparent that the task of aligning of several maps can be roughly 
divided into three stages:  

 Every robot carries out the individual SLAM technique and builds a 
map of the environment explored. 

 Image database is developed through accumulation of images from 
several robots; the query images are searched in the database. 

 If the system detects an image similar to query imagery, the robot will 
explore the area that has already been explored by another robot. It is 
only necessary to calculate the coefficients of the transformation matrix 
to transform the 3D coordinates of the existing map in the coordinate 
system of the requested robot. Thus, the two local maps are combined 
in a global map.  

The next chapter describes the properties of global descriptors and 
introduces a new approach to use them more effectively. We compare an image 
retrieval system based on global and local descriptors. A new image retrieval 
algorithm that uses global and local features of the scene is presented.  
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2. Use of global descriptors as an alternative to local 

descriptors. 

2.1 Introduction  

To construct a global map of the explored environment, robot group 
behavior could be roughly divided into three steps: 

 Constructing local maps 
 Finding of existing overlapped areas 
 Merging several local maps in a global map 

The first step, the local map building process, is a subject of an individual 
SLAM. It must be noted that the visual SLAM applications have shown some 
benefits and a camera is considered in this thesis as the only sensor. 

During the second step, some tasks that a robot solves during the SLAM 
process are very similar to the tasks for solving the map-merging problem, for 
example, a loop-closing problem is comparable to the problem of finding 
overlapped maps. Traditionally, in a visual SLAM, a loop-closing problem is 
solved by means of local structure analysis. Each image is represented as a 
frequency of occurrences of local features. This method is well known as the 
bag-of-words method. However, the image searching strategy based on the 
BOW method has two limitations: complexity and memory usage. Some 
extensions were applied to the BOW method to improve its properties. The 
BOW representations of images have shown very good results in image search, 
but the problem of memory usage is still unsolved. Parallel to this, in the 
computer vision literature, global descriptors have received increasing attention, 
including the GIST descriptor. This descriptor is very fast and compact. But due 
to the well-known limitation of global descriptors, as they are not invariant to 
significant transformation and lighting, global descriptors are not exploited in 
visual SLAM applications. 

The third step is described in detail in the fourth part. 
In this chapter we evaluate the image search strategy and increase the search 

accuracy of the system based on a global descriptor for solving a loop–closing 
problem in a visual SLAM application. 

2.2 Scene structure 

The image searching process in a large database using the image content is 
an interesting and challenging task. Principles of operation of existing systems 
are similar in many ways. In a database the system search for an image or group 
of images is visually similar to the query image. The degree of similarity of the 
query and matched images directly depends both on the properties of the system 
and on the application problems in whose interests this searching is carried out. 
Obviously, the degree of similarity of images should be maximum if the 
matched image should be used for a task like 3D reconstruction of the scene or 
place recognition. In [45], the author has identified three levels of scene 
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description. Such a division determines the necessary level of detailization, the 
presentation of the requested image and applied mathematics. 

The first level, the subordinate level, is a level of detailed description of the 
local area of the image. This level is often used in place recognition 
applications, for the analysis of local structures of an image. Chad Carson has 
proposed an image search method called “Blobworld”. The Blobworld image 
representation involves three steps (see Fig. 2.1.): 

1.  Extract color, texture and position features for each pixel at the 
selected scale. 

2. Group pixels into regions. 
3. Describe the color distribution and texture of each region for use in 

the query. 

 

Figure 2.1. From pixel to region description. 

Modern methods for image representation use simpler algorithms, which still 
have large discriminatory properties. A common strategy for image 
representation is shown in Figure 2.2. 

 
Figure 2.2. Image representation with local features. 

A search system returns an image selected on the principle of texture, color  
or spatial structure similarity. 

The second level is called the basic level, characterized by the general 
description of the scene. Roughly, it subdivides a scene on artificial (houses, 
streets) and natural landscape (forest, mounts). Images referred to a group 
usually involve similar objects.  

The third level, called the superordinate level, usually characterizes the 
scene with a maximum degree of abstractness. Images are classified into 
artificial and natural landscapes made inside and outside. A more general set of 
categories is proposed in [60]. A scene may refer to one of the categories 
(inside, outside, city landscape, wildlife, mountains, and forest).  

In many SLAM applications, the degree of image representation belongs to 
the first level and is carried out using low-level visual features. Analysis of local 
structures is needed to define re-visited places, precise localization of the robot 
or to reconstruct the 3D scene. However, this level presents images as high 
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dimensional vectors and this fact complicates processing, storage and retrieval 
of images. 

2.3 Global descriptor for solving a loop–closing problem in SLAM 

Global features have been used in the computer vision community as an 
alternative to local features for scene classification [45], [60]. Their key 
advantage for this application is that their performance is very similar to that of 
local features at a much lower cost [11]. In recent years, in view of global 
features, greatest interest has been shown in the robotics community. Most 
shape and texture descriptors may belong to this category. Such features are 
attractive because they produce very compact representations of images, where 
each image corresponds to a point in a high dimensional feature space. For a 
global descriptor, in this thesis we will use the popular GIST [45].  Previous 
work has shown that the global descriptor may be successfully applied for scene 
classifications represented on the base level or on the subordinate level of scene 
description. The results of experiments confirm the validity of this claim. Query 
image represented as a high-dimensional vector is compared against all images 
from the database represented in the form of high-dimensional vectors too. In 
the experiment and in the further work, this thesis uses the popular GIST 
descriptor. Minimum Euclidean distance between the compared GIST 
descriptors, meaning the query image and its likely candidate, determines the 
degree of similarity of images. 

𝜌( 𝑛, 𝑦𝑛) =  ‖ − 𝑦‖ = 

= √( 1 − 𝑦1)
2 + ( 2 − 𝑦2)

2 + ⋯+ ( 𝑛 − 𝑦𝑛)2 = (2.1) 

= √∑ ( 𝑘 − 𝑦𝑘)2𝑛
𝑘=1 , 

where   =  { 1,  2,⋯ ,  𝑛},  𝑦 =  {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} . 
Figure 2.3 shows the query image and its nine scenes nearest candidates in 

the sense of minimum Euclidian distance. 
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Figure 2.3.  Result of the experiment; a) query image and b) nearest candidates. 

The figure shows that global features representation of the image reflects the 
general structure of the scene, at the same time completely ignoring the local 
structures. From the scene classification point of view, the minimum Euclidean 
distance has the images that belong to the same group by the basic or 
superordinate level of scene presentation. But the problem of loop closing 
greatly differs from the scene classification one; as the aim of loop closing is to 
discern if we are in the same place and that of the scene classification is to 
determine whether a scene belongs to the same category. Based on this 
observation we could suggest that global descriptors are completely unsuitable 
for the determination of re-visited places. However, recent studies suggest using 
global features in the robotics context. For example, in [35] proposes a SLAM 
system based on particle filters that select loop closure candidates based on 
GIST features. In [43] the GIST descriptor for panoramic images is also used. 
In [11] global features are successfully used for web searching in databases with 
millions of images. During the experiments it was observed that using the 
global descriptor can most likely determine the exact same scene in the two 
images when the images were taken from approximately the same location. On 
the one hand, it confirms one of the drawbacks of the global features that they 
are not invariant to affine transformations, but on the other hand, it highlights 
more clearly the properties of the global descriptor. Even if the details of the 
scene have changed, the global structure of the scene remains unchanged. It 
allowed identifying the scene as the same. The results of the experiment are 
presented in image 2.4. 
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Figure 2.4.  Compared images. 

2.4 Mathematical model of GIST representation of an image  

As mentioned in previous chapters, a GIST descriptor encodes the global 
information about a scene and remains indifferent for local changes. Such 
unique property of the GIST descriptor reflects the global structure of the scene, 
explained by the nature of the formation of GIST representation, which is the 
basis of the discrete Fourier transform. In fact, any grayscale image is a 2D 
function  ( , 𝑦) (digital image), where   and 𝑦 are spatial coordinates and 
magnitude   is intensity of the image in these coordinates. If  ( , 𝑦)where 
 =  , , ,    ,   and 𝑦 =  , , ,    ,   image with size    , then, the two-
dimensional Fourier transformation  ( ,  ) of the image   can be expressed by 
the equation: 

   ( ,  ) =  ∑ ∑  ( , 𝑦)𝑒− 2𝜋(
𝑥𝑢

𝑀
+

𝑦𝑣

𝑁
)𝑁

𝑦=1
𝑀
𝑥=1 , (2.2) 

where   =  , , ,    ,   and   =  , , ,    ,   – frequency variable.  
Despite the fact that the magnitude of the  ( , 𝑦)  function belongs to the 

domain of real numbers, the value of a  two-dimensional Fourier transform is 
the complex numbers  ( ,  ) =  ( ,  ) +  ( ,  ), where  ( ,  ) is the real 
and  ( ,  ) is the imaginary part. In practice, to visualize the DFT   ( ,  ) its 
amplitude spectrum is often used: 

| ( ,  )| = [ 2( ,  ) +  2( ,  )]1 2⁄ , (2.3) 
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and the phase function of the DFT: 

𝛷( ,  ) = arctan [
𝐼( ,𝑣)

 ( ,𝑣)
]. (2.4) 

In [45] it is shown that the phase function reflects information of local 
structures of the scene, and the amplitude spectrum of the image reflects the 
global structure of the scene. The amplitude spectrum reflects the frequency of 
brightness changing distributed over the whole image. Values of amplitude 
spectrum depend on the geometric dimensions of contours, the length and 
width, their smoothness. The forms of the amplitude spectrum of very simple 
objects are shown in Figure 2.5. The value of   (0, 0) placed in the middle of 
the image determines the "dc" frequency of the amplitude spectrum and 
corresponds to the average brightness of the image. As seen, visualization of the 
amplitude spectrum is clearly related to the orientation of the rectangle on the 
image. In Figure 2.5 b the white rectangle is located along the y-axis, but the 
maximum of the amplitude of the spectrum is arranged along the x-axis that is 
rotated 90 degrees relative to the orientation of the rectangle.  We can see also 
that there are certain values of the amplitude spectrum along the y-axis but the 
magnitude of these values is lower. Another important issue is the distance 
between zero points of the amplitude spectrum. The distance along the u-axis is 
larger than the respective distance along the v-axis and this ratio depends on the 
ratio of the lengths of the sides of the rectangle. Figure 2.6 shows this 
relationship in detail. This is explained by the difference in the ratio of the 
length and width of the rectangle.  

 
Figure 2.5. Amplitude spectrum of very simple forms. 
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Figure 2.6. 3D representation of amplitude spectrum of the white rectangle located 

along the y-axis 

 
Figure 2.7. An image of a city landscape and visualization of its amplitude spectrum 

In more general terms, the amplitude spectrum is closely related to the speed 
of brightness changing on the image. The low frequencies correspond to a 
smooth change of the brightness. The high frequencies correspond to the quick 
change of the brightness, for example, the presence of noise. The middle 
frequencies are a subject of edges of objects and its parts. Obviously, the 
Fourier transform   ( ,  ) involves all of the f value of the function  ( , 𝑦) 
multiplied by the exponential part (2.2). Thus it is usually difficult to establish a 
correspondence between the parts of the image and its spectrum, except in very 
simple cases, as presented in Figure 2.5. Figure 2.7 shows an image of the city 
landscape and its visualization of amplitude spectrum. In the picture, objects 
with vertical orientation (houses, trees, lamp posts) and with horizontal 
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orientation (sunlight on the road) are dominating, but it is impassable to identify 
each particular object on the visualization of the spectrum image. Figure 2.8 
presents more images with natural artificial landscape. Each image has a 
pronounced boundary of brightness changing, which is reflected in its Fourier 
transform. Along with amplitude spectrum, another representation of DFT, 
called the energy spectrum, is often used. 

 

Figure 2.8. Images of natural and artificial landscape and its visualization of DFT 

Energy spectrum  yields an idea of the distribution of the signal 

energy in the frequency domain and could be calculated by the following 
equation: 

 (2.5) 

As the amplitude spectrum and the energy spectrum are invariant to local 
changes of the scene elements, it encodes only the dominant structure of the 
scene. Since the dimension of DFT is equal to the size of the image , 
direct using of a raw result of the Fourier transform in many practical 
application is time consuming. Theoretically, in order to reduce the dimension 
of the function (amplitude or energy spectrum) Karhunen-Loeve 
Transformation (KLT, also known as eigenvector transform) and PCA can be 
used. The theoretical aspect of applying of KLT is explained in [45]. In fact, 
basic functions of the KL transform are eigenvectors of the covariance matrix of 
the input signal. This transformation is optimal for achieving the decorrelation 
criterion of an input signal and ensures that the percentage of energy in a given 
amount of the highest coefficients will not be less than in the same amount of 
coefficients by any other transformation. Often, however, there are difficulties 
in using this transformation in practice in computer vision applications. Due to 
the fact that in practice the number of images in a database is smaller than the 
number of elements in an image, the reliable estimation of basic functions is not 
possible. Authors have proposed another method to reduce the dimension of the 
DFT: 

.
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𝑔 = ∬ ( ,  )𝐺 ( ,  )𝑑 𝑑  , (2.6) 

where 𝐺 is a set of Gaussian functions arranged in a log-polar array and 
calculated by rotating and scaling the function:  

𝐺 ( ,  ) =  𝑒−𝑣2/𝜎𝑣
2
(𝑒−( −𝑓0)2/𝜎𝑢

2
+ 𝑒( +𝑓0)2/𝜎𝑢

2
). 

A vector 𝑔 with dimensionality 𝑔 = {𝑔 } =1,  represents the function of 
energy spectrum  ( ,  ). PCA is then applied to the low dimensional vector 𝑔. 

For a detailed analysis of the scene in practical applications, the windows 
Fourier transformation (WFT) is often used. In this case, a grid splits the image 
in several image parts (spatial locations) and the energy spectrum is computed. 
Although this increases the dimension of the vector, at the same time it fills 
global scene representation with more unique information. 

 
Figure 2.9. Several real images with corresponding GIST descriptor representations. 

GIST descriptor was computed by the windowed Fourier transform (WFT) at     

spatial location. 

2.5 The GIST descriptor in loop-closing applications 

The main task of any video SLAM algorithm is to build a map by using 
video information acquired by robots’ on-board cameras. Such maps consist of 
a collection of 3D points located in the world coordinate frame. Each point of 
the map has a geometric relationship with its corresponding source in the two-
dimensional image plane. Such 2D points are usually called local features. Due 
the tracking of local features the robot is able to estimate its own position and 
continuously improve the map. In this context, the image matching process is a 
key aspect in addressing issues, such as object or scene recognition, solving 3D 
structure from multiple images, motion tracking.  For reliable tracking, these 
points have to have a unique representation and a number of properties. They 
are invariant to image scaling and rotation, and partially invariant to change in 
illumination and 3D camera viewpoint. Local features can be reliably detected 
and computed by a number of efficient algorithms. As shown in previous 
chapters, global features, and specifically, the GIST descriptor is widely used in 
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computer vision applications. In this section the global descriptor for a specific 
purpose, recognition of re-visited places is used. The new efficient technique 
should increase the performance of any SLAM algorithm. 

2.5.1 Image representation 

The main task that a robot can solve by any SLAM algorithm is building a 
3D map. In this context, the problem of detecting revisited places has acquired 
increased significance. The robot stores the representation of each frame in its 
memory, creates an image database and continuously checks the newly acquired 
image with elements of image database. In order to know if two images match, 
the distance between their bag-of-words models is computed. As the image 
descriptor is a histogram, the Bhattacharyya’s distance would be the best option. 
If the distance is under a predefined threshold, the images are said to match. The 
images potentially matching can be geometrically verified using the image 
position of the local feature. However, previous analyses of image retrieval 
systems show that there are a number of limitations that degrade the properties 
of such systems, for instance, speed of search, computational complexity. To 
improve the performance of image retrieval algorithms we include its global 
feature in the image representation structure. At the same time, it is impossible 
to completely eliminate the use of the local descriptors. They are needed both at 
the stage of mapping and at the stage of image retrieving. The new image 
representation is a structure consisting of a global feature, in our case the GIST 
descriptor and a set of local features. The local features are the set of widely 
used SIFT features. The number of SIFT descriptors depends on the image 
content and can vary between 50 and 1350 local features in one particular 
image. Such number of local points increases the amount of memory consumed 
by each image. In addition, many of those local features cannot be used in 
further calculations. Therefore, to reduce the used memory, local features are 
computed in the following manner. MSER algorithm [10] detects a group of 
local points with specific properties. Then the SIFT algorithm encodes these 
features and presents each of them as a 128-dimensional vector. The final 
structure of the image is represented in the following formula: 

structure Frame =  {

 global =  {𝑔1, 𝑔2, … , 𝑔 }

local  =  { 1,  2, … ,  𝑛}

bow = {𝑝1, 𝑝2, … , 𝑝𝑘}
}, (2.7) 

where global is a dimensional      vector, local is a set of 128-dimensional 
vectors of local features, and finally, bow is a bag-of–words image 
representation.  

The dimension of the global representation depends on several factors, such 
as the size of the original image, the properties of the transformation algorithm 
from an image to its global presentation. The original image is split into a group 
of images with different scale and orientations. In our case, we have reduced the 
size of the original image to 32 × 32 pixels and applied 3 scalings and 8 
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orientations. The output value of the energy spectrum averages by 16 non-
overlapping windows. As a result, the input image is represented as a     
   =      -dimensional vector. Finally, the average amount of memory 
occupied by such representation is   b t s      −    mens onal =
     b tes for gist features and   (  b t s      −    mens onal) =   
    b tes for local features. The experimental result shows that the average 
amount of the occupied memory of real images from the RAWSEED dataset is 
approximately    . 

2.5.2 Image retrieval algorithm 

This part of the chapter offers a new strategy for recognition of re-visited 
places. Such image search strategy was first presented in [11]. The main 
difference between the two methods is that the robot does not store all images in 
its memory but has only the structural representation, as described in the 
previous section. It should be noted that this version of recognition of re-visited 
places is offered for the first time in the context of SLAM applications. The 
algorithm could be divided into two levels. Essentially, the task of all levels is 
consistently reducing the number of relevant images in accordance with the 
criteria defined for a particular step. The result of the algorithm is two matched 
images, the query image and its best-matched candidate that we will call a 
winner found in the database or lack thereof if the winner was not found.  

The image retrieval process is preceded by a preparatory step. In this step, 
the k-means [27] clustering algorithm is run on a set of GIST descriptors of   
independent images. This step produces a codebook { 1,  2, ⋯ ,  𝑛} of  -
centroids. Then the k-means algorithm is run on an independent set of SIFT 
descriptors to produce a codebook { 1,  2,⋯ ,  𝑘} on 𝑘-centroids.  It is necessary 
to create the BOW model of an image representation. The BOW model 
represents every image as the histogram of appearance of a set of local features. 

When the robot starts to move in the environment, it runs the SLAM 
algorithm and simultaneously creates an image database. The gist features of the 
new acquired image are assigned to the nearest cluster of the codebook 
{ 1,  2,⋯ ,  𝑛}. The criterion of similarity is the Euclidean distance between two 
vectors: 

𝑑𝑚 𝑛 = ‖𝑔 −  𝑘  ‖, (2.8) 

where 𝑔 is the gist representation of a new image and   𝑘 is the 𝑘   centroid 
of the codebook of gist features { 1,  2,⋯ ,  𝑛}.  

Simultaneously, the robot extracts a set of local features and computes its 
BOW model. But not all images are added to the database. At the speed of the 
robot of 3 km per hour, encoded images are added to the image database with a 
frequency of 1Hz. The experimental results show that this frequency saves 
technical resources of a robot, it occupied an amount of memory, and allowed 
us to store sufficient amount of images for reliable place recognition. When the 
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robot travels a certain distance and a sufficient amount of images will be 
collected in the database, the image retrieval algorithm is started. 

The retrieval algorithm begins with a filtering step, which is based on the 
similarities of GIST descriptors (Figure 2.10). A gist feature of a query image is 
assigned to the nearest cluster of the codebook , , ,  according to 
equation (2.8). All of the images that are interior of the cluster are considered as 
relevant images or potentially matching images. 

 

Figure 2.10. Graphical representation of the first step. Filtering method based on the 
comparison of gist features. Here the query image is assigned to the nearest 
cluster .The distance  between the query image and the centroid   is minimal. 

Practical experiments show that there is a need to consider  nearest 
clusters. The number  is chosen empirically and depends on many factors, like 
the context of the environment, the number of images in the database, the 
number of clusters in the codebook. Although the number of potential 
candidates was much smaller than the total number of images in the database, 
we reduced the number of relevant images by comparing of gist descriptors 
(Figure 2.11).  

 

Figure 2.11. Verification of similarity of two GIST descriptors. 

The GIST descriptor of query images was sequentially compared to all 
descriptions of potential candidates. At this stage, the threshold value was 
introduced. The Euclidean distance was computed and verified the condition of 
entering in the required range. All the images placed outside dotted lines 
(Figure 2.11) were rejected from the list of potentially matched images and not 
considered any more. The threshold value was also estimated by experience. 
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The result of the first step is the reduced set of relevant images. Typically, the 
first step filters out about 99% of database images. 

In the second step, we measured the similarity between the distributions of 
local features in the two images. In order to know if the two images match, the 
distance between their BOW models was computed. As the image descriptor is 
a histogram, the Bhattacharyya’s distance would be the best option [48]. The 
Bhattacharyya measure has a simple geometric interpretation as the cosine of 
the angle between the N-dimensional vectors: (√ ( ),⋯ ,√ ( ) )𝑇  
and(√  ( ),⋯ ,√  ( ) )𝑇, where   is the length of the 
codebook { 1,  2,⋯ ,  𝑘}.  

Thus, if the two distributions are identical, we have: 

cos(𝜃) =  ∑√  ( ) ( )

𝑁

 =1

= ∑√ ( ) ( )

𝑁

 =1

= ∑ ( ) =  

𝑁

 =1

, 

and 𝜃 = 0  
The metric distance between the two distributions could be estimated: 

 𝑑( ,   ) =  √ − 𝜌( ,   ) , (2.9) 

where 𝜌( , ) denotes the Bhattacharyya coefficient and could be estimated 
𝜌( ,   ) =  ∑ √  ( ) ( )𝑁

 =1 . 
If the distance is under a predefined threshold, the images are said to match. 

The images potentially matching can be geometrically verified using the image 
position of the local feature. Assuming that the scene is rigid, the position   

1 of 
the feature   in image   and the position   

2 of the same feature   in image   are 
related by the epipolar constraint [18]: 

  
2𝑇

   
1  =  0,  (2.10) 

where   is the fundamental matrix that encodes the geometrical relation 
between the two views. 

The minimum case for the estimation of the fundamental matrix needs seven 
point correspondences. The simplest method is the normalized 8-point 
algorithm [18]. After this step, only those potential matches that hold equation 
(2.10) are considered geometrically consistent and the rest are discarded. 

The winner is an image that holds geometrical verification and has 
maximum positive matched points. 

2.6 Experiment 

In this part the image retrieved system performance is evaluated. Two high-
quality multisensor image datasets from the RAWSEEDS project [57] extended 
with associated ground truth were used. To produce a codebook a set of images 
acquired by a front camera of a robot from BOVICA (outdoor + mixed) dataset 
was applied (algorithm 1). This algorithm is executed once at the preliminary 
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stage in offline mode and requires a considerable amount of time for producing 
the codebook.  
Algorithm 1. Producing a codebook of  k-clusters. 

Objective 
Given a set of N images, compute the codebook of k-clusters. 

Algorithm 
compute the GIST  descriptor of  images 
run k-means algorithm to produce the codebook of k-centroids. 
 
During the movement of the robot, each new incoming image is represented 

as a structure (2.7). To extract the GIST descriptor, the code proposed in 
[http://lear.inrialpes.fr/software] was used. To extract a set of local descriptors, 
the famous OpenCV library is the usual practice. As seen in Table 2.1, the 
algorithm for the extraction of a global descriptor from the image is much more 
efficient than the local features extractors.  
Table 2.1. Image preprocessing time for extraction of set of SIFT and a GIST 

descriptors. 

Local (SIFT) using OpenCV library  0.68 sec 
Global (GIST) using the function coded in C  0.09 sec 

 
Every new GIST descriptor is assigned to the nearest cluster (algorithm 2).  

In the experiment 52,700 images from the image sequence of “BICOCCA” 
(indoor) dataset were used. 
Algorithm 2. Distribution of N gist descriptors. 

Objective 
Given a set of N images from the image sequence and the codebook of 

𝑘 −centroids, compute the image representation structure and store it. Assign 
each new GIST descriptor to the nearest cluster of the codebook. 
Algorithm 

compute GIST descriptors  and a  set  of  SIFT descriptors, formula(2.7) 
 assign all gist descriptors  to the  nearest cluster, formula (2.8). 
 
The result of the algorithm is a database in which every image is a part of a 

particular cluster. This distribution of 52,700 images of the sequence acquired 
by the front camera mounted on the robot is shown in Figure 2.12. 
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Figure 2.12. Distribution of 52,700 database images on clusters. 

When the database is created, the robot may start to check every new image 
to recognize a place that it has seen before (algorithm 3). 
Algorithm 3. Image retrieval algorithm.  

Objective 
Given a query image and a database of images. Retrieve the image from the 

image database that is similar to the query image.  
Algorithm 

1. step 1 (global verification): 

 assign a GIST descriptor of the query image to the m - nearest clusters 
of the codebook. Produce a list of relevant images;  

 compute the Euclidean distance between the gist of the query  image  
and the gists from the list  of relevant  images; 

 from the list of relevant images reject all images whose Euclidean 
distance is greater than the threshold    ; 

2. step 2 (local verification): 

 compute the distance between their bag-of-words model; 
 compute the  number  of  matched local  features on  two  images  N 

(query and potential  matched images);  
 using the image position of the local feature verify geometrically for 

all images with N > 8. 
 
To simplify the analysis the algorithm is represented in two parts. Part 1 is 

designed to produce a list of images, which could be likely candidates for the 
query image. The number of images in the list should be considerably less than 
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the total number of images stored in the database and depends on several 
factors, such as the size of the codebook, the degree of similarity between the 
scenes and the degree of similarity between GIST descriptors, respectively. As 
seen in Figure 2.12, each cluster contains a number of images. On average, this 
value is less than 900. However, four of the clusters involve many more images. 
One way to influence the number of images in the clusters is to change the size 
of the codebook. For example, Figure 2.13 shows the distribution of the same 
sequence of images on 1000 clusters. Based on this, the intuitive conclusion is:  
increasing the size of the codebook should reduce the number of GIST 
descriptors included in each cluster and hence leads to a reduction of the list of 
likely candidates. In this experiment, a list of less than 10 percent of database 
images was obtained. The next phase of the global filtering reduced this list to 
one percent after the estimation of the Euclidean distance between the GIST 
descriptor of the query image and the GIST descriptors of other images that 
belong to the list of likely candidates. At this point, the threshold value  was 
introduced. The dependence of the number of images in the list of the threshold 

 is shown in Table 2.2. 

Table 2.2 The dependency of the number of images in the list of likely candidates of the 
threshold value. 

Threshold 0.68  0.75 0.85    1 
Number of images 
in the list 

61 384 543 986 

Percentage of 
images in the list 

0.11% 0.73% 1.04% 1.89% 

 
When the value of the threshold   0.68, the average number of images 

in the list of likely candidates is 61, which corresponds to 0.11 percent of the 
total number of images. Increasing the threshold  leads to increasing the list 
of likely candidates. To understand the reason of introducing the threshold the 
following discussion is helpful. “M” nearest clusters that were successfully 
identified in the first step of algorithm 3, contains a number of images. Some of 
them perhaps are desired candidates, but most of the list should be rejected. The 
threshold  reduced the list of likely candidates and all images that were 
outside the circle with a radius  (Figure 2.14, right image) had to be excluded. 
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Figure 2.13. Distribution of 52700 database images on 1000 clusters 

. 

 
Figure 2.14. Dependence of the number of images in the list of likely candidates on the 

threshold value:  a) three independent nearest clusters with centroids   ,   ,   . The 

query image is included in the red cluster with the centroid c1. Three different circles 

with the center in the query image and radius    define a list of likely candidates, which 

here is                . The graph on the left image (b) shows how the size of the 

list changes if the threshold value is changed. 

Theoretically, it is difficult to estimate the magnitude of the threshold. 
Practical experiments with   dataset images from the RAWSEED project [57] 
showed that for a threshold value less than     (      0   ) the list remains   
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empty. It means that the    Euclidean distance between the images is greater than 
the threshold value     and all images from the database are outside the 
smallest circle with the radius     (Figure 2.14 (a)). If we increase the 
threshold, the first nearest images will be included to the list. The slope of the 
graph (Figure 16 image b)) on the segment from     to     is equal to  =
𝑛𝐼𝑚    2−𝑛𝐼𝑚    1

  2−  1
=

   − 1

    −    
=    ∙  0 . The graph on the segment from     

to     is more sloping    =
𝑛𝐼𝑚    2−𝑛𝐼𝑚    1

   −  2
=

   −   

    −    
=     ∙  0 . This 

means that the size of the list grows slowly.  Intuitively, the desired candidates 
should be closer to the query image than other images. When the majority of the 
nearest images are included, we change the threshold value until   3 = 0.85 to 
increase the probability that the desired candidates    are in the list. As can be 
seen from Figure 16 a), the desired candidates may be part of different clusters. 
In fact, increasing the value of the threshold expands the circle around the query 
image and adds to the list of likely candidates    not only desired candidates but 
any other images. The list becomes redundant. The analysis of the graph has 
showed that the increase of the threshold    beyond the saturation threshold (in 
this case      0   ) is not justified and leads to an increase of the list of 
possible candidates, and to growing the retrieval time, respectively. Thus the list 
of likely candidates is reduced (Table 2.2) and contains no more than one 
percent of images.  

Part 2 of algorithm 3 is designed to further reduce the number of likely 
candidates and determine a winner. The images potentially matching can be 
geometrically verified using the image position of the local feature. In order to 
know if two images match, the distance between their BOW models is 
computed. A popular method described in [27] should filter out all undesired 
images from the list. Without this step, all of the images from the list should be 
checked for local points matching. For all images with N > 8, geometrical 
verification using the image position of the local feature is carried out, where N 
is the number of corresponding points. An image containing a large amount of 
corresponding points that have successfully passed the geometry test is chosen 
as a winner. It is important to emphasize the need for geometric verification. 
Figure 2.15 shows the common situation the robot faces by operating in the 
indoor environment. The images look very similar. Even the human eye cannot 
distinguish that both scenes were captured in different places. Lack of 
geometrical checks could lead to false positives of the system. 
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Figure 2.15. Absolutely different places but they look very similar. Moreover, the GIST 

representation of both images is also very similar. 

 
Figure 2.16. Result of the retrieval algorithm: a) query image, b) winner, c) a pair of 

matched images with a set of corresponding points, d) ground truth path. 
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The result of the retrieval algorithm (algorithm 3) is shown in Figure 2.16. 
The blue circle on the path marks the position of the robot by taking the query 
picture and the red cross is the position of the robot by taking the winner 
pictures. 

Each image included to the RAWSEED datasets contains information about 
the true position of the robot. This allows us to make a visual check. The part of 
the robot path in an enlarged scale is shown in Figure 2.17. A set of 
corresponding points in both images (query and winner images) is shown in 
Figure 2.18. 

 

 
Figure 2.17. A part of the map. Blue circles are the positions of the robot by shooting a 
query image and red crosses mark the positions of the robot by shooting a winner 
image. 

 
Figure 2.18. A set of corresponding local features on the query and winner images. 
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Usually, the properties of the retrieval system are evaluated using a precision 
vs. a recall graph. The graph shows how the accuracy of the system is reduced 
while increasing the fraction of retrieved images. The precision and the recall 
could be defined with the equations: 

Prec s on =
 

𝑁
 , (2.11) 

Recall =  
 

 
, (2.12) 

where r is the number of relevant images retrieved, N is the total number of 
images retrieved; R is the total number of relevant images in the database.  

The number of retrieved images is regulated by the threshold value   . The 
results of the evaluation of the efficiency of the image retrieval system based on 
the global descriptor for different threshold values    are presented in Table 2.3 
and on the graph (Figure 2.19). Five additional images of the outdoor 
environment have been included in the database. Different types of scenes 
represented in the database and added to the database are used for visual clarity, 
and do not affect the results of the experiment. 
Table 2.3 The properties of the retrieval system. 

Threshold Total number of 
images retrieved 

N 

Precision 
 

 
 

Recall 
 

 
 

0.2 1 1 1/5 
0.23 2 1 2/5 
0.25 3 1 3/5 
0.27 4 1 4/5 
0.3 5 5/5 =1 1 
0.68 31 5/31 = 0.16 1 
0.8 501 5/501 = 0.01 1 
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Figure 2.19. Precision vs. recall graph for different thresholds. 

 
Figure 2.20. A set of images was used to evaluate the properties of the image retrieval 

system based on the global scene representation: a) the query image 1-4) images added 

to the database. 

The experiments showed that the accuracy of the image retrieval system 
based on the global properties of the scene decreases rapidly with the increase 
of the threshold. Experiments with real “BICOCCA” data [57]  showed that the 
average threshold value is equal to 0.8, where for all 200-query images the same 
number of matched images was found. The threshold magnitude less than 0.8 
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leads to the conclusion that a desired candidate will not be found for all query 
images. The magnitude higher than    =  0   makes the list of the likely 
candidates redundant. 

2.7 Conclusion  

As it was shown at the beginning of this chapter, different ways to solve the 
map-merging problem can be borrowed from the robots capable of figuring out 
the loop-closing problem. The essence of both of the problems is the same: to 
find an image in the database, which is similar to the query image. As is known, 
the solving of the loop-closing problem is far from perfect. This chapter 
proposes a new efficient method. It operates successfully with huge amounts of 
images. This is the main advantage of the method over the previously existing 
methods. The multi-stage filtration procedure based on the comparison of global 
properties of two different scenes has made the method successful. To increase 
the accuracy of the image retrieval system the local points matching procedure 
and finally the epipolare geometry constraints verification is incorporated. After 
series of successful experiments with the data obtained from one robot, it 
becomes possible to extend this image finding strategy to a multi-robot case. In 
such situations, the new database will be much larger and will save the 
information from   several robots. The image retrieval system will operate more 
efficiently with a large image database if several additional requirements are 
met: 

 The dimension of the codebook should be universal. It is created in the 
offline mode and should pass to any such system. To achieve it, the 
number of clusters or the dimension of the codebook has to be much 
larger. In [11] the author used the codebook with k = 20 000. This 
allows us to find a similar image in a huge database with more than 
1000 000 images. 

 By construction of the universal codebook an independent set of images 
with the widest possible range of different types of scenes has to be 
used. 

 Adhering to these requirements will prevent cases like accumulation of 
a huge number of images in one cluster, but a few others at the same 
time remain empty.  

With these results we can return to the multi-robot case and to the map-
merging problem. If a robot gets from the system an image, which is similar to 
the query image, the task of combining two local maps is reduced to the 
transformation of 3D points of one coordinate system to another. The statement 
of the map-merging problem and possible solutions are the subject of the next 
chapter. 
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3. Map-merging problem in a multi-robot application 

3.1 Introduction 

Chapter 2 discussed the characteristics of the methods for alignment of two 
local maps in a global map. The landmark-based method has significant 
advantages over other methods and offers a basic strategy to address this 
problem. This strategy involves three steps: 

 Let given two sets of 3D points   and   have an overlapping area. Find 
a set of corresponding point-pairs. 

 Given a set of corresponding point-pairs, a rigid transform can be 
computed that best positions the two shapes so that the distance 
between the corresponding points is minimized. 

 Decide if a given refined estimate is correct. 
To continue the study of the alignment process, it is necessary to clarify 

what the 3D map created by a mobile robot is. In this thesis, the local map is 
defined as a set of vertices in a   . Each vertex is defined by 3D coordinates  
( , 𝑦,  ) and represents the outer surface of the object. In the computer 
literature, such a set of points is called a point cloud. Generally, to build a 3D 
point cloud, a 3D scanner is commonly used. Recent visual SLAM equipment 
has all advantages of video cameras and provides in-depth information of the 
scene. Such devices belong to the group of active vision sensors and consist of a 
color camera and a sensor of depth. An example of such a device is a KINECT 
camera [1], [25], [3]. The depth sensor consists of an infrared projector 
combined with a monochrome camera, which allows the sensor to obtain three-
dimensional KINECT-images of a scene. Due to high technical characteristics 
combined with the low cost, the KINECT camera is widely used in SLAM 
applications. 

Due to the intensive use of high-accuracy measurement tools for sensing of a 
3D space, in the robotics community, the affine registration problem is 
intensively discussed. The registration problem is defined as a problem of 
estimation of the unknown parameters of the transformations between two 3D 
scans and finally, the aligning of these scans. Obviously, the map-merging 
problem and the registration problem are very similar and could be considered 
as identical. At present various algorithms are available for solving the 
registration problem. Under certain restrictions, they successfully solve this 
task. However, all of these algorithms have drawbacks. In parallel, research in 
the field of neural networks is gaining momentum. Neural network algorithms 
successfully solve the pattern recognition problem, data classification, and the 
nonlinear approximation problem. In addition, artificial neural network has a 
number of advantages over traditional computation methods. Powerful 
computing potential of the neural network is able to solve a map-merging 
problem as effectively as the traditional methods. 

This chapter focuses on the potential of artificial neural network for solving 
the map-merging problem.  
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3.2 Review of existing methods 

Modern 3D high-accuracy measurement tools have simplified the scanning 
process of the environment. Without a priori knowledge of the relative 
displacements of the active sensors, the registration makes use of a registration 
of partially overlapped images. A typical formulation of the registration 
problem could be described in the following way: two sets of 3D points or a 3D 
point cloud, commonly called a model and a date, are given. The aim is to find 
transformation parameters that optimally merge two 3D point clouds. The affine 
transformation in   is given by matrix  . For any point 𝑑1( 1, 𝑦1,  1)    the 
matched point  1( 2, 𝑦2,  2)    could be found by the equation:  1

𝑇 =  ∙
𝑑1

𝑇. In other words, the solution of the problem is reduced to finding the nine 
variables by solving a system of nine linear equations. Because a 3D point has 
three degrees of freedom, it is necessary to specify three-point correspondences 
in order to constrain   fully. If exact three-point correspondences are given, 
then the exact solution is possible. But in practical applications, the coordinates 
of points are measured inaccurately. If more than three-point correspondences 
are given, then one attempts to estimate an approximate solution, namely 
transformation parameters that minimize some cost function. 

Existing methods for solving the registration problem could be divided into 
two classes: 

 class of voting methods;  
 class of methods using a corresponding point pair. 

Geometrician Hashing [63] refers to the first class of methods. Initially, the 
method was developed for computer vision applications and designed for 
pattern recognition. The recognition system was able to recognize objects on the 
image presented partly or undergoes geometrical transformations. In such a 
system, models of objects are stored in a database. To quickly find a model 
object in the database, a method of sequential search does not apply. The 
method provides direct access only to specific information that would give the 
best result. These classes of methods are particularly attractive for model-based 
schemes, but also for object comparison. The algorithm consists of two phases: 
a preparatory phase and a search phase. To understand the advantages and 
disadvantages of this class of methods, below the basic idea is explained in 
more detail. 

The preparatory phase takes place in an offline process.  The system encodes 
data about the model and stores it in a database, in this case called the hash 
table. In the recognition phase, indexing-geometric properties of the features of 
a scene are extracted and matched with candidate models, which are stored in a 
hash table. Each match increases the number of votes in favor of the model. If 
the model has acquired a sufficient number of votes, one can expect that the 
table cells contain potential candidates that determine the object similarity. For 
each potential match, the transformation matrix is estimated. The transformation 
that has the highest number of successful mappings for a given error value is 
selected as the optimal transformation. 
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 It should be noted that geometrical hashing is used in both 2D as well as in a 
high-dimensional case. The method is widely used for pattern matching in 
computer vision, CAD/CAM, medical image processing, molecular biology, 
and medicinal chemistry. However, since methods of this class tend to be 
costly, they are not commonly used for global registration of scan data. The 
time complexity of the recognition phase is  ( 𝑆 +1), where H represents the 
complexity of the hash table bin, S is the set of scene features and c features are 
needed to form a basis. 

The second class of methods makes use of the point correspondences from 
two 3D point clouds. If the correspondence {𝑑    } exists, the rigid 
transform can be computed so that the distance between the corresponding 
points is minimized. In order to minimize the distance between two point clouds 
the iterative closest point (ICP) [2] algorithm or its variants are commonly used. 
The algorithm assigns to each point from one cloud the closest point from the 
second cloud, and then the transformation could be estimated. The process is 
iterated until some convergence criterion is reached. Mathematically, given 3D-
to-3D points correspondences {𝑑    } determine the 3D rigid transformation 
for which the error is minimized: 

m n ( ,  ) =  
1

𝑁𝑝
∑ ‖  −  𝑑 −  ‖2𝑁𝑝

 =1
. (3.1) 

This idea is plotted in Figure 3.1.  

 
Figure 3.1. 2D transformation problem. 

The transformation problem can be solved as follows: first, the center mass 
 𝑥 =

1

𝑁𝑥
∑   

𝑁𝑥
 =1  and   =

1

𝑁𝑝
∑ 𝑝 

𝑁𝑝

 =1
 are calculated. From every point of the 

point cloud, the corresponding center mass is extracted. The resulting point sets 
are:   = {  −  𝑥} =  {  

 } and   = {𝑝 −   } =  {𝑝 
 }. The transformation 

parameters could be calculated from matrix  = ∑   
 𝑁𝑝

 =1
𝑝 

 
𝑇
by the SVD 

decomposition: 

 = 𝑈 [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎 

] 𝑉𝑇.  (3.2) 
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Here 𝑈, 𝑉 are 3 by 3 matrixes and 𝜎1  𝜎2  𝜎  are the singular values of 
 . For matrix   the optimal solution of  ( ,  ) is unique and is given by 
 = 𝑈𝑉𝑇 and  =   𝑥 −    . The minimal value of the error function  ( ,  )  
is 

m n ( ,  ) =  ∑ ‖  
 ‖2 + ‖𝑝 

 ‖2𝑁𝑝

 =1
−  (𝜎1 + 𝜎2 + 𝜎 ).  (3.3) 

The ICP algorithm is often used to reconstruct 2D or 3D surfaces from 
different scans. The main disadvantage of this method is that it does not 
guarantee finding the globally optimal alignment, and therefore is only effective 
when the initial position of the input shapes is close to the correct alignment 
[14]. Probably, the ICP algorithm could be successfully used for maps 
alignment, but existing shortcomings activate to further search for optimal 
solutions. 

3.3 Artificial Neural Network 

Artificial neural network, often called a neural network (NN), is a 
mathematical model of biological neural networks. An example of biological 
neural networks is the human brain. The human brain is an extremely complex, 
nonlinear parallel computer. The brain has the ability to organize its structural 
components so that they could perform specific tasks many times faster than 
any modern computer. An example of such a problem can be a problem of 
identification of a familiar face from a number of unfamiliar faces. The human 
brain performs this task for 100-200 milliseconds [19]. The computer takes 
several days to perform the same task. The basic element of a neural network is 
a neuron. A neural network consists of a set of neurons connected in a certain 
way. During the training, the NN accumulates the experimental knowledge and 
uses it for further processing. The procedure used for the learning process is 
called a learning algorithm. Training algorithms adjust the synaptic weights in a 
certain order to provide the necessary interconnection structure of neurons. The 
power of NNs lies in the parallelism of computational processing and in the 
self-learning ability. Such properties of the NN as nonlinearity, input-output 
mapping, adaptivity, fault tolerance, uniformity of analysis and design provide 
significant advantages over conventional information processing systems. 
Today, the NN, a quick and powerful computational tool, has been successfully 
applied in practice, like in classification problems, pattern recognition, filtering, 
signal processing. 

3.3.1 Model of an artificial neuron 

An artificial neuron is a nonlinear elementary computational element of a 
neural network that consists of one or more inputs, a weighted adder and an 
output. A model of an artificial neuron is shown in Figure 3.2. 
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Figure 3.2. Nonlinear model of an artificial neuron. [19] 

A mathematical model of a neuron is given by the following expressions: 

𝑦𝑘 = 𝜑( 𝑘 + 𝑏𝑘), (3.4) 

 𝑘 = ∑ 𝑤𝑘   
𝑚
 =1 ,  (3.5) 

where  1,  1,⋯  𝑚– neuron’s input nodes, 𝑤𝑘1, 𝑤𝑘2,⋯ 𝑤𝑘𝑚  -   synaptic 
weights of a neuron,  𝑘 - linear combiner output,  𝜑(∙) - activation function, 
𝑦𝑘 – output signal of a neuron 𝑘 . The only output of the neuron 𝑘 may take a 
digital or an analog value. 

The presented model of an artificial neuron known as the McCulloch-Pitts 
model was first presented in [42]. 

3.3.2 Neural network architectures 

The architecture of the neural network is closely related to learning 
algorithms, and these in turn depend on the task, the solution of which must the 
NN be trained to achieve. In general, there are three main classes of network 
architectures: single-layer feedforward networks, multilayer feedforward 
networks, and recurrent networks. In NNs neurons are arranged in layers. 
Single-layer networks are the simplest case of a multilayer network. Single-
layer network is composed of input layer neurons and output layer neurons. 
Information flows in one direction from the input layer to the output. Multilayer 
network is characterized by the presence of one or more hidden layers, which 
are intended to highlight the global properties of the data using the local 
connections between the neurons. The recurrent network has at least one 
feedback loop. 
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3.3.3 Approximation of nonlinear functions 

One of the tasks to be solved by a multilayer network is the problem of 
approximation of a nonlinear function. A mapping of input data set into outputs 
is given by 

𝑑 =  ( ), (3.6) 

where   - the input vector and 𝑑 - the output vector.  
Function  (∙) is the function that should be found. In order to configure the 

network for the implementation of the transformation, a set of training data is 
required: 

𝑇 = {(   , 𝑑 )} =1 
𝑁 , (3.7) 

Requirement for the neural network that approximates the unknown function 
 (∙): function F (∙), which describes the mapping of the input signal to the 
output, should be close enough to the function f (∙) in terms of the Euclidean 
norm on the set of all input vectors x: 

‖ ( ) −  ( )‖  휀, (3.8) 

for all vectors  , where 휀  is a small positive number.  
The process of configuration of synaptic weights is called a learning process. 

To illustrate the learning process, a classical error-correction learning algorithm 
for the neuron 𝑘 is considered. The neuron 𝑘 receives an input vector  ( ), 
where   is the discrete time or the number of the step of the iterative learning 
process. Output of the neuron k is denoted by 𝑦𝑘( ). During training, this 
output will be compared with the desired response 𝑑𝑘  ( )  As a result; the error 
signal 𝑒𝑘( ) is given by the equation 

𝑒𝑘( ) = 𝑦𝑘( ) − 𝑑𝑘( ). (3.9) 

The error signal triggers the correction of synaptic weights of a neuron 𝑘. 
These corrections should bring the output signal of the neuron 𝑘 to the desired 
state and could be achieved through the minimization of the cost function. The 
function   ( ) determines the instantaneous value of the error energy and is 
given by 

 ( ) =  
1

2
𝑒𝑘

2( ). (3.10) 

Minimization of the cost function is performed by the delta rule [19]. Let 
𝑤𝑘 ( ) be the current value of the synoptic weight 𝑤𝑘  of neuron 𝑘, 
corresponding to an element   ( ) of the vector  ( ) on the sampling step  . 
The updated weights of the neuron are 

∆𝑤𝑘 ( ) =  𝜂𝑒𝑘( )  ( ), (3.11) 

where 𝜂  is a positive constant, which determines the learning speed.  
The new value of the synaptic weights for the next step is given by 
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𝑤𝑘 ( +  ) =  𝑤𝑘 ( ) + ∆𝑤𝑘 ( ). (3.12) 

3.3.4 Multilayer perceptron 

Multilayer perceptron, an extended version of a single-layer perceptron, 
consists of multiple sensor elements forming the input layer, one or more 
hidden layers and an output layer. The input signal is transmitted in one 
direction from layer to layer. The popular error back-propagation algorithm is a 
standard learning algorithm used for training of a multilayer perceptron [19]. 
This algorithm is based on an error correction learning rule. Multilayer 
perceptron differs from other architectures by the following features: 

 Every neuron has a nonlinear activation function. А nonlinear activation 
function allows approximating the nonlinear "input-output" mapping. 
Sigmoidal nonlinear function is one of the popular activation functions. 

𝑦 =
1

1+exp (−𝑣𝑗)
, (3.13) 

where    - induced local field of neuron   and 𝑦  - output of neuron  . 
 The network has one or more hidden layers. Neurons from these layers 

extract the most important features from the input data. 
A full-connected network with one hidden layer is shown in Figure 3.3. 

 
Figure 3.3. The graph of a multilayer perceptron with a hidden layer. 

As already mentioned above, the multilayer perceptron is a powerful 
computing structure that is capable of performing a wide range of tasks. The 
approximation of a nonlinear function is one of such problems. 

3.4 Map-merging problem as a task of nonlinear function 

approximation 

In general, the map-merging problem can be considered as a registration 
problem. In this section the multilayer artificial neural network is used as a 
computational mechanism. First, we formulate the problem: given 3D data sets 
of a shape are captured from different viewpoints (Figure 3.4) [41].  
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Figure 3.4. Range image of a model. (a) 3D data set of a mesh in the first sensor 

coordinate system, (b) 3D data set of the same mesh in the coordinate system of a 

second sensor, (c) integrated model in the common coordinate system. 

The main goal is aligning multiple 3D data sets in a common coordinate 
system (Figure 3.4. (c)). No prior information about a sensor’s position is 
known. We assume only that two views contain overlapping scene regions 
(overlaps). These regions are marked in green in Figure 3.4 (с). The ability of 
the neural network to approximate the unknown mapping of input space into the 
output is well known and used in identification system applications. The 
learning algorithm updates the synaptic weights so that the network will be able 
to approximate an unknown function f (∙) in accordance with the expression 
(3.8). Block diagram of a possible solution of this task is plotted in Figure 3.5. 

 
Figure 3.5. Approximation of an unknown function by an artificial neural network. 

The output of the neural network 𝑦  =    (  ) is compared with the desired 
response 𝑑 . The difference between the network output 𝑦   and the desired 
response 𝑑  generates an error signal 𝑒 . The error signal updates the free 
parameters of the network in order to minimize the mean square error. Such 
schemes can be used for the estimation of unknown transformation parameters 
existing between two scans (Figure 3.4). In this case, the unknown system 
represents any transformation matrix. It is worth remembering that the 
algorithm presented in the third part   provides data about an existing overlap in 
two views. To move from overlapped image planes to overlapped 3D point 
clouds could be performed by the following technique. The set of 2D matched 
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points on two views allowed us to estimate a 3 by 3 homography matrix. For 
example, for two images from Figure 3.6, the homography matrix could be 
estimated using an algorithm presented in [18] (direct linear transformation, 
RANSAC and Levenberg-Marquardt optimization): 

 = [
  0   −0 0   −     0  
0 0 0   0        0

     𝑒 − 0 −     𝑒 − 0  
]. 

Finally, a high accuracy measuring system (like KINECT) gives the 
correspondences for any 2D matching point-pairs on the image plane to the 
corresponding 3D matching point-pairs in the sensor’s coordinate frame. In this 
case, the task of alignment of two local maps is reduced to the registration 
problem of 3D surfaces by known matching point-pairs. The set of 
corresponding 3D point-pairs from existing overlaps (marked with green in 
Figure 3.4) is used as training examples 𝑇 = {(   , 𝑑 )} =1

𝑁 , where   is the 
number of matched points. 

 
Figure 3.6. Two images created by a rotating camera [64]. 

The architecture of the neural network performs the identification task, as 
shown in Figure 3.7. The nonlinear activation function in a neuron provides an 
approximation of the nonlinear function. 

 
Figure 3.7. Multilayer perceptron for a function approximation. 

Standard learning algorithm for multilayer feedforward networks is an error 
back-propagation algorithm [19]. Different research communities in different 
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contexts have used this numerical method. This method is based on the 
calculation of partial derivation of the network function  with respect to 
the input . For a neural network from Figure 3.7 each weight should be 
updated using the increment ∆ : 

∆  , (3.14) 

where  is an output signal of a neuron ,  is a learning constant and  
 is a local gradient.  

If the neuron  is an output neuron, then the local gradient 
 · , where  is a derivative of the activation function and 

 is an error signal. For the neuron  from hidden layers, the local gradient 
 is 

 ∑ , (3.15) 

where  depends on the error signals  for all neurons of the output 
layer and  is synaptic weights between the neuron  and .  

The popular activation function for a multilayer network ·  is a sigmoid 

(equation 
 

), but a nonsymmetrical function has more 

advantages. The multilayer perceptron network can learn faster if the activation 
function is a hyperbolic tangent: 

  tanh ,  (3.16) 

where , 0. The best value for   1.7159 and 0.666 taken 
from [18] (Figure 3.9). 

The derivate of the hyperbolic tangent function could by calculated by the 
following equation: 

  sech  1  tanh , (3.17) 

 . (3.18) 

Now we can write the backpropagation in the matrix form for a network with 
a hidden and an output layer. The derivatives for  output units stored in 
matrix are 

 

0 … 0

0 0

0 0

.  (3.19) 

The derivatives for -hidden units stored in matrix  are 
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0 … 0

0 0

0 0

.   (3.20) 

Define the error vector : 

 

 

 

 . (3.21) 

The -dimensional vector of the local gradient  of the backpropagated 
error up to the output units is given by the expression: 

· . (3.22) 

The -dimensional vector of the local gradient  of the backpropagated 
error for the hidden layer is given by the expression: 

 , (3.23) 

where  is a (   ) matrix of weight: 

 . (3.24) 

Finally, the corrections for matrices  and  are then given by 

∆  , (3.25) 

where   is a k-vector of the input 
signal for neurons of the output layer and 

∆  , (3.26) 

where   is a vector of the input signal. 
The new synaptic weights for the next step are given by equation (3.12). 
Next, normalizing the inputs and target values [33] needs explanation. All 

input and data variables should be pre-processed, so that the mean value of all 
data from the training set should be close to zero, in order to compare inputs 
with standard deviation, and examples from the training sets belong to the linear 
interval of an activation function. Figure 3.8 shows an input data set plotted 
with red and a set of normalized inputs with blue. 
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Figure 3.8. The set of 3D input points (a) and the normalized 3D coordinates (b) 

created by the three-step method (displacement of average value, decorrelation, and 

alignment of covariance). 

 
Figure 3.9. Hyperbolic tangent activation function a = 1.7159, b = 2/3 (a) and 

normalized set of training examples (b). 

In general, the design of the neural network is a complex process in which 
multiple parameters of the process are determined by personal experience. In 
order to achieve higher speed training and the accuracy of approximation the 
existing heuristic recommendations should be taken into account. The next 
section is devoted to the discussion of the results of approximation of the 
unknown function with the neural network. 

3.5 Result of the experiment 

In this section, the experimental result of 3D affine registration by the neural 
network is discussed. The aim was to provide convincing empirical validation 
of the accuracy as well as robustness of the ability of the NN to approximate 
unknown transformation. To examine the NN a simplified version of 3D 
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scanned mesh of Ippolita Sforza's statue sculptures by Francesco Laurana 
(Figure 3.10) was used. 

 
Figure 3.10. Francesco Laurana female bust (left), 3D scanned mesh (right) created by 

using MeshLab [41], a tool developed with the support of the 3D-CoForm project [65]. 

Suppose that the statue was scanned by two robots from different angles. Let 
  = {𝑝1,⋯ , 𝑝𝑘} and   = { 1,⋯ , 𝑔 } denote two sets of 3D points in   . Let 
   = { 1, ⋯ ,   } denote a set of 3D points that belong to overlapping areas, 
where   {P,L}. A 3D model of the statue is presented in different colors 
(Figure 3.11). Each color represents one of two scans,   or  . The point set   
marked with red belongs to both scans, P and Q. The presented model is a 
ground truth necessary for the analysis of the accuracy of the neural network. 
Information about the model is presented in Table 3.1. 
Table 3.1 The dimensions of two different sets of  points, P and Q, of the same  

model,  𝑘 and   , which is visible from different angles and set of poit L, which is 

belongs to both parts P and Q.   

Parts of 3D 
scan 

  
Set of points 

(blue) 

  
Set of points 
(green) 

   
Overlapping 

parts (red) 

Number of 3D 
points 

 𝑘 =   000   =         =  000 

As can be seen from 3D points presented in the table, the overlap of the two 
three-dimensional point clouds is about 30 percent. A set of points    =

{ 1, ⋯,   } is a group of training examples, where  𝑛 = {𝑝 ,   } and it will be 
used to update the synaptic weights of the neural network. 

http://www.3d-coform.eu/
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Figure 3.11. 3D mesh of Francesco Laurana female bust. Assumed that the statue was 

scanned by two robots from different angles.  Points visible from both angles are 

marked with red. 

Let   = {𝑑1, ⋯ ,𝑑 } denote a set of   = { 1,⋯ , 𝑔 } the transformed point 
set in   , given by the equation 

𝑑  =   ∙   +   , (3.27) 

where   is a non-singular     matrix and    is a transition part of any 
affine transformation.  
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Figure 3.12. Two parts of the same model presented in a common coordinate system 

after distortion. The new set of 3D points, D is presented in blue. 

The affine registration problem (the rigid transformation considered as a 
special case) can be formulated in terms of affine transformation   =  ( ,   ) 
that minimizes the following cost function  ( ,   ): 

𝑑    = √∑ (  − 𝑦 )
2𝑁𝑟

 =1 , (3.28) 

 ( ,   ) =  
∑ 𝑑    

𝑁𝑟
 =1

𝑁𝑟
  , (3.29) 

where 𝑦  – estimated coordinate of the       3D point,    - position of 3D 
ground truth point,   - the number of 3D points.  
To solve this problem, the multilayer perceptron was constructed. The network 
consists of a hidden and an output layer. The hidden layer has 20 neurons. The 
output layer has three units. The simulation was carried out in Matlab (Figure 
3.13).  
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Figure 3.13. Approximation of transformation of an unknown function by a neural 

network. 

In the experiments, the point cloud   has been transformed several times 
using different transformation matrices   according to equation (3.27). A neural 
network is trained on a set of examples from  , where  𝑛 = {𝑝 , 𝑑 }, and 
𝑑  =   ∙   +   , respectively. A result of the approximation of a 
transformation function by the neural network is shown in Figure 3.14. 

 
Figure 3.14. Approximation result of the transformation matrix  . The reconstructed 

model (a), comparison between the reconstructed model and the ground truth (b). 

Visual comparison (Figure 3.14 (b)) confirms that by the training process the 
multilayer perceptron updates synaptic weights for an accurate approximation 
of A. To compare the accuracy of neural network approximation with that of the 
ICP method the average value of a transformation error is estimated according 
to the equation: 

𝑑    = √∑ (𝑦 − 𝑔  )
2𝑁𝑝

 =1
, (3.30) 

  =  
∑ 𝑑    

𝑁𝑝
 =1

𝑁𝑝
, (3.31) 

where   is a mean value of the error function 𝑑   . 
The probability density of the error function 𝑑    is presented in Figure 3.15. 
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Figure 3.15. Performance of the neural network (a), the probability density of the error 

function      (b). 

For comparison, the result of the ICP algorithm is presented in Figure 3.16. 

 
Figure 3.16. The probability density of the error function      by using the ICP. 

The mean value of the error function 𝑑    could be estimated by equation 
(3.31) and it equals     =   0   0 units for the particular case.  

Figure 3.17 summarizes the experimental results. In Table 3.2, the neural 
network is tested with four different transformation matrixes. 
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Figure 3.17. Comparison between approximations of several transformation functions. 

The first column: four different transformations. Second column: probability density of 

the error function      estimated by the ICP algorithm. Third column: probability 

density of the error function      estimated by the neural network. 
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Table 3.2. Comparison between the two methods: ICP vs. Neural Network. 

 
Kind of affine transformation 

𝑇 = [
   
 𝑇   

] 

ICP Neural 
Network 

 
mean 

value of the 
error function 
𝑑    (units) 

 
mean 

value of the 
error 
function 
𝑑    (units) 

Rigid transformation 

 1 = [

0     −0 0   −0 0    00
0 0   0     −0 0    00
0 0   0 0   0      0

0 0 0  

] 

    ∙  0−  0 00   

Rigid transformation 

𝑇2 = [

0   0   −0   00
−0  0  0  00
0   0   0   0
0 0 0  

] 

    ∙  0−12 0      
 

Rigid transformation 

𝑇 = [

 0  0  00
0 0  0  0  0   00
0 −0  0  0  0   0
0 0 0  

] 

 0  0   0 0    

Affine transformation 

𝑇 = [

0   0   0  00
0   0  00

0   0   0   0
0 0 0  

] 

 0     0 00   

 
As the table shows, the average value of the error function of the neural 

network has remained relatively stable for the different types of affine 
transformations. This confirms the fact that the NN successfully solves the 
problem of approximating nonlinear functions. In order to evaluate the proposed 
method, in the next trials, the neural network with different noise settings was 
tested. The Gaussian noise (   ) was added to each coordinate of every point 
independently. Results for four levels of noise are shown in Table 3.3. The 
results are plotted also in Figure 3.18. 
  



64 

Table 3.3 Comparison of different algorithms for varying noise levels  

Noise 
 

Mean value of the error function  (units) 
    

0 0.0059 0.3381 0.0427 0.0029 
0.5 5.5 2.01 1.42 7.86 
1 12.45 13.39 11.65 27.53 
2 17.57 27.29 12.38 36.42 
 

 

Figure 3.18. Plot of the mean error against the  of the noise for the transformation 
matrix from Table 3.1. 

As can be seen, the performance of the neural network degrades as the noise 
level increases. The properties of the NN for a different number of points in the 
training sets are the last check point. The result of this trial is presented in Table 
3.4 and plotted in Figure 3.19. 
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Table 3.4 Properties of the NN for different number of points in training set 

Number 
of points 

1000 1500 2000 2500 3000 4000 5000 

Mean 
error for 

 

43.54 25.73 5.349 0.57 0.046 0.012 0.0059 

Mean 
error for 

 

22.34 6.038 2.077 0.134 0.024 0.0048 0.0029 

 

 

Figure 3.19. Performance of the neural network for different sizes of training sets. 

These results explain the importance of proper selection of the data for the 
training set. If the size of the training set equals 1000 points, and dataset points 
are selected from a relatively small area, the NN acquires insufficient statistical 
information for an accurate approximation of the transformation function. The 
performance of the NN improves linearly with the size of the training data set. 
To confirm the theory of importance of proper selection of training set points a 
couple of additional experiments were conducted. The -number of points were 
randomly selected from the overlapping area in compliance with one major 
condition, from different parts of the overlapping area. The property of the NN 
is presented in Table 3.5.  
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Table 3.5 The accuracy of the neural network for different sizes of training data sets 

Number 
of points 

100 200 400 600 800 1000 

Mean 
error for 

 

5.3872 2.3841 1.4850 1.5750 0.1482 0.1171 

Mean 
error for 

 

0.7314 0.6664 0.5265 0.0637 0.0656 0.0672 

 

 

Figure 3.20. The accuracy of the neural network for different examples in the training 
data set. 

Finally, two criteria for stopping of the learning process were defined in the 
experiment. The learning process was stopped when the error signal  (3.9) 
achieved the desired value. In the experiment the desired value of the error 
signal was 10 . The learning process stopped also after 1000 training 
iterations or epochs. The following option for an automatic completion of the 
learning process was present; if after 6 epochs the error signals are not reduced 
any more or stay at the same level, the minimum value of the error signal is 
achieved.  
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The performance of the training process for the last experiment is presented 
in Figure 3.21. 

 

Figure 3.21. Performance of the training process for a multilayer neural network. 

The main conclusion from here is that the accuracy of the neural network 
that approximates the unknown function is highly dependent on the size of the 
training set and also on the quality of the presented data. It is very important to 
select points for the training set from different parts of the overlapping area and 
thereby supplies the NN with maximum amounts of helpful statistical data 
about an unknown transformation. Figure 3.20 shows that the same mean value 
of the cost function could be achieved with a smaller size of the training dataset 
if we follow the proposed strategy by its formation. 

3.6 Conclusion 

This chapter has described the map-merging problem. If we have two 3D 
local maps, which have an overlap, then the aim is to estimate an unknown 
transformation between the maps and create a complete model of 3D space in 
the common coordinate system. This problem is very similar to the registration 
problem studied in recent decades. Affine registration in and has been 
extensively investigated. Different kinds of existing methods were studied and 
their advantages and disadvantages were analyzed. 

A new method for solving the registration problem has been proposed here. 
This method is based on the properties of the neural network to approximate the 
nonlinear function. A neural network has several advantages over traditional 
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computation methods. The main properties of the neural network were 
highlighted in this chapter. 

 To solve the registration problem the multilayer network was chosen. The 
ability of the neural network and its properties were examined in several 
experiments. To obtain more statistical information, all experiments were 
repeated for 100 times. Results of trials are presented in tabular form and 
plotted in the figures. Tables contain the average values.  

Based on the results of the experiment, one main conclusion is obvious. The 
multilayer neural network is capable of solving the map-merging problem. The 
approximation of a nonlinear transformation function is robust and could be 
extended to a  -dimensional case. However, the results are not optimal. The 
accuracy of the approximation depends on various parameters, such as the 
structure of the network, the number of neurons in layers, the number of layers, 
different learning parameters, the number of examples in the training set. Their 
impact needs further in-depth analysis. 
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Conclusion 

Scientific Results  

The current thesis proposes an efficient, rough new method for aligning and 
merging of 3D local maps into a global map for use in various time and 
resource critical applications. One of these appilcations serves onboard robot 
navigation and control tasks. This problem often arises in multi-robot 
applications. The proposed method involves two steps: detection of overlapping 
areas between two different maps, alignment of two local maps in a common 
coordinate system. The new 3D map merging method proposed here will 
support development of more effective path planning and control approaches for 
mobile and industrial robots  in indoor environments. The proposed solution is 
to use visual appearance of the images. An image of an observed scene is more 
informative as compared to any kind of distance sensor. In addition, video 
sensors are much cheaper. If the overlaps between two maps are established, the 
affine transformation can be estimated. The geometry relationship between 
matched images allowed new method to estimate point-to-point 
correspondences in two image planes. Back transition from 2D to 3D world 
coordinates gives the point–to-point correspondence between two 3D maps. For 
the estimation of existing transformation parameters between 3D point clouds, a 
multilayer neural network is proposed to use in the method.  

The alignment of local 3D maps is a complex and challenging problem. The 
existing methods are briefly covered in Chapter 1. The benefits of landmark-
based algorithms are discussed in detail. These algorithms enable problem 
solution in two steps:  

 Detection of existing overlaps 
 Estimation of optimal transformation parameters in order to present two 

local maps in a common coordinate system 
However, these methods have a major disadvantage. In order to detect the 

existing overlaps, local image features are used to compare several images 
against each other. In general, the process of features processing is very 
expensive. Due to the high computational complexity, the method works only 
with short image sequences. In order to improve it, a global descriptor, in this 
thesis it is a GIST descriptor, is proposed. The descriptor considered as a global 
feature describes the general properties of a scene. 

In Chapter 2 the properties and discriminative power of the GIST descriptor 
are examined. The global descriptor was included to the image retrieval system 
in order to solve one of the major problems of autonomous behavior of a mobile 
robot, the loop-closing problem that the local features are commonly used for. 
In the proposed method we used the multilayer filtering strategy. The task of 
each layer is to reject from the image database as many images as possible. The 
GIST descriptor allowed rejecting 99 percent of the images. Because the 
discriminative power of the GIST descriptor is low, local features are used in 
the last filtering step in order to compare the query image with the rest. As 
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result of the introducing new method the required computing time diminished in 
many times. The experiment showed it is sufficient to check only 0.11 percent 
of the database images in order to get the winner image. It took about 4 seconds 
to construct a list of 61 likely candidates in compare to the time performance 
(14.7189 seconds) for constructing  one  column of the similarity matrix [20], 
which is more than 3 time faster.  The time performance of the algorithm was 
tested  in Matlab. 

Chapter 3 discusses the map-merging problem. Based on the ability of the 
neural network to approximate a nonlinear function, we examined a very simple 
multilayer feedforward network with the simplified version of 3D scanned 
mesh. It is experimentally proved that the neural network is able to successfully 
solve the map-merging problem and new approach is introduced. 

This thesis proposes a new computationally feasible method for online maps 
alignment and merging. The next section summarizes the work and plans for 
further investigations. 

The Main Scientific Contributions 

 Developed a new and effective method for 3D map merging targeted 
for robot indoor navigation tasks by using visual appearance  

 Proposed a new intelligent approach for alignment of local 3D maps 
created by several robots, in a common coordinate system. 

 In order to detect overlaps between several maps (Section 2.5), the 
image retrieval system based on the multilayer filtering method is 
presented. The global image representation reduces the computational 
cost of the method and multilayer-filtering strategy reduces the image 
retrieval time in about 3 times.  

 A novel algorithm for the alignment of two 3D point clouds is presented 
(Chapter 3). The method proposes to use the neural network for 
approximation of the affine transformation function. 

Future work 

During the research, several ideas and problems emerged that require further 
investigation.  

 The image retrieval system discussed in Chapter 2 used a restricted 
amount of clusters for creation of a database. The next question for 
future tests is - how many clusters are needed and how their number 
depends on the number of robots. These questions related to the image 
retrieval system are still open and should be investigated.  

 The experiments carried out in Chapter 3 confirmed the possibility of 
using artificial neural networks for the alignment of several local maps 
in a common coordinate system. The influence of the addition of hidden 
layers on the learning process needs future investigation.  

 The accuracy with which the neural network approximates the unknown 
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transformation function depends on the configuration of points selected 
for the training set. How to improve the accuracy of mapping is a 
question to be answered in the future work. 

 The research needs to be extended to different environments, especially 
various outdoor conditions to adjust the method proposed. 

Obviously, this is the main vector for further research in this area. 
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Abstract 

The term navigation is commonly understood as a technology of computing 
an optimal route. Navigation capabilities of the existing autonomous vehicle are 
limited by the boundary of the constructed local map. However, in many 
practical applications, the robot has to operate in different places, often without 
any prior knowledge about the environment at all. In such situations the robot is 
unable to navigate effectively. The objective of this thesis is developing a new 
and effective method for creating a global map from several local maps created 
by collaborating single robots. 

The thesis proposes an intelligent method that allows merging several local 
maps in a global map. The method uses visual appearance for detection of 
existed maps’ overlaps, which significantly reduces the cost of the system. The 
artificial neural network is used to align two different local maps in a common 
coordinate system. 

The thesis consists of four parts: review of literature, definition of two 
subproblems,  subproblems detailed analysis, theoretical foundations, practical 
experiments and conclusions. The introduction presents the objectives of the 
thesis and describes its structure.  

Chapter ”Review of existing methods” describes the characteristics of  
existing methods for alignment of local maps in a global map. The analysis of 
the proposed solutions forms the key direction of the research. 

The map-merging problem could be split into two subproblems: 
• detection of existing maps’ overlaps 
• alignment the two 3D maps in a common coordinate system 
The first subproblem is very similar to the loop-closing problem, which is 

known from the individual SLAM applications. In SLAM the local properties of 
the scene play the major role for detection of revisited places. The main 
scientific novelty of proposed method is using of global descriptor for overlaps 
detection. The theoretical section of chapter ”Use of global descriptors as an 
alternative to local descriptors” focuses on analysis of global descriptor 
properties and brings forth a possible usage scenario. The global descriptor is 
included to the image retrieval system where local features are traditionally 
used. The proposed multi-stage filtration procedure based on the comparison of 
global properties of two different scenes is one of key issues for the method 
effectiveness. This strategy involves progressive reduction, from layer to layer, 
of a number of relevant images from the image database. Due to the fact that the 
use of global descriptor is very fast and compact, the proposed strategy 
significantly reduces the image retrieval time and increases the number of 
processed images . The local points matching procedure and the epipolare 
geometry constraints’ verification is incorporated at the final phase of the 
method in order to determine the winner image from the set of best candidates. 
After a series of successful experiments with the data obtained from one robot, 
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it becomes possible to extend this image finding strategy to a multi-robot case, 
where image database will include a huge number of images. 

If the image retrieval system has detected the winner image in the image 
database it means that between two local maps exist an overlap. The projective 
geometry technique allows estimating the point-to-point correspondence 
between image planes of query and winner images and also between points in 
2D image plane and correspondent 3D points in world coordinate system. Due 
to the intensive use of high-accuracy measurement tools for sensing a 3D space 
in robotics applications, the task of computing correspondence between points 
in image plane and real 3D coordinates is trivial. 

The second subproblem of the map-merging problem considered as the 
problem of alignment of 3D point clouds in a common coordinate system is a 
subject of the last chapter “Map-merging problem in multi-robot applications”. 
The analyses of the existing methods have shown their shortcomings.  

The proposed method uses artificial neural network for approximation of the 
affine transformation function. The properties of the NN have been examined in 
a number of experiments and compared with the ICP algorithm. A number of 
trials with the simplified version of 3D scanned mesh of Ippolita Sforza’s statue 
have shown that the NN is able to successfully solve the map-merging problem. 
The properties of the NN were tested for different initial conditions, several 
noise levels and several affine transformations. Despite the fact that the 
experiments were done using a very simple NN, with one hidden layer, the 
accuracy of approximation of a nonlinear transformation function is robust and 
much higher for NN in comparison with ICP algorithm. 

The content of this doctoral thesis is summarized in conclusion, which 
outlines the main achievements and future-oriented ideas. 
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Kokkuvõte 

Termini navigeerimine all mõistetakse tavapäraselt optimaalse teekonna 
leidmise protseduuri. Autonoomse sõiduki e. roboti navigeerimisvõimekus on 
piiratud roboti poolt või väliselt loodud lokaalse kaardi piiridega. Praktikas peab 
robot paljudel juhtudel tegutsema erinevates asukohtades ilma mingisuguse 
eelinformatsioonita selle asukoha osas. Sellises situatsioonis on roboti 
tegutsemise efektiivsus oluliselt piiratud. Käesoleva dissertatsiooni eesmärk on 
metoodika väljatöötamine mitmetest üksikkaartidest 3D globaalse kaardi 
kokkupanemiseks, mis oleks kasutatav näiteks mitmesuguste robootika 
rakendustes. 

Dissertatsioonis on pakutud välja mitme lokaalkaardi üheks globaalkaardiks 
ühendamise uus metoodika. Väljatöötatud metoodika kasutab visuaalse 
sarnasuse kriteeriume olemasolevate kaartide ülekatte määramiseks, mis 
kiirendab ja lihtsustab oluliselt selliste süsteemide tööd ning võimaldab uut 
lahendust kasutada otse roboti peal. Lokaalsete kaartide ühitamiseks ühtsesse 
koordinaatsüsteemi kasutab uus metoodika tehisnärvivõrku. 

Dissertatsioon koosneb üldiselt neljast osast: kirjanduse ülevaade; alamprob-
leemide defineerimine ja nende detailne analüüs koos lahenduste väljapakku-
misega; praktilised eksperimendid ja järeldused. Sissejuhatuses on esitatud 
dissertatsiooni eesmärgid ja kirjeldatud töö struktuuri.  

Töö esimeses osas on kirjeldatud seni kasutatavate lokaalsete kaartide üheks 
globaalkaardiks ühendamise metoodikaid. Kasutatavate metoodikate analüüsi 
alusel on selles dissertatsioonis formuleeritud põhilised suunad edasiseks 
uurimistööks. 

Kaartide ühendamise ülesanne on jagatav kaheks järgnevaks alam-
ülesandeks: 

• kaartide ülekatte tuvastamine; 
• kahe 3D kaardi joondamine ühises koordinaatsüsteemis. 
Esimene alamülesanne on väga sarnane tsükli sulgemisprobleemiga 

individual-SLAM rakendustes. SLAM puhul mängivad tuttava koha tuvasta-
misel olulisimat rolli süsteemi lokaalsed omadused. Väljapakutud metoodika 
olulisim teaduslik uudsus on globaaldeskriptori kasutusele võtmine ülekatete 
tuvastamisel. Järgnev osa keskendub globaaldeskriptori omaduste analüüsile ja 
esitab selle võimaliku kasutamisstsenaariumi uues metoodikas. Globaal-
deskriptorit kasutatakse kujutise otsingualgoritmis traditsiooniliselt kasutatavate 
lokaaltunnuste asemel. Mitmeetapilise filtreerimise protseduur, mis baseerub 
kahe erineva stseeni globaalomaduste võrdlemisel, võimaldas selles töös 
saavutada uue metoodika oluliselt suurema efektiivsuse. Uue metoodika 
strateegia sisaldab järk-järgulist, kiht kihilt oluliste andmebaasi kujutiste arvu 
vähendamist. Kuna globaaldeskriptori kasutamine on väga kiire ja kompaktne 
protseduur, siis kiirendab väljapakutud lahendus oluliselt kujutise otsimise 
protseduuri ja aitab suurendada analüüsitavate kujutiste arvu. Lokaalpunktide 
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võrdlemise protseduur ja epipolaargeomeetria piirangute verifitseerimine on 
ühendatud uue meetodi lõppfaasis, et määrata parim kujutis kandidaatkujutiste 
kogumist. Pärast ühelt robotilt saadud andmete töötlemist on võimalik laiendada 
seda kujutise strateegiat robotperele, kus kujutiste andmebaas sisaldab juba väga 
suurt hulka kujutisi. 

Kui kujutise leidmise algoritm leiab parima kujutise kujutiste andmebaasist, 
siis tähendab see, et kahe lokaalse kaardi vahel eksisteerib ülekate. Projektiivse 
geomeetria abil on võimalik hinnata punkt punktilt päringu kujutise ja parima 
vastava kujutise vastavust ja samuti vastavust punktide vahel 2D kujutise 
tasandil ning vastavate 3D punktide kokkulangevust üldises koordinaat-
süsteemis. Kuna robootikas kasutatakse laialt suhteliselt täpseid seadmeid 
robotit ümbritseva 3D ruumi tunnetamiseks, siis on ülesanne leida punktide 
vastavus kujutise tasandil ja tegelikes 3D koordinaatides triviaalne. 

Teine alamprobleem kaartide ühendamisel on 3D punktiparve orienteerimine 
e. joondamine üldises koordinaatsüsteemis. Seni olemasolevate meetodite 
analüüs osutab nende olemasolevate meetodite mitmetele puudustele.  

Uus, selles töös väljapakutud meetod kasutab tehisnärvivõrku, et aproksi-
meerida afiinset transformatsiooni funktsiooni. Närvivõrgu omadusi on testitud 
paljudes katsetes ja võrreldud ka ICP algoritmiga. Rida katseid Ippolita Sforza 
kuju lihtsustatud skaneeringu punktiparvega näitavad, et närvivõrk on võimeline 
edukalt lahendama kaartide ühendamise probleemi. Närvivõrgu omadusi on 
testitud erinevates lähtetingimustes, erineva müra korral ja erinevate afiinsete 
transformatsioonide puhul. Hoolimata asjaolust, et katsed on tehtud väga lihtsa 
närvivõrgu abil, kus on ainult üks varjatud kiht, on mittelineaarse funktsiooni 
teisenduse lähenduse täpsus väga häirekindel ja see täpsus on oluliselt kõrgem 
närvivõrgu puhul, võrreldes seni kasutatava ICP algoritmiga. 
Dissertatsiooni sisu on kokku võetud viimases osas, kus tuuakse välja põhilised 
tulemused ja tulevase töö suunad.   
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