
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Kairit Sims 183839IVSM

DISTRIBUTED MODEL-BASED TESTING

OF TALLINN CITY INFORMATION

SYSTEM TEELE

Master’s thesis

Supervisor: Jüri Vain

 PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kairit Sims 183839IVSM

MUDELIPÕHINE HAJUSTESTIMINE

TALLINNA INFOSÜSTEEMI TEELE

NÄITEL

Magistritöö

Juhendaja: Jüri Vain

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kairit Sims

12.05.2020

4

Abstract

The goal of thesis “Distributed Model-Based Testing of Tallinn City Information System

Teele” is to validate and evaluate the distributed model-based testing methodology and

tools in real software development project. First part of thesis introduces model-based

testing process and UPPAAL, UPPAAL TRON and DTRON tools. Second part of thesis

uses distributed model-based testing methodology and tools in Tallinn City information

system Teele development project which was previously tested only manually. As a

result, Teele’s project team was rather not satisfied with new model-based testing process

not because the testing process itself but with its suitability specifically for current

development project. In addition, the tools used are complex to learn and to use especially

when there is not enough supporting materials and examples available for quick bringing

into use.

This thesis is written in English and is 27 pages long, including 4 chapters, 18 figures and

6 tables.

5

Annotatsioon

Mudelipõhine hajustestimine Tallinna infosüsteemi Teele näitel

Magistritöö eesmärgiks on valideerida ja hinnata mudelipõhise hajustestimise metoodikat

ja tööriistu tarkvaraarenduse projektis. Esimene pool tööst tutvustab mudelipõhise

hajustestimise olemust ja protsessi ning UPAAL, UPPAAL TRON ja DTRON tööriistu.

Teine osa tööst kirjendab mudelipõhise hajustestimise kasutuselevõttu Tallinna

infosüsteemi Teele tarkvaraarenduse projektis, mida varasemalt testiti manuaalselt.

Tulemusena selgus, et Teele arendusmeeskond pigem ei ole mudelipõhise hajustestimise

metoodikaga rahul mitte metoodika enda tõttu, vaid probleeme tekitas selle sobivus

arendusprotsessi. Lisaks oli kasutatavate tööriistade kiire kasutusele võtmine keeruline,

sest puudub toetav materjal ning testijad peavad arvestama ka tööriistade versioonide

ühilduvusega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 27 leheküljel, 4 peatükki, 18

joonist, 6 tabelit.

6

List of abbreviations and terms

FSA finite state automata

MBT model-based testing

SUT system under test

TA timed automata

TCTL timed computation tree logic

7

Table of Contents

1 Introduction ... 10

1.1 Related studies .. 11

1.2 Problem statement .. 12

1.3 Overview... 13

2 Distributed model-based testing .. 14

2.1 SUT modelling.. 15

2.2 Test purpose specification .. 16

2.3 Test generation.. 17

2.4 Test deployment.. 18

2.5 Test execution ... 19

3 Tallinn city information system Teele ... 20

3.1 Use cases ... 20

3.2 SUT modelling.. 22

3.2.1 Model of the system under test .. 23

3.2.2 Model of the creator .. 25

3.2.3 Model of specialist .. 26

3.3 Test purpose specification .. 27

3.4 Test generation.. 28

3.5 Test deployment.. 28

3.6 Test execution ... 30

4 Results and conclusions ... 32

4.1 Analysis of test results .. 32

4.2 Usability evaluation .. 34

Summary ... 36

References .. 38

Appendix 1 – Results of Model Verification.. 40

Appendix 2 – Models with individual channels ... 41

Appendix 3 – Adapter .. 43

Appendix 4 – DTRON test result ... 48

8

List of figures

Figure 1. Model-based testing process ... 14

Figure 2. Example of timed automaton [11]... 16

Figure 3. UPPAAL, UPPAAL TRON and DRON relationship 18

Figure 4. Distributed test execution architecture .. 19

Figure 5. Use case diagram .. 20

Figure 6. System declarations ... 22

Figure 7. Global declarations ... 23

Figure 8. UPPAAL TA model of the system under test ... 24

Figure 9. System local declarations .. 24

Figure 10. Model of the creator .. 25

Figure 11. Creator local declarations .. 26

Figure 12. Model of the specialist .. 26

Figure 13. Specialist local declarations .. 26

Figure 14. Creating channels in adapter ... 29

Figure 15. Channel listener ... 29

Figure 16. Communication between adapter and SUT .. 30

Figure 17. Adapter execution code ... 31

Figure 18. Human effort for manual testing and automated testing 33

9

List of tables

Table 1. Path formulae in TCTL [11] ... 17

Table 2. Use case - start proceeding ... 21

Table 3. Use case - give feedback .. 22

Table 4. Reachability properties ... 27

Table 5. Safety properties ... 27

Table 6. Liveness properties ... 28

10

1 Introduction

Software testing is an important part of software development lifecycle mainly carried

out in verification and validation phase. There is no universal method for testing because

different methods are applied at different phases of development and have different

objectives [1].

One of the testing methods is model-based testing (MBT) where tests are based on models

of system under test (SUT) and its environment. Since the test cases are generated

automatically based on models, it is said that model-based testing decreases manual effort

and increases test coverage [2]. Common case is that the test models belong to the class

of finite state automata (FSA) that are relevant for model state space exploration and for

generating executable test sequences as a result of such exploration. Therefore, by

automating model state space exploration strategies it is possible to achieve high test

coverage than by manual testing. After the abstract test cases are generated based on the

model, they are made executable on the system under test through test adapters, or

alternatively, converted to test scripts executable directly in some continuous integration

test environment [3].

Distributed testing is used to test software in the distributed test environment. Distributed

testing simulates real-word user traffic and gives overview of how the SUT will act under

test stimuli injected from (possibly geographically) different locations. Distributed testing

generally assumes that parts of system under test interact with each other during a test

run. This makes synchronization the most crucial part of distributed testing [4].

The goal of current thesis is to validate and evaluate the distributed model-based testing

methodology suggested in [5] in real software development project. The project to be

focused on is Tallinn City new information system called Teele. Teele is a web

application developed to support the legislation processes of Tallinn City. In this system,

legal acts can be created, processed and taken into force by the city government of

council. There are many functionalities in Teele but to set focus of current thesis, only

11

proceeding part of the system where the users can access the services remotely is taken

under observation.

There are not many freeware tools to support distributed model-based testing. For

modelling the system under test UPPAAL modelling tool is taken into use since it

supports modelling parallel processes, timing constraints and has mature tool support for

verification and testing [6]. For execution of the generated test cases UPPAAL TRON is

used. This tool is based on UPPAAL model checking engine and is developed for black-

box conformance testing of timed systems online [7]. For distributed test execution

DTRON, the extension of UPPAAL TRON is used [8].

1.1 Related studies

This section gives an overview of existing studies related to distributed model-based

testing and tools used in the current study.

Model-based testing has been widely studied field for years. There is a diverse selection

of studies that cover different aspects of model-based testing. Distributed model-based

testing has been studied to a smaller extent and the materials found have rather been about

model-based remote testing of distributed systems than distributed testing itself.

The nature of model-based testing is explained in the book titled “Practical Model-Based

Testing” by Mark Utting and Bruno Legeard [9]. This book gives a great overview of

how model-based testing differs from other testing methods and how it can be part of

typical software development lifecycle. Authors bring examples of how model-based

testing is practiced but they do not cover MBT tools used in current study [9].

Another extensive overview of tools used in model-based testing is given in [10]. For

example, fMBT developed by Intel uses models written in Python. Another popular

model-based testing tool is Modbat which is based on extended finite state machines [10].

None of the tools introduced in [10] is not supporting distributed testing.

The UPPAAL modelling tool and modelling language are explained in paper entitled “A

Tutorial on UPPAAL” which is written by Gerd Behrmann, Alexandre David and Kim

G. Larsen. In addition to explaining the tool itself they are giving an overview of timed

automata as well as modelling patterns and examples [11].

12

Another use case based study on using Uppaal tool family for MBT is presented in master

thesis written in Tallinn University of Technology by Age Kruusamägi. It is titled

“Model-based testing of distributed systems: Tallinn streetlight system case-study”. This

thesis describes model-based testing of distributed system, in contrast to distributed

model-based testing on non-distributed system as current study. Still, the tools used are

mostly the same. Author of the thesis finds that using model-based testing on large scale

systems can be too time consuming because for every host there must be its own model.

Author suggests using generalized modelling templates for modelling identically

behaving parts of the system [3].

“Model Based Testing of Distributed Time Critical Systems” is a paper by Jüri Vain, Gert

Kanter and Seshadhri Srinivasan. They are describing verification technique based on

model checking and covering part of model-based testing workflow. They also suggest

an algorithm to use decomposition on the model of system under test. This algorithm

takes model of the system as an input and decomposes it into set of location specific test

models that are attached to system ports. With this method they are suggesting reducing

delays and timing issues in distributed testing [12].

As mentioned above, for distributed model-based test execution an extension DTRON of

UPPAAL TRON has been developed. Paper titled “DTRON: a tool for distributed model-

based testing of time critical applications” written by Aivo Ainer, Jüri Vain and Leonidas

Tsiopoulos gives expert overview of the distributed model-based testing and the DTRON

tool itself. It is built on UPPAAL and TRON tools which are briefly introduced as well

[13].

1.2 Problem statement

The goal of current thesis is to apply the distributed model-based testing methodology

introduced in [12] for a real software testing project and to evaluate its usability. During

the research the answers to following questions will be searched for:

• Is distributed model-based testing methodology suitable for usage in projects like

Teele?

• Under what conditions the MBT methodology used in the thesis has advantages

over traditional manual testing?

13

• Are the tools used mature enough to run out current research?

To conduct the research following steps are covered:

• selecting the part of Teele web application relevant for validating distributed

model-based testing method

• writing the specification of requirements of the selected part of SUT

• constructing the formal model of the requirements specifications

• verifying the correctness of test formation on the model

• generating the tests based on model

• implementing the test adapters

• running tests on system under test

• providing the test reports and analyzing the advantages and drawbacks of used

methods

For validating the results different aspects can be evaluated. Test coverage can be

compared to the coverage that system had before taking model-based testing into use.

Human effort spent on different phases of testing can be evaluated. Number of found bugs

and errors in the system can be analysed. General usability aspects [14] of testing web

applications with the methodology of distributed model-based testing can be assessed.

1.3 Overview

Current thesis consists of four main chapters. Chapter 2 introduces distributed model-

based testing theory, explains model-based testing process step-by-step and gives

overview of suitable tools. Each Section of Chapter 2 represents one step of the model-

based testing process. In Chapter 3 the testing method and tools introduced in Chapter 2

are applied in practical testing of Tallinn City system Teele. Detailed descriptions are

available in the sections of Chapter 3. Chapter 4 analyses the results and evaluates

usability. Chapter 5 draws conclusions and articulates suggestions for future work.

14

2 Distributed model-based testing

Model-based testing is a method where test cases are generated based on models of the

system under test (SUT). Model-based testing is inherently black-box testing meaning

that tests only control SUT inputs and can observe SUT outputs but do not have reference

to its internal behaviour. The goal of black-box testing is to analyse system interfaces

behaviour and the conformance to its requirements [12].

According to the statistical studies referred in [15] model-based testing finds the same

amount or more faults in system than manual testing. Model-based testing is evaluated to

be more cost effective, efficient, and saving testers’ time and effort. To use model-based

testing a tester must create and maintain the models and generate test cases from them.

As shown in [16] MBT takes less time than manually designing and maintaining the test

suite but the advantages of using MBT for complex systems may show up after few

iterations in regression testing. Another benefit of model-based testing is improved testing

quality as test case generator is based on algorithms and generation is systematic. Because

of the same reason model-based testing increases test coverage because it is possible to

generate more test cases and optimize them in terms of test sequence length and execution

time [9].

Model-based testing process described in [9] is shown in the following figure.

The process of model-based testing starts with creating the models of the SUT or part of

the SUT that tests will focus on. Models are described as abstract timed automata.

Secondly, test purpose needs to be specified that defines a finite set of executable test

cases [5]. Next, test cases are generated from the model by considering the chosen test

purpose specification. When test cases are generated test adapter should be written to run

the tests on SUT. Test adapter is code for transforming symbolic inputs in the model to

SUT

modelling
Test purpose

specification
Test

generation
Test

deployment
Test

execution

Figure 1. Model-based testing process

15

be executable by SUT inputs and the SUT outputs back to symbolic form. Based on the

output received from SUT and the one expected by model the conformance relation is

decided. Last step of the model-based testing process is to run the tests on SUT [9].

The described process can be applied also in distributed testing where tests use different

ports of SUT during the same test run. For that the test model must be partitioned

according to the distribution of SUT architecture and available test ports. Most critical

factors about distributed testing are synchronization and timing of local test components.

Therefore, it is necessary to add a test coordination mechanism and timing constraints to

take into account delays between distributed SUT and tester components [13].

In the following subsections distributed model-based testing process is taken under more

detailed observation and the tools supporting distributed model-based testing are

introduced along the description of that process.

2.1 SUT modelling

SUT can be modelled using different modelling notations, for example state-transition-

based notations which are the most commonly used for model-based testing. This class

of models describes transitions between states of SUT. The examples of state transition

models are UML state machines that are developed within finite state automata (FSA)

theory. FSA notation uses graphs where nodes are representing states of the system and

arcs are representing transitions between states [9].

Adding clock variables and data variables to finite state automata extends FSA to timed

automata where clocks are used for mapping the model dynamics to time domain and

specifying synchronisation constraints to concurrent events in the model. A tool to

support described modelling notation is UPPAAL. UPPAAL is developed by Uppsala

University and Aalborg University for verifying systems that are modelled as networks

of timed automata. The model state can be extended with integer variables, structured

data types and synchronisation channels [11]. An example of the parallel composition of

two timed automata modelled with UPPAAL is given in Figure 2.

16

Figure 2. Example of timed automaton [11]

In UPPAAL graphical notation of the nodes are called locations. The edges between

nodes represent discrete state transitions. The edges have four different types of attributes:

in guard expression the conditions must be satisfied to make the edge enabled and in

select expression comma separated list (name: type) of variables is defined that are

updated non-deterministically with any value from given type. Synchronisation channels

are for describing simultaneously executable edges. Channel labels have suffixes either

“!” or “?” which denote synchronous output or input action, respectively. Finally, update

expression is a list of comma separated assignment expressions to model the state

transitions in terms of new values of variables and clocks [11].

2.2 Test purpose specification

Test purpose specification is second formal representation of test description along with

modelling language introduced previously [17]. The test purpose specification must be

written in machine readable form. In UPPAAL the property specification logic language

TCTL (timed computation tree logic) allows specifying test scenarios in declarative form.

Alternatively, adding auxiliary logic constraints in test model guard conditions and

invariants allows restricting the model behaviours only to those that satisfy test purpose.

While adding auxiliary constraints to the model enables both online and offline test

generation, the diagnostic traces that are generated by TCTL model checking as symbolic

test sequences can be generated only offline [11].

TCTL consists of path formulae and state formulae. State formulae describe the properties

that can be interpreted only at model states and can be evaluated without looking at the

behaviour of the model. It is also possible to express deadlock with state formulae using

system predicate deadlock. If there is no enabled outgoing edge from the state, it is a

17

deadlock state. Path formulae can be categorized into reachability, safety and liveness

formulae [11]. This categorization is explained in Table 1.

Table 1. Path formulae in TCTL [11]

Category Concept Formula Explanation

Reachability Possibly E <> Some state satisfying state formula

should be reachable

Safety Invariantly

Possibly

invariantly

A []

E []

State formula is true in all reachable

states

There exists an execution path where

formulae is always true

Liveness Eventually A <> State formula is eventually satisfied in all

possible futures

2.3 Test generation

In model-based testing, the test cases can be generated offline or online. In case of offline

generation, test cases are generated before they will be executed. Online testing combines

test generation and execution, i.e. test inputs are generated on-the-fly depending on the

SUT current state and the test goal. Offline test generation does not pose constraints on

test generation performance, but it may presume extensive model state space exploration

that is typically needed in TCTL model checking. But its advantage is that when the SUT

design or its requirements change it is possible to re-generate test cases by rerunning the

model checker and there is no need for manual updating of test scripts.

Online testing has its own advantages, especially when testing systems, that have non-

deterministic behaviour or the models of which are non-deterministic due to abstracting

from some of SUT state variables. Online testing is also computationally cheaper because

deciding on the next test input presumes exploration of much smaller portions (which are

around current state) of the model state space [18]. As current thesis uses UPPAAL tool

family, the test generation and execution tools UPPAAL TRON and DTRON are applied

for online distributed model-based testing.

18

2.4 Test deployment

Before executing the test model in DTRON tool, DTRON needs to be configured

according to the accessibility and the location of SUT test ports. Before elaborating the

deployment process, the architecture and functioning principles of UPPAL TRON and

DTRON are introduced.

UPPAAL TRON is test execution environment for UPPAAL models. UPPAAL TRON

is suitable for black-box conformance testing of timed systems only locally [7]. DTRON

is a tool for distributed testing real time systems online and it incorporates UPPAAL

(possibly many instances of) TRON [8]. UPPAAL, UPPAAL TRON and DTRON

relationships in testing process is shown in Figure 3 [19]. DTRON takes UPPAAL models

as an input and uses Spread toolkit for messaging with DTRON API which is connected

to SUT via its ports [13]. As only online testing method will be used henceforth, we defer

from describing internal test generation mechanism by TCTL model checking in the rest

of the thesis.

For test deployment the adapters are used between the DTRON API and SUT ports. An

adapter is piece of code implemented for mapping model inputs to SUT and SUT outputs

back to model interpretable symbolic form. UPPAAL TRON uses reporter in addition to

adapters and assigns indexes instead of channel names to channels to optimize

communication. This decreases the workload for test developer. DTRON has been

developed to lessen the effort of building adapters and configuring the whole testing

setup. DTRON adapters look models for channel names that have prefixes “i_” (input) or

“o_” (output) whereas each channel pair needs separate adapter [13].

Since in distributed testing the timing is critical factor, additional delays may be

introduced when processing the test inputs and returned outputs in adapters. To minimize

these delays an adapter should be written rather simple. Otherwise delays may have

impact on the test execution and tests may give false-negative results [13].

UPPAAL

models

https://cs.ttu.

ee/dtron/dtro

nTutorial.pd

f

DTRON

 UPPAAL TRON

DTRON

API

System

Under Test

Spread

Figure 3. UPPAAL, UPPAAL TRON and DRON relationship

https://cs.ttu.ee/dtron/dtronTutorial.pdf
https://cs.ttu.ee/dtron/dtronTutorial.pdf
https://cs.ttu.ee/dtron/dtronTutorial.pdf
https://cs.ttu.ee/dtron/dtronTutorial.pdf

19

2.5 Test execution

Executing test cases with DTRON is performed using Spread message serialization.

Distributed execution uses multiple ports to interact with SUT. Distributed execution

configuration is shown schematically in Figure 4 [13]. Each port of SUT is connected to

DTRON API which, in turn, is connected to Spread [13].

As shown experimentally in [13] the reaction time DTRON needed for computing new

test input after receiving an output from SUT is within the limits of 10 milliseconds that

is sufficient regarding the performance requirements of testing non-hard real-time

systems such as web based application Teele.

System Under Test

Port 1 Port 3 Port 2

Spread

DTRON

API

DTRON

API

DTRON

API

Figure 4. Distributed test execution architecture

20

3 Tallinn city information system Teele

Teele is Tallinn City Council information system for processing legal acts throughout

their lifecycle. Teele is used by Tallinn City Council, government and office, as well as

in district councils, district administrations and departments. Teele was taken into use in

January 2020 and its main goal is to optimize the processes of legislation, reduce

bureaucracy and make city’s administration transparent to citizens.

Teele is composed of different modules that are covering respective legislation processes.

To set the focus for current thesis, only proceedings module of Teele will be considered

as SUT. During the proceedings legal acts are getting approvals or disapprovals from

various specialists from Tallinn city structure. To put a legal act into force it is mandatory

to get its approvals from all specialists who are authorised to approve it.

3.1 Use cases

In this subsection the use cases of proceedings module will be introduced.

Figure 5. Use case diagram

21

Table 2. Use case - start proceeding

Use case: Start Proceeding

Description: User has written new legal act and to set it

into force user must start proceeding

Actors: Creator

Preconditions: User has written the legal act

Postconditions: Proceeding is started

Flow: 1. User clicks “Start proceeding”

2. System creates an active proceeding

and notifies first specialist to give

his/her feedback

22

Table 3. Use case - give feedback

Use case: Give Feedback

Description: User must give feedback to legal act in

proceeding

Actors: Specialist

Preconditions: Proceeding has started, specialist is notified

and must give feedback

Postconditions: Feedback to legal act has been submitted

Flow: 1. User attaches a comment and clicks

“Approve”

2. System saves comment and approval

and sends notification thereafter to

next specialist to give feedback

Alternative flow: When user does not approve the legal act:

a. User attaches comment and clicks

“Disapprove”

b. System saves comment and

disapproval and updates proceeding

status to “ended”

When Specialist was the last one to give the

feedback:

a. System saves comment and approval

and updates proceeding status to

“ended”

3.2 SUT modelling

For modelling the part of Teele information system which use cases are described in 3.1

three models are needed. Each model describes the behaviour of one actor. Actors in

current part of SUT are system, procedure creator and specialist. All named parties are

also defined in UPPAAL model system declarations section as depicted in Figure 6.

System declaration is used for defining the UPPAAL model configuration that consists

of the parallel composition of automata template instantiations called processes [11]. In

this example each actor constitutes one process.

system Creator, Specialist, System;

Figure 6. System declarations

23

UPPAAL also has global declarations for global variables, clocks, synchronisation

channels and constants [11]. Global declarations used in the thesis are depicted in Figure

7.

const int n = 5;

typedef int[1,n+1] next_specialist = 1;

typedef int[1,n] specialistId_t;

clock gcl;

bool active = false;

chan i_start;

chan i_approve;

chan i_disapprove;

chan i_stop;

chan o_notify [n+1];

chan o_ended;

int i;

Figure 7. Global declarations

Constant n together with next_specialist and specialistId_t is used for defining the number

and order of specialists who will participate in document proceeding. Global clock is

defined as gcl. With Boolean active it is possible to describe status of the proceeding, for

example if proceeding has started Boolean active will be equal to true. Synchronisation

channels are following: i_start; i_approve; i_disapprove; i_stop; o_notify[n+1];

o_ended. Prefix “i_” determine inputs and prefix “o_” outputs. Integer i in global

declarations is used for verification.

3.2.1 Model of the system under test

Tallinn city information system Teele is a web application. In Figure 8, the SUT is

represented as UPPAAL TA model.

24

Figure 8. UPPAAL TA model of the system under test

SUT template has five locations: idle, starting, approving, disapproving and stopping

which describe general modes of SUT operation. The SUT template uses the global

constant n which denotes the number of specialists, global integer variable next_specialist

and a global Boolean variable active which are self-explanatory. Local clock of SUT is

defined in System local declarations section as cl. Similarly, the constants which

determine the time it takes to perform different tasks are defined in local declarations

section.

clock cl;

const int lbs=1, ubs=2; //starting

const int lbt=1, ubt=2; //stopping

const int lba=1, uba=2; //approving

const int lbd=1, ubd=2; //dissaproving

Figure 9. System local declarations

25

Initial location of SUT template is idle. SUT is in this location when it has not had any

signal from creator of specialists. When SUT gets a signal from creator to start

proceeding, SUT moves to starting location and sets local clock to zero. When SUT is in

starting location, it is possible to go back to idle with sending notification to first

specialist. When specialist gives feedback, he/she may approve or disapprove the

document. When SUT gets the signal to approve, it moves to approving location where

SUT needs to decide if there are more specialists to give feedback. If there is, SUT moves

again to idle location and sends notification to following specialist. When current

specialist was last to give feedback SUT moves to stopping location where the proceeding

comes to end. If specialist decides to disapprove legal act, SUT moves to disapproving

location and from there to stopping because proceeding cannot continue when someone

has disapproved the legal act. From ending location signal ended is sent to creator to mark

the end of the proceeding.

3.2.2 Model of the creator

Creators are officials of Tallinn city council or government whose tasks include creating

new legal acts. When a new legal act is written it is creators’ task to start proceeding and

involve different specialists into the proceeding. The model template of the creator action

is given in the Figure 10.

Figure 10. Model of the creator

Creator template has two locations: starting and idle. Initially creator is at staring, which

is committed location. It means that starting is instantaneous internal action, i.e. it does

not need triggering by external events [20]. When creator decides to give new document

into proceeding, he/she sends i_start signal to SUT. After this action SUT will start the

proceeding and creator will stay in idle location. Creator can move back to starting

location when o_ended signal arrives from SUT. This marks the end of previous

26

proceeding. Creator has local clock cl and local constants lb and ub which specify a non-

deterministic interval [lb, ub] when new proceeding can be initiated.

clock cl;

const int lb=30, ub=60;

Figure 11. Creator local declarations

3.2.3 Model of specialist

Specialists are experts and leaders of different fields at Tallinn city structure. Specialists’

role in legal act proceeding is to give feedback about the content of the act. Specialists

receive notification when their opinion is needed. They can say whether they approve or

disapprove the act. The model template of specialist behaviour is depicted in the Figure

12.

Figure 12. Model of the specialist

Specialist template has two locations: idle and giving_feedback. Initial location is idle

where specialist is when there is no legal act to give feedback to. The control moves to

giving_feedback location when notification is received. In this location specialist has two

options – to approve or to disapprove. After making decision and sending corresponding

signal to SUT, specialist is back in idle location. A local clock cl is defined in specialist

local declarations shown in Figure 13. Constants for determining duration of

giving_feedback are also defined in local declarations section.

clock cl;

const int lb=3, ub=5;

Figure 13. Specialist local declarations

27

3.3 Test purpose specification

To ensure the correctness of created test model UPPAAL has built-in verifier for checking

whether the specification properties are satisfied in the model. System, Creator and

Specialist templates modelled in previous section must satisfy the properties given in

Table 4, Table 5 and Table 6.

Reachability properties are for verifying that it is possible to reach all locations of System,

Creator and Specialist.

Table 4. Reachability properties

Property Explanation

forall(i: specialistId_t)
System.approving && next_specialist
== i -->
Specialist(i+1).giving_feedback

When Specialist has approved the legal act,

System sends notification to next specialist to

give feedback

System.disapproving --> Creator.idle
and forall (id: specialistId_t)
Specialist(id).idle

When Specialist disapproved the legal act,

System moves to disapproving, Creator and

Specialists are in idle

Safety properties are to verify that unwanted situations never occur. In addition, model

deadlock freedom property is verified.

Table 5. Safety properties

Property Explanation

A[] not deadlock Deadlock will never happen

A[] not (System.stopping and forall
(id : specialistId_t)
Specialist(id).giving_feedback)

Situation where System is in location

stopping but Specialists is in giving_feedback

will never happen

A[] not (System.starting and forall
(id : specialistId_t)
Specialist(id).giving_feedback)

Situation where System is in location starting

but Specialists is in giving_feedback will

never happen

A[] System.starting imply
Creator.idle and forall (id:
specialistId_t) Specialist(id).idle

System can be at starting location only when

Creator and Specialist are in idle

A[] System.starting imply
next_specialist == 1

When system is starting, next_specialist

value will equal to one

28

With liveness properties it is verified that System, Creator and Specialist will eventually

be at location idle.

Table 6. Liveness properties

Property Explanation

A<> System.idle Eventually System will be at location idle

A<> Creator.idle Eventually Creator will be at location idle

A<> forall (id: specialistId_t)
Specialist(id).idle

Eventually Specialists will be at location idle

Result of verification is available in Appendix 1 – Results of Model Verification.

3.4 Test generation

As UPPAAL tool family uses online testing methods test cases will be generated during

the execution and test generation step does not need any further action since all

behaviours in the model are also tried by test execution tool. When the set of behaviours

needs to be constrained, necessary updates can be made directly in the model.

3.5 Test deployment

Before the test execution, the extra time component introduced by test deployment on the

test configuration must be added in the model and the extended model re-verified.

UPPAAL TRON, which DTRON is built on, does not support channel arrays because it

uses former version of UPPAAL modelling language [3]. In Paragraph 3.2 specialists are

modelled in one model as they have identical behaviour. This simplifies verification of

the models [3]. Synchronisation channel notify between SUT and specialists is same for

all specialists but has different identifiers which makes the same effect as using the array

of channels. To avoid channel arrays all participants must be modelled separately with

individual channels as notify1, notify2 etc.

The templates modelled using individual channels are available in Appendix 2 – Models

with individual channels.

For test deployment DTRON adapters are written in Java. As the models use individual

channels, adapters must cover every individual channel as well. As concluded in [3], for

29

a large systems this may be too complicated and time consuming. In adapters DTRON

channels are defined as shown in Figure 14.

IDtronChannel ch_start = new DtronChannel("start");

IDtronChannel ch_approve = new DtronChannel("approve");

IDtronChannel ch_disapprove = new DtronChannel("disapprove");

Figure 14. Creating channels in adapter

In addition, listeners for each channel must be written as well as their behaviour when

message is received from channel. For example, listener for channel ch_start is shown in

Figure 15. Full adapter code is available in Appendix 3 – Adapter.

getMBTDtron(0).addDtronListener(new DtronListenerExt(ch_start) {

@Override

 public void messageReceived(IDtronChannelValued v) {

boolean started = false;

 try {

 started = system.start(proceedingId, token);

 } catch (IOException e) {

 e.printStackTrace();

 }

 if(started) {

 String response = “notify1”;

 IDtronChannel reply = new DtronChannel(response);

IDtronChannelValued valued =
reply.constructValued((Map<String, Integer>) null);

 send(valued);

 }

}

}

Figure 15. Channel listener

When a message is received in listener for channel ch_start method start is called in class

system. In class system all logic is written to communicate with SUT. Code for method

start in Java class system is presented in Figure 16. Full code for communicating with

SUT is available in Appendix 3 – Adapter.

30

public boolean start (int proceedingId, String token) throws
IOException {

int responseCode = 0;

 CloseableHttpClient httpclient = HttpClients.custom().build();

 try {

 HttpPatch request = new HttpPatch("https://teele-
dev.netgroupdigital.com/api/proceedings/" + proceedingId);

 StringEntity requestEntity =new
StringEntity("{\"statusCode\":\"INPROGRESS\"}");

 request.addHeader("content-type", "application/json");

 request.addHeader("Authorization", token);

 request.setEntity(requestEntity);

 HttpResponse response = httpclient.execute(request);

 responseCode = response.getCode();

 httpclient.close();

} catch (Exception e) {

 System.err.print(e.getMessage());

 }

 if (responseCode == 200) {

 return true;

 } else {

 return false;

 }

}

Figure 16. Communication between adapter and SUT

3.6 Test execution

To run the tests Spread Toolkit is used. Spread Toolkit is open source messaging service

and it can be used for distributed test execution [21]. For execution Java main class is

supplemented in the same Java project as adapters. In the executable code, shown in

Figure 17, connection with DTRON and Spread Network is created. DTRON process is

started giving Spread Network and UPPAAL models as input. Also, timeout in time units,

time unit in milliseconds and verbosity are defined.

31

public static void main(String[] args) {

 MBTApplication app = new SampleAdapter();

 app.launchApp();

}

@Override

public boolean start() {

boolean proceed = false;

 String testModel = "model/models.xml";

 SpreadNetwork sn = SpreadNetwork.create();

 if(sn != null && sn.start()) {

 List<SpreadNetwork> snl = new ArrayList<SpreadNetwork>();

 snl.add(sn);

 SampleTest vt = new SampleTest(snl);

 if(vt.start()) {

 DtronProcess dp = DtronProcess.create(sn,
testModel, 100000, 600, VERBOSITY);

 if (dp != null) {

 dp.start();

 proceed = true;

 }

 } else {

 DtronAdapterHelper.logger().warning("Adapter failed
to start");

 }

 }

 return proceed;

}

Figure 17. Adapter execution code

Executing the Java project will give DTRON test result. Full result is available in

Appendix 4 – DTRON test result.

32

4 Results and conclusions

In following sections test results are analysed and the usability of distributed model-based

testing is evaluated.

4.1 Analysis of test results

Before introducing distributed model-based testing methodologies in project Teele, its

testing was done manually. There were no test cases written because testers used

exploratory approach. Exploratory testing is widely used in agile software projects where

requirement documents are not complete. Testers have full control and their goal is to

investigate the system, think and find bugs. Testing results depend on testers knowledge,

intuition and understanding of the system [22]. Using exploratory testing approach, it is

not easy to evaluate the exact test coverage. Although it is possible to analyse human

effort and bugs found.

Human effort for manual testing in project Teele is high and it increases with every test

run. Positive aspect is that manual testing does not need any preparation in MBT. When

using automated tests preparation takes majority of time because tester must create a

model, specify test cases and encode them either in the form of decidable TCTL

constraints or model injected constraints before the test generation/execution can be run.

Human effort is high at the beginning of the project, but afterwards testers only need to

maintain and execute generated scripts or test model itself. Human effort spent on testing

during the projects is stated in Figure 18. Graph shows how manual testing needs more

human effort when the number of test iterations is high and, therefore, it is more suitable

for short-time projects. Automated tests require more work in the beginning but in the

long term they pay off. The point X is called breaking point as from that point forward

automated tests have paid off [23]. During the current research project Teele did not reach

the breaking point.

33

Figure 18. Human effort for manual testing and automated testing

Distributed model-based tests did not find any bugs from proceeding module during the

research. One reason might have been that the code had been tested manually before MBT

was applied to that. Manual exploratory testing found two of them:

• Proceeding step will not change color after specialist have given approval

• Specialists avatars are not loaded on the first load but on reload

Manually found bugs are rather about the design of user interface that automated tests are

not expected to find. Comparing manually and automatically found bugs is discussed in

article [24] written by James Bach. He states that bugs found by automated tests and

manual tests are different and are not comparable. These two approaches have totally

different processes as they reveal different kind of bugs. To achieve excellent testing

results and high test coverage software testing strategy should include both of the

methodologies [24].

Test coverage when using manual exploratory testing can vary. In project Teele testers

try to cover all requirements and main scenarios but as manual testing is not documented

it is not possible to evaluate and compare the real test coverage. As the goal of testers is

to find bugs it may happen that knowing the system testers can come up with scenarios

to reach bugs and achieving the goal, they leave other scenarios behind. Using distributed

34

model-based testing all scenarios possible to reach in models are covered, test coverage

is stable and high.

4.2 Usability evaluation

Usability is attribute of quality as is utility which asks the question “Whether the software

provides the features users need?”. Usability itself defines how pleasant these features are

to use. Usability can be evaluated by five components: learnability, efficiency,

memorability, errors and satisfaction [14]. To evaluate usability of distributed model-

based testing methodology and tools used in current study all usability components are

analysed separately.

When taking into use new testing process and tools it is natural that in the beginning more

time goes to learning. Usability learning component focuses on how easy it is for new

users to use basic functionality for the first time [14]. Based on the current study it can be

said that learning to use distributed model-based testing process is not complicated.

Process consists of sequential logical steps that are easy to understand and there are

supporting materials available. It is rather difficult to take into use UPPAAL and DTRON

as the tools are not very commonly used and there are very few materials and examples

to support the learning process. The most complex part of current study was to learn to

model SUT with UPPAAL tool. UPPAAL is built with diverse functionalities that are

hard to understand when not having exposure to modelling before. During the modelling

tester also must bear in mind all necessary aspects for distributed execution later for

example synchronisation clocks. Another rather complex part was executing the tests with

DTRON. As DTRON uses Spread Toolkit and adapters to run it is difficult to learn how

all the parties would communicate.

Efficiency can be evaluated after the learning process as it answers the question “How

quickly can users perform tasks when they have completed the learning process?” [14].

Using distributed model-based testing tools later in the project is more efficient.

Maintaining models in UPPAAL and creating new ones is easier and can be done quicker

than in learning phase. Maintaining adapters and executing DTRON is also

straightforward when there is previous experience. Distributed model-based testing

process for project Teele is rather not efficient, not because of the testing process itself

but its suitability into the development process. As the project documentation is not

35

complete it is not possible to have use cases written before a part of development needs

to be tested. Using model-based testing process testers have to write use cases based on

developed features not documentation. Following the model-based testing process takes

excessive part of testers time and the testing results are available later than expected.

Memorability of the process and tools has not been revealed as a problem because Teele

is still partially in development phase and testers have to use the tools frequently to

perform maintenance. Already completed project setup also contributes memorability

which can be affected when starting new project from scratch.

Main error that happened in current research was when executing DTRON with models

modelled with new version of UPPAAL modelling tool. DTRON is built on UPPAAL

TRON which uses older version on UPPAAL and that caused lot of misunderstandings

and extra effort to make models suitable for UPPAAL TRON. Errors in modelling may

also happen when using UPPAAL itself but UPPAAL verifier probably assists to find the

right solution.

The satisfaction of distributed model-based testing process and tools in web application

development project Teele is rather low. As the creation of new model-based tests takes

more time than manual testing and the tools used have insufficient or non-existent user

interface it decreases the satisfaction. Testers find most bugs with manual exploratory

testing and mainly these are the bugs that automated tests will never find like problems

with user interface design. Distributed model-based testing would be suitable

methodology to use in addition to manual testing. To avoid that preparation for model-

based testing takes too long time and test results are available later than expected it would

be necessary to have software documentation available before testing. Using correct

development process this should not be problem. To achieve higher usability and

especially shorter learning curve of tools used it may be essential to have more

documentation and examples available for UPPAAL and DTRON. Also, the possibility

to use DTRON with models modelled with newer version of UPPAAL would have

positive impact to satisfaction.

36

Summary

The goal of the current thesis was to validate and evaluate distributed model-based testing

methodology in Tallinn City information system project Teele. When using model-based

testing the test cases are generated automatically based on models and this can lead to

high test coverage and low manual effort. The goal was to find out whether same results

are possible to achieve in project Teele and are the tools UPPAAL, UPPAAL TRON and

DTRON are mature enough for it.

First part of the thesis introduces model-based testing process and tools. Process starts

with modelling the SUT or part of it with UPPAAL modelling tool. Models can be

verified with UPPAAL verifier using TCTL language. Based on verified models it is

possible to generate test cases but as execution tools UPPAAL TRON and DTRON are

for online testing the test cases are generated during execution. Before execution test

adapters must be written to map model inputs to SUT and SUT outputs back to models.

Also Spread Toolkit must be configured for distributed execution.

Second part of the thesis uses previously described process and tools in Teele

development project. Previously Teele was tested only manually using exploratory

approach because documentation was not available and test results were needed fast after

functionality was developed. Distributed model-based testing was taken into use for

proceeding module of Teele where different specialists from city structure are giving their

approval or disapproval to new legal acts before they are put into force.

As a result, Teele’s project team was rather not satisfied with the new model-based testing

process mainly because the test results are becoming available later than expected. Using

model-based testing testers can start preparing the models and adapters after the

functionality is developed because of unavailable requirements specification

documentation. As a conclusion it can be said that for project Teele manual testing turned

out to be more successful. Although this may not be the case with other projects where

documentation is available and correct development process is followed.

37

Another usability aspect to appeal is learnability of the tools used. UPPAAL is complex

tool with diverse functionalities that may be complex to understand, especially when there

are not enough supporting materials and examples available. The same goes for execution

tool DTRON which has to have connection with Spread Toolkit, adapters and models to

communicate. To make initial setup for distributed model-based test execution a lot of

time was committed. Also, testers have to keep in mind that UPPAAL TRON and

DTRON are not supporting new version of UPPAAL modelling language, this makes

modelling SUT more difficult and time consuming. Although in case where testers have

already experience with distributed model-based testing and the tools the testing would

take less effort and be more effective.

For future work distributed model-based testing can be taken into use in project where

documentation is complete and correct development processes are followed so that new

testing methodology will not bring any delays into development process. Also, part of

SUT can be extended to cover more functionality and to analyse complexity of modelling

when dimension of SUT is more significant.

38

References

[1] M. Kääramees, “A Symbolic Approach to Model-based Online Testing,” Tallinn

University of Technology, Tallinn, 2012.

[2] R. V. Binder, B. Legeard and A. Kramer, “Model-Based Testing: Where Does It

Stand?,” ACM Queue, vol. 13, no. 1, 2015.

[3] A. Kruusamägi, “Model-based Testing of Distributed Systems: Tallinn Streetlight

System Case-Study,” Tallinn University of Technology, Tallinn, 2016.

[4] X. Liu, Y.-J. Hsieh, R. Chen and S.-M. Yuan, “Distributed Testing System for

Web Service Based on Crowdsourcing,” Hindawi, vol. 2018, p. 15, 2018.

[5] K. Saarna, “Aspect-Oriented Model-Based Testing,” Tallinn University of

Technology, Tallinn, 2018.

[6] “UPPAAL,” [Online]. Available: http://www.uppaal.org. [Accessed 28 03 2020].

[7] “UPPAAL TRON,” [Online]. Available: https://people.cs.aau.dk/~marius/tron/.

[Accessed 28 03 2020].

[8] “DTRON,” [Online]. Available: https://cs.ttu.ee/dtron. [Accessed 28 03 2020].

[9] M. Utting and B. Legeard, “Practical Model-Based Testing,” Morgan Kraufmann,

2007.

[10] “Model Based Testing,” ProfessionalQA, 02 03 2020. [Online]. Available:

https://www.professionalqa.com/model-based-testing-tools. [Accessed 28 03

2020].

[11] G. Behrmann, A. David and K. G. Larsen, “A Tutorial on UPPAAL 4.0,” Aalborg

University, Denmark, 2006.

[12] J. Vain, G. Kanter and S. Srinivasan, “Model Based Testing of Distributed Time

Critical Systems,” in 6th International Conference on Reliability, India, 2017.

[13] A. Anier, J. Vain and L. Tsiopoulos, “DTRON: A Tool for Distributed Model-

Based Testing of Time Critical Applications,” Proceedings of Estonian Academy

of Sciences, vol. 1, no. 66, pp. 75-88, 2017.

39

[14] J. Nielsen, “Usability 101: Introduction to Usability,” Nielsen Norman Group, 03

01 2012. [Online]. Available: https://www.nngroup.com/articles/usability-101-

introduction-to-usability/. [Accessed 28 03 2020].

[15] J. Zander, I. Schieferdecker and P. J. Mosterman, Model-Based Testing for

Embedded Systems, CRC Press, 2017.

[16] M. Felderer and A. Beer, “Estimating the Return on Investment of Defect

Taxonomy Supported System Testing in Industrial Projects,” in 38th Euromicro

Conference on Software Engineering and Advanced Applications, 2012.

[17] E. Halling, J. Vain, A. Boyarchuk and O. Illiashenko, “Test Scenario Specification

Language for Model-Based Testing,” International Journal of Computing, vol. 4,

no. 18, pp. 408-421, 2019.

[18] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson and A. Skou,

“Testing Real-Time Systems Using UPPAAL,” Lecture Notes in Computer

Science 4949, 2008.

[19] A. Anier, “DTRON Tutorial,” [Online]. Available:

https://cs.ttu.ee/dtron/dtronTutorial.pdf. [Accessed 28 03 2020].

[20] A. Anier, “Model Based Framework for Distributed Control and Testing of Cyber-

Physical Systems,” Tallinn University of Technology, Tallinn, 2016.

[21] “Spread Toolkit,” [Online]. Available: http://www.spread.org/index.html.

[Accessed 28 03 2020].

[22] “What is Exploratory Testing?,” Guru99, [Online]. Available:

https://www.guru99.com/exploratory-testing.html. [Accessed 15 04 2020].

[23] R. Ramler and K. Wolfmaier, “Economic Perspectives in Test Automation:

Balancing Automated and Manual Testing with Opportunity Cost,” Software

Competence Center Hagenberg GmbH, Austria, 2006.

[24] J. Bach, “Test Automation Snake Oil,” 1999.

40

Appendix 1 – Results of Model Verification

forall(i: specialistId_t) System.approving && next_specialist == i -->
Specialist(i+1).giving_feedback

Property is satisfied.

System.disapproving --> Creator.idle and forall (id: specialistId_t)
Specialist(id).idle

Property is satisfied.

A[] System.starting imply next_specialist == 1

Property is satisfied.

A[] not deadlock

Property is satisfied.

A[] not (System.starting and forall (id : specialistId_t)
Specialist(id).giving_feedback)

Property is satisfied.

A[] not (System.stopping and forall (id : specialistId_t)
Specialist(id).giving_feedback)

Property is satisfied.

A[] System.starting imply Creator.idle and forall (id: specialistId_t)
Specialist(id).idle

Property is satisfied.

A<> forall (id : specialistId_t) Specialist(id).idle

Property is satisfied.

A<> Creator.idle

Property is satisfied.

A<> System.idle

Property is satisfied.

41

Appendix 2 – Models with individual channels

Model of system:

42

Model of creator:

Model of specialist1:

43

Appendix 3 – Adapter

public class SampleTest extends DtronAdapter {

 public SampleTest(List<SpreadNetwork> snlist) {

 super(snlist);

 }

 private int nextSpecialist;

 private int proceedingId = 148 //insert next proceedingId here;

 private int stepId = 312 //insert next stepId here;

 private String token = "" //insert token here;

 public void addListeners() throws SpreadException {

 Sut system = new Sut();

 IDtronChannel ch_start = new DtronChannel("start");

 IDtronChannel ch_approve = new DtronChannel("approve");

 IDtronChannel ch_disapprove = new DtronChannel("disapprove");

 getMBTDtron(0).addDtronListener(new DtronListenerExt(ch_start) {

 @Override

 public void messageReceived(IDtronChannelValued v) {

 boolean started = false;

 try {

 started = system.start(proceedingId, token);

 } catch (IOException e) {

 e.printStackTrace();

 }

 if(started) {

 String response = “notify1”;

 IDtronChannel reply = new
DtronChannel(response);

 IDtronChannelValued valued =

 reply.constructValued((Map<String,
Integer>) null);

 send(valued);

 }

 }

 });

 getMBTDtron(0).addDtronListener(new
DtronListenerExt(ch_approve){

 @Override

 public void messageReceived(IDtronChannelValued v) {

 boolean approved;

 if (getNextSpecialist() == 5) {

44

 approved = system.disapprove(proceedingId,
stepId, token);

 } else {

 approved = system.approve(proceedingId,
stepId, token);

 }

 if(approved) {

 String response = null;

 int s = getNextSpecialist();

 if (s == 0) {

 response = "notify2";

 setNextSpecialist(2);

 setStepId(getStepId() + 1);

 } else if (s == 2) {

 response = "notify3";

 setNextSpecialist(3);

 setStepId(getStepId() + 1);

 } else if (s == 3) {

 response = "notify4";

 setNextSpecialist(4);

 setStepId(getStepId() + 1);

 } else if (s == 4) {

 response = "notify5";

 setNextSpecialist(5);

 setStepId(getStepId() + 1);

 } else {

 response = "ended";

 setNextSpecialist(0);

 setProceedingId(getProceedingId()+ 1);

 setStepId(getStepId() + 1);

 }

 IDtronChannel reply = new
DtronChannel(response);

 IDtronChannelValued valued =

 reply.constructValued((Map<String,
Integer>) null);

 send(valued);

 }

 }

 });

 getMBTDtron(0).addDtronListener(new
DtronListenerExt(ch_disapprove) {

 @Override

 public void messageReceived(IDtronChannelValued v) {

 boolean disapproved =
system.disapprove(proceedingId, stepId, token);

 if(disapproved) {

 String response = “ended”;

 if (getNextSpecialist() == 2) {

45

 setStepId(getStepId() + 4);

 } else if (getNextSpecialist() == 3) {

 setStepId(getStepId() + 3);

 } else if (getNextSpecialist() == 4) {

 setStepId(getStepId() + 2);

 } else if (getNextSpecialist() == 5) {

 setStepId(getStepId() + 1);

 } else if (getNextSpecialist() == 0){

 setStepId(getStepId() + 5);

 }

 setNextSpecialist(0);

 setProceedingId(getProceedingId() + 1);

 IDtronChannel reply = new
DtronChannel(resp);

 IDtronChannelValued valued =

 reply.constructValued((Map<String,
Integer>) null);

 send(valued);

 }

 }

 });

 }

 @Override

 protected int getDtronID(SpreadNetwork sn) {

 return 0;

 }

 @Override

 protected void cleanUpAdapter() {

 }

 public int getNextSpecialist() {

 return nextSpecialist;

 }

 public void setNextSpecialist(int nextSpecialist) {

 this.nextSpecialist = nextSpecialist;

 }

 public int getProceedingId() {

 return proceedingId;

 }

 public void setProceedingId(int proceedingId) {

 this.proceedingId = proceedingId;

 }

 public int getStepId() {

 return stepId;

46

 }

 public void setStepId(int stepId) {

 this.stepId = stepId;

 }

}

public class Sut {

 public boolean start(int proceedingId, String token) throws
IOException {

 int responseCode = 0;

 CloseableHttpClient httpclient = HttpClients.custom().build();

 try {

 HttpPatch request = new HttpPatch("https://teele-
dev.netgroupdigital.com/api/proceedings/" + proceedingId);

 StringEntity reqEntity =new
StringEntity("{\"statusCode\":\"INPROGRESS\"}");

 request.addHeader("content-type", "application/json");

 request.addHeader("Authorization", token);

 request.setEntity(reqEntity);

 HttpResponse response = httpclient.execute(request);

 responseCode = response.getCode();

 httpclient.close();

 } catch (Exception e) {

 System.err.print(e.getMessage());

 }

 if (responseCode == 200) {

 return true;

 } else {

 return false;

 }

 }

 public boolean approve(int proceedingId, int stepId, String token) {

 int responseCode = 0;

 CloseableHttpClient httpclient = HttpClients.custom().build();

 try {

 HttpPatch request = new HttpPatch("https://teele-
dev.netgroupdigital.com/api/proceedings/" +proceedingId+ "/steps/" +stepId+
"/responses/pending");

 StringEntity reqEntity =new
StringEntity("{\"status\":\"ACCEPTED\", \"comment\":\"text\"}");

 request.addHeader("content-type", "application/json");

 request.addHeader("Authorization", token);

 request.setEntity(reqEntity);

 HttpResponse response = httpclient.execute(request);

 responseCode = response.getCode();

 httpclient.close();

 } catch (Exception e) {

 System.err.print(e.getMessage());

47

 }

 if (responseCode == 200) {

 return true;

 } else {

 return false;

 }

}

 public boolean disapprove(int proceedingId, int stepId, String token){

 int responseCode = 0;

 CloseableHttpClient httpclient = HttpClients.custom().build();

 try {

 HttpPatch request = new HttpPatch("https://teele-
dev.netgroupdigital.com/api/proceedings/" +proceedingId+ "/steps/" +stepId+
"/responses/pending");

 StringEntity reqEntity =new
StringEntity("{\"status\":\"REJECTED\", \"comment\":\"text\"}");

 request.addHeader("content-type", "application/json");

 request.addHeader("Authorization", token);

 request.setEntity(reqEntity);

 HttpResponse response = httpclient.execute(request);

HttpPatch request2 = new HttpPatch("https://teele-
dev.netgroupdigital.com/api/proceedings/" +proceedingId+
"/restart");

 request2.addHeader("content-type", "application/json");

 request2.addHeader("Authorization", token);

 HttpResponse response2 = httpclient.execute(request2);

 responseCode = response2.getCode();

 httpclient.close();

 } catch (Exception e) {

 System.err.print(e.getMessage());

 }

 if (responseCode == 200) {

 return true;

 } else {

 return false;

 }

 }

}

48

Appendix 4 – DTRON test result

===========================Dtron-3899 output:START===========================

INFO e.t.c.d.t.TronInstaller: Checking for TRON from environment variable -
TRON_HOME

INFO e.t.c.d.t.TronInstaller: Running on Windows, checking for "tron.exe"

INFO e.t.c.d.t.TronInstaller: Found tron:
C:\DistributedModelBasedTesting\tron\tron.exe

INFO e.t.c.d.a.s.DtronUpta:
tronexe=C:\DistributedModelBasedTesting\tron\tron.exe

WARN b.c: Constructing listeners with c

INFO e.t.c.d.c.a: Configured with timeout 600 and timeunit 100000

INFO o.a.c.v.i.StandardFileSystemManager: Using
"C:\Users\KAIRIT~1.SIM\AppData\Local\Temp\vfs_cache" as temporary files
store.

INFO e.t.c.a.AntlrXta: Found channel - i_start

INFO e.t.c.a.AntlrXta: Found channel - i_approve

INFO e.t.c.a.AntlrXta: Found channel - i_disapprove

INFO e.t.c.a.AntlrXta: Found channel - i_stop

INFO e.t.c.a.AntlrXta: Found channel - o_notify1

INFO e.t.c.a.AntlrXta: Found channel - o_notify2

INFO e.t.c.a.AntlrXta: Found channel - o_notify3

INFO e.t.c.a.AntlrXta: Found channel - o_notify4

INFO e.t.c.a.AntlrXta: Found channel - o_notify5

INFO e.t.c.a.AntlrXta: Found channel - o_ended

INFO e.t.c.d.c.d: Found incoming channel: i_start

INFO e.t.c.d.c.d: Found incoming channel: i_approve

INFO e.t.c.d.c.d: Found incoming channel: i_disapprove

INFO e.t.c.d.c.d: Found incoming channel: i_stop

INFO e.t.c.d.c.d: Found outgoing channel: o_notify1

INFO e.t.c.d.c.d: Found outgoing channel: o_notify2

INFO e.t.c.d.c.d: Found outgoing channel: o_notify3

INFO e.t.c.d.c.d: Found outgoing channel: o_notify4

INFO e.t.c.d.c.d: Found outgoing channel: o_notify5

INFO e.t.c.d.c.d: Found outgoing channel: o_ended

INFO e.t.c.d.a.s.Dtron: Connecting to Spread at localhost:3899 (AXFqxR7V)

WARN e.t.c.d.a.s.Dtron: Connected to Spread at localhost:3899

INFO e.t.c.d.a.s.Dtron: Don't forget to clean up and disconnect()!

INFO e.t.c.d.a.s.DtronUpta: Going to execute -
[C:\DistributedModelBasedTesting\tron\tron.exe, -P, eager, -v, 9, -I,
SocketAdapter, C:\DistributedModelBasedTesting\model\models1.xml, --,
localhost, 6236]

UPPAAL TRON 1.5 using UPPAAL 4.1.2 (rev. 4351), June 2009

Compiled with i586-mingw32msvc-g++ -Wall -DLIBXML_STATIC -DNDEBUG -O2 -
ffloat-store -march=pentiumpro -march=pentium4 -march=prescott -
march=pentium-m -DTIGA_MERGE_STATES -DBOOST_DISABLE_THREADS

Copyright (c) 1995 - 2009, Uppsala University and Aalborg University.

49

All rights reserved.

Options for UPPAAL TRON:

 Search order is breadth first

 Using no space optimisation

 State space representation uses minimal constraint systems

 Observation uncertainties: 0, 0, 0, 0 (microseconds).

 Scheduling latency: 0 microseconds

 Future precomputation: closure(0 mtu).

 Input delay extended by: 0

 OS scheduler: non-real-time.

INFO b.a: Setting timeout to 600, timeunit to 100000

INFO e.t.c.d.a.s.Dtron: Joining group notify1

INFO e.t.c.d.a.s.Dtron: Joining group notify2

INFO e.t.c.d.a.s.Dtron: Joining group notify3

INFO e.t.c.d.a.s.Dtron: Joining group notify4

INFO e.t.c.d.a.s.Dtron: Joining group notify5

INFO e.t.c.d.a.s.Dtron: Joining group ended

 Emulation invariants: Creator, Specialist1, Specialist2, Specialist3,
Specialist4, Specialist5.

 Timeunit: 100000us

 Timeout: 600mtu

 Inputs: i_start(), i_approve(), i_disapprove(), i_stop()

 Outputs: o_notify1(), o_notify2(), o_notify3(), o_notify4(), o_notify5(),
o_ended()

TEST in progress | 0%INFO e.t.c.d.a.s.Dtron: Spreading message: name=start,
variables=null

TEST in progress / 1%

TEST in progress - 3%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress \ 4%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress | 5%INFO b.e: Received - name=notify3, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress / 7%INFO b.e: Received - name=notify4, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

INFO b.e: Received - name=notify5, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress - 8%INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve,
variables=null

TEST in progress \ 11%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

50

TEST in progress | 12%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress - 15%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress \ 15%INFO e.t.c.d.a.s.Dtron: Spreading message: name=start,
variables=null

TEST in progress | 17%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress | 20%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress / 21%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress - 22%INFO e.t.c.d.a.s.Dtron: Spreading message:
name=approve, variables=null

INFO b.e: Received - name=notify2, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress \ 23%INFO b.e: Received - name=notify3, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress | 25%INFO b.e: Received - name=notify4, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress \ 27%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress | 28%

TEST in progress / 29%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress \ 32%INFO b.e: Received - name=ended, variables=null,
timestamp=0

TEST in progress | 32%INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress / 33%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress - 35%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

51

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress / 36%DRIVER: 1586634257.357105s has passed, now it's
1586634257.358102s

TEST in progress / 38%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress - 39%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress \ 40%INFO e.t.c.d.a.s.Dtron: Spreading message:
name=approve, variables=null

INFO b.e: Received - name=notify2, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress \ 43%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress | 44%

TEST in progress / 46%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

INFO b.e: Received - name=notify2, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress - 47%INFO b.e: Received - name=notify3, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress \ 48%INFO b.e: Received - name=notify4, variables=null,
timestamp=0

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

INFO b.e: Reported to UPTA!

TEST in progress - 51%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress \ 52%

TEST in progress | 53%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

INFO b.e: Received - name=notify2, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress / 54%INFO e.t.c.d.a.s.Dtron: Spreading message:
name=approve, variables=null

INFO b.e: Received - name=notify3, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

52

TEST in progress \ 58%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress | 58%INFO e.t.c.d.a.s.Dtron: Spreading message: name=start,
variables=null

TEST in progress / 59%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress - 61%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress / 63%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress - 63%

TEST in progress \ 65%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress | 66%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

INFO b.e: Received - name=notify3, variables=null, timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress / 67%INFO e.t.c.d.a.s.Dtron: Spreading message:
name=disapprove, variables=null

TEST in progress | 70%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress / 71%

TEST in progress - 72%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress | 75%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress / 75%

TEST in progress - 77%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress \ 80%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress | 80%INFO e.t.c.d.a.s.Dtron: Spreading message: name=start,
variables=null

53

TEST in progress / 81%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress - 82%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress \ 86%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress | 87%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress / 89%INFO b.e: Received - name=notify2, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=approve, variables=null

TEST in progress - 90%INFO b.e: Received - name=notify3, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress | 93%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=start, variables=null

TEST in progress / 93%

TEST in progress - 94%INFO b.e: Received - name=notify1, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

INFO e.t.c.d.a.s.Dtron: Spreading message: name=disapprove, variables=null

TEST in progress | 98%INFO b.e: Received - name=ended, variables=null,
timestamp=0

INFO b.e: Reported to UPTA!

TEST in progress / 98%INFO e.t.c.d.a.s.Dtron: Spreading message: name=start,
variables=null

TEST in progress - 99%

TEST PASSED: Time out for testing

TR.Receiver: java.io.EOFException

reporter self-shutdown! (tester timed out and disconnected?)

CONN::readchannel: A blocking operation was interrupted by a call to
WSACancelBlockingCall.

WARN e.t.c.d.a.s.DtronUpta: Reporter server-socket close()

INFO e.t.c.d.a.s.Dtron: Leaving 6 groups ...

INFO e.t.c.d.a.s.Dtron: Un-registering 6 listeners ...

LISTENER: told to exit so returning

INFO e.t.c.d.a.s.Dtron: Disconnecting from Spread at localhost:3899

WARN e.t.c.d.a.s.Dtron: Disconnected from Spread at localhost:3899

===========================Dtron-3899 output: END===========================

