
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

MD Tural Ismayilov 172681 IVSM

VIRTUAL IOT LAB FOR EMBEDDED SOFTWARE

DEVELOPMENT FOR ESP32 AND RASPBERRY PI BASED

DEVICES
Master’s thesis

Supervisor

Juhan-Peep Ernits,

PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

MD Tural Ismayilov 172681 IVSM

VIRTUAALNE IOT LABOR SARDTARKVARA

ARENDAMISEKS ESP32 JA RASPBERRY PI PÕ̃HISTE

SEADMETE NÄITEL
magistritöö

Juhendaja

Juhan-Peep Ernits,

PhD

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: MD Tural Ismayilov

Date: 9 August, 2020

Annotatsioon

Sardtarkvara koodiarenduskeskkonna pakkumine ilma riistvaralise sõltuvuseta Asjade

Interneti-põhiste eksperimentide käitamiseks on keeruline ülesanne. IoT (Nutistu)-katsete

tegemiseks on vähe virtuaalseid IoT keskkonnalaboreid, kuid enamik neist keskendus

peamiselt võrgu simuleerimisele, mitte seadme emuleerimisele. Lõputöö eesmärk on uurida

võimalikke viise, kuidas vältida IoT-rakenduste arendamisel füüsiliste seadmete kasutamise

vajadust, emiteerides ESP32 ja Raspberry Pi riistvara ning pakkudes seejuures manustatud

koodi arenduskeskkonda koos jäljendatud IoT-laboriga, mis võib olla algajale IoT kasuta-

jale õpikeskkonnaks enne reaalsete füüsiliste seadmetega kokkupuutumist. Idee tõestusena

võetakse levinud reaalmaailma probleemid Asjade Interneti arendusraamidest. Kasutata-

vateks töövahenditeks on QEMU (Quick Emulator), mida vajatakse ESP32 ja Raspberry

Pi seadmete riistvaraemulatsiooniks ning Docker OS-tasemel virtualiseerimiseks. Lisaks

sellele, toetutakse ESP32 rakenduste arendamisel ESP-IDF-i arendusraamistikule, mis

annab võimaluse Raspberry Pi konfigureerimiseks ja kasutuselevõtuks. Kavandatud lähene-

misviisil on mitmeid eeliseid: a) dokkerdatud rakendus võimaldab väljatöötatud rakendust

hõlpsalt keskkondade vahel ümber tõsta; b) CLI (Command Line Interface) aitab hallata

taustal töötavaid alamprotsesse, mis täiustab kasutajakogemust, jäljendades reaalse seadme

arendamise kogemust ning aidates kasutajatel hõlpsalt liikuda reaalse füüsilise seadme

arendamise juurde. Lähtekoodi skriptid kirjutati bash shell skriptikeeles Dockerfile, C/C++,

Ansible Playbooks, Python, kasutades Microsoft Visual Studio Code keskkonda.

See lõputöö on kirjutatud inglise keeles ja on 45 lehekülge pikk, sisaldades 5 peatükki, 5

joonist ja 9 tabelit.

4

Abstract

Providing an embedded code development environment without any hardware dependency

to run IoT related experiments is a challenging task. There are few virtual IoT environment

labs to perform IoT experiments, but most of them mainly focused on network simulation

rather than device emulation. The goal of the thesis is to look at possible ways to eliminate

the need to use physical devices when developing IoT applications by emulating ESP32

and Raspberry Pi hardware and provide an embedded code development environment

with an emulated IoT lab that can be a learning environment for new IoT users before

starting with the real physical devices. As proof of concept, common real-world problems

are taken from IoT development frames. Used tools are QEMU (Quick Emulator) for

hardware emulation of ESP32 and Raspberry Pi devices, Docker for OS-level virtualization.

Other than that ESP-IDF development framework is considered for ESP32 application

development and Ansible for configuration and deployment of Raspberry Pi. The proposed

approach has several advantages: a) Dockerized application allows developed application

to be shuttled easily between environments; b) CLI (Command Line Interface) developed

helps to manage subprocess running in the background that enhances the user experience

by mimicking real device development experience to help the users to move to the real

physical device development easily. The source code scripts were written in bash shell

scripting language, Dockerfile, C/C++, Ansible Playbooks, Python using Microsoft Visual

Studio Code environment.

This thesis is written in English and is 45 pages long, including 5 chapters, 5 figures and 9

tables.

5

List of abbreviations and terms

QEMU Quick Emulator

OS Operating System

IOT Internet Of Things

RTOS Real-time Operating System

CPU Central Processing Unit

GDB GNU Project Debugger

VM Virtual Machine

CLI Command Line Interface

UI User Interface

IaC Infrastructure as Code

WSL Windows Subsystem for Linux

SBC Single-Board Computer

PC Personal Computer

LAMP Linux, Apache, MySQL, PHP/Perl/Python

LFS Large File Storage

CI Continuous Integration

CD Continuous Deployment

6

Table of Contents

List of Figures 9

List of Tables 10

1 Introduction 11

1.1 Research motivation . 12

1.2 Research questions . 14

1.3 Thesis structure . 14

2 Background 16

2.1 Proposed solution . 16

2.2 Requirements . 16

2.3 Virtualization selection . 17

2.3.1 QEMU . 17

2.3.2 GDB . 18

2.3.3 Docker . 19

2.4 Emulated physical tools . 19

2.4.1 ESP32-DevKitC . 19

2.4.2 Raspberry Pi . 19

2.5 Supporting tools . 20

2.5.1 Ansible . 20

2.5.2 CLI for IoT Environment Lab management 21

2.5.3 ESP-IDF, ESP32 Development Framework 22

2.5.4 Ubuntu Server . 22

2.6 Conclusion . 23

3 System integration of IoT Environment Lab 24

3.1 Setup guide for the IoT Environment Lab 24

3.2 Running ESP32 on Qemu and wrapping it in Dockerfile 25

3.3 Running Raspberry Pi on Qemu and wrapping it in Dockerfile 27

7

3.4 Wrapping Dockerfiles into docker-compose 28

3.5 Emu CLI usage . 28

3.6 Ansible to configure Raspberry Pi . 29

3.7 Examples . 30

3.8 Further work on GPIO subsytem of ESP32 30

3.9 Testing of emu CLI . 31

3.10 Related Work . 31

3.11 Conclusion . 32

4 Evaluation 33

4.1 Evaluation method . 33

4.2 Evaluation result . 33

5 Summary 35

5.1 Conclusion . 35

5.2 Answering research questions . 36

5.3 Limitations . 36

5.4 Future work . 36

Bibliography 38

Appendices 40

Appendix 1 - Example Ansible Playbook 40

Appendix 2 - ESP32 image builder 42

Appendix 3 - Emu CLI - Functions 43

Appendix 4 - Ansible inventory file 44

Appendix 5 - Questionnaire form 45

8

List of Figures

1 Example usage for ESP32 and Raspberry Pi 12

2 Basic graphical overview of proposed solution 17

3 ESP32-DevKitC board . 20

4 Raspberry Pi board . 21

5 Example ansible-playbook command output 22

9

List of Tables

1 Requirements for IoT Environment Lab 17

2 Required versions of programs . 24

3 Used ESP32 QEMU emulation options 26

4 ESP32 QEMU emulation strapping mode 26

5 Configured ports in ESP32 . 27

6 Configured ports in Raspberry Pi . 27

7 Emu CLI functions . 29

8 Examples description . 30

9 Functionalities summary for ESP32 and Raspberry Pi 35

10

1. Introduction

IoT stands for the Internet of things, but there are no common agreements on what does
"Thing" mean in this context. [1] proposed a definition of IoT with “A world where physical

objects aree seamlessly integrated into the informationn networks, and where the physical

objects can become active participants in the business process.”. IoT devices as the internet
of things are nonstandard computing devices. They connect with or without wire to a
network and can transmit data. IoT is a trending research area that attracts the researchers,
industrial and governmental sectors. Some organizations design and develop IoT based
smart systems for monitoring and controlling the sub-station equipment. According to
IoT Analytics estimates there were roughly 9.5 billion connected IoT devices at the end
of 2019 which was in itself was considerably more than the forecast of 8.3B devices
[2]. As more and more IoT devices make their way into the world, IoT systems present
several unique challenges from scalability, security, and privacy to the integration of smart
components [3]. Another challenge with IoT systems is related to developing and testing a
system without having access to real IoT devices or sensors. The time takes to develop
IoT systems increases considerably, as the embedded system involves complex tasks [4].
This makes a way for the development of platform-based design where it reduces the time
spent on system software development and performance evaluation. Oce Technologies has
introduced Software-In-the-Loop (SIL) simulation to build a virtual printer for the main
purpose of developing hardware and software in parallel. This involves both hardware
emulation and the addition of the emulation into SIL simulation. The hardware emulation
is to build a virtual platform of all the essential functions and properties of a real hardware
board [5].

The purpose of this report is to describe the results from a study to evaluate the potential
system of recreating emulated RTOS based ESP32 together with Linux1 based Raspberry
PI on top of OS-level virtualization, where valid IoT development evaluations can be
performed. To give an example of a similar system Tinkercad2 can be considered which
is a free, online 3D modeling program running on a browser, but is limited for emulating
Arduino Uno together with few numbers of known sensors. Emulated ESP32 and Raspberry
Pi IoT system will be a safe place for testing application code to check how it works before

1Linux: https://en.wikipedia.org/wiki/Linux/
2Tinkercad: https://www.tinkercad.com/

11

https://en.wikipedia.org/wiki/Linux/
https://www.tinkercad.com/

deploying on an actual device. The part of this research would be identifying possible
common use cases of the ESP32 system together with Raspberry Pi so that better counter
measurements can be developed and implemented for emulation. To give a possible use
case, ESP32 can collect weather data from the sensors and can publish to the LAMP server
that is running on Raspberry Pi. This system then may represent weather data with a
graph that would be useful for understanding the recent changes in weather that is visually
described in Figure 1.

Figure 1. Example usage for ESP32 and Raspberry Pi

Another example could be having many houses with embedded environmental sensors
that are distributed across cities and can send real-data to message broker from the single
gateway and latter this data can be retrieved by stream processor to analyze and processed
data could be stored in the database. Similar to this, MQTT broker/client example has
been developed in the GitHub repository of the master thesis work3 where MQTT client
publishes message to test/message topic via MQTT protocol and as it’s also subscribed to
the same topic, it receives the same message.

1.1 Research motivation

As stated in Section 1 there were about 9.5 billion devices connected to IoT devices at the
end of 2019. Given the increasing number of IoT devices making it accessible to everyone
at low cost, especially to students who are mostly future users of these devices is one of
the main challenges. Despite the existence of some solutions to help people to get started
with IoT devices, they all have advantages and disadvantages, and they are mainly paid
solutions.

3GitHub Repository for the IoT Lab Environment: https://github.com/ismajilv/
docker-emu/

12

https://github.com/ismajilv/docker-emu/
https://github.com/ismajilv/docker-emu/

There would have some use-cases of IoT Lab Environment. To give example quality
assurance engineers define and automate various types of tests in order to know whether
a software build will pass or fails before actually deploying to production. In order to
achieve this, they utilize CI and CD tools which are a big part of a culture in every big
company that enables development teams to deliver applications more frequently and
reliably. Jenkins4, CircleCI5, Travis CI6 are the popular CI/CD tools. CD is the process of
pushing application changes to delivery environments. A typical CD pipeline has build,
test, and deploy stages. CI on the other hand is to combine all changes from multiple
contributors into one software project. All CI/CD tools require environments to test the
application code such as a server running Linux OS. But these environments don’t cover
ESP32, Raspberry Pi, Arduino Uno, and other alternative environments. To overcome this
issue virtualized form of these devices can be used as an environment that would lead to
faster testing, prototyping without needing actual devices but only Laptops. This approach
would give the option not to own many instances of the same devices for every developer
and as a result, would cut the cost

The developers of the IoT system would like to validate their developed embedded software
application faster in an automated fashion so that they would do rapid development and
testing. This would require virtualization of the resources where the users wouldn’t need
access to hardware to accomplish the tasks or run multiple tasks in parallel. This brings
us to point of resource availability and as an example, stress testing of the IoT system
with large networks can be given. These kinds of experiments require a bulk amount of
hardware resources to be used which raises cost issues. As stated in the paper [4] turning
the IoT system into virtualized one for prediction of the CPU usage saved them around
$33,000.00. We can see resource availability, running cost, the time it takes to test the
solution and maintaining such a system demands better work with IoT Systems.

In this thesis, we look into ESP32 and Raspberry Pi devices that have wide coupled
usage in real-world IoT applications and are used by students, professionals. They will
be assembled under a small IoT Lab Environment where users can practice their skills,
automate some of the testing they do, and get started with these devices before working
with them in real ones. One of the motivations in this research is to support open-source
development of user-friendly IoT Lab Environment where IoT users can benefit from it.

4Jenkins: https://www.jenkins.io/
5CircleCI: https://circleci.com/
6Travis CI: https://travis-ci.com/

13

https://www.jenkins.io/
https://circleci.com/
https://travis-ci.com/

1.2 Research questions

The research questions follow the Trivium87 structure and the main question of thesis
research is as follows: How to provide an embedded code development environment with
an emulated IoT lab that can be used as a learning environment before starting with the
real physical devices? In order to give the answer to the main research question is divided
into the following hierarchy of sub-questions:

� RQ-1: How to set up the IoT Lab Environment?
– RQ-1.1: What type of emulator is suitable for Raspberry Pi and ESP32?
– RQ-1.2: What type of connection to use to establish network connectivity

between Raspberry Pi and ESP32?
– RQ-1.3: Which encapsulation tool to use to virtualize such a system so it can

be shuttled easily between environments?
– RQ-1.4: What IaC tools available to configure Raspberry Pi and which one is

more appropriate?
– RQ-1.5: What OS to choose for hosting QEMU inside virtualization?

� RQ-2: How to get users to be familiar with IoT Lab Environment?
– RQ-2.1: What steps to take to mimic the experience working with physical

devices and emulated ones?
– RQ-2.2: Who are the interested parties to use IoT Lab Environment and what

common examples can be solved with such a system that they encounter?

RQ-1 defines the way to build an IoT Lab Environment within the proposed solution by
describing the technical requirements to run such a lab and maintain. RQ-2 describes the
use cases of this IoT Lab environment and how to make it more user friendly by eliminating
the difference between working real and emulated devices and showing the solution for
real-world problems.

1.3 Thesis structure

This section describes the chapters’ contents of this thesis. The introduction provides aims,
motivation, and objectives of the research. The problem to be solved is described here.

Chapter 1 provides the aims, motivation, objectives of the research, and the problem
solved.

7Trivium8: http://www.triviumeducation.com/

14

http://www.triviumeducation.com/

Chapter 2 describes the technological background and tools used to develop IoT Lab
Environment.

Chapter 3 gives information about details on the development of the proposed solution
for the Lab.

Chapter 4 talks about the feedback by experts who tested the IoT Lab Environment.

Chapter 5 summarise the thesis and answer the main research questions.

15

2. Background

The following sections provide technological background and tools used to develop IoT
Environment Lab. First in Section 2.1 proposed solution and in Section 2.2 the requirements
for it is discussed, followed by Section 2.3 is a brief information about Docker, QEMU,
GDB and there use case in our domain. Section 2.4 talks about emulated ESP32 and
Raspberry Pi devices and in Section 2.5 all other supporting software such as application-
deployment and development tools are described. This Chapter also gives the answers to
RQ-1.1, RQ-1.3, RQ-1.4, RQ-1.5, and Chapter 2.6 says the final words.

2.1 Proposed solution

As mentioned earlier, in this thesis research we will focus on emulating popular ESP32
and Raspberry Pi devices. We call the whole system as IoT Environment Lab that will
provide the way to run the most common tasks with real ESP32 and Raspberry Pi in an
emulated environment with little or no difference between the experience of working with
emulated and physical devices. For emulation of ESP32 and Raspberry, Pi QEMU will
be used that will run on top of Ubunutu 16.04 inside separate Docker Containers build
and managed by docker-compose, one for ESP32 emulation another one for Raspberry Pi.
Network connectivity between ESP32 and Raspberry Pi will be established by Ethernet
emulation over TCP/IP. Raspberry Pi container will have detect_gpio_changes executable
that will perform analysis of GPIO state change to inform the user via CLI. To improve the
user experience, CLI will be developed that will manage the IoT Environment Lab and
application deployment and monitoring of ESP32. For getting started guides, common
use case examples of the coupled system will be developed with instructions. Having a
dockerized application lets us easily add new containers when new device emulation is
needed that solves the heterogeneity challenge with IoT mentioned in [4], so we can scale
up the number of Containers and have a realistic system with the network connectivity.
The high-level graphical form of the proposed solution is given in Figure 2.

2.2 Requirements

In order to give the description of the functionalities and the features of the system,
requirements are developed that specify what features the system should include and how

16

those features should work together. Those requirements for different parts used in the
development of IoT Environments Lab are given in Table 1.

Table 1. Requirements for IoT Environment Lab

Part Requirements
Emulation To be open-source to make it possible to customize for certain purposes

Support Xtensa and ARMv8 architecture
Virtualization Be shuttled easily between environments

Containerized so isolated from other applications
Support scaling up the instances

CLI Support most of the functionalities of IoT Environment Lab
OS Support the system used for Virtualization

Development Give the highest fidelity, be well-known, and well documented
and Deployment

The requirements will help us to develop the system with the target in mind and help the
reader what are the expectations from the given application.

Figure 2. Basic graphical overview of proposed solution

2.3 Virtualization selection

2.3.1 QEMU

QEMU is an open-source machine emulator similar to VirtualBox1 or VMware2 and it is
able to emulate operating systems and get near-native performance by executing the guest
code directly on the host CPU, so it can execute the guest operating systems code on the
real CPU like if it was installed here [6].

1VirtualBox: https://www.virtualbox.org/
2VMare: https://www.vmware.com/

17

https://www.virtualbox.org/
https://www.vmware.com/

QEMU is a functionally accurate virtual emulation platform that can be used to develop,
debug, and run the software as it would be done on an actual development board using
exactly the same development tools. It executes code on instruction level, rather than clock
cycle level, which makes QEMU really fast. If used with KVM it can run virtual machines
at near-native speed. QEMU can also do emulation for user-level processes, allowing
applications compiled for one architecture to run on another. For example, the QEMU
simulation engine will take the arm v8 instruction or code and operands and will convert
them on the fly to the equivalent x86 instruction which will execute on your laptop’s
processor. The result of the instruction execution the operand value and the system state
will be reflected back into the arm create execution context which is a very powerful
approach that takes full advantage of the large powerful processor. QEMU is different than
Docker in a way that it enables to run software emulation fully without needing a host
kernel driver. It means QEMU doesn’t need a host virtualization support.

QEMU as an open-source emulator with performance advantage and ability to support
nearly 50 different machines including Xtensa3 and ARM4 boards which are compatible
with the ESP32 and Raspberry Pi devices emulation respectively makes it an easy choice
as an emulator to the answer for the type of emulation we needed, therefore answer our
RQ-1.1.

2.3.2 GDB

In the early days, in order to find a fault in the software, developers needed to "desk check"
the software by reviewing source code. Another method was adding a strategically-placed
serial output message in order to catch fault upon execution. The modern development
environment provides a new approach, which is using interactive tools to run the code
under a debugger.

GDB is the GNU Project Debugger is a powerful all-purpose debugger tool for C along
with many other languages like Pascal, Fortran. One of the main features of GDB is to
be able to debug programs remotely via a serial port, network connection, or some other
means. It runs on many popular UNIX and Windows-based operating systems and its a
command-line tool which means you interact with it in the terminal issuing command via
the keyboard instead of clicking buttons with your mouse. The debugger can also evaluate
arbitrary C expressions such as function calls on the remote target [7]. We will use GDB
to debug the application in the emulated ESP32 device.

3QEMU Xtensa https://wiki.qemu.org/Documentation/Platforms/Xtensa
4QEMU ARM: https://wiki.qemu.org/Documentation/Platforms/ARM

18

https://wiki.qemu.org/Documentation/Platforms/Xtensa
https://wiki.qemu.org/Documentation/Platforms/ARM

2.3.3 Docker

Docker is a software development platform and a virtualization technology that makes it
easy to develop and deploy applications inside packaged virtual containerized environments.
Containers running on have isolated CPU processes, memory, network resources and can
emulate hardware, and boot an entire operating system. Unlike VMs, the resources are
shared with the host. Traditional VMs have a hypervisor that occupies about 10 to 15
percent of the capacity of a host, but having no hypervisor lets Docker run hyperscale
numbers of containers on a host container because sit directly on top of the operating system
that gives answer to RQ-1.3 [8]. Using the Docker approach gives us rapid instantiation,
customizability, and portability of the components and having separate containers for
ESP32 and Raspberry PI eliminate threads sharing the same resources inside a single
container that makes way to faster emulation of the IoT devices. Having the Docker
approach also lets us scale up the number of instances easily that is useful for testing
real-world scenarios.

2.4 Emulated physical tools

2.4.1 ESP32-DevKitC

To expand the area of IoT applications, low-cost, low-power devices are required. ESP
32 has an integrated Wi-Fi and Bluetooth that uses the ESP 32 chip made by Chinese
Manufacturer Espressif Systems. The ESP32 system on the chip shipes with 5 mm x 5 mm
sized QFN packages and The ESP32-DevKitC is on other hand is board that uses ESP32
chip [9]. ESP32 supports a SDIO (Secure Digital Input Output) card is an extension of the
SD specification to cover I/O functions that supports UART, SPI, I2C, PWM serial data
communication protocols and has dual or single core versions of Tensilica Xtensa LX6
microprocessor [10]. Figure 3 shows the ESP32-DevKitC board.

2.4.2 Raspberry Pi

Raspberry Pi is a deck card-sized, cheap system on a chip SBC and recently it has become
one of the most popular platforms to host software projects. It costs around 35$ (USD)
and has different variations depending on need. As a small computer, it has everything to
connect to a monitor, keyboard, mouse, Internet. Most of the modern computers on the
market run Windows or Mac operating systems but the Raspberry Pi runs on Linux as its
desktop operating system, to be specific it’s a version of Linux called a Raspbian designed

19

Figure 3. ESP32-DevKitC board

specifically for the Raspberry Pi. Most importantly, Raspberry Pi has general-purpose
input-output pins or GPIO pins that are electrical signals to control IoT devices such as
LED lights, radio switches, audio signals, even LCD. It has a 64-bit quad-core ARM
Cortex-A53 processor with a clock speed of 1.2GHz and supports full HD output over
HDMI, onboard Wireless LAN, and Bluetooth, 3.5-millimeter audio jack and micro USB
[11].

2.5 Supporting tools

2.5.1 Ansible

Ansible is an IT automation engine that automates cloud provisioning, configuration
management, application deployment, intra-service orchestration, and many other IT needs.
Ansible doesn’t use agents and no additional custom security infrastructure is needed, so
it’s easy to deploy - and most importantly, it uses a very simple language (YAML, in the
form of Ansible Playbooks5) that allow you to describe your automation jobs in a way that
approaches plain English. Ansible deploys modules to nodes that are resource models of
the desired state of the system, usually over SSH, and when finishes, remove them. This
step requires no database, servers, or daemons [12].

5Ansible Playbooks: https://docs.ansible.com/ansible/latest/user_guide/
playbooks_intro.html

20

https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

Figure 4. Raspberry Pi board

3 of the available most famous IaC tools to automate configuration are Ansible6, Jenkins7

and Puppet8. We choose Ansible over other solutions because of an easy learning curve,
having no agents on the node, simplified automation that answers to RQ-1.4.

Ansible variables can be assigned in simple text files using subdirectory called ’group_vars/’
or ’host_vars/’ or directly in the inventory file. Ansible uses Playbooks to execute the
commands. They contain the particular steps that the user wants to perform. Playbooks are
one of the core features of Ansible and tell Ansible what to execute. In the IoT Environment
Lab, we used password authentication to configure Raspberry Pi and example Ansible
Playbook format taken from IoT Environment Lab source code [13] given in Appendix
1. Figure 5 illustrates how to setup MQTT broker9 in Raspberry Pi and ansible-playbook

command outputs.

2.5.2 CLI for IoT Environment Lab management

A CLI is a text-based UI that accepts text input to execute operating system functions.
Shell handles CLI and they are separated from the underlying OS kernel. To use a shell,
one must know the syntax of a scripting language [14]. Today most users prefer the GUI
offered by operating systems because they are being intuitive, easy to learn, requiring

6Ansible: https://www.ansible.com/
7Jenkins: https://www.jenkins.io/
8Jenkins: https://puppet.com/
9MQTT broker: http://mqtt.org/

21

https://www.ansible.com/
https://www.jenkins.io/
https://puppet.com/
http://mqtt.org/

Figure 5. Example ansible-playbook command output

recognition rather than recall, and being good for exploratory analyses and graphics. But
as the user of IoT Environment Lab is regular, not occasional, utilizing of CLI is preferred
rather than GUI as they need less overhead than GUI, and can be enhanced easily as the
source code is given in [13]. More information about the developed emu CLI is in Chapter
3.

2.5.3 ESP-IDF, ESP32 Development Framework

Choosing the right technology to develop the platform is one of the main tasks. To develop
in ESP32 the knowledge of C and C++ is needed. ESP32 code can be developed with
arduino-esp3210 or esp-idf 11 and both frameworks are developed by Espressif System,
the same company makes the ESP32 chip. The difference is, Arduino-esp32 is just a
wrapper around the ESP-IDF and simpler to work with. But for more serious embedded
development using an ESP-IDF framework is suggested. In this master thesis, an ESP-IDF
development framework is supported by CLI.

2.5.4 Ubuntu Server

Ubuntu is an open-source software operating system mostly composed of free and open-
source software that runs from the desktop to the cloud. It is an ancient African word,

10Arduino ESP32 https://github.com/espressif/arduino-esp32
11ESP-IDF: https://github.com/espressif/esp-idf

22

https://github.com/espressif/arduino-esp32
https://github.com/espressif/esp-idf

meaning "humanity to others". Ubuntu aims to provide easy-to-use, reliable, and open-
source Linux distribution that is based on Debian Linux [15]. Ubuntu 16.04 version is a
long-term support release based on Linux 4.4. Ubuntu makes setting up Docker so much
easy and it works with nearly any hardware or virtualization platform that gives an answer
to RQ-1.6 [16].

2.6 Conclusion

This chapter was dedicated to the choice of virtualization selection together with the
proposed solution. Most of the selection criteria based on the simplicity of usage, popularity
and compatibility of the system with other parts. A small description of the system is given
for each selection. We choose QEMU as an emulator for Raspberry Pi and ESP32 devices,
and Ubunutu 16.04 Server to host the QEMU application and Docker as a virtualization
platform that is managed by docker-compose. To automate the configuration of Raspberry
Pi Ansible is picked and emu CLI has been developed to manage the IoT Environment Lab
and ESP-IDF framework to develop in the ESP32 device.

23

3. System integration of IoT Environment Lab

The following sections provide details on the development of the proposed solution for
the IoT Environment Lab. First, in Section 3.1 setting up the IoT Environment Lab is
discussed. Next, in Section 3.2 running device on Qemu and how it is wrapped inside
Dockerfile for ESP32 with the answer to RQ-1.2 and followingly in Section 3.3 same for
the Raspberry Pi is talked about. In Section 3.4 combining both ESP32 and Raspberry Pi
containers under docker-compose is given. Section 3.5 describes the use-case of developed
CLI to manage deployment and IoT Environment Lab which answers RQ-2.1. Section 3.6
gives information on the Ansible inventory file and Section 3.7 provides an overview of
examples and getting started with IoT Environment Lab, Section 3.8 discuss what could be
done for future, Section 3.9 gives information on the test developed and Section 3.10 adds
related work part. Lastly, Section 3.11 wraps up everything described in this Chapter. This
Chapter also answers RQ-2.2.

3.1 Setup guide for the IoT Environment Lab

Even before cloning GitHub repository of the IoT Environment Lab and setting it up
certain release versions of programs are required which is described in Table 2. The git

and git LFS needed to clone the repository as modified Raspberry Image has a bigger size
and only content of this file can be stored in GitHub but file itself in Git LFS.

Table 2. Versions

Program Version
git *

git LFS *
ansible >= 2.7

ESP-IDF v4.2
Docker >= 19.*

docker-compose >= 1.25
click python package 7.21

sshpass *
python >= 3.7

The IoT Environment Lab should be run on the Linux, better in Ubuntu 18.04, as the
experts faced some issues with the other versions of Linux while setting up ESP-IDF or

24

you may use PlatformIO1 to setup ESP-IDF, but we have not tested it yet. Creating a
bootable Ubuntu 18.04 USB stick would be easy option. To set up, first clone the GitHub
repository of this thesis work with the command described in the code below:

$ g i t c l o n e h t t p s : / / g i t h u b . com / i s m a j i l v / docker−emu

Then build the IoT Environment Lab with the command below in the root directory of the
project:

$ sudo docker−compose b u i l d

The step builds the Raspberry Pi and ESP32 Containers and sets up the network of the Lab
with Docker Compose and the last thing that needs to be done is to setup emu cli which is
described more in Chapter 3.5. For that reason run:

$ cd c l i _ i n t e r f a c e

$ python3 −m p i p i n s t a l l −−e d i t a b l e .

This should setup emu-cli interface on your Computer which we talk more about in Chapter
3.5 and the examples to run on the IoT Environment Lab is described in Chapter 3.7.

3.2 Running ESP32 on Qemu and wrapping it in Dockerfile

The CPU of ESP32 microcontroller is developed by Tensilica which is known for its
customizable Xtensa configurable processor microprocessor core and starting from version
1.0 QEMU provides Xtensa architecture emulation [17]. There are 2 versions of modified
QEMU to emulate ESP32, one is patched by Espressif who also makes ESP32 chip2 and
Ebiroll3 ones. Espressif version is more accurate than Ebrioll’s one but lacks some features
like 1306 emulation which is OLED emulation, but Ebiroll’s intention is to use Espressif
one in the future [18]. We have been tested both QEMU by running different examples,
and Espressif’s one seems more stable, therefore for this and other reasons mentioned
above in this thesis work, Espressif’s QEMU modification has been chosen as an emulator
for ESP32. To emulate ESP32 qemu-system-xtensa program has been built from the source
code of fork of QEMU with patches for Espressif chips support that can run ESP-IDF built
applications and placed in the Github repository of this thesis. When compiled ESP-IDF
built applications, it creates a bootloader, partition table, and application itself which then
combined into bin file. This executable bin file is loaded on QEMU startup. But as the
IoT Environment Lab supports flashing and before flash operation QEMU needs to be

1PlatformIO: https://platformio.org/
2Espressif patched QEMU: https://github.com/espressif/qemu/
3Ebrioll patched QEMU: https://github.com/Ebiroll/qemu-xtensa-esp32

25

https://platformio.org/
https://github.com/espressif/qemu/
https://github.com/Ebiroll/qemu-xtensa-esp32

started, empty flash_image.bin file has been created and placed in the Github repository.
Appendix 2 shows how bin files is build that creates create a 4MB empty file filled with
0xff. It is possible to monitor and flash into ESP32, but then QEMU needs to be started
with different strapping mode. To overcome this and other issues emu CLI is built and
more information is given in Section 3.5. QEMU emulation with Espressif patches has
enabled Ethernet emulation, but it needs an ESP-IDF branch that has Opencores Ethernet
MAC driver support that is shipped after with ESP-IDF version 4.2. When compiling
ESP-IDF built application, enable CONFIG_EXAMPLE_CONNECT_ETHERNET=y and
CONFIG_EXAMPLE_USE_OPENETH=y to use the Ethernet emulation and use open_eth

network device. Detailed information about used options with ESP32 QEMU emulation is
described in Table 3

Table 3. Used ESP32 QEMU emulation options

Option Description
-nic user,model=open_eth,id=lo0 use open_eth network device

-gdb tcp::1234 start with GDB server,
waiting for connection on port 1234

-serial tcp::5555,server output serial on port 5555, wait for connection
hostfwd=tcp::3333-:3333 enable forwarding on port 3333,

use for socket conection
-global driver=esp32.gpio, set strapping mode

property=strap_mode,value=0x0f

and strapping moed choice in Table 4.

Table 4. ESP32 QEMU emulation strapping mode

Strapping mode value Description
0x12 flash boot mode (default)
0x0f UART-only download mode

The strapping mode value is chaged depending on if ESP-IDF compiled app should be
flashed or monitored with emu CLI usage. During the talk with an expert from the Espressif,
it is clarified that GPIO functionality in Espressif fork of QEMU is not implemented and
the Wi-Fi MAC hardware register interface is not documented by Espressif so that has
ruled out of the possibility of writing an emulator for it. Therefore, an Ethernet connection
is chosen to connect ESP32 and Raspberry Pi instead of the Wi-Fi which answers RQ-1.2.
During QEMU startup if (-bios) argument is not given ESP32 ROM code will be loaded,
which is already presented in GitHub repository4 and provided by Espressif.

It is sufficient to run ESP-IDF compiled application on QEMU but to fully virtualize the
4ESP32 rom: https://github.com/ismajilv/docker-emu/blob/master/esp32/

build/qemu-system-xtensa/esp32-r0-rom.bin

26

https://github.com/ismajilv/docker-emu/blob/master/esp32/build/qemu-system-xtensa/esp32-r0-rom.bin
https://github.com/ismajilv/docker-emu/blob/master/esp32/build/qemu-system-xtensa/esp32-r0-rom.bin

system the application is shipped in Docker Container. Dockerfile builds QEMU on top of
Ubuntu 16.04 and exposes 3 ports. Table 5 gives information numbers for each port and
their descriptions.

Table 5. ESP32 configured ports

Port Description
1234 To connect GDB
3333 To establish socket connection
5555 To output serial and conect idf.py monitor

3.3 Running Raspberry Pi on Qemu and wrapping it in Dockerfile

One of the main purposes of the IoT Environment Lab is to build in a way that mimics
working with real physical devices. Raspberry Pi has a GPIO subsystem that has digital
signal pins whose behavior includes whether PIN acts as an input or output and is con-
trollable by the user at run time. Users can set the voltage high or low depending on the
need with modified wiringPi library functions. Currently, QEMU does not support GPIO
functionality of Raspberry Pi board, therefore modified QEMU and modified version of
library wiringPi5 is used. WiringPi is a PIN-based GPIO access library written in C for the
BCM2835, BCM2836, and BCM2837 SoC devices. So it is compatible with the Raspberry
Pi board we are using. This modification is described in the paper [19]. Modified QEMU
has been built6 and placed in the Github folder of IoT Environment Lab together with
detect_gpio_changes executable file that is used by Docker. It is compiled from C code
that detects the GPIO state change and outputs it in form of serial output. Source code is
taken from [19]. To lessen the build time for docker-compose, lite version Debian “Jessie”
Release image has been used and modified to enable emulating Jessie image with 4.x.xx
kernel, ssh and support GPIO subsystem. To avoid executing an unimplemented SETEND
instruction need to comment out every entry in ./etc/ld.so.preload file and ./etc/fstab after
mounting Jessie image [20]. To enable the ssh placing empty file named ssh in the root
folder should be enough [21]. And the QEMU modification is described in the paper [19].
Table 6 gives information numbers for each port and their descriptions.

Table 6. Raspberry Pi configured ports

Port Description
2222 Forward connection over the tunnel back to the Pi on port 22
8000 Service port

Configuration of the emulated Raspberry Pi is more close to Raspberry Pi version 1.
5Wiringpi: http://wiringpi.com/
6Raspberry Pi build: https://github.com/ismajilv/docker-emu/blob/master/

raspberry/build

27

http://wiringpi.com/
https://github.com/ismajilv/docker-emu/blob/master/raspberry/build
https://github.com/ismajilv/docker-emu/blob/master/raspberry/build

3.4 Wrapping Dockerfiles into docker-compose

Compose is a tool for defining and running multi-container Docker applications and it
is a YAML file defining services, networks, and volumes. It connects the Raspberry Pi
and ESP32 containers. Version 3 of the Compose file format has been used. In our usage,
the Compose file defines port forwarding between containers and to the outside world.
Docker Compose file has been written in a way that, enables scaling of emulated ESP32
devices which means we can run n number of ESP32 devices simultaneously, but only
one Raspberry Pi. It will set up the network and will let the devices talk to each other. It
enables users to easily test out systems containing a scaled number of devices. After the
feedback on the issue related to failed start of IoT Environment Lab as Raspbian image not
found because of the git LFS was not installed, Docker Compose file updated to inform
the user with error in this case.

3.5 Emu CLI usage

Emu CLI is developed in Python programming language to address the few issues related
to IoT Environment Lab, also as an answer for RQ-2.1. This CLI is built on package called
Click7 and can be installed with pip which is the package installer for Python. Emu CLI is
compatible with the Python version of 3. Click is a highly configurable Python package for
creating beautiful CLI applications with as little code as possible. The CLI functions are
described in Appendix 3. One of the most important features of CLI is to restart QEMU
emulation for ESP32 with different strapping mode. ESP-IDF development framework
supports the flashing and monitoring of the ESP32 device. While emulating ESP32 device,
with strap_mode=0x0f option, the emulated chip is download mode. In a real development
board, esptoolṗy resets the chip into flash boot mode by DTR and RTS UART signals
after loading the program. But with QEMU emulation, esptool communicates with the
emulated chip over a TCP socket, so there are not DTR and RTS signals to toggle, and
the emulated chip stays in the download mode. To run the program after flashing, QEMU
needs to be restarted with different strapping mode, so it means someone needs to modify
the strapping mode and reset QEMU between these commands. This is done by CLI that
makes possible to use emu monitor after emu flash. emu flash command also builds ESP-
IDF built application by combining bootloader, partition table, and application. Another
important future is after scaling the ESP32 devices to certain number, you can give the
id of the device to the CLI command that can run the desired command on a specific
device. We can also see port information for a given device with emu eport command and
can connect to the socket if enabled via esocket. The echo example enables using socket

7Click package: https://click.palletsprojects.com/en/7.x/

28

https://click.palletsprojects.com/en/7.x/

for UART like communication8. Another functionality of CLI is to show the output of
Raspberry Pi GPIO states changes that is done by emu rgpio command and source code is
taken from [19]. It also lets the users ssh into Raspberry Pi, see the logs, start/stop/restart

the IoT Environment Lab that makes working with it intuitive. CLI’s function is described
in the Table 7.

Table 7. Emu CLI functions

Function Description Option Option Description
start Start IoT Environment Lab --scale-esp32 n Run n instances of ESP32
stop Stop IoT Environment Lab

restart Restart IoT Environment Lab
ssh SSH into raspbian

monitor Same as idf.py monitor --id n monitor nth device
flash Same as idf.py flash --id n flash into nth device
log Log output esp32 --id n nth device

or raspberry_pi
eport Get port information of ESP32 --id n nth device

esocket Connect to socket port of ESP32 --id n nth device
rgpio See raspberry pi gpio state

Emu CLI can scale up the IoT Environment Lab to have n number of ESP32 instances with
--scale-esp32 n option. Example for such command that runs one instance of Raspberry Pi
and two instances of ESP32 is given below:

$ emu s t a r t −−s c a l e −esp32 2

Then we can use option --id n with emu eport/esocket/flash/log/monitor commands to
work with specific ESP32 device. Here, the id is assigned to ESP32 devices by 1, 2, ... n,
depending on the number of instances running and default for --scale-esp32 option is 1.

3.6 Ansible to configure Raspberry Pi

Most of the examples related to Raspberry Pi needs to automate the configuration of the
device. Ansible works against “hosts” in our infrastructure at the same time, using a list
or group of lists known as inventory. Therefore ansible.cfg file is created in the inventory

folder of ansible. To enable communication with the node via ssh on port 2222, ansible
inventory file has been added with the content described in Appendix 4.

8echo example: https://github.com/ismajilv/docker-emu/tree/master/
examples/echo

29

https://github.com/ismajilv/docker-emu/tree/master/examples/echo
https://github.com/ismajilv/docker-emu/tree/master/examples/echo

3.7 Examples

The Github repo [13] of IoT Environment Lab comes with some examples that are shortly
described in Table 8.

Table 8. Examples description

Example Description
echo To echo user input to ESP32 from Raspberry Pi board
mqtt Mqtt client in esp32 connected to broker in raspberry pi

hello_gdb Simple hello world demonstration with use case of GDB
raspberry_gpio Usage of raspberry pi GPIO subsystem

To get familiar with IoT Environment Lab start with the examples9. In echo example,
2 numbers of ESP32 devices launch a TCP server that listens on a socket for incoming
characters. After receiving character data from the terminal, sends it to the server running
on Raspberry Pi via a POST request. Server running on Raspberry Pi keeps request data
in the list and it can be obtained by GET request. In mqtt example MQTT broker runs
on Raspberry Pi. ESP32 MQTT client publishes a message to test/message the topic via
MQTT protocol. Because it’s also subscribed to the same topic, it receives the message
itself. hello_gdb starts a FreeRTOS task to print "Hello World" and also demonstrate usage
of GDB with QEMU. And raspberry_gpio example shows how to use the Raspberry PI
GPIO subsystem with the IoT Environment Lab. Each example contains README with
separate esp32 and raspberry_pi folders that describe how to run them.

The whole system has been tested on Ubuntu 18.04 and there are some known issues with
Ubuntu 20.04 such as building up ESP-IDF from scratch and in WSL2 valid shell script
giving syntax errors10.

3.8 Further work on GPIO subsytem of ESP32

Espressif version of QEMU does not include patch for GPIO subsystem and has been left
empty in hw/gpio/esp32_gpio.c file of esp-develop branch. It rules out the possibility to
use GPIO functionality of ESP32 for now, but further work is needed to implement it. If
done, then other peripherals such as I2C, SPI can be implemented with GPIO bit-banging.
Also, the starting address of the RPI_GPIO device’s memory region would need to be
updated so that it can match the correct address for Raspberry 3. But this version in the
thesis should be enough to run most of the software except the ones very specific to the
newer ARM processor core families used in Raspberry Pi 2 and 3. The additional change

9Examples: https://github.com/ismajilv/docker-emu/tree/master/examples
10WSL issue: https://github.com/Microsoft/WSL/issues/2107

30

https://github.com/ismajilv/docker-emu/tree/master/examples
https://github.com/Microsoft/WSL/issues/2107

would be having a bridge on the interface eth0 between Host and Guest QEMU instead of
port forwarding that would add utilizing more ports than predefined ones.

3.9 Testing of emu CLI

Tests are one of the important parts of any Software development cycle. In order to validate
the quality of code, provide the visual feedback, and clarify the requirements tests are
developed. Software testing is categorized into functional and non-functional testing.
Based on the requirements criteria functional testing tests the activities or operations of
the application. On the other hand, non-functional testing checks the behavior of the
application. In the GitHub repository of this master thesis work, we have used Unit testing

to test the individual units in the emu CLI code11.

3.10 Related Work

To enable one computer system to behave like another one Emulation is needed. This
approach enables running OS in a virtual environment or playing Playstation games on PC.
For example, as a network administrator emulation is helpful when running an embedded
operating system from a computer that doesn’t normally support the operating system
which otherwise they would need separate machines to run a different OS. To cope with
IoT Systems better and to address numerous issues with real IoT devices, some virtualized
systems have been proposed. One of the customizable virtual labs called EMU-IoT is used
to model heterogeneous IoT networks to investigate how IoT applications will perform
on a specific network [4]. Heterogeneous in this context means the ability to extend and
easily add new IoT devices without disturbing the stability of the existing network. In
order to create this IoT network, 3 separate parts have been added to the EMU-IoT: the
IoT producers, the IoT gateways, and IoT applications. To achieve the sensor’s emulation,
a program in C has been developed that emits integer values every second via an HTTP
POST request to the virtual gateway which in itself cannot be considered as fully hardware
emulation. By monitoring the application in terms of load tests CPU utilization is measured
for the running IoT application together with running sensors and this collected data then
is used to build a performance model to predict the CPU utilization that it would reach
depending on the number of IoT devices. For example, they have computed a regression
function to make a prediction about the number of devices required in order to CPU
resource hit 60-70% capacity usage. This paper described the study mainly focusing on
stress test IoT applications, rather than IoT device emulation. One of the take-away is
the design pattern which is to separate the resource as much as possible such as using a

11Testing of emu CLI: https://github.com/ismajilv/docker-emu/blob/master/cli_interface/test.py

31

containerized approach to comply with heterogeneity.

In 2015, an IoT emulation environment with COOJA has been proposed which can emulate
Contiki systems but cannot emulate for example Raspberry Pi [22].

Many proposed solutions look at the process of IoT Gateway emulation which is the
communication between sensors by means of general-purpose Internet protocols, but not
the embedded software development side. This would require the emulation of IoT devices
and the integration of different parts together. The IoT Environment is a step toward
overcoming this problem and helping to improve IoT skills in an easy way for students
and IoT developers to test out scripts before deploying to actual devices, learn about how
to develop a software for embedded devices, evaluate the performance of the software
and do stress testing for the application they want to deploy. In a nutshell, IoT wants to
connect all potential objects to interact with each other on the internet in a secure means,
therefore establishing a connection between IoT devices in the virtualized IoT lab is one of
the requirements.

3.11 Conclusion

Throughout this chapter, we state design for IoT Environment Lab mainly taking into
account ESP32 and Raspberry Pi. Having QEMU as the emulator is an easy choice as it is
open source and fast compared to other competitors. We choose Espressif patched version
of QEMU emulation for ESP32, as it has better stability and very good documentation
of usage instead of Ebiroll’s one. For the QEMU emulation of Raspberry Pi, we take
advantage of [19], as it provides GPIO functionality, but with additional modifications to
Jessie image to run it under QEMU with SSH support and eliminating error proneness.
To automate the configuration of Raspberry Pi Ansible IaC has been chosen over other
solutions that are really simple to use. Solutions for common problems have been added
to the examples folder in the Github repository of the project that also helps users to get
familiar with IoT Environment Lab. To mimic the experience and have helper functions,
emu CLI has been developed with documentation and added to the Github repository, which
also solves the problem of starting ESP32 QEMU application with different strapping
modes to enable using flash and monitor at the same time.

32

4. Evaluation

Evaluation is an essential activity to measure the outcome of the proposed solution. We
want to see how well the proposed functionality in artifact fits the real-world scenarios,
and what are the user’s expectations and benefits it carries for potential.

4.1 Evaluation method

It was hard to reach to more people to try the lab but having feedback from knowledgeable
experts who understand the concept very well would be considered as an important addition
to further evaluation of proposed solution with addition of the some modifications if needed
based on feedback. There are 2 main roles in proposed artifact: users and service which in
itself is consisted of 2 parts: raspberry and esp32. Experts perform various tests and try to
implement their day-to-day activities in the IoT Environment Lab to measure the wellness
of proposed artifact. To get the answers to necessary questions Questionnaire Form given
in Appendix 5 has been formed and sent to experts with additional Github URL, so they
can try the IoT Environment Lab and write their feedback.

4.2 Evaluation result

Overall, the proposed solution was liked by experts. One of the main issues was setting
up the IoT Environment Lab. The issues were related to with different OS and even with
different versions of same OS some packages there were bugs and some package needs to
be installed additionally. 2 of these bugs shortly described in Chapter 3. Other than that
certain versions of the packages needs to be used that was not clarified very well before
and therefore to address all these issues Docker Compose build file has been updated and
Setup guide for the IoT Environment Lab Section is added in Chapter 3 with the required
packages to install. Having the summary table where it would clearly what functionality
is missing from the virtualized environment compared to actual hardware is suggested
and the table is added to Conclusion Section of Chapter 5. To address the experience
working with physical and emulated devices in terms of user experience, deployment, and
maintenance it is noted that using IoT Environment lab was a seamless experience and for
many things the physical boards were not necessary and emu CLI had enough functions to
perform most of the basic tasks, but it would be great to see the commands used under the

33

emu CLI for debugging reason which resulted in updating emu CLI commands to echo
sub-commands. Emulating sensors and actuators, on the other hand, may feel different but
it would need further addition to the emu CLI. To answer the lab’s point to perform their
day-to-day activities with the ESP32 or Raspberry Pi, experts mentioned that it was pretty
convincing already - fast testing and prototyping, no need to carry the devices around, and
the possibility to test embedded software in CI setting, accessibility of the system to a
large number of students and easy way to test out systems containing a scaled number of
the device. The primary application of the system will be in teaching and learning. To
point what addition would make sense to IoT Environment Lab, it was noted that having
emulation of sensors and actuators would be a huge plus. After this feedback, GPIO
subsystem emulation has been added as a starting point to Raspberry Pi emulation that is
discussed in Chapter 3. Another expert suggested having a way to manage the number of
devices and command line support for addressing a particular device in a larger network
of devices. To address this feedback, emu CLI and Docker Compose file are updated to
support scaling up the n number of ESP32 devices with Raspberry Pi including network
setup.

Another thing is to have an installation script that can be considered as further work keeping
in mind it is not easy to make one general install script for different OS. This could be
solved by PlatformIO1 that handles setting up desired framework for ESP32.

1PlatformIO: https://platformio.org/

34

https://platformio.org/

5. Summary

In this chapter, we summarize the thesis, answer the main research questions, initially
outlined in Chapter 1. Section 5.1 introduces a general conclusion of this thesis, Section 5.2
gives the answers for research questions. Then in Section 5.3 we talk about the limitations
faced in this thesis. And finally, Section 5.4 provides an overview of future work.

5.1 Conclusion

This thesis is dedicated to bringing a solution to the potential system of recreating emulated
RTOS based ESP32 together with Linux based Raspberry PI on top of OS-level virtual-
ization, where valid IoT development evaluations can be performed among students and
professionals. The proposed artifact handles emulating both Raspberry Pi and ESP32 board
that offers some advantages. Firstly it emulates both Raspberry Pi and ESP32 devices and
connects these 2, secondly, it mimics the experience with working real physical devices
with the help of emu CLI, support scaling up and lastly, it comes with different examples
that show use case for common IoT solutions with coupled usage of Raspberry Pi and
ESP32. As a summary of what functionalities can be used for ESP32 and Raspberry Pi,
Ethernet is enabled for both, but Wi-Fi and Bluetooth are not working, from the peripherals,
perspective GPIO subsystem can be used for Raspberry Pi but not for ESP32. Other than
that, ESP32 supports flash and monitor operations and both can run any application that
doesn’t require hardware functionalities. Short summary table given in Table 9

Table 9. Functionalities summary for ESP32 and Raspberry Pi

Functionality Raspberry Pi ESP32
WIFI $ $

Ethernet " "

Bluetooth $ $
Peripherals GPIO UART (limitied)

Applications Any application requiring Any application requiring
no hardware no hardware

Additional monitor and flash

35

5.2 Answering research questions

In Chapter 1, we have stated the main research question as follows: How to provide an

embedded code development environment with an emulated IoT lab that can be used as a

learning environment before starting with the real physical devices?. For the purpose of
reaching the answer, we have divided it into 2 sub-questions. The summary of answers for
each question is defined below.

RQ-1: How to set up the IoT Environment Lab? As the main purpose of this master
thesis is to make the IoT Environment Lab accessible to everyone, we decided to go with
the virtualization method and built the Lab on top of it that made way to easily shuttle Lab
between different environments. To set up the IoT Lab Environment selection criteria of
different software based on the simplicity of usage, popularity, and compatibility of the
system with other parts.

RQ-2: How to get users to be familiar with IoT Environment Lab? To answer this
sub-question, examples folder have been developed together with emu CLI that addresses
some issues with QEMU emulation. Examples folder shows both use case of emu CLI and
holds C code with ESP-IDF library usage to describe the solution and Ansible Playbooks
file to configure Raspberry Pi. CLI describes the most useful functions to make working
with IoT Environment Lab easily. Having GPIO support for Raspberry Pi provides user
experience to work with the Raspberry Pi GPIO subsystem.

5.3 Limitations

Several limitations in research are faced in different parts of this thesis. First, GPIO
functionality in Espressif fork of QEMU is not implemented and the Wi-Fi MAC hardware
register interface is not documented by Espressif so that has ruled out of the possibility of
writing an emulator for it. Therefore, an Ethernet connection is chosen to connect ESP32
and Raspberry Pi instead of the Wi-Fi. Secondly, the GPIO subsystem is not implemented
for ESP32 but Raspberry Pi.

5.4 Future work

The research should be conducted to further develop QEMU with Espressif patches to
support the GPIO subsystem of ESP32. It would lead to having some peripheral emulation
which is very needed functionality. Other than that, the starting address of the RPI_GPIO

device’s memory region would need to be updated so that it can match to the correct

36

address for Raspberry 3. But this version in the thesis should be enough to run most of the
software except the ones very specific to the newer ARM processor core families used in
Raspberry Pi 2 and 3. The additional change would be having a bridge on the interface
eth0 between Host and Guest QEMU instead of port forwarding that would add utilizing
more ports than predefined ones.

37

Bibliography

[1] In Lee and Kyoochun Lee. “The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises”. In: Business Horizons 58.4 (2015), pp. 431–
440. ISSN: 0007-6813. DOI: https://doi.org/10.1016/j.bushor.
2015.03.008. URL: http://www.sciencedirect.com/science/
article/pii/S0007681315000373.

[2] IoT Analytics. IoT 2019 in Review: The 10 Most Relevant IoT Developments of

the Year. https://tools.ietf.org/html/rfc2324. [Accessed: 12-01-
2020].

[3] Rob van Kranenburg and Alex Bassi. “IoT Challenges”. In: Communications in

Mobile Computing 1.1 (Nov. 2012). DOI: 10.1186/2192-1121-1-9. URL:
https://doi.org/10.1186/2192-1121-1-9.

[4] Brian Ramprasad et al. “EMU-IoT-A Virtual Internet of Things Lab”. In: 2019 IEEE

International Conference on Autonomic Computing (ICAC). IEEE. 2019, pp. 73–83.

[5] Bart Rem et al. “Automatic Handel-C generation from MATLAB® and Simulink®
for motion control with an FPGA”. In: vol. 63. Sept. 2005, pp. 43–69.

[6] Daniel Bartholomew. “QEMU: a multihost, multitarget emulator”. In: Linux Journal

2006 (2006), p. 3.

[7] Bill Gatliff. “Embedding with GNU: GNU debugger”. In: Embedded Systems Pro-

gramming 12 (1999), pp. 80–95.

[8] Charles Anderson. “Docker [software engineering]”. In: IEEE Software 32.3 (2015),
pp. 102–c3.

[9] Alexander Maier, Andrew Sharp, and Yuriy Vagapov. “Comparative analysis and
practical implementation of the ESP32 microcontroller module for the internet
of things”. In: 2017 Internet Technologies and Applications (ITA). IEEE. 2017,
pp. 143–148.

[10] Wikipedia contributors. ESP32 — Wikipedia, The Free Encyclopedia. [Online;
accessed 18-January-2020]. 2020. URL: https://en.wikipedia.org/w/
index.php?title=ESP32&oldid=963206594.

[11] Matt Richardson and Shawn Wallace. Getting started with raspberry PI. " O’Reilly
Media, Inc.", 2012.

38

https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008
http://www.sciencedirect.com/science/article/pii/S0007681315000373
http://www.sciencedirect.com/science/article/pii/S0007681315000373
https://tools.ietf.org/html/rfc2324
https://doi.org/10.1186/2192-1121-1-9
https://doi.org/10.1186/2192-1121-1-9
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=963206594
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=963206594

[12] Red Hat Ansible. How Ansible Works. URL: https://www.ansible.com/
overview/how-ansible-works.

[13] Tural Ismayilov. QEMU system emulation for Raspbian Stretch Lite and ESP32.
https://github.com/ismajilv/docker-emu/. 2020.

[14] Margaret Rouse. What is command line interface (CLI)? - Definition from

WhatIs.com. Apr. 2018. URL: https://searchwindowsserver.techtarget.
com/definition/command-line-interface-CLI.

[15] Richard Petersen. Ubuntu 18.04 LTS Desktop: Applications and Administration.
surfing turtle press, 2018.

[16] Jack Wallen. Ubuntu Server: A cheat sheet. Mar. 2017. URL: https : / /
www.techrepublic.com/article/ubuntu-server-the-smart-

persons-guide/.

[17] Xtensa on QEMU. URL: http://wiki.linux-xtensa.org/index.php/
Xtensa_on_QEMU.

[18] Ebiroll. Ebiroll/qemuesp32. URL: https://github.com/Ebiroll/qemu_
esp32.

[19] Evan Robert Platt. “Virtual peripheral interfaces in emulated embedded computer
systems”. In: (2016). URL: https://repositories.lib.utexas.edu/
handle/2152/46169.

[20] dhruvvyas90. dhruvvyas90/qemu-rpi-kernel. URL: https://github.com/
dhruvvyas90 / qemu - rpi - kernel / wiki / Emulating - Jessie -

image-with-4.x.xx-kernel.

[21] dhruvvyas90. SSH (Secure Shell). URL: https://www.raspberrypi.org/
documentation/remote-access/ssh/README.md.

[22] BA Bagula and Zenville Erasmus. “Iot emulation with cooja”. In: ICTP-IoT work-

shop. 2015.

39

https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://github.com/ismajilv/docker-emu/
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://www.techrepublic.com/article/ubuntu-server-the-smart-persons-guide/
https://www.techrepublic.com/article/ubuntu-server-the-smart-persons-guide/
https://www.techrepublic.com/article/ubuntu-server-the-smart-persons-guide/
http://wiki.linux-xtensa.org/index.php/Xtensa_on_QEMU
http://wiki.linux-xtensa.org/index.php/Xtensa_on_QEMU
https://github.com/Ebiroll/qemu_esp32
https://github.com/Ebiroll/qemu_esp32
https://repositories.lib.utexas.edu/handle/2152/46169
https://repositories.lib.utexas.edu/handle/2152/46169
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki/Emulating-Jessie-image-with-4.x.xx-kernel
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki/Emulating-Jessie-image-with-4.x.xx-kernel
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki/Emulating-Jessie-image-with-4.x.xx-kernel
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md

Appendices

Appendix 1 - Example Ansible Playbook

−−−

− name : Se tup r a s p b e r r y p i

h o s t s : p i

t a s k s :

− name : Wait f o r c o n n e c t i o n

w a i t _ f o r _ c o n n e c t i o n :

d e l a y : 10

t i m e o u t : 150

− name : I n s t a l l m o s q u i t t o and l s o f

a p t :

name :

− m o s q u i t t o

− l s o f

u p d a t e _ c a c h e : yes

a u t o c l e a n : yes

s t a t e : p r e s e n t

become : True

− name : K i l l p r o c e s s i n p o r t 8080

s h e l l : " p k i l l −9 $ (l s o f − t − i : 8 0 0 0) "

i g n o r e _ e r r o r s : yes

− name : L i s t e n on p o r t 8000

become : yes

b l o c k i n f i l e :

p a t h : / e t c / m o s q u i t t o / m o s q u i t t o . con f

b l o c k : |

l i s t e n e r 8000

− name : R e s t a r t m o s q u i t t o s e r v i c e

40

become : yes

s h e l l : " / e t c / i n i t . d / m o s q u i t t o r e s t a r t "

41

Appendix 2 - ESP32 image builder

! / u s r / b i n / env bash

s e t −e

a r g _ p r o j e c t =$1

a r g _ f l a s h i m g =$2

i f [−z " $2 "] ; t h e n

echo " Usage : make−f l a s h −img . sh f l a s h _ i m g _ f i l e . b i n "

echo " i f no param g i v e n we used d e f a u l t name f l a s h _ i m g . b i n "

a r g _ f l a s h i m g =" f l a s h _ i m a g e . b i n "

f i

rm −vf f l a s h _ i m a g e . b i n

dd i f = / dev / z e r o bs =1024 c o u n t =4096 of =${ a r g _ f l a s h i m g }

dd i f = b u i l d / b o o t l o a d e r / b o o t l o a d e r . b i n bs =1 seek =$ ((0 x1000))

o f =${ a r g _ f l a s h i m g } conv= n o t r u n c

dd i f = b u i l d / p a r t i t i o n _ t a b l e / p a r t i t i o n − t a b l e . b i n bs =1

seek =$ ((0 x8000)) o f =${ a r g _ f l a s h i m g } conv= n o t r u n c

dd i f = b u i l d / ${ a r g _ p r o j e c t } bs =1 seek =$ ((0 x10000))

o f =${ a r g _ f l a s h i m g } conv= n o t r u n c

42

Appendix 3 - Emu CLI - Functions

Usage : emu [OPTIONS] COMMAND [ARGS] . . .

O p t i o n s :

−−h e l p Show t h i s message and e x i t .

Commands :

f l a s h Same as i d f . py f l a s h

l o g [' esp32 ' , ' r a s p b e r r y _ p i '] l o g one of t h e d e v i c e l o g s

m o n i t o r Same as i d f . py m o n i t o r

r e s t a r t R e s t a r t IoT l a b e n v i r o n m e n t

r g p i o See r a s p b e r r y p i gp io s t a t e

s s h SSH i n t o r a s p b i a n

s t a r t S t a r t IoT l a b e n v i r o n m e n t

s t o p Stop IoT l a b e n v i r o n m e n t

43

Appendix 4 - Ansible inventory file

[a l l : v a r s]

a n s i b l e _ u s e r = p i

a n s i b l e _ s s h _ p a s s = r a s p b e r r y

a n s i b l e _ s s h _ e x t r a _ a r g s ='−o UserKnownHostsFi le = / dev / n u l l

−o S t r i c t H o s t K e y C h e c k i n g =no '

[p i]

l o c a l h o s t :2222

44

Appendix 5 - Questionnaire form

� What was the challenging part about setting up and running the Lab, what would
you improve about it?

� How similar the experience is between working with the physical and emulated
devices in terms of user experience, deployment, and main?

� How would an emulated IoT Environment Lab ease your day-to-day activities with
the real ESP32 or Raspberry Pi device?

� What you would like to add to the emulated IoT Environment Lab?

� What additional tasks do you think would be beneficial to try on such an emulated
environment?

� How would you rate the ease of use of the emulated IoT Environment Lab, do steps
taken to run system reasonably understandable, or would like to enhance it? If so,
please provide a bit of detail.

� General thoughts on the emulated IoT Environment Lab?

45

	List of Figures
	List of Tables
	Introduction
	Research motivation
	Research questions
	Thesis structure

	Background
	Proposed solution
	Requirements
	Virtualization selection
	QEMU
	GDB
	Docker

	Emulated physical tools
	ESP32-DevKitC
	Raspberry Pi

	Supporting tools
	Ansible
	CLI for IoT Environment Lab management
	ESP-IDF, ESP32 Development Framework
	Ubuntu Server

	Conclusion

	System integration of IoT Environment Lab
	Setup guide for the IoT Environment Lab
	Running ESP32 on Qemu and wrapping it in Dockerfile
	Running Raspberry Pi on Qemu and wrapping it in Dockerfile
	Wrapping Dockerfiles into docker-compose
	Emu CLI usage
	Ansible to configure Raspberry Pi
	Examples
	Further work on GPIO subsytem of ESP32
	Testing of emu CLI
	Related Work
	Conclusion

	Evaluation
	Evaluation method
	Evaluation result

	Summary
	Conclusion
	Answering research questions
	Limitations
	Future work

	Bibliography
	Appendices
	Appendix 1 - Example Ansible Playbook
	Appendix 2 - ESP32 image builder
	Appendix 3 - Emu CLI - Functions
	Appendix 4 - Ansible inventory file
	Appendix 5 - Questionnaire form

