
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Tallinn 2014

ITV70LT

Martin Kiigemaa 111602IVCMM

AUTOMATED SECURITY TESTING

SOLUTION FOR WEB APPLICATIONS IN

SKYPE

Master thesis

Elar Lang

M.Sc

Penetration tester/Lecturer

Rain Ottis

Ph.D

Associate Professor

2

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not been

submitted for any degree or diploma at any other University. I further declare that material

obtained from other sources has been dully acknowledged in the thesis.

………………………….. …………………………….

(Date) (Authors signature)

3

List of Acronyms and Abbreviations

XSS Cross-Site Scripting

SQLi SQL injection

API Application Programming Interface

UI User Interface

CI Continuous Integration

URL Uniform Resource Locator

OWASP Open Web Application Security Project

GUI Graphical User Interface

ZAP OWASP Zed Attack Proxy

FP False Positives

JSON JavaScript Object Notation

PoC Proof of Concept

CSRF Cross-Site Request Forgery

DDoS Distributed Denial of Service

REST REpresentational State Transfer

AJAX Asynchronous Javascript And XML

4

Abstract

Attacks on the web pages are happening every second – some of them with serious

consequences and others with no damage. Attacks what did not do any damage can be called

an attack attempts, what failed due to the fact that web application was secure enough. To

get a web application to be secure enough, the owner of the web page has to perform

necessary security tests.

Current thesis analyzes how to create and implement automatic security testing solution for

Skype Web Development team´s web applications so that possible attack attempts would

stay as attempts. It is researched, which open source security scanner would be wise to

implement, considering there is already existing testing automation framework in place, with

what the security scanner should be integrated.

5

Resümee

Ründeid veebilehtedele toimub igal sekundil – mõned neist tõsiste tagajärgedega ning teised

ilma kahju tegemata. Kahjuta lõppenud rünnakuid veebilehtedele võib nimetada

ründekatseks, mis on ebaõnnestunud tõenäoliselt tänu piisavale turvalisusele

veebirakenduses. Veebilehe piisavalt turvaliseks muutmiseks on rakenduse omanik pidanud

läbi viima vajalikud turvatestid.

Käesolev lõputöö uurib, kuidas luua automaatne turvatestimise lahendus Skype Web

Development tiimi veebirakendustele, et kõik ründed meeskonna rakenduste vastu jääksidki

vaid katseteks. Uuritakse, millise vabavaralise turvaskänneri installeerimine oleks mõttekas,

võttes arvesse, et meeskonnas juba eksisteerib automaatsete testide raamistik, millega uus

turvaskänner tuleb integreerida.

6

Table of Contents

List of figures .. 8

List of tables .. 9

1. Introduction ... 10

1.1 Current problematic situation in Skype ... 10

1.2 Importance of the problem ... 11

1.3 Purpose of the thesis .. 11

1.4 Outline of the thesis ... 12

2. Recommendation of improvement .. 13

2.1 Advantages of automated external application scanning ... 13

2.2 Disadvantages of automated external application scanning 13

2.2.1 Manageable disadvantages ... 13

2.2.2 Unmanageable disadvantages ... 14

2.3 Concept of the proposal ... 14

2.3.1 Tool selection ... 14

2.3.2 Providing necessary data to the tool ... 15

2.3.3 Handling the results .. 15

2.3.4 Is it solving the problem? ... 15

2.4 What should be detected? .. 15

2.4.1 Cross-Site Scripting .. 16

2.4.2 SQL injection .. 17

3. Company needs for future security testing application ... 18

3.1 License ... 18

3.2 Platform ... 18

3.3 Features .. 19

4. Related work .. 21

5. Comparative analysis of suitable security testing scanners ... 25

5.1 Comparative table of security scanners ... 25

5.2 More detailed breakdown of the tools ... 26

5.2.1 OWASP Zed Attack Proxy ... 26

5.2.2 Wapiti ... 27

5.2.3 W3af ... 29

5.2.4 Arachni ... 30

5.2.5 Skipfish ... 32

5.3 Selected tool for implementation ... 33

7

5.4 Proof of concept of tools work against vulnerable Skype´s application 33

6. Implementation of the solution .. 35

6.1 URL-s data inside database .. 35

6.2 URL collector script ... 36

6.3 Security tests creation and execution ... 37

6.3.1 Dynamic test creation ... 37

6.3.2 Creating a valid session for scanner ... 38

6.3.3 Scanner execution via test cases ... 38

6.4 Outcome ... 40

7. Future development ... 41

8. Conclusion ... 42

References ... 43

8

List of figures

Figure 1 Concept of solutions workflow ... 14

Figure 2 Database structure and data ... 36

Figure 3 URL collector script in action ... 37

9

List of tables

Table 1 Security scanners in OWASP site .. 21

Table 2 Security scanners in “This is stuff” security blog .. 22

Table 3 Security scanners in “Security Tools Benchmarking” security blog 22

Table 4 Security scanners in “The Web Application Security Consortium” page 23

Table 5 Security tool list and number of times mentioned .. 24

Table 6 Comparative table of security scanners .. 25

10

1. Introduction

Majority of today´s sites on the web are applications, what are highly functional and depend

on flow of information between the user and server. It is possible to register and login, do

financial transactions and search. The outcome (often happens to be highly sensitive data)

presented to users is generated dynamically and is normally specific to each user. Security

therefore, is a big issue. [37]

To be able to comprehend possible threats in today’s cyber world, every company who is

active on the Internet, dealing with customers’ sensitive data and providing them service

needs to think about security of their systems.

Multibillion companies are being compromised every year [17, 18, 19]. In 2013 the biggest

intrusion was Adobe’s case – breach impacted 38 million users and Adobe also suffered

software source code theft of multiple products [1].

Another example, of major company being hacked, is Twitter. With 250 000 users’ sensitive

data like email addresses, session tokens and encrypted passwords stolen [3].

Therefore companies need to invest in security. In authors option the easiest and cheapest

way to invest to that field is to perform regular security audits or in other words - perform

security testing. Since majority of software development companies are all moving to agile

methodology [6], continuous delivery and continuous integration then manual security

testing is not enough to verify if security regression has occurred with new development.

Company which is actively promoting security testing for their products and actively blogs

about it is Mozilla [4]. They started moving to CI (Continuous Integration) at 2011 and

during that time they were also automating their security test cases to reduce the risk of

introducing security flaws to production [5].

1.1 Current problematic situation in Skype

Currently Skype has a test automation framework written in Python – it supports executing

API tests (tests operate at a certain REST API level by verifying the input and output of the

API) and Webdriver UI tests (user interface tests which operates at the browser level and

actually verifying the output of the page by checking the page from the browser). Although

there exists a good and working solution for test automation, the situation is poor regarding

security testing – there is no automation framework in place for web applications, to locate

11

and handle security vulnerabilities. Therefore majority of security related threats are found

during manual penetration testing.

While moving towards continuous delivery, there is a definite need of security related test

automation to be in place, other ways there will be a great risk of being compromised by a

security flaw what reached to production environment due to lack of tests.

That being said, since it is decided to start executing automated security tests there is a need

to answer to few questions first:

 What are the ways to automate security testing in Skype?

 What do the current, on the market, solutions offer and how to select one that suits

all the company needs?

 How to implement it with existing testing solution?

1.2 Importance of the problem

Problematic situation in Skype, regarding security test automation, is actual and in high

priority. If system´s security gets compromised, it could seriously reflect company´s

revenue.

Skype is being used by 40 million customers at each moment of time [36], which means that

in the case of malicious use of security flaw the number of affected computers would be

tremendous.

1.3 Purpose of the thesis

There are a lot of security testing tools on the market – commercial versions and open source

ones. Current thesis is attempting to select the best one for automating security testing by

relying on open source tools only.

Skype Web Development team web application varies from client usable applications from

only internal web applications.

The aim of this thesis is to select and implement security testing solution for web applications

in Skype Web Development team, based on the company needs (specific needs described in

Chapter 3). Implementation of the new solution should be aligned with already working test

12

automation framework. Final outcome of current thesis should be a solution that could locate

different permutations of vulnerabilities.

Expected outcome of the solution is to provide instant feedback about new security related

threats in the application to help company to drive closer towards continuous delivery.

1.4 Outline of the thesis

The thesis is organized as follows. Chapter one gives introduction to thesis what contains

description of the current problematic situation, overview how important the problem is to

Skype and outline of thesis purpose. Chapter two gives introduction to the analyses part of

the work by describing how it is planned to improve current situation. In chapter three will

be described the company needs for the security scanner to be selected – bearing in mind the

simplification of implementation and management aspects. Chapter four will cover the

related work of various security researchers in the Internet. In chapter five will be the

analytical aspect of the thesis – what is the most suitable tool based on comparative analyses.

Chapter six contains all the aspects of implementing selected scanner to our existing process

– including faced problems on the path and the final outcome. In chapter seven is covered

future tasks what will include all nice to have features of implemented solution. Chapter

eight is the conclusion of the thesis, covering the work what has been done.

13

2. Recommendation of improvement

To improve the current unacceptable situation, a new automated security testing solution

should be created and implemented to prevent critical security flaws reaching to production

environments.

This platform should be able to discover and report located security vulnerabilities, including

as less false positives as possible.

Solution should be implemented in a way that written security tests will be executed after

application has been built and deployed to testing environment. For the execution should be

used already existing test management tool – can handle tests written in Python. Besides the

automated execution there should also remain a possibility to execute tests manually though

test management system. Final test report should also be managed by existing test

management tool.

For security auditing should be used an external security scanner tool what would meet all

the possible company needs (described in Chapter 3).

2.1 Advantages of automated external application scanning

External application scanning will introduce many advantages compared to manual

penetration testing:

 Possibility to quickly identify misconfigurations and error conditions resulting from

invalid input;

 Ability to run on automatically on regular basis to provide reports and ongoing

vulnerability statistics to support CI;

 Will speed up process to audit large applications;

 Lower cost to operate and execute compared to excessive and expensive manual

regression testing. [7]

2.2 Disadvantages of automated external application scanning

Besides advantages there will be disadvantages introduced with the implementation of

external scanner – manageable and unmanageable.

2.2.1 Manageable disadvantages

 Requires appropriate skills to configure and use correctly.

14

 Requires efforts to emulate user session (session cookies or through form). [7]

2.2.2 Unmanageable disadvantages

 Cannot locate vulnerabilities what will appear only after specific steps are performed

beforehand.

 Tools are not intelligent enough for some aspects of the application and therefore

will generate false positive results. [7]

2.3 Concept of the proposal

The main working flow of application to be developed and implemented is to gather all

visited URL from application logs (URL-s what are visited with GET and POST HTTP

requests). The reason why the security scanner should work with previously collected URL-

s and not to crawl through the web application by itself, is AJAX forms and request in Skype

web applications – initial review with popular scanners proved that they cannot handle

AJAX based web pages.

When the security tests are triggered for certain application, then it is possible to scan URL-

s related to this application. Full workflow of the new solution is visible in Figure 1.

Figure 1 Concept of solutions workflow

2.3.1 Tool selection

The whole concept of new security testing solution proposal is to select most suitable tool

for the company needs. The list of usable and applicable tools will be gathered from “Related

work” chapter.

15

2.3.2 Providing necessary data to the tool

To be able to provide necessary data to the scanning tool there should be developed a script

what will collect all the GET and POST request URL-s from our log server (defined as

logbox in Figure 1) and insert gained data to testing database.

When records are inserted to database and certain application security tests are executed,

then it is possible to query URL-s related with this application from testing database and

provide them to security scanner.

2.3.3 Handling the results

Since there is a plan to integrate the new security testing solution to Skype´s testing

automation framework, then the result handling would already be solved by the existing

solution.

There should be created new security tests next to regular Python tests into test management

system. The execution of the security related tests would work as with regular tests and

therefore also the test reports would be handled the same way.

2.3.4 Is it solving the problem?

Described solution should help to solve the problem related with lack of security testing for

Skype web applications. The solution seems to be suitable for this problem due to the fact

that it will support moving to CI and help to prevent security regression reaching to

production systems.

Collecting the URL data from the actual logs should ensure that the scanner will receive the

latest and actually visited pages from where to check vulnerabilities from.

Using selected scanner tool is supposed to help to make sure the number of security holes,

introduced with new development cycle, are as minimal as possible.

Reporting scanner results back to the test management system helps to generate overview of

security related status of current release.

2.4 What should be detected?

Based on the OWASP 2013 TOP 10, three most critical web application security flaws are

[25]:

 Injection:

16

o Injection flaws - SQL, OS and LDAP injection occur when untrusted data is

sent to an interpreter as part of a command or query.

 Broken authentication and session management:

o Application functions related to authentication and session management are

often not implemented correctly, allowing attackers to compromise

passwords, keys, session tokens or to exploit implementation flaws to assume

other users’ identity.

 Cross-Site Scripting:

o Allows attacker to execute scripts in the victim’s browser which can hijack

user sessions, deface web sites or redirect user to malicious sites.

Since broken authentication and session management testing does not meet the current

proposal of improvement solution, then it is required that the selected scanner should be able

to detect at least Cross-Site Scripting (XSS) and SQL injection (SQLi) vulnerabilities (if OS

and LDAP injection modules are also supported by the tool, then those tests would be

included also in the future).

2.4.1 Cross-Site Scripting

Cross-Site Scripting attacks are based on malicious scripts what are injected into otherwise

legitimate and trusted web sites. Flaws that allow these attacks to succeed are quite

widespread and occur anywhere a web application uses input from a user and generates the

output from it without validating or encoding it. [26]

XSS can be categorized into three categories:

 Stored:

o Attacks where the injected script is permanently stored on the target servers,

such as in a database - in a message forum, visitor log or comment field. [23]

 Reflected:

o Attacks where the injected script is reflected off the web server, such as in

an error message, search result or any other response that includes some or

all of the input sent to the server as part of the request. [23]

 DOM based:

o Attack where in the attack payload is executed as a result of modifying the

DOM “environment” in the victim’s browser used by the original client side

script, so that the client side code runs in an “unexpected” manner. [22]

17

Cross-Site Scripting attacks are dangerous due to the fact that if found on a website it is

possible to attack with multiple vectors, starting with defacing a website (that happened with

CIA website [27]) and finishing with creating a DDoS (Distributed denial of service) –

happened with video-sharing site Incapsula [28, 29]. XSS attacks are widely spread - even

two of the biggest social network sites like Facebook and Twitter [30] have been

compromised multiple times by the XSS flaw [31, 32, 33].

2.4.2 SQL injection

A SQL injection attack consists of injection of a SQL query via the input data from the client

to the application. A successful SQL injection can read sensitive data from the database,

modify database data (Insert/Update/Delete), execute administration operations on the

database, output the contents of a file on the system and in some cases issue commands to

the operating system. [24]

There is a special type of SQLi called Blind SQL Injection. It is a type of SQL

Injection attack that asks the database true or false questions and determines the answer

based on the applications response not based on the web servers error responses (in the case

where error reporting might have been turned off or a generic error message is shown by the

web application). [20]

SQL injection attacks are dangerous due to the fact that when web page is compromised

through SQLi attack, then it is reasonable to believe that sensitive customer data has been

compromised also – as happened with Yahoo when password hashes of 450 000 users were

posted to Internet [34]. Sony Pictures even suffered a 171 000 000 dollar loss from a single

SQL injection attack what resulted loss of customer’s private data, Sony´s administrator

details including password, 75 000 music codes and 3.5 million music coupons [35].

18

3. Company needs for future security testing application

Skype already has built a fully functional test automation framework including test runners,

test report and statistics tool and test libraries. When developing new security testing

solution, then already created functionality should be taken into account for the sake of

manageable implementation and integration with old system. The following chapter

describes all the needs and requirements Skype has for the scanning tool, to be able to build

usable security testing solution on top of these expectations.

3.1 License

The tool what will be used to build the solution, should be open source software [15], mainly

for the following reasons:

 Customizability:

o Since the code is open, it is a matter of coding and adding the functionality

needed;

o Due to the open code it is possible to work through the code and understand

how it works and why it works the way it works – what makes it possible to

alter it if needed.

 Cost:

o Since majority of open source software is free of charge it will not generate

any negativity along managers;

o Helps to speed up the implementation process due to the fact that no financial

decisions are required.

3.2 Platform

Already developed test management tool and test runners are developed on Linux operating

system, what means that scanner tool should be able to run on Linux. There is no need to

have support for Windows or Macintosh.

There is no GUI support in existing test runner machines and there are no future plans for

the implementation of it, which means there should be a possibility to execute and configure

the scanner only through command line.

19

Test runners are built only to execute tests written in Python – considering this, then for the

concern of simplified implementation (all required Python packages are already installed) it

would be reasonable to pick a scanner what is also written in Python.

3.3 Features

Based on the new solution improvement proposal and existing web applications Skype has,

it is required that selected security scanner should include following features:

 Ability to detect reflected [23] and stored [23] XSS vulnerabilities:

o Scanner should be able to detect XSS vulnerabilities related with GET

requests – by making requests to possible parameters with malicious

payloads;

o Scanner should be able to detect XSS vulnerabilities related with POST

requests – by inserting malicious payload data to requests and validating the

output.

 Ability to detect different type of SQL injection [24] vulnerabilities:

o Scanner should be able to detect regular SQL injection vulnerabilities by

manipulating input parameters and verifying output on the webpage;

o Scanner should be able to detect blind SQL injection vulnerabilities by

manipulating input parameters and verifying output on the webpage.

 Support for authenticated scans:

o All Skype web applications are behind user login page – which means the

new scanner should support session management:

 Create cookie based sessions;

 Create form login sessions;

 Save existing sessions for other scans.

 Possibility to scan only one page at the time:

o Since the visited URL-s with different parameters are collected individually

then it is required for a scanner to have possibility to only scan that one URL

what is presented to it and not to start crawling on the web page.

 Possibility to easily develop new modules and insert new payloads:

o The fact that the new tool should be open source ensures that it is possible to

inspect source code and add new needed modules;

20

o The module adding solution should be as straight forward as possible;

o New custom payload adding should be as straight forward as possible.

 As few “false positives” as possible:

o Based on “Security Tools Benchmarking” blog it is possible to compare the

amount of “false positives” the tools reported in special testing environments

with different attack methods [12];

Two of those demands (license and operating system) are taken into account in the “Related

work” chapter to combine an initial list of suitable scanners. Other expectations are taken

into account when analyzing that initial list more deeply in the “Comparative analysis of

suitable security testing scanners” chapter.

21

4. Related work

Security testing automation challenge is not new to software development companies who

care about security and periodic automated test execution. Due to that there are articles and

writings, on different security related sites, what are already covering majority of web

application scanning tools. In this chapter of the thesis it is analyzed the existing work and

theories done by security researchers in the Internet. The tools found from their suggestions

are brought out, analyzed and selected or ruled out based on the company needs described

in previous chapter.

The most prominent site of them is OWASP (Open Web Application Security Project) [8,

9]. A list of web application vulnerability scanners are brought out on their site [10]. The

lineup of scanners, what OWASP has promoted in their website, contains a lot of

applications. The table below only brings out applications that are open source:

Name Platforms

Grabber Windows, Unix/Linux and Macintosh

Grendel-Scan Windows, Linux and Macintosh

Nikto Web servers testing tool

Vega Windows, Linux and Macintosh

Wapiti Windows, Unix/Linux and Macintosh

Wikto Windows

Xenotix XSS Exploit Framework Windows

Zed Attack Proxy Windows, Unix/Linux and Macintosh

Table 1 Security scanners in OWASP site

Based on the presented data in the Table 1 and actual company needs it is possible to rule

out tools which are suitable to Windows only, what makes the usable tool list from the

OWASP site: Grabber, Grendel-Scan, Nikto, Vega, Wapiti and Zed Attack Proxy.

Another site where the author of this thesis found usable analyses of security scanners is a

blog of security researcher Mária Jurčovičová [11]. List of scanners found from this site is:

Name Platform

WebSecurify Firefox plugin

SkipFish Windows, Unix/Linux and Macintosh

W3af Windows, Linux

22

Zed Attack Proxy Windows, Linux and Macintosh

WebScarab Proxy mode only

WebScarab Next Generation Proxy mode only

Ratproxy Proxy mode only

Arachni Linux

Exploit Me Firefox plugin

Nikto Web server testing tool

ProxMon Proxy mode only

Table 2 Security scanners in “This is stuff” security blog

As previously done then based on the presented data in the Table 2 and company needs it is

possible to rule out not suitable tools, like the ones for Windows only, proxies and plugins,

and that makes the usable tool list following: SkipFish, W3af, Zed Attack Proxy and

Arachni.

One more security blog has accomplished to put together a good analyzing comparison

between various security scanners – Security Tools Benchmarking blog [12]. The list there

includes large amount of commercial and open source tools – since thesis in concentrated on

open source tools, then only these will be mentioned in Table 3.

Name Platform

Zed Attack Proxy Windows, Unix/Linux and Macintosh

IronWASP Windows, Linux, Macintosh

W3af Windows, Linux

Arachni Linux

Skipfish Windows, Unix/Linux and Macintosh

WATOBO Proxy mode only

VEGA Windows, Linux

Wapiti Windows, Unix/Linux and Macintosh

XSSer Windows, Unix/Linux and Macintosh

N-Stalker 2012 Free Edition Windows

Syhunt Mini Windows

Table 3 Security scanners in “Security Tools Benchmarking” security blog

Suitable tools from the Security Tool Benchmarking blog are: Zed Attack Proxy, IronWASP,

W3af, Arachni, Skipfish, Vega, Wapiti and XSSer.

23

Thesis will cover findings from one more security related project – Web Application

Security Consortium [13]. The list of open source scanners mentioned in their page is

following [14]:

Name Platform

Arachni Linux

Grabber Windows, Unix/Linux and Macintosh

Grendel-Scan Windows, Linux and Macintosh

Paros Proxy mode only

Andiparos Proxy mode only

Zed Attack Proxy Windows, Unix/Linux and Macintosh

Powerfuzzer Windows, Linux

Skipfish Windows, Unix/Linux and Macintosh

W3af Windows, Linux

Wapiti Windows, Unix/Linux and Macintosh

Watcher Windows

WATOBO Proxy mode only

Websecurify Firefox plugin

Table 4 Security scanners in “The Web Application Security Consortium” page

Based on the presented data on Table 4 and actual company needs it is possible to rule out

the tools from this list as well, so the passing tool list from “Security Consortium” page is

following: Arachni, Grabber, Grendel-Scan, Zed Attack Proxy, Powerfuzzer, Skipfish, W3af

and Wapiti.

The main idea of this chapter was to analyze the work others has done and with that

information put together a list of usable tools for Skype. By comparing the data inside the

tables with two of the main criteria’s of Skype (usage platform should be Linux compatible

and tool should be open source) it was possible to pick the initial list of suitable scanners to

continue with.

Suitable security scanners and the number of times they were mentioned:

Tool Times mentioned

Grabber 2

Grendel-Scan 2

24

Nikto 1

Vega 2

Wapiti 3

Zed Attack Proxy 4

SkipFish 3

W3af 3

Arachni 3

IronWASP 1

XSSer 1

Powerfuzzer 1

Table 5 Security tool list and number of times mentioned

Based on the times the tool was mentioned (statistics brought out in Table 5), by other

researchers, it is possible to select only the most popular ones for deeper analyses in the next

chapter. Tools mentioned 1-2 times and the ones what did not get any sensational feedback

in the security blogs are left out from deeper analyses – Nikto, IronWASP, XSSer,

Powerfuzzer, Grabber, Grendel-Scan and Vega.

Scanner tools what are selected, based on mention count, for further analyses are – Zed

Attack Proxy, Wapiti, SkipFish, W3af and Arachni.

25

5. Comparative analysis of suitable security testing scanners

Based on the previous chapter it is selected five suitable security testing scanners - Zed

Attack Proxy, Wapiti, SkipFish, W3af and Arachni. In this chapter of the thesis the features

of the tools are compared to the Skype requirements, what are brought out in the “Company

needs for future security testing application” chapter. The comparison will be made with the

help of comparative table and deeper individual analyses. In the end of this chapter, a tool,

what will be used to develop a new security testing solution, will be chosen.

5.1 Comparative table of security scanners

To be able to select out one testing scanner, it is needed to compare tools features to

previously mentioned requirements. Table 6 will bring out Skype´s expectations for new tool

and will help to understand which tools are able to fulfill those requirements. Information

for the field of false positives has been acquired from “Security Tools Benchmarking” blog

post [12].

Requirement ZAP Wapiti SkipFish W3af Arachni

Console mode only

support

X X X X X

Written in Python X X

Reflected XSS X X X X X

Stored XSS X X X X X

DOM based XSS X*

SQL injection X X X X X

Blind SQL injection X X X X X

Authenticated scans

(session cookies)

X X X X X

Scan only one page X X X X X

Easy implementation of

new modules and payloads

 X X X

False positives XSS – 0%

SQLi – 30%

XSS – 42%

SQLi – 20%

XSS – 0%

SQLi – 0%

XSS – 0%

SQLi – 30%

XSS – 0%

SQLi – 20%

Table 6 Comparative table of security scanners

26

*W3af has a plugin for DOM based XSS vulnerability, but it works as a simple grep over

the page source [21].

From the Table 6 can be seen that the most requirements are covered by Wapiti, Arachni and

W3af, but even those could not provide a suitable module for DOM based XSS vulnerability

– what initiates to pay more attention to the possibility to add new modules with minimal

effort.

5.2 More detailed breakdown of the tools

5.2.1 OWASP Zed Attack Proxy

Although ZAP is mainly a tool with GUI, there is a way to start it in daemon mode, which

automatically enables an API for more dynamic use. It is possible to configure scans also

through given API so the tool would be really useful for security regression tests.

ZAP has a multiple modules for different attack vectors, including the ones Skype needs, for

XSS and SQL injection.

Given tool also supports authenticated scans either through the UI or console with the help

of “formauth” module – including session generating request (needs to be compiled

manually or acquire them from UI) to ZAP scan context makes the tool to send this request

every time the webpage requires user login.

ZAP supports a chance to scan only one page at the time, without the crawling spiders also

working on the background and feeding new URL-s to scanner.

Based on benchmarking blog post it had 0% of FP in reflected XSS test and 30% of FP in

SQL injection test [12].

ZAP is written in Java and in a way, that there is no easy method to add custom modules to

it. The fact that it is developed in Java, unfortunately, rules this tool out for Skype since Java

is not installed to our tests runners.

Local test was made with ZAP to scan one of Skype´s application, what contained “[“ and

“]” symbols in the URL-s the tool had to scan. Existence of those symbols created a problem

and that is also one of the reasons implementation of OWASP Zed Attack Proxy was

dropped.

27

Error example in ZAP log:

ERROR org.parosproxy.paros.core.scanner.VariantURLQuery - escaped

query not valid

F[currency]=EUR&F[items][0][name]=Skype+Credit&F[items][0][price]=1

0.00000&state=setup&F[items][0][id]=skype-credit-

10&atu=1&F[atu]=1&skypename=username& F[items][0][group]=skype-

credit&F[integration]=basket-1

org.apache.commons.httpclient.URIException: escaped query not valid

That result was gained when testing ZAP through GUI. So there was no way to escape the

query automatically in the testing code.

5.2.2 Wapiti

Wapiti is only console based application, there is no UI available, which suits the Skype

needs perfectly. Configuration of the tool is made through command line by providing

configuration keys as application input parameters.

Scanner contains multiple modules for XSS and SQL injection scanning. When starting the

scan it is possible to add input parameters at startup to either enable or disable certain

modules.

Regarding authenticated scans, Wapiti contains a separate module to gain session cookies

from websites – “wapiti-cookie” module. Upon executing of this module with certain input

keys it gets user password and username (forms presented on the actual webpage), logs the

user in and saves gained cookie to JSON format into cookies.json file for later use of the

upcoming scans.

./wapiti-cookie cookies.json https://

login.skype.net/login?method=Skype username=test password=test

Scanning only one page with Wapiti has been made as simple as possible – by passing on

input key “-b page” at program startup will make the scanner only operate within the scope

of given URL.

Based on benchmarking blog post it had 42% of FP in reflected XSS test and 20% of FP in

SQL injection test, which is not very impressing [12].

28

Wapiti is completely written in Python which makes the implementation part relatively easy

and painless. There is a possibility to add new modules and new custom built payloads for

different module types. All payloads are located under certain attack module in a

configuration file.

Local test with one of our application URL-s confirmed the correct behavior of Wapiti even

with special characters. The same address was given to Wapiti for a XSS and SQL injection

scan and it successfully scanned though all parameters in the URL and replaced them with

malicious payload one by one.

Executing Wapiti (scanning only one page and XSS GET vulnerabilities):

$wapiti

"https://secure.skype.net/wallet/checkout?F[currency]=EUR&F[items][

0][name]=Skype+Credit&F[items][0][price]=10.00000&state=setup&F[ite

ms][0][id]=skype-credit-10&atu=1&F[atu]=1&skypename=username&

F[items][0][group]=skype-credit&F[integration]=basket-1" -c

cookies.json -b page -m "-all,xss:get" -v 2

PoC output from the tool work:

+GET

https://secure.skype.net/wallet/checkout?F%5Bcurrency%5D=%22%3E%3C%

2Fform%3E%3Cscript%3Ealert%28%27wy2w48dekx%27%29%3C%2Fscript%3E&F%5

Bitems%5D%5B0%5D%5Bname%5D=Skype%2BCredit&F%5Bitems%5D%5B0%5D%5Bpri

ce%5D=10.00000&state=setup&F%5Bitems%5D%5B0%5D%5Bid%5D=skype-

credit-

10&atu=1&F%5Batu%5D=1&skypename=username&%20F%5Bitems%5D%5B0%5D%5Bg

roup%5D=skype-credit&F%5Bintegration%5D=basket-1

+GET

https://secure.skype.net/wallet/checkout?F%5Bcurrency%5D=EUR&F%5Bit

ems%5D%5B0%5D%5Bname%5D=%22%3E%3C%2Fform%3E%3Cimg%09src%3D.%09onerr

or%3DString.fromCharCode%280%2Cwj1qsgyyl5%2C1%29%3E&F%5Bitems%5D%5B

0%5D%5Bprice%5D=10.00000&state=setup&F%5Bitems%5D%5B0%5D%5Bid%5D=sk

ype-credit-

10&atu=1&F%5Batu%5D=1&skypename=username&%20F%5Bitems%5D%5B0%5D%5Bg

roup%5D=skype-credit&F%5Bintegration%5D=basket-1

29

+GET

https://secure.skype.net/wallet/checkout?F%5Bcurrency%5D=EUR&F%5Bit

ems%5D%5B0%5D%5Bname%5D=Skype%2BCredit&F%5Bitems%5D%5B0%5D%5Bprice%

5D=10.00000&state=setup&F%5Bitems%5D%5B0%5D%5Bid%5D=skype-credit-

10&atu=1&F%5Batu%5D=1&skypename=%22%3E%3C%2Fform%3E%3Cobject%09data

%3Djavascript%3AString.fromCharCode%280%2Cwr50s6qe0r%2C1%29%3E&%20F

%5Bitems%5D%5B0%5D%5Bgroup%5D=skype-

credit&F%5Bintegration%5D=basket-1

5.2.3 W3af

W3af can be used either through graphical user interface or console. There are multiple

configure options available through GUI and via command line. Studies show that it is

possible to create configuration script were the entire needed configuration will be held and

during execution of W3af core program it is possible to read all the configuration keys from

that script file: [16]

$./w3af_console -s MyScript.w3af

Scanner includes multiple modules for XSS and SQL injection scanning. When configuring

the scan it is possible to enable or disable either one or multiple scanning vectors from

“audit” module.

Authenticated scans are also supported in W3af. There are two ways to make user

authenticated – specify user login credentials in form based authentication module or pass a

valid cookie file to scanner.

Scanning only one page at the time will work in W3af if there is scanner module disabled

in the “crawl” section. That way the scanner only performs vulnerability checks for the

target user specified.

Based on benchmarking blog post it had 0% of FP in reflected XSS test and 30% of FP in

SQL injection test, which is acceptable result [12].

Local test with one of our application URL-s confirmed the correct behavior of W3af even

with special characters. The same address what was given to ZAP and Wapiti, was also given

30

for W3af for XSS and SQL injection scan and it successfully scanned though all parameters

in the URL and replaced them with malicious payload one by one.

PoC output from the tool work:

GET

https://secure.skype.net/wallet/checkout?F[currency]=EUR&F[items][0

][name]=Skype+Credit&F[items][0][price]=peGc1/*&state=setup&F[items

][0][id]=skype-credit-10&atu=1&F[atu]=1&skypename=username&

F[items][0][group]=skype-credit&F[integration]=basket-1

GET

https://secure.skype.net/wallet/checkout?F[currency]=EUR&F[items][0

][name]=Skype+Credit&F[items][0][price]=10.00000&state=XCKnp`&F[ite

ms][0][id]=skype-credit-10&atu=1&F[atu]=1&skypename=username&

F[items][0][group]=skype-credit&F[integration]=basket-1

GET

https://secure.skype.net/wallet/checkout?F[currency]=EUR&F[items][0

][name]=Skype+Credit&F[items][0][price]=10.00000&state=setup&F[item

s][0][id]=skype-credit-10&atu=1&F[atu]=1&skypename=YA7fG'YA7fG&

F[items][0][group]=skype-credit&F[integration]=basket-1

With W3af all features seemed perfect and potentially it would have been a main candidate

for the choice, but there was one thing that came out when testing the scanners work locally

– if the URL had multiple parameters (like the one in the example) then the tool never

finished its work. Number of requests just started dropping and no results or debug lines

were printed out to the console.

5.2.4 Arachni

Arachni is usable either through web interface or though command line. Web interface of

the application offers multiple configuration options while command line only takes in

specific configuration keys as startup arguments.

Scanner includes multiple modules for XSS and SQL injection scanning. When starting the

application it is possible to enable or disable different attack vectors with startup keys (--

modules=xss* key will include all XSS modules.

31

Authenticated scans are also supported in Arachni. There is a module called “autologin”

what is supposed to take in login page, username and password field and automatically log

the user in. Unfortunately that solution did not work for Skype login page – presumably due

to CSRF (Cross-site Request Forgery) protection hashes.

Scanning only one page at the time will work in Arachni also. It needs “--link-count”

parameter value is set as 1 and “--redirect-limit” value set as 0 – that way the crawler will

not start and only given target is analyzed.

Based on benchmarking blog post it had 0% of FP in reflected XSS test and 20% of FP in

SQL injection test, which is a good result [12].

Local test with one of our application URL-s confirmed the correct behavior of Arachni even

with special characters. The same address what was given to ZAP, Wapiti and W3af was

also given for Arachni for XSS and SQL injection scan and it successfully scanned though

all parameters in the URL and replaced them with malicious payload one by one.

Executing Arachni (scanning only XSS vulnerabilities):

$arachni --depth=0 --link-count=1 --redirect-limit=0 --modules=xss

"https://secure.skype.net/wallet/checkout?F[currency]=EUR&F[items][

0][name]=Skype+Credit&F[items][0][price]=10.00000&state=setup&F[ite

ms][0][id]=skype-credit-10&atu=1&F[atu]=1&skypename=username&

F[items][0][group]=skype-credit&F[integration]=basket-1"

PoC output from the tool work:

[!] HTTP: URL:

https://secure.skype.net/wallet/checkout?%2520F%255Bitems%255D%255B

0%255D%255Bgroup%255D=skype-

credit&F%255Batu%255D=1&F%255Bcurrency%255D=EUR&F%255Bintegration%2

55D=basket-1%28%29%22%26%251%27-

%3B%3Csome_dangerous_input_363745c5f4329ea2d325575a33d92a900fd5ad86

88a64fc0279f5580ec82c03d%2F%3E%27&F%255Bitems%255D%255B0%255D%255Bi

d%255D=skype-credit-

10&F%255Bitems%255D%255B0%255D%255Bname%255D=Skype%2BCredit&F%255Bi

tems%255D%255B0%255D%255Bprice%255D=10.00000&atu=1&skypename=userna

me&state=setup

32

[!] HTTP: URL:

https://secure.skype.net/wallet/checkout?%2520F%255Bitems%255D%255B

0%255D%255Bgroup%255D=skype-

credit&F%255Batu%255D=1&F%255Bcurrency%255D=EUR&F%255Bintegration%2

55D=basket-1&F%255Bitems%255D%255B0%255D%255Bid%255D=skype-credit-

10&F%255Bitems%255D%255B0%255D%255Bname%255D=Skype%2BCredit&F%255Bi

tems%255D%255B0%255D%255Bprice%255D=10.00000&atu=1&skypename=userna

me--

%3E%3Csome_dangerous_input_363745c5f4329ea2d325575a33d92a900fd5ad86

88a64fc0279f5580ec82c03d%2F%3E%3C%21--&state=setup

5.2.5 Skipfish

SkipFish is a command line tool only, written in C – therefore not easy to modify and no

implemented possibility to add new modules or payloads easily. Configuration parameters

are given as startup arguments or loaded in from custom configuration file.

There is no way to select the modules what the scan should use – this means, that once the

program has been started it will start every attack known to it against the target. That kind

of approach does not suit with Skype needs, since it makes the scan significantly slower.

Authenticated scans are supported by two methods – form based login (login parameters

from command line or configuration file) and cookie based authentication.

Theoretically it is possible to make the tool scan only one webpage presented. Configuration

key “-I” will take in regular expression pattern and will scan only pages that will match this

pattern. Also there is a chance to specify maximum depth of the crawler. The author of this

thesis was not able to make SkipFish scan only the given page.

Based on benchmarking blog post it had 0% of FP in reflected XSS test and 0% of FP in

SQL injection test, which is a very good result.

There is no need for local testing due to the fact that there is no possibility to make scanner

only attack XSS and SQLi vulnerabilities.

33

5.3 Selected tool for implementation

Based on the data got from analyzing five tools it is possible to make the best selection from

them and start to implement the whole solution.

Taken into account a possibility to configure through command line or with configuration

file, to select XSS or SQLi modules for the scan, to make authenticated scans, to scan only

one presented page at the time, considering the rate of false positives and the fact that initial

local testing was successful and the tool did not collapsed it is confirmed that the most

suitable solution, for Skype, would be to take into use Wapiti scanner tool.

5.4 Proof of concept of tools work against vulnerable Skype´s application

Before the full implementation of the new solution the author of the thesis would like to be

confident that selected tool will be able to locate security related threats from scanned

applications. For that the author set up one of Skype Web Development team application to

work in local machine and introduced a reflected Cross-Site Scripting bug by removing

sanitization from one of GET parameters called orderId:

wapiti 'http://localhost/skype-

wallet/php/tal/Paymentflow/Web/Checkout_1_2.html?state=pending&orde

rId=1' -m '-all,xss:get' –f json

Executing this from local machine gave back result file with XSS vulnerabilities array filled:

"vulnerabilities": {

 "Cross Site Scripting": [

 {

 "info": "XSS vulnerability found via injection in the

parameter orderId",

 "http_request": "GET /skype-

wallet/php/tal/Paymentflow/Web/Checkout_1_2.html?

state=pending&orderId

=%3Cscript%3Ealert%28%27weftdl4um3%27%29%3C%2Fscript%3E

HTTP/1.1\nHost: localhost\n",

 "level": "1",

34

"curl_command": "curl \"http://localhost/skype-

wallet/php/tal/Paymentflow/Web/Checkout_1_2.html?state=pending&orde

rId =%3Cscript%3Ealert%28%27weftdl4um3%27%29%3C%2Fscript%3E\"",

 "path": "/skype-

wallet/php/tal/Paymentflow/Web/Checkout_1_2.html",

 "parameter": "orderId",

 "method": "GET"

 }],

 "Htaccess Bypass": [],

 "Backup file": [],

 "SQL Injection": [],

 "Blind SQL Injection": [],

 "File Handling": [],

 "Potentially dangerous file": [],

 "CRLF Injection": [],

 "Commands execution": []

 }

This result gives confidence that the selected tool is able to handle the threats inside our

application and it is reasonable to make efforts for the implementation of the solution.

35

6. Implementation of the solution

Given chapter will cover all the topics related with the implementation of the selected tool,

helper scripts and integration with the existing test automation framework.

The whole implementation of the new solution is integrated with the existing test

management tool in a following way:

 The scanner tool is installed to test runners;

 New security testing module is created, in Python, into existing regression test suites

of applications:

o That way they are included to application tests suite in test management tool

and are automatically executed when application is built.

 New test cases are created dynamically based on the URL-s from the logs:

o This means new test case will be created upon every unique URL (query

strings are excluded when creating test case names);

o During the test case execution it will get full URL-s, with query strings, from

the database and scans all of them.

 Upon test case execution the tests will create a valid user session;

 When test case finishes the results will be accessible through the test management

tool.

6.1 URL-s data inside database

All the URL-s, what has got either GET or POST requests in the application, are stored to

the database for the scanner to consume.

At the moment there is an existing schema in test environment database. Inside that testing

schema is a table where the collector script will insert the application name, URL and the

method used to access the URL. The output from that table can be seen from Figure 2.

36

Figure 2 Database structure and data

6.2 URL collector script

The URL collector script will take application names and their log directories from

configuration file and when executed, then searches all URL patterns for a certain

application and inserts them to testing database with matching method (GET or POST).

Plan is that the script is executed automatically twice a day – after the test environment

synchronization and at 14:00 to get the new data from the logs (incase new URL-s have been

introduced in the application). At the moment the script execution is done manually to verify

the correct work and performance of the script. The scheme how that script is working can

be seen from Figure 3.

37

Figure 3 URL collector script in action

6.3 Security tests creation and execution

6.3.1 Dynamic test creation

Test case names are gained by querying unique URL-s (without query strings) and methods

from the testing database where URL collector script has inserted the data. Since the query

asks for the unique URL-s and method, then with this data it is possible to put together not

repeatable test case names.

Example test case name:

test_walletcheckout_get

test_walletaccountaddress_post

For example the first test case includes the scanning of following URL-s with HTTP GET

payloads:

 https://secure.skype.com/wallet/checkout?state=setup&_accept=1.1;

 https://secure.skype.com/wallet/checkout?_accept=1.1&language=et&F[currency]=

EUR&state=setup.

The second example includes the scanning of following URL with HTTP POST payloads:

 https://secure.skype.com/wallet/account/address.

38

6.3.2 Creating a valid session for scanner

Before the security tests can be executed, there had to be created a way to generate user

sessions, so that scanner would get access to user restricted pages. Session generation was

established with a helper application what was included to the Wapiti scanner suite – wapiti-

cookie.

subprocess.call('wapiti-cookie cookies.json

https://login.skype.net/login?method=skype username=test

password=test', shell=True)

The previous code inside our Python test case set up method will ensure that each executed

test can use cookies.json file and will have a valid user session to use.

6.3.3 Scanner execution via test cases

When the legitimate session has been created, then it is possible for test case to execute the

scanner. For that the Python code asks all URL-s from database like the URL in test case

name (without query string, but slashes added):

cursor.execute("SELECT url, method FROM testingdb.security_test_urls

WHERE application=CURRENT_APP AND url LIKE '%TESTCASE_NAME%'")

urls = cursor.fetchall()

That way the test case will get all the URL-s with different query strings and passes it on to

the scanner.

The main execution flow for the scanner is:

 Pass the gained URL to the scanner as input parameter:

o wapiti/bin/wapiti URL

 Specify output file type:

o -f json

 Make the scanner to use previously created cookies file:

o –c cookies.json

 Make the scanner to scan only the given page:

o –b page

39

 Choose the attack vector – BlindSQL, SQLi and XSS (either GET or POST based on

the method field from database):

o –m '-all,xss,sql,blindsql,permanentxss'

 Get the output result from the scan, so it could be assigned to variable for later

analyses is also executed:

o json.loads(subprocess.check_output(["cat",

"vulnerabilities.xml"]))["vulnerabilities"]

When those options put into sequel commands in Python then the scanner execution

commands will be:

scan_result = subprocess.check_output(["wapiti/bin/wapiti", URL, "-

f", "json", "-c", "cookies.json", "-b", "page", "-m", "-

all,xss,sql,blindsql,permanentxss", "-v", "2"])

found_vulnerabilities = json.loads(subprocess.check_output(["cat",

"vulnerabilities.xml"]))["vulnerabilities"]

Previous command will give back a result of the scanned vulnerabilities in JSON format,

what will be assigned to found_vulnerabilities variable. Example:

{

 "Cross Site Scripting": [],

 "Htaccess Bypass": [],

 "Backup file": [],

 "SQL Injection": [],

 "Blind SQL Injection": [],

 "File Handling": [],

 "Potentially dangerous file": [],

 "CRLF Injection": [],

 "Commands execution": []

 }

That result is analyzed further inside the test code and if one of the attack vector arrays is

not empty, the test is marked as red in the test management tool.

40

6.4 Outcome

At the moment the solution works as described in the chapter. There are separate security

testing branches inside our applications testing suites in test management tool and under

those branches are dynamically created security test cases based on the URL-s got from the

log server. The tests are run automatically when new version of application is deployed to

testing environment, but there is a possibility to execute the tests manually also.

New security tests can be created by any of team quality engineer. Actions needed to get a

new application to be covered with security tests are:

1. Add new application to log collector script configuration;

2. Create python security module to existing test suite of the application;

3. Dynamically create test cases for all URL-s (without query strings);

4. Pass fetched URL-s from database to security scanner.

41

7. Future development

Although, created security testing solution is implemented and working as expected, there

still is some development needed, to improve its work.

The most important part is to create a way to get only unique URL-s from log server – at the

moment we are scanning one URL multiple times even if only the username parameter is

different. This is the reason why it is needed to develop an API to get all applications URL-

s with predefined parameters that are changing and should not be considered when putting

together the URL-s what are about to be scanned – for example if only username is different

for two URL-s then this URL should only be scanned once.

Due to the fact that it is relatively easy to create new modules and payloads for Wapiti, there

are quality engineers who are monitoring what should be the new modules and payloads

what are needed and will add them continuously. That includes activating other scanning

modules what Wapiti includes – File disclosure, PHP injections, OS injection, use of known

potentially dangerous files and weak “.htaccess” configurations.

42

8. Conclusion

Current thesis analyzed the best security testing solution for Skype Web Development team.

Analyze was done by selecting existing security scanners on the market and comparing them

with different company needs – defined by the team needs and a fact that the whole new

solution was to be implemented to the existing test automation framework.

The initial selection of scanners was put together by the work made by other security

researchers and by the requirements specified in the company needs. From the initial list was

selected 5 of the main tools – the ones what got the best results from other researchers and

the ones what were more popular in terms of analyze count from other research blogs. The

5 main tools were: OWASP Zed Attack Proxy, Wapiti, W3af, Arachni and Skipfish. With

each of the scanner there was done an initial test against one of Skype application to verify

the capability to work correctly. The most suitable of these tools was Wapiti scanner which

includes separate module to gain cookies (helps with authenticated scans), supports new

payloads and module adding with minimal efforts and was able to scan and was able to locate

purposely introduced security bug from one of Skype application.

Integration of the selected security scanner with the existing test automation framework was

done by installing Wapiti tool to test runner machines and by creating separate security tests

next to existing tests, what ensured that the results of the security tests were also displayed

through test management system.

The new solution is usable by every quality engineer of the team and new security tests are

automatically created based on the visited URL-s.

43

References

1. Target and The 10 Biggest Hacks of 2013 [WWW]

http://www.pcmag.com/slideshow/story/319071/target-and-the-10-biggest-hacks-

of-2013/1 (10.04.2014)

2. Skype Statistics [WWW] http://www.statisticbrain.com/skype-statistics/

(20.05.2014)

3. Keeping our users secure [WWW] https://blog.twitter.com/2013/keeping-our-users-

secure (20.05.2014)

4. Introducing Mozilla Winter of Security 2014 [WWW]

https://blog.mozilla.org/security/ (20.05.2014)

5. Automating Test Cases [WWW]

https://blog.mozilla.org/webappsec/2011/10/26/automating-test-cases/ (20.05.2014)

6. Survey Archives [WWW] http://stateofagile.versionone.com/survey-archives/

(20.04.2014)

7. Automated External Application Scanning [WWW]

https://www.owasp.org/index.php/Definition_for_Security_Assessment_Technique

s#Automated_External_Application_Scanning (20.05.2014)

8. Winners [WWW] http://awards.scmagazine.com/Winners2014 (20.05.2014)

9. About The Open Web Application Security Project [WWW]

https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_P

roject (20.05.2014)

10. Vulnerability Scanning Tools [WWW]

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

(20.05.2014)

11. Testing for XSS Vulnerabilities - Choosing a Scanner [WWW] http://meri-

stuff.blogspot.com/2011/07/testing-for-xss-vulnerabilities.html (20.05.2014)

12. The Web Application Vulnerability Scanners Benchmark [WWW]

http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html

(20.05.2014)

13. Web Application Security Consortium [WWW] http://www.webappsec.org/

(20.05.2014)

44

14. Web Application Security Scanner List [WWW]

http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security

%20Scanner%20List (20.05.2014)

15. The Open Source Initiative [WWW] http://opensource.org/ (20.05.2014)

16. Automated Audit using W3AF [WWW]

https://www.owasp.org/index.php/Automated_Audit_using_W3AF (20.05.2014)

17. A Timeline of Companies That Have Been Hacked In 2013 [WWW]

http://www.heavy.com/tech/2013/03/a-timeline-of-companies-that-have-been-

hacked-in-2013/ (20.05.2014)

18. The Biggest Hacking Attacks Of 2011 [WWW]

http://www.businessinsider.com/imf-cyber-attacked-hackers-sony-rsa-lockheed-

martin-epsilon-michaels-2011-6 (20.05.2014)

19. Looking back at the major hacks, leaks and data breaches [WWW]

http://www.zdnet.com/2012-looking-back-at-the-major-hacks-leaks-and-data-

breaches-7000008854/ (20.05.2014)

20. Blind SQL Injection [WWW]

https://www.owasp.org/index.php/Blind_SQL_Injection (20.05.2014)

21. w3af – Plugins [WWW] http://w3af.sourceforge.net/plugin-

descriptions.php#domXss (20.05.2014)

22. DOM Based Cross Site Scripting or XSS of the Third Kind [WWW]

http://www.webappsec.org/projects/articles/071105.shtml (20.05.2014)

23. Stored and Reflected XSS Attacks [WWW]

https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS)#Stored_and_Reflected_XSS_Attacks (20.05.2014)

24. SQL Injection [WWW] https://www.owasp.org/index.php/SQL_Injection

(20.05.2014)

25. OWASP 2013 TOP 10 list [WWW]

https://www.owasp.org/index.php/Top_10_2013-Top_10 (20.05.2014)

26. Cross-site Scripting (XSS) [WWW] https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS) (20.05.2014)

27. XSS attack on CIA (Central Itelligence Agency) Website [WWW]

http://thehackernews.com/2011/06/xss-attack-on-cia-central-itelligence.html

(20.05.2014)

45

28. XSS flaw in popular video-sharing site allowed DDoS attack through browsers

[WWW]

http://www.computerworld.com/s/article/9247450/XSS_flaw_in_popular_video_sh

aring_site_allowed_DDoS_attack_through_browsers (20.05.2014)

29. DDOS Attack Enabled by Persistent XSS Vulnerability on Top Video Content

Provider’s Site [WWW] http://news.softpedia.com/news/DDOS-Attack-Enabled-

by-Persistent-XSS-Vulnerability-on-Top-Video-Content-Provider-s-Site-

436029.shtml (20.05.2014)

30. Top 15 Most Popular Social Networking Sites | May 2014 [WWW]

http://www.ebizmba.com/articles/social-networking-websites (20.05.2014)

31. Facebook Login Page hacked through XSS by Mauritania Attacker [WWW]

http://hackersnewsbulletin.com/2013/06/facebook-login-page-hacked-through-xss-

by-mauritania-attacker.html (20.05.2014)

32. Hacking Facebook users just from chat box using multiple vulnerabilities [WWW]

http://thehackernews.com/2013/04/hacking-facebook-users-just-from-chat.html

(20.05.2014)

33. All about the "onMouseOver" incident [WWW] https://blog.twitter.com/2010/all-

about-onmouseover-incident (20.05.2014)

34. Yahoo Hit By SQL Injection Attack [WWW]

http://www.internetnews.com/security/yahoo-hit-by-sql-injection-attack.html

(20.05.2014)

35. Hackers Attack Sony Pictures with Single SQL Injection [WWW]

http://www.thewhir.com/web-hosting-news/hackers-attack-sony-pictures-with-

single-sql-injection (20.05.2014)

36. 40 Million People: How Far We´ve Come [WWW]

http://blogs.skype.com/2012/04/10/40-million-people-how-far-weve/ (20.05.2014)

37. Stuttard, D., Pinto, M. The Web Applications Hacker´s Handbook. 2nd ed.

Indianapolis : John Wiley & Sons, Inc, 2011

