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Introduction

Droplet emulsions have led to various high-throughput biological and chemical
experiments. The droplet emulsion technique divides bulk reactions into droplets with
micro- to picolitre liquids in volume. The technique allows researcher to perform massive
parallelization without performing tedious work. It requires at least two immiscible
liquids, such as water and oil. By adding a surfactant to the liquids, droplets will stay in
their proper form without coalescing to each other. Droplets can be generated by using
a microfluidic chip and a vortexing method. These methods generate droplets in different
sizes, resulting in homogeneous and heterogeneous sizes, respectively. Furthermore,
droplet emulsions have improved existing methods: the digital droplet polymerase chain
reaction (ddPCR), high-throughput drug screening, molecular detection, etc. Even though
the method is robust, it demands sophisticated setups and equipment, and a custom
analytical pipeline.

Imaging is one of the most used techniques in scientific laboratories, including for
analyzing droplets. Image acquisition is usually performed using brightfield or
fluorescence microscopy, where droplets are observed and captured in the form of
image data. This data then needs to be processed using image analysis software by
calculating the pixels that are captured in the image acquisition process. A pixel is the
smallest unit of image data which represents the bit-depth (color information) of the
captured object. Pixel manipulation can be performed in image analysis software to find
the expected object(s); in this case, the objects are droplets in two-dimensional pixel
arrays. Using image analysis software, objects can be determined and measured,
including to determine droplets and objects of interest which are encapsulated during
droplet generation. The objects which have been studied ranging from genetic materials
(e.g., DNA and RNA) to microorganisms (bacteria, microalgae, yeasts, etc.). Though
imaging is a common method to retrieve data from experimental results using droplet
emulsions, detection requires sophisticated pipelines and often demands programming
skills. Yet, this part is not described clearly in published articles. Therefore, this analytical
part also creates more obstacles for new researchers or other users who are interested
in performing high-throughput experiments using droplet emulsions, especially for users
with no image analysis background.

There are different types of user-friendly software available online. Unfortunately,
each type of software requires pipeline construction with module exploration, in which
the user needs to adjust the modules and make them suitable for their experiments.
Based on these problems, analytical tools for droplet-based experiments become
important, especially when a new researcher or user does not have the time or resources
for a steep learning curve of pipeline development for detecting droplets.

In this thesis, there are four important aims covering 1) the exploration of a droplet
detection platform for different droplet experiments, 2) the search for a suitable
platform for droplet classification, 3) the simplification of data analysis from droplet
array images, and 4) the development of user-friendly analytical pipelines for droplet
experiments in different scenarios. Each of the goals involves important steps in which
the user does not need to engage in complex exploration to detect droplets or objects of
interest. Moreover, full workflows were added and could be used to analyze droplets
after acquiring image data.
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1 LITERATURE OVERVIEW

Droplet emulsion has become a powerful tool for performing high-throughput
experiments and to make it possible to reduce the amount of experimental reaction.
By using imaging, a droplet-based experiment can also be performed in scientific
laboratories which have microscopes. However, analyzing droplets in image data often
requires bioimage analysts or individuals with programming backgrounds. Even though
image analysis was developed decades ago, there have been a limited number of studies
that involve providing pipelines for analyzing droplet image data.

1.1 Droplet emulsion

Droplet emulsion can be used to divide bulk experiments into micro to nano liter
droplets. Droplet emulsion can be generated only by using two or more immiscible liquids
which cannot be mixed or dissolve into each other, e.g., water-in-oil or oil-in-water (Binks
& Lumsdon, 2000). A surfactant is usually added to help the formation of emulsion.
It contains both hydrophobic (water-repelling) and hydrophilic (water-attracting) surfaces
(Baret, 2012). The surfactant plays important roles in droplet emulsion generation:
stabilizing the interface of the droplet (K. Xu et al., 2017), controlling the droplet size
(Fernandez et al., 2004), reducing shear force between droplets (Assadi et al., 2012), etc.
Moreover, droplet emulsion can be generated using a simple method, such as vortexing
or manual shake, and by using a microfluidics setup (Byrnes, Chang, et al., 2018).

Polydisperse droplet generation Monodisperse droplet generation
»M | o 29
=520 Q=5 e8n
n.» ] L Y )
via Vortex via Microfluidics setup

Figure 1. Droplet generation can be performed via vortexing and a microfluidics chip to produce
polydisperse and monodisperse droplets, respectively.

1.1.1 Polydisperse droplets by vortexing
The generation of droplet emulsions can be performed by using the vortexing method or
manual shake (Devenish et al., 2013). The vigorous mixing of two or more immiscible
liquids leads to droplet formation without the need for sophisticated setups. This method
has been used to accommodate high-throughput experiments, e.g., a cell-free biological
reaction and ribozyme selection (Agresti et al., 2005; Tawfik & Griffiths, 1998). However,
this method generates a large variety of droplet sizes. Even though the droplets may vary
in size, polydisperse droplets do not require sophisticated setups for their generation.
Polydisperse droplets are still rarely used due to their irregularity in size and
randomness. However, some researchers have used polydisperse droplets to perform
high-throughput experiments. For instance, Byrnes et al. (Byrnes, Chang, et al., 2018)
have used the method to perform a digital droplet polymerase chain reaction (ddPCR)
without using sophisticated tools. They also validated their methods by providing a
statistical framework which can be used to assess randomness and irregular size
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distribution (Byrnes, Phillips, et al., 2018). In a recent study, polydisperse droplets were
used to develop the amplification-free detection of viral DNA and RNA (Xue et al., 2023).
The method also was utilized to perform an immunoassay (a digital droplet immunoassay
— ddIA) experiment for disease identification and monitoring (Byrnes et al., 2020).
Although this method does not require sophisticated setups, the droplet analysis
requires more attention. For example, an experiment by Chen et al. (Chen et al., 2022)
used polydisperse droplets to perform loop-mediated isothermal amplification (LAMP),
which required an image analysis with a scripted program to detect and analyze the
droplets (Figure 2).

~ Pracipitate
[ - gy . "
"8 0 -
— - il i B
Sample & = oY . g5 © At
LAMP reagent ,(‘_" - -
™~ E i = U Noprecipitate. >
Qil with - - —i,
surfactant =" | o /’%\ + =
Sﬂ&(‘:l;'l (;I' En'nulsuon Cutlet
inle inlet 5
Vortexin Isothermal Wriagin Droplet segmentation
Y amplification ging & recognition
~0.5 min 45 min 3~5 min ~20 min

Figure 2. Polydisperse droplets can be generated by vortexing immiscible liquids in a microtube.
The example above shows the utilization of polydisperse droplets for isothermal amplification and
requires a less sophisticated setup. Reproduce from Chen et al., (2022) under the Creative Commons
CC-BY.

1.1.2 Droplet generation using a microfluidics setup

The use of microfluidics for droplet generation has become popular since the method
not only generates droplets of homogeneous size but also allows for the integration of
different systems, e.g., analytical detection (Y. Zhu & Fang, 2013). The principle of
droplet microfluidics comes from employing physical phenomena to control and adjust
flow rates and properties of immiscible liquids (Sangam et al., 2020; Srisa-Art et al.,
2007). As is shown in Figure 3, droplets can be generated using a microfluidic chip which
is adapted e.g., a T-junction, flow focusing, or co-flow feature (Matuta et al., 2020). Each
droplet generation using a microfluidics approach relies on fundamental physics and
chemistry: fluid dynamics, viscous forces, interfacial tension, continuous phases, channel
dimension, etc. (Pang et al., 2020). These variables contribute directly to the droplet’s
profile e.g., the droplet’s size and stability. However, the droplet generation mechanism
can be explained as a passive or active method (P. Zhu & Wang, 2016). The passive
method requires no external stimuli (e.g., depending on capillary, viscous or inertial
forces), while the active method requires additional forces (electrical, magnetic etc.).
Therefore, microfluidics can be used to generate a homogeneous size of droplets, usually
called monodisperse droplets (P. Zhu & Wang, 2016). In addition to droplet generation,
microfluidics has been used for various applications, including for droplet manipulation
(merging, splitting, re-loading, incubation, detection, and sorting) (Matuta et al., 2020).
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Figure 3. A microfluidic chip can be used to perform droplet generation and manipulation. Each
function above requires a specific microfluidic chip and can be integrated into one system. In droplet
generation, there are T-junction, flow focusing and co-flow principle which are usually implemented
in the microfluidics chip. Reproduced from Matuta et al., (2020) under the Creative Commons
CC-BY-NC-ND license.

The microfluidics method provides an important advantage to calculate the probability
of content encapsulation. The technique adopts a Poisson distribution, which represents
a discrete distribution and quantifies the likelihood of a certain number of occurrences
taking place within a defined time frame(Kissell & Poserina, 2017). This distribution can
be explained by this formula:

(Ae™)
plk,2) = ——
where k is the number of objects in a droplet and A (lambda) is the mean or average
number of contents per droplet (Collins et al., 2015). For example, Najah et al. (Najah
etal., 2012) applied a value of A = 1 in the Poisson distribution. Using this, they were able
to determine probabilities of 37% for the compartment with zero objects, 37% for the
compartment with one object, and 26% for the compartment with more than one object.
This provides a control to manipulate the encapsulation which increases the probability
of getting only one object per droplet, e.g., by reducing the A value.

Even though droplet microfluidics provides precise droplet generation, there are some
limitations which require more attention. For instance, this technique demands a complex
device setup that assures the performance of a droplet microfluidics platform (W. Zheng
et al., 2022). Droplet microfluidics also require experts to fabricate a microfluidic chip, set
up the equipment, which consists of a syringe, pumps, and a microfluidic chip, and it
demands analytical setups to produce results from the experiments (Shang et al., 2017).
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1.1.3 Applications of droplet emulsions in different types of experiments
Droplet emulsions have been extensively utilized to perform high-throughput
experiments to detect and measure various objects of study, from small molecules to
cells (Figure 4). The applications can also be found in studies in different fields:
microbiology, biotechnology, chemistry etc. To provide a better understanding of each
application, the following paragraphs present detailed examples.

In microbiology, droplet emulsions are used to perform various microbial studies,
for instance:

- Antimicrobial activities (Kaminski et al., 2016; Postek & Garstecki, 2022; Ruszczak

et al,, 2023; Watterson et al., 2020),

- Hetero-resistance in microbes (Scheler et al., 2020),

- Bacterial isolation and screening (F. Xu et al., 2023; Yin et al., 2022),

- Microbiota interactions (Tauzin et al., 2020; Yu et al., 2022), etc.

Applications of droplet-based microfluidics are also widespread in chemistry
experiments and some researchers have used them to detect different compounds and
molecules, including:

- Dopamine (Alizadeh & Salimi, 2019),

- lonic analytes (R. Wang et al., 2021),

- Small molecules with biochemical activities (Ha et al., 2021), etc.

Moreover, droplet technologies have been utilized to ease massive parallelization in
biotechnology methods, including:

- Different protein detections (Giuffrida et al., 2018; Kebriaei & Basu, 2021),

- Digital droplet enzyme-linked immunosorbent assays (ddELISA) (Cohen et al.,

2020; Yi et al., 2022),
- Digital droplet polymerase chain reactions (ddPCR) (B. J. Hindson et al., 2011,
C. M. Hindson et al., 2013),

- Single-cell DNA and RNA sequencing methods (Bageritz & Raddi, 2019; De Rop

etal, 2022; Lan et al., 2017; Nesterenko et al., 2021; Salomon et al., 2019; Zilionis

etal,, 2017).
Antibodies
Cells
Nucleic acids
Proteins
r
,?,\'—\'-\ @ L)

F)
1

it}
t\:z( ) .
;’ . g .. ‘l‘\\ / - e §

Small molecules

£¥ oy

Droplets

Viruses

Figure 4. Droplet emulsions are used in various applications, from detecting small molecules to
monitoring cell-cell interactions.
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In addition to the examples above, droplet-based experiments have also facilitated
different studies:
- Mammalian cell observation (De Cesare et al., 2021),
- Lipid production in microalgae (G. Zheng et al., 2022),
- Single-cell metabolomics (Feng et al., 2022),
- Yeast screening methods with incubation and detection technology (Ahmadi
et al., 2019),
- Detection of y-aminobutyric acid (GABA) by integrating droplet microfluidics
with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI)-MS
and Raman spectroscopy (Bell et al., 2021),
- Biocatalyst analysis using electrospray ionization mass spectrometry (ESI-MS)
(Diefenbach et al., 2018).
All of the examples above show the flexibility of the methods, which can be adapted
for numerous experimental scenarios.

1.2 Droplet detection and content(s) analysis

There are various detection methods that have been used for different droplet
experiments. In general, these detection methods can be classified into two groups:
1) optical detection and 2) non-optical detection. In the optical detection method,
the droplet characterization is performed by detecting objects based on their optical
properties, including light absorption, scattering, or emission (Zhou et al., 2022).
This includes imaging-based detection (Rutkowski et al., 2022), absorbance detection
(Medcalf et al., 2023), fluorescence tracing (Vallejo et al., 2019), light scattering (Pacocha
etal.,, 2022), Raman spectroscopy (Yue et al., 2022) and interferometric detection (Zamboni
et al., 2021). In non-optical detection methods, the signals emanating from droplets are
detected by electrical sensors (Fu et al., 2017), mass property sensors (Kempa et al.,
2020), capillary electrophoresis (Liénard-Mayor et al., 2021), or electrochemical reaction
sensors (Delahaye et al., 2021). Both methods have advantages and disadvantages
(Figure 5). In brief, optical detection requires less sophisticated equipment, versatile,
non-destructive, and contact free (Kalantarifard et al., 2018). The use of common
equipment, such as microscopy, provides more accessibility than with non-optical
methods (Y. Zhu & Fang, 2013). However, the versatility cannot compete with the high
specificity which can be achieved by performing non-optical detection, e.g., the use of
matrix-assisted laser desorption/ionization-mass spectrometry (MALDI)-MS to detect
droplets containing y-aminobutyric acid (GABA) (Bell et al., 2021). Yet, optical detection
is often preferred since the equipment is usually available in biology or chemistry
laboratories. Even with the accessibility of detection equipment, analyzing optical
detection results requires expert knowledge, e.g., transforming image data into tabular
data (shape and size profiles of droplets and their contents) using image analysis.

14
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Figure 5. Pros and cons of optical and non-optical detection methods for droplet detection and
analysis. In brief, both optical detection and non-optical detection methods provide different
purpose and capacity.

1.2.1 Imaging in droplet experiments

One of the optical detection methods, imaging, is known to be the most accessible
approach for acquiring experimental data (on droplets and their contents) (Liu & Zhu,
2020). The acquired data is in the form of image data which can be processed later
using image analysis software. Therefore, many researchers have used imaging to
perform different types of droplet-based experiments. There are various microscopy
techniques which are usually used in such experiments, including light and
fluorescence microscopies (Saateh et al.,, 2019) and high-resolution microscopy
(e.g., electron microscopy) (Y. Zhu & Fang, 2013). Recently, Szydlowski et al.
(Szydlowski et al., 2020) were able to utilize a smartphone device to capture images
in a droplet-based experimental study and performed detections. Although data
acquisition from the imaging method is accessible, an advanced analytical method is
essential and often it demands some programming skills and prior image analysis
knowledge.

Image acquisition Results

> Image analysis >

/
\ Droplet detection
—

Imaging Fluorescent

Data visualisation

Figure 6. lllustration of droplet imaging and the image analysis workflow in acquiring droplet data
and results for data visualization. It starts from image data from microscopy which can result
brightfield or fluorescent image data. The data then can be analyzed to find droplets and
visualizations can be performed afterward.
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1.2.2 Image analysis pipeline and workflow

Image analysis is usually referred to as a method to discover, identify, and understand
the patterns in image data (Gonzalez & Woods, 2008). In Miura (Miura, 2020), the image
analysis of a biological object can be seen as bioimage analysis, where the purpose of
identification was to find biological components and perform measurements in an
unbiased way. In a droplet-based experiment, image analysis focuses more on the
identification of droplets and objects, which can be biological or other types of
samples, e.g., microplastic beads. Image analysis is an important step in acquiring data
from images. It typically involves several steps, including acquisition, pre-processing,
segmentation, feature extraction, classification, and data interpretation (Hartig, 2013).
In Miura and Sladoje (Klemm & Miura, 2022; Miura et al., 2020), the workflow started
with biological image data and resulted in numbers, plots, statistics, and visualizations.
However, the important part (a pipeline) came from the components in the middle of
the workflow (Figure 7). Each component had specific features, command, or algorithm,
which could be used to process images or groups of pixels. The pipeline consisted of
different components (usually referred as a collection), which are usually readily
available in image analysis software.

Collection (Software) Workflow

Image Data

Component A

| Component ¢ e

Camponert Componer

Component ;
Results

(e.g., Numbers, Visualization).

Figure 7. Image analysis workflow comprising component assembly from a software library collection.
The workflow encompasses image data retrieval, a pipeline built from diverse components, and
anticipated results from the actual object. Adopted with modification from Miura et al. (2020) under
the Creative Commons CC-BY.

In a droplet-based experiment, the workflow usually starts with the experiment and
type of droplets, which are the objects of interest and provide scientific questions to
answer. As mentioned in the previous section, for example, the use of the LAMP method
for nucleic acid quantification includes imaging as a data acquisition method (Figure 2).
This method then uses a specific image analysis pipeline with a convolutional neural
network (CNN) model that detects each droplet and evaluates the detection (Chen et al.,
2022). There are some other pipelines that are used to find microbial community
interactions across different environments (Hsu et al., 2019) and that assess multi-gene
expression in E. coli (Sierra et al., 2022). Unfortunately, these pipelines require
programming skills in either Python (Python.org, 2023) or MATLAB (MATLAB, 2023).

Table 1 shows various research projects which have utilized different software to
detect droplets and objects. Both monodisperse and polydisperse droplets have been
used to encapsulate varied objects, e.g., nucleic acids, beads, bacteria, antibodies, and
diverse cells. There are various types of software which have been utilized to detect
both droplets and objects.
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Table 1. Previous research projects that describe the software used for droplet and object detection.

Type of droplets Objects Software References
DNA/ nucleic acid Mathematica (Baccouche et al.,
2017; Genot et al.,
2016)
Nicotinamide adenine  LabView (Beneyton et al.,
dinucleotide (NAD), and/or 2018; Lyu et al.,
Bacteria, Chinese MATLAB 2015; Sesen &
hamster ovary, Whyte, 2020; Vitor
K562 cells et al., 2018;
Vo et al., 2017)
Monodisperse Particle-templated Imagel/ Fiji (Demaree et al.,
emulsification 2018; Kao et al.,
object, bacteria, 2019; Pan et al.,
beads with 2015; Rakszewska
fluorescence et al., 2016)
Oil droplets CellProfiler (Scheuble et al.,
2017)
Beads Python (B. Li et al., 2020;
(OpencV) Svensson et al.,
2018)
Not available (NA) C++ (OpenCV) (Zangetal., 2013)
Sarcoma Image) (Avni et al., 2022;
condensates, Byrnes et al., 2020)
antibodies
. Bacteria, antibodies MATLAB (Byrnes et al., 2020;
Polydisperse .
Byrnes, Phillips,
et al, 2018)
DNA, double Python (Chen et al., 2022;
emulsion droplets Durve et al., 2022)

The table above shows that there are different workflows and methods to detect
droplets and their contents (Table 1). Most of the previous studies used script-based
software, e.g., C++ (OpenCV- C++, 2023), MATLAB (MATLAB, 2023), Python
(Python.org, 2023), and Mathematica (Wolfram Documentation, 2023). There are
some user-friendly types of software, such as Imagel (Schindelin et al., 2015;
Schneider et al., 2012), CellProfiler (Lamprecht et al., 2007; McQuin et al., 2018;
Stirling, Swain-Bowden, et al., 2021), and LabView (LabVIEW, 2023). However, the
documentations of these usages in the research articles are unclear. Moreover,
LabView is only available commercially.

1.2.3 Elements of image analysis

There are various image analysis elements which are important in analyzing images.
In this section, there are four important elements which are required to bring the
foundation to this thesis, including a) pixels and image data, b) filters and
segmentation, c) batch processing, and d) feature extraction.
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a) Pixels and image data

Imaging method generates image data containing information which usually is detected
by a detector in different optical device or microscope (Kuswandi et al., 2007). There are
various sensors which can be used to image droplets, including Charge-Coupled Device
(CCD) or Complementary Metal Oxide Semiconductor (CMOS) sensors (Parnamets et al.,
2021). From this sensors, droplet images will be translated as pixels, acronym of picture
elements, which can be defined as the smallest units in image data (Zhang & Gourley,
2009). Each pixel represents color or bit-depth value (or color information) with
coordinates where usually is described as a grid-square with specific color (Bull, 2014;
Floyd et al., 1986). It contains bit-depth which varies in each pixel, for example, an 8-bit
image has 256 numerical values, ranging from 0 (black) to 255 (white) (Bankhead, 2023).
The bit-depth also varies depending on the image acquisition method or sensor that
capture the image, e.g., 16-bit with 65536 color variations or 24-bit with 16 millions color
variations. In high bit-depth image, some colors are usually used to show the images in a
more detailed manner, e.g., 16-bit with 0-255 range values but using three different
colors such as red, green, and blue (Tan & Jiang, 2018). This different colors are called as
channels where each pixel values represent the intensity of each color channel. To show
the number of pixels and its intensity, lookup table (LUT) is usually used (Figure 8). This
LUT can also be used to convert an image in different color without changing the pixel
value (Bankhead, 2023).

Image data also hosts metadata such as channel, time, space, microscopy details, etc.
One example, a format Open Microscopy Environment (OME) Remote Object (OMERO)
and Bio-Formats project (OME, 2023). These formats contain multidimensional data
which suitable to image analysis software. In addition to these formats, there are various
filetypes which are .lif (Leica), .oif (Olympus), .nd and .nd2 (Nikon), .dv (DeltaVision), and
.czi or .Ism (Zeiss). There are also generic lossless or lossy image data such as TIFF or JPEG,
respectively (Tan & Jiang, 2018).

255

0

Pixel values Lookup table (LUT)

Figure 8. Look up table for greyscale image which has a pixel’s value from 0-255. This value may
vary depending on the image data. This range is used to describe the 8-bit greyscale image data.
In 16-bit greyscale image, the value is ranging from 0-65,535. Reproduced from Bioimagebook by
Bankhead (2023) under the Creative Commons CC-BY.
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b) Filters and segmentation

As previously explained, components hold an important part in processing image data.
Filters and segmentation become essential components in image analysis (Oliveira et al.,
2016). These components can help detecting regions or objects with specific criteria,
including droplets and objects in it. Filters are commonly used to remove noises (Tan &
Jiang, 2018). The filtering components are usually used to enhance or modify images,
e.g., noise removal, enhance edges, suppress specific pixels, etc. (Flamary et al., 2012).
Some filters are developed by transforming the pixels with specific distribution,
for instances, Gaussian filter, median filter, Gabor filter, and mean/average filter
(Georgeson & Meese, 1999; Tan & Jiang, 2018). Each of the filter is effective for specific
case, for examples, Gabor filters are commonly used for texture analysis and median
filters are effective in reducing noise (Britos & Ojeda, 2019; Reiser et al., 2007).

On the other hand, segmentation is more toward a process to partition image into
regions or objects (Oliveira et al., 2016; Szeliski, 2011). In general, segmentation method
can be classified into two groups, semantic and direct segmentation. In semantic
segmentation, identified pixels are assigned into the same generic class while in direct
segmentation, each assigned pixels group is defined as specific group (Bazin et al., 2011;
Liu et al., 2021). For example, in semantic segmentation, detection of droplets in an
image data can be identified of one same circles without considering the different
features in each droplet. In direct segmentation, droplets can be grouped into different
labels depending on the annotations/ given labels, e.g., droplets with object(s) in it and
empty droplets. The segmentation methods can be implemented in various components,
e.g., thresholding, watershed, edge detection, etc. As the simplest segmentation
method, thresholding is used to classify pixels based on the specific value as the limit
between each group (Rogowska, 2000). This thresholding method can be performed to
group image as a whole image data (global) or as a local/determined windows (adaptive).
Usually, it will be followed by watershed algorithm where the thresholded image will be
modeled as a topographic landscape, and the intensity values represent elevations.
Watershed is applied to separate the regions and identify the boundaries between
objects (Tlig et al., 2020). There is also edge detection which is a technique in image
processing that identifies points in a digital image where there are sharp changes in
brightness, known as edges or boundaries (Tan & Jiang, 2018).

In thresholding, there are different algorithms which can be implemented to group
the pixels based on different calculations, e.g., Otsu, Entropy, Robust Background,
Savuola, etc (Lamprecht et al., 2007; Rogowska, 2000). For instance, in Otsu’s algorithm,
pixels classification where two classes, foreground, and background are separated based
on the grayscale intensity values of its pixels (Rogowska, 2000; Xia et al., 2019).
Implementation for Otsu’s algorithm can be defined the variance between the two
classes/ regions, formulated as:

[(wy (k) x py (k) — wy(l)x py (k)]?

o5(k) = wa (6) % w, ()

where:

- o3 (k) represents the between-class variance at threshold k,

- wy (k) x wy(k) are the weights of class 1 (foreground) and class 2 (background)
at threshold,

- puy(k) and u,(k) are the means of class 1 and class 2 at threshold k respectively,
calculated as the cumulative means up to threshold k.
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c) Batch processing

Image analysis can accommodate more than single image data. In droplet-based
experiment, thousands of droplets need to be captured in different images (Herbert,
2023). Typically, videos are used, and image analysis is performed on each frame to
count and obtain information about the droplets (Bull, 2014). To process these
images, batch processing is usually required. Batch processing involves handling
multiple images simultaneously, streamlining the analysis workflow (Nanes, 2015).
Each of image analysis software is equipped to handle a set of images. However,
performing this additional process may require additional steps or programming
skills. For instance, in imagel, batch processing requires a set of macro script which
executes the working components and loop the process for multiple images (Klemm
& Miura, 2022). Nevertheless, the components can be recorded during the analysis
of a single image (Herbert, 2023). Despite the recorded macro, some adjustments
are usually necessary before performing the batch processing and this requires steep
learning curve.

d) Feature extraction

Feature extraction plays a crucial role in obtaining results from segmentation and
object detection. It involves extracting various features commonly utilized in image
analysis, such as pixel intensity, size, and shape (Pla et al., 1993). These features
serve a significant purpose in determining the distribution of detected objects. For
instance, in droplet detection, features like size distribution plays a vital role in
assessing the monodispersity in droplet generation (Gawryszewski et al.,, 2018).
These features are derived from the detected pixels that represent the identified
object, enabling the determination of average pixel intensity, maximum radius, and
area of detection (Z. Li & Liao, 2022). In the context of droplet detection, feature
extraction is commonly employed to obtain crucial insights and measurements,
facilitating various tasks and analyses (Gawryszewski et al., 2018).

1.2.4 User-friendly image analysis software

In recent developments, different types of image analysis software have been used,
including those that are user-friendly and widely accessible. User-friendly software can
be defined as a software which emphasize simplicity other than complex system in
providing its feature to the user (Omotayo, 1984). This kind of software aims to ease user
to access and use the software without a steep learning curve. These types of software
are available online and are ready to use, such as Imagel (Schindelin et al., 2015),
CellProfiler (Lamprecht et al., 2007; Stirling, Swain-Bowden, et al., 2021), llastik (Berg
et al.,, 2019), QuPath (Bankhead et al.,, 2017) and Icy (De Chaumont et al., 2012).
The types of software are meant to accommodate different kinds of bioimage
experiments. For example, CellProfiler can be used to detect and quantify types of cells,
including megakaryocytes (MK), during thrompoiesis (Figure 9) (Salzmann et al., 2018),
human tumor cells (Elkabets et al., 2011), small-molecule inhibitors of leukemia stem
cells (Hartwell et al., 2013), etc. There are some examples of the use of Imagel for
detecting nuclei and prostate cancer cells, which have been extensively described
(Hartig, 2013). To accommodate complex bioimage cases, there are some examples
where two types of software are needed. Ellen et al. (Dobson et al., 2021) described two
different cases of studying cell morphology and migration in time-lapse datasets and
whole plate analysis to detect nucleus and whole-cell images.
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i) Identification of if) smoothing of iii) Subtype
megakaryocytes cell borders Analysis

Identified cells
Classified cells

Figure 9. Image analysis pipeline for megakariocyte (MK) detection using CellProfiler™. The pipeline
starts by identifying both nucleated and unnucleated cells. After the identification, borders in the
selected object are smoothed. At the end, the objects are classified into different subtypes based on
their morphology. Adoption with modification from Salzmann et al. (2018) under the Creative
Commons CC-BY.

However, the above-mentioned pipelines and examples showed that there are types
of software which are already capable of accommodating different types of analysis,
including droplet-based experiments. Recently, some articles have appeared on the use
of ImagelJ for droplet analysis. As previously mentioned, ImageJ has been used to analyze
monodisperse and polydisperse droplets that contain cells (Zielke et al.,, 2022) and
biomolecule reactions (Avni et al., 2022), respectively. However, a detailed description is
often not available in the publications, which may lead to confusion among new
researchers who are interested in reproducing the workflow. Moreover, droplet
detection is usually followed by classification and analysis, and these are rarely described
in any workflow. Therefore, there is a need to provide such a workflow and details.

1.2.5 Important image analysis steps for droplets and content detection

In principle, droplet and content detections, also called object detections, in image data
require a selection of specific pixels that differ from the background pixels. To retrieve
the correct detections, image data are usually reviewed through different steps,
including pre-processing, processing, and post-processing.

Pre-processing is the initial step in object detection and involves enhancing the
quality of the image to improve the accuracy of detection. This may include such
operations as noise reduction and geometric transformation (Fan et al., 2019; Sonka
et al.,, 1993). Pre-processing aims to reduce problems with image data, including
noise reduction, optimized contrast, and brightness, which may hinder detection
(Park et al., 2021).

In the processing step, images are analyzed to detect and classify objects of interest.
This includes various techniques, including thresholding, implementation of watershed
and segmentation algorithms, where pixels are partitioned and grouped based on color,
intensity, or texture (Liang et al., 2014). The aim of the processing step is to detect objects
of interest and retrieve information on the objects (Uchida, 2013). The extracted
information includes shape, size, and the object’s behavior. For instance, images can be
divided into two or more groups, e.g., objects as “foreground” and a microscope’s slide
as “background” (Hartig, 2013). In this thesis, the objects of interests are droplets and
encapsulated objects.
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Post-processing is the final step in object detection and involves refining the results
obtained from the detection algorithm. This may include filtering out false positives,
grouping or merging detections, and tracking objects across frames in a video sequence
(Sabater et al., 2020). Post-processing techniques aim to improve the accuracy and
reliability of object detection results (Savargaonkar et al., 2021). Moreover, this step is
usually added to standardize outputs, including as image data and interpreting results
(Schulz-Menger et al., 2020).

Overall, object detection in image analysis involves a combination of processing,
pre-processing, and post-processing steps to accurately detect and classify objects within
an image or video sequence. These steps are essential for achieving robust and efficient
object detection results.

1.2.6 Analytical platforms for droplet data analysis

A droplet-based experiment generates large amounts of data that require data
processing and visualization. Using an imaging approach, droplet experimental results
are presented as pixel profiles from image analysis software. In an example from a
CellProfiler Analyst (CPA) (Dao et al., 2016; Jones et al.,, 2008), it can provide data
exploration and visualization to gain insights regarding the processed data from
CellProfiler (McQuin et al., 2018). This software is also equipped with a classifier to train
a machine-learning model from a detected object (Jones et al., 2009). In the newest
version of CPA, the software is also equipped with a dimensional reduction tool to
minimize non-significant dimensions or features in the data set (Stirling, Carpenter,
et al., 2021). Since a study of droplet-based experiments using a CellProfiler does not
exist, the use of this software remains untested. Furthermore, the software is only able
to find the input of property files available from a CellProfiler.
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Figure 10. Examples of droplet analysis from image data which was performed to show the effect
of droplet storage in droplet’s size variation. Each of the droplet image is visualized as a normalized
droplet volume in percentage (%) histogram that indicates droplets after generation (black bars) in
comparison to after a transfer process (red bars). This figure is reproduced from Grosche et al.
(2019) under copyright 2023 by the publisher. Used with permission.
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Image analysis software generates pixel data which can be translated into different
variables, including shapes and sizes. In droplet analysis, there are different important
variables which are usually shown in a publication, e.g., volume distribution, coefficient
variations and relative signal distribution. As shown in Figure 10, Grosche et al. (2019)
used size distribution to assess the effects of different storage methods. In Scheler
et al. (2020), droplet data are shown to find the signal distribution among droplets,
including in different effects of serial antibiotic concentration.

As mentioned previously, this data processing is mostly performed individually and
there is no standard in assessing droplet distribution with a user-friendly tool from image
analysis results, especially without the need for programming.
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2 AIMS OF THE STUDY

The general goal of this study was to develop user-friendly and low-learning-curve tools

for analyzing droplet arrays that do not require programming skills of the end user.

To reach the goal, there were four specific aims:

Aim 1 Provide a droplet detection platform for different droplet experiments.

Aim 2  Find a suitable platform for droplet classification which is needed to group
droplets in the experiment.

Aim 3 Simplify the data analysis of droplet array images, which usually requires an
image analyst and programming skills.

Aim 4 Develop user-friendly analytical pipelines for different droplet experiment
scenarios.
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3 MATERIALS AND METHODS

The materials and methods which are used in this thesis are explained in detail in the
published articles. This section will mention only a key message for each step necessary
to follow the thesis.

Publication |

A CellProfiler™ pipeline was developed and applied to detect droplets in 64
images, which were acquired using a fluorescence wide-field microscope.

The distinction between empty droplets and droplets containing bacteria was
determined using a CellProfiler Analyst (CPA) and a database generated by the
CellProfiler™ pipeline.

Publication Il

User-friendly types of software were explored through online search and manual
tests to perform droplet detection.

Pipelines were generated using the four most popular types of software
determined by a Scopus search and Twitter assessment (Imagel, CellProfiler,
llastik, and QuPath).

Pipeline comparisons were carried out to compare the different logics of each
software.

Accuracy and precision were performed to assess the capability of the four
compared types of software in detecting droplets.

In addition, software processing time was examined to determine detection
efficiency.

Publication Il

Detection of polydisperse droplets and fluorescent objects inside droplets were
accomplished by using CellProfiler™. This included the measurement of each
object.

Detection of monodisperse droplets and fluorescence objects in were carried out
with CellProfiler ™. This pipeline has additional modules to enhance detection and
to build a relationship between droplets and objects.

In brightfield images, we used a combination of Ilastik and CellProfiler™ to detect
object(s) in droplets which do not have fluorescence capability (e.g., microplastic
beads). CellProfiler™ was used to analyze and obtain the relationship data and
their pixel profiles.

EasyFlow is able to visualize droplet signals and size distributions, the relationship
between droplet signals and sizes, and to describe the experimental conditions
based on signal distribution. EasyFlow was invented to simplify the data
processing and visualization of droplet image analysis, which was generated by
image analysis software as comma separated value (.csv).

EasyFlow was developed in Python using a Streamlit framework and important
libraries, such as Pandas, NumPy, Matplotlib and Bokeh.

We have provided examples of full detection and analysis pipelines for different
scenarios by providing images as input data and visualizations with necessary
tables and statistics as output.
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4 RESULTS AND DISCUSSION

4.1 Droplet detection is an important step in droplet experiments
(Publication I1)

This section addresses the need to provide a droplet detection platform for different
droplet experiments.

4.1.1 There are many types of software suitable for droplet detection

As mentioned in the literature section of the image analysis pipeline and workflow, image
analysis software can be defined as a collection (Miura, 2020). The collection or types of
software have been developed for different purposes, and searching for the right
software for detecting objects, including droplets, requires a steep learning curve and
some exploration, especially with no prior image analysis knowledge or programming
skills. There are numerous types of image analysis software available online. To evaluate
the most discussed software in available publications, Twitter and Scopus keyword
search was performed (on February 11, 2021). Based on the results, the most discussed
types of software used for image analysis are Imagel, CellProfiler, llastik, and QuPath.
These four types of software are able to detect droplets (Figure 11A). The pipelines from
each type of software were also identified and showed the key variables that distinguish
each step of droplet detection. The variables are grouped into three levels of abstraction
that cover the fundamental principle of each software workflow (Figure 11B). The detailed
abstractions for each type of software are explained in the figure below and in
Publication Il (Sanka et al., 2021).

The use of three-level abstractions provides a clearer understanding of each
component in the software which needs to be compiled as a pipeline. For instance,
in CellProfiler (CP with red box — Figure 11B), to detect droplets in fluorescence images,
the pre-processing steps require image data preparation that includes image upload,
metadata detection, name types which will be used in the pipeline, and groups of images.
The processing step usually involves pixel intensities, texture, edges, etc. (Liang et al.,
2014; Uchida, 2013). In CP, the module only requires an IdentifyPrimaryObject module,
which contains different components, including thresholding, smoothing, segmentation,
and automatic selection. For post-processing, there are four steps used to display data
as images and documents (spreadsheet in .csv format). These include “OverlayOutlines”,
“OverlayObject”, “DisplayDataOnlmage”, and “ExportToSpreadsheet” modules. Further
explanation regarding other types of software is provided both in the publication and in
the Supporting Information (Sanka et al., 2021).

26



A) Droplet detection comparison using the most favorite software for image analysis
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B) Image-based droplet detection pipeline has three degrees of abstraction
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Figure 11. Diagram illustrating droplet detection in single image data. A) Using the most popular
software based on Scopus and Twitter, we were able to identify droplets in a single fluorescence
image (CellProfiler-CP, ImageJ-1J, llastik-1la, and QuPath-QP). B) In principle, each type of software
shares an identical logic, including pre-processing, processing, and post-processing. The second
level contains two categories: rule-based, where users specify some parameters (e.g., size and
threshold value), and machine learning-based, where users classify/annotate groups of pixels in an
image. The third level describes the steps that must be taken in each type of software. Rectangles,
circles, and triangles are used to identify modules with one, one to eight, and more than eight
alternatives, respectively (Publication Il - Sanka et al., 2021).

4.1.2 Each type of software performs differently in droplet detection

Each type of software performs differently in terms of accuracy, precision, and processing
time. To show the capabilities in detecting droplets, accuracy and precision tests were
performed by comparing manual counts as a “ground truth” with each detection from each
type of software. In the experiment, sensitivity and specificity tests using True Positive —
positive droplets (TP), False Positive — false droplet detection/underestimation (FP), and
False Negative — software could not detect droplets/overestimation (FN) were used
(Gaddis & Gaddis, 1990). Using these calculations, precision and accuracy were
determined, explaining the ratio of correct detection among the total and the probability
of recreating correct detection, respectively (Bland & Altman, 1995, 1999). Figure 12A

27



shows that CellProfiler™ had the highest accuracy and precision in detecting droplets.
Moreover, counting the errors in each type of software showed that both rule-based
types of software (CP and Imagel) produced fewer errors than the machine-learning
based types of software (llastik and QuPath) (Figure 12B). The high number of errors
mostly involved filtering the droplets that touched borders and wrong segmentation that
resulted in joint droplets (Sanka et al., 2021). The performance of each type of software
was also assessed in terms of processing time (Figure 12C). Based on the processing time
measurement, in general Java-based software (CellProfiler and llastik) performed almost
10-20 times faster than Python-based software (QuPath and Imagel). This processing
time experiment gave unexpected results since we expected that machine-learning
based software would provide longer processing times due to training and feature
implementation (Frank et al., 2020). However, we concluded that the processing time
was longer because of the programming language used to make the software. This was
supported by a previous study which compared Java-based with other types of software,
including Python-based software (Fourment & Gillings, 2008).

A) CP gives highest accuracy and precision B) Droplet detection errors are higher
in machine-learning based software
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Figure 12. User-friendly software shows different accuracy, precision, and processing times for
detecting droplets. A) CellProfilerTM (CP) demonstrated high accuracy and precision compared to
the other software (Imagel, llastik, and QuPath). B) In a diagnostic test, the false positive events
were higher in the machine-learning-based software compared to the rule-based, where each block
represents an event or image error detection (high numbers in the scale indicate more errors).
C) The Java-based software (Image) and QuPath) displayed faster processing times in detecting
droplets. The same 64 images with 10 replicates were used for this evaluation (Publication Il - Sanka
etal.,, 2021).

4.2 Droplet classification can be done manually or automatically
(Publication 1)

This section addresses the need to find a suitable platform for the classification of group
droplets in experiments.

Droplet detection is usually followed by intensity measurement, where gray signals
that represent each droplet are measured. This measurements can then be transformed
into sizes or other measurement variables, e.g., maximum/minimum ferret diameter,
mean diameter, radius, mean pixel intensity or maximum pixel intensity (Liang et al.,
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2014). Using relative fluorescence or pixel intensity, droplets can be classified into two
or more groups. In Figure 13A, two types of droplets are classified based on the detected
mean intensity in the first local minima after the first peak. In this case, two groups of
droplets that represent empty droplets and droplets with objects which have
fluorescence were classified. There is also a method which can be used to distinguish
droplets by implementing a supervised machine learning algorithm, such as CellProfiler
Analyst (CPA) (Figure 13B). The software can host a database file from CellProfiler that
contains detected objects. In CPA, the user only needs to train on a model based on the
selection of the image, e.g., positive droplets with bright green fluorescence and negative
droplets with dark pixels. In CPA, the result can also be assessed using a confusion matrix,
which cross validates the classification results with predefined classes (droplets with and
without bacteria/fluorescence) (Dao et al., 2016).

A} Manual thresholding using relative fluorescence
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B} Automatic thresholding can be performed using CellProfiler Analyst
with different supervised machine learning algorithm
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Figure 13. Droplet classification techniques (manual and automatic) use pixel profiles as the
parameters to group droplets into two or more different types. A) Manual thresholding provides
flexibility to define the intensity value characteristic of the desired group(s). B) Automatic
thresholding categorizes based on visually inspected examples which are used to build a
classification model. Manual thresholding is done by establishing a threshold in the relative
fluorescence droplet distribution and the automatic classification using CellProfiler Analyst (CPA)
with an available classification algorithm, e.g., Random Forest (Publication | - Bartkova et al., 2020).
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4.3 A developed web application (EasyFlow) quickly provides analysis
and visualization of droplet experiment data (Publication Ill)

This section deals with simple data analysis of droplet array images without the need for
programming skills.

Every type of image analysis software is able to produce pixel profiles from image
data. Unfortunately, not every image is designed for droplet analysis. EasyFlow is built to
simplify the workflow of image-based droplet detection analysis and can host comma
separated value (.csv) or excel file format (.xIsx or .xls) from image analysis software
(Figure 14A). Using the mentioned file, the user can directly upload it onto EasyFlow and
it will generate four important visualizations for droplet experiments, including droplet
size and signal distributions, the relationship between size and signal pattern, and a
comparison of experimental conditions (Figure 14B). EasyFlow also provides tuneable
thresholding, where the user can define the manual threshold to classify two types of
droplets.

Easyflow generates the necessary graphs usually used to assess droplet-based
experiments. These include:

- Droplet size distribution (Sun et al., 2019)

To determine size homogeneity, especially in assessing mono-dispersity in
droplet generation using a microfluidics setup.

- Droplet signal distribution (Rutkowski et al., 2022)

To distinguish two or more types of objects, including droplets with and without
encapsulated objects.

- Relationship between droplet size and signal

To assess whether encapsulation is clumped in specific volumes or shows some
distributions.

- Comparison of experimental condition (Sanka et al., 2021; Scheler et al., 2020)

To show the distribution of signals in different labels which are usually used for
different droplet experiments, e.g., an antimicrobial susceptibility test (AST).
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A) EasyFlow is a web application which can process output data from image analysis software
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Figure 14. EasyFlow simplifies data processing and the visualization of image analysis software
output. A) Image analysis software generates Comma Separated Values (.csv) as the result of
droplet detection. Label, signal, and size data can be used to produce results in EasyFlow.
B) EasyFlow produces essential graphs that represent droplet profiles and provide necessary data
processing. This includes 1) droplet size distribution histograms, 2) the distribution of droplet
signals, 3) the relationship between droplet size and signal data, and 4) a comparison of
experimental condition (label) graphs. EasyFlow is equipped with adjustable binning and tuneable
thresholding. Thresholding is required to group two types of droplets and generate color-coded
plots (especially for relationship and comparison graphs) (Publication Il - Sanka et al., 2023).

4.4 Analytical pipelines for common droplet experimental scenarios
and their applications (Publication Ill)

This section provides the results for showcasing user-friendly analytical pipelines for
different droplet experiment scenarios.

4.4.1 Different droplet and object detection using user-friendly software

In droplet-based experiments, there are various types of image-based analyses which are
usually performed in different settings. For instance, it may depend on the types of
droplets, microscopy techniques, etc. (Figure 15). Here, we have provided different
pipelines for analyzing droplet image data that could be used as examples. Each of the
pipelines adopts the principle of pre-processing, processing, and post-processing,
as described in (Sanka et al., 2021).
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Experiments with A) polydisperse droplets (PD) and B) monodisperse droplets (MD)
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Figure 15. Typical droplets and objects of study in image data. These image data capture signals
from droplets and our objects of interest. A) show polydisperse droplets that encapsulate bacteria
which give different fluorescence signals and B) show monodisperse droplets that encapsulate
fluorescence and non-fluorescence objects (Publication Ill - Sanka et al., 2023).

The first pipeline works in polydisperse droplet detection, which accommodates
fluorescence object measurement (Figure 16A). In this case, the fluorescence represents
whether the droplet has objects or not. In brief, this pipeline starts with channel
splitting and splits the input image, which has false coloring — red, green, and blue — for
visualization. Using only an IdentifyPrimaryObject module, droplets can be detected with
ease. However, an additional filtering module is required to eliminate faulty
segmentation. The filtering module is added by considering different variables which are
important for eliminating non-cyclic objects, including eccentricity, solidity, and form
factors (Andersson et al., 2019; Tiemeijer et al., 2021).

For the second pipeline, the detection is performed to find fluorescence objects in
monodisperse droplets in fluorescent image data (Figure 16B). This pipeline is also able
to distinguish how many objects are encapsulated in each droplet. The pipeline starts
with color splitting using a ColorToGray module, similar to Pipeline 1. However, in this
pipeline, two modules of IdentifyPrimaryObject were used to detect droplets and
fluorescence objects separately. This includes a filtering module to eliminate imperfect
segmentation. Once both droplets and objects were detected, the relationship between
both detections was determined under a RelateObject module.

For the third pipeline, the detection can be implemented in brightfield image data and
is meant to detect monodisperse droplets which have objects in them (Figure 16C). This
pipeline uses a combination of llastik and CellProfiler™ (CP) to detect both droplets and
the objects of interest. Briefly, llastik was needed to detect objects in the droplets using
Pixel Classification and the Object Identification module. This detection resulted in a
probability map which could be used to perform object re-detection in CP. On the other
hand, droplets were detected using CP with some additional modules, e.g.,
EnhanceOrSurpress, IdentifyPrimaryObject, and RelateObject modules.

From each of the pipelines, both droplets and objects were measured using
MeasureObjectintensity and MeasureSizeShape to retrieve the pixel data. All of these
results were exported as .csv files to suit EasyFlow. Complete pipelines are explained
more thoroughly in (Sanka et al., 2023).
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A) Pipeline 1: Droplet detection and mean fluorescence measurement using CellProfiler™

.Csv

w/ bacteria

20020 0"
Channel splitting Droplet detection Filtering e

In both experiments which used polydisperse droplets, Pipeline 1 was used to detect the droplets and
generate .csv file which suitable for the analysis using EasyFlow. We used green and red channel from
channel splitting to perform droplet detection in CellProfiler™.

B) Pipeline 2: Droplet and fluorescent object detection in fluorescent images using CellProfiler™

w/ microalgae

Droplet detection Filtering

.Csv

Building
relationship

N . . EasyFlow .
Microalgae detection Evaluation

Channel splitting

Two detection modules was used to detect droplets and fluorescence objects. To evaluate the
detection and analyze the relationship between droplets and the objects, Masklmage module and
RelateObject module were used in this pipeline.

C) Pipeline 3: Droplet and object detection in brightfield images using llastik and CellProfiler™

. . .Csv

Probability Beads
Map detection

Selecting features  Annotation(s)

EasyFlow

Feature Droplet Filtering Building

lerobead :
w/ microbeads suppress detection relationship

llastik was used to detect non-fluorescence objects in the droplets. Ilastik generated probability map
that belongs to the objects and further detection was performed in CellProfiler™. Droplet detection
was also performed in CellProfiler™ with initial feature suppression. The relationship between objects
and the droplets were performed using RelateObject in CellProfiler™.

Each step is color coded with these: Pre-processing Processing Post-processing

Figure 16. Droplet image analysis pipelines for typical droplet experiment scenarios. These pipelines
cover polydisperse and monodisperse droplet detection in fluorescent image data, polydisperse
droplets in brightfield image data, and different objects in droplets (Publication Ill - Sanka et al.,
2023).
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4.4.2 Applications of droplet emulsions with user-friendly pipelines

We tested the pipelines to perform different microbiology research, e.g., controlled
growth of E. coli using a CRISPR system, an antimicrobial heteroresistance test in E. coli,
microalgae growth observation, and a microplastic bead (microbeads) droplet stability
test.

a) Bacteria with an aTc CRISPR system can grow in high temperatures

We tested Pipeline 1 by performing an analysis on CRISPR-based system bacteria, where
the growth could be adjusted by anhydrotetracycline (aTc). Gardner et al. (Gardner
et al., 2000) introduced a "toggle switch" that can be activated in the presence of aTg,
inhibiting bacterial growth, while its deactivation in the absence of aTc changes the
toggle switch to the OFF state, allowing bacterial growth to resume. Moreover,
the CRISPR system is temperature sensitive so that the bacterial growth will stop if the
temperature is high. As we can see in Figure 17, the droplet pixel intensities at 42°C with
an aTc or anhydrotetracycline “toggle switch” are higher than at 37°C. This shows the
“toggle switch” works by restarting the replication and proliferation after switching to
42°C. We can also see that both bacterial growths remained stable without additional
aTc. This corresponds to the result from Wiktor et al. (Wiktor et al., 2016), where
replication and proliferation could be triggered by switching the temperature to 42°C.

Pipeline 1: Droplet detection and mean fluorescence measurement using CellProfiler™

Experiment A: Droplet fractions with growing bacteria
Controlled activation of bacterial growth at different conditions
induced (aTc+) not induced (aTc-) 03+
- t R 0.257
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CRISPR-system blocks bacterial initiation & o15]
of replication at 37°C when induced k)
o
(aTc), but not at 42°C. § M FY o Eme e
0.05] S meSvs gaupds  RETRS dewein webidel
Pipeline 1 EasyFlow 37c 37CaTc  37Empty  42C 42CaTe 42Empty

Experiment

Figure 17. Controlled activation of bacterial growth using an aTc knock-out in polydisperse droplets
shows different growth rates at 37°C and 42°C. (Publication Il - Sanka et al., 2023)

b) Antibiotic activity in the B-period of the cell cycle

Pipeline 1 was also used to monitor the antibiotic activity in growth-synchronized
bacteria. Bacterial growth consists of three periods, including the preparation of DNA
replication (B-period), replication to termination (C-period), and the end of the
termination and division of bacteria cells (D-period) (J. D. Wang & Levin, 2009). In this
experiment, bacterial replication was “arrested” using serine hydroxamate (SHX) during
the B-period before adding antibiotics. This means the bacteria could have synchronized
growth and we wanted to see whether different stages of the bacterial growth period
affect the overall response of antibiotic treatment (Figure 18). However, based on the
results, we could not see any difference between non-arrested and arrested bacteria.
Both groups have the same viability, and this indicates that the B-period of the cell cycle
does not affect the antibiotic response to the bacteria.
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Pipeline 1: Droplet detection and mean fluorescence measurement using CellProfiler™

Experiment B: Bacterial growth toward higher
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Figure 18. Both normal and cell-cycle synchronized growth bacteria show similar resistance
responses (Publication Ill - Sanka et al., 2023).

c) Microalgae growth remains stable in droplets

In this experiment, we used Raphidocelis subcapitata microalgae cells for these
droplet-based experiments. The microalgae are important in performing toxicology
experiments (Suzuki et al., 2018). Therefore, it is important to see whether the
microalgae can grow in droplets. Using Pipeline 2, we observed that the microalgae’s
growth remained stable for over 72 hours (Figure 19). Multiplication occurred after
24 hours and we also observed that the growth became slower after reaching a specific
density, for example between 48 hours and 72 hours. It is known that microalgae
growth slows down after a certain density is reached (Lananan et al. 2013). Therefore,
the analysis corresponds to the mentioned previous research. In this case, growth is
slower after 48 hours.

Pipeline 2: Droplet and fluorescent object detection in fluorescent images using CellProfiler™

Experiment C: Growth of microalgae cells
Microalgae multiplication in droplets in different timepoints
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. & 307
subcapitata ?3’
S 20
Microalgae cells duplicate in droplets =
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Figure 19. Microalgae multiply in droplets over a 72-hour incubation period (Publication IlI -
Sanka et al., 2023).
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d) Microplastic bead encapsulation in droplets

Microplastic beads are suitable for simulating environmental pollution, which has
become a serious problem worldwide. Microplastics have some implications in remote
and marine ecosystems (Horton & Barnes, 2020). In this experiment, we tried to
encapsulate the beads in droplets to see whether the droplets would remain stable over
time. As we can see in Figure 20, observation after 24 hours showed different numbers
of microplastic beads were encapsulated in the droplets. Most of the droplets had three
to five beads in each droplet but the encapsulation rate showed that the droplet could
encapsulate from one to 14 bead(s). Moreover, this encapsulation follows the theoretical
Poisson distribution, which is explained in detail in the Supplementary Information of
Sanka et al. (Sanka et al., 2023).

Pipeline 3: Droplet and object detection in brightfield images using llastik and CellProfiler™

Experiment D: Encapsulation of beads in stochastic process
Microplastic encapsulation in droplets that follow Poisson distribution
Microplastic =
beads * Beoo
Droplets containing microplastic beads are § "
stable over time o
Pipeline 3 EasyFlow ° —

o 2 4 6 & 10 12 14
Microplastic in each droplet

Figure 20. Droplets with different numbers of microplastic beads are stable overnight (Publication
Il - Sanka et al., 2023).
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5 CONCLUSIONS

In this thesis, four important goals were reached. Briefly, each of the important
conclusions that reflect the aims are described below:
Provide a droplet detection platform for different droplet experiments.

Aim 1

Aim 2

Aim 3

Aim 4

Platform exploration resulted in the discovery of the four most used types
of user-friendly software (Imagel), CellProfiler, llastik and QuPath).
The types of software are capable of detecting droplets. The software
adopt rule-based and machine learning-based principles which help the
user to perform the pre-processing, processing, and post-processing steps.
All these types of software are user-friendly and provide simple pipelines
for non-experienced users.

Despite the user-friendliness, each type of software performed differently
in detecting droplets. Using 64 images, CellProfiler gives the highest
accuracy and precision. However, Imagel and QuPath have faster
processing times.

Find a suitable platform for droplet classification, which is needed to group
droplets in experiments.

Droplet classification can be performed by grouping average pixel intensity
through manual thresholding and machine-learning-based classification
software.

In manual thresholding classification, the grouping of two types of droplets
(e.g., empty and object-encapsulated droplets) can be performed by putting
a threshold value on the first local minima after the first local maxima.
Values below threshold indicate empty droplets and values above threshold
indicate object-encapsulated droplets.

Machine-learning-based classification software, such as CellProfiler Analyst,
is able to classify two types of droplets, e.g., droplets with and without
bacteria (with fluorescence labels).

Simplify data analysis of droplet array images, which usually requires image
analyst and programming skills.

Data analysis can be simplified by developing the user-friendly data
processing and visualization analytical web application EasyFlow. This web
application eases data processing and the visualization of droplet data
which are produced by image analysis software. It is open-source and users
do not need specific hardware. Furthermore, EasyFlow can be used by many
researchers with no prior experience, and it has a gradual learning curve.
Additionally, EasyFlow also can host any data that is stored as .csv or .xlsx
files containing labels, sizes, and signals.

Develop user-friendly analytical pipelines for different droplet experiment
scenarios.

Different pipelines were developed and tested to perform bacteria-based
experiments, microalgae growth experiments, and microplastic bead
experiments. These pipelines work with droplets of the same size
(monodisperse) and of different sizes (polydisperse). All of the pipelines are
user-friendly and require no prior image analysis experience or
programming skills.
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Abstract

User-friendly analysis of droplet experiments

Droplet emulsion techniques have revolutionized high-throughput experiments in
biological and chemical research. By encapsulating reactions within droplets, researchers
can achieve parallelization on a massive scale, saving time and effort. This method
involves the use of immiscible liquids, typically water and oil, with the addition of a
surfactant to stabilize the droplets. This technique has greatly improved existing
methods, such as ddPCR and high-throughput drug screening, and has led to
advancements in molecular detection. However, despite its robustness, the droplet
emulsion method often requires sophisticated setups, equipment, and custom analytical
pipelines to understand experimental results.

Imaging is one of the most accessible methods for data acquisition, especially in
droplet-based experiments, particularly using brightfield or fluorescence microscopy.
Although imaging is a widely used method, the analysis of droplet images poses
challenges due to the need for complex pipelines, which are not always clearly described
in published articles, as well as programming skills. These obstacles present difficulties
for new researchers and users without a background in image analysis.

This doctoral thesis focuses on providing a comprehensive platform for the detection,
classification, and analysis of droplets in various experiments. The aim is to simplify and
streamline the process for researchers with different levels of expertise and to develop
user-friendly analytical pipelines for different droplet experiment scenarios.

Recognizing the importance of analytical tools for droplet-based experiments,
especially for users with limited time and resources, this thesis accomplished four goals:
1) identified the most user-friendly types of software which can be used to detect
droplets and assessed their performance based on accuracy, precision, and detection
time, 2) determined two approaches to classifying droplets by manual thresholding and
the user-friendly droplet classification CellProfilerAnalyst, 3) developed the user-friendly
analytical web application EasyFlow to process droplet array images, and 4) tested
analytical pipelines which were developed to analyze bacteria-based experiments,
microalgae growth experiments, and microplastic bead experiments. These goals
eliminate the need for complex exploration and enable users to detect droplets or
objects of interest more easily.
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Lihikokkuvote

Kasutajasobralik analiiiitiline lahenemine tilgapohistele
katsetele

Droplet-emulsiooni tehnikad on muutnud suure labilaskevoimega katsed bioloogilistes
ja keemilistes uuringutes palju kattesaadavamaks. Reaktsioonide kapseldamine
tilkadesse vbimaldab teadlastel saavutada korget katsete paralleelsust, mis omakorda
sadstab aega ja vaeva. Selle meetodi kasutamiseks on vaja segunematuid vedelikke,
tavaliselt vett ja 6li, ning pindaktiivset ainet (surfaktanti), mis stabiliseerib tilgad. Tilkade
emulsioonitehnika on markimisvaarselt tdiustanud juba olemasolevaid meetodeid, nagu
ddPCR (digitaalne tilkpGhine polimeraasi ahelreaktsioon) ja suure labilaskevGoimega
ravimite séelumine, ning véimaldanud olulisi edusamme molekulaardiagnostikas. Siiski
nduab tilkade emulsioonimeetod tihti keerukaid lahendusi, spetsiifilist varustust ja
analtutilisi meetodeid ekperimentide tulemuste analiiisiks.

Tilgapohiste katsete tulemuste anallilisimisel kasutatakse tihti pildistamist, naiteks
helevilja voi fluorestsentsmikroskoopiat. Kui pildistamine on laialdaselt kasutatav
meetod, siis saadud piltide analiilis on keerukam kuna vajab tihti keerukaid meetode,
mida avaldatud artiklites alati selgelt ei kirjeldata ning kohati ka programmeerimis
oskust. See tekitab raskusi uutele teadlastele ja kasutajatele, kellel puudub vastav
pildianaliiiisi taust.

Antud doktorito6 keskendub tervikliku platvormi valjatéotamisele tilkade
tuvastamise, klassifitseerimise ja analiilisimise jaoks erinevates katsetes. Eesmargiks on
lihtsustada ja tBhustada protsessi erineva taustaga teadlastele ning luua
kasutajasdbralikud anallitilised todvood erinevate katsestsenaariumide jaoks, mis
kasutavad eksperimentides tilkasid.

Mdistes analiititiliste tooriistade tdhtsust tilgapohistes katsetes, eriti arvestades
kasutajatel tihti olevat piiratud aega ja muid resursse, t0i see doktoritdd neli tulemust:
i) tilkade tuvastamise platvormi erinevate tilkade katsete jaoks, ii) sobiv platvorm
tilkade klassifitseerimiseks, iii) lihtsustatud tilkade massiivne andmeanaliiiis ning
iv) kasutajasdbralikud analldtilised toovood erinevate katsestsenaariumide jaoks
tilkades. Nende eesmarkide saavutamisega valditakse vajadust keeruliste analiiliside
jarele ning v8imaldatakse kasutajatel lihtsamalt tuvastada tilgad ja/vdi nendes leiduvad
huvipakkuvad objektid.
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Appendix 1

Publication |
Bartkova, S., Vendelin, M., Sanka, 1., Pata, P., Scheler, O. (2020). Droplet image analysis
with user-friendly freeware CellProfiler. Analytical Methods, 12(17), 2287-2294.
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Droplet microfluidic assays are rapidly gaining popularity because they enable analysis of biochemical
reactions, individual cells or small cell populations with high sensitivity, precision and accuracy in a high-
throughput manner. Nonetheless, there is a demand for user-friendly and low-cost droplet analysis
technology. In this article, we meet this demand by developing two droplet analysis pipelines via free
open-source software CellProfiler (CP) and its companion (CellProfiler Analyst, CPA). To illustrate the
competence of the pipelines as an independent, and freely accessible droplet analysis tool for any
researcher without the need of programming skills, we show (i) droplet digital quantification of viable
fluorescent bacteria using single-color images and (i) analysis of a multi-color fluorescence image with
droplets containing different chemical compositions.
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Introduction

Droplet microfluidic assays are increasingly finding use in
microbial and nucleic acid analysis assays. In microbiology,
droplet microfluidics has opened up several new experimental
possibilities." Examples of microfluidic applications include
antibiotic susceptibility studies at the population and the single
cell level,” investigation of microbial interactions,® and quanti-
fication of viable bacteria.* Due to its high precision, sensitivity
and robust automatic calibration, droplet digital PCR (ddPCR)
has become a strong alternative to traditional quantitative PCR
(qPCR) in quantifying nucleic acids in both diagnostics and
laboratory research.>® Both, in microbiology and nucleic acid
analyses, the detection of positive signals in droplets is usually
achieved by measuring their fluorescence."”

Analysis of detected droplets often comprises of analysis
software coupled to specific droplet platforms. However, the
availability outside designated microfluidics laboratories is

“Department of Chemistry and Biotechnology, Tallinn University of Technology,
Akadeemia tee 15, 12618 Tallinn, Estonia. E-mail: ott.scheler@taltech.ee
*Department of Cybernetics, Tallinn University of Technology, Akadeemia tee 15,
12618 Tallinn, Estonia

+ Electronic supplementary information (ESI) available: ESI Fig. S1 and S2
showing the cross-validation results of our constructed training data and model
in CPA classifier. ESI Fig. S3 illustrating histograms based on data from the
analyzed multicolor fluorescence image.** ESI Table S1 with all exported data
from our dataset through “ExportToSpreadsheet” module. ESI Table S2
containing the comparison of the ability of CP identifying droplets and CPA
identifying viable bacteria versus results obtained by manual counting. Finally,
a detailed guide for droplet analysis using our two publicly available pipelines
(https://github.com/taltechmicrofluidics/CP-for-droplet-analysis) with software
CellProfiler (version 3.1.8) and CellProfiler Analyst (version 2.2.1) (pdf). See DOI:
10.1039/d0ay00031k

This journal is © The Royal Society of Chemistry 2020

limited. Such a limitation commonly reflects the lack of trans-
ferability and user-friendliness of the platforms for non-
specialists. Commercial droplet analysis platforms have over-
come some of these limitations through the development of
ddPCR® e.g. from Bio-Rad,® RainDance Technologies®® and
Stilla Technologies.” Their application is designed to be
comprehensible by non-specialists. This can also be expanded
beyond nucleic acids to include other fluorescent targets, like
eukaryotic cells and microbes. Each of the companies provide
their own combined solution for droplet handling fluidics,
fluorescence imaging equipment and its data analysis tools.
This experiment is either done by reading fluorescence droplets
in a microfluidic channel one-by one®® or imaging droplets in
a monolayer 2D array format.'” The main disadvantage of these
platforms is their limited accessibility to a wider audience due
to high initial hardware and software acquisition costs.®

Many microfluidics laboratories have instead developed
their own custom platforms for droplet detection. Similar to
commercial platforms, they are based on either the detection of
droplets in microfluidic channels**™** or imaging a 2D mono-
layer array.**** In both cases, the droplet fluorescence analysis
usually involves developing a custom script based on e.g. Lab-
view,>'* Image],"* Matlab,"”* FluoroCellTrack,* or Open Source
Computer Vision Library (OpenCV).?*2 However, scripting such
analytical tools and customizing them to meet the needs of
specific experimental assays in the lab requires expertise in
scripting and programming. This is not always sufficiently
available in traditional biology and chemistry laboratories.
Recently developed inexpensive and portable smartphone-
based platforms solve this concern through custom made
droplet analysis phone apps.**** Both platforms show great
potential for point-of-care application,; nonetheless, the

Anal. Methodss, 2020, 12, 2287-2294 | 2287
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technology is still bound to (i) specific droplet platforms and (ii)
the target of interest (i.e. nucleic acids* and viable bacteria®*).
In addition, the applications are currently still inaccessible
online.

Here, we argue that there is an unmet need for a ready-to-
implement droplet analysis technology that is (i) easily adapt-
able, regardless of laboratory set-up, biological targets and
personnel; and at the same time (ii) affordable for researchers
in conventional chemistry and biology laboratories. For
example, depositing droplets as a 2D array on modified micro-
scope slides for imaging is a cost-effective and easy-to-learn
approach to introduce high-throughput droplet-based
screening for diverse research environments.'” Suitable soft-
ware for the analysis of such arrays are Image]'>* and Mat-
lab,"”** though both of them have a steep learning curve.

In this paper, we address this issue and describe a droplet
analysis technology based on free open-source software Cell-
Profiler (CP) and its companion CellProfiler Analyst (CPA). The
software was created by the Broad Institute Imaging Platform
and have enabled biologists without training in scripting or
programming to quantitatively measure phenotypes from high-
throughput fluorescence microscopy images.” CPA was
designed to provide user-friendly tools for the interactive

View Article Online

Technical Note

exploration and analysis of the data created by CP.** This
includes a supervised machine learning tool called “Classifier”
that can be trained to recognize phenotypes and automatically
score millions of cells.>®

Results and discussion

We demonstrate the applicability of our technology using
droplet digital quantification of viable fluorescent bacteria. We
generate water-in-oil droplets using a microfluidic chip with
flow-focusing geometry.> Droplets contain diluted bacterial
cells, growth media, and the fluorescent tracer dye fluorescein
isothiocyanate (FITC) that generates a low intensity fluorescent
background needed for subsequent identification of droplets
(Fig. 1A). For visualization, we deposit a droplet monolayer on
a modified microscope slide and image them with a fluores-
cence widefield microscope (Fig. 1B).

We introduce droplet images to our CP image analysis
pipeline, by importing raw Tagged Image File (TIF) format
images with droplets into the constructed CP pipeline. CP
employs Bio-Formats to read input images and can currently
read more than 100 available file formats such as BMP, GIF,
JPG, PNG, and TIF.”” Lossless formats, such as TIFF, are

gDropIet generagfl)n Droplet B

i . .
; H llecti
; : : cotfiection Hydrophobic
: Bacteria - : ;
T and microscope slide
gFITC dye Overnight )(p / /

Filter
A Inlet for bacteria
and FITC dye

Inlet for oil

incubation 37°C

“glue box”

Droplet monolayer }

Fluorescence microscopy

Fig. 1 Droplet generation and microscopy. (A) We generate water-in-oil droplets with an average diameter of ~115 pm, containing bacterial
cells, growth media and FITC tracer dye, followed by overnight incubation of droplets at 37 °C; (B) next, we pipette the overnight-incubated
droplets onto a modified hydrophobic microscope slide where they form a monolayer. Then, we fence the droplets by a previously deposited
rectangular elevation made of super glue, which we call a "glue box". Next, we loosely cover the “glue box" with a coverslip. Finally, we visualize
the 2D array droplets using a fluorescence widefield microscope. In this experiment, we analyze ~6900 droplets on a single microscope slide.
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Fig.2 Image analysis with CellProfiler. (A) Overview of our CellProfiler pipeline for analyzing droplet images; (B) we use the CellProfiler module

“ldentifyPrimaryObjects” for identifying droplets in each image. The module identifies objects (in our case droplets) based on multiple parameter
settings. Key parameters include: (i) the typical diameter of objects, (ii) threshold strategy (automated strategies or manual), (i) method for
distinguishing and drawing lines between clumped objects (shape or intensity), (iv) discarded objects outside of the diameter range, and (v)
discarded objects touching the border. We color the “Input image” green for visualization purposes, but all images we use for analysis are in
greyscale. In the "Droplets outlines” image, all the found droplets with fluorescence intensity units above our threshold have markings around
them. Those that are within the correct diameter range are marked with a green outline. Droplets with a yellow marking are discarded because
they are touching the image border and the small droplet with the purple marking is discarded due to having a diameter outside the designated
range; (C) the image histogram from the module “Images” depicting four typical pixel intensity sections in our images: camera offset, back-

ground, negative droplets and positive droplets.

preferred”” and pixels are kept stable, suitable for scientific
image data.®

The CP pipeline we present identifies droplets and measures
their relative fluorescence. We created a pipeline to identify and
measure the relative fluorescence intensity of droplets in our
images (Fig. 2A). To identify droplets, we use the module
“IdentifyPrimaryObjects” (Fig. 2B). This module has several
features, including thresholding and object classification,
which is usually used for the identification of objects in gray-
scale images. The conditions for these features are specified by
the user. Thresholding turns image pixels into values, which are
then classified into two types (black and white).*® A specific
value is set as the limit for each pixel type. This limit is applied
for the segmentation of objects.*®

In CP, there are different types of automatic (e.g. Otsu and
Robust Background) and manual thresholding methods, which
are all explained in CP. We determined that the manual
threshold method provides the most optimal droplet detection.
By use of the module “Images” in CP (Fig. 2A), we visualized the
image pixel intensity distribution (Fig. 2C). The dip between the

This journal is © The Royal Society of Chemistry 2020

histogram peak depicting image background pixels and the
peak depicting image droplet pixels (Fig. 2C), enables us to find
a suitable threshold range. We test the different values within
the range of 0.021-0.024 in CPs “Test Mode” option on 30 of our
images to find the most optimal threshold value for our dataset.
The selection of the manual threshold and sensitivity of this
method is dependent on the user's bacterial strain (or other
particles of interest), droplet incubation time, microscope
hardware, and used labeling techniques.**"** In our experi-
ment, droplets with viable bacteria and empty droplets have
similar fluorescence intensities right after droplet formation so
we use overnight incubation to obtain a clear threshold sepa-
ration between the two groups. We also recommend using the
same excitation light and readout sensitivity in practice to
simplify analysis. We then apply the “MeasureObjectIntensity”
module to measure the relative fluorescence of all droplets.
Measurement data is automatically saved as either an .h5 file or
a .mat file, based on the user's preference. The module
“ExportToSpreadsheet” (optional) exports all measurements as
a .csv file, which can be opened in other programs such as

Anal. Methods, 2020, 12, 2287-2294 | 2289
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Microsoft Excel (see the ESI Table S1t), R, or Python. Finally, we
apply the module “ExportToDatabase” to create a SQLite data-
base with all data measurements for further analysis in CPA.
We use the data generated by the CP pipeline to calculate the
number of viable fluorescent bacteria in the sample. We import
the data from the CP pipeline stored in the SQLite database into
CPA, where we (i) train and employ the CPA Classifier tool to
calculate the number of viable fluorescent bacteria in the
sample (Fig. 3A) and (ii) construct a histogram to display the
frequency distribution of the mean of the relative fluorescence
intensity (Fig. 3B). Although additional classes can be added to
CPA Classifier, in our case we have a simple system where we

A CPA/ Classifier

& CPA/Classifier - TechnicalPaper_TechnicalPaper.properties
File View Hamamatsu DropletNumber Images Classifier Evaluation Advanced Help
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want to distinguish between droplets containing viable bacteria
and empty droplets. We evaluate our constructed training
dataset and model by 5 fold cross-validation displayed in two
ways. For each fold, our training dataset is subdivided further
into a training and testing set, where the algorithm is first
trained on the training set and then evaluated on the test set.
CPA displays accuracy of classification through a confusion
matrix, a table that describes how well the cross-validation
model for classifying droplets performs compared to the actual
training dataset with the predefined two classes that we
construct.?® The results yield a 99.50% accuracy (see the ESI
Fig. S1t). A classification report is also displayed by CPA to
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Fig. 3 Data visualization and classification with CellProfiler Analyst tools. (A) We train the supervised machine learning tool “Classifier” to
automatically classify negative and positive droplets. The overall positive fraction of bacteria is 3153/6899 = 0.45, that translates into the mean
bacteria cells per droplet 1 = 0.61 based on the Poisson distribution model. This correlates with our aim during droplet formation of having
roughly the same amount of positive and negative droplets in our sample for illustration purposes. For single cell experiments the value is
recommended to be around 0.1; (B) we visualize data via the "Histogram” tool, based on the mean fluorescence intensity units of droplets. For
visualization purposes, we draw a manual threshold based on the depicted mean fluorescence between the fluorescence peak of negative and
positive droplets, respectively.
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Fig. 4 Image analysis of the multicolor fluorescence image from the study by Genot et al. (2016)** with CellProfiler (CP). (A) We use module
“|dentifyPrimaryObjects” for identifying droplets in the aligned image depicting the fluorescent dye 5-carboxytetramethylrhodamine (TAMRA).
The key parameters for droplet identification are listed in Fig. 2. Two parameters were adjusted from our data set to this: (i) the manual threshold
and (i) typical diameter of objects. The “Droplets outlines” image depicts the ~10.000 identified droplets (same as reported in the original
study*?), which had fluorescence intensity units above the manually set threshold; (B) we import the data generated by CP into CellProfiler Analyst
to visualize the fluorescence intensities of the four dyes within five representative droplets. The dyes include: fluorescein (FAM), 5-carboxyte-
tramethylrhodamine (TAMRA), dextran Alexa Fluor 647 (Alexa), and dextran Cascade Blue (Cascade).

evaluate precision and recall metrics and the F1-score for the
two classes. This results in values of 0.99 and 1.00 for the
negative and positive classes respectively (see the ESI Fig. S27).

To further demonstrate that this method has broad appli-
cation across many systems, we also apply our method to
a multicolor fluorescence image from the study by Genot et al.
(Nat. Chem., 2016).* By using the image of droplets containing
various chemical compositions, the study investigated a bista-
ble DNA switch reaction network. Among other ESI,} the study
provides readers with four images, each depicting one of the
four fluorescent dyes present in droplets.*® To ensure droplets
in all four images are aligned prior to droplet identification in
CP, we add module “Align” before module “IdentifyPrimar-
yObjects” in our pipeline. We use the aligned image depicting
the fluorescent dye TAMRA*® to adjust the manual threshold
and typical diameter range in “IdentifyPrimaryObjects” to
identify droplets (Fig. 4), which are subsequently used for
measuring the relative fluorescence intensity of each of the four
dyes within the droplets by module “MeasureObjectIntensity”.
To illustrate the accuracy of our method, we use the data
generated by our CP pipeline to replicate results from the study
shown in their Fig. S16 (ref. 33) (ESI Fig. S37).

This journal is © The Royal Society of Chemistry 2020

Finally, we compare the overall ability of CP to identify
droplets in our fluorescence images and the external multicolor
fluorescence image with results obtained by manual counting.
In both cases CP identifies slightly fewer droplets (see the ESI
Table S271). This is caused by some droplet size variation and the
lack of optimal image quality, which highlights the importance
of obtaining uniform and good quality droplets, as well as high
quality images for enabling the best possible analysis.

Based on our experience, we have found that CP has an
intuitive user interface that is easy to learn for the general
audience. Even though some of the features need to be adjusted
to meet the specific criteria, this software can give some room
for the user to find their expected result. Because of this user-
friendly interface, no prior experience in programming is
needed for using CP or its companion CPA.** Taken together
with the available online examples, tutorials, manuals and
discussion forums, CP is an easy-to-learn analysis software for
biologists and other scientists without a background in bio-
informatics.** The combination of ease-of-use and flexibility of
this technology moreover extends its scope across many scien-
tific fields where the use of droplet microfluidic has shown
promising results e.g. generating microspheres and vesicles
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with various components®*~*® and clinical settings e.g. antimi-
crobial susceptibility testing.*?”

Conclusion

In this article, we presented a droplet analysis technology based
on the free open-source software CellProfiler and successfully
analyzed thousands of droplets with viable fluorescent bacteria
and a multicolor fluorescence image with droplets containing
different chemical compositions. The droplet analysis tech-
nology we described here is easily adaptable, affordable and
automated. This makes it an excellent software tool for assisting
researchers in conventional laboratories around the world,
particularly to extract and analyze quantitative data from digital
droplet assays containing thousands of droplets and more. The
advantages of this technology include high adaptability, speed,
and accessibility at zero cost. The main disadvantage in our case
was the inability to import certain file types directly into the
software (e.g. Obtained Hierarchical Data Format 5 [HDF5]
files). In the end, whether one decides to implement this or
another droplet analysis technology, the most critical part is
acquiring high-quality images prior to analysis, thereby taking
advantage of less manual work, faster analysis and higher
adaptability.

Materials and methods
Droplet generation and collection

We generate water-in-oil droplets with an average diameter of
115 pum using a poly(dimethylsiloxane) (PDMS) microfluidic
chip with flow-focusing geometry? (Fig. 1A). Droplets contain an
overnight culture of Escherichia coli JEK 1036 with a chromo-
some-incorporated gene encoding the green fluorescence
protein (GFP). Bacteria are grown in Luria broth mixed with
FITC dye, roughly diluted to a bacterial density yielding a 50 : 50
ratio of positive and negative droplets and 1 pg mL ™" of FITC
(Fig. 1A). We use Novec HFE 7500 fluorocarbon oil with 2%
concentration of perfluoropolyether (PFPE)-poly(ethylene
glycol) (PEG)-PFPE triblock surfactant for the continuous
phase. The surfactant was a kind gift from Professor Piotr
Garstecki from the Institute of Physical Chemistry, Polish
Academy of Sciences. After collection in a 1.5 mL Eppendorf
tube, we incubate the droplets overnight at 37 °C.

Droplet imaging

We construct a 1.5 x 1 cm rectangular elevation with a height of
250 pm of four layers of super glue (Loctite Precision), which we
call the “glue box”, on a microscope slide (Kaltek, +76 x 26
mm). After drying, we silanize the “glue box” for 3 h using tri-
decafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane vapors
(United Chemical Technologies, USA).

We pipette the droplets onto a hydrophobic microscope slide
where they form a monolayer inside the “glue box”, which we
then loosely cover with a coverslip (Kaltek, 18 x 18 mm)
(Fig. 1B). Then we acquire the fluorescence intensity of the
bacteria (GFP) and FITC using a fluorescence widefield
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microscope with the following settings: objective UPlanFL N
10x/0.3, excitation LED 470 nm (at 40%), excitation filter 461-
483 nm, excitation dichronic 488 LPXR, and emission filter set
to 550/88 HC.

CellProfiler pipeline

We use CP (version 3.1.8)*** to design and execute the pipeline.
Prior to importing into CP, we converte all 64 acquired images
in the HDF5 format to the grayscale TIF format, owing to CP
using Bio-Formats to read input images.>” We import the folder
containing the TIF format images into the CP “Images” module.
Next, we use the “IdentifyPrimaryObject” module to find objects
of interest (droplets) in the analyzed images. To find all droplets
based on manual examination of 30 randomly selected images
from the experiment, we set the threshold manually to 0.023.
We enhance the image contrast during inspection for visuali-
zation purposes, yet use only original grayscale images for
analysis. Next, we set the typical diameter range of found
droplets to 150-250 pixels. All droplets found outside of the
diameter range or touching the border of the image are dis-
carded. The separation of clumped droplets is based on the
shape. Then we use the “MeasureObjectIntensity” module to
measure the pixel intensity units of the objects, with the
intensity range set to Image Metadata in the “NamesAndTypes”.
A detailed explanation of all the available intensity ranges can
be found in the CP online manual (http://cellprofiler-
manual.s3.amazonaws.com/CellProfiler-3.1.8/index.html). We
export the data as a .csv file to allow optional analysis through
other software using the “ExportToSpreadsheet” module. We
also export the data to the database SQLite and create a prop-
erties file using the “ExportToDatabase” module to enable
further analysis of data in CPA. Finally, CP also automatically
creates a data output file in the HDF5 format.

For analysis of the external multicolor fluorescence image,*
we add an additional module “Align” to our constructed pipe-
line, which we place prior to module “IdentifyPrimaryObjects”.
We use this module to align the droplets in all channels (i.e. in
the four greyscale images, each depicting a respective dye Alexa,
Cascade, FAM and TAMRA). The only differences in module
“IdentifyPrimaryObject” are the manual threshold settings and
typical diameter range of the found objects, which are adjusted
to 0.12 and 40-70 pixels respectively, based on the aligned
image depicting the fluorescent dye TAMRA. We then use these
found objects (droplets) in the “MeasureObjectIntensity”
module to measure the pixel intensity units of each of the four
dyes (FAM, TAMRA, Alexa, and Cascade) within all the identified
droplets using the same settings as before. We export all data
the same way as explained above.

The two pipelines described here are publicly available at our
repository on GitHub (https://github.com/taltechmicrofluidics/
CP-for-droplet-analysis). An accompanying detailed guide for
droplet analysis is available as online ESL.{

CellProfiler analyst

We use the properties file created by CP to facilitate the access
of CPA (version 2.2.1)* to the SQLite database containing the
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CP pipeline data. We visualize the mean fluorescence inten-
sity units of droplets by using the CPA histogram tool
(Fig. 3A). In the CPA supervised machine learning tool
“Classifier”, we fetch 200 random droplets from the images
and use them to manually create two classification categories:
positive (with bacteria) and negative (without bacteria)
(Fig. 3B). Each category contains 100 droplets that the clas-
sifier can use for training. Based on the random forest algo-
rithm,*® the classifier acquires the following five top features
it utilizes for automatic classification: MeanIntensity
(average pixel intensity within an object), Upper-
QuartileIntensity (intensity value of the pixel for which 75%
of the pixels in the object have lower values), MaxIntensity
(maximal pixel intensity within an object), StdIntensity
(standard deviation of the pixel intensities within an object),
and MADIntensity (median absolute deviation value, defined
as the median [|x; - median(x)|], of the intensities within the
object). We then evaluate and apply the training set and
model to the 64 images to classify all the droplets. For future
use, we also save the training set as a .csv file and our model
as a .model file. Finally, based on the positive fraction of
bacteria, we calculate the mean bacterial cells per droplet
using Poisson distribution.”

For CPA analysis of the external dataset of a multicolor
fluorescence image,** we produce the following graphs as done
by Genot et al. (2016)* shown in their Fig. S16: (i) two density
histograms through CPA's density plot tool depicting droplet
mean fluorescence intensity units (Alexa, Cascade) and (FAM,
TAMRA) (ESI Fig. S3At) (ii) four histograms with droplet mean
fluorescence intensity units of each of the four dyes (FAM,
TAMRA, Alexa, and Cascade) by use of the CPA histogram tool
(ESI Fig. S3BY).

For a more detailed guide on all droplet analysis in CPA,
consult the detailed guide “CellProfiler and CellProfiler Analyst
Guide” in the online available ESI.{
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ABSTRACT: Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered
novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis
tool. For droplet analysis, researchers often use image-based detection techniques. Unfortunately, the analysis of images may require
specific tools or programming skills to produce the expected results. In order to address the issue, we explore the potential use of
standalone freely available software to perform image-based droplet detection. We select the four most popular software and classify
them into rule-based and machine learning-based types after assessing the software’s modules. We test and evaluate the software’s (i)
ability to detect droplets, (ii) accuracy and precision, and (jii) overall components and supporting material. In our experimental
setting, we find that the rule-based type of software is better suited for image-based droplet detection. The rule-based type of
software also has a simpler workflow or pipeline, especially aimed for non-experienced users. In our case, CellProfiler (CP) offers the
most user-friendly experience for both single image and batch processing analyses.

H INTRODUCTION

Droplet microfluidics has become a powerful tool for high-
throughput analysis over the last few decades." It allows
compartmentalization of samples in massive parallelization.”
This high-throughput technique is also compatible with
different analytical technologies, e.g, mass spectrometry.’
Droplets are often applied for high sensitivity nucleic acid
diagnostics® or different microbiological studies.” For instance,
the tool has also been used to perform high-throughput
screening for protein crystals,” DNA quantification by digital
droplet polymerase chain reaction (ddPCR),”® detecting
viable bacteria and heteroresistance in antimicrobial experi-
ments,”'’ or performing experiments with mammalian cells.""

Image-based analysis has often been used in droplet
microfluidic experiments.'”> The analysis has been imple-
mented in different types of image data, from single static
image up to real-time data, either by bright-field or
fluorescence microscopy.'® This approach has been used for
a wide range of experiments, such as bacterial surveillance of
foodborne contamination,'* screening of specific substrates,"’
single-cell analysis,'® and detecting viable bacteria or viruses
(e.g, SARS-CoV-2)."”"® Image-based droplet analysis (IDA)

© 2021 The Authors. Published by
American Chemical Society

WACS Publications

often requires specific skills in programming that are not
widely available in non-specialist laboratories. Most of the
published articles in droplet detection use scripted programs,
such as Circular Hough Transform in Python programming
language,w Mathematica,””*! Scikit-image in Py’chon,22 Image
Processing Toolbox from MATLAB,” OpenCV and Keras in
Python,”* and OpenCV in C++.>° There are some user-
friendly software that may be used for droplet microfluidic
image analysis, such as the Zen imaging program®® and NIS-
Elements from NIKON."* However, these kinds of programs
are only commercially available.

There is a need for widely accessible and user-friendly IDA
tools for image-based droplet analysis. Open-source software is
available and can be used to detect and/or analyze droplets.
For example, Image]J software has been used to analyze image
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data in general”” including droplets,*® or CellProfiler (CP),
whlch was developed to identify and measure various bioimage
data.* Even though some published articles mention the use
of the software, information regarding their workflow is limited
(the data is often missing from publications). This would
confuse early-stage researchers with little or no experience in
image analysis, specifically for image-based droplet detection
using no programming skills. However, novel workflows can be
constructed by combining functions, modules, or pipelines
from different software, like building a puzzle

Here, we (i) demonstrate how to use different software for
the analysis of droplet images in static 2D images and (ii)
explore the differences and similarities of workflows in the
different software from the perspective of detecting, counting,
and measuring the properties (including but not limited to
droplet number, diameter, fluorescence intensity of droplets,
etc.) using four selected software (Table 1).

Table 1. General Characteristics of Selected Software®

Requirement CellProfiler ~ Image] Tlastik QuPath
Version 4.03 1.52p 1.3.3 023
Operating system Win, Mac Win, Mac  Win, Mac ~ Win, Mac
Bit machine 64 and 32 64 and 64 64

32

RAM and hard disk 4Gb & NA NA & 8 Gb & 4 Gb &

space NA NA NA
Written in Python Java Python Java
Compatible file format ~ wide” wide” wide” wide”
Output” v v v v
Available plugins v v
Documentation v v v v
Batch processing v v v v

Wlde is the general image file type, such as TIFF, JPEG, PNG, etc.
bGenerates object size, pixel intensity, circularity, object position, etc.
‘v = available, — = not available

B RESULTS AND DISCUSSION

Software Selection and Workflow Construction. The
most popular software for image analysis are Image] (IJ),
CellProfiler (CP), Ilastik (Ila), and QuPath (QP). Here, we
use Twitter and Scopus repositories to find the popularity of
the software in the field of image analy51s Twitter has been
used for research purposes before.”” We found that social
media also give researchers the opportunity to push their
findings and correlate them to a greater citation.” To find the
popularity, we executed Twint’* Python script using each of
the software’s name as the keyword. For finding the results
from Scopus’ repository, we also used the same keyword. Both
searches were performed to acquire data from January 1, 2010
to December 31, 2020. Based on the Scopus and Twitter
search (obtained on February 11, 2021), we showed the sum
of “tweets” or 160-character max of text from Twitter and the
sum of Scopus search in scatter plot (Figure 1A). The most
popular software are Image],”” CP,* Ilastik, and QuPath, in
blue, red, cyan, and green color, respectively. Ilastik uses the
concept of supervised machine learning in their workflow,” 36
and QuPath has been used as a whole slide image analysis
tool.”” We continued with these four popular software tools
and used them to detect droplets on the image dataset
previously described by Bartkova et al.”' (Figure 1B). Then, we

took a deeper look into their workflow and assessed their
performance with different key parameters (Figure 1C).

Rule-Based and Machine Learning-Based Software
for Droplet Detection. We divided the selected software into
two groups (rule-based and machine learning-based) according
to their workflow. In the rule-based software group (CP and
ImageJ), users have to manually provide settings for the
program to select the pixels of interest with numeric or known
parameter in order to detect droplets. In the machine learning-
based group (Ilastik and QuPath), on the other hand, users
may select the areas of the image (labeling) and manually
annotate them as objects of interest (e.g, droplets or
background) for pixel classification. Based on these character-
istics, we described the abstraction of the process with three
increasing levels and used it to direct the image-based droplet
detection.

Pre-processing, Processing, and Post-processing
Concepts. We used the terms (i) pre-processing, (ii)
processing, and (iii) post-processing. (i) In pre-processing,
we modified, adjusted, and prepared the image data for further
use. For instance, we performed pre-processing to duplicate
the image data, introduce features, and make annotation(s) on
the image. In addition, we also include the image setup, such as
image upload, metadata setting, and supporting option before
processing the image data. For instance, we also included the
macro record in IJ and the metadata setup in CP.

(ii) In processing, we conducted segmentation or pixel
partitioning based on color, intensity, or texture along with
droplet detection or counting process.”® Usually, processing
steps may help users obtain a specific type of data.*” In our
case, we introduced thresholdring to distinguish between the
background (dark) and the foreground (droplets). For the
details, CP came in handy and only needed one module named
“IdentifyPrimaryObject”, which contained some options to
detect droplets. This included thresholding, smoothing,
segmentation, and automatic selection. In Image], processing
steps had three options: “Thresholding”, “Watershed”, and
“Analyze Particle”. Similar to CP, these three steps will provide
selections to detect the droplets. In the processing part, Ilastik
had to process “Thresholding”, “Object Feature Selection”, and
“Object Classification” for selecting the droplets and discarding
the background. In QuPath, we found all of these features in
“Pixel Classifier”. The settings included a classifier from an
artificial neural network with multilayer perception
(ANN_MLP)* with high resolution, using four multiscale
features (Gaussian, gradient magnitude, Hessian determinant,
and Hessian max eigenvalue) with probability as an output.

(iii) For the last step, in post-processing, we prepared data
extraction or generation for further use, for example, to
generate a table of data or type of images for visualization. In
CP, this last step was performed with “OverlayOutlines”,
“OverlayObject”, “DisplayDataOnImage”, and “ExportToS-
preadsheet”. These modules generated the images and results
in CSV format. The order was similar in Image] and Ilastik, but
the option was available in “ROI Manager” and “Export”,
respectively. In QuPath, the results can be obtained by
exporting annotations from detected objects or called as
labeled images. We used the Groovy script to generate this
result using commands in “Workflow” tab. Groovy is a
compiled language that can be integrated seamlessly with Java.
However, it has some semantic and practical differences,
especially regarding syntax."' For a brief workflow/pipeline, we
provide the scheme of third level complexity in Figure 2.

https://doi.org/10.1021/acsomega.1c02664
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C) Three levels of abstraction in image-based droplet detection

Software Rule-based Machine learning-based

Image Preparation

Image Preparation
and Annotation(s)

Training
and Detection

Processing Detection

Figure for Future Use

1st level 2nd level

3rd level

Figure 1. Schematic of droplet generation and image analysis of a single image. (A) We generated water-in-oil droplets using a flow-focusing
microfluidic chip (left). We used a fluorescence microscope to obtain “raw images” of droplets that contained fluorescence producing bacteria
(middle). For the analysis of droplet images, we used the four most popular image analysis software that were selected according to hits in social
media (Twitter) and Scopus search (obtained on February 11, 2021) (right). (B) Droplet detection comparison among (i) Image] (IJ), (ii)
CellProfiler (CP), (iii) IHastik (Ila), and (iv) QuPath (QP). (C) We divided the image processing software into two groups (rule-based and
machine learning-based) and explored their logic and working principle on three levels of abstraction. (1) The first level shows that used software
are very similar in their basic image processing logic. They usually have three processing stages in their image analysis logic: pre-processing,
processing, and post-processing. (2) The second level shows distinction between two groups of software in droplet detection: rule-based, where
users define how to detect droplets by giving specific parameters (e.g., threshold or size), or machine learning-based, where users classify/annotate
grouping of pixels on an image. (3) The third level shows a number of different steps and modules in processing stages. For the object on the left
side of each workflow, we use a triangle to determine the module with only one option, rectangle for the module with two to eight options, and
circle for the module with more than eight options.

CP Has the Highest Accuracy and Precision. By (7145), we investigated the ability of the analyzed software
comparing the results with manually counted droplets to detect droplets. We only counted the droplets that did not
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Figure 2. Detailed third level of abstraction for image-based droplet
detection using (i) CellProfiler, (i) Image], (iii) Ilastik, and (iv)
QuPath. The symbols represent how many options are within each
module, referring to the previous figure where the triangle, rectangle,
and circle represent one, two to eight, and more than eight options,
respectively. The background colors correspond to pre-processing
(cyan), processing (yellow), and post-processing (magenta).

touch the image border and did not make a bundle (joint
droplets because of failed segmentation). We performed
sensitivity and specificity tests using True Positive (TP),
False Positive (FP), and False Negative (FN) values based on
the comparison with manual counting.** The TP confirms the
positive droplet detection in the data. For FP, the value is
obtained by finding false droplet detection or underestimation
(type I error). In FN, the software does not detect the droplet
or performs overestimation (type II error). We defined TN as
the background (black = 0). After the calculation, we obtained
the accuracy ((TP + TN)/(TP + TN + FP + FN)) and
precision (TP/(TN + TP)) from the detection. This accuracy
explains the ratio between the correct droplet detection and
total number of droplet detection. On the other hand,
precision describes the probability to produce the correct
droplet detection in total positive detection.”*™* The accuracy
of each detection ranges from 74.7 to 96.2%. One of the
software managed to generate a precision of up to 99.8%
(Table 2).

Low-Image Quality Gives More False Detection. From
Figure 3, we can see how each group shares similar errors in

Table 2. CP Gives the Highest Accuracy and Precision

Category CellProfiler Image] Tlastik QuPath
% Accuracy 96.2% 92.7% 74.7% 80.9%
% Precision 99.8% 96.3% 80.2% 83.1%

2 80
70

64 Images
#False Positive Events
64 Images
#False Negative Events

#Number of Erroneous Events

6 5L o

CP Image] llastik QuPath CP  Image] Ilastik QuPath

Figure 3. Droplet detection errors are higher in machine learning-
based software in the diagnostic test. The figure shows the False
Positive (FP, wrong detected droplet) and False Negative (FN, wrong
undetected droplet) events per image. Each block represents event or
image error detection. The scale shows the number of errors (dark =
high and bright = low).

every event (detection per image). We compared the false
detection results (both FP and FN) from each of the software.
We found that the rule-based group (CP and Image]) have less
false detection compared to the machine learning-based group
(Tlastik and QuPath). However, Ilastik and QuPath received
high error because they do not have filters to eliminate the
droplets that touch the border, and some droplets are falsely
detected as joint droplets (Figure S1). Figure 3 also shows
images, which may have bad quality for droplet detection. For
instance, image numbers 2, 19, and 64 depict the highest error
values from all four software. Notwithstanding, CP outper-
forms the other software and has both high accuracy and
precision.

Each Software Requires Different Workflows for
Batch Processing. CP is the most suitable software for
batch analysis or high throughput analysis. In CP, we can
analyze a whole set of images with a press of a single button
“Analyze Images” on the main menu. The software will process
available images uploaded in the “Images” module (default
module). We tested and used the batch processing option to
analyze 64 images straight after we had our pipeline/workflow
set. In Image], we processed the batch analysis using a
recorded macro by single image analysis. We also performed
some macro script cleaning (e.g, closing unnecessary tabs
during the process), which was written in the macro recorder.
After cleaning, we selected the input and output folders and
performed batch processing through the “Process” tab. For
Tlastik, we executed batch processing after the last option of the
pipeline. We just needed to upload the images and started the
“Process all files”. QuPath demanded macroprogramming
commands for executing batch analysis. However, this software
provided an automated script generator that simplified the
macro record to perform batch analysis. Image] and QuPath
required a macro script for batch analysis. Even though this
macro script was easy to do, creating a macro script for the first
time could become an obstacle for researchers who are not
familiar with any programming language or practices.*® From
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our viewpoint, CP and Ilastik had the most user-friendly
interface for batch processing because they provide the option
to scale up after single image pipeline construction and do not
require any programming steps. Therefore, finding any
additional button or tab to batch process the images was
unnecessary. On the other hand, process and scripting were
required in ImageJ and QuPath.

Modularity Gives More Flexibility in Developing
Pipelines. Rule-based class software are flexible and have
modular options in processing image(s). As rule-based tools,
CP and Image] offered options that could be added and
removed depending on the user’s preferences, such as the type
of thresholding algorithm, filters, and other modules. In
machine learning-based software, the features were embedded
in the pipeline and had limited availability for additional
settings. For example, Ilastik had some pre-defined pipelines:
one of them was object classification and pixel classification.*®
These two were fixed in the interface of Ilastik and may be
rearranged only through Python programming. From Figure
1C, the third level of complexity also represents the modularity
in which Ilastik and QuPath were more limited than CP and
Image]. For instance, CP had the “IdentifyPrimaryObject”
module that could be duplicated in one pipeline, while in
Tlastik, “Thresholding” could be performed only once within
the pre-defined workflow. This complication placed Ilastik as
the least flexible tool followed by QuPath.

Batch Processing Time Is Shorter in Java-Based
Software. Macro programming language affects the software
processing time, particularly in batch analysis. CP or Image]
expected less computational power for the use since they did
not implement machine learning classification methods in our
pipelines. The use of machine learning requires training and
features implementation that requires more computational
power.” The rule-based software used object logic classi-
fication®® and did not require training set to test the defined
parameters, e.g,, size of the object or maximum length of the
object. In QuPath and Ilastik, the classification depended on a
supervised machine learning process.”** We used manual
annotations (droplets and background) in making the classifier
before processing whole pixels. We also previously compared
the minimum hardware requirements for each of the tools
(Table 1). Based on the comparison, Image] was the only one
that did not put any minimum requirement on the random-
access memory (RAM). We also expected that the machine
learning-based software might take more time to process the
whole set of images. Therefore, we also tried running the
whole pipeline and comparing the performance from each of
the tools. We tested each pipeline with the same computer
having an Intel Core i3-9100F processor, 8GB RAM, NVDIA
GeForce GTX 1660 SUPER, 120Gb SSD PANTHER and
running in a Windows operating system. In our setting (with
the same environment and background setting), we found that
QuPath and Image] perform faster than CP and Ilastik in batch
processing (Figure 4). The experiment was conducted by
running the same pipeline 10 times to find the deviation as
well. Tool’s batch processing language (macros) may cause this
difference. At the beginning, we expected Ilastik and QuPath to
have longer processing time than CP and Image] because of
the machine learning-based processing. However, ImageJ and
QuPath performed faster than others. In principle, there are
two types of program that bioinformaticians use: compiled and
interpreted.”” Image] and QuPath use Java based (macros)
code that is compiled once before the program processes the

1081.59 £ 15.48

° 103 | §7386%1542 .
£ X
=
075
=3
3 =
25
g8
g3
=1
E = 91.10£0.97
2 10> .
r_g 55.96It 3.60
cp ImageJ Tlastik QuPath
Software

Figure 4. Java-based software has a shorter processing time in the
droplet detection scenario. We ran the droplet detection pipelines in
the same computer with the same dataset. Error bars show standard
deviation between 10 replicate analysis runs with the same set of 64
images.

batch analysis. Presumably, this allows the program to run
faster. On the other hand, CP and Ilastik use Python to process
batch analysis. In Python, variables and functions will be run
through an interpreter every time the program needs to
process the task, in our case, to detect droplets in every image.
Regardless, we do not have enough evidence to claim that the
type of software may shorten the processing time. Nonetheless,
a speed comparison of different types of language (including
Python and Java) to run the same command showed that
implementation in Java performs up to 20 times faster than in
Python.”® We also note that different hardware can alter the
performance of software in different settings, but the relative
ratios of needed computing resources should be similar.

Documentation Is Important in Pipeline Develop-
ment. CP and Image] have sufficient examples and
documentation for novice users. Each of the software provides
documentation and examples for guiding their users. CP and
Image] have been developed since 2005 and 1987,
respectively."™>" Therefore, these rule-based software have
more users and examples, e.g, ImageJ has a distribution for
compiling the biological image analysis plugins called Fiji.”” CP
also provides some tutorials, examples, and other documenta-
tion on their website, e.g,, detecting different cell morphology
and tracking objects (www.cellprofiler.org). On the contrary,
Ilastik and QuPath have limited documentation for accom-
panying new users. However, these two software also have
extensive documentation, including their manuals and tutorials
for both novice and advanced users at their website (https://
ilastik.org/documentation and https://qupath.readthedocs.io).
Additionally, there are some forums such as image.sc forum
(forum.image.sc) that are actively helping other bioimage
researchers or software users.

Plugins May Ease Users to Perform Specific Image-
Based Detection. Plugins in CP and Image] can be used as
an extensible option in processing images. Plugins or add-on
can be used to improve default options within the software.
These may be utilized by other software developers. As an
additional option, plugins may help the user implement
specific cases of detection. Before Ilastik and QuPath were
developed, Image] had plugins called Trainable WEKA
Segmentation that, in principle, works similarly to machine
learning-based software.”” In CP, plugins are also available. For
instance, we found one plugin that analyzes mass cytometry
(multiplexed images) called ImcPluginsCP.>* Here, we did not
add any plugins to detect droplets and we used similar settings
to see the tool’s ability to detect and count droplets. The
extension software for CP, CellProfiler Analyst (CPA),™* could
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be an option to enhance droplet detection, which has been
described briefly in our previous research.>’ Based on our
classification, CPA belongs to machine learning-based software
because users need to supervise or train the data at the
beginning. However, this software is not a standalone software
and requires feature extraction or properties file that contain
the observed data from CP.*"*°

Image Components Take Important Role in Process-
ing. Rule-based software are more suitable for analyzing
droplet microfluidic image data. Rule-based software provide
more options, e.g, to disregard the object that touches the
border/frame, which resulted in high accuracy and precision.
On the other hand, the machine learning-based software
required more optimization to train the classifier. We only used
12 lines (S lines for determining droplets and 7 lines to define
borders between droplets and background) to supervise each
class (background and droplet). Each line represents the pixels
for each group. This pixel manual selection works better if the
image has similar properties in majority and represents the
pixel distribution of an object, for example, borders between
droplets and empty droplets. Even though the droplet’s border
looks the same across the image, the pixel distributions are
varied. We picked more lines to define borders. We also
needed extra time to train the classifier (in minutes) when
setting the machine learning-based software to determine the
12 lines. However, this cannot represent all of the properties
and may result in joint droplets. To overcome this, a larger
training set and improvement of the classifier would
presumably give a better result. As an image processing tool,
the machine learning-based software like QuPath has a more
specific purpose. Moreover, this software was created to
accommodate whole slide image and large image data analyses,
specifically for complex tissue images.”” However, a compar-
ison has been made between QuPath and CP coupled with
CPA.* The comparison also shows the pros and cons between
the rule-based and machine learning-based software in renal
tissues. Furthermore, Image], CP, Ilastik, and QuPath have
shown their capability in detecting droplets and generating the
results as standalone tools.

Data Acquisition Can Be Embedded in the Pipeline.
Droplet detection is often used as a preliminary step in droplet
microfluidic experiment. It is possible to exipand the pipeline
for further analgrsis, e.g., bacteria detection,’ enzyme reaction
measurement,”® chemical purification analysis,”’ and metal
extraction.”® This step is usually performed to extract the
different aspects of a droplet (size, texture, volume, etc.)
through pixel analysis. However, each software has its own
option and feature to obtain the particular information, for
example, “MeasureObjectSizeAndShape” and “MeasureObjec-
tIntensity” in CP and “Set measurement” and “ROI Manager”
in ImageJ. Nonetheless, this further analysis is not within the
scope of this article. We try to focus on the principle of image-
based droplet detection in different software and their
components that may ease the user with no experience in
image-based analysis.

Bl CONCLUSIONS

This investigation gives insights into processing droplet
microfluidic images using the four currently most popular
software tools. We classified the types of open-source software
into rule-based and machine learning-based groups. Both
groups have three levels of complexity that cover pre-
processing, processing, and post-processing steps. These

steps help users, specifically with no programming experience,
to choose and perform their image analysis. In our
experimental setup, we found that the rule-based type of
software is better suited for image-based droplet detection. The
rule-based type tools also have a simpler workflow or pipeline,
especially aimed for non-experienced users. In our case, CP
outperforms other software in terms of accuracy, precision, and
user-friendliness (defined as usability for non-experienced
users in building the pipeline and performing image-based
droplet detection using available software modules). In terms
of time processing, Image] and QuPath give faster processing
time to detect droplets in 64 images. On the other hand, Ilastik
gives a direct module that may ease early-stage researchers in
image-based detection using the annotation principle. How-
ever, the optimal software choice may definitely be different for
other users depending on their experimental conditions and
acquired images. Our paper would serve as a starting point for
them to compare available solutions and start with settings
optimization, either using rule-based or machine learning-
based software. In addition, published research, documenta-
tion, or forum discussions (such as www.image.sc) help in
finding the most suitable software pipeline for image-based
droplet detection and analysis.

B METHODS

Software Search and Selection. We used selected
software tools to detect droplets using the procedure explained
by Bartkova et al.>' We found several available and accessible
software tools online such as CP,* Irnage’],27 Tastik,*®
QuPath,”” Icy,*” BioFilmQ,* CellOrganizer,”' CellCogni-
tion,f’2 BioImageXD,63 BacStalk,"* Advanced CellClassifier,®
Phenoripper,”® and Cytomine.”” We have tested every software
mentioned previously to perform image-based droplet
detection; however, not all of the software had a good
documentation, workflow, reference, and user-friendly inter-
face. Therefore, we tried to find the most preferred tools
available online by using Twint—Twitter Intelligence Tool
script”® written in Python and Scopus search from their
website (https://www.scopus.com). The search has the same
filter, including the search time (01-01-2010 until 31-12-2020),
and only receives the result in “English”. Therefore, the search
both in Twitter and Scopus will not consider any data outside
the filter. Both Twitter and Scopus data were obtained on
February 11, 2021. We used each software’s name as the
keyword for the search. For the Twitter search, the processing
was executed in Jupyter Notebook (ver. 6.0.3)* within
Anaconda Navigator.”” We also imported datetime and Pandas
as additional libraries. For the Scopus search, it was performed
using the same keyword. Both results were visualized together
using Bokeh and NumPy libraries in Python.”’~"*

Droplet Generation and Image Acquisition. We
repeated the method described in Bartkova et al. to generate
droplets and their image data.*’ We used a set of 64 images to
test the most popular software to detect droplets. The images
are 2D layers of droplets generated by fluorescence confocal
microscopy. We used the same images to find a suitable
workflow for each software and describe it thoroughly in the
next paragraph. Using the data, we calculated the precision and
accuracy of detecting the droplets by comparing the results
with manual counting using the same batch processing results
in the same attempt.

Image Analysis with the Most Popular Software. The
image data were analyzed first as a single image using Image]
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(ver. 1.52p), CP (ver. 4.0.3), Hastik (ver. 1.3.3), and QuPath
(ver. 0.2.3). For each of the software, we describe the pipeline
construction in the following paragraphs. Pipelines can be
found at https://github.com/taltechmicrofluidics.

Pipeline Construction in CP. We used our previous
pipeline®’ in CP as the basis for exploring other tools. We
uploaded the image through a drag and drop feature in the
Images module and set the Metadata, NamesAndTypes, and
Groups according to our setting. We used the “IdentifyPrimar-
yObject” to detect droplets. We also used the same setting that
is also provided in our GitHub repository (github.com/
taltechmicroﬂuidics/CP-for-droplet-analysis)A The “Measur-
eObjectlntensity” and “ExportToSpreadSheet” modules were
also set as previously. The results were obtained automatically
after pressing the “Analyze Image” button.

Pipeline Construction in ImageJ. For Image], we recorded
the workflow in the macro record option. This record was used
to make scripts for batch processing. To upload the image, we
use Open Image from the File tab in the main menu. The
parameter was set within “Set Measurement” under “Analyze”
tab, and we only ticked “Area” for obtaining the pixels’ area in
one droplet. This was followed with processing workflow,
which included segmentation using “Threshold” under
“Adjust” option in the “Image” tab. The threshold was
determined as 1507, corresponding to 0.023 scale, described
in our previous article using CP. The thresholding was
followed with “Watershed” to separate droplets from each
other. The counting was performed using “Analyze Particle”
under the “Analyze” tab. We set the size corresponding to the
range we described in CP, 22,500 up to 62,500 pixels” with 0
circularity. Once we finished the processing step, we
downloaded the image through the “Flatten” option in the
“ROI Manager” menu. We obtained the results in the table,
which appeared straight after we performed the analysis.

Pipeline Construction in llastik. In Ilastik, we used “Pixel
Classification” and “Object Classification” pre-defined work-
flow. We loaded the image in the Input Data module and
selected the features for the training set. Since we did not have
any reference regarding this type of workflow, we used the
recommendation from image.sc forum, starting by adding 0.30,
1.00, and 3.50 sigma or scale corresponding to the selected
features, e.g., Gaussian Filter, for color/intensity, edge, and
texture. We trained the program to distinguish between the
background (dark) and droplets using manual annotations/
labels. For thresholding, we used the default smoothing value
(1.0 and 1.0) with a 0.70 threshold. For the size filter, we put
values that correspond to the settings in Image], 22,500 for the
minimum size and 62,500 for the maximum size. This was
followed by using the standard object selection feature option
and selecting the detected droplets in object classification as a
sample. After finishing the setup, we obtained the results by
exporting both object predictions and measured features.

Pipeline Construction in QuPath. In QuPath, we started
the workflow by creating a project (Create Project) and
uploading the image (Add Image). Once the selected image
was ready, we performed annotations similar to Ilastik. This
process aimed to distinguish the background and foreground
(droplets). After annotating the image, we performed “Pixel
Classification” using the artificial neural network (ANN_MLP)
classifier with high (downsample = 4.0) resolution. For the
features, the scales were 1.0, 2.0, and 4.0 for Gaussian gradient
magnitude, Hessian determinant, and Hessian max eigenvalue,
respectively. We created object detection for droplets and
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measured all detected droplets. We set a thick boundary class
to make borders between each of the droplets. We saved the
measurement data from the measurement menu.

Batch Processing from Each of the Software. In CP,
we performed batch processing by loading the set of images in
the Images module and run the “Analyze Images” button. For
Image], we executed batch processing using the “Batch
Process” option under the “Process” tab. We used a recorded
macro with some adjustments to execute the images in the
Input folder. By processing the images through this option, we
generated results directly to the Output folder. In Ilastik, we
continued the batch processing straight after setting up the
workflow. Similar to CP, we executed batch processing after
uploading the images and only needed to press the “Process all
images” button. In QuPath, we transformed the workflow from
a single image into scripts to execute the batch processing.
Since QuPath provides the script builder, we did not have to
script by ourselves, and we could start batch processing by
executing the script and ran it for the whole image set in the
project. However, the image results from QuPath require
additional script using Groovy. We managed to generate the
results and you may find the script in our GitHub. We stored
both single and batch processing pipelines from each of the
software here: (github.com/taltechmicrofluidics/Software-
Analysis).

Data Acquisition and Processing. We gathered all
results and processed them in Microsoft Excel as follows. We
tested the results with sensitivity and sgeci_ﬁcity tests and used
manual counting as the reference."”’>”* We used these
formulas for the test:

FP Rate = _P
FP + TN
TP Rate = _r
TP + FN
TP
Precision = ——
TP + FP
TP + TN
Accuracy = +

TP + FP + FN + TN

Where TP is the correct droplet Detection compared to
ground truth, FP is the wrong detection (detecting back-
ground), FN is the wrong detection (software cannot
recognize existed droplet), TN is the background (0), accuracy
is the quality of correctness, and precision is the similarity
upon repeatable counting.
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HIGHLIGHTS GRAPHICAL ABSTRACT

o Image-analysis software are combined
with data visualization tool EasyFlow
for user-friendly analysis of droplet
arrays.

o EasyFlow simplifies building analysis
and visualization pipelines for droplet
arrays.

o EasyFlow analyses your droplet data
based on their size, signal and labels.

Droplet experiment Image Analysis Data Visualization and Analysis
ARTICLE INFO ABSTRACT
Keywords: Water-in-oil droplets allow performing massive experimental parallelization and high-throughput studies, such

EasyFlow

User-friendly

Droplet analysis
High-throughput analysis

as single-cell experiments. However, analyzing such vast arrays of droplets usually requires advanced expertise
and sophisticated workflow tools, which limits accessibility for a wider user base in the fields of chemistry and
biology. Thus, there is a need for more user-friendly tools for droplet analysis. In this article, we deliver a set of
analytical pipelines for user-friendly analysis of typical scenarios in droplet experiments. We built pipelines that

combine various open-source image-analysis software with a custom-developed data processing tool called
“EasyFlow”. Our pipelines are applicable to the typical experimental scenarios that users encounter when
working with droplets: i) mono- and polydisperse droplets, ii) brightfield and fluorescent images, iii) droplet and

object detection, iv) signal profile of droplets and objects (e.g., fluorescence).

1. Introduction in chemical and biological laboratories. The method utilizes micro- or
nanoscale water-in-oil droplets that are generated by mixing immiscible
Droplet technologies enable massive parallelization of experiments liquids (water and oil) [1,2]. Various tools can be used for droplet
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generation, e.g., microfluidics, vortexing, and manual shaking [3,4].
Droplets are widely used for research purposes e.g., in high-throughput
sequencing and digital droplet PCR [5-7]. Droplet-based platforms have
been increasingly used in microbial studies [8]: e.g., in microbiome,
individual microbe or microbial community studies [9-11] and anti-
microbial heteroresistance studies [12]. The technologies are also used
in other fields, e.g., in microalgae’s lipid production [13], in immuno-
assay of glycoprotein treatment and profiling [14], and metabolomics
analysis [15].

Imaging is one of the most used methods in droplet experiments [16].
Different imaging approaches are used for the analysis of droplets: light
and fluorescent microscopy [17], high resolution microscopy (e.g.,
scanning electron microscopy) [18], or a built-in smartphone device
[19]. Droplet imaging has been applied to analyze droplet encapsulation
rate, quantify objects (e.g., metal particles and bacteria), isolate protein
crystal, amplify nucleic acid, and for susceptibility tests [3,20-23].
Droplet imaging often generates vast amount of raw data that needs to
be processed further for proper interpretation of results.

Image analysis often demands sophisticated workflow and pro-
gramming skills or image analysis experts for the analysis. For example,
the image data needs to be processed to find the objects of interest and
extract information from them in readable formats, such as a tabular
data in comma separated values (.csv). There are different image anal-
ysis software which available online, e.g., CellProfiler™, ImageJ, Ilastik,
QuPath, Icy, etc. [24-28] These software tools are user-friendly, share
the same principles and are often supported by tutorials for new users
[29]. Recently, we built a user-friendly detection pipeline for droplet
microfluidics using CellProfiler™ and CellProfiler Analyst™ [30]. Thus
far, there are very few such published full analytical pipelines for
detecting droplets and to process the high-throughput data. Moreover,
the further data processing often needs programming proficiency or
advanced data analysis tools, e.g., Python/C++/MATLAB/R [23,
31-35]. This limitation leads to low reproducibility and a steep learning
curve in applying droplet tools for a wider user base.

Here, we address this gap by introducing a set of user-friendly
analytical pipelines that combine open-source image-analysis software
with a custom-developed data processing tool called “EasyFlow”. We

Analytica Chimica Acta 1272 (2023) 341397

demonstrate the wide applicability of developed pipelines on different
experimental droplet array image datasets. In our paper we use a term
“droplet array” to describe a situation where droplets are positioned for
the analysis as a layer (e.g. for imaging).

2. Results and discussion

We build our pipelines combining various open-source image-anal-
ysis software (Ilastik, CellProfiler™) with a custom-developed data
processing tool called “EasyFlow”. These pipelines are user-friendly and
designed to be immediately useable by common researchers. These
pipelines require no previous experience in programming or image
analysis software packages developed using Matlab, R, C ++ or any
other environment.

EasyFlow is a web application written in Python [36] that performs
calculations, data grouping, and visualization for droplet data. EasyFlow
uses the Pandas [37]] and NumPy [38]] libraries to process the output
data from image analysis software, perform basic statistics and binning
to match with required data for visualization.

EasyFlow utilizes the Bokeh [39] library for generating plots and is
bundled in the Streamlit [40] library to present them in a form of web
application. EasyFlow can be used and accessed at https://easyflow.talt
ech.ee (Fig. 1A). It can process image data acquired from droplets with
varying content and labels. We tested EasyFlow’s capabilities by con-
ducting four experiments using brightfield and fluorescent image data
that represents both mono- and polydisperse droplet settings (Fig. 1B).
In these experiments, we encapsulated bacteria, microplastic beads (or
microbeads), and microalgae as our objects of interest. The detailed
settings are described in the methods section (pipeline construction and
detection modules). We generated monodisperse droplets as described
in our research in Bartkova et al. [30] and polydisperse droplets as
shown in Byrnes et al. [41]. We performed brightfield imaging for
droplets with microplastic beads and fluorescent microscopy for bacte-
ria and microalgae imaging.

Every image analysis scenario requires an individual pipeline con-
structed using image analysis software. For this, the user compiles and
constructs software modules according to their need [42]. In some cases,

)
A) EasyFlow is user friendly web application tool

written in Python for the analysis and
visualization of droplet data

Available at
easyflow.taltech.ee

[©'%/ EasyFlow w2
Analytical Web App

T

B)  EasyFlow can use data from different types C)
of droplets with varying content and labels

Fluorescent Brightfield

Monodisperse

(w/ Microalgae)

Polydisperse

(w/Bacteria) (w/Bacteria)

Full workflow consists of image analysis using image analysis
software of choice to generate .csv file and EasyFlow for the

analysis
Examples of image analysis software

Input images

CellProfiler

cell image analyss software

=

Fig. 1. (A) EasyFlow (easyflow.taltech.ee) simplifies building pipelines for droplet-based data analysis and visualization. (B) Pipelines with EasyFlow are suitable for
mono-andpolydisperse droplets and for both brightfield and fluorescent images. For pipeline development we used freely available software (CellProfiler™ and
Ilastik) that generate results in.csv file. (C) EasyFlow can host or process data which is generated by any image processing software and conforms with the

required format.
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a pipeline can also be assembled using different software combinations
[43,44]. For instance, we used both CellProfiler™ [24] and Ilastik [26]
to detect droplets and our objects of interest (Fig. 1C). We used the
software because they have high accuracy and precision when it comes
to droplet detection [29]. The detailed pipeline will be discussed in the
section where we discuss the combination of software, e.g., Ilastik and
CellProfiler™ for detecting microplastic beads. In our examples, we
generated all.csv data using ExportToSpreadsheet module from Cell-
Profiler™. From image analysis software we transferred the data (as.csv)
into EasyFlow web-application that generates quick analysis and visu-
alizations of experimental data. Even though we used CellProfiler™ to
generate the.csv file, EasyFlow can also process any.csv or.xlsx file that
is generated from other image analysis software.

Easyflow uses.csv or.xlsx files as input to automatically visualize
droplet data in four different graphs. With EasyFlow, the user can obtain
i) a droplet size distribution, ii) droplet signal distribution, iii) the
relationship between droplet size and signal, and iv) a comparison of
experimental conditions (label) (Fig. 2).

i) By using size distribution result, we were able to determine
whether the droplet’s sizes were homogenous or heterogeneous,
in which monodisperse or polydisperse droplets were used,
respectively.

ii) For the signal histogram, it shows pixel intensities from detected
droplets. This histogram can distinguish two types of objects, or,
in our example case, empty droplets and droplets with an
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encapsulated object. We built EasyFlow in Python and used the
Bokeh library for the visualization. Therefore, this signal histo-
gram in EasyFlow can show result in either logarithmic or linear
scale which is provided in a ready-to-show tab.

iii) The relationship between size and signal data provides signal
distribution against the volume which can be used to indicate
whether the droplets are clumped only in specific volumes or
distributed evenly.

iv) The comparison of experimental conditions shows the signal
distribution with its designated label.

All of the graph typesare widely used in droplet-based experiments,
e.g., droplet size comparison [45], pixel distribution [46], pixel intensity
in different experimental condition(s) [12]. This shows that EasyFlow
includes relevant analysis options and can simplify data processing and
results generation. Furthermore, it is adaptable to any experimental
setting. EasyFlow does not have any significant minimum hardware
requirements, software dependencies and only needs an internet
connection and an internet browser (e.g., Google Chrome [47], Mozilla
Firefox [48], Safari [49], or Edge from Microsoft [50]) to process the
data. EasyFlow can also be accessed using a smartphone (both Android
or iPhone) or any other device (e.g., tablet) which has access to internet
browser.

For user comfort, EasyFlow provides tunable thresholding and data
binning (Supp. Figure 2). EasyFlow has a thresholding feature which
facilitates user to distinguish two types of signal data. The histograms

EasyFlow provides full profile of droplet-based experiment in four graphs

A. Droplet size distribution

EasyFlow has tunable binning for histograms
i) Default bins i) User-defined bins

C. Relationship between droplet size and signal

Easyflow shows droplet signal pattern in relation
to droplet size
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B. Droplet signal distribution

EasyFlow has adjustable thresholding to separate
two types of droplets based on signal values
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Fig. 2. EasyFlow provides four features and capabilities in processing image analysis software output. EasyFlow generates essential graphs, including (A) signal
histogram, (B) distribution of droplet signals, (C) relationship between droplet size and signal data, and (D) comparison of experimental condition (label) graphs.
These graphs are commonly used to find a quick analysis for droplet-based data. EasyFlow also provides flexibility for adjusting and generating a threshold value and
binning options for histograms (Supp. Fig. 1). The threshold value will help user to classify two types of signal data and binning options provides tunable grouping for
signal and size data. In addition, we also add binning table and basic statistical data, e.g., mean, standard deviation, and coefficient of variation in each graph (Supp.
Fig. 2). The signal histogram binning can be adjusted depending on user’s preferences, e.g. A-i) default binning from EasyFlow based on input data and A-ii) adjusted

binning to have less data grouping.
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also have interactive pop-out information panels to show the detailed
information regarding data binning. Using this feature, user is able to
select the threshold by browsing the data or finding the right binning for
the data. As a default, EasyFlow provides thresholding which is set to
detect minimum value after first maxima of the signal data. EasyFlow
utilizes this thresholding to define the types of droplets in the

2

w/ bacteria

Vortex was used to generate PD to perform
CRISPR-temperature activated bacteria experiment (red)
and “cell-arrest” bacteria experiment (green)

A) Experiments with i) polydisperse droplets (PD) and ii) monodisperse droplets (MD)

i)
MD
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relationship between size and signal data and condition-based experi-
ment data, in which later followed by basic statistics calculation (e.g.,
standard deviation and percentage of coefficient variation). The binning
options allow EasyFlow to generate histograms based on the range of
defined groups or the number of defined bins. EasyFlow has the flexi-
bility to set the binning using number of bins or break points (bin edges).

x

w/ microalgae w/ microbeads

Microfluidic chip was used to generate droplets
and perform microalgae cells growth experiment (blue)
and microbeads encapsulation experiment (black-white)

w/ bacteria

B) Pipeline 1: Droplet detection and mean fluorescence measurement using CellProfiler™

For the polydisperse droplets experiments, the same pipeline was used to detect droplets and generate .csv file with suitable format for
EasyFlow. We used green and red channel from channel splitting to perform droplet detection in CellProfiler™.

w/ microalgae

C) Pipeline 2: Droplet and fluorescent object detection in fluorescent images using CellProfiler™

Microalgae detection

We used two detection modules to detect droplets and microalgae cells. Evaluation for microalgae detection was performed using
MaskImage module and relationship between both detections were determined using RelateObject.

+) EasyFlow w02

Analytical Web App.

Evaluation

- .

w/ microbeads

D) Pipeline 3: Droplet and object detection in brightfield images using combination of Ilastik and CellProfiler™

We used Ilastik to detect microplastic beads in the droplets and retrieved probability map results for beads detection in CellProfiler™.,
The droplet detection was also performed in CellProfiler™ with initial feature suppression to improve the detection.
The relationship between microplastic beads were also set using RelateObject in CellProfiler™.,

Probability Map

Beads detection

P s IDoat ir
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Each pipeline requires image preparation (pre-processing), detection (processing),
and data acquisition (post-processing), color-coded in teal, gold and pink.

Fig. 3. Three image analysis pipelines accommodate typical droplet-based experiment analysis. (A) We used different type of droplets, i) polydisperse droplets which
were generated using vortex and ii) monodisperse droplets which were produced using microfluidics setup. We developed three pipelines to perform the analysis that
cover (B) droplet detection and fluorescent measurement, (C) droplet and object detection using fluorescent images, and (D) droplet and object detection using
brightfield images. We built these pipelines using user-friendly image analysis software CellProfiler™ and Ilastik. All of the results generated from these pipelines
were exported using ExportToSpreadsheet module from CellProfiler™ and ready for Ilastik.
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EasyFlow also provides an option for users to insert custom plot titles
and toggle off the thresholding line. For now, EasyFlow can host 200
megabytes.csv or.xlsx filet and able to process up to 1 million data point
where it should be enough for most droplet-based experiments.

2.1. Image analysis pipelines for droplet-based experiments

We provide three different pipeline examples for common experi-
mental scenarios that use either mono- or polydisperse droplets
(Fig. 3A). In our pipelines, we use open-source CellProfiler™ and Ilastik
because of their easy-to-use, reproducible, and user-friendly character-
istics. We tested these software to detect droplets in our previous
research [30] and now, we combined them in our detection pipelines. In
brief, we used CellProfiler™ to detect droplets (both mono- and poly-
disperse) and microalgae cells and Ilastik to detect microplastic beads.

We prepared three pipelines using three stages (pre-processing,
processing, and post-processing), which we have described previously in
Sanka et al. [29] In pre-processing, we adjusted and prepared the image
data to suit the processing part, including channel splitting, greyscale
converting, feature selection, and annotation. After the images were
ready for processing, we proceeded with processing each image. For that
we segmented pixels into partitioned image data and used them to detect
droplets or our object of interest. Usually, processing considers color,
intensity, or texture to retrieve specific object(s) or type of data [51,52].
In processing, we utilized modules that are available in the software to
detect droplets and objects in the droplet, including thresholding,
training, masking, filtering, measuring, and making relationships be-
tween detected objects (droplets and objects inside the droplets). After
the processing step, we only needed the.csv file from detected droplets
and objects in the post-processing step. Furthermore, we exported them
into a single file which is ready to use in EasyFlow.

Pipeline 1: Droplet detection and mean fluorescence measure-
ment using CellProfiler™. In this experiment, we had multi-channel
fluorescent images [53]. The pipeline started with pre-processing
using ColorToGray module in CellProfiler™. This module splits the
image data as which were stacked from different channels. We use false
coloring of red, green, and blue only for visualization. In CellProfiler™,
we used IdentifyPrimaryObject module to detect droplets. This module
can perform pixels classification using available thresholding strategies.
From available thresholding strategies, we tested the algorithms that
worked best for the image data. We initially tested Adaptive and Global
thresholding strategies and concluded that Adaptive Otsu works best for
our droplet detections (Supp. Table 1 and Supp. Figure 3). Using this
strategy, we detected droplets and measured each droplet using Meas-
ureSizeShape and MeasureObjectIntensity modules that are also avail-
able in CellProfiler™. These measurements are beneficial to perform
detection evaluation. For instance, we evaluated the droplet detection
using Filtering module. We evaluated droplet detection by applying
rules in the measurement results. This filtering improves droplet
detection and disregards droplets that have a distorted shape. These
droplets have imperfect segmentation that makes droplet’s shape not
circular. The droplets which we aim to get have specific range of ec-
centricity (conic section), solidity (overall concavity), and form factor
(ratio between object’s area and circumscribed circle) (Supp. Figure 4
and 5). These parameters are commonly used to eliminate non-circular
or non-ball-like objects [54,55]. For the post-processing, we only need to
export the results as a.csv file. In this case, we used ExportToSpreadsheet
module in CellProfiler™ and retrieved the.csv file which is a suitable
format for EasyFlow.

Pipeline 2: droplet and fluorescent object detection in fluores-
cent images using CellProfiler™. This pipeline uses CellProfiler™
software and starts with color splitting using ColorToGrey module for
pre-processing. The processing starts on droplet detection and object
detection (microalgae). We used blue channel for the droplet and red
channel for our object detection. We used the same IdentifyPrimar-
yObject module as described previously in the Pipeline 1. For detected
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droplets, we also measured the pixels and size using MeasureSizeShape
and MeasureObjectIntensity and evaluated the detection using Filtering
module. Since we needed to enhance the pixels to detect our object of
interest, we used EnhanceOrSuppressFeatures before implementing
another IdentifyPrimaryObject. This helps to detect the objects, espe-
cially when there are more than one objects in droplet, or they are close
to each other. We used MaskImage module to remove detected objects
which were not in the detected droplets. To build a relationship between
detected droplets and our object of interest, we added RelateObject
module in the pipeline. From these results, we exported the results using
ExportToSpreadsheet module to obtain the.csv file for EasyFlow.
Pipeline 3: droplet and object detection in brightfield images
using combination of Ilastik and CellProfiler™. We used CellPro-
filer™ to detect droplets and Ilastik to detect objects (microplastic
beads). Ilastik is a supervised machine learning image processing soft-
ware [26]. This software has a built-in pipeline called Pixel Classification
and Object Identification that helps detecting objects in our brightfield
images. For detecting the objects, we started with features introduction
and annotation(s). We set three sigma values for each feature (color/-
intensity, edge, texture) which is mandatory before annotating image
data. For the annotation(s), we selected and labeled the objects and
background of an image. The background refers to everything but ob-
jects. After determining the labels, we set the thresholding and selected
another feature from detected objects using Object Feature Selection as
Standard Object Features. For the last step of processing, we distin-
guished detected objects into “beads” and “false detection of beads”.
This step was completed with a post-processing step, a probability map
generation, where all steps were repeated for all images using Batch
Processing module. In CellProfiler™ we prepared modules that utilize
both the original image and the probability map image. For detecting
droplets, we used EnhanceOrSurpress module to suppress image fea-
tures that interrupt droplet detection. The features can be any objects
but droplets. These preliminary steps are common to improve the
detection [56,57]. After the pre-processing step, we detected droplets
using IdentifyPrimaryObject followed by MeasureSizeShape, Measur-
eObjectIntensity, and Filtering modules. In CellProfiler, we performed
object detection using probability map image data which were gener-
ated in Ilastik and followed by MeasureObjectSizeShape module. Using
both droplets and objects detection results, we built a relationship be-
tween them using RelateObject module. To generate the.csv file, we
used the same module as in other pipelines: ExportToSpreadsheet.

2.2. Demonstration of EasyFlow pipelines in experimental scenarios

Each experiment utilizes droplets which were generated by using
either microfluidic chip or vortexing. Reagents used are Novec HFE
7500 fluorocarbon oil with 2% concentration of perfluoropolyether
(PFPE)—poly(ethyleneglycol) (PEG)-PFPE triblock surfactant for the
continuous phase and water based medium for the dispersed phase.
Droplets can remain stable for more than 72 h.

la Controlled activation of bacterial growth (Fig. 4A). Bacteria
growth in droplets can be turned ON/OFF using a CRISPR-based
system. We encapsulated and incubated bacteria containing a
CRISPR system overnight in polydisperse droplets. The CRISPR
system has an anhydrotetracycline (aTc) “toggle switch” intro-
duced by Gardner [58], whereby it is turned ON in the presence
of aTc and OFF when aTc is absent. When the system is ON, the
bacteria growth is inhibited and if the system is turned OFF the
bacteria can grow. The CRISPR system is also temperature sen-
sitive. During incubation at 37 °C or lower, the CRIPSR system
functions as it should. However, incubation at high temperature
such as 42 °Crenders it inactive even when the “ON switch™ aTc is
present. This corresponds to previous work by Wiktor et al. [59]
where the cells can restart their replication and proliferation after
switching the temperature at 42 °C.Therefore, we start seeing
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A) Pipeline 1: Droplet detection and mean fluorescence measurement using CellProfiler™
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Fig. 4. Demonstration of EasyFlow pipelines in experimental scenarios. A) Here, we show that bacteria growth can be controlled via temperature sensitive CRISPR
system (Exp. 1a) and bacteria respond to antibiotics similarly regardless of their synchronization in cell cycle (Exp. 1b). B) Microalgae multiply in droplets stably over
72 h incubation period (Exp 2). C) Microplastic beads do not affect the stability of droplets during 24 h incubation (Exp. 3). In this figure, we show only one
representative graph for each experiment. Full info for each experiment is added in the Supp. Fig. 10.
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bacterial growth in the label-based graphs at 42°CaTc label in the
figure.

We used the signal distribution to find a threshold which can be
applied to classify droplets, both empty droplets and droplets with
growing bacteria. This threshold was set using the method which we
have mentioned previously in Fig. 2B. In this experiment, we had 5119
droplets in total using 198 images.

1b Antibiotic activity in growth-synchronized bacteria (Fig. 4A).
Here we encapsulated bacteria to investigate if antibiotic
response of bacteria differs depending on the stage of their cell
cycle. Bacteria (in our experiment E. coli) have a cell cycle con-
sisting of three distinguished periods: i) the B-period where DNA
replication is initiated, ii) the C-period which starts from repli-
cation through termination and iii) the D-period when the
termination ends, and the division of bacteria starts [60]. We
used serine hydroxamate (SHX) to arrest the DNA replication
[61] and thus synchronized the cell cycle of bacteria in their
B-period. We then added different concentrations of antibiotic
and removed SHX to let bacteria replicate again in the presence of
the antibiotic, all starting from their B-period. The response was
compared to non-arrested bacteria (control group) where same
concentrations of antibiotics were added, but SHX was absent.
Based on our experiment, there was no difference in viability
between the arrested and non-arrested (control) bacteria groups.
This indicates that being in the B-period of the cell cycle does not
affect antibiotic response of the bacteria. Nevertheless, we were
able to show EasyFlow’s capability in giving quick analysis in this
“cell-cycle arrest” experiment. In this experiment we had 108,129
droplets from 900 images.

2. Microalgae multiplication in droplets (Fig. 4B). Multiplication of
microalgae Raphidocelis subcapitata cells in droplets can easily be
monitored over time. The microalgae are widely used for toxicology
assays [62,63]. In our droplet environment, the algae multiplied
stably throughout the whole 72 h incubation period. This is impor-
tant because it has been shown in traditional incubation settings that
microalgae growth can slow down after a certain density is reached
[64]. This analysis is based on 7607 droplets which we detected from
146 images.

3. Microplastic encapsulation in droplets (Fig. 4C). Droplets are also
a suitable and stable platform for the analysis of microplastics.
Microplastic pollution has developed into a serious environmental
concern. It appears that microplastic has an increasingly detrimental
impact on all life forms and especially in the marine and remote
environments [65]. Therefore, there is a need to provide a
user-friendly high-throughput platform to assess the effect of
microplastic to microorganisms. Here, we show that droplets are a
suitable for this as they are stable over time in microplastic presence.
We obtained droplets containing different number of microplastic
objects, ranging from 1 to 14. Droplet encapsulation followed theo-
retical Poisson distribution (Supp. Figure 6 and Supp. Table 2). We
also observed that the droplets remained stable with additional oil
during incubation. In this experiment, we had 45 images with
detected 1591 droplets after 24 h of incubation

2.3. Pipeline limitations in image-based droplet analysis

Droplet type and image acquisition techniques determine the quality
of image data, which affects subsequent analysis. For instance, the use of
monodisperse droplets give higher detection accuracy than using poly-
disperse droplets (from 80% to 97% for monodisperse and 53%-64% for
polydisperse) (Supp. Figure 7). The accuracy of object detection inside
the droplets was 72% and 96% with microbeads and microalgae,
respectively (Supp. Figure 8). Another issue with polydisperse droplets
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is the overlapping of droplets with different sizes. This can cause seg-
mentation failure and lower the detection quality (Supp. Figure 4 and
Fig. 9). In this case the failure of segmentation is filtered out and is not
counted in our detection pipelines (Supp. Figure 9).

3. Conclusion

We provide user-friendly droplet analysis pipelines for high-
throughput studies in chemistry and biotechnology. Our pipelines can
process different experimental scenarios: e.g., droplet or droplet-object
analysis in either brightfield or in fluorescent images. Our pipelines
provide user-friendly analysis tools with low-learning curve for any
researcher who has need to analyze droplet arrays. Our pipelines have a
user-friendly web-based analysis tool EasyFlow, which can process and
visualize image analysis data from droplet experiments. EasyFlow has
shallow learning curve and thus allows user, especially a non-
programmer specialist, to easily analyze image-based droplet data and
interpret the results.

By introducing these pipelines to the community, we wish to
democratize droplet-based techniques and enable the easy analysis of
the results. In EasyFlow, we use.csv (comma separated value) or.xlsx
(Excel) filetype as an input. This allows the use of almost any image
analysis software to produce the input data. In addition, EasyFlow is
written in Python and is open source, and therefore a further develop-
ment to include additional calculations or features is simple. Moreover,
EasyFlow is not limited to droplet-based data. In principle, any data that
is stored as.csv or.xlsx files and contains labels, sizes, and associated
signals can be used in EasyFlow-based pipelines.

4. Methods

EasyFlow software development. EasyFlow is written in Python
[36] using the following libraries, such as NumPy [38] for working with
arrays, Pandas [37] to serve the data as a table or data frame, Math [66]
and Statistics [67] to perform the calculations, Regex [68] to execute
regular expression command, and Matplotlib [69] and Bokeh [39] to
visualize the results and to provide users with necessary interactivity.
These scripts are utilized by a user-friendly interface built with Streamlit
[40] environment and library to give user-friendly interface. EasyFlow is
hosted and deployed in a local server (in virtual machine running in
Ubuntu Server 20.04 LTS) in Tallinn University of Technology (Taltech)
accessible at https://easyflow.taltech.ee domain and the most recent
version of EasyFlow’s source code is available in our GitHub repository
https://github.com/taltechloc/sw-easyflow-v1.

Droplet generation. Droplets are generated using the following
materials: oil, surfactant, object of interest and its medium. In brief, we
used surfactant (perfluoropolyether (PFPE)-poly (ethylene glycol)
(PEG)-PFPE triblock surfactant) and Novec HFE 7500 fluorocarbon oil
to make the immiscible liquid/layer in the droplet formation. In ex-
periments la and 1b, we generated polydisperse droplets by adding
object of interest with medium and the oil/surfactant phase in a 1:1 ratio
in 5 mL Eppendorf tubes and vortexed for 5 s. For experiments two and
three, microfluidics setup is used for droplet generation to produce
monodisperse droplets, which is described in our previous work [30].

Experimental design. For experiment 1a, our object of interest was
Escherechia coli JEK 1036 with a chromosome-incorporated gene
encoding the green fluorescence protein (GFP) and plasmid pdCas9deg3
containing the CRISPR activated system and antibiotic resistance gene
for chloramphenicol. We used Luria broth mixed with Chloramphenicol
and Dextran, Alexa Fluor™ 647 (Invitrogen, Life Technologies Corpo-
ration) for the medium. There were three different batches of droplets
containing: i) bacteria and medium, ii) only medium, and iii) bacteria in
medium with added anhydrotetracycline (aTc). Each batch was split
into two tubes that were incubated at 37 °C and 42 °C respectively. In
experiment 1b where the cell-cycle was investigated, our object of in-
terest was Escherechia coli JEK 1036 without plasmid pdCas9deg3. We
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used Luria broth mixed with Alexa Fluor™ 647 (Invitrogen, Life Tech-
nologies Corporation) and nine different concentrations of Cefotaxime
for the medium, wherein we incubated either serine hydroxamate (SHX)
treated E. coli that were all starting growth from the B-period, or non-
treated (control) E. coli. We incubated all 20 samples for 24 h at 37 °C
and did an imaging after the incubation. In the third experiment
(microalgae growth), our objects of interest were microalgae Raphido-
celis subcapitata cells. We used OECD 201 medium containing nitrogen,
phosphorus, calcium, potassium, magnesium, microelements, and vita-
mins mixed with Dextran, Cascade Blue™ (Invitrogen, Life Technologies
Corporation) as the medium and kept the microalgae at room temper-
ature illuminated by a LED (Light Emitting Diode) table lamp, and
imaged at 0 h, 24 h, 48 h, and 72 h to observe the microalgae growth.
The 0-h time point was our baseline of growth that we compared to the
other timepoints. For the fourth experiment, we prepared droplets
containing 10um polyethylene microplastic beads in sterile water,
incubated the sample for 24 h 37° followed by imaging.

Imaging setup. In the first experiment (CRISPR activated system),
LSM 510 Laser Scanning Microscope (Zeiss, Germany) was used and set
on Zen 2009 software with the following settings: Plan-Apochromat
10X/0.45 objective, Argon/2 and HeNe633 lasers, Transmission light
(Bright Field), pinhole size 452 pm. For the rest of the experiments, Zeiss
LSM 900 confocal laser scanning microscope (Zeiss, Germany) running
on Zen 3.3 software (blue edition) was used with the following settings:
Plan-Apochromat 10x/0.45 objective, diode lasers 640, 488 and 405
nm, DIC light, pinhole size 460 pm.

Pipeline construction. In this experiments, three pipelines were
constructed to analyze image data from our experiments, i) to detect
droplets and measure the fluorescent of bacteria, ii) to detect droplets
and microalgae cells in monodisperse droplet, and iii) to detect droplets
and microplastic beads in brightfield images.

For Pipeline 1, CellProfiler™ (version 4.2.1) was used to analyze the
images and constructed the available modules into a pipeline. The
modules which were used involved: ColorToGray, IdentifyPrimar-
yObjects, MeasureSizeShape, MeasureObjectIntensity, FilterObjects,
and ExportToSpreadsheet. Each module hosts variables that were
mandatory for droplet detection, for instance, the range of diameter in
IdentifyPrimaryObjects module which were set from 20 to 400-pixel
units or 12.5-250 pm. Selected thresholding algorithm, Adaptive with
Otsu algorithm, was used and 350 of adaptive window was set for
droplet detection. Different correction factors and smoothing scale were
tested to find the right setting for this pipeline. In the MeasureSizeShape
and MeasureObjectIntensity, droplets profile was measured (including
their mean intensity and size in pixel size) from the images. For the
FilterObject, different settings were tested including eccentricity, so-
lidity, and form factor. In this pipeline, eccentricity was used with the
range of 0-0.5 and solidity with 0.93-1.00 for the filtering. Results were
retrieved in comma separated value (.csv) format using ExportToS-
preadSheet. Each experiment was performed in batch using 198 images
for CRISPR activated system experiment and 900 images for cell-cycle
experiment. The step-by-step to construct a pipeline in CellProfiler can
be found in our previous work [30].

Pipeline 2 is also performed only in CellProfiler™ (version 4.2.1).
However, additional modules compared to Pipeline 1 were needed to
detect microalgae cells. The pipeline starts with ColorToGray module to
split image channels. There were two channels which were used, blue
channel to detect droplets and red channel to detect the microalgae cells.
The droplet detection had similar setting compared to Pipeline 1 with
some adjustments in the adaptive window size, thresholding smoothing
scale and correction factor. For the microalgae detection, EnhanceOr-
SuppressFeatures was added to enhance the microalgae cells images
using “Speckles” feature type with the size of 50 in “Fast” mode.
MaskImage module was also added to filter the microalgae cells which
are present in the detected droplets. The IdentifyPrimaryObjects module
was set with 10-50-pixel unit using Adaptive Robust Background algo-
rithm in 50 window size to detect microalgae cells. The “Mean” was

Analytica Chimica Acta 1272 (2023) 341397

selected as the averaging method with “Standard Deviation” as the
variance method in the setting. This microalgae cells detection was
followed by MeasureObjectIntensity and MeasureSizeAndShape to
retrieve the measurement data. After performing both detections,
RelateObjects module was added to build the relationship between
droplet and microalgae cells detections. The results were exported as.csv
file format using ExportToSpreadsheet module. For this experiment, 146
images were used in a batch analysis.

In Pipeline 3, two software, CellProfiler™ (version 4.2.1) and Ilastik
(version 1.3.3), were used to detect droplets and microplastic beads and
to build the relationship between both detected objects. Ilastik was used
to detect the microplastic beads and to provide the probability map that
represents the beads in each image. There was a pre-defined workflow,
Pixel Classification and Object Classification, from Ilastik which used to
detect the beads. Detailed guideline for this workflow usage can be
found in our previous research methods published in Sanka et al. [29]
The sigma or scale value of 0.30, 1.00, and 3.50 were selected for this
experiment. Correspond to our previous method, the microplastic beads
were annotated as our object of interest and labeled everything but the
beads as a background. This annotation was used to train the program
and determine the object of interest, in our case, it is between the beads
and background. In thresholding, core and final values were determined
as 0,65 with filter size ranging from 85 to 500 in pixels to enhance the
detection. After the thresholding, second classification was performed to
enhance microplastic beads detection and disregarded the wrong
detected object. After second training, a probability map was retrieved
in Object Information Export module. For this step, critical step needed
to be performed to transpose the axis order into “cyx” and changed the
filetype output as TIFF format. These settings can be found in “Choose
Export Image Settings” option in the module. The probability map then
can be imported into CellProfiler™ to perform re-detection of micro-
plastic beads using IdentifyPrimaryObject module. Probability map
simplifies the detection of microplastic beads, compared to direct
detection from brightfield images. In this re-detection, 10 to 45-pixel
units were set with Adaptive-Otsu thresholding strategy and method.
The default settings were set to support the detection. To detect the
droplets, microplastic beads were suppressed using EnhanceOrSup-
pressFeature module with “Suppress” operation and feature size of 20.
For droplet detection, the same modules which explained in the previous
pipelines were used using “Suppressed” images. FilterObjects module
was also added in this pipeline and was set with specific range of ec-
centricity (0-0.5) and form factor of 0.8-1.0. After detecting both
droplets, the relationship between detected droplets and microplastic
particles were built using RelateObjects module. This module will give
the number of microplastic beads in each droplet. Using ExportToS-
preadsheet, the results are exported and retrieved as a.csv file. For this
experiment, 45 images were used in a batch.

EasyFlow settings step-by-step. EasyFlow only requires data
(either in.csv or.xlsx format) to be uploaded in the online platform. The
uploading process can be performed either by drag-and-drop feature or
by clicking the upload section which available on the homepage. Once
the file is uploaded, all results will be shown in the platform and four
figures will be presented directly. Additional setting to define threshold,
size and signals bins was performed in Easyflow for our experiments. For
detailed information, the value of 0.0702 was used for in CRISPR acti-
vated system experiment, 0.0459 for cell-cycle experiment, 0.9 for
microalgae cells growth experiment and 0.9 for microplastic beads
encapsulation rate experiment. The value of 0.9 for microalgae and
microplastic were used since value less than 1.0 for threshold will give
the value of the number of empty droplets. Since EasyFlow is a static
web application, it does not save the data which is uploaded by user.
Therefore, all images need to be saved once users are satisfied with the
results or visualizations.
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