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Abstract

HashiCorp’s Nomad serves as an orchestration platform facilitating the configuration and
coordination of various workloads, including containerized tasks—a central focus of this
thesis.

The primary objective of this research was to establish a monitoring solution for No-
mad within the author’s home laboratory environment. This endeavor aimed to deepen
comprehension of dynamic containerized infrastructures while enhancing the monitoring
capabilities of the author’s laboratory setup.

Consequently, leveraging Prometheus and Grafana at its core, a monitoring system was
implemented and deployed. This system provided timely notifications through defined
and tuned alerts, along with bespoke and community-driven dashboards for enhanced
visualization and deeper understanding of operational issues and performance metrics.
Additionally, it offered a convenient means to query logs including for ephemeral and
dynamic containers, alleviating the otherwise cumbersome process of accessing logs.

Version controlled code repositories utilized in the making of this thesis can be found
publicly at GitHub for Packer [1], Terraform [2], and Ansible [3].

The thesis is written in English and is 40 pages long, including 6 sections, 13 figures and 1
table.
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Annotatsioon
Dünaamilise HashiCorp Nomadi orkestreeritud konteinerkeskkonna

monitoorimine

HashiCorp’i Nomad on orkestreerimisplatvorm, mis hõlbustab erinevate teenuste, seal-
hulgas - käesoleva töö keskmes oleva - konteineriseeritud teenuste konfigureerimist ja
koordineerimist.

Käesoleva lõputöö esmane eesmärk oli luua Nomadile seirelahendus autori kodulabori
keskkonnas. Selle ettevõtmise eesmärk oli süvendada teadmisi dünaamiliste konteineriseer-
itud infrastruktuuride kohta, parandades samal ajal autori laboratooriumi seirevõimalusi.

Töö tulemusena rakendati ja võeti kasutusele seiresüsteem, mille keskmes on Prometheus
ja Grafana. See süsteem pakkus õigeaegseid teavitusi häälestatud hoiatuste kaudu ning
visualiseerimisvõimalusi, et saada anda parem ülevaade operatiivsetest probleemidest ja
jõudlusnäitajatest. Lisaks pakkus see mugavat lahendust logide lugemiseks, leevendades
muidu efemerentsete ja dünaamilistele konteineritele omast tülikat logidele juurdepääsu
protsessi.

Selle töö koostamisel kasutatud versioonihaldusega koodirepositoriumid on avalikult
kättesaadavad GitHubis Packeri [1], Terraformi [2] ning Ansible jaoks [3].

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 6 peatükki, 13
joonist, 1 tabelit.
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List of Abbreviations and Terms

API Application Programming Interface
CNCF Cloud Native Computing Foundation
GB Gigabyte
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
TLS Transport Layer Security
SSL Secure Sockets Layer
JSON JavaScript Object Notation
MB Megabyte
Metric Time series that is defined by its unique name and optional

key-value pairs called labels
PromQL Prometheus Query Language
REST API Restful Application Programming Interface
Scraping Prometheus configuration task, what defines the endpoints,

where data should be retrieved.
SSH Secure Shell
TSDB Time series database
UID Unique Identifier
VM Virtual Machine
YAML YAML Ain’t Markup Language, a recursive acronym for a

human-readable data-serialization language
CPU Central Processing Unit
RAM Random Access Memory
IaC Infrastructure as Code
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1. Introduction

The author independently manages a private computing environment (referred to as home
laboratory and homelab henceforth) using cost-effective hardware and open-source soft-
ware. By self-hosting applications, the homelab achieves autonomy and reduces depen-
dence on external service providers with increased data privacy. Moreover, the homelab
serves as an experiential playground facilitating learning opportunities, which will be
the focus of this thesis. In essence, the author’s IT homelab allows a blend of control,
cost efficiency, learning, and deployment capabilities, empowering them to tackle the
complexities of information technology with resilience and innovation.

Cloud Native Computing Foundation (CNCF) is a nonprofit organization that hosts and in-
tegrates open-source, vendor-neutral projects for container orchestration and microservices
architectures in an effort to to accelerate the adoption of said technologies. In their annual
surveys, CNCF has noted tremendous yearly increases in container and Kubernetes con-
tainer orchestrator use in production to the point where containerization and orchestration
can be considered part of the industry standard in managing services [4, 5, 6, 7], leading
also to influence the development of the Linux kernel to support container features [8]. Just
as CNCF focuses mostly on Kubernetes, so do all major cloud providers offer Kubernetes
based services for orchestration [9, 10, 11]. Perhaps because of its complexity and wide
scope Kubernetes has gained de-facto status for orchestration solutions [12]. However the
complexity comes with a cost that many organizations are not ready to pay. For example
the steep learning curve and rapid developments in Kubernetes add complexity to upgrade
processes which have lead smaller teams to seek alternatives like the Nomad orchestrator,
because as Endler puts it: "If Kubernetes were a car, Nomad would be a scooter. Sometimes

you prefer one and sometimes the other" [13]. HashiCorp, the company behind Nomad,
echoes Endler’s description and emphasizes the simplicity in usage and maintainability
compared to Kubernetes [14]. Nomad targets operational overhead more suited to small
teams and on-premise environments by adhering to the Unix philosophy of maintaining
a concise scope requiring administrators to add each component separately (providing
a good learning experience as well as facilitating simpler deployments) instead of the
all-batteries-included approach of Kubernetes [15, 16]. Author’s one man homelab fits
both the small team and on-premise bills making Nomad an attractive choice for learning
about container orchestration. As such the author deployed a highly-available Nomad
cluster as an experiment to evaluate the viability of orchestration in the context of a home
laboratory and gain deeper understanding into orchestration as a whole.
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The aim of this thesis was to further investigate orchestration within the realm of moni-
toring, addressing the unique challenges posed by the dynamic and ephemeral nature of
orchestrated containers. This necessitated the deployment of a monitoring architecture
distinct from traditional approaches used for plain containers or classical on-host services.

This thesis consists of 6 main sections including the introduction section you are reading
now. The second section aims to give a short overview of the preceding context that lead to
this thesis and explanation of the problems being solved. The third section will cover the
implementation to solve the problems according to the requirements laid out in the section
before it. The fourth section goes over the outcomes of the work. The fifth section will
give some suggestions on further improvements to the implementation. Eight and final
section is the summary.
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2. Background

This chapter will provide an overview of technologies, and definitions, offering better
insight into the orchestration platform and the proposed monitoring system.

2.1 Reproducibility

Packer [17], Terraform [18], and Ansible [19] are open source tools that automate infras-
tructure and were employed to configure all aspects discussed in this thesis, including the
infrastructure for the Nomad orchestration. The work implicitly assumes that the all sys-
tems described were declared and managed through a reproducible infrastructure-as-code
approach using the mentioned tools. Version controlled code repositories utilized in the
making of this thesis can be found publicly at GitHub for Packer [1], Terraform [2], and
Ansible [3].

2.2 Monitoring Requirements

IEEE defines monitoring as the supervising, recording, analyzing or verifying the op-
eration of a system or component [20]. In dynamic environments such as container
orchestration, where containers can be distributed across various machines within a cluster
and can be assigned to different ports dynamically, monitoring becomes significantly more
complicated and increasingly critical [21].

In containerization, each service is usually relatively simpler compared to monolithic sys-
tems. However, the interactions between these services and their underlying dependencies,
along with the dynamic nature of the components within the distributed system, introduce
additional operational challenges. Due to the constant changes and unpredictability in
a dynamic environment like container orchestration, attempting to manage it manually
becomes impractical, as a human operator would struggle to keep up with the rapid pace
of changes, allocating resources, and ensuring the proper functioning of services across
different nodes and ports thus requiring a monitoring system more sophisticated than
manual digging [21].

IEEE defines metrics as a quantitative measure of the degree to which a system, component,
or process possesses a given attribute [20]. In essence, metrics show what is happening in
a system, component or process: the first part of the story of change mentioned in the last
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paragraph.

Developers insert logging statements into the source code which are then printed into log
files, also known as execution logs and event logs [22]. Then, at a later time, while the
system is running or during postmortem, operators can analyze the log files for why and
when something was happening in a system, component or process. Logging is the second
part of the story of change.

By collecting and correlating series of events to answer what, why and when an event
occurred, it is possible to conclude an informative story of change that will help to
understand systems as well as reveal root causes for changes in systems, this is the essence
of monitoring as suggested by the authors of OpenTelemetry, a CNCF observability
framework and toolkit [23]. For instance, elevated CPU usage in a service might stem
from an underlying dependency change, from metrics we see the elevated CPU usage and
from logs we will see what happened that could have caused this.

While gathering metrics and logs is essential for obtaining critical data, two additional
components buttress a successful monitoring system, making the data actionable: alerts
and visualization.

If abnormalities go unnoticed and are not promptly addressed, they have the potential
to result in significant system failures and incidents. Therefore, the timely detection,
intervention, and mitigation of anomalies are crucial for ensuring the reliability of systems.
To achieve this, monitoring systems should usually issue alerts based on metrics for changes
that require human intervention. In a system context, an alert signifies a notification
indicating a specific abnormal condition or anomaly within the system [24]. An alert
strategy dictates the criteria for alert generation, including when alerts should be triggered,
the attributes and descriptions they should possess, and the intended recipients of the alerts.

Visualizations aid in comprehending systems through graphical representations are con-
structed and utilized to bolster in practically all data-informed decision-making processes
over many fields enhancing clarity and insight for humans. In essence, visualizations serve
to help in decision making as well as efficient communication and learning [25].

Based on the previous considerations, we arrive at the requirements for the monitoring
system. The monitoring system must:

■ be able to accommodate dynamic orchestrated systems
■ possess capabilities for central metric and log collection.
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■ be equipped to generate alerts.
■ have visualization capabilities.

2.3 HashiCorp Nomad Orchestration System

This section explains how the Nomad orchestration system works.

Nomad, developed by HashiCorp, is a scheduler and orchestrator for deploying and
managing containers and non-containerized applications across on-premises and clouds at
scale [26].

Consul, also developed by HashiCorp, is a software that provides service discovery,
health checking, dynamic configuration, and service mesh for distributed applications [27].
Consul can be used as part of Nomad’s architecture, as Nomad was intentionally crafted to
prioritize cluster management and scheduling exclusively, omitting non-core features to
ensure it can operate without dependencies as a single process. Consul can integrate with
Nomad to provide it a storage back-end, networking functionality, automatic clustering,
service registration, and service discovery [15].

2.3.1 Nomad Architecture

To explain the architecture of Nomad, some terms have to be explained.

A Nomad agent refers to a Nomad process functioning either in server or client mode. A
Nomad client is tasked with executing assigned jobs while also enrolling itself with servers
and monitoring task assignments. During agent operation, the client may alternatively
be denoted as a node. A Nomad server oversees all job and client management, task
monitoring, and controls task distribution across client nodes. The servers ensure high
availability by replicating data among each other [28].

Task drivers are the run-time components for a Nomad client, a task driver can be Docker,
Podman, Java, exec, QEMU, etc [15].

A Consul agent is also a Consul process running in server or client mode. A Consul
server is an agent is responsible for maintaining cluster state, responding to queries,
and participating in the consensus protocol. The Consul clients query the servers for
information and provide local services with access to the Consul features. To achieve high
availability, data replication is done between the servers [29].
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Now to put Nomad and Consul together:

■ a client node, as seen on Figure 1, runs:
– a Nomad client agent
– task driver(s)
– a Consul client agent

■ a server node, as seen on Figure 2, runs:
– a Nomad server agent
– a Consul server agent

Figure 1. High-level overview of a Nomad client node [15]

Figure 2. High-level overview of a Nomad server node [15]

Nomad and Consul organize infrastructure into regions and datacenters. A datacenter is
conceptualized as a grouping of clients within a region. While clients don’t necessarily
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need to be in the same datacenter as the servers they’re associated with, they must be
within the same region. Datacenters facilitate fault tolerance among jobs and infrastructure
isolation. A region encompasses one or more datacenters. A collection of joined servers
represents a single region [30].

A Nomad cluster typically consists of three to five server nodes and numerous client nodes.
An example of the reference architecture by HashiCorp, depicted in Figure 3, illustrates
a single datacenter containing a cluster of three servers and three clients [31], this is the
same architecture utilized by the author to deploy Nomad.

Figure 3. Reference architecture of a Nomad cluster in a single datacenter [31]

In Nomad, a task represents the smallest unit of work, executed by task drivers such
as Docker or exec, enabling Nomad’s flexibility across task types. Tasks specify their
required driver, driver configuration, constraints, and resource needs. A group consists
of tasks executed on the same Nomad client. A job serves as Nomad’s core control unit,
defining an application and its configurations, potentially comprising multiple tasks. A
job specification, or jobspec, outlines the schema for Nomad jobs, detailing the job type,
necessary tasks and resources, job metadata like eligible clients, and more. An allocation
maps task groups within a job to client nodes. When a job is initiated, Nomad selects a
capable client and allocates resources on the machine for the task(s) defined in the job’s
task group(s). An application is described within a jobspec with task groups, and upon
submission to Nomad, a job is instantiated alongside allocations for each group specified
in the jobspec [30].

A visual of a Nomad job containing two task groups, one with one task and a second one
with two tasks, can be seen on Figure 4.

An orchestrator allocates a task group to any client node, typically dynamically, although
static assignment is also possible. Each task group instance utilizes the node’s own IP
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Figure 4. Nomad job containing two task groups [31]

network and receives a port through static or dynamic port assignment, as illustrated in
Figure 5. There’s no need for a virtual IP or an additional overlay network; the Nomad
cluster network can integrate into an existing network without requiring a proxy [15].
Nomad jobs conform to predefined desired states. Client nodes determine the resulting
state and manage any failures within the system. Should failures occur, Nomad initiates a
new evaluation to assess the cluster’s state and bring it in line with the desired state [32].

Figure 5. Nomad job port allocation example [31]

2.3.2 Monitoring Nomad

In Section 2.3.1, the primary challenge in monitoring a Nomad cluster and its services
becomes evident: operators cannot assume a predictable, static allocation of nodes and ports
for any submitted job. Consequently, the monitoring infrastructure must accommodate this
dynamic nature.
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In Section 2.2, metrics were highlighted as a crucial component of monitoring, with alerts
and visualization also directly depending on metrics. Prometheus formatted metrics from
the a provided API endpoint is the only native way to export metrics that both Nomad and
Consul provide [33, 34]. Its native support ensures compatibility and potentially more
reliable metric collection compared to third-party alternatives and ease of integration with
existing metric collection tools. The metric collection tool chosen for the monitoring
system should be compatible with the Prometheus format.

The second major part of monitoring mentioned in Section 2.2 was logging. There are two
parts to accessing logs from a Nomad cluster:

■ Nomad and Consul agent logs
■ Task logs

Logs from agents are essential for understanding the operation of the system that runs
container services. When it comes to agent logs, the process is straightforward: utilizing
syslog for logging is a built-in solution for both Consul and Nomad [35, 36].

However, the method and location of a task’s logs depends on the chosen task driver. In this
case, the Podman task driver is utilized for container orchestration purposes [37]. Podman
does not provide syslog support as a log driver; instead, journald serves as the default log
driver for Podman [38].

Given the requirement to manage both agent and task logs, the logging infrastructure for
the monitoring system should be capable of supporting both syslog and journald.

In summary, the selected metric collection tool for the monitoring system must be com-
patible with the Prometheus format. Additionally, to accommodate both agent and task
logs, the logging infrastructure of the monitoring system should support both syslog and
journald.
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3. Implementation

This section will cover the implementation of the monitoring system for the Nomad
orchestration cluster.

3.1 Prometheus

The Prometheus format, as discussed in Section 2.3.2, is supported by Nomad and origi-
nates from the Prometheus monitoring toolkit [39, 40]. Prometheus is a pull-based moni-
toring system designed for many types of different environments, also featuring dynamic
service discovery options. It is open source and resource-efficient, so Prometheus stands
out as a preferred option in the CNCF Technology Radar survey [41] and remains a popular
choice among open-source projects, particularly for organizations seeking cost-effective
monitoring solutions [42].

The Prometheus server consists of two components: data transfer server and a Time
Series Database (TSDB) for data storage. Prometheus uses scraping, a procedure that
pulls data from exporter endpoints and modifies it prior to TSDB storage. An exporter
is a binary that operates alongside or from inside an application from which metrics
are desired and exposes Prometheus metrics by either converting metrics available in a
non-Prometheus format into a format supported by Prometheus or providing Prometheus
formatted metrics directly [43].

A Prometheus web-interface is provided for querying and displaying metrics using
Prometheus Query Language (PromQL) is provided by the Prometheus server, but it
doesn’t have visualization capabilities [43]. However, the raw metrics themselves often fall
short of offering meaningful interpretations due to their lack of context, thus Prometheus’
primary function is metric data storage; analysis and visualizations should be handled
elsewhere.

All data is kept in Prometheus as time series, which are collections of data points arranged
chronologically. A unique identifier, along with optional key-value pairs known as labels, is
assigned to each measure in a time series. Labels serve to distinguish the specific attributes
of the measured entity [44]. Labels play a crucial role in maintaining the performance
efficiency of Prometheus while ensuring user-friendliness.
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A visual overview of the Prometheus components can be seen on Figure 7.

3.1.1 Metrics Collection

Nomad and Consul both export Prometheus metrics as part of the services and do not
require additional exporters [45, 46]. Nomad also provides metrics for its allocations (in
this case Podman containers) and as such does not require a separate exporter for containers,
although cAdvisor, short for container Advisor, is the preferred solution recommended by
Prometheus for analyzing and exposing resource usage and performance data from active
containers [47]. As cAdvisor provides a wider variety of metrics [48], it was deployed to
all client nodes to further improve on container metrics.

Prometheus server needs to be deployed and instructed to scrape Nomad and Consul
metrics using both static definitions and using supported Consul service discovery [49].
This method allowed scraping services that Consul reported as being alive.

While the exporters of Nomad and Consul mostly give metrics about the inner workings of
their respective services, they do also provide metrics about their hosts as well [45, 46].
However the provided Prometheus Node Exporter [50] gives a more comprehensive list
of metrics [51] so Node Exporters were installed on every node to reveal an extensive
range of hardware- and kernel-related metrics. This enables the monitoring of hosts that
run under the containerized services in more detail.

In summary a variety of exporters are deployed and configured to be scraped by the
Prometheus server. The collected metrics are:

■ Nomad metrics (including some container and host metrics) using its built in
Prometheus metrics endpoint [45]

■ Comprehensive container metrics using cAdvisor [48]
■ Consul metrics (including some container and host metrics) using its built in

Prometheus metrics endpoint [46]
■ Comprehensive hardware- and kernel- and OS-related metrics using Node Exporter

[51]

3.1.2 Alerting with Alertmanager

Prometheus Alertmanager enables the generation of alerts utilizing measurements and data
ingested by Prometheus. Within Prometheus configuration the webhook functionality is

18



provided for dispatching alarms and integration capabilities with various alerting services
[52].

Prometheus alerting operates in two distinct phases. Alerting rules within Prometheus
server trigger alerts directed to an Alertmanager instance. Subsequently, the Alertmanager
assumes responsibility for overseeing these alerts, performing tasks such as silencing,
inhibition, deduplication, aggregation, and propagation of notifications through channels
like email, and chat platforms [53].

Using the metrics mentioned in Section 3.1.1, alert rules were set up to notify the author in
Microsoft Teams and Telegram in case of various changes that might be of interest [54].
Figure 6 shows an example of a Telegram alert notification triggered by a Nomad job
resolution event of a previously failed job allocation.

Figure 6. Example a Telegram notification showing a resolved fail of a Nomad job

One notable observation about Nomad allocation status design was revealed with alerts.
The persistence of failed job alerts even after resolution poses a small challenge, prompting
the need for systematic measures. These include scheduling regular garbage collection
tasks or manually clearing failed statuses following issue resolution to ensure the accuracy
of alert notifications.

19



3.1.3 Prometheus Summary

The layout of Prometheus components, as showcased in Figure 7, provides a visual
representation of the workflow described in previous chapters of this section. Within this
architecture, Prometheus exporters supply metrics for the Prometheus server to scrape.
After that, the scraped data is used for alert generation, with the Alertmanager orchestrating
the sending of notifications to the system operator.

Figure 7. Example architecture of Prometheus components [40]

Considering the aforementioned chapters on Prometheus it is evident that Prometheus
provides the functionalities to satisfy the requirements of metrics aggregation, storage, and
alerting mentioned in Section 2.2. While Prometheus excels in these domains, it falls short
in fulfilling the requirements for log aggregation and visualization. By complementing
Prometheus with a suitable log aggregation tool and visualization platform, it is possible
to establish a more comprehensive monitoring ecosystem that encompasses both metrics
and log data, thereby ensuring holistic visibility and insights into system performance and
health.

3.2 Grafana

Grafana is an open-source platform that facilitates the visualization and analysis of data
from diverse sources in real-time, serving as a tool for gaining insights into metrics [55].
With its interface and extensive plugin ecosystem, Grafana offers flexibility for many a
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different visualizations. Grafana supports querying Prometheus and is the visualization
solution recommended by Prometheus [56].

Grafana was deployed and Prometheus integration was incorporated as a readable data-
source within Grafana, facilitating the availability of all metrics gathered by Prometheus
for comprehensive analysis and visualization purposes.

3.2.1 Metric Visualization with Grafana Dashboards

Grafana includes a diverse range of panels, which simplifies the process of formulating
appropriate queries and customizing visualizations to create an ideal dashboard for various
requirements. Each panel possesses the capability to interact with data sourced from any
configured Grafana data source [57].

In addition to facilitating the creation of bespoke dashboards, Grafana Labs maintains a
repository of community-shared dashboards which can be downloaded and used [58].

Expounding further on Section 3.1.1, Node Exporters were used to monitor the health of
hosts using hardware and operating system metrics. A small example of the visualization
facilitated by Node Exporter metric data can be seen on Figure 8. To provide a concise
summary of the 242 panels featured in the utilized Node Exporter dashboard [59], it en-
compasses overviews of aggregate CPU, RAM, swap, disk, and network traffic metrics and
additionally the dashboard has more specialized panels tailored for in-depth examination
across various categories.

Figure 8. Snippet of one node’s Node Exporter dashboard
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Three Nomad dashboards sourced from the Grafana Labs Dashboard repository were
adapted to provide a comprehensive representation of the Nomad cluster’s status and
allocation statuses. These dashboards included a general cluster overview dashboard
[60], a more detailed dashboard focusing on allocations [61], and a dashboard specifically
detailing the Nomad control plane [62]. Among these, the simplified dashboard offered a
particularly insightful snapshot of the Nomad cluster’s operational state, encompassing
information on resource usage per job and their respective statuses at a glance, as seen on
Figure 9.

Figure 9. Snippet from the Nomad dashboard

The Consul dashboard, managed by HashiCorp [63], was employed for monitoring pur-
poses. An illustration of this dashboard is provided in Figure 10. The dashboard was used
have an overview of the health and performance of Consul servers and the services Consul
manages. It facilitates the monitoring of key Consul server metrics such as service health,
network activity, and Raft events providing valuable visibility for operational analysis and
troubleshooting purposes.

The cAdvisor dashboard was utilized for container monitoring purposes [64]. A snippet
of this dashboard can be seen in Figure 11. It provides a detailed overview of containers
within the system, including those not managed by Nomad. It offered selectors for filtering
by different hosts and interfaces observed in cAdvisor instances, enhancing monitoring
capabilities in containerized environments.

The utilization of Grafana dashboards provide significant advantages in monitoring and
understanding complex systems like Nomad orchestration. These dashboards serve as
visual aids that provide a holistic view of system health and performance metrics, enabling
quick identification of trends, anomalies, and potential issues. Unlike direct queries in
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Figure 10. Snippet from the Consul dashboard

Prometheus which require interpreting raw data outputs, dashboards present information in
a more intuitive manner, facilitating rapid comprehension and decision-making. With the
aforementioned dashboards it was possible to better understand cluster status and allocation
statuses, behaviour and resource usage of containers, including those not managed by
Nomad, and insight into underlying node health. Overall, these dashboards enhance
situational awareness by presenting data in a visually digestible format, offering a sort of
zoom out effect for monitored components.

3.2.2 Log Analysis with Loki

Grafana Loki is an open-source log aggregation system, drawing inspiration from
Prometheus, incorporates exceptionally compact indexing, and highly compressed log
data [65]. Loki is designed to be as simple to use and inexpensive as possible; instead of
indexing log contents, it labels individual log streams by leveraging labels similarly to
Prometheus, mentioned in 3.1. The shared design with Prometheus labels at the center
allows for correlation between metrics and logs. In practical terms, Prometheus metric
labels are correlated with Loki’s log labels, establishing a connection between the "what"
(metrics) and "why" (logs) aspects of system behavior. This correlation enables operators
to trace events in metrics back to the logs.
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Figure 11. Snippet of cAdvisor Grafana dashboard

Collecting Logs with Promtail

As mentioned in Section 2.3.2, there are two parts to accessing logs from a Nomad cluster:

■ Nomad and Consul agent logs
■ Task logs

Syslog integrates into the operational infrastructures of both Consul and Nomad [35, 36].
However, in the containerization domain, Podman, the designated task driver, does not
natively support syslog. Instead, it employs journald as the default log driver for managing
and analyzing container logs efficiently [38]. Leveraging the capabilities of the Loki
agent, Promtail facilitates the collection of journal and syslog logs [66, 67]. Incorporating
these logs into Promtail enables utilizing their distinct methods of organizing and labeling
data, while also streamlining the logging process into a unified system. Additionally, this
integration allows for the inclusion of specific labels mentioned in Section 3.2.2, enhancing
the organization of log data.
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3.2.3 Exploring Logs in Grafana

An example of a convenient log query in Grafana using a query to Loki is illustrated in
Figure 12. It involves filtering by label, which has been relabeled as discussed in Section
3.2.2, to be called ’container=valheim’. This query facilitates the streamlined retrieval of
logs specifically related to the ’container=valheim’ label, combining all logs containers
with this label into the query result. By specifying this label in the query, the author can
quickly isolate relevant log entries, gaining insights into behavior of services without the
need for manual filtering or sorting.

Container name relabeling significantly simplifies log analysis by allowing multiple in-
stances to log to the same label, making it easier for the author to discern system activities.
Previously, identifying failures amidst multiple container instances posed a significant
challenge. For example, in a scenario with three proxy jobs where only one failed, the
author had to tediously sift through each job, locate all allocation IDs, and inspect each
allocation log individually to see which one was the failed one and then identify the
root cause. This cumbersome process often resulted in time-consuming troubleshooting
and delayed resolution. By aggregating previously separate log streams under unified
labels, the visibility and clarity of system events are significantly enhanced, bettering the
troubleshooting process and efficiency.

3.3 Final monitoring system

The monitoring system described in the preceding sections offers a comprehensive solu-
tion for observing and managing various aspects of the Nomad orchestration container
environment. By leveraging a combination of tools such as Prometheus, Grafana, Loki,
and other supporting agents, it provides real-time insights into the performance, health,
and status of both containers and underlying infrastructure. This section outlines the key
components and their functionalities within the monitoring ecosystem. Visual overview of
the monitoring system can be seen on Figure 13.

Container metrics, including those pulled by cAdvisor and Nomad, are scraped by the
Prometheus server. Additionally, native metrics endpoints from Consul and Nomad agents
are also collected by Prometheus. Furthermore, the Node Exporter is utilized to publish
OS, hardware, and kernel metrics, which are then scraped by Prometheus. These metrics,
labelled by Prometheus, serve as vital indicators for assessing the overall health and
performance of the infrastructure, Nomad system and containers managed by Nomad.

25



Figure 12. Example of container logs query from Loki

Prometheus generates alerts based on predefined thresholds and rules derived from the
collected metrics. Alertmanager orchestrates these alerts, organizing them based on severity
and routing them to appropriate channels for resolution. Notifications are dispatched
to Microsoft Teams and Telegram, ensuring timely awareness and response to critical
incidents.

Container logs from journald are gathered and relabeled by the Promtail agent before
being dispatched to the Loki storage. Syslog is utilized to collect logs from Consul and
Nomad agents. These logs are then processed by an rsyslog receiver, further refined by
Promtail, and also stored in Loki. This centralized log storage mechanism simplifies log

26



Figure 13. Overview of the implemented monitoring system

management and enhances visibility across the environment. By leveraging same labels as
Prometheus, it is easy to correlate what is happening to why it is happening.

Grafana serves as the primary interface for visualization and analysis of the collected
metrics and logs. Dashboards are configured to display key performance indicators and
trends, providing actionable insights into the system’s behavior. Leveraging Prometheus
as the data source, Grafana offers a rich set of visualization options and customization
capabilities. Furthermore, logs stored in Loki can be explored directly from Grafana,
offering a seamless experience for troubleshooting and analysis.
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4. Outcomes

This section describes the key outcomes of the implemented monitoring system.

4.1 Improved Observability

The implementation of the monitoring system for HashiCorp Nomad using Prometheus
and Grafana has yielded significant outcomes. Most critically, timely notifications are now
provided in the event of various critical incidents, such as job failures, host downtimes, and
instances of proxy requests slowing down. Additionally, alerts are triggered for instances
of CPU load either exceeding or falling below optimal levels, enabling proactive measures
such as memory optimization for virtual machines.

Furthermore, the system offers comprehensive metrics and visualizations, giving the
author a live overview of system activities. This insight into both historical and real-
time changes enables more thorough analyses of system behaviour, facilitating informed
decision-making and optimization strategies.

Moreover, the integration of aggregated logs from Loki into Grafana notably simplified
the process of navigating through Nomad allocation logs. Previously, when dealing with
multiple containers, the system operator had to manually search for allocation IDs, read
their individual log streams, and identify problematic instances. However, with the unified
labeling of all log streams, the task became streamlined. The operator is now able to
effortlessly query a unified label to pinpoint error logs and discern their originating hosts,
thus expediting troubleshooting procedures.

4.2 System Optimization

As mentioned in the previous Section 4.1 using alerts which notified when system resources
were underutilized and leveraging metric visualization, it was possible to see in detail how
much system resources the orchestration system was taking up.

On average, Nomad control plane nodes exhibited CPU usage ranging from 1.1% to
1.7% and consumed approximately 400-500MB of RAM while idle. Under light loads,
CPU usage remained modest at 2.5%, with RAM usage hovering around 500MB. These
observations indicated that the initially provisioned resources of 12GB of RAM and 4 CPU

28



threads per control plane node were excessive, suggesting an opportunity for significant
scaling down. Substantial resources could be freed up for either accommodating additional
service nodes or bolstering existing ones, thereby optimizing resource utilization across
the infrastructure.

Monitoring data from Nomad service nodes revealed that these nodes exhibited a CPU
usage of around 5% and consumed approximately 600-700MB of RAM while idle with
no services running on them. Under load usage would depend on the services running on
them so scaling requirements for service nodes will vary a lot.

4.3 Flexible Monitoring System for Everything

The flexibility inherent in the monitoring stack deployed for Nomad has extended its
utility beyond just orchestrating Nomad services. Leveraging this adaptable stack, it has
become the go-to monitoring solution for all services within the homelab environment.
As previously highlighted, cAdvisor plays a pivotal role in not only monitoring Nomad
containers but also other container environments, amplifying its significance across the
infrastructure.

Metrics derived from systemd services have proven to be particularly insightful. In
the event of any service failures, the monitoring system promptly triggers notifications,
ensuring swift responses to potential issues. This proactive approach has significantly
contributed to maintaining the overall reliability and availability of services within the
homelab environment.

Moreover, the monitoring system’s versatility allows for the incorporation of additional
monitoring targets seamlessly. Whether it’s monitoring custom applications, network
devices, or hardware components, the stack’s flexibility ensures that it can adapt to diverse
monitoring requirements across the homelab infrastructure. And the wide variety of shared
dashboards in Grafana Labs repository provides out of the box visualization for a diverse
variety of hardware and services.

4.4 Viability of Nomad as a Simple Orchestrator

The viability of Nomad as a simple orchestrator is assessed primarily through resource
usage, with a distinct focus on monitoring in this thesis. Unlike traditional discussions on
orchestration, which often delve into the initial setup complexities and considerations like
accommodating dynamic IPs and ports for services, this section focuses on resource usage
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and performance.

As mentioned in Section 4.2 the adoption of Nomad does come with a resource cost. A
node usage typically entails CPU utilization ranging from 1.1% to 1.7% and consumes
approximately 500MB of RAM while idle. Moreover, maintaining the minimum requisite
infrastructure, comprising three base nodes and two service nodes at the least, introduces a
notable overhead. The cumulative resource overhead of all nodes must be substantially
outweighed by the benefits, such as improved high-availability or self-healing capabilities,
for the investment in Nomad to be justifiable.

It is possible to deploy server and client on same host, essentially adding the control plane
resources to the service pool, in theory optimizing the system further. If nodes consistently
maintain sufficient spare resources, jobs can execute without issues. However, Nomad’s
lack of self-management may lead to outages due to unaccounted growth in server agent
memory, necessitating thorough testing and consideration of use case specifics, including
agent and job updates, to ensure suitability of this approach [68]. While resource spikes of
this nature were not observed with the comparatively light loads used in this thesis, it is
something to consider in larger environments.

A benchmark comparison was conducted between the best-case scenario of plain rootful
containerization and the worst-case scenario of Nomad orchestrated rootless containers.
The optimal scenario of plain containerization employed rootful Docker, capitalizing on
root privileges to optimize native system resources for prioritizing both resources and
networking. Conversely, in the Nomad environment, a rootless Podman configuration
was utilized, necessitating network traffic to traverse through slirp4netns, incurring a
performance penalty [69]. To gauge performance, a basic HTTP server was set up in both
environments, and measurements were recorded using Apache Bench [70].

HTTP and HTTPS requests were measured with 5,000 requests and 50 concurrent users.

Table 1. HTTP Speed Results

Scenario Req/sec TPR (ms) TPR (ms, concurrent) Transfer (Kb/sec)
HTTPS Plain 488.44 102.367 2.047 83.00
HTTPS Nomad 445.70 112.183 2.244 75.73
HTTP Plain 5258.37 9.509 0.190 893.51
HTTP Nomad 2124.95 23.530 0.471 361.08

TPR = Time Per Request

Req = Request

A notable disparity in speed was observed without encryption, particularly when utilizing
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plain HTTP. However, with SSL termination at the external load balancer, the difference
becomes negligible as most of the time goes for encryption operations. This holds true even
when considering that the Nomad system must additionally traverse internal load balancers,
which, in turn, are tasked with verifying live nodes through Consul. As most environments
will use HTTPS, then in terms of container networking, no substantial difference in speed
penalty will be seen compared to traditional containers.
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5. Further Improvements

This section will delve into additional refinements that could be made to the work described
in previous sections.

5.1 Tracing

While the monitoring system implemented for HashiCorp Nomad has proven to be effective
in providing insights into the dynamic orchestration environment, there are areas for
further enhancement. One such area is tracing, which offers a deeper level of insight into
application performance and behavior. However, it’s essential to note that tracing is highly
application-specific and often requires instrumentation on the application side. Tracing
enables the detailed observation of requests as they propagate through various components
of a distributed system, offering insights into latency, errors, and dependencies.

One should note that while tracing offers valuable insights, the focus of this thesis was
primarily on monitoring the dynamic system as a whole, rather than monitoring individual
services running on the system. Therefore, while tracing remains an avenue for potential
improvement, its implementation would require a shift in focus towards monitoring specific
applications and services within the Nomad environment.

5.2 High-Availability

While the current monitoring system provides valuable insights into the HashiCorp Nomad
environment, of which one of the main selling points is high availability (HA), HA should
be considered for the monitoring system as well. At present, the system components
operate as single instances, which introduces a single point of failure. However, it’s
important to note that while HA configurations offer fault tolerance, they may not always
be the most efficient solution: just as replication factor was a crucial consideration in
comparing Nomad against plain containerization, mentioned in Section 4.4.

In some cases, such as the author’s homelab environment, where resource constraints are
a concern, implementing replication nodes for HA may not be practical. The additional
resource overhead required for maintaining replicated instances of critical components like
Prometheus, Loki, and rsyslog could exhaust available resources.
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Instead, the focus may be on optimizing the existing infrastructure to maximize efficiency
without compromising reliability. By fine-tuning resource allocation, optimizing con-
figurations, and implementing robust monitoring and alerting mechanisms, the current
monitoring system can continue to provide effective monitoring capabilities while remain-
ing resource-efficient. Lack of fault tolerance can be offset by leveraging IaC deployment
methods and backups of metrics and logs, providing a way to recover monitoring without
HA.

So while the current system may not be HA, it is more efficient and tailored to the specific
needs and constraints of the homelab environment. As the infrastructure evolves and
resource availability changes, revisiting the possibility of implementing HA configurations
for critical components remains a consideration. However, for now, the emphasis is on
maintaining a balance between efficiency and reliability to ensure optimal performance
within the existing infrastructure constraints.
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6. Summary

This thesis aimed to explore orchestration within the author’s home laboratory, focusing
on monitoring and addressing the challenges posed by dynamic and ephemeral containers
under the control of an orchestration system. To meet these challenges, a monitoring
architecture distinct from traditional approaches for plain containers or classical on-host
services was deployed.

The implementation and testing of the Prometheus stack with Grafana, Loki, and Alert-
manager yielded significant outcomes. This architecture facilitated the provision of no-
tifications, offered insights into both metrics visualization and log analysis. Especially
noteworthy was the significant simplification of log analysis: Loki made navigating and
analyzing logs from multiple instances of a dynamic service a straightforward task, en-
hancing troubleshooting and system management efficiency. In addition, the stack’s
flexibility extended its utility to encompass monitoring for all services within the homelab
environment.

While HashiCorp Nomad emerges as an appetizing alternative to Kubernetes for orchestra-
tion due to its simplicity, it’s essential to acknowledge that Nomad still requires significant
effort to set up and manage effectively. Moreover, it may not be suitable for very small
environments where the overhead of running the orchestrator’s nodes exceeds the resource
usage of the services running on the system.

Through this exploration, valuable knowledge was gained in orchestration and dynamic
monitoring. The viability of HashiCorp Nomad as an orchestrator for the homelab was
affirmed, underscoring its efficiency and suitability for managing dynamic workloads.

Version controlled code repositories utilized in the making of this thesis can be found
publicly at GitHub for Packer [1], Terraform [2], and Ansible [3].
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