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Abstract

Application of the deep learning transformer to estimate wave spectra in the Baltic Sea on
the basis of satellite-based synthetic aperture radar (SAR) imagery constitutes the scope of
the present thesis.

The present research is motivated by the following factors. Wave spectre contains essential
information for the areas of maritime navigation, coastal engendering, and environmen-
tal studies. For oceanic waves, precise analytic methods exist to compute wave spectre
based on SAR data. For coastal seas, oceanic models are unapplicable because of a short
wavelength. While in-situ devices like buoys provide the most accurate spectre measure-
ment, covering the sea with large numbers of such devices is not feasible economically,
complicated technically, and may become an obstacle for the navigation.

The choice of the methods is based on the following points. Previous studies have demon-
strated that regression models could not provide the desired model goodness, and long-
short-term memory networks have shown promising results. Deep learning transformers
have demonstrated highly accurate results in many different areas because of their ability
to capture complex relationships between different elements of the data. The latest leads to
the idea to adapt transformer models known from the area of natural language processing
to the case of numeric sequences describing wave spectre.

Purely synthetic data sets were used to train and validate models. For these data sets, the
following goodness metrics were achieved - mean correlation 0.7, mean MSE of 0.02,
and the average difference between the predicted sequence peak value index and the true
sequence peak value index is 3.68

The thesis is written in English and is 51 pages long, including 10 chapters, 28 figures, and
2 tables.
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Annotatsioon
Süvaõppe transformeri rakendamine Läänemere lainespektri

hindamiseks

Käesoleva töö raames käsitletakse süvaõpe transformeri rakendamist lainespektri hin-
damiseks Balti mere piirkonnas satelliidil baseeruva sünteetilise ava radari (SAR) andmete
põhjal.

Käesoleva uurimistöö motivatsioon põhineb järgmistel teguritel. Laine spekter sisaldab
olulist teavet merenavigatsiooni, rannikuarenduse ja keskkonnauuringute valdkondade
jaoks. Ookeanilainete jaoks on olemas täpsed analüütilised meetodid, mis põhinevad
SAR-andmetel lainespektri arvutamiseks. Rannikumerede puhul pole ookeanimudelid
rakendatavad lühikese lainepikkuse tõttu. Kuigi kohapealsed seadmed nagu poijad pakuvad
kõige täpsemaid spektri mõõtmisi, ei ole mere katmine nende seadmetega majanduslikult
teostatav, tehniliselt keeruline ja võib muutuda navigatsiooni takistuseks.

Meetodite valik põhineb järgmistel punktidel. Varasemad uuringud on näidanud, et regre-
sioonimudelid ei suuda pakkuda soovitud mudeli headust ning LSTM tüübi närvivõrgud on
näidanud paljulubavaid tulemusi. Sügava õppimise transformerid on mitmetes erinevates
valdkondades näidanud äärmiselt täpseid tulemusi tänu nende võimele püüda keerulisi
seoseid erinevate andmeelementide vahel. See viib mõtteni kohandada transformeeri
mudeleid, mida tuntakse loomuliku keele töötlemise valdkonnast, numbriliste jadade
vormis kirjeldatud laine spektritele.

Selles uurimuses kasutati kasutati puhtalt sünteetilisi andmehulki mudelite treenimiseks
ja valideerimiseks. Nende andmehulkade puhul saavutati järgmised headuse mõõdikud.
Keskmine korrelatsioon 0,7, keskmine MSE 0,02 ning ennustatud järjestuse tipuväärtuse
indeksi ja tegeliku järjestuse tipuväärtuse indeksi keskmine erinevus on 3,68.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 10 peatükki, 28
joonist, 2 tabelit.
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List of Abbreviations and Terms
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1. Introduction

The present thesis proposes applying the deep learning transformer model to estimate
the wave spectrum from a satellite-based synthetic aperture radar (SAR) image in the
Baltic Sea. The wave spectrum contains essential information about waves for areas such
as coastal engendering, environmental protection, wind park planning and building, and
of course, commercial navigation. Although buoys positioned in different parts of the
sea may provide the same information, their wider use contains many drawbacks. The
larger number of buoys may affect navigation, are expensive to maintain and operate, and
constant data exchange is difficult, finally, the buoy may be lost during stormy weather.
All this motivates the usage of SAR to estimate the wave spectrum.

For the oceanic areas with longer swell waves, compared to wind waves predominant
in closed seas, there exist analytic inversion models, to estimate the wave spectrum
from the SAR image spectrum. These models are hardly applicable for waves with a
shorter wavelength that are dominant in the Baltic and other closed seas. This leads to
the idea of using artificial intelligence techniques for the task. One can enquire about
statistical machine learning techniques that are less computationally demanding. To the
best knowledge of the author, no results have been published in this area. The experience
of our workgroup has demonstrated that, while it is possible to fit polynomial models and
regression trees, their quality is rather lower.

The task of predicting wave spectra based on SAR images may be formulated as the
transformation of the SAR image spectrum to the wave spectrum. Therefore, the problem
is to fit the model, which allows us to convert one spectrum into another. One of the
possible reasons why simpler models fail is due to the complexity required to capture the
relations between different elements of the specter. SAR image spectrum retrieved by
Fast Fourier Transform (FFT) is challenging to interpret because it incorporates various
elements related to the SAR platform and waves. For example, SAR backscatter is
dependent on the surface roughness, incidence angle, sending and retrieving polarization,
and satellite flight direction relation to wave propagation direction. Moreover, there are
many other oceanographic processes that have effects seen on the surface but with no clear
explanation . All the above requires a powerful AI system, that is able to find relations
between different processes and can optimally parametrize those relations.

The Transformer architecture, originally designed for natural language processing tasks
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[1], has exhibited exceptional capabilities in capturing complex relationships in sequential
data. By treating wave spectra as sequential information as in [2], the Transformer model
offers a novel perspective that may overcome the limitations of traditional techniques.
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2. Literature review

The estimation of wave spectra is a critical aspect of sea science, providing valuable
insights into sea state conditions. The idea of retrieving surface gravity wave parameters
from spaceborne or airborne images is not new. One of the earliest Earth-observing
satellites, SEASAT, was launched in 1978, and designed to test various oceanographic
sensors and gain a better understanding of Earth’s seas. The satellite operated in Earth orbit
for 105 days, measuring sea-surface winds and temperatures, wave heights, atmospheric
liquid water content, sea ice features, and ocean topography [3]. In the same year [4]
proposed the two-frequency microwave technique for measuring ocean-wave spectra from
an airplane or satellite. In this article, authors have shown that by carrying out a specific
signal processing it is possible to measure the ocean-wave spectra from an airplane or
satellite.

Despite synthetic aperture radars being used in the 1980-ies to image ocean surface waves,
it was still not fully understood how they relate to the actual wave field. The [5] reviews
and extends models on the imaging mechanism. It is noted that a description of the imaging
process by the functions suggested can only be adequate for low to moderate sea states.

In 1982, a direct method to estimate wave height from digitally processed SAR imagery
was introduced in [6]. The method is simple and is based on measuring the contrast of the
image and the wavelength of the dominant wave. Comparison with sea truth measurements
shows agreement to within about only 20 percent.

In 1983 the relationship between the SAR image stripes and the real surface wave condition
was first investigated by using Monte-Carlo simulation [7], as a result - a theoretical model
previously developed for describing the imaging of monochromatic ocean waves by
synthetic aperture radar (SAR) is extended to relate ocean wave spectra to SAR image
spectra. In the same year substantial limitations of spaceborne SAR for global ocean wave
monitoring were discussed in [8] and additional correction strategies were suggested.

Later in 1985 the basic synthetic aperture radar (SAR) theory of ocean wave imaging
mechanisms was reviewed, using both known work and recent experimental and theoretical
results from the Marine Remote Sensing (MARSEN) Experiment. The analysis has
revealed a more comprehensive understanding of the SAR imaging phenomenon than what
was previously accessible. A novel and broadly applicable imaging model is proposed [9].
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In 1986 the relative importance of the various motion-related contributions to the SAR
imaging mechanism of ocean surface waves was studied in [10]. It is shown that in cases
where imaging is nonlinear (wind waves, which are predominant in closed areas such as
the Baltic Sea), the wave spectrum cannot be retrieved from the SAR image spectrum by
applying linear inversion techniques. The study also presents computer simulations of SAR
imaging of fully developed wind seas with different peak wavelengths and propagation
directions.

In 1990, [11] proposed that while remote sensing of ocean surface waves can be difficult
using conventional synthetic aperture radar (SAR) techniques, they can be observed clearly
by SAR in the interferometric configuration (INSAR). This enhancement is attributed
to INSAR’s capability to provide images of the local surface velocity field, in contrast
to conventional SAR. It is demonstrated that INSAR can be used to obtain wavenumber
spectra that are in agreement with power spectra measured in situ.

Later in 1991, [12, 13] suggested a solution to a non-linearity problem discussed in [10].
Authors have derived the nonlinear mapping relation between the SAR image spectrum and
the ocean wave spectrum. This inversion algorithm is called the Max Planck Institute (MPI)
Algorithm. In 1994 [14] proposed generalizations of the non-linear ocean-SAR transform
and a simplified SAR inversion algorithm. It is shown that the non-linear transformation
from the ocean wave spectrum to the synthetic aperture radar (SAR) image spectrum can
be extended to include point target spreading effects. The drawback of such algorithms
is that they require some first-guess wave spectrum, which is iteratively modified until a
satisfactory agreement is obtained.

In 1995 image cross-spectra obtained by combining pairs of single-look SAR images
were utilized in an inversion scheme for extracting the underlying ocean wave spectrum
[15]. It is stated that the image cross-spectra is shown to significantly reduce the speckle
noise level while preserving the spectral shape and providing information about the wave
propagation direction.

In 1996 [16] introduced an improved MPI algorithm, which uses a modified cost function
and additional iteration loop. The new algorithm retrieves smooth spectra avoiding the
discontinuities that tended to arise in the previous algorithm. It is stated that the overall
correlation of a large set of simulated SAR spectra with the measured SAR spectra is found
to be significantly higher than with the previous algorithm, indicating that the algorithm
not only overcomes isolated shortcomings of the earlier algorithm but also yields retrieved
wave spectra which are generally more consistent with the input SAR data.
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All mentioned studies allowed to estimate swell parameters over the ocean, but for the
coastal areas, such algorithms provide less accuracy. This motivated the development of
empirical methods. 10 years later a new empirical approach to retrieve integral ocean
wave parameters from SAR data is presented [17]. The main idea of this approach is to
estimate bulk wave parameters (significant wave height, peak period, etc.) used in practical
applications without retrieving the two-dimensional wave spectrum.

Later in 2012, a semi-empirical algorithm for SAR wave height retrieval was proposed
in [18]. The objective of the algorithm is to estimate the wave height from SAR imagery
without any prior knowledge. Multiple empirical algorithms have been developed in 2016,
which are aimed at estimating the same significant wave height from SAR data [19, 20].

In 2017 neural networks were used to relate the nonlinear relationships between the input
SAR image parameters and output geophysical wave parameters [21]. The developed
neural networks extend the SAR ability to retrieve useful wave information under a large
range of environmental conditions including extratropical and tropical cyclones in which
significant wave height estimation is traditionally challenging. The study confirms that
using machine learning for this task is possible.

In 2018 deep deep-learning algorithm Inception v3 was applied to the SAR images to
classify geophysical phenomena [22]. Preliminary results of the study show that deep-
learning methodology is effective for SAR imagery, with overall accuracy exceeding 0.9
for the described task.

Since 2018 many studies applied machine- or deep learning techniques to the SAR image
data for classification/regression [23, 24, 25, 26]. A different approach was proposed in
[2], where spectra were considered to be a sequence with specific relations between the
values within itself. The authors applied the LSTM algorithm to model these relationships
and achieved promising results.

The idea of using the transformer model presented in [1] for the described problem, comes
directly from the sequential nature of the spectra. Transformer models showed exceptional
performance in many different areas and were adapted to many different tasks [27] such as
language modeling, computer vision, audio and speech recognition, healthcare, etc. As the
transformer model was initially developed for NLP problems, it is assumed the datatype
for the model is a text (sequence of words), where words or some combinations of words,
letters, etc represent different classes.

This thesis aims to investigate and evaluate the application of deep learning transformers for
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the estimation of Baltic Sea wave spectra from the spectra of SAR image data. Both spectra
are numeric sequences, which makes this a regression problem. In 2022, a transformer-
based regression scheme for estimating significant wave height in oceans was proposed
in [28]. The proposed method outperforms existing state-of-the-art machine learning
and numerical approaches for significant wave height prediction. However this method
included multiple input data sources, not the SAR image alone, and as in the majority of
related studies, the method is applied to ocean waves. Another drawback is that significant
wave height alone doesn’t provide as much information as full wave spectra. These
limitations motivated the use of a transformer for the estimation of Baltic Sea wave spectra
from the spectra of SAR image data.
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3. Background

3.1 SAR and remote sensing for oceanography

Covering more than 70% of the Earth’s surface, oceans play a crucial role in providing var-
ious services to both humans and the environment. Recognizing the significance of ocean
environments, it becomes imperative to employ advanced technologies for monitoring. In
this regard, datasets obtained through in situ, shipborne, airborne, and spaceborne systems
are actively employed [29, 30, 31].

While in situ measurements offer the most accurate datasets for ocean studies, they come
with certain limitations. These include being point-based observations covering small
areas, and the deployment and maintenance of in situ platforms, such as buoys, being costly
and labor-intensive [32]. On the contrary, the use of airborne and spaceborne Remote
Sensing (RS) systems for ocean mapping and monitoring is of considerable interest due to
their extensive coverage, diverse temporal and spatial resolutions, and cost-effectiveness
of the corresponding datasets [32, 33, 34].

Synthetic Aperture Radar (SAR) systems, as side-looking radar instruments, capture
surface information in two-dimensional directions (azimuth and range). These systems
transmit pulses toward different Earth targets, recording the resulting scattering echoes.
SAR systems typically possess day-and-night imaging capabilities and can operate in
all weather conditions. Through platform movement and signal processing techniques,
high-resolution SAR data can be generated [35].

Various methods have been developed to derive oceanographic parameters from SAR
datasets. These methods generally fall into three groups: statistical, physical, and Machine
Learning (ML) models. Statistical algorithms rely on correlation relationships between in
situ measurements of oceanographic parameters and information collected by RS systems.
These models need optimization for different study areas. Physical models are based on
the physical laws of RS systems, providing better results but requiring numerous inputs
that are often unavailable. ML algorithms, including traditional ones like Random Forest
(RF) and Support Vector Machine (SVM), or more advanced models such as Convolutional
Neural Network (CNN), are increasingly used for various oceanographic applications.
Deep Learning (DL) methods, like in many other RS applications, generally offer higher
accuracies compared to statistical, physical, and traditional ML algorithms [29, 2, 36].
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4. Formal Problem Statement

The main goal of the thesis

This thesis aims to investigate and evaluate the application of deep learning transformers
for the estimation of Baltic Sea wave spectra from the spectra of SAR image data. Formally,
this is a regression problem where the spectre computed on the SAR imagery constitutes
an independent variable and the in situ spectre measured by the physical buoy constitutes
the dependent variable.

Research hypothesis

While early attempts to use linear and non-linear regression models did not result in a
model quality comparable to those achieved by analytic models for oceanic waves, the
application of the LSTM models led to promising results. The most probable reason
for this is the complexity of the relation between the SAR image spectre and the in situ
measured spectre. The relative success of LSTM models for this task leads to the working
hypothesis of this work. Adaptation of the NLP transformer may lead to more accurate
predictions compared to LSTM. The fact that Transformers have been used successfully
for language translation and image analysis tasks supports this hypothesis.

Research questions

While transformers have shown sophisticated results in other areas, there are a few draw-
backs that need to be addressed. The first is that the majority of scholars agree that input
sequence length may be an issue and that transformers handle shorter sequences better.
Another issue is the required computational resources and time. Combining this with the
main goal of the thesis, the following research goals may be formulated.

1. Adapt the transformer model for the case of numeric data.
2. Develop the framework for spectra data preprocessing answering limitations of

transformer models.

For quality assessment, previous work has used mean squared error (MSE) and linear
correlation coefficient. This contribution extends the quality assessment technique by
adding a few more metrics. The difference between the predicted sequence maximum
value index and the true sequence maximum value index. The difference between the
predicted sequence maximum value and the true sequence maximum value. These metrics
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are precisely described in Section 7 and constitute another novel point of the present
research.
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5. Datasets

5.1 Datasets’ description

The NORA3 wave hindcast, which is based on the WAM wave model [37], [38], is used as
the ground truth. The hindcast covers the pan-Arctic domain, including also the Baltic Sea
with a 3 km resolution. However, the spectra were only outputted with a 30 km resolution.
The model spectra are discretized using 30 frequencies logarithmically spaced in the range
of 0.0345-0.5476 Hz and 24 equally spaced directions covering a full circle.

Sentinel-1 Interferometric Wide Swath (IW) Single Look Complex (SLC) sub-images were
calibrated and speckle filtered with a Frost (5x5) filter. During the multi-look operator,
pixels were not averaged to represent squares, and the images were left in radar projection.
The image spectra (ISP ) are calculated from both polarisations (V V and V H) with the
fast Fourier transform (FFT). Subsequently, the values of the ISP components ISPx and
ISPy were interpolated to fixed wavelength values between 215 and 30 m (23 values with
variable intervals). SAR data was collected around the location of the model spectra from
the beginning of 2015 to the end of 2021.

As the thesis goal is to find a mapping from the SAR signal (wavelength domain) to the
buoy signal (frequency domain), then from now on the SAR signal dataset will be called
as the input dataset and the buoy dataset will be related as the output dataset. To include
information from both, co-polarization (VV) and cross-polarization (VH) of SAR signal,
co polarization was divided over the cross polarization. The total number of observations
before the pre-processing was 71215 and after pre-processing it is 41380. Sequence lengths
of both datasets are fixed - the SAR sequence length is 23 units, and the buoy sequence
length is 43 units.

5.2 Data pre-processing

In order to feed the data into the transformer model and proceed with the training process
the data is pre-processed in multiple steps. These steps should be performed in the same
order as they are described further in this thesis as some of them require the whole dataset’s
information to perform the associated transformation, f.e. normalization. To be more
precise, the main objective of preprocessing is to prepare the data for the tokenization
layer by reducing the amplitude and variety, of both datasets, so it is possible not to lose
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much information when tokenizing data (see Section 6.1.2). It is required because of the
evenly spaced samples between the maximum and minimum value of the dataset used
in the tokenization-detokenization process. Both, input and output datasets should be
pre-processed.

5.2.1 Filtering

At first, the data were filtered according to the distribution of the maximum values of the
sequence. There are two datasets, and therefore two filtering steps were applied to the data,
one is considering the input sequence (See Figure 1), and the second - the output sequence
(See Figure 2). Filtering was required to drop out outlying sequences with high or low max-
imum values because these negatively affect the tokenization and thereafter the training pro-
cess.

Figure 1. Input sequences’ max values histogram

Figure 2. Output sequences’ max values histogram
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Filtering thresholds were found experimentally so that smaller tokenizer powers could be
used in combination with a sufficient number of observations to train the model. Note
that figures (1) and (2) are limited at values 2.5 and 2.0 max respectively. There were
observations with max values above 20, and even though their count was not significant
compared to all other observations, even one such outlier equally influences further data
processing and model training.

The effect of such outliers on the tokenization process can be seen in figures 3 and 4.
Observing the range of every graph, there is a clear pattern - the lower the values of the
signal, the less precise the tokenization. That is because when creating a tokenizer for a
dataset, its max and min values are used as parameters (see section 6.1.2)

■ The leftmost graph has the greatest values and thus tokenization works well
■ The middle observation contains values ∼10 times smaller and there are already

problems in capturing the initial signal with the same tokenizer. Instead of ca 15
different values of the initial sequence, there are only two tokens describing it - 0
and 1.

■ The rightmost observation peak value is ∼200 times smaller than the peak value
of the leftmost observation and tokenization completely fails on it - all sequence
values are tokenized as the same token and such signal detokenization results in 0
information signal

The necessity of applying such harsh filtering comes from the fact that ∼65% of output
dataset sequences have a peak value below 1.0. These sequences are similar to the obser-
vation in the middle section of figure 3, and therefore tokenizer would fail to accurately
tokenize more than a half of the dataset.

Figure 3. Tokenization on raw data

5.2.2 Logarithm transformation

After filtering the dataset the tokenizer can represent most of the observations without
significant loss of information, but there are still some observations like the middle
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Figure 4. Tokenization on filtered data

section of figure 5, which can’t be represented properly. To fix this problem logarithm
transformation (5.1) was used to "flatten" values in sequences, moving low and high values
closer to each other. Results of tokenization on filtered and logarithm-transformed data
can be seen in figure 6, regardless of the signal values tokenizer represents them well.
There is one drawback though, which is related to the scope of newly created tokens,
comparing the two first sections of figures 5 and 6 one can note that token peak values
before logarithm-transformation in these two sections were significantly different - ∼80
versus ∼5, whereas after the transformation they are much more alike ∼95 versus ∼75.
This can confuse the transformer model because two different sequences can have similar
token values.

xnew = ln (x) (5.1)

Figure 5. Tokenization of full filtered data

Figure 6. Tokenization of logarithm-transformed data
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5.2.3 Normalization

During the development stage, two ways of normalizing the data were tested:

1. Z-score normalization
xnew =

x− µ

σ
, (5.2)

■ µ- Mean of the dataset
■ σ- Standard deviation of the dataset

Z-score normalization is one of the common ways to normalize the data. This way
of normalization results in a new dataset such that the mean of all values is 0 and the
standard deviation is 1.

2. Min-max normalization

xnew =
x−min(D)

max(D)−min(D)
(5.3)

■ D - Dataset
Min-max normalization is another well-known way to normalize the data. For every
feature, the minimum value of that feature gets transformed into a 0, the maximum
value gets transformed into a 1, and every other value gets transformed into a decimal
between 0 and 1. In the case of sequence datasets, the minimum value of the whole
dataset is mapped to a 0, the maximum value is mapped to a 1, and all other values
are calculated according to formula 5.3

Both normalization methods can be applied to the data, but due to the higher stability and
immunity to outliers, the z-score normalization method was chosen to process the data.
This is the latest step of data pre-processing after which data is ready to be wrapped into
appropriate data loaders for PyTorch to run the model training.
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6. Transformer

6.1 Model architecture

The transformer model implemented in this thesis is slightly different from the one de-
scribed in the original paper [1], but shares the same architecture (see Fig. 7). Blocks,
which concept applies well to the problem specified in this thesis are left without changes.
It is an encoder-decoder model that consists of different building blocks, such as tok-
enization, embedding, multi-head attention blocks, and feed forward neural networks.

Figure 7. Transformer architecture
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In the original paper, [1] both the encoder and the decoder are composed of 6 identical
layers, which are stacked one after another. This stack allows the model to learn more
complex interactions within a sequence which is required for language modelling. The
transformer model implemented in this thesis is aimed at solving a potentially easier
problem that doesn’t require such a high level of complexity and therefore there is only 1
encoder and 1 decoder implemented. The transformer is based on the [39].

6.1.1 Inputs

On the transformer diagram, there are two separate inputs, one for the encoder and one for
the decoder (See Figure 8). The encoder takes the so-called input sequence as the input,
that is the sequence from which transformation is learned during the training of the model.
The decoder input is the whole desired sequence excluding the final END token. Thus a
full sequence starts from the START token and ends on the penultimate token.

Figure 8. Transformer inputs

6.1.2 Tokenization layer

Figure 9. Tokenization layer

The first layer is the tokenization layer (See Figure 9). Regular transformer, which is used
in NLP tasks requires this layer to transform words into numbers to proceed with model
training. The objective of the tokenization is to transform string input into numeric input.
Considering the type of the data, which is a floating point number with 16 decimal places
- both datasets are already numeric and most of the values are unique. It may seem that
tokenization is not needed at all, but due to the fact that each token is tied to a unique
value in the dataset this will result in an enormous amount of unique input and output
values ∼ (41380 ∗ 23) and ∼ (41380 ∗ 43) respectively. Therefore model would be too
complicated to learn all the parameters.
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As implemented tokenizer is used for the numeric input, from now on, vocabulary size
(amount of tokens required to describe the dataset) will be related as a tokenizer power.

Tokenization process

Description of the tokenization process used in this transformer:

■ Create evenly spaced samples between the dataset’s maximum and minimum point,
the number of samples is defined using the tokenizer power parameter.

■ Using samples (bins) created in the previous step map each value in the dataset to
index of range this value belongs to

■ Adding START token and END to the beginning of the sequence and the end
respectively

Example (See Figure 10):
The dataset maximum value is 20, the dataset minimimum value is 0, and the tokenizer
power specified is 5.

1. by creating evenly spaced samples next bins are received - [0, 5, 10, 15, 20] and thus
ranges are

■ 0 <= x < 5 - index 1
■ 5 <= x < 10 - index 2
■ 10 <= x < 15 - index 3
■ 15 <= x < 20 - index 4
■ >= 20 - index 5

2. having dataset like [1, 5, 6, 12, 0, 15, 20] and applying indexing, next tokens as a
result - [1, 2, 2, 3, 1, 4, 5]

3. Adding START token and END tokens - [START, 1, 2, 2, 3, 1, 4, 5, END]

Figure 10. Tokenization example

This way of tokenizing data is similar to discretization, and therefore, there is a loss of
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information. The magnitude of the loss is strongly dependent on the tokenizer power. With
such tokenizer the same token will represent multiple values close to each other, but at the
same time, drastically smaller tokenizer power can be used → thus model has reasonable
complexity and bigger predictive power (see section 7).

Detokenization process

Description of the detokenization process (See Figure 11) used in this transformer:

■ Take away START and END tokens from the tokenized sequence.
■ Using samples (bins) created in the tokenization process map each token back to the

value using token as an index for bins list.

Figure 11. Detokenization example

Figure 11 shows that applying such detokenization doesn’t always result in an initial signal
before tokenization.

By specifying the tokenizer power and by controlling the difference between dataset
maximum and minimum points it is possible to control the precision of the tokenization
and therefore detokenization. The bigger tokenizer power results in more ranges and
these ranges are more narrow, which, as a result, helps to describe the dataset values more
accurately.

Compared to NLP tokenizers, the aforementioned tokenizer results in tokens that contain
semantic meaning, allowing for them to be compared to each other. This feature is later
used to modify the transformer model for a regression problem instead of classification
(see section 6.1.11 and 6.2.4).

START, END and PAD tokens

Due to the technical limitations, there is a need to specify the power of the tokenizer more
by 2, these two exceeding tokens are reserved for START and END tokens
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■ START = N-2
■ END = N-1

, N - Power of the tokenizer

Considering the PAD token - both datasets used in this thesis have fixed size sequences,
therefore there is no need to use PAD token at all, but one possible solution could be one
more reserved token as for the START and END tokens.

6.1.3 Embedding layer

Figure 12. Embedding layer

The tokenization layer is followed by the embedding layer (See Figure 12), which task is
to represent each token by the unique vector of a specified length (See Figure 13). This
mapping is learned during the training and similar tokens are mapped to similar vectors.
This layer is required to add more information about each token into the model and reveal
more connections. As in [1], experiments showed that specifying a bigger depth of the
model results in better performance of the model (see section 6.2.5 or chapter 7). This
layer is left without changes because the idea of enriching tokens with more information
applies well to the specified task.

Figure 13. Embedding example
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6.1.4 Positional encoding

After two layers of transforming there is still one problem, which is neglected - that is
the position of each transformed value. As both datasets contain sequences - the order of
the values also contains information, and therefore it can’t be ignored. Another reason to
provide positional information into the model is that two different sequences, coming from
the same set of tokens will be interpreted by the transformer the same way, which leads to
confusion and lower performance of the model.

To add information about the absolute position of the value in the sequence there is a
positional encoding layer (see figure 14). Note that positional encoding is done before data
is fed into the encoder/decoder, such implementation makes it possible not to integrate the
encoding into the model itself, but rather allow the input data to inject this information.

Figure 14. Positional encoding layer

The way of adding positional information implemented in this thesis is very similar to the
one proposed in [1], the only difference is the formula used. The main idea is to use sine
and cosine functions with different periods for each depth level, sine for even levels, and
cosine for odd. Combine these functions with the position of the value in the sequence
(see formulas 6.1 and 6.2) and the result is a unique vector of position encoding values.

Formulas to calculate positional encoding vector values:

PE(pos, 2i) = sin (pos ∗ exp (2i ∗ − ln (10000.0)

d_model
), (6.1)

PE(pos, 2i+ 1) = cos (pos ∗ exp (2i ∗ − ln (10000.0)

d_model
), (6.2)

The resulting vector is the same size as the embedding, so one can be added to another.
After adding the positional encoding values to the embedding, the input is ready for the
encoder/decoder.
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6.1.5 Feed forward network

Two more building blocks require description before going to the encoder/decoder. One
such block is a feed forward network (see figure 15) which follows multi-head attention
blocks. The task of the feed forward network is to apply an element-wise non-linear

Figure 15. Feed forward layer structure

transformation to each token separately and identically [1]. This transformation is done
using two dense-layer neural network with ReLu activation function in between (see
formula 6.3)

FFN(x) = max(0, xW1 + b1)W2 + b2, (6.3)

To align this block with multi-head attention blocks, feed forward network input and
output layers have the same size as the embeddings. Between these two layers, there
is one hidden layer with a specified number of nodes (see figure 16). This layer adds
nonlinear transformation to each token separately. Such a structure allows the output
from the multi-head attention block to be fed into the neural network without any loss of
information. At the same time, the output of this feed forward network can be fed further
into a multi-head attention block, therefore there is no loss of information. The structure
of this layer is left without changes.

Figure 16. Feed forward layer structure
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6.1.6 Add and normalization layer

The second block which is shared by both the encoder and the decoder is the add and
normalization block (see figure 17). This block consists of two consequent operations

Figure 17. Add & Norm layer

1. Residual connection [40]
2. Normalization [41]

Residual connection is used to preserve original input, which in its turn helps to learn
more complex functions. At the same time, the residual connection also helps to avoid the
vanishing gradient problem. To align all residual connections, all the sub-layers as well as
the embedding produce output of the same dimension dmodel

The normalization layer in its turn helps to keep the training stable. The output of the add
and normalization layer is then as follow (see formula 6.4

LayerAdd&Norm(x) = LayerNorm(x+ SubLayer(x)), (6.4)

where SubLayer(x) is the function implemented by the sub-layer itself (it may be multi-
head attention or feed forward network)

6.1.7 Encoder

The task of the encoder is to map the continuous input sequence (x1, x2, x3, ..., xn) to
another continuous sequence z = (z1, z2, z3, ..., zn), which later will be used in the decoder
together with decoder input sequence to make a prediction. The encoder does such
transformation using the attention mechanism, feed forward neural network, and residual
connections (see figure 18).
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Figure 18. Encoder structure

6.1.8 Decoder

Given the z = (z1, z2, z3, ..., zn) from the encoder, decoder generates an output sequence
y = (y1, y2, y3, ..., ym), one element at a time. At each step model is autoregressive [42], in
other words, each prediction is based on previously predicted values. The first prediction
is based on one value, which is the START token, and after that model predicts values one
after another until it predicts END token or reaches a maximum length of the predicted
sequence.

6.1.9 The attention mechanism

The main idea behind the transformer model is the attention mechanism. All the multi-head
attention blocks are left without changes. The concept of attention applies the same way to
the datasets described in this thesis because the values are tokenized, and embedded the
same way as it is done in [1]. Analogously to NLP, where the self-attention mechanism
is used to capture dependencies and relationships between words within the sentence, it
captures the relations between the signal values within the sequence.

To capture the attention within the sequence three matrices are learned during the training
process:

■ Q - queries
■ K - keys
■ V - values
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Figure 19. Decoder structure

The idea of queries, keys, and values comes from the database work. First, the query
is matched against the keys, this is done by calculating the dot product of Q an K. To
normalize the compatibility of each query-key pair softmax is used. To receive the
attention scores resulting vector is then multiplied by the appropriate vector of values. In
other words, values (V) are weighted by the query-key compatibility. All these calculations
are packed into matrices for faster and more convenient computation (see formula 6.5).

The described method of calculating self-attention assumes it will capture only one type
of relationship within the sequence. To make it capture different types of interactions
aforementioned matrices are split into multiple heads, or even parts, which do the same
thing. All these heads calculate their values in parallel, which allows them to reveal
different dependencies within the sequence. That is why it is called multi-head attention.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6.5)

The transformer model has three different multi-head attention blocks:

■ Encoder multi-head self-attention
■ Decoder masked multi-head self-attention
■ Encoder-decoder global attention
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These three blocks are implemented all the same way. The difference comes from the task
each block is aimed to solve.

6.1.10 Encoder multi-head self-attention

The encoder multi-head self-attention mechanism is aimed at revealing the dependencies
and relations within the input sequence. This is done by calculating attention scores
between each pair of tokens. Analogously to NLP transformer, where such self-attention

Figure 20. Encoder Self-Attention example

mechanism allows to capture the context of the whole sequence, similar attention can
reveal specific patterns in signal depending on the whole sequence values (see figure 21)

Figure 21. Encoder Self-Attention signal example

Decoder masked multi-head self-attention

The decoder self-attention mechanism. Due to the auto-regressive property of the model,
the decoder self-attention is masked. That is at each point in time attention scores are
calculated only for the preceding tokens (in reality all the attention scores are calculated
but subsequent tokens are masked)

Such attention allows the model to reveal dependencies within the decoder input sequence,
for the signal values, similar to the encoder, it helps to capture additional contextual
information to predict the next token, which depends on the whole preceding sequence.
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Figure 22. Decoder masked self-attention example

Masking subsequent tokens is required to prevent the model from cheating by looking at
future tokens when generating new token (see figure 23).

Figure 23. Decoder masked self-attention signal example

Encoder-decoder global multi-head attention

The encoder-decoder multi-head attention in its turn allows the model to learn the relations
between the input and output sequence. That is done by calculating queries using the
decoder input and for keys and values the encoder output is used. This allows every
position in the decoder to attend all the positions in the input sequence (see figure 24)

Figure 24. Encoder-decoder global attention

Analogously to previous attention layers, this attention layer is aimed at capturing the
contextual information from the whole encoder output (input sequence which is encoded
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by the encoder) to predict the next token (see figure 25).

Figure 25. Encoder-decoder global attention signal example

During the training process, all of the described attention layers are learned using the loss
function and target label. To be more specific linear transformations of the attention layer
inputs are learned, these are the transformations that transform inputs into Q,K, and V

matrices.

6.1.11 Final linear layer

This is the final layer of the model, which finalizes all the calculations done before the
next predicted output token. The main difference between the regular transformer used in
NLP tasks and the one described in this thesis is this final projection layer (See Figure 26).
The difference comes from the idea of using a transformer model like a regression model,

Figure 26. Final neural network structure

because of the way sequence values are mapped to tokens. To make the transformer work
with the MSE loss (see section 6.2.4) final linear network architecture was changed to
have 1 output neuron with a ReLu activation function followed (see figure 27). Instead of
predicting probabilities for each token to be the next such a structure results in one floating
point number output. As tokens are integer numbers and the prediction is a floating point
number the rounding operation is applied to all predictions.
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Figure 27. Final neural network structure

6.2 Model training

6.2.1 Train data and batching

Training data contains 41380 ∗ 0.8 = 33104 records, Train set size is a specified parameter,
that can be changed in the configuration file. All the models described in chapter 7 were
trained on 33104 records, which makes 80% of the total records, therefore 20% (8276
records) is left for the validation set.

Train batch size is also a hyperparameter, that can be specified in the model configuration
file. Different batch sizes were tested, from 32 up to 256. Most of the models were trained
on a batch size equal to 64.

6.2.2 Hardware and schedule

Multiple models were trained in a cloud on TalTech AI-LAB resources. Particularly model
was trained on the next specification:

■ Processor: AMD Threadripper 3970X 32-Core/64-thread Processor / AMD Thread-
ripper 3960X 24-Core/48-thread Processor

■ RAM: 128 GB of memory
■ Video card: NVidia 3090 GPU with 24 GB of graphics memory
■ OS: Ubuntu 22.04
■ Nvidia driver version: 545
■ Python version: 3.10.12

On average models with train batch size being equal to 64 take ∼16 hours to train for 5000
epochs. At the same time training time may drastically vary because of other parameters
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specified, such as dmodel and dff

An early-stop criterion was added, because of the specific behavior of the model - In some
cases, validation loss measured during the training after stable reduction starts to grow. For
such cases, there is a specific stopping criterion - if the current validation loss is higher
than the previous minimum validation loss by more than 5% → stop training. Such a
check is carried out every 500 epochs, which is a specified period for saving the model
state. 5% is required because the loss may slightly jump during training but have an overall
descending trend.

6.2.3 Optimizer

The optimizer used for this transformer model is the same as in [1]. It is an Adam optimizer
[43] with the following parameters: β1 = 0.9, β2 = 0.98 and ϵ = 10−9

The learning rate is varying over the training according to the next formula 6.6:

lrate = d−0.5
model ∗min(step_num−0.5, step_num ∗ warmup_steps−1.5) (6.6)

Such a formula results in linearly increasing learning rate for the first warmup_steps
training steps, and decreasing thereafter. warmup_steps used is 4000. After some experi-
ments with the optimizer parameters, they were left without changes, due to providing a
stable training process.

6.2.4 Loss function

To include the semantic meaning of the tokens into the model loss function was changed.
As the original transformer produces output probabilities for each sequence unit to be a
specific token, it uses a cross-entropy loss as a loss function. Even though cross-entropy
loss increases as the predicted probability diverges from the actual label, it doesn’t take
into account the actual distance or similarity between the predicted and actual token.

Imagine two predictions made on the same observation in a case when using cross-entropy
loss, the actual token is 10:

■ Prediction: 10% - token 5; 40% - token 10; 50% -token 20 → predicted token is
20, cross-entropy loss takes 40% probability into account and results in some loss
x. Note that the distance between the predicted token 20 and the actual token 10 is
equal to 10.
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■ Prediction: 50% - token 5; 40% - token 10; 10% - token 20 →, therefore, predicted
token is 5, cross-entropy loss again takes 40% probability into account when cal-
culating loss from the actual token - 10, and results in the same loss x, whereas
the actual distance between the predicted and actual token is lower than it is in the
previous case.

MSE or mean squared error loss function is one of the most common loss functions used
for a regression problem. Note that during the training MSE loss is computed on token
values, whereas in the validation stage, MSE loss is computed on detokenized signal
values.

6.2.5 Hyperparameters

The model has many hyperparameters that can be tuned and affect the model performance:

■ dmodel - depth of the embedding, meaning the length of the vector representing each
single token.

■ dff - feed forward network hidden layer size.
■ h - Each attention layer is split into h parallel blocks, which can learn different

dependencies between the tokens.
■ ivs/ovs - power of the input/output sequence tokenizer. (Can be specified separately)
■ batch_size - count of observations that the model is trained on in one iteration

during the training stage.
■ epochs - number of passes of the entire training dataset through the model.

Fine-tuning each parameter is a time-consuming process because on average, a model
with the train batch size equal to 64 is trained for 5000 epochs around 16 hours. Initial
hyperparameter optimization can be observed in the Chapter 7.
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7. Results

Models

As the transformer model has many hyperparameters (see Section 6.2.5), models with
different combinations of such parameters were trained to obtain multiple results and select
the best model. In Table 1 there is a base model 1 and other models, all different from each
other.

This is pretty simple hyperparameter optimization because each model differs by one
hyperparameter alone, no combinations of two or more parameters at a time were tested.

Nr ivs/ovs batch_size dmodel dff h epochs
Base (1) 102 64 128 2048 1 5000
2 102 64 1024 2048 1 5000
3 102 64 2048 2048 1 1500
4 102 64 128 1024 1 2000
5 102 64 128 2048 8 1000
6 102 256 128 2048 1 500
7 202 64 128 2048 1 3000
8 402 64 128 2048 1 5000

Table 1. Transformer models trained

Notes:

■ Values for the parameters are taken by intuition and logic from [1]. Most of the
changes are multiplication/division by 2 or 4 for simpler comparison.

■ Model 3 training process was suspended on 1500 epochs due to too long training
■ Models 4,5,6 and 7 were trained for fewer epochs because of the early-stop criterion

(see section 6.2.1).
■ Model 8 didn’t converge in 5000 epochs, possibly due to greater tokenizer powers.

Models evaluation

To compare the results of different trained models, the mean value and three quartile values
were calculated for the next evaluation metrics (see Table 2):

■ MSELossvalidation calculated between the predicted sequence and true sequence.
Note that this is different from the MSELosstrain used during model training
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because MSELosstrain is calculated based on the token values of the sequences,
but MSELossvalidation is calculated using processed sequence values.

■ Correlation coefficient r (RHO) - Pearson correlation coefficient calculated between
predicted and true sequence.

■ ∆max_loc - The difference between the predicted sequence peak value index and the
true sequence peak value index. Example: true sequence peak value index = 11,
predicted sequence peak value index = 16 → 16− 11 = 5

■ ∆max_value - The difference between predicted sequence peak value and true se-
quence peak value. Analogous to the previous metric, but instead of index, the value
itself is used.

As the last two metrics represent differences between two values, which can be both
positive and negative, when measuring performance, the modulo of these values is taken
into consideration. Note that for the metrics MSELossvalidation, ∆max_loc, ∆max_value the
lower the value - the better, therefore Q3 value for them is actually Q1. That is because the
top 25% of observations have the lowes value for this metrics.

Nr Metrics
MSE RHO ∆max_value ∆max_loc

AVG Q2 Q3 AVG Q2 Q3 AVG Q2 Q3 AVG Q2 Q3
1 0.03 0.02 0.01 0.65 0.76 0.92 0.28 0.25 0.12 4.12 4 2
2 0.02 0.02 0.01 0.66 0.78 0.93 0.26 0.25 0.12 3.98 3 2
3 0.02 0.01 0.01 0.53 0.52 0.75 0.22 0.16 0.07 4.56 4 2
4 0.02 0.02 0.01 0.66 0.78 0.92 0.24 0.23 0.11 4.09 4 2
5 0.02 0.01 0.003 0.64 0.75 0.88 0.23 0.18 0.07 4.51 4 2
6 0.02 0.01 0.004 0.7 0.81 0.92 0.2 0.17 0.08 3.68 3 2
7 0.02 0.01 0.01 0.67 0.78 0.91 0.23 0.2 0.09 3.73 3 1
8 0.02 0.01 0.01 0.59 0.71 0.88 0.24 0.19 0.09 4.8 4 1

Table 2. Transformer models evaluation

A comparison of the base model and model nr. 2 shows that there is improvement in all
the metrics, meaning a deeper model (each token represented by a deeper vector of values)
is overall better. Model nr. 3 doesn’t prove the aforementioned logic, but most likely, it is
due to the suspended training.

Comparing the base model and model nr. 4 there is a slight improvement in RHO and
∆max_value metrics, which concludes that there is no need for such a deep hidden layer in
feed-forward networks.

Increasing the parameter h to 8 is ambiguous, there is an improvement in some of the
metrics, and in the same way there is a worsening in other metrics (model nr. 5). Recall,
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that this parameter is the number of parallel attention mechanisms required to capture
different types of contextual information from the sequence, therefore there is no clear
linear relation between this parameter and model performance. In [1] authors have shown
that too many heads can lead to worsening of the performance.

Model nr. 7 shows that an increase in the tokenizer power positively affects the model
performance, there is an improvement in all the metrics. There is at least one drawback
though, which is revealed in model nr. 8, with the tokenizer power parameter increase -
increases the set of possibly predicted tokens, therefore transformer needs more time to
learn such mapping.

Based on the metrics provided in Table 2 model nr. 6 shows the most optimal performance.
That is the model with a higher training batch size, and which was learning the least time.
This model has exceptionally good performance in RHO metric, which is the correlation
coefficient. To gain a more intuitive understanding of RHO metric and transformer
performance, there are three examples of predicted and true sequences plotted with different
RHO values (see Figure 28). The leftmost figure shows one of the best predictions, with
the correlation between predicted and true sequence being equal to almost 1. The middle
section shows average prediction, even though the correlation coefficient is still relatively
high, the sequences are not so aligned. The rightmost section is dedicated to one of the
worst predictions, where the RHO value is negative.

Figure 28. Good, mid and bad prediction

That said, looking at average correlation and all the quartile values results are impressive.
Given only SAR image spectra as the input sequence simple one-pair encoder-decoder
transformer is capable of estimating wave spectra sequences with an average correlation
coefficient with true wave spectra of ∼0.7. At the same time median value and third
quartile values of the correlation and not only are even more surprising. Half of the test
observations were estimated with a 2-unit difference in peak value index along the sequence,
and have more than 0.8 correlation with true sequence. A more detailed discussion of the
implemented model can be found in the next chapter 8
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8. Discussion

The implemented model has shown impressive and promising results, achieving a 0.7
average correlation coefficient metric. In [2] it is stated that LSTM achieved the MSE in
the test set ∼0.12. The transformer model implemented for this task achieved an MSE of
0.02 on the test set, which is 6 times lower than the LSTM. This improvement is achieved
by multiple attention mechanisms, which allow transformers to better capture long-term
relationships within a sequence. However, the correlation coefficient of the transformer
model is on an average level, and in this direction, the model may still be improved.

Current implementation limitations

Despite the implemented transformer model showed good results for the described task, it
has its own limitations.

The first main limitation is the pre-processing stage in combination with the tokenizer.
The Implemented tokenizer is strongly dependent on the dataset parameters, therefore
strict pre-processing is required. The filtering stage ideally should be removed from the
pre-processing flow. Current thresholds allowed to train the reasonably complex model
with a relatively big training sample, but at the same time such a method of filtering might
have filtered out all the observations of storms, heavy seas, or vice-versa complete calms,
which makes the model less applicable for the real data.

Secondly, this was already mentioned, is the possible problem of logarithm-transformation,
which makes different observations look much more alike. It can add confusion to the
implemented transformer model. Given different input sequences, the output is nearly the
same, whereas without logarithm-transformation it has ∼20 times lower values.

On the other hand, previous problems can be resolved with a more optimized tokenizer,
which is not dependent so much on the data values. At the same time, the tokenizer should
depend on the data, because the main idea is to use a transformer for regression, and not
classification. Regression assumes that there is some meaning behind the values and they
can be compared to each other. It also may be possible to completely avoid the tokenization
layer and proceed with the initial numeric input, but that is up to research.

Another problem of the tokenizer, which was slightly described in Section 6.1.2 is the loss
of information when performing tokenization-detokenization (multiple different values are
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mapped to one token, and one token maps back to one exact value). Even though this loss
might be small, depending on the tokenizer power, it is still there. For very specific tasks
this approach might not work at all because of the required precision. Seems that such loss
is inevitable if a tokenizer is required for regression problem, therefore one should account
for it when modeling specific problems.

One more limitation in the current implementation is more technical, which is related
to the stack of encoders and decoders. Assuming that the problem described is less
complex than language modeling, a structure with multiple encoders-decoders stacked is
not implemented, and thus only one encoder-decoder pair is used. The problem might be
much more complex than it is assumed and therefore more complex models are required.

Future improvement ideas

Because the current model is built mainly to prove the concept of using the transformer for
numeric input and sequence-to-sequence regression problems, the model is simpler than in
the original paper [1], where it is used to model the language. Therefore the straightforward
improvement idea is to make the model more complex and observe how this affects the
predictive power.

Coming back to the tokenizer - one interesting way to tokenize the data might be in a
learnable tokenizer. The idea is to learn how to tokenize the data, it might be a neural
network or some other machine learning algorithm. Thinking deeper, it may be possible to
learn how to group some n-length parts of the sequence into specific tokens, where n is
not fixed over the sequence. At the same time, this may add more information loss to the
whole process of tokenization-detokenization.

Thinking about more complex further possible improvements or research topics, one can
use such sequence-to-sequence numerical transformer with other additional data to make
more precise predictions. Another way is to fuse the additional data somehow into the
transformer input data and apply special attention mechanisms to such variables. As
an example with the described data, there is the possibility to add an additional token
representing the wind direction and apply an attention mechanism for this token separately
revealing the relations of other sequence values to the wind direction.
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9. Conclusion

This thesis proposes the application of a deep learning transformer model for the estimation
of Baltic Sea wave spectra from the spectra of SAR image data. The proposed method
showed promising results. Applying a simple transformer with one encoder-decoder pair
trained for 500 epochs achieved a 0.7 average correlation between the predicted and true
wave spectra on the test set, given only SAR sequence data as an input.

Such results are obtained due to the attention mechanisms used in the transformer model.
Their application allows the model to capture complex dependencies and relations within
the sequences and between them. This helps better understand the context of the sequences
and reveals long-term relations between the different wavelengths in the case of SAR
spectra sequence and wave energy levels across different frequencies in the case of wave
spectra.

The original transformer was modified in order to fit the numerical data into it and proceed
with the training process. The main difference comes from the loss function required
for regression problem as the estimated sequence is numeric. The final linear layer of
the transformer was also changed to result in one token prediction instead of output
probabilities. A transformer model with such a structure can be successfully applied to
sequence-to-sequence task when the data is numeric.

The main outcome of the thesis is working deep learning transformer model, which can be
used to estimate Baltic Sea wave spectra from the spectra of SAR image data. Application
of such a model can be used in coastal engendering, maritime safety, environmental
monitoring, and of course, commercial navigation.

However, it is important to acknowledge model limitations and the precision of the estima-
tions. Multiple possible solutions for current model limitations and improve points/direc-
tions were suggested and discussed.
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