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Abstract

The aim of this master’s thesis is to determine the number of comparisons that could be
calculated with the transitive property in analytical hierarchy process (AHP). Additionally,
the thesis aims to evaluate the impact of using the transitive property on the quality metrics
of AHP results, including consistency ratio and weights of alternatives.

Analytic hierarchy process, developed by Thomas L. Saaty, is one of the most widely used
multi-criteria decision making methods. The major drawback with the AHP is the amount
of work which is required in making all of the necessary pairwise comparisons, especially
if there are more than recommended nine alternatives. For example, if 17 Suistainable
Development Goals are compared, a total of 136 pairwise comparisons must be made.
Depending on the complexity of the comparisons each pairwise comparison can take
from seconds to minutes to evaluate. A business need arises to reduce the number of
comparisons for various reasons. Firstly, it becomes more difficult and less likely for
decision-maker to stay consistent with comparisons. Secondly, long surveys and repetitive
questions in the AHP survey process can cause survey fatigue, which can lead to a decline
in response quality towards the end of the process. Thirdly, there may be instances where
decision-maker lacks the necessary knowledge or is unwilling to make a decision.

Based on the analysis of synthetic data sets using descriptive data analysis, it was concluded
that depending on the number of alternatives, around 25 to 40% of comparisons could be
missing in most situations, while still being able to calculate all the missing elements with
the transitive property. Secondly, as the number of elements calculated using the transitive
property increased, there was a corresponding increase of changes in the prioritization of
alternatives and a decrease in the consistency ratio.

Researching these areas supports anyone who wants to use AHP for decision-making,
especially in cases where it’s necessary to compare more than nine alternatives.

Keywords: Analytic hierarchy process, pairwise comparisons, transitive property, simula-
tions, synthetic data.

The thesis is written in English and is 59 pages long, including 5 chapters, 22 figures and 5
tables.
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Annotatsioon
Analüütiliste hierarhiate protsessi paarisvõrdluste vähendamine

transitiivse omaduse abil

Magistritöö eesmärk on selgitada välja, kui suur hulk analüütiliste hierarhiate protsessi
(AHP) paarisvõrdlusi on võimalik arvutada transitiivse omadusega. Lisaks, on töö eesmärk
hinnata transitiivse omaduse rakendamise mõju AHP tulemuste kvaliteedimõõdikutele,
milleks on kooskõlaindeks ja alternatiivide kaalud.

Analüütiliste hierarhiate protsess, loodud Thomas L. Saaty poolt, on üks enimkasutatud
hulgikriteeriumite analüüsi meetodeid. AHP rakendamise suureks takistuseks on töö
maht, mis kulub kõikide paarisvõrdluste tegemiseks, eriti olukordades, kus soovitakse
võrrelda rohkem alternatiive, kui meetodi soovituslik maksimaalne üheksa. Näiteks, 17
säästva arengu eesmärgi paarisvõrdlemiseks, tuleb kokku teha 136 paarisvõrdlust. Sõltuvalt
paarisvõrdluste keerukusest, võib iga paarisvõrdlus aega võtta sekunditest kuni minutiteni.
Sellest tulenevalt tekib mitmel põhjusel äriline vajadus paarisvõrdluste vähendamiseks.
Esiteks, mida rohkem on paarisvõrdlusi, seda keerulisem on otsustajal olla järjepidev oma
vastustes. Teiseks, mahukas paarisvõrdluste arv ja sarnase ülesehitusega paarisvõrdlused
võivad põhjustada küsimustiku täitmise väsimust, mistõttu vastuste kvaliteet võib ajas
vähenema hakata. Kolmandaks, võib tekkida olukordi, kus otsustajal ei ole piisavalt infor-
matsiooni paarisvõrdluse tegemiseks või ei ole nõus paarisvõrdlust tegema. Sünteetilistest
andmekogudest ja kirjeldava statistika tulemustest järeldati, et sõltuvalt alternatiivide
arvust, on transitiivse omadusega enamikel juhudel võimalik arvutada ligikaudu 25 kuni
40% puuduolevaid väärtuseid. Teiseks, mida rohkem elemente arvutatakse transitiivse
omadusega, seda enam hakkavad muutuma alternatiivide kaalud ning kooskõlaindeks.
Käesoleva magistritöö võib aidata kõiki neid, kes soovivad kasutada AHP otsuste lange-
tamiseks, eelkõige olukordades, kus on vaja võrrelda üheksat või enamat alternatiivi.

Märksõnad: Analüütiliste hierarhiate protsess, paarisvõrdlused, transitiivne omadus, simu-
latsioonid, sünteetilised andmed

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 59 leheküljel, 5 peatükki, 22
joonist, 5 tabelit.
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List of Abbreviations and Terms

AHP Analytic Hierarchy Process
ANP Analytic Network Process
BPMSG Business Performance Management Singapore
CI Consistency Index
CR Consistency Ratio
DSS Decision Support Systems
FLTR First-Level Transitivity Rule
GMIBM Geometric Mean Induced Bias Matrix
MCDM Multi-Criteria Decision Making
MLP Multi-Layer Perceptron
NGT Nominal Group Technique
RCI Random Consistency Index
Alternative One of AHP matrix elements that is being compared
Saaty Scale Scale that ranges from 1/9 to 9 and is used in AHP
Survey fatigue A lack or loss of interest in completing surveys
Synthetic database Information that is artificially manufactured rather than gen-

erated by real-world events
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1. Introduction

Analytic hierarchy process (AHP), developed by Thomas L. Saaty, is one of the most widely
used multi-criteria decision making (MCDA) methods [1]. The AHP is a MCDA method
aimed at supporting decision-making processes in individual and group contexts. The
core of AHP lies in presenting the problem as a hierarchy and comparing the hierarchical
elements in a pairwise manner using Saaty’s 9-point scale to express the importance of
one element over another in regards to the element in the higher level [2].

Even though the method was developed in 1970s, Fountzoula and Aravossis [3] conducted
a literature review on the use of MCDM methods in 2022 and they concluded that, during
the period of 2010 to 2020, MCDM methods were commonly used in public sector decision-
making and AHP was the most frequent one when counting both simple and integrated
methods [3]. AHP usage is highly extended in several areas, such as: logistic [1], strategic
planning [1], technological investment evaluation [4], supplier selection [5], analysis of
financial parameters [6], inventory classification [7], Internet access technology [8], IT
project selection [9] and even for re-engineering of the health-care system [10]. According
to Google Scholar statistics AHP has been cited 16 200 times, since 2020 until May of
2023.

In 2023, Innar et al. [11] mention that it has become a recurring necessity and exercise
for corporations to assess the alignment of their corporate strategy and goals with United
Nations Sustainable Development Goals (SDGs). Such an assessment is a highly complex
task, full of inconsistencies and subjective opinions of internal and external stakeholders,
which eventually influences the formal processes of strategy making and strategic choices.
A customized version of AHP, which was custom tailored for SDG assessment to structure
and organize the decision process and find and eliminate inconsistencies of group decision-
making was presented by Innar et al. [11].

1.1 Research problem and purpose

Effective decision-making at strategic levels requires correct identification of factors that
can influence business in future time periods. The ideal situation would be to include
all variables in the decision-making process, but such an inflow of information would
obfuscate our perception and finally make the distinction between important and unim-
portant variables impossible. According to Thomas L. Saaty the number of criteria and
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alternatives analyzed in the decision-making process should not exceed 7 (+/- 2), which
gives 9 alternatives maximum [12].

The two advantages which the AHP has over the other multi-criteria methods are the ease
of use and the ability to handle inconsistencies in judgements. People, acting unilaterally,
are seldom consistent in their judgements; groups are even less likely to be consistent.
The AHP does not force an individual or a group to be consistent when making pairwise
comparisons, but incorporates the inconsistencies into the process [13].

The major drawback with the AHP is the amount of work which is required in making
all of the necessary pairwise comparisons [13]. For example, if 17 SDGs are compared,
a total of 136 pairwise comparisons must be made. Depending on the complexity of the
comparisons each pairwise comparison can take from seconds to minutes to evaluate.
The more alternatives the more comparisons have to be done. Generally all the n∗(n−1)

2

judgements must be made, where n is the number of alternatives to be compared. The total
time spent making pairwise comparisons increases with the number of decision-makers.

The number of pairwise comparisons starts to increase quickly, especially in cases when
there are more alternatives than recommended maximum of nine. A business need arises
to reduce the number of comparisons for various reasons. Firstly, it becomes more difficult
and less likely for decision-maker to stay consistent with comparisons. In 1956, G. A.
Miller [14] conjectured that there is an upper limit on our capacity to process information
on simultaneously interacting elements with reliable accuracy and with validity. This limit
is seven plus or minus two elements. Secondly, long surveys and repetitive questions
in the AHP survey process can cause survey fatigue, which can lead to a decline in
response quality towards the end of the process. Thirdly, there may be instances where
decision-maker lacks the necessary knowledge or is unwilling to make a decision.

The purpose of the thesis is to determine the number of comparisons that can be calculated
using the transitive property and to determine the amount of excess information that is
generated if all the comparisons are done. Additionally, the thesis aims to evaluate the
impact of using the transitive property on the quality metrics of AHP results, including
consistency ratio and weights of alternatives.

1.2 Experiment questions

The thesis has two focuses: determining the number of comparisons that can be (in most
cases) be calculated with transitive property and if transitive property is used to calculate
missing information, then what’s the effect on AHP results from consistency ratio and
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alternatives prioritization perspective. Researching these areas supports anyone who wants
to use AHP for decision-making, especially in cases where it’s necessary to compare more
than nine alternatives.

To achieve this objective, the author proposes the following experiment questions and
sub-questions:

1. What’s the number of comparisons that can be calculated with the transitive property?
(a) In what situations it makes sense to use transitive property?
(b) What should be considered when using transitive property?

2. What’s the effect on AHP results, in case of 3 to 20 alternatives, from consistency ra-
tio and alternatives prioritization perspective if transitive property is used to calculate
missing information?

1.3 Outline of the thesis

The thesis is divided into five chapters. The first chapter gives an overview of the research
purpose, problem and provides the experiment questions. The second chapter introduces
the theoretical framework of the AHP, provides an overview of pairwise comparison
process and presents five reasons to justify the importance of reducing the number of
pairwise comparisons. Under literature review ten approaches are presented that previous
researchers have used to reduce the number of pairwise comparisons or how they have
handled situations when missing pairwise comparisons. The following third chapter
describes the methodology used for data collection and analysis, which involves the
experimental quantitative data analysis method. The experiment design is elaborated,
including how the data was prepared for descriptive analysis. The fourth chapter presents
the experiment’s results and findings, including how the results were validated. Finally, the
last chapter concludes the thesis by summarizing the main findings and recommendations
for further research are provided.

11



2. Theoretical framework

This theoretical framework aims to provide a comprehensive understanding of analytic
hierarchy process, how it’s conducted and what are the main reasons to reduce pairwise
comparisons.

2.1 Analytic hierarchy process overview

The analytic hierarchy process is a multicriteria method aimed at supporting decision-
making processes in individual and group contexts. The core of AHP lies in presenting the
problem as a hierarchy and comparing the hierarchical elements in a pairwise manner using
Saaty’s 9-point scale to express the importance of one element over another in regards to
the element in the higher level [2]. Scale is presented in Table 1 [15].

Table 1. Saaty’s scale of relative importance.

Intensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to
the objective

3 Weak importance of one over
another

Experience and judgment slightly
favor one activity over another

5 Essential of strong importance Experience and judgment strongly
favor one activity over another

7 Demonstrated importance An activity is strongly favored and its
dominance demonstrated in practice

9 Absolute importance The evidence favoring one activity
over another is of the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values between
the two adjacent judgment

When compromise is needed

The two advantages which the AHP has over the other multi-criteria methods are the ease
of use and the ability to handle inconsistencies in judgements. People, acting unilaterally,
are seldom consistent in their judgements; groups are even less likely to be consistent.
The AHP does not force an individual or a group to be consistent when making pairwise
comparisons, but incorporates the inconsistencies into the process [13]. Even physical
measurements are never exact in a mathematical sense; and hence, allowance must be
made for deviations. Secondly, in human judgments, deviations are considerably larger
[16].
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2.1.1 Pairwise comparison process overview

Without losing generality, the problem can be formalized by considering the prioritization
of n elements E1, E2, . . . ,En at a given level of hierarchy. The decision-maker semantically
compares any two elements Ei and Ej indirectly (verbally) or directly (numerically), using
the scale in Table 1, assigns the value aij that represents a judgment of the relative
importance of decision element Ei over Ej . If element Ei is of the same importance for
the decision-maker, then aij = 1, and if Ei is preferred to Ej , then aij > 1. The reciprocal
property aij = 1 / aij by assumption always holds, and aii = 1 for all i = 1,2, . . . , n. If n

elements of one level of the hierarchy are compared regarding the element in the upper
level, a comparison matrix A has the following quadratic form:

A =


1 a12 ... a1n
1

a12
1 ... a2n

. . . .
1

an1

1
an2

... 1

 (2.1)

Each matrix element aij provided by the decision-maker is a subjective judgment of the
mutual importance of the two elements, i and j. If the decision-maker is fully consistent,
then the transition rule aijajk = aik should apply for all i, j, and k in the range 1 to n [2].

2.1.2 Consistency ratio

The consistency ratio (CR) is calculated as a part of the standard AHP procedure. First,
the consistency index (CI) is calculated using the following equation:

CI =
λmax − n

n− 1
(2.2)

where λmax is the principal eigenvalue of matrix (2.1). Knowing the consistency index
and random consistency index (RCI) defined also by Saaty and shown in Table 2, the
consistency ratio is obtained:

CR =
CI

RCI
(2.3)
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Where RCI value depends on the size of the matrix.

Table 2. T. L. Saaty random-like matrix value for matrices of different sizes.

Order 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RCI 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59
First-Order
Differences

0 0.52 0.37 0.22 0.14 0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01

Saaty suggested considering the maximum level of the decision-maker’s inconsistency to
be 0.10; that is, CR should be less or equal to 0.10 [2]. Allowable consistency ratio should
be not more than about 0.10. The requirement of 10% cannot be made smaller such as
1% or 0.l% without trivializing the impact of inconsistency. But inconsistency itself is
important because without it, new knowledge that changes preference cannot be admitted.
Assuming that all knowledge should be consistent contradicts experience that requires
continued revision of understanding [16].

The quality of response to stimuli is determined by three factors. Accuracy or validity, con-
sistency, and efficiency or amount of information generated. Our judgment is much more
sensitive and responsive to large perturbations. With perturbations is meant a numerical
change from consistent ratios obtained from priorities. The larger the inconsistency, and
hence, also the larger the perturbations in priorities, the greater is our sensitivity to make
changes in the numerical values assigned. Conversely, the smaller the inconsistency, the
more difficult it is for us to know where the best changes should be made to produce not
only better consistency but also better validity of the outcome. Once near consistency is
attained, it becomes uncertain which coefficients should be perturbed by small amounts
to transform a near consistent matrix to a consistent one. If such perturbations were
forced, they could be arbitrary and thus, distort the validity of the derived priority vector in
representing the underlying decision [16].

2.2 Reasons to reduce alternatives and pairwise comparisons

Effective decision-making at strategic levels requires correct identification of factors that
can influence business in future time periods. The ideal situation would be to include all
variables in the decision-making process, but such an inflow of information would obfus-
cate our perception and finally make the distinction between important and unimportant
variables impossible. According to T. L. Saaty the number of criteria and alternatives ana-
lyzed in the decision-making process should not exceed 7 (+/- 2), which gives 9 alternatives
maximum [12].
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There are various reasons why making all the pairwise comparisons or adding all the
alternatives into the analysis isn’t always the best approach, for example:

■ Consistency
■ Time
■ Human capacity to process information
■ Survey fatigue
■ Decision-maker knowledge and behavior

2.2.1 Consistency

Consistency is necessary to measure in order to preserve integrity that the outcomes are
trustful. Standard AHP uses eigenvector, the prioritization method, and the consistency
coefficient consistency ratio to indicate the inconsistency of the decision-maker [2]. The
consistency ratio of a pairwise comparison matrix is the ratio of its consistency index: to
the corresponding random index value in Table 2. Figure 1 is a plot of "Order" and "First-
Order Differences" of Table 2. It shows the asymptotic nature of random inconsistency
[16].

Figure 1. Graph of first differences in random inconsistency.

The measure of random inconsistency reveals that as the number of elements being
compared is increased the measure of inconsistency decreases so slowly that there is
insufficient room for improving the judgments and, therefore, also consistency. From
Figure 2, can be concluded that to serve both consistency and redundancy, it is best to keep
the number of elements seven or less. It appears that Miller’s seven plus or minus two is
indeed a limit, a channel capacity on our ability to process information [16].

15



If the CR is larger than desired, Saaty and Ozdemir [16] recommend doing following three
things:

1. Find the most inconsistent judgment in the matrix.
2. Determine the range of values to which that judgment can be changed corresponding

to which the inconsistency would be improved.
3. Ask the decision-maker to consider, whether the decision-maker can change his or

her judgment to a plausible value in that range. If the decision-maker is unwilling,
then try with the second most inconsistent judgment and so on. If no judgment
is changed the decision is postponed until better understanding of the stimuli is
obtained.

Decision-makers who understand the theory are always willing to revise their judgments
often not the full value but partially and then examine the second most inconsistent
judgment and so on. It can happen that a decision-maker’s knowledge does not permit
one to improve his or her consistency and more information is required to improve the
consistency of judgments [16]. Nowadays, decision support systems (DSS) are used to
assist the decision-maker and, accordingly, to provide more self-confidence for decision
tasks. There are many types of DSS and they are used with personal through managerial
and enterprise purposes, assisting either inidividual or group decisions and implementing
diverse techniques on stand-alone and web-based architectures [1].

2.2.2 Time

Depending on the complexity of the comparisons each pairwise comparison can take from
seconds to minutes to evaluate. As shown in Figure 2, the more alternatives the more
comparisons have to be done. The total time spent making pairwise comparisons increases
with the number of decision-makers.

The number of comparisons can be calculated with the following formula:

n ∗ (n− 1)

2
(2.4)

where n is a number of alternatives to compare.

When the judgements are perfectly consistent, only the first (n - 1) comparisons need to be
made to calculate the weights. However, when inconsistencies are present, the entire top
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Figure 2. Graph of number of pairwise comparisons based on AHP alternatives.

triangular portion of the matrix, n∗(n−1)
2

judgements, must be completed since the various
paths between two vertices will have different intensities. On the other hand, one would not
want to make only (n - 1) comparisons since a certain amount of redundancy is necessary
to "correct" any errors in the judgements [13].

The major drawback with the AHP is the amount of work which is required in making
all of the necessary pairwise comparisons. For example, if nine objects according to five
criteria is compared, a total of 190 pairwise comparisons must be made [13]. Even if
there is an unlimited amount of time, then there are other reasons why having too many
alternatives, and due to that having more pairwise comparisons, isn’t a good approach.

2.2.3 Human capacity to process information

In 1956, G. A. Miller [14] conjectured that there is an upper limit on our capacity to
process information on simultaneously interacting elements with reliable accuracy and
with validity. This limit is seven plus or minus two elements. The reason is founded in the
consistency of information derived from relations among the elements. When the number
of elements increases past seven, the resulting increase in inconsistency is too small for
the mind to single out the element that causes the greatest inconsistency to scrutinize and
correct its relation to the other elements, and the result is confusion to the mind from the
existing information [16].

The AHP as a theory of measurement has a basic way to obtain a measure of inconsistency
for any such set of pairwise judgments. When the number of elements is seven or less
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the inconsistency measurement is relatively large with respect to the number of elements
involved; when the number is more it is relatively small. The most inconsistent judgment
is easily determined in the first case and the individual providing the judgments can change
it in an effort to improve the overall inconsistency. In the second case, as the inconsistency
measurement is relatively small, improving inconsistency requires only small perturbations
and the judge would be hard put to determine what that change should be, and how such
a small change could be justified for improving the validity of the outcome. The mind
is sufficiently sensitive to improve large inconsistencies but not small ones. And the
implication of this is that the number of elements in a set should be limited to seven plus
or minus two [16].

2.2.4 Survey fatigue

For any researcher who has observed a survey that takes for several hours, it is clear that
some respondents disengage as the survey drags on, because they are exhausted, bored,
or because their attention wanders. As a result, response quality during the later part of a
long survey may suffer, a phenomenon known as survey fatigue. An additional hour of
survey time increases the probability that a respondent skips a question by 10% to 64%.
Similar effect sizes were found within phone surveys in which respondents were already
familiar with questions, suggesting that cognitive burden may be a key driver of survey
fatigue. Past research suggests that survey fatigue may be driven by people deliberately
choosing to not answer questions in order to expedite the end of the survey, or if people
become more likely to inadvertently make mistakes as they become tired [17]. Researchers
have also conjectured that, over time, respondents learn that answering "no" to a question
often invokes a "skip code" that will allow them to skip a number of follow-up questions.
This behavior is known as "satisficing" [18].

2.2.5 Decision-maker knowledge and behavior

There could be a situation where a decision-maker is unwilling to make a direct comparison
between two particular alternatives or a decision-maker is unsure about some comparisons.
Transitive property could be used to calculate the value of a missing pairwise comparison,
though in these cases Saaty and Ozdemir [16] recommend to postpone the decision until
better understanding is obtained.
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2.3 Literature review

Under literature review a brief overview of ten approaches is given, that previous re-
searchers have used to reduce the number of pairwise comparisons or how they have
handled situations when missing pairwise comparisons.

2.3.1 First-level transitivity rule method

Srdjevic et al. [2] propose first-level transitivity rule (FLTR) based on screening matrix
entries in the neighborhood of a missing one. Scaling (where necessary) and geometric
averaging of screened entries allows filling of the gap in the matrix and later prioritization
of involved decision elements by the eigenvector, or any other known method. The FLTR
assures coherency of the generating process in a sense that all numeric values in a matrix
(original entries, plus one generated) come from the same ratio scale and have correct
element-wise semantic equivalents. FLTR involves geometric averaging and scaling of
inner products that realize the transition rule, and the final matching of computed numerical
to the scale used for all other pairwise comparisons of decision elements in a hierarchy.
The proposed method can generate only one missing judgment in any local matrix and in
turn enables prioriziation for a given matrix, as well as the final AHP synthesis.

2.3.2 Geometric mean induced bias matrix

The geometric mean induced bias matrix (GMIBM) only requires the original information
of the incomplete comparison matrix and is independent of the way of deriving priority
weights from a pairwise matrix. Specifically, the missing judgments are first filled in by
unknown variables, and then the adapted GMIBM is applied to obtain a revised "complete"
pairwise matrix. To keep the global consistency and estimate the missing judgments, the
least absolute error method and the least square method are used to optimize the objective
function and find the optimal solution of missing comparisons [19].

The specific steps [19] of the missing comparisons estimation include:

■ Step 1: Fill in the missing comparisons with unknown variables x1 and 1
x1

; x2 and
1
x2

; etc.
■ Step 2: Construct the GMIBEM ϵ by the following three sub-steps.

– Step 2.1: Compute a column vector L and a row vector R (see Figure 3).
– Step 2.2: Compute the geometric mean matrix by formula A = L ∗R.
– Step 2.3: Compute GMIBEM ϵ.
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■ Step 3: Establish an overdetermined system of equations by minimizing all entries
in the error matrix ϵ, i.e. let ϵij(x1, x2, ..., xp, aij) = 0, i, j = 1,2,...,n hold.

■ Step 4: Solve the overdetermined system of equations.
■ Step 5: Test the revised comparison matrix A by replacing the missing comparisons

with the estimated values.

The results show that the proposed models are not only capable of completing missing
values, but also can efficiently improve the matrix consistency at the same time [19].

Figure 3. Formula to compute a column vector L and a row vector R.

2.3.3 Optimization methods

Optimization models start with a handful of pairwise comparisons only. The remaining
pairwise comparisons are estimated using optimization algorithms by taking advantage
of the matrix properties of A (2.1). Starting with a of minimum n - 1 comparisons, a
gradient descent method is proposed to select the next pairwise comparison that would
have the biggest information gain [20]. The methodology by Bozoki, Fulop, and Ronyai
[21] uses nonlinear optimization with exponential scaling to estimate the missing pairwise
comparisons from available ones. However, all possible combinations of connecting paths
must be considered. The number of combinations exponentially grows as the number of
missing comparisons increases and thus would be inefficient to solve.

2.3.4 Assigning the alternatives into subsets

Assign the alternatives into subsets based on a subjective absolute scale in which alterna-
tives that have close "magnitudes" are grouped together. By using several pivot alternatives
that is common to at most two subsets, the global priorities of the alternatives are then
obtained. Note, the definition of close "magnitudes" is not well defined and is highly
subjective. Furthermore, no guidelines are provided to determine which alternatives are
assigned to which subset [22].
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2.3.5 Decision to stop making pairwise comparisons

Harker [13] suggests three approaches when to stop making pairwise comparisons:

1. The first is to let the decision maker decide whether or not to continue with the
questioning. In fact, this option is always available under the other two stopping
rules.

2. The second rule states that if the maximum absolute difference in the attribute
weights from one question to the next is less than or equal to α, where α is a given
constant, then one should stop the questioning since the new information did not
have a major influence on the weights. This rule is "liberal" in the sense that further
questioning may drastically alter the weights even if there is no major change at the
present time. However, the decision-maker always has veto power over the rule’s
choice to stop and hence. this rule may work well in practice.

3. The third stopping rule is very conservative in the sense that comparisons will
continue to be made until one is sure that the ordinal rank will not be reversed.
The weights w are cardinal rankings of the alternatives which, of course, create an
ordinal ranking. By answering more questions, the cardinal ranking in w may be
slightly altered but the ordinal ranking implied by w could remain the same. The
third stopping criterion simply states that the next question will be asked if it appears
that the ordinal ranking could be reversed. This rule is very conservative in the sense
that two alternatives may have low but almost equal weights and this rule would not
terminate the comparisons. Alternatives with low weights are not important and thus
one would like to ignore a possible rank reversal in this situation.

2.3.6 Balanced incomplete block design technique

Weiss and Rao [23] presented a balanced incomplete block design technique to reduce
the number of pairwise comparisons. Their work was different from Harker’s (1987a,
1987b) in the sense that they developed a factorial design of the comparisons for large
scale problems. The proposal was to allocate the appropriate portions of the hierarchy to
different respondents rather than having each respondent working on the entire hierarchy.
The proposal was also based on the assumption that people who make large numbers of
comparisons become less consistent. They also suggested deleting attributes that were
identical to one another. However, their guidelines for deletion of attributes seemed
arbitrary [23] [24].
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2.3.7 Analytic network process

Analytic Network Process (ANP) is a more general form of AHP, structuring a decision
problem as a network, as opposed to a hierarchy. As a multicriteria theory of measurement,
its main use is deriving relative priority scales of absolute numbers from individual
judgements. Alternatively, it can also use actual measurements normalized to a relative
form. These judgements also belong to a fundamental scale of absolute numbers and
represent the relative influence between elements in a pairwise comparison. Based on
an underlying control criterion, it examines whether one of two elements in the pairwise
comparison influences a third element in the system [25]. Adding the interdependencies to
AHP makes consistent pairwise comparison even more confusing and difficult. Even if the
existence of such interdependencies can be justified, it is hard for the decision maker to
consider these relations while doing pairwise comparisons [26]. For the ANP, based on
Formula 2.4, n2 comparisons are needed to estimate the inner dependencies of the criteria
[27].

2.3.8 Integrating AHP with NGT

Islam and Abdullah [24] proposed to exclude less important criteria at the beginning of the
exercise. The question was how it’s possible to know in the beginning which criteria are
important and which are not? A simple solution to this problem is to apply Nominal Group
Technique (NGT) at the beginning of the exercise. NGT is a highly useful, structured
brainstorming technique that is used to produce a large number of ideas pertaining to an
issue/problem while ensuring balanced participation among the group members [28]. NGT
not only generates a large number of ideas, but also it prioritises those ideas using certain
voting techniques. After the voting session, the ideas that receive a higher number of votes
are generally considered superior or important ideas [24].

Nominal group technique requires a group of about eight people. This group is facilitated
by someone who is expected to have prior experience in conducting some nominal group
sessions. The group members meet in a meeting room equipped with a marker board and
marker pen and each of them has a few sheets of paper. The steps [24] to be followed are
as follows:

1. Step 1: silent generation of criteria in writing. Participants are given about ten
minutes to write down as many criteria as possible pertaining to the decision making
problem.

2. Step 2: round-robin recording of criteria. The facilitator asks every participant (start-
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ing from one end of the room) to provide the most important criterion (participants
have to judge which one is the most important criterion) from his or her list. If there
are eight participants then there should be eight important criteria recorded in the
first round. After this, the facilitator goes for the second round, collecting the second
most important criterion from the lists of all the participants. Subsequent rounds are
carried out till all the criteria are exhausted from the participants lists. By this time,
all the relevant criteria are written down on the marker board. The list generated is
usually called the master list.

3. Step 3: voting to select the most important criteria. Each participant is asked to
identify the most important five criteria from the master list on the board and rank
them using a 1 to 5 scale according to their importance. The most important criterion
is assigned a rating of 5 and the least among these five criteria receives the rating of 1.
When all the participants finish the ranking task, cards are collected from them and
votes are written against the criteria on the board. When the votes are aggregated, it
is easy to single out the important criteria. If there are, say, 25 criteria in the master
list and we want to consider the most important ten, then the ten criteria that receive
higher votes are to be chosen.

When Islam and Abdullah [24] used only the dominant criteria, then they managed to save
1223 pairwise comparisons from total of 2081, which was 58.77% saving.

2.3.9 Neural network-based method

Neural networks are widely used in function approximation problems, pattern recognition
and clustering. Such networks can be used to represent hierarchical preferences [29] and
(broadly speaking) they can be divided into two main groups: those that use supervised
learning and those that use unsupervised learning. The Multi-Layer Perceptron (MLP)
belongs to the first group and its training algorithm is called the backpropagation algorithm
[30]. The MLP architecture contains neurons in layers: one input layer, one or more hidden
layers and one output layer. Learning patterns are pairs (input, desired output) used to train
the network. In the learning process, the neural network adapts the connection weights,
attempting to minimize the difference between the network output and the desired output.
When an acceptable average training error is reached, the network is able to recognize
incomplete patterns. This architecture is easy to implement, the training process is fast and
perhaps most significantly, after the training process, the network gives the most similar
learned pattern associated to the distorted input [31].
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2.3.10 Revised geometric mean method

The revised geometric mean method [32] is used to fill in the missing elements in a
reciprocal multiplicative matrix A. The process consists of adding one to the main diagonal
for each missing element in the row. Then, missing elements are replaced by zeros, that is,
the elements rij of the transformed matrix, R, are calculated as follows:

rij =


aij if aij is not a missing value, with i ̸= j

0 if aij is a missing value, with i ̸= j

1 + ci with i = j

(2.5)

where ci is the number of missing values in row i.

After that, the eigenvector associated to the largest eigenvalue of matrix R is calculated
and every missing element of A is replaced by the correspond ratio. That is to say, if
w = [w1, w2, ..., wn] is the eigenvector associated to the largest eigenvalue of the matrix R,
then each missing element in matrix A, aij , is replaced by:

aij =
Wi

Wj

(2.6)
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3. Methodology

To understand how applying transitive property to AHP matrix randomly removed elements
affects the matrix consistency ratio and alternatives weights, the experimental quantitative
data analysis method was adopted as the methodological approach. It involves data
collection, in current thesis context doing experiments with AHP matrices in R Studio
and gathering data into synthetic data sets, and then applying mathematical and statistical
techniques to identify patterns, trends and relationships among variables. Descriptive data
analysis was used to analyze and interpreter numerical data. The goal is to draw objective
conclusions to experiment questions. Considering the aim and experiment questions of
the thesis, the experimental quantitative data analysis method was considered as the best
approach.

Experiments process consisted of four phases:

1. Based on academic literature, understanding of AHP matrix properties and quality
metrics were acquired.

2. After that synthetic data sets were created and generated matrices attributes, consis-
tency ratio and weights, were calculated and validated.

3. Descriptive analysis was done to understand what happened with consistency ratio
and alternatives weights once transitive property was applied to recalculate the AHP
matrix randomly removed elements.

4. Conclusions were drawn from descriptive analysis results.

3.1 Data collection method

Synthetic data sets were created by the author. Synthetic data sets were necessary to be able
to conduct the experiments and afterwards data analysis. Author created functions in R
Studio to generate the data sets (Appendices 2, 3 and 4). If randomness was necessary then
"set.seed(123)" was used to be able to have reproducible results. Business Performance
Management Singapore (BPMSG) AHP calculator [33], developed by Klaus D. Goepel,
was used to validate created R functions outputs.

Since AHP matrices need to meet certain criteria, listed under Section 3.1.1, it was possible
to create the data sets synthetically. A data set of 100 000 random AHP matrices was
created to analyze 11x11 to 20x20 matrices and a 10 000 matrices data set was created to
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analyze 3x3 to 10x10 matrices. Once the data sets were created, it was validated if there
is a uniform distribution of different matrix sizes and removed elements. That was the
case. An overview of matrices sizes distribution and an overview of removed elements
distribution is presented in Subsection 4.7.

3.1.1 Overview of research object

In order to generate synthetic data sets, it was necessary to understand the properties
of AHP matrices. Following AHP process and matrix properties were concluded from
academic literature:

■ AHP pairwise comparisons results can be presented in a quadratic matrix form, where
main diagonal elements are 1 and the reciprocal property aij =

1
aij

by assumption
always holds [2], as shown on Formula 2.1.

■ The transition rule aijajk = aik should apply for all i, j, and k in the range 1 to n [2].
■ The matrix elements represents decision-maker estimate on the importance of one

alternative over another and the importance is selected from one of the 17 pre-defined
Saaty scale values: 1, 2, 3, 4, 5, 6, 7, 8, 9, plus reciprocal values: 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8, 1/9. The explanations of Saaty scale values are presented in Table 1.

■ The consistency ratio is used to measure how consistent decision maker judgements
were. If the matrix is fully transitive, then consistency ratio is 0. The consistency
ratio is obtained with Formula 2.3.

■ The number of comparisons can be calculated with Formula 2.4. If all pairwise
comparisons were perfectly consistent, then only the first (n - 1) comparisons need
to be made to calculate the weights [13].

■ The weights depend on the number of criteria, the maximum weight or maximum
priority wmax = M

n+M−1
[34]. Generally approximate eigenvector method is used to

calculate alternatives weights. For example largest eigenvector, geometric mean and
fuzzy geometric mean could be also used.

3.1.2 Creating synthetic data sets

Author couldn’t find any existing data sets that would meet the set requirements, having
big enough sample of 3x3 to 20x20 matrices with a wide range of consistency ratios and
alternatives weights. It could be argued that smaller data sets would have given similar
results, but considering the law of big numbers [35], author thought the bigger data sets
would be better. Especially considering the fact, that data sets creation functions had been
created and it was just a matter of time to generate bigger data sets. Since AHP matrices
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need to meet certain criteria, listed under Section 3.1.1, it was possible to create the data
sets synthetically.

A function (Appendix 2) was created to generate a random AHP matrix. Function, that
takes a value of what size of a AHP matrix needs to be generated, works in following steps:

1. First a matrix is generated where all the values are 0.
2. After that main diagonal elements are set to 1.
3. Then a random sample of values are drawn from the predefined list, where all the

allowed AHP matrix values are listed. The number of values drawn is based on the
number of elements in the matrix upper triangular.

4. Then these values are added to the matrix upper triangular.
5. Lastly, upper triangular reciprocal values are calculated to the matrix lower triangular.
6. Additional step, having a limitation of maximum consistency ratio, was added to

generate 3x3 to 10x10 matrices. After a matrix has been generated, then it’s checked
with "calculate_CR" function (Appendix 4) that calculates a matrix consistency ratio.
If generated matrix consistency ratio is within acceptable limitations, in this case
less than or equal to 0.5, then a matrix is returned and added into a list, if not, then
process is repeated until a matrix that meets the consistency ratio criteria is met.

R Studio "for loop" was used to run the "generate_ahp_matrix" function (Appendix 2) as
many times as necessary to have required number of AHP matrices.

Generated AHP matrix was initially stored into a list and then stored into a tibble before
starting generating next matrix. Due to the reason that generated matrices as "Matrix" and
weights as "Weights" were stored in a list, tibble was necessary to be used, instead of R
built in data frame, since a tibble can have columns that are lists. In addition, initial matrix
consistency ratio as "CR" and size of the matrix as "MatrixSize" were also stored into the
tibble. Example of the first tibble structure and values are shown on Figure 4.

Figure 4. Figure of tibble that stored necessary information about initial matrices.
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3.1.3 Finding an acceptable number of elements to remove

Before starting to create second data set, that would store information about matrices which
elements have been randomly removed and recalculated with transitive property, it was
necessary to understand how many elements could be potentially removed from different
size of matrices. To proceed further, the author gives definition to following four terms:

1. "Theoretical maximum" as maximum number of missing elements in an AHP matrix
in case it’s always possible to recalculate all the missing elements in the AHP matrix
with transitive property. Removing theoretical maximum plus one element could
cause a situation where all the AHP matrix elements couldn’t be recalculated with
transitive property.

2. "Theoretical minimum comparisons limitation" as difference between the number
of initial pairwise comparisons and theoretical maximum. It’s always possible to
recalculate all the AHP matrix missing elements with transitive property if at least
this number of pairwise comparisons has been done.

3. "Critical elements" as minimum number of AHP matrix elements, based on either
10 000 or 100 000 simulations, that are necessary to calculate all the missing elements
with transitive property. This number of elements allows to recalculate all the missing
AHP matrix elements in most cases, but not always.

4. "Optimal number of missing comparisons" as number of comparisons information
that, based on either 10 000 or 100 000 simulations, in most cases are fine to be miss-
ing from a given AHP matrix. It must be kept in mind that if theoretical maximum
plus one judgement information contains within this number, then recalculating all
the the AHP matrix elements isn’t possible.

To validate the acceptable number of removed elements 10 000 simulations were run
for 4x4 to 6x6 matrices and 100 000 simulations were run for 7x7 to 20x20 matrices.
Simulations were repeated until there wasn’t any failure, after either 10 000 or 100 000
simulations, to recalculate all the AHP matrix missing elements while always missing
information about the optimal number of missing comparisons. 10 000 simulations for
4x4 to 6x6 was enough due to smaller number of combinations how theoretical maximum
plus one elements could be removed. Maximum number of removed elements for matrices
2x2 and 3x3 came from a calculation, where initial pairwise comparisons was subtracted
with theoretical minimum comparisons limitation. Overview of theoretical maximum and
optimal number of missing comparisons are presented in Table 3 and overview of total
combinations are presented in Table 4.
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Table 3. Theoretical maximum and optimal number of missing comparisons.

Number of
alternatives

Initial
pairwise
comparisons

Theoretical
minimum
comparisons
limitation

Difference
aka
theoretical
maximum

Optimal
number
of missing
comparisons

Percentage
of missing
pairwise
comparisons

1 0 0 0 0 0%
2 1 1 0 0 0%
3 3 2 1 1 33%
4 6 4 2 2 33%
5 10 7 3 3 30%
6 15 11 4 4 27%
7 21 16 5 5 24%
8 28 22 6 7 25%
9 36 29 7 10 28%
10 45 37 8 13 29%
11 55 46 9 16 29%
12 66 56 10 22 33%
13 78 67 11 28 36%
14 91 79 12 34 37%
15 105 92 13 38 36%
16 120 106 14 42 35%
17 136 121 15 50 37%
18 153 137 16 60 39%
19 171 154 17 75 44%
20 190 172 18 95 50%

In reality more pairwise comparisons, from matrices 8x8 and bigger, could be removed than
theoretical maximum since it’s rather unlikely that exactly all the elements containing in
theoretical maximum plus one elements gets removed. Simulations proved that statement.
For matrices 3x3 to 18x18 around 30 to 40% of comparisons can be missing to be able
to recalculate an AHP matrix missing elements with transitive property. Even more
comparisons information could be missing with bigger number of alternatives, in case of
19 and 20 alternatives, up to 44 to 50% of random comparisons could be missing, while
still managing to run successfully 100 000 simulations.

Most cases it would be probably fine if additional 1 to 5 or even more comparisons
information is missing, depending on the number of alternatives, the more alternatives
there are, the more additional elements could be potentially missing. This on the other
hand, increases the likelihood of not being able to calculate all the AHP matrix missing
elements with transitive property. The least number of comparisons that are necessary is
n - 1, where n is number of alternatives, but requires having information about a set of
very specific comparisons. Out of all possible combinations, there exists only one such
combination. On the other hand, then there wouldn’t be any additional information to
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"correct" any errors in the judgements of other comparisons, as explained in Subsection
2.2.2.

Table 4. Total combinations of theoretical maximum plus one from initial pairwise compar-
isons.

Number of
alternatives

Initial
pairwise
comparisons

Theoretical
maximum
plus one

Combin(Initial pairwise
comparisons, Theoreti-
cal maximum plus one)

1 0 1 -
2 1 1 1
3 3 2 3
4 6 3 20
5 10 4 210
6 15 5 3 003
7 21 6 54 264
8 28 7 1 184 040
9 36 8 30 260 340
10 45 9 886 163 135
11 55 10 2.9249E+10
12 66 11 1.0741E+12
13 78 12 4.3431E+13
14 91 13 1.9173E+15
15 105 14 9.1749E+16
16 120 15 4.7305E+18
17 136 16 2.6143E+20
18 153 17 1.5416E+22
19 171 18 9.6612E+23
20 190 19 6.4123E+25

Information gathered from simulations enabled to create a removed elements index, which
consisted of values: 1, 2, 3, 4, 5, 7, 10, 13, 16, 22, 28, 34, 38, 42, 50, 60, 75, 95,
representing the maximum number of elements that can be removed from 3x3 to 20x20
matrices. Removed elements index was used in a function to remove up to allowed number
of elements from a matrix before applying transitive property to recalculate missing
elements, that’s explained in detail in the Subsection 3.1.5.

3.1.4 Defining rounding ranges for Saaty scale’s reciprocal values

Before starting to remove and recalculating the elements, the transition rule states that
aijajk = aik, meaning two AHP matrix elements have to be multiplied to find a missing
element. This can lead to a situation where a multiplication gives a value that is outside of
Saaty scale, if that was the case, then the Saaty scale maximum value 9 was assigned, for
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example if both elements to calculate a missing element were 9. The calculated missing
elements had to be converted into allowed Saaty scale values, unless scale normalization is
being done, which wasn’t the case in current research. Author defined following ranges for
Saaty scale values between 0 and 1.

Table 5. The fundamental Saaty’s scale reciprocal values start and end ranges for transitive
property

Saaty scale
value

Reciprocal
value

Start range End range

1 1/1 0.75000 1.00000
2 1/2 0.41667 0.75000
3 1/3 0.29167 0.41667
4 1/4 0.22500 0.29167
5 1/5 0.18333 0.22500
6 1/6 0.15476 0.18333
7 1/7 0.13393 0.15476
8 1/8 0.11806 0.13393
9 1/9 0.00000 0.11806

If the multiplication result was higher than 1, then standard rounding rules to nearest
integer were applied.

3.1.5 Removing the elements and applying transitive property

A function (Appendix 3) was created to remove randomly random number of elements
from generated matrices. Removed elements were recalculated with transitive property.
The maximum number of elements that could be removed from certain size of a matrix
was defined in removed elements index. Code, that removed elements and recalculated the
missing elements and used first data set matrices as input, works in following steps:

1. Duplicate of the initial matrix is made and stored as recalc_ahp_matrix. Following
steps are applied to the duplicated AHP matrix.

2. The number of elements that are removed is selected randomly. The maximum
number of elements that can be removed from given matrix is defined in removed

elements index.
3. Elements, and their reciprocal elements, are being removed until the necessary

number from previous point is reached. There is a condition that checks if the chosen
element hasn’t been already removed or it isn’t a diagonal element, if one of the
conditions is met, then a new element is chosen, until suitable element is found.
Once enough elements has been removed, then the number of elements removed is
stored in a list.
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4. Then a for loop is used to scan missing elements from the matrix, if a missing
element is found, then transitive property is used to calculate the missing element
and missing element reciprocal value. First suitable available elements are used. In
case the multiplication is less than 1, then the rounding ranges defined in Section
3.1.4 were used.

5. Once the matrix has been restored, CR and weights are calculated and stored into a
list.

R Studio "for loop" was used to run the code (Appendix 4) as many times as necessary
to have from all matrices at least one element removed and recalculated with transitive
property. In the process information about the same attributes as for the initial matrices
were gathered and stored initially in a list, but then moved to the second tibble.

Second tibble was created to contain the same information as the first one, but in addition
had following attributes:

■ "CR_recalc" as consistency ratio after a random number of elements had been
removed and recalculated with transitive property. Created R function is added under
Appendix 4.

■ "CR_dif " as difference between recalculated and initial matrix consistency ratio.
■ "Weights_recalc" as weights of alternatives in recalculated matrix. Created R func-

tion is added under Appendix 4.
■ "Values_rm" as how many elements were removed randomly and recalculated from

initial matrix.

Example of the second tibble structure and values are shown on Figure 5.

Figure 5. Figure of second tibble that stored necessary information about initial matrices
and matrices where random number of elements had been removed and transitive property
had been applied.

The reason why second tibble contained first tibble data was to have a back-up if something
should happen with the second tibble. It took about 30 minutes to generate 10 000 matrices
with size between 3x3 and 10x10 and with consistency ratio equal to or less than 0.5.
And less than minute to remove randomly elements and recalculate missing elements with
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transitive property. Creating 100 000 11x11 and 20x20 matrices without consistency ratio
cap took two and half minutes. Having a consistency ratio cap had a significant impact.
And around 30 minutes to remove randomly elements and recalculate missing elements
with transitive property.

3.1.6 Calculating the alternatives weights

R Studio "Ahp" package was used to calculate alternatives weights. Kendall rank corre-
lation coefficient was calculated to understand how close alternatives weights of initial
generated AHP matrix and weights of recalculated AHP matrix were.

A function (Appendix 4) was created that took generated AHP matrix as an input and as
an output gave the list of alternatives weights. This data was later used in descriptive data
analysis.

3.1.7 Preparing the data for descriptive analysis

Then from the second tibble a data frame was created for data analysis. This data frame
contained following information:

■ Attributes CR, CR_recalc CR_dif, MatrixSize, Values_rm were taken from the second
tibble.

■ CR_cat was calculated based on initial CR. Three consistency ratio categories were
created to be able to analyse different categories separately:

1. CR < 0.5 - where initial consistency ratio was less than 0.5.
2. CR 0.5-1.0 - where initial consistency ratio was equal to or greater than 0.5

and less than 1.0.
3. CR >= 1.0 - where initial consistency ratio was equal to or greater than 1.0.

■ Kendall as Kendall rank correlation coefficient which was calculated with "cor.test" R
function, where method = "kendall" and based on weights of initially generated AHP
matrix and weights of recalculated AHP matrix. Values of Kendall’s tau range from
-1 (100% negative association, or perfect inversion) to +1 (100% positive association,
or perfect agreement). A value of zero indicates the absence of association. The
higher the Kendall’s tau, the better is the similarity between the two compared
rankings [36].

CR categories were created based on CR median values and distributions. Distributions
are presented under Section 4.7. The category "CR < 0.5" was used to analyse only 3x3 to
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10x10 matrices data and categories "CR 0.5-1.0" and "CR >= 1.0" were used to analyse
11x11 to 20x20 matrices data.

Overview of the data frame that stored initial information for data analysis is presented on
Figure 6.

Figure 6. Figure of data frame that stored necessary information for data analysis.

Line graphs, boxplots and histograms were used to present overview of the data and the
results of the data analysis. Result from descriptive analysis, for which ggplot2 was used,
are presented in the Section 4.

3.2 Data analysis method

Descriptive data analysis provides valuable insights into the patterns and trends in the data.
It was used to summarize and describe the information gathered from created synthetic
data sets and relevant calculated attributes: CR_dif to show change in initial CR and CR
after random number of matrix elements had been removed and recalculated. Kendall

to show correlation in alternatives weights after random number of matrix elements had
been removed and recalculated. Kendall rank correlation coefficient tau was chosen to
measure the correlation. R Studio package "ggplot2" was used for descriptive analysis
data visualization. Data visualization codes are given under Appendix 5 and results are
presented and explained in Section 4.
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4. Experiments results and findings

The main objective of this chapter is to analyze and interpret the data that has been
collected from the synthetic data sets, with the aim of drawing conclusions and making
recommendations based on the research problem and experiment questions.

4.1 Number of comparisons that could be missing

The least number of comparisons necessary for the AHP is the number of alternatives
minus one. Though in that case, there exists only one such combination of pairwise
comparisons out of all possible combinations. Unless this combination is purposefully
selected and used, it’s recommended to have as many comparisons made as possible, since
depending on the number of alternatives, it’s very unlikely to get this combination by
chance. On the other hand, there wouldn’t be any additional information to "correct" any
errors in the judgements of other comparisons [13].

For this thesis context two terms: theoretical maximum and optimal number of missing

comparisons, were introduced in Subsection 3.1.3 to present certain boundaries of the
number of comparisons that information could be calculated with transitive property. The
Figure 7 gives an overview of these boundaries. From three alternatives and onward
theoretical maximum boundary could be calculated as n - (n - 2) where n is the number
of alternatives. There needs to exists at least one combination of two elements which
would allow to calculate the missing element. Since the likelihood of having exactly
theoretical maximum plus one elements removed by chance is very unlikely, as presented
in Table 4, based on 10 000 and 100 000 simulations around 30 to 40% of comparisons
could be missing instead, as presented in Table 3, while in most situations still being able
to calculate all the missing elements with transitive property. Even more comparisons
information could be missing with higher number of alternatives, in case of 19 and 20
alternatives, up to 44 to 50% of random comparisons information could be missing, while
still managing to run successfully 100 000 simulations.

In case of 10 and more alternatives 1 to 5 extra comparisons information could be missing,
on top of optimal number of missing comparisons, and still managing to calculate all
the missing elements. Though the simulations started failing to calculate all the missing
elements when the optimal number of missing comparisons was exceeded. As a potential
solution, that could be considered in case an error occurs to calculate some alternative
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elements, is to exclude this alternative from the analysis, to be able to produce at least some
results. It’s recommended to get back to decision maker to provide necessary information,
so all the alternatives could be considered in the final results.

Figure 7. Initial, theoretical maximum and optimal number of pairwise comparisons

4.2 Situations when to use transitive property

Since the amount of comparisons is relatively low in cases of less than 9 alternatives (up to
28 comparisons), then for the best results the author recommends making all the pairwise
comparisons with decision-maker and if necessary adjusting inconsistencies afterwards.
Transitive property could be used to calculate a missing comparison information that was
skipped by accident or calculating the comparison information that the decision-maker is
unwilling to make.

Across the number of alternatives around 25 to 40% of elements could be calculated with
transitive property, though based on Figure 7 noticeable effect comes from 9 alternatives
and onward, especially if there are 13 or more alternatives. In case of 3 to 8 alternatives
transitive property can be used to calculate around 25-30% of missing elements as well,
but the actual number of elements is rather low, ranging between 1 to 7, it’s recommended
just to take the extra time and make all the comparisons, because using transitive property
can have negative side effects to the results as presented in Section 4.3 and 4.4. The actual
number of elements that could be calculated with transitive property in case of 9 to 20

36



alternatives ranges from 10 to 95, this is the situation when it might be worth considering
using transitive property to reduce the number of pairwise comparisons, because it can
reduce time to conduct the AHP and the final results could be better than in normal process
due to survey fatigue.

Now, the theoretical maximum and optimal number of elements boundaries are known, in
the next sections it’s presented how consistency ratio and alternatives priorities weights are
impacted if certain number of pairwise comparisons have been randomly removed and the
missing elements are recalculated with transitive property.

4.3 Consistency ratio change in case of 3 to 10 alternatives

Overview of the data set that consisted of 10 000 matrices and was used to analyze matrices
of 3 to 10 alternatives is presented on Figure 8. Median change for CR as CR_dif was
-0.02814 or -2.8% meaning that the consistency ratio remained on average almost the same.
Negative change in this context means that the CR improved and the results became more
consistent, which was expected because fully transitive matrix CR is 0. It can be seen that
CR ranged from 0 to 0.5, because the maximum allowed CR for 3 to 10 alternatives was
set to 0.5. The median CR value was 0.4147, which proves the statement mentioned in
Section 4.7, that it’s difficult to generate low CR AHP matrices randomly.

Figure 8. Overview of 3 to 10 alternatives data set.

The actual distribution of AHP matrices and generated matrices CR’s is presented in
Section 4.7, but for analysis purposes all the CR categories were combined under one "CR

<= 0.5" category. Only 13.3% of matrices had CR less than 0.2, due to low sample size
of lower CR matrices, as presented on Figure 9 and Figure 21, lower categories weren’t
analyzed separately, because there wasn’t enough or any data for analysis. For further
research ideas how to create lower CR matrices are presented under Section 5.1.

Figure 9. Overview of 3 to 10 alternatives CR categories distribution.
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On Figure 10 the graphs are split by the number of alternatives and graphs show CR change
(y-axis) depending on the number of elements being recalculated (x-axis) with transitive
property. General trend shows that the more number of elements were recalculated, the
more CR value reduced, which is expected due to the nature of transitive property. Mean
change was -0.05 or -5%. It must be also noticed that outliers existed and in some cases
significant CR change should be expected, which can distort the AHP results due to the
amplitude of CR difference.

Figure 10. Overview of 3 to 10 alternatives CR change in relation to number of removed
values.

In case of 5 to 10 alternative, on average there isn’t almost any impact to CR, if 1 to 3
elements are calculated with the transitive property, of course the outliers can’t be ignored
and it must be kept in mind that depending on initial CR and missing elements, the impact
can distort the AHP results. Though, in case of a missing element or decision-maker
unwillingness to make some pairwise comparisons, the transitive property could be used
to calculate the missing elements without having much or any impact on the final results,
in most cases. Next section validates the approach from alternatives weights perspective
that the weights are likely to stay the same in case of calculating 1 to 3 elements with the
transitive property.

38



4.4 Alternatives weights change in case of 3 to 10 alternatives

Kendall rank correlation coefficient as Kendall was used to analyze change in alternatives
weights. Coefficient ranges are explained in Subsection 3.1.7. Figure 8 shows that the
median value of Kendall was 0.8667 and mean value was 0.8379, the weights remained on
average almost the same, as it was also the case for CR. It must be noticed, that there exists
values were coefficient was around zero or below zero, meaning either having negative
association or absence of association. The p-value of CR_dif and Kendall was 2.2e-16
meaning the results are statistically highly significant.

On Figure 11 the graphs are split by the number of alternatives and graphs show Kendall

change (y-axis) depending on the number of elements being recalculated (x-axis) with tran-
sitive property. General trend shows that the more number of elements were recalculated,
the more Kendall value decreased. Mean change was -0.1621. It must be also noticed
that outliers existed and in some cases significant changes in weights should be expected,
which can distort the AHP results due to the amplitude of Kendall difference.

Figure 11. Overview of 3 to 10 alternatives weights change in relation to number of
removed values.
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4.5 Consistency ratio change in case of 11 to 20 alternatives

Overview of the data set that consisted of 100 000 matrices and was used to analyze
matrices of 11 to 20 alternatives is presented on Figure 12. The CR didn’t change
significantly, considering the median CR value of 1.0027 or 100.27%. Median change
for CR as CR_dif was -0.047420 or -4.7%. Negative change in this context means that
the CR improved and the results became more consistent, which was expected because
fully transitive matrix CR is 0. It can be seen that CR ranged from 0.5269 to 1.4487, there
wasn’t any restriction set for maximum or minimum CR when generating AHP matrices
with 11 to 20 alternatives. From the median value it can be concluded, that if generating
11 to 20 alternatives AHP matrices randomly, the median CR is around 1.0. It’s also
worth noticing that the lowest AHP matrix from 100 000 simulations was with 0.5269 CR,
validating the statement mentioned in Section 4.7, about difficulty of generating low CR
AHP matrices randomly. Distribution of AHP matrices and generated matrices CR’s is
presented in Section 4.7.

Figure 12. Overview of 11 to 20 alternatives data set.

The number of elements that could be removed from 11 to 20 alternatives AHP matrices
and recalculated started to increase quickly, as presented on Figure 2. In order to present
the results, the removed elements were categorized into groups of five. Secondly, for the
analysis of 11 to 20 alternatives two groups of CR: "CR 0.5-1.0" and "CR >=1.0", was
created and are compared against each other.

As presented on Figure 13, in case of CR 0.5-1.0 category median change of CR was
-0.039704 or -3.97% while in case of CR >= 1.0 category the median change was -0.055270
or -5.52%, as presented on Figure 14. It can be concluded, that transitive property impact
on CR is greater if the initial CR is higher.

Figure 13. Overview of 11 to 20 alternatives data set in CR 0.5-1.0 category.

Must be also noticed, that the difference of median CR for CR 0.5-1.0 and CR >= 1.0

category is -0.106. Considering that perfectly transitive matrix CR is 0, it seems logical,
that transitive property impact is greater in case the initial CR is higher.
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Figure 14. Overview of 11 to 20 alternatives data set in CR >= 1.0 category.

On Figure 15 and 16 the graphs are split by the number of alternatives and graphs show
CR change (y-axis) depending on the number of elements being recalculated (x-axis)
with transitive property. General trend shows that the more number of elements were
recalculated, the more CR value reduced, which is expected due to the nature of transitive
property. It must be also noticed that outliers existed and in some cases significant CR
change should be expected, which can distort the AHP results due to the amplitude of CR
difference.

Figure 15. Overview of CR change in relation to group of removed values of 11 to 20
alternatives in CR 0.5-1.0 category.

In case of CR >= 1.0 category the CR decreases slightly quicker, but as seen from median
values the difference is rather insignificant, the percentage difference is -1.55%. In case of
both categories, there isn’t almost any change in CR, if number of theoretical maximum
elements, presented in Table 3, are calculated with transitive property, which account for 9
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to 16% of total elements, depending on the number of alternatives, the higher the number
of alternatives, the lower the percentage. Figures 15 and 16 indicate that approximately
half of the optimal number of missing comparisons can be computed using the transitive
property, provided that the maximum permitted effect on the initial CR is roughly 0.1.

Figure 16. Overview of CR change in relation to group of removed values of 11 to 20
alternatives in CR >= 1.0 category.

In the next section the alternatives weights change is being analyzed and it will be concluded
what is the optimal amount of reduced elements based on Kendall.

4.6 Alternatives weights change in case of 11 to 20 alternatives

Figure 12 shows that the median value of Kendall was 0.6000 and mean value was 0.5903,
it can be concluded that if the transitive property is applied, then it’s highly probable that
there is changes in the prioritization of alternatives. It must be noticed, that there exists
values were coefficient was around zero or below zero, meaning either having negative
association or absence of association.
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As presented on Figure 13 in case of CR 0.5-1.0 category median value of Kendall was
0.6190 while in case of CR >= 1.0 category the median value was 0.5758, as presented on
Figure 14. It can be concluded that transitive property impact on Kendall is higher if the
initial CR is higher, meaning the prioritization of alternatives is more likely to change and
at higher scale after transitive property has been used to calculate missing elements.

On Figure 17 the graphs are split by the number of alternatives and graphs show Kendall

change (y-axis) depending on the number of elements being recalculated (x-axis) with
transitive property. General trend shows that the more number of elements were recalcu-
lated, the more Kendall value decreased. Mean change was -0.389. It must be also noticed
that outliers existed and in some cases significant changes in weights should be expected,
which can distort the AHP results due to the amplitude of Kendall difference.

Figure 17. Overview of weights change in relation to group of removed values of 11 to 20
alternatives in CR 0.5-1.0 category.

From Figure 18 same trend can be noticed, that the more number of elements were
recalculated, the more Kendall value decreased. Mean change was -0.4293. Important to
notice, that in case of higher initial CR, the amplitude of Kendall difference is higher.
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Figure 18. Overview of weights change in relation to group of removed values of 11 to 20
alternatives in CR >= 1.0 category.

This concludes the descriptive data analysis part and in the next chapter data validation
approaches are described and overview of different distributions are presented.

4.7 Data validation

Different approaches were used to validate the data. Firstly, it was validated if the ran-
domness had worked properly, when synthetic data sets had been created. For that the
distribution of matrices across the alternatives was checked, data should be distributed
uniformly. That was the case and is presented on the Figures 19 and 20. "set.seed(123)"
was used to be able to have reproducible results. Secondly, consistency ratio distribution
was checked in the same way and results are presented on Figures 21 and 22.
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Figure 19. Distribution overview of 3x3 to 10x10 AHP matrices and removed values.

For 3 to 10 alternatives total 10 000 AHP matrices were created. Distribution across the
number of alternatives was uniformal, around 1 250 matrices for each alternative. The
number of values removed was distributed uniformly as well.

Figure 20. Distribution overview of 11x11 to 20x20 AHP matrices and removed values.

For 11 to 20 alternatives total 100 000 AHP matrices were created. Distribution across the
number of alternatives was uniformal, around 10 000 matrices for each alternative. The
number of values removed was distributed uniformly as well.

From Figure 21 shows that the likelihood of creating randomly an AHP matrix with less
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Figure 21. CR categories distribution overview of 3x3 to 10x10 AHP matrices.

than 0.4 CR started to decrease very quickly. Due to that reason one general CR group
"CR <= 0.5" was used in the analysis.

Figure 22. CR categories distribution overview of 11x11 to 20x20 AHP matrices.

It was similar case for 11 to 20 alternatives, though the median CR was even higher if
there were more alternatives. CR categories distributed quite uniformly, in case of 12
alternatives it can be noticed that there was slightly more matrices in "CR >= 1.0" category,
but that’s most likely due to randomness.

Lastly, to validate the proposed optimal amount of missing comparisons presented in Table
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3, depending on the number of alternatives either 10 000 or 100 000 simulations were run
to validate the number. Kendall rank correlation coefficient was used to check if correlation
between CR_dif and Kendell was statistically highly significant, which was the case and
presented in Section 4.4. As mentioned under Section 3.1, BPMSG AHP calculator [33],
developed by Klaus D. Goepel, was used to validate created R functions outputs.
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5. Summary

Analytic hierarchy process, developed by Thomas L. Saaty, is one of the most widely used
multi-criteria decision making methods. The major drawback with the AHP is the amount
of work which is required in making all of the necessary pairwise comparisons, especially
if there are more than recommended nine alternatives.

The purpose of the thesis was to determine the number of comparisons that could be
calculated with the transitive property. Additionally, the thesis aimed to evaluate the impact
of using the transitive property on the quality metrics of AHP results, including consistency
ratio and weights of alternatives. The experimental quantitative data analysis method was
adopted as the methodological approach, which involved creation of synthetic data sets
as data collection method. Numerical data collected was analyzed and interpreted using
descriptive data analysis.

Main findings of the thesis:

■ Depending on the number of alternatives, around 25 to 40% of comparisons could be
missing in most situations and still being able to calculate all the missing elements
with the transitive property.

■ As the number of elements calculated using the transitive property increased, there
was a corresponding increase of changes in the prioritization of alternatives and a
decrease in the consistency ratio.

■ If no criteria were defined for the generated matrices consistency ratio, the average
consistency ratio for 11 to 20 alternatives was around 1.0.

The actual number of elements that could be calculated with the transitive property in case
of 9 to 20 alternatives ranges from 10 to 95, then it might be worth considering using the
transitive property to reduce the number of pairwise comparisons, because it can reduce
time to conduct the AHP and the final results could be better than in normal process due
to survey fatigue. Otherwise, author recommends using the transitive property if missing
a comparison information that was skipped by accident or calculating the comparison
information that the decision-maker is unwilling to make.

All the experiment questions got answers, though further research could be done on the
topic. List of further ideas are presented under further research recommendations.

48



5.1 Further research recommendations

In this chapter list of further ideas are presented.

■ Instead of using simulations to find out the optimal number of missing compar-
isons, perhaps it could be solved mathematically. Might be worth looking into
hypergeometric distribution and Monte Carlo simulations.

■ Trying to generate a synthetic data sets by limiting maximum CR and then still
calculating matrices randomly, worked somewhat in case of 3 to 10 alternatives and
with limitation of maximum CR of 0.5. For example if 0.2 CR was set as maximum
value, then in cases of 10 alternatives, it often took hours to find one such AHP
matrix by chance. Author couldn’t create any matrices that had less than 0.1 CR
with 20 alternatives, even if the function tried to calculate one AHP matrix over 8
hours.

■ An idea how to create better CR matrices: having a sample of fully transitive AHP
matrices (CR is 0) for different number of alternatives, then starting to replace
random elements with random values and checking CR after each change. The
elements could be removed until defined maximum CR is crossed, then one step is
taken back and the matrix is stored.

■ Other idea to have better CR matrices is to still generate matrices randomly, but
creating another function that could improve the random matrix until suitable CR is
achieved.

■ Improving the given code’s, so the data sets creating would be quicker and has more
customization possibilities in regards of CR. There are also some workarounds in
the code, that could be improved.

■ Using a data set where median CR would be lower (for example 0.1) to investigate
what would be the impact on CR change and alternatives prioritization.

■ Investigating deeper what changes in the in priorities are happening, for example in
case of 11 to 20 alternatives, when calculating close to optimal amount of missing
pairwise comparisons, did top 3 alternatives change or stayed the same? What’s the
number of elements that could be removed if the goal is not to change prioritization
of top 3 alternatives?
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Appendix 2 - R code for synthetic database creation
# F u n c t i o n t o c r e a t e a random AHP m a t r i x wi th p r e d e f i n e d maximum CR v a l u e .

g e n e r a t e _ a h p _ m a t r i x <− f u n c t i o n ( s i z e _ o f _ m a t r i x ) {
# C r e a t e a s i z e _ o f _ m a t r i x t i m e s s i z e _ o f _ m a t r i x m a t r i x wi th a l l z e r o s .

a h p _ m a t r i x <− m a t r i x ( 0 , s i z e _ o f _ m a t r i x , s i z e _ o f _ m a t r i x )

# S e t m a t r i x d i a g o n a l e l e m e n t s t o 1 .
d i a g ( a h p _ m a t r i x ) <− 1

# Pre − d e f i n e d l i s t o f v a l u e s t h a t can be a s s i g n e d i n t o t h e m a t r i x .
a h p _ m a t r i x _ v a l u e s <− c (1 ,2 ,3 ,4 ,5 ,6 ,7 , 8 , 9 , 1 / 2 , 1 / 3 , 1 / 4 , 1 / 5 , 1 / 6 , 1 / 7 , 1 / 8 , 1 / 9 )

# S e t m a t r i x uppe r t r i a n g u l a r e n t r i e s t o random v a l u e s from a h p _ m a t r i x _ v a l u e s .
a h p _ m a t r i x [ uppe r . t r i ( a h p _ m a t r i x ) ] <− sample ( a h p _ m a t r i x _ v a l u e s , s i z e = sum ( uppe r . t r i ( a h p _ m a t r i x ) ) , r e p l a c e = TRUE)

# C a l c u l a t e lower t r i a n g u l a r v a l u e s as r e c i p r o c a l v a l u e s o f t h e uppe r t r i a n g u l a r .
a h p _ m a t r i x [ lower . t r i ( a h p _ m a t r i x ) ] <− 1 / t ( a h p _ m a t r i x ) [ lower . t r i ( a h p _ m a t r i x ) ]

# S e t m a t r i x i n i t i a l c o n s i s t e n c y r a t i o (CR) t o 0 and t h e n c a l c u l a t e g e n e r a t e d m a t r i x CR wi th c a l c u l a t e _ C R f u n c t i o n .
matrix_CR <− 0
matrix_CR <− c a l c u l a t e _ C R ( a h p _ m a t r i x )

# Re− g e n e r a t e a ma t r i x , i f g e n e r a t e d m a t r i x CR v a l u e didn ’ t meet t h e d e f i n e d e x p e c t a t i o n , u n t i l c o n d i t i o n i s met .
w h i l e ( matrix_CR > 0 . 5 ) {

a h p _ m a t r i x [ uppe r . t r i ( a h p _ m a t r i x ) ] <− sample ( a h p _ m a t r i x _ v a l u e s , s i z e = sum ( uppe r . t r i ( a h p _ m a t r i x ) ) , r e p l a c e = TRUE)
a h p _ m a t r i x [ lower . t r i ( a h p _ m a t r i x ) ] <− 1 / t ( a h p _ m a t r i x ) [ lower . t r i ( a h p _ m a t r i x ) ]
matrix_CR <− c a l c u l a t e _ C R ( a h p _ m a t r i x )

}
r e t u r n ( a h p _ m a t r i x )

}
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Appendix 3 – R code for removing and recalculating AHP
matrix elements
s e t . s eed ( 1 2 3 )

r e m o v e d _ e l e m e n t s _ i n d e x <− c ( 0 , 0 , 1 , 2 , 3 , 4 , 5 , 7 , 10 , 13 , 16 , 22 , 28 , 34 , 38 , 42 , 50 , 60 , 75 , 95)
va lues_ removed <− l i s t ( )
r e c a l c _ m a t r i c e s <− l i s t ( )
r e c a l c _ a h p _ m a t r i c e s <− l i s t ( )
r e c a l c _ c o n s i s t e n c y _ r a t i o s <− l i s t ( )
r e c a l c _ a h p _ p r i o r i t i e s <− l i s t ( )

f o r ( m a t r i x i n 1 : l e n g t h ( m a t r i c e s _ t i b b l e $ M a t r i x ) ) {

# Mat r i x i s r e s t r u c t e d from m a t r i c e s _ t i b b l e and a s s i g n e d t o r e c a l c _ a h p _ m a t r i x f o r f u r t h e r c a l c u l a t i o n s
r e c a l c _ a h p _ m a t r i x <− t ( m a t r i x ( c ( u n l i s t ( m a t r i c e s _ t i b b l e $ M a t r i x [ m a t r i x ] ) ) , nrow =

as . i n t e g e r ( m a t r i c e s _ t i b b l e $ M a t r i x S i z e [ m a t r i x ] ) , byrow = TRUE ) )

# Depending on t h e s i z e o f a m a t r i x random amount o f v a l u e s w i t h i n g i v e n r a n g e w i l l be removed .
removed_va lue <− 0
v a l u e s _ t o _ r e m o v e <− sample ( 1 : r e m o v e d _ e l e m e n t s _ i n d e x [ nrow ( r e c a l c _ a h p _ m a t r i x ) ] , 1 )

# While loop w i l l remove a random amount o f v a l u e s from a g i v e n m a t r i x .
w h i l e ( removed_va lue < v a l u e s _ t o _ r e m o v e ) {

row <− sample ( 1 : nrow ( r e c a l c _ a h p _ m a t r i x ) , 1 )
column <− sample ( 1 : nrow ( r e c a l c _ a h p _ m a t r i x ) , 1 )

# C o n d i t i o n t o check i f e l e m e n t i s n o t a d i a g o n a l e l e m e n t and e l e m e n t i s n o t a l r e a d y NA.
# I f t h e s e c o n d i t i o n s a r e met , t h e n m a t r i x e l e m e n t and i t ’ s r e c i p r o c a l e l e m e n t i s r e p l a c e d wi th NA.
i f ( row != column & i s . na ( r e c a l c _ a h p _ m a t r i x [ row , column ] )==FALSE) {

r e c a l c _ a h p _ m a t r i x [ row , column ] <− NA
r e c a l c _ a h p _ m a t r i x [ column , row ] <− NA

# Coun te r t o c a l c u l a t e how many v a l u e s were removed from a m a t r i x .
r emoved_va lue = removed_va lue + 1

}
}
# A l i s t t o keep t r a c k of removed v a l u e s from d i f f e r e n t m a t r i c e s .
va lues_ removed <− append ( va lues_removed , removed_va lue )

# For loop i s re − c a l c u l a t i n g removed e l e m e n t s based on t r a n s i t i v i t y r u l e : a i j = a i k * a k j .
f o r ( i i n 1 : nrow ( r e c a l c _ a h p _ m a t r i x ) ) {

f o r ( j i n 1 : n c o l ( r e c a l c _ a h p _ m a t r i x ) ) {
i f ( i s . na ( r e c a l c _ a h p _ m a t r i x [ i , j ] ) ) {

f o r ( k i n 1 : nrow ( r e c a l c _ a h p _ m a t r i x ) ) {
# Checking i f s e l e c t e d i and j a r e n o t NA’ s . Both v a l u e s a r e n e c e s s a r y t o re − c a l c u l a t e a m i s s i n g v a l u e .

i f ( i s . na ( r e c a l c _ a h p _ m a t r i x [ i , k ] )==FALSE & i s . na ( r e c a l c _ a h p _ m a t r i x [ k , j ] )==FALSE) {

# I f c a l c u l a t e d e l e m e n t i s h i g h e r t h a n maximum v a l u e i n Saa ty ’ s s c a l e ( 9 ) , t h e n i t ’ s r e p l a c e d wi th
# maximum v a l u e ( 9 ) .
i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] > 9 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 9
r e c a l c _ a h p _ m a t r i x [ j , i ] = 1 / 9

}
# I f c a l c u l a t e d e l e m e n t i s lower t h a n 1 , t h e n S a a t y s c a l e ’ s r e c i p r o c a l v a l u e s r a n g e s a r e used ( S e c t i o n 5 . 4 ) .
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 1 ) {

i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 1 1 8 0 6 ) {
r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 9
r e c a l c _ a h p _ m a t r i x [ j , i ] = 9

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 1 3 3 9 3 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 8
r e c a l c _ a h p _ m a t r i x [ j , i ] = 8

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 1 5 4 7 6 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 7
r e c a l c _ a h p _ m a t r i x [ j , i ] = 7

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 1 8 3 3 3 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 6
r e c a l c _ a h p _ m a t r i x [ j , i ] = 6

}
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e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 2 2 5 0 0 ) {
r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 5
r e c a l c _ a h p _ m a t r i x [ j , i ] = 5

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 2 9 1 6 7 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 4
r e c a l c _ a h p _ m a t r i x [ j , i ] = 4

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 4 1 6 6 7 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 3
r e c a l c _ a h p _ m a t r i x [ j , i ] = 3

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 0 . 7 5 0 0 0 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1 / 2
r e c a l c _ a h p _ m a t r i x [ j , i ] = 2

}
e l s e i f ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] < 1 . 0 0 0 0 0 ) {

r e c a l c _ a h p _ m a t r i x [ i , j ] = 1
r e c a l c _ a h p _ m a t r i x [ j , i ] = 1

}
}
# O t h e r w i s e t h e v a l u e i s c a l c u l a t e d based on t r a n s i t i v i t y r u l e and rounded t o a n e a r e s t i n t e g e r .
e l s e {

r e c a l c _ a h p _ m a t r i x [ i , j ] = round ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] , 0 )
r e c a l c _ a h p _ m a t r i x [ j , i ] = 1 / round ( r e c a l c _ a h p _ m a t r i x [ i , k ] * r e c a l c _ a h p _ m a t r i x [ k , j ] , 0 )

}
b r e a k

}
}

}
}

}
# Once t h e m a t r i x has been r e s t o r e d , t h e n i t i s added i n t o a l i s t and CR and w e i g h t s a r e c a l c u l a t e d and added i n t o
# c o r r e s p o n d i n g l i s t s .
r e c a l c _ a h p _ m a t r i c e s [ [ m a t r i x ] ] <− r e c a l c _ a h p _ m a t r i x
r e c a l c _ c o n s i s t e n c y _ r a t i o s [ [ m a t r i x ] ] <− c a l c u l a t e _ C R ( r e c a l c _ a h p _ m a t r i x )
r e c a l c _ a h p _ p r i o r i t i e s [ [ m a t r i x ] ] <− c a l c u l a t e _ p r i o s ( r e c a l c _ a h p _ m a t r i x )

}
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Appendix 4 – Various R codes to calculate attributes
# F u n c t i o n t o c a l c u l a t e a h p _ m a t r i x c o n s i s t e n c y r a t i o

c a l c u l a t e _ C R <− f u n c t i o n ( a h p _ m a t r i x ) {

# C a l c u l a t e t h e row sums and d i v i d e each e l e m e n t by t h e c o r r e s p o n d i n g row sum
R <− rowSums ( a h p _ m a t r i x )
ahp_mat r ix_norm <− a h p _ m a t r i x / R

# C a l c u l a t e t h e maximum e i g e n v e c t o r o f M m a t r i x
s u p p r e s s W a r n i n g s ( maxe igenva lue <− max ( as . numer ic ( e i g e n ( a h p _ m a t r i x ) $ v a l u e s ) ) )

# C a l c u l a t e t h e c o n s i s t e n c y i n d e x
c o n s i s t e n c y _ i n d e x <− ( maxe igenva lue − nrow ( a h p _ m a t r i x ) ) / ( nrow ( a h p _ m a t r i x ) − 1)

# S e l e c t a random i n d e x f o r t h e a h p _ m a t r i x
random_index <− c ( 0 , 0 , 0 . 5 8 , 0 . 9 0 , 1 . 1 2 , 1 . 2 4 , 1 . 3 2 , 1 . 4 1 , 1 . 4 5 , 1 . 4 9 , 1 . 5 1 , 1 . 4 8 , 1 . 5 6 , 1 . 5 7 , 1 . 5 9 , 1 . 6 0 5 , 1 . 6 1 ,

1 . 6 1 5 , 1 . 6 2 , 1 . 6 2 5 )
r a n d o m _ c o n s i s t e n c y _ i n d e x <− random_index [ nrow ( a h p _ m a t r i x ) ]

# C a l c u l a t e t h e c o n s i s t e n c y r a t i o
c o n s i s t e n c y _ r a t i o <− c o n s i s t e n c y _ i n d e x / r a n d o m _ c o n s i s t e n c y _ i n d e x

r e t u r n ( c o n s i s t e n c y _ r a t i o )
}

# C a l c u l a t i n g a h p _ m a t r i x p r i o r i t i e s w e i g h t s wi th ahp package

c a l c u l a t e _ p r i o s <− f u n c t i o n ( a h p _ m a t r i x ) {

w e i g h t s <− ahp : : P r i o r i t i e s F r o m P a i r w i s e M a t r i x G e o m e t r i c M e a n ( a h p _ m a t r i x ) $ p r i o r i t y
}

# C a l c u l a t e a h p _ m a t r i x m a t r i x s i z e

c a l c u l a t e _ m a t r i x _ s i z e <− f u n c t i o n ( a h p _ m a t r i x ) {

r e t u r n ( nrow ( a h p _ m a t r i x ) )
}
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Appendix 5 – Various R codes for data visualization
# How many m a t r i c e s t h e r e a r e wi th d i f f e r e n t s i z e s

g g p l o t ( m a t r i c e s _ d a t a , a e s ( x = M a t r i x _ s i z e , f i l l = f a c t o r ( Values_rm ) ) ) +
geom_his togram ( c o l o r =" b l a c k " , b i n s =8) + # c o l o r = " b l a c k " , f i l l = " w h i t e " ,
theme_minimal ( ) +
s c a l e _ x _ c o n t i n u o u s ( b r e a k s = seq ( 1 , 1 0 , by = 1 ) ) +
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 10000 , by = 1 0 0 ) ) +
theme ( p a n e l . g r i d . major . x = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . major . y = e l e m e n t _ b l a n k ( ) ) +
x l a b ( " S i z e o f Ma t r i x " ) +
y l a b ( " Count o f M a t r i c e s " ) +
s c a l e _ f i l l _ d i s c r e t e ( " Va lues removed " )

# CR_cat d i s t r i b u t i o n

g g p l o t ( m a t r i c e s _ d a t a , a e s ( x = M a t r i x _ s i z e , f i l l = f a c t o r ( CR_cat2 ) ) ) +
geom_his togram ( c o l o r =" b l a c k " , b i n s =8) +
theme_minimal ( ) +
s c a l e _ x _ c o n t i n u o u s ( b r e a k s = seq ( 1 , 1 0 , by = 1 ) ) +
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 10000 , by = 1 0 0 ) ) +
theme ( p a n e l . g r i d . major . x = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . major . y = e l e m e n t _ b l a n k ( ) ) +
x l a b ( " S i z e o f Ma t r i x " ) +
y l a b ( " Count o f M a t r i c e s " ) +
s c a l e _ f i l l _ d i s c r e t e ( "CR c a t e g o r y " )

# Line graph t o show how number o f p a i r − wise c o m p a r i s o n s i s i n r e l a t i o n t o a l t e r n a t i v e s

xValue <− 2 :20
yValue <− ( xValue * ( xValue − 1 ) ) / 2
l i n e 1 _ d a t a <− d a t a . f rame ( xValue , yValue )

g g p l o t ( l i n e 1 _ d a t a , a e s ( x=xValue , y=yValue ) ) +
geom_l ine ( ) +
theme_minimal ( ) +
theme ( p a n e l . g r i d . major = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . minor = e l e m e n t _ b l a n k ( ) ,

p a n e l . background = e l e m e n t _ b l a n k ( ) , a x i s . l i n e = e l e m e n t _ l i n e ( c o l o u r = " b l a c k " ) ) +
s c a l e _ x _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 2 0 , by = 2 ) ) +
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 2 0 0 , by = 2 0 ) ) +
x l a b ( " A l t e r n a t i v e s " ) +
y l a b ( " Compar isons " )

# Line graph t o show d i f f e r e n c e between i n i t i a l c o m p a r i s o n s and maximum o p t i m a l amount o f removed v a l u e s

l i n e 2 _ d a t a <− d a t a . f rame ( a l t e r n a t i v e s = c ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 ) ,
i n i t i a l = c ( 0 , 1 , 3 , 6 , 1 0 , 1 5 , 2 1 , 2 8 , 3 6 , 4 5 , 5 5 , 6 6 , 7 8 , 9 1 , 1 0 5 , 1 2 0 , 1 3 6 , 1 5 3 , 1 7 1 , 1 9 0 ) ,
s i m u l a t e d = c ( 0 , 1 , 2 , 4 , 7 , 1 1 , 1 6 , 2 1 , 2 6 , 3 2 , 3 9 , 4 4 , 5 0 , 5 7 , 6 7 , 7 8 , 8 6 , 9 3 , 9 6 , 9 5 ) ,
t h e o r e t i c a l = c ( 0 , 1 , 2 , 4 , 7 , 1 1 , 1 6 , 2 2 , 2 9 , 3 7 , 4 6 , 5 6 , 6 7 , 7 9 , 9 2 , 1 0 6 , 1 2 1 , 1 3 7 , 1 5 4 , 1 7 2 ) )

l i n e 2 _ d a t a <− l i n e 2 _ d a t a %>% p i v o t _ l o n g e r ( c o l s =c ( ’ i n i t i a l ’ , ’ s i m u l a t e d ’ , ’ t h e o r e t i c a l ’ ) ,
names_to = ’ P r o j e c t i o n ’ ,
v a l u e s _ t o = ’ va lue ’ )

g g p l o t ( l i n e 2 _ d a t a , a e s ( x= a l t e r n a t i v e s , y= v a l u e ) ) +
theme_minimal ( ) +
geom_l ine ( a e s ( c o l o r = P r o j e c t i o n ) ) +
theme ( p a n e l . g r i d . major = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . minor = e l e m e n t _ b l a n k ( ) ,

p a n e l . background = e l e m e n t _ b l a n k ( ) , a x i s . l i n e = e l e m e n t _ l i n e ( c o l o u r = " b l a c k " ) ) +
s c a l e _ x _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 2 0 , by = 2 ) ) +
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 2 0 0 , by = 2 5 ) ) +
x l a b ( " A l t e r n a t i v e s " ) +
y l a b ( " Compar isons " ) +
geom_vl ine ( x i n t e r c e p t = 9 , c o l =" r e d " , lwd = 0 . 5 )

# S a a t y p l o t o f random i n c o n s i s t e n c y

xRI <− 1 :15 # seq ( 0 , 1 . 8 , by = 0 . 2 )
yRI <− c ( 0 , 0 , 0 . 5 2 , 0 . 8 9 , 1 . 1 1 , 1 . 2 5 , 1 . 3 5 , 1 . 4 0 , 1 . 4 5 , 1 . 4 9 , 1 . 5 2 , 1 . 5 4 , 1 . 5 6 , 1 . 5 8 , 1 . 5 9 )
l i n e R I _ d a t a <− d a t a . f rame ( xValue2 , yValue2 )

g g p l o t ( l i n e R I _ d a t a , a e s ( x=xRI , y=yRI ) ) +
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geom_poin t ( ) +
theme_minimal ( ) +
theme ( p a n e l . g r i d . major = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . minor = e l e m e n t _ b l a n k ( ) ,

p a n e l . background = e l e m e n t _ b l a n k ( ) , a x i s . l i n e = e l e m e n t _ l i n e ( c o l o u r = " b l a c k " ) ) +
s c a l e _ x _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 1 5 , by = 1 ) ) +
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( 0 , 1 . 8 , by = 0 . 2 ) ) +
x l a b ( " Number o f e l e m e n t s compared " ) +
y l a b ( " Random i n c o n s i s t e n c y " )

# Boxp lo t t h a t show ’ s how CR changed i n r e l a t i o n t o removed v a l u e s . S p l i t by m a t r i x s i z e s .

m a t r i c e s _ d a t a 1 1 x 2 0 %>%
f i l t e r ( M a t r i x S i z e < 17) %>%
f i l t e r ( CR_cat == "CR 0 . 5 − 1 . 0 " ) %>%
g g p l o t ( a e s ( x= f a c t o r ( Va lues_rm_ca t , l e v e l = r m _ c a t _ o r d e r ) , y=CR_dif ) ) +
geom_boxplo t ( ) +
theme_minimal ( ) +
theme ( p a n e l . g r i d . major = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . minor = e l e m e n t _ b l a n k ( ) ,

p a n e l . background = e l e m e n t _ b l a n k ( ) , a x i s . l i n e = e l e m e n t _ l i n e ( c o l o u r = " b l a c k " ) ) +
f a c e t _ w r a p (~ M a t r i x S i z e , s c a l e =" f r e e " , nrow = 5)+
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( −1 , 1 , by = 0 . 2 ) ) +
x l a b ( " Group of removed v a l u e s " ) +
y l a b ( "CR d i f f e r e n c e " )

# Boxp lo t t h a t show ’ s how w e i g h t s changed i n r e l a t i o n t o removed v a l u e s . S p l i t by m a t r i x s i z e s .

m a t r i c e s _ d a t a 1 1 x 2 0 %>%
f i l t e r ( M a t r i x S i z e < 17) %>%
f i l t e r ( CR_cat == "CR >= 1 . 0 " ) %>%
g g p l o t ( a e s ( x= f a c t o r ( Va lues_rm_ca t , l e v e l = r m _ c a t _ o r d e r ) , y= K e n d a l l ) ) +
geom_boxplo t ( ) +
theme_minimal ( ) +
theme ( p a n e l . g r i d . major = e l e m e n t _ b l a n k ( ) , p a n e l . g r i d . minor = e l e m e n t _ b l a n k ( ) ,

p a n e l . background = e l e m e n t _ b l a n k ( ) , a x i s . l i n e = e l e m e n t _ l i n e ( c o l o u r = " b l a c k " ) ) +
f a c e t _ w r a p (~ M a t r i x S i z e , s c a l e =" f r e e " , nrow = 5)+
s c a l e _ y _ c o n t i n u o u s ( b r e a k s = seq ( −1 , 1 , by = 0 . 2 ) ) +
x l a b ( " Group of removed v a l u e s " ) +
y l a b ( " K e n d a l l r ank c o r r e l a t i o n c o e f f i c i e n t d i f f e r e n c e " )
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