
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Artjom Protski 206075IAIB

Danila Romanov 205861IAIB

Human Motion Capture and Analysis

Component for Mobile Robotics Platform

Bachelor's thesis

Supervisor: Sven Nõmm

 Ph.D

Client: Gert Kanter

 Ph.D

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Artjom Protski 206075IAIB

Danila Romanov 205861IAIB

Inimeste jämemotoorika salvestamise ja

analüüsimise tarkvarakomponent liikurroboti

jaoks

Bakalaureusetöö

Juhendaja: Sven Nõmm

 Doktorikraad

Klient: Gert Kanter

 Doktorikraad

3

Authors’ declaration of originality

We hereby certify that we are the sole authors of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis has

not been presented for examination anywhere else.

Authors: Artjom Protski, Danila Romanov

22.05.2023

4

Abstract

Gross motor tests have been used to diagnose and assess the severity of neurodegenerative

disorders for more than a century. Such tests usually include walking, sitting, standing,

etc. and are visually assessed by the human practitioner. Advances in motion capture

technologies have sparked interest in developing computer-aided systems to support the

diagnosis of such diseases or estimate their progress. One of the main obstacles to wider

usage of such systems is that either a special environment is required for the motion

capture or system setup, and usage may be time-consuming and process also requiring

two operators.

The aim of this thesis was to create a software solution for a mobile robot to capture

human motion and recognise human poses for possible future improvement with artificial

intelligence to use in the medical field to diagnose patients with motor diseases. To

achieve these goals following techniques have been used: pose detection with MediaPipe

technology, work with the Jetson Nano computers and optimization of framework for

them, 2D point triangulation with the DLT method, visualization of recorded movements

with Matplotlib library.

As a result of the thesis, software with the ability of capturing and recording human

movements and representing recorded motions using stickman model in 3 dimensions

was developed.

This thesis is written in English and is 61 pages long, including 8 chapters, 22 figures and

3 tables.

5

Annotatsioon

Inimeste jämemotoorika salvestamise ja analüüsimise

tarkvarakomponent liikurroboti jaoks

Jämemotoorseid teste on kasutatud neurodegeneratiivsete haiguste diagnoosimiseks ja

raskusastme hindamiseks juba üle sajandi. Sellised testid hõlmavad tavaliselt kõndimist,

istumist, seismist jne ja neid hindab visuaalselt arst. Edusammud liikumisjälgimise

tehnoloogias on tekitanud huvi arvutipõhiste süsteemide arendamise vastu, et toetada

selliste haiguste diagnoosimist või hinnata nende kulgu. Üks peamisi takistusi selliste

süsteemide laiemale kasutamisele on see, et liikumisandmete salvestamiseks või süsteemi

seadistamiseks on vaja spetsiaalset keskkonda ning kasutamine võib olla aeganõudev ja

nõuda kahte operaatorit.

Käesoleva lõputöö eesmärk oli luua mobiilse roboti jaoks tarkvaralahendus inimese

liikumise jäädvustamiseks ja inimese pooside äratundmiseks, et seda tulevikus

tehisintellekti abil täiustada ja kasutada meditsiinivaldkonnas liikumishäiretega

patsientide diagnoosimiseks. Nende eesmärkide saavutamiseks on kasutatud järgmisi

meetodeid: poseerimise tuvastamine MediaPipe'i tehnoloogia abil, töö Jetson Nano

arvutitega ja raamistiku optimeerimine nende jaoks, 2D-punktide triangulatsioon DLT-

meetodiga, salvestatud liikumiste visualiseerimine Matplotlib'i raamatukoguga.

Selle tulemusena loodi tarkvaralahendus, mis suudab tuvastada inimese poose,

klassifitseerida neid ja visualiseerida jäädvustatud liigutusi virtuaalses 3D-keskkonnas.

Tarkvara sisaldab kasutajaliidest, mille abil saab kasutaja alustada salvestamist ja

salvestatud liigutuste taasesitamist 3D-visualiseerimisega, mille puhul on võimalik sisse

lülitada kaadripõhine vaade. Tarkvara saab paigaldada robotiplatvormile ja see töötab

selle kaamerate abil, millega see on varustatud.

Käesolev töö katab täielikult autorite etteantud nõuded.

6

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 8 peatükki, 22

joonist, 3 tabelit.

7

List of abbreviations and terms

2D 2 dimensional

3D 3 dimensional

AI Artificial intelligence

ARM Advanced RISC machines

CPU Central processing unit

CSV Comma-separated values

DDS Data distribution service

DLT Direct linear transformation

GPU Graphical processing unit

k-NN K nearest neighbours algorithm

mm Millimeters

MP4 Coding format for digital audio and video

PAF Part affinity fields

RISC Reduced instruction set computer

ROS (2) Robot Operating System (2)

SD card Non-volatile flash memory card format

SVD Single value decomposition

UI User interface

8

Table of contents

1 Introduction ... 12

1.1 Problem Statement .. 13

2 Project Description .. 15

3 Project Design ... 17

3.1 Human Pose Capture .. 17

3.2 MediaPipe Pose .. 18

3.3 OpenPose .. 20

3.4 Comparison of MediaPipe Pose and OpenPose ... 20

3.5 Saving and Replay of the Received Data ... 22

3.6 Robot Equipment and Architecture of Software Development for Mobile Robot

Platform Iaso... 23

3.7 Jetson Nano... 23

3.8 ZED 2 ... 24

3.9 Robot Operating System 2 (ROS 2) ... 25

3.9.1 Topics .. 25

3.9.2 Services .. 25

3.9.3 Actions ... 26

3.10 Docker .. 27

4 Implementation .. 28

4.1 Setting Up Environment ... 28

4.2 Software Solution ... 29

4.2.1 Pose detection with 1 camera .. 29

4.2.2 Classification ... 29

4.2.3 Pose detection with 2 cameras ... 30

4.2.4 Point Triangulation .. 30

4.2.5 3D visualisation ... 34

4.3 Migration to Robot with ROS2 .. 35

4.3.1 Choosing ROS2 version .. 35

4.3.2 Application architecture in ROS2 context ... 35

9

4.3.3 ROS2 message interfaces .. 36

4.3.4 Application rollout in ROS2 context ... 37

4.4 Application Containerisation .. 38

4.5 Application User Interface .. 38

5 Validation .. 39

6 Related works .. 43

7 Discussion .. 44

8 Conclusions ... 46

References .. 47

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 49

Appendix 2 – Gantt chart.. 50

Appendix 3 – Validation data ... 51

Appendix 4 – GPU ... 55

Appendix 5 – Pose estimation edge cases .. 56

10

List of figures

Figure 1. Get up and go test [3]. ... 12

Figure 2. Two-step ML detector tracker pipeline. .. 19

Figure 3. Network architecture [8]. .. 19

Figure 4. MediaPipe topology [8]... 19

Figure 5. OpenPose demonstration [9]. .. 20

Figure 6. MediaPipe CPU demonstration. .. 21

Figure 7. OpenPose GPU demonstration. ... 21

Figure 8. MediaPipe Pose invalid detection [10]. .. 22

Figure 9. Iaso mobile robotic platform. .. 23

Figure 10. Jetson Nano. .. 24

Figure 11. ZED 2. ... 24

Figure 12. Topics demonstration [11]. ... 25

Figure 13. Services demonstration [12]. ... 26

Figure 14. Actions demonstration [13]. .. 27

Figure 15. Ideal point triangulation. ... 31

Figure 16. Real-world triangulation. .. 31

Figure 17. Calibration process. ... 32

Figure 18. Pose visualisation made with Matplotlib. ... 34

Figure 19. Application structure in ROS. ... 36

Figure 20. Image translation. .. 37

Figure 21. User interface. ... 38

Figure 22. Visualiser work demonstration. .. 39

11

List of tables

Table 1. Validation data.. 40

Table 3. Model precision. ... 42

Table 2. Application performance on Jetson Nano. ... 42

12

1 Introduction

Until recently, the medical community had skeptical views on the integration of computer

systems for diagnostics of neurological diseases. However, recently the interest in these

solutions has risen abruptly within the community. Ongoing solutions cannot claim to

have mobility or need long and tedious process to prepare the equipment ready, that fact

alone puts restrictions on equipment usage what makes it unprofitable in the eyes of

practitioners in the long run [1].

The goal of this thesis was the development of software that is capable of being launched

on the mobile robotic platform Iaso to capture human motions and record those motions

as a computer 3D model for the ability of later diagnostics of model regarding the

presence of neurological diseases.

This solution can become a good addition to the diagnostics of neurological diseases. As

an example, for existing diagnostics of Parkinson’s disease, the test named “get up and

go test”. The “get up and go test" requires patients to stand up from a chair, walk a short

distance, turn around, return, and sit down again [2]. The software will be able to record

patient movements during the diagnostics and later the generated model can be used in

the diagnosis process.

Figure 1. Get up and go test [3].

13

Although the software was developed with the goal of being used as an additional aid to

physicians, its capabilities do not stop there. The software can be used standalone as a PC

application in other fields of life where it is important to track the body position, for

example, fitness, to count exercise repetition and assess correctness.

1.1 Problem Statement

The proposed project aimed to develop the human motion capture and analysis

component for the mobile robotic platform.

Gross motor tests have been used to diagnose and assess the severity of neurodegenerative

disorders for more than a century [4]. Such tests usually include walking, sitting, standing,

etc. and are visually assessed by the human practitioner. One of the tests is named get up

and go and its results can show the differences in motion of patients with Parkinson

disease and without [5]. Advances in motion capture technologies have sparked interest

in the development of computer-aided systems to support the diagnosis of such diseases

or estimate their progress [1]. One of the main obstacles to wider usage of such systems

is that either a special environment is required for the motion capture or system setup,

and usage may be time-consuming and process also requiring two operators. To answer

this concern, a semi-autonomous platform here and later known as Iaso robot has been

developed at the Institute of Software Science. The Iaso robot has the ability to move in

the room and position itself to the given location; it is equipped with two cameras to

capture human motions at different angles. The present project aimed to improve the

existing capabilities of the Iaso robot in the area of human motion capture and processing.

The following demands have been specified by the client.

1. Determine the type of posture (sitting, standing) necessary for automatic test

segmentation.

2. Provide basic interface functionalities to start and stop the recording.

3. The software answering the above mentioned demands should be executable on

Jetson Nano platform and communicate with the motion planning application

4. Provide basic playback functionality for the visualisation of motion records.

14

The authors planned to develop the software component that will answer the client’s

demands. There are two candidates for the position of this component’s core: OpenPose

[6] or MediaPipe [7] engines. It was decided to use MediaPipe (see Error! Reference

source not found.).

This work required several skills and knowledge in several fields of computer science,

mainly programming and robotics. Because of this, authors have decided to split into 2

roles, where one will focus more on application and user side of the project (Artjom

Protski), and another on the robotics (Danila Romanov).

The workflow mostly included practical tests of software to assess the results and tune

the logic accordingly, such as optimising the calculations or adding new features.

Validation milestones consisted of recognising human and building model that closely

represents the movements of said person, model saving with the possibility of future

replay, and software recognising what actions does the person perform (for example,

standing, sitting). Also, the work included validation for the robot part, such as creating

a combined model using two cameras recording from different angles, obstacle detection,

and ability to move avoiding them.

Validating the functionality that responds to the first demand series of experiments has

been conducted by comparing the posture label acquired through calculations with visual

assessment of actual posture.

Functionalities such as starting and stopping are the part of the interface, and here a binary

system of validation have been used.

The client has validated the final demand related to the integration with the other

components of Iaso.

15

2 Project Description

The practical part consisted of development of software for semi-autonomous robotic

platform, that can detect and record model of person in real time for later usage as a part

of other systems, for example as disease diagnostics.

The expected duration of development – 4 months. During this time, the team of 2 people

planned to develop software prototype that can work on robotic platform Iaso and with

the addition of existing solutions, detect pose of a person, classify the pose and save the

results for later usage.

The development process can be split in several parts:

1. Development of software

2. Migration of developed solution on mobile robotic platform Iaso

3. Creation of a prototype user interface to interact with the software that is running on

the robotic platform

4. Preparations for showcase of the prototype during different parts of development

The plan (see Appendix 2) for the development of software that is focused on the

detection and real-time recording of the human model for later use in other systems. Most

of the time, the work was done together in pairs with discussion and analysis of progress

to acquire the best result possible. The stages of development are closely connected to the

dates of prototype presentation and try to optimize the development process to maximize

the quality of a result for the day of presentation.

The highest priority task of this thesis was creation of a software part of the application

that can detect and record in real time human model, this process was the most time

consuming of overall development. The process included research of existing solutions,

its analysis and quality assessment with the development of software that is capable of

detecting and recording human model in real time. With this came the development

process; according to the possible complexity of the main task and the number of subtasks

16

that were crucial to achieving the goal, it was decided to show only the software prototype

for the first demo, without robot integration. This concept would only show the parts that

matter most to the client and grading commission. The development process was carried

out in a team, with discussion of received information that was acquired during the

investigation of source materials related to development. This decision allowed to make

the research and analysis processes of necessary development materials faster;

nevertheless, this method was crucial to decisions related to choices of necessary

technologies and made the choice of the most suitable technology more likely.

After the first prototype showcase, the main goal that had to be achieved until the second

showcase was migration of the developed application to the Iaso mobile robotic platform.

This process included research of the robot architecture and research of the practical part

that was required to integrate the application to the robot platform, and, lastly, the

integration process itself. The process also happened as a teamwork with the discussion

of acquired information.

The third development stage included all tasks that were done in previous stages. At this

stage, there already existed a rough prototype of the final application that could perform

all the necessary tasks that were stated in the requirements of the developed system;

however, there also existed several flaws that need to be fixed. The main goal of this stage

was correction and improvement of the existing product and, as an addition, the

development of a user interface that would be the main component for control of the

application in a graphical window. The last part in the development process was creation

of different papers and documentations, necessary to the understating of applications by

third parties.

17

3 Project Design

The project included 2 main development processes – development of a software and

realization of software working on a robotic platform Iaso. The main areas of

responsibility of software are:

1. Human pose (stickman) detection on a frame

2. Saving the data in suitable format for late replay and usage

3. Replay of the results on the screen

4. User interface to use the above functionality

For the migration of the application for usage on the Iaso robot, the architecture of the

robot had to be researched and current conventions that took effect regarding software

development and methods of migration the application on the robot.

3.1 Human Pose Capture

The goal of this thesis was the development of an application that can work on the Iaso

robotic platform. One of the main tasks of the application was human pose (stickman)

detection, which was taken from camera, connected to the robot in real time. For real time

processing it was required to allocate not more than several milliseconds for frame.

Subsequently, the application should be optimized enough and provide the ability to

process the video. The model should be detailed enough to provide the ability for late

analysis and processing, the application should support the most prominent programming

languages and have prominent community. This aspect of the solution and programming

language prevalence were important for the simplification of the development process

and support of final product. These solutions would be able to simplify the search for new

employees and reduce the time necessary to learn the product architecture with the help

of the Internet documentation that was necessary in the development process.

18

At the time of development, there existed several solutions that could meet the application

requirement of human pose detection. After the search for available options, 2 candidates

were acquired: MediaPipe Pose and OpenPose.

3.2 MediaPipe Pose

In 2020, the solution with the name MediaPipe Pose was released, the main feature of

which was lightweight application for human pose detection that is available on mobile

devices in real time with the usage of artificial intelligence. It uses the BlazePose and ML

Kit Pose Detection API to infer a maximum of 33 keypoints (3D landmarks). It is possible

to launch this solution on mobile phone, desktop, or laptop. Now the part of this solution

that is responsible for human pose estimation, BlazePose, will be covered.

The BlazePose model, developed by Google, utilizes a two-step detector-tracker ML

pipeline [8]. In the case of video, detector launches only on the first frame and finds the

zone of person interest inside the frame, after which this zone is used for detection on

next frames. If the zone in the video is lost, the detector is launched again for the next

frame to find the zone of interest.

19

Figure 2. Two-step ML detector tracker pipeline.

Figure 3. Network architecture [8].

Figure 4. MediaPipe topology [8].

20

BlazePose uses an encoder-decoder network architecture to predict heat maps for all

joints, followed by another encoder that regresses directly to the coordinates of all joints

[8].

3.3 OpenPose

OpenPose is an open-source library that was made available in 2017 for 2D multi-person

human pose estimation. The library uses a nonparametric representation known as Part

Affinity Fields (PAFs) to detect the body parts associated with the person in an image.

The PAFs describe a list of 2D vector fields and encode both orientation and location of

the body [9].

The architecture encodes global context, allowing a greedy bottom-up parsing step that

maintains high accuracy while achieving real time performance, irrespective of the

number of people in the image.

3.4 Comparison of MediaPipe Pose and OpenPose

The main criteria for the choice of technology were precision and performance.

Application with the main task of 3D pose model detection should have high precision

for its later usage in diagnostics of neurological diseases.

During the comparison of two solutions, the advantages and disadvantages of both were

found. As a result of the comparison, it was determined that MediaPipe Pose has 2.5 times

better performance than OpenPose, which means that the MediaPipe Pose shows more

frames per second than its competitor.

Figure 5. OpenPose demonstration [9].

21

This advantage is achieved by using CPU for computations on MediaPipe Pose while

OpenPose works on GPU.

It is possible to improve the performance of MediaPipe Pose even further, by launching

the solution with GPU support. In that case the performance is improved times 3 and with

comparison to OpenPose has 7.5 times more framerate.

Lower performance of OpenPose is counterweighted by its precision, pose detection with

MediaPipe Pose is less precise, what shows in “jiggling” of body parts during detection

or even false detection.

Data acquired during the work period is also backed by other research that state the same

about MediaPipe Pose lower precision than OpenPose but also a system that has more

performance.

The performance of OpenPose was assessed as insufficient because of dangers of not

getting enough frames with poses for later analysis, that is why it was decided to use less

precise, but more reliable system – MediaPipe Pose.

Figure 6. MediaPipe CPU demonstration.

Figure 7. OpenPose GPU demonstration.

22

The BlazePose keypoints did not always correspond to the respective joint centre. These

situations were more likely to occur when the person was moving between frames, the

environment had high contrasting backgrounds or additional objects were in the frame,

creating a more challenging task for the AI models [8] [10].

However, the performance of MediaPipe Pose showed superior advantages in comparison

with the performance of OpenPose by displaying more frames per second; this

comparison was crucial because with low performance (less than 5 frames per second) it

is nearly impossible to perform any human analysis in reasonable time. Due to the

limitations in the performance of the Jetson Nano computer, it was decided to use less

precise but more productive system, MediaPipe Pose [8].

3.5 Saving and Replay of the Received Data

The requirements of the application included the ability to save received data for later

processing and analysis and for the ability to represent the model graphically to see

recorded movement. This functionality is available for programming in Python language,

and this is the main language chosen for the development of application for the mobile

robot platform Iaso.

The data acquired from MediaPipe analysis is saved in CSV format and the analysed

video feed is saved in MP4 format. The CSV file includes the frame number, Unix time,

and 3D coordinates of each keypoint for the current frame. To save the data, Pandas

library was used as it is an easy data processing tool, especially for creating and working

with CSV files.

Figure 8. MediaPipe Pose invalid detection [10].

23

3.6 Robot Equipment and Architecture of Software Development for

Mobile Robot Platform Iaso

Mobile robot platform Iaso is a metallic construction that has great mobility thanks to the

small size of construction and special wheels – omni dimensional wheels, that allow robot

to move in all possible directions. The construction is equipped with two Jetson Nano

computers and to each computer is connected a ZED 2 camera, which is located on a

movable ‘hand’ that can lift itself 90 degrees for additional calculations. The 90-degree

angle allows one to record as much data as possible.

3.7 Jetson Nano

The main computing component of the robot is Jetson Nano, which was developed by

Nvidia. The advantage of this computer is great performance in comparison to its size (69

mm by 45 mm) thanks to the Maxwell GPU graphical component with 128 cores. The

number of cores provides great performance in artificial intelligence computations.

Figure 9. Iaso mobile robotic platform.

24

3.8 ZED 2

ZED 2 is a camera that can identify the depth of objects. It became possible due to the

usage of 2 lenses that provide binocular vision. Even though this feature has great

potential, this thesis will not use it and instead will calculate frame depth with alternative

solutions.

Figure 10. Jetson Nano.

Figure 11. ZED 2.

25

3.9 Robot Operating System 2 (ROS 2)

ROS 2 is a set of libraries designed for robot applications. The use of this technology was

justified by the requirements of Iaso robot to the application requirements, specifically to

the communication of the different parts, also called nodes.

In ROS 2 there are 3 methods of communication:

1. Topics

2. Services

3. Actions

3.9.1 Topics

Topics are vital elements of the ROS graph that act as a bus for nodes to exchange

messages. Topics ensure the ability of nodes to connect to them, after which receive

continual updates.

A node may publish data on any number of topics and simultaneously have subscriptions

to any number of topics.

3.9.2 Services

Services are based on a call-and-response model versus the publisher-subscriber model

of topics. Services provide data when they are specifically called by the service client.

Figure 12. Topics demonstration [11].

26

3.9.3 Actions

Actions consist of 3 parts: a goal, feedback, and a result. It is in a sense a hybrid between

topics and services, where functionality is close to the services with the one exception,

the process can be stopped during execution. Topics are used for logging of executed

processes, which is suited for precise commands having a precise goal.

The communication paradigm in this project will be topics that allow, instead of services

and actions, which functionality is close to services, provision of continual data updates;

this method is more preferable for motion capture due to the motion capturing process

not having end goal or requests, but only provides a stream of frames necessary for data

processing.

Figure 13. Services demonstration [12].

27

3.10 Docker

One of robot architectural requirements is the launch of all applications from Docker

container, that allows automatic application rollout.

Docker was designed to simplify the creation, deployment, and execution of applications

using containers. Containerization allows the user to run applications in a virtual

environment by packaging all necessary elements, such as files, libraries, and other

essential components together [14].

Figure 14. Actions demonstration [13].

28

4 Implementation

The aim of this thesis was to create a software solution for a mobile robot to capture

human motion and recognise human poses for possible future improvement with artificial

intelligence to use in the medical field to diagnose patients with motor diseases. It was

decided to start with the application first and work with the robot later.

4.1 Setting Up Environment

The first step that had to be done is to set up necessary environment for future

development. The work started with empty Jetson Nano and an operational system had to

be installed for possible interaction. There were 2 possible images that could be used, the

official Ubuntu 18.04 with Jetson Nano installed software, and custom-made Ubuntu

20.04. It was decided to install Ubuntu 20.04 as the version was newer and some of the

features may have been unavailable in the older version. The first problem that occurred

was that this specific image cut the SD card storage but that could be fixed with additional

software that can expand the image to support larger storages. Now the system was ready

to install MediaPipe, where the main problems start to occur. MediaPipe has 2 possible

ways of working, through CPU or through GPU. Since Jetson Nano comes equipped with

the GPU, it would be wise to use it, as it can take an excessive load from the CPU. The

problem is that MediaPipe does not have a fast and easy way to install GPU. The normal

installation could be done with pip utility but for GPU additional actions should have

been made. After several attempts and after accumulating enough information, it was

decided to downgrade the operational system version to official Ubuntu 18.04, since all

the solutions for current versions did not work. It should be noted that it is possible to

install MediaPipe on newer Ubuntu but only the CPU version, and since optimisation is

a key component of this application, the GPU variant should be as thoroughly researched

as possible. After downgrading, a third-party project was found that showed how

MediaPipe with could be installed on Jetson Nano, this solution worked and now it was

possible to use and test MediaPipe with full capabilities.

29

4.2 Software Solution

The development of software was the main goal of the thesis, and the main criteria was

to capture human movements and classify the pose on the frame, save the data, and

visualise the final result as a 3D model. This process must work with the two cameras

installed on Iaso mobile robot platform. Described below is the process of subsystem

creation that was necessary for accomplishing all the requirements specified by the client,

in the chronological order of development.

4.2.1 Pose detection with 1 camera

First, a small example with MediaPipe Pose library was built that could only detect human

poses with one camera. It was used as a base to build on and learn about the library

capabilities at the same time. At this stage, work was done with 1 Jetson Nano and 1 ZED

2 camera in a horizontal position. Firstly, the camera feed is read using the OpenCV

library, then the frame data is sent to MediaPipe Pose for processing. After processing,

the updated frame with body landmarks is shown on the screen in real time. So, the person

can move, and at the same time, their pose will be detected on the screen. When

application is stopped the video feed is saved in an MP4 format for later replay.

4.2.2 Classification

The next step was to create the pose classifier. The pose classifier was made using

MediaPipe Pose methods for machine learning. It is given test data of different states (like

sitting, staying) that it learns to detect. K-nearest neighbours (k-NN) algorithm is used to

determine the most likely state. The algorithm determines the state on the closest samples

in the training set. Several steps had to be taken to build a classifier.

1. Collect image samples of the states and run pose prediction.

2. Convert pose landmarks to the format suitable for k-NN algorithm and form a training

set.

3. Perform the classification using camera feed.

To build a classifier as precise as possible, around a few hundred samples are needed for

each state, covering different camera angles, lighting, and body position.

30

4.2.3 Pose detection with 2 cameras

Now the work was done with 2 ZED 2 cameras that the Iaso robot is equipped with but

connected to development Jetson Nano computer. Firstly, the camera feed is read using

OpenCV library. Then, the frame size is set, 1280 (width) by 720 (height). The cameras

are equipped with 2 lenses on left and right front edges, for the purposes of simplification

and more stability of detection only one lens is used, the one that is located on top in the

vertical position of camera. The MediaPipe Pose then receives the frame data and scans

them for human presence. In case it finds one, the keypoint data is returned (position,

body part), which can also be drawn on image or camera feed. MediaPipe Pose has a

detection confidence that changes how strictly it analyses the feed for human presence,

with the parameter ranging between 0 and 1, being close to 1 meaning near impossibility

of finding a human. During the detection user sees 3 windows, 1 for each camera with the

landmark points and 1 for classifier window. All of the data displayed on the windows is

also recorded in several MP4 files for later replay. After the detection, points data is

checked to know what body part it belongs to, because for the 3D visualization it is more

efficient to not draw the whole body, but only the necessary parts, limbs and torso. If the

points are in this category, they are sent to the DLT method for triangulation and the result

then is shaped into arrays and written to text file.

4.2.4 Point Triangulation

Since 3D visualisation requires 2 cameras, there should be a method to combine keypoints

detected from the first camera with points from the second one, point triangulation model

can help with this problem. The 3D point x is projected onto the camera planes through

the focal points O1 and O2 and is displayed on the image as y1 and y2. The problem with

the displayed model is that it does not reflect the interference that occur. Different

distortions and noise affect the model and figure 3 shows realistic state of measurements.

The new task then becomes to estimate position of x as close as possible.

31

One possible solution to this problem is to triangulate points with direct linear

transformation (DLT). DLT is a method for calculating point triangulation and equation

(1) shows its basic form.

𝑥 = 𝑃𝑋 (1)

Where x is a 2D point, P is a camera matrix and X – estimated 3D point. Several steps

must be taken before triangulating points, as DLT method requires individual matrix of

each camera, they can be acquired by prior calibration of cameras. Calibration is a process

to find the intrinsic and extrinsic parameters of cameras. Intrinsic parameters are the

Figure 15. Ideal point triangulation.

Figure 16. Real-world triangulation.

32

parameters unique to each camera and they include focal length and optical centres, which

together form camera matrix that describes mapping of 3D points in the world to the 2D.

This information is used to remove distortion that appears due to the specifics of camera

lens. Extrinsic parameters include rotation and translation matrixes and correspond to

translation of a 3D point to 2D in the image. The distortions must be corrected first and

to solve this problem well defined calibration pattern is used (in this case chessboard).

The calibration logic finds the relative positions of the square corners and because it is

provided with the specifics of a real-world chessboard (board size, individual tile), it can

solve the system for the distortion coefficients [15]. Now, it comes down to the DLT

method. The system of 2 equations will have to be solved (1 for each camera), but the

problem is that there is usually no solution that satisfies both constraints.

The equation (1) changes to equation (2).

𝑥 = 𝛼𝑃𝑋 (2)

Figure 17. Calibration process.

33

The 2D coordinate x from homogenous becomes non-homogenous. The ray created by

the new equation will have the same direction and the only difference will be in the scale

factor α.

Now the matrix from equation (3) is converted to linear system, scale factor, and system

is solved with single-value decomposition (SVD).

[
𝑥
𝑦
𝑧
] = 𝛼 [

𝑝1 𝑝2 𝑝3 𝑝4

𝑝5 𝑝6 𝑝7 𝑝8

𝑝9 𝑝10 𝑝11 𝑝12

] [

𝑋
𝑌
𝑍
1

] (3)

The idea of SVD is that the cross product of the two vectors of same direction is equal to

zero (that equality allows the removal of scale factor). In this case equality (4) is SVD.

𝑥 × 𝑃𝑋 = 0 (4)

Going through equations (5-9) will give a system of 2 equations that is not enough to find

3 variables, but since this system only accounts for one camera, the second one should be

added as well.

[
𝑥
𝑦
𝑧
] = 𝛼 [

𝑝1
𝑇

𝑝2
𝑇

𝑝3
𝑇

] [𝑋] (5)

[
𝑥
𝑦
𝑧
] = 𝛼 [

𝑝1
𝑇 𝑋

𝑝2
𝑇 𝑋

𝑝3
𝑇 𝑋

] (6)

[
𝑥
𝑦
1
] × [

𝑝1
𝑇 𝑋

𝑝2
𝑇 𝑋

𝑝3
𝑇 𝑋

] = [

yp3
𝑇𝑋 − 𝑝2

𝑇𝑋

𝑝1
𝑇 𝑋 − 𝑥𝑝3

𝑇𝑋

𝑥𝑝2
𝑇 𝑋 − 𝑦𝑃1

𝑇𝑋

] = [
0
0
0
] (7)

[
𝑦𝑃3

𝑇𝑋 − 𝑝2
𝑇𝑋

𝑝1
𝑇𝑋 − 𝑥𝑝3

𝑇𝑋
] = [

0
0
] (8)

[
𝑦𝑃3

𝑇 − 𝑝2
𝑇

𝑝1
𝑇 − 𝑥𝑝3

𝑇] 𝑋 = [
0
0
] (9)

Equation (10) shows matrix with combine parameters from both cameras and by solving

it, 3D point X is acquired [16].

34

[

𝑦𝑝3
𝑇 − 𝑝2

𝑇

𝑝1
𝑇 − 𝑥𝑝3

𝑇

𝑦′𝑝′3
𝑇 − 𝑝′2

𝑇

𝑝′1
𝑇 − 𝑥′𝑝′3

𝑇]

𝑋 = [

0
0
0
0

] (10)

4.2.5 3D visualisation

Matplotlib library is used for visualizations in Python. In this case, the library gets the

triangulated points and draws them on a 3-dimensional axis, while also adding limb

connections between the points. By giving the points of each frame into sets and providing

them one after another, frame-by-frame animation is achieved.

Figure 18. Pose visualisation made with Matplotlib.

35

4.3 Migration to Robot with ROS2

The usage of ROS2 technology is justified by the Iaso robot architecture that requires it

for application development. Due to the application not being developed with the ROS2

architecture in mind, the task was to change (migrate) the application for its usage

together with ROS2 and evidently, together with the robot. ROS2 is a set of libraries that

were created for use in robot platform applications. For development purposes, the only

necessary information was the one that concerns basics and concepts of technology and

types of communication of different parts of application between each other. All

necessary information was acquired through the official ROS2 documentation (version

Galactic) [17].

4.3.1 Choosing ROS2 version

Another question was how to choose the correct ROS2 version for application migration.

Currently it had 8 versions [18]. The development process was carried out on separate

Jetson Nano, after which the migration of ready application to the robot was taking place

to keep other systems that already work on a robot safe. However, the developed

application had to have the ability to communicate with the other systems to create a

united environment.

Iaso robot platform uses ROS2 version Galactic, during the first installation of the ROS2

for the application was used the latest version Humble. After trying to communicate the

application with other systems of the robot, the system did not work correctly. After

additional research, it was decided to use the identical to the robot’s ROS2 version. As

was found, ROS2 uses DDS technology to communicate with the help of topics. Different

versions have different DDS that may contain different conventions regarding message

exchange [19].

4.3.2 Application architecture in ROS2 context

Application migration to Iaso robot started from creating suitable application architecture

and after meeting with the client, the scheme was created that can be observed below.

36

This architecture considers the usage of two Jetson Nano computers that the robot is

equipped with. The two components are duplicated, Frame Provider and MediaPipe. It is

necessary because each Jetson Nano is connected to a different camera and each frame

acquired is processed separately. Frame provider sends frame to process through Image

topic to use in the MediaPipe component. MediaPipe component contains MediaPipe

Pose that processes acquired frame and then sends the coordinates of points of human

model (stickman). Described process happens in parallel on two cameras and computers

to later achieve 3D model with the usage of DLT.

The Fuser launches on one of two Jetson Nano computers and is responsible for 3D

human model creation (stickman). It listens to 2 topics that send points’ coordinates from

2 cameras, if the received signal has delay lower than described threshold, then the Fuser

processes them and sends 3D pose coordinates to Visualizer node. Visualiser node shows

the 3D model generated from acquired points in real time. It is possible to turn off the

Visualizer to not show the model.

4.3.3 ROS2 message interfaces

To realise the sketched architecture for the application, the ROS2 communication

interfaces and how to use them to send the data were researched. Data acquired during

Figure 19. Application structure in ROS.

37

the running of application had to be formatted for ROS2 to send it using the topics. To

acquire camera data, the OpenCV library was used, and to translate image data into the

format used by ROS2, the CvBridge library was used. This library allows for the

translation of the OpenCV frame to the message interface /sensor_msgs/msg/Image in

ROS2. Later, it was possible to convert the data from this format to original.

To transfer points data that was acquired MediaPipe Pose estimation it was necessary to

create own interface /mediapipe_interfaces/msg/Float64MediaPipeMultiArray to transfer

together with the data, information about the size of original frame. This data could be

used later to recover original image coordinates and it was needed because the MediaPipe

pose normalises human model coordinates.

4.3.4 Application rollout in ROS2 context

The standard launch of components with built-in ROS2 means the launch of each

component separately. This approach is unfavorable when we talk about automatic

system rollout. To solve this problem, ROS2 capability of writing an additional file was

used where the launch sequence is described. After which the file is launched from the

terminal, automatically loading all the components.

Figure 20. Image translation.

38

4.4 Application Containerisation

For automatic rollout of this application on the Iaso robot platform, Docker was used. To

launch an environment custom image was used that is generated with the help of a

Dockerfile, base for which is Ubuntu 20.04 for ARM system.

4.5 Application User Interface

Future users must communicate with the application without worrying about the inner

workings of the application. After analysing several libraries, it was decided to stop on

Tkinter library, as it is easy to develop with and provides all the necessary functionality

for creation of user interface. The UI allows users to record the video and points necessary

for 3D modelling and then later launch that same model for analysis. 3D model has its

own interface by Matplotlib library that allows moving the dimensional axes. The Tkinter

provides basic functionality, for example events. Events respond to user actions and

activate part of the application that it corresponds to.

Figure 21. User interface.

39

5 Validation

Project validation includes check of MediaPipe Pose detection, pose classifier correctness

and application software performance. Pose validation is conducted by comparison of

calculated result with factual representation. Based on this data, conclusions were made

about the precision of pose classifier (see Table 1).

Figure 22. Visualiser work demonstration.

40

Most of the cases are recorded and displayed precise if not taking into account many of

the edge cases where the subject, for example, may make the motions too fast, being face

away from cameras and doing unusual, for human standards, poses.

Edge cases include pose detection by analyzing partial data, for example cases where one

camera sees a specific body part while another camera does not (see Appendix 5). By

checking these cases, software showed excellent result by displaying full body model, the

limb coordinates from only 1 camera were enough to display it on the 3D human model.

For example, one of the turn cases where the human turns in the place is the turn while

sitting in the chair, after reaching a certain threshold in the body turn angle, the classifier

started showing false data regarding the pose. This behaviour could be connected to

training data deficiency for correct pose analysis, adding more cases to testing data could

fix this issue.

The process of validating the classification was described by analysing the frame delay

between the pose classified by software and the factual pose. To determine this delay the

frame-by-frame analysis was conducted to calculate the data by visually analyzing the

software pose and the human pose in reality.

Firstly, to analyze the data 2 poses were determined that the pose classifier can detect:

1. Sitting – action during which the interior angle of a knee is in the range of 180 to 136

degrees.

2. Standing – action during which the interior angle of a knee is in the range of 135 to 0

degrees.

Test cases were recorded (see Appendix 3) by the results of which several parameters

were calculated (see Error! Reference source not found., page Error! Bookmark not

defined.).

Table 1. Validation data.

Pose change
Minimum delay (in

frames)

Maximum delay (in

frames)
Mean delay

Standard

deviation

41

Sitting to

standing
-2 1 -0.3 0.64

Standing to

sitting
0 6 2.65 1.45

This table describes the value of minimal and maximum delay, mean and standard

deviation for each case of pose changing – from sitting to standing, from standing to

sitting.

The collected data shows that the classifier determines the pose change from sitting to

standing relatively fast and precise; in this case the mean delay goes closely to 0 and most

of the numbers are close to 0 delay, the data that standard deviation shows.

The classification of sitting to standing change shows a worse result, mean delay is 2.65

frames, and also the difference in the values is much higher in comparison to the first

case.

An assumption was made, that this behavior of a classifier can be connected to the small

amount of training data and that making the training set bigger can improve the speed and

the precision of the classifier.

In addition, anomalies were found during the testing period, during which the classifier

started to periodically change certain poses while the subject remained still. This event

may often coincide when the subject turns on the place.

The F1 score was counted that measures the overall accuracy. By assigning different

poses to states (standing – true positive, sitting – true negative) and counting the frames

with correct or incorrect pose classifications precision and recall values were calculated.

The F1 score is a harmonic mean of precision and recall.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (11)

𝑅e𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑏𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (12)

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (13)

42

Table 2. Model precision.

Precision 0,77

Recall 0,97

F1 score 0,86

Another thing that should be mentioned is the speed of the application on Jetson Nano.

Table 3. Application performance on Jetson Nano.

Application type Frequency (in hertz)

MediaPipe Pose with 2 cameras and

visualizer

0.62

MediaPipe Pose with 2 cameras only 2.61

MediaPipe Pose with 1 camera 3.66

43

6 Related works

While researching the topic, several other projects were found that have already

implemented some parts intended for this thesis. Two projects stood out mostly among

all: first included human motion capture using 2 cameras with MediaPipe and

visualisation with Matplotlib, second one was a web application that captured live feed

from 1 camera and showed captured keypoints in real time with the possibility to adjust

settings. Most inspiration was taken from the first project since it included detailed

explanation of every part of application and provided research that backed up created

software [20]. The disadvantage of this project is that it provided an already made solution

calibrated for personal cameras of the author, so several parameters had to be changed or

recalculated to work with the new setup, especially camera calibration parameters. This

solution also only works on desktop and does not have any user interface, so migration to

mobile robotic platform Iaso and latter had to be added.

44

7 Discussion

The developed application that can launch detection and save human 3D model is a great

demonstration of the ability to run these types of systems on the Iaso robot platform that

has restrictions with computation capabilities. However, the solution still has a list of

problems that need to be fixed, the Jetson Nano computers that the robot is equipped with

have performance too low for precise 3D pose detection, even though MediaPipe Pose is

an excellent option for pose detection because it provides high performance and higher

than average precision. The current results that MediaPipe Pose provides on this

architecture are insufficient for possible use as an instrument for medical purposes. Better

precision in this case shows OpenPose. Even though this option provides more precision,

the robot computers do not allow launching this solution with acceptable performance,

leaving MediaPipe the only viable solution. What could solve this problem is equipping

the robot with more powerful computers, for example, more powerful Jetson models from

the same company Nvidia.

The choice of ZED 2 as the main camera for frame capture for later processing with the

usage of 3D modelling technology was an excessive choice for the goals of this thesis.

The camera capabilities of object depth perception that was achieved due to the presence

of two lenses that simulate binocular vision are an excess for this thesis, as depth

perception is achieved using other methods. In the application, depth perception is

achieved by placing 2 ZED 2 cameras on 90-degree angle that allows adding third

dimension to the model by combining data from 2 frames.

Many problems could not have been accounted for before, as an example different version

incompatibilities. Some time was also spent on the topic of cameras being placed

vertically, since that also makes the frames acquired vertical. For easier analysis of 3D

model and possible video replay the frames had to be turned horizontally. This is not a

problem when the system is whole and everything is in one place but that becomes a big

problem when parts become scattered, for example in Iaso robot with ROS and Docker

containers. The current architecture does not provide enough information about cameras,

45

and the source code has to be changed to know which camera is rotated in what way.

Another possible solution can be usage of mathematics and the property of a frame that

it is a matrix of numbers, so in theory, by rotating the matrix, the frame will rotate as well.

46

8 Conclusions

As the result, software solution was created that can detect human poses, classify them,

and visualise captured motions in virtual 3D environment. The software contains a user

interface with the help of which the user can start the recording and replay the captured

motions in 3D visualisation with the capability to turn on frame-by-frame view. The

software can be mounted and works on a Iaso robot platform using the cameras it is

equipped with.

During the development a software was created that can capture human model using

MediaPipe Pose and also visualize 3D human pose in real time using several cameras and

DLT method for triangulation. Received 3D pose model can be recorded and saved for

later replay. Also, a classifier was developed that can detect 2 types of poses on the frame

– standing and sitting, and small user interface with the help of which software behavior

can be changed it can be launched.

All the functionality described can be launched on mobile robotic platform Iaso.

Described functionality fully covers the goals set up for the authors of this thesis and,

after conducted tests, shows good results in the precision of pose detection and precision

of pose classification.

47

References

[1] A. Krajushkina, S. Nõmm, A. Toomela, K. Medijainen, E. Tamm, M. Vaske, D. Uvarov,

H. Kahar, M. Nugis, P. Taba, “Gait Analysis Based Approach for Parkinson’s Disease

Modeling with Decision Tree Classifiers,” in 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), IEEE, Oct. 2018, pp. 3720–3725. doi:

10.1109/SMC.2018.00630.

[2] S. Mathias, U. S. Nayak, and B. Isaacs, “Balance in elderly patients: the" get-up and go"

test.,” Arch Phys Med Rehabil, vol. 67, no. 6, pp. 387–389, 1986.

[3] C.-Y. Hsieh, H.-Y. Huang, K.-C. Liu, K.-H. Chen, S. J.-P. Hsu, and C.-T. Chan,

“Subtask Segmentation of Timed Up and Go Test for Mobility Assessment of

Perioperative Total Knee Arthroplasty,” Sensors, vol. 20, no. 21, 2020, doi:

10.3390/s20216302.

[4] D. O. Stewart A. Factor and W. J. Weiner, Parkinson’s Disease: Diagnosis and Clinical

Management. Springer Publishing Company, 2007. [Online]. Available:

https://books.google.ee/books?id=zUp54Dm-Y7MC

[5] S. Nõmm, A. Toomela, M. Vaske, D. Uvarov, and P. Taba, “An Alternative Approach to

Distinguish Movements of Parkinson Disease Patients,” IFAC-PapersOnLine, vol. 49,

no. 19, pp. 272–276, 2016, doi: https://doi.org/10.1016/j.ifacol.2016.10.546.

[6] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime Multi-

Person 2D Pose Estimation using Part Affinity Fields,” Dec. 2018.

[7] “MediaPipe,” 2021. https://developers.google.com/mediapipe (accessed Mar. 02, 2023).

[8] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and M. Grundmann,

“Blazepose: On-device real-time body pose tracking,” arXiv preprint arXiv:2006.10204,

2020.

[9] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation

using part affinity fields,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 7291–7299.

[10] M. Reza Soheili, “MediaPipe vs OpenPose (Human Pose Landmark Detection).” Feb.

13, 2023. Accessed: May 22, 2023. [Online]. Available:

https://www.youtube.com/watch?v=X471QY9n7dA

[11] Open Robotics, “Understanding topics,” 2023.

https://docs.ros.org/en/galactic/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Topics/Understanding-ROS2-Topics.html#understanding-topics (accessed May 22,

2023).

[12] Open Robotics, “Understanding services,” 2023.

https://docs.ros.org/en/galactic/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Services/Understanding-ROS2-Services.html (accessed May 22, 2023).

[13] Open Robotics, “Understanding actions,” 2023.

https://docs.ros.org/en/galactic/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Actions/Understanding-ROS2-Actions.html (accessed May 22, 2023).

[14] I. Docker, “Docker,” lnea].[Junio de 2017]. Disponible en: https://www. docker.

com/what-docker, 2020.

48

[15] “OpenCv Camera Calibration,” 2023.

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html (accessed Apr. 15,

2023).

[16] Kris Kitani, “Triangulation,” Carnegie Mellon University. Accessed: Apr. 13, 2023.

[Online]. Available: http://www.cs.cmu.edu/~16385/s17/Slides/11.4_Triangulation.pdf

[17] Open Robotics, “ROS2 (galactic) documentation,” 2023.

https://docs.ros.org/en/galactic/index.html (accessed Apr. 19, 2023).

[18] Open Robotics, “ROS2 distributions,” 2023.

https://docs.ros.org/en/humble/Releases.html (accessed Apr. 19, 2023).

[19] T. Foote, “ROS2 different distribution version compatibility.” 2020. Accessed: Apr. 18,

2023. [Online]. Available: https://answers.ros.org/question/341372/can-nodes-from-

different-ros-2-distributions-communicate-compatibly/?answer=341385#post-id-341385

[20] T. Batpurev, “bodypose3d,” 2022. https://github.com/TemugeB/bodypose3d (accessed

May 19, 2023).

[21] M. Sajith, “How-to-Install-Mediapipe-in-Jetson-Nano,” 2022.

https://github.com/Melvinsajith/How-to-Install-Mediapipe-in-Jetson-Nano (accessed

May 22, 2023).

[22] G. Montamat, “Pose detection in python with CUDA support,” 2021.

https://github.com/google/mediapipe/issues/2041 (accessed May 19, 2023).

[23] L. Zhensheng, “ros2_jetson,” 2023. https://github.com/ZhenshengLee/ros2_jetson

(accessed May 19, 2023).

49

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

We Artjom Protski, Danila Romanov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for our

thesis “Human Motion Capture And Analysis Component For Mobile Robotic

Platform”, supervised by Sven Nõmm

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. We are aware that the authors also retain the rights specified in clause 1 of the non-

exclusive licence.

3. We confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

22.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

50

Appendix 2 – Gantt chart

51

Appendix 3 – Validation data

Case number Delay

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 -1

52

16 -1

17 0

18 1

19 -1

20 0

21 0

22 0

23 -1

24 -2

25 -1

26 -1

27 -1

28 1

29 0

30 0

31 -1

Case number Delay

1 2

2 2

3 3

53

4 2

5 2

6 3

7 2

8 2

9 2

10 1

11 1

12 0

13 1

14 1

15 1

16 2

17 1

18 3

19 0

20 2

21 5

22 4

23 4

24 6

54

25 3

26 2

27 5

28 5

29 2

30 2

31 2

55

Appendix 4 – GPU

During development, it was considered to launch MediaPipe Pose with GPU support.

However, many problems occurred with the integration to work together with Python

Framework and GPU. At the time of writing this thesis, the official support of Python

Framework and GPU was absent (MediaPipe Pose v0.8.9) because of absence of official

graphs that support the GPU in Python. The image of MediaPipe Pose v0.8.5 with the

GPU support was discovered, however the launching process of the image is difficult due

to the condition that it must work with ROS2 because the image demands specific Python

version (v3.6) [21].

Installation of this specific version for Ubuntu 20.04, the version necessary for ROS2

(Galactic) to work, was problematic, also because the ROS2 version cannot be changed

due to the robot being equipped with this specific version. It was assumed that most of

the problems are connected to version compatibility problems.

Additionally, several handmade solutions were checked to launch MediaPipe Pose with

GPU support. An attempt was made to create graph for GPU support in MediaPipe Pose

but it was unsuccessful [22].

It was also attempted to launch ROS2 Galactic on Ubuntu 18.04 which has no problems

with the Python v3.6 instalment [23].

Most of the problems with the compatibility were in some way connected to OpenCV that

showed different errors during each of the attempts.

56

Appendix 5 – Pose estimation edge cases

57

58

59

60

61

