

1

Security Benefits for Agile Software Development

S. Hassan Adelyar

Institute of Informatics,

Tallinn University,

Tallinn, Estonia

adelyar@tlu.ee

Alex Norta

Department of Informatics,

Tallinn University of Technology,

Tallinn, Estonia

alex.norta.phd@ieee.org

Abstract-Agile methodologies such as scrum and Extreme

Programming (XP) are efficient development processes by

accepting changes at any phase and delivering software

quickly to customers. However, these methodologies have

been criticized because of the unavailability of security as an

important quality goal of software systems. Although there

are pre-existing research results on this topic, there is no

pure approach for identifying security benefits of agile

practices that relate to the core “embrace-changes”

principle of agile. Specifically, we analyze agile practices to

find the security benefits in customer- and developer

activities. Identifying these benefits supports the secure

development of software using an agile methodology.

Keywords-Agile; Development-process; Embrace-changes;

Software-security; Security-benefits; Security-principles

I. INTRODUCTION

The aim of this paper is to analyze agile practices in order

to identify security benefits during software-development

processes throughout the customer- and developer activities.

Agile is an iterative and incremental software development

approach and each iteration involves the team to go through a

full development cycle [1]. The focus of agile is on developers

and customers with the objective to produce working software

quickly [2], [3], [4]. Today, many software-development

organizations are using agile software development because

agile produces faster and more cost-effective software solutions

while maintaining a high rate of customer satisfaction [5], [6],

[7], [8], [9], [10], [3]. However, agile methodologies such as

extreme programming (XP) and scrum do not pay attention to

security features because the working software and iterative

delivery are the primary measure of success [9], [11]. At the

same time, considering the current attacking landscape, security

is an important non-functional requirement of software

products.

Since software security is a quality aspect, therefore it is

important to think about security at each stage of software

development. Agile practices are carried out by developers and

it is necessary to consider security issues during the

development process throughout the customer- and developer

activities. According to [12], software is vulnerable to threats

that may occur during software-development processes and

inadequate practices of software development can lead to

insecure software [13].

One way to incorporate security into a development team

is by identifying security benefits of agile practices. These

benefits improve security of software by incorporating security

principles [14] into agile features such as customer- and

developer interaction, short iterations and responses to changes.

Applying and incorporating security principles into agile

processes from the early stages of software development,

supports developers to adopt agile methodologies for secure

software development [15], [16]. Therefore, our aim is to

analyze agile practices in order to identify security benefits

based on the security principles defined in [14]. Security

principles are a criteria for measuring and identifying security

benefits in developer- and customer activities. Experiences of

practitioners show that security principles guide the design and

implementation of software without security flaws.

This paper demonstrates how to improve agile

methodologies for producing secure software by considering the

security benefits of agile. This is accomplished by analyzing

agile practices to identify what activities of customers and

developers are most beneficial for secure agile software

development. This paper is a continuation of our previous work

in which we analyzed agile practices in order to identify security

challenges based on the security principles [17]. The results of

this paper assist software developers to understand where to

integrate security measures and which software development

phases are important in order to develop secure software.

We conduct case-study based research [18] about the

development process of applications that follows agile practices

to analyze the relationship between security principles [14] and

security benefits of agile practices. For data collection, we use

both interviews and focus-group methods. During the case

study, our special attention is to identify what activities of

customers and developers are most compatible and beneficial

for secure agile software development.

The rest of the paper is organized as follows. Section II

provides a summary of existing literature. Section III contains

additional information relevant for agile practices, software

security and security principles. Section IV presents a brief

overview of our case-study approach. In Section V, we present

the results of our research. Finally, Section VI concludes this

paper by summarizing the research work, giving the

contributions achieved and showing directions for future work.

II. RELATED WORK

There exist many publications that criticize agile

methodology because of unavailability of security elements in

its development phases. On the other hand, in response to the

increasing rate of security issues caused by security

2

vulnerabilities in software products, many researchers publish

about security integration with agile practices [19], [20] and

[21]. Researchers also found that many of the agile practices

comply for building secure software [22], [23], [24]. These

works and publications aim at adopting agile practices to secure

software development.

A group of researchers study agile practices and discuss its

potential benefits for secure software development [25], [26],

[27], [28], [11]. Other researchers study agile methodology for

integrating security into a specific practice, such as refactoring,

in order to take advantage of these practices for secure software

development [29], [30].

However, based on literature, we found a gap pertaining to

a holistic approach for identifying security benefits in agile

practices based on a set of security principles [14]. Applying

security principles at the early stage of software development is

a better solution for producing secure software [16], [15]. Since

agile focuses on communication, self-organization and the

collaboration between developers and customers, therefore

applying security principles on developer- and customer

activities helps the developer team to understand security

concern. Our approach also aims at increasing the security

knowledge of developers by considering security related parts

in agile practices.

III. BACKGROUND

In this section we briefly explain the concepts that are

useful in understanding our approach. Agile practices, described

in Section III-A, software security, described in Section III-B

and security principles, described in Section III-C, are important

elements in our research.

A. Agile Software Development
Agile is a dominant approach for software development

and it is based on the concept of agility. In general, agility is the

ability to provide effective response to change, communication

among team members and delivery of working software in short

duration. Agile methods such as extreme programming, scrum

and adaptive software development are all based on a set of

general principles that are defined by the agile alliance and

manifesto of agile software development [31].

The cornerstone of agile methodologies is the practices

that help to produce software quickly. The twelve practices of

agile are: planning-game, on-site customer, metaphor, small-

releases, simple-design, pair-programming, collective-

ownership, coding standards, 40-hour-week, continuous-

integration, refactoring and testing.

For our research, we categorize these practices into three

phases: the main practice in the first phase is the planning-game

practice. Four other practices, indirectly involved, are on-site

customer, metaphor, simple-design and small-release. The on-

site customer practice is to involve the customer for writing and

prioritizing user stories. Small-releases and simple design

practices means it is up to the customer of the software to make

important decisions. The second phase includes the practices to

implement the user stories and the main practice in this phase is

pair programming in which two programmers are coding

together. Other practices involved in this phase are coding-

standards, simple-design, small-releases, collective-ownership

and 40-hour-weeks. In the last phase, the implemented features

in the current iteration are integrated to the software and

continuous integration is the main agile practice in this phase.

Pertaining to the simple-design and refactoring practices, the

developers constantly redesign and refactor relevant parts of the

system. The testing practice of agile is to achieve the desired

quality of the software.

B. Software Security
Security is a quality aspect of a system property that

reflects the ability to protect itself from accidental or deliberate

attacks. Security is a composite of the attributes confidentiality,

integrity, availability and accountability [32], [33].

Confidentiality is defined as the prevention of unauthorized

exposure of software code and execution. Integrity is the

preventions of software code and execution from unauthorized

alterations, amendment or deletion. Availability is the ability of

software to be available when needed, executed in a predictable

way and delivers results in a predictable time frame.

Accountability is the availability and integrity of the identity of

the person who performs an operation.

C. Security Principles
Security principles are defined by [14] and guide a

software design and implementation without security flaws.

These principles are concepts or guidance that can be followed

to develop secure systems during a software development stage.

Applying security principles on the software development

process also helps non-security expert developers to understand

security concerns. The following is the list of security principles

[14]:

Separation of Privileges: To develop secure software, the

development process needs to verify the identity of developers

and customers based on their privileges and responsibilities.

Least Common Mechanism: Minimize the amount of

mechanism common to more than one user. That means

customer- and developer activities in each practice of agile

should be controlled separately.

Least Privileges: Every program and every user of a

system should operate using the least set of privileges necessary

to complete a job.

Complete Mediation: Every access to every object must

be checked for authority.

Fail-safe Defaults: The default situation is lack of access,

and the protection scheme identifies conditions under which

access is permitted.

Economy of Mechanism: Keep the design as easy, simple

and small as possible.

Psychological Acceptability: Design the human

interfaces for ease of use, so that users routinely and

automatically apply the protection mechanisms correctly.

Open Design: The design should not be secret and the

mechanisms should not depend on the ignorance of potential

attackers.

In the following section we describe our case study

approach. Our case study consists of: case study design,

3

validation procedures, data collection procedure and data

analysis procedures.

IV. CASE STUDY DESIGN

We choose a case-study based research method [18] and

our aim is to identify security benefits in developer- and

customer activities of agile practices based on the security

principles as listed in Section III-C. Our aim is refined into the

following research questions: How to identify agile security

benefits during changes to software? To establish a separation

of concerns, the main research question is divided into the

following sub questions: What are security benefits of response-

to-changes based on security principles? What are the tasks that

improve security benefits in agile software development? Which

agile practices have more security benefits?

We answer these questions with our case-study data

collection and analysis. The case for our study is a software

development process using agile practices described in Section

III-A [18]. We select three different software development

teams in Kabul city for interviews and one group of six

developers as a focus-group. The subject for our study is

security benefits in agile practices. Our case study has a

deductive nature and therefore, we pose a set of hypotheses for

the research. The main goal for using hypotheses is to identify

security benefits based on the security principles, therefore we

derive the hypotheses from security principles.

According to the security principles of Section III-C, a

secure system can be studied by assessing four main

characteristics which are: separation, restriction, simplicity and

awareness [34]. Separation supports the accountability attribute

of security. Accountability requires a clear definition of roles

and responsibilities for each team member. The principles of

“Separation of Privileges” and “Least Common Mechanism”

help separation. These two principles support the accountability

attribute of security. Restriction supports the confidentiality

attributes of security. The principles of “Least Privileges”,

“Complete Mediation” and “Fail-safe Default” help restriction.

Based on these three principles each member of the

development team should be given only enough privileges to

perform their duties. Integrity requires validation of activities

and system-wide view and controls. Simplicity assures that the

development- team activities are valid and correct. The

principles of “Economy of Mechanism”, “Psychological

Acceptance” and “Open Design” help simplicity. Therefore,

these tree principles also support integrity of the development-

team activities. Software- developer attention and awareness is

required to supports confidentiality, integrity, availability and

accountability.

The following hypotheses are inferred from security

principles and they are related to the above mentioned

characteristics of a secure system.

(i) Continuous changes-to-software renders the process of

separation of privilege easier that support accountability.

(ii) Continuous changes-to-software makes it easier to

control the system-wide view of the software to support

confidentiality and availability.

(iii) Continuous changes-to-software help the simplicity of

software, which supports integrity.

(iv) Continuous changes-to-software improve the developer

attention and supports confidentiality, integrity,

availability and accountability.

The above hypotheses provide a useful bridge between

security attributes, security principles and the interview with

focus-group questions. Each hypothesis has a specific and clear

aim and the collected data will confirm or reject that aim. These

hypotheses, derived from the security principles, guide the

preparation of focus-group and interview questions for

gathering data about agile security. The results of analysis,

either confirm or reject the hypotheses, which leads to either

confirmed or rejected theories about agile security [18].

A. Validity Procedures
For improving the data validity, we carefully design our

study implementing the qualitative investigation measures and

data validity rules in all phases of our case study. For ensuring

credibility, we carefully infer hypotheses from security

principles [14] and then we deduce the interview questions from

the hypotheses. Since the direct questions about security are

difficult to answer, we use security principles as a bridge

between the knowledge level of the researchers and

interviewees. During the interviews, for some questions, an

iterative questioning method is used for establishing more

clarity of the questions. The collected data we code in such a

way that the most serious threats to data validity are avoided.

During the analysis phase we take care to correctly generalize

our findings.

B. Data Collection Procedures
For answering our research questions we use two direct

data collection methods that are focus-group discussions and

interviews. We consider a focus-group comprising six

developers and conduct interviews with 10 software developers.

All the interviewees and focus-group members use an agile

software development methodology and each member of the

team has at least experience from three software-development

projects. The interview questions are derived from the

hypotheses, listed in Section IV-A, which are ordered according

to security principles listed in Section III-C. The same questions

are asked for the three main phases of agile practices, planning-

game, pair-programming and continuous-integration. The

mentioned three phases are collaborative and the activities of

developers and customers in these practices are interdependent.

The interviews and focus-group discussions are audio recorded

into WMA multimedia files.

C. Analysis procedure
The main goal of analysis is to understand whether

theories about the security benefits in agile practices are valid

by testing the hypotheses. To achieve this goal, we analyze the

collected data with the following steps:

4

1) First we formulate a set of themes that group the related

codes. Each theme belongs to a hypothesis.

2) We read all the texts in the collected data and mark where the

codes fit into the themes.

3) Results of the coding are analyzed per theme and presented.

Table I shows our predefined themes and a brief description

from which a corresponding theme is derived.
Table I: Themes and Themes description

Theme Theme Description

Separation of
privileges

To see how continuous changes to
software make the process of separation
of privilege easier to implement.

Restriction of
privileges

Restrict privileges, check every access
and deny access during mistakes.

Software
simplicity

Make the design of software simple,
small and easy.

Improve
attention

To see how continuous changes to
software improve the developer
attention.

The above themes are derived from our research

hypotheses and deduced from security principles that relate to

our research questions. During software development, if the

activities of developers and customers are in compliance with

the security principles, then it reduces security flaws and

vulnerabilities in the software.

Table II and Table III show the coding results for the

focus-group discussions and interviews respectively. We use a

simple formula to evaluate what codes have more value for

analysis. The formula is:

Code-value = Sources * Phases

In this formula, sources denote how many attenders in the

focus-group or interview mention the code and phases denote

the availability of code in the three main phases of agile software

development. The possible values for phases are 1, 2, and 3.

Codes are sorted based on their value and then we review

every theme separately and draw conclusions. We abbreviate the

name of each phases where PG denotes planning-game, PP

denotes pair-programming and CI denotes continuous-

integration practice of agile. The value column gives the

formula result.
Table II: Table of Focus-group Coding Results

Theme / Code Sources Phases Value

1. Separation of Privileges

Continuous integration and
customer feedback eliminate
future disputation.

8 PG+PP+CI 24

Incremental development and
periodic customer feedback
clarify the responsibilities of
customer and developers.

7 PG+PP+CI 21

Iterative work increases
developer ability to know the
source of a problem and solve
the problem effectively.

7 PG+PP+CI 21

Face-to-face interaction with a
customer clarifies
responsibilities.

5 PG+CI 10

Sharing of ideas among pairs
limits errors and solve problem
effectively and bring clearness in
the developer responsibilities.

5 PP+CI 10

2. Restriction of Privileges

Small increment and customer
feedback maintain a system-
wide view.

6 PG+PP+CI 18

Iterative work with customer
presence increases our
understanding for the software.

5 PG+PP+CI 15

With iterative work and
customer explanation, we know
all parts of the system.

4 PG+PP+CI 12

Working step by step improves
developer control of the system.

4 PG+PP+CI 12

Changing programming pairs
sustain the system-wide view
and control.

5 PP+CI 10

Customer presence helps us to
understand and control the
software from the beginning.

2 PG+CI 4

3. Software Simplicity

Working on one task at a time
simplifies software development.

6 PG+PP+CI 18

Working on each part separately
simplifies software development.

5 PG+PP+CI 15

The discussion of pairs simplifies
software development.

6 PP+CI 12

Customer feedback simplifies
software development.

6 PG+CI 12

In pair programming, ideas are
shared, which increases
simplicity.

5 PP+CI 10

Our previous work and
experiences make the software
development simpler.

3 PG+PP+CI 9

4. Attention & Awareness

Iterative work increases our
understanding and attention
about the software.

5 PG+PP+CI 15

Working in pairs causes
concentration and competition
that result more attention.

6 PP+CI 12

On-time feedback of customer
increases our attention about
the development process.

6 PG+CI 12

Pairs’ discussion increases
developer attention.

5 PP+CI 10

Since the tasks are divided,
therefore each one can
concentrate on his work.

3 PG+PP+CI 9

Continuous integration & getting
the desired result improve our
attention.

5 CI 5

Customer can reject our work
that increase our attention.

4 CI 4

5

Continuous Integration results
customer feedback that increase
our attention.

1 PG+PP+CI 3

Table III: Table of Interview Coding Results

Theme / Code Sources Phases Value

1. Separation of Privileges

By assigning privileges, each
one know their
responsibilities well.

6 PG+PP+CI 18

On-site customer prevents
misuse of responsibility.

5 PG+PP+CI 15

Working step by step by
customer with assigned
privileges both customer
and developer will focus well
on their jobs.

5 PG+PP+CI 15

By assigning privileges each
one tries to accomplish their
tasks in the best way.

5 PG+PP 10

Each work gets integrated
and finalized by approval
and confirmation of both
sides.

3 CI 3

2. Restriction of Privileges

Customer feedback and pair
programming reduce
security gaps as one person
will be verifier of codes.

6 PG+PP+CI 18

Continuous integration
reduces unwanted changes
to the software.

5 PG+PP+CI 15

Continuous customer
feedback and integration
minimize errors.

3 PG+CI 6

Incremental development
makes changes easier.

3 CI 3

Working in pairs prevents
misuse of privileges.

2 PP 2

3. Software Simplicity

Determining the privileges,
improve the quality of
software.

6 PG+PP+CI 18

Feedback and idea of
customer (from non-
technical point) simplifies
the software.

6 PG, CI 12

Different idea form pairs
simplifies the software.

6 PP 6

Working on each part
separately clarifies and
simplifies the overall system.

4 CI 4

Incremental development
makes changes easier.

3 CI 3

Pair programming reduces
duplication that improves
simplicity.

3 PP 3

Continuous integration
removes errors that cause
simplicity.

2 CI 2

4. Attention & Awareness

Periodic feedback from
customer increases
developer attention.

5 PG+PP+CI 15

Iterative work increases
developer focus on the
software.

5 PG+PP+CI 15

Pair programming reduces
possible errors and gaps.

5 PP 5

Continuous integration
improves developer self-
confidence.

4 CI 4

During the planning game,
developers and customers
solve problems and raised
questions.

2 PG 2

Continuous integration
improves knowledge about
the software.

2 CI 2

For answering our research questions we analyze Table II

and Table III to better make the coded data for identifying

security benefits, the related tasks and agile practices that

contain more benefits. Therefore, we combined Table II and

Table III into Table IV, during combination we derived the

benefits and related tasks from theme / code column of Table II

and Table III. The practices column of Table IV is derived from

the phase column of Table II and Table III. For each theme we

select the three top ranked codes. The result of this process is

shown in Table IV. We abbreviate the name of agile practices

such as planning-game to PG, pair-programming to PP,

continuous-integration to CI, on-site customer to OC, collective

ownership to CO, refactoring to RF, small release to SR, simple

design to SD, coding standards to CS, and metaphor to MP.

Table IV: Benefits, Tasks and Agile Practices

Benefits Tasks Practices

Separation of Privileges

Elimination of
future disputes

Incremental
Development, Customer
Feedback

PG, PP, CI, OC,
CO, RF

Clarity of
customer &
developer
responsibilities

Incremental
Development, Customer
Feedback

PG, PP, CI, OC,
SR, RF

Identification of
problem source

Iterative Work
PG, PP, CI, SR,
CO, RF

Knowing of
responsibilities

Privileges Assignment
PG, PP, CI, CS,
RF

Prevention of
misuse of
responsibilities

Customer Feedback
PG, PP, CI, OC,
CO, MP

Focus on work Step-by-step Work
PG, PP, CI, SR,
SD, CS, RF

Restriction of Privileges

6

System-wide
view

Small Increment,
Customer Feedback

PG, PP, CI, OC,
SR, SD, CS, RF

Understanding
the software

Iterative Work
PG, PP, CI, SR,
SD, CS, RF

Knowing all parts
of the software

Iterative Work, Customer
Feedback

PG, PP, CI, OC,
SR, SD, CS, RF

Verification of
code

Customer feedback &
working in pairs

PG, PP, CI, OC,
SR, SD, CS, RF

Prevention of
unwanted
changes

Incremental development
PG, PP, CI, SR,
SD, CS, RF

Prevention of
errors

Customer feedback,
Incremental development

PG, CI, OC, MP,
SR, CS, RF

Software Simplicity

Simplicity of
software
development

Working on one task at a
time

PG, PP, CI, SR,
SD, CS, RF

Simplicity of
software
development

Working on each part
separately

PG, PP, CI, SR,
SD, CS, RF

Simplicity of
software
development

Discussion of pairs
PP, CI, SR, SD,
CO, RF

Improvement of
software quality

Privileges determination
PG, PP, CI, SR,
SD, CS, RF

Simplify software
Customer feedback &
ideas

PG, CI, OC, MP,
SR, SD, CS, RF

Make changes
easier

Incremental development
CI, CS, SR, SD,
RF

Attention & Awareness

Understanding &
attention
improvement

Iterative work
PG, PP, CI, SR,
SD, CS, RF

Concentration &
competition

Working in pairs PP, CI, CS, CO

Improvement of
developer
attention

On-time customer
feedback

PG, CI, OC, MP,
RF

Improvement of
attention

Customer Feedback
PG, PP, CI, OC,
SR, CO, CS, RF

Improvement of
developer focus
on the software

Iterative Work
PG, PP, CI, SR,
CS, RF

Reduction of
errors

Working in Pairs
PP, SR, CO, CS,
RF

V. RESULTS

As mentioned earlier, our goal is to analyze agile practices

for identifying security benefits in customer- and developer

activities based on security principles. For achieving this goal,

we derive our hypotheses from security principles and then for

each hypothesis, we determine a corresponding theme by

collecting data via focus-group and interviews. Through the

coding session, data collected from the focus-group and

interview is organized into corresponding respective themes.

From Table IV we can answer our research questions. We use

excel sheet to sort the benefits and practices. After analyzing

Table IV we found the following results:

Our First theme belongs to the security principles of

“Separation of Privileges” and “Least Common Mechanisms”.

Based on these principles, the secure software development

process must verify the identity of developers based on their

responsibilities and minimize common mechanisms to more

than one developer. From Table IV the benefits of clarity of

customer & developer responsibilities, elimination of future

disputes and identification of problem-source are the benefits to

support this theme. All these benefits supports the

“accountability attribute” of security, described in Section III-

B. The tasks that improve these benefits are customer feedback,

incremental development and privileges assignment. The most

important practices for these benefits and tasks are planning

game, pair programming, continuous integration, refactoring,

on-site customer, small release and collective ownership.

Next, our second Theme belongs to “Least Privileges”,

“Complete Mediation” and “Fail-safe Default” security

principles. Based on these principles, security attributes have a

system-wide nature and the protection and authorization

mechanisms for developing secure software, requires the

restriction of privileges. From Table IV the benefits of system-

wide view, understanding the software, knowing all parts of the

software, verification of code, prevention of unwanted changes

and prevention of errors are the benefits to support this theme.

All these benefits supports the “confidentiality and availability

attributes” of security, described in Section III-B. The tasks that

improve these benefits are incremental development, customer

feedback, iterative work and pair working. The most important

practices for these benefits and tasks are planning game,

continuous integration, refactoring, on-site customer, small

release and collective ownership.

The third theme we derive from “Economy of

Mechanism”, “Open Design” and “Psychological

Acceptability” security principles. Based on these principles,

the design must be simple and small since techniques such as

line-by-line inspection are necessary for finding security flaws

in the code of software. For such techniques to be successful, a

small and simple design is essential [14]. The focus-group and

interviewees pointed to the simplicity of software development,

7

software- quality improvement, and ease of changes as the

benefits that improve integrity. The tasks of working on one task

at a time, working on each part separately, discussion of pairs,

privileges determination, customer feedback and incremental

development are tasks that improve the simplicity of software.

The most important practices for these benefits and tasks are

continuous integration, small release, simple design,

refactoring, planning game and coding standards.

Finally, the last Theme of “Attention and Awareness“, we

derive from the security principle of “Fail-safe Defaults”. This

principle emphasizes security mechanisms that require high

attention of developers during the whole software development

process. From Table IV the benefits of understanding &

attention improvement, concentration & competition,

improvement of developer focus on the software and reduction

of errors are the benefits to support this theme. These benefits

supports the confidentiality, integrity, availability and

accountability attributes of security, described in Section III-B.

The tasks that improve these benefits are iterative work,

working in pairs, and on-time customer feedback. The most

important practices for these benefits and tasks are pair

programming, continuous integration, coding standards,

refactoring, planning game and small release.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conduct a case study to identify and

explain security benefits of agile software development by

evaluating developer- and customer activities. Focus-group and

interviews were used as a main source of evidence to collect

data. An analysis of the collected data was performed to evaluate

the relationship of security benefits and agile practices based on

security principles [14]. The result of our study shows that

adequate tasks and activities of developers- and customer,

reduce security flaws and vulnerabilities from the developed

software. Table V shows the tasks (customer- and developer

activities), its security benefits and agile practices for security

benefits.

Table V: Beneficial tasks, benefits and agile practices

Tasks Benefits Practices

Customer
Feedback

Separation of privileges,
Restriction of privileges,
Software simplicity,
Developer attention

PG, PP, CI, OC,
CO, RF, SR, MP,
SD, CS

Discussion of
Pairs

Software simplicity
PG, CI, SR, SD,
CO, RF

Incremental
Development

Separation of privileges,
Restriction of privileges,
Software simplicity

PG, PP, CI, OC,
SR, RF, SD, CS,
CO, MP

Iterative Work
Separation of Privileges,
Restriction of privileges,
Developer attention

PG, PP, CI, SR,
CO, RF, SD, CS

Privileges
Assignment

Separation of privileges,
Software simplicity

PG, PP, CI, CS,
RF, SR, SD

Small Increment Restriction of Privileges
PG, PP, CI, OC,
SR, SD, CS, RF

Step-by-step
Work

Separation of privileges
PG, PP, CI, SR,
SD, CS, RF

Working in Pairs
Restriction of Privileges,
Developer attention

PG, PP, CI, OC,
SR, SD, CS, RF,
CO

Working on
each part
separately

Software simplicity
PG, PP, CI, SR,
SD, CS, RF

Working on one
task at a time

Software simplicity
PG, PP, CI, SR,
SD, CS, RF

Table V shows that many tasks in developer- and customer

activities of agile methodologies improve software security

through “Separation of privileges”, “Restriction of privileges”,

“Software simplicity”, and “Developer attention”.

As a limitation of this research, the interviewed developers

have little knowledge about software security and we are not

able to design our interview- and focus-group questions to

directly address software security. Instead, we derive the focus-

group and interview questions based on the security principles

[14] to address indirectly the security issues in software

development process. The lower security knowledge and

awareness of many software developers is also counted as a

main source for security flaws during agile software

development. Further studies and future work for introducing

visual and easier methods well help to raise security awareness

of agile software developers.

REFERENCES

[1] C. Lan and B. Ramesh, "Agile Requirements

Engineering Practices: An Empirical Study," 2008.

[2] Sonia and A. Singhal, "Integration Analysis of Security

Activities from the perspective of agility," 978-0-7695-

4657-5/12 $26.00 © 2012 IEEE, 2012.

[3] C. Pohl and Hans-JoachimHof, "Secure Scrum:

Development of Secure Software with Scrum," MuSe-

Munich IT Security Research Group, 2015.

[4] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,

Agile Software Development Methods: Review and

Analysis, Finland: VTT Electronics, 2002.

[5] H. John, "Agile Software Construction.," 2005.

[6] B. Gabrielle, "Rolling out agile in a large enterprise.," in

41st Hawaii International Conference on System

Science. , 2008.

8

[7] A. Sidky, J. Arthur and S. Bohner, "A Disciplined

Approach to Adopting Agile Practices: The Agile

Adoption Framework, Innovations in systems and

software engineering.," 2007.

[8] I. Ghani and I. Yasin, "Software Security Engineering in

Extreme programming Methodology: A Systematic

Literature Review," ISSN 1013-5316; CODEN: SINTE,

pp. 215-221, 2013.

[9] S. Bartsch, "Practitioners Perspectives on Security in

Agile Development," Sixth International Conference on

Availability Reliability and Security, pp. 479-484, 2011.

[10] B. Beca, "Agile Development with Security Engineering

Activities," pp. 149-158, 2011.

[11] J. Wayrynen, M. Boden and G. Bostrom, "Security

Engineering and eXtreme Programming: An Impossible

Marriage".Comminications Security Lab, Ericsson

Research.

[12] Cappelli, Dawn, Trzeciak and Randall, Insider Threats in

the SDLC. Presentation at SEPG, 2006.

[13] C. Mann, "Why Software is so Bad?," in Technology

Review, 2002.

[14] J. H. Saltzer and M. D. Schroeder, "The Protection of

Information in Computer Systems," pp. 1278 - 1308,

1975.

[15] F. Eduardo B., "A Methodology for Secure Software

Design," in DBLP, Florida, 2004.

[16] M. J. Peterson, J. B. Bowles and C. M. Eastman, "An

approach for integrating security into UML class

design," in IEEE Southeast Conference, 2006.

[17] H. Adelyar and A. Norta, "Towards a Secure Agile

Software Development Process," pp. 101-106, 2016.

[18] P. Runeson, M. Host and A. Rainer, Case Study

Research in Software Engineering, New Jersey, USA:

John Wiley, 2012.

[19] M. Siponen, R. Baskerville and T. Kuivalainen,

"Integrating security into agile development methods.,

2005.," in In Proceedings of the 38th Annual Hawaii

International Conference on System Sciences, 2005.

[20] V. Kongsli, "Towards Agile Security in Web

Applications. In the Proceedings of OOPSLA," in

OOPSLA, Oregon, USA, 2006.

[21] G. Bostrom and B. Konstantin, "Extending XP Practices

to Support Security Requirements Engineering," in

ICSE, University of British Columbia, Canada, 2006.

[22] P. Amey and R. Chapman, "Static Verification and

Extreme Programming.," in Proceedings of the ACM

SIGAda Annual International Conference., 2003.

[23] O. Murro, R. Deias and G. Mugheddo, "Assessing XP at

an European Internet Company.," 2003.

[24] J. Shore, "Continuous Design. IEEE Software, Vol. 21

(1).," 2004.

[25] B. Konstantin, "Extreme Security Engineering: On

Employing XP Practices to Achieve Good Enouht

Security," First ACM Workshop on Business Driven

Security Engineering, p. 7, 2003.

[26] I. Ghani, N. Izzaty and A. Firdaus, "ROLE-BASED

EXTREME PROGRAMMING (XP) FOR SECURE

SOFTWARE DEVELOPMENT," Special Issue-Agile

Symposium, pp. 1071-1074, 2013.

[27] A. Chandrabose and K. Alagarsamy, "Security

Requirement Engineering - A Strategic Approach,"

International Journal of Computer Applications, vol. 13,

pp. 25-32, 2011.

[28] C. Wood and G. Knox, "Guidelines for Agile Security

Requirements Engineering".

[29] E. Aydal, R. Paige, H. Chivers and P. Brooke, "Security

Planning and Refactoring in Extreme Programming,"

Springer Link, vol. 4044, pp. 154-163, 2006.

[30] Sonia, A. Singhal and J. Balwani, "Analysing Security

and Software Requirements using Multi-Layered

Iterative Model," IJCSIT International Journal of

Computer Science and Information Technology, vol. 5,

no. 2, pp. 1283-1287, 2014.

[31] K. Beck, M. Beedle, V. Bennekum and A. Cockburn,

"Manifesto for Agile Software Development,"

http://AgileManifesto.org, 2001.

[32] A. Avizienis, J.-C. Laprice, B. Randell and C. Landwehr,

"Basic Concepts and Taxonomy of Dependable and

Secure Computing," IEEE Transaction on Dependable

and Secure Computing, vol. 1, pp. 11-33, 2004.

[33] C. Pfleeger and S. Lawrence, Security in Computing,

New Jersey, USA: PRENTICE HALL, 2003.

[34] Y. Michael and T. Issa, "Properties for Security

Measures of Software Products.," 2007.

