
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Majnun Abdurahmanov 172635IVSM

AUTOMATED DETECTION OF OBJECTS

OF INTEREST FROM AERIAL IMAGERY

USING TRANSFER LEARNING

Master’s thesis

Supervisor: Juhan-Peep Ernits

PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Majnun Abdurahmanov 172635IVSM

HUVIOBJEKTIDE AUTOMAATNE

TUVASTAMINE ORTOFOTODELT

KASUTADES ÜLEKANDEÕPET

Magistritöö

Juhendaja: Juhan-Peep Ernits

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Majnun Abdurahmanov

14.05.2020

4

Abstract

In computer vision, detection and classification of objects of interest in aerial imagery

have numerous applications in areas such as land surveillance, traffic surveillance and

tracking, disaster management, smart parking, urban planning, to name a few. However,

due to the lower resolutions of the objects and the effect of noise in aerial imageries, there

are extra challenges comparing to object detection from ground images since

distinguishing features for the objects of interest in aerial imageries are more troublesome

to discern. In the current thesis, we address the problem of object detection from aerial

imagery using state-of-the-art Convolutional Neural Networks (CNN). To investigate this

problem, we first conduct a literature review of the state-of-the-art object detection

algorithms and summarize the related work. We then evaluate the execution of three state-

of-the-art CNN algorithms by applying transfer learning on a publicly available high-

resolution aerial imagery dataset. We analyze the results on three datasets with different

resolutions and conduct a robust comparison of the selected algorithms. In the end, we

discuss how transfer learning helps us to achieve impressive 33.2 average precision score

with mask regional convolutional neural network (Mask R-CNN) that is trained merely

on 236 training images and the impact of other key factors such as ground sample distance

(GCD), pixel-wise area of the object of interest.

Keywords

Computer vision, aerial imagery, object detection, transfer learning, deep learning,

convolutional neural networks.

5

Annotatsioon

HUVIOBJEKTIDE AUTOMAATNE TUVASTAMINE

ORTOFOTODELT KASUTADES ÜLEKANDEÕPET

Aerofotodelt huviobjektide tuvastamisel ja klassifitseerimisel on arvutinägemise

valdkonnas arvukalt rakendusi valdkondades, nagu maaseire, liikluse jälgimine,

katastroofide ohjamine, nutikas parkimine ja linnaplaneerimine. Objektide madalama

eraldusvõime ja müra mõju tõttu aerofotodel, võrreldes objekti tuvastamisega lähedalt

tehtud fotodega, on siiski täiendavaid väljakutseid. Aerofotode puhul on huvipakkuvad

objektid võrreldes vaateväljaga tihti väikesed ja rakurss on ülevalt alla või nurga all, mida

lähedalt pildistades tihti ei esine. Käesolevas magistritöös käsitleme objektide

tuvastamise probleemi aerofotodelt, kasutades kaasaegsemaid konvolutsioonilisi

närvivõrke (CNN). Selle probleemi uurimiseks viime kõigepealt läbi tipptasemel

objektide tuvastamise algoritmide kirjanduse ülevaate. Seejärel hindame kolme moodsa

erineva konfiguratsiooniga CNN-algoritmi käitumist, rakendades ülekandeõpet

vastloodud ise annoteeritud väikeses andmekogumis. Järgnevalt analüüsime oma

katseandmete erineva karakteristikuga tulemusi ja võrdleme nende kolme tipptasemel

algoritmi jõulist võrdlust. Lõpuks arutame, kuidas ülekandeõpe aitab meil saavutada

muljetavaldava 33,2 keskmise täpsuse skoori Mask R-CNN närvivõrguga, mille

treenimiseks kasutati ainult 236 treeningpilti. Lisaks analüüsime ka muude oluliste

tegurite, näiteks maapealse valimi kauguse mõju (GCD) ja huvipakkuva objekti pikslite

arvu usaldusväärseks tuvastamiseks.

Märksõnad

arvutinägemine, aerofoto, objektide tuvastamine, ülekandeõpe, süvaõpe,

konvolutsioonilised närvivõrgud.

6

Lõputöö on kirjutatud ingilise keeles ning sisaldab teksti 67 leheküljel, 5 peatükki, 25

joonist, 3 tabelit.

7

List of abbreviations and terms

 Dots per inch

AI Artificial Intelligence

AP Average Precision

AR Average Recall

BN Batch Normalization

CE Cross Entropy

ClusDet Clustered Detection

CNN Convolutional Neural Network

COCO Common Objects in Context

CVAT Computer Vision Annotation Tool

FCN Fully Convolutional Network

FN False Negative

FP False Positive

FPN Feature Pyramid Network

GOI Ground Object of Interest

GSD Ground Sampling Distance

HSC Histograms of Sparse Codes

IoU Intersection over Union

KCF Kernelized correlation filters

LDAP Lightweight Directory Access Protocol

LVIS Large Vocabulary Instance Segmentation.

mAP Mean Average Precision

8

QGIS Geographic Information System

R-CNN Regional Convolutional Neural Network

RoI Region of Interest

RPN Region Proposal Network

TalTech Tallinn University of Technology

TP True Positive

UAV Unmanned Aerial Vehicle

UI User Interface

UX User Experience

YOLO You Look Only Once

9

Table of Contents

Author’s declaration of originality Error! Bookmark not defined.

Abstract ... Error! Bookmark not defined.

Keywords ... 4

Annotatsioon HUVIOBJEKTIDE AUTOMAATNE TUVASTAMINE ORTOFOTODELT
KASUTADES ÜLEKANDEÕPET ... Error! Bookmark not defined.

Märksõnad .. Error! Bookmark not defined.

List of abbreviations and terms .. Error! Bookmark not defined.

Table of Contents ... 9

List of figures ... Error! Bookmark not defined.

List of tables .. Error! Bookmark not defined.

1 Introduction .. Error! Bookmark not defined.

1.1 General Overview ... Error! Bookmark not defined.

1.2 Motivation .. Error! Bookmark not defined.

1.3 The Hypothesis ... Error! Bookmark not defined.

1.4 Research Objectives .. Error! Bookmark not defined.

1.5 Methodology .. Error! Bookmark not defined.

1.6 Structure of the Thesis Document Error! Bookmark not defined.

2 Literature Review and Background theory Error! Bookmark not defined.

2.1 Related work .. Error! Bookmark not defined.

2.2 Object Detection and Classification Error! Bookmark not defined.

2.3 Evolution of Object detection ... Error! Bookmark not defined.
2.3.1 Transfer Learning .. Error! Bookmark not defined.

3 Experiments .. Error! Bookmark not defined.

3.1 Data .. Error! Bookmark not defined.
3.1.1 Data Processing and Annotation ... Error! Bookmark not defined.

3.2 Network architectures .. Error! Bookmark not defined.
3.2.1 Faster R-CNN ... Error! Bookmark not defined.
3.2.2 Masked R-CNN .. Error! Bookmark not defined.
3.2.3 Retina Net ... Error! Bookmark not defined.

3.3 Implementation details ... Error! Bookmark not defined.

4 Results .. Error! Bookmark not defined.

10

4.1 Evaluation metrics .. Error! Bookmark not defined.

4.2 Analysis and Discussion .. Error! Bookmark not defined.
4.2.1 Key Factors .. Error! Bookmark not defined.
4.2.2 Future Opportunities .. Error! Bookmark not defined.

5 Conclusion .. Error! Bookmark not defined.

6 References .. Error! Bookmark not defined.

11

List of figures

Figure 1. Research Methodology .. 17

Figure 2: Object classification and localization. .. 22

Figure 3: Object detection. ... 22

Figure 4. The evolution of the object detection algorithm based on the two main

approaches/framework. We adopt this figure from [27]. ... 24

Figure 5. QGIS raster image viewer [40]. .. 29

Figure 6. Create a new task in CVAT [41]. .. 31

Figure 7. CVAT [41] cannot handle processing large aerial imagery 32

Figure 8. CVAT local server homepage ... 32

Figure 9. CVAT task details page .. 33

Figure 10. CVAT data annotation page .. 33

Figure 11. Annotated airplane, cars and roof-only building ... 34

Figure 12. Annotated buildings (walls, roofs), cars and busses 35

Figure 13. Annotated cars and trucks ... 35

Figure 14. Annotated watercrafts ... 36

Figure 15. Complexities in aerial images ... 37

Figure 16. Comparison of the state-of-the-art object detection models. We adopt this

figure from [26] and [24]. ... 38

Figure 17. Mask R-CNN framework, for Instance Segmentation [25]. 39

Figure 18. RetinaNet uses a Feature Pyramid Network (FPN) as a backbone on top of a

feedforward ResNet architecture [50]. ... 40

Figure 19: Focal Loss Function [26]. Error! Bookmark not defined.

Figure 20. Detailed training environment description. ... 42

Figure 21. Example of Intersection over Union in aerial object detection [4]. 44

Figure 22.Faster R-CNN prediction on an arbitrary image from Dataset10. 51

Figure 23. Mask R-CNN prediction on an arbitrary image from Dataset10. 52

Figure 24. RetinaNet prediction on an arbitrary image from Dataset10. 53

Figure 25. Faster R-CNN prediction on an arbitrary image from Dataset20. 54

Figure 26. Mask R-CNN prediction on an arbitrary image from Dataset20. 55

12

Figure 27. RetinaNet prediction on an arbitrary image from Dataset20. 56

Figure 28. Faster R-CNN prediction on an arbitrary image from Dataset40. 57

Figure 29. Mask R-CNN prediction on an arbitrary image from Dataset40. 58

Figure 30. RetinaNet prediction on an arbitrary image from Dataset40. 59

13

List of tables

Table 1. Training and testing dataset description ... 28

Table 2. Description of test datasets ... 29

Table 3. Comparison of the benchmarks of two-stage and one-stage detectors on COCO

[36] dataset. .. 37

Table 4. Average precision results of re-trained deep learning models on the Dataset10.

 .. 46

Table 5. Average precision results of re-trained deep learning models on the Dataset20.

 .. 46

Table 6. Average precision results of re-trained deep learning models on the Dataset40.

 .. 46

Table 7. Granular AP results of re-trained deep learning models by each class on

Dataset10. ... 48

Table 8. Granular AP results of re-trained deep learning models by each class on

Dataset20. ... 48

Table 9. Granular AP results of re-trained deep learning models by each class on

Dataset40. ... 48

Table 10. AR for a given maximum number of detections where IoU is in range of 0.5:

0.95. Dataset10. .. 49

Table 11. AR for a given maximum number of detections where IoU is in range of 0.5:

0.95. Dataset20. .. 49

Table 12. AR for a given maximum number of detections where IoU is in range of 0.5:

0.95. Dataset40. .. 49

14

1 Introduction

1.1 General Overview

Computer Vision has become ubiquitous in our day to day life, with applications

including but not limited to earth observation, disaster management, autonomous

vehicles, urban planning and city management, mobility and infrastructure, border and

coastal security, virtual reality, mapping and so on. Many of these applications perform

visual recognition tasks such as image classification, localization, and detection. Recent

developments in deep learning approaches have significantly advanced the performance

of these state-of-the-art visual recognition systems.

Detection and classification of objects of interest in aerial imagery have numerous

applications and use cases in the humanitarian, national security, and commercial realms.

On the commercial front, businesses have already attempted to infer retail traffic from

parking lot density levels, and tracking delivery trucks in near real-time is one of the far-

field goals of understanding aerial and satellite imageries [1]. For tax assessment

purposes, usually, surveys are conducted manually on the ground, which is essential to

calculate the real value of properties, and this can help to identify when having a

swimming pool that could increase property prices [1]. Similarly, in a neighborhood or

around a store, the count of cars can symbolize the levels of economic activity at that

place. By achieving this through understanding aerial imagery by using Artificial

Intelligence (AI), can significantly help in these processes by removing the inefficiencies,

and the high cost and time required by humans [2]. From national security standpoint,

detecting the build-up of war materiel in unstable regions would provide obvious value,

as would locating convoys of vehicles vectored towards unmanned border crossings or

identifying a large number of vehicles staging just outside the range of terrestrial border

monitoring equipment [3]. On the humanitarian front, governments have attempted to

infer the scope of natural disasters such as road cracks, damaged buildings, a hurricane

from clusters (or absences) of vehicles, or determine optimal travel routes for disaster

relief in unknown areas based on observations of local vehicle movements.

15

1.2 Motivation

One particular application area of computer vision is in unmanned aircraft systems, which

are used to do surveillance and control in places like Land and Coastal Borders,

emergency cases, military. These systems consist of unmanned aerial vehicles (UAV) and

station aircrafts. The UAVs are used for surveillance purposes in-band humans in station

aircrafts monitor the taken images or videos to detect and classify target objects.

Unlike well-trained machines, human brains are more error prone. In aircraft stations in

one blink of an eye, the human can miss a vital threat or danger caused by objects of

interest. If the UAVs are well trained by using computer vision, then these human-

introduced problems can be easily eliminated. By doing so, we could offload this kind of

more tedious activity to machines and humans can concentrate on some other important

stuff.

There are already several companies in the industry that provide UAVs that can perform

this task relatively good enough. However, they keep their research privately, and the

other industry companies are left with no help from academic research.

1.3 The Hypothesis

Object detection and classification in aerial images is challenging for several reasons. The

main reason is that the aerial imagery tends to have a high ratio, and that makes the target

objects to look extremely small. When the image is zoomed in, the quality gets lower,

thus becoming more challenging to detect and classify the target objects. Secondly, I can

say that usually in aerial imagery, the objects of interest are sparsely and non-uniformly

distributed in the image, thus making the detection very inefficient.

Previously some researchers have attempted to apply transfer learning from one base task

to another target task. For example, Pi et al. [4] evaluated YOLOv2 [5] deep learning

model by applying transfer learning on the drone dataset containing merely eight

videos (65,000 frames) for natural disaster response, Cisek et al. [6] tested

effectiveness of AlexNet [7] on 12,000 car overhead imagery dataset to solve car

parking lot problem.

16

Taking the previous successful transfer learning applied researches on aerial imagery

problems into consideration and given that the Republic of Estonia Land Board makes

high resolution aerial images available, we want to conduct a research in order to answer

the following questions:

• Can we get reasonably good results by applying transfer learning to detect and

classify objects of interest in aerial imagery on a relatively small manually

annotated custom dataset?

• How do different pre-trained deep learning models perform on the same target

dataset?

In this empirical research, first, we will do a thorough literature review on what

techniques are used to detect and classify target objects in aerial images. Following, we

are going to apply transfer learning method by fine-tuning parameters in pre-trained deep

learning algorithms that from detectron2 model zoo [8] to see if we can reasonably good

results and try to solve the existing problem with detecting and classifying target objects

in aerial imageries.

1.4 Research Objectives

The main objective of this research, as described throughout this thesis, is to evaluate the

performance of state-of-the-art deep learning models by applying transfer learning on a

small set of high-resolution aerial imagery. Other objectives include:

• Research and review the state-of-the-art deep neural network architectures that are

used for the detection and classification of objects of interest in aerial imageries.

• Understand how transfer learning and small dataset can help us to detect and classify

objects of interest in aerial imageries.

• Discuss future opportunities.

17

1.5 Methodology

In order to answer the research questions, I conducted a comprehensive literature review,

moreover, I contacted three Estonian startups that are building the UAVs in order to

identify the most important categories of objects of interest. Figure 1 illustrates the overall

the empirical research methodology [9] which is explained at length in the following

chapters and sections.

Figure 1. Research Methodology

Web mining was implemented to find publicly available high-resolution aerial imagery

[10]. To yield best results while web mining the following key words were used: aerial,

imagery, orthophotos, UAV. In the gathered dataset objects of interest were manually

labelled then were split into training (85%) and testing (15%) datasets. After a

comprehensive literature review of the pretrained publicly available CNN architecture

GOI Identification,
Data Source Identification,
CNN architecture selection.

Data mining, Data
processing, Annotating
objects of interest.

Experimentation.

Results and Analysis.

18

models from detectron2 model zoo [8] three models namely, Faster R-CNN, Mask R-

CNN and RetinaNet were selected. These are pre-trained models on COCO dataset. For

environment setup web mining was implemented and Google Collaboratory was chosen

[11]. In order to evaluate the deep learning model performance, mean average precision

[12] metrics was used.

1.6 Structure of the Thesis Document

 In the pages that follow, this thesis document is divided into four primary chapters.

Chapter 2 includes a review of existing literature on the subjects of object detection and

classification, transfer learning, objection detection approaches, and state-of-the-art deep

learning models. Then, in Chapter 3, we will walk through how we processed and labelled

the manually collected dataset and discuss about the experimental setup. Following, in

Chapter 4, we evaluate the execution of the three state-of-the-art CNN algorithms with

different configurations by applying transfer learning and analyze the results on our test

dataset with different characteristics and conduct a robust comparison between these three

cutting-edge algorithms. Finally, in Chapter 5, we conclude the whole research, discuss

the challenges of object detection in aerial images and talk about the future opportunities

for improvement.

19

2 Literature Review and Background theory

2.1 Related work

Aerial imageries contain vast amount of data. That is a prominent reason that

understanding manually only by humans is immensely complicated. Therefore, since

computing machines entered our lives there has always been continuously ongoing

research to teach machines to understand those imageries. As these imageries have a large

focal distance to objects of interest in them, Computer Vision face a lot of challenges.

The distribution of objects of interest classes are very imbalanced, obviously in an

arbitrary orthophoto of a living area we will notice so many cars than busses, trucks or

even buildings. Another difficulty is some objects of interest such as passenger vehicles

or say motorbikes are often take very tiny pixel wise area inside the image. State-of-the-

art Convolutional Neural Network based algorithms often down sample the images, thus

resulting in immense information loss for these objects. Hence it becomes extremely

difficult to identify those objects of interest.

In the last decade alone, the seamless integration of data into everyday life has resulted

in exponentially large, multimodal datasets (e.g., photos, videos, blogs, and tweets) in the

public domain such as online content sharing platforms and social networking sites.

Within the context of understanding aerial imageries a lot of researches have been

conducted.

 Several research projects have looked into discovering and detecting ground objects of

interest from orthophotos. Since these aerial imageries contain so much data, researchers

have challenged these imageries understanding with various ideas and proposals. For

UAVs to discover post disaster damages Baker et al. [13] proposed a Monte-Carlo

algorithm which was proven work faster than the conventional methods.

Radovic et al. [14] attempted to detect solve discovering airplanes from aerial imagery

challenge by applying transfer learning method on YOLO algorithm [15].

Han et al. [16] proposed an embedded system framework called Deep Drone to power

drones with vision, int other words letting the drones to do automatic human detection

and tracking. For object detection they used Faster R-CNN [17], the accurate but slow

20

detection algorithm as well as YOLO [15], the less accurate but fast-tracking algorithm

to make the system both fast and accurate and additionally, for tracking they used and

kernelized correlation filters (KCF).

Farrukh et al. [3] have studied detecting military vehicles and distinguishing them from

non-military vehicles on low-altitude aerial imageries by deploying Faster R-CNN [17],

SSD [18] and recurrent fully convolutional neural network (R-FCN) [19] algorithms.

Narayanan et al. [20] demonstrated the possibility of utilizing a high-performance cloud

computer for real-time aerial objects of interest detection from UAVs.

Guirado et al [21]employed Faster R-CNN algorithm [15] to track and count the number

of whales from satellite imagery.

Mundhenk et al. [1] introduced new aerial overhead imagery dataset with a large

diverse set of cars to classify, detect and count cars, they have experimented the results

with several state-of-the-art CNN architectures.

Pi et al. [4] reviewed YOLOv2 [5] deep learning model by applying transfer learning

method on their newly introduced VOLAN dataset containing eight videos of the areas

that had natural disasters.

Yang et al. [22] proposed a Clustered Detection (ClusDet) network that unifies object

clustering and detection in an end-to-end framework.

Uus et al. [23] reviewed detecting different types of vehicles from aerial imagery by

using YOLOv3 [24].

In previous works, researchers have not experimented and documented detecting ground

of objects of interest by re training pretrained state-of-the-art models such as Faster R-

CNN [15], mask R-CNN [25], RetinaNet [26] on very small dataset that contains super

high resolution aerial imager and compared the results. Those researches focused mainly

on using one deep learning models and comparing results with previous baselines.

21

2.2 Object Detection and Classification

Object detection is an essential problem task for computer vision techniques to solve.

Here the idea is to determine whether the specific features in image data are present or

not. By using computer vision, a detected target object then is classified to a set of pre-

defined classes. This operation in computer vision is called object classification. With

that being said, object detection and classification are fundamental building blocks of

artificial intelligence. We discuss Object Localization, classification and detection tasks

in detail further. Computer Vision helps computers to understand the visual world around

us. The object detection and recognition in usual images due to recent studies have been

performing with pretty high confidence scores.

Computer Vision tries to solve various problems. When we humans see the image what

we do is first classify the objects inside the image. For example, for the following image,

we would categorize the objects as a car and a building. When we teach the same thing

to computers, we teach them how to classify. In other words, the task becomes image

classification. However, to make the computer more intelligible, we need to teach them

where that particular object is inside the image. In deep learning, we refer to it as object

localization.

Image classification is the type of such computer vision task that tries to predict the class

of an object in the image. Object Localization (Figure 2) is the type of Computer Vision

task such that it tries to identify the location of one or more objects of interest in the given

image. Mostly it draws a bounding box around the object it classifies.

22

Figure 2: Object classification and localization.

On the other hand, Object detection (Figure 3) is the type of Computer vision task that

does Object Localization for more than one different type of classes. So, it detects the

class of the object and where it is located in the given image.

Figure 3: Object detection.

2.3 Evolution of Object detection

In this section, we briefly discuss how modern object detection algorithms evolved

throughout the artificial intelligence history and study the main object detection

approaches.

23

In computer vision, as we mentioned in previous 2.2 the task of object detection problem

is to determine where the objects of interest (e.g., cat, dog) are located in a given image

(a.k.a. object localization) and to which category they belong to (a.k.a. object

classification). The traditional object detection algorithms solved this task in three stages,

namely informative region selection, feature extraction, and classification.

In the informative region selection stage, we scan the whole image with a multi-scale

sliding window, then to recognize different objects, we extract visual features and finally

run a classifier that distinguishes an object of interest from all other classes. In this

approach, however, especially region selection is computationally inefficient, not always

very accurate, and produces too many redundant windows [27].

Thanks to the emergency of deep neural networks, researchers recently (mostly last

decade) proposed more sophisticated object detection algorithms. To learn the generic

features in the input visual such as shapes, edges, colors, we apply convolutional

filters(kernel). Hence, these deep neural networks are often referred to as convolutional

neural networks (CNN). History of neural networks dates back to the 1950s when

scientists had the intention of simulating the human brain on machines to solve general

problems [28]. Later, in the late 1980s with the birth of backpropagation optimization

technique [29], neural networks became even more popular in the computer science

research community. However, until the mid-2000s due to huge overfitting, lack of large-

scale data, and limited computational power, neural networks remained actual only in the

artificial intelligence research community. Following the late 2000s, we began to see the

recovery of deep learning, especially when the tech industry started implementing these

ideas in their businesses. It was attributed to the emergency of large-scale training data,

more powerful GPUS, and significant advancement of neural network architectures [27].

Convolutional neural network (CNN) is the most representative of deep learning in

computer vision. Typical CNN architectures consist of convolutional, pooling, and fully

connected layers. The state-of-the-art CNN architectures solve the vision problem in two

different ways. One follows the traditional object detection approach, namely generating

region proposals first, then classifying more fine-grained classes such as cats, cars, etc.

The other approach regards object detection problem as a classification task and infer the

objects of interest directly. These algorithms are sometimes called as two-stage detectors

and one-stage detectors, respectively. To give an example, more widely adapted two-

24

stage object detectors are R-CNN [30], Fast R-CNN [31], Faster R-CNN [17], Mask R-

CNN [25], FPN [17] and one stage detectors are YOLO [15] , SSD [18], YOLOv2 [5].

Figure 4 illustrates the evolution of object detection algorithms based on these two main

approaches.

Figure 4. The evolution of the object detection algorithm based on the two main approaches/framework.
We adopt this figure from [27].

In the region proposal-based framework side (a.k.a. two-stage detector) one of the first

proposed algorithms was R-CNN [30] which adopted selective search to generate about

2k region proposals for each image, then utilizing CNN module to extract 4096-

dimensional features and finally running a classifier to distinguish objects of interest form

other classes. This algorithm obtained mean average precision (mAP) of 53.3% with more

than 30% over the previous best result (HSC [32]) on the PASCAL VOC 2012 benchmark

dataset [27]. Despite enormous improvements over traditional object detection methods,

it still had several drawbacks. Mainly, these disadvantages were due to redundant region

proposals and the training process being computationally costly. To overcome these

problems, Fast R-CNN was proposed with the novelty of multi-tasks loss and region of

interest (ROI), and later Faster R-CNN was introduced with an additional Region

Proposal Network (RPN) [27].

In the regression/classification-based framework side (a.k.a. one-stage detector), a novel

object detection algorithm called YOLO [15] was proposed by Redmon et al. The main

idea of YOLO [15] was dividing the input image into grids and inferring the objects

centered in those grids. An improved version, YOLOv2 [5] that was later proposed, which

adopts several impressive strategies, such as batch normalization (BN) [33], anchor

25

boxes, dimension clusters, and multi-scale training [27]. The difficulty that YOLO [15]

faced with was having tiny objects, mainly because of multiple downsampling while

dividing into grids. To prevail these challenges, Liu et al. proposed Single Shot MultiBox

Detector (SSD) [18] which was inspired by the anchors adopted in MultiBox [34], RPN

[17] and multi-scale representation. Unlike YOLO [15] using fixed grids, SSD instead

introduces a set of default anchor boxes with different aspect ratios and scales to discretize

the bounding boxes. To handle objects with various pixel size areas, the network fuses

predictions from multiple feature maps with different resolutions [27].

2.4 Transfer Learning

When deep neural networks are trained, the first layers learn the features which turn out

not to be very specific to a particular dataset or task but are often generally useful for

various tasks. These learned features eventually transition from being general to being

specific to a dataset or task by the last layer of the deep neural network [35]. This behavior

of the deep neural networks has given birth to a healthy idea of applying knowledge that

is gained from one task(base) to another task(target). To give an example, we can train a

neural network to recognize objects like cats, dogs, and then use fully or partially that

knowledge to help us do a better job on some other computer vision tasks such as reading

x-ray scans.

In the real-world, an entire Convolutional Neural Network is rarely trained from scratch

with random parameter initialization. That is because not everyone has a relatively

sufficiently huge dataset to train the neural network. Instead, the conventional approach

is to pre-train a neural network on a large dataset, for example on ImageNet or COCO

that contains millions of images with thousands of different objects of interest, and then

use the Convolutional Neural Network either as an initialization or a fixed feature

extractor for a particular computer vision task. While applying transfer learning from base

task to target task, we usually want to follow one of two existing approaches.

The first approach is called feature extractor, which freezes the features pre-trained on

base task. Most of the time, these deep neural networks are pre-trained on large datasets

such as ImageNet or COCO dataset [36]. Then the last fully connected layer is removed

as the last layer’s output is different than what we usually want for our dataset.

26

Furthermore, we use the resulting neural network as a fixed feature extractor for our

dataset. To give an example, in the case of AlexNet [7], the last hidden layer right before

the output layer usually outputs a 4096-dimensional vector of an image that contains

activations. Once we extract these features for all images, we train a separate linear

classifier (e.g., Softmax classifier [37]) for our dataset.

Another transfer learning approach is to train a base network and then copy its first n

layers to the first n layers of a target network. The remaining layers of the target network

are then randomly initialized and trained toward the target task. One can choose to

backpropagate the errors from the new task into the base (copied) features to fine-tune

them to the new task, or the transferred feature layers can be left frozen, meaning that

they do not change during training on the new task. This approach is motivated by the

observation that the earlier features of a CNN contain more generic features such as edge

detectors, colors, or blob detectors that is quite generic to many tasks. However, later

layers of the CNN become progressively more specific to the details of the classes

contained in the original dataset. For example, in the case of ImageNet, which contains

many dog breeds, a significant portion of the representational power of the CNN may be

devoted to features that are specific to differentiating between dog breeds.

However, there are some caveats that we should consider before applying transfer

learning from some base pre-trained models to our target model. If the target dataset is

relatively small and the number of parameters is immense, fine-tuning may result in

overfitting. That is why these parameters are often left frozen in the early layers of the

network. On the other hand, if the target dataset is extensive or the number of parameters

is small so that overfitting is not a problem, then the base features can be fine-tuned to

the new task to improve the model performance. Of course, if the target dataset is

enormous, then there would be little need to transfer because the lower-level filters could

just be learned from scratch on the target dataset [35].

27

3 Experiments

In this Chapter we introduce the aerial imagery dataset that we have built as well as the

network architectures of the models that we have used for experiments and transfer-

learning scheme we have used for pre-training. Next, three different pre-trained models

and their performance and results are displayed. In the end we discuss the key factors that

influence model performance, data challenges as well as future opportunities.

3.1 Data

Computer Vision’s enormous success in its application areas have been tremendous and

almost everyone else know about it. However, it is still such area in Artificial Intelligence

that suffers from publicly available labelled data for research. Especially when it comes

to aerial imagery.

In this empirical research in order to feed the deep neural networks first we did some web

mining and found out some publicly available aerial imageries. One of the few publicly

available aerial imageries was orthophoto overage of Estonia provided by Estonian Land

Board [10]. Orthophotos are processed aerial photos from which distortions caused by

terrain relief, camera tilt relative to the ground at the moment of exposure and camera

central projection are removed. These orthophotos are quite diverse and in fact have the

orthophotos in three different scales. These imageries are very high-resolution imageries

with 1:2000, 1:10000 and 1:20000 scales. It is worth to mention that the spatial data is

updated regularly every year, in our case we downloaded the latest imageries from 2019.

The aerial imageries are at a nadir view angle such that it resembles satellite imagery.

For our experiments we decided to use imageries from orthophoto collection of densely

populated urban areas in Estonia which is 1:2000 scale, and this is because these

imageries tend to have smaller Ground Sampling Distance (GSD) [38]. In fact, these

orthophotos are produced with GSD of 10-16cm, and the used equipment is aerial camera

Leica ADS100-SH100 where the focal length is 120mm and height above ground level is

1250m [39]. Moreover, the ground sample distance (GSD) of these orthophotos are very

close to GSD of aerial imageries generated by modern unmanned aerial vehicles (UAV).

28

For the conducting experiments for our research we downloaded twenty imageries and

used sixteen of those as training imagery and the remaining four imagery for testing our

model. One of the reasons why we are using a few imageries is because manually

annotating them will be so cumbersome and is not in the scope of this thesis. Our training

and testing dataset distribution is as follows.

Table 1. Training and testing dataset description

Category Training #instances Testing #instances

Car 11038 2884

Airplane 40 6

Bus 287 50

Watercraft 64 60

Building 1659 532

Truck 354 14

Total 13442 3546

Later, to evaluate final models and to conduct extensive comparison, we

introduce two more test datasets by just down sampling the images in the

original test dataset. We down sample test images by a factor of 2 and 4 in

order to get different data characteristics. By down sampling the image by a

factor of 2, we get the new lower resolution image as if it was taken from

twice higher altitude. The main idea behind introducing these datasets is to

assess the flexibility of the performance of the models on various resolution

aerial imagery. The following Table 2 describes our test datasets in detail.

We name the test datasets as Dataset followed by their GSD value

(Dataset10).

29

Table 2. Description of test datasets

Name #Instances GSD WidthxHeight

Dataset10 43 10sm 2000x2000

Dataset20 43 20sm 1000x1000

Dataset40 43 40sm 500x500

3.1.1 Data Processing and Annotation

These orthophotos are quite large tiff formatted raster images and to open them for

viewing requires special software applications. For this purpose, we have used open

source Geographic Information System standalone desktop application (QGIS)

[40].(Figure 5)

Figure 5. QGIS raster image viewer [40].

As we mentioned in one of the previous sections 1.5 we will have six classes of objects

of interest for our experiment. We are generalizing any size of planes as airplanes, all

watercrafts such as ferry, ship as watercraft, all mini passenger vehicles as car, and public

transportation vehicles of trolleybuses and buses as bus, alongside buildings and trucks.

30

Data annotation is very essential part while preprocessing data in machine learning for

computer vision tasks. In order to annotate the dataset, we decided to use one of the most

preferred data annotation tools in the computer vision industry and research community

called Computer Vision Annotation Tool (CVAT) [41]. CVAT is a powerful and efficient

web-based tool that helps us to annotate videos or images for training Computer Vision

models. CVAT has various powerful features such as interpolation of bounding boxes

between key frames, shortcuts for most of critical actions, dashboard with a list of

annotation tasks, LDAP [42] and basic authorization and so on. It was created with an

intention for the usage professional data annotation tasks, hence UX [43] and UI [44] are

optimized especially for computer vision tasks. We will set up CVAT on our local

machine for data annotation task. Installing CVAT on our local machine is quite simple,

we just need to clone the GitHub repository [41] and run a few commands to start up the

necessary bits there as it comes with runnable docker [45] images.

We run the command docker-compose build in order to build the docker images, this

operation usually takes up to three minutes to complete, because it downloads some

public docker images such as ubuntu:16.04 and all necessary ubuntu packages to CVAT

local server. Then we run the command of docker-compose up -d command to start up

the container and it takes some time as it is downloading public docker images like

postgres [46], Redis [47].

Once we start up CVAT we log in the system by default user credential. Once we login

the system, we need to create CVAT annotation task by setting our classes and by adding

our images. As we can see from below Figure 6 when we create a new task for annotation,

we have several steps to follow, naming our annotation tasks, specify the labels and

adding the images. Here labels refer to classes, in other words categories objects of

interest.

31

Figure 6. Create new task in CVAT [41].

Since the large tiff raster images are around 100 megabytes of size at the time of our

experiment CVAT [41] is not able to handle opening such large images as we can see

from the following Figure 7. Therefore, we decided to cut each aerial imagery of

10000x10000 pixel into smaller twenty-five slices each with 2000x2000 pixel 1.

1 https://github.com/MajnunMan/python-image-slicer

32

Figure 7. CVAT [41] cannot handle processing large aerial imagery

As a result, we converted our original twenty 10000x10000 pixel aerial

imageries into smaller five hundred 2000x2000 images, thus having four

hundred training dataset images and hundred testing dataset images.

Once we create our tasks, they appear in the CVAT home page as follows.

Figure 8. CVAT local server homepage

Once we set up, we can start annotating our images manually. In the following figure 9

we can see how the Task details page looks like.

33

Figure 9. CVAT task details page

When we press the Job button it will take us to another page where we will

actually annotate images Figure 10. We will annotate our images by drawing

bounding boxes around each of object of interest and assign them their

corresponding label.

Figure 10. CVAT data annotation page

• Cars: We draw bounding boxes around the edges of each car even if they are not

very clearly seen due to shadow in the image individually.

34

• Airplanes: Bounding boxes are drawn around the edges of every airplane

individually. See Figure 11

• Buildings: This ground object of interest (GOI) is one of the challenging GOIs to

draw a bounding box around. Because buildings are in various shapes in the

imagery, for example top down (only roof, easy to draw bounding box around),

from top and side, damaged. See Figure 12

• Trucks: Bounding boxes are drawn around the edges of every truck individually.

See Figure 13

• Buses: As we mentioned previously in section 1.5 we consider public transport

means of buses and trolleybuses as bus. Bounding boxes are drawn around the

edges of every bus and trolleybus individually. See Figure 12

• Watercraft: We draw bounding boxes around the edges of each watercraft (ship,

ferry etc.) individually. The imageries contain just a few such GOIs. See Figure 14

Figure 11. Annotated airplane, cars and roof-only building

35

Figure 12. Annotated buildings (walls, roofs), cars and busses

Figure 13. Annotated cars and trucks

36

Figure 14. Annotated watercrafts

Once we annotate our image, we should save our work and dump the final

annotation. There are various formats that we could dump our annotations

such as COCO, PASCAL VOC and for our use case we will choose COCO.

This is because we are feeding this data to training deep learning models

from detectron2 model zoo Error! Reference source not found. and those

models data input format is same as COCO data format.

To conclude data section, we would like to mention that despite we have

high quality aerial imageries, sometimes even for humans it is difficult to

recognize precisely every object of interest in the imagery. To give an

example, as we can see from the following Figure 15, separating those

buildings from each other is extremely complex task even for humans.

Additionally, we notice the generic data imbalance problem in these aerial

imageries as well, such that we have way many more cars than trucks or

buses.

37

Figure 15. Complexities in aerial images

3.2 Network architectures

In this section we discuss the benchmarks of the state-of-the-art deep learning object

detection models and the network architectures of those models that we use for our

experiments.

Before proceeding with experiments a literature review was conducted and the state-of-

the-art benchmarks were found as shown in the following Table 3 and Figure 16.

 backbone AP AP50 AP75 APS APM APL
Two-stage methods

Faster R-CNN+++ [17] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [17] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w G-RMI [61] Inception-ResNet-v2

Error! Reference source
not found.

34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [57]
Mask R-CNN w FPN [17]

Inception-ResNet-v2-TDM
Inception-101 FPN

36.8
44.3

57.7
62.3

39.2
43.4

16.2
22.1

39.8
43.2

52.1
51.2

One-stage methods

YOLOv2 [5] DarkNet-19 Error!
Reference source not

found.

21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [18] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 [59] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [26] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

Table 3. Comparison the benchmarks of two-stage and one-stage detectors on COCO [36]
dataset.

38

Figure 16. Comparison of the state-of-the-art object detection models. We adopt this figure from [26] and

[24].

We adopt the above Table 3 and Figure 16 from [26] and [24] where the benchmarks of

state-of-the-art one-stage and two-stage detectors are compared against each other. We

can notice that two-stage detectors mostly outperform the one-stage detectors on

accuracy, however one-stage detectors are faster. Since our research does not necessarily

focus on real-time object detection in aerial imagery, we decided to use best performing

two-stage detector algorithm Faster R-CNN [17] and best performing one-stage detector

algorithm RetinaNet. Additionally, we also use Mask R-CNN [25] to experiment because

of its high accuracy object instance segmentation results. There are two reasons why we

are not using YOLO algorithm for our experiments is mainly due to very recently Pi et

al. [48] reviewing YOLOv2 [5] deep learning model by applying transfer learning

method as well as detetron2 [8] model zoo not having YOLO [15] models pre-trained.

3.2.1 Faster R-CNN

Recently Faster R-CNN is one of the most renowned deep neural network architectures.

Faster R-CNN was proposed by Lin et al. [17]. Conceptionally, Faster R-CNN is

composed of Feature Pyramid Network (FPN), Region Proposal Network (RPN) and

Detection Networks.

39

Feature Pyramids are just basic components that detect objects at different scales. Prior

to this work, Feature Pyramids were avoided to be used mostly due to their computational

and memory cost. FPN is a top-down network architecture with lateral connections dev

eloped for building high-level semantic feature maps at all scales [17].

The RPN is used to generate bounding boxes called Region of Interests (RoI) that have

high probability of containing of any object of interest. Detection Network on the other

hand, takes input from both FPN and RPN and performs the final object detection task,

meaning that identifying the object of interest class and the bounding box of it.

3.2.2 Masked R-CNN

Mask R-CNN is one of the renowned deep learning models that performs multi tasks such

as object detection, instance segmentation and person key point detection [25]. In

principle, Mask R-CNN [25] extends Faster-RCNN [17] by adding a branch for predicting

segmentation masks on each Region of Interest (RoI), in parallel with existing branch for

classification and bounding box regression. The mask branch is a small FCN applied to

each RoI, predicting a segmentation mask in a pixel-to-pixel manner. Mask R-CNN is

slightly computational expensive just because mask branch only adds a small

computational overhead, enabling a fast system and rapid experimentation.

Figure 17. Mask R-CNN framework for Instance Segmentation [25].

40

3.2.3 Retina Net

As we can see from the Figure 16 single stage detectors have a major insufficiency when

it comes to the model accuracy. RetinaNet was proposed by Ross et al. [26] in order to

increase the accuracy by making two major improvements over other single stage

detectors. In this network architecture there were two major improvements over other

single stage objection detection models (e.g. YOLO [15], SSD [18]). Feature Pyramid

Networks for Object Detection [49] and Focal Loss for Object Detection [26].

Feature Pyramid networks have been used typically to recognize objects of interest at

distinctive scales. A Feature Pyramid Network (FPN) [49] augments CNNs with a top-

down pathway and lateral connections so the network efficiently constructs multi-scale

pyramid from a single resolution input image (see Figure 18).

Figure 18. RetinaNet uses a Feature Pyramid Network (FPN) as a backbone on top of a feedforward

ResNet architecture [50].

The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN)

[17] as a backbone on top of a feedforward ResNet architecture [50] (a) to generate a rich,

multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two

subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor

boxes to ground-truth object boxes (d). The network design is intentionally simple, which

enables this work to focus on a novel focal loss function that eliminates the accuracy gap

between our one-stage detector and state-of-the-art two-stage detectors like Faster R-

CNN with FPN while running at faster speeds. Each level of the pyramid can be used for

detecting objects at a different scale. FPN improves multi-scale predictions from fully

convolutional networks (FCN) [51], as shown by its gains for RPN and DeepMask-style

41

proposals [51], as well at two-stage detectors such as Fast R-CNN [31] or Mask R-CNN

[25].

Focal Loss (see Figure 19) is a more effective alternative to Cross Entropy Loss (CE)

which is introduced by Ross et al.Error! Reference source not found. [26] to tackle the

class imbalance challenge with single stage detection approach. Single stage object

detection models usually suffer from foreground and background class imbalance

problem mainly because of dense sampling of anchor boxes [26]. Initially, RetinaNet

allows thousands of anchor boxes at each pyramid layer, and only a few of them is

assigned to ground-truth object in the end, while the vast majority represents background

class. Despite detections with high probabilities resulting in smaller loss values. Focal

Loss is used to reduce loss contribution when there are easy examples (detections with

high confidence scores) and to increase the significance of correcting misclassified

examples. Moreover, Focus Loss (FL) is define as following equation (2).

𝐹𝐿(𝑝!) = 	−𝛼!(1 − 𝑝!)"	log	(𝑝!) (2)

Focal Loss introduces an additional modulating factor (1 − 𝑝!)"	 to the cross-entropy

loss [53], with tunable focusing parameter γ ≥ 0.

3.3 Implementation details

For the experimental setup we used Google Collaboratory Professional powered by a

Nvidia Tesla P100 GPU with 30GB of random amount memory as our training

environment (see Figure 19). We are inheriting the above described pre-trained models

from detectron2 model zoo [8]. Detectron2 model zoo offers several pre-trained models

that are trained on COCO [36] and LVIS [52] datasets. The training dataset contains 236

images and three test datasets each contains 43 images (see 3.1). One test dataset is

original images, while the other two are down sampled versions of it. We conducted a lot

of experiments with the above described models mostly in order to fine-tune the

hyperparameters. In the end we decided to evaluate the experimentation results of the top

42

best performing model per each algorithm, namely Faster R-CNN [17], Mask R-CNN

[25] and RetinaNet [26].

Figure 19. Detailed training environment description.

The deep neural networks were trained with the hyperparameters of learning rate being

5*10-4 and the batch size being 4. To tune hyperparameters we followed an approach

taken by [53], where we conducted additional experiments with different values of

learning rate. Initially we started with values such as 10-3, 25* 10-3, 2*10-2, however in

the end we figure out that 5*10-4 was yielding relatively better results for all three

models. Additionally, the mini-batch size was another important hyperparameter that we

paid attention to. Since we had merely 236 training images, we split them into 59

batches each containing 4 training samples, thus we trained al three models 10000

iterations. In principle, we had limited computational power, therefore we did not

manage to train longer than 170 epochs. Perhaps, if we trained longer than 170 epochs,

we would get slightly better results (1-3%), although it was not in the scope of this

thesis research.

To start training our neural networks, we initialize the weights and biases parameters by

loading these parameters from detectron2 model zoo [8] where the parameters of the

pre-trained models are stored. We apply second approach of the transfer learning as

described above in section 2.4 which is copying first n layer parameters from base pre-

trained network to target network. In our case n is the number of layers our neural

network architectures have. For all three object detection algorithms we use 101 layered

backbone configurations. Since aerial imageries are completely different than the data in

COCO [36] and LVIS [53] datasets, we decided to initialize the parameters of our

neural networks with the pre-learned parameters and to re-train the whole network.

43

4 Results

4.1 Evaluation metrics

In this section first we briefly discuss the evaluation metrics that are used to measure the

performance of our models, then demonstrate our results, compare them against to state-

of-the-art baselines and finally analyze the key factors. Our metrics are average precision

(AP), average recall (AR), alongside we consider inference time and training time metrics

too.

Object detection evaluation metrics measure to assess how well the model performs on

an object detection task. When it comes to evaluating the performance of model in object

detection task there is not much of a difference with classification task. In simple

classification task in order to calculate the evaluation metrics such as recall, precision or

accuracy we need to know about true positive, false positive, true negative and false

negative values.

Likewise, in classification task, for object detection task we consider the true positive

result when the model correctly draws the bounding box around the corresponding object

of interest. A false positive result is when the model detects the wrong object as our own

object of interest.

In order to measure how accurate are the detections of our model, we use a metrics called

Precision [54] and to measure how good our model detects the objects of interest we use

a metrics called Recall [54].

In order to calculate precision and recall metrics we need to have the values for true

positive, false positive and false negative values, and these values are based on the metrics

called intersection over union (IoU) or sometimes referred as Jaccard Index [55] (see

Figure 20). IoU metrics as its name implies computes intersection of the ground truth and

predicted bounding boxes of the object of interest over union of the ground truth and

predicted bounding boxes of the object of interest. See below equation (1).

44

Figure 20. Example of Intersection over Union in aerial object detection [4].

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑜𝑣𝑒𝑟	𝑈𝑛𝑖𝑜𝑛	(𝐼𝑂𝑈) = #$!%&'%(!)*$,&%-
.$)*$,&%-

 (1)

In theory the best object detection result is when we have ground truth and predicted

bounding boxes overlap in other words when IoU is 100%. Given limitations of existing

object detection algorithms currently it is nearly impossible to have IoU being 100%, thus

both in the industry and research community IoU value of 50 to 95% is used.

In this research, taking complexity aerial scenery into consideration, especially due to

small objects of interest such as cars, the object detection is deemed true positive (TP)

when IoU ≥ 25%. Therefore, we set the threshold for our Jaccard index or IoU as 0.25.

Given the threshold of IoU we classify the object detection result as

• True Positive (TP), when IoU > 0.25.

• False Positive (FP) when IoU < 0.25.

• False Negative (FN), when ground truth object is present in the image, but our

model failed to detect it.

Having the above metrics now we can calculate the precision and recall for our model

performance.

45

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = /&0%	1*')!)2%'
/&0%	1*')!)2%'	34-5'%	1*')!)2%'

 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 = /&0%	1*')!)2%'
/&0%	1*')!)2%'34-5'%	6%7-!)2%'

 (3)

We then calculate the cumulative precision (see Equation 2) and recall (see Equation 3)

values for each class and find the are under the precision-recall curve as average precision

(AP) for each class respectively. Our model performance evaluation results will be in the

format of COCO [36] dataset evaluation format. This is due to us using pre-trained models

from detectron2 model zoo (as it is by default supported evaluator type) as well as recently

most researchers tend to give results on this data format.

4.2 Analysis and Discussion

Overall, we created three models altogether by feeding Dataset10 to Faster R-CNN [17],
Mask R-CNN [25] and RetinaNet [26] algorithms. We chose the top performing
backbone network architectures for each algorithm (see Small sized objects, when the
pixel-wise area of the object of interest is smaller than 32x32 pixels.

• Medium sized objects, when the pixel-wise area of the object of interest is in the

range of 32x32 pixels and 96x96 pixels.

• Large sized objects, when the pixel-wise area of the object of interest is in greater

than 96x96 pixels.

Table 4). In general, for all three models the results are good and quite close to the

benchmark scores. Overall, we evaluated the performance of the models on our three

test datasets that are described in section 3.1 . In this section we will analyze our results

on main test dataset and conduct a comprehensive comparison with benchmark scores

and previous works.

The training process follows the steps described earlier in section 3.3 and the result

metrics are collected in COCO [36] evaluation format. In COCO [36] evaluation format

the objects are categorized into three scales in terms of their pixel-wise areas in the

given image. The objects are considered as

46

• Small sized objects, when the pixel-wise area of the object of interest is smaller

than 32x32 pixels.

• Medium sized objects, when the pixel-wise area of the object of interest is in the

range of 32x32 pixels and 96x96 pixels.

• Large sized objects, when the pixel-wise area of the object of interest is in greater

than 96x96 pixels.

Table 4. Average precision results of re-trained deep learning models on the Dataset10.

Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN Inception-101 FPN 29 55.4 27.9 18.7 25 48.4

Mask R-CNN Inception-101 FPN 33.2 56.4 32.3 21.2 27.1 52.4

RetinaNet ResNet-101 FPN 26.3 51.9 23.8 5.5 24.9 44.9

Table 5. Average precision results of re-trained deep learning models on the Dataset20.

Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN Inception-101 FPN 28.4 51.6 27.3 18.7 27.3 43.6

Mask R-CNN Inception-101 FPN 33.2 58.5 33.5 21.2 27.2 61.9

RetinaNet ResNet-101 FPN 26.1 51.4 22.8 5.7 28 48.3

Table 6. Average precision results of re-trained deep learning models on the Dataset40.

Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN Inception-101 FPN 28.1 50.9 26.4 22.6 50 52.9

Mask R-CNN Inception-101 FPN 25.2 46.3 35.1 20.5 46.3 55

RetinaNet ResNet-101 FPN 24.5 47 22.8 18.4 44.1 59.6

47

When analyzing results from above tables 4, 5 and 6 it appears that generally over all

three datasets Mask R-CNN outperforms the other two models. Additionally, it can be

clearly seen that two stage detectors namely Mask R-CNN and Faster R-CNN outperform

one stage detector namely RetinaNet in all the three datasets. Moreover, we can say that

even the ground sampling distance is higher on the Dataset20 and Dataset40, we do not

notice significant drops in average precision scores. Hence the models trained on

Dataset10 is able to perform decently on Dataset20 and Dataset40. When comparing the

average precision results of our re-trained models on our aerial imagery custom datasets

versus the benchmarks of the same models on COCO dataset, we observe that Mask R-

CNN performs more closely to its corresponding benchmark. Average precision scores

comparing the other two models (see Table 3). Nevertheless, Faster R-CNN and

RetinaNet scores better average precision than YOLOv2 [5] does on COCO dataset.

48

Table 7. Granular AP results of re-trained deep learning models by each class on Dataset10.

Method Backbone Car Airplane Bus Watercraft Building Truck

Faster R-CNN Inception-101 FPN 39.2 28.5 53.2 11.8 47.4 18.1

Mask R-CNN Inception-101 FPN 30.3 51.2 55.4 12 49.5 17.5

RetinaNet ResNet-101-FPN 12.9 26.8 44.6 6.3 46.5 23.7

Table 8. Granular AP results of re-trained deep learning models by each class on Dataset20.

Method Backbone Car Airplane Bus Watercraft Building Truck

Faster R-CNN Inception-101 FPN 38.8 25.4 50.2 11.8 47.4 19.7

Mask R-CNN Inception-101 FPN 30.3 51.2 59.6 12.4 49.6 18.1

RetinaNet ResNet-101-FPN 13.1 30 41.3 7.7 46.7 20.9

Table 9. Granular AP results of re-trained deep learning models by each class on Dataset40.

Method Backbone Car Airplane Bus Watercraft Building Truck

Faster R-CNN Inception-101 FPN 28.1 25.3 48.3 11.8 47.4 22.1

Mask R-CNN Inception-101 FPN 26 16.9 44.2 10.2 42.6 11.4

RetinaNet ResNet-101-FPN 12.9 23.6 38.4 5.7 46.5 20.9

The above tables 7, 8 and 9 illustrate that all three models struggle to detect trucks and

watercrafts, and this can be explained by the fact that the training dataset had very few

samples of each category. Although the training dataset had relatively high number of car

instances, RetinaNet does not manage to distinguish the features of the cars well enough.

Faster R-CNN outperforms other two models to distinguish the features of car. All three

models show similar performances to detect building instances, whereas Mask R-CNN

49

performs better than the other two models to detect bus instances. Additionally, Mask R-

CNN manages to extract features of airplanes with higher precision on Dataset10 and

Dataset20 but shows poor performance on Dataset40.

Table 10. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset10.

Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL

Faster R-CNN Inception-101 FPN 10.7 22.8 35.5 19.8 30.9 51.8

Mask R-CNN Inception-101 FPN 9.4 24.9 36.6 15 29.7 55.6

RetinaNet ResNet-101 FPN 10.3 23.3 33.5 6.8 31.6 49.2

Table 11. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset20.

Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL

Faster R-CNN Inception-101 FPN 10.6 22.5 34 19.8 31.7 53.5

Mask R-CNN Inception-101 FPN 9.4 24.9 36.6 21 29.7 65

RetinaNet ResNet-101 FPN 10.3 23.2 33.6 11 34.3 53.5

Table 12. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset40.

Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL

Faster R-CNN Inception-101 FPN 10 22.2 33.6 27.8 54.9 57.9

Mask R-CNN Inception-101 FPN 9.2 21.2 32.2 27.7 50.1 61.9

RetinaNet ResNet-101 FPN 10.3 21.5 31.8 24.4 51 67.4

50

Table 10, 11 and 12 show the average recall results for a given maximum number of

detections respectively on the Dataset10, Dataset20, Dataset40. It can be seen that,

RetinaNet and Faster R-CNN are in the race against each other, while Mask R-CNN

seems to accept the defeat in this metric. RetinaNet outperforms two stage detectors in

this metric with tiny difference. I think it is wiser to take ARmax=10 and ARmax=100 metric

more seriously, because majority of the images in the dataset (at least ~80%) contain more

than 10 objects of interest. Since the images are aerial there is so much data as it can be

seen from Figure 12. One significant observation that we can do is, on Dataset40 all three

models displays roughly same performance, whereas on Dataset20 and Dataset10 they

differ a lot. RetinaNet seems to miss many small objects of interest on Dataset10 and

Dataset20.

Additionally, besides evaluating the performance of the models by north star average

precision and average recall metrics we also evaluate the results visually. This is not

quantifiable way of evaluation, but more of an intuitive way of evaluation. Below, we

display the visual performance of the three models on the very same image in three

different versions. First three results (Figure 21, Figure 22, Figure 23) reflect the

performances of three models respectively on the Dataset10. Following, the next three

results (Figure 24, Figure 25, Figure 26) are retrieved by running all the three models on

an arbitrary image from Dataset20. Finally the last three results (Figure 27, Figure 28,

Figure 29) indicate the visual performances of the models on the same image but from

Dataset40.

51

Figure 21.Faster R-CNN prediction on an arbitrary image from Dataset10.

52

Figure 22. Mask R-CNN prediction on an arbitrary image from Dataset10.

53

Figure 23. RetinaNet prediction on an arbitrary image from Dataset10.

54

Figure 24. Faster R-CNN prediction on an arbitrary image from Dataset20.

55

Figure 25. Mask R-CNN prediction on an arbitrary image from Dataset20.

56

Figure 26. RetinaNet prediction on an arbitrary image from Dataset20.

57

Figure 27. Faster R-CNN prediction on an arbitrary image from Dataset40.

58

Figure 28. Mask R-CNN prediction on an arbitrary image from Dataset40.

59

Figure 29. RetinaNet prediction on an arbitrary image from Dataset40.

To conclude this section, we can say that Faster R-CNN displays the most robust

performance for detecting smaller objects while Mask R-CNN gives the best performance

in high resolution aerial imagery where objects have medium or large size, in other words

their pixel-wise areas are greater than at least 32x32 pixels.

4.2.1 Key Factors

It turns out that there are several factors that eventually affect the performance of the

models. Obviously, tuning the hyperparameters finely is very essential to get significantly

decent results. We started learning rate with 10-3, then ended up with 5*10-4 which seemed

to perform better than other values. The number of batches was also essential

hyperparameter to tune for us, initially we started with 2 images per batch (we had 236

training images (see section 3.1) which was not converging the loss we enough. At the

end it turned out when we include 4 images per batch, the model started to give better

results. One other key factor was the dataset characteristics which is quite visible with

60

results displayed above tables (see Small sized objects, when the pixel-wise area of the

object of interest is smaller than 32x32 pixels.

• Medium sized objects, when the pixel-wise area of the object of interest is in the

range of 32x32 pixels and 96x96 pixels.

• Large sized objects, when the pixel-wise area of the object of interest is in greater

than 96x96 pixels.

Table 4 and Table 7). The dataset was so imbalanced, this was something that we could

not do much about, because the imageries naturally contain more cars and buildings than

other objects of interest.

4.2.2 Future Opportunities

In this work we concentrated our research on evaluating two top performing state-of-the-

art two-stage detectors and one top state-of-the-art one-stage detector for object detection

from aerial imageries. One of the lessons we learned was creating a balanced dataset. This

is a known challenge in the field although, we can mitigate the class imbalanced

distribution by increasing distribution of some of the classes such as trucks, busses by

doing data augmentation. We think that the same evaluation can be done for real-time

video analysis for future work.

61

5 Conclusion

In this research we facilitated objects of interest detection in aerial imagery by applying

transfer learning from pre-trained state-of-the-art CNN models. To achieve this, a list of

objects of interest were generated by interviewing industrial companies. Following, in

order to feed the CNN an in-house high-resolution aerial imagery dataset was introduced

by collecting the data from Land Board of Estonian Republic. Totally, three CNN models

were trained, validated and tested on several different versions of the original test datasets,

whereby down sampling the images ground sampling distance as if the imagery has higher

viewpoint altitude. The results for the objects of interest that have medium and large

pixel-wise areas were quite satisfactory, in fact nearly beating corresponding benchmark

values on COCO dataset. In general, if objects of interest in a given image has greater are

than 32x32 pixels, our models lead to reasonably reliable results. The first conclusion that

we can draw is that, by applying transfer learning and feeding the deep neural networks

with high resolution aerial imagery can yield to decent results that are pretty close to state-

of-the-art benchmarks. Additionally, Mask R-CNN slightly outperforms the other two

models (Faster R-CNN, RetinaNet) in object detection task from high resolution aerial

imagery. To conclude, the all three models that were re-trained on high-resolution aerial

imagery (Dataset10) seem to perform almost at the same level in 2- and 4-times lower

resolution aerial imagery.

62

6 References

[1] T. N. Mundhenk, G. Konjevod, W. A. Sakla and K. Boakye, "A Large Contextual
Dataset for Classification, Detection and Counting of Cars with Deep Learning,"
ArXiv, 2016.

[2] H. Long, Y. Chung, Z. Liu and S. Bu, "Object Detection in Aerial Images Using
Feature Fusion Deep Networks," IEEE Access, vol. 7, pp. 30980-30990, 2019.

[3] F. Kamran, M. Shahzad and F. Shafait, "Automated Military Vehicle Detection
from Low-Altitude Aerial Images," in Digital Image Computing: Techniques and
Applications (DICTA), Canberra, Australia, IEEE, 2018, pp. 1-8.

[4] Y. Pi, N. D. Nath and A. H. Behzadan, "Convolutional neural networks for object
detection in aerial imagery for disaster response and recovery," Advanced
Engineering Informatics, vol. 43, 2020.

[5] A. Farhadi and J. Redmon, "Yolo9000: better, faster, stronger," arXiv, vol.
1612.08242, 2016.

[6] D. Cisek, M. Mahajan, J. Dale, S. Pepper, Y. Lin and S. Yoo, "Transfer Learning
approach to parking lot classification in aerial imagery," in Conference: 2017 New
York Scientific Data Summit (NYSDS), New York, 2017.

[7] K. Alex, I. Sutskeve and G. o. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," in NIPS, 2012.

[8] R. Girshick, Y. Wu, A. Kirillov, F. Mass and W.-Y. Lo, "Detectron2," 2019.
[Online]. Available: https://github.com/facebookresearch/detectron2. [Accessed
03 2020].

[9] Wikipedia, "Empirical research," [Online]. Available:
https://en.wikipedia.org/wiki/Empirical_research. [Accessed 29 04 2020].

[10] G. Maaamet, "Repulic of Estonia Land Board," [Online]. Available:
https://geoportaal.maaamet.ee/index.php?lang_id=2&page_id=662.

[11] Google, "Google Colab," [Online]. Available: https://colab.research.google.com/.
[Accessed 04 2020].

[12] S. M. Beitzel, E. C. Jensen and O. Frieder, "MAP," in Encyclopedia of Database
Systems, Springer US, 2009, pp. 1691--1692.

[13] C. Baker, S. Ramchurn, W. Teacy and N. Jennings, "Planning search and rescue
missions for UAV teams," in Proceedings of the Twenty-second European
Conference on Artificial Intelligence, Netherlands, 2016.

[14] M. Radovic, O. Adarkwa and Q. Wang, "Object recognition in aerial images using
convolutional neural networks," J. Imaging, pp. 3-21, 2017.

[15] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified,
real-time object detection," in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, 2016.

[16] S. Han, W. Shen and Z. Liu, "Deep Drone : Object Detection and Tracking for
Smart Drones on Embedded System," 2016.

[17] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, pp. 1137-1149, 2017.

63

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg,
"Ssd: Single shot multibox detector," Computer Vision ECCV, vol. 9905, pp. 21-
37, 2016..

[19] J. Dai, Y. Li, K. He and J. Sun, "Object Detection via Region based Fully
Convolutional Networks," NIPS, pp. 379-387., 2016..

[20] P. Narayanan, C. Borel-Donohue, H. Lee, H. Kwon and R. Rao, "A real-time
object detection framework for aerial imagery using deep neural networks and
synthetic training images,," in Signal Processing, Sensor/Information Fusion, and
Target Recognition XXVII, vol. 10646, SPIE, 2018, pp. 25-33.

[21] E. Guirado, S. Tabik, M. Rivas, D. Alcaraz-Segura and F. Herrera, "Automatic
whale counting in satellite images with deep learning," bioRxiv, 2018.

[22] F. Yang, H. Fan, P. Chu, E. Blasch and H. Ling, "Clustered Object Detection in
Aerial Images," in IEEE/CVF International Conference on Computer Vision
(ICCV): 8310-8319., 2019.

[23] J. Uus and T. Krilavičius, "Detection of different types of vehicles from aerial
imagery," vol. 3, 2019.

[24] A. F. Joseph Redmon, "YOLOv3: An Incremental Improvement," ArXiv, vol.
abs/1804.02767, 2018.

[25] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," in IEEE
International Conference on Computer Vision (ICCV), Venice, 2017.

[26] T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object
Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
42, pp. 318-327, 2020,.

[27] Z. Zhao, P. Zheng, S. Xu and X. Wu, "Object Detection With Deep Learning: A
Review," IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 11, pp. 3212-3232, 2019..

[28] W. P. a. W. S. McCulloch, "How we know universals the perception of auditory
and visual forms," The Bulletin of Mathematical Biophysics, vol. 9, no. 3, p. 127–
147, 1947 .

[29] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by
back-propagating errors.," Nature, vol. 323, pp. 533-536, 1986.

[30] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for
accurate object detection and semantic segmentation," in CVPR, 2014.

[31] R. Girshick, "Fast r-cnn," in ICCV, 2015.
[32] X. Ren and D. Ramanan, "Histograms of sparse codes for object detection," in

CVPR, 2013.
[33] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift," ArXiv, vol. abs/1502.03167, 2015.
[34] D. Erhan, C. Szegedy, A. Toshev and D. Anguelov, "Scalable object detection

using deep neural networks," in CVPR, 2014.
[35] J. Yosinski, J. Clune, Y. Bengio and H. Lipson, "How transferable are features in

deep neural networks?," in NIPS, 2014.
[36] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.

Ramanan, C. L. Zitnick and P. Dollár, "Microsoft COCO: Common Objects in
Context," ArXiv, vol. abs/1405.0312, 2014.

64

[37] Wikipedia, "Softmax function," [Online]. Available:
https://en.wikipedia.org/wiki/Softmax_function. [Accessed 29 04 2020].

[38] Wikipedia, "Ground sample distance," [Online]. Available:
https://en.wikipedia.org/wiki/Ground_sample_distance. [Accessed 10 05 2020].

[39] M. O. i. Geoportal, "Geoportal Maaamet," [Online]. Available:
https://geoportaal.maaamet.ee/data/files/Leica_ADS100.pdf?t=20160620143616.
[Accessed 12 04 2020].

[40] QGIS, "Open Source Geographic Information System," [Online]. Available:
https://qgis.org/en/site/. [Accessed 03 2020].

[41] Github, "Computer vision annotation tool," [Online]. Available:
https://github.com/opencv/cvat. [Accessed 10 03 2020].

[42] Wikipedia, "Lightweight Directory Access Protocol," [Online]. Available:
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol. [Accessed
10 03 2020].

[43] UX, "User experience," [Online]. Available:
https://en.wikipedia.org/wiki/User_experience. [Accessed 04 05 2020].

[44] UI, "User interface," [Online]. Available:
https://en.wikipedia.org/wiki/User_interface. [Accessed 04 05 2020].

[45] Wikipedia, "Docker," [Online]. Available:
https://en.wikipedia.org/wiki/Docker_(software). [Accessed 21 04 2020].

[46] Wikipedia, "PostgreSQL," [Online]. Available:
https://en.wikipedia.org/wiki/PostgreSQL. [Accessed 12 04 2020].

[47] Wikipedia, "Redis," [Online]. Available: https://en.wikipedia.org/wiki/Redis.
[Accessed 18 04 2020].

[48] Y. Pi, N. D. Nath and A. H. Behzadan, "Convolutional neural networks for object
detection in aerial imagery for disaster response and recovery," Advanced
Engineering Informatics, vol. 43, no. 1474-0346, 2020.

[49] T.-Y. Lin, P. Dollár, R. Girshick, K. He and B. Hariharan, "Feature Pyramid
Networks for Object Detection," arXiv, vol. 1612.03144, 2016.

[50] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, 2016, pp. 770-778.

[51] P. O. Pinheiro, R. Collobert and P. Dollar, "Learning to Segment Object
Candidates.," in NIPS, 2015.

[52] A. Gupta, P. Dollár and R. Girshick, "LVIS: A Dataset for Large Vocabulary
Instance Segmentation," in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 2019.

[53] A. Adel, K. Anis, A. Mohanned and S. Abdulrahman, "Aerial Images Processing
for Car Detection using Convolutional Neural Networks: Comparison between
Faster R-CNN and YoloV3," arXiv, 2020.

[54] Wikipedia, "Precision_and_recall," [Online]. Available:
https://en.wikipedia.org/wiki/Precision_and_recall. [Accessed 23 04 2020].

[55] Wikipedia, "Jaccard_index," [Online]. Available:
https://en.wikipedia.org/wiki/Jaccard_index. [Accessed 21 04 2020].

[56] A. F. Joseph Redmo, "YOLOv3: An Incremental Improvement," ArXiv, vol.
abs/1804.02767, 2018.

65

[57] A. Shrivastava, R. Sukthankar, J. Malik and A. Gupta, "Beyond skip connections:
Top-down modulation for object detection," arXiv, vol. 1612.06851, 2016.

[58] C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, "Inception-v4, inception-
resnet and the impact of residual connections on learning," ArXiv, vol.
abs/1602.07261, 2017.

[59] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi and A. C. Berg, "Dssd: Deconvolutional
single shot detector," arXiv, vol. 1701.06659, 2017.

[60] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The
Pascal Visual Object Classes (VOC) challenge," International Journal of
Computer Vision, Vols. 10.1007/s11263-009-0275-4., pp. 88. 303-338, 2010.

[61] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z.
Wojna, Y. Song, S. Guadarrama, and K. Murphy, "Speed/accuracy trade-offs for
modern convolutional object detectors." IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3296-3297, 2017.

[62] E. Mohamed, K. Sirlantzis, and G. Howells, "Application of Transfer Learning for
Object Detection on Manually Collected Data," in Intelligent Systems and
Applications, Springer International Publishing, 2020, pp. 919--931.

