DOCTORAL THESIS

Exploration of
Host-Agent-Environment
nteractions Using Tools of
Metagenomic Sequencing
and Next Generation Phage
Display

Mariliis Jaago

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2023



TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
56/2023

Exploration of Host-Agent-Environment

Interactions Using Tools of Metagenomic

Sequencing and Next Generation Phage
Display

MARILIIS JAAGO



TALLINN UNIVERSITY OF TECHNOLOGY
School of Science
Department of Chemistry and Biotechnology

The dissertation was accepted for the defence of the degree of Doctor of Philosophy in

Chemistry and Biotechnology on 25/10/2023

Supervisor:

Co-supervisor:

Opponents:

Associate Professor Kaia Palm, PhD
Department of Chemistry and Biotechnology
Tallinn University of Technology

Principal Researcher

Protobios LLC

Tallinn, Estonia

Professor Tonis Timmusk, PhD

Department of Chemistry and Biotechnology
Tallinn University of Technology

Tallinn, Estonia

Dr Leopold Parts, PhD
Wellcome Sanger Institute
Hinxton, United Kingdom

Prof Reet Mandar, PhD
University of Tartu

Tartu, Estonia

Defence of the thesis: 24/11/2023, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement, submitted
for the doctoral degree at Tallinn University of Technology has not been submitted for doctoral

or equivalent academic degree.

Mariliis Jaago

* *
* *
* *
* 5 *
European Union Investing
European Regional in your future

Development Fund

Copyright: Mariliis Jaago, 2023

ISSN 2585-6898 (publication)

ISBN 978-9916-80-069-0 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9916-80-070-6 (PDF)
Printed by Koopia Niini & Rauam

signature



TALLINNA TEHNIKAULIKOOL
DOKTORITOO
56/2023

Metagenoomi sekveneerimise ja jargmise
polvkonna faagidisplei kasutamine
inimese eksposoomi kirjeldamisel

MARILIIS JAAGO






Contents

[ o) i o0 o] [ToF: | o o -3 SRR 6
Author’s contribution to the publications ..........ccuueiiiiiiicii e 7
[a oo [N o1 [ o PRSP UPPOTPPRN 8
FAY o] o] £=A VI =Y d o o L3P 9
1. Relevance of the microbiome in the epidemiological triad and exposome approach 11
2. Impact of microbiome and virome on human health..........cccccoeeiiiieiiciiice e, 14
2.1 Role of microbiome and virome in human health ........ccccevieiiiiiniiiiiinnene 14
2.1.1 Examples of importance and adverse effects of vaccines........................ 18
2.2 Microbiome and virome as causative agents of health problems ................... 19
2.2.1 Pathogens and viruses contributing to molecular mimicry-associated
(o [T 11T PP UPOTPPO 22
3. EXPlOring the @XPOSOME...cci ittt e e e e e e et e e e e e e s e anaaeeeas 24
3.1 Innovative tools (MVA and Metagenomic sequencing) for data gathering..... 24
3.2 Advantages of exposome research and challenges with data analysis............ 29
4, AIMS OF the STUAY .eeeeeiieicceee e e e e e e s ra e e e s eaeeeeaes 33
5. Materials and Methods........c.coviiiiiiiiiiiieeieee e 34
6. RESUILS aNd diSCUSSION.....viiriieiiiiiiieesit ettt s be e e sae e e 35
6.1 High-throughput profiling uncovers both intra- and interindividual
heterogeneity in exposome Profiles .......cccccevciiiiiciiee e 35
6.2 Characteristics of gut and oral microbiome composition due to lifestyle
Lo 1 1T 4= ool PP TPR 40
6.2.1 Diet aNd EXEICISE...uiiiiiiieiiiiieeeeiee ettt e et e e s rbre e s sbee e e s sabaeeseanees 40
6.2.2 Adverse health habits ........c.ceeviiiiiriie e 41
6.3 Antibody profiles enable to identify epitopes that are differentially recognized
iN case versus CONrol CONOIES ......uiiviiiiiieie et 43
6.4 MVA and microbiome studies as valuable tools for exposome research ........ 47
7. CONCIUSION 1.ttt sttt sbe e st e st e s beesabe e sabeesabeesabeesabeesabeesareenas 51
2] FT =T o Tol T O T SRR PPRUPR 52
ACKNOWIBAZEMENTS.....eeiiiiiieeiieee et e e e e e er e e e e e e et e e e e e e e e esaraaaeeaaeeenanees 82
FAY o1 d Tt PP URTRPUPPROTPPRN 83
LURTKOKKUVOTE ....eeeiiiiiee ettt ettt ettt ettt s e e st e e s s bte e e sabaeessanaeeesnreeeas 84
PN o] 01T e | PP UUPPRN 85
PN T 01=T o Yo [ A RS 99
Py T o= T [ TSP 111
CUTTICUIUM VITAE e iviiiiiieiiee ettt sttt sttt st e sat e st e e sat e sabeesateesabeesaseas 126
01T o (T g =] Lo LU SRR 129



List of publications

The research publications underlying the doctoral thesis are the following:

I. Jaago, M., Timmusk, U. S., Timmusk, T., Palm, K. 2021. Drastic Effects on the Microbiome
of a Young Rower Engaged in High-Endurance Exercise After a Month Usage of a Dietary
Fiber Supplement. Frontiers in Nutrition, 8:654008. doi: 10.3389/fhut.2021.654008.

Il. Jaago, M., Pupina, N., Rdhni, A., Pihlak, A., Sadam, H., Vrana, N. E., Sinisalo, J., Pussinen,
P., Palm, K. 2022. Antibody response to oral biofilm is a biomarker for acute coronary
syndrome in periodontal disease. Communications Biology, 5 (1): 205, ARTN 205. doi:
10.1038/s42003-022-03122-4.

IIl. Sadam, H., Pihlak, A., Kivil, A., Pihelgas, S., Jaago, M., Adler, P., Vilo, J., Vapalahti, O.,
Neuman, T., Lindholm, D., Partinen, M., Vaheri, A., Palm, K. 2018. Prostaglandin D2
Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1:
Large-scale Study of Antibody Profiling. EBioMedicine, 29, 47-59. doi:
10.1016/j.ebiom.2018.01.043.



Author’s contribution to the publications

I. Author contributed to the experimental design, performed the data analysis and
interpretation of results, and contributed to the writing of the manuscript.

Il. Author contributed to the experimental design, contributed to the experiments,
performed the data analysis and interpretation of results, and contributed to the writing
of the manuscript.

Il. Author contributed to the data analysis, to the interpretation of results and to the
writing of the manuscript.

Other associated publications

Tamberg, L., Jaago, M., Saalik, K., Sirp, A., Tuvikene, J., Shubina, A., Kiir, C. S., Nurm, K.,
Sepp, M., Timmusk, T., Palgi, M. 2020. Daughterless, the Drosophila orthologue of TCF4,
is required for associative learning and maintenance of the synaptic proteome. Disease
Models & Mechanisms, 13 (7): dmm042747. doi: 10.1242/dmm.042747.

Sadam, H., Pihlak, A., Jaago, M., Pupina, N., Rdhni, A., Toots, M., Vaheri, A., Nieminen, J. K.,
Siuko, M., Tienari, P. J., Palm, K. 2021. Identification of two highly antigenic epitope
markers predicting multiple sclerosis in optic neuritis patients. EBioMedicine, 64, 103211.
doi: 10.1016/j.ebiom.2021.103211.

Pupina, N., Avarlaid, A., Sadam, H., Pihlak, A., Jaago, M., Tuvikene, J., Rdhni, A,
Planken, A., Planken, M., Kalso, E., Tienari, P.J., Nieminen, J.K., Seppanen, M.R.J.,
Vaheri, A., Lindholm, D., Sinisalo, J., Pussinen, P., Timmusk, T., Palm, K. 2022. Immune
response to a conserved enteroviral epitope of the major capsid VP1 protein is associated
with lower risk of cardiovascular disease. EBioMedicine, 76, 103835. doi:
10.1016/j.ebiom.2022.103835.

Rahni, A., Jaago, M., Sadam, H., Pupina, N., Pihlak, A., Tuvikene, J., Annuk, M., Mégi, A.,
Timmusk, T., Ghaemmaghami, A.M., Palm, K. 2022. Melanoma-specific antigen-
associated antitumor antibody reactivity as an immune-related biomarker for targeted
immunotherapies. Commun Med 2, 48 (2022). doi: 10.1038/s43856-022-00114-7.

Jaago, M., Rahni, A., Pupina, N., Pihlak, A., Sadam, H., Tuvikene, J., Avarlaid, A.,
Planken, A., Planken, M., Haring, L., Vasar, E., Bacevi¢, M., Lambert, F., Kalso, E.,
Pussinen, P., Tienari, P. J., Vaheri, A., Lindholm, D., Timmusk, T., Ghaemmaghami, A. M.,
Palm, K. 2022. Differential patterns of cross-reactive antibody response against
SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naive
individuals. Scientific Reports, 12 (1): 16817. doi: 10.1038/s41598-022-20849-6.



Introduction

The relationship between the human host, various biological agents and the
environment has been studied within the epidemiological triad approach to characterize
infectious disease development and spread. The exposome refers to the totality of all
biological and environmental exposures a person encounters throughout their life.
Lately, exposome research has highlighted the importance of analysing exposures as a
comprehensive whole to unravel normal human functioning and disease development,
as well as improve disease prevention and targeted health interventions. Here,
metagenomic sequencing and next generation phage display technologies were used to
characterize parts of the human exposome in various health and disease backgrounds.

The human microbiome and virome play a vital role in shaping human health and
well-being. The microbiome interacts with the body from early life through adulthood,
contributing to digestion, nutrient absorption, synthesis of essential molecules,
development and maintenance of the immune system, mental health, metabolism, and
the modulation of drug efficacy. Diet and exercise have a crucial role in shaping the
composition and diversity of the gut microbiome. In turn, the gut microbiome affects the
physical fitness of the body. On the other hand, the microbiome has been linked to the
development of various diseases. Smoking, for example, has been associated with
alterations in the oral microbiome and an increased risk of periodontitis, a chronic gum
inflammation. Periodontitis, in turn, has been linked to cardiovascular disease, potentially
through the release of inflammatory molecules and the systemic dissemination of oral
bacteria. Although there are still some challenges to exposome research which warrant
consideration, it enables to gain insight into these intricate connections and highlights
the potential impact of the microbiome on systemic health beyond the local
environment.

In these studies, we evaluated the effect of dietary fibre supplement intake on the
composition of an athlete's gut microbiome, providing valuable insights into the potential
benefits of dietary interventions for athletes’ microbiota. We discovered antigen epitopes
that are specifically targeted in patients with narcolepsy and cardiovascular disease
(CVD), shedding light on potential disease mechanisms. We characterized and compared
the data analysis challenges and approaches in various study designs, providing insights
into the strengths and limitations of each approach for exposome research. The results
of the studies contribute to the overall characterization of the human exposome and
provide useful technological and computational tools for further exposome research.
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AGE advanced glycation end product, product of nonenzymatic
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1 Relevance of the microbiome in the epidemiological triad
and exposome approach

Current and emerging research approaches in biology are more-and-more focusing on
studying a problem in a comprehensive manner, considering evidence from multiple
different aspects. This chapter will give a brief overview about what is the epidemiological
triad, why is it useful, and what are some of the directions this approach is taking.
Furthermore, this chapter will introduce the term “exposome” and give examples of the
importance of exposome research. Finally, the chapter exemplifies the relevance of
incorporating the human microbiome studies in various comprehensive research.

The epidemiological triad is a classic model that provides a useful framework for
understanding the complex interplay between the agent, host, and environment in the
development and spread of infectious diseases (Figure 1). This model has informed the
development of effective prevention and control strategies, and has been widely used in
public health research and practice (reviewed in Budden et al. 2017).

ENVIRONMENT

Pregnancy Host

Infancy

Childhood

Adolescence HosT

Adulthood HosT AGENT

Figure 1. The epidemiological triad across a lifespan. The epidemiological triad describes the
interplay between the potentially affected human host, the disease-causing agent, the changing
environment in which all components reside in. The microbiome can be thought of as an optional
vector in the middle, affecting the host and transmitting any indirect effects from agents. Spatial
lifecourse epidemiology emphasizes considering the history of the host’s interactions with the
environment and disease-causing agents, since early development to adulthood. Figure customized
from (Jia et al. 2020).

Changes in temperature, precipitation, and other environmental variables can affect
the distribution and abundance of vector-borne diseases, such as malaria and dengue
fever, as well as the survival and transmission of other infectious agents (Mora et al.
2022). For example in Europe, increased temperature and precipitation has been
associated with higher incidence of West Nile Virus infection (Marcantonio et al. 2015;
Moirano et al. 2018). During the COVID-19 pandemic, researchers discovered that
fine-particle air pollution increased the population death rate from COVID-19 (X. Wu et al.
2020; Conticini, Frediani, and Caro 2020). Fine-particular air pollution has been
determined as a risk factor for cardiopulmonary disease and lung cancer, which in turn
can exacerbate serious infections (reviewed in Pope et al. 2020; Domingo and Rovira
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2020). Advances in genomic sequencing technology have enabled researchers to identify
and characterize infectious agents, as well as to better understand their evolutionary
history and potential for transmission more accurately (reviewed in Loman and Pallen
2015). This has led to new insights into the epidemiology of infectious diseases, including
the emergence of new pathogens and the evolution of drug resistance.

Emerging technological tools offer promising opportunities within epidemiological
research. Spatial lifecourse epidemiology (SLE) has been proposed as a comprehensive
approach based on advanced spatial, location-aware, and artificial intelligence (Al)
technologies to investigate long-term effects of measurable biological, environmental,
behavioural, and psychosocial factors on individual risk for chronic diseases (Jia et al.
2020). In addition to conventional data sources, people’s location data could be gathered
using GPS in cell phones, history of medical test results and diseases from electronic
health records, and socioeconomic factors and self-reported health issues from online
surveys (Jia et al. 2020). Al-powered models could be built that measure the
environmental, personal biologic characteristics, and interpersonal interactions to
predict individual risk of chronic disease (Jia et al. 2020). Overall, these proposed
approaches and other recent discoveries related to the epidemiological triad are helping
to advance our understanding of the complex interactions between agents, hosts, and
the environment in the development and spread of diseases, and can inform the
development of targeted prevention and control strategies.

The totality of all environmental exposures throughout the human life is referred to
as the exposome (Wild 2005a). Through exposome research environmental factors have
been associated with disease, such as smoking as a risk factor for type 2 diabetes (T2D)
or alcohol for high blood pressure (Hall et al. 2014; McGinnis, Brownstein, and Patel
2016). Today, environmental exposures have been linked to CVDs, pulmonary diseases,
kidney disease, cancer, and neurological and mental disorders. The molecular
mechanisms by which the environment impacts gene expression are numerous, including
DNA methylation, histone modification, non-coding RNA function, extracellular vesicles,
epitranscriptome, and the mitochondrial genome (reviewed in H. Wu, Eckhardt, and
Baccarelli 2023). A certain type of chemical or biological agent can also affect the body
through various mechanisms. For example, exposure to fine particulate matter (<2.5um)
(PM2s), a component in air pollution, results in gene expression changes and DNA
hypomethylation in bronchial epithelial cells and the biological effect is greater when
exposure is repetitive (S. K. Huang et al. 2021). On the other hand, urban dust induces
the expression of inflammatory interleukin-6 and cyclooxygenase-ll through
downregulation of micro-RNA activity (Tsai et al. 2020). Ning and colleagues highlight the
need for investigating multiple biological aspects in response to environmental agents
such as PM2s (Ning et al. 2022). Even though people can be exposed to the same
environmental agents, individual variability in genetic background plays a role in the
resulting biological response. For example, people with a genetic variant rs3825807
respond to fish oil supplementation with a decrease in serum triglycerides, a beneficial
effect for the maintenance of healthy blood lipid levels, whereas people without the
variant do not (Francis et al. 2021). Understanding the mechanisms by which the
environment affects the human body allows to develop personalized health
recommendations and better public health policies. Eckhardt and colleagues demonstrated
that individual DNA methylation patterns could be used as a proxy for smoking-induced
lung cancer and revealed patients with a higher risk of smoking-related health problems
(Eckhardt et al. 2022).
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The human microbiome, which refers to the collection of microorganisms that live on
and within the human body, has emerged as an important factor in exposome research.
There are around 100-500 bacterial species living inside our body at a certain time and
the composition of the community is rather stable over time (Qin et al. 2010; Faith et al.
2013; Martinez, Muller, and Walter 2013). The main phyla of bacteria colonizing the
human body are Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, and the
archeae found in humans are usually methanogens (Eckburg et al. 2005; Gill et al. 2006).
Although there are only a few phyla associated with humans, the variation in the specific
species of bacteria across individuals is very high to the extent that a unique “microbiome
fingerprint” has been discussed (Vanhoutte et al. 2004; Eckburg et al. 2005; Rothschild et
al. 2018). Although the microbial composition is more similar among relatives (reviewed in
Dethlefsen et al. 2006), the largest effects on composition are environmental and dietary
(Rothschild et al. 2018).

There are multiple reasons why focusing on the microbiome in exposome research is
important for the betterment of population health. First is disease transmission —
microbes can be transmitted from person to person and the composition of an
individual’s microbiome can influence their susceptibility to infections. Studies have
shown this to be the case during sexual transmission and in the development of bacterial
vaginosis (Mehta et al. 2020). Person-to-person transmission also occurs from mother to
child during early development (Magsood et al. 2019). The microbiome has also been
linked to the development of numerous non-infectious diseases, including obesity,
diabetes, and inflammatory bowel disease. For example, a study by Qin and colleagues
found that the gut microbiome of individuals with T2D was significantly different from
that of healthy individuals by having a decrease in beneficial butyrate-producing species
and an increase in opportunistic pathogens such as Escherichia coli (E. coli) and
Clostridium species (Qin et al. 2012). The third reasoning behind studying the
microbiome through an epidemiological lens is biomarker discovery. Biomarkers
derived from the microbiome can provide insights into disease diagnosis, prognosis,
and treatment response. For example, a study by Zeller and colleagues found that a
microbiome-based biomarker panel was able to accurately distinguish patients with
colorectal cancer from healthy individuals (Zeller et al. 2014). Fourth, manipulating the
microbiome has been proposed as a potential therapeutic approach for certain diseases.
Clinical trials have demonstrated fecal microbiota transplantation (FMT) as an effective
treatment for recurrent Clostridium difficile infections (Baunwall et al. 2020). Furthermore,
FMT has been shown to improve the efficacy of immune checkpoint inhibitor therapy in
melanoma treatment, whereas FMT efficacy is also being assessed in colorectal cancer
treatment (reviewed in Kazmierczak-Siedlecka et al. 2020; Biazzo and Deidda 2022).

Overall, the microbiome is an important area of research in the scope of exposome
research, as it can provide insights into the transmission and development of both
infectious and non-infectious diseases, deliver diagnostic biomarkers as well as potential
therapeutic interventions.
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2 Impact of microbiome and virome on human health

The human microbiome is a complex system containing different bacterial species living
in the human body and the interplay between the human host and the microbiome
influences many aspects of human health. Similarly, the human virome develops
together with human development and affects the normal functioning of the body. This
chapter gives an overview of the initial development of the human microbiome and
virome as the human body develops from infancy. Next, this chapter discusses the
various ways the microbiome and virome have a necessary role in the healthy functioning
of the body. Additionally, a brief overview is given about the topic of vaccination as a
necessary public health tool, however developing narcolepsy is given as an example of
rare serious side effects of vaccination. Then the chapter gives an overview of how
microbiome dysbiosis develops and how the gut and oral microbiome can contribute to
adverse human health conditions, including chronic disease. Finally, the role of virome is
discussed in the context of promoting or aggravating chronic disease. To read more
about the role of the microbiome or virome in the scope of other diseases such as
autoimmune diseases or cancer, see reviews by (Mesri, Feitelson, and Munger 2014;
Ringelhan et al. 2015; Smatti et al. 2019).

2.1 Role of microbiome and virome in human health

The broad features of the bacterial microbiome develop during the first years of life
(Palmer et al. 2007). A large part of the bacterial microflora is passed on from the mother
to the infant (Magsood et al. 2019), and environmental factors play an important role in
the development of the microbiome (Palmer et al. 2007). When the infant starts to
consume solid food, their gut microbiome changes drastically and starts to resemble an
adult’s microbiome (Palmer et al. 2007; Magsood et al. 2019).

Human interaction with bacteria has an important role in the normal functioning of
the individual (Figure 2). The bacteria living inside us aid in food digestion and energy
metabolism, improve our resilience to pathogens and toxins, and help the maturation
of our developing immune system. The gut microbiome breaks down plant-based
polysaccharides into simpler compounds, e.g. short-chain fatty acids (SCFAs) such as
butyric acid, that our colon epithelium cells can use for energy (reviewed in Flint 2004).
The microbial fermentation process from polysaccharides to butyric acid can involve
multiple steps and bacterial species. For example, Bifidobacterium spp secretes lactate
which is then fermented by Eubacterium hallii into butyric acid which the host can use
(Duncan, Louis, and Flint 2004; Belenguer et al. 2006). Our gut bacteria are under the
constant monitoring by the immune system which allows the bacteria to operate in a
specific niche but immediately responds to bacterial invasion to other tissues (reviewed
in Tilman 2004). Non-pathogenic bacteria colonizing our gut or skin can also help protect
us from pathogenic bacteria. Firstly, non-pathogenic bacteria take up the physical space
of the pathogenic bacteria and compete for nutrients (reviewed in Tilman 2004).
The second mechanism has a more direct effect as some species of non-pathogenic
bacteria secrete compounds that inhibit the growth of pathogenic bacteria or are toxic
to them (reviewed in Fons, Gomez, and Karjalainen 2000; Tilman 2004). Thirdly, some
non-pathogenic bacteria can neutralize toxins secreted by pathogenic bacteria (reviewed
in Pool-Zobel, Veeriah, and Bohmer 2005). For example, B. fragilis has been shown to
affect our T-cell and cytokine response and has a defensive effect against colitis,
colorectal cancer and viral encephalitis (Mazmanian et al. 2005; Shen et al. 2012; Y. K. Lee
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et al. 2018; Ramakrishna et al. 2019). Our exposure to bacteria in childhood is important
for the maturation of the developing immune system. For example, segmented
filamentous bacteria are important in the development of Th17 cells, a subset of T helper
cells, and thus protect us from developing inflammatory diseases later in life (reviewed
in Schnupf, Gaboriau-Routhiau, and Cerf-Bensussan 2013).

MICROBIOME AND VIROME

HEALTH DYSBIOSIS

NORMAL

DEVELOPMENT
birth route l CAUSES
maternal contribution pathogen infection
breast milk diet, medicine
solid foods environment
genetics
CHARACTERISTICS
l T opportunistic bacteria
. e altered viral composition
Diet Antibiotics/ 1 commensals
% Antiviral drugs L diversity
-
x : |
Exercise '\‘ ‘/
7 "
Protection
- S
- .

Probiotics —» = 3 :
= 1 Vaccines inflammation

L disease exacerbation
i ’

Figure 2. Development and interplay of the human host and the microbiome and virome in health
and development of dysbiosis. The development of the composition and functioning of the
microbiome and virome start during development in the mother’s womb. The birth route (vaginal
versus caesarean section birth), contribution from the mother’s microbiome, whether the developing
child is given breast milk or milk formula or a combination of these, and what solid foods are
introduced to the developing child (and in which order and proportion) all affect the microbiome
and virome of the person in early years. Later in life, the microbiome and virome are influenced by
diet, exercise, and use of probiotics, antibiotics, antiviral drugs and vaccines. Vice versa, the
microbiome and virome influence physical performance and which foods are better ingestible.
The microbiome and virome help protect the person from harmful biological agents. Some of the
causes leading to a dysbiosis in the microbiome or virome are infection by certain pathogens, diet
and medicine, the environment, and genetics. Dysbiosis is characterized by an increase in
opportunistic bacteria, altered viral composition, decrease of commensal species and a decrease in
species diversity. Dysbiosis can lead to inflammation or exacerbation of disease.

Unfortunately, in the developed world, the Western diet is gaining popularity with its
high fat content, abundance of refined sugars and protein and a decreased proportion of
fruits and vegetables. The Western diet habits are associated with metabolic disorders
such as obesity, T2D, and liver disease (reviewed in Liping Zhao 2013; J. L. Sonnenburg
and Backhed 2016). The Western diet causes deterioration of the gut mucus layer with
decreased thickness and increased permeability, whereas certain beneficial bacteria or
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fibre intake rescues the harmful phenotype (Schroeder et al. 2018). High fructose diets
are associated with chronic inflammation by promoting the survival of non-beneficial
bacteria (Montrose et al. 2021). Dietary emulsifiers which are added to processed foods
have been shown to alter the gut microbiome composition and induce bowel inflammation
(Swidsinski et al. 2009; Chassaing, Van de Wiele, et al. 2017). Artificial sweeteners alter
the microbiome composition and exacerbate glucose intolerance as shown by experiments
done in mice (Suez et al. 2014). Low-fibre or high-fat diet also decreases microbiome
diversity (E. D. Sonnenburg et al. 2016; Denou et al. 2016). The food industry often treats
animals with small doses of antibiotics, which affect the microbiome composition and
may have negative effects on metabolic processes as shown in mice (Cho et al. 2012).

The gut microbiome modulates the metabolism of dietary components, and studies
have examined the correlation between measures of fitness and the gut microbiota.
Butyrate-producing bacteria, Bacteroides, and the Firmicutes/Bacteroidetes (F/B) ratio
have all been shown to correlate with aerobic fitness levels (VO2 max) (Estaki et al. 2016;
Allen et al. 2018). However, other studies have shown contrasting results as in elderly
people, higher exercise loads have correlated with a lower F/B ratio (Y. Yu et al. 2018).
Few studies have directly investigated the effect of the gut microbiome on athletic
performance by use of germ-free mice. These mice, colonized with specific bacterial
species, e.g. Eubacterium rectale and Bacteroides fragilis, have shown improvements in
exercise capacity compared to their germ-free counterparts (Hsu et al. 2015; W.-C. Huang
et al. 2019). The gut microbiome may modulate adipose tissue thermogenic pathways
and skeletal muscle anabolism and function, and a more diverse microbiome may be
more beneficial for performance (reviewed in Moreno-Navarrete and Fernandez-Real
2019; Hawley 2020).

Other studies have investigated the effect of probiotic supplementation on athletic
performance. Common probiotic bacteria used were strains of Lactobacillus or
Bifidobacterium. Most studies have investigated the effect of probiotic supplementation
on aerobic exercise performance measures (Lamprecht et al. 2012; Jager et al. 2016;
Y.-M. Chen et al. 2016; Scheiman et al. 2019; Soares et al. 2019), while some have
investigated strength and anaerobic outcomes (Jager et al. 2016; Y.-M. Chen et al. 2016;
Townsend et al. 2018). The effects on performance variables have been highly mixed
between studies, with some finding beneficial effects on performance parameters such
as time-to-fatigue (Y.-M. Chen et al. 2016; W.-C. Huang et al. 2018; 2019; Scheiman et al.
2019; Soares et al. 2019), while others finding no effects (Lamprecht et al. 2012;
Townsend et al. 2018). The use of antibiotics in mouse models has been studied to
determine the potential effects of a lack of gut microbes and their metabolites on
exercise capacity and muscle function. Recent studies have demonstrated that antibiotic
treatment decreased the exercise capacity of mice and reduced muscle glycogen, and
that this phenotype could be rescued by either natural reseeding or acetate infusion
(Nay et al. 2019; Okamoto et al. 2019). The relative abundance of Firmicutes was
increased in antibiotic-treated mice while Bacteroidetes, alpha diversity, and fecal
bacterial DNA concentration was reduced (Nay et al. 2019; Okamoto et al. 2019).
A low microbiota-available carbohydrate diet (LMC) versus a high microbiota-available
carbohydrate (HMC) diet was also tested by Okamoto and colleagues. The reduced
exercise capacity phenotype in LMC mice was rescued when mice were given a fecal
microbiota transplant from HMC mice and a dose of inulin before exercise (Okamoto et al.
2019). Prebiotics are non-digestible food ingredients, usually fibres, which support the
growth of gut microbiota such as Bifidobacterium and Lactobacillus spp. by acting as an
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additional nutrient source (reviewed in Zmora, Suez, and Elinav 2019). Although there
are a few studies and the results are individual, prebiotic supplementation can increase
SCFA production, an important energy source, which may suggest a beneficial effect to
physical performance. On the other hand, some synbiotics, which are a combination of
pre- and probiotics, have had beneficial effects for active people by improving gut
oxidative status and mucosal immunity (reviewed in Calero, Rincén, and Marqueta 2020).

In addition to the many bacterial species residing in the human body since infancy and
into the old age, many viruses also inhabit the body and affect the human health. It is
estimated that the human body holds a comparable amount of viral particles to its own
cells and bacterial cells (reviewed in Shkoporov and Hill 2019). Three components can be
distinguished in the healthy virome: 1) viruses that are not replicating in the body,
2) viruses that infect the microbiome of the body, and 3) viruses that infect human cells
and persist in the body (Koonin, Dolja, and Krupovic 2021). Phages comprise the largest
part of the human virome (~90%), either infecting and lysing bacterial hosts or
incorporating the viral genome into the bacterial genetic material and becoming
dormant. Major phages in the gut are Myoviridae and Podoviridae. Most common
eukaryotic viruses include Anelloaviridae (ssDNA virus), Adenoviridae and Herpesviridae
(dsDNA viruses), and Reoviridae and Picornaviridae (RNA viruses) which cause gut
infection. Around 8% of the human genome consists of retroviral insertions which can be
expressed and thus affect the host (reviewed in Tamayo-Trujillo et al. 2023).

Similarly to the bacterial composition, an individual’s virome is fairly stable across time
yet varies greatly when compared to other individuals (Reyes et al. 2010; Abeles et al.
2014; Shkoporov et al. 2019; reviewed in Aggarwala, Liang, and Bushman 2017;
Shkoporov and Hill 2019). There are many factors that influence the virome of an adult,
first of which are geography and ethnicity (Holtz et al. 2014; Zuo et al. 2020). Somewhat
associated with geography, diet also influences the gut bacterial community and thus the
gut phage community (Minot et al. 2011). Age is another factor as overall virome
diversity increases by adulthood and then decreases with age (Gregory et al. 2020).
Human genetics has an effect on the virome as certain genetic traits confer impaired
resistance to viral infection, such as mutations that render RNA polymerase Il defective
decrease interferon-associated antiviral immunity (Ramanathan et al. 2020) or genetic
T-cell CD28 deficiency which supports skin papillomavirus persistence (Béziat et al. 2021).
Other genetic variants are protective against viral infection, such as having
fucosyltransferase 2 (FUT2) deficiency protects against norovirus due to FUT2 gene
product being necessary for viral capsid binding (Lindesmith et al. 2003). The human
virome starts to develop early in life. Although the infant’s gut is (nearly) sterile from
viruses at birth, virus particles can be detected already at week 1 (Breitbart et al. 2008).
Most of these viruses are phages that influence the survival of their bacterial hosts,
thereby indirectly affecting the developing bacterial gut microbiome (Breitbart et al.
2008; Magsood et al. 2019). The early virome composition depends on the birth route as
infants born out of vaginal birth showed a higher virome diversity compared to their
caesarean-birth counterparts (McCann et al. 2018). In another study, the birth route was
shown to affect the phage-bacterial host interactions (Breitbart et al. 2008). Feeding
infants with breast milk (at least partially) compared to an all-formula diet affected the
infant gut virome and was connected with better health (Liang, Zhao, et al. 2020;
reviewed in Turin and Ochoa 2014). Interestingly, rota- picorna-, and polyomaviruses,
which cause viral gastroenteritis, can also be found in the viromes of healthy infants
(Lim et al. 2015; Oude Munnink and van der Hoek 2016; Liang, Zhao, et al. 2020).
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There are numerous benign viruses co-existing with the human host. Anelloviridae,
for example, is a family of viruses commonly found in the majority of people (reviewed
in Bendinelli et al. 2001) and that are drastically increased in patients with impaired
immune response (Norman et al. 2015; Young et al. 2015). Anelloviruses indicate
immunocompetence in transplant recipients and human immunodeficiency virus
patients (Cebria-Mendoza et al. 2021). Furthermore, colonization of the gut by viruses is
needed for the correct functioning of intestinal lymphocytes (Liu et al. 2019) or for
protection against gut inflammation through toll-like receptor activation (J.-Y. Yang et al.
2016). The “hygiene hypothesis” has been expanded to include the importance of viruses
and targeted introduction of beneficial lactobacilli at early childhood reduces the risk of
eczema and hay fever (Wickens et al. 2018). However, the composition of the virome can
become unstable in the event of disease, as for example human cytomegalovirus (HCMV)
can cause severe clinical symptoms and Epstein-Barr virus (EBV) can cause cancer in
immunocompromised patients (reviewed in Meyding-Lamadé and Strank 2012).

2.1.1 Examples of importance and adverse effects of vaccines

In addition to the normal interaction between the developing human virome and the
human body, the human health is also affected by certain medical interventions, such as
vaccines. Since the 1950s, immunization has been used as an important public health
tool and extensive vaccination plans have been put into place all around the world. This
has significantly improved child mortality rates and even lead to some potentially lethal
diseases like smallpox being eradicated (reviewed in Pollard and Bijker 2021). Due to
strict regulatory oversight and well-documented clinical trials, vaccines are a safe and
effective intervention to prevent diseases. There are some common mild side effects
(also well documented) which include injection site pain, fever, malaise, headache, and
mild viraemia. Serious side effects from vaccines are very rare, with anaphylaxis being
the most common if the recipient has an allergy to any of the vaccine components or to
traces of materials used during vaccine production.

During the COVID-19 pandemic of 2020-2023, fast development and distribution of
different SARS-CoV-2 vaccines helped protect populations against serious complications
and death from SARS-CoV-2 infection (Henry et al. 2021). On the other hand, vaccination
against SARS-CoV-2 was associated with certain rare but serious side effects such as
thrombosis, Guillain-Barré syndrome, acute transverse myelitis (neurological disease),
myocarditis and pericarditis, and glomerular disease (Mushtaq et al. 2022). At least 10%
of patients with SARS-CoV-2 infection developed long COVID which can be characterized
by a wide variety of symptoms and comorbidities including cardiovascular, thrombortic
and cerebrovascular disease, T2D, and chronic fatigue. One of the potential causes of
long COVID is immune dysregulation and possible reactivation of underlying pathogens
such as human herpesviruses (HHVs) (reviewed in Davis et al. 2023). We have also
demonstrated the variable potential immune response to antigens of SARS-CoV-2 among
the general population as well as potential antigenic mimicry with HHVs (Jaago, Rahni,
et al. 2022).

Due to their sparse numbers, very rare side effects are usually only recognized through
post-marketing surveillance. For example, after being administered the Pandemrix
(Pdmx) HIN1 influenza A vaccine, people with a genetic susceptibility (carrying the
HLA-DQB1*06:02) were more likely to develop narcolepsy (reviewed in Pollard and Bijker
2021). Pdmx is an ASO3-adjuvanted monovalent vaccine which was used broadly in many
European countries during the 2009-2010 H1N1 Influenza A outbreak, with Finland,
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Sweden, Norway and Ireland reaching the highest coverage rates. The majority of the
Pdmx-associated cases were of people developing narcolepsy type 1 (NT1) which is a
form of narcolepsy where orexin-producing neurons in the hypothalamus are depleted
due to an autoimmune attack (reviewed in Hallberg et al. 2019). The patients with NT1
usually suffer from increased daytime sleepiness, cataplexy (transient muscle weakness),
wake-time hallucinations, sleep paralysis and disturbed sleep. Other biomarkers helping
to diagnose narcolepsy are low levels of orexin in the cerebrospinal fluid and early onset
of rapid eye movement phase sleep soon after falling asleep (reviewed in Bassetti et al.
2019).

2.2 Microbiome and virome as causative agents of health problems

Dysbiosis refers to a state in which the composition of the microbiome deviates from the
normal and results in harm to the human host due to the rise of opportunistic pathogens.
Opportunistic pathogens are usually found in low levels, but in the right conditions can
cause serious disease. The members of Enterobacteriaceae family, which includes
Escherichia coli, are usually commensal but can establish a dominant infection and
contribute to gut inflammation and inflammatory bowel disease (IBD) (Ubeda et al. 2010;
Winter et al. 2010; Buffie et al. 2012). The second feature common to microbiome
dysbiosis is the loss of commensal constituents. Patients with ulcerative colitis or Chron’s
disease (both types of IBD) have decreased levels of Bacteroidetes and Lachnospiraceae
(Frank et al. 2007), bacteria which are beneficial to gut health (reviewed in Backhed
et al. 2005). Fortunately, in some cases re-introduction of these beneficial species has
been shown to reverse pathological processes and alleviate disease symptoms. The third
characteristic of dysbiosis is the decrease in microbiome alpha diversity, which
represents the mean diversity of species at a given site and is often represented in
Shannon’s or Simpson’s index value (reviewed in Mosca, Leclerc, and Hugot 2016;
Thukral 2017). There are several causes to microbiome dysbiosis. Firstly, infection by a
pathogen and subsequent inflammatory processes in the site can alter the micro-
environment or directly or indirectly affect the survival of existing species (discussed in
Hrncir 2022). Secondly, diet, medicine or environmental factors (e.g. pollution) can
trigger dysbiosis. In fact, the largest effect the human host can have over its gut bacteria
comes through diet (Zhang et al. 2010; 2012). The specific ways in which diet affects the
microbiome have been discussed above. Thirdly, an individual’s microbiome can be
affected by their genetics. For example, patients with a genetic disposition for lactose
intolerance had a higher abundance of Bifidobacterium in the gut microbiome (Bonder
et al. 2016). Upregulation of vitamin D receptor, whose ligands include vitamin D but also
microbial metabolites and fatty acids, has been linked to IBD and a decrease in
Parabacteroides abundance in the gut (J. Wang et al. 2016). Fourth, as discussed above,
maternal contribution early in life and the household environment affect the microbiome
greatly (Palmer et al. 2007; Koenig et al. 2011; Lax et al. 2014; Magsood et al. 2019).

An aberrant host-microbe interaction with gut bacteria has been implicated in the
pathophysiology of Chron’s disease and ulcerative colitis (Libertucci et al. 2018; W. Zhong
et al. 2019; Britton et al. 2019) and patients with these diseases have a less diverse gut
microbiome community (Ott et al. 2004; Manichanh et al. 2006; Harry Sokol et al. 2008;
H. Sokol et al. 2009). Insulin-resistance-induced high blood glucose levels are associated
with a decreased microbiota-epithelium distance which is a measure of the thickness of
the healthy gut mucus layer (Chassaing, Raja, et al. 2017). A high-fat diet has been shown
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to increase blood lipopolysaccharide (LPS) levels which in turn alters the gut microbial
community and promotes obesity and insulin-resistance (Cani et al. 2007; 2008). Gut
inflammation can boost E. coli, a bacterium with direct genotoxic effects, and thereby
increase the risk of developing colorectal cancer (Cuevas-Ramos et al. 2010; Arthur et al.
2012; Pleguezuelos-Manzano et al. 2020). Fusobacterium nucleatum (F. nucleatum) has
been isolated from colorectal cancer tissue (Castellarin et al. 2012). Helicobacter pylori
infection and the host’s response to it has been implicated in exacerbating symptoms in
Alzheimer’s disease (AD) patients (Kountouras et al. 2007; Roubaud-Baudron et al. 2012).

Although the gut microbiome is the largest and most studied portion of the whole
human microbiome, bacterial communities residing in the oral cavity are also important
for normal functioning of the body. However, the oral microbiome can also become
dysbiotic and illicit negative effects on health. The mouth is a complex ecosystem with
several distinct habitats for microbial colonization with over 750 prokaryotic taxa
being identified in the oral cavity, of which around 50% are officially named (Human
Oral Microbiome Database). The oral microbiome is maintained by both host- and
microbe-derived factors. The salivary components, including secretory immunoglobulin A,
lactoferrin, lactoperoxidase, lysozyme, statherin, and histatins, regulate the microbiome
and keep it in balance (reviewed in Philip D. Marsh et al. 2016). Proteins from saliva and
gingival crevicular fluid form the acquired pellicle, which regulates bacterial attachment
to dental and epithelial surfaces and protects against acid effects (reviewed in Siqueira,
Custodio, and McDonald 2012). Although the oral cavity is heavily colonized by bacteria,
the monitoring and constant regulation by the host’s immune system prevents most
acute infections (reviewed in Zaura et al. 2014).

The balance between different species in the oral microbiome is important for
maintaining oral health, and dysbiosis occurs when there is a disturbance in this balance
and is often caused by modifiable factors such as poor oral hygiene, smoking, and
changes in saliva flow and composition (Philip D. Marsh, Head, and Devine 2014; J. Wu
et al. 2016a). Disease does usually not result from the presence of traditionally
pathogenic bacteria but from a shift in the natural balance of the microbiota, allowing
normally harmless bacteria to grow to higher proportions (reviewed in Phil D. Marsh,
Head, and Devine 2015). The current understanding of dysbiosis development is that
certain low-abundance microbial pathogens can cause inflammatory disease by affecting
the host’s immune response and composition of the microbiota. The presence of biofilm
alone is not enough to enable progression into periodontitis — severe gum inflammation
— but instead interactions between immune response mediators and the biofilm are
required (reviewed in Meyle and Chapple 2015). Dysbiosis leads to the destruction of
periodontal tissue by aberrant host inflammatory response (reviewed in George
Hajishengallis 2014). The tissue breakdown provides resident bacteria with nutrients.
The oral bacteria have evolved to use inflammation-derived nutrients, which supports
further dysbiosis and tissue damage and results in a continuous pathogenic cycle (reviewed
in G. Hajishengallis 2014). Some of the most prominent periodontitis-associated bacteria
are Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans which thrive
in a dysbiotic oral environment (reviewed in George Hajishengallis 2014). Smoking is a
risk factor for many disease conditions, and it also promotes dysbiosis within the oral
bacterial community. For example, a study performed in the USA observed that smokers
had a significantly lower proportion of Proteobacteria and certain other taxa, whereas
Streptococcus abundance was enriched. Functional analysis suggested that the depleted
bacterial taxa were important actors in metabolising carbohydrates (J. Wu et al. 2016b).
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A study with African American people have shown, however, that the compositional
dysbiosis could be reversed by stopping the cigarette smoking habit (Y. Yang et al. 2019).

Dysbiosis in periodontal disease can trigger bacteraemia, leading to the systemic
dissemination of oral bacteria, which can cause a number of systemic diseases including
cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, stroke,
inflammatory bowel disease and colorectal cancer, respiratory tract infection, meningitis
or brain abscesses, lung, liver or splenic abscesses, appendicitis, pneumonia, and
diabetes (reviewed in Y. W. Han and Wang 2013; de Pablo et al. 2009; Chapple, Genco,
and Working group 2 of joint EFP/AAP workshop 2013; Dewhirst et al. 2010).
Interestingly, while physical activity has beneficial effects on health, professional athletes
have on average a higher incidence of certain oral inflammatory conditions, such as
dental caries, periodontitis, or dental erosion. The proposed causes for the oral
inflammation in athletes include nutritional differences (high amount of carbohydrates
and sports drinks), eating disorders, repeating mouth dryness during training, and
insufficient knowledge of best health behaviours. If left unchecked, local oral
inflammation could develop into systemic inflammation (reviewed in Needleman et al.
2015).

IBD is a chronic inflammatory condition of the gastrointestinal tract, where
dysregulated host-oral microbiota interactions play a crucial role in its pathogenesis
(reviewed in Ni et al. 2017). Although the acidic conditions of the stomach and the
existing intestinal microbiota usually prevent transmission to the lower gastrointestinal
tract, some oral bacteria can still colonize the upper intestine (Bolei Li et al. 2019;
reviewed in Lawley and Walker 2013). Several bacterial species have been associated
with gut inflammation or IBD, including Campylobacter concisus, F. nucleatum,
Veillonella spp., Prevotella spp., Streptococcus spp., and Klebsiella spp. (Man et al. 2010;
Strauss et al. 2011; Vieira-Silva et al. 2019; Atarashi et al. 2017; Pascal et al. 2017).
The development of IBD occurs over multiple progressive steps and can be exacerbated
by virulence factors produced by these bacteria, but also by the use of antibiotics
(reviewed in Read, Curtis, and Neves 2021). Inflammatory state of the gut microflora has
also been observed in patients with coronary artery disease (CAD) CAD compared to
healthy people (Jie et al. 2017). Furthermore, there is evidence that CAD patients also
have alterations in their oral microbiome composition (reviewed in Acharya et al. 2017).
The interaction between the host and the microbiome in the periodontium can trigger
or exacerbate processes leading to atherosclerosis via innate immune system activation,
bacteraemia, or directly by cytokines and inflammatory proteins (CARDIoGRAMplusC4D
Consortium et al. 2013; reviewed in Grundtman and Wick 2011).

In addition to the bacterial microbiome having a negative effect on our health, the
human virome can also promote or aggravate chronic conditions. Differences in virome
composition have been observed in paediatric and adult IBD (Fernandes et al. 2019;
Zuo et al. 2019; Liang, Conrad, et al. 2020), hypertension (M. Han et al. 2018), and
colorectal cancer (Nakatsu et al. 2018). Specific virome composition has been
characterized preceding type 1 diabetes (T1D) onset (G. Zhao et al. 2017; Wook Kim et
al. 2019) and children with repeated exposure to enteroviruses at age 1-2 years have an
increased risk for developing coeliac disease. HHVs are a group of double-stranded DNA
viruses that have coevolved with humans throughout history. There are nine known
HHVs routinely infecting humans: herpes simplex virus type 1 and 2 (HSV-1 and HSV-2),
varicella-zoster virus (VZV), EBV, HCMV, and human herpesvirus 6 and 7 (HHV-6 and
HHV-7) (reviewed in L. Zhong et al. 2023). HHVs are ubiquitous in human populations
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and their latent or lytic infection can cause a range of clinical manifestations, from
asymptomatic infections to severe and life-threatening diseases. During HHV entry,
specific glycoproteins are required for membrane fusion. Even though HHVs infect
different cell types, these enter the cell in a similar process. Most importantly, entry
complex (EC) which is based on glycoproteins H and L, induces conformational changes
in fusogen glycoprotein B (gB) which then prompts membrane fusion. Vaccines and
neutralizing antibodies against EC and gB are tested in clinical trials to prevent HHV
infection (reviewed in L. Zhong et al. 2023). The clinical manifestations of HHV infections
can vary depending on the virus involved and the immune status of the host (reviewed
in Griffiths and Reeves 2021).

HHVs have been linked to several chronic diseases, such as Alzheimer’s disease. In a
Taiwanese study, HSV infection increased the risk of developing dementia > 2 fold,
whereas in another study, HHV-6A (type A) and HHV-7 were found in post-mortem brain
tissue of patients with AD (Readhead et al. 2018; Tzeng et al. 2018). The trigger of
neurodegenerative disease onset has been proposed to be the activation of latent HHV
infection. Studies have shown that some types of HHVs, such as HSV-1 and HHV-6, can
infect and replicate in brain cells, leading to chronic inflammation and neuronal damage.
Furthermore, the reactivation of latent HHVs in the CNS can trigger an immune response
and the release of pro-inflammatory cytokines, which are linked to neurodegeneration
and cognitive decline (reviewed in Harris and Harris 2015). There is growing evidence
that HHVs are associated with CVD. In particular, several studies have implicated HSV-1
and HCMV in the development of atherosclerosis and CVD (Zhu et al. 2000; G. C. Wang
et al. 2010). HSV-1 and HCMV cause chronic low-grade inflammation and immune
activation, which can contribute to the development and progression of atherosclerosis
(Al-Ghamdi 2012; Y. peng Wu et al. 2016). Epidemiological studies have suggested that
individuals with a history of HSV-1 infection as evident by serum antibodies have an
increased risk of developing CVD (Sorlie et al. 1994; Zhu et al. 2000). For long, HSV-1,
HCMV, and EBV have been shown to be present in atherosclerotic plaques and herpesviral
DNA is found in human carotid and coronary artery specimens (Shi and Tokunaga 2002).

2.2.1 Pathogens and viruses contributing to molecular mimicry-associated
disease

There have been multiple potential mechanisms in discussion about the HHV contribution
to autoimmune disease, which include molecular mimicry, bystander activation, and
epitope spreading. Molecular mimicry occurs when infectious pathogens express
antigenic epitopes that structurally resemble epitopes of self-antigens, leading to the
direct triggering of auto-reactive T-cells. For example, epitopes of EBV have been shown
to resemble self-proteins and facilitate antibody binding (Lang et al. 2002). Delayed
molecular mimicry, proposed by ‘t Hart and colleagues, is a variation of this model in
which latent chronic infections create a repertoire of virus-specific memory T-cells, which
can be reactivated when they encounter molecular mimicry motifs present in self-antigens
('t Hart, Hintzen, and Laman 2009). Bystander activation involves the accidental
activation of autoreactive T-cells by cytokines produced by virus-specificimmune cells or
host cell destruction by viral infection leading to the release of cryptic epitopes, including
self-antigens (Halenius and Hengel 2014). A multistep process has also been proposed
where 1) epitopes on viruses interact with autoantibodies in susceptible individuals, and
then 2) an unrelated immune system activation leads to autoimmunity (McCoy, Tsunoda,
and Fujinami 2006). Epitope spreading occurs when antigens released from the primary
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lesions in the target tissue prime a range of potentially autoreactive T-cells, leading to
chronic autoimmunity. Fujinami et al suggested the “fertile field” hypothesis, which is
also in line with ‘t Hart’s and McCoy’s view. The fertile field hypothesis proposes that
exposure to a potential immunogen is usually harmless, but in specific circumstances,
such as during a viral infection, the immune environment changes lead to a dysregulated
immune response. Therefore, a viral infection can create a fertile field where immune
responses to antigens can develop, as was explored by our group in the context of
COVID-19 disease (Jaago, Rahni, et al. 2022). Additionally, primed autoreactive T-cells by
viral infections also create a fertile field because later events might trigger the expansion
and activation of these cells, leading to autoimmune disease (Fujinami et al. 2006).
In summary, HHVs are a diverse group of viruses that can cause a wide range of
clinical manifestations and are associated with various acute and chronic diseases.
The interactions between HHVs and the human host are complex (Figure 3) and involve
both viral and host factors, making the development of effective prevention and
treatment strategies challenging.

Interference of HHVs with
Host response . o
host immune surveillance

) Y7
0’? . 3{:) =

Wy ¢ = D)
32 g
€———— AFFECTs ————> 3 “":' UJ‘}&‘S oM22
‘3 YT s
2 e
: G 1y 8
« barriers: mucus membranes and skin
-« recognize PAMPs - inhibit immune effector cells
- antiviral chemicals and peptides « inhibit pro-inflammatory cytokines

- promote anti-inflammatory cytokines

« interferon response - inhibits presenting viral peptides on HLA class |
- phagocytosis - encode for regulatory miRNAs and peptides

- specific antibodies - modulate autophagy/apoptosis

Effects of HHVs

. symptomatic disease and latent infection

« molecular mimicry elicits immune responses as
side-effect

« triggering disease onset

. cancer

« importance for immune system development

« complement system

NISL1INS3Y

Figure 3. Interaction between HHVs and human immune system response and the (long-term)
effects of HHVs. The host has multiple protective strategies to protect itself from HHV infection:
physical barriers such as mucus membranes and skin, recognition of pathogen-associated molecular
patterns (PAMPs), deployment of antiviral chemicals and peptides, activation of the complement
system and the interferon response, presence and functioning of phagocytic cells, and the
development of specific antibodies. HHVs interfere with the host’s immune system by inhibiting
immune effector cells, pro-inflammatory cytokines, presentation of viral peptides on HLA class |
molecules, promote anti-inflammatory cytokines, encode for regulatory micro-RNAs (miRNAs) and
peptides and modulate autophagy and apoptoic processes in host cells. Both the host’s response and
HHV immune evasion strategies affect one another. Some long term effects that can arise from
successful infection by HHVs include sympomatic disease and latent infection, molecular mimicry
eliciting immune response as a side-effect, triggering disease onset, and cancer. However, infection
by HHVs has a formative impact on the development of the immune system. Bullet points inspired by
review articles (Jasinski-Bergner, Mandelboim, and Seliger 2020; Ike et al. 2020; Verzosa et al. 2021).
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3 Exploring the exposome

Exposome research is a comprehensive approach to studying a process in greater detail
and from multiple aspects. Therefore, exposome studies could benefit from
high-throughput and high-resolution methods that are robust and easy to use. This chapter
will give an overview of some of the suitable tools such as metagenomics and Mimotope
Variation Analysis (MVA). Furthermore, this chapter will introduce some innovative
approaches that can be undertaken such as integrative omics and machine learning (ML)
applications. Finally, the chapter will discuss the advantages of exposome research as
well as some current challenges that warrant solving with a focus on data analysis.

3.1 Innovative tools (MVA and metagenomic sequencing) for data
gathering

Studying the human microbiome has come a long way since its start. Initially, researchers
could only study those species that were cultivable, for example when studying the
microbiota of dental plaque (Gibbons et al. 1964). Late 1990s saw the first use of
microarray technology to detect pathogens in microbiome samples (reviewed in Miller
and Tang 2009). A polymerase chain reaction (PCR) step before the microarray increased
the sensitivity of the assay (reviewed in Miller and Tang 2009). In 2004, a panel for
detecting 40 of the most common human intestinal bacteria was introduced which used
the 16S rRNA gene as a differentiating target (R.-F. Wang et al. 2004). The 16S rRNA genes
encode for the RNA portion of the small subunit of the prokaryotic ribosome and the
conserved nature of the genes allow to determine phylogenetic relationships between
found bacteria (Woese and Fox 1977). Different technologies have emerged that allow
fast detection and describing of pathogens (both bacterial and viral) based on nucleic
acid sequences, including TagMan PCR and Luminex xTAG bead-based systems (Navidad
et al. 2013; Chapela, Garrido-Maestu, and Cabado 2015; Jiang et al. 2017). The Axiom
Microbiome Array can detect 12’000 species of human- and animal-related bacteria,
viruses, archaea, fungi and protozoa from a wide array of sampling materials, enabling
its use both in a clinical and veterinary setting (Thissen et al. 2019). The Human
Microbiome Project (HMP) was launched in 2008 that uses next generation sequencing
(NGS) methods and today includes data on 32’000 samples which takes up almost
50 terabytes of storage (HMP homepage).

For microbiome studies, two main approaches are used: sequencing based on
amplicon genes (e.g. 16S rRNA) or shotgun metagenomics. Gene amplicon sequencing is
a widely used technology for determining microbiome composition. 16S rRNA is often
used as the sequencing target due to its conserved nature and short length (~1500 bp)
and it performs well for determining bacterial species (reviewed in Janda and Abbott
2007; Woo et al. 2008). Fungal diversity has been often assessed using internal
transcribed spacers as amplicons, although certain other targets have proven more
reliable (De Filippis et al. 2017). Metagenomics, on the other hand, allows for full genome
sequencing and does not rely on the presence of certain target genes. This allows to
sequence all microbes, including the unknowns. Because viruses have such diverse
genomes, metagenomics approach enables to sequence the human virome (Kristensen
et al. 2010; reviewed in Quince et al. 2017). Furthermore, metagenomics provides
substantially more information than gene amplicon sequencing. On the other hand,
shotgun metagenomics is still more expensive and it is hindered by the lack of available
reference genomes and annotations in public databases (reviewed in Quince et al. 2017).
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All the major NGS platforms are employed in microbiome studies: 454 pyrosequencing,
lllumina platforms iSeq, MiniSeq, MiSeq, HiSeq, NextSeq, lon Torrent; as well as
third-generation sequencing approaches SOLID and Nanopore (Margulies et al. 2005;
“Illumina | Next-Generation Sequencing (NGS)” 2023; “lon Torrent | Thermo Fisher”
2023; Clarke et al. 2009; one of first applications of SOLID in Valouev et al. 2008). As the
cost of sequencing has decreased, more and more sequencing data can be generated
and analyzed. This has led to the rise in importance of data analysis pipelines and tools.
Some of the most popular pipelines are EBI, MGRAST, QIIME/QIIME 2, and MOTHUR, all
with slightly differing implementations, from which the researcher needs to select an
appropriate tool based on their expertise (reviewed in Malla et al. 2019). Today, targeted
genetic sequencing has helped identify antibiotic resistance in Bacillus anthracis, Yersinia
pestis, and Francisella tularensis, all highly pathogenic bacteria (Stefan, Koehler, and
Minogue 2016). Clinical metagenomics has been used in diagnosing infections in a
routine clinical setting, decreasing test turnaround, as well as assaying the close to
real-time transmission patterns of SARS-CoV-2 and tracking it in waste water (Geoghegan
et al. 2020; Larsen and Wigginton 2020; Tao et al. 2022).

As environmental exposures affect the human immune system response,
comprehensive profiling and mapping of exposome-immunome characteristics can
benefit (chronic) immune-related disease research (Ronsmans et al. 2022). Omics
technologies have brought innovative tools to immunology and immune system profiling,
supporting large-scale research projects on genome-exposome interactions: the ImmVar
study, the Human Immunology Project Consortium, the Milieu Intérieur study and the
Human Functional Genomics Project (Brusic et al. 2014; De Jager et al. 2015; Thomas
et al. 2015; Ter Horst et al. 2016; Y. Li et al. 2016). Clinical studies of the mechanisms of
immune system-related diseases commonly utilize bulk DNA sequencing (DNA-seq), RNA
sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), and assay for
transposase-accessible chromatin using sequencing (ATAC-seq) technologies (Regev
et al. 2017; Momozawa et al. 2018; Schultze and Rosenstiel 2018; Plichta et al. 2019).
B- and T-cells are effector cells of the adaptive immune system. B- and T-cell receptor
(BCR and TCR, respectively) sequencing focuses on the highly variable binding sites of the
receptors and thus allows to characterize the host’s response to pathogens (Schultheil3
et al. 2020). Computational tools for TCR and BCR repertoire profiling have improved to
an extent that information about TCRs and BCRs can be extracted from regular
transcriptomics datasets. For example, tools such as MiXCR (Bolotin et al. 2017), TRUST
(Bo Li et al. 2016), and V’'DJer (Mose et al. 2016) can been used on RNA-seq data
generated from a bulk tumour tissue. Furthermore, TraCeR (Stubbington et al. 2016),
TRAPeS (Afik et al. 2017), BASIC (Canzar et al. 2017), BraCeR (Lindeman et al. 2018), and
VDJPuzzle (Eltahla et al. 2016; 2016) are only some of the tools developed for extracting
TCR or BCR profiles from single cell RNA-seq data.

MVA is a high-throughput phage-display method which allows to profile the
immunoglobulin G (IgG) antibody immune response to random 12-mer peptides
(Sadam et al. 2018) (Figure 4). First, patient sera containing IgG antibodies is incubated
with the library of phages displaying 12-mer peptides, allowing for antibodies to bind
specifically to peptides as antigens. As the IgG antibodies are bound to magnetic beads,
the successful antibody-peptide complexes can be retained in the well as unbound
antibodies and phage particles are washed away. Next, the phages are lysed and the DNA
encoding for the displayed peptide is amplified with PCR. During PCR, custom barcode
sequences are added to each sample, which allow pooling the samples together and
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analyzing them in multiplex fashion. The displayed peptide encoding sequences are then
sequenced using lllumina platform and de-multiplexed using barcodes, yielding around
3 million ~50 basepair reads per sample. DNA reads are then translated in silico into
12-mer peptide sequences and information about their relative abundance is calculated.
Peptides together with their 1) sequence and 2) detected abundance values (reads)
comprise the individual’s immunoprofile. These peptides have mimicked the true
epitopes of the antibodies in sample and are thus termed “mimotopes”. Immunoprofiles
of subjects can then be analyzed for individual-, infection-, or disease-specific features
or used in longitudinal monitoring of the patient’s health (Sadam et al. 2018; 2021; Jaago,
Pupina, et al. 2022; Pupina et al. 2022; Rahni et al. 2022; Jaago, Rahni, et al. 2022).
The advantages of MVA for the application of exposome research are discussed in more
detail in the Results chapter.
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Figure 4. Overview of Mimotope Variation Analysis (MVA) process. Serum or plasma samples are
collected from patients. The IgG antibodies in the samples are incubated with phage library-
displayed 12-mer peptides and magnetic beads to allow for triplex (IgG antibody + phage displaying
12mer peptides + magnetic bead) formation. These triplexes are barcoded per sample and purified
and phage genomic insertions encoding for displayed peptides are sequenced using NGS. Then data
is processed and analyzed to obtain individual immunoprofiles, which then can be mined for group-
differential characteristics of antibody immune response. Epitopes of interest are annotated using
online databases and scientific literature.

In addition to new technologies for data acquisition, innovative approaches are being
developed for the integration and processing of existing data, such as integrative omics
and ML techniques. Integrative omics as a scientific approach is gaining adoption and
application rapidly. Integrative omics refers to the analysis of multiple omics data, such
as genomic, transcriptomic, proteomic, metagenomic etc, in parallel, to gain a more
systematic insight about the studied samples. Different omics data have been combined
to generate a multi-faceted view of the most important pathogenic bacteria associated
with sepsis as they transition into the bloodstream, providing insights for personalized
treatment and future drug discovery (Mu et al. 2023). Others have developed “ageing
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clocks” to measure the patient’s cellular, tissue, or whole organism biological age as a
first step to combating age-related diseases at the root level (reviewed in Rutledge, Oh,
and Wyss-Coray 2022). Novel emerging technologies are aiming to integrate information
from genomics, proteomics, and transcriptomics to translate molecular immunology into
clinics. Below is a subjective selection of a subset of attractive trending technologies.
Single-cell multiomics: scRNA-seq combined with cell-surface protein expression data in
a droplet microfluidics setup, cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) and RNA expression and protein sequencing assay (REAP-seq)
(Stoeckius et al. 2017; Peterson et al. 2017; “Single-Cell Multiomics Guide”) methods
allow to characterize cell types in greater molecular detail, generating large datasets with
aims to reveal new insights into health and disease. A combination of barcode enabled
antigen mapping (BEAM) with single-cell sequencing was used to profile the state of
the cellular immune system after recovery from COVID-19, identifying important
host-antigen interactions (Finnegan et al. 2022). Spatial transcriptomics adds 2D
positional data to the RNA-seq dataset of a given tissue, by adding barcoded reverse
transcription primers directly on a tissue slice and performing the copy or complementary
DNA (cDNA) synthesis on the tissue surface, and then performing RNA-seq (Stahl et al.
2016). Spatial transcriptomics approach has been used, for example, in studying
location-associated characteristics of cardiomyocytes in the human heart during
neonatal development (Sylvén et al. 2023). In neurobiology, spatial transcriptomics has
been used for characterizing the development of the human hippocampus during
development or for delineating disease progression, such as identifying T-cells intruding
into the central nervous system (CNS) in multiple sclerosis (MS) (S. Zhong et al. 2020;
Kaufmann et al. 2021). Single-molecule protein sequencing: Reed and colleagues have
demonstrated dye-assisted sequencing of a single protein molecule with the ability to
also distinguish single amino acid substitutions and posttranslational modifications
(Reed et al. 2022).

Although there are some technical and data analytics challenges to be solved,
the future of integrative omics is bright. As biosensors become compact and comfortable
wearables, the continuous information they collect give valuable data on a person.
An electrochemical regenerating wearable biosensor could detect different amino acids
in trace amounts from a person’s sweat in real time, enabling to potentially identify
impaired metabolic function early on (M. Wang et al. 2022). Intelligent contact lenses
are produced that allow performing an electroretinogram to diagnose ocular diseases or
measuring inner eye pressure during glaucoma management in real time (T. Y. Kim et al.
2021; K. Kim et al. 2021). Another smart contact lens enables to assess glucose levels in
the tear liquid and respond to aberrant levels with releasing drugs from a wearable
reservoir to manage diabetic retinopathy (Keum et al. 2020). Biosensors can be either
attached to items humans carry (watches, phones, clothes, woven into textile), wearable
on the skin, wearable as skin patches, or implantable, and these measure physical (skin
conductivity, electromagnetic field, proximity to cellular towers, gyroscope), biochemical
(ions, small metabolites), or biological (microbe, virus particle abundance) factors
(reviewed in Smith, Li, and Tse 2023). Some of the potential advancements for future
biosensors include independent power generation, larger array of biomarkers measured,
more microfluidics systems, and more transparent data collection and preservation
policies (reviewed in Smith, Li, and Tse 2023).

As the multi-omics datasets grow and are combined with external environment
measurements, socioeconomic and spatial data, the necessity ML algorithms in data
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analysis pipelines increases. To integrate variable data types (e.g. genomic data with
transcriptomic), there are ML and Al tools available which operate on the basis of
similarity or correlation, or utilize network analysis, Bayesian, multivariate or fusion
approach (reviewed in Subramanian et al. 2020). Different tools can be used for different
use cases including the identification of subgroups in the data (disease subtyping),
selecting for group-wide disease biomarkers or extracting details about the disease
mechanism (reviewed in Subramanian et al. 2020). High dimensionality of exposome
data can also be combated using the Gatekeepers approach, which first robustly selects
for Gatekeeper metabolite biomarkers — those associated with both external factors as
well as other metabolites — and follows with a refined search for other biomarkers
(M. Yu et al. 2021). The following is a selection of some of the real-life use cases of ML in
exposome research and application. An artificial neural network (ANN)-based approach
predicts the metabolic profile and classifies IBS patients based on their gut microbiome
composition, whereas another tool analyzes the microbiome composition in a time series
to predict patient’s diet, drug use or food allergies (Le et al. 2020; X. Chen et al. 2021).
SkinBug integrates metabolic reaction data to predict the metabolising of molecules
exposed to the skin (e.g. cosmetics, pollution, medicine) by the skin microbiome (Jaiswal
etal. 2021). As a result of studying the exposure of breast cancer treatment, an ML model
can predict individual therapy response based on the tumour’s whole exome and
transcriptomics markers in combination with pathological staining images (Sammut et al.
2022). A supervised ML tool helps to screen scientific literature and extract exposure
biomarkers into a curated database named Exposome-Explorer, decreasing the need for
manual resources and increasing the speed of knowledge sharing across researchers
(Lamurias et al. 2021). In drug development, ML based tools have been used to predict
the interaction and affinity of potential drug molecules to their targets, thus decreasing
the cost of drug development due to shorter preclinical study phase. Zeng and colleagues
were able to identify novel targets to existing therapeutics (Zeng et al. 2020).
By repurposing drugs with known safety characteristics and developed supply chains
they could also decrease the overall cost of drug development (Zeng et al. 2020).

As datasets grow, data storage and computing power must be readily available to
perform analyses in real time. Cloud computing and cloud storage services offer needed
performance and flexibility. Although cloud computing has advanced significantly over
the years, there are still challenges of using cloud computing for computational biology.
As discussed by Luber and colleagues, the existing off-the-shelf tools built for cloud
computing can be inaccessible, cumbersome, and costly. Second, batch job-oriented
cloud computing systems like Amazon Web Services Batch, Google preemptible Virtual
Machines, Apache Spark, and MapReduce implementations can be closed source,
restrictively licensed, or locked into their own ecosystems (Luber et al. 2018). Therefore,
Luber and colleagues propose a tool called Aether (Luber et al. 2018). Aether is a tool
that leverages linear programming to minimize cloud computing costs while being
constrained by user needs and cloud capacity. Aether is better than current solutions as
it allows for efficient and cost-effective analysis of large metagenomic data sets by
bidding on underutilized computing nodes in the cloud, resulting in significant cost and
time savings (Luber et al. 2018). However, when dealing with sensitive medical data,
stringent protection measures need to be considered beforehand, as suggested by a
checklist for assessing quality of cloud computing services (Kobayashi et al. 2022). Aware
of the cybersecurity risks, Japan is building a national cloud computing infrastructure for
genome analyses (reviewed in Ogasawara 2022).
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Taken together, the landscape of possible technologies and approaches for exposome
data acquisition is great and the use of ML tools in analyzing the multi-omics data has
elevated the field of study and moved it further along on the way of clinical application.

3.2 Advantages of exposome research and challenges with data
analysis

The exposome approach presents a novel way to investigate the underlying causes of
health disparities and the biological mechanisms that link environmental exposures and
human health. Various definitions of exposome exist, but the latest definitions classify
exposome into three categories, namely internal exposome (such as metabolism, gut
microbiome, and inflammation), specific external exposome (including environmental
pollutants, occupation, education, and diet), and general external exposome (such as
socioeconomic status and climate) (Figure 5) (Wild 2005b; 2012). There are numerous
advantages to studying the exposome as a whole and not only focusing on the individual
parts. Firstly, monitoring the exposome in a longitudinal way can identify important time
windows where environmental challenges affect the health the most. For example, fine
air particle exposure during the prenatal period has been associated with susceptibility
to asthma and allergic outcomes (A. Lee et al. 2018). The large-scale EXPOSOMICS project
aims to better understand the exposome by integrating data from different cohorts
representing different life stages, such as prenatal, childhood, adolescence, and
adulthood (reviewed in Agache et al. 2019).
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EXPOSOME
RESEARCH

Figure 5. Overview of what data exposome research focuses on, the various tools used in
exposome research, and the important actors involved in, regulating, or benefitting from
exposome research. Exposome research collects and analyses data concerning the general external
exposome (e.g. overall urban-rural environment and climate, socio-economic status, and
psychological/cultural overview), the specific external exposome (e.g. chemical agents and
pollution, infections, lifestyle decisions, noise, and radiation), and the internal exposome (e.g.
metabolic factors, gut microflora, oxidative stress, inflammation, and aging). Some of the ways
data can be collected is taking biological samples (e.g. blood panels, microbiome samples) and
performing (integrative) omics analyses, using wearables to gather continuous readings about
environmental chemicals, spatial/locational data, heart rate and activity measures. Wearables
allow for easier longitudinal datasets to be collected. In addition, general data can be gathered via
online surveys, or by accessing medical records and occupational history. Results and insights from
exposome research can be beneficial for authorities such as governments and health care systems
in improving the overall health of the population. Exposome research can benefit from multi-
disciplinary and multi-sector co-operation by researches, clinicians and the industry. Data can be
collected both from patients as well as the healthy population. The data section is according to
(Ferrante et al. 2022).

Exposome research would promote using patient-centric molecular, environmental,
and clinical data for precision medicine. The main challenges include integrating and
analysing heterogeneous data sets (Figure 5), making personalized decisions using targeted
but potentially noisier subsets of data, and ensuring data quality and reproducibility.
The Biomedical Data Translator (BDT) program, sponsored by the National Institutes of
Health, aims to address these challenges by developing a data integration and translation
tool that can query knowledge sources describing human biology. Today, the BDT program
or “Translator” includes 250 distinct knowledge sources, including environmental exposure
data, socioeconomic data, electronic health record data, and open data sources on
molecular biology, biological pathways, systems biology, and chemical structures and
drug targets. Some use cases highlighted for “Translator” include 1) exploring the
relationship between diseases and medication in a genetic or environmental background,
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2) explaining the association between occurrences of different diseases, and 3) repurposing
existing drugs for other diseases (Fecho et al. 2022; Unni et al. 2022). The BDT team has
also developed a “Biolink Model” for presenting related information to the user, which
has been used for aggregating and visualizing COVID-19 associated data in light of drug
discovery, biomarker identification and other use cases (Reese et al. 2021; Unni et al.
2022). The Human Early Life Exposome (HELIX) project aims to characterize the impact
of early life exposures to later stages of life by investigating more than 1300 pairs of
mother and child (Maitre et al. 2022). Having measured >100 exposures, ranging from
chemical to lifestyle-associated to social factors, the HELIX project has identified >1100
connections with a significant biological response. Exposures during pregnancy mostly
lead to DNA methylation changes whereas distinct diet-, toxin-, or climate-related factors
encountered during childhood resulted in a broad range of measurable changes. With
access to dietary questionnaire data, animal product intake was identified as the
probable route for toxic metal and other chemical element intake, and fruit and
vegetable intake as a source of pesticide intake (Maitre et al. 2022). Exposome research
in the field of age-related illnesses has identified specific pollution agents, physical,
lifestyle, medication, as well as gut microbiota, inflammation, and socioeconomic factors
that promote adverse health problems (reviwed in Ding et al. 2022). These studies
exemplify how combining multiple data sources to generate a more comprehensive view
of the impact of exposures can aid in disease research, drug discovery, and better public
health policies.

There are many challenges today that need to be addressed to fully harness the power
of exposome research.

e One of the major concerns is how to integrate data across multiple
methodological approaches (conventional survey instruments or advanced
sensors, geographic information systems, and biomonitoring and biomarker
data), as different tools provide data in different formats, thus increasing the
difficulty of comparison and integration (reviewed in Siroux, Agier, and Slama
2016; Turner et al. 2017).

e Wearable devices, such as sensors and monitors, are necessary to achieve this
but there are compliance problems, where participants forget or refuse to wear
the monitors, which in turn can lead to incomplete data or biased results.
Behavioural changes are a concern, as people may change their behaviour in
response to being monitored, which can affect the accuracy of the data
collected (DeBord et al. 2016; Agache et al. 2019). Another challenge is the
potential issue of radiofrequency radiation from wearable devices (Lagorio et al.
2021).

e Levels of environmental contaminants can vary throughout a person’s life, and
individual lifestyle changes can increase or decrease exposures (DeBord et al.
2016). Furthermore, certain periods of organ development have been identified
as more susceptible to environmental exposures with regard to asthma and
allergic outcomes (Agache et al. 2019). Therefore, it is crucial to measure the
individual exposure across a long timeframe, which is cumbersome and results
in large amounts of data.

e Massive data obtained from high-throughput platforms are sensitive to
experimental conditions and can be affected by measurement errors (DeBord
et al. 2016). Optimal sample size should be considered for the analysis to see
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any significant common trends among a heterogenous sample pool (Schultze
and Rosenstiel 2018). It is crucial to properly measure, document and quality
control procedures to enable replication and meta-analyses of the results
(reviewed in Siroux, Agier, and Slama 2016; Tran et al. 2020; Le Goallec et al.
2020).

As technological readiness improves and the challenges mentioned above are solved,
exposome research will allow to profile the vast space of host-agent-environment
interactions in a comprehensive manner that reflects the nature of the interactions in a
more accurate way.
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4 Aims of the study

Human health is affected by the environment through life, with the microbiome acting
as both a target and a mediator of the environmental exposure. The diet and exercise
routines of athletes are closely monitored and curated to increase athletic performance.
However, less is known about how each individual responds to certain dietary regimes
and how they impact the gut microbiome of the individual. Here we employed a gut
microbiome profiling approach to gain more insight into the personalized response of a
young athlete to dietary change. Host immunity, whether generated by natural infection
or vaccination, is another variable that shapes the current environment for pathogens.
In rare cases, HIN1 Influenza and the associated Pdmx® vaccination in 2009 were specific
environmental triggers for narcolepsy onset. We were curious to examine the pathogen
and vaccine induced immune response leading to disease. Another disease where the
host’s individual immune response has a high impact on pathogenesis, is periodontitis —
chronic gum inflammation which is associated with dysbiosis in the composition of oral
bacterial and viral community. Moreover, CVD is relatively common in patients with
periodontal disease. Analysing the humoral immune response may provide information
about the association of periodontitis and CAD and may provide valuable biomarkers to
detect people with risk of disease earlier. Here we employ an unbiased comprehensive
approach to analyze immune response profiles of patients with narcolepsy in a vaccine-
background and, on the other hand, of patients with CAD in a periodontitis background.
We also provide an analysis of the different data analysis workflows that can be used
with different study designs and datasets.

The aims of the thesis were as following:

e Assess the heterogeneity of host-microbe interaction in the scope of gut
microbiome profiling and antibody immune response profiling (publication I, II,
n);

e characterize and compare data analysis challenges and approaches in different
study designs (publication I, I, ll);

e characterize the effect of dietary fibre supplement intake on an athlete’s gut
microbiome composition (publication 1);

e characterize the effects of diet and exercise or poor lifestyle habits on host-
microbiome interactions in the scope of gut microbiome and antibody immune
response (publication I, 11);

e find antigen epitopes that are specifically targeted in patients with narcolepsy
or CVD (publication I, lll);

e exemplify the potential of using MVA in exposome research and highlight
considerations for data analysis (publication II, 111).
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5 Materials and Methods

The following methods were used to analyze antibody immune response characteristics
and gut microbiome in the scope of this thesis:

e  Analysis of gut microbiome sequencing data (publication I)

e Mimotope Variation Analysis (publications Il and Il1)

e Data pre-processing and quality control steps (publications Il and IIl)

e Feature selection (publication I, Il and Il1)

e Identification of group classificators (publication I, Il and Il1)

e Sequence alignment analysis (publications Il and Il1)

e Disease classification analysis and biomarker prediction model building
(publication 1)

e  Statistical tests (publication I, Il, and IIl)

e Data visualization (publication I, Il, and Ill)

e  ELISA (publications Il and Ill)

e Dot ELISA (publications Il and IIl)

e  Phage propagation (publication Ill) *

e Western blot (publication Ill) *

* not performed by author
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6 Results and discussion

6.1 High-throughput profiling uncovers both intra- and interindividual
heterogeneity in exposome profiles

The study of the human exposome is highly inter-disciplinary, deals with various sample
materials and therefore requires many powerful experimenting methods. Given the
broad nature of the exposome, ideal methods applied for studies are high-throughput
and comprehensive, allowing to both reduce resource requirements (time and funds) but
at the same time vyield a large amount of data to give an accurate depiction of the
underlying biology. However, having large amounts of data points to describe something
may well result in a highly heterogenous picture. Here we have employed both
microbiome profiling as well as MVA immunoprofiling to characterize the gut
microbiome and humoral immune response, respectively, to exemplify the usefulness of
both methods for exposome research, and to highlight the consideration of data analysis.

The gut microbiome has been shown to have a reciprocal relationship with athletic
performance, as one influences the other and vice-versa. Furthermore, diet also has an
impact on both the gut microbiome and athletic performance. Therefore, we aimed to
profile the gut microbiome changes of a young athlete in response to dietary fibre
supplementation in the period of active training and competition (publication 1). The data
was gathered from one person and included the following: training load data as minutes
of activity per day, start and endpoint of regularly consuming a dietary fibre supplement,
and three gut microbiome profile snapshots taken at the start of the study, before
starting the fibre supplementation and after ending the 30-day fibre supplementation.
The microbiome profiling data consisted of bacterial taxonomic groups with their
abundance, consisting of groups at the phylum, genus, and species level. Although the
gut microbiome profile consisted mostly of a few major bacterial phyla, diversity at the
genus and species level was great. Across all three timepoints, 50 different genera were
detected on average at a high enough abundance to accurately show in the profiling
report. However, the abundance and proportions differed across timepoints, having
certain genera emerge or disappear from the list and totalling 77 genera overall. On the
other hand, there were 25 bacteria detected on species level on average across
timepoints, totalling 32 altogether. One of the challenges with data analysis in this study
was to identify suitable comparison data, as all the data points were taken from a single
individual. Therefore, the data points were compared to the community average values
provided together with the microbiome profiling report. However, one limitation of this
approach is that the average community probably represents a less active person, and
their microbiome composition could differ accordingly. Indeed, this could be observed
from the higher average abundance of Veillonella dispar in the gut microbiome of the
athlete compared to the control group. Another challenge with the data analysis was
that not all taxa were represented in all timepoints, which made it difficult to assess the
relative increase or decrease of the abundance. Therefore, we opted to visually represent
the abundance values instead, to give a more accurate depiction of the underlying data
and the heterogeneity of the microbiome profile. All-in-all, the gut microbiome profiling
service with NGS was a beneficial tool to assess the microbiome diversity of an athlete
during active fibre supplementation and training period, helping to piece together the
complex exposome response of the human body.
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The humoral antibody response in humans develops over time and is reflective of the
surrounding environment, bacteria, viruses, and other organism exposures a person has
accrued over the course of their everyday life (Lamont, Koo, and Hajishengallis 2018;
Brodin and Davis 2017). Individuals differ from one-another based on overall immune
cell and cytokine composition, and the specific composition of the antibody response is
highly diverse across different people (reviewed in Brodin and Davis 2017). The humoral
immune system has an important role in the defence a human body has against outside
threats. However, antibody response can also facilitate a pathological autoimmune effect
where the immune system incorrectly targets its own self proteins or other surfaces,
causing a negative effect to health, as can be seen with T1D or MS for example (reviewed
in Kawasaki 2014; Filippi et al. 2018). Given the many ways antibodies can influence a
person’s health status, either in a supportive and protective or pathogenic manner, it is
beneficial to have means of analysing the antibody repertoire in its entirety to identify
disease-associated biomarkers or monitor the overall health. MVA is a high throughput
and unbiased method for profiling the comprehensive repertoire of a person’s antibody
targets. Using MVA we obtain data of short 12-mer sequences of peptides which have
been recognized by antibodies in the analyzed sample. As the peptides have been similar
enough to facilitate binding by an antibody, these peptide sequences mimic the true
epitopes of the antibodies and are therefore termed mimotopes. Combining the sequences
with data about how frequently the given sequences were captured by antibodies and
observed in the dataset, we obtain the MVA antibody response profiles for each
individual sample which can also be termed as MVA immunoprofiles.

We have employed MVA immunoprofiling technique on various clinical cohorts to
analyze the links between antibody response characteristics and different clinical
outcomes (Sadam et al. 2018; 2021; Rahni et al. 2022; Pupina et al. 2022; Jaago, Pupina,
et al. 2022). Here we generated MVA antibody response profiles for patients with NT1,
either caused by Pdmx vaccine (Pdmx-NT1, n=10) or sporadic (sNT1, n=6), HIN1-infected
patients (HIN1-HC, n=16), Pdmx-vaccinated healthy controls (Pdmx-HC, n=16), and
non-vaccinated healthy controls (Other HC, n=16) (Table 1). By comparing the mimotope
sequences and abundance values in the immunoprofiles, we observed high heterogeneity
across different patients (publication Ill). Among the Top2500 peptide dataset, which
comprises the mimotope sequences of the 2500 most abundant peptide sequences per
each sample, 86% of the mimotopes were unique to one sample (publication Ill).
Although being highly heterogenous, the Top2500 peptide dataset did contain a shared
portion, where the mimotope sequences were observed in multiple samples, indicating
to a shared immune response feature (publication Ill). Most of the shared mimotopes
among the Top2500 peptide dataset were observed in two samples (60.7%), 35.7% were
seen in 3-10 samples, and 3.6% of the mimotopes were seen in more than 10 samples
(publication 1ll). Therefore, by using MVA to profile the humoral immune response in
patients, we could see that there were common features shared by many people,
however the majority of the response was highly diverse.
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Table 1. Description of patients in clinical cohorts used in MVA immunoprofiling studies. The group
size (n), median age at sampling, gender proportions, ethnicity, Pdmx vaccination status, coronary
artery disease, and periodontitis diagnoses are shown. n — group size; NT1 — narcolepsy type 1, sNT1
— sporadic narcolepsy type 1; Pmdx — Pandemrix, vaccine against influenza A(H1N1); HC — healthy
controls, no NT1 diagnosis; Pdmx-HC — Pandemrix-vaccinated healthy controls; HIN1-HC — influenza
A(H1N1)-infected controls; other HC — healthy Estonian controls; ACS — acute coronary syndrome;
s-CAD — stable coronary artery disease; no-CAD — healthy controls with no coronary artery disease
diagnosis; P — periodontitis diagnosis/patients with periodontitis; G — gingivitis diagnosis/patients
with gingivitis; H — patients with no gum inflammation diagnosis; M — male; F — female; N/A — not
available; Fin — Finnish ethnicity; Est — Estonian ethnicity.

Median Pdmx-
Gender .. . . .
n age at Ethnicity | vacci- Diagnosis
. (M/F) .
sampling nation
Narcolepsy cohort
NT1
Pdmx-NT1 10 14 5/5 Fin + NT1
sNT1 6 22 1/5 Fin + NT1
HC
Pdmx-HC 16 N/A 2/12 Fin + No NT1
H1N1-HC 16 21 0/16 Fin - No NT1
Other HC 16 34.5 6/10 Est - No NT1
Corogene cohort
ACS
P 16 63 14/2 Fin N/A AISS
G 9 59 6/3 Fin N/A AéZS
H 7 61 4/3 Fin N/A ACS
s-CAD
P 16 64 12/4 Fin N/A S'CPAD
G 9 69 7/2 Fin N/A S'CGAD
H 7 62 7/0 Fin N/A s-CAD
no-CAD
P 16 64 10/6 Fin N/A P
G 9 61 4/5 Fin N/A G
H No ACS
. No s-CAD
7 55 3/4 Fin N/A No P
No G
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Next we generated MVA immunoprofiles for 96 individuals from the Finnish Corogene
cohort (Vaara et al. 2012). The patients were diagnosed with acute coronary syndrome
(ACS, n=32), stable coronary artery disease (s-CAD, n=32), or were controls (no-CAD,
n=32) (Table 1). Furthermore, the same patients had also gone through oral exams to
assess their gum health and were given a periodontitis diagnosis (P, n=48), gingivitis
diagnosis (G, n=27), or deemed gum-healthy with no inflammation (H, n=21) (Table 1).
Altogether we obtained 14.5 million peptide sequences across all 96 samples
(publication II). The heterogeneity across immunoprofiles of patients was observed in
the large amount of data — 14.5 million unique peptide sequences for the 96 samples
analyzed. Furthermore, when extracting the most abundant and shared mimotope
sequences, which had to be present in minimum 10% of the samples, the resulting
dataset decreased down to hundreds of thousands of mimotopes (publication II).
As MVA enables to capture many millions of mimotope leads per sample, our aim was
also to verify that the high heterogeneity could not stem from experimental noise.
Technical replicate data show a Pearson correlation of 0.87 at a single mimotope level
between duplicate samples, suggesting high reproducibility of the results and no major
effects from experimental noise (publication Il). Taken together, these results suggest to
a large heterogenous component within the individual MVA immunoprofiles and
subsequently, within the complex repertoire of antibodies.

As discussed above in the Literature chapter, we are constantly exposed to common
bacteria and viruses throughout our whole life and the human immune system co-develops
together with the microbiome and the virome. Part of the heterogenous component of
the humoral immune response is likely due to the individual history of the exact types of
exposures, the time of exposures and the body’s current health status at that time, as
well as the order in which the exposures happened. Furthermore, the heterogenous
component also encompasses the genetic variability of people, including the
individual human leukocyte antigen (HLA) alleles and BCR and TCR repertoires. Thirdly,
the environment in which children grew up in, together with its physio-chemical
properties, as well as diet and exercise are a likely factor to affect the individual immune
response profile. Nevertheless, it is highly important to assess the individuality in
samples and to take it into account in further analysis and conclusions. One way to better
evaluate and characterize the heterogenous component of MVA immunoprofiles is to
increase the number of samples being analyzed while also focusing on a certain clinical
diagnosis group and trying to decrease the number of background variables.

Although both included the data from MVA, the narcolepsy cohort and the CVD cohort
exemplify different approaches that can be taken with data analysis (Table 2). Firstly, as
the amount of initial data points is very high, feature creation and subsequent selection
must be applied. Feature selection in MVA usually includes reducing the initially 12-mer
peptide mimotopes into shorter consensus sequences, termed motifs. Motifs can be
shorter in length and have only certain amino acid positions set whereas other positions
can harbour variable amino acids. With the Corogene cohort, a non-discriminatory
approach was chosen and patients were first divided into groups based on their clinical
background (publication Il). Then for each group, the top, most abundant and shared
peptides were extracted from the dataset and subjected to a pattern detection algorithm
to identify a smaller number of core motif sequences. This allowed to reduce the
number of features to analyze further in the study without compromising much with the
comprehensiveness of the dataset. However, this also meant that further analysis was
required to identify features that would be group-differential. On the other hand,
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with the narcolepsy study, a discriminatory approach was chosen for feature selection
(publication Il1). Firstly, patients were again divided into groups based on their clinical
background and the top, most abundant and shared peptides within each group were
extracted. However, next the peptides from one group were compared against peptides
from another group by scanning for any shorter core sequence motifs that were
differentially detected across groups. This resulted in a smaller number of features to
analyze further but which were also displaying group-differential characteristics.
Although with the non-discriminatory approach no group-differential features were first
selected, this would be achieved with the next step of determining features with most
optimal sensitivity and specificity values for group classification. A receiver operating
characteristic (ROC) curve was used in both studies to select for motifs that were either
characteristic to the disease or control group (publication II, Ill). Finally, the group-
stratifying motifs were annotated using different sequence databases. Due to the
autoimmune background of narcolepsy, among other datasets, self protein sequence
data was used to find regions similar to the identified motif mimotopes (publication IlI).
On the other hand, the patients in the Corogene cohort had a chronic illness- and oral
microbiome-related background, warranting the use of bacterial and common viral
protein databases for annotation (publication Il). After having selected the annotation
databases, within the narcolepsy study, peptide sequences were mostly used for
alignment analysis (publication Ill), whereas within the Corogene cohort, shorter core
motif sequences were mostly used (publication Il). Due to the greater number and
diversity of the peptide sequences within the immunoprofile data, this allows for a more
detailed alignment and could result in a clearer signal-to-noise ratio of the alignment,
making it easier to detect true epitopes. On the other hand, using shorter core motif
sequences is less resource-demanding and more robust, allowing to identify important
epitopes that may not be entirely identical to the experimental data but similar enough
to warrant an antibody-epitope interaction. All-in-all, there are different suitable
approaches to take when analysing MVA immunoprofile data and a clear analysis plan
should be designed based on the properties of the dataset.

Table 2. Similarities and differences of metagenomics and MVA immunoprofile data analysis
approaches across studies.

Athlete gut

. . Narcolepsy cohort
microbiome study psy

Corogene cohort

points per sample

Number of 1 48 96
patients
Number of time 3 1 1

Feature selection

Discriminatory

Non-discriminatory

viruses

Identify group ROC ROC
classificators i

Alignment Self proteins, Oral bacteria,
databases - Common human Common human

viruses

Alignment input

Mostly peptides

Mostly core motifs
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Taken together, both gut microbiome profiling with NGS and MVA are methods that
can provide beneficial information about the interactions of humans with their
environment, consisting of both non-living actors (diet) as well as living actors
(microbiome and virome (with a caveat to term “living”)). However, due to the large
amount of data both methods generate, it isimportant to design an optimal data analysis
plan that would suit best with the objectives of the study and the characteristics of the
underlying data.

6.2 Characteristics of gut and oral microbiome composition due to
lifestyle differences

6.2.1 Diet and exercise

Although there are multiple inheritable and non-heritable factors that influence the
antibody response, the highest impact comes from the plethora of different viruses and
microorganisms that we have exposure to. For example, the gut microbiota has been
associated with athletic performance as certain bacterial species can promote
cardiorespiratory fitness or increase in muscle mass (reviewed in Sohail et al. 2019;
Ticinesi et al. 2019). Diet and exercise intensity have a high impact on the gut microbiota
composition (reviewed in Das and Nair 2019), allowing athletes to affect the proportional
balance towards bacterial species that offer performance benefits.

We analyzed the gut microbiome profile of a young athlete before and after their
intense training period, as well as after having completed a month-long session of taking
a dietary fibre supplement. To assess the overall diversity of the gut microbiome, we
calculated the Shannon index value based on the microbiome profiling report. The Shannon
index values were 2.11 and 2.08 before and after the training period, respectively,
indicating no significant change in gut microbiome diversity (Hutcheson’s modified t-test,
p-value > 0.05, publication I). However, we observed a significant decrease in the
microbiome community diversity after having completed a month-long dietary fibre
course, as the Shannon index had decreased to 1.67 (Hutcheson’s modified t-test,
p-value < 0.05, publication 1). This seems to be in contrast with most research which
associate fibre intake with a higher microbial diversity (reviewed in Cronin et al. 2021).
Interestingly, although the overall diversity had decreased after fibre intake, the proportion
of Firmicutes bacteria had increased by 20% (publication I). Additionally, the dietary fibre
intake had a drastic negative effect on the abundance of certain other major bacteria
phyla: Verrucomicrobia (-94%) and Cyanobacteria (-97%) (publication 1). By analysing the
gut microbiome, we were able to classify the profile of the gut microbiome of the young
athlete. Firstly, the ratio of Firmicutes phylum bacteria to Bacteroidetes (F/B ratio) was
relatively stable during the observation period but significantly higher than in the control
group in all time points (t-test of one mean, p-value < 0.05, publication 1). An increase of
Firmicutes bacteria has been shown to follow a training period and a higher F/B ratio has
been associated with cardiorespiratory fitness (Estaki et al. 2016; Allen et al. 2018; Durk
et al. 2019). Secondly, the microbiome composition indicated that the athlete had an
enterotype Il microbiome, where the abundance of Prevotella family bacteria is greater
than abundances of Bacteroides and Ruminococcus families (publication 1). After the intake
of the dietary fibre supplement, the abundance of Prevotella increased by 41.7%
(publication 1), which is consistent with other research suggesting a link between fibre
consumption and an abundance of Prevotella (G. D. Wu et al. 2011).
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The association of a healthy dietary and exercise regime with the gut microbiome
composition is a two-way influence (reviewed in Boisseau, Barnich, and Koechlin-
Ramonatxo 2022). It has been shown that athletes have a higher diversity of gut bacteria
compared to the average person (Mohr et al. 2020). The gut bacteria play an important
role in nutrient uptake and energy metabolism, which are crucial processes for athletic
performance. Prevotella has been associated with exercise duration, as subjects with a
larger proportion of Prevotella among the gut microflora were reported to log more
exercise time during a week (Petersen et al. 2017). Competing in an endurance sport
such as rowing could then be benefitted by having an enterotype Il microbiome with a
larger proportion of Prevotella. A decreased diversity of microbes has been associated
with immune-regulated poor health conditions (Valdes et al. 2018; Lozupone et al. 2012).
However, prolonged heavy exercise instead affects microbial composition and increases
intestinal permeability, which in turn can result in bacterial toxins, food antigens,
commensal or pathogenic bacteria entering into systemic circulation and promoting
systemic inflammation (Karl et al. 2017; reviewed in Vanuytsel, Tack, and Farre 2021).
According to various studies, up to 90% of athletes complain of gastrointestinal
problems, including vomiting, abdominal pain, and diarrhoea, and the prevalence of
problems is higher in elite sports than in recreational activities (reviewed in de Oliveira,
Burini, and Jeukendrup 2014).

6.2.2 Adverse health habits

Specific bacterial compositions are associated with negative effects on human health, for
example periodontitis — a severe gum inflammation — is linked to the abundance of
red- and orange-complex bacteria (reviewed in Sigmund S. Socransky and Haffajee 2002;
Lamont, Koo, and Hajishengallis 2018). We analyzed the samples of 96 patients from the
Finnish Corogene cohort where some of the patients had a diagnosis of gum
inflammation (Vaara et al. 2012). The oral health of the patients was assessed, and
patients were classified into gum-healthy (H, n=21), gingivitis (G, n=27), or periodontitis
group (P, n=48). The proportion of currently active or ex-smokers was significantly higher
among the patients who had a periodontitis diaghosis (Chi?, p-value < 0.01, publication
I1). This is in agreement with other data, showing that smoking is a risk factor for
developing periodontitis (reviewed in Nociti Jr, Casati, and Duarte 2015). Smoking
introduces multiple harmful compounds to the oral ecosystem, which can influence the
proper balance of different bacterial species (reviewed in Macgregor 1989). For example,
a Danish study of saliva bacteria profiles found that compared to non-smokers, smokers
have a larger abundance of Streptococcus sobrinus and Eubacterium [11][G-3] brachy
(Belstrgm et al. 2014), bacterial taxa which are both associated with poor dental health
(Loesche 1986; Loesche et al. 1975; Lafaurie et al. 2022). Cigarette smoking also has a
positive effect on Porphyromonas gingivalis, a known periodontal pathogen, by allowing
P. gingivalis to elicit a reduced inflammatory host response and thereby colonize the
tissue more effectively (Bagaitkar et al. 2010).

T2D is also a disease that is associated with poor lifestyle decisions. Some research
suggest that there is an association between T2D and the human body’s bacterial
ecosystem (Z. Chen et al. 2021). Furthermore, it has been shown that the risk of
developing periodontitis is increased by 2 to 3 times in patients with diabetes, where
most of the research is focused on T2D, although T1D has also been associated in teens
and children (reviewed in Preshaw and Bissett 2019). T2D often correlates with chronic
inflammation (mostly due to innate immunity) in the body, including the periodontium
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where oral bacteria reside, and diabetics have a higher bacterial LPS-induced
inflammation (reviewed in Nassar, Kantarci, and Van Dyke 2007; Mesia et al. 2016).
On the other hand, periodontitis has been shown to exacerbate diabetic complications,
possibly through LPS-induced cytokine production which in turn induces advanced
glycation end product (AGE)-mediated cytokine response in diabetes (Grossi and Genco
1998). As a positive note, increased physical activity has been shown to reduce
periodontitis risk, potentially because it also promotes better insulin sensitivity and
glucose metabolism (Merchant et al. 2003). Taken all of the above, we were also
interested in investigating the relationship between periodontitis and diabetes. Within
the Finnish Corogene cohort where some patients had periodontitis, 19% of the patients
were diagnosed with diabetes (insulin dependent and non-insulin dependent combined)
(Vaara et al. 2012). However, we observed no significant proportional difference of
patients with diabetes within patients within the gum-healthy or periodontitis groups
(Chi?, p-value > 0.05, publication II).

To investigate the interactions between the human host and bacterial microflora in
more detail, individual MVA response profiles from 96 patients in the Corogene cohort
were studied. As MVA provides information about the target epitopes of the antibody
repertoire detected from the blood plasma, we compared the MVA-obtained mimotopes
to the primary sequence information of known periodontal pathogens. We assessed the
individual antibody response to 7 bacterial species, which have been specifically associated
with periodontitis (P. gingivalis, Tannerella forsythia, Prevotella intermedia, Fusobacterium
nucleatum, Campylobacter rectus, Aggregatibacter actinomycetemcomitans, and
Porphyromonas endodontalis). For this we performed an alignment analysis, where we
aligned MVA-obtained antibody response mimotope profiles to the primary sequences
of proteins from the bacteria. As a result, we observed a more abundant predicted
immune response to epitopes of P. gingivalis and A. actinomycetemcomitans compared
to F. nucleatum (Mann-Whitney U test, **** p-value < 0.0001, publication II).
We identified an abundant core mimotope pattern P..T.[P][R] which existed in 45% and
30% of P. gingivalis and A. actinomycetemcomitans immunodominant antigens,
respectively, but only in 10% among F. nucleatum antigens (publication Il). P. gingivalis
is regarded as one of the keystone bacteria involved in the progression of periodontal
disease and it’s correlated with more severe periodontitis (Bostanci and Belibasakis 2012;
Holt and Ebersole 2005; S. S. Socransky et al. 1998), whereas A. actinomycetemcomitans
has been associated with localized aggressive periodontitis (J. Slots, Reynolds, and Genco
1980; Haubek et al. 2008). F. nucleatum, a commensal bacterium, has been shown to
support the survival of P. gingivalis in an oral biofilm setting (Bradshaw et al. 1998).
Research findings show that both the synergistic cooperation of the oral (opportunistic
and pathogenic) bacteria, as well as the host’s immune response play an important role
in the pathogenesis of periodontitis (reviewed in Sedghi, Bacino, and Kapila 2021).

Our findings of potential antibody immune response targets on the oral bacteria
associated with periodontal disease contribute to the existing knowledge and warrant
future studies into the detailed interplay of the host-microbe interactions. Furthermore,
it is interesting to contemplate whether we could improve our overall health and avoid
overweight/obesity-related comorbidities by deliberately controlling our microbiome
through physical exercise and proper diet. However, more insight is needed, and many
challenges must be overcome in order to introduce this strategy into everyday personal
life or public health plans.
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6.3 Antibody profiles enable to identify epitopes that are differentially
recognized in case versus control cohorts

We hypothesized that there were differences in the antibody immune response between
healthy individuals and patients with a certain clinical condition. Within the narcolepsy
study cohort, Pdmx-vaccinated patients with NT1 diagnosis had a lower antibody
response to major antigens of HIN1 as compared to Pdmx-vaccinated healthy controls
(publication lll). As described in the literature overview, herpesviral and certain bacterial
infections such as Helicobacter pylori are common among the human population and
have been associated with many pathologies. Therefore, we used ELISA to measure the
IgG immune response against HCMV, EBV capsid antigen (CA), and H. pylori among
patients in the Corogene cohort. We found decreased IgG serology against EBV CA in
gum-healthy patients (H) who had ACS diagnosis compared to the no-CAD group
(Mann-Whitney U, * p-value < 0.05) (Figure 1). Similarly, in periodontitis patients we
observed a decreased IgG response against HCMV in patients with s-CAD or ACS diagnosis
compared to the no-CAD group (Mann-Whitney U, * p-value < 0.05, *** p-value < 0.001)
(Figure 1). On the other hand, we observed that patients with periodontitis were
significantly more likely to be seropositive for H. pylori compared to groups with better
periodontal health (Chi?, p-value < 0.05) (Figure 1). An association between H. pylori and
periodontitis has been observed before, as H. pylori had been detected in dental plaques
and its detection rate correlated with a more severe state of periodontal disease
(Zheng and Zhou 2015). Taken together, we could characterize differences in the overall
seropositivity to H. pylori among patients with different periodontal status, and IgG
seroresponse to HCMV or EBV CA protein was differentiating between CAD groups
(Figure 1).
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Figure 6. IgG seroreactivity to common human viruses and H. pylori in patients with NT1, CAD, or
periodontitis. IgG seroreactivity was measured using commercial ELISA test kits. Levels of the detected
IgG response shown in relative units (RU)/ml. A. IgG immune response against influenza A(HIN1) in
NT1 patients and healthy controls. Statistical test: ANOVA, *** p<0.0001. NT1 — narcolepsy type 1
(n=16); Pdmx-HC — Pandemrix-vaccinated healthy controls (n=16); HIN1-HC — inluenza A(HIN1)
infected healthy Finnish controls (n=16); HC — healthy Estonian controls (n=16). B. IgG immune
response against EBV CA. C. IgG immune response against HCMV antigens. D. Proportion of patients
1gG seropositive for anti-H. pylori antibodies across periodontal disease groups. Statistical test: Chi2,
p<0.05. B-D. Statistical test: Mann-Whitney U, *** p<0.001, * p<0.05, ns, p>0.05. ACS — acute coronary
syndrome; s-CAD — stable coronary artery disease; no-CAD — patients with no coronary artery disease
diagnosis; H— periodontally healthy; G —gingivitis: P — periodontitis; HCMV —human cytomegalovirus;
EBV CA — Epstein-Barr virus capsid antigen.

When analysing the antibody immune response of patients within the Corogene cohort
using MVA, we identified 5 major mimotopes which were differentially targeted across
clinical diagnosis subgroups (publication II). Antibody response against a mimotope with a
consensus sequence P..T.PR (mimotope A) (Proline-X-X-Threonine-X-Proline-Arginine
where X denotes any amino acid) was observed to be stronger among patients with a
periodontitis diagnosis who did not have coronary artery disease (no-CAD) (publication II).
The consensus sequence P..T.PR (mimotope A) is similar to some of the consensus
sequences (type 2, 4, and 5) delineated in the bacterial alignment analysis as immunogenic
features with a more frequent response (publication Il). Therefore, patients with
periodontitis but no CAD diagnosis who showed a higher response against P..T.PR
mimotope could have a different immune response, and thus effect the composition of
the oral periodontal bacterial community as compared to those periodontitis patients
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who did have a CAD diagnosis. Having periodontitis increases the likelihood of a person
having atherosclerotic vascular disease, although the causality and the potential
mechanism behind this link is not yet clear (Lockhart et al. 2012). Periodontitis and CAD
both have an immunoinflammatory background and are known to share many of the
same risk factors: unhealthy lifestyle, smoking, diabetes mellitus (Kott et al. 2020;
reviewed in Tsuchida 2020; Kobiyama and Ley 2018). Within our studies, we also
identified a characteristic immune response profile in patients with a smoking
background or with a diabetes diagnosis background (publication Il). Taken together, we
have provided a way of identifying the phases of CAD by using immune response profile
differences, some of which targeted specific epitopes of oral bacteria (publication II).

We have shown that the immune response profiles are different across clinical groups
within the narcolepsy cohort (publication lll). After identifying the specific mimotopes
which were being differentially targeted by the immune system, our next aim was to
classify the true epitopes against which the immune response had been created. Within
the MVA immunoprofile data we determined a peptide mimotope with the sequence
RVLAPALDSWGT which was enriched in the profiles of patients with NT1 as compared to
other clinical groups (publication Ill, Table 3). Annotation analysis using sequence
alignment approach identified the second extracellular loop region of the human
prostaglandin D2 receptor 1 (DP1) (UniProt accession Q13258) as having high sequence
homology to the peptide mimotope. Furthermore, patients from the Pdmx-NT1 and sNT1
groups also exhibited a higher predicted antibody immune response to protein BCL6
(Table 3), which regulates the germinal centre reaction where B-cells are selectively
driven to produce higher-affinity antibodies (ref in Pei et al. 2017). These findings of
specific immune response characteristics in patients with NT1 highlight the complex
nature of the disease and suggest to an interplay of different molecular targets and
pathways.

Table 3. Human and virus protein epitopes associated with a differential immune response in
disease. UniProt accession codes: human DP1 - Q13258; human BCL6 - P41182; Influenza A(HIN1)
HA - C4RUWS; EBV VP26 — Q3KSU9; EBV ENBAG6 - P03204. DP1 — prostaglandin D2 receptor DP1;
BCL6 - B-cell lymphoma 6 protein; HA— hemagglutinin; VP26 - Small capsomere-interacting protein;
EBNAG6 — Epstein-Barr nuclear antigen 6; NT1 — narcolepsy type 1; ACS — acute coronary syndrome;
no-CAD — patients with no coronary artery disease diagnosis.

Ami d Di -
Antigen Epitope sequence mm.o'aa lagpos.sls Other info
position association
Human DP1 RVLAPALD 94-101 NT1
(Zandian et
Human BCL6 EGLKPAAPSA 279-288 Loosely NT1 al. 2017)
Influenza Natural HIN1
A(HIN1) HA KLESTRIYQIL 521531 infection
ACSinG (Loebel et
EBV VP26 QPQDTAPRGARKKQ 153-176 No-CAD in P al. 2017)
PAPQAPYQGYQEPPA- o with (Fal”g 9e5t'a"
EBV EBNA6 PQAPYQGYQEPPP- 741-779 smoking Loebel elt al
PQAPYQGYQEP 2017)
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When analysing the Corogene cohort of patients, some with CAD and/or periodontitis
diagnosis, we observed a strong antibody immune response to a mimotope with the
pattern P..T.PR. Our previous work has identified this mimotope as originating from an
immunodominant region QPQDTAPRGARKKQ on Small capsomere-interacting protein
(VP26) protein of EBV, encompassing amino acid positions 153-176 (Sadam et al. 2018;
2021). Alignment analysis performed using individual MVA immunoprofile data and the
primary sequence of VP26 protein resulted in high predicted immunoreactivity to
C-terminus of VP26 (publication Il). Interestingly, the MVA-predicted reactivity to
mimotope P..T.PR was significantly higher in patients with a periodontitis diagnosis
compared to gum-healthy controls (Mann-Whitney U, * p-value < 0.05) (publication II)
(Table 3). To validate MVA findings, we performed a dot ELISA analysis, where phage
particles displaying the C-terminal VP26 epitope were fixed onto nitrocellulose
membrane. Patient sera predicted as positive for anti-P..T.PR reactivity by MVA exhibited
higher signals at the dot ELISA experiment (Mann-Whitney U, **** p-value < 0.0001,
publication Il). Taken together, we have observed a higher antibody response to
C-terminal epitope of VP26 of EBV in patients with a periodontitis diagnosis. We also
performed an alignment analysis to describe any proteins of the common periodontal
bacteria or common HHVs with sequence similarity to the P..T.PR mimotope which could
potentially facilitate cross-reactive immunity. We identified transmembrane protein
signal peptidase | (Uniprot accession Q7MTG1) and transcription termination
factor Rho (Q7MX79) of P. gingivalis, and isoleucine-tRNA ligase (C9R644) of
A. actinomycetemcomitans as sharing sequence similarity to mimotope P..T.PR
(publication 1l). In addition, we also predicted mimotope B to be associated with a
protein of EBV (publication II). Alignment analysis showed that mimotope B with the
sequence P[Y]..[Y]Q shares sequence similarity to EBV protein Epstein-Barr nuclear
antigen 6 (EBNA-6) at amino acid positions 741-779, where there is a triple repeat
sequence (Table 3). Mimotope B had a higher predicted immune response specifically in
patients with periodontitis and a background of smoking (publication Il). EBV infection
elicits the production of antibodies against many different EBV proteins, including
glycoprotein 42 (gp42), Epstein Barr nuclear antigen 1 (EBNA-1), 2 (EBNA-2), and 6
(Bu et al. 2016; Henle et al. 1987; Lennette et al. 1993), however we could only identify
the anti-VP26 immune response as differential between patients with periodontitis
compared to gum-healthy patients, and anti-EBNA-6 response characteristic to patients
with periodontitis and a history of smoking (publication II).

Herpesvirus infection, including EBV infection, has been associated with periodontal
disease before (Gao, Lv, and Wang 2017). An interesting topic is the complex interplay
between EBV and periodontal pathogenic bacteria (reviewed in Jgrgen Slots 2015),
however the exact molecular mechanisms behind the link are not yet fully elucidated.
One possible mechanism describes EBV as the promoter of periodontal pathogen
increase by inducing the release of pro-inflammatory cytokines which in turn activate
osteoclasts and matrix metalloproteases (MMPs) to inhibit an adequate antibacterial
immune response (reviewed in Jgrgen Slots 2010). On the other hand, some studies
suggest that P. gingivalis secretes butyric acid into its local environment, which in turn
induces EBV re-activation (from latent form) in infected cells (Imai and Ogata 2020).

Taken together our findings show a strong specific immune response to EBV in
patients with periodontitis and provide further and more detailed evidence for the causal
link between oral EBV infection, oral microbiota composition, and lifestyle habits such as
smoking. However, it would be important to gain more detailed knowledge about the
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role of EBV in the context of chronic diseases. Failure to handle the primary infection of
EBV correctly may cause lasting health problems in the coming years. Furthermore,
future studies should focus on characterizing in detail how an individual’s genetic
background affects their interaction with EBV exposure and any resulting health risks.
Mapping how mimicry of EBV epitopes with human self proteins affects the host-microbe
interaction is also an important research question for future studies. Given the role of
EBV in systemic diseases, herpesviruses could constitute as potential targets for new
vaccines to mitigate or reduce some of the symptoms of systemic diseases. However,
before that, diagnostic tools should be developed to map in detail the precise
disease-associated herpesviral antigens and epitopes which could be used as inputs in
vaccine or immune drug developments.

6.4 MVA and microbiome studies as valuable tools for exposome
research

As the gut microbiome makes up most of the whole microbiome of a person, it is highly
important to study the microbiome-host interaction in scope of exposome research. In
the study with the young athlete, in addition to profiling the gut microbiome at certain
time points, the athlete’s training load was also monitored alongside with a dietary
intervention. Even with this limited data, interesting insights could be gathered from the
correlations of microbiome and lifestyle changes. However, it would have been more
beneficial to have received the raw data from the microbiome profiling to analyze the
patterns in more detail. Furthermore, and where exposome research is also moving
towards, the study could have benefitted from more detailed health data from a
wearable activity monitor that could have kept track of heart rate, activity load, and sleep
patterns. Combined with a more detailed diet log, the study could have provided a more
in-depth investigation into the interplay of athletic activity, diet, and the gut microbiome.

Turning to another powerful technology, MVA could be a valuable tool within the
scope of exposome research due to multiple reasons. Firstly, MVA allows to generate a
comprehensive snapshot of a person’s individual immune response profile (Figure 7).
The default MVA pipeline generates 3 million sequencing reads per individual sample.
Sequencing reads are transformed into an MVA immunoprofile comprising of peptide
sequences and their capturing frequency, where on average there are hundreds of
thousands of different peptide sequences captured per sample. The high-throughput
nature of MVA places it above other methods that allow to investigate the functionality
of existing antibodies, such as microarrays or ELISA panels. Microarrays and ELISA panels
usually require the directed synthesis of target molecules (for example, full proteins or
protein fragments) and they can usually yield up to tens of thousands of data points,
compared to hundreds of thousands of data points generated via MVA.
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Figure 7. Possibilities MVA offers for exposome research and required considerations. MVA
allows to obtain comprehensive individual snapshots of the humoral immune response at a given
time. MVA immunoprofiles can be used in case versus control group comparisons and longitudinal
studies, allowing to delineate both health- and disease-specific immune response characteristics.
MVA can be performed on a wide variety of sample materials. Before performing MVA, data
storage options and computational resource availability should be considered. During MVA data
analysis, decisions should be made about whether to perform feature selection at the individual or
the group level, whether to handle and compare raw peptide data or condense peptide sequences
into shorter core motifs. The selection of which data to use for alignment analysis is important in
order to reduce noise and increase the chance of identifying biologically relevant results.

Secondly, by analysing different disease cohorts to identify specificimmune response
features, MVA can prove useful in the discovery of early blood-based biomarkers.
For example, based on the evidence presented above about the association between
CAD and periodontitis, it becomes important to take the periodontal disease background
into consideration when creating risk analyses or prognosis of patients. Knowledge of the
differences in the antibody immune response to certain specific epitopes could be utilised
in developing blood-based biomarkers to help evaluate the current health condition.
Blood-based biomarkers offer great benefits as they are time- and cost-effective and
non-invasive. Using only the MVA-predicted immune response to three different
mimotopes P..T.PR, P[Y]..[Y]Q, and [P][W].P.SPF we could differentiate patients with
periodontitis from gum-healthy controls with a balanced accuracy of 81% (publication
I1). Higher response to mimotopes P..T.PR and P[Y]..[Y]Q was characteristic to patients
with periodontitis, however higher response to mimotope [P][W].P.SPF was associated
with periodontally healthy status (publication Il). Then, across the different periodontal
disease groups, the immune response characteristics associating with CAD were different.
In the group of no periodontal inflammation, high response to mimotope [P][W].P.SPF
was observed in patients with an ACS diagnosis (Mann-Whitney U, p-value = 0.097,
publication II). Patients with gingivitis and ACS exhibited a higher immune response to
mimotope P..T.PR (Mann-Whitney U, * p-value < 0.05, publication Il). On the other hand,
in subjects with periodontitis, a high response to mimotope P..T.PR correlated with the
no-CAD phenotype instead, together with an independent mimotope [G]P.HT.K (Mann-
Whitney U, * p-value < 0.05, ** p-value < 0.01, publication Il). Therefore, considering the
periodontal disease background of the subjects first, and then assessing the MVA-predicted
immune response to three independent mimotopes we could differentiate patients with
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an ACS diagnosis from the no-CAD controls with sensitivity 71-89% and specificity
67—-100% (publication IlI). Early detection of bacterial-dysbiosis-related biomarkers can
shed light on pathogenic processes early on and therefore could result in more efficient
treatment and better health outcomes. Considering the person’s individual background,
this approach could also facilitate a targeted pre-emptive approach in the scope of
precision medicine.

Thirdly, when monitoring the human exposome over time, multiple snapshots of
MVA-generated immune response profiles from a single person could be analyzed. This
would enable to monitor the individual baseline antibody composition, the progression
of infections, or notice the emerging signals of known biomarkers of disease. An example
of a longitudinal study that analyzed MVA immune response profiles was by Rdhni and
colleagues (Rahni et al. 2022). There, melanoma-specific response was observed to
emerge after treatment with a cancer vaccine and to change over time, correlating also
with the disease symptoms (Rdhni et al. 2022). Furthermore, MVA profiles could be
correlated with the person’s location history, medical background, familial medical
history, and infectious disease exposure, to obtain a more comprehensive image.

Fourth, MVA technology can be employed to study various sampling materials,
including blood serum, plasma, CSF, any synthetic samples containing antibodies, as well
as biomaterial surfaces and biomaterial-exposed fluids (publication Il; Sadam et al. 2021;
Vrana, Palm, and Lavalle 2020). This allows to seamlessly plug MVA into various study
designs without adding many complications to sample gathering and pre-processing
procedures. Furthermore, MVA is rather insensitive to the exact time the sample was
taken, because given optimal conditions, samples can be stored cryogenically for a long
time before analysis with MVA is performed and samples can also endure multiple
thaw-freeze cycles. This allows to gather samples on-site in clinics or emergency rooms,
which is more convenient to the patient, and then analyze centrally at other locations,
decreasing the need of special equipment and procedures in multiple places. Another
beneficial implication is that MVA can be performed retroactively on already gathered
samples to supplement the knowledge base and data. Moreover, MVA needs only a few
microlitres of sample to yield results.

However, despite all the advantages MVA offers to exposome research, the data
analysis portion must be thoroughly discussed and planned beforehand. As MVA yields
a large amount of data per sample, generating even larger datasets per studied cohorts,
data storage solution should be planned, allowing for the safe storage of data and
convenient retrieval of data for analysis. Depending on the study size, either powerful
personal workstations or computing cluster resources could be used for computational
analysis. Next, the data analysis plan should decide whether to analyze the samples
separately or converge them and retrieve shared features to analyze further. For example,
in the annotation analysis in the Corogene cohort, individual peptide sequences were
aligned onto EBV protein VP26 separately for each individual (publication Il), allowing to
preserve high individual detail in the result. On the other hand, feature selection process
can highly benefit from analysing a group of samples as a whole because the data volume
of initial features is great and any shared abundant characteristics would also provide
robust and relevant biomarkers for further research (publication II, publication IlI).
Careful thought should also be placed on which databases would be used for annotating
the mimotope features from MVA. A truly unbiased approach would include too many
database resources and thus yield many false positive results, offering no real benefit
into describing the biological process. On the other hand, intelligent decision on which
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alighment data to use would allow to better pinpoint biologically relevant results.
For example, in the narcolepsy study, self proteins were included in the alignment
analysis due to the autoimmune nature of the disease (publication Ill), whereas more
focus was put on oral bacterial proteomes in the Corogene cohort study due to patients
having a clinical background of periodontitis (publication Il). Public dataset and database
selection should be done mindfully, however, as they can be biased towards certain
populations. Such biases have been observed when assessing the risk of hypertrophic
cardiomyopathy in patients of African ancestry (Manrai et al. 2016). Furthermore,
it should be made aware that having a strong hypothesis may lead to being blinded by
the expected outcome even in the face of data revealing something else (discussed in
Yanai and Lercher 2020). However, independent validation methods on other study
cohorts/paradigms should overcome these biases.

Taken together, the studies undertaken have exemplified that MVA is a powerful
method that could provide beneficial insights into the humoral immune system response
in the context of exposome research. As biological sciences evolve towards methods
yielding more comprehensive datasets at higher individual resolution, MVA is just
another means towards future research.
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7 Conclusion

Here we presented the beneficial use of metagenomic sequencing and MVA in exposome
research to characterize the host-microbiome-environment relationship in more detail.
We investigated the exposome interactions in the background of dietary intervention
and physical activity, as well as in the background of chronic and autoimmune disease.
The principal findings of the study are:

Although antibody response profiles show great heterogeneity across individual
patients, there exists common shared characteristics that can be further
correlated with lifestyle or disease background.

Different study design approaches, e.g. time-series, single case versus community,
classical case versus control cohorts, result in both unique challenges in data
analysis, but also opportunities for discovery. During MVA data analysis, feature
selection can be performed at different analysis stages to gather a broad range
of insights about the underlying study cohort.

Metagenomic sequencing yields timeseries gut microbiota profiles which show
significant compositional changes upon dietary fibre supplementation.

Gut microbiota profiles reveal bacterial community characteristics associated
with an athletic lifestyle and MVA reveals antibody response profiles associated
with diabetes or a history of smoking. Patients with periodontitis have a higher
antibody immune response to C-terminal epitope on EBV protein VP26.
Patients with CVD have a different antibody response profile according to
their periodontal background. A two-step classification of patients based on
MVA-delineated biomarkers allows to differentiate patients with ACS from
healthy controls. MVA-generated antibody response profiles allow to classify
patients with NT1 from controls and identify differentially targeted viral and self
epitopes, providing value for biomarker development and further research into
the mechanism of disease onset and progression.

Next generation phage display technology MVA is a useful tool for characterizing
the comprehensive antibody profiles of individual patients in a high-throughput
manner. MVA is a beneficial tool for exposome research as it can be used with
many different sampling materials, can be used in group- or individual-based
timeseries studies, and allows for different data analysis approaches for feature
selection and refinement.
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Abstract

Exploration of host-agent-environment interactions using
tools of metagenomic sequencing and next generation phage
display

The exposome refers to the totality of environmental exposures that an individual
experiences throughout their lifetime, including both external and internal factors.
It encompasses various elements such as air pollution, diet, lifestyle choices, chemicals,
stress, and socioeconomic factors. Studying the exposome allows for a comprehensive
understanding of how environmental factors contribute to disease development,
progression, and response to treatment. Understanding the exposome can provide
valuable insights into the underlying causes of diseases, help identify novel risk factors,
improve public health policies, and guide the development of personalized prevention
and treatment strategies. Advancements in computational technology have allowed to
gather and analyze increasingly larger datasets. The technological background of
exposome research involves the integration of diverse sampling procedures, advanced
omics, bioinformatics tools, and systems biology approaches. Here we used
metagenomic sequencing and next generation phage display-based Mimotope Variation
Analysis (MVA) to characterize the exposome in relation to health and disease. Firstly,
we identified compositional changes in the gut microbiome and discussed the links with
dietary fibre supplementation and sports performance. Secondly, we characterized the
immune response directed to commensal microbiota and based on these findings
proposed a two-step classification based on MVA-delineated biomarkers to differentiate
patients with severe heart conditions from healthy. Third, we characterized a positive
association between diagnosis of Pandemrix vaccine-induced narcolepsy and adverse
immune reaction to specific epitopes of self-antigens. Further, we discussed data analysis
aspects of studying the exposome, reviewing the benefits and considerations of using
MVA in exposome research. Overall, assessing the association between many exposures
and health still raises many experimental issues and data challenges, however, despite
its current limitations allows a more complete understanding of disease.
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Lihikokkuvote

Metagenoomi sekveneerimise ja jargmise polvkonna
faagidisplei kasutamine inimese eksposoomi kirjeldamisel

Inimene puutub oma eluea jooksul kokku paljude valiste keskkonna- ja sisemiste
bioloogiliste md&juritega, sealhulgas dhusaaste, toit, elustiilivalikud, kemikaalid, stress ja
sotsiaalmajanduslikud m&jurid. Eluea jooksul kokku puututud mdjurite ehk eksposoomi
koos uurimine voimaldab saada terviklikum Ulevaade sellest, kuidas inimest Umbritsev
elus ja eluta keskkond mdjutab haiguste avaldumist ja véljakujunemist ning ravile
allumist. Erinevate mojurite ja inimese omavaheliste interaktsioonide kirjeldamine
voimaldab paremini vialja selgitada haiguste tekkepdhjuseid, tuvastada uusi
riskifaktoreid, parendada Uhiskondlikku tervisepoliitikat, ja kiirendada
personaalmeditsiini arengut. Arengud arvutustehnoloogias on vdéimaldanud analiisida
jarjest suuremaid andmehulkasid. Eksposoomi uurimise raames kogutakse korraga
mitmeid keemilisi ja bioloogilisi proove ning taustandmeid, mida seejarel anallilisitakse
erinevate oomika meetodite (genoomika, transkriptoomika, proteoomika ja
metaboloomika), bioinformaatiliste tooriistade (sealhulgas masinOpet) ning
slisteemibioloogia analliisimeetodite abil.

Kdesolevate uuringute kaigus kasutati metagenoomi sekveneerimist ja jargmise
pblvkonna faagidisplei meetodil pdhinevat mimotoobi variatsiooni analiilsi (MVA), et
kirjeldada eksposoomi seoses inimese tervise ja haigusega. Esiteks tuvastati muutuseid
soolestiku mikrofloora koosluses peale kiudainelisandi manustamist ning arutleti nende
seose Ule sportliku sooritusega. Teiseks kirjeldati antikehalist immuunvastust inimese
kommensaalse mikrobioomi vastu. MVA-tuvastatud biomarkeritel p&hinev kahe-
etapiline hindamismeetodi vdimaldas eristada raske slidamehaigusega patsiente
tervetest. Kolmandaks kirjeldati positiivne seos Pandemrix vaktsiin-seoselise narkolepsia
ning kahjuliku, enese epitoopide vastu suunatud immuunvastuse vahel. Neljandaks
arutleti erinevate andmeanalitsimeetodite le ning kirjeldati MVA meetodi eeliseid ja
raskuskohti eksposoomi uurimisel. Bioloogiliste ja keskkondlike md&jurite koosmdju
uurimiseks tervisele on vaja veel lahendada mitmeid tehnilisi ja andmeanaliilisiga seotud
katsumusi, kuid hoolimata piirangutest vGimaldab eksposoomi uurimine saavutada
terviklikuma arusaamise inimese tervisest ja haigusest.
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of a Young Rower Engaged in
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" Protobios Llic, Tallinn, Estonia, 2 Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia

Food supplements are increasingly used worldwide. However, research on the efficacy
of such supplements on athlete’s well-being and optimal sports performance is very
limited. This study performed in junior academic rowing explores the effects of nutritional
supplements to aid to the high energy requirements at periods of intense exercise. Herein,
the effects of prebiotic fibers on the intestinal microbiome composition of an 18-year-old
athlete exercising at high loads during an 8-month period in a “real-life” setting
were examined using next-generation sequencing analysis. Results demonstrated that
although the alpha diversity of the subject’s microbiome drastically decreased [from 2.11
precompetition to 1.67 (o < 0.05)] upon fiber consumption, the Firmicutes/Bacteroidetes
ratio increased significantly [from 3.11 to 4.55, as compared with population average
(o < 0.05)]. Underlying these macrolevel microbial alterations were demonstrable shifts
from acetate- to butyrate-producing bacteria, although with stable effects on the
Veillonella species. To our knowledge, this a unique study that shows pronounced
changes in the gut microbiome of the young athlete at the competition season and their
favorable compensation by the dietary fiber intake. The data here expand the overall
understanding of how the high energy needs in high-intensity sports like academic rowing
could be supported by dietary fiber supplement consumption.

Keywords: microbiome, endurance sports, rowing, dietary fiber, athlete, junior, case study

INTRODUCTION

The microbiome contributes to thehomeostatic regulation of different tissues in our body (1)
with the largest and most diverse cluster of microorganisms inhabiting the gut (2). These core
functions are linked to the production of essential and extremely diverse metabolites such as
vitamins (vitamin By, folic acid, or vitamin K), bile acids, neurotransmitters (serotonin, dopamine,
acetylcholine), and short-chain fatty acids (SCFAs: acetic acid, propionic acid, and butyric acid) (3).
Diet and the level of physical activity are the main determinates for altering the gut microbiota (4).
Increases in bacterial diversity and a proliferation of taxa responsible for the production of SCFAs,
such as butyrate, are among the most pervasively observed microbial alterations with exercise (5).
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Dietary Fibers for Endurance

Athlete microbiomes have been found to contain distinct
microbial compositions defined by elevated abundance of
Veillonellaceae, Bacteroides, Prevotella, Methanobrevibacter, or
Akkermansia (6). Cardiorespiratory fitness in exercising subjects
was associated with higher abundance of butyrate-producing
bacteria by the Clostridiales, Erysipelotrichaceae, Lachnospiraceae,
and Roseburia families (7). Exercise type along with athlete diet
patterns (bodybuilders: high protein, high fat, low carbohydrate,
and low dietary fiber diet; distance runners: low carbohydrate
and low dietary fiber diet) was significantly associated with the
relative differential abundance of Faecalibacterium, Sutterella,
Clostridium, Haemophilus, Eisenbergiella, Bifidobacterium, and
Parasutterella in bodybuilders and distance runners (8). Variation
in genera was suggested to be linked to the variance in
species’ composition across different types of sports (9). So,
athletes participating in sports with high dynamic and static
component like academic rowing displayed greater abundance of
Bacteroides caccae (9). The effects of exercise on gut microbial
microorganisms were concluded to depend significantly on
its intensity and timing with the notion that the microbiota
could also influence muscle mass, as reported by Ticinesi et
al. (10). Excessive exercise among professional athletes disturbs
the homeostasis of the gut microbiota [reviewed in (7)].
Physical exertion at a very high level for a prolonged time
means that the whole body initiates a defense response because
of oxidative stress, intestinal permeability, muscle damage,
systemic inflammation, and immune responses (11). It has been
observed that endurance athletes present a high prevalence of
upper respiratory tract infections and gastrointestinal troubles,
including a “leaky gut,” disruption of mucous thickness, and
higher rates of bacterial translocation (12, 13). Overall, all
these studies suggest that the gut microbiome affects exercise
performance and vice versa.

Diet has a major impact on gut microbiota composition,
diversity, and richness. Dietary supplements that employ non-
digestible dietary fibers have been developed for several decades
as prebiotics to support growth of beneficial GI microbiota (14).
Dietary fibers can be found in plants, bacteria, and fungi and can
be chemically synthesized (15). The health effects of these dietary
fibers have extensively been reviewed and accepted worldwide
(14). It has been concluded that the extent by which different
fiber types are utilized or fermented by the GI microbiota is
structure dependent and relies on the metabolic capabilities of the
individual’s microbiome (16). Virtually, all fibers induce specific
shifts in microbiota composition due to competitive interactions;
however, which of these shifts contribute to health, or if at all,
is not known (17, 18). The commensal bacteria ferment non-
digestible fiber primarily into CO,, H,, and CH4 and SCFAs (19).
Most of the SCFAs produced in the intestine are absorbed by the
host to contribute to energy and beneficial metabolites (20) that
are also used as carbon and energy sources by other specialized
bacteria including reductive acetogens, sulfate-reducing bacteria,
and methanogens (21).

Multiple lines of evidence support the hypothesis that
modification of the microbial community through diet could be
an effective tool to improve athlete’s health (14) performance
and energy availability while controlling redox levels and

inflammation (22). Endurance diets are rich in protein (1.2—
1.6 g/kg/day), which produce a range of potentially harmful
compounds in the intestine in addition to SCFA productions
(22). There are only a few demonstrated studies in athletes
consuming prebiotics (23). Research has suggested the validity
of probiotics to improve training parameters and increase
training capabilities (24).

Nutritional supplements are popular among athletes to
improve performance and physical recovery. Long-term (10
weeks) protein supplement (whey isolate and beef hydrolysate)
consumption by cross-country runners, however, decreased the
presence of health-related taxa including Roseburia, Blautia, and
Bifidobacterium longum and increased the abundance of the
Bacteroidetes phylum (25). However, it appeared that protein
overconsumption was an offset by a higher intake of indigestible
polysaccharides (26).

Athletes with very high training and competition loads can
have serious problems getting the necessary amount of energy
from regular food. Clark and Mach (2016) reported that diets
recommended for athletes likely influence gut microbiota by
reducing diversity because these diets include insufficient dietary
fiber (27). In addition, a recent study showed that Veillonella
atypica has a beneficial impact on the performance of elite
athletes (6). Based on these findings, we decided to look for
dietary ways to increase beneficial bacteria for better athletic
performance and faster recovery, in particular considering
that nutritional supplements are popular among athletes. We
hypothesized that microbial profiles of the young rower might
share features of those previously described in endurance sports
studies but that this might change in response to the dietary
changes upon dietary fiber supplement intake.

MATERIALS AND METHODS

Case Presentation

At the time of the study, the male athlete was 18 years old and
was studied over the course of a 31-week period during the
2019 race and training season preceding the world championship
competition in U19 category of academic rowing. By this time,
the subject had been undertaking rowing for 4 years and
had not previously sought any conditioning or dietary advice.
Furthermore, the athlete was not on any prescribed medication
and was a non-smoker, and his usual diet was previously
supplemented with whey protein [SiS (Science in Sport) Limited
products] only. In the 7 months prior to the supplement intake,
the subject held a normal diet that was alike on a daily basis,
comprising mostly of meals that were high in carbohydrate and
protein, medium in fat, and modest in dietary fiber. The athlete
was fully informed of the study aims and confirmed participation
in the study by signing a consent form, understanding that the
parameters of health were not associated with the study and that
the subject was not physically harmed by the study. This study
was approved by Protobios (1-05/2019).

Goals of the Study

The primary goals of the support provided were to (a) get insights
into the subject’s intestinal microbial community during periods
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FIGURE 1 | Training program undertaken throughout the study period. Electronic exercise diary (www.sportlyzer.com) was kept for water and ergometer training
hours throughout the study period. On the left y-axis—training load in minutes per week, min/week (Rowing on the Water and Indoors); on the right y-axis —distance
in meters per week, m/week (Competition/m); on the x-axis—duration of the study period in weeks. Samples for microbiome analysis were taken at weeks 1, 27, and
31. On water, training on the water; Indoors, training on rowing ergometer; Competition, competition calendar of the rower.

of high exercise and (b) examine the effects of dietary fiber intake
to the bacterial compositions associated with energy production.

Diet and Activity Recordings

and Microbiome Sampling

The participant was informed to maintain the usual dietary
habits throughout the study. Body composition estimates were
made preseason (sample #1) and post study (sample #3) with
no substantial change (BMI 23.3 £ 0.2, fat percentage of 8.4
+ 0.0) according to the medical sports health survey records.
Based on diet recall, the usual macronutrient intake was assessed
using image-based dietary assessment software (NutriData,
National Institute for Health Development, Estonia). We used
this tool to ascertain the usual eating patterns of the subject
including type, frequency, and amount of foods consumed.
Foods consumed were matched to the nutritional analysis for
the specific menu items that had been coded in NutriData. If
not consumed from the menu, the item was coded against the
most appropriate matching food. On average, across the study
period, the athlete consumed 2,560 + 750 kcal/day, and the
estimated macronutrient intake was 23 &+ 7.12% protein, 52
+ 19.1% carbohydrate, 26 4 19.3% fat, and 15 & 4.5¢g fiber.
The consumption of the nutrient supplement (Food, not only
for thought, Elsavie, Estonia) started on week 27 and continued
on a daily basis until week 31 (altogether 30 days), with intake
immediately after breakfast, and the recommended daily intake
[1.5 tablespoons (1.5 tbsp/20g) mixed with water] was not
exceeded. The dietary supplement provided to the participant as
the prebiotic mix (20 g) included dietary fiber (8.79 g), consisting
of resistant starch (2.25g), arabinoxylan (2.05g), citrus fiber
(2 g), beta-glucans (1.03 g), inulin (1.03 g), and rye fiber (0.57 g).
The athlete kept the training diary in Sportlyzer (Sportlyzer,

Estonia). The 31-week high-training and intensive competition
program is presented in Figure 1. The mean physical activity
(8 months duration) of the subject during the study was 472
min/week of water rowing, 354 min/week of indoor rowing,
and 60 min/week of stretching exercises (Figure 1). Since the
time the first microbial sample (#1) was taken, the subject was
participating in a series of national and international competition
activities including five international and 11 local competitions
(53.25km total of total race distance) following the planned
program as in Figure 1. The second sample (#2) was taken at
week 27, by the end of the water season and at early weeks of the
indoor rowing season. Thereafter, the subject began to take the
dietary fiber supplement as recommended for 30 days. A third
sample (#3) was taken at week 31. The seasonality of sampling
was spring (#1), autumn (#2), and winter (#3), respectively.

Microbiome Assessment

Microbiome composition was determined on three occasions
(week 1, week 27, and week 31, Figure 1). Samples were self-
collected from morning stool samples by using the commercially
available kit (INTEST.pro, BIOMES NGS GmbH, Germany) in
accordance with the specifications laid out by the manufacturer.
The first two samples were taken at normal nutrition (at the
start of and after the active competition period), followed
by 1 month of dietary supplement intake to investigate the
dynamics of the intestinal microbiome and the effects of the
fiber supplement on the microbiota. Collected samples were
transported to the lab according to the service provider’s
instructions where the microbiome composition was analyzed
via 16S rRNA gene amplification and sequencing by BIOMES
NGS GmbH (Germany). In brief, microbial genomic DNA from
fecal material was extracted by the bead-beating technique,
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the V3-V4 region of the 16S rRNA gene was amplified, and
sequencing was performed on the Illumina MiSeq platform using
a 2 x 300-bp paired-end protocol (Illumina, San Diego, CA,
USA). These DNA sequencing techniques were then used to
generate data outputs that provided a comprehensive bacterial
taxonomic profile of the subject (28) in comparison with the
average microbiome of the European population as the evidence
indicates that microbiome may vary by geography (29).

Data Analysis and Statistics

Different packages of MS Excel (based on MS Excel 2011) and
licensed MedCalc (version 19.1.6) statistical analysis programs
were used for taxonomic, functional analysis, and visualization
of bacterial composition data obtained from microbiome
sample study reports. Spearman’s correlation coeflicients ry were
calculated for comparing abundances of genera at two time
points. Statistical significance of differences of Shannon’s indices
(a-diversity) across time points was assessed using Hutcheson’s
modified t-test with a significance level of p < 0.05. Statistical
significance of differences between the athlete’s characteristics
and the control group (general population) was assessed using
the single mean f-test with a significance level of p < 0.05.
Relative abundance values of bacteria on genus and species level
at different time points were compared using non-parametric
Wilcoxon rank sum tests (also named the Mann-Whitney
U-test or Mann-Whitney-Wilcoxon test) with a significance
level of p < 0.05.

RESULTS

General Diversity, Phylogenic Composition,
and Core Gut Microbiota of the Athlete

The Shannon index indicating the diversity of bacterial families
present in the samples of the subject ranged from 1.67 to 2.11
(Figure 2). At the beginning and end of the training period,
the Shannon indices were similar (2.11 and 2.08, respectively),
concluding that the microbiome diversity did not change
significantly at times of high competition (Hutcheson’s modified
t-test, p-value > 0.05). After the dietary fiber mix intake, the
Shannon index dropped to 1.67 with a significant decrease in
community diversity (Hutcheson’s modified t-test, p-value <
0.05). The Shannon index of the control group was 1.63 (data
not shown).

The evenness of the distribution of species in communities
showed that at high exercise, microbiome uniformity indices
were similar (J1 = 0.54 vs. J2 = 0.53), whereas, after the fiber
intake, / showed a substantial drop (to J3 = 0.42). Although,
also the evenness values of the microbiota were the lowest after
the fiber mix diet (changed from 0.53 to 0.42), the statistical
significance of the reduction could not be concluded. The
uniformity index for the control group was J = 0.41. These
data allowed us to conclude that at the family level, the athlete’s
microbiome at high training and competition loads (samples
#1 and #2) were more diverse and more balanced (even) than
after the dietary fiber consumption (sample #3). Intense exercise
accompanied by a high intake of dietary fiber did not lead to the
increased diversity of gut microbiota as was initially expected.
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FIGURE 2 | Changes in the microbiome diversity over time and drastic effects
on its relative diversity within bacterial families upon the dietary fiber
consumption. The Shannon index expressed as a measure of the incidence
and frequency of bacterial families in the test samples, ranged from 2.11 (#1)
to 2.08 (#2), which was not a statistically significant difference (p-value > 0.05,
Hutcheson’s modified t-test, denoted ns—not significant). One month after
consumption of the fiber mixture, the Shannon index dropped to 1.67, which
was a significant decrease in the family diversity values (p-value < 0.05,
Hutcheson’s modified t-test, denoted by *). Error bars represent 95% Cl for the
calculated Shannon index. y-axis—Shannon index, without units.
x-axis—sampling times. #1, time point week 1 (baseline); #2, time point week
27 (high training and competition period); #3, time point week 31 (after 30
days of dietary supplement intake).

As for the phylogenic composition, a total of nine phyla were
present in all the samples with the dominance of Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria (Figure 3). The
Firmicutes [67.8 & 6.2 (mean abundance across three time points
=+ SD)] outranked Bacteroidetes (18.0 = 1.8), Actinobacteria (8.8
=+ 1.7), Proteobacteria (2.7 4 1.6), Verrucomicrobia (1.6 4 1.2),
and Cyanobacteria (1.0 & 1.4) phyla. Dietary fiber consumption
had a positive effect on the abundance of Firmicutes (+20%),
whereas, it showed drastic negative effects on Verrucomicrobia
and Cyanobacteria, whose drop in abundance was almost 100%,
and on Proteobacteria, Bacteroidetes, and Actinobacteria that
declined by 75, 18, and 13%, respectively (Figure 3B). Analysis
of Firmicutes/Bacteroidetes (F/B) ratio values showed relative
stability during the study, where during the intense competition
period, the reduction in Firmicutes [changing the F/B ratio by
17.9% (from 3.78 to 3.11)] was rescued upon fiber consumption
by increases in abundance by 20% and resulting in the F/B
ratio of 4.55 (Figure 3C). Compared with the control group,
the F/B ratio of the athlete was significantly higher in all
time points (¢-test of one mean, p-value < 0.05, Figure 3D).
Altogether, these results showed that dietary fiber along with
high exercise loads affected the phylogenic composition by the
microbiome of the athlete becoming relatively poorer at the
phylum level. Overall, these results were in good agreement
with data showing that training promoted relative increases in
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Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, and Cyanobacteria) in three serial samples (x-axis). y-axis—abundance of phyla, in relative units. (B)
Proportional changes in the abundance of the six major phyla upon fiber consumption. The abundance of each phylum in sample #2 was equated to 100%, and the
change in sample #3 relative to sample #2 is indicated above the columns. y-axis—relative abundance (%) of phylum in samples #2 and #3; x-axis—phyla. (C)
Changes in F/B ratio over the 31-week study period, measured at three serial time points (x-axis). y-axis—F/B ratio. (D) The young athlete showed a high F/B ratio as
compared with the control group (single mean t-test, p-value < 0.05, denoted by *). The bar graph represents the arithmetic mean of the F/B ratio in study samples
and the error bars represent the standard deviation. y-axis—F/B ratio. #1, time point week 1 (baseline); #2, time point week 27 (high training and competition period);
#3, time point week 31 (after 30 days of dietary supplement intake).

Firmicutes (30, 31) and that F/B ratio correlated significantly with
cardiorespiratory fitness (32).

Opposite Dynamics of Butyrate-Producing
Bacteria in Periods of Competition and
Upon Dietary Fiber Intake

The relative abundance of 77 genera, of which 29 were shared
across all samples, was significantly different between samples
(p-values < 0.05, Wilcoxon rank sum test, Figure 4). At the
genus level, Prevotella [11.7 £ 2.1 (mean abundance across
three time points £ SD)], Faecalibacter (5.1 + 1.8), Blautia
(54 £ 1.2), Ruminococcus (3.8 + 2.8), and Bifidobacterium
(5.0 £ 3.8) were the most abundant genera (Figure 4). The
predominance of Prevotella compared with the families of
Bacteroides and Ruminococcus indicated that the subject
had Prevotella-predominant enterotype, e.g., enterotype II
(Figure 4A). Prevotella’s abundance was associated with

long-term fiber intake (33).Similar trends were noted also
in the current study whereupon dietary fiber intake resulted
in enhanced abundance of Prevotella that became 41.7%
more abundant as compared with the previous time point
(Figure 4A). It is known that extreme dietary changes can
lead to wide-ranging shifts in the gut bacterial community
(34). Herein, the relative abundance of the acetate-producing
bacteria (e.g., Blautia, Bifidobacterium, Sutterella groups)
and the lactate-producing bacteria (e.g., Bifidobacterium,
Streptococcus, Lactococcus groups) increased during high
training and competition period (sample #1 vs. #2), but showed
decreasing patterns (except Blautia) by the end of the dietary
supplement intake period when acetate- and lactate-consuming
and butyrate-producing genera including Faecalibacterium
increased significantly (sample #2 vs. #3, p-value < 0.05,
Wilcoxon rank sum test, Figures4B,C). Interestingly, the
propionate-producing genera (35) showed differential patterns.
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Bacteroides and Acidaminococcus showed increasing trends in
contrast to Phascolarctobacterium and Veillonella that decreased
upon competition, with only the levels of Veillonella slightly
rescued upon fiber consumption (Figures 4B,C).

The abundance of the shared largest 29 genera was better
correlated in samples #1 and #2 (Spearman’s correlation
coeflicient ry = 0.87) as compared with that in samples #2 and
#3 (rs = 0.76, Figure 4D). However, the strongest correlation in
abundance of these major genera was observed between baseline
and endpoint (samples #1 and #3, ry = 0.92). This result was
somewhat surprising. Similar to other studies (36), we also noted
strong patterns of individuality of the response to exercise and
diet, with a possible explanation that these activities supported
the original (primary, “keystone”) bacterial community dynamics
of the subject.

Taken together, high exercise along with dietary fiber intake
resulted in dynamic shifts in genera composition especially in the
balance of lactate- and acetate/butyrate-producing bacteria.

Selective Effects of the Dietary Fiber
Supplement on Individual Species
of the Gut Microbiota

Next, we compared the mean relative abundance of 32 individual
species to identify those that were the most affected by the
dietary switch. Among the studied species, the six most abundant
bacterial species (Prevotella copri, Faecalibacterium prausnitzii,
Akkermansia  muciniphila,  Bifidobacterium  adolescentis,
Coprococcus eutactus, Collinsella aerofaciens) accounted for
92.5% on average of the abundance of the top species. For most
of these analyzed species, a notable variation was associated both
with the intense exercise loads and the dietary fiber consumption
(Figure 5). Interestingly, A. muciniphila (Verrucomicrobia) that
produces both propionate and acetate (37, 38) showed decreased
proportions upon fiber consumption and was replaced by the
abundance of the butyrate producer C. aerofaciens (Figure 5A).
Another major shift upon fiber consumption was noted in
the abundance of C. eutactus with known beneficial effects
on butyrate production (39). However, the abundance of 12
species attributed with a protective role on the intestinal mucosa
reduced significantly after dietary fiber intake (p-value < 0.05,
Wilcoxon rank sum test), from on average 50.4 to 33.5% of
abundance of the detected species (Figure 5B). Herein, two of
the five species which were among the most significantly affected
were the Bacteroidetes spp. Also, the species of Akkermansia,
Bacteroides, Bifidobacterium, and Ruminococcus with protective
functions on the intestinal mucosa showed a significant decrease
upon fiber intake, whereas, F. prausnitzii, one of the major
manufacturers of butyrate, showed increased abundance
upon dietary fiber (Figure 5B). Veillonella dispar species were
specifically monitored because of their potential impact on
performance enhancement as a lactic acid-utilizing community
(6). Although, changes in V. dispar abundance during periods
of high exercise load and dietary fiber intake were detected, the
statistical significance of these findings could not be determined
(Figure 5C). It is noteworthy that the number of V. dispar in
the microbiome of the young athlete was significantly higher

than of the control group (Figures 5C,D, single mean t-test,
p-value < 0.05). The observed changes in the abundance of
bacteria producing SCFAs associated with energy consumption
of the skeletal muscle (40) supported the initial work hypothesis
that dietary fiber intake could facilitate athletic endurance by
favorable shifts in microbial composition.

DISCUSSION

This work investigated the effects of dietary fiber supplement on
the microbiome of the young rower at high-intensity exercising
loads. Several consistent patterns in the gut microbiota were
observed. First, the shifts induced by high exercise and dietary
fibers were restricted to a limited number of phyla and genera,
but were remarkable at the species level contributing to energy
production. Second, the magnitude of change in microbial
alpha diversity upon fiber consumption was drastic, constituting
a 20.3% drop in diversity, by substantially enhancing the
Firmicutes/Bacteroidetes ratio. Third, as suggested previously (41,
42) but now confirmed by this longitudinal case study, microbial
response to dietary fiber consumption included the keystone
species of the individual.

Our data showed that fiber consumption at high exercise loads
led to decreased alpha diversity of the gut microbiota (Figure 2).
Recent findings suggest a dynamic positive relationship
between gut microbiota diversity and physical activity as
professional athletes exhibit more diverse composition [ref (43)].
Paradoxically, in our study, there was a significant drop in alpha
diversity upon dietary fiber consumption, most conceivably
due to the rise in select advantageous bacterial species, such as
those involved in butyrate production (Figure 5). Overall, these
data support the view (44) that complex fibers of the dietary
mix are highly selective for specific bacteria. It has become
clear that animals can get by and often have high fitness with
low-diversity microbiota (45, 46). Also, high gut microbial
diversity has been linked to longer colonic transit time and
systemic circulation of potentially harmful protein degradation
products (47). Therefore, interpreting the health of the athlete’s
gut based on alpha diversity values of the microbiome implies a
personal approach.

We observed a strong association between exercise loads,
fiber intake, and F/B ratio (Figure 3), in good agreement with
previous findings (48, 49). The proportional composition of the
phyla clearly differentiated the subject from the matched control
cohort with the abundance of Firmicutes and Prevotella. The
Prevotella enterotype is supported by the diet of the subject in
good support with earlier findings (50, 51). The dietary fiber
intake has a limited influence on the communal stability of the
latter two as compared with the baseline (Figure 3). However,
dietary fiber intake resulted in enhanced abundance of Prevotella
and Roseburia that became 41.7 and 4.2% more abundant,
respectively, as compared with the time point of high competition
(Figure 4). A recent in vitro study elucidating the mechanism of
action of select dietary fibers on gut microbiota found that beta-
glucan from oats induced the growth of Prevotella and Roseburia
with a concomitant increase in SCFA propionate production (52).
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This study also showed that non-digestible sugars like inulin and
oligosaccharides increase SCFA levels (52). Thus, our data allow
concluding that non-digestible carbohydrates of the dietary fiber
supplement promoted the growth of beneficial microorganisms

for the performance of the athlete. In addition, there was less
Actinobacteria (Figure 3), in harmony with previous studies (53).
Interestingly, P/A was found to be <1 for all samples (0.5, 0.3, and
0.1), suggesting that decreased abundance of the Proteobacteria
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FIGURE 5 | Changes in composition of the 32 most abundant bacterial species during the study period. (A) Dynamic changes in the abundance of observed species
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was linked to high exercise loads [see also (54)]. Of note,
Proteobacteria are a major group behind the gut’s metagenome
functional variability (55).

Furthermore, we observed opposite dynamics of lactate- and
acetate/butyrate-producing bacteria in periods of competition
and upon dietary fiber intake, supporting the mechanism where
during exercise the gut supplies lactate (56) and acetate (57)
as fuel energy source (58). Though, generally fiber tends to
increase SCFA-producing bacteria such as Bacteroidetes and
Actinobacteria and decrease Firmicutes (59) as also observed in
our study, whether it is a direct cause or because of changes in
training and competition routine (outdoor vs. indoors rowing)
along with dietary fiber intake that might have changed the
metabolism needs further evaluation.

Our data show that high-endurance exercise and a
prebiotic fiber-supplemented diet resulted in significant
shifts across the key genera. We found that seven genera, namely
Prevotella, Parabacteroides (Bacteroidetes), Faecalibacterium,

Ruminococcus, Coprococcus, Lachnospira (Firmicutes), and
Corynebacterium  (Actinobacteria), were reduced upon
high exercise loads, but the levels of these were restored
upon dietary fiber consumption. These findings suggested
that these seven genera affected primarily the levels of
acetate and propionate available to the host. Both of these
SCFAs are the known substrates for energy production, as
well as in skeletal muscle (60, 61). In contrast, six genera,
namely Streptococcus and Dialister (Firmicutes), Bacteroides
(Bacteroidetes), Bifidobacterium (Actinobacteria), Akkermansia
(Verrucomicrobia), and Sutterella (Proteobacteria), were
specifically stimulated at high exercise loads, but inhibited by
dietary fiber intake. These findings suggested higher butyrate
production upon dietary fiber consumption with also potentially
ameliorative effects on gut mucosal inflammation and oxidative
status (62, 63). Elite athletes’ dietary plans are based on the
consumption of certain micronutrients, but the health of the gut
microbiota is rarely considered (27). Here, we show that despite
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the individual features of the microbiota composition of the
athlete, exercise-driven prevalence of acetate- and propionate-
producing species was flexibly switched to butyrate producers
after dietary fiber intake.

Baseline bacterial composition has repeatedly been observed
to be a key factor of changes in the gut microbiota following
dietary interventions (17, 36). What was noticeable upon dietary
fiber consumption by the athlete was the increase in taxa, such as
F. prausnitzii, with known beneficial effects on muscle function
(15). However, in contrast to the published studies, we found
that while having a positive effect on bacterial families associated
with athletic excellence, fiber intake had detrimental contracting
effects on the overall microbial community. This was surprising
although in concordance with the notions that the host might
lack keystone species (64) or lack strains to utilize specific dietary
fiber (65). It is expected that the microbiome reverts to its original
state after short-term dietary interventions (33, 34), although,
positive impacts on the gut microbiota could be maintained for
at least a year (12).

Strengths

The major strength of the study was that it was conducted in
“real-life” scenario as the temporal dynamics of the athlete’s
microbiota was explored by combining high-endurance exercise
specifically with the athlete-designed dietary fiber supplement.
The benefits of this study may lead to new insights into
the cumulative effects a particular physiological interference
has on the gut microbiome, that is on the role of the
host’s enterotype (with defined keystone species) has on the
covariation of microbial communities upon dietary shifts and
at high exercise loads. Finally, this is an individual athlete’s
study, and as such, it does not allow to draw solid and
supportive conclusions. The value of the study lies in the
aspect that overall variability in the physiological response
of athletes to training and nutrition has not yet been
adequately explored.

Limitations

Firstly, it was not possible to fully control dietary intake,
although, the participant was instructed to maintain
normal habits. Secondly, the study did not examine the
causal relationship between exercise performance and the
gut microbiota of the athlete, although, a high number
of intestinal bacteria of the Veillonella family that would
be of advantage to the athlete were observed. Also,
recording of metrics inflammation and immunosuppression
could have helped to examine the microbial gut stress
levels of the athlete. Finally, given that microbiome
sequencing had a limited capacity to resolve taxa to
the species level, therefore, the study focused on the
proportionally largest reservoir of multiple species’ diversity
and functionality.

CONCLUSIONS

Testing the microbiome of young athletes is necessary to obtain
information on the dynamics and composition of this activity

during the training process and at competition. At high levels
of endurance exercise, athletes may have serious problems
getting the amount of energy they need, so taking supplements to
increase or to recover gut microbiota diversity at times of physical
exertion is highly recommended. Our observations suggest that
the dietary fiber-supplemented diet produces pronounced
changes in the gut microbiota of the subject with high fractions
of Bacteriodetes (Prevotella). This fact solely could be used to
stratify athletes by their baseline gut bacterial composition before
assigning such a fiber-supplemented diet. We evidenced that
high dietary fiber intake at high exercise loads might produce
profound changes beneficial to human health. Establishing the
causal role of the GI microbiota and the underlying mechanisms
would remain essential for the development of improved
next-generation personal nutritional strategies. Only this type
of in-depth understanding will allow for the selection of dietary
fibers (or) mixtures thereof, to systematically target specific
features of the GI microbiome (i.e., specific taxa, diversity,
metabolites) with the goal of alleviating the immunometabolic
features (frequently dysbiotic) that are characteristic
of athletes” gut.
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Cumulative evidence over the last decades have supported the role of gum infections as a risk
for future major cardiovascular events. The precise mechanism connecting coronary artery
disease (CAD) with periodontal findings has remained elusive. Here, we employ next gen-
eration phage display mimotope-variation analysis (MVA) to identify the features of dys-
functional immune system that associate CAD with periodontitis. We identify a fine
molecular description of the antigenic epitope repertoires of CAD and its most severe form -
acute coronary syndrome (ACS) by profiling the antibody reactivity in a patient cohort with
invasive heart examination and complete clinical oral assessment. Specifically, we identify a
strong immune response to an EBV VP26 epitope mimicking multiple antigens of oral biofilm
as a biomarker for the no-CAD group. With a 2-step biomarker test, we stratify subjects with
periodontitis from healthy controls (balanced accuracy 84%), and then assess the risk for
ACS with sensitivity 71-89% and specificity 67-100%, depending on the oral health status.
Our findings highlight the importance of resolving the immune mechanisms related to severe
heart conditions such as ACS in the background of oral health. Prospective validation of these
findings will support incorporation of these non-invasive biomarkers into clinical practice.
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oronary artery disease (CAD) is the leading cause of

morbidity and mortality worldwide! caused by metabolic

disorders in lipid oxidation promoting inflammatory
alterations on the endothelium?? and culminating in plaque
rupture®>. The heritability of CAD and its familial clustering are
well established®. Genome-wide association studies (GWAS) have
identified a number of causal CAD-associated genes and loci’.
These findings highlight the largely polygenic nature of the
inheritability of CAD®?, rendering some individuals more sus-
ceptible or resilient to developing atherosclerosis!’. CAD has
been associated with the unhealthy lifestyle placing it among
“immunoinflammatory” diseases'!. While remarkable progress
has been made in understanding the mechanisms of atherogen-
esis as robust methods of identifying high-risk atherosclerosis via
genomics and imaging are at hand, highly sensitive and specific
biomarkers for CAD have remained elusive. Importantly, as
much as 30% of control populations are thought to unknowingly
include subjects with CAD, impacting power and accuracy of
clinical biomarker studies'?-14,

Periodontitis, a major oral dysbiosis-driven inflammatory dis-
ease, is associated with increased risk of atherosclerotic cardio-
vascular diseases!>. Up to 700 bacterial species have been
identified in the oral cavity (Human Microbiome Project Con-
sortium). Intriguingly, DNA of periodontal pathogens (e.g., Por-
phyromonas gingivalis) and live bacteria have been detected in
atherosclerotic lesions!®-18. The microbial composition of gut
microflora of patients with CAD has been found to be more
inflammatory than in healthy patients'®. Similarly, the oral
microbiome of CAD patients may be altered?). Host-microbe
interaction in the periodontium can initiate or even aggravate
atherosclerotic processes through the activation of innate
immunity, bacteremia, and direct involvement of cytokines and
inflammatory proteins of oral microbiota?!=23.

Recent research suggests that abnormal changes to the gut
microbiota flora may also contribute extensively to the progres-
sion of CAD?%. As the microbiome plays a central role in the
balance between immune activation and immune tolerance?” and
in the light of dysbiosis in microflora, it is no surprise that
atherosclerosis has a strong autoimmune componentz". First,
CAD risk locus includes the major histocompatibility complex
(MHC) containing a dense cluster of genes involved in inflam-
mation, immunity, and self-recognition?-?”. Furthermore, a
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depletion of T or B cells leads to an attenuation of
atherosclerosis?2. Although T cells seem to be essential, B cells
and antibodies play an accelerating and perpetuating role?3. Thus,
atherosclerosis is a chronic inflammatory disease with an auto-
immune component?®. Antibodies against oxidized low-density
lipoproteins (oxLDL) positively correlated with the disease®®.
Besides oxLDL/ApoB, heat shock proteins (HSPs) and some
foreign peptides from pathogens including cytomegalovirus
(CMV), hepatitis C virus (HCV), HIV, human papillomavirus
(HPV), and others have been proposed as atherosclerosis-
relevant antigenszg. However, the relation between antibodies
and atherosclerotic disease burden and progression has remained
unclear.

Here we used MVA3031, an unbiased, high-throughput, com-
prehensive approach based on next-generation phage display, to
identify biomarkers of periodontal conditions associated with
stable coronary artery disease and progression to acute coronary
syndrome.

Results

Shared immunoreactivity to epitopes linked to periodontal
pathogens. We used MVA immunoprofiling analysis of sera
samples of 96 individuals from the Corogene cohort®? to identify
peptide antigens related to antibody immune response in peri-
odontal disease and CAD. Characteristics of the subjects
according to their CAD and periodontal status are presented in
Fig. 1 (Fig. la, Supplementary Table S1). Within the cohort, the
proportion of ex- or active smokers was significantly higher in
patients with periodontitis than in the rest of the cohort (Chi2,
p<0.01, Supplementary Table S1, Fig. 1b, Supplementary
Fig. S2).

Altogether we identified 14.5 million distinct peptide epitopes
from the MVA immunoprofiles across the whole study cohort
and converged these to 8088 most abundant and shared antigenic
epitopes by clustering analysis (Supplementary Fig. S$3). Given the
gum disease background of the samples334, we first examined
whether we could detect from the immunoprofiles of the study
samples the immunoreactivity to the 7 most common periodontal
pathogens (Porphyromonas gingivalis, Tannerella forsythia, Pre-
votella intermedia, Fusobacterium nucleatum, Campylobacter
rectus, Aggregatibacter actinomycetemcomitans, and Porphyromo-
nas endodontalis). Data analysis showed that antibody response

50 Chi? test, p <0.01 Smoking
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Fig. 1 Characteristics of the clinical cohort. a Subjects divided in three groups based on CAD diagnosis (no-CAD, stable-CAD (s-CAD), or ACS). Total,
size of the group. Each of the three CAD groups included subjects with different periodontal health diagnosis: periodontally healthy (H), patients with

gingivitis (G) - a transient gum inflammation -, or patients with periodontitis (P). N, size of the sub-group. b Significant association between periodontal
diagnosis and smoking is observed in the study cohort. Frequency distribution graphs of subjects (n=96) in groups with coronary artery health condition
(no-CAD, stable-CAD, or ACS) or periodontal condition (H, G, P). Statistically significant difference in prevalence of cigarette smoking was observed in

periodontal condition groups, being highest among the periodontitis group

subjects, but not within CAD groups (Chi? test, p value < 0.05, n=96

independent subjects). x-axes - clinical subgroups; y-axes - number of subjects; color-fill - yes, active cigarette smoker (orange); ex-smoker, has quit cigarette

smoking (yellow); never, no history of cigarette smoking (blue).
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to antigens of P. gingivalis and A. actinomycetemcomitans was
the highest, whereas F. nucleatum antigens were on average
significantly less recognized (Mann-Whitney U, ****p <0.0001,
two-sided) (Fig. 2a). By analyzing the sequences of the bacterial
antigens, several dominant core epitopes shared by these antigens
were identified, among which multiple types were derivatives of a
common signature P.T.[P][R] (Types 2, 4 and 5), Fig. 2b,
Supplementary Table S2). Interestingly, P..T.[P][R] patterns (i.e.,
Type 2, 4, or 5) were present in 45% and 30% of P. gingivalis and
A. actinomycetemcomitans immunodominant antigens, respec-
tively, whereas only 10% among F. nucleatum antigens (Fig. 2c).
Shared antibody response patterns to bacterial antigen epitopes
(target types, clustering on left) were observed as specific for
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certain clinical heart and dental conditions (grouping on top)
(Fig. 2d, Supplementary Fig. $4). Notably, the majority of subjects
(5/9) with high immune reactivity to these pathogenic period-
ontal bacteria (indicated with dots under intensity plot) belonged
to the no-CAD group (Fig. 2d, Supplementary Fig. S5). Overall, in
subjects (n=9) with the highest immunoreactivity to these
pathogens, P.T.[P][R] containing-epitopes (Types 2, 4, and 5)
were the most prevalent and on average recognized at higher
levels as compared to epitopes of Type 1 and 3 (Fig. 2e).
Altogether, these data showed that immune response against a
dominant core epitope P..T.[P][R], which was associated with
common pathogenic oral bacteria, correlated with a differential
risk of ACS.
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Fig. 2 Shared immunoreactivity to epitopes linked to peri pat ted by MVA from immunoprofiles of the study cohort. Group-wide
top 8088 epitopes from the MV A immunoprofiles were aligned onto proteomes of the most common periodontal pathogens (n = 7). Based on how many
epitopes aligned and how enriched were the epitopes in MVA immunoprofiles for individual sample separately, top 40 fragments with highest alignment
loads were selected per pathogen. a Antibody response to top 40 antigens for P. gingivalis and A. actinomycetemcomitans was the highest, whereas antibody
response to F. nucleatum antigens was found to be low. Pair-wise Mann-Whitney U, two-sided, ****p < 0.0001, p values not adjusted for multiple
comparisons. y-axis - alignment load, representing how many MVA immunoprofile epitopes aligned onto protein sequences and how abundantly were they
seen in MVA immunoprofiles (in log2). b Unsupervised clustering identified most abundant epitopes with consensus sequences from alignments on target
fragments. Type T: KP.L in 1033 fragments; type 2: P.T.[PIR in 833 fragments; type 3: N[STIF.K in 421 fragments; type 4: PLAYSJ[LIITA.[REQ][GT][LDK] in
150 fragments; type 5: PQIDNIT[RIVIP[IMIRI[GRTI[MRK] in 107 fragments. Outline - type 2, 4, and 5 epitopes share similar core pattern P.T.[P][R].
¢ Proportions of antigenic epitope types across the antigens of the seven periodontal pathogens. y-axis - proportion (%) among top 40 antigen fragments
(cumulative), data labels on bars - proportion (%), x-axis - oral pathogen species, target type (fill color) - epitope pattern type (from sequences in b).

d Shared antibody response patterns to bacterial antigen epitopes (target types, clustering on left) were observed as specific for certain clinical heart and
dental conditions (grouping on top). Immunoreactivity profiles against top 40 antigens in F. nucleatum, P. gingivalis, and A. actinomycetemcomitans are shown.
Profiles were clustered row-wise according to epitope types (type, sequences in b). Subjects (in lanes) with highest immunoreactivity to top antigens
(Supplementary Fig. S5) are marked with asterisks (*) under intensity plots. Vertical lanes - individual samples (n = 96), categorized based on CAD (no-
CAD, s-CAD, ACS) and periodontal diagnoses (periodontally healthy (H), gingivitis (G), periodontitis (P)); rows - each row represents a distinct 20-aa
antigenic region of protein primary sequence; blue color-scale - intensity of blue represents the alignment load of individual sample; target type - epitope
type (sequences in b). e Distribution of subjects with low (n=87) or high (n=9) immune response (by Supplementary Fig. S5) to different targeted
epitopes. Taken together, Types 2, 4, and 5 were more common to high-response subjects, as compared to other target types. Pair-wise Mann-Whitney
U, two-sided, ****p <0.0001, p values not adjusted for multiple comparisons. y-axis - alignment load in log2, response - high-response subjects (n=9) or
low-response subjects (n=87), type - target epitope type (sequences in b).

Different clinical groups share common features in the
immunoprofiles. Given the findings that the immune response
against oral pathogenic bacteria was associated with the clinical
diagnosis, we next analyzed the difference of immune response to
each of the 8088 epitopes in CAD or periodontal disease groups
using ROC analysis with specific criteria: sensitivity > 50% and
specificity > 70%, Kruskal-Wallis test p < 0.05. Clustered analysis
based on sequence similarity arrived at 62 group-differentially
targeted epitope clusters with shared core patterns (Supplemen-
tary Fig. S6, Supplementary Table S3). When we correlated the 62
epitope clusters based on average abundances in clinical diagnosis
groups, clusters with similar response patterns were seen group-
ing together (Fig. 3a). Pearson correlation-based analysis united
the 62 clusters further into five major epitopes (A to E), where the
largest epitope A shared the core pattern P.T.PR (Fig. 3b, c,
Supplementary Fig. S7). The epitope pattern P.T.PR includes
P.T.[P][R], the one also observed as predominant among peri-
odontal pathogens (Fig. 2b, Supplementary Table S2). We found
that differential antibody response patterns against epitopes A to
E were diagnosis group-specific (Fig. 3a, b, Supplementary
Figs. S7 and S8). Specifically, stronger response to epitope A was
specific to periodontitis and no-CAD cohorts (red outline),
whereas stronger response to epitope B was detected in period-
ontitis and smoking subgroups (green outline) (Fig. 3a, b, Sup-
plementary Fig. S8a, b). Stronger antibody response to epitope C,
on the other hand, was characteristic to periodontally healthy
patients but with an ACS diagnosis (blue outline), epitope D was
more targeted in subjects with gingivitis (yellow outline), and
epitope E in subjects with gingivitis but not in CAD (pink outline)
(Fig. 3a, b, Supplementary Fig. S8c-e). In conclusion, these five
major epitopes (A-E) were targeted by the strongest and differ-
ential antibody response across diagnosis groups.

Microbial mimicry of the P..T.PR core epitope that is common
to periodontitis encompasses the highly antigenic epitope of
EBV VP26. Our analyses highlighted a strong response to epitope
A with the core pattern P.T.PR (Figs. 2d, 3c), which we have
previously mapped to EBV VP26 protein encompassing 153-
176223031, When aligning all individual MVA immunoprofile-
derived peptides of the current study cohort to the primary
sequence of EBV VP26, we observed that subjects within the
periodontitis group exhibited high immunoreactivity to this

C-terminal epitope (Mann-Whitney U, *p<0.05, two-sided,
Fig. 4a, b). Independent validation was performed using dot
ELISA analysis, where sera samples from the current clinical
cohort were exposed to phage particles displaying the C-terminal
VP26 epitope sequence (Fig. 4c). Patients predicted as ser-
opositive against the P.T.PR epitope by MVA (MVA+) were
observed with significantly higher immunoreactivity to the dis-
played EBV VP26 epitope in the dot ELISA analysis (Fig. 4c,
Mann-Whitney U, ****p <0.0001, two-sided). Therefore, these
results further confirmed the MVA findings of specific seror-
eactivity mapping of epitope A (with the core pattern P..T.PR) to
EBV VP26 (Fig. 4c). As we found that many antigens of the
periodontal bacteria shared features of the epitope A (Fig. 2b, d,
Supplementary Table S2) and could thus mimic the epitope of
EBV VP26 antigen, we determined using annotation analysis that
these could include a transmembrane protein signal peptidase I
(100-129 aa, Uniprot accesssion Q7MTGI1) and a cytosolic
transcription termination factor Rho (160-189 aa, Q7MX79) of P.
gingivalis, and isoleucine-tRNA ligase (770-789aa, COR644) in A.
actinomycetemcomitans (Supplementary Table S2). Also, epitope
B was annotated to the tandem repeat (3 x 13 aa) in the
C-terminal part (741-779 aa) of EBV nuclear antigen 6 (EBNAG6)
protein (Supplementary Fig. S9), in harmony with other studies
reporting this region as highly immunogenic®>3°. In conclusion,
strong antibody response to EBV, in particular to VP26 and
sequence-mimicking bacterial antigens, was distinguishing sub-
jects with periodontitis from periodontally healthy controls.

Biomarkers to predict ACS risk from periodontal disease. To
examine whether the delineated five epitopes (A-E) could act as
biomarkers stratifying periodontitis and/or CAD conditions,
multi-variable models were built and fitted using antibody
response to epitopes as predictive biomarkers. Firstly, it was
confirmed that immune response to epitopes A-E had no sig-
nificant correlations with age or gender (Supplementary
Fig. §10). The optimal model including immune response to
epitopes A, B, and C to differentiate periodontitis from healthy
showed a balanced accuracy of 81% for the training subset (80%
of samples) and 84% for the validation subset (20% of samples)
(Fig. 5a and Supplementary Fig. S11). As a whole, strong
response to epitopes A and B was characteristic to the period-
ontitis group, whereas response to epitope C was more common
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Fig. 3 MVA immunoprofiles of subjects with different CAD conditions, periodontal disease severity, cigarette king beh , and diabet:

diagnosis. a 62 epitope clusters with group-specific MVA immunoprofile features across clinical classifiers. Although 19% of the subjects were diagnosed
with diabetes (either type | or type II, not specified further), no significant association of diabetes with either CAD or periodontal diagnosis was found
(Supplementary Fig. S2). Average abundance, calculated as mean of peptides containing the epitope within a given group and normalized with the mean
values across all groups (color-coded from purple to yellow). Colored outlines with capital letters refer to epitopes in panel ¢. Clustering distance: Pearson
correlation coefficient; clustering method: ward.D2. 57/62 clusters with high mean abundance (>150) across groups are shown. “—" under smoking

designates subjects without any exposure to smoking, “+" depicts subjects with a history of exposure (ex-smoker) or currently actively smoking. CAD -
coronary artery disease, no-CAD - no CAD diagnosis, s-CAD - stable CAD diagnosis, ACS - acute coronary syndrome, H -periodontally healthy controls,
G - patients with gingivitis diagnosis, P - patients with periodontitis diagnosis, DM - diabetes mellitus. b Similar behavior-based clustering of 62 epitope
clusters (x- and y-axis) using peptide abundance values (in log10) across the study cohort. Pearson R correlation indices (color-scale) were calculated and
visualized in a correlation matrix. Five distinct large clusters were identified and defined as epitopes A to E. € Core consensus patterns of epitopes A to E,

identified in Supplementary Fig. S7.

in the periodontally healthy group (Fig. 5a). Response to epitopes
D and E did not provide additional useful information when
discriminating between periodontitis diagnosis groups (Supple-
mentary Fig. S12a).

Next, by characterizing immune features that were CAD-
specific, we discovered that periodontally healthy subjects shared
a strong response against epitope C that was high in ACS
subgroup (with statistically significant trends, Mann-Whitney U,
p=0.097, two-sided, Fig. 5b). In subjects with gingivitis, a
transient inflammation condition, response against epitope A was
differentiating between CAD groups, being high in ACS as
compared to no-CAD (Mann-Whitney U, *p <0.05, two-sided,
Fig. 5b). In the periodontitis group of subjects with chronic
periodontal inflammation, antibody response to two independent
markers (epitopes A and E) was identified as significant for the
no-CAD cohort (Mann-Whitney U, *p <0.05, **p <0.01, two-
sided, Fig. 5b). Response to epitopes B and D was not

differentially linked to no-CAD or ACS diagnosis (Supplementary
Fig. S12b). ROC analysis was used to set thresholds for each of the
3 epitopes (A, C and E) in discriminating between clinical
subgroups (Fig. 5¢). As a result, when first classifying subjects
based on their periodontal findings (epitopes A, B and C) and
then assessing response to epitopes A, C, and E which
differentiate between CAD diagnoses, it was possible to predict
the ACS risk in periodontal disease and ascertain the no-CAD
phenotype (Fig. 5¢). In conclusion, MVA immunoprofiling
provided useful blood-biomarkers to predict ACS risk from
periodontal disease.

Discussion

Here, we report the detailed antibody epitope delineation study
identifying a set of immunogenic features associated with peri-
odontal pathogens and CAD.
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Fig. 4 Immunoreactivity to epitope on VP26 EBV and alike mimicking features stratifies patients with periodontitis. a Individual immunoreactivity

profiles (n = 96) of the study cohort against EBV protein VP26, shown for different clinical groups: periodontally healthy (H), gingivitis (G), or periodontitis
(P). All peptides from individual immunoprofiles were aligned (with > 6 matching amino acid positions) to primary sequence of EBV VP26 protein along
with random reference. Peptide epitope abundance (as signal-to-noise ratio, red color-scale) is visualized per subject (in rows, separated into periodontal
diagnosis groups) and per amino acid position (on x-axis). Ctrl - samples with negative EBV-viral capsid antigen serology (n = 9). b Highly antigenic P..T.PR
epitope is differentially targeted across periodontal groups shown as box plots of abundance of peptides containing the epitope (Mann-Whitney U, two-
sided, p values not corrected for multiple comparisons, *p < 0.05, ns p > 0.05, n = 96 independent patients), Supplementary File Sé. a, b Abbreviations and
group sizes: H periodontally healthy (n= 21 patients (3 x 7)), G gingivitis (n =27 (3 x9)), P periodontitis (n= 48 (3x16)), no-CAD no CAD diagnosis
(n=32), s-CAD stable CAD (n=32), ACS acute coronary syndrome (n=32). ¢ Anti-P.DT.PR epitope-like immune response identified by MVA was in
high correlation with data from independent dot ELISA validations. Phage particles displaying peptides with P.DT.PR or mutant P.DA.PR sequences were
used for dot ELISA. Of the 52 randomly tested samples, those with a positive signal to anti-P.DT.PR response detected by MVA (>1200 abundance of
P.DT.PR containing peptides, MVA+) showed significantly higher signals in dot ELISA (y-axis, signal-to-background arbitrary unit (AU)) compared to samples

with a negative response from MVA data (MVA-, Mann-Whitney U test, two-sided, ****p <0.0001, n =52 independent subjects).

The remarkable heterogeneity in antigenic immune response
between individuals has been noted previously, also by our recent
studies’®31. One of the factors shaping the individual hetero-
geneity of immune response is associated with microbial sym-
biosis with the host and their antagonistic to mutualistic
associations®’. Among oral bacteria, these include health-
associated early-stage, moderately pathogenic medium-stage and
highly pathogenic late-stage colonisers of periodontal biofilm37-3%.
Our data reveal that many strongly targeted epitopes could
potentially mimic and the antibodies could cross-react with the
antigens of periodontal bacteria (Fig. 2, Supplementary Table S2,
Supplementary Fig. S4). Other factors influencing individual
variability in immune response to pathogens are age, lifestyle
(diet, smoking, exercise etc), previous immune history (viral,
bacterial), and the specific HLA-alleles that affect the presentation
of major antigenic epitopes’®. As some of these periodontal
bacteria belong to orange or red complex groups of pathogenic
oral species, the observed potential cross-reactivity of the anti-
body immune response (Fig. 2, Supplementary Fig. S4) could
contribute to the dysbiosis of oral microbiota and thereby peri-
odontal health.

We identified immunoprofiles stratifying the individuals with
ACS from individuals with no CAD or stable CAD (Fig. 3). Our
dataset has the advantage that we could identify and compare the
presence of potential immunological markers in different CAD
types, even in a limited study cohort. When the host’s B cell

6

response is inefficient against re-surfacing of latent infections, this
may cause endothelial inflammation which in turn can contribute
to the formation of atherosclerotic plaques and their instability*’.
Furthermore, differences were also observed in antibody response
against epitopes in specific pathogens, including herpesviruses, in
gingivitis, smoking or diabetes subgroups (Fig. 3, Supplementary
Fig. S8). Diabetes along with smoking are two big risk factors for
periodontal disease*!. Thus, despite the small scale of the study
and varied pathology background, our results provide proof of
principle that different stages of CAD may be identifiable by
different features of systemic immunoprofiles, which also include
antibody response against highly antigenic epitopes of oral
microbiota and common viruses.

Our data show that patients with progressing gingivitis through to
periodontitis have increasing levels of antibodies to the highly anti-
genic epitope mimicking EBV VP26 (Figs. 3¢ and 4a, b). On the
other hand, within subjects with periodontitis, a strong response to
the EBV VP26 epitope is characteristic to healthy subjects, but not to
ACS patients, suggesting its protective role against ACS (Fig. 5b). A
few studies have directly addressed the role of herpesvirus infections
in susceptibility to secondary oral bacterial infections. Relatedly, it is
known that A. actinomycetemcomitans and P. gingivalis might
require support from active herpesviruses for periodontal destruction,
whereas the stable periodontal lesions may be devoid of viruses*2.
The herpesviral-bacterial hypothesis of periodontitis proposes that
the herpesvirus infection triggers a release of proinflammatory
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s-CAD, or ACS) shown as intensity plots. Relative abundance of immunoprofile features is shown in blue color-scale. These epitope biomarkers in a
3-biomarker generalized logistic model differentiate P group from H (Supplementary Fig. S11). Vertical lanes - subjects (n= 96); rows - epitopes; blue

color-scale - normalized relative epitope-containing peptide abundance values (using 97.5t percentile values per feature and capped at value 1). b Different
immunoprofile features (above boxplots) stratified ACS with periodontal diagnosis. y-axes: immunoreactivity to epitopes in individual immunoprofiles, shown as
abundance of peptides containing the epitope. Mann-Whitney U test, two-sided, p values not corrected for multiple comparisons, **p <0.01, *p < 0.05. H:
n = 21independent patients; G: n = 27 independent patients; P: n = 48 independent patients. ¢ Sensitivity and specificity measures of using biomarkers from B
in separate periodontal groups (sub-group) to predict CAD diagnoses (either no-CAD or ACS). Diagnosis 2 threshold - diagnosis group into which patient was
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(n=48), no-CAD -no CAD diagnosis (n=32), s-CAD - stable CAD (n=32), ACS - acute coronary syndrome (n=32). Data in File S7.

cytokines to activate osteoclasts and matrix metalloproteinases
(MMPs) to impair antibacterial immune mechanisms, causing an up-
growth of periodontopathic bacteria?”. Given that the extracellular
matrix (ECM) breakdown represents a crucial factor in the period-
ontal pathophysiology, periodontitis confounded diagnostics of ACS
has been proposed by measuring serum levels of MMP-9%3, while
serum MMP-8 and TIMP-1 levels were found to be associated with
incident** and especially fatal cardiovascular events*. Overall, this
indicates immune hyperresponsiveness to dysbiosis, typical to the
pathogenesis of periodontitis’®. On the other hand, periodontal
herpesviruses themselves may disseminate via the systemic circula-
tion to non-oral sites (including arteries) and thus represent a major
link between periodontitis and cardiovascular diseases*!. A recent
meta-report described a world-wide association of EBV infection
with periodontal disease?”. Here we have investigated this observa-
tion further and fine-mapped the EBV VP26 epitope, against which
the immunologic response could link periodontitis and associated
CAD conditions. However, herein we show that it mimics antigens of
periodontal bacteria (Fig. 2d, Supplementary Table S2). Microbial
epitope similarity with pathogens, allergens and auto-antigens has
been reported before, as it can elicit tolerogenic or inflammatory
immune reactivity’®. For example, different periodontopathogenic
species share mimicry in their GroEL antigen, which in turn results
in cross-reactivity with the human heat-shock proteins (HSP)
expressed on the endothelial cell leading to endothelial dysfunction®’
and atherosclerosis®. This suggests that further studies of the
herpesviral-bacterial-host epitope mimicry are warranted, in parti-
cular for improved diagnostics and therapy of dental health asso-
ciated heart conditions.
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Here we built a two-step biomarker model based on immune
response to 4 epitopes that allows a) to classify subjects based on
their periodontal diagnosis and b) to predict ACS risk and
establish the no-CAD phenotype with 71-89% specificity (Fig. 5).
Specific periodontitis-associated biomarkers for CAD could be
beneficial in discerning ACS from other cardiac events. These
data indicate that periodontitis, and ultimately putative progres-
sing to ASC due to periodontitis, is the result of a partial response
or lack of an efficient combined response against viral and bac-
terial infections landing on self-proteins.

Taken together, our findings clearly illustrate the power of
MVA for the immunopathological analysis of oral health-related
cardiac conditions, and we predict that the widespread use of this
technology at scale will enhance the current understanding of
chronic disease mechanisms, in particular cardiovascular diseases,
and can lead to improved diagnostic accuracy and new markers.

Limitations of the study. We could not evaluate the prognostic
value of these predicted biomarkers due to the clinical study design.
Because of genetic and socioeconomic status variabilities in dif-
ferent study populations, it is hard to extrapolate the findings. This
was a study on Finnish adults. New studies with other cohorts are
needed. Also, the pathogenetic importance of the specific oral
bacterial microbiota antigens remains firmly to be established.

Methods

Ethics statement. The study was conducted in accordance with the guiding
principles of the Declaration of Helsinki and the study participants gave written
informed consent before enrollment. The study was approved by the ethics
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committees of the Helsinki University Central Hospital (approval reference
number 106/2007) and The National Institute for Health Development, Estonia
(approval number 1045).

Clinical cohort description. The cohort (1 = 96) was selected from the initial
Corogene study (n = 5294) and divided into 3 subgroups: periodontally healthy (H,
n = 21), gingivitis positive (G, n = 27), and periodontitis (P, n = 48). The diag-
nostic features on clinical and radiographic findings have been described in detail
earlier’1->2. Periodontally healthy patients had no alveolar bone loss (ABL) and
bleeding on probing (BOP) did not exceed 10%. Gingivitis was registered in
patients without ABL but with BOP > 10%. Patients were diagnosed with period-
ontitis when the ABL exceeded the cervical third of the root. Coronary artery
disease diagnosis (no coronary artery disease (no-CAD, n = 32), stable coronary
artery disease (stable-CAD, n = 32), or acute coronary syndrome (ACS, n = 32))
was based on the degree of stenosis in the coronary arteries during the angio-
graphy, typical electrocardiographic changes, chest pain, and levels of cardiac
biomarkers®2. The age and gender proportions, along with other relevant clinical
history, are in Supplementary Table S1.

Statistics and reproducibility. The statistical analyses performed during the study
were accompanied by measures of statistical significance. The study was non-
blinded and non-randomized and included n = 96 independent study subjects.
Group-wise parameters, such as median values, were visualized alongside intra-
group range using violin- or boxplots. Reproducibility of Mimotope Variation
analysis was confirmed by establishing the correlation coefficient of two replicates
as R=0.87 (p <0.0001).

Statistical analysis of clinical characteristics of samples. Differences in pro-
portions of genders, diabetes condition and smoking status were assessed in clinical
sub-groups using Chi? test (MedCalc, 19.7.2, MedCalc Software Ltd, Ostend,
Belgium; https://www.medcalc.org). For statistical analysis, two-sided
Mann-Whitney U test was used for comparing two groups or two-sided
Kruskal-Wallis test for >2 groups using R package “ggpubr™>® and “ggplot2”>%.
Mimotope variation analysis. Peptide antigens were selected from random peptide
phage modified library (PhD12, NEB) with 10° different 12-mer peptide
sequences®*31. Two pl of serum/plasma samples, previously precleared to plastic and
E. coli/wt M13 phage lysates were incubated with 2.5 pl library (~5 x 10!! phage
particles) and immunoglobulin G (IgG) fraction was recovered using protein G-coated
magnetic beads (S1430S, NEB). Captured phage DNA was analyzed by Illumina HiSeq
sequencing of 50-bp single end reads using barcoded primers for sample multiplexing.
Peptide abundance correlation coefficient (R) in two replicates by Pearson analysis was
0.87 (p <0.0001) (Supplementary Fig. S1) (R package “ggpubr™>?). For further data
analysis, sequencing errors and known artefacts were eliminated.

Selecting peptides. Group-enriched peptides (TopPeptide sets) were selected for
clinical sub-groups (Supplementary Table S1). Peptides were selected for no-CAD
(n=292,667), stable-CAD (n = 279,020), and ACS (n = 308,445), and period-
ontally healthy (n = 450,531 peptides), gingivitis (n = 450,590), and periodontitis
(n = 342,261) groups, using the criteria that these were to be identified in >10%
individual samples of the group with abundance threshold 210 sequence counts in
at least one sample.

Sequence-based unsupervised clustering of peptide antigens. Exhaustive
sequence pattern search tool SPEXS2 was used (http://egonelbre.github.io/spexs2/)
for sequence-based unsupervised clustering of peptide antigens. Starting from the
292,667 group-enriched peptides (TopPeptide set) identified for no-CAD group, all
were used as input to SPEXS2 in random order with the search criteria: peptide
coverage threshold: >4; motif coverage threshold: >4 fixed amino acid positions;
hyper-geometric P value <1079). Sequence pattern searches were performed in 2
iterative runs, where peptides from which a consensus was identified in the first run
were excluded from the subsequent run. As a result, 4366 distinct motif consensus
sequences were identified, which were contained in 29.0% or 84,873 of the original
292,667 peptides. Therefore, 4366 unique consensus motifs were identified for no-
CAD (covering 29.0% of input peptides), similarly 2771 motifs were calculated for
stable-CAD (27.0%), 4405 for ACS (30.5%), 6275 for periodontally healthy (4
iterative SPEXS2 runs due to greater starting peptide set) (42.8%), 9560 for gingivitis
(4 runs) (44.4%), and 5936 for periodontitis group (4 runs) (27.7%) were defined.

Selecting for group-differentiating motifs. The epitope motifs contained high
degree of redundancy, therefore stricter criteria (hyper-geometric P value <1075 or
query/reference ratio >10) were imposed to select for characteristics with high
significance and statistical power. Altogether 8088 unique motif sequences fit those
criteria were selected for further analyses as the TopMotif set. Of 8088 distinct
motif features, 995 were designated as group-differential. The 995 motifs satisfied
all the criteria that 1) the average abundance value in each clinical sub-group was
>3 greater than in another relevant sub-group, 2) the abundance-based separation
of relevant clinical sub-groups was with >50% sensitivity and >70% specificity, and 3)

group-separation was statistically significant (Mann-Whitney U test, p value < 0.05,
two-sided).

Alignment profiles on periodontal bacteria. The TopMotif set of 8088 motifs
was aligned to proteomes of the periodontal pathogen species: Porphyromonas
gingivalis (UniProt accession: UP000000588), Tannerella forsythia (UP000005436),
Prevotella intermedia (UP000010099), Fusobacterium nucleatum (UP000002521),
Campylobacter rectus (UP000003082), Aggregatibacter actinomycetemcomitans
(UP000002569), and Porphyromonas endodontalis (UP000004295) (accessed 20-
21.12.2019). Only exact alignments where all fixed amino acid positions of a motif
(minimum of 4 positions) to match with the target were allowed. The pathogen
database comprised of 15,928 proteins, of which 15,116 matched at least with one
epitope motif. For each pathogen, the individual alignment load was calculated per
20-amino acid fragment of the protein, in two frameshifts (0 and —10 aa), yielding
in 10 aa overlaps between considered fragments. Altogether we analyzed ~480,000
distinct 20 amino acid fragments. The top 40 fragments for each bacterial species,
from any frameshifts, with the highest total alignment loads were selected based on
the formula:

sum of abundance of motifs aligned
count of motifs aligned

Alignment load (per 20aa fragment) =

If higher alignment loads were encompassing two side-by-side regions (one
with a frameshift), a longer 30-amino acid fragment was considered. Individual
alignment loads (Supplementary Data 1) were compared across pathogen species
using Kruskal-Wallis test for comparing all groups and two-sided Mann-Whitney
U test for pair-wise comparisons. R packages “ggpubr” and “ggplot2” were used for
calculation and visualization.

Identifying target types of p ial epitopes of peri tal bacteria. Using
the top 40 antigen fragments of periodontal pathogens, 12mer substrings were
extracted for each aligned epitope motif (of the TopMotif set), whereas substrings
shorter than 12mer were discarded (33 were found). Altogether 1691 substrings
were selected, position weight matrices were built and the resulting enriched amino
acid positions were visualized as sequence logos, all using a custom in-house tool
with WebLogo®>%° integration (parameters: no counts, distance cut-off 9,

10 minimum unique substrings in a cluster, similarity index 15). The analysis
yielded 26 target types with consensus sequences, of which top 5 most prevalent are
shown on Fig. 2b.

d

Amino acid-based clustering of group-differential epitopes. Sequence homol-
ogy clustering analysis reduced 705 out of 995 epitope motifs into 62 clusters of
similar epitopes (>3 identical amino acid positions) whereas 290 out of 995 epitope
motifs either formed too small clusters (<3 motifs in a cluster) or were not similar
enough with any other epitope (<3 identical amino acid positions). Additional R
packages used in data analysis and visualization were: “readr”, “dplyr”’.
Based on the selected peptides, position weight matrices were built and the

resulting enriched amino acid positions were visualized as sequence logos, all using
a custom in-house tool with WebLogo“>> integration.

Group-specific analysis of 62 clusters. The average abundance for each of the 62
clusters with the defined sequence logo was calculated across clinical sub-groups.
Abundance values in clinical sub-groups were normalized with average abundance
across all groups (Supplementary Data 2). Clusters with average abundance values
of <150 were left out of further analysis. Next, hierarchical clustering was per-
formed based on the normalized abundance values using Pearson correlation
coefficients for clustering distance and ward.D2 clustering method (R package
“pheatmap”)’®. R packages used in data analysis and visualization included “readr”,

“dplyr”, “forcats”, “reshape2”97, and “viridis"*".

Individual-based clustering of 62 clusters. Abundance of peptides in individual
immunoprofiles was calculated for each cluster. Using log10 values of the abun-
dances, Pearson correlation coefficients R were calculated pair-wise for all 62
clusters (Supplementary Data 3). The clusters were subsequently grouped using R
package “pheatmap” with ward.D2 as clustering method and Pearson correlation
coefficients as clustering distance. Five distinct larger groups were identified and
defined as epitopes A-E. For each of the epitopes A-E, the containing clusters were
compared to determine consensus sequences describing the core epitopes (Sup-
plementary Data 7).

Alignment on EBV VP26. Epitope A has been previously mapped to Epstein-Barr
virus (EBV) protein VP26%. To validate the mapping in the current clinical cohort,
epitopes from individual immunoprofiles (1 = 96) were aligned to the primary
sequence of EBV protein VP26, a component of the viral capsid antigen (VCA)
(UniProt accession code Q3KSU9, EBV strain GD-1, date accessed: 25.11.2020).
Signal-to-random ratio for each sample was calculated across primary sequence of
EBV VP26, where signal represented the count of aligned (=6 matching amino acid
positions) unique peptides defined by MVA and random represented the count of
aligned random peptides (=6 matching), generated by sequence scrambling of
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peptides (Supplementary Data 4). As controls (Ctrl), peptides from EBV CA ser-
onegative subjects (n = 9) were analyzed similarly.

ELISA. CMV and EBV serostatus was measured from serum samples with ISO/IEC
17025 accredited methods. In brief, serological analyses were performed with anti-
CMV IgG ELISA method (EUROIMMUN EI 2570-9601G) and with anti-EBV CA
(capsid antigen) IgG ELISA method (EUROIMMUN EI 2791-9601G) according to
manufacturer’s specifications. Absorbance was measured at 450 nm with Spec-
traMax Paradigm (Molecular Devices).

Dot ELISA. MVA analysis findings were validated by dot ELISA analysis. For that,
M13K phages displaying peptides with either the EBV VP26 epitope-containing
sequence TLPMDTSPRAHW or the mutant sequence TLPMDASPRAHW as parts
of the plII protein were printed onto nitrocellulose (NC) slides (Arraylt, US).
Unspecific binding was reduced by blocking for 1h at room temperature with 5%
non-fat dried milk in 1xPBS-Tween20-0.05%. Human serum samples were pre-
cleared to reduce unspecific binding to M13K phages, to E. coli bacterial proteins
and to plastic. Preclearing step was performed in mix of 60 pl 2.5% skimmed milk-
1xPBS-0.05% Tween20 + 30 ul Preabsorption Solution + 1:50 serum, at 4 °C
overnight. Following this, the slides were incubated with either precleared serum
1:50 solutions (1 = 54) or with 1:5000 mouse anti-M13 antibody (#27-9420-01, GE
healthcare) in 2.5% skimmed milk in 1xPBS-0.05% Tween20 (GE Healthcare) for
1h at room temperature. The anti-M13K antibodies were used to quantify phages
printed on NC slides. Multiple washes were performed with 5% skimmed milk in
1xPBS-0.05% Tween20. For visualization, the secondary antibodies used were
1:1000 rabbit anti-human HRP-conjugated antibody (#ab6759, Abcam) (for
human serum samples) in 2.5% skimmed milk in 1xPBS-0.05% Tween20 or 1:1000
rabbit anti-mouse HRP-conjugated antibody (#ab6728, Abcam) (for anti-M13K) in
2.5% skimmed milk in 1xPBS-0.05% Tween20, incubated for 1h at room tem-
perature. After multiple washes, the presence of bound human sera/plasma IgG
antibodies was detected via reaction with HRP substrate DAB chromogen diluted
in substrate buffer (1:100). The slides were digitally scanned and the signals were
quantified using ImageQuantTL (version 8.1) (Supplementary Data 5). Results of
27/54 samples were validated in an independent similar experiment (in total n =2
experiments) (including all samples which showed high signal-to-background
ratios).

Predicting periodontitis and CAD di Generalized linear model was fit to
80% of subjects’ data (with 5x cross-validation) to classify different case-subgroups
based on their immunoprofile features. Using model’s prediction probabilities for
subjects in the training set, receiver operating characteristic (ROC) analysis was
performed. The model’s area under the receiver operating characteristic curve
(AUROC) was 0.843 with 95% CI (0.738...0.948). The model was validated on the
validation subset (20% of samples).

Data visualization. Box and whisker plots were generated in the style of Tukey
with R packages “ggpubr” or “ggplot2”. Upper, middle and lower boxplot lines
represent the 75th, 50th and 25th percentiles, while whiskers represent the largest
or smallest value within 1.5 times interquartile range above the 75th percentile or
below the 25th percentile, respectively. Individual data points without outliers are
visualized.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The source data analyzed during the study was generated by MV A analysis. We provided
the relevant data underlying the main findings in the Supplementary data. The whole
datasets generated and/or analyzed during the current study are not publicly available
due to containing sensitive clinical information but are available from the corresponding
author on reasonable request.

Code availability

The code used during the current study is not publicly available due to its proprietary
nature, but detailed explanation of the analysis approaches is available from the
corresponding author on reasonable request.
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ARTICLE INFO ABSTRACT

Article history: Background: Neuropathological findings support an autoimmune etiology as an underlying factor for loss of
Received 22 December 2017 orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in
Received in revised form 23 January 2018 Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens
Accepted 31 January 2018 for the immune response have, however, remained elusive.

Available online 2 February 2018 Methods: Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-

generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adoles-

ﬁ?;:;‘;;ss'y type 1 cents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 HIN1 infected, and 16 un-
HIN1 vaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine
Pandemrix international criteria of sleep disorders v3.
Antibody Findings: Our data showed that although the immunoprofiles toward vaccination were generally similar in study
Prostaglandin groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as com-
DP1 pared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin
D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed
that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemag-
glutinin of HIN1 to delineate exposure to HIN1.
Interpretation: We propose that DP1 is a novel molecular target of autoimmune response and presents a potential
diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and
thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further
studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify
human autoimmune diseases, possibly facilitating the design of better therapies.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction (Peyron et al.,, 2000; Thannickal et al., 2000; Partinen et al., 2014). The
major neuropathological features of NT1 are loss of orexinergic neurons
Narcolepsy type 1 (NT1) is a chronic neurological disease character- and an increased gliosis in the posterior hypothalamic nuclei (Partinen

ized by irresistible daytime sleepiness, disturbed nocturnal sleep, and et al,, 2014). Increased levels of pro-inflammatory cytokines have
cataplexy associated with the inadequate function of the hypothalamus been associated with (spontaneously occurring) idiopathic (sNT1) and
Pandemrix vaccine-induced narcolepsy (Pdmx-NT1) close to disease
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during the A(H1N1) outbreak. As of January 2015, >1300 cases of
vaccine-associated NT1 had been reported to the European Medicines
Agency. Epidemiologic and clinical studies conducted in different coun-
tries including Finland, Sweden, Ireland, England, Norway, and France
have confirmed the association of NT1 in children and adolescents
with the AS03-adjuvanted Pdmx (Partinen et al.,, 2014; Sarkanen et al.,
2017). Subsequently, wild-type influenza A(H1N1) infections in China
were associated with narcolepsy (Han et al., 2013, 2011). Along with
the pandemic A(HIN1) infection, seasonality and post-infectious prim-
ing by upper respiratory tract viruses and streptococci have been sug-
gested as triggers of autoimmune response that leads to NT1 in
genetically susceptible individuals (Aran et al., 2009; Longstreth Jr
et al,, 2009).

Genome-wide association studies have revealed a strong association
of narcolepsy with the T-cell receptor alpha locus (Hallmayer et al.,
2009) and especially with Major Histocompatibility Complex (MHC)
class I DQB1%06:02 alleles (Bonvalet et al., 2017; Tafti et al., 2014).
DQB1706:02 is present in approximately 30% of Finnish and Swedish
populations (Bomfim et al., 2017). In Finland, all patients with Pdmx-
NT1 have been positive for DQB1*06:02 (Partinen et al., 2014). The latter
immune haplotype is also strongly associated with the PdAmx-NT1 in
Sweden (Bomfim et al., 2017). In another series of 522 patients with
narcolepsy and cataplexy from different countries, only 9 patients
(1.7%) with low levels of orexin (OX) in cerebrospinal fluid (CSF)
were DQB1706:02 negative (Han et al., 2014). It was also suggested
that cross-reactive epitopes to Pdmx vaccine antigens may exist in
NT1 diseased as a significant proportion of HLA-DQB1*0602-positive
Finns diagnosed with NT1 and with a history of HIN1 vaccination
were immunoreactive to OX receptors (Ahmed et al., 2015). However,
it still is unclear whether OX-positive neurons and/or their neighboring
cells express OX receptors that could be targets for the immune re-
sponse in NT1 (Valko et al., 2013; Vassalli et al., 2015). The antibody
levels to viral nucleoprotein (NP), a Pdmx vaccine antigen, were in-
creased in NT1-diseased carrying the HLA DQB1706:02 allele (Vaarala
etal,, 2014), whereas the role of this and other circulating (including in-
trathecal) autoantibodies in NT1 pathogenesis is not fully understood
(see list of previously identified antigens in Table S1). Although NT1-
related autoantibodies are found in some patients, the clinical response
to intravascular immunoglobulin (IVIG) has been hard to predict
(Knudsen et al., 2012). Likewise, use of the drug rituximab might have
only short-lasting beneficial effects in NT1 (Sarkanen et al., 2016).

Recent advances in proteomics (immunomics) have made it possi-
ble to study the adaptive immune response in various diseases in
great detail and at a high resolution (lately reviewed in: (Ayoglu et al.,
2016, Wu et al., 2016). We and others have suggested a strategy of
high-throughput sequencing-assisted epitope mapping directly on

Table 1
Description of samples studied.

serum for biomarker discovery and disease detection based on the
idea that self- and environmental (exposome) antigens are reflected
in the immune response profiles (immunoprofiles) (Anastasina et al.,
2017; Christiansen et al., 2015; Ionov, 2010; Xu et al., 2015). Hence,
the profiling of antibody response repertoire with high-density random
peptide/polypeptide display methods could be a novel mean to charac-
terize and classify human diseases in an unbiased manner according to
the molecular/cellular targets relevant for the disease.

In the present study, we have used the mimotope-variation analysis
(MVA) method to immunoprofile autoantibody repertoires in patients
afflicted by NT1 and in controls. We had access to the clinical cohorts
composed of 16 NT1 (sNT1 (n = 6) and Pdmx-NT1 (n = 10)) cases,
where all NT1-diseased subjects carried the HLA DQB1*06:02 allele,
and apart from 2 sNT1 patients, all had been vaccinated with Pdmx.
For reference, we used three well-defined control groups: 16
Pandemrix-vaccinated healthy controls (Pdmx-HC), 16 H1N1-infected
Finnish subjects (HIN1-HC), and 16 healthy Estonian donors (HC -
healthy controls) (Table 1). Our data revealed complex patterns of im-
mune response in all patient groups including novel epitope sequences
present in sera of Pdmx-NT1 and HIN1-HC. One such peptide epitope
was identified as belonging to the prostaglandin D2 receptor (DP1)
that together with its ligand prostaglandin D2 (PGD2) is involved in
sleep regulation in humans and experimental animal models (see ref.
in Urade and Hayaishi (2011)).

2. Materials and Methods
2.1. Vaccines

Pandemrix vaccine is derived from X-179A, a reassortant of hemag-
glutinin (HA), neuraminidase (NA) and polymerase acidic protein (PA)
of A/California/07/2009 and X-157 H3N2 in a PR8 backbone (Jacob et al.,
2015; Nicolson et al., 2012; Robertson et al., 2011). The vaccine compo-
sition can be found summarized by European Medicines Agency and
GlaxoSmithKline plc (European Medicines Agency, 2009).

2.2. Study Population

The present study comprises a total of 64 individuals (Table 1). Alto-
gether, 16 serum samples of HIN1-infected military servicemen (HIN1-
HC), 16 serum samples of age/sex-matched Pandemrix-vaccinated
healthy controls (Pdmx-HC) were kindly provided by National Institute
of Health and Welfare, Finland. 16 serum samples were collected from pa-
tients with HIN1-induced (Pdmx-NT1) and sporadic narcolepsy (sNT1).
Four out of 6 sNT1 patients were vaccinated with Pdmx after they had
been diagnosed with NT1. Narcolepsy patients were diagnosed at the

Characteristics

Narcolepsy (NT1) patients

Healthy controls (HC)

Pdmx-NT1 sNT1 Pdmx-HC HIN1-HC Other HC
Group size (n) 10 6 16 16 16
Gender (female/male) 5/5 5/1 12/22 0/16 10/6
Pandemrix vaccination 11/2009-1/2010 11/2009-1/2010" 11/2009-1/2010 - -
Sample collection 2011 2011 2011 2011 2009
Median age at onset (y) 13 18 - - -
Median age at sampling (y) 14 22 NA 21 345
Unambiguous cataplexy 10/10 (100%) 6/6 (100%) - - -
MSLT mean SL (range) 2.0 (0.4-4.3) 2.6 (0-7.5) NA NA NA
SOREMPS mean (range) 3.7 (2-5) 2.7 (2-4) NA NA NA
HLA DQB1*0602 (%) 10/10 (100%) 6/6 (100%) NA NA NA
CSF-orexin < 150 pg/mL (lower 1/3 limit in Finland) 7/7 (100%) 5/5 (100%) NA NA NA

HC- healthy control, HINI-HC - HIN1 infected, Pdmx-HC- Pandemrix-vaccinated, NT1- narcolepsy type 1 (including 10 Pdmx-induced NT1 samples (Pdmx-NT1) and 6 sporadic NT1
(sNT1) samples), NA - not available, SL - sleep latency, MSLT — Multiple sleep latency test, SOREMPS - Sleep onset REM periods as defined by the American Academy of Sleep Medicine.

¢ Gender of two Pdmx-HC is unknown.
" Four out of 6 sNT1 patients were vaccinated after they had been diagnosed with NT1.
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Finnish Narcolepsy Research Center (Helsinki Sleep Clinic, Vitalmed Re-
search Center) by experienced neurologists with a special competence
in sleep medicine. All narcolepsy patients had NT1 as defined by the
American Academy of Sleep Medicine international criteria of sleep
disorders version 3. All excessively sleepy patients with NT1 had un-
ambiguous cataplexy and an abnormal MSLT (sleep latency <8 min
and at least 2 sleep onset REM periods; Multiple Sleep Latency Test) re-
cording after a polysomnography. Twelve of the 16 patients had their
CSF-orexin levels measured using the standardized Phoenix RIA
method with Stanford reference. All except one had CSF-orexin levels
<110 pg/mL (one woman with clearly abnormal MSLT and unambigu-
ous cataplexy had CSF-orexin level of 127 pg/mL).

Control serum specimen for the study included 16 serum samples
from Blood Centre, North Estonian Regional Hospital, Estonia, collected
in 2009 prior to the swine influenza pandemic (other HC). Sera were
stored at —135 °C until use.

2.3. Ethical Permissions

The patients have participated in the NARPANord narcolepsy study
(Academy of Finland, grant nr. 260603), and they have given a written
informed consent. The serum samples of HIN1-infected military ser-
vicemen and serum samples of the Pdmx-vaccinated healthy controls
were provided by the National Institute of Health and Welfare,
Finland. The ethical permissions were approved by the Ethics Commit-
tee of the Hospital District of Helsinki and Uusimaa, Finland.

2.4. Mimotope-Variation Analysis

For qualitative and quantitative characterization of humoral immune
response from sera samples, we used an in-house developed
mimotope-variation analysis (MVA) method. Fig. 1A provides an over-
view of the process. In brief, a random 12-mer peptide phage library
(Ph.D.-12, NEB, UK) was used according to the manufacturer's protocol.
2 L of serum sample was incubated with 2.5 pL library (=5 x 10'!) and
immunoglubulin G (IgG) fraction was recovered using protein G-coated
magnetic beads (Thermo Fisher Scientific). The unbound phage particles
were removed by extensive washes with TBS-T (TBS + 0.1% [v/v]
Tween-20). Selectively captured phage DNA was analyzed by using next
generation (Illumina) sequencing with barcoding primers (Islam et al.,
2014). For that, DNA was extracted by using standard Nal/EtOH precipita-
tion method and enriched by PCR amplification using primers enriched
with adapters for the sequencing reaction that flank the variable region
at the end of plll in M13KE vector (Fw: 5'-AATGATACGGCGACCACCGAG
ATCTACACTGATCTAGTGGTACCTTTCTATTCTCA*C*T*C*T-3’ Rv: 5'-CAAG
CAGAAGACGGCATACGAGATNNNN(NN)CCCTCATAGTTAGCGTAACG-3").
PCR products were purified using the QIAquick PCR Purification Kit
(QIAGEN), and the concentration of DNA with [llumina adapters was es-
timated by Qubit Fluorimeter (Invitrogen) according to the manufactur-
er's protocol. Sequencing was performed using Illumina HiSeq and 50-
bp single end reads. Samples were analyzed at least in duplicates to en-
sure reproducibility. To evaluate the data reproducibility, we compared
peptide abundance in two replicates using Pearson's correlation coeffi-
cient test (r value higher than 0.90, p <.0001).

2.5. Sequence Data Analysis

Every read that was considered valid by the Illumina HiSeq control
software was prepared for further analysis by trimming. In brief, sequence
reads of 50 bp were accompanied with a 4-bp tag to assign each read
uniquely to one out of 48 multiplexed samples. After demultiplexing
there were millions of sequence reads for each sample. Each read
consisted of a 36-bp random insert region and a constant region. We
discarded the reads with mismatches in flanking 4 bases of the constant
region. Sequences from wild-type phages with no random insert were ex-
cluded. Next, we translated all the random insert regions in reads into

peptide sequences of length 12aa. All non-translatable sequences were
discarded. To reduce the effect of amplification and sequencing errors,
only those peptide sequences were kept that had at least two copies se-
quenced per sample. In order to compensate for the different numbers
of reads per sample normalization of read counts was performed. All sam-
ples were trimmed to 3 million reads (RPM units). The resulting data was
represented as a cross-table where each row corresponded to a different
12mer peptide, each column corresponded to a different sample, and
each cell showed the read count of the peptide in the respective sample
measured in RPM-units. According to the manufacturer (NEB), naive li-
brary contained up to 10° different sequences. For reasoned cost pur-
poses, the estimated outcome of sequence data represented 0.1% of the
initial library input containing up to 2.8 x 10° different peptide sequences
per sample. Complete analysis of sequence diversities obtained by MVA
remains out of the scope of the current study.

2.6. Clustering Workflow

The main assumption was that every obtained peptide sequence
mimics the target of an antibody. The sequence reads of one sample
often included many copies of the same peptide sequence. The read
counts of a peptide could range from 1 to thousands. To reveal recognition
patterns (epitope motifs) which were enriched in the cases compared to
controls, we used SPEXS2 software (https://github.com/egonelbre/
spexs2; (Vilo, 2002, Brazma et al.,, 1998)). For clustering the peptides
with motifs and generating mimotope regular expression and sequence
logos, the “motifTree” tool was used (Kruup, 2013). The Multiple EM for
Motif Elicitation (MEME-MAST) algorithm (Bailey and Elkan, 1994;
Bailey and Gribskov, 1998) was used to align peptides to proteins. For B
cell epitope mapping I[EDB 3.0 database was used (Vita et al., 2015).

2.7. Statistical Analysis

All statistical analyses (ANOVA, t-Test, correlation analyses, Chi-
square test) were done using MedCalc software (MedCalc Statistical
Software version 17.0.4 (MedCalc Software bvba, Ostend, Belgium;
https://www.medcalc.org; 2017)). For visualization of peptide abun-
dance across samples, peptide frequency values were converted to
heatmap images (Tagged Image File) with Excel Visual Basic for
Applications (VBA) scripts. For visualization of selected peptide
set alignment profile on proteins of interest Excel VBA script was used.
The protein sequence was scanned with every peptide and at every po-
sition where the peptide aligned with it in at least four perfectly
matching positions, one was added with its frequency. For random ref-
erence profile, amino acid sequence of each peptide was randomized
and scanned using the same rules over the target sequence.

2.8. Influenza Virus Serology

Levels of influenza-specific IgG antibodies were determined by the
enzyme-linked immunosorbent Vir-ELISA anti-H1N1/H3N2 IgG assay
(Influenza virus type A IgG ELISA test system, Euroimmun), carried
out in accordance with the manufacturer's specifications. Absorbance
was measured at 450 nm with SpectraMax Paradigm.

2.9. Peptide ELISPOT

For peptide ELISPOT the following peptides were designed:

peptide #1 - RVLAPALDSWGTGGGDYKDDD{LYS(BIOTIN)}
(Genescript)
peptide #2 -  LPKFSAPSASGPGGGDYKDDD{LYS(BIOTIN)}
(Genescript)
peptide #3 - ESTRYQLWLPHQGGGDYKDDD{LYS(BIOTIN)}
(Genescript)

control peptide - AVLAAALASWGTGGGDYKDDD{LYS(BIOTIN)}
(Genescript)
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In brief, 110 pg biotin-conjugated peptides were printed on
nitrocelluose coated slides (10485323, Whatman) by SpotBot® 4
(Arrayit). For primary antibody human precleared serum (1:100) was
used, for secondary antibody rabbit anti-human IgG (H&L) (HRP)
(Abcam) was used. All incubations were done for 1 h at room tempera-
ture. Results were scanned using Ettan Digelmager (GE Healthcare Life
Sciences) and images calculated using ImageQuant software version
8.1 (GE Healthcare Life Sciences).

2.10. Cancer Cells, Human Mesenchymal Stem Cells (hMSC) and Post-
Mortem Tissues

Immortalized glioblastoma multiforme cells (human glioma cells -
hGC) (kind gift of Prof. Aavo-Valdur Mikelsaar, Estonia), human

neuroblastoma cell line Kelly (ATCC) and human mesenchymal stem
cells (hMSC) (isolated from human subcutaneous adipose tissue as de-
scribed (Jaager and Neuman, 2011)) were grown in Dulbecco's modified
Eagle's medium (DMEM (PAA)) containing 10% fetal bovine serum (PAA),
1 mg mL~" penicillin (PAA) and 0.1 mg mL~! streptomycin (PAA). All
cells were cultured at 37 °C in 5% CO,. The identity of hMSC was con-
firmed by using cell morphology and flow cytometry methods for analysis
of cell surface markers: CD73+/CD90+-/CD105+/CD45—/CD34— (Kauts
et al., 2013). For treatments, hMSCs were grown with media containing
IL-1B (1 ng/mL), IFN<y (2 ng/mL) for 8 h, or PGD2 (10 uM) for 1 h.

Human post-mortem tissues were procured from the North-
Estonian Regional Hospital, Tallinn, Estonia. All experiments with
human tissues were done with the approval of the local ethical commit-
tee (license no. 2234, date of issue 09.12.2010).
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Fig. 1. Humoral immune response studied using the mimotope-variation analysis (MVA) method. A. Schematic drawing of the workflow in MVA. MVA is a high-throughput random
peptide phage display analysis. A random peptide display library (PhD12) was used which contained 10”9 different 12-mer peptide sequences introduced to the N-terminus of the
phage major coat protein pllI (NEB). For MVA, sample-specific IgG proteins (antibodies, Human IgG fraction) present in human sera of interest are allowed to interact with the phage-
displayed peptides and the IgG-phage complexes were captured to protein G magnetic beads, while the unbound phages were washed away (Peptide library display). Captured phages
were lysed and DNA amplified with primer sequences containing a tag with a unique barcode sequence and the final amplicons were pooled for NGS analysis (HTS sequencing). The
primer set homologous to the M13KE vector sequences that flank the random peptide coding sequence was used to amplify a 50-bp fragment. Data analysis to classify peptides that
were specific to Pmdx-infected, -vaccinated and NT1-diseased individuals was carried out by comparing the profiles of peptides (mimotopes) from diseased to those from non-
diseased (Peptide profile analysis). On average, MVA generated 1.8 million peptide sequences with unique structure (divergence) totaling 2.8 million peptide sequences in abundance
(total abundance; number of reads) per sample. Altogether, a peptide data set with >16 million sequences (Totpep) with unique structure was generated. B. Analysis of peptides
revealed highly divergent patterns (immunoprofiles) across study cohorts. The fraction of top 2500 peptides with unique structure and highest values of abundance - reflecting the
peaking immune reactivity of each sample - was analyzed for variance. Top2500 peptide dataset contained altogether 160,000 sequences out of which 121,142 were unique. Pie charts
display the sequence distribution of unique peptides across all samples analyzed. The left pie (blue) displays the proportion of shared vs. unique peptides: ~86% were unique to one
individual whereas ~14% of the peptide sequences were shared between samples, out of these ~8.5% were common to 2 samples, 5% to 3-10 samples and 0.5% were detected in >10
samples. The right pie (red) displays the distribution of shared 16,844 peptide sequences out of which ~60.7% were common to 2 samples, 35.7% to 3-10 samples and 3.6% were seen
in >10 samples. The four pie charts (below) exemplify the peptide profile structures in different clinical cohorts. The size of each pie piece is proportional to the number of unique
peptides common to one or more samples of a clinical cohort. Blue - represents unique peptides, red - the most shared. C. Individual variation in peptide divergence is characteristic to
all immunoprofiles. Top 2500 peptides were analyzed to assess the range of individual peptide variation across study cohorts. Blue dots mark peptide divergence in a single sample. As
indicated, between one to two thousand peptides were individual-specific, whilst the most common peptides (shared by >10 individuals) ranged in divergence from tens to 350
across samples. Range of unique peptide variations was similar across all study samples. D. Heat map image of a random fragment of MVA profile encompassing 400 peptides across
study samples. Peptide profiles were individual-specific with a highly varying abundance. Each column represents the peptide profile of a single individual, and each line represents a
peptide with a unique primary structure. Abundance is presented as counts in logarithmic scale (in log); black colour depicts peptides captured at higher abundance, and white those
atlower abundance. Shown are peptide profiles that were common to 3-10 individuals. Abbreviations: Abundance - peptide frequency; Divergence - all unique peptides; HC- healthy con-
trol; HINT-HC - HIN1 infected; Pdmx-HC- Pandemrix-vaccinated; NTI- narcolepsy type 1 (including 10 Pandemrix-induced NT1 samples).
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2.11. Immunofluorescence and Western Blot Analysis

For immunofluorescence analysis, cells grown on glass inserts were
fixed using 4% PFA (Scharlau) for 15 min and blocking of the unspecific
reactivity was done with 5% BSA. The antibodies used included: anti-
DP1 (Abnova; 1:500), precleared human sera (1:400), and the second-
ary Alexa Fluor 488 and 647 (Invitrogen, 1:2000) antibodies. For epitope
blocking peptide #1 was used in final concentration 6.6 pig/mL. Hoechst
33342 (Invitrogen) was used to detect cell nuclei. Imaging was done
using Nikon Eclipse 80i microscope.

Sequences (RVLAPALDSWGT and DYKDDDDK (flag)) were inserted
at the N-terminus of the pllI of the M13KE phage by in vitro mutagene-
sis PCR using primers s1 5’GCTGGATAGTTGGGGAACCGGTGGAGGTTCG
GCCGAAAC3/, as1 5'GCCGGAGCTAGTACACGAGAGTGGGAGTAAAACG
GTACC3,

52 5'GCTGGATAGTTGGGGAACC3', as2 5 GCCGGAGCTAGTACACG3'; s3
5'GATGATGATAAAGGTGGAGGTTCGGCCGAAAC3’, as3 5’ATCTTTATAAT
CAGAGTGGGAGTAAAACGGTACC3'; s4 5'GATGATGATAAAGGTGG3', as4
5'ATCTTTATAATCAGAGTGG3'. PCR reactions were carried out with
phusion Hot Start II High-Fidelity DNA Polymerase (ThermoScientific).
Constructs were verified by sequencing. For Western blot analysis, 30 pig
of protein lysate or 1 x 10'® phage particles were resolved on 10% SDS-
polyacrylamide gels and transferred onto PVDF membranes (Amersham)
for 1.5 h using BioRad wet blotter in standard Towbin buffer. The
membrane was blocked with 5% nonfat milk (AppliChem), incubated
overnight with the following primary antibodies: anti-DP1 (St. John Lab-
oratory, 1:1000), anti-GAPDH (Sigma, 1:10,000), precleared human sera
(1:500). The epitope blocking peptide #1 was used in final concentration
6.6 ug/mL. The membrane was incubated for 1 h at room temperature
with the secondary anti-mouse, anti-rabbit, or anti-human IgG antibodies
(Abcam; dilution 1:10,000). The ECLfemto kit (Amersham) was used for
detection of immunoblotted target proteins.

2.12. RNA Extraction, RT-PCR and qRT-PCR

Total RNA from human brain parts was extracted using RNAWiz
(Ambion) as recommended by the manufacturer. Total RNA from cells
was isolated using TRIzol® Reagent (Invitrogen) according to the manu-
facturer's instructions. One microgram of RNA was reverse transcribed
into ¢cDNA using SuperScript III first strand cDNA synthesis kit
(Invitrogen) according to the manufacturer's instructions. The resulting
cDNAs were used as templates for subsequent RT-PCR reactions. RT-PCR
was carried out using FIREPol® DNA polymerase (Solis Biodyne), 40 am-
plification cycles and an annealing temperature of 58 °C. Amplification of
the housekeeping gene GAPDH was performed for 25 cycles using
FIREPol® DNA polymerase (Solis Biodyne) and used as an internal con-
trol. Used primer sequences: PTGDR sense 5’ATGAAGTCGCCGTTCTAC
(C3’, PTGDR antisense 5'CATGAAGAAGGCGAAGGCTTG3’, GAPDH sense 5’
GAAGGTGAAGGTCGGAGT3', GAPDH antisense 5'GCATGGACTGTGGTCA
TGAG3'. IL-1f3 sense 5'GGGCCTCAAGGAAAAGAATC3': IL-1f3 antisense 5’
TTCTGCTTGAGAGGTGCTGA3', IFNy sense 5'CTGTTACTGCCAGGACCCA
T3', IFN7y antisense 5" TTTCTGTCACTCTCCTCTTTCCA3'.

3. Results
3.1. Autoimmune Response Profiles Across Cohorts are Highly Heterogeneous

We performed MVA by selecting peptide antigens from random
phage library (PhD12, NEB) with 10”9 different 12-mer peptide se-
quences based on their high avidity of interaction to antibodies in sera
(Fig. 1A). A total dataset of 16 million peptides with unique sequences
was generated. The data structure analysis of Top2500 peptide dataset
(the most abundant peptides across individual samples) revealed that al-
though these peptides were largely individual-specific (Fig. 1B and D), the
study cohorts shared a fraction of common characteristics across Top2500
features (Fig. 1B). The remarkable heterogeneity of antigenic reactivity

between individuals has also been noted previously (Zandian et al.,
2017). However, the distribution of peptides according to the frequency
was found to be similar in the different clinical subsets (Fig. 1C).

3.2. H1N1-specific Inmunoprofiles are Largely Shared Between Pdmx-
Vaccinated and Subjects Infected With HIN1

To evaluate the extent to which the presence of H1N1-specific pep-
tides was restricted to specific clinical subsets, we assayed responses to
H1NT1 infection and Pdmx-vaccination using type A influenza ELISA
(Quantum) diagnostic tests. High-titer responses to influenza A virus
major antigens (including HIN1) were evident for both Pdmx-
vaccinated and H1N1 naturally infected individuals (Fig. 2A). The hu-
moral response to seasonal flu (A/HIN1 and A/H3N2) was relatively
weaker in NT1-diseased as compared with Pdmx-HC individuals as de-
termined by using a commercial ELISA test (p <.001). This was in slight
contrast to earlier findings reporting that Pdmx-NT1 patients had
higher median levels of anti-HIN1 antibodies than controls (Lind
etal, 2014), and may reflect the characteristics of the samples collected
(see Table 1, Materials and methods). Next, we assessed the reactivity of
the sera to protein fragments representing the four major antigens of
H1N1 virus proteome (strain A/California/7/2009). MVA data analyses
of Top2500 peptide data set revealed 4 antigenic regions for hemagglu-
tinin (HIN1/HA, C4RUW8), 5 for neuraminidase (H1N1/NA, C3W6G3),
3 for nucleoprotein (H1N1/NP, B4UREO), and 6 for polymerase acidic
protein (H1N1/PA, IGTHC5), some of which corresponded to known im-
munogenic epitopes from IEDB (http://www.iedb.org/; Fig. 2B). Statisti-
cally distinct coverage profiles with different peaks on HIN1 HA, NA, NP,
and PA antigens were obtained from analysis of Top2500 peptide data
sets of HIN1-HC, Pdmx-HC and NT1 samples (Fig. 2C). Data showed
that the most commonly shared epitopes raised by the anti-Pdmx/
anti-H1N1 immune response were found in the C-terminal region of
HIN1/HA (C4RUWS) locating between amino acids 521 to 531
(Fig. 2B-C), directly before a proven T cell-antigenic region in HA be-
tween amino acids 527-541 of A/California/04/2009 (H1NT1, (Schanen
etal, 2011)). About 700 peptides from the total peptide dataset cluster-
ing to motif with sequence consensus E[ST].R.[QM] were highly abun-
dant in HIN1-HC, and relatively infrequent in Pdmx-HC and NT1
samples as compared with HCs (Fig. 2D).

3.3. Examination of Identified NT1-specific Autoantigens in MVA Dataset

Next we determined peptides that were different between the clin-
ical study groups to examine whether they were consistent with the
prior knowledge of Pdmx-NT1-specific immunogenic epitopes. For the
study, we used an exhaustive sequence pattern search (SPEXS -
https://github.com/egonelbre/spexs2; (Vilo, 2002, Brazma et al.,
1998)) gene ontology analysis, combined with the interrogation of the
presence of known autoantigens previously identified in Pdmx-NT1 dis-
ease (Table S1(Ahmed et al.,, 2015, Bergman et al., 2014, Cvetkovic-
Lopes et al., 2010, De La Herran-Arita et al., 2013, Haggmark-Manberg
et al., 2016, Katzav et al., 2013, Zandian et al., 2017)). Thus, we were
able to confirm statistically significant patterns of epitope recognition
in the samples. Particularly, we identified epitopes resembling those
in the N-termini of OX (4/16) and OX1R/2R (2/16; 4/16), in mitogen-
activated protein kinase 7 (MAP3K7) (amino acids 318-328; 3/16)
and in 5’-nucleotidase cytosolic IA (NT5C1A) (amino acids 35-48; 2/
16), as well as in B-cell lymphoma 6 protein (BCL6), encompassing
amino acids 279-288 in 6 out of 16 sera samples of NT1 diseased
(Fig. 3, Table S1). According to MVA data, none of the previously identi-
fied antigens was prominently detected across NT1 diseased and were
also common also to HC if less stringent statistical power criteria were
used (Fig. 3). In contrast, we found no evidence of stratifying peptides
with consensus sequences mimicking tribbles pseudokinase 2 (TRIB2),
neuropeptide glutamic acid- isoleucine/a-melanocyte-stimulating hor-
mone (NEI/aMSH), or others that were reported by earlier studies
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Fig. 2. A novel common epitope of HA antigen of A/HINT1 in seasonal infection carriers and Pdmx-vaccinated individuals, encompassing a proven T cell- antigenic region. A. The humoral
response to seasonal flu (A/HINT and A/H3N2) was relatively weaker in NT1-diseased as compared with Pdmx-HC individuals as determined by using a commercial ELISA test (p <.001).
The presence of IgG antibodies against HA and H3N2 was assessed in sera samples of HC, HIN1-HC, Pdmx-HC and Pdmx-NT1 by ELISA (Influenza virus type A IgG ELISA, Euroimmun). The
HC samples were collected prior to A/HIN1 outburst in Estonia, before the fall 2009. Blue circles mark individuals of the study cohorts; red dots mark the mean values; lines depict median
values; inner whiskers mark confidence interval for the mean; boxes mark upper and lower quartiles; outer whiskers mark the maximum and minimum values (excluding the outliers). P-
values were calculated by ANOVA and are marked with asterisks. The cut-off value for ELISA was 16 RU/mL. Labels at the top of box plots demark the clinical origin of the sample. B. MVA
predicted HIN1 epitopes partially overlapped with previously described HIN1 (A/California/08/2009(H1N1)) B cell specific epitopes from IEDB (http://www.iedb.org/). Top2500 peptide
dataset containing 121,142 unique sequences was used to delineate the predominant epitopes of HIN1/HA (GI: 238,623,304), HIN1/NA (NA, GI:758899360), HIN1/NP (NP,
GI:229891180) and HIN1/PA proteins in study samples. 9657 peptides from the studied dataset satisfied the selection criteria that these were not present in the HC samples. Specific align-
ment profiles for each of the A/HINT protein antigens were calculated with the criterion that the abundance of a peptide was to be 2-fold higher over random. C. MVA immunoprofiles
predicted a novel epitope in the C-terminal region of HA encompassing amino acids 521-531 and with the sequence ESxRxQ that was common to both seasonal infection carriers and
Pdmx-vaccinated individuals. The graphs show antigen-specific profiles of overall peptide abundance where the number of peptides were counted for each amino acid position for the
following proteins: hemagglutinin (H1N1/HA, C4ARUWS), neuraminidase (HIN1/NA, C3W6G3), nucleoprotein (HIN1/NP, B4UREO) and polymerase acidic protein (HIN1/PA_IGTHC5).
Amino acid sequence of the proteins is depicted on the x-axis. Marked with asterisks are regions where set calculation criteria were satisfied. Detailed analysis of immunoprofiles of
H1N1 antigens revealed a novel immunogenic region of HA encompassing amino acids 521-531 that corresponds to the earlier experimentally determined A/Puerto Rico/8/1934
(H1N1) HA520-530 CTL epitope (Gianfrani et al., 2000) and is partially overlapping with broadly reactive CD4+ T cell epitope: HA527-541 of A/California/04/2009(H1N1) (Schanen
etal., 2011). Peptides aligning to 521-531 of HA cluster to a minimal consensus sequence E[ST].R.[QM] by sequence homology alignment. D. Heat map image of immunoprofiles of peptides
with consensus E[ST].R.[QM] across study samples. The total peptide data set was examined for the peptides with unique structure clustering to E[ST].R.[JQM] motif. About 700 peptides
with enriched abundance in HIN1-HC, Pdmx-HC or Pdmx-NT1 samples were found to cluster to the motif. The data of 700 peptides is presented on the heat map image. Each line rep-
resents peptides with unique sequence structure. The colour intensity of each cell corresponds to the peptide abundance (presented in log value). Black represents peptides captured at
higher abundance whereas white represents peptides captured at lower abundance. Each column represents a peptide profile from a single sample. Labels at the top of the panels indicate
the clinical origin of the sample. Abbreviations: Random alignment — amino acid sequences of peptides under analysis were randomized and aligned to respective protein coding sequence;
Total abundance - the number of peptides counted for defined amino acid positions; HC- healthy control; HIN1-HC - HIN1 infected; Pdmx-HC- Pandemrix-vaccinated; NT1- narcolepsy
type 1 (including 10 Pandemrix-induced NT1 samples).

(Table S1). These data allowed concluding that apart from the BCL6 re-
lated subset, peptides corresponding to previously identified
autoantigens had relatively little discriminative power, suggesting also
that these antigens were either rare or recognized promiscuously in pa-
tient groups with a clinical and ethnical heterogeneous background.

3.4. A Defined Set of Peptides Derived From DP1 Acts as Antigenic Epitopes
in NT1

In analyses of the peptides that were unique among the disease
groups, we observed that the Top2500 dataset contained >1300 pep-
tides with a high enrichment in NT1 (Fig. S1A-B). The most abundant
peptide having the sequence RVLAPALDSWGT showed a high sequence
homology within the second extracellular loop region in the human
prostaglandin D2 receptor DP1 (Q13258). This region in DP1 is pre-
dicted to function in ligand recognition (Avlani et al., 2007; Nagata
etal,, 2017) and is not conserved in mouse and rat (Fig. 4A). Extraction

of all peptides from the total dataset having the highest homology to
RVLAPALDSWGT and to DP1 revealed a set of 4428 unique peptides con-
taining the RxxxPxxD (RPD) consensus sequence that discriminated the
NT1 samples from controls (p <.0001, ANOVA, Fig. 4B-C). We then also
determined that the 2157 RPD-containing peptides out of 4428 (Fig. 4B)
had a high sequence homology to DP1 protein where the bona fide
immunodominant epitope with sequence RVLAPALD encompassed
amino acids 94 to 101 in DP1 (Fig. 4D). Interestingly, according to the
IEBD database (www.iedb.org/), four MHC-I binding epitope regions
of DP1 encompassing amino acids 132-140 (ID: 716767), 145-156
(ID: 637966), 195-203 (ID: 727099) and 303-311 (ID: 697995) have
been defined. The latter (303—311) encoded another extracellular do-
main of DP1 that was also defined by us a potential target of B cell re-
sponse (Fig. 4D).

To validate the data, we employed different methods and measured
the serologic response to peptides carrying the RPD consensus sequence
using sera samples of the study (Fig. 5-6). In line with previous reports
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Fig. 3. Heterogeneity of the immune response to delineated antigens is apparent at the individual level. The total peptide data set was examined for peptides with homology to different
antigens (see Table S1). Homology alignment analysis resulted in delineating six minimal consensus motifs with homologies to epitopes defined by previous studies. Namely, LPXTNxS
(HCRT, 043612), RDxXYP (HCRTR1, 043613), SXLNXTXN (HCRTR2, 043614), KxxxPSAS (BCL6, P41182), STNXS (MAP3K7, 043318), LAXSXKP (NT5C1A, Q9BXI3), (Table S1). Datasets
from different study cohorts were analyzed for the presence of peptides containing the 6 motifs and ROC analyze was performed at threshold values: a) specificity 100% (sensitivity
50%), b) specificity 90%, (sensitivity 63%), c) specificity 85% (sensitivity 69%). Note that the ensemble snapshots from MVA data did not distinguish between the possible scenarios of
each individual antigen motif in single individuals. Individual samples are colour coded. White circles indicate that peptides with abundance values clustering to one or more
aforementioned motifs were below threshold. Colored circles indicate peptides with abundance values clustering to one or more aforementioned motifs were above threshold. None of
the motifs displayed a statistically significant association with many other known antigens (see the list of antigens in Table S1). This negative result may be due to a limited statistical
power of delineated antigens, but also due to the heterogeneity of autoantibody repertoires in different individuals. Abbreviations: HC- healthy control; HIN1-HC - HIN1 infected;
Pdmx-HC- Pandemrix-vaccinated; NT1- narcolepsy type 1 (including 10 Pandemrix-induced NT1 samples).

(Urade and Hayaishi, 2011), we observed a broad expression of DP1
mRNA across different regions of human brain, in human glioma (hGC),
and normal mesenchymal stem cells (hMSCs) (Fig. 5A). Treatments of
hMSCs with the ligand prostaglandin D2 increased DP1 expression, whilst
the pro-inflammatory cytokines interleukin 1p3 and interferon vy (IL-1
and IFN-vy) either slightly increased or decreased its expression, respec-
tively (Fig. 5B). In contrast, PGD2 strongly reduced IL-1/3 and IFN-7y ex-
pression suggesting that these cells recapitulate the intact PGD2-DP1
signaling pathway by inducing anti-inflammatory responses in the stud-
ied cells (Fig. 5B). Performing phage Western blot assay we confirmed
that MVA predicted DP1-positive Pdmx-NT1 sera showed IgG reactivity
to phages that displayed RVLAPALDSWGT peptides (RVLAPALD-plI],
Fig. 5C). No specific reactivity was detected using DP1-negative sera
(Fig. 5C). This peptide target specificity was further confirmed by Western
blot analysis using Pdmx-NT1 sera where the interactions between
human IgGs and antigen expressing phages were blocked by
RVLAPALDSWGT synthetic peptides (Fig. 5C, Fig. S2). Immunoblot analy-
sis using commercial anti-DP1 polyclonal sera and clinical sera of Pdmx-
NTT1, confirmed the presence of DP1 expression in hGC_1 and not in
hGC_2 glial cells and also here specific blocking effects to the
seroreactivity in the presence of RVLAPALDSWGT peptides were con-
firmed (Fig. 5D), but not in case of control peptides or irrelevant sera
(Fig. 5C, Fig. S2). Immunocytochemical analyses showed that DP1 was
predominantly localized on the cell surface of hMSC and hGC cells, and
more importantly, was equally well-detected by immunocytochemistry
using commercial anti-DP1 polyclonal sera and Pdmx-NT1 clinical sera
(Fig. 5E). Furthermore, the synthetic peptide RVLAPALDSWGT competed
for the binding of anti-DP1 antibodies present in sera of Pdmx-NT1 dis-
eased (Fig. 5E). Data combined from Western blot and immunocyto-
chemistry analysis suggested that peptide RVLAPALDSWGT could
embed a structural as well as a linear epitope given that upon competition
it interfered with DP1-specific serorecognition of globular as well as dena-
tured epitopes (Fig. 5D and E).

We next studied whether the peptides identified here could be de-
veloped to an ELISPOT assay to discriminate sera in different disease
groups. ELISPOT analysis data showed that peptides containing HIN1/
HA-specific sequence ESTRYQL (peptide_3) discriminated between nat-
urally HIN1 infected and healthy samples with no earlier HIN1 infec-
tion (ANOVA p < .001, Fig. 6A). RVLAPALD (epitope on DP1) and
KAPSAS (epitope on BCL6) (peptide_1 and _2) peptides that were se-
lected upon MVA data, correctly assigned upon ELISPOT analysis the

NT1 group from HC samples (ANOVA p < .001, Fig. 6B). Combined
ELISPOT analysis using all 3 peptides, could correctly classify 11 out of
16 NT1 (specifically - 7 Pdmx-NT1 and 3 NT1) samples across all con-
trols (p <.001 Chi-squared test, Fig. 6C). Notably, majority of the DP1
and BCL6-peptide-positive NT1 samples had undetectable OX findings
from the related CSFs (with average values of 6.1 pg/mL), whereas
those 4 that were negative by our ELISPOT measurements, had OX levels
in respective CSF samples still low but in detectable range (with average
values of 77 pg/mL (Fig. 6C and see Materials and methods). Unlike the
IgG response, the IgM levels in response to the tested peptides were low
or absent in all studied individuals (data not shown). These findings
confirmed that peptides carrying the epitope motifs identified in the
study could be used in ELISPOT analysis to develop a novel multi-
biomarker diagnostic assay for NT1.

4. Discussion

Despite extensive research using biomarker and neurophysiological
approaches, known heterogeneity among NT1 diseased is not always con-
sistent with serologic marker-based subtype classification schemes. Using
an unbiased analysis of serum samples from single individuals, we de-
tected a high variance in humoral immune response profiles, both in
healthy and diseased people. We found that variance in immunoprofiles
representing multifactorial heterogeneity of NT1 clearly determined dis-
tinct disease-specific serological profiles. We focused our analysis on pep-
tides specific to Pdmx-immunized and -NT1 diseased subjects, which
encompassed vaccine antigens and autoantigens in order to have a full
coverage of potential triggers of the disease. Our results show that pa-
tients with NT1 exhibit a specific immune response to epitopes of recep-
tor DP1. This finding highlights the importance of the PGD2-DP1 pathway
in the functioning of sleep-wake homeostasis as suggested by the role of
DP1 in slow-wave sleep (Terao et al., 1998). However, the precise mech-
anism by which PGD2-DP1 signaling may influence orexinergic neurons
and immune regulation in NT1 requires further studies. In addition,
using MVA-based immunoprofiling, we discovered epitopes, such as
those of the protein BCL6 specific for Pdmx-NT1 and sNT1 patient
group. This underscores the complexity of NT1 with different molecular
targets and pathways involved and contributing to the immune response.
Enhanced inflammation due to immune system malfunction has been de-
tected in human narcoleptics in the regions of OX cell loss (Bassetti et al.,
2010; John et al., 2013; Nishino, 2011; Thannickal et al., 2000, 2003,
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Fig. 4. Peptides with minimal epitope motif RxxxPxxD (RPD) are enriched in samples of NT1 and align to the extracellular loop of human DP1. A. Peptide RVLAPALDSWGT found as the
most abundant in Pdmx-NT1 was highly homologous to the second extracellular loop region of DP1 protein. More than 1,300 peptides from the selection of the Top2500 peptide dataset
were enriched in NT1 samples (Fig. S1A-B) where the peptide RVLAPALDSWGT had the highest values of abundance across the Pdmx-NT1 cohort. BLAST analysis revealed that
RVLAPALDSWGT region of DP1 is highly dissimilar in mammals. To identify peptides from Totpep dataset with the highest homology to DP1 and to RVLAPALDSWGT, SPEXS2 software
(https://github.com/egonelbre/spexs2.) was used and the top motif that fulfilled both criteria was found to be RxxxPxxD (RPD, a motif defined by three shared amino acids). B.
Peptide sequences containing RPD motif were enriched in immunoprofiles of NT1 samples. Analyzing the Totpep library, 4428 peptides were identified from NT1 (including 10 Pdmx-
induced NT1 samples and 6 sNT1 samples) data sets that contained the RPD motif. Box plot depicting that these 4428 peptides (with RVLAPALDSWGT eliminated beforehand as
dominant) contained sufficient information to discriminate between HC and NT1 samples in a statistically significant manner a) by their abundance (in log, student t-test p-value <
.0001) and b) divergence (in log, student t-test p-value <.0001). SPEXS2 analysis resulted in 2157 peptides that out of 4428 were highly homologous (with at least 4 consecutive
amino acid matches) to RVLAPALD of human DP1 and discriminated NT1 samples (including 10 Pdmx-induced NT1 samples and 6 sNT1 samples) in a statistically significant manner
¢) by their abundance (in log, student t-test p-value <.0001) and d) divergence (in log, student t-test p-value <.0001). Six NT1 samples that were not Pdmx-induced were similarly to
Pdmx-NT1 samples discriminated by the set of 4428 peptides from HC. In box plots - blue circles mark the single individuals of study cohorts; red dots mark the mean values; line
marks the median values; inner whiskers mark confidence intervals for the mean; boxes mark the upper and lower quartiles; outer whiskers mark the maximum and the minimum values
(excluding outliers). C. Heatmap images depicting the immunoprofiles of the top one thousand NT1-specific peptides out of 4428 across the clinical study-groups. The data are presented
as heat map image generated via conditional formatting in MS Excel. Each column represents a peptide profile from a single individual. Each line represents peptides with unique sequence
structure. The colour intensity of each cell corresponds to the peptide abundance (counts of sequences in log). Black represents peptides captured at higher abundance whereas white
represents peptides captured at lower abundance. D. Epitope mapping of anti-peptide response to human DP1 in sera of Pdmx-NT1 diseased. SPEXS2 analysis resulted in 2157 peptides
carrying RxxPxxxxD motif that were aligned to DP1 protein sequence (Q13258) with a 2-fold higher abundance over random as a chosen criterion. In addition, MEME-MAST algorithm
(Bailey and Elkan, 1994) aligned these 2157 peptides to the region encompassing 94-101aa of DP1, E-value = 0.0078. Each bar on the x-axis corresponds to one of the overlapping peptides
required to cover the antigen, and the height of the profiles shows the relative abundance. Three potentially immunogenic regions were described with the predominant alignment con-
taining the sequence RVLAPALD and encompassing amino acids 94 to 101. Zoomed in the box is an extract of the immunoprofile of DP1 in positions 90-106. Calculated relative abundance
values are marked above each amino acid position. Note that the weaker immunogenic regions of DP1 are expanded toward both N- and C-termini. Abbreviations: Abundance - peptide
frequency; Divergence - all unique peptides; HC- healthy control; HINT-HC - HINT infected; Pdmx-HC- Pandemrix-vaccinated; NT1- narcolepsy type 1 (including 10 Pandemrix-induced
NT1 samples).

2009), but the exact factors or mediators leading to the ultimate death of increased after tissue injury and cell stress (Ricciotti and Fitzgerald,
OX neurons are yet unknown. 2011). PGD2 is a major eicosanoid both in the Central Nervous System

Here we show that the DP1 receptor is linked to NT1 by acting as a (CNS) and peripheral tissues with a role in inflammation as well as ho-
possible antigen in the disease process. Prostaglandins play a key role meostasis (Jowsey et al., 2001; Vijay et al., 2017). PGD2 is abundantly
in the inflammatory response and their synthesis is significantly produced by mast cells and Th2 cells, and among a wide range of
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Fig. 5. Validation of DP1 as a true antigenic target in NT1 disease. A. Human DP1 is expressed widely in different brain regions, and by mesenchymal and cancer stem cells. Cerebral cortex:
Frontal cerebral cortex, Occipital lobe, Frontal lobe, Parietal lobe, Hippocampus; brain nuclei: Tectum, Amygdala, Thalamus, Caudate nucleus, Substantia nigra, Putamen, Nucleus ruber, Globus
pallidus; Cerebellum: Cerebellar nuclei, Cerebellum right, Cerebellum left; Brainstem: Ventral pons, Dorsal pons, Dorsal medulla, Ventral medulla; Axonal tracts: Infundibulum, Optical nerve,
Dorsal caudal pedunculi, Pedunculi, Cerebellum white matter, Corpus callosum; human glioma cells (hGC_1, hGC_2); human mesenchymal stem cells (hMSC); NC - negative control. PCR
analyses were done using specific primers for human DP1. GAPDH mRNA expression was used to normalize the data across samples. B. PGD2/DP1 signaling is associated with
inflammation regulation. Expressions of human DP1, IL-13, MMP1, IFN'y and IDO-1 were analyzed by PCR in human mesenhymal stem cells treated with PGD2 (10 uM) or cytokines IL-
16 (1 ng/mL) and IFNvy (2 ng/mL). NC - negative control. GAPDH mRNA expression was used to normalize the data across samples. C. RVLAPALD was identified as a target antigen
sequence for NT1-specific polyclonal IgG response. Western blot analysis of phage particles containing the RVLAPALD-pIII (phage 1) or FLAG-pIII fusion proteins (phage 2) show that
human Pdmx-NT1 serum (dilution 1:500) reacted specifically with the plll protein containing the peptide RVLAPALDSWGT sequence, but not with the phage backbone or FLAG-plIl
fusion protein. Duplicate membranes were incubated with Pdmx-NT1 sera treated with the synthetic peptide (RVLAPALDSWGTGGGDYKDDD: final conc 6.6 pg/mL) that significantly
blocked the interaction between phage #1 and human IgG similarly to anti-FLAG antibody (dilution 1:2000) and phage #2. RVLAPALDSWGT-plII fusion protein was not detected by
HC sera (1: 500). Protein size markers are indicated at the right side of blot. D. NT1-specific seroreactivity to DP1 protein is specifically blocked by RVLAPALD peptide. Western blot
analysis of endogenous levels of DP1 protein (MW 40 kDa) in human glioma hGC_1 and hGC_2 cells using anti-PTGDR1 (DP1) polyclonal antibodies (1:500) (left, first panels). Note
that, hGC_2 cells were negative of DP1 expression. The use of the Pdmx-NT1 serum (1:500) showed similar pattern of DP1 reactivity in hGC_1 and hGC_2 cells, and the DP1-specific
signal was attenuated by pre-treatments of Pdmx-NT1 sera with a synthetic peptide #1 (final conc 6.6 pg/mL). Anti-GAPDH monoclonal antibody (1:10,000) was used as a control for
immunoblots. E. DP1 expressed by hMSCs and cancer was specifically blocked by RVLAPALD peptide. IF analysis of DP1 in hMSC and glioma cells. The antibodies used included: anti-
PTGDR1 (1:500; green), Pdmx-NT1 serum (1:400; red) and the secondary Alexa Flour 488 and 647 (Invitrogen, 1:2000) antibodies. For antibody-blocking, Pdmx-NT1 sera (1:400) and
synthetic peptide #1 (final conc 6.6 ug/mL) were used. Cells were analyzed for phalloidin-labelled cytoskeleton proteins (green, left) and nuclear structures (Hoechst 33342, blue).
Abbreviations: Pdmx-NT1- Pandermix-induced narcolepsy type 1; HC - healthy control.

other body cells (see ref. in Farhat et al. (2011)). PGD2 elicits its down- In conclusion, the present study shows that anti-DP1 antibodies are
stream effects by activating DP1 and DP2 receptors with opposing ef- autoimmune agents in the course of NT1 prompting more studies on the
fects on cyclic AMP (cAMP) production, and/or phosphoinositol role of PDG2-DP1 signaling in OX-signaling and in the disease. Currently
turnover and intracellular Ca2+ mobilization (Liang et al., 2005). In DP1-selective agonist/antagonist therapies are considered in treating
the brain, PGD2 regulates sleep, body temperature, and nociception autoimmune disorders such as asthma (Maicas et al., 2012; Santini
and its levels exhibit marked changes in different neuropathologies et al,, 2016; Santus and Radovanovic, 2016). Our data also indicate
(reviewed in (Liang et al., 2005, Mohri et al., 2006, Urade and that, depending on the antibody concentrations and affinities, anti-
Hayaishi, 2011)). The microglial PGD2-DP1 pathway is also known to DP1 antibodies may modify the function of pharmaceutical compounds

mediate neuronal damage through microglial activation (Bate et al., targeting PGD2-DP1-signaling pathways (Narumiya and Fitzgerald,
2006; Vijay et al., 2017). 2001) that need to be taken into account in clinical studies.
Among cells expressing DP1, mast cells (MCs) can release hista- Supporting evidence that the humoral response in the CNS is de-

mine and other factors that affect sleep and the immune response rived from different peripheral tissue antigens is provided by the
in the brain. Accumulating evidence shows that MCs play a role in findings that sera from NT1 diseased can bind brain and muscle
the regulation of sleep and behavior (Chikahisa et al., 2013). MCs structures (Ahmed et al., 2014; Smith et al., 2004). There is a plethora
are most abundant in young individuals under the age of 19, after of data that genetic or experimental alterations of the OX system are
which their counts decline with age (Porzionato et al., 2004; associated with NT1, however, OXs are not restricted to the CNS and
Turygin et al., 2005). Most significantly, the maturation of MCs is in- together with their receptors OX1R and OX2R are widely expressed
fluenced by PGD2 and the receptor DP1 (Taketomi et al., 2013). In in peripheral tissues (see ref. in (Voisin et al., 2003)). BCL6, another
addition to histamine, DP1 signaling may also influence the levels NT1 antigen, is a master regulator required in mature B-cells during
of adenosine that is known to regulate sleep (Urade and Hayaishi, germinal center (GC) reaction (Refin Peietal. (2017)). NRXN1-« has
2011). The precise role of MCs and their released factors such as his- been isolated from brain and heart tissues suggesting a role also in
tamine in NT1 warrants further studies. heart development (Nagase et al., 1998). TRIB2 is present in many
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Fig. 6. Use of MVA-defined peptides for immunodiagnostic applications of NT1. A. ELISPOT analysis of peptides containing H1N1/HA-specific sequence ESTRYQL (peptide_3) confirmed the
power of the peptide to discriminate samples of natural HIN1 infection from HC (ANOVA p <.001). In box plots - yellow circles mark the single individuals of study cohorts; red dots mark
the mean values; line marks the median values; inner whiskers mark confidence intervals for the mean; boxes mark the upper and lower quartiles; outer whiskers mark the max and the min
values (excluding outliers). B. ELISPOT analysis of peptides containing RVLAPALD (epitope of DP1) and KAPSAS (epitope of BCL6) (peptide_1 and _2, respectively) resulted in correct
assignment of 10 Pdmx-NT1 samples and 6 sNT1 samples to NT1 group (ANOVA p <.001). On box plots - blue circles mark the single individuals of study cohorts; red dots mark the
mean values; line marks the median values; inner whiskers mark confidence intervals for the mean; boxes mark the upper and lower quartiles; outer whiskers mark the max and the
min values (excluding outliers). C. ELISPOT analysis data combined revealed the power of peptides 1, 2, and 3 to discriminate 11 (7 Pdmx-NT1 and 4 sNT1) out of 16 NT1 samples
across all samples (p <.001 Chi-squared test). Thresholds were calculated by using ROC curve analysis and results were visualised using scatter plot analysis with divided threshold
values (M1-M4). Statistical significance of differences was calculated by two-way classification Chi-square test (Chi-squared p-value >.001). Abbreviations: HC- healthy control; HIN1-
HC - HINT1 infected; Pdmx-HC- Pandemrix-vaccinated; NT1- narcolepsy type 1 (including 10 Pandemrix-induced NT1 samples).

cell populations both in and outside the nervous system, including
the immune cells (Eder et al., 2008; Sung et al., 2006). Gangliosides
(anti-GM3) are abundant in the brain, but in extraneural tissues, rel-
atively high concentrations of ganglio-series GMs were found in
bone marrow, erythrocytes, intestine, liver, spleen, testis, kidney,
and in embryonic stem cells (Kolter, 2012). NEI-MCH has mostly
been detected in peripheral organs (Viale et al., 1997). NT5C1A is
highly abundant in skeletal muscle tissue (Hunsucker et al., 2001).
GLS2 is expressed specifically in the liver, but also in extrahepatic tis-
sues, like the brain, pancreas, cells of the immune system (ref in
Martin-Rufian et al. (2012)). However, it remains elusive what path-
ogenic roles these antibodies against the above-mentioned proteins
may exert within the periphery.

Our data of immunoprofiling support the existence of immune de-
fects in multiple pathways associating NT1 to a) DP1 and PDG2/hista-
mine associated disorders, b) BCL6 and the chronic status of latent
herpesviruses (such as EBV), c) orexin/OX1/2R-related dysfunctions,
d) stress and inflammation-associated mitogen-activated pathways
(such as MAP3K?7, also known as transforming growth factor (TGF)-{3-
activated kinase 1 (TAK1)), and e) adenosine-deficiency linked dysfunc-
tions (involving NT5C1A) (Table S1, Fig. 7). Together these results pro-
vide a comprehensive map of potential molecular targets contributing
to NT1 that can be of help in designing future strategies for the diagnos-
tics and treatment of the disease. More broadly, our study demonstrates

the usefulness of MVA as a method for disease classification and for the
discovery of novel biomarkers that can be applicable to any human
disease.
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Fig. 7. Hypothetical model for the aggravation of autoimmune response in Pdmx-associated and spontaneous NT1. The immune response in NT1 is highly heterogenic with different
pathways affected during the disease progression. We favor the idea that the lifelong risk for NT1 or for disease aggravation in pre-disposed individuals is increased following
inflammatory triggers upon breaching of the blood-brain barrier (BBB) and with activation of preexisting auto-reactive antibodies (Ab) and cells reaching brain. Consequently, an
immune response to A/HIN1 (and subsequent molecular mimicry) or a generalized stimulation of the immune system mediated by the Pdmx vaccine as AS03-adjuvanted vaccine can
act as the inflammatory trigger (Morel et al., 2011; Carmona et al., 2010; Meyer et al., 2011). The inflammation triggers include i) infections (examples of pathogens are shown), ii)
genetic factors, or iii) chronic inflammation (Kornum et al., 2011). The polyclonal Ab response from peripheral tissue may initiate disease by concentrating antigens in the brain to
presentation-competent cells (Getahun et al., 2004). Recent data show further that peripherally produced human anti-CNS reactive antibodies are capable of opsonizing human CNS
antigens (Kinzel et al., 2016). The entry of immune cells (T cells, B cells, macrophages, microglia and mast cells) cause neuroinflammation with the release of cytokines that damage
neurons including HCRT+ neurons involved in sleep/wake regulation. Production of auto-reactive antibodies as a secondary response to cell death of HCRT-or other brain-resident
cells can occur via antigen presenting cells. Prostaglandins are part of the inflammatory response in the brain acting via specific receptors. In particular, DP1 is produced by astrocytes,
oligodendrocytes, neurons, microglia and meningeal cells (Liang et al., 2005; Mohri et al,, 2007; Beuckmann et al.,, 2000). PGD2 signaling is known to prevent excessive inflammasome
activation and may act as an anti-inflammatory pathway in the brain. Additionally, in brain residing mast cells, DP1 activity promotes maturation and histamine release (Taketomi
et al., 2013). The latter is of particular interest given that histamine levels in the CSF of NT1-diseased are reduced (Nishino et al., 2009). Thus, our findings suggest that the anti-DP1
immune response, whether causal or sequel, can interfere with PGD2 signaling in the brain. The results provide also evidence that the dysfunctional DP1 network can be a target for
diagnosis and intervention of NT1, a conclusion that warrants further investigations.
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