
Certification of Context-Free
Grammar Algorithms

DENIS FIRSOV

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C116

TALLINN UNIVERSITY OF TECHNOLOGY
Institute of Cybernetics

This dissertation was accepted for the defense of the degree of Doctor of Phi-
losophy in Informatics on 26 July 2016.

Supervisor: Prof. Tarmo Uustalu, PhD
Institute of Cybernetics
Tallinn University of Technology
Tallinn, Estonia

Opponents: Prof. Gert Smolka, Dr. rer. nat.
Fachrichtung Informatik
Universität des Saarlandes
Saarbrücken, Germany

Simão Melo de Sousa, PhD
Departamento de Informática
Universidade da Beira Interior
Covilhã, Portugal

Defense: 31 August 2016

Declaration: Hereby I declare that this doctoral thesis, my original investigation
and achievement, submitted for the doctoral degree at Tallinn University of Tech-
nology has not been previously submitted for any degree or examination.

/Denis Firsov/

Copyright: Denis Firsov, 2016
ISSN 1406-4731
ISBN 978-9949-83-005-3 (publication)
ISBN 978-9949-83-006-0 (PDF)

INFORMAATIKA JA S TEHNIKA C116ÜSTEEMI

Kontekstivabade grammatikate
algoritmide sertifitseerimine

DENIS FIRSOV

Contents

List of publications 7

Author’s contribution to the publications 8

Accompanying code 8

Introduction 9
Motivation . 9
Problem statement . 9
Contribution of the thesis . 9
Outline of the thesis . 10

1 Background 11
1.1 Compilers and parsing . 11
1.2 Formal verification . 13
1.3 Constructive logic . 14
1.4 Curry–Howard correspondence 14
1.5 Basics of Agda . 15

2 Finite sets in dependently typed setting 21
2.1 Listable sets . 21
2.2 Listable subsets . 23
2.3 Pragmatic finite subsets . 24
2.4 Functions on finite sets . 26
2.5 Prover . 27
2.6 Example . 28
2.7 Conclusions . 33

3 CYK parsing of context-free languages 35
3.1 Context-free grammars and parsing relation 35
3.2 CYK parsing algorithm . 38
3.3 Correctness . 39
3.4 Termination . 39
3.5 Memoization . 40
3.6 Example . 42
3.7 Conclusions . 43

4 Normalization of context-free grammars 45
4.1 Parsing relation . 45
4.2 Unit rule elimination . 47
4.3 Full normalization and correctness 48

5

4.4 General context-free parsing . 49
4.5 Example . 51
4.6 Conclusions . 53

5 Related work 55

6 Conclusions 59
6.1 Summary . 59
6.2 Future work . 59

References 61

Acknowledgements 67

Abstract 68

Resümee 69

Publications 71
Paper I . 73
Paper II . 87
Paper III . 99

Curriculum Vitae 109

Elulookirjeldus 111

6

List of publications

The thesis is an overview of and is based on publications I–III below. Publications
IV and V are on related subjects.

In the thesis, the publications are referred to as Papers I–V. All publications
have undergone a rigorous peer review process.

I D. Firsov, T. Uustalu. Dependently typed programming with finite sets. In
Proc. of 2015 ACM SIGPLAN Wksh. on Generic Programming, WGP ’15
(Vancouver, BC, Aug. 2015), pp. 33–44. ACM Press, 2015.

II D. Firsov, T. Uustalu. Certified CYK parsing of context-free languages. J. of
Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–468, 2014.

III D. Firsov, T. Uustalu. Certified normalization of context-free grammars.
In Proc. of 4th ACM SIGPLAN Conf. on Certified Programs and Proofs,
CPP ’15 (Mumbai, Jan. 2015), pp. 167–174. ACM Press, 2015.

IV D. Firsov, T. Uustalu. Certified parsing of regular languages. In G. Gonthier,
M. Norrish, eds., Proc. of 3rd Int. Conf. on Certified Programs and Proofs,
CPP 2013 (Melbourne, Dec. 2013), v. 8307 of Lect. Notes in Comput. Sci.,
pp. 98–113. Springer, 2013.

V D. Firsov, T. Uustalu, N. Veltri. Variations on Noetherianness. In R. Atkey,
N. Krishnaswamy, eds., Proc. of 6th Wksh. on Mathematically Structured
Functional Programming, MSFP 2016 (Eindhoven, 2016), Electron. Proc. in
Theor. Comput. Sci., pp. 76–88. Open Publishing Assoc., 2016.

7

Author’s contribution to the publications

The candidate is responsible for designing and implementing the algorithms and
proofs in Agda both for the publications the thesis is based on well as the thesis
itself. In addition, the candidate had the lead role in conceiving, drafting and
producing the manuscripts. Also the work was presented at the conferences by
the thesis author.

The general idea of implementing a certified parser generator for context-free
grammars was conceptualized and motivated by the candidate’s supervisor. The
supervisor also helped in the writing.

The lead ideas for the work on finite sets (Paper I) are the candidate’s.

Accompanying code

Papers I–III are accompanied with developments (programs, proofs) in the Agda
dependently typed programming language [1, 38]. The code associated with the
papers is located at:

• http://cs.ioc.ee/~denis/finset (Paper I).

• http://cs.ioc.ee/~denis/cert-cfg (Paper II).

• http://cs.ioc.ee/~denis/cert-norm (Paper III).

The Agda code of the thesis is located at http://cs.ioc.ee/~denis/phd. It is
a streamlined adaptation of the above-mentioned developments.

The differences come mostly from the changes introduced in newer versions
of Agda and its standard library. The current development uses the latest releases
of Agda and Agda Standard Library (for the moment these are Agda 2.5.1 and
Std. Lib. 0.12).

We also made the interfaces of earlier developments compatible with each
other.

8

Introduction

Motivation

As the recognition of information technology broadens to new fields, the need
for reliable and fast development of new programming languages has become
more important than ever. Nowadays, building languages targeted at a particular
problem domain is considered a standard technique in software engineering [18].

However, programming languages are software systems as well. They are usu-
ally defined by a compiler or an interpreter. The importance of the correctness of
the implementation of the compiler is very high, since this property is propagated
to the software that is written in that language—if the compiler has defects, then
programs compiled with it also perform poorly or are flawed. The correctness
of a compiler means that the compiled code should behave in the “same” way as
the source program—according to the semantics assigned to the source and target
languages [2].

The correctness of a compiler (in the above mentioned sense) for a higher-level
programming language is thus of crucial importance. The compilation process is
divided into a number of phases. Parsing is the phase of structuring the input code
into a tree in conformance with the grammar of the programming language. The
later stages of the compilation process depend on the correctness of the parser
used. Therefore, it becomes important to investigate the parsing techniques in a
formal setting.

Problem statement

The main goal of the thesis is to implement a set of tools and a certified parsing
algorithm for general context-free grammars, using the Agda dependently typed
programming language [1, 38]. More precisely, the main interest is to imple-
ment a function that, given a context-free grammar and a string, finds a derivation
(parse tree) of the string in the grammar provided. Moreover, the correctness proof
must ensure that only valid derivations can be delivered, and that derivation, or all
derivations, will be delivered, if one exists.

Contribution of the thesis

The main contributions of the thesis towards the implementation of a certified
parser generator are:

• An investigation of the relationships between different encodings of listable
sets and their implication on decidable equality.

• A toolbox for boilerplate-free programming with finite sets given by listing
a subset of some base set with decidable equality.

9

• A certified implementation of the CYK parsing algorithm for context-free
grammars in Chomsky normal form.

• A certified implementation of conversion of general context-free grammars
to Chomsky normal form. The proofs of soundness and completeness of
the conversion are functions for conversion between parse trees for the nor-
malized and original grammars.

• Obtained by combining the above, a certified implementation of a parsing
algorithm for general context-free grammars.

Outline of the thesis

Section 1 provides the basic background for this thesis. It gives an overview of the
compilation process and possible approaches to formal verification. We start by
outlining the usual phases of a compiler and describe the parsing phase in more
detail. Then we discuss different approaches to formal verification of software
systems. Finally, we explain our decision to work in a constructive setting by
describing its main properties. Also we give a short introduction to the Agda
language.

As the problem under investigation requires us to work with finite sets, we de-
vote Section 2 (corresponding to Paper I) to exploring different notions of finite
sets in the constructive setting. We start by giving different encodings of lista-
bility of a set and proving that the encodings are logically equivalent. Then we
prove that listable sets have decidable equality. Finally, we develop a toolbox for
boilerplate-free programming with finite sets given by listing a subset of some
base set with decidable equality.

In Section 3, (summarizing the Paper II) we implement the Cocke–Younger–
Kasami (CYK) algorithm of parsing context-free languages and prove the cor-
rectness of the implementation. We start by giving a simple recursive version of
the algorithm. The simplicity of this naive implementation allows us to prove the
correctness concisely. But it suffers from excessive recomputations. Therefore,
we refine the initial implementation into the efficient memoizing algorithm. We
then prove that the memoizing algorithm is equivalent to the first one.

The CYK algorithm requires context-free grammars in Chomsky normal form.
Therefore, in Section 4 (for Paper III), we develop a normalization function that
turns a general context-free grammar into a normalized one. Next, we prove that
the implemented transformation is sound and complete. The soundness and com-
pleteness proofs are functions for conversion between parse trees for the normal-
ized and original grammars. Finally, we combine the results of Papers II and III
into a certified parser generator for general context-free grammars.

Section 5 gives an overview of the related work. Section 6 concludes the thesis
and describes possible directions for future work.

10

1 Background

In this section, we outline the basic background for our work. First, we list the
phases of the typical process of compilation and describe in particular the phase of
syntax analysis. Next, we discuss different approaches to formal verification and
motivate our decision to work in the constructive and dependently typed setting of
the Agda programming language. Then we explain the main ideas of constructive
logic, the Curry–Howard correspondence and provide a short introduction into the
basics of programming in Agda.

1.1 Compilers and parsing

Compilation is a process of translating a program written in a high-level language
into a machine language. It is usually divided into a number of phases [3]:

1. lexical analysis,

2. syntax analysis,

3. semantic analysis,

4. optimisation,

5. code generation.

This subdivision into phases is helpful for coping with the complexity of com-
pilers. There is little overlap between the phases and each phase has a concise
interface toward the neighbouring phases [2]. In this work, we are mostly inter-
ested in syntax analysis.

Traditionally, the lexical and syntactic analyses of a programming language
are described by using formal grammars. The lexical aspect is usually a regular
language, specified by a regular expression. A regular expression defines the set of
possible character sequences that are used to form individual tokens or lexemes.
The syntactic analysis is done with reference to a context-free grammar which
recursively defines the components that can make up an expression out of tokens
[26]. More formally, a context-free grammar is a 4-tuple G = (N,T,R,S), where:

1. N is a finite set; each element A ∈ N is called a nonterminal.

2. T is a finite set of terminals, disjoint from N. The set of terminals is the
alphabet of the language defined by the grammar G. In a compiler, the
terminals of syntax analysis are the lexical tokens.

3. R is a finite set of production rules. A rule is usually denoted by an arrow
notation as A −→ γ , where A ∈ N and γ is a sequence of nonterminals and
terminals.

11

4. S is the start nonterminal form the set N.

A context-free grammar G is said to be in Chomsky normal form if all of its
production rules are either of the form A −→ BC or A −→ t, where A, B, C are
nonterminals and t is a terminal; B and C cannot be start nonterminal. Addition-
ally, there must be a flag which indicates if the empty word is in the language of
G [46]. Perhaps surprisingly at first, every context-free language can be specified
by a grammar in Chomsky normal form.

Next, we discuss derivations in some fixed context-free grammar G. Let αAβ

be some sequence of symbols (terminals and nonterminals), and A be a nontermi-
nal. If there is a rule A−→ γ in R then we can derive αγβ from αAβ (denoted by
αAβ ⇒ αγβ). Let +⇒ be the transitive closure of the derivation relation⇒. Then
the language of the grammar G is the set of all strings (sequences of terminals)
derivable from the nonterminal S in the sense of the relation +⇒.

A derivation tree or parse tree is an ordered rooted tree that represents the
syntactic structure of the derived string. Rendering a derivation as a tree helps one
to grasp the structure of the parsed string. For example, let us define a grammar
with a single nonterminal S and terminals 1 and +. There are two rules S −→ 1
and S −→ S+ S. Then the following is a possible derivation tree of the string
"1+1+1":

S

S

1+

S

S

1+

S

1

After specifying the formal grammar, a parser generator is able to produce
an executable parser. A parser for a regular language (also called a lexer) breaks
the source code text into tokens. A parser for a context-free language identifies
the syntactic structure of the program by building a parse tree, which replaces
the linear sequence of tokens with a tree structure built according to the rules of
the grammar. The parse tree is then analyzed and transformed by the subsequent
phases of the compiler [3].

The correctness of a parser generator is of significant importance, since the
overall correctness of a compiler depends on the correctness of each of its phases,
in particular syntax analysis. The parser generator is correct, if, for any suitable
input grammar, it generates a program that parses all strings in the language of the
grammar and for others flags an error.

12

1.2 Formal verification

The correctness of a software system is usually established by full formal verifica-
tion. The specification of the system is presented in some mathematical language.
The system itself also must be modeled in some mathematical formalism. The
verification is then done by providing a formal proof that the model satisfies the
specification. It is important to ensure that the mathematical model of the system
describes all the aspects relevant to the correctness of the actual system.

Model checking is an approach to formal verification [34]. In model checking,
the model usually consists of states and transitions between them. The properties
to be verified can be given in temporal logics (e.g., linear temporal logic). The
verification of such systems can be done by exhaustively exploring all traces. The
advantage of model checking is that it is automatic, but the downside is that it
does not easily scale to systems with big or infinite state space. Introducing more
abstraction is the typical strategy to combat the state explosion problem. It is
important for the abstract model to be sound, namely, that the properties proved
on the abstraction are true about the original system. However, the abstract model
is usually not complete – not all true properties of the original system are provable
for the abstract model of a system [34].

Deductive verification is an approach which establishes the correspondence
between a program and its specification by deductive reasoning [35]. The straight-
forward approach to deductive verification is to establish the meaning of a given
program and then logically derive properties about its behaviour in universal logic
(e.g., predicate logic). The downside of this approach is the need to manually
model the program behaviour [4]. Clearly, it is error-prone and does not scale to
larger software. More advanced approaches to deductive verification provide and
justify a program logic for the semantics of a fixed programming language. This
allows to automatically generate verification conditions which must be proved to
establish that program satisfies its specification. The proof of verification condi-
tions can be done manually or automatically (e.g., by using SMT solvers). The
downside of the approach is that overall correctness depends on the soundness of
the program logic used, the correctness of verification condition generator, and
the correctness of used SMT solvers [4].

Dependently typed programming is an approach in which the specification,
programming and proving can be done in one uniform environment. Type-checker
establishes then the validity of a given proof that the program satisfies the spec-
ification. In this work, we use the dependently typed functional programming
language Agda [38].

To guarantee that the compiled code behaves as it is prescribed by the se-
mantics of the source code, every single phase of compilation process must be
formally specified and verified. In Paper IV we used Agda to show how to imple-
ment a provably correct parser generator for regular languages (lexical analysis).
The objective of this thesis is to develop a set of tools and a certified parser gener-

13

ator for context-free languages (syntax analysis) in the dependently typed setting
of Agda.

1.3 Constructive logic

Constructive logic or intuitionism is a type of symbolic logic that differs from
classical logic by replacing the traditional concept of truth with the concept of
constructive provability [49]. In classical logic, propositions are always assigned
a truth value—each proposition is either “true” or “false”. It is not required to have
an explicit proof for either case. In contrast, in constructive logic, propositions are
not assigned any truth values. Instead a proposition is considered to be “true” only
when we have an explicit proof. In constructive logic, proof comes before truth.

Unproved statements remain undecided until they are either proved or dis-
proved. Statements are disproved by deducing a contradiction from them. Proof-
theoretically, intuitionistic logic is a restriction of classical logic in which the law
of excluded middle is not among the tautologies. The law of excluded middle can
still be used for decidable propositions, but does not hold universally [49].

An important aspect of constructive logic is that because of its restrictions the
proofs have the existence property. This means that, if there is a constructive
proof that an object exists, then the proof may be used to produce an algorithm
for generating that object [49].

The algorithmic content of proofs in the constructive setting makes this logic
interesting to the programming language community. Surprisingly, it turns out
that programs written in functional languages with rich type systems can be seen
as constructive proofs of propositions corresponding to the types of programs [51].

1.4 Curry–Howard correspondence

The Curry–Howard correspondence is a relationship between computer programs
and mathematical proofs. It was discovered by Haskell Curry and William Alvin
Howard. However, the idea is related to the functional interpretation of intuition-
istic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and
Andrey Kolmogorov (BHK interpretation), and Stephen Kleene [49].

The Curry–Howard correspondence is the observation that proof systems and
models of computation are in fact structurally the same kind of objects. The main
idea can be expressed as the following claim: a proof is a program, the formula it
proves is a type for the program [51].

The claim states that the hypotheses of a logical theorem correspond to argu-
ment values passed to the function whereas the return type of a function corre-
sponds to the statement of the theorem under these hypotheses. Therefore, proofs
can be represented as programs which in turn can be run.

The correspondence is as follows:

14

Logic Programming
universal quantification dependent function type
existential quantification dependent product (pair) type

implication function type
conjunction product (pair) type
disjunction sum type

truth unit type
falsity empty type

For example, Haskell has the well-known operator $:

($) : (a -> b) -> a -> b
($) f a = f a

Interestingly, the type can be read as the well-known rule of implication elimina-
tion from predicate logic or as the type of a higher-order polymorphic function.
An inhabitant (or proof) of this type (or rule) is given by function application.

The Curry–Howard correspondence led to a new kind of typed calculi designed
to act both as a proof framework and as a functional programming language with
expressive type system. Martin-Löf’s type theory and Coquand’s Calculus of Con-
structions are examples of such frameworks. These formal systems define a lan-
guage in which proofs (functions) are first-class citizens. Therefore, it becomes
possible to state properties of functions (proofs). These formalisms led to the de-
velopment of software like Coq and Agda which allow one to use single formal
language for writing types, specifications, functions, and proofs [39].

1.5 Basics of Agda

In this section, we show some simple function definitions and proofs that should
give our reader a glimpse into programming and proving in the Agda system [1,
38].

Dependent types are types that can refer to values. Ordinary function types
X → Y can refer only to other types. Dependent function types (x : X) → Y
allow to give a name, x, to a typical element of the domain X of the function. The
name x can be then used in the codomain Y to refer to the element of X that has
been supplied as the argument of the function [12]. For example,

reflexivity : (X : Set) → (x : X) → x ≡ x

In the provided example, we first assume that X is a set, then we say that for any
element x of a set X we can compute the value of the set x ≡ x, which is to be seen
as the type of proofs that x equals to itself. Note, that the identity type depends on
the set X (in an implicit or hidden way), but also on a particular element x of that
set.

Agda supports a wide class of strictly positive inductive and inductive-recursive
datatypes. Parametric inductive datatypes can be defined by providing a variable

15

declarations after the name of the datatype. For example, polymorphic lists have
one parameter (X : Set):

data List (X : Set) : Set where
[] : List X
:: : X → List X → List X

This declares List X to be the set of lists of elements of type X. Since the defi-
nition is parameterized in a type X, we have effectively defined a family of types
List X, one for each X.

To make the code more readable, in some cases we use the bracket notation to
denote lists, i.e., [1 , 2], instead of the basic notation 1 :: 2 :: [].

Datatypes can also be indexed. In such cases, they are called inductive fami-
lies. The difference between an index and a parameter is that the index need not
be constant throughout the definition of the type [12]. For example, consider the
type x ∈ xs of proofs that x is the element of list xs. Consider the definition:

data _∈_ {X : Set}(x : X) : List X → Set where
here : {xs : List X} → x ∈ x :: xs
there : {y : X}{xs : List X} → x ∈ xs → x ∈ y :: xs

In Agda, an argument enclosed in curly braces is implicit. The Agda type-checker
will try to figure it. If an argument cannot be inferred, it must be provided ex-
plicitly. So, the definition is implicitly parameterized by the type of elements
(X : Set), explicitly parameterized by the element of that type (x : X) and is
indexed by list of elements of X. Therefore, we can naturally express that either
the element is in the head position of a list x ∈ x :: xs or, if we know that
x ∈ xs, then it is also true that x ∈ y :: xs for any y.

The main idea behind the Curry–Howard isomorphism is that each proposition
can be viewed as the set of its proofs. To emphasize that proofs here are first-
class mathematical objects, one often talks about “proof objects”. In constructive
mathematics, they are sometimes also referred to as constructions. A proposition
is considered to be true, if its set of proofs is inhabited; it is false, if its set of
proofs is empty. The canonical empty type is defined as follows:

data ⊥ : Set where

It is clear that it is impossible to have an element of⊥, as there are no constructors.
As usual in constructive logic, to prove the negation of a proposition is the

same as proving that the proposition in question leads to absurdity:

¬_ : Set → Set
¬ X = X → ⊥

Moreover, we have the following elimination principle:

ex-falso-quodlibet : {X : Set} → ⊥ → X

16

A proof by (well-founded) induction is a recursive function with the requirement
that it needs to be terminating on all inputs. Termination is checked by Agda using
the so-called structural ordering on datatypes.

In our final example, we would like to demonstrate a proof that, for any type
X for which equality is decidable, we can also decide the list membership rela-
tion. The equality type itself (already used above) is an inductive type defined as
follows:

data _≡_ {X : Set} (x : X) : X → Set where
refl : x ≡ x

A decider for equality is a function of two arguments of some type X which returns
either a proof that the arguments are equal or a proof that equality of the arguments
provided implies absurdity.

DecEq X = (x1 x2 : X) → x1 ≡ x2] ¬ x1 ≡ x2

Next, we will develop our proof in a step-by-step fashion. The theorem we want
to prove is expressed by the type:

∈-dec : {X : Set} → DecEq X → (x : X) → (xs : List X)
→ x ∈ xs] ¬ x ∈ xs

We start by pattern matching on the given list xs. Clearly, it can be empty or
not. If the list is empty, then we conclude that x is not its member. Technically,
this is done by choosing the second alternative from the sum type (inj2) and then
proving that the type x ∈ [] is empty. When there are no possible constructor
patterns for a given argument (as in case with x ∈ []), one can pattern match on
it with the absurd pattern ().

∈-dec deq x [] = inj2 (λ ())
∈-dec deq x (x’ :: xs’) = ?

The next step is to analyze the case when the list xs has head x’ and tail xs’.
Then we use the given decidable equality to check whether x is equal to x’.

∈-dec deq x (x’ :: xs’) with deq x x’
∈-dec deq x (x’ :: xs’) | inj1 p = ?
∈-dec deq x (x’ :: xs’) | inj2 p = ?

We again branch into two cases. In the first case, x is equal to x’ and p is a
proof of x ≡ x’. Therefore, we can pattern match on p and, since the only pos-
sible canonical proof of x ≡ x’ is refl, we can substitute x for x’ everywhere.
Then the goal of this branch becomes x ∈ x :: xs and this is exactly what the
constructor here gives.

17

∈-dec deq x (x’ :: xs’) with deq x x’
∈-dec deq .x (x :: xs’) | inj1 refl = inj1 here

The notation .x indicates that this argument is forced to be x, given that the equal-
ity proof is assumed to be refl.

In the second case, x is not equal to x’. Then we must recursively check
whether x is a member of the tail xs’. We do that by recursively calling
∈-dec deq x xs’. Since the argument list becomes shorter, the termination
checker is satisfied. The recursive call branches into cases where x is a member
of the tail or not. If x is a member of the tail, then we must prove x ∈ x’ :: xs,
given that x ∈ xs. This is done using the constructor there:

∈-dec deq x (x’ :: xs’) | inj2 p with ∈-dec deq x xs
∈-dec deq x (x’ :: xs’) | inj2 p | inj1 x1 = inj1 (there x1)

Otherwise, we know that p : ¬ x ≡ x’ and q : ¬ x ∈ xs’. This is enough
to prove that the type x ∈ (x’ :: xs’) is empty.

∈-dec deq x (x’ :: xs’) | inj2 p | inj2 q
= inj2 (λ { here pr → p pr ; there pr → q pr })

The last proof term demonstrates the use of pattern matching under lambdas.

1.5.1 Intrinsic vs. extrinsic styles

When implementing a program in a dependently typed language, there is a design
choice between “extrinsic” and “intrinsic” verification. In case of the extrinsic
style, the developer implements simply typed functions and datastructures and
then proves properties about their behaviour. For example, we can define a func-
tion length on lists:

length : {X : Set} → List X → N
length [] = 0
length (_ :: xs) = 1 + length xs

Next, we want to show the relation between concatenation and the length of lists:

length-lemma : {X : Set} → (xs ys : List X)
→ length (xs ++ ys) ≡ length xs + length ys

In case of intrinsic development, the developer encodes the properties into the
types of datastructures and functions. Instead of working with simply typed lists,
we can use vectors, which are lists indexed by their lengths:

data Vec (X : Set) : Nat → Set where
[] : Vec X zero

:: : {n : Nat} (x : X) → (xs : Vec X n) → Vec X (suc n)

18

Now, the type signature of the concatenation function is forced to make explicit
the size of a resulting vector:

++ :: {n m : Nat}{X : Set} → Vec X n → Vec X m
→ Vec X (n + m)

In our work, we use both styles of development. The extrinsic approach makes
it easier to separate executable functions from proofs of correctness, which makes
it simpler for the compiler to optimize the resulting code. On the other hand,
the intrinsic style allows one to design datastructures and functions which are
correct-by-construction and therefore significantly ease and shorten the proofs.
This becomes even more important, since Agda provides only limited ways to
automatization.

1.5.2 Compilation

Agda has a compiler that can extract Haskell or JavaScript. The Agda’s extrac-
tion mechanism is still being developed and there are significant improvements in
recent versions (especially comparing older version to Agda 2.5.1). Indeed, we
observed a significant improvement in performance when compiling our devel-
opment with Agda 2.5.1 versus Agda 2.4.*. This seems to be the result of the
numerous adjustments in compilation of Agda (the exact details can be found in
the release notes to version 2.5.1).

We believe that larger implementations (like ours) can help Agda developers
to make the extraction mechanism better.

Based on our experiments, we do not think that at the current stage the Agda
extraction mechanism generates code with competitive performance.

1.5.3 Automatization

Agda provides a term search tool Agsy. The tool is independent of Agda and any
solution coming from it is checked by Agda. However, one should not expect it to
handle large problems of any particular kind. It is meant more as a convenience
tool during the development process.

Due to the absence of automatization in Agda comparable to tactics in Coq,
the proofs can end up being verbose. On the other hand, it forces the developer
to design the datastructures and datatypes more carefully, so that proofs remain
manageable in reuse and generalization.

19

2 Finite sets in dependently typed setting

Intuitionistic frameworks give rise to a rich variety of competing notions of finite-
ness that collapse classically. Therefore it is important to know the exact relation-
ships between the some variations. From the programming perspective, the most
important definition of finiteness is listability: a set is considered to be finite, if its
elements can be completely enumerated in a list. In this section, we describe the
main results from Paper I, where we formalize different variations of listability in
the Agda programming language and develop a toolbox for boilerplate-free pro-
gramming with finite sets that are given by listing a subset of some base set with
decidable equality. The resulting library can, in particular, be used to represent,
manipulate and derive properties of context-free grammars.

In Section 2.1, we give the basic definition of a listable set and some varia-
tions of this definition. We proceed by showing that listability implies decidable
equality and use this fact to show that the notions of finiteness introduced are
equivalent. In Section 2.2, we define the notion of a listable subset given by a
predicate on some base set and prove that it is not possible to generally derive
decidability of equality for listable subsets. Next, in Section 2.3, we describe an
approach to concise definition of new listable sets by using squashing of decidable
properties. In Section 2.4, we implement some combinators for defining functions
on finite sets. Finally, in Section 2.5, we develop a prover for quantified formulas
over decidable properties on finite sets.

The Agda development corresponding to the content of this section is located
in the module Fin of the accompanying code.

2.1 Listable sets

The simplest and strongest notion of finiteness in the constructive setting is lista-
bility [31]. A set is listable, if there exists a list containing all of its elements:

All : (X : Set) → List X → Set
All X xs = (x : X) → x ∈ xs

Listable : (X : Set) → Set
Listable X = ∃[xs : List X] All X xs

The type All X xs tells us that the list xs contains all elements of type X. The
type Listable X says that there exists a list xs with the property All X xs.

Alternatively, we can ask for a surjection from an initial segment of natural
numbers. The type Fin n is an inductive type containing all natural numbers
strictly smaller than n.

FinSurj : (X : Set) → Set
FinSurj X = ∃[n : N]

∃[fromFin : Fin n → X]

21

∃[toFin : X → Fin n]
((x : X) → fromFin (toFin x) ≡ x)

So, the proof of FinSurj X contains the size n of an initial segment, a function
fromFin from Fin n to X, a function toFin from X to Fin n and a proof that
fromFin is a surjection, i.e., that toFin is a pre-inverse of fromFin. We also
prove that the two notions are equivalent:

surj2lstbl : {X : Set} → FinSurj X → Listable X

lstbl2surj : {X : Set} → Listable X → FinSurj X

To implement surj2lstbl, we get the size n of the initial segment from the
argument FinSurj X and then generate a list xs by applying fromFin to the first
n natural numbers. The proof of All X xs is implied by the fact that fromFin
is a surjection. Implementing lstbl2surj requires us only to associate every
position in the list xs with the element at this position. The rest follows.

We can try to define a stronger notion by additionally asking for a proof that
all elements of a set appear in the list only once.

ListableNoDup : (X : Set) → Set
ListableNoDup X = ∃[xs : List X]

All X xs ×
NoDup xs

Since all positions in the list xs are in an one-to-one correspondence with elements
of X, it is the same as asking for a bijection from an initial segment of the set of
natural numbers:

FinBij : (X : Set) → Set
FinBij X = ∃[n : N]

∃[fromFin : Fin n → X]
∃[toFin : X → Fin n]
((x : X) → fromFin (toFin x) ≡ x) ×
((i : Fin n) → toFin (fromFin i) ≡ i)

bij2lstblnd : {X : Set} → FinBij X → ListableNoDup X

lstblnd2bij : {X : Set} → ListableNoDup X → FinBij X

In Section 3 of Paper I, we show that all four introduced notions of finiteness
are of the same strength. The reason for this is that we can derive decidability of
equality for elements of type X, if it is listable:

DecEq X = (x1 x2 : X) → x1 ≡ x2] ¬ x1 ≡ x2

lstbl2eq : {X : Set} → Listable X → DecEq X

22

The idea for deriving decidability of equality for elements of type X from the
proof of Listable X is as follows. Given elements x1 and x2, we can learn their
positions p1 and p2 in the list xs by using the proof of All X xs. If the positions
are equal, then clearly the elements x1 and x2 are also equal. If the positions are
different, then we can show that the elements must also be different. Assume
the opposite. Then x1 ≡ x2 implies p1 ≡ p2, since the proof of All X xs is
a function and must return equal results for equal arguments. We have derived a
contradiction from the assumption that the positions are different.

With decidable equality at our disposal, it is routine to implement a function
which removes duplicates from the list and generates a proof that the resulting list
is duplicate free (NoDup xs). Finally, we can show that Listable X is as strong
as ListableNoDup X:

lstbl2lstblnd : {X : Set} → Listable X → ListableNoDup X

lstblnd2lstbl : {X : Set} → ListableNoDup X → Listable X

2.2 Listable subsets

A special case of sets are those defined as a subset of a larger set. Here, by a subset
we really mean a description of a subset by means of a base set and a predicate on
it. We do not consider a subset type former. A subset of a base set U carved out
by a predicate P : U → Set is finite, if there is a list containing all elements of
U that satisfy P and only these:

ListableSub : (U : Set) → (U → Set) → Set
ListableSub U P = ∃[xs : List U]

((x : U) → P x → x ∈ xs) ×
((x : U) → x ∈ xs → P x)

Listable sets are a special case of listable subsets:

lstbl2lsub : {U : Set}
→ Listable U → ListableSub U (λ _ → >)

lsub2lstbl : {U : Set}
→ ListableSub U (λ _ → >) → Listable U

(Here > is the unit type: a singleton type with a unique element tt.)
Next, we establish that the notion of listable subsets is more general than the

notion of listable sets. We observe that it is impossible to derive a decidable
equality from a proof of ListableSub U P for elements of set U which satisfy
P. In Section 3 of Paper I, we show that having decidable equality for the general
case would imply functional extensionality, which is unavailable in the type theory
Agda is based on.

23

However, there are two special cases when decidability of equality becomes
provable. The first is when there is at most one proof of P x for every x. The
strategy of deriving the decidable equality for elements of such subset is same as
the one described for listable sets. The crucial point here is that, since, for each
element x, there is only one proof of P x, then the “completeness” proof

(x : U) → P x → x ∈ xs

cannot provide different proofs of x ∈ xs for different proofs of P x.
The second special case when equality becomes decidable for elements of a

listable subset happens when the predicate P is decidable. This case is actually
reducible to the first case by using effective squash types:

‖_‖ : {Q : Set} → Dec Q → Set
‖ yes _ ‖ = >
‖ no _ ‖ = ⊥

If a set Q is decidable, we can effectively define a squashed version of Q (i.e., the
quotient Q by the total equivalence relation). Next, we observe that, if a predicate
P is decidable, namely, there exists a decider dec : ∀ x → Dec (P x), then
we can define a predicate P’ : (x : X) → ‖ dec x ‖ so that, for any x from
X, P x is equivalent to P’ x and moreover there is a unique proof of P’ x for any
x.

It is also important to note that one can always get a proof of P, if the squashed
version is inhabited:

fromSq : {P : Set} → (d : Dec P) → {‖ d ‖} → P

We have made the third argument (of type ‖ d ‖) implicit, since, if d proves
Dec P, then the only possible value is the unique element tt : > and the type-
checker can derive it automatically.

2.3 Pragmatic finite subsets

Direct construction of (new) listable sets requires tedious manual work in Agda.
In this section, we describe an approach to specifying new listable sets as subsets
of some base set with decidable equality. This approach allows one to specify
a listable set by listing the selected elements of the base set once. Moreover,
the decider of equality and the proof of listability of the newly defined set are
generated automatically.

We start by defining a new type FinSubDesc which is parameterized by some
base set U, a decidable equality on its elements, and a Boolean flag. Values of this
type are descriptions of new finite sets.

FinSubDesc : (U : Set) (eq : DecEq U) → Bool → Set

24

To specify a description of a finite subset there are two constructors: fsd-plain
and fsd-nodup. The first of those takes a list of elements of type U and returns
a description of a finite subset of type FinSubDesc U eq true. The second
constructor takes a list of elements of type U and a proof that the list contains no
duplicates and returns a value of type FinSubDesc U eq false.

The Boolean flag indicates whether the underlying list of the description is
allowed to have duplicates. This information can be exploited for better perfor-
mance when implementing combinators on descriptions of finite sets.

The type of elements of pragmatic finite subsets is parameterized by such de-
scription of a finite set:

Elem : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → Set

Elem {U} {eq} D = ∃[x : U] ‖ x ∈? toList D ‖
where

∈? = ∈-dec eq

So, an element of type Elem D for some finite subset description D is a dependent
pair of an element x of U together with a squashed proof that x belongs to the list
of elements defining the subset. Using the squashed membership type allows us
to ignore the exact position(s) of the element in the list.

An element of type Elem D is thus a pair (x , p). However, the squashed
membership proof p is of little interest for most of the time. Therefore, we intro-
duce the alternative notation for elements of type Elem D:

〈_〉 : {U : Set}{eq : DecEq U}{b : Bool}
→ {D : FinSubDesc U eq b} → (x : U)
→ {p : ‖ x ∈? toList D ‖} → Elem D

〈 x 〉 {p = p} = (x , p)

When we write 〈 x 〉, we assume that there is enough information in the context,
so that the typechecker can infer all the implicit arguments.

The most important property is that, for all D : FinSubDesc U eq b, the
corresponding subset of U, namely Elem D, is listable.

First, we generate a list of elements of Elem D:

listElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ List (Elem D)

Second, we show that listElem D is complete, it contains all elements of Elem D:

allElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ (xp : Elem D) → xp ∈ listElem D

25

These two properties together give us that Elem D is listable and has decidable
equality:

lstblElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ Listable (Elem D)

deqElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ DecEq (Elem D)

2.4 Functions on finite sets

Functions on finite sets can be represented as lists of tuples. In Agda, we can
specify a type Tbl parameterized by a domain type and a codomain type:

Tbl : Set → Set → Set
Tbl X Y = ∃[xys : List (X × Y)]

All X (map proj1 xys) ×
NoDup (map proj1 xys)

A value of type Tbl X Y is a list of pairs of type X × Y with some additional
information, namely, a proof that the list of pairs is complete, i.e., each element
of X is associated with a value of Y. Additionally, the list must be duplicate-free
regarding the first components. The first property ensures totality while the sec-
ond guarantees unambiguous interpretation. Also, recall that All X xs implies
Listable X.

We prove that any table can be converted into a function:

fromTbl : {X Y : Set} → Tbl X Y → X → Y

Conversely, if X is listable then any function X → Y can be represented as a table:

toTbl : {X Y : Set} → Listable X → (X → Y) → Tbl X Y

The correctness condition says that the function f and the result of converting
f to the table and back are extensionally equal:

fromto : {X Y : Set} → (p : Listable X) → (f : X → Y)
→ (x : X) → fromTbl (toTbl p f) x ≡ f x

For larger finite sets, the approach of defining functions in terms of tables is
tedious and error-prone. Therefore, we propose a notion of predicate matching.
We start by implementing a function unreached that takes a list of decidable
predicates and a list of elements and returns the list of those predicates that are
not satisfied by any element:

unreached : {X : Set} → List (X → Bool)
→ List X → List (X → Bool)

26

Soundness If, for some list xs, the list of predicates ps contains no unreachable
ones, then for any split of ps into three parts, ps ≡ ps1 ++ p :: ps2, there exists
at least one element x that satisfies p but does not satisfy any of the predicates in
ps1.
Completeness On the other hand, for any split ps ≡ ps1 ++ p :: ps2 of the
list of predicates ps, if all elements of a list xs which do not satisfy any predicates
from ps1 also do not satisfy p, then p is unreachable.

Now, let us address the issue of unmatched elements. We implement a function
unmatched that returns the list of all those elements in a given list xs that do not
satisfy any predicate in the given list ps:

unmatched : {X : Set} → List (X → Bool) → List X
→ List X

Soundness If there are no unmatched elements in the list xs, then, for any ele-
ment x in xs, the list of predicates ps can be split into three parts,
ps ≡ ps1 ++ p :: ps2, so that no predicate from ps1 is satisfied by x and p
is satisfied by x.
Completeness If each element in the list xs satisfies at least one predicate in
ps, then there are no unmatched elements.

We can now define a combinator that takes a list of predicates associated
with the functions and the proofs that all elements are matched and all predicates
reached, and returns a function built from the pieces:

predicateMatching : {X Y : Set}
→ (ps : List ((X → Bool) × (X → Y)))
→ (p : Listable X)
→ unmatched (map proj1 ps) (proj1 p) ≡ []
→ unreached (map proj1 ps) (proj1 p) ≡ []
→ X → Y

2.5 Prover

Conceptually, it is easy to see that existential and universal statements over finite
sets are decidable for decidable properties. For example, to prove that a decidable
predicate Q holds for all elements of a finite set U, we need to check it on each
element. Therefore, the notion of listable finiteness suits well.

We implement a combinator subAll? that takes some decidable property Q on
elements of U and returns a decision of whether Q holds for all elements of the
listable subset defined by predicate P.

subAll? : {U : Set}{P : U → Set}

27

→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec ((x : U) → {P x} → Q x)

The same can be done for the existential quantifier:

subAny? : {U : Set}{P : U → Set}
→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec (∃[x : U] P x × Q x)

The combinators subAll? and subAny? are sufficient to decide properties
which are in prenex form with the quantifiers ranging over the whole finite subset
given by P.

Finally, we provide some syntactic sugar for our combinators:

syntax subAll? f (λ x → z) = Π x ∈ f , z
syntax subAny? f (λ x → z) = ∃ x ∈ f , z

(Agda will automatically rewrite expressions matching the right-hand side into
the corresponding terms on the left.)

2.6 Example

We illustrate the advantages of using the definitions described by comparing them
to the straightforward approach of defining and working with finite sets from
datatypes with only nullary constructors (i.e., enumeration types). In what fol-
lows, we define an example context-free grammar by following the definition
given in the introductory section.

We start by defining sets for nonterminals and terminals. In most of the cases
these sets could be chosen as some built-in types like Char or String. In this ex-
ample, we define dedicated finite types for nonterminals and terminals to illustrate
the verbose repeating patterns in the straightforward definitions:

data N : Set where
A : N
B : N
C : N

data T : Set where
1 : T
0 : T

The grammar rules can then be defined as an inductive family indexed by the left
and right hand sides:

28

data _−→_ : N → List (N] T) → Set where
rule1 : A −→ [inj1 C , inj1 B]
rule2 : B −→ [inj1 C , inj1 B]
rule3 : C −→ [inj2 1]

The set of all rules is then a dependent pair type. We also provide projections for
the left and right hand sides:

Rule : Set
Rule = ∃[L : N] ∃[R : List (N] T)] L −→ R

projL : Rule → N
projL = proj1

projR : Rule → List (N] T)
projR r = proj1 (proj2 r)

To show that the sets defined are finite (so that one can, for example, iterate
through all elements), we can provide lists:

listN : List N
listN = [A , B , C]

listT : List T
listT = [0 , 1]

listRule : List Rule
listRule = [(_ , _ , rule1) , (_ , _ , rule2)

, (_ , _ , rule3)]

(The underscore _ is the "don’t care, go figure it out" pattern which tells the type-
checker that there should be enough information for it in the context to uniquely
determine the exact terms at the underscored places.)

Then we can prove that the given lists are complete:

allN : (n : N) → n ∈ listN
allN A = here
allN B = there here
allN C = there (there here)

allT : (t : T) → t ∈ listT
allT 0 = here
allT 1 = there here

allRules : (r : Rule) → r ∈ listRule

29

allRules (_ , _ , rule1) = here
allRules (_ , _ , rule2) = there here
allRules (_ , _ , rule3) = there (there here)

Next, we also need a equality decider for the elements of the sets defined:

=N? : DecEq N
A =N? A = inj1 refl
A =N? B = inj2 (λ ())
A =N? C = inj2 (λ ())
B =N? A = inj2 (λ ())
B =N? B = inj1 refl
B =N? C = inj2 (λ ())
C =N? A = inj2 (λ ())
C =N? B = inj2 (λ ())
C =N? C = inj1 refl

=T? : DecEq T
0 =T? 0 = inj1 refl
0 =T? 1 = inj2 (λ ())
1 =T? 0 = inj2 (λ ())
1 =T? 1 = inj1 refl

=R? : DecEq Rule
(_ , _ , rule1) =R? (_ , _ , rule1) = inj1 refl
(_ , _ , rule1) =R? (_ , _ , rule2) = inj2 (λ ())
(_ , _ , rule1) =R? (_ , _ , rule3) = inj2 (λ ())
(_ , _ , rule2) =R? (_ , _ , rule1) = inj2 (λ ())
(_ , _ , rule2) =R? (_ , _ , rule2) = inj1 refl
(_ , _ , rule2) =R? (_ , _ , rule3) = inj2 (λ ())
(_ , _ , rule3) =R? (_ , _ , rule1) = inj2 (λ ())
(_ , _ , rule3) =R? (_ , _ , rule2) = inj2 (λ ())
(_ , _ , rule3) =R? (_ , _ , rule3) = inj1 refl

We also prove that each right hand side is either a single terminal or a pair of
nonterminals. Moreover, we show that the terminal A never appears on the right
hand side of any rule:

RHS-prop : (r : Rule) → ∃[t : T] (projR r ≡ [inj2 t])]
∃[B : N] ∃[C : N] (projR r ≡ [inj1 B , inj1 C])

RHS-prop (_ , _ , rule1) = inj2 (C , B , refl)
RHS-prop (_ , _ , rule2) = inj2 (C , B , refl)
RHS-prop (_ , _ , rule3) = inj1 (1 , refl)

30

S-prop : (r : Rule) → ¬ inj1 A ∈ projR r
S-prop (_ , _ , rule1) (there (there ()))
S-prop (_ , _ , rule2) (there (there ()))
S-prop (_ , _ , rule3) (there ())

The proofs are done by complete analyses of cases.
As we will see later, the combination of the definitions provided specifies a

context-free grammar in Chomsky normal form with start nonterminal A.
Next, we will try to define the same grammar by using finite sets defined as

subsets of the type Char.
First, we define descriptions of the sets of terminals and nonterminals by listing

their elements. These descriptions induce sets for which listability and decidable
equality are derived automatically:

N-Desc : FinSubDesc Char _=C?_ false
N-Desc = fsd-nodup [’A’ , ’B’ , ’C’]

N = Elem N-Desc

listableN : Listable N
listableN = lstblElem N-Desc

=N? : DecEq N
=N? = deqElem N-Desc

T-Desc : FinSubDesc Char _=C?_ false
T-Desc = fsd-nodup [’0’ , ’1’]

T = Elem T-Desc

listableT : Listable T
listableT = lstblElem T-Desc

=T? : DecEq T
=T? = deqElem T-Desc

The operator _=C?_ is a decider of equality for the built-in type Char. Next, the
set of rules is given as a subset of the set N × List (N] T). And again, the
proofs of listability and decidable equality are derived:

=RB? : DecEq (N × List (N] T))

−→ : {A B : Set} → A → B → A × B
−→ = _,_

31

Rule-Desc : FinSubDesc N × List (N] T) _=RB?_ false
Rule-Desc = fsd-nodup [〈’A’〉 −→ [inj1 〈’C’〉 , inj1 〈’B’〉]

, 〈’B’〉 −→ [inj1 〈’C’〉 , inj1 〈’B’〉]
, 〈’C’〉 −→ [inj2 〈’1’〉]]

Rule = Elem Rule-Desc

projL (r , _) = proj1 r
projR (r , _) = proj2 r

listableRule : Listable Rule
listableRule = lstblElem Rule-Desc

=R? : DecEq Rule
=R? = deqElem Rule-Desc

(_−→_ is a synonym for the product type former.) The Rule-Desc uses the equal-
ity decider _=RB?_ of elements of N × List (N] T) which is easily derived
from equality deciders of N and T.

By using the prover combinators, the proofs of RHS-prop and S-prop amount
essentially to just restating the properties:

=RHS? : DecEq List (N] T)

RHS-prop : (r : Rule) → ∃[t : T] (projR r ≡ [inj2 t])]
∃[B : N] ∃[C : N] (projR r ≡ [inj1 B , inj1 C])

RHS-prop = fromSq (
(Π r ∈ listableRule ,
∃ t ∈ listableT , projR r =RHS? [inj2 t])
]-dec
(Π r ∈ listableRule ,
∃ B ∈ listableN ,
∃ C ∈ listableN , projR r =RHS? [inj1 B , inj1 C]))

S-prop : (r : Rule) → ¬ inj1 〈’A’〉 ∈ projR r
S-prop = fromSq (Π r ∈ listableRule , (inj1 〈’A’〉) ∈? projR r)

The combinator]-dec establishes that, if we can decide P a and Q a for every a,
then P a] Q a is also decidable. The operator _=RHS?_ is a decider of equality
for List (N] T), which can be trivially derived from the equality deciders of N
and T.

32

2.7 Conclusions

In this section, we studied listability of sets in the constructive setting. We ob-
served that listability (i.e., that a set can be completely enumerated in a list) im-
plies decidable equality and that certain simple variations of this definition are all
equivalent. Next, we explained how squashing of decidable predicates allowed us
to implement a library of combinators for programming with listable sets. Using
the library, the programmer has never to supply list membership proofs and the
combinators are able to traverse the enumerating list of the set to check decidable
properties of its elements. We also described an approach to concise definition of
new listable sets.

We will use this library in the next section to deal with finite sets of terminals,
nonterminals, and production rules.

33

3 CYK parsing of context-free languages

In this section (following Paper II), we implement in Agda the parsing technique
which is attributed to J. Cocke, D. H. Younger, and T. Kasami, who independently
discovered variations of the method known as the Cocke–Younger–Kasami algo-
rithm (CYK).

The CYK algorithm [52] belongs to the family of bottom-up methods which
grow a parse tree from the input string up towards the start nonterminal. This
algorithm works only on context-free grammars in Chomsky normal form.

From among many other parsing algorithms, we decided to focus on the CYK
method because of its simple and elegant structure. The descriptions found in
literature usually divide CYK parsing into two phases. The first phase of the algo-
rithm constructs a table establishing which nonterminals derive which substrings
of the given string. This is the recognition phase, which also determines whether
the input string can be derived from the start nonterminal. The second phase
uses the recognition table and the grammar to construct derivations of the string’s
substrings. We digress slightly from the classical approach and combine the two
phases into one by using tables over sets of parse trees.

Sections 3.1 and 3.2 present the definitions of a context-free grammar in Chom-
sky normal form, the parsing relation, and the naive version of the CYK algorithm.
In Section 3.3, we show that the algorithm is correct. Section 3.4 is devoted to
discharging the obligations of the termination checker. Finally, Section 3.5 reports
how memoization can be introduced systematically into the naive implementation,
yielding the intended performance while retaining the correctness guarantee.

The Agda development corresponding to the content of this section is located
in the module CYK of the accompanying code.

3.1 Context-free grammars and parsing relation

In this section, we slightly digress from our previous approach to defining context-
free grammars. Initially, in Paper II, we modeled finite sets of terminals, nonter-
minals and productions with lists. Now we want to work with listable sets as this
approach allows to use the full power of the previously developed combinators for
finite sets.

We start by giving a fully formal definition of a grammar. We assume some
sets for N and T for nonterminals and terminals respectively. Both types must
come with decidable equality:

=N? : DecEq N

=T? : DecEq T

The rules of a grammar are specified by a finite subset of N × List (N] T).
So, before giving a formal definition of a grammar we provide some handy syn-
onyms:

35

nt = N → N] T
nt = inj1

tm : T → N] T
tm = inj2

String = List T
RHS = List (N] T)

RB = N × RHS

Moreover, decidable equalities _=N?_ and _=T?_ induce decidable equality on RB
(denoted by _=RB?_).

A context-free grammar in Chomsky normal form is a record of type
GrammarCNF specifying the rules as the description of a subset of the set RB, a
Boolean flag nullable indicating whether the language of the grammar contains
the empty string, and a nonterminal S as the start nonterminal. Moreover, the
record also contains proofs attesting normality of the grammar, i.e., that the non-
terminal S never appears on the right hand side of a rule and that the right hand
side of any rule is either a single terminal or pair of nonterminals.

record GrammarCNF : Set1 where
field

Rule-Desc : FinSubDesc RB _=RB?_ true
S : N
nullable : Bool

RHS-prop : (r : Rule)
→ ∃[t : T] (projR r ≡ [tm t])]
∃[B : N] ∃[C : N] (projR r ≡ [nt B , nt C])

S-prop : (r : Rule) → nt S /∈ projR r

Rule : Set
Rule = Elem Rule-Desc

Rs : Listable Rule
Rs = lstblElem Rule-Desc

=R? : DecEq Rule
=R? = deqElem RuleDesc

projL : Rule → N
projL (r , _) = proj1 r

36

projR : Rule → RHS
projR (r , _) = proj2 r

Moreover, the definition of GrammarCNF defines a derived field Rule as the set
of all elements of subset described by Rule-Desc, a derived field Rs as the proof
of listability of Rule, and also projections for the left and right hand sides of the
rules.

To avoid notational clutter, we denote a rule r as A −→ rhs if projL r ≡ A
and projR r ≡ rhs. The rules for which projR r ≡ [nt B, nt C] will
be denoted as A −→ B , C. The rules for which projR r ≡ [tm t] will be
denoted as A −→ t. According to RHS-prop, these are the only possible shapes
of rules allowed in GrammarCNF.

In this section, we assume one fixed grammar G in the context, so we use the
fields of the grammar record directly, e.g., S and nullable instead of S G and
nullable G for some given G.

Next, for any given string s we define the parsing relation of its substrings as
an inductive predicate on two naturals.

data _[_,_)I_ (s : String) : N → N → N → Set where
. . .

The proposition s [i, j)I A states that the substring of s from the i-th po-
sition (inclusive) to the j-th (exclusive) is derivable from nonterminal A. Proofs of
this proposition are parse trees. The parsing relation has three constructors:

1. If the nullable flag is set, then the constructor empt constructs a parse tree
for the empty string, namely, for any i we have s [i, i)I S.

2. If the grammar contains a rule A −→ a for some nonterminal A and a ter-
minal a, then given that the i-th position of a string s is occupied by a, the
constructor sngl builds a parse tree for the substring between i and suc i,
i.e. we have s [i, suc i)I A.

3. If t1 is a derivation of the substring between positions i and j starting
from nonterminal B, t2 is a parse tree for the substring between j and k
from nonterminal C and the grammar contains a rule A −→ B , C, then
the constructor cons combines those trees into a derivation of the substring
between i and k starting from A.

According to item 1 above, the start nonterminal may be used to construct a parse
tree for the empty string. Therefore it is crucial that each grammar comes with a
proof S-prop that the start nonterminal never appears on the right hand sides of
any rule. As a consequence of this restriction, every string in the language of the
grammar has only finitely many parse trees.

37

3.2 CYK parsing algorithm

The CYK algorithm first concentrates on substrings of the input string, the shortest
substrings first, and then works its way up. The derivations of substrings of length
1 can be read directly from the grammar, i.e., they are given by rules of shape
A −→ a.

Next, if we are about to parse a string s of a longer length l, then we know
that at the root of the parse tree a rule of the shape A −→ B , C must be used.
Moreover, B has to derive the first part (which is non-empty) and C the rest (also
non-empty). Therefore B must derive s [0, k)I B, likewise C must derive
s [k, l)I C. Determining whether such a k exists is easy: just try all possi-
bilities from the range from 1 to l - 1.

To start implementing this algorithm in Agda, we introduce a new type Mtrx
which is parameterized by a string s:

Mtrx : String → Set
Mtrx s = List (∃[i : N] ∃[j : N] ∃[A : N] s [i, j)I A)

The definition says that Mtrx s is a list of all possible parse trees of substrings
of s. Since each tree is parameterized by two natural numbers, Mtrx s is a linear
representation of a two-dimensional matrix, hence the name. Next, we define the
product of two matrices:

* : {s : String} → Mtrx s → Mtrx s → Mtrx s
m1 * m2 = { (i, k, A, cons t1 t2) | (i, j, B, t1) ← m1,

(j, k, C, t2) ← m2, (A −→ B , C) ← proj1 Rs }

The definition mimics the standard definition of multiplication of matrices over
real numbers. Namely, in the product m1 * m2, the parse trees from nonterminal
A of the substring between positions i and j are composed from all parse trees
from nonterminal B of substrings between i and k and from nonterminal C of
substrings between k and j such that the rule A −→ B , C is in the grammar.

Each string s gives rise to an initial matrix. The initial matrix for s contains
all the trees of type s [i, suc i)I A. Recall that, to construct a tree of that
type, we must use the second constructor of the definition of parse trees, which
says that there must be a rule A −→ t in the grammar and the terminal t must be
located at the i-th position of s. We denote the initial matrix by m-init s.

Next, we say that, to “raise” m to the n-th “power”, we must compute the
product of m raised to k and m raised to n - k for every nonzero k so that k < n.

pow : {s : String} → Mtrx s → N → Mtrx s
pow {s} 0 m = if nullable

then { (i, i, S, empt i) | i ← [0 ... length s) }
else []

pow 1 m = m
pow n m = { t | k ← [1 ... n), t ← pow k m * pow (n - k) m }

38

The intuition for this function is that pow s n computes all the parse trees of
substrings of s of length n. For substrings longer than one, we choose the po-
sition of a split k from the range [1 ... n), then parse the left and right parts
of the substring recursively, and finally assemble the subtrees by multiplying the
corresponding matrices.

Finally, we can define an interface function for CYK parsing by rising the
initial matrix to the power of length s.

cyk-parse : (s : String) → Mtrx s
cyk-parse s = pow (m-init s) (length s)

3.3 Correctness

The algorithm is correct if it assigns to a string the same parse trees as the parsing
relation. We break the correctness statement down into soundness and complete-
ness.

Soundness in the sense that pow (m-init s) n produces good parse trees
of substrings of s is immediate by typing. With minimal reasoning we can also
conclude that the n-th power produces strings of length n:

sound : (s : String) → (i j n : N) → (A : N)
→ (t : s [i, j)I A) → (i, j, A, t) ∈ pow (m-init s) n
→ j ≡ n + i

Next, we must show that, if some substring of s of length n is in the grammar,
then it will definitely appear in the result of pow (m-init s) n:

complete : (s : String) → (i n : N) → (A : N)
→ (t : s [i, n + i)I A)
→ (i, n + i, A, t) ∈ pow (m-init s) n

Due to the simple recursive structure of parsing function, the proofs of sound-
ness and completeness are also rather straightforward. Both theorems are proved
by induction on the parse tree.

3.4 Termination

Another important aspect is termination. For the logic of Agda to be consistent, all
functions must be terminating. This is statically checked by Agda’s termination
checker. So it is the duty of a programmer to provide sufficiently convincing
arguments. This section describes the classical approach for proving termination
based on well-founded relations [37].

The definition of pow given above makes two recursive calls to itself with ar-
guments k and n - k where k comes from the range [1 ... n). Morally, we
understand that the function is terminating, but to convince Agda’s type checker
we have to explain that we make recursive calls along a well-founded relation.

39

Classically, we can say that a relation is well-founded, if it contains no infinite
descending chains. An adequate constructive version uses the notion of accessi-
bility.

An element x of a set X is called accessible with respect to some relation _≺_,
if all elements related to x are accessible. Crucially, this definition is to be read
inductively.

data Acc {X : Set}(_≺_: X → X → Set)(x : X) : Set where
acc : ((y : X) → y ≺ x → Acc _≺_ y) → Acc _≺_ x

A relation can be said to be well-founded, if all elements in the carrier set are
accessible.

Well-founded : {X : Set}(_≺_: X → X → Set) → Set
Well-founded = (x : X) → Acc _≺_ x

And we can prove that relation _<_ on natural numbers is well-founded.

<-wf : Well-founded _<_

Finally, we must update the definition of function the pow. First, we observe
that, for the function call pow m n, the recursive calls have shapes pow n m k
and pow m (n - k), where k comes from the interval [1...n). Therefore, we
prove following two lemmas:

<-lemma1 : (k : N) → k ∈ [1 · · · n) → k < n

<-lemma2 : (k : N) → k ∈ [1 · · · n) → n - k < n

By adding the accessibility proof as an additional argument and using it with
<-lemma1 and <-lemma2 at the recursive calls, we discharge the obligations of
the termination checker.

3.5 Memoization

Without memoization our implementation involves excessive recomputation of
the matrices pow m n. To avoid recomputation of intermediate results, we imple-
ment a memoized version of the pow function.

We introduce a type of memo tables. A memo table can record some powers
of m as entries; we allow only valid entries.

MemTbl : {s : String} → Mtrx s → Set
MemTbl {s} m = (n : N) → Maybe (∃[m’ : Mtrx s] m’ ≡ pow m n)

In our implementation, extracting elements from the memo table takes time pro-
portional to the number of elements in it. (Imperative implementations could do
that in constant time.)

40

We introduce a function pow-tbl that is like pow, except that it expects to
get some element tbl of MemTbl m as an argument. Instead of making recursive
calls, it looks up matrices in the given memo table tbl. If the required matrix is
not there, it falls back to pow. At this stage we do not worry about where to get a
memo table from; we just assume that we have one given.

pow-tbl : {s : String} → (m : Mtrx s)
→ N → MemTbl m → Mtrx s

pow-tbl s m n tbl = if n < 2 then mt n
else { t | k ← [1 ... n),

t ← mt k * mt (n - k) }
where

mt n = maybe (pow m n) fst (tbl n)

The next step is to prove that pow and pow-tbl compute propositionally equal
results.

pow≡pow-tbl : {s : String} → (m : Mtrx s) → (n : N)
→ (tbl : MemTbl m) → pow-tbl m n tbl ≡ pow m n

Now we have to find a way to actually build memo tables with intermediate
results together with the proofs that they coincide with the matrices returned by
pow. We implement a function which iteratively computes the powers pow m n of
an argument matrix m, where i ≤ n ≤ i + j for given i and j, remembering
all intermediate results.

pow-mem : {s : String} → (m : Mtrx s) → N
→ N → MemTbl m → Mtrx s

pow-mem m i zero tbl = pow-tbl m i tbl
pow-mem m i (suc j) tbl = pow-mem m (suc i) j tbl’

where
tbl’ p = if p == i

then just (pow-tbl m i tbl, pow≡pow-tbl m i tbl)
else tbl p)

The function pow-mem calls itself with ever more filled memo tables starting from
lower powers. Observe how the theorem pow≡pow-tbl is now used to ensure the
correctness of each new memo table tbl’.

Finally, the memoized function for CYK parsing can be defined as follows:

cyk-parse-mem : (s : String) → Mtrx s
cyk-parse-mem s =

pow-mem (m-init s) 0 (length s) (λ _ → nothing)

41

3.6 Example

In this section, we illustrate some aspects of the functions developed. For the
sake of an example, we define a recognizer function that counts the number of
derivations for a given string.

cyk-recognizer : String → N
cyk-recognizer s = length (cyk-parse-mem s)

We use the grammar that was defined in the previous section, but package it
into a record G:

G : GrammarCNF
G = record {

Rule-Desc = Rule-Desc ;
S = 〈’A’〉 ;
nullable = false ;

RHS-prop = RHS-prop ;
S-prop = S-prop

}

The language of G (i.e., derivations from the start nonterminal) consists of strings
of terminal 1 of length greater than or equal to 2. The strings 1111 and 11101
have respectively one and zero derivations:

parse1 : cyk-recognizer G [〈’1’〉, 〈’1’〉, 〈’1’〉, 〈’1’〉] ≡ 1
parse1 = refl

parse2 : cyk-recognizer G [〈’1’〉, 〈’1’〉, 〈’0’〉, 〈’1’〉] ≡ 0
parse2 = refl

Note that the first argument supplied to cyk-recognizer is the grammar G. This
is because all of the development in this section is parameterized by a particular
CFG.

Alternatively, we can define a CFG G’ with the following rules:

Rule-Desc’ = fsd-nodup [〈’A’〉 −→ [nt 〈’B’〉, nt 〈’B’〉]
, 〈’B’〉 −→ [nt 〈’B’〉, nt 〈’B’〉]
, 〈’B’〉 −→ [tm 〈’1’〉]]

The languages of G and G’ are the same. However, G’ is an ambiguous grammar
while G is unambiguous. The consequence is that the strings in the language of G’
have exponentially many derivations:

parse3 : cyk-recognizer G’ [〈’1’〉, 〈’1’〉, 〈’1’〉, 〈’1’〉] ≡ 5
parse3 = refl

42

3.7 Conclusions

In this section, we implemented the CYK parsing algorithm for context-free gram-
mars. The algorithm was implemented by correctness-preserving refinement from
the naive version of the algorithm which is inefficient but for which the correct-
ness is easily provable. The refinement strategy helps in gradual introduction of
performance-related aspects of the algorithm and modularizing the overall cor-
rectness proof.

The CYK algorithm operates on grammars in Chomsky normal form. To be
able to use our code on arbitrary context-free grammars, in the next section we
implement normalization of grammars.

43

4 Normalization of context-free grammars

In this section (summarizing Paper III), we prove in Agda the classical theorem
that every context-free grammar can be transformed into an equivalent one (i.e.,
giving rise to the same language) in Chomsky normal form. This is accomplished
by a sequence of four transformations.

We prove formally that each of these transformations is correct in the sense
of making progress toward normality and preserving the language of the given
grammar. Also, we show that the right sequence of these transformations leads to
a grammar that is indeed in Chomsky normal form, since each next transformation
preserves the normality properties established by the previous ones, and accepts
the same language as the original grammar. In our constructive setting, we can
arrange our formalization so that soundness and completeness proofs are functions
converting between parse trees in the normalized and original grammars.

The full normalization transformation for a CFG is the composition of the
following constituent transformations [26]:

1. elimination of all ε-rules (i.e., rules of the form A −→ ε);

2. elimination all unit rules (i.e., rules of the form A −→ B);

3. replacing all rules A −→ X1X2 ... Xk where k ≥ 3 with rules
A −→ X1A1, A1 −→ X2A2, Ak-2 −→ Xk-1Xk where Ai are “fresh” nonter-
minals;

4. for each terminal a, adding a new rule A −→ a where A is a fresh nonter-
minal and replacing a in the right-hand sides of all rules with length at least
two with A.

In Section 4.1, we give a definition of the parsing relation for grammars in
general form. In Section 4.2, we describe the elimination of unit rules and the
correctness properties of this transformation. The other three transformations are
defined and proved correct similarly. In Section 4.3, we explain how to achieve
full normalization after implementing and proving the correctness properties of
all four transformations by appropriately chaining them together and establishing
that every next transformation preserves the normality aspects achieved by the
previous ones. Finally, in Section 4.4, we connect the normalization of a grammar
and CYK parsing to achieve correct fully general context-free parsing.

The Agda development corresponding to the content of this section is located
in the modules CNF and GeneralParsing of the accompanying code.

4.1 Parsing relation

In the previous section, we defined the type GrammarCNF for grammars in Chom-
sky normal form and the parsing relation tuned for CYK algorithm and CNF gram-

45

mars. Now, we define grammars and the parsing relation for grammars in general
form:

record Grammar : Set1 where
field

Rule-Desc : FinSubDesc RB _=RB?_ true
S : N

Rule : Set
Rule = Elem Rule-Desc

Rs : Listable Rule
Rs = lstblElem Rule-Desc

=R? : DecEq Rule
=R? = deqElem RuleDesc

projL : Rule → N
projL (r , _) = proj1 r

projR : Rule → RHS
projR (r , _) = proj2 r

The type Grammar differs from GrammarCNF by not having the nullability flag,
and by the restrictions on the start nonterminal and on the right hand sides of the
productions. As in previous section, we assume types N and T for nonterminals and
terminals together with decidable equality on their elements. Decidable equalities
on N and T give rise to decidable equality on N × List (N] T) denoted by
=RB?. We also denote a rule r : Rule as A −→ rhs if projL r ≡ A and
projR r ≡ rhs.

Since some of the passes of normalization require generation of fresh nonter-
minals, it is better to have N infinite. For more details on that matter, we refer to
Section 5 of Paper III.

The datatype of parse trees (abstract syntax trees) is parameterized by a gram-
mar G and indexed by a root nonterminal and a string (list of terminals to parse):

mutual
Tree (G : Grammar) : N → String → Set

Forest (G : Grammar) : RHS → String → Set

In general, the type Tree G A s collects all parse trees for a string s with respect
to a grammar G and a nonterminal A at the root. The auxiliary type Forest G rhs s
collects all parse forests for a string s whose constituent individual parse trees are
rooted at the symbols in rhs.

46

To construct a tree of type Tree G A s, we must choose a rule A −→ rhs
of the type Rule from G and provide a forest Forest G rhs s of trees starting
from the nonterminals of rhs. The terminals of rhs are treated as leaves and the
concatenation of all leaves of the tree must result in the string s.

In our original Paper III, the grammar was modelled simply by a list of rules
Rs. Therefore, the constructor of Tree took a rule r together with a proof that
r ∈ Rs. This made the resulting parse trees have proofs of list membership to
appear at every node. Additionally, in such a solution parse trees become invalid,
when the original list of rules changes slightly. Now, we avoid the problems of
dealing with lists and explicit positions in lists by using listable sets defined by
descriptions of finite subsets.

4.2 Unit rule elimination

A single step of unit rule elimination is made by the function nu-step:

nu-step : Grammar → N → Grammar

Compared to the grammar G, in the grammar nu-step G A, every rule of the form
B −→ [nt A] is replaced with all rules of the form B −→ rhs’ where rhs’
stands for a right-hand side such that A −→ rhs’ is in G and rhs’ 6≡ [nt A].
The computation is based on the underlying descriptions Rule-Desc G of the rule
set.

Now, full unit rule elimination is achieved by applying this procedure to all
nonterminals:

norm-u : Grammar → Grammar
norm-u G = foldl nu-step G (NTs G)

The function NTs returns an enumeration of all nonterminals used in a given gram-
mar.

The correctness of this transformation can be divided into progress, soundness
and completeness.
Progress First, it must be shown that nu-step achieves some progress towards
normality of the grammar:

nu-step-progress : (G : Grammar) → (B : N)
→ (r : Rule (nu-step G B)) → projR r 6≡ [nt B]

This lemma states that there is no rule with the right-hand side [nt B] in the
grammar nu-step G B. The progress lemma for the norm-u is a trivial conse-
quence:

nu-progress : (G : Grammar) → (r : Rule (norm-u G))
→ (A : N) → projR r 6≡ [nt A]

47

Soundness Second, nu-step is sound, namely, any parse tree of a string s in
the transformed grammar should be parsable in the original grammar.

nu-step-sound : (G : Grammar) → (A B : N) → (s : String)
→ Tree (nu-step G B) A s → Tree G A s

The straightforward lifting of this lemma gives soundness of norm-u

nu-sound : (G : Grammar) → (A : N) → (s : String)
→ Tree (norm-u G) A s → Tree G A s

Completeness Third, any string parsable in the original grammar is parsable in
the transformed one.

nu-step-complete : (G : Grammar) → (A B : N) → (s : String)
→ Tree G A s → Tree (nu-step G B) A s

This property induces completeness of norm-u:

nu-complete : (G : Grammar) → (A : N) → (s : String)
→ Tree G A s → Tree (norm-u G) A s

4.3 Full normalization and correctness

As we discussed previously, full normalization consists of four separate grammar
transformations suitably chained together. Unit rule elimination (norm-u) was de-
scribed above. Epsilon rule elimination (denoted by norm-e) removes rules with
an empty right-hand side. The transformation norm-l transforms a grammar so
that the right-hand sides of all rules contain at most two symbols. The transfor-
mation norm-t modifies a grammar so that the right-hand sides longer that one
symbol do not contain terminals.

The correctness properties proved for norm-e, norm-t, and norm-l are sim-
ilar to the correctness properties of norm-u. However, there are some subtleties.
The transformation norm-e removes all epsilon rules, therefore, the empty word
cannot belong to the language of the transformed grammar. So, completeness of
the norm-e transformation holds only for non-empty strings.

ne-complete : (G : Grammar) → (A : N) → (s : String)
→ s 6= [] → Tree Rs A s → Tree (norm-e G) A s

In the next section, we describe how the restriction on s can be removed for the
start nonterminal by converting grammars to the type GrammarCNF which has the
nullability flag.

Another subtlety is that, to achieve their goals, the transformations norm-l and
norm-t may need to introduce fresh nonterminals into the result grammar. This
means that soundness for these transformations holds only for trees that are rooted
by nonterminals from the original grammar.

48

nl-sound : (G : Grammar) → (A : N) → (s : String)
→ A ∈ NTs G → Tree (norm-l G) A s → Tree G A s

Finally, the full normalization function is defined simply by composition:

norm : Grammar → Grammar
norm = norm-u ◦ norm-e ◦ norm-t ◦ norm-l

The function norm is the composition of the four transformations we have intro-
duced. The order in which these transformations are chained matters. For exam-
ple, norm-e can add new unit rules, so norm-u must be performed after norm-e.
Progress To prove progress of norm, we must establish that each transformation
preserves the progress made by previous ones. For example, it can be easily seen
that, since norm-e never introduces new right-hand sides to the transformed gram-
mar, it is clear that the progress achieved by norm-t and norm-l is preserved.

After having formalized the preservation of progress for all transformations,
we prove that the grammar norm G is in Chomsky normal form.

norm-progress : (G : Grammar) → (r : Rule (norm G))
→ (∃[B C ∈ N] projR r ≡ [nt B, nt C])]

(∃[a ∈ T] projR r ≡ [tm a])

Soundness To show soundness of norm, we only need to chain the soundness
results of the individual transformations:

norm-snd : (G : Grammar) → (s : String) → (A : N)
→ A ∈ NTs G → Tree (norm G) A s → Tree G A s

Completeness As in the case of soundness, completeness of norm is proved by
chaining the completeness results of the constituent transformations:

norm-cmplt : (G : Grammar) → (s : String) → (A : N)
→ s 6≡ [] → Tree G A s → Tree (norm G) A s

4.4 General context-free parsing

Now, we can implement a function that converts any general context-free grammar
to a grammar in Chomsky normal form.

toCNF : Grammar → GrammarCNF

The conversion simply uses the function norm on its argument and then
norm-progress establishes a property of the right-hand sides. Also, if the start
nonterminal appears in the right-hand sides of the rules of norm G, then a fresh
start nonterminal S’ must be created and, for every rule S G −→ rhs, the rule
S’ −→ rhs must be added to the resulting CNF grammar. This will guarantee

49

that the fresh nonterminal S’ never appears on the right. CNF grammars addition-
ally have a Boolean field nullable that indicates whether the empty word is in
the language or not. Therefore, the nullability flag is set accordingly to whether
the start nonterminal is nullable.

The language of a grammar is a collection of all strings parsable from the start
nonterminal:

TreeS : Grammar → String → Set
TreeS G s = Tree (Rs G) (S G) s

TreeSCNF : GrammarCNF → String → Set
TreeSCNF G s = let [_,_)I_ = [_,_)I_ G in

[0 , length s)I (S G)

(The definition of TreeSCNF must deal with the fact that parse trees for CNF
grammars are parameterized by a global grammar G. Therefore, we must supply
it as a first argument.)

We can now show that the languages of the original and normalized grammars
are same:

complete : (s : String) → TreeS G s → TreeSCNF (toCNF G) s

sound : (s: String) → TreeSCNF (toCNF G) s → TreeS G s

Finally, we can implement the function for general context-free grammar pars-
ing:

cyk-parse-gen : (G : Grammar) → (s : String)
→ List (TreeS G s)

General context-free parsing is done in three steps. First, the original grammar G
is normalized into a grammar G’. Next, the CYK algorithm is used to get a list
of parse trees of s. Finally, the trees from start nonterminals of G’ in normalized
grammar are converted to the original grammar by using the function sound.

The final correctness property is

cyk-parse-gen-correct : (G : Grammar) → (s : String)
→ (t : TreeS G s)
→ ∃[t’ ∈ TreeS G s] t’ ∈ cyk-parse-gen G s

We must remark that the number of parse trees for a string s of a general grammar
G can be infinite. Therefore, given a tree t : TreeS G s, we cannot always im-
ply t ∈ cyk-parse-gen G s. Therefore, the correctness proof states only that,
if string s is in the language of the grammar, then we can construct some parse
trees of s. In the future work section, we discuss that there is a close correspon-
dence between the trees t and t’, namely, the tree t’ is a “normalized” version
of the tree t.

50

4.5 Example

Let us define the following unambiguous context-free grammar for arithmetic ex-
pressions made up of addition, multiplication and digits 0 and 1:

−→ : {A B : Set} → A → B → A × B
−→ = _,_

G : Grammar
G = record {

S = "E" ;
Rule-Desc = fsd-plain rules

}
where

rules = ["E" −→ [nt "T" , nt "P" , nt "E"]
, "E" −→ [nt "T"]

, "T" −→ [nt "F" , nt "M" , nt "T"]
, "T" −→ [nt "F"]

, "F" −→ [tm ’0’]
, "F" −→ [tm ’1’]

, "P" −→ [tm ’+’]
, "M" −→ [tm ’*’]]

(The _−→_ is a synonym for product constructor.) By using the unit rules, the
grammar G encodes the right associativity of addition and multiplication, and the
precedence of multiplication over addition.

Now, when we execute the function cyk-parse-gen G on the string "1+1*0",
we get the following parse tree:

E

E

T

T

F

0

M

*

F

1

P

+

T

F

1

However, let us look at how this result is computed. In the beginning, the
grammar G is normalized:

51

normS G = record{
S = "N0" ;
Rule-Desc = fsd-plain rules’

}
where
rules’ = ["N0" −→ [nt "N1" , nt "E"]

, "N0" −→ [nt "N2" , nt "T"]

, "N1" −→ [nt "T" , nt "P"]
, "N2" −→ [nt "F" , nt "M"]

, "E" −→ [nt "N1" , nt "E"]
, "E" −→ [nt "N2" , nt "T"]
, "T" −→ [nt "N2" , nt "T"]

, "E" −→ [tm ’0’]
, "E" −→ [tm ’1’]
, "F" −→ [tm ’0’]
, "F" −→ [tm ’1’]
, "T" −→ [tm ’0’]
, "T" −→ [tm ’1’]

, "P" −→ [tm ’+’]
, "M" −→ [tm ’*’]]

It can be seen easily that the grammar normS G is in normal form. There are three
fresh nonterminals – N0, N1 and N2. The start nonterminal changed, because the
previous one E appeared in the right-hand sides of some rules.

Next, the CYK algorithm uses the normalized grammar to perform parsing.
The parse tree of the string "1+1*0" for the grammar normS G looks as follows:

N0

E

T

0

N2

M

*

F

1

N1

P

+

T

1

By looking at that tree we can figure out the reason why each new rule was intro-
duced into the normalized grammar. The function sound “undoes” the effect of

52

normalization to get a parse tree for the grammar G.

4.6 Conclusions

The goal of this section was to implement a certified normalization procedure
for context-free grammars. We started by defining the general parsing relation
and a record type for context-free grammars with a distinguished start nonter-
minal. Then we explained that the normalization transformation can be decom-
posed into four simpler transformations. Next we described unit rule elimination
and explained that each transformation must preserve the language of the origi-
nal grammar (soundness and completeness proofs), achieve the progress towards
normalization and preserve the progress of earlier transformations.

Since the proofs are done constructively, one can execute an instance of the
soundness proof to convert a parse tree for transformed grammar to a parse tree for
the original grammar. This is a situation typical of Agda formalizations: we prove
a theorem and its proof also serves as the function that we are really interested in
from the programming perspective.

Finally, we combined CYK parsing and normalization of grammars into a cer-
tified parsing algorithm for general context-free grammars.

53

5 Related work

In this section, we continue to discuss the related work. We also give some account
of the papers that appeared subsequent to our publications. Some of those also
mention our work.

Many attempts were made to formalize the theory of formal languages. We
start by describing some of the earliest we could find. Kreitz [30] gave a formal-
ization of pumping lemma for the theory of finite automata in the Nuprl system.
Courant and Filliâtre worked on the theory of regular and context-free languages
in Coq [16, 22]. Among other results, they showed that all context-free languages
can be recognized by pushdown automata and that context-free languages are
closed under the union. Constable et al. [14] formalized the theory of regular
languages in Nuprl and proved the Myhill–Nerode theorem. It is worth noticing
that all of the three above mentioned developments were carried out in the setting
of constructive type theory. Nipkow [36] provided a verified lexical analyzer im-
plemented in Isabelle/HOL. Isabelle/HOL is not constructive, but the author took
care to ensure that most of the definitions are executable.

The interest toward formalization of parsing started to grow after some sub-
stantial work was done in the field of certified compilation. The paper [32] by
Leroy discussed the full verification of compilation of a subset of C language us-
ing Coq. Strecker [48] also reported on compiler verification for C0. However,
the verified phases of a compiler did not include lexing and parsing. Thereby,
some demand was created for formalization and verification of parsing algorithms.
Barthwal and Norrish [9, 6] presented a verified SLR parser generator for CFGs
that is able to handle a subset of unambiguous grammars. Jourdan et al. [27]
focused on LR grammars which is a wider class than SLR grammars. Danielsson
and Norell [17] implemented a library of parser combinators in Agda for gram-
mars without left recursion.

None of the previously mentioned formalized developments can parse general
context-free languages. Earley [21] gave a description of an efficient general pars-
ing algorithm for CFGs. It was shown that Earley’s algorithm has the same worst-
case time complexity as the CYK approach, but outperforms it on some classes
of context-free grammars. The correspondence between Earley’s and the CYK
algorithms was properly analyzed by Graham and Harrison [24]. Ridge [44] used
techniques from Earley’s parsing and produced a generic parser generator with
proofs of correctness in HOL4. However, the time complexity of the memoized
version of the implemented parser was estimated to be O(n5). In his latest work
[45], Ridge showed that the performance issue can be fixed and devised a fully
verified parser that also has good practical performance.

Barthwal and Norrish [9, 6] formalized SLR parsing using the HOL4 proof
assistant (SLR grammars are a subset of LR(1) grammars). They constructed an
SLR parser for context-free grammars, and proved it to be sound and complete.

55

The formalization of the SLR parser was done in over 20 000 lines of code. Our
implementation of the CYK parser is less than 2000 loc.

Also, Barthwal and Norrish [7, 6] described a formalization of the Chomsky
and Greibach normal forms for context-free grammars with the HOL4 theorem
prover. They showed how to solve the problems which arise from mechanizing
the straightforward pen and paper proofs. The non-constructive setting gave the
advantage of the power of extensional and classical reasoning, but also the signif-
icant drawback that it did not deliver actual functions for normalizing grammars
or converting parse trees between grammars. More precisely, the transformations
were described in a relational style. Also, the authors mentioned that they did
not want to work constructively, as this had the advantage of reasoning extension-
ally about sets. The formalization of normal forms (Chomsky and Greibach) by
Barthwal and Norrish were done in about 14000 lines of code with 700 lemmas
and theorems. For comparison, our formalization (CNF only) is less than 4800
loc.

Recently, Barthwal and Norrish [8] continued formalization of general context-
free language theory in HOL4. They proved that pushdown automata and context-
free grammars accept the same languages and used this result to show some clo-
sure properties of context-free languages such as union and concatenation.

Valiant’s algorithm [50] is an extension of the CYK algorithm and computes
the same parsing table as the CYK algorithm. However, Valiant showed that the
parsing problem is reducible to Boolean matrix multiplication. A formalization
of Valiant’s algorithm in Agda was originally carried out by Sjöblom [47]. Later,
Bernardy and Jansson [11] reimplemented Valiant’s algorithm for context-free
parsing in Agda. They presented an algebraic specification, an implementation,
and a proof of correctness. Their generalization of the algorithm can be used for
calculation of the multiplicative transitive closure of upper triangular matrices.

Bernardy and Claessen [10] showed that the divide and conquer structure of
Valiant’s parsing algorithm yields an efficient parallel algorithm. In particular,
if the input is hierarchic, then the conquer step can be computed faster than is
required by matrix multiplication.

Boolean grammars are an extension of context-free grammars, in which the
rules may contain conjunction and negation of several right-hand sides. Conjunc-
tion and negation are used to specify the intersection and complement of lan-
guages. Okhotin [40] showed how to extend Valiant’s algorithm to parse Boolean
grammars.

Ramos and de Queiroz have performed a number of formalizations of theory
of context-free languages in Coq. The earliest paper [41] reported on the proofs
of the correctness of the concatenation, union and closure operations. They im-
plemented [42] useless symbol elimination, inaccessible symbol elimination, unit
rules elimination and empty rules elimination operations and proved the imple-
mentation correct in the sense of preservation of the language generated by the
original grammar. In their most recent work, Ramos et al. [43] extended their

56

development and proved the existence of Chomsky normal form for context-free
grammars and the pumping lemma for context-free languages.

The formalization of theory of regular languages is also actively developing.
In Paper V (the candidate’s master thesis work), we reported on a certified parser
generator for regular languages using matrix combinators. Braibant and Pous [13]
developed a tactic for deciding Kleene algebras in Coq. Coquand and Siles [15]
used Coq to develop a decision procedure for equivalence of regular languages
defined by regular expressions.

Moreira et al. [5, 33] implemented an algorithm in Coq which decides regular
expression equivalence through an iterated process of testing the equivalence of
their partial derivatives.

Doczkal et al. [19] presented a concise formalization of regular languages in
Coq. Among other results they gave a minimization algorithm for DFAs and
prove its uniqueness. Also they implemented functions that translate regular ex-
pressions to DFAs and NFAs and proved correctness of these transformations.
Later, Doczkal and Smolka [20] also verified translations from two-way automata
to one-way automata. The translation uses a constructive variant of the Myhill-
Nerode theorem. The authors noted that their formalization makes extensive use
of countable and finite types provided by Coq/Ssreflect.

Korkut et al. [29] implemented Harper’s matching algorithm [25] for regular
expressions. They illustrated how defunctionalization of the matcher allows Agda
to see termination without an explicit metric.

57

6 Conclusions

In this section, we summarize the main points of the thesis and also discuss the
possible directions for future work.

6.1 Summary

In this thesis, we concentrated on formalizing the theory of context-free lan-
guages. We addressed the aspects related to definition of grammars, parsing and
normalization. To define a context-free grammar one needs to be able to specify
finite sets. We studied listability of sets in the constructive setting and imple-
mented viable solutions to boilerplate-free programming with listable sets. One
insight there was that decidable predicates can be squashed losslessly. Based on
this idea, we devised an approach for defining new listable sets as subsets of a
base set by providing a list of elements of that set. Another important insight is
that listability of a set implies decidable equality. This allowed us to implement
a toolbox of combinators with the necessary preconditions checked automatically
during the type-checking phase.

Next, we implemented the CYK parsing algorithm for context-free grammars
in Chomsky normal form. Thanks to the simplicity of the algorithm and its re-
striction to normalized grammars, we were able to prove the correctness of our
implementation relatively straightforwardly. Moreover, we started with the func-
tional, non-memoized version, which also eased our proofs. Then we defined cer-
tified memoization tables and developed a memoized version of algorithm based
on these tables with correctness preservation guarantees.

Finally, we implemented a certified normalization procedure for context-free
grammars. We followed the classical approach of defining normalization as the
composition of some small transformations in a certain order. For each transfor-
mation, we proved that it preserves the language of a grammar, achieves progress
towards normality, and preserves the progress made by previous transformations.
To prove preservation of the language, we proved soundness and completeness of
the transformation. Soundness tells us that any word in the language of the trans-
formed grammar is also in the language of the original grammar. Completeness
goes in the opposite direction. Crucially, these proofs are constructive, so one can
execute an instance of the soundness proof to convert a parse tree for transformed
grammar to the parse tree for the original grammar.

When packaged together, this toolset allows one to concisely define a context-
free grammar, normalize it, perform CYK parsing and transform the resulting
parse trees into parse trees for original grammar.

6.2 Future work

An important property of normalized context-free grammars is that every string
has at most a finite number of derivations. General context-free grammars do

59

not have that property, because of the unit and epsilon rules. In some cases, the
unit rules can be arranged in cycles and the empty word can have infinitely many
derivations. We believe that parse trees that differ only in these two aspects could
be treated as morally the same derivations and the smallest tree is a normal form.
We would like to prove that the conversion of a parse tree for the normalized
grammar to the original grammar returns normal trees. Then normalization of
parse trees by passing through the normalized grammar can be seen as a form of
normalization-by-evaluation.

An attribute grammar is a context-free grammar that has been extended to pro-
vide context-sensitive information by attaching attributes to some of its nontermi-
nals. Computationally, an attribute grammar is a specification for attribute eval-
uation. However, it is easy to define grammars so that the dependency between
attributes will be cyclic, causing lazy demand-driven attribute evaluation to di-
verge. An attribute grammar is called cyclic, if it is viable to construct a parse
tree where an attribute of a particular node depends on itself. In the seminal pa-
per on attribute grammars [28], Knuth gave an algorithm for deciding whether an
attribute grammar is cyclic or not. It seems possible to implement this algorithm
in Agda together with proofs of correctness (soundness and completeness). This
certified implementation of the acyclicity check could be then used to define a
provably terminating evaluator for acyclic attribute grammars. Our first steps in
this direction [23] were made by describing the cyclic paths on trees and showing
how cycles on trees can be decomposed into smaller cycles. Then we established
that this decomposition implies an induction principle for cycles. By using this de-
composition and induction principle, we plan to implement the acyclicity checker
and prove that it is correct (sound and complete).

Another possible line for future research is disambiguation of parsing. An am-
biguous context-free grammar defines a language where some strings have mul-
tiple derivations. In programming languages, the underlying CFGs are often am-
biguous. A common example is the dangling “else” problem. In these cases, the
ambiguities are generally resolved by adding precedence rules. It could be use-
ful to formalize disambiguation as a transformation of a CFG according to the
given set of precedence rules. Similarly to our work on normalization, soundness
of transformation will become an (executable) function converting the parse trees
from the transformed to the original grammar.

60

References

[1] The Agda Team. The Agda wiki, 2015.
http://wiki.portal.chalmers.se/agda/

[2] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Pearson Education, 2006.

[3] A. V. Aho, J. D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice Hall, 1972.

[4] J. B. Almeida, M. J. Frade, J. S. Pinto, S. M. de Sousa. Rigorous Software
Development. Springer, 2011.

[5] J. B. Almeida, N. Moreira, D. Pereira, S. M. de Sousa. Partial derivative
automata formalized in Coq. In M. Domaratzki, K. Salomaa, eds., Revised
Selected Papers from 15th Int. Conf. on Implementation and Application of
Automata, CIAA 2010, v. 6482 of Lect. Notes in Comput. Sci., pp. 59-68.
Springer, 2011.

[6] A. Barthwal. A Formalisation of the Theory of Context-Free Languages in
Higher Order Logic. PhD thesis, Australian National University, Canberra,
2010.

[7] A. Barthwal, M. Norrish. A formalisation of the normal forms of context-
free grammars in HOL4. In A. Dawar and H. Veith, eds., Proc. of 24th
Workshop on Computer Science Logic, CSL 2010, v. 6247 of Lect. Notes in
Comput. Sci., pp. 95–109. Springer, 2010.

[8] A. Barthwal, M. Norrish. A mechanisation of some context-free language
theory in HOL4. J. of Comput. and Syst. Sci., v. 80(2), pp. 346–362, 2014.

[9] A. Barthwal, M. Norrish. Verified, executable parsing. In G. Castagna
ed., Proc. of 18th Europ. Symp. on Programming Languages and Systems,
ESOP ’09, v. 5502 of Lect. Notes in Comput. Sci., pp. 160–174. Springer,
2009.

[10] J.-P. Bernardy, K. Claessen. Efficient parallel and incremental parsing of
practical context-free languages. J. of Funct. Prog., v. 25, article e10, 2015.

[11] J.-P. Bernardy, P. Jansson. Certified context-free parsing: a formalisation of
Valiant’s algorithm in Agda. Log. Meth. in Comput. Sci., v. 12(2), article 6,
2016.

[12] A. Bove, P. Dybjer, U. Norell. A brief overview of Agda, a functional lan-
guage with dependent types. In S. Berghofer, T. Nipkow, C. Urban, M. Wen-
zel, eds., Proc. of 22nd Int. Conf. on Theorem Proving in Higher Order

61

Logics, TPHOLs 2009, v. 5674 of Lect. Notes in Comput. Sci., pp. 73–78.
Springer, 2009.

[13] T. Braibant, D. Pous. Deciding Kleene algebras in Coq. Log. Meth. in
Comput. Sci., v. 8(1), article 16, 2012.

[14] R. L. Constable, P. B. Jackson, P. Naumov, J. Uribe. Constructively formal-
izing automata. In Proof, Language and Interaction: Essays in Honour of
Robin Milner, pp. 213–238. MIT Press, 1998.

[15] T. Coquand, V. Siles. A decision procedure for regular expression equiv-
alence in type theory. In J. P. Jouannaud, Z. Shao, eds., Proc. of 1st Int.
Conf. on Certified Programs and Proofs, CPP 2011, v. 7086 of Lect. Notes
in Comput. Sci., pp. 119–134. Springer, 2011.

[16] J. Courant, J. Filliâtre. Beginning of formal language theory, 1993. Available
from http://www.lix.polytechnique.fr/coq/V8.2pl1/contribs/
Automata.html

[17] N. A. Danielsson. Total parser combinators. In Proc. of 15th ACM SIGPLAN
Int. Conf. on Functional Programming, ICFP ’10, pp. 285–296, ACM, 2010.

[18] A. Deursen, P. Klint, J. Visser. Domain-specific languages: an annotated
bibliography. In ACM SIGPLAN Not., v. 35, pp. 26–36, ACM, 2000.

[19] C. Doczkal, J.-O. Kaiser, G. Smolka. A constructive theory of regular lan-
guages in Coq. In G. Gonthier, M. Norrish, eds., Proc. of 3rd Int. Conf. on
Certified Programs and Proofs, CPP 2013 (Melbourne, Dec. 2013), v. 8307
of Lect. Notes in Comput. Sci., pp. 82–97. Springer, 2013.

[20] C. Doczkal, G. Smolka. Two-way automata in Coq. In J. Blanchette,
S. Merz, eds., Proc. of 7th Int. Conf. on Interactive Theorem Proving,
ITP 2016, v. 9807 of Lect. Notes in Comput. Sci., pp. 151–166. Springer,
2016.

[21] J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
v. 13(2), pp. 94–102, 1970.

[22] J.-C. Filliâtre. Finite automata theory in Coq: a constructive proof of
Kleene’s theorem. Technical Report 97-04, Laboratoire de l’Informatique
du Parallélisme, École Normale Supérieure de Lyon, 1997.

[23] D. Firsov, T. Uustalu. Acyclic attribute evaluation in a dependently typed
setting. In Abstracts of 27th Nordic Workshop on Programming Theory,
NWPT 2015, Technical report RUTR-SCS16001, School of Computer Sci-
ence, pp. 124–126, Reykjavik University, 2016.

62

[24] S. L. Graham, M. A. Harrison. Parsing of general context-free languages.
Advances in Computing, v. 14, pp. 77–185, 1976.

[25] R. Harper. Proof-directed debugging. In J. of Funct. Program., v. 9(4),
pp. 463–469, 1999. Corrigendum in v. 19(2), p. 262, 2009.

[26] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[27] J.-H. Jourdan, F. Pottier, X. Leroy. Validating LR(1) parsers. In H. Seidl ed.,
Proc. of 21st Europ. Symp. on Programming, ESOP 2012, v. 7211 of Lect.
Notes in Comput. Sci., pp. 397–416. Springer, 2012.

[28] D. E. Knuth. Semantics of context-free languages. In Math. Syst. Theor.,
v. 2, pp. 127–148, 1968.

[29] J. Korkut, M. Trifunovski, D. R. Licata. Intrinsic verification of a regular
expression matcher. Manuscript, 2016.

[30] C. Kreitz. Constructive automata theory implemented with the Nuprl proof
development system. Technical Report TR 86-779, Dept. of Computer Sci-
ence, Cornell University, 1986.

[31] K. Kuratowski. Sur la notion d’ensemble fini. Fund. Math. 1(1), pp. 129–
131, 1920. Available at https://eudml.org/doc/212596

[32] X. Leroy. Formal verification of a realistic compiler. Commun. of ACM,
v. 52(7), pp. 107–115, 2009.

[33] N. Moreira, D. Pereira, S. M. de Sousa. Kleene algebra terms equivalence
in Coq. In J. Log. Algebr. Meth. Program., v. 84(3), pp. 377–401, 2015.

[34] M. Müller-Olm, D. A. Schmidt, B. Steffen. Model checking: a tutorial
introduction. In G. File and A. Cortesi, eds., Proc. of 6th Static Analysis
Symposium, SAS ’99, v. 1694 of Lect. Notes in Comput. Sci., pp. 330–354.
Springer, 1999.

[35] H. R. Nielson, F. Nielson. Semantics with Applications: A Formal Introduc-
tion, Wiley Professional Computing. John Wiley and Sons, 1992.

[36] T. Nipkow. Verified lexical analysis. In J. Grundy, M. Newey, eds., Proc. of
11th Int. Conf. on Theorem Proving in Higher Order Logics, TPHOLS ’98,
v. 1479 of Lect. Notes in Comput. Sci., pp. 1–15. Springer, 1998.

[37] B. Nordström. Terminating general recursion. BIT Numerical Mathematics,
v. 28(3), pp. 605–619, 1988.

63

[38] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, S. D. Swierstra, eds., Revised Lectures from 6th Int. School
on Advanced Functional Programming, AFP 2008, v. 5832 of Lect. Notes in
Comput. Sci., pp. 230–266. Springer, 2009.

[39] U. Norell. Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Chalmers University of Technology, Göte-
borg, 2007.

[40] A. Okhotin. Parsing by matrix multiplication generalized to boolean gram-
mars. Theor. Comput. Sci., v. 516, pp. 101–120, 2014.

[41] M. V. M. Ramos, R. J. G. B. de Queiroz. Formalization of closure properties
for context-free grammars. CoRR abs/1506.03428, 2014.

[42] M. V. M. Ramos, R. J. G. B. de Queiroz. Formalization of simplification for
context-free grammars. CoRR abs/1509.02032, 2015.

[43] M. V. M. Ramos, R. J. G. B. de Queiroz, N. Moreira, J. B. Almeida. On the
formalization of some results of context-free language theory. In J. Väänä-
nen, Å. Hirvonen, R. de Queiroz, eds., Proc. of Workshop on Logic, Lan-
guage, Information and Computation, WoLLIC 2016, v. 9803 of Lect. Notes
in Comput. Sci., pp. 338–357. Springer, 2016.

[44] T. Ridge. Simple, functional, sound and complete parsing for all context-
free grammars. In J.-P. Jouannaud, Z. Shao, eds., Proc. of 1st Int. Conf. on
Certified Programs and Proofs, CPP 2011, v. 7086 of Lect. Notes in Comput.
Sci., pp. 103–118. Springer, 2011.

[45] T. Ridge. Simple, efficient, sound and complete combinator parsing for all
context-free grammars, using an oracle. In B. Combemale, D. J. Pearce,
O. Barais, J. J. Vinju, eds., Proc. of 7th Conf. on Software Language En-
gineering, SLE 2014, v. 8706 of Lect. Notes in Comput. Sci., pp. 261–281.
Springer, 2014.

[46] M. Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 1996.

[47] T. B. Sjöblom. An Agda proof of the correctness of Valiant’s algorithm for
context free parsing. MSc thesis, Chalmers University of Techn., 2013.

[48] M. Strecker. Compiler verification for C0. Technical report, Université Paul
Sabatier, Toulouse, 2005.

[49] A. S. Troelstra, D. van Dalen. Constructivism in Mathematics: An Intro-
duction, v. 121 of Studies in Logic and the Foundations of Mathematics,
North-Holland, 1988.

64

[50] L. G. Valiant. General context-free recognition in less than cubic time. In
J. of Comput. and Syst. Sci., v. 10(2), pp. 308–314, 1975.

[51] P. Wadler. Propositions as types. Commun. of the ACM, v. 58(12), pp. 75–84,
2015.

[52] D. Younger. Recognition and parsing of context-free languages in time
O(n3). In Inf. and Comput., v. 10(2), pp. 189–208, 1967.

65

Acknowledgements

I would like to express my sincere gratitude to my supervisor Tarmo Uustalu. His
energy, active support, and scientific taste are an endless source of inspiration and
good advice. I learned a lot from our collaboration and can only hope that it will
continue.

I am grateful to my colleagues for creating an enjoyable atmosphere which
made the Institute of Cybernetics a great place to work. Special thanks to the
administrative staff who managed all the paperwork and allowed me to focus on
research only.

I want to thank my wife and my sons for patience and keeping my motivation
up.

Last but not least, I want to thank my mother and father for encouragements
and care through all these years.

The work reported in this thesis was supported by the ERDF funded Esto-
nian CoE project EXCS (3.2.0101.08-0013) and ICT national programme project
“Coinduction” (3.2.1201.13-0029), the ESF funded Estonian Doctoral School in
ICT (1.2.0401.09-0081), the Estonian Science Foundation grant no. 9475, and the
Estonian Research Council personal research grant no. PUT763. I would also like
to thank the Estonian IT Academy Programme for the stipends I received in 2012,
2013, and 2015.

67

Abstract

Context-free grammars are a widely used formalism in compiler construction for
defining the syntactical structure of programming languages. In this thesis, our
main goal is to implement and certify a parser generator for context-free lan-
guages. A parser generator takes a context-free grammar and returns a function
that tries to find a parse tree for a given string. A certified parser generator delivers
valid parse trees and will find one, if it exists, for the given context-free grammar.

There are different approaches to show that programs are correct: model
checking, axiomatic semantics, expressive type systems. We are interested in
constructive branches of logic. Proofs carried out within a constructive logic may
be considered as programs in a functional language. This is important because
of the possibility of extraction of the purported object from an existence proof.
Our work is done in the Agda dependently typed programming language. Agda
provides a single framework to write functional code and prove properties about
it.

The main constituents of a context-free grammar are finite sets of terminals,
nonterminals, and rules. Therefore, in the first part of the thesis, we investigate
various encodings and properties of finiteness in constructive mathematics. A
set is considered listable, if it can be completely enumerated in a list. We be-
gin by showing that listable sets have decidable equality. This result allows us
to conclude that certain basic variations of listability are logically equivalent to
each other. We also develop a library of combinators to ease programming with
finite sets. The library includes combinators for concise definition of functions
on listable sets and a prover for quantified formulas over decidable properties on
listable sets. Additionally, we propose that new listable sets can be defined con-
cisely by listing a subset of a base set with decidable equality.

The second part of the thesis is devoted to parsing. We implement and certify
the Cocke–Younger–Kasami algorithm, as it has a simple and elegant structure.
Moreover, the algorithm allows one to parse general context-free languages. The
relative simplicity contributes greatly to certifying the implementation. The naive
recursive encoding leads to excessive recomputations, but we recover the efficient
algorithm by introducing memoization. The refinement to the memoized version
is done in a provably correctness-preserving manner.

The downside of the CYK parsing algorithm is that it requires context-free
grammars in Chomsky normal form. The last part of the thesis focuses on nor-
malization of context-free grammars. We divide normalization into four indepen-
dent transformations. For each transformation, we prove that it achieves progress
towards normality and also preserves the language of the grammar. We also
show that the composition of transformations in the appropriate order converts
any context-free grammar into its Chomsky normal form. Moreover, the proof of
soundness of the normalization procedure is a function for converting any parse
tree for the normalized grammar back into a parse tree for the original grammar.

68

Resümee

Kontekstivabad grammatikad on formalism, mida laialt kasutatakse programmee-
rimiskeelte süntaksi defineerimisel. Väitekirja peamiseks eesmärgiks on realisee-
rida ja sertifitseerida kontekstivabade grammatikate parsergeneraator. Parsergene-
raator võtab kontekstivaba grammatika ja tagastab funktsiooni, mis stringide jaoks
püüab leida parsimispuid. Sertifitseeritud parsergeneraator tagastab ainult õigesti
moodustatud parsimispuid ja kindlasti leiab parsimispuu, kui see on olemas.

Leidub mitmeid viise, mis võimaldavad näidata programmide korrektsust:
mudelikontroll, aksiomaatiline semantika, tugevad tüübisüsteemid. Me oleme
huvitatud loogika konstruktiivsetest harudest. Konstruktiivse loogika tõestustest
võib mõelda kui programmidest funktsionaalses programmeerimiskeeles. See on
oluline, kuna eksistentsi tõestatusest on niisugusel puhul võimalik ekstraheerida
konkreetne leiduv objekt. Meie töö on tehtud Agdas, mis on sõltuvate tüüpide-
ga funktsionaalprogrammeerimise keel. Agda oluline tugevus seisneb selles, et ta
pakub ühtset raamistikku nii programmeerimiseks kui ka omaduste tõestamiseks.

Kontekstivaba grammatika peamisteks komponentideks on lõplikud hulgad
terminalidest, mitteterminalidest ja reeglitest. Seetõttu töö esimeses osas uurime
me lõplike hulkade erinevaid definitsioone ja omadusi konstruktiivses matemaa-
tikas. Hulk on lõplikult loetletav, kui eksisteerib lõplik loetelu, mis sisaldab kõik
selle hulga elemendid. Me alustame tõestusega, et kõik loetletavad hulgad omavad
lahenduvat võrdust. See tulemus võimaldab meid järeldada, et lõpliku loetletavu-
se teatud lihtsad variandid on kõik omavahel ekvivalentsed. Samuti arendame me
kombinaatorite teegi, mis lihtsustab lõplike hulkadega programmeerimist. Teek
sisaldab kombinaatoreid, mis võimaldavad lühidalt defineerida totaalseid funkt-
sioone ja tõestada valemeid, mis on kvantifitseeritud üle lõplike hulkade. Lisaks
näitame me, et uusi lõplikke hulki saab lühidalt defineerida lahenduva võrdusega
baashulga alamhulga loetlemisega.

Teine osa väitekirjast on pühendatud parsimisele. Me otsustasime realiseeri-
da ja sertifitseerida Cocke-Younger-Kasami algoritmi tema lihtsuse ja elegantsuse
tõttu. CYK algoritm võimaldab parsida kõiki kontekstivabu keeli. Algoritmi suh-
teline lihtsus hõlbustab sertifitseerimist. Algoritmi naiivne rekursiivne versioon
põhjustab liigseid korduvaid arvutusi, kuid soovitav efektiivne versioon on sel-
lest hõlpsasti saavutatav memotabelite sissetoomisega. See peenendav üleminek
on tõestatavalt korrektsust säilitav.

CYK algoritm töötab ainult grammatikatega, mis on Chomsky normaalkujul.
Töö viimane osa on pühendatud grammatikate normaliseerimisele. Me jagame
normaliseerimise neljaks sõltumatuks teisenduseks. Iga teisenduse kohta me tões-
tame, et ta saavutab teatud progressi normaalkuju suunas ning säilitab algse gram-
matika keele. Samuti tõestame me, et nende teisenduste kompositsioon sobivas
järjekorras annab Chomsky normaalkuju. Konstruktiivsuse tõttu kujutab korrekt-
sustõestus endast funktsiooni normaliseeritud grammatika mistahes parsimispuu
konverteerimiseks algse grammatika parsimispuuks.

69

PUBLICATIONS

71

Paper I

D. Firsov, T. Uustalu. Dependently typed programming with finite sets. In
Proc. of 2015 ACM SIGPLAN Wksh. on Generic Programming, WGP ’15 (Van-
couver, BC, Aug. 2015), pp. 33–44. ACM Press, 2015.

73

Dependently Typed Programming with Finite Sets

Denis Firsov Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology

Akadeemia tee 21, 12618 Tallinn, Estonia
{denis,tarmo}@cs.ioc.ee

Abstract
Definitions of many mathematical structures used in computer sci-
ence are parametrized by finite sets. To work with such structures
in proof assistants, we need to be able to explain what a finite set is.
In constructive mathematics, a widely used definition is listability:
a set is considered to be finite, if its elements can be listed com-
pletely. In this paper, we formalize different variations of this def-
inition in the Agda programming language. We develop a toolbox
for boilerplate-free programming with finite sets that arise as sub-
sets of some base set with decidable equality. Among other things
we implement combinators for defining functions from finite sets
and a prover for quantified formulas over decidable properties on
finite sets.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software
Engineering]: Software/Program Verification—correctness proofs;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs

Keywords certified programming; finite sets; dependently typed
programming; Agda; Kuratowski finiteness; Bishop finiteness

1. Introduction
Many definitions of structures used in computer science are param-
etrized by finite sets. For example, in the theory of formal lan-
guages, a deterministic finite automaton is defined as a 5-tuple

M = (Q, Σ, δ, q0, F),

where Q is a finite set of states, Σ is a finite set of letters (alphabet),
δ is a transition function from Q × Σ to Q, q0 is an initial state
and F is a set of accepting states. To work with such concepts in
proof assistants like Agda [13], which is the language we use in
this paper, we need to be able to say what a finite set is.

One standard way to state that some set X is finite is to provide
a list containing all elements of X. In our example, if the alphabet
is binary (Σ := B,), then the list false :: true :: [] together
with a proof that every truth value is contained in this list establish
finiteness of Σ. Another (equivalent) option is to provide a surjec-
tion from the set [0..n) for some n ∈ N. In our case, we can do

with the function from [0..2) that sends 0 to false and 1 to true
together with a proof that this function is surjective.

In what follows, we define an example taken from quantum
computing [12], the Pauli group on 1 qubit (with the global phase
quotiented out), as a datatype with 4 nullary constructors. We also
implement equality decision and the group operation to highlight
the weak points of this straightforward approach and show the
boilerplate code that we would like to reduce.

1.1 Extended Example
A finite set like the Pauli group can be defined as a datatype with a
nullary constructor for each element:

data Pauli : Set where
X : Pauli
Y : Pauli
Z : Pauli
I : Pauli

The constructors X, Y, Z, and I denote the four distinct elements of
the set Pauli.

To show that Pauli is finite (so that one can, for example,
iterate through all elements), we can provide a list:

listPauli : List Pauli
listPauli = X :: Y :: Z :: I :: []

We can prove that the list is complete:

allPauli : (x : Pauli) → x ∈ listPauli
allPauli X = here
allPauli Y = there here
allPauli Z = there (there here)
allPauli I = there (there (there here))

(Here, here is a proof of x ∈ x :: xs; and there p is a proof of
x ∈ y :: xs, if p is a proof that x ∈ xs.)

We could also prove that this list does not contain duplicates,
but this is not mandatory.

We continue our example by implementing equality decision for
elements of Pauli:

≡P? : (x1 x2 : Pauli) → x1 ≡ x2] ¬ (x1 ≡ x2)
X ≡P? X = inj1 refl
X ≡P? Y = inj2 λ()
X ≡P? Z = inj2 λ()
X ≡P? I = inj2 λ()
Y ≡P? X = inj2 λ()
Y ≡P? Y = inj1 refl
Y ≡P? Z = inj2 λ()
Y ≡P? I = inj2 λ()
Z ≡P? X = inj2 λ()
Z ≡P? Y = inj2 λ()
Z ≡P? Z = inj1 refl
Z ≡P? I = inj2 λ()

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

WGP’15, August 30, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3810-3/15/08...$15.00
http://dx.doi.org/10.1145/2808098.2808102

33

I ≡P? X = inj2 λ()
I ≡P? Y = inj2 λ()
I ≡P? Z = inj2 λ()
I ≡P? I = inj1 refl

(¬ P = P → ⊥, where ⊥ is the empty set; X] Y denotes the
disjoint sum of X and Y. () is called the absurd pattern and denotes
impossibility of a pattern.)

To conclude our example, we define the group operation:

· : Pauli → Pauli → Pauli
X · X = I
X · Y = Z
X · Z = Y
Y · X = Z
Y · Y = I
Y · Z = X
Z · X = Y
Z · Y = X
Z · Z = I
x · I = x
I · x = x

And we prove that it is commutative:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm X X = refl
·-comm X Y = refl
·-comm X Z = refl
·-comm X I = refl
·-comm Y X = refl
·-comm Y Y = refl
·-comm Y Z = refl
·-comm Y I = refl
·-comm Z X = refl
·-comm Z Y = refl
·-comm Z Z = refl
·-comm Z I = refl
·-comm I X = refl
·-comm I Y = refl
·-comm I Z = refl
·-comm I I = refl

It is important to realize that refl takes different implicit argu-
ments in different lines of the code above, so it cannot be shortened
to just one line ·-comm _ _ = refl. Actually, the code shown is
the shortest “direct” proof and requires full pattern matching. It is
easy to see that an associativity proof requires 64 lines of code.

We can see that the straightforward way of defining a finite set
as an enumeration type has a number of shortcomings:

1. When defining Pauli and listPauli, we effectively listed all
elements twice.

2. The proof of allPauli is verbose and dependent on the order
of elements in the list listPauli. All three definitions (Pauli,
listPauli, allPauli) must be kept consistent at all times,
when modifying the code.

3. The equality decider is not derived automatically and the man-
ual definition is verbose. The same would apply to duplicate-
freeness decision, if we wanted to implement it.

4. The proof of commutativity of the _·_ operation is dull, but
cannot be compressed.

Alternatively, to show that Pauli is finite, we can provide a
surjection from an initial segment of natural numbers. Let us first
introduce a family of sets for initial segments of the set of all natural
numbers. Fin n represents the set of first n natural numbers, i.e.,
the set of all numbers smaller than n.

data Fin : N → Set where
fzero : {n : N} → Fin (suc n)
fsuc : {n : N} → Fin n → Fin (suc n)

(In Agda, an argument enclosed in curly braces is implicit. The
Agda type-checker will try to figure it. If an argument cannot be
inferred, it must be provided explicitly.) fzero is smaller than
suc n for any n and, if i is smaller than n, then fsuc i is smaller
than suc n. As there is no number smaller than zero, Fin zero is
empty. (When there are no possible constructor patterns for a given
argument, one can pattern match on it with the absurd pattern ().)

Now, to show that Pauli is finite, we can define a function from
Fin 4 to Pauli:

f2p : Fin 4 → Pauli
f2p fzero = X
f2p (fsuc fzero) = Y
f2p (fsuc (fsuc fzero)) = Z
f2p (fsuc (fsuc (fsuc fzero))) = I
f2p (fsuc (fsuc (fsuc (fsuc ()))))

We can also define a function in the converse direction:

p2f : Pauli → Fin 4
p2f X = fzero
p2f Y = fsuc fzero
p2f Z = fsuc (fsuc fzero)
p2f I = fsuc (fsuc (fsuc fzero))

This allows us show that f2p is surjective by establishing

f2p-surj : (x : Pauli) → f2p (p2f x) ≡ x
f2p-surj X = refl
f2p-surj Y = refl
f2p-surj Z = refl
f2p-surj I = refl

In fact, f2p is not only a surjection, but even a bijection, but this is
not mandatory for finiteness. We have once more established that
Pauli is finite, however we introduced even more dependencies
than when defining Pauli, listPauli, and allPauli. Namely,
now the definitions of Pauli, f2p, p2f, and f2p-surj must all be
kept in agreement with each other.

In this paper, we set out to explore finite sets in the constructive
and dependently typed setting of Agda and develop an infrastruc-
ture for clean programming with finite sets.

In Section 2, we give some basic definitions regarding decid-
able propositions and also introduce effective squashing for such
propositions.

In Section 3, we introduce some notions of constructive finite-
ness of a set and of a subset of a set and explore how they are related
to each other. We present some conditions under which equality on
a finite set is decidable. Furthermore, we show that there are finite
subsets for which equality is undecidable.

Section 4 is devoted to a pragmatic approach for programming
with finite sets that arise as subsets of a base set with decidable
equality. In this approach, we are able to define a finite subset by
listing its elements once and automatically derive completeness and
decidable equality.

In Section 5, we show that the union, intersection, product and
disjoint sum of finite sets are finite.

In Section 6.1, we show that functions from finite sets can be
defined via tables. After that in Section 6.2, we introduce the notion
of predicate matching and show how it can be used for defining
functions on finite sets.

In Section 7, we implement a prover for quantified formulas
over decidable properties on finite sets.

34

We used Agda 2.4.2.2 and Agda Standard Library 0.9 for this
development. The full Agda code of this paper can be found at
http://cs.ioc.ee/~denis/finset/.

2. Basic Definitions
The predicate All X states that a given list xs contains all elements
of a set X (duplicates being allowed):

All : (X : Set) → List X → Set
All X xs = (x : X) → x ∈ xs

A proposition P is called decidable, if there is a proof of either
P or not P:

data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P

(Here yes and no are two constructors of the datatype Dec P. The
former takes a proof of P as its argument, while the latter takes a
proof of ¬ P.)

Now, we say that a set X has decidable equality, if there is
a function sending any elements x1 and x2 of X to a proof of
Dec (x1 ≡ x2):

DecEq : (X : Set) → Set
DecEq X = (x1 x2 : X) → Dec (x1 ≡ x2)

With these notations, the type of _≡P?_ from Section 1 can be
abbreviated to DecEq Pauli.

Similarly, we can define decidable list membership:

DecIn : (X : Set) → Set
DecIn X = (x : X) → (xs : List X) → Dec (x ∈ xs)

A proof of DecIn X is a function that, for any element x : X and a
list xs : List X, returns a proof of either x ∈ xs or its negation.
It is easy to verify that DecEq X and DecIn X are equivalent,
namely:

deq2din : {X : Set} → DecEq X → DecIn X

din2deq : {X : Set} → DecIn X → DecEq X

We also define a notion of a proposition P being a mere propo-
sition:

Prop : Set → Set
Prop P = (p1 p2 : P) → p1 ≡ p2

It says that P can have at most one proof.
Another basic predicate is NoDup, which expresses that a given

list xs is duplicate-free:

NoDup : {X : Set} → List X → Set
NoDup {X} xs = (x : X) → Prop (x ∈ xs)

Duplication-freeness of xs is the same as there being at most one
proof of membership in xs for every x : X.

If X has decidable equality, then All X and NoDup are decid-
able:

deq2dall : {X : Set} → DecEq X
→ (xs : List X) → Dec (All X xs)

deq2dnd : {X : Set} → DecEq X
→ (xs : List X) → Dec (NoDup xs)

If P is decidable, we can effectively define a squashed version
of P (i.e., quotient P by the total equivalence relation):

‖_‖ : {P : Set} → Dec P → Set
‖ yes _ ‖ = >
‖ no _ ‖ = ⊥

(Here > is the unit type: a singleton type with a unique element
tt.) Note that we are squashing P, not Dec P, however, we make
use of a proof that P is decidable. For example, we can observe that
the type

X ∈ X :: Y :: X :: []
is decidable. Moreover, there are two different proofs:

prf1 : Dec (X ∈ X :: Y :: X :: [])
prf1 = yes here

prf2 : Dec (X ∈ X :: Y :: X :: [])
prf2 = yes (there (there here))

So we can squash the type X ∈ X :: Y :: X :: [] in two different
ways: ‖ prf1 ‖ or ‖ prf2 ‖, but both evaluate to >.

It is easy to see that any two elements of a squashed type are
equal:

propSq : {P : Set} → (d : Dec P) → Prop ‖ d ‖
It is also important to note that one can always get a proof of P,

if the squashed version is inhabited:

fromSq : {P : Set} → (d : Dec P) → {‖ d ‖} → P

We have made the third argument (of type ‖ d ‖) implicit, since if
d proves Dec P, then the only possible value is the unique element
tt : > and the type-checker can derive it automatically.

3. Finiteness Constructively
3.1 Listable Sets
The best known and most used constructive notion of finiteness
of a set is listability (also sometimes called Kuratowski finiteness,
although Kuratowski [11] phrased his definition in different terms):
a set is finite, if its elements can be completely listed:

Listable : (X : Set) → Set
Listable X = Σ[xs ∈ List X]

All X xs

(In Agda, Σ[a ∈ A] B a is the type of dependent pairs of
an element a of type A and an element of type B a. Note the
unfortunate and confusing use of ∈ instead of : for typing the
bound variable in this notation.)

A close alternative idea is to require a surjection from an initial
segment of the set of natural numbers:

FinSurj : (X : Set) → Set
FinSurj X = Σ[n ∈ N]

Σ[fromFin ∈ (Fin n → X)]
Σ[toFin ∈ (X → Fin n)]
((x : X) → fromFin (toFin x) ≡ x)

The two notions are equivalent:

surj2lstbl : {X : Set}
→ FinSurj X → Listable X

lstbl2surj : {X : Set}
→ Listable X → FinSurj X

It is clear that, from listability of a set, one can learn an upper
bound on the number of its elements. (But in fact one can learn also
the actual cardinality, just wait a little.)

An a priori trimmer version of listability (sometimes called
Bishop-finiteness [6]) forbids duplicates:

ListableNoDup : (X : Set) → Set
ListableNoDup X = Σ[xs ∈ List X]

All X xs ×
NoDup xs

35

Alternatively, one may require a bijection from an initial seg-
ment of the set of natural numbers:

FinBij : (X : Set) → Set
FinBij X = Σ[n ∈ N]

Σ[fromFin ∈ (Fin n → X)]
Σ[toFin ∈ (X → Fin n)]
((x : X) → fromFin (toFin x) ≡ x) ×
((i : Fin n) → toFin (fromFin i) ≡ i)

These two notions of finiteness are also equivalent:

bij2lstblnd : {X : Set}
→ FinBij X → ListableNoDup X

lstblnd2bij : {X : Set}
→ ListableNoDup X → FinBij X

Quite clearly, from duplicate-free listability of a set, one can
extract its exact cardinality.

It is less obvious that all four notions of finiteness are equivalent.
The reason is that equality on a listable set is decidable:

lstbl2deq : {X : Set} → Listable X → DecEq X

We give the main idea behind the implementation of lstbl2deq.
If a set X is listable, then there exist a list xs and a function cmplt
that, for any element x : X, returns a proof that x ∈ xs. You can
think of this proof as a position of x in xs. Therefore, for any value
x, there is a split of xs such that xs ≡ xs1 ++ x :: xs2. Now, if
we need to check whether x1 : X and x2 : X are equal, we can
proceed as follows. We ask cmplt for two splits of xs: cmplt x1
gives a split xs ≡ xs1 ++ x1 :: xs2 and cmplt x2 gives a split
xs ≡ xs′ ++ x2 :: xs′′. Next, it is clear that if

length xs1 ≡ length xs′

then x1 ≡ x2. But what if length xs1 6≡ length xs′? If the
list xs were guaranteed to be duplicate-free, then this would im-
mediately imply that x1 6≡ x2, since there would then be a bijec-
tion between positions of xs and elements of X. However, in the
presence of duplicates, this argument does not work. Instead, we
observe that cmplt is a function of type (x : X) → x ∈ xs.
Therefore, for equal elements of X, it must deliver equal results.
With this observation, we can argue that if length xs1 is not
equal to length xs′ then x1 6≡ x2. Indeed, if x1 ≡ x2, then
cmplt x1, and cmplt x2 must give the same split contradicting
length xs1 6≡ length xs′.

As soon as list membership is decidable, we can implement
removal of duplicates:

remDup : {X : Set} → DecIn X → List X → List X

We show that remDup is complete. Namely, if some element be-
longs to the list, then at least one copy of that element is preserved
by remDup:

remDupComplete : {X : Set} → (_∈?_ : DecIn X)
→ (x : X) → (xs : List X)
→ x ∈ xs → x ∈ remDup ∈? xs

remDup is also sound—the resulting list does not contain any new
elements:

remDupSound : {X : Set} → (_∈?_ : DecIn X)
→ (x : X) → (xs : List X)
→ x ∈ remDup ∈? xs → x ∈ xs

And most importantly, the resulting list is free of duplicates:

remDupProgress : {X : Set} → (_∈?_ : DecIn X)
→ (xs : List X) → NoDup (remDup ∈? xs)

Now, with lstbl2deq and deq2din, we can prove that
Listable X implies ListableNoDup X, and the converse is a
triviality:

lstbl2lstblnd : {X : Set}
→ Listable X → ListableNoDup X

lstblnd2lstbl : {X : Set}
→ ListableNoDup X → Listable X

It is worth noticing that the proof lstbl2deq also provides an
alternative definition of an equality decider for listable types like
Pauli from Section 1:

listablePauli : Listable Pauli
listablePauli = listPauli , allPauli

deqPauli : DecEq Pauli
deqPauli = lstbl2deq listablePauli

Remember that the direct approach for defining decidable equality
on Pauli required us 42 lines of code.

3.2 Listable Subsets
A special case of sets are those defined as a subset of a larger set.
Here we have more variations of finiteness.1.

A subset of a base set U carved out by a predicate P : U → Set
is called subfinite, if there is a list containing all elements of U that
satisfy P (we call this property completeness):

ListableJunkSub : (U : Set) → (U → Set) → Set
ListableJunkSub U P = Σ[xs ∈ List U]

((x : U) → P x → x ∈ xs)

This notion of finiteness (which can only be formulated for subsets
of some base set, not for general sets) allows xs to contain also
elements not satisfying P. Therefore, we cannot even know whether
the subset is empty. But we have an immediate upper bound on the
number of elements in the subset: it is the length of the list xs.

A stronger notion of finiteness requires also soundness, i.e., a
proof that an element of U belongs to xs only if it satisfies the
predicate P (duplicates are still allowed):

ListableSub : (U : Set) → (U → Set) → Set
ListableSub U P = Σ[xs ∈ List U]

((x : U) → P x → x ∈ xs) ×
((x : U) → x ∈ xs → P x)

A listable subset can be checked for emptiness:

empty? : {U : Set}{P : U → Set}
→ (p : ListableSub U P)
→ Dec ((x : U) → ¬ x ∈? proj1 p))

Listable sets are a special case of listable subsets:

lstbl2lsub : {U : Set}
→ Listable U → ListableSub U (λ _ → >)

lsub2lstbl : {U : Set}
→ ListableSub U (λ _ → >) → Listable U

The always true predicate (λ _ → >) gives us the whole set U
as the subset, i.e., the base set U must itself be listable. This is a
special case of the situation where P has at most one proof for every
element x of U (P x is a mere proposition):

prop2lstbl2lsub : {U : Set}{P : U → Set}

1 We will generally speak of finiteness of a subset without actually con-
structing this subset as a set in its own right, since that would require us to
be able to squash arbitary propositions, not just decidable ones.

36

→ ((x : U) → Prop (P x))
→ Listable (Σ[x ∈ U] P x)
→ ListableSub U P

prop2lsub2lstbl : {U : Set}{P : U → Set}
→ ((x : U) → Prop (P x))
→ ListableSub U P
→ Listable (Σ[x ∈ U] P x)

3.3 Decidability of Equality on Listable Subsets
Let us define decidability of equality on the subset of U determined
by P as decidability of equality on U restricted to the elements
satisfying P:

DecEqSub : (U : Set) → (P : U → Set) → Set
DecEqSub U P

= (x1 x2 : U) → P x1 → P x2 → Dec (x1 ≡ x2)

In Section 3, we showed that listability of X implies decidable
equality on X. Now we give a more general version of that property,
namely, if, for any x : U there is at most one proof of P x, then
equality on the subset given by U and P is decidable.

deqLstblSub1 : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ ((x : U) → Prop (P x))
→ DecEqSub U P

The strategy of implementing deqLstblSub1 is similar to the
strategy of implementing lstbl2deq. If P defines a listable subset
of U, then we have a list xs containing all elements of U such that
P. We also have a proof of completeness of xs:

cmplt : (x : U) → P x → x ∈ xs.

If we want to check two elements x1 and x2 for equality, then
we are also given proofs p1 : P x1 and p2 : P x2. Clearly, if
cmplt x1 p1 and cmplt x2 p2 induce the same splits of xs,
namely, xs ≡ xs1 ++ x1 :: xs2, xs ≡ xs′ ++ x2 :: xs′′ and
length xs1 ≡ length xs′, then x1 ≡ x2. However, in the
case when the splits are different, we cannot use the argument that,
since cmplt is a function, there is only one split for each element.
The reason is that, generally, cmplt x may deliver different splits
for different proofs of P x. However, we have required that there
is a unique proof of P x for any x. Finally, we can conclude that, if
length xs1 6≡ length xs2, then x1 6≡ x2.

Actually, in this situation of P being a mere proposition, the in-
tended subset can be explicitly defined as the set Σ[x ∈ U] P x,
and we have decidable equality on this set:

deqLstblSub1’ : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ ((x : U) → Prop (P x))
→ (xp1 xp2 : Σ[x ∈ U] P x)
→ Dec (xp1 ≡ xp2)

Equality on the subset is also decidable, if P is decidable:

deqLstblSub2 : {U : Set}
→ (P : U → Set)
→ ((x : U) → Dec (P x))
→ ListableSub U P
→ DecEqSub U P

A further variation says that, if we know that the list of all
elements of U satisfying the predicate P is duplicate-free, then we
also have decidable equality on the subset:

deqLstblSub3 : {U : Set}
→ (P : U → Set)
→ (p : ListableSub U P)
→ NoDup (proj1 p)
→ DecEqSub U P

We conclude with a proof that there is no function turning any
proof of ListableSub U P into a decider of equality on elements
of U satisfying P:

deqLstblSub4 : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ DecEqSub U P

deqLstblSub4 = ???

Let us define the following list of functions from booleans to
booleans:

listB2B : List (Bool → Bool)
listB2B = fun1 :: fun2 :: fun3 :: []

where
fun1 : Bool → Bool
fun1 _ = true

fun2 : Bool → Bool
fun2 _ = false

fun3 : Bool → Bool
fun3 b = if b then true else true

The list listB2B consists of three functions. The functions fun1
and fun3 always return true, however they are not propositionally
equal, unless we assume function extensionality. The function fun2
always returns false.

Then we specify a subset of functions of type Bool → Bool
by the following predicate B2B:

B2B : (Bool → Bool) → Set
B2B f = f ∈ listB2B

Next, we prove that the predicate B2B defines a listable subset.
Clearly, it is just the set of functions from the list listB2B:

listableB2B : ListableSub (Bool → Bool) B2B
listableB2B = listB2B , (λ x p → p) , (λ x p → p)

So, now we could try to write a function that decides equality of
elements of listableB2B:

deqB2B : (f1 f2 : Bool → Bool)
→ B2B f1
→ B2B f2
→ Dec (f1 ≡ f2)

deqB2B = ???

Given f1 and f2 together with p1 : B2B f1 and p2 : B2B f2,
we can pattern-match on p1 and p2. Some cases are unproblem-
atic: e.g., if p1 = here and p2 = here, then f1 = fun1 and
f2 = fun1, so it is trivial that f1 ≡ f2. Similarly, if p1 = here
and p2 = there here, then f1 = fun1 and f2 = fun2 and
hence ¬ (f1 ≡ f2). But there is the critical case of p1 = here
and p2 = there (there here). Then f1 = fun1 and
f2 = fun3 and there is simply no correct answer to return, as
the two functions are not equal propositionally (unless function
extensionality is assumed), but also not inequal.

We have argued that it is impossible to prove deqLstblSub4.
This also implies that the notion of a listable set is stronger than the
notion of a listable subset, which in turn is stronger than the notion
of a subset listable with junk.

37

4. Pragmatic Finite Sets
In this section, we aim at a pragmatic approach to programming
with finite sets. Our objective is to be able to specify a finite set
by listing the intended elements just once. From specification, we
want to obtain a listable set with no additional work. Our solution is
to specify the finite set as a subset of some base set with decidable
equality.

4.1 Motivation and Definition
In Section 1, we saw that the straightforward approach to defining
the Pauli group as a datatype with nullary constructors and prov-
ing that it is finite required us to list the elements of Pauli mul-
tiple times and also provide verbose proofs of completeness and
decidability of equality. Next, we go through a number of steps, to
motivate a more pragmatic approach.

As we have seen, a predicate P on a base set U defines a subset.
If there is a list of elements containing all elements of U satisfying
P and no others, then we have a listable subset:

step1 : {U : Set} → (P : U → Set)
→ (xs : List U)
→ ((x : U) → x ∈ xs → P x)
→ ((x : U) → P x → x ∈ xs)
→ ListableSub U P

Next, we observe that we can create a listable subset from any
list xs over U by taking P to be (λ x → x ∈ xs):

step2 : {U : Set} → (xs : List U)
→ ListableSub U (λ x → x ∈ xs)

step2 = xs , (λ x i → i) , (λ x i → i)

A good thing is that the proofs of soundness and completeness are
now trivial. But the elements of the subset are dependent pairs of
an element x of U and a proof of membership (position) of x in xs.

Next we can ask for decidable list membership on U to be able
to effectively squash sets x ∈ xs:

step3 : {U : Set} → (_∈?_ : DecIn U)
→ (xs : List U)
→ ListableSub U (λ x → ‖ x ∈? xs ‖)

Now an element of the subset is a pair of an element of U and an
element of a squashed type (which, if it exists, is unique!).

By theorem prop2lsub2lstbl from Section 3.2, the type

Σ[x ∈ U] ‖ x ∈? xs ‖
must be listable.

Given these considerations, we can define a datatype of descrip-
tions of finite sets as subsets of a base set with decidable equality:

data FinSubDesc (U : Set) (eq : DecEq U) :
Bool → Set where

fsd-plain : List U → FinSubDesc U eq true
fsd-nodup : (xs : List U) → {‖ nd? xs ‖}
→ FinSubDesc U eq false

where
nd? = deq2dnd eq

The datatype introduced is parametrized by a base set U, a decider
eq of equality on U, and is also indexed by a boolean flag b that
indicates whether the underlying list of elements is allowed to
contain duplicates. There are two constructors. The constructor
fsd-plain takes a list xs of elements of U as an argument. The
constructor fsd-nodup accepts a list xs as an argument only if
it is duplicate-free. It has also another, implicit argument, of a
squashed type. This type is inhabited if and only if xs contains no
duplicates. In other words, if xs is duplicate-free, then the type of

the implicit argument evaluates to the unit type and its value can be
inferred automatically. If xs contains duplicates, then the type of
the implicit argument evaluates to ⊥ and no value can be provided
for it.

There are pragmatic reasons to have two constructors for
FinSubDesc. If the user creates a relatively small subset of el-
ements (≤ 10000) using fsd-nodup, then the type-checker can
feasibly check that there are no duplicates. However, if the number
of elements is larger, then the price for maintaining the invariant of
no duplicates becomes too high. Remember that the complexity of
checking duplicate-freeness is quadratic in the length of the list.

We can now define the Pauli group as a subset of the set of all
characters:

MyPauli : FinSubDesc Char _≡C?_ false
MyPauli

= fsd-nodup (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: [])

Since the list provided is without duplicates, the type of the implicit
argument

‖ nd? (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: []) ‖
is evaluated to > by the type-checker and the value for this argu-
ment is derived automatically.

On the other hand, the following definition is rejected by the
type-checker, since ’X’ is listed twice and the type of the implicit
argument is evaluates to ⊥:

MyPauliBad : FinSubDesc Char _ ?
=_ false

MyPauliBad
= fsd-nodup (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: ’X’ :: [])

{???}

The hole needs to be filled with a proof of ⊥, which is impossible.
However, we can drop the requirement of no duplicates (note the
change in the type):

MyPauliFixed : FinSubDesc Char _ ?
=_ true

MyPauliFixed
= fsd-plain (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: ’X’ :: [])

Now, we can define the actual set that a finite subset description
denotes:

toList : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → List U

toList (fsd-plain xs) = xs
toList (fsd-nodup xs) = xs

Elem : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → Set

Elem {U} {eq} D
= Σ[x ∈ U] ‖ x ∈? toList D ‖

where
∈? = deq2din eq

So an element of type Elem D for some finite subset description D
is a dependent pair of an element x of U together with a squashed
proof that x belongs to the list of elements defining the subset.
Using the squashed membership type allows us to ignore the exact
position(s) of the element in the list.

For example, we could refer to one of the elements of MyPauli
as the identity:

identity : Elem MyPauli
identity = (’I’ , _)

The second component of the pair (the type-checker infers that it
must be tt) is actually a squashed proof of the fact that I belongs
to the set MyPauli. Without squashing, we would need to refer to

38

I by its position, namely,

(’I’, there (there (there here))).

Clearly, we want to avoid such fragile dependencies.
On the other hand, the type-checker will accept a non-element

of the list only if the user manages to provide a proof of ⊥.

bad : Elem MyPauli
bad = (’W’ , ???)

4.2 Finite Subsets are Listable
Our next step is to show that, for all D : FinSubDesc U eq b,
the corresponding subset of U, namely, Elem D, is listable.

First, we generate a list of elements of Elem D:

listElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ List (Elem D)

Second, we show that listElem D is complete, it contains all
elements of Elem D:

allElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ (xp : Elem D) → xp ∈ listElem D

Third, we observe that listElem D does not introduce any dupli-
cates:

ndElem : {U : Set}{eq : DecEq U}
→ (D : FinSubDesc U eq false)
→ NoDup (listElem D)

Finally, we show that Elem D is listable:

lstblElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ Listable (Elem D)

lstblElem D = listElem D , allElem D

This also implies decidable equality on Elem D:

deqElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (f : FinSubDesc U eq b)
→ DecEq (Elem D)

deqElem D = lstbl2deq (lstblElem D)

4.3 Finite Subsets from Lists
Now, we implement a function fromList which is parametrized
by the boolean b, so that user could decide if the duplicates should
be removed from the resulting finite subset:

fromList : {U : Set} → (eq : DecEq U)
→ (b : Bool) → List U → FinSubDesc U eq b

Basic set operations can now be defined on the underlying lists
of finite subsets. For example, the union is defined by concatenating
the underlying lists of argument subsets:

∪ : {U : Set}{eq : DecEq U}
→ {b1 b2 : Bool}
→ FinSubDesc U eq b1
→ FinSubDesc U eq b2
→ FinSubDesc U eq (b1 ∧ b2)

∪ {eq = eq} D1 D2
= fromList eq _ (toList D1 ++ toList D2)

Here is an example:

MyNats1 = fsd-nodup (1 :: 3 :: [])
MyNats2 = fsd-nodup (1 :: 6 :: [])

p : MyNats1 ∪ MyNats2 ≡ fsd-nodup (1 :: 3 :: 6 :: [])
p = refl

4.4 Finite Subset Monad
Finite subsets (of sets with decidable equality) are monad. We
explicate this structure on the level of FinSubDesc:

return : {U : Set}{eq : DecEq U}{b : Bool}
→ U → FinSubDesc U eq b

bind : {U V : Set}{eqU : DecEq U}
→ {eqV : DecEq V}{bU bV : Bool}
→ FinSubDesc U eqU bU
→ (U → FinSubDesc V eqV bV)
→ (b : Bool)
→ FinSubDesc V eqV b

A peculiarity of return and bind here is that they can work in two
different modes. If the boolean argument provided is false, then
duplicates will be removed the resulting finite subset description,
otherwise not. This allows the user to tune the monadic code for
the efficiency.

Wadler [16] identifies the structure needed for comprehending
monads. The missing bit is mzero:

mzero : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b

mzero {b = true} = fsd-plain []
mzero {b = false} = fsd-nodup []

Using mzero, we define a conditional if_then_ and also some
syntactic sugar for bind:

if_then_ : {U : Set}{eq : DecEq U}{b : Bool}
→ Bool → FinSubDesc U eq b
→ FinSubDesc U eq b

if b then c = if b then c else mzero

syntax bind A (λ x → B) b
= for x ∈ A as b do B

As a result, we can write set comprehension code in for-loop
style. Let us look at an example. Mathematically, the intersection
of sets X and Y is defined as:

X ∩ Y = {x | x ∈ X, y ∈ Y, x = y}
With the combinators and syntactic sugar defined above, we can
write the following definition of subset intersection with compre-
hensions:

∩ : {U : Set}{eq : DecEq U} {b1 b2 : Bool}
→ FinSubDesc U eq b1 → FinSubDesc U eq b2
→ FinSubDesc U eq (b1 ∧ b2)

∩ {eq = _≡?_} X Y =
for x ∈ X as _ do

for y ∈ Y as true do
if b x ≡? y c then return x

5. Combinators
In this section, we define some general combinators for listable
subsets. The simplest combinator is for taking the union of two
listable subsets of the same base set:

union : {U : Set}{P Q : U → Set}
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x] Q x)

The definition just concatenates the underlying lists of the two
subsets and then adapts the proofs of completeness and soundness.

39

The intersection of two listable subsets is trickier, since it cannot
be defined generally for two arbitrary subsets. The reason is simple,
we need somehow to find the common elements. One possibility is
to ask equality on U to be decidable:

intersection’ : {U : Set}{P Q : U → Set}
→ DecEq U
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x × Q x)

But this assumption can be weakened by only asking one of the
predicates to be decidable.

intersection : {U : Set}{P Q : U → Set}
→ ((x : U) → Dec (P x))
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x × Q x)

This a weaker condition, because, if U has decidable equality, then
ListableSub U P implies decidability of P:

deq2lstbl2dp : {U : Set}{P : U → Set}
→ DecEq U
→ ListableSub U P
→ (x : U) → Dec (P x)

We also prove that the product and the disjoint sum of listable
subsets of two base sets are listable subsets of the product/disjoint
sum of the base sets:

product : {U : Set}{P : U → Set}
→ {V : Set}{Q : V → Set}
→ ListableSub U P
→ ListableSub V Q
→ ListableSub (U × V) < P , Q >

sum : {U : Set}{P : U → Set}
→ {V : Set}{Q : V → Set}
→ ListableSub U P
→ ListableSub V Q
→ ListableSub (U] V) [P , Q]

6. Function Definition
This section describes two different approaches for defining func-
tions from finite sets.

We observe that, if we want to define arbitrary functions from
some finite X to Y, then we must be able to compare the elements
of X and also for the function to be total we need the complete list
of those. Therefore, the right notion of finiteness for X is listability
(Listable X).

6.1 Tabulation
To define a function of type f : X → Y for some listable X, we
could explicitly provide a list of pairs (x , y). For example, if
X = { N , � , � } and Y = N then the list

(N , 1) :: (� , 10) :: (� , 100) :: []

could be interpreted as a function:

f : X → N
f N = 1
f � = 10
f � = 100

But not any list xys of type List (X × Y) can be turned into
a function. We need two additional properties:

1. For the function f to be total, each element of the domain must
appear in xys paired with some element of codomain. Formally,
we require All X (map proj1 xys).

2. For unambiguous interpretation, the list xys must not con-
tain multiple pairs with the same domain element. Formally,
NoDup (map proj1 xys)

For example:

bad1 = (N , 1) :: (� , 10) :: []
bad2 = (N , 1) :: (� , 10) :: (� , 0) :: []

The list bad1 violates the first requirement and the list bad2 vio-
lates both.

Now, we translate the above into Agda:

Tbl : Set → Set → Set
Tbl X Y = Σ[xys ∈ List (X × Y)]

All X (map proj1 xys) ×
NoDup (map proj1 xys)

An element of type Tbl X Y is a list of pairs of type X × Y with
some additional information, namely, proofs that the list of pairs is
complete and duplicate-free regarding the first components. Recall
that All X xs implies Listable X.

Since, for small tables, proofs of All X and NoDup can be
inferred by the type-checker, it makes sense to define the following
function for creating tables:

lstbl2dall : {X : Set} → Listable X
→ (xs : List X) → Dec (All X xs)

lstbl2dnd : {X : Set} → Listable X
→ (xs : List X) → Dec (NoDup xs)

createTbl : {X Y : Set} → (p : Listable X)
→ (xys : List (X × Y))
→ {‖ lstbl2dall p (map proj1 xys) ‖}
→ {‖ lstbl2dnd p (map proj1 xys) ‖}
→ Tbl X Y

If the list map proj1 xys contains all the elements of type X
and is without duplicates, then the implicit arguments need not be
supplied manually, since their types will be evaluated to > by the
type-checker, so that tt is the only possible value.

Next, we implement a function for tabulating functions from a
listable set:

toTbl : {X Y : Set} → Listable X
→ (X → Y) → Tbl X Y

Likewise, tables are convertible into functions:

fromTbl : {X Y : Set} → Tbl X Y → X → Y

We also show that converting back and forth between the two
representations of the function is harmless:

fromto : {X Y : Set}
→ (p : Listable X)
→ (f : X → Y)
→ (x : X)
→ fromTbl (toTbl p f) x ≡ f x

As a final example of this subsection, we write a conversion
function from Elem MyPauli to Pauli:

7→ : {U Y : Set}{eq : DecEq U}{b : Bool}
→ {D : FinSubDesc U eq b}
→ (x : U)
→ {‖ x ∈? toList D ‖}
→ Y → (Elem D × Y)

40

toPauli : Elem MyPauli → Pauli
toPauli = fromTbl (createTbl (lstblElem MyPauli)

(’X’ 7→ X ::
’Y’ 7→ Y ::
’Z’ 7→ Z ::
’I’ 7→ I :: []))

6.2 Predicate Matching
Assume that X is some finite set. How to implement in Agda a
function f : X → Y that is defined piecewise:

f(x) =

f1(x) if p1(x)
f2(x) if p2(x)
. . .

fn(x) if pn(x)

One possibility is to provide an explicit table as described in the
previous section. Unfortunately, if X is large this approach requires
a lot of manual work. Another possibility is to encode it directly by
nesting if_then_else_ expressions:

f x = if p1 x then f1 x
else if p2 x then f2 x

else if p3 x then f3 x
else ...

This approach is more concise than giving an explicit table, but it
suffers from several of drawbacks:

1. There is always the last else branch, which plays the role of a
“default” case. It will be applied to all elements which do not
satisfy the predicates P1....Pn. The “default” branch makes it
difficult to discover that some case was forgotten by mistake.

2. There is no good way of checking that the predicates cover all
elements of the finite set (i.e., that no elements in the domain
reach the “default” branch).

3. Also it is difficult to find whether there are perhaps some “dead”
branches which are not satisfied by any element of X.

In what follows, we address these issues and introduce a notion of
predicate matching.

We start by implementing a function unreached that takes a
list of predicates and a list of elements and returns the list of those
predicates that are not satisfied by any element:

unreached : {X : Set} → List (X → Bool)
→ List X → List (X → Bool)

unreached [] xs = []
unreached (p :: ps) xs =

if (any p xs) then rc else (p :: rc)
where

rc = unreached ps (filter (not ◦ p) xs)

It is important to note that at the recursive call we filter out the
elements that are satisfied by the head of the list of predicates.
It means that the order of predicates matters. A predicate is only
reached, if there is at least one element that satisfies it but does not
satisfy any preceding predicates. We formalize this in the following
soundness theorem:

unreachedSound : {X : Set}
→ (ps1 ps2 : List (X → Bool))
→ (p : X → Bool)
→ (xs : List X)
→ unreached (ps1 ++ p :: ps2) xs ≡ []
→ Σ[x ∈ X] x ∈ xs × p x ≡ true ×
((p’ : X → Bool) → p’ ∈ ps1 → p’ x ≡ false)

Soundness states that, if for some list xs, the list of predicates ps
contains no unreachable ones, then for any split of ps into three
parts, ps ≡ ps1 ++ p :: ps2, there exists at least one element x
that satisfies p but does not satisfy any of the predicates in ps1.

On the other hand, completeness states that, if there exists an
element x of the list xs that does not satisfy any of the predicates in
ps and does satisfy some predicate p, then the list ps ++ p :: []
is also reachable:

unreachedComplete : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ unreached ps xs ≡ []
→ (p : X → Bool)
→ (x : X)
→ x ∈ xs
→ p x ≡ true
→ ((p’ : X → Bool) → p’ ∈ ps → p’ x ≡ false)
→ unreached (ps ++ p :: []) xs ≡ []

Now, let us address the issue of unmatched elements. We im-
plement a function unmatched that returns the list of all those ele-
ments in a given list xs that do not satisfy any predicate in the given
list ps:

isMatched : {X : Set} → List (X → Bool) → X
→ Bool

isMatched ps x = any (λ p → p x) ps

unmatched : {X : Set} → List (X → Bool) → List X
→ List X

unmatched ps [] = []
unmatched ps (x :: xs) = if (isMatched ps x)

then unmatched ps xs
else x :: unmatched ps xs

The soundness theorem for the unmatched function states that,
if there are no unmatched elements in the list xs, then, for any
element x in xs, the list of predicates ps can be split into three
parts, ps ≡ ps1 ++ p :: ps2, so that no predicate from ps1 is
satisfied by x and p is satisfied by x:

unmatchedSound : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ unmatched ps xs ≡ []
→ (x : X) → x ∈ xs
→ Σ[ps1 ∈ List (X → Bool)]
Σ[ps2 ∈ List (X → Bool)]
Σ[p ∈ (X → Bool)]
ps1 ++ p :: ps2 ≡ ps ×
isMatched ps1 x ≡ false ×
p x ≡ true

Completeness says that, if each element in the list xs satisfies at
least one predicate in ps, then there are no unmatched elements:

unmatchedComplete : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ ((x : X) → x ∈ xs

→ Σ[p ∈ (X → Bool)]
p ∈ ps × p x ≡ true)

→ unmatched ps xs ≡ []

We can now define a combinator that takes a list of predicates
and functions from a listable set with proofs thats all predicates are
reached and all elements matched, and returns a function built from
the pieces:

41

predicateMatching : {X Y : Set}
→ (ps : List ((X → Bool) × (X → Y)))
→ (p : Listable X)
→ unmatched (map proj1 ps) (proj1 p) ≡ []
→ unreached (map proj1 ps) (proj1 p) ≡ []
→ X → Y

Let us look at some examples, but first, we want to have a
combinator fromPure for restricting the domain of a function to
a finite subset:

fromPure : {U Y : Set}{eq : DecEq U}{b : Bool}
→ {D : FinSubDesc U eq b}
→ (U → Y)
→ Elem D → Y

fromPure f (x , _) = f x

We define a finite subset of naturals MyNats containing five
natural numbers.

MyNats : FinSubDesc N _ ?
=_ false

MyNats = fsd-nodup (1 :: 42 :: 3 :: 8 :: 17 :: [])

Next we define a function even2odd3 that doubles the even and
triples the odd numbers of MyNats:

even2odd3 : Elem MyNats → N
even2odd3 = predicateMatching

(fromPure odd , (λ (x , p) → x * 3) ::
fromPure even , (λ (x , p) → x * 2) :: [])

(lstblElem MyNats) refl refl

The two last arguments (refl) are proofs of [] ≡ [] and indicate
that there are no unmatched elements and no unreachable predi-
cates. However, if we remove the first equation

even2odd3Bad1 = predicateMatching
(fromPure even , (λ (x , p) → x * 2) :: [])
(lstblElem MyNats) ??? refl

then there are unmatched elements and the type-checker wants us
to supply a proof of

(1 , tt) :: (3 , tt) :: (17 , tt) :: [] ≡ []

for the hole. The goal gives us a nice hint about which elements
exactly are unmatched.

If instead we replace the first equation with a predicate which is
satisfied by any element

even2odd3Bad2 = predicateMatching
((λ _ → true) , (λ (x , p) → x * 3) ::
fromPure even , (λ (x , p) → x * 2) :: [])

(lstblElem MyNats) refl ???

then the type-checker asks us to prove that
fromPure even :: [] ≡ [], which again hints which equations
are unreachable.

7. Prover
7.1 Motivation
The module Data.Fin.Dec of the standard library of Agda [3] is a
toolkit for building deciders of properties of elements of Fin n.
The library contains many combinators, but for illustration pur-
poses, it is enough to look at one them:

all? : {n : N} {P : Fin n → Set}
→ ((i : Fin n) → Dec (P i))
→ Dec ((i : Fin n) → P i)

The combinator all? takes some decidable predicate P on elements
of Fin n and returns a decision of whether P holds for all elements
of Fin n.

Suppose we want to use all? to establish the property from
Section 1, namely, commutativity of the operation _·_ Pauli. To
do so, we can use the previously established fact that there is a
bijection f2p from Fin 4 to Pauli and decide by using all?
whether f2p i1 · f2p i2 is equal to f2p i2 · f2p i1 for all
i1 and i2:

commDec : Dec ((i1 i2 : Fin 4)
→ f2p i1 · f2p i2 ≡ f2p i2 · f2p i1)

commDec = all? (λ i1 →
all? (λ i2 →

(f2p i1 · f2p i2) ≡P? (f2p i2 · f2p i1)))

Then, using the proof f2p-surj of p2f being a pre-inverse of f2p,
we can establish the property itself:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm x1 x2 with fromSq commDec (p2f x1) (p2f x2)
·-comm x1 x2

| p rewrite f2p-surj x1 | f2p-surj x2 = p

This approach appears to generate much less boilerplate com-
paring than the direct proof given in Section 1. However, there are
two shortcomings that we would like to eliminate:

1. The standard library combinators work with Fin n. Therefore,
before setting out to prove anything about some finite type, we
need to provide a bijection from an initial segment of natural
numbers. In Section 3.3, we showed that for listable subsets
this is not always possible.

2. The property is then first proved for Fin n (commDec) and then
mapped back to Pauli using the conversions f2p and p2f and
the proof f2p-surj.

7.2 Definition
We start by defining a combinator subAll? which is very similar
to all? shown above:

subAll? : {U : Set}{P : U → Set}
→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec ((x : U) → {P x} → Q x)

The main difference is that the predicates P and Q now range over
some listable subset instead of Fin n. Recall that the elements of
ListableSub U P are the elements of U satisfying the P.

The same can be done for the existential quantifier:

subAny? : {U : Set}{P : U → Set}
→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec (Σ[x ∈ U] P x × Q x)

If Q is a decidable predicate on some subset, then we can find out
whether at least one element of that subset satisfies Q.

The combinators subAll? and subAny? are sufficient to decide
properties which are in prenex form with the quantifiers ranging
over the whole finite subset given by P. However, for the conve-
nience of the user we have also added combinators for restricted
quantification. These combinators allow narrowing the range of
quantification by a further predicate decidable on the subset. We
will not discuss them here.

Now we can provide some syntactic sugar for our combinators:

syntax subAll? f (λ x → z) = Π x ∈ f , z

42

syntax subAny? f (λ x → z) = ∃ x ∈ f , z

(Agda will automatically rewrite expressions matching the right
hand side into the corresponding terms on the left.)

7.3 Example
Recall that the elements of ListableSub U P are the elements
of U that satisfy P. For the special case when U is a listable set
and P = λ _ → >, we have simplified versions of subAll? and
subAny, eliminating the overhead of dealing with trivial proofs of
P x when P = λ _ → >.

The proof of commutativity of the operation _·_ on Pauli
amounts essentially to just restating the property:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm = fromSq (
Π x1 ∈ listablePauli ,
Π x2 ∈ listablePauli , x1 · x2 ≡P? x2 · x1)

The proof that the group operation has a left unit is similar:

·-id : Σ[x ∈ Pauli] (y : Pauli) → x · y ≡ y
·-id = fromSq (
∃ x ∈ listablePauli ,
Π y ∈ listablePauli , x · y ≡P? y)

8. Related Work
Intuitionistic frameworks give rise to a rich variety of notions of
finiteness that collapse classically. In [8], [5] and [14], the author
describe various concepts of finiteness and their interrrelation. Ac-
cording to their classification, this paper focuses on the strongest
notion of finiteness, namely, finitely enumerable (listable) sets.

Since finite sets are essential for many formal theories, the users
of proof assistants are asking for ways to define new finite sets [1, 7]
and the developers are implementing libraries.

The Agda standard library [3] contains a toolkit for building
deciders of properties of Fin n. Before using it for proving the
property of a finite set X, the user needs to provide a bijection
from an initial segment of natural numbers. After establishing the
property for Fin n, it can be lifted to the original set X.

In [9], Gélineau improves the approach of the standard library
by implementing an elegant library in Agda for proving properties
quantified over finite sets. The user of a library is only asked to
prove finiteness of of the set of interest by specifying a bijection
from Fin n and then the property can be checked without trans-
porting it to and from Fin n manually.

In [15], Spiwack implements a Coq library for finite subsets of
countable sets. Countable sets are sets equipped with a surjection
from N. Countable sets have decidable equality: it is sufficient to
test for equality the natural numbers corresponding to the elements.
Finite sets then can be specified by providing a list of elements of
the countable base set without duplicates. The library has support
for proving decidable propositions and has a syntax for defining
sets by comprehension.

In Ssreflect [10], a finite type is a type together with an explicit
enumeration of its elements. Finite types can be constructed from
finite duplicate-free sequences. Finite types come with boolean
quantifiers forallb and existsb taking boolean predicates and
returning booleans. If X is a finite type, the type {set X} is the
type of sets over X , which is itself a finite type. Ssreflect provides
the usual set theoretic-operations including membership and set
comprehensions.

The authors of [4] show a systematic way for building combi-
nators for finite sets declaratively and provide lemmas that encap-
sulate commonly used reasoning steps. Their work is implemented
on top of Ssreflect.

9. Conclusions
In this work we addressed the problem of programming with finite
sets in the dependently typed setting of the Agda programming
language.

We showed that the direct approach of defining listable types as
datatypes with nullary constructors is verbose and introduces brittle
interdependencies between different definitions that are tedious to
maintain.

Afterwards, we introduced different variations of the notion of
a listable set. We proved that giving a complete list of elements of a
set is equivalent to providing a surjection from an initial segment of
natural numbers. Also, giving a complete list of elements without
duplicates is equivalent to providing a surjection. Moreover, all
four definitions are equivalent, the reason being that equality on
a listable set is decidable.

Next, we introduced a more general notion of a listable subset
(where a subset is specified by a base set and a predicate, but not
necessarily explicitly constructed as a set). We showed that, in gen-
eral, listability of a subset does not imply decidability of equality
on its elements. We also proved that the union, intersection, prod-
uct, and disjoint sum of listable subsets are listable subsets.

Then we proposed a pragmatic way of specifying a finite set
as a subset of an already constructed set with decidable equality.
A specification in this form defines a set that is listable and as a
consequence also has decidable equality.

We developed two approaches for defining functions from
listable subsets. In the first approach, we convert a well-formed
list of argument–value pairs into a function. This is convenient
to use for smaller domains. The second approach uses a list of
predicate–function pairs and proofs that the predicates cover the
whole domain and there are no unreachable predicates. The user
receives feedback from the type-checker about predicates that are
not reached and elements of the domain that are not matched.

Finally, we implemented combinators for proving propositions
quantified over listable subsets. The unusual aspect is that they can
be used even for subsets without decidable equality.

Acknowledgement The first author thanks Anna and Albert for
their support and patience.

This research was supported by the ERDF funded Estonian CoE
project EXCS, the Estonian Ministry of Education and Research
institutional research grant no. IUT33-13 and the Estonian Science
Foundation grant no. 9475.

References
[1] The Agda Community. Collections/containers/finite sets. The Agda

Mailing List, 2011. http://comments.gmane.org/gmane.comp.
lang.agda/3326

[2] The Agda Team. The Agda Wiki, 2015. http://wiki.portal.
chalmers.se/agda/

[3] The Agda Team. The Agda standard library version 0.9, 2014.
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
Libraries.StandardLibrary.

[4] Y. Bertot, G. Gonthier, S. O. Biha, I. Pasca. Canonical big operators.
In O. A. Mohamed, C. A. Muñoz, S. Tahar, eds., Proc. of 21st Int.
Conf. on Theorem Proving in Higher Order Logics, TPHOLs 2008, v.
5170 of Lect. Notes in Comput. Sci., pp. 86–101. Springer, 2008.

[5] M. Bezem, K. Nakata, T. Uustalu. On streams that are finitely red.
Log. Methods in Comput. Sci., v. 8, n. 4, article 4, 2012.

[6] E. Bishop, D. Bridges. Constructive Analysis. V. 279 of Grundlehren
der mathematischen Wissenschaften. Springer, 1985.

[7] The Coq Community. Finite sets in proofs. The Coq Mailing
List, 2010. http://comments.gmane.org/gmane.science.
mathematics.logic.coq.club/4682.

43

[8] T. Coquand, A. Spiwack. Constructively finite? In L. Laureano
Lambán, A. Romero, J. Rubio, eds., Contribuciones científicas en
honor de Mirian Andrés Gómez, pp. 217–230. Universidad de La
Rioja, 2010.

[9] S. Gélineau. Library for proving propositions quantified over finite
sets, 2011. https://github.com/agda/agda-finite-prover

[10] G. Gonthier, A. Mahboubi, E. Tassi. A small scale reflection extension
for the Coq system. Rapport de recherche RR-6455. INRIA, 2008.
http://hal.inria.fr/inria-00258384.

[11] K. Kuratowski. Sur la notion d’ensemble fini. Fund. Math., v. 1,
pp. 129–131, 1920.

[12] M. Nielsen, I. Chuang Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[13] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, S. D. Swierstra, eds., Revised Lectures from 6th Int.
School on Advanced Functional Programming, AFP 2008, v. 5832 of
Lect. Notes in Comput. Sci., pp. 230-266. Springer, 2009.

[14] E. Parmann. Some varieties of constructive finiteness. In Abstracts of
19th Int. Conf. on Types for Proofs and Programs, pp. 67–69. 2014.

[15] A. Spiwack. A Coq library for extensional finite sets and comprehen-
sion, 2014. https://github.com/aspiwack/finset

[16] P. Wadler. Comprehending monads. Math. Struct. in Comput. Sci.,
v. 2, n. 4, pp. 461-493, 1992.

44

Paper II

D. Firsov, T. Uustalu. Certified CYK parsing of context-free languages. J. of
Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–468, 2014.

87

Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Certified CYK parsing of context-free languages ✩

Denis Firsov ∗, Tarmo Uustalu

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2013
Received in revised form 8 September 2014
Accepted 19 September 2014
Available online 11 October 2014

Keywords:
Certified programs
Parsing
Cocke–Younger–Kasami algorithm
Dependently typed programming
Agda

We report a work on certified parsing for context-free grammars. In our development we
implement the Cocke–Younger–Kasami parsing algorithm and prove it correct using the
Agda dependently typed programming language.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In previous work [1], we implemented a certified parser-generator for regular languages based on the Boolean matrix
representation of nondeterministic finite automata using the dependently typed programming language Agda [2,3]. Here we
want to show that a similar thing can be done for a wider class of languages.

We decided to implement the Cocke–Younger–Kasami (CYK) parsing algorithm for context-free grammars [4], because
of its simple and elegant structure. The original algorithm is based on multiplication of matrices over sets of nonterminals.
We digress slightly from this classical approach and use matrices over sets of parse trees. By this we immediately achieve
soundness of the parsing function and also eliminate the final step of parse tree reconstruction.

We first develop a simple functional version that is easily seen to be correct. We show that the memoizing version
computes the same results, but without the excessive recomputation of intermediate results. The memoized version is
more efficient for non-ambiguous grammars, but can be exponential for ambiguous ones since the algorithm is complete—it
generates all possible parse trees.

Valiant [5] showed how to modify the CYK algorithm so as to use Boolean matrix multiplication (by encoding sets
of nonterminals as binary words of some fixed length). Valiant’s algorithm computes the same parsing table as the CYK
algorithm, but he showed that algorithms for efficient Boolean matrix multiplication can be utilized for performing this
computation, thereby achieving better worst-case time complexity. Here we refrain from pursuing this approach, since the
details of the lower-level encoding obfuscate the higher-level structure of the algorithm.

We find that the main contributions of the paper are:

✩ This article is a full version of the extended abstract presented at the 24th Nordic Workshop on Programming Theory, NWPT 2012.

* Corresponding author.
E-mail addresses: denis@cs.ioc.ee (D. Firsov), tarmo@cs.ioc.ee (T. Uustalu).

http://dx.doi.org/10.1016/j.jlamp.2014.09.002
2352-2208/© 2014 Elsevier Inc. All rights reserved.

460 D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

• Identification of data structures that facilitate simpler proofs: the custom parsing relation, the type of certified memo-
ization tables.

• Structuring the association lists based implementation of the algorithm using the list monad: most of the proofs rely
only on the properties of the bind operation and not its implementation.

• A modular correctness proof: first, we show the correctness of a naive version of the algorithm; next, by using certified
memoization tables, we lift the results to the more efficient version.

The paper is organized as follows. Section 2 presents the definitions of a context-free grammar in Chomsky normal form,
parsing relations, and the naive version of the CYK algorithm. Next, in Section 3, we show that it is correct. Section 4 is
devoted to discharging the obligations of the termination checker. Section 5 reports how memoization can be introduced
systematically, maintaining the correctness guarantee. Since we have chosen to represent matrices as association lists, our
development is heavily based on manipulation of lists and reasoning about them. Section 6 shows how we structure it using
the list monad and some theorems about lists.

To avoid notational clutter, in the paper we employ an easy-to-read unofficial list comprehension syntax for monadic
code instead of using monad operations directly.

Agda 2.3.3 and Agda Standard Library 0.7 were used for this development. The Agda code is available online at http :
/ /cs .ioc .ee /~denis /cert-cfg.

2. The algorithm

2.1. Context-free grammars

We will work with context-free grammars in Chomsky normal form. Rules in normal form (or more precisely, the data
of such rules, i.e., allowed pairs of left and right hand sides) are given by the datatype Rule, which is parameterized by
two types N and T for nonterminals and terminals respectively:

data Rule (N T : Set) : Set where
−→ : N → T → Rule N T
−→•_ : N → N → N → Rule N T

This definition introduces a datatype with two constructors _−→_ and _−→_•_. The arguments of the constructors go
in places of _ in the same order as they appear in the type signature of the constructor. For example, if A B C : N and
a : T, then A −→ B • C and A −→ a are inhabitants of type Rule N T.

A context-free grammar in Chomsky normal form is a record of type Grammar specifying two sets N and T for the
nonterminals and terminals of the grammar, a boolean flag nullable indicating whether the language of the grammar
contains the empty string, a nonterminal S for the start nonterminal, proofs that S never appears on the right hand side of
a rule of the grammar, and finally decidable equalities on N and T.

record Grammar : Set1 where
field
N : Set
T : Set
nullable : Bool
S : N
Rs : List (Rule N T)
S-NT-axiom1 : (A B : N) → (A −→ S • B) /∈ Rs
S-NT-axiom2 : (A B : N) → (A −→ B • S) /∈ Rs
=n : (A B : N) → (A ≡ B) ∨ (A �≡ B)
=t : (a b : T) → (a ≡ b) ∨ (a �≡ b)

(Note that, since two fields of the record type Grammar range over the type Set, the type Grammar itself cannot be
a member of Set, but has to belong to the next universe Set1.) We define two abbreviations String = List T and
Rules = List (Rule N T).

The proposition x ∈ xs expresses that x is an element of xs. A proof of this proposition identifies a position in the list.
The rules of a grammar do not have names, they are identified by their positions in the enumeration Rs. A grammar can
have several rules with the same left and right hand sides, only differing by their identities, i.e., positions in the list Rs.

Henceforth, we assume one fixed grammar G in the context, so we use the fields of the grammar record directly, e.g., Rs
and nullable instead of Rs G and nullable G for some given G.

D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468 461

2.2. Parsing relation

Before describing the parsing algorithm, we must define correctly constructed parse trees. The most intuitive definition
looks as follows:

data _�_ : (s : String) → N → Set where
empt : nullable ≡ true → [] � S
sngl : {A : N} → {a : T} → (A −→ a) ∈ Rs → [a] � A
cons : {A B C : N} → {s1 s2 : String}

→ (A −→ B • C) ∈ Rs
→ s1 � B
→ s2 � C
→ (s1 ++ s2) � A

(Arguments enclosed in curly braces are implicit. The type checker will try to figure out the argument value for you. If the
type checker cannot infer an implicit argument, then it must be provided explicitly.)

The proposition s � A states that the string s is derivable from nonterminal A. Proofs of this proposition are parse trees.

1. If nullable is true, then empt constructs a parse tree for the empty string.
2. If A −→ a ∈ Rs for some A, then the constructor sngl builds a parse tree for string [a] starting from A.
3. If t1 is a parse tree starting from B, t2 is a parse tree from C and A −→ B • C ∈ Rs for some A, then the constructor
cons combines those trees into a tree starting from A.

However, to move closer to the structure of the CYK algorithm, we define a more specific of the parsing relation. For any
given string s we define the parsing relation of its substrings as an inductive predicate on two naturals:

data _[_,_)�_ (s : String) : N → N → N → Set where
empt : {i : N} → nullable ≡ true → i ≤ length s → s [i, i)� S
sngl : {i : N}{A : N} → (A −→ charAt i s) ∈ Rs

→ s [i, suc i)� A
cons : {i j k : N} → {A B C : N} → (A −→ B • C) ∈ Rs

→ s [i, j)� B
→ s [j, k)� C
→ s [i, k)� A

The proposition s [i, j)� A states that the substring of s from the i-th position (inclusive) to the j-th (exclusive) is
derivable from nonterminal A. Proofs of this proposition are parse trees.

In particular, the string s is in the language of the grammar if it is derivable from S, i.e., we have a proof of
s [0, length s)� S.

The only important difference between relations _�_ and _[_,_)�_ is that the second one has a fixed string s and
constructs parse trees only for substrings of s, identifying them by start and end positions. Finally, we would like to define
mappings between the two representations of the parse trees. To start with, we define a substring function:

sub : String → (i n : N) → String
sub s i n = take n (drop i s)

The term sub s i n evaluates to the substring of s from position i to position i + n.
Next, we prove that, for any parse tree in s [i, n + i)� A, we can construct (sub s i n) � A.

�sound : (A : N) → (s : String) → (i n : N)
→ s [i, n + i)� A → (sub s i n) � A

Conversely, for any tree (sub l i n)� A, an alternative tree s [i, n + i)� A can be constructed. Note that,
by the definition of sub, if n + i ≥ length s, then sub s i n ≡ sub s i n’, where n’ is chosen so that
n’ + i ≡ length s.

�complete : (A : N) → (s : String) → (i n : N)
→ n + i ≤ length s → (sub s i n) � A → s [i, n + i)� A

In the rest of the paper, the parsing relation _[_,_)�_ will be used.

462 D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

2.3. Parsing algorithm

The algorithm works with matrices of sets of parse trees where the rows and columns correspond to two positions in
some string s. The only allowed entries at a position i, j are parse trees from various nonterminals for the substring of s
from the i-th to the j-th position.

We represent matrices as association lists of elements of the form (row, column, entry). Note that we allow multiple
entries in the same row and column of a matrix, corresponding to multiple parse trees for the same substring (and possibly
the same nonterminal).

Mtrx : String → Set
Mtrx s = List (∃[i : N] ∃[j : N] ∃[A : N] s [i, j)� A)

Let m1 and m2 be two matrices for the same string s. Their product is defined as:

* : Mtrx s → Mtrx s → Mtrx s
m1 * m2 = { (i, k, A, cons _ t1 t2) | (i, j, B, t1) ← m1,

(j, k, C, t2) ← m2, (A −→ B • C) ← Rs }

The operation _*_ is multiplication (in the ordinary sense of matrix multiplication) of two matrices over sets of parse trees.
The product of two sets of parse trees is given by the set of all well-typed parse trees cons p t1 t2 where t1 is drawn
from the first set and t2 from the second. The sum of two sets of parse trees is their union.

Next, we define a function triples which, given a natural number n, enumerates all pairs of natural numbers which
add up to n:

triples : (n : N) → List (∃[i : N] ∃[j : N] i + j ≡ n)
triples = { (i, n - i, +-eq n i) | i ← [0 . . . n] }

where
+-eq : (n : N)(i : [0 . . . n]) → i + (n - i) ≡ n
+-eq = ...

For a matrix m we define raising m to the n-th “power” as:

pow : Mtrx s → N → Mtrx s
pow m zero = if nullable

then { (i, i, S, empt _) | i ← [0 . . . length s) }
else []

pow m (suc zero) = m
pow m (suc (suc n)) = { t | (i, j, _) ← triples n,

t ← pow m (suc i) * pow m (suc j) }

Let us give an example:

pow m 4 = m * (pow m 3) ++ (pow m 2) * (pow m 2) ++ (pow m 3) * m
pow m 3 = m * (pow m 2) ++ (pow m 2) * m
pow m 2 = m * m

Note that this function is not structurally recursive. The numbers suc i, suc j returned by triples are in fact
smaller than suc (suc n), but not by definition, only provably. We will introduce a structurally recursive version in
Section 4.

The CYK parsing algorithm takes a string s and checks whether s can be derived from the start nonterminal S. Since,
for any grammar in Chomsky normal form, there can only be a finite number of parse trees for any given string, our version
of the algorithm faithfully returns a list of all possible derivations (trees) of string s from all nonterminals.

We record all parse trees of all length-1 substrings of s in the matrix m-init s:

m-init : (s : String) → Mtrx s
m-init s = { (i, suc i, A, sngl _) | i ← [0 . . . length s),

(A −→ charAt i s) ← Rs }

As a result, pow (m-init s) n contains exactly all parse trees of all length-n substrings of s. Indeed, the intuition is
as follows. The empty string is parsed, if the grammar is nullable. And any string of length 2 or longer has its parse trees
given by a binary rule and parse trees for shorter strings. We give a formal correctness argument soon.

To find the parse trees of the full string s for the start nonterminal S, we compute pow (m-init s) (length s)
and extract the parse trees for S.

D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468 463

cyk-parse : (s : String) → Mtrx s
cyk-parse s = pow (m-init s) (length s)

cyk-parse-main : (s : String) → List (s [0, length s)� S)
cyk-parse-main s =

{ (i, j, A, t) ← cyk-parse s, A == S, i == 0, j == length s }

(cyk-parse s can have entries only in row 0, column length s, but Agda does not know this, unless we invoke the
lemma sound below.)

3. Correctness

Correctness of the algorithm means that it defines the same parse trees as the parsing relation. We break the correctness
statement down into soundness and completeness.

Soundness in the sense that pow (m-init s) n produces good parse trees of substrings of s is immediate by typing.
With minimal reasoning we can also conclude

sound : (s : String) → (i j n : N) → (A : N) → (t : s [i, j)� A))
→ (i, j, A, t) ∈ pow (m-init s) n → j ≡ n + i

i.e., only substrings of length n are derived at stage n.
To prove completeness, we need to show that triples n contains all possible combinations of natural numbers i and

j such that i + j ≡ n:

triples-complete : (i j n : N)
→ (prf : i + j ≡ n) → (i, j, prf) ∈ triples n

This property is proved by induction on n.
It is easily proved that a proof of s [i, j)� A with A not equal to S parses a non-empty substring of s.

compl-help : (s : String) → (i j : N) → (A : N)
→ s [i, j)� A → A �≡ S → ∃[n : N] j ≡ suc n + i

Now, we are ready to show that the parsing algorithm is complete.

complete : (s : String) → (i n : N) → (A : N)
→ (t : s [i, n + i)� A) → (i, n + i, A, t) ∈ pow (m-init s) n

The proof is by induction on the parse tree t. Let us analyze the possible cases:

• If t = empt prf for some prf of type nullable ≡ true, then n = 0 and the first defining equation of the
function pow applies:

pow (m-init s) 0 = [(i, i, S, empt _) | i ← [0 . . . length s)].

which clearly contains t.
• If t = sngl p for some p of type A −→ charAt i s ∈ Rs, then n = 1 and pow (m-init s) 1 =
m-init s. By definition, m-init s contains all possible derivations of single terminals found in s.

• In the third case, t = cons p t1 t2 for some p of type A −→ B • C ∈ Rs, t1 of type s [i, j)� B, t2 of
type s [j, n + i)� C.
– If B or C are equal to S, then we get contradiction with S-axiom1 or S-axiom2 respectively.
– If neither B or C is equal to S, then by compl-help we get j ≡ suc c + i for some c and n + i ≡
suc d + suc c + i, for some d. By the induction hypothesis, we get that (i, suc c + i, B, t1) ∈ pow
(m-init s) (suc c) and (suc c + i, suc d + suc c + i, C, t2)∈ pow (m-init s) (suc d).
Hence, from the definition of multiplication and A −→ B • C ∈ Rs we conclude that

(i, suc d + suc c + i, A, t) ∈ pow (m-init s) (suc c) ∗
pow (m-init s) (suc d)

From n + i ≡ suc d + suc c + i we get n ≡ suc (suc (c + d)) and by triples-complete we
know that (c, d, refl) ∈ triples (c + d) where refl : c + d ≡ c + d. Since pow computes and
unions all the products of pairs returned by triples (c + d) we conclude that

464 D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

pow (m-init s) (suc c) ∗ pow (m-init s) (suc d)
⊆ pow (m-init s) n.

which completes the proof.

Note that this proof of correctness makes explicit the induction principles employed and other details which are usually
left implicit in textbook expositions of the algorithm.

In our Agda development, we have implemented the algorithm together with the completeness proofs just shown. The
most interesting part of implementation is the design of data structures together with some useful invariants which support
smooth formal proofs.

4. Termination

For the logic of Agda to be consistent, all functions must be terminating. This is statically checked by Agda’s termination
checker. So it is the duty of a programmer to provide sufficiently convincing arguments. This section describes the classical
approach for proving termination based on well-founded relations [6].

The definition of pow given above is not recognized by Agda as terminating, even if it actually terminates.
The reason is that Agda accepts recursive calls on definitionally structurally smaller arguments of an inductive type.

In our case, however, a call of pow on suc (suc n) leads to calls on suc i and suc j where (i, j, prf) ∈
triples n, i.e., to calls on provably smaller numbers (and not on, say, just suc n or n).

To make our definition acceptable not only to Agda’s type-checker, but also the termination-checker, we have to explain
Agda that we make recursive calls along a well-founded relation.

Classically, we can say that a relation is well-founded, if it contains no infinite descending chains. An adequate construc-
tive version uses the notion of accessibility.

An element x of a set X is called accessible with respect to some relation _≺_, if all elements related to x are accessible.
Crucially, this definition is to be read inductively.

data Acc {X : Set}(_≺_: X → X → Set)(x : X) : Set where
acc : ((y : X) → y ≺ x → Acc _≺_ y) → Acc _≺_ x

A relation can be said to be well-founded, if all elements in the carrier set are accessible.

Well-founded : {X : Set}(_≺_: X → X → Set) → Set
Well-founded = (x : X) → Acc _≺_ x

Now we can define the less-than relation _<_ on natural numbers:

data _<_ (m : N) : N → Set where
<-base : m < suc m
<-step : {n : N} → m < n → m < suc n

And we can prove that relation _<_ is well-founded.

<-wf : Well-founded _<_

Finally, we can summarize everything and give a definition of pow that is structurally recursive on the proof of accessi-
bility, and by doing so, discharge the obligations of the termination checker:

pow’ : {s : String} → Mtrx s → (n : N) → Acc _<_ n → Mtrx s
pow’ m zero accn = if nullable

then { (i, i, S, empt _) | i ← [0 . . . length s) }
else []

pow’ m (suc zero) accn = m
pow’ m (suc (suc n)) (acc acf) = { t | (i, j, prf) ← triples n,

t ← (pow’ m (suc i) (acf (suc i) (<-lem1 prf))) *
(pow’ m (suc j) (acf (suc j) (<-lem2 prf))) }

where
<-lem1 : ∀{i j n} → i + j ≡ n → suc i < suc (suc n)
<-lem2 : ∀{i j n} → i + j ≡ n → suc j < suc (suc n)

pow : {s : String} → Mtrx s → (n : N) → Mtrx s
pow m n = pow’ m n (<-wf n)

D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468 465

After changing the function pow (namely adding the accessibility argument), the correctness proofs must also be adjusted.
But the changes are minimal.

5. Memoization

Our implementation of the algorithm is well-founded recursive on the less-than relation. Without memoization, it in-
volves excessive recomputation of the matrices pow m n. To avoid recomputation of intermediate results we implement a
memoized version of the pow function.

We introduce a type of memo tables. A memo table can record some powers of m as entries; we allow only valid entries.

MemTbl : {s : String} → Mtrx s → Set
MemTbl {s} m = (n : N) → Maybe (∃[m’ : Mtrx s] m’ ≡ pow m n)

In our implementation, extracting elements from the memo table takes time proportional to the number of elements in it
(imperative implementations could do that in constant time).

We introduce a function pow-tbl that is like pow, except that it expects to get some element tbl of MemTbl m as an
argument. Instead of making recursive calls, it looks up matrices in the given memo table tbl. If the required matrix is not
there, it falls back to pow. At this stage we do not worry about where to get a memo table from; we just assume that we
have one given.

pow-tbl : {s : String} → (m : Mtrx s) → N → MemTbl m → Mtrx s
pow-tbl m zero tbl = if nullable

then { (i, i, S, empt _) | i ← [0 . . . length s) }
else []

pow-tbl m (suc zero) tbl = m
pow-tbl m (suc (suc n)) tbl = { t | (i, j, _) ← triples n,

t ← mt (suc i) ∗ mt (suc j) }
where

mt n = maybe (pow m n) fst (tbl n)

maybe : Y → (X → Y) → Maybe X → Y
maybe y f nothing = y
maybe y f (just x) = f x

The next step is to prove that pow and pow-tbl compute propositionally equal results.

pow≡pow-tbl : {s : String} → (m : Mtrx s) → (n : N) →
(tbl : MemTbl m) → pow-tbl m n tbl ≡ pow m n

The proof is easy. Recall that the only difference between the functions pow and pow-tbl is that the function pow calls
itself while function pow-tbl first tries to retrieve the result from the memo table tbl. Let us analyze the possible cases:

• If tbl n returns nothing, then mt n returns the result of pow m n.
• If tbl n returns just p, then p is a pair of a matrix m’, which becomes mt n, and a proof that m’ equals to
pow m n.

Hence the functions pow and pow-tbl are extensionally equal.
Now we have to find a way to actually build memo tables with intermediate results together with the proofs that they

coincide with the matrices returned by pow.
We implement a function which iteratively computes the powers pow m n of an argument matrix m, where i ≤ n ≤

i + j for given i and j, remembering all intermediate results.

pow-mem : {s : String} → (m : Mtrx s) → N → N → MemTbl m → Mtrx s
pow-mem m i zero tbl = pow-tbl m i tbl
pow-mem m i (suc j) tbl = pow-mem m (suc i) j tbl’ where

tbl’ p = if p == i
then just (pow-tbl m i tbl, pow≡pow-tbl m i tbl)
else tbl p)

The function pow-mem calls itself with ever more filled memo tables starting from lower powers. Observe how the
theorem pow≡pow-tbl is now used to ensure the correctness of each new memo table tbl’.

Finally, the function for CYK parsing can be defined as follows:

466 D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

cyk-parse-mem : (s : String) → Mtrx s
cyk-parse-mem s =

pow-mem (m-init s) 0 (length s) (λ _ → nothing)

6. List monad

In the definitions above, for the sake of clarity we used informal Haskell-style list comprehension syntax. List compre-
hensions give a good intuition about the properties of the functions defined. Agda does not support such syntax, but we
can explicate the monad structure on lists and use that to faithfully translate the comprehension syntax into Agda. The way
of translating comprehensions into monadic code was described in [7].

First, we define the “bind” and “return” operations:

>>= : {X Y : Set} → List X → (X → List Y) → List Y
>>= xs f = foldr (λ x ys → f x ++ ys) [] xs

return : {X : Set} → X → List X
return x = [x]

Second, we prove the monad laws:

• Left identity:

left-id : {X Y : Set} → (x : X) → (f : X → List Y)
→ return x >>= f ≡ f x

• Right identity:

right-id : {X : Set} → (xs : List X)
→ xs >>= return ≡ xs

• Associativity:

assoc : {X Y Z : Set} → (xs : List X) → (f : X → List Y)
→ (g : Y → List Z)
→ (xs >>= f) >>= g ≡ xs >>= (λ x → f x >>= g)

Finally, we can define the translation from comprehensions to monadic code:

• For the base case we have:

{ t | x ← xs } = xs >>= (λ x → return t)

• And for the step case:

{ t | p ← ps, q } = ps >>= (λ p → { t | q })

In addition to the monad laws, we prove the following theorems about _>>=_:

– The elements of lists defined by a comprehension can be traced back to where they originate from. This theorem
provides a generic way for proving properties about the elements of a comprehension:

list-monad-th : {X Y : Set} → (xs : List X) → (f : X → List Y)
→ (y : Y) → y ∈ xs >>= f
→ ∃[x : X] x ∈ xs × y ∈ f x

– We also need to use that a comprehension does not miss anything:

list-monad-ht : {X Y : Set} → (xs : List X) → (f : X → List Y)
→ (y : Y) → (x : X) → x ∈ xs → y ∈ f x
→ y ∈ xs >>= f

D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468 467

– If f and g are extensionally equal (i.e., propositionally equal on all arguments), then we can change one for the other,
a sort of congruence property:

>>=cong : ∀ {X Y : Set} → (xs : List X) → (f g : X → List Y)
→ (∀ x → f x ≡ g x) → xs >>= f ≡ xs >>= g

– The next property (a corollary from the associativity law) shows that “bind” is distributive over concatenation:

>>=distr : {X Y : Set} → (xs ys : List X) → (f : X → List Y)
→ (xs ++ ys) >>= f ≡ (xs >>= f) ++ (ys >>= f)

The main proofs in our work reason about list comprehensions only with the monad laws and properties of the “bind”
operator like those just outlined. This makes them modular and concise.

7. Related work

Formal verification of parsers has proven to be an interesting and challenging topic for developers of certified software.
Barthwal and Norrish [8] formalize SLR parsing using the HOL4 proof assistant. They construct an SLR parser for context-

free grammars, and prove it to be sound and complete. Formalization of the SLR parser is done in over 20 000 lines of code,
which is a rather big development. However, SLR parsers handle only unambiguous grammars (SLR grammars are a subset
of LR(1) grammars).

Parsing Expression Grammars (PEGs) are a relatively recent formalism for specifying recursive descent parsers. Ko-
prowski and Binsztok [9] formalize the semantics of PEGs in Coq. They check context-free grammars for well-formedness.
Well-formedness ensures that the grammar is not left-recursive. Under this assumption, they prove that a non-memoizing
interpreter is terminating. Soundness and completeness of the interpreter are shown easily, because the PEG interpreter is
a functional representation of the semantics of PEGs.

An LR(1) parser is a finite-state automaton, equipped with a stack, which uses a combination of its current state and one
lookahead symbol in order to determine which action to perform next. Jourdan, Pottier and Leroy [10] present a validator
which, when applied to a context-free grammar G and an automaton A, checks that A and G agree. The validation process
is independent of which technique was used to construct A. The validator is implemented and proved to be sound and
complete using the Coq proof assistant. However, there is no guarantee of termination of interpreter that executes the LR(1)

automaton. Termination is ensured by supplying some large constant (fuel) to the interpreter.
Danielsson and Norell [11] implement a library of parser combinators with termination guarantees in Agda [3]. They

represent parsers using clever combination of induction and coinduction which guarantees termination and also rules out
some forms of left recursion.

Sjöblom [12] implements Valiant’s algorithm in Agda. He shows that a context-free grammar induces a nonstandard al-
gebraic structure—a nonassociative semiring. It is defined as a tuple (R, 0, +, ·), where (R, 0, +) is a monoid, · is distributive
over 0 and +. He also defines inductive datatypes for vectors, matrices and triangular matrices. The type for triangular
matrices is built of the pieces needed for recursive calls of Valiant’s parsing algorithm. Finally, he shows that, given some
triangular matrix over some nonassociative semiring, the algorithm implemented computes the transitive closure of the
input triangular matrix.

None of the previously mentioned works can treat all context-free grammars. Ridge [13] demonstrates how to construct
sound and complete parser implementations directly from grammar specifications, for all context-free grammars, based on
combinator parsing. He constructs a generic parser generator and shows that generated parsers are sound and complete.
The formal proofs are mechanized using the HOL4 theorem prover. The time complexity of the memoized version of the
implemented parser is O (n5).

8. Conclusion and future work

Verified implementation of well known algorithms is important mainly because it encourages finding implementations
that make it feasible to conduct small and elegant proofs and also makes all necessary assumptions explicit.

We have shown that, with careful design, programming with dependent types is a powerful tool for implementing
algorithms together with correctness proofs.

Since the CYK algorithm handles only grammars in normal form, we plan to extend our work to grammars in general
form. One possible way of doing it is to implement a verified normalization algorithm for context-free grammars, i.e., convert
context-free grammars from general form to normal form. In the constructive setting, proofs of soundness and completeness
of this procedure will be functions between parse trees in the general and normal-form grammars. So one could use the
CYK implementation of this paper to produce parse trees for grammars in normal form and then convert them to trees for
grammars in general form by using the soundness proof of the normalization algorithm.

468 D. Firsov, T. Uustalu / Journal of Logical and Algebraic Methods in Programming 83 (2014) 459–468

Acknowledgements

The authors were supported by the ERDF funded Estonian CoE project no. 3.2.0101.08-0013 (EXCS), the Estonian Min-
istry of Education and Research target-financed research theme no. 0140007s12 and the Estonian Science Foundation grant
no. 9475.

References

[1] D. Firsov, T. Uustalu, Certified parsing of regular languages, in: G. Gonthier, M. Norrish (Eds.), Proc. of 3rd Int. Conf. on Certified Programs and Proofs,
CPP 2013, in: Lect. Notes Comput. Sci., vol. 8307, Springer, Berlin, 2013, pp. 98–113.

[2] U. Norell, Towards a practical programming language based on dependent type theory, Ph.D. thesis, Chalmers University of Technology, Göteborg, 2007.
[3] U. Norell, Dependently typed programming in Agda, in: P. Koopman, R. Plasmeijer, S.D. Swierstra (Eds.), Revised Lectures from 6th Int. School on

Advanced Functional Programming, AFP 2009, in: Lect. Notes Comput. Sci., vol. 5832, Springer, Berlin, 2009, pp. 230–266.
[4] D. Younger, Recognition and parsing of context-free languages in time O (n3), Inf. Comput. 10 (2) (1967) 189–208, http://dx.doi.org/10.1016/

s0019-9958(67)80007-X.
[5] L.G. Valiant, General context-free recognition in less than cubic time, J. Comput. Syst. Sci. 10 (2) (1975) 308–314, http://dx.doi.org/10.1016/

s0022-0000(75)80046-8.
[6] B. Nordström, Terminating general recursion, BIT Numer. Math. 28 (3) (1988) 605–619, http://dx.doi.org/10.1007/bf01941137.
[7] P. Wadler, Comprehending monads, in: Proc. of 1990 ACM Conf. on LISP and Functional Programming, LFP ’90, ACM, New York, 1990, pp. 61–78.
[8] A. Barthwal, M. Norrish, Verified, executable parsing, in: G. Castagna (Ed.), Proc. of 18th Europ. Symp. on Programming Languages and Systems,

ESOP ’09, in: Lect. Notes Comput. Sci., vol. 5502, Springer, Berlin, 2009, pp. 160–174.
[9] A. Koprowski, H. Binsztok, TRX: a formally verified parser interpreter, Log. Methods Comput. Sci. 7 (2) (2011) art. no. 18, http://dx.doi.org/10.2168/

lmcs-7(2:18)2011.
[10] J.-H. Jourdan, F. Pottier, X. Leroy, Validating LR(1) parsers, in: H. Seidl (Ed.), Proc. of 21st Europ. Symp. on Programming, ESOP 2012, in: Lect. Notes

Comput. Sci., vol. 7211, Springer, Berlin, 2012, pp. 397–416.
[11] N.A. Danielsson, Total parser combinators, in: Proc. of 15th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP ’10, ACM, New York, 2010,

pp. 285–296.
[12] T.B. Sjöblom, An Agda proof of the correctness of Valiant’s algorithm for context free parsing, Master’s thesis, Chalmers University of Technology,

Göteborg, 2013.
[13] T. Ridge, Simple, functional, sound and complete parsing for all context-free grammars, in: J.-P. Jouannaud, Z. Shao (Eds.), Proc. of 1st Int. Conf. on

Certified Programs and Proofs, CPP 2011, in: Lect. Notes Comput. Sci., vol. 7086, Springer, Berlin, 2011, pp. 103–118.

Paper III

D. Firsov, T. Uustalu. Certified normalization of context-free grammars. In
Proc. of 4th ACM SIGPLAN Conf. on Certified Programs and Proofs, CPP ’15
(Mumbai, Jan. 2015), pp. 167–174. ACM Press, 2015.

99

Certified Normalization of Context-Free Grammars

Denis Firsov Tarmo Uustalu
Institute of Cybernetics at TUT

{denis,tarmo}@cs.ioc.ee

Abstract
Every context-free grammar can be transformed into an equivalent
one in the Chomsky normal form by a sequence of four transforma-
tions. In this work on formalization of language theory, we prove
formally in the Agda dependently typed programming language
that each of these transformations is correct in the sense of making
progress toward normality and preserving the language of the given
grammar. Also, we show that the right sequence of these transfor-
mations leads to a grammar in the Chomsky normal form (since
each next transformation preserves the normality properties estab-
lished by the previous ones) that accepts the same language as the
given grammar. As we work in a constructive setting, soundness
and completeness proofs are functions converting between parse
trees in the normalized and original grammars.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—correctness proofs; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs; F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Systems

Keywords certified programs; context-free grammars; Chomsky
normal form; normalization; dependently typed programming;
Agda

1. Introduction
In formal language theory, a context-free grammar (CFG) is said to
be in the Chomsky normal form (CNF), if all of its production rules
are of the form: A −→ BC, A −→ a, or S −→ ε, where A, B and
C are nonterminals, a is a terminal, S is the start nonterminal. Also,
neither B nor C may be the start nonterminal.

Context-free grammars in the Chomsky normal form are very
convenient to work with. It is often assumed that either CFGs are
given in CNF from the beginning or there is an intermediate step
of normalization. For example, Minamide [8] has implemented and
proved correct three sophisticated decision procedures for context-
free languages specified by CNF grammars:

• inclusion between a context-free language and a regular lan-
guage;

• balancedness of a context-free language;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693177

• inclusion between a context-free language and a regular hedge
language.

Having a certified implementation of normalization for CFGs en-
ables us to lift these decision procedures to context-free languages
defined by CFGs in general form without losing the guarantees of
correctness.

Another example is our previous work [3], where we reported
on a certified implementation of the Cocke–Younger–Kasami
(CYK) parsing algorithm in the Agda dependently typed program-
ming language [9]. The CYK algorithm works only with grammars
in the Chomsky normal form. Now, with a certified implementa-
tion of the CFG normalization algorithm we extend the reach of
this work. Namely, to parse a string s for some general CFG G we
could proceed as follows:

• normalize G into a CNF G’;
• parse s by using the certified implementation of the CYK algo-

rithm and get a parse tree t for the grammar G’;
• finally, convert the parse tree t for the grammar G’ to a parse

tree t’ for the grammar G with the constructive soundness proof
of normalization of G (which is a function from parse trees to
parse trees).

Both examples demonstrate how certified normalization enables
us to adopt certified development from CNF grammars to general
CFGs retaining the correctness guarantees.

The full normalization transformation for a CFG is the compo-
sition of the following constituent transformations [1]:

1. elimination of all ε-rules (i.e., rules of the form A −→ ε)
(Section 3);

2. elimination all unit rules (i.e., rules of the form A −→ B)
(Section 4);

3. replacing all rules A −→ X1X2 ... Xk where k ≥ 3 with
rules A −→ X1A1, A1 −→ X2A2, Ak-2 −→ Xk-1Xk where Ai are
“fresh” nonterminals (Section 5.1);

4. for each terminal a, adding a new rule A −→ a where A is a
fresh nonterminal and replacing a in the right-hand sides of all
rules with length at least two with A (Section 5.2).

The algorithms for the first, third and fourth transformations are
functional versions of the classical imperative algorithms de-
scribed, e.g., in [1]. The approach to eliminating unit rules is a
little different and is designed to support certified development
(uses a recursion that is easily presented as wellfounded).

We prove the correctness of this normalization transformation
by showing that a given CFG and the corresponding CNF grammar
accept the same language. Because we work in a constructive
framework, the proof consists of total functions converting parse
trees of the normalized grammar to the given grammar (soundness)
and in the converse direction (completeness) (Section 6).

167

We used Agda 2.4.2 and Agda Standard Library 0.8.1 for this
development. The full Agda code of this paper can be found at
http://cs.ioc.ee/~denis/cert-norm/.

2. Setup
We assume that N and T are some fixed types for nonterminals and
terminals respectively. We only require N and T to have decidable
equality. Symbols are terminals and nonterminals. A rule is defined
as a pair of a nonterminal and a list of symbols. We also define
some handy abbreviations:

data Symbol : Set where
nt : N → Symbol
tm : T → Symbol

RHS = List Symbol

data Rule : Set where
−→ : N → RHS → Rule

Rules = List Rule

Ts : Rules → List T
Ts Rs = { a | A −→ rhs ∈ Rs, tm a ∈ rhs }

NTs : Rules → List N
NTs Rs = { A | A −→ rhs ∈ Rs } ∪

{ B | A −→ rhs ∈ Rs, nt B ∈ rhs }

String = List T

(To avoid notational clutter, in the paper we employ an easy-to-read
unofficial list comprehension syntax.)

For now and for most of the paper, we assume that a grammar
is just a list of rules, we do not assume a fixed start nonterminal. In
Section 6.2, we define a grammar as a list of rules together with a
designated start nonterminal.

The datatype of the parse trees (abstract syntax trees) is param-
etrized by a grammar Rs and is defined inductively as follows:

mutual
data Tree (Rs : Rules) : N → String → Set where

node : {A : N}{rhs : RHS}{s : String}
→ A −→ rhs ∈ Rs
→ Forest Rs rhs s → Tree Rs A s

data Forest (Rs : Rules) :
RHS → String → Set where

empty : Forest Rs [] []
::t : {rhs : RHS}{s : String}

→ (t : T) → Forest Rs rhs s
→ Forest Rs (tm t :: rhs) (t :: s)

::n : {rhs : RHS}{s1 s2 : String}{A : N}
→ Tree Rs A s1 → Forest Rs rhs s2
→ Forest Rs (nt A :: rhs) (s1 ++ s2)

(In Agda, an argument enclosed in curly braces is implicit. The
Agda type checker will try to figure it out. If an argument cannot
be inferred, it must be provided explicitly.)

In general, the type Tree Rs A s collects all parse trees for
a string s for a grammar Rs and a nonterminal A at the root. The
auxiliary type Forest Rs rhs s collects all parse forests for a
string s whose constituent individual parse trees are rooted at the
symbols in rhs.

Let us look at the following example. Consider the following
grammar Rs with two rules. Their proofs of membership in the
grammar serve as names for these rules.

Rs : Rules
Rs = [S −→ [nt S , tm ‘+‘ , nt S],

S −→ [tm ‘1‘]]

fr : S −→ [nt S , tm ‘+‘ , nt S] ∈ Rs
sr : S −→ [tm ‘1‘] ∈ Rs

The strings "1" and "1+1" have the following unique derivations:

1T : Tree Rs S "1"
1T = node sr (‘1‘ ::t empty)

1+1T : Tree Rs S "1+1"
1+1T = node fr (1T ::n ‘+‘ ::t 1T ::n empty)

But the string "1+1+1" has two derivations:

S

S

1+

S

S

1+

S

1
lft : Tree Rs S "1+1+1"

lft : Tree Rs S "1+1+1"
lft = node fr (1+1T ::n ‘+‘ ::t 1T ::n empty)

S

S

S

1+

S

1+

S

1
rgt : Tree Rs S "1+1+1"

rgt : Tree Rs S "1+1+1"
rgt = node fr (1T ::n ‘+‘ ::t 1+1T ::n empty)

3. ε-rule elimination and its correctness
The main consequence of the presence of ε-rules in a grammar is
that parse trees for the empty string can be constructed for some
nonterminals. A nonterminal A is called nullable for a grammar Rs,
if one can construct a parse tree for the empty string with A at the
root, i.e., an inhabitant of the type Tree Rs A []. We describe the
transformation of ε-rule elimination:

1. find all nullable nonterminals;

2. for each rule with some nullable nonterminals in its right-hand
side rhs, add a set of new rules given by all subsequences of
rhs obtained by dropping some nullable nonterminals;

3. remove every rule whose right-hand side is empty string.

For example, for the grammar

S −→ AbA | B
B −→ b | c
A −→ ε | d

the transformation produces the following grammar:

168

S −→ AbA | Ab | bA | b | B
B −→ b | c
A −→ d

Note that the transformation makes all nonterminals non-nullable:
for a nonterminal nullable for the given grammar, the language
of this nonterminal in the transformed grammar differs from its
language in the original grammar by the absence of the empty word.

3.1 Nullable nonterminals
In this section, we describe how to find all nullable nonterminals
of a grammar. We use the following observation: if a nonterminal
A is nullable, then there exists a rule A −→ rhs ∈ Rs such that
rhs consists only of nullable nonterminals (in particular, it is also
possible that rhs ≡ []). Therefore, to find all nullable nontermi-
nals, we iteratively build all trees for the empty string. Here is the
algorithm:

nlbls : Rules → N → List N
nlbls Rs zero = start
nlbls Rs (suc n) = collect (nlbls Rs n)

where
start = { A | A −→ [] ∈ Rs }
collect ans
= { A | A −→ rhs ∈ Rs ,

(B : N) → nt B ∈ rhs → B ∈ ans }

Clearly, the algorithm is sound (by construction):

nlbls-snd : (Rs : Rules) → (A : N) → (n : N)
→ A ∈ nlbls Rs n → Tree Rs A []

But how many iterations do we need for the completeness? Let us
look at a weak version of completeness:

nlbls-cmplt-weak : (Rs : Rules) → (A : N)
→ (t : Tree Rs A []) → A ∈ nlbls Rs (height t)

By induction on the height of the parse tree, we can easily prove
this lemma. But the lemma is too weak, because it depends on the
height of the input parse tree and this is not bounded. We need to
find a number of iterations that is sufficient for every possible parse
tree.

We prove that length Rs (denotes the number of the rules in
the grammar) many iterations is enough:

nlbls-cmplt : (Rs : Rules) → (A : N)
→ Tree Rs A [] → A ∈ nlbls Rs (length Rs)

Proof If height t≤ length Rs, then the theorem is proved by
nlbls-cmplt-weak. If height t> length Rs, then there exists
at least one branch in the parse tree with at least one rule used
twice. Suppose this rule is r : B −→ rhs ∈ Rs. Next, let the
subtrees rooted at the left-hand nonterminal B of the rule r be
t and t’, t’ being a subtree of t. Both t and t’ have type
Tree Rs B []. Therefore, we can substitute t’ for t and still get
a parse tree of type Tree Rs A []. This procedure can be repeated
until height t ≤ length Rs.

Finally, we define an abbreviation:

nullables : Rules → List N
nullables Rs = nlbls Rs (length Rs)

3.2 Subsequences
In this section, we describe how to compute certain subsequences
of a list. More precisely, given some list xs : List X and some
predicate P : X → Bool, we would like to compute all subse-
quences of xs obtainable by dropping some elements satisfying P.

allSubSeq : {X : Set} → (X → Bool)
→ List X → List (List X)

allSubSeq P xs
= foldr (λ x res →

if P x then res ++ (map (_::_ x) res)
else map (_::_ x) res)

[[]] xs

For an explanation, let us look at the example:

allSubSeq (≡ nt A) [nt A, nt B, nt A, nt C] ⇒
[[nt A, nt B, nt A, nt C],

[nt B, nt A, nt C],
[nt A, nt B, nt C],
[nt B, nt C]]

To generate all subsequences of some list xs, one could call
allSubSeq (λ _ → true) xs. The function allSubSeq func-
tion is sound and complete in the sense that it generates all desired
subsequences and nothing else (a formalization can be found in our
development).

3.3 ε-rule elimination
Finally, to eliminate ε-rules, we combine the allSubSeq and
nullables:

norm-e : Rules → Rules
norm-e Rs = { A −→ rhs’ | A −→ rhs ∈ Rs ,

rhs’ ∈ allSubSeq (∈ nullables Rs) rhs ,
rhs’ 6≡ [] }

First, we find all nullable nonterminals in the grammar. Then, for
each rule A −→ rhs in Rs, we compute all subsequences rhs’
of rhs obtainable by dropping some nullable nonterminals in rhs.
Finally, for all nonempty rhs’, the rule A −→ rhs’ is added to
the resulting grammar.

3.4 Correctness
Progress Observe that the function norm-e explicitly excludes
rules with empty right-hand sides. Therefore, it is simple to show
that, for any grammar Rs, the normalized grammar norm-e Rs has
no ε-rules:

ne-progress : (Rs : Rules) → (A : N)
→ A −→ [] /∈ norm-e Rs

Soundness Next, let us show soundness. Namely, given some tree
in the normalized grammar Tree (norm-e Rs) A s, we would
like to construct a parse tree of s in the original grammar Rs:

ne-snd : (Rs : Rules) → (A : N) → (s : String)
→ Tree (norm-e Rs) A s → Tree Rs A s

Proof The proof is by induction on the height of
t : Tree (norm-e Rs) A s. Pattern matching yields
f : Forest (norm-e Rs) rhs s and
r : A −→ rhs ∈ norm-e Rs such that t ≡ node r f. For
each tree t’ of type Tree (norm-e Rs) B s’ such that t’ ∈ f,
by the induction hypothesis, we construct a tree Tree Rs B s’.
Hence, we can construct f’ : Forest Rs rhs s. Next, analyze
the rule A −→ rhs. If r’ : A −→ rhs ∈ Rs, then the proof is
completed by the witness node r’ f’. If A −→ rhs /∈ Rs, then
by the definition of norm-e there exists some rule
r’ : A −→ rhs’ ∈ Rs such that
rhs ∈ allSubSeq (∈ nullables Rs) rhs’. By soundness
of allSubSeq, the list rhs is a subsequence of rhs’. Moreover,
the nonterminals of all removed positions in rhs’ are contained
in nullables Rs. Therefore, the proof can be completed by the
witness node r’ f’’ : Tree Rs A s, where f’’ is constructed

169

from f’ by putting trees for the empty string (produced by using
soundness of nullables) at the dropped positions of rhs’.

Completeness Conversely, given a parse tree for some non-empty
string (recall that norm-e makes all nonterminals non-nullable) in
the original grammar, we can convert it into a parse tree in the
normalized grammar:

ne-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → s 6≡ [] → Tree (norm-e Rs) A s

Proof The proof is by induction on the height of the parse tree
t : Tree Rs A s. By pattern matching, we have t ≡ node r f
where f : Forest Rs rhs s and r : A −→ rhs ∈ Rs. For
each tree t’ : Tree Rs B s’ such that t’ ∈ f, let us analyze
the possible cases:

• If s’ 6≡ [], then by the induction hypothesis, we can construct
Tree (norm-e Rs) A s’.

• If s’ ≡ [], then by nlbls-cmplt, we have that
B ∈ nullables Rs.

Therefore, f’ : Forest (norm-e Rs) rhs’ s can be con-
structed where rhs’ is a subsequence of rhs (the positions at
which f : Forest Rs rhs s contains trees for the empty string
are skipped). If rhs’ 6≡ [], then by completeness of nullables
and allSubSeq, we get that r’ : A −→ rhs’ ∈ norm-e Rs
and the proof is completed by the witness node r’ f’. If
rhs’ ≡ [], then s should be empty (all positions are nulled),
but this contradicts the assumption that s 6≡ [].

3.5 Example
Consider the following grammar Rs:

A −→ BCD | B
B −→ ε | A
C −→ c
D −→ ε

Since B and D are the only nullable nonterminals, the grammar
norm-e Rs has the following rules:

A −→ BCD | B | CD | BC | C
B −→ A
C −→ c

The nonterminal D in the grammar norm-e Rs is nonproductive
(i.e., (s : String) → Tree (norm-e Rs) D s → ⊥). Let
us look at the example of a tree t for the original grammar Rs and
its counterpart for the ε-normalized grammar norm-e Rs:

A

D

ε

C

c

B

A

B

ε

t : Tree Rs A "c"

A

C

c
ne-cmplt t : Tree (norm-e Rs) A "c"

Note, that for the converse direction ne-snd (ne-cmplt t) 6≡ t
(there are many ways to construct subtrees for empty word):

A

D

ε

C

c

B

ε

ne-snd (ne-cmplt t) : Tree Rs A "c"

4. Unit rule elimination and its correctness
4.1 Implementation
We describe in list comprehension notation how unit rules with a
particular right-hand nonterminal are eliminated:

nu-step : Rules → N → Rules
nu-step Rs A
= { rule’ | rule ∈ Rs, rule’ ∈ step-f Rs A rule }
where

step-f : Rules → N → Rule → Rules
step-f Rs A (B −→ rhs) =

if rhs ≡ [nt A] then
{ B −→ rhs’ | A −→ rhs’ ∈ Rs,

rhs’ 6≡ [nt A] }
else [B −→ rhs]

Compared to the grammar Rs, in the grammar nu-step Rs A
every rule of the form B −→ [nt A] is replaced with all rules
of the form B −→ rhs’, where rhs’ stands for a right-hand side
such that A −→ rhs’ ∈ Rs and rhs’ 6≡ [nt A]. Now, full
unit rule elimination is achieved by applying this procedure to all
nonterminals:

norm-u : Rules → Rules
norm-u Rs = foldl nu-step Rs (NTs Rs)

Recall that NTs Rs is an enumeration of all nonterminals appearing
in the grammar Rs.

4.2 Correctness
Progress First, we show that nu-step gains some progress:

nu-step-progress : (Rs : Rules) → (A B : N)
→ A −→ [nt B] /∈ nu-step Rs B

This lemma states that there is no rule with the right-hand side
[nt B] in the grammar nu-step Rs B. The progress lemma
for the norm-u is a trivial consequence:

nu-progress : (Rs : Rules) → (A B : N)
→ A −→ [nt B] /∈ norm-u Rs

170

Soundness We start by proving a lemma about possible shapes of
rules in the original grammar:

nu-sound-main : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ rhs ∈ nu-step Rs B
→ A −→ rhs ∈ Rs

∨ (A −→ [nt B] ∈ Rs × B −→ rhs ∈ Rs)

This lemma shows that, if a rule A −→ rhs belongs to a normal-
ized grammar nu-step Rs B, then either the rule A −→ rhs be-
longs to Rs or the rules A −→ [nt B] and B −→ rhs do.

Now, we show how soundness follows from nu-sound-main:

nu-step-sound : (Rs : Rules) → (A B : N)
→ (s : String)
→ Tree (nu-step Rs B) A s → Tree Rs A s

Proof The proof is by induction on the height of the tree
t : Tree (nu-step Rs B) A s. Pattern matching on t yields
some f of type Forest (nu-step Rs B) rhs s and
p : A −→ rhs ∈ (nu-step Rs B) such that t ≡ node p f.
Next, for all trees t’ : Tree (nu-step Rs B) C s’ such that
t’ ∈ f, by the induction hypothesis, we turn t’ into
t’’ : Tree Rs C s’. Therefore, by induction on the length of f,
a forest f’ : Forest Rs rhs s can be constructed. Finally, by
nu-sound-main we have two cases:

• p’ : A −→ rhs ∈ Rs. Then the proof is completed by con-
structing the witness node p’ f’ : Tree Rs A s.

• p’ : A −→ [nt B] ∈ Rs and p’’ : B −→ rhs ∈ Rs.
Then the proof is completed by the giving the witness
node ((node p’’ f’) ::n empty) p’ which has type
Tree Rs A s.

Soundness of norm-u follows trivially from nu-step-sound:

nu-snd : (Rs : Rules) → (A : N) → (s : String)
→ Tree (norm-u Rs) A s → Tree Rs A s

Completeness We start again by observing special properties:

nu-cmplt’ : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ [nt B] ∈ Rs
→ B −→ rhs ∈ Rs → rhs 6≡ [nt B]
→ A −→ rhs ∈ nu-step Rs B

nu-cmplt’’ : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ rhs ∈ Rs
→ rhs 6≡ [nt B] → A −→ rhs ∈ nu-step Rs B

The nu-cmplt’ lemma states that, if rules A −→ [nt B] and
B −→ rhs belong to Rs and rhs 6≡ [nt B], then the rule
A −→ rhs belongs to the normalized grammar nu-step Rs B.
At the same time the lemma nu-cmplt’’ establishes that rules
A −→ rhs where rhs 6≡ [nt B] will stay in the normalized
grammar.

Using this property, completeness is proved by induction on a
given parse tree and inspection of rules at two consecutive levels.

nu-step-complete : (Rs : Rules)
→ (A B : N) → (s : String)
→ Tree Rs A s → Tree (nu-step Rs B) A s

Proof The claim is proved by induction on the height of the
tree t of type Tree Rs A s. Pattern matching on t yields some
f : Forest Rs rhs s and p : A −→ rhs ∈ Rs such that
t ≡ node p f. Next, for all trees t’ : Tree Rs C s’ such that
t’ ∈ f, by the induction hypothesis, we construct
t’’ : Tree (nu-step Rs B) C s’. So, by induction on the
length of f, we get f’ : Forest (nu-step Rs B) rhs s. Fi-
nally, let us analyze two cases:

• If rhs 6≡ [nt B], then by nu-cmplt’’ we have
p’ : A −→ rhs ∈ nu-step Rs B and proof is finished by
the witness node p’ f’ : Tree (nu-step Rs B) A s.

• If rhs ≡ [nt B], then the previously constructed f’ sat-
isfies f’ ≡ (node q f’’) ::n empty where f’’ is of type
Forest (nu-step Rs B) rhs’ s and q is of type
B −→ rhs’ ∈ nu-step Rs B. By nu-step-progress we
know that rhs’ 6≡ [nt B], therefore, by nu-cmplt’ we
get p’ : A −→ rhs’ ∈ nu-step Rs B. Finally, the wit-
ness node p’ f’ of type Tree (nu-step Rs B) A s con-
cludes the proof.

And lifting this result to the full elimination of unit rules:

nu-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-u Rs) A s

4.3 Example
Consider the grammar

A −→ CA | B | a
B −→ b | A
C −→ BA

After the norm-u transformation we have:

A −→ CA | a | b
B −→ b | CA | a
C −→ BA

Observe how an example tree for the original grammar is trans-
formed into a tree for the normalized grammar:

A

A

B

A

B

b

C

A

a

B

b

t : Tree Rs A "bab"

A

A

b

C

A

a

B

b

nu-cmplt t : Tree (norm-u Rs) A "bab"

Mapping this tree back from the normalized grammar to the
original grammar gives a tree with the unit loop cut out:

171

A

A

B

b

C

A

a

B

b
nu-snd (nu-cmplt t) : Tree Rs A "bab"

Making the exact relationship between maps nu-cmplt and nu-snd
precise is a possible future work.

5. Final transformations
5.1 Long right-hand sides
Next, we describe how to eliminate rules A −→ rhs where
length rhs > 2—so-called long rules.

To do so, we first need a function that will supply fresh nonter-
minals,

newnt : Rules → N

and a proof that newnt Rs does not occur anywhere in the grammar
Rs:

newnt-lem : (Rs : Rules) → newnt Rs /∈ NTs Rs

The above states that newnt Rs is a “fresh” nonterminal. Note that
there are no side effects involved here, the expression newnt Rs
always returns the same nonterminal. Hence, to get the next “fresh”
nonterminal, one must first embed the current one in the grammar.

For an explanation, assume that N = T = N. Then, let us define
newnt and Rs as follows:

newnt : Rules → N
newnt Rs = 1 + max (NTs Rs)

Rs : Rules
Rs = [1 −→ [nt 2, tm 3, nt 4]]

Rs’ : Rules
Rs’ = 1 −→ [nt (newnt Rs)] :: Rs

In that case, newnt Rs ≡ 5. Also, if we define Rs’ by adding the
rule 1 −→ [nt (newnt Rs)] to Rs, then newnt Rs’ ≡ 6.

Next, we are ready to define a step of normalization:

nl-step’ : Rules → N → Rules
nl-step’ ((A −→ X :: Y :: Z :: rhs) :: Rs) F =

(A −→ nt F :: Z :: rhs) ::
(F −→ X :: Y :: []) :: Rs

nl-step’ ((A −→ rhs) :: Rs) F =
(A −→ rhs) :: nl-step’ Rs F

nl-step’ [] F = []

nl-step : Rules → Rules
nl-step Rs = nl-step’ Rs (newnt Rs)

The function nl-step looks for the first long rule of the form
A −→ X :: Y :: Z :: rhs and replaces it with rules
A −→ nt F :: Z :: rhs and F −→ X :: Y :: []
where F is fresh.

After applying the function nl-step to the grammar Rs, the
sum of the lengths of the right-hand sides of all long rules de-
creases. This will be the measure of how many times nl-step
needs to be applied to the grammar Rs.

nl-measure : Rules → N

nl-measure Rs = sum lengths
where

lengths = { length rhs | A −→ rhs ∈ Rs,
length rhs > 2 }

So, to eliminate all long rules, we apply the function nl-step
to the set of rules (nl-measure Rs) times.

norm-l : Rules → Rules
norm-l Rs = fold Rs nl-step (nl-measure Rs)

5.2 Right-hand sides containing terminals
In what follows, we describe how to eliminate rules A −→ rhs
where rhs contains terminals and length rhs > 1.

The function nt-step Rs a adds to the grammar Rs the rule
newnt Rs −→ tm a and substitutes the symbol tm a with the
symbol nt (newnt Rs) in the right-hand side of every rule whose
right-hand side is longer than 1.

nt-step : Rules → T → Rules
nt-step Rs a = let F = newnt Rs in
F −→ tm a ::
{ A −→ subst (tm a) (nt F) rhs |

A −→ rhs ∈ Rs }
where
subst : Symbol → Symbol → RHS → RHS
subst X Y rhs =
if length rhs ≤ 1
then rhs
else map (λ Z → if Z ≡ X then Y else Z) rhs

Finally, remove all terminals from right-hand sides longer than 1
by folding Rs with the function nt-step:

norm-t : Rules → Rules
norm-t Rs = foldl nt-step Rs (Ts Rs)

5.3 Correctness of final transformations
Correctness of both norm-t and norm-l is rather obvious due to
the simple nature of these transformations. But we still state the
correctness theorems to highlight the side conditions and progress
claims (the details of the proofs could be found in the code).

The progress lemma for norm-l states that after the transfor-
mation there are no rules with right-hand sides of more than two
symbols.

nl-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm-l Rs
→ length rhs ≤ 2

The progress lemma for norm-t states that, for any Rs for
all rules A −→ rhs ∈ norm-t Rs, either rhs ≡ [tm a] for
some terminal a or rhs consists of nonterminals only.

nt-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm-t Rs
→ ∃(a : T) rhs ≡ [tm a] ∨ ntOnly rhs

Next, nl-snd and nt-snd state that each tree for normalized
grammar that is rooted by some nonterminal present in the original
grammar can be transformed into a tree for the original grammar:

nl-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm-l Rs) A s → Tree Rs A s

nt-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm-t Rs) A s → Tree Rs A s

172

The side condition A ∈ NTs Rs is important, because a tree rooted
by some “freshly” added nonterminal has no corresponding tree in
the original grammar, where the fresh nonterminal is not present.

Conversely, any parse tree for Rs could be mapped to parse trees
for norm-l Rs and norm-t Rs.

nl-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-l Rs) A s

nt-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-t Rs) A s

6. Full normalization and correctness
6.1 Full normalization function
Finally, we are ready to define the full normalization function:

norm : Rules → Rules
norm = norm-u ◦ norm-e ◦ norm-t ◦ norm-l

The function norm is a composition of the four transformations
we have introduced. The order in which these transformations are
chained matters. For example, norm-e can add new unit rules, so
norm-u must be performed after norm-e.

Progress The question of progress of norm boils down to the
questions about preservation of the progress properties of individ-
ual constituent transformations by those transformations that fol-
low:

1. Since norm-t never increases the length of the right-hand side
of any rule, norm-t preserves the progress made by norm-l.
We prove that, if the right hand side of every rule in Rs is
shorter that some n : N, then the same holds for all rules in
norm-t Rs:

nt-efct : (Rs : Rules) → (n : N)
→ ((A : N) → (rhs : RHS)

→ A −→ rhs ∈ Rs
→ length rhs ≤ n)

→ (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-t Rs
→ length rhs ≤ n

2. We show that, if A −→ rhs ∈ norm-e Rs, then rhs must
be a subsequence of some rhs’ such that A −→ rhs’ ∈ Rs.
Since the progress properties of norm-l and norm-t are closed
under the subsequence relation, norm-e preserves the progress
achieved by norm-l and norm-t:

ne-efct : (Rs : Rules) → (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-e Rs → A −→ rhs /∈ Rs
→ ∃(rhs’ : RHS) A −→ rhs’ ∈ Rs ×

rhs ∈ allSubSeq (∈ nullables Rs) rhs’

3. Since norm-u does not introduce any new right-hand sides into
a grammar, it preserves the progress properties of all other
transformations. Formally, we prove that, if there is some pred-
icate that holds for all RHSs in the grammar Rs, then it will also
hold for all RHSs in the grammar norm-u:

nu-efct : (P : RHS → Set) → (Rs : Rules)
→ ((A : N) → (rhs : RHS)

→ A −→ rhs ∈ Rs → P rhs)
→ (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-u Rs
→ P rhs

Finally, we show the following progress property of norm:

norm-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm Rs
→ (∃(B C : N) rhs ≡ [nt B, nt C]) ∨

(∃(a : T) rhs ≡ [tm a])

It states that, for any rule A −→ rhs ∈ norm Rs, either
rhs ≡ [nt B, nt C] for some nonterminals B and C or
rhs ≡ [tm a] for some terminal a.

Soundness To show soundness of norm, we only need to chain
the soundness results of the individual transformations:

norm-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm Rs) A s → Tree Rs A s

Completeness As in the case of soundness, completeness of norm
is proved by chaining the completeness results of the small trans-
formations:

norm-cmplt : (Rs : Rules) → (A : N)
→ (s : String) → s 6≡ []
→ Tree Rs A s → Tree (norm Rs) A s

6.2 Grammars with a start nonterminal
Now, we define a context-free grammar as a set of rules with a fixed
start nonterminal:

record Grammar : Set where
field

S : N
Rs : Rules

(Given some G : Grammar, we write S G and Rs G for projections
of the start terminal and the list of rules respectively.)

Next, the language of the grammar G is defined as:

TreeS : Grammar → String → Set
TreeS G s = Tree (Rs G) (S G) s

Next, we implement normalization of context-free grammars:

normS : Grammar → Grammar
normS G = record {

S = S’;
Rs = if S G ∈ nullables (Rs G)

then S’ −→ [] :: Rs’
else Rs’

}
where

S’ = newnt (Rs G)
Rs’ = norm ((S’ −→ [nt (S G)]) :: Rs G)

To normalize a context-free grammar we have the following algo-
rithm:

1. Declare newnt (Rs G) as a new starting nonterminal.

2. Normalize the set of rules Rs G extended by the rule
newnt (Rs G) −→ [nt (S G)]. Since newnt (Rs G)
is fresh, it is clear that its language is same as the language of
nonterminal S G and it will not affect the language of any other
nonterminal (this step guarantees that new starting nonterminal
does not appear on the right hand sides of the rules).

3. Finally, if the starting nonterminal of the original grammar
was nullable then add the rule newnt (Rs G) −→ [] to the
normalized set of rules to retain the empty string in the language
of normalized grammar. Intuitively, it is safe to do so, because
new (Rs G) does not appear in the right-hand sides of the other
rules.

Let us look at the final versions of progress, soundness and
completeness properties:

173

Progress

normS-progress : (G : Grammar) → (A : N)
→ (rhs : RHS)
→ let G’ = normS G in A −→ rhs ∈ Rs G’
→ (∃(B C : N) rhs ≡ [nt B, nt C]

× B 6≡ S G’
× C 6≡ S G’) ∨

(∃(a : T) rhs ≡ [tm a]) ∨
(rhs ≡ [] × A ≡ S G’)

For any rule A −→ rhs ∈ Rs (normS G), the right-hand side
rhs is either [nt B, nt C] for some nonterminals B and C
where neither B nor C are starting nonterminals or [tm a] for
some terminal a, or [] with the condition that A ≡ S (normS G).

Soundness and completeness

normS-snd : (G : Grammar) → (s : String)
→ S G ∈ NTs (Rs G)
→ TreeS (normS G) s → TreeS G s

normS-cmplt : (G : Grammar) → (s : String)
→ TreeS G s → TreeS (normS G) s

If a given grammar is well-formed (i.e., the start nonterminal actu-
ally appears in the given list of rules), then normalization preserves
the language of the grammar.

7. Related Work and Conclusions
While a number of authors have formalized various parts of the
theory of regular grammars or expressions and finite automata,
efforts in the direction of context-free grammars seem fewer.

Several authors have considered parsing of context-free gram-
mars. Barthwal and Norrish [6] formalized SLR parsing with the
HOL4 theorem prover. Ridge [10] has formalized the correctness
of a general CFG parser constructor in HOL4.

Koprowski and Binsztok [4] have formalized parsing expression
grammars (PEGs), a formalism for specifying recursive descent
parses, in Coq. Jourdan, Pottier and Leroy [7] have presented a
validator that checks if a context-free grammar and an LR(1) parser
agree; they have proved the validator correct in Coq.

Danielsson [2] has implemented a library of parser combinators
in Agda treating left recursion with coinduction. Sjöblom [11] has
formalized an aspect of Valiant’s parsing algorithm.

Regarding normalization of context-free grammars, Barthwal
and Norrish [5] described a formalisation of the Chomsky and
Greibach normal forms for context-free grammars with the HOL4
theorem prover. They showed how to solve the problems which
arise from mechanising the straightforward pen and paper proofs.
The non-constructive setting gave the advantage of the power of ex-
tensional and classical reasoning, but also the significant drawback
that it did not deliver actual functions for normalizing grammars or
converting parse trees between grammars.

We have proved in Agda that a general CFG and its Chomsky
normal form accept the same language. As a program, the proof
consists of functions for conversion of parse trees between the orig-
inal and normalized grammars. This is a typical added benefit of
formalization in a language like Agda; e.g., a proof that a CFG and
the corresponding pushdown automaton accept the same language
would give functions for conversion between parse trees and ac-
cepting runs.

Combined with the CYK parser we have written previously [3],
the code of this paper gives us a parser for CFGs in general form.
There is, however, a caveat: we do not get all parse trees of the
grammar; moreover, it is not entirely obvious which parse trees we
get and which are lost.

To make this precise, we plan to extend this work as follows.
Instead of unnamed rules (a rule is identified by the left-hand non-
terminal and the right-hand list of symbols), we name rules. This
gives us finer control over parse trees. Now we expect that the con-
version of a parse tree in the normalized grammar to the original
grammar and back again will be identity while the conversion of a
parse of the original grammar to the normalized grammar and back
will be an idempotent function—a kind of normalizer of parse trees
that truncates nullable paths and removes unit cycles. Normaliza-
tion of parse trees by passing through the normalized grammar can
then be seen as a form of normalization-by-evaluation.

Overall, the constructive approach allows one to give parse trees
a first-class status: knowing that a string is in a language includes
knowing a proof of this, i.e., a parse tree. These proofs become
objects of analysis and manipulation.

Acknowledgement We thank our anonymous referees for the use-
ful feedback. This research was supported by the ERDF funded
Estonian CoE project EXCS and the Estonian Research coun-
cil target-financed research theme No. 0140007s12 and grant
No. 9475.

References
[1] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.
[2] N. A. Danielsson. Total parser combinators. In Proc. of 15th ACM

SIGPLAN Int. Conf. on Functional Programming, ICFP ’10, pp. 285–
296. ACM, 2010.

[3] D. Firsov, T. Uustalu. Certified CYK parsing of context-free lan-
guages. J. of Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–
468, 2014.

[4] A. Koprowski, H. Binsztok. TRX: A formally verified parser inter-
preter. Log. Meth. in Comput. Sci., v. 7(2), article 18, 2011.

[5] A. Barthwal, M. Norrish. A formalisation of the normal forms of
context-free grammars in HOL4. In A. Dawar, H. Veith, eds., Proc.
of 24th Int. Wksh. on Computer Science Logic, CSL 2010, v. 6247 of
Lect. Notes in Comput. Sci., pp. 95–109. Springer, 2010.

[6] A. Barthwal, M. Norrish. Verified, executable parsing. In G. Castagna,
ed., Proc. of 18th Europ. Symp. on Programming, ESOP 2009, v. 5502
of Lect. Notes in Comput. Sci., pp. 160–174. Springer, 2009.

[7] J.-H. Jourdan, F. Pottier, X. Leroy. Validating LR(1) parsers.
In H. Seidl, ed., Proc. of 21st Europ. Symp. on Programming,
ESOP 2012, v. 7211 of Lect. Notes in Comput. Sci., pp. 397–416.
Springer, 2012.

[8] Y. Minamide. Verified decision procedures on context-free grammars.
In K. Schneider, J. Brandt, eds., Proc. of 20th Int. Conf. on Theorem
Proving in Higher Order Logics, TPHOLS 2007, v. 4732 of Lect. Notes
in Comput. Sci., pp. 173–188. Springer, 2007.

[9] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, S. D. Swierstra, eds., Revised Lectures from 6th Int.
School on Advanced Functional Programming, AFP 2008, v. 5832 of
Lect. Notes in Comput. Sci., pp. 230–266. Springer, 2009.

[10] T. Ridge. Simple, functional, sound and complete parsing for all
context-free grammars. In J.-P. Jouannaud, Z. Shao, eds., Proc. of
1st Int. Conf. on Certified Programs and Proofs, CPP 2011, v. 7086 of
Lect. Notes in Comput. Sci., pp. 103–118. Springer, 2011.

[11] T. B. Sjöblom. An Agda proof of the correctness of Valiant’s algo-
rithm for context free parsing. Master’s thesis, Dept. of Computer Sci.
and Engin., Chalmers University of Technology, 2013.

174

Curriculum Vitae

1. Personal data
Name Denis Firsov
Date and place of birth 28 May 1987, Mustvee
Citizenship Estonian
E-mail address denis@cs.ioc.ee

2. Education
Educational institution Period Degree
Tallinn University of Technology 2012–2016 PhD studies
Tallinn University of Technology 2010–2012 Master of Science
Estonian Information Technology
College

2006–2010 Diploma

3. Language skills

Russian native
English fluent
Estonian fluent

4. Special courses

Period Event
27 June–1 July
2016

Second International Summer School on Be-
havioural Types

28 Feb.–4 Mar.
2016

21st Estonian Winter School in Computer Science

13–22 July 2015 Summer School on Complexity and Concurrency
through Topology

6–10 July 2015 Oxford Summer School on Generic and Effectful
Programming

1–6 Mar. 2015 20th Estonian Winter School in Computer Science
20–27 Apr. 2014 Midlands Graduate School 2014
2–7 Mar. 2014 19th Estonian Winter School in Computer Science
8–20 July 2013 Domain Specific Languages Summer School 2013
8–12 Apr. 2013 Midlands Graduate School 2013
3–8 Mar. 2013 18th Estonian Winter School in Computer Science
16–28 July 2012 Oregon Programming Languages Summer School
19–23 Aug. 2012 11th Estonian Summer School in Computer and

Systems Science

109

5. Professional employment

Period Organisation Position
2011– . . . Inst. of Cybernetics at TUT engineer, junior researcher
2010–2011 Attitude OÜ software architect
2009–2010 Majandustarkvara OÜ software developer

6. Research activity

Algorithms, functional programming languages, type systems, constructive
mathematics, software verification.

7. Publications

1. D. Firsov, T. Uustalu. Certified parsing of regular languages. In
G. Gonthier, M. Norrish, eds., Proc. of 3rd Int. Conf. on Certified Pro-
grams and Proofs, CPP 2013 (Melbourne, Dec. 2013), v. 8307 of Lect.
Notes in Comput. Sci., pp. 98–113. Springer, 2013.

2. D. Firsov, T. Uustalu. Certified CYK parsing of context-free languages.
J. of Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–468, 2014.

3. D. Firsov, T. Uustalu. Certified normalization of context-free grammars.
In Proc. of 4th ACM SIGPLAN Conf. on Certified Programs and Proofs,
CPP ’15 (Mumbai, Jan. 2015), pp. 167–174. ACM Press, 2015.

4. D. Firsov, T. Uustalu. Dependently typed programming with finite
sets. In Proc. of 2015 ACM SIGPLAN Wksh. on Generic Programming,
WGP ’15 (Vancouver, BC, Aug. 2015), pp. 33–44. ACM Press, 2015.

5. D. Firsov, T. Uustalu. Acyclic attribute evaluation in a dependently typed
setting. In Abstracts of 27th Nordic Workshop on Programming Theory,
NWPT 2015, Technical report RUTR-SCS16001, School of Computer
Science, pp. 124–126, Reykjavik University, 2016.

6. D. Firsov, T. Uustalu, N. Veltri. Variations on Noetherianness. In
R. Atkey, N. Krishnaswamy, eds., Proc. of 6th Wksh. on Mathematically
Structured Functional Programming, MSFP 2016 (Eindhoven, 2016),
Electron. Proc. in Theor. Comput. Sci., pp. 76–88. Open Publishing As-
soc., 2016.

7. D. Firsov, W. Jeltsch. Purely functional incremental computing. In
F. Castor, Y. D. Liu, eds., Proc. of 20th Brazilian Symp. on Programming
Languages, SBLP 2016 (Maringá, Paraná, Sept. 2016), Lect. Notes in
Comput. Sci., Springer, to appear.

110

Elulookirjeldus

1. Isikuandmed
Ees- ja perekonnanimi Denis Firsov
Sünniaeg ja -koht 28.05.1987, Mustvee
Kodakondsus Eesti
E-posti aadress denis@cs.ioc.ee

2. Hariduskäik
Õppeasutus Lõpetamisaeg Haridus
Tallinna Tehnikaülikool 2012–2016 Doktoriõpe
Tallinna Tehnikaülikool 2010–2012 Magistrikraad
Eesti Infotehnoloogia Kolledž 2006–2010 Rakenduskõrgharidus

3. Keelteoskus
Vene keel emakeel
Inglise keel kõrgtase
Eesti keel kõrgtase

4. Täiendusõpe

Period Event
27.06–1.07.16 Second International Summer School on Behavioural

Types
28.02–4.03.16 21st Estonian Winter School in Computer Science
13–22.07.15 Summer School on Complexity and Concurrency

through Topology
6–10.07.15 Oxford Summer School on Generic and Effectful Pro-

gramming
1–6.03.15 20th Estonian Winter School in Computer Science
20–27.04.14 Midlands Graduate School 2014
2–07.03.14 19th Estonian Winter School in Computer Science
8–20.07.13 Domain Specific Languages Summer School 2013
8–12.04.13 Midlands Graduate School 2013
3–8.03.13 18th Estonian Winter School in Computer Science
16–28.07.12 Oregon Programming Languages Summer School
19–23.08.12 11th Estonian Summer School on Computer and Sys-

tems Science

5. Teenistuskäik
Töötamise aeg Tööandja nimetus Ametikoht
2011– . . . TTÜ Küberneetika Instituut insener, nooremteadur
2010–2011 Attitude OÜ tarkvaraarhitekt
2009–2010 Majandustarkvara OÜ tarkvaraarendaja

111

6. Teadustegevus

Algoritmid, funktsionaalsed programmeerimiskeeled, tüübisüsteemid,
konstruktiivne matemaatika, tarkvara verifitseerimine.

7. Publikatsioonid

1. D. Firsov, T. Uustalu. Certified parsing of regular languages. In
G. Gonthier, M. Norrish, eds., Proc. of 3rd Int. Conf. on Certified Pro-
grams and Proofs, CPP 2013 (Melbourne, Dec. 2013), v. 8307 of Lect.
Notes in Comput. Sci., pp. 98–113. Springer, 2013.

2. D. Firsov, T. Uustalu. Certified CYK parsing of context-free languages.
J. of Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–468, 2014.

3. D. Firsov, T. Uustalu. Certified normalization of context-free grammars.
In Proc. of 4th ACM SIGPLAN Conf. on Certified Programs and Proofs,
CPP ’15 (Mumbai, Jan. 2015), pp. 167–174. ACM Press, 2015.

4. D. Firsov, T. Uustalu. Dependently typed programming with finite
sets. In Proc. of 2015 ACM SIGPLAN Wksh. on Generic Programming,
WGP ’15 (Vancouver, BC, Aug. 2015), pp. 33–44. ACM Press, 2015.

5. D. Firsov, T. Uustalu. Acyclic attribute evaluation in a dependently typed
setting. In Abstracts of 27th Nordic Workshop on Programming Theory,
NWPT 2015, Technical report RUTR-SCS16001, School of Computer
Science, pp. 124–126, Reykjavik University, 2016.

6. D. Firsov, T. Uustalu, N. Veltri. Variations on Noetherianness. In
R. Atkey, N. Krishnaswamy, eds., Proc. of 6th Wksh. on Mathematically
Structured Functional Programming, MSFP 2016 (Eindhoven, 2016),
Electron. Proc. in Theor. Comput. Sci., pp. 76–88. Open Publishing As-
soc., 2016.

7. D. Firsov, W. Jeltsch. Purely functional incremental computing. In
F. Castor, Y. D. Liu, eds., Proc. of 20th Brazilian Symp. on Programming
Languages, SBLP 2016 (Maringá, Paraná, Sept. 2016), Lect. Notes in
Comput. Sci., Springer, to appear.

112

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-
Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of
Cyber-Physical Systems. 2016.

