

Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Erik Ehrbach 176066IDDR

Message Traffic Audit Logging between

Application and Messaging Server on the

Example of AS LHV Pank

Diploma thesis

Supervisors: Toomas Lepikult

 PhD

 Tiit Hallas

 MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Erik Ehrbach 176066IDDR

Rakenduse ja sõnumiserverivahelise

sõnumiliikluse revisjonlogimine

AS-i LHV Pank näitel

Diplomitöö

Juhendajad: Toomas Lepikult

 PhD

 Tiit Hallas

 Msc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Erik Ehrbach

27.04.2021

4

Abstract

Audit logging is a critical part of todays financial institutions and their IT-infrastructural

components. The outcome of logs is used for risk management in order to understand and

trust the systems that engage with data at hand. Logs give an understanding of operations

done in a system if the collection of logs is done well.

The aim of this thesis was to propose a log collection solution for any traffic flow that

occurs between messaging servers and applications due to the fact that these kinds of data

flow operations were not standardized nor were they involved with a uniformed traffic

logging operations in the scope of LHV Bank. Although the practical part of this thesis is

based on LHV Bank’s technical stack, the theoretical solutions are applicable to other

environments as well.

The proposed traffic audit logging solutions were implemented in a number of selected

applications in LHV Bank’s infrastructure and the outcome is now under the maintenance

of LHV’s IT development teams for future improvements.

This thesis is written in English and is 37 pages long, including 5 chapters, 22 figures and

3 tables.

5

Annotatsioon

Rakenduse ja sõnumiserverivahelise sõnumiliikluse

revisjonlogimine AS-i LHV Pank näitel

Revisjonlogimine on tänapäevaste finantsistutsioonide ning nende IT-infrastruktuuri

komponentide lahutamatu osa. Logide eesmärk on manageerida riske ja mõista paremini

süsteeme, mis tegutsevad erinevates andmetöötluse protsessides. Kui logimis-

operatsioonid on lahendatud jätkusuutlikult ning nende tulem on adekvaatne, pidevas

analüüsis ja kasutuses, siis on tagatud väga selge madalatasemeline ülevaade kõikidest

süsteemis teostatud toimingutest.

Käesoleva töö eesmärk oli välja töötada ja kasutusele võtta rakenduse ja

sõnumiserverivahelise sõnumiliikluse revisjonlogimise normatiiv LHV panga skoobis,

kuna just selle kindla andmeliikluse mehhanismid ning tööprotseduurid polnud mainitud

institutsioonis varasemalt standardiseeritud ega ühildatud ühtsete logimis-

operatsioonidega. Terviklik mehhanism revisjonlogide talletamiseks tagab kõik vajalikud

võimalused edasise andmetöötluse ning –liikluse analüüsiks nii infoturbe, äriprotsesside,

kui ka süsteemide arenduse vaatevinklist.

Töö käigus väljapakutud revisjonlogimise lahendus sai valitud LHV panga IT-

infrastruktuuri kuuluvate ärirakenduste tasemel juurutatud ning logimismehhanismid

ning valminud normatiiv on nüüdseks LHV IT-arenduse osakonna kontrolli all võimalike

edasiste arenduste ja paranduste näol.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 5 peatükki, 22

joonist, 3 tabelit.

6

List of abbreviations and terms

AJP Apache JServ Protocol

API Application Programming Interface

ActiveMq Open source, multi-protocol, Java-based messaging server

maintained by Apache Software Foundation

DLQ Dead Letter Queue

DML Data Manipulation Language

HTTP Hypertext Transfer Protocol

JAR Package file format. Stands for Java Archive. Also described as

a JAR artifact.

JMS Java Messaging Service

JSON JavaScript Object Notation

JVM Java Virtual Machine

MDC Mapped Diagnostic Context

POJO Plain Old Java Object

UI User interface

URL Uniform Resource Locator

7

Table of contents

1 Introduction ... 11

1.1 Background ... 12

1.2 Motivation and outcome ... 12

2 Technical prerequisites and requirements analysis ... 14

2.1 Technical scope .. 14

2.2 Existing logging practices .. 15

2.2.1 Incoming HTTP request logging ... 15

2.2.2 Outgoing HTTP request logging ... 16

2.2.3 Message broker traffic local file logging ... 17

2.2.4 Message broker traffic database logging ... 18

2.3 JMS Message entity and context .. 18

2.4 Log analysis and monitoring .. 21

3 Log events ... 24

3.1 Event context .. 24

3.2 Incoming message .. 25

3.3 Outgoing message... 27

4 Log collection and implementation ... 29

4.1 Log row format and configuration .. 30

4.2 JMS logging library .. 33

4.2.1 Message payload retrieval ... 35

4.2.2 MDC context lifecycle operations ... 36

4.2.3 Automated tests ... 38

4.3 JMS logging library for Spring framework .. 38

4.3.1 Logging incoming messages ... 38

4.3.2 Logging outgoing messages .. 41

5 Usability .. 44

5.1 Troubleshooting message broker issues ... 45

5.2 Analysis and monitoring ... 46

8

Conclusion .. 48

References .. 49

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 52

Appendix 2 – Application HTTP access log file example ... 53

Appendix 3 – Application HTTP client log file example ... 54

Appendix 4 – Database-logged message queue traffic examples 55

Appendix 5 – Shared JMS properties enum class .. 56

Appendix 6 – Automated tests for JMS logging library ... 58

Appendix 7 – Incoming message listener registry example for logging incoming

messages ... 62

Appendix 8 – JmsMessageSender interface example... 65

Appendix 9 – DefaultJmsMessageSender and OutgoingJmsMessage implementation

examples ... 67

Appendix 10 – Log format and library usage guide for messaging server traffic log

collection .. 69

9

List of figures

Figure 1. Message data on ActiveMQ administrator UI (User Interface) dashboard 20

Figure 2. Unconsumed messages in a destination on ActiveMQ administrator UI

dashboard .. 20

Figure 3. Audit trail logging swimlane diagram .. 22

Figure 4. Application error log entry for specific correlation id 23

Figure 5. Application incoming HTTP request log entry for specific correlation id 23

Figure 6. Incoming message log event flowchart ... 26

Figure 7. Message broker distribution models ... 27

Figure 8. Example for incoming message logging pattern in Log4j2 XML configuration

 .. 31

Figure 9. Example for outgoing message logging pattern in Log4j2 XML configuration

 .. 32

Figure 10. Log4j2 appender and logger configuration example 33

Figure 11. JMS Logger class code example ... 34

Figure 12. JMS Logger message payload retrieval example .. 35

Figure 13. JMS Logger MDC population example .. 36

Figure 14. JMS Logger example to serialize JMS Message properties for MDC 37

Figure 15. JMS Logger MDC clearing example .. 38

Figure 16. Spring boot’s auto configuration example for JMS listeners 39

Figure 17. Outgoing JMS message interface example. .. 41

Figure 18. Example for outgoing JMS message interface with persistence field support.

 .. 42

Figure 19. Example of DefaultJmsMessageSender solution of logging outgoing

messages. .. 42

Figure 20. Application error log example on JMS listener thread 45

Figure 21. Lightweight example of incoming JMS log message 46

Figure 22. Lightweight example of retried incoming JMS message in logs 46

10

List of tables

Table 1. JMS Message interface sub-interfaces ... 18

Table 2. Log row representation of an outgoing message .. 44

Table 3. Log row representation of an incoming message ... 44

11

1 Introduction

Banking systems today should rely on logging for risk management. Log collection is

heavily recommended by the Estonian Financial Supervisory Authority and as per the

official recommendations, it is necessary to have a log of actions performed in an

information system [1] [2, p. 17]. Thus, if some system triggers a process where client’s

account balance is debited by some other system, there should be a corresponding audit

trail in place which gives relevant answers to how and why the process happened and

what were the end results. This kind of log collection should be set in place regardless of

process’ methodology, choice of technology or synchronicity.

Regarding synchronicity, practicing asynchronous data flow methodologies represents a

useful way to keep resources available for other synchronous processes in environments

which demand high availability and fast processing time. In LHV Bank, asynchronous

data transmission and business use-case process management between two different

applications is mostly achieved by using message queues. A queue’s mechanism is to

store a message sent by the message producer and publish the message for the message’s

consumer [3]. A key aspect to understand and monitor this kind of data flow, is logging

[4, p. 24].

Message queue traffic logging and monitoring can be done in multiple ways. One can log

all the messages to a database table, a local log file or configure the logging mechanism

to log messages to a centralized log repository. In the example of LHV Bank, some queue

message logging mechanisms rely on database tables while some applications propagate

log contents to a local log file in their own preferred format.

In order to support future scalability of applications in virtualized environments and retain

relevant audit event tracking for security monitoring and auditing purposes, the author

believes it would be a provident decision asserting log collection implementations to

follow standardized formats and methods. This thesis will focus on an application’s

message queue traffic log collection methodology to a local log file in the example of

12

LHV bank while taking into account the technological prerequisites and future scalability

plans of the institution.

1.1 Background

LHV was founded in 1999 as an investment union. In 2009 the institution obtained a

banking license and business name AS LHV Bank was adopted. There are over 550

people working for the bank and there are more than 247 000 clients that use LHV’s

banking services [5].

At the time of writing, the author of this thesis has 8 years of experience in software

engineering. Having initially started out as an e-commerce product developer in another

company, the author has now worked as a software engineer in LHV Bank for 4 years.

During that time, the author has gained a lot of interest and practice in domain driven

architecture and development with a focus on secure and performance-oriented solutions.

From the perspective of this thesis’ subject, the author has had past involvements in the

engineering of asynchronous processes for resolving LHV Bank’s business needs. The

earlier experiences in message queue traffic implementations has given the author a clear

sight of the problem at hand and ingrained the theoretical ideas for a solution.

1.2 Motivation and outcome

The motivation for this subject came from a development of a new in-house application

which started to exchange data with other systems via message queue and the existing

standardized methodologies relied on database tables for audit logging. For that data

exchange use-case, a database table audit logging was an overkill and to disregard any

potential performance-related bottlenecks while sending and consuming queue messages,

a log mechanism to propagate message contents to a log file suited as a better option for

audit, monitoring and debugging purposes.

Two of the key reasons omitting database table audit logging are related to usability and

performance issues as file-based logging has more pros than cons compared to database

logging [4, pp. 30-31]. Application log files are also centralized in LHV, hence the

logging standards and methodologies are more acceptable to possible improvements from

the log collection point of view.

13

The problem of having non-standardized and chaotic message queue traffic logging in

LHV applications’ infrastructure was brought to the attention of senior IT-development

staff by the author. As the issue was recognized and acknowledged, it would also be

resolved, developed as well as internally communicated by the author under the

supervision of relevant stakeholders (development teams, system administrators and

security engineers).

The outcome of this thesis is a documented specification of message queue traffic log

standards, contents, formats and usage examples in LHV bank’s documentation space for

development teams, system administrators and other relevant stakeholders. The outcome

documentation is also supplemented with relevant libraries to help development teams

integrate required mechanisms in an easier manner without any irrelevant overhead. As

the final produce will be achieved by using standardized and well-known components

given the technical constraints, the outcome and core idea for how to achieve message

queue traffic logging is not only applicable to LHV bank and the solution is easily

implementable in other companies and environments1.

1 As the author has no authority nor the required amount of competence to deal with the juridical aspects

and regulations for logging, the proposed solutions and a set of logged data may still be a subject to

review from a legal point of view. The solutions proposed by the author are put forward from a technical

point of view and the author strongly recommends all the endeavors using this thesis’ outcome to be

examined by a competent person or personnel who specialize in the legal field. The outcome solutions are

provided „as is“. In no event shall the author be liable for any claim, damages or other liability, whether

in an action of contract, tort or otherwise, arising from out of or in connection with the provided outcome

or the use or other dealings with it.

14

2 Technical prerequisites and requirements analysis

In order for any technical improvement to fit well into existing IT-infrastructure,

improvements should take into account the present implementations and technical

constraints. Backwards compatibility is a must in LHV’s IT change management

discipline because one of the goals for the institution is to be highly available with

minimal downtime. Any service disruption on public channels gets reported to a public

status page in real-time [6].

Considering the aforementioned, in author’s opinion, one of the requirements for a new

standardized message queue logging mechanism should be to support effortless way for

development teams migrating to new logging mechanisms. A scalable way to achieve this

goal, is to develop a common library for IT-development teams to use. A shared logging

library can have its own lifecycle and boundaries to grow in. Backwards compatibility

can be achieved and communicated via semantic versioning and relevant documentation

[7].

2.1 Technical scope

Vast majority of LHV Bank’s IT development teams use JVM-based (Java Virtual

Machine) programming languages combined with Spring Framework for the

development of business applications. It is highly recommended for the development

teams to use common and standardized libraries and implement them to business

applications as dependencies. The purposes of the shared JAR (Java Archive) artifacts

can vary from shared business logic to asserting standardized infrastructural

methodologies for development teams.

Regarding IT infrastructure, most in-house asynchronous messaging implementations

rely on ActiveMQ messaging server (open source, multi-protocol, Java-based messaging

server maintained by Apache Software Foundation). Communication with ActiveMQ

messaging server is achieved by using JMS (Java Messaging Service) which provides a

common way for JVM-based applications to connect with messaging systems [8].

15

2.2 Existing logging practices

At the time of writing, LHV Bank’s business applications already follow the official

recommendation of Estonian Financial Supervision Authority for collecting audit logs

about event occurrence. A general Java application in LHV infrastructure has the

following local log files (but not limited to):

 Incoming HTTP (Hypertext Transfer Protocol) logs (HTTP access logs for

requests that the application serves);

 Outgoing HTTP logs (HTTP client logs for requests that the application triggers

to other services);

 Java application logs;

 Java standard output logs;

From the perspective of audit trail, these local log files are also supplemented with

database level audit logging on every executed DML (Data Manipulation Language)

command. Every row contains auditable data regarding a row’s creation time,

modification time as well as user data responsible for the change. Applications tied to

message queue traffic implementations are currently either logging messages to local log

file in a non-standardized way or to a database via DML commands. These existing

solutions are presented in chapters 2.2.3 and 2.2.4 respectively.

Regarding HTTP log collection, the process follows standardized methodology in LHV

Bank’s business applications for both incoming and outgoing requests. All incoming and

outgoing HTTP requests and responses are logged by the application to a local log file in

a uniform manner and format.

Due to the fact that an incoming HTTP request and an incoming queue message both

serve an entry point to the application and vice-versa, in author’s opinion, the current

HTTP request logging methodology offers a valuable reference point for any further

developments of message queue traffic logging mechanisms.

2.2.1 Incoming HTTP request logging

From an application side, an incoming HTTP request log file contains all the requests

done towards the application. The log file contains the following fields:

16

 Log type, which has values representing a client request row (C) or server

response row (S);

 Timestamp;

 Correlation id, which is propagated to any subsequent requests made during the

service of the request in question (through HTTP X-Correlation-ID header [9]);

 Request id, which is used to correlate request log rows to response log rows;

 Session id, which represents a hash of client’s session id;

 Domain name;

 Client IP address;

 HTTP method;

 HTTP URL (Uniform Resource Locator) path;

 HTTP payload, which is a payload of the request or response;

 HTTP response code;

 User id, which represent an audit information of a user id who initiated the request;

A sample for application incoming HTTP request log file can be seen in Appendix 2.

2.2.2 Outgoing HTTP request logging

From an application side, an outgoing HTTP request log file contains all requests done

by the application to other services. This log file contains the following fields:

 Log type, which has values representing an application’s request row (C) or target

server response row (S);

 Timestamp;

 Correlation id, which is propagated to any subsequent requests made during the

service of the request in question [9];

 Request id, which is used to correlate outgoing request to a current client’s

request;

 Session id, which represents a hash of client’s session id;

 Log record id, which is used to correlate outgoing requests and responses

 Node name, which is an identifier of the current application node;

 HTTP method;

 HTTP URL;

 HTTP payload, which is a payload of the request or response;

17

 HTTP response code;

 User id, which represent an audit data of a user id who initiated the request;

A sample for application outgoing HTTP request log file can be seen in Appendix 3.

2.2.3 Message broker traffic local file logging

Applications in LHV IT-infrastructure that do message broker traffic logging to a local

log file use varying patterns and formats for log collection. When comparing log rows

across multiple applications, they only have common ground with the following log

fields:

 Timestamp (occurrence time of the message being sent or received);

 Message destination (a target destination where the message was sent to or

received from);

 Message payload (contents of the message);

There are several applications in LHV IT-infrastructure that practice nonstandardized log

collection of message broker traffic events to a local file and they are all implementing

different log formats. As for log collection requirements, these implementations will not

be analyzed any further as these solutions vary to a great extent and their core idea is to

provide development or debug related information and they do not log down any audit

data except for the previously listed data items.

Compared to incoming and outgoing HTTP logs, the message broker traffic logging

implementations tend to omit a lot of context from the log events. Correlation and request

data is not logged and some applications have even thought only fit to log outgoing

messages.

As it shows, the biggest problems are nonstandardization and insufficient logged data

which prevent practical log analysis across multiple applications using correlation,

request or user id’s. On the other hand, JMS has all the support needed for the passage of

request, correlation or audit related context through its message properties and these fields

should be used and logged down to simplify log correlation [10] [4, p. 12].

18

2.2.4 Message broker traffic database logging

Database logging for message broker traffic implementations follows a similar pattern

across different applications. There are two tables:

 queue_message_incoming (for incoming messages)

 queue_message_outgoing (for outgoing messages)

Storing incoming messages is done as soon as a message is consumed by the application.

If there are any additional business logic processes for message consumption, the storing

operation is usually done inside a shared database transaction for these processes.

Storing outgoing messages is done at two stages. First the messages is saved to a table

with a flag indicating that it has not been sent yet. After that, the message is sent via JMS.

If no errors occured, the database row is updated and the flag indicating send status is

adjusted accordingly. Holding a state for the outgoing message status gives applications

an advantage to trigger retrial processes for unsent messages.

This solution and the persisted collection of data (see Appendix 4) today satisfies some

needs of audit trailing and it is working without issues. Nevertheless, at a larger scale this

kind of database logging for an audit trail is not a good solution as there is a database

dependency for analysis and in overall, it has too many disadvantages over file logging

[4, pp. 30-31].

2.3 JMS Message entity and context

As stated in chapter 2.1, JMS is a widely used API (Application Programming Interface)

in LHV messaging queue implementations. JMS messaging solutions use a Message

interface as a root interface to all message types [10]. The Message interface and its sub-

interfaces declare all the methods every JMS provider needs to implement and they are

represented in Table 1.

Table 1. JMS Message interface sub-interfaces

Message sub-

interface type

Content type in Java Description

BytesMessage byte[] Content contains a stream of

uninterpreted bytes

19

MapMessage java.util.Map.class Content contains name-value pairs

in an instance of Java Map

interface

ObjectMessage java.io.Serializable.class Content contains a serializable

Java object

StreamMessage byte[] Content is passed as a stream of

primitive types in the Java

programming language. Filled and

read sequentially

TextMessage String.class Content contains a Java string

value

As all types could be implemented for data flow implementations, the logging

mechanisms should be able to handle every single one of them unless agreed to retain any

usages of some types. In the latter case, the logging mechanism should stop any traffic

flow if a message log event is not loggable [4, p. 55].

JMS defines noteable API’s for the Message interface that may present significant usage

for log collection. In author’s opinion, the following methods should be considered for

logging use [10]:

 getJMSMessageID() which returns a unique ID of the message set by a JMS

provider;

 getJMSCorrelationID() which returns a correlating ID of the message set by the

producer. The value can be self-defined or used as a response identifier to a

corresponding JMSMessageID for a previous message in a Message ID Pattern

[11];

 getJMSDestination() which returns a target destination name for the message;

 getJMSReplyTo() which returns a target destination for any expected reply

messages and can be omitted if no use-case;

 getPropertyNames() which returns all the property names;

 getStringProperty(String name) which returns a property value as a string for the

specified property name;

From an ActiveMQ administrator dashboard, the values that are returned from to

aforementioned API operations can be seen on Figure 1.

20

Figure 1. Message data on ActiveMQ administrator UI (User Interface) dashboard

The highlighted items in the Headers section are also presented in a list view where all

unconsumed messages can be browsed as Figure 2 shows.

Figure 2. Unconsumed messages in a destination on ActiveMQ administrator UI dashboard

Unconsumed messages usually occur on two different scenarions. There are either no

consumers that consume messages from a JMS destination or a consumer fails to process

the message and does not acknowledge it in a transacted session [12]. ActiveMQ has in-

built redelivery support for the latter purpose and a redelivery configuration can be used

to retry message consumption for defined times. If a consumer is still unable to process

the message during retrials, the message is marked as poisonous and it gets redirected to

the DLQ (Dead Letter Queue) which is a JMS destination like any other [13].

In LHV, every message in the DLQ is subject for manual actions. A message in DLQ

either gets deleted or resent to the original destination. As these activities are done

21

manually, the information regarding a message’s data is communicated internally

between a development team and administrator team. A decision whether to delete or

resend is based on the nature of the message and the current state of persisted data in a

business application.

2.4 Log analysis and monitoring

As message queue traffic serves an entry point and an exit point to and from the

application, the collection of logs on that part should provide a low-level understanding

of any data flow occurence for audit analysis. As any entry event to an application could

have been preceded by multiple other requests through other applications beforehand, an

identifier should be propagated to data flow logging to support analysis via correlation

[9].

For example, considering we have an HTTP request to application A, which in return

communicates with application B and the latter one produces a message queue message

which is consumed by application C. In that part, given that HTTP requests are

synchronous and message queue traffic is asynchronous, the X-Correlation-ID HTTP

header should be logged down to the following log files in the following order:

1. Application A incoming HTTP request log

2. Application A outgoing HTTP request log

3. Application B incoming HTTP request log

4. Application B outgoing message queue log

5. Application B incoming HTTP response log

6. Application A incoming HTTP response log

7. Application C incoming message queue log

Regarding synchronicity, the incoming message queue log entry in application C may

occur earlier than listed but it is guaranteed to be at least after the fourth logged entry as

message sending gets triggered before application B has finished serving the HTTP

request made by application A as Figure 3 shows.

22

Figure 3. Audit trail logging swimlane diagram

From an application and log monitoring point of view, the X-Correlation-ID header value

is a source correlation value for any process in terms of HTTP requests. Considering that

business logic processes in LHV IT infrastructure do not always rely on external calls and

some processes could be scheduled or running indefinitely inside an application, these

operations should fill the correlation context itself in author’s opinion. If all the

counterparts in a chain of communication have implemented a check for correlation data

and fill it, if missing, then all interapplication data flow has correlation info prefilled for

all the following operations.

Filling correlation data can also be useful in application monitoring. Considering that

there is a monitoring job in place which monitors an application’s error logs, logging the

23

correlation data to every log entry helps troubleshooting as an error could be correlated

with a specific HTTP request or an incoming queue message.

For example, on Figure 4 it can be seen that there is a error indicating a bad phone number

in a AJP (Apache JServ Protocol) thread. As this thread represents a AJP protocol which

is used to integrate Tomcat server to Apache installation, we can presume that this error

occured on an incoming HTTP request [14].

Figure 4. Application error log entry for specific correlation id

Using the knowledge that the error occured on the service of a HTTP request, we could

use the correlation id value to tie the error to a specific request as shown on Figure 5.

Figure 5. Application incoming HTTP request log entry for specific correlation id

Combining the knowledge from Figure 4 and Figure 5, it can be said that the application

failed to validate a phone number because the request itself did not include a validatable

phone number.

To conclude, logging down an audit trail benefits log analysis across multiple applications

as well it saves development teams a lot of time troubleshooting or understanding issues

that rise in a production environment. Having an ability to correlate errors, requests and

messages supports all the relevant stakeholders to understand and improve their

applications.

24

3 Log events

As stated in chapters 2.2 and 2.3, there are two types of message queue messages for an

application. One is an incoming message and the other is an outgoing message. They may

be very similar data-wise but from an application side, the incoming and outgoing

messages have completely different meanings.

Incoming messages could be viewed as an incoming HTTP requests and since its contents

are coming from an external source, in author’s opinion, any message consumer must

ensure that a message is trustworthy and relevant. Outgoing messages on the other hand

are produced by the application itself and a message sent for other applications should be

made trustworthy.

Regardless of an incoming message’s turstworthyness, a good practice would be to log

down any incoming traffic in order to support security monitoring [4, pp. 15, 55]. As for

this, in authors opinion, the logging event for an incoming message should occur at the

earliest possible point in the flow of consumption.

Outgoing messages on the other hand are the produce of some component in an

application as the application is programmed to send out the message at some particular

point. From log event context, this particular point in time means that the message has

been finalized and is not subject to any data modifications. A lot of context may surround

an outgoing queue message. It could be application triggered message by some automatic

process or it could be triggered by serving an ongoing HTTP request.

3.1 Event context

As far as context and trustworthyness goes, in author’s opinion the logging event should

log a relevant context down to support deep-dive log analysis when issues arise, may it

be from a security or development point of view. From the author’s experience, this

practice also retains a good level of trust in the application from a developer’s aspect as

the knowledge of any traffic flow can be audited and verified at any point in time and a

comprehensive data on log row helps to grasp any context around it.

25

In order to achieve a relevant context to message queue traffic flow, a single message’s

log row should give answers to the following questions: who, what, where, whence and

when [4, p. 25]. In author’s opinion, for a message queue traffic logging event, these

questions should resemble the following:

 Who – The system or user that triggered the message sending which can and

should be bound with a correlation identifier;

 What – The contents of the message;

 Where – The JMS destination name from message producer side and on a

consumer side it should also be supplemented with info about which host

consumed the message;

 Whence – The system that the message originates from. In terms of consuming a

message, a producer application identifier should be described at minimum. In

terms of producing a message, the producer should reflect info about which host

produced the message;

 When – A timestamp describing the time a message was consumed or produced;

To sum it up, every log event triggered whether by an incoming or an outgoing message

should answer these questions. If application A’s produced or consumed a message at

some particular time, it should be understood who triggered the message, what were the

contents, where was it destined to, whence did it occur architecturally (for example a

single node in a cluster of application) and when did it occur.

3.2 Incoming message

As stated before, an incoming message is an entry point to the application. Usually, when

an application retrieves a message from a message broker, it is destined to execute some

logic based on the data received. Considering that, in terms of procedure flow while

consuming a message, the author believes that a fundamental aspect is to firstly trigger a

logging event for the incoming message.

Having a message logged down before any following procedures start the consumption,

provides all the auditability, troubleshooting or analysis options opened. The consumer

application could completely fail with consuming the message contents, but despite that,

due to having logged down traffic before processing the contents, it would be a

26

straightforward action to reproduce a possible bug or unhandled data validation case for

development teams as a possible error log entry could be correlated with the incoming

message traffic log row.

Furthermore, if incoming message consumption events start off with traffic logging, the

logging mechanism could have an ability to stop any further message consumption, if it

occurs that a message is impossible to log down in a required format due to unknown

errors or unhandled programming logic inside the logging operations. On that case, the

traffic logger could stop the process and dump all the knowledge it has about the message

to the consumer application’s log as errors or warnings for further troubleshooting.

To summarize, a flowchart to represent all the aforementioned for incoming message log

event is seen on Figure 6.

Figure 6. Incoming message log event flowchart

27

3.3 Outgoing message

Outgoing messages are a produce of a message producer and their sole purpose is to

transport data from point to point or to all of the subscribers for a particular message

destination [15]. The destinations for these distribution models also have a different

meaning as point-to-point is achieved via queues and publish-and-subscribe is achieved

via topics as Figure 7 shows [16].

Figure 7. Message broker distribution models

From a log event point of view, the author believes that on a message producer side, the

outgoing message log event should describe a distribution type for log analysis. Knowing

that a message-producing application has awareness about an outgoing message’s

destination and the destination is also contracted to JMS Message interface API, a logged

down distribution type may give additional value and context to the traffic analysis.

For example, knowing that a message travelled to a destination described as

queue://CLIENT.DATA.UPDATE versus knowing that another message was sent to a

destination described as topic://CLIENT.DATA.SYNC provides additional context to log

28

events. The first one is identifiable as point-to-point distribution and the latter one as

publish-subscribe distribution.

In LHV, some point-to-point distributions work with request-response arrangement using

correlation id pattern [11]. In short, an initial outgoing message is expected to receive an

incoming response message to a physical destination in order to fulfill any business

requirements. Both messages can be correlated using JMS Message interface’s

correlation id field which is initially generated and filled to the request message on the

producer side.

This pattern can also be referred to as the request-reply pattern [17]. In order to not rely

solely on physical destinations on this pattern, JMS provides a possibility to use

temporary destinations which are created and destroyed programmatically. To support the

usage of them, the API has defined a JMSReplyTo field for response message producers

to refer to when sending a reply. Even if a producer does not create a temporary

destination for a reply message and is relying on a physical destination which is

predefined, the author believes that development teams should consider the usage of this

field in a request-response arrangement based on physical destinations as it could

represent additional valuable context to the traffic log event.

Having knowledge about a distribution model itself and also if a outgoing message

expects a return could improve log analysis and monitoring. For example, if an

application logs down a JMSDestination and JMSReplyTo for an outgoing message, a

monitoring job could use the logged knowledge and correlate outgoing messages with

incoming messages based on the destination defined on JMSReplyTo field and report or

alert any missing responses. Without this kind of field usage, that job monitoring could

not operate in a scalable way and it needs to be configured separately for each outgoing

message destination and incoming message destination pair.

Ultimately, as outgoing messages are a start point for messaging flow through a message

broker, the author believes that there can never be too much context surrounding the

outgoing message traffic log event as far as the log collection does not put a message-

producing application at risk in terms of availability. As far as author’s experience goes,

it is more reasonable to log more in the beginning of implementations rather than logging

too little.

29

4 Log collection and implementation

Log collection for JVM-based applications can be achieved by using Java Logging APIs

[18]. As the bundled APIs certainly can do the job, the development community tends to

lean towards logging frameworks in order to get more flexibility and not to reinvent the

wheel [19]. There are several logging frameworks for Java but as LHV IT development

teams use Log4j2 logging framework, the log collection for message broker traffic in this

thesis will focus on that logging framework.

Log4j2 framework uses MDC (Mapped Diagnostic Context) in order to support logging

operations and fill log rows with data provided to thread context [20]. In LHV’s example,

HTTP log collection is heavily based on the MDC. The request or response data is filled

at the earliest possible point of interception available during the service of the request or

response. There are two intercepting operations – first the request data is filled to thread

context and logged down as a request row and after the request is finished and a response

retrieved (or produced), the same is done for response data.

As HTTP requests are logged down with interception operations, the author believes a

similar logic should apply to any JMS traffic logging. As intercepting and standardized

program flow could be shared via libraries as described in chapter 2.1, the interception

logic could be implemented in a straightforward manner by all the development teams

while eliminating any risk of inconsistent solutions.

In author’s experience, the biggest downside of achieving a singular consistent solution

with interception logic is inflexibility. For example, native Java APIs for doing HTTP

requests do not support any interception logic and these are achieved by using frameworks

or libraries [21] [22] [23]. The same applies for JMS and when dealing with Spring

framework applications, this interception logic could be achieved by using the Spring

JMS support and its capabilities [24]. From a development point of view, the author

believes that the traffic logging operations should only depend on the native API and the

logging framework in use. If done so, a development team is not dependent on a

framework interception logic and could implement the logging calls in their own

preffered way if not using a commonly shared application framework.

30

To tackle that inflexibility issue and still support a common logging mechanism, the

author believes that two different implementations are needed in order to support

consistency and also flexibility at the same time. The first implementation would be a

logging library which includes all the operations needed to execute the audit logging on

top of the native JMS API which is described in chapter 2.3 and do operations filling or

using the MDC context to answer all the questions described in chapter 3.1. This

implementation would do all the logging operations and it would be solely depend on the

Java API and a chosen logging framework.

The second implementation would be a framework specific logging library which would

depend on the previously described logging library and a commonly used framework. In

the example of LHV Bank, the latter would be Spring framework. The goal of this library

would be to support all the autoconfiguration, message interception and message sending

while executing log collection on traffic flow.

4.1 Log row format and configuration

There are many ways to configure logging formats for Log4j2 framework [25]. In LHV,

XML configuration is mostly used for shared loggers and the configuration files are

packaged into a JAR artifact for Java runtime to use and refer to. Also, as stated in chapter

2.2.3, the existing messaging server traffic file logging implementations lack context

information. Considering all of the criteria, limitations and described existing solutions

above, the author believes the log format itself should contain the following fields:

 Host – A host’s identifier, who is producing the log. An IP address or the host’s

name

 Log type – for incoming messages a value “C” to represent a client and for

outgoing messages a value “S” to represent a server;

 Log datetime in ISO8601 format with timezone [4, p. 58];

 Correlation ID – unique identifier which is usually based on HTTP header X-

Correlation-ID for identifying processes throughout multiple applications. If not

from the HTTP header, the message producer produced a message while not in

request context and generated a new correlation ID.

 Request ID – unique identifier for the current "request", random 8 character string.

For consumers, it should be generated automatically when message consumer is

31

starting to process the message. For producers and if in HTTP request context, it

should be the same as the HTTP request id (described in chapters 2.2.1 and 2.2.2);

 User ID – unique identifier for the user who is responsible for producing the

message. Usually this should be filled when an application produced a message in

client’s HTTP request context. If not, it should be filled with an application user,

representing the application name:

 JMS Message ID – unique identifier for the message. Generated by the JMS

provider when sending the message;

 JMS Correlation ID – a correlating identifier for a message if it's a response to a

message. Usually originates from the JMS Message ID of the initial message. Can

also be application specific value;

 JMS Destination – a string representation of the JMS destination;

 JMS Reply to destination – a string representation of the JMS reply to destination.

Should be filled whenever a producer expects a response for the message;

 JMS Properties - JSON-based (JavaScript Object Notation) key-value map of the

properties from the message;

 Message body

From a Log4j2 point of view, the configuration for this format could be seen on Figure 8

and Figure 9.

<Properties>

 <!--.....-->

 <Property name="jmsListenerLoggingFormat">

 ${hostName}\tC\t%date{ISO8601}%date{Z}

 \t%replace{%X{correlationId}}{^$}{-}

 \t%replace{%X{requestId}{^$}{-}\t%replace{%X{userId}}{^$}{-}

 \t%X{jmsMessageId}\t%replace{%X{jmsCorrelationId}}{^$}{-}

 \t%X{jmsDestination}\t%replace{%X{jmsReplyToDestination}}{^$}{-}

 \t%replace{%X{jmsProperties}}{^$}{-}\t%replace{%message}{^$}{-}%n

 </Property>

 <!--.....-->

</Properties>

Figure 8. Example for incoming message logging pattern in Log4j2 XML configuration

32

<Properties>

 <!--.....-->

 <Property name="jmsSenderLoggingFormat">

 ${hostName}\tS\t%date{ISO8601}%date{Z}

 \t%replace{%X{correlationId}}{^$}{-}

 \t%replace{%X{requestId}{^$}{-}\t%replace{%X{userId}}{^$}{-}

 \t%X{jmsMessageId}\t%replace{%X{jmsCorrelationId}}{^$}{-}

 \t%X{jmsDestination}\t%replace{%X{jmsReplyToDestination}}{^$}{-}

 \t%replace{%X{jmsProperties}}{^$}{-}\t%replace{%message}{^$}{-}%n

 </Property>

 <!--.....-->

</Properties>

Figure 9. Example for outgoing message logging pattern in Log4j2 XML configuration

As the figures above show, using a tabulation character „\t“ separation for fields, both

patterns are very similar and the only difference is the log type field (C vs S). All the data

that is received from the Log4j2’s MDC, is wrapped with a „X“ conversion character

function [26]. Also, the author chose to use Log4j2’s replace function to substitute empty

values with a dash in order to present a null value as null values should not just be empty

[4, p. 56]. The fields not wrapped with a replace function (jmsMessageId and

jmsDestination) can not be empty as per the Message interface API combined with LHV’s

message broker server configuration [10].

When adding the log pattern to a Log4j2 XML configuration, there also needs to be a

configuration for specific Logger instances which have a configured appenders for

logging [27]. An example of this configuration can be seen on Figure 10.

33

<Appenders>

 <File name="JmsListenerLoggerFile" fileName="jms_in.log">

 <PatternLayout pattern="${jmsListenerLoggingFormat}"/>

 </File>

 <File name="JmsSenderLoggerFile" fileName="jms_out.log">

 <PatternLayout pattern="${jmsSenderLoggingFormat}"/>

 </File>

</Appenders>

<Loggers>

 <Logger name="jmsSenderLogger" level="TRACE" additivity="false">

 <AppenderRef ref="JmsSenderLoggerFile"/>

 </Logger>

 <Logger name="jmsListenerLogger" level="TRACE" additivity="false">

 <AppenderRef ref="JmsListenerLoggerFile"/>

 </Logger>

</Loggers>

Figure 10. Log4j2 appender and logger configuration example

For specific use cases like traffic logging in Log4j2 requires a specific Logger

configuration. The logger’s logging level is also defined as TRACE in order to log with

the lowest severity and to make sure the traffic log events do not get logged to the wrong

file while using this configuration [25].

4.2 JMS logging library

As stated, an initial implementation should represent a Java library which operates on top

of the Java JMS API and a chosen logging framework (Log4j2). The logging functionality

needs two vital dependents to in order to log a message. First is the configured Logger

instance itself, which represents a vital part of the Log4j2 framework and provides APIs

to trigger a log collection event [28]. Second is the JMS Message interface instance which

is described in chapter 2.3.

Also, due to use-cases where there is no need to log every message payload down, the

author chose to give an opportunity for destination-based configuration for the logging

mechanism in order to omit payload logging. This is has proven to be needed when a high

volume of traffic is generated and the message contents may not be needed. It is usually

relevant in test environments or where an application uses message broker as a way to

throttle some processes and produces a message for itself.

All in all, the JMS logging functionality could be achieved by using a simple JmsLogger

Java class as shown on Figure 11.

34

import org.apache.logging.log4j.Logger;

import javax.jms.Message;

public class JmsLogger {

 private final Logger logger;

 private final List<String> excludedDestinations;

 public JmsLogger(Logger logger) {

 this(logger, Collections.emptyList());

 }

 public JmsLogger(Logger logger, List<String> excludedDestinations) {

 this.logger = logger;

 this.excludedDestinations = excludedDestinations != null

 ? excludedDestinations

 : Collections.emptyList();

 }

 public void logMessage(Message message) {

 try {

 String destination = message.getJMSDestination().toString();

 String messageContent = "";

 if (excludedDestinations.stream()

 .noneMatch(destination::contains)) {

 messageContent = JmsMessageUtil.getMessageContent(message);

 }

 JmsLoggerThreadContextUtil

 .populateJmsThreadContextValues(message, destination);

 logger.trace(messageContent);

 } catch (JMSException e) {

 throw new LoggingFailedException("Failed to log JMS message: " +

 message, e);

 }

 }

}

Figure 11. JMS Logger class code example

As Figure 11 shows, the JmsLogger class depends on two helper classes JmsMessageUtil

and JmsLoggerThreadContextUtil which provide the logger additional help with message

payload retrieval and MDC filling for log rows. These helper classes are explained in the

following chapters. The class also provides two constructor methods – one for a logger

where no destinations are excluded from payload logging and the other as a

complementary constructor where a list of destinations can be provided to exclude

payload logging for the selected destinations.

35

Also, it can be seen, that for the Log4j2 logging framework, the final logging operation

occurs using the Logger interface’s trace method which correlates to the log severity

described in chapter 4.1.

4.2.1 Message payload retrieval

The JmsMessageUtil class provides methods for representing a readable payload to the

log row. As stated before, the traffic log collection should be able to serialize any sub-

interface instance of the JMS Message interface or stop and report any errors if the

message payload serialization fails. The contents for JmsMessageUtil is shown on Figure

12.

public final class JmsMessageUtil {

 public static String getMessageContent(Message message)

 throws JMSException {

 var content = "";

 if (message instanceof TextMessage) {

 content = ((TextMessage) message).getText();

 } else if (message instanceof BytesMessage) {

 BytesMessage bytesMessage = (BytesMessage) message;

 bytesMessage.reset();

 byte[] data = new byte[(int) bytesMessage.getBodyLength()];

 bytesMessage.readBytes(data);

 bytesMessage.reset();

 content = new String(data, UTF_8);

 } else {

 throw new JmsMessageContentException("Only TextMessage and " +

 + "BytesMessage are supported for retrieving message " +

 + "content from javax.jms.Message");

 }

 return content;

 }

}

Figure 12. JMS Logger message payload retrieval example

The payload retrieval on Figure 12 is supporting two types of messages – TextMessage

and BytesMessage. The TextMessage’s API is very straightforward as payload can be

retrieved by the getText() method [29]. ByteMessage is a bit more challenging as it has

read-only and write-only modes and for reading, the payload retrieval must start byte

retrieval from the beginning of the stream nested inside it and thus, the reset method is

called before retrieval [30]. Also, after a read has been done, the author believes it should

be reset because the message contents could be read again at a later stage of processing.

36

4.2.2 MDC context lifecycle operations

The author’s main idea for the JmsLoggerThreadContextUtil in the logger library is to

provide support for operating on the MDC provided by Log4j2 framework. As the MDC

is based on a running thread, using the ThreadContext API, one can add all the necessary

data to support log collection [31]. From a interception point of view, the author believes

that the same util class which is responsible for filling data, should also have necessary

support to clear the context data from the thread whenever an application decides to do

so.

In general, the key-value pairs passed to the MDC can be referenced in a log row format

as done in chaper 4.1 and ultimately the values from MDC get populated to the log row

[20]. Considering the proposed log row format earlier and also that the log collection

operation is triggered by a Logger’s interface method by passing message content variable

into the logging call, in author’s opinion the following data should be filled to MDC from

the JMS Message interface: message id, correlation id, the destination, a reply to

destination and all the properties

public static final String JMS_MESSAGE_ID = "jmsMessageId";

public static final String JMS_CORRELATION_ID = "jmsCorrelationId";

public static final String JMS_DESTINATION = "jmsDestination";

public static final String JMS_REPLY_DEST = "jmsReplyToDestination";

public static final String JMS_PROPERTIES = "jmsProperties";

public static void populateJmsThreadContextValues(Message message

) throws JMSException {

 ThreadContext.put(JMS_MESSAGE_ID, message.getJMSMessageID());

 ThreadContext.put(JMS_CORRELATION_ID,

 message.getJMSCorrelationID());

 ThreadContext.put(JMS_PROPERTIES, getMessageProperties(message));

 ThreadContext.put(JMS_DESTINATION,

 message.getJMSDestination().toString());

 var replyDest = message.getJMSReplyTo();

 if (replyDest == null) ThreadContext.remove(JMS_REPLY_DEST);

 else ThreadContext.put(JMS_REPLY_DEST, replyDest.toString());

}

Figure 13. JMS Logger MDC population example

37

As Figure 13 represents, the operations are done from a static viewpoint and only require

a JMS Message interface as a parameter. Also, as there could be a scenario where a JMS

reply-to destination is not filled to the message, the author chose to remove it from the

MDC for these use-cases since Java threads could be reused and old MDC context may

not have been cleared up. Lastly, as there could be multiple key-value properties passed

with a message as shown in chapter 2.3, the author chose to use another method to retrieve

them and it is represented on Figure 14.

private static String getMessageProperties(Message message) throws

 JMSException {

 var propertyMap = new HashMap<String, String>();

 var propertyNames = message.getPropertyNames();

 while (propertyNames.hasMoreElements()) {

 String name = propertyNames.nextElement().toString();

 propertyMap.put(name, message.getStringProperty(name));

 }

 try {

 var propertiesJsonMapper = new Log4jJsonObjectMapper();

 return propertiesJsonMapper.writeValueAsString(propertyMap);

 } catch (JsonProcessingException e) {

 throw new JmsMessageContentException("Failed to build " +

 + " JMS Message properties as JSON", e);

 }

 }

}

Figure 14. JMS Logger example to serialize JMS Message properties for MDC

As the example (Figure 14) above shows, firstly all the property names from the JMS

Message instance are retrieved and used to build up a map of stringed key-value pairs.

This map is then serialized to a JSON format due to the fact that the properties could

contain any possible stringed value in whatever format as the Message interface allows

it. Also, as traffic logging properties tend to be shared in terms of LHV IT infrastructure,

the library also contains an enum class containing properties that could be used by the

development teams. The enum class can be seen in Appendix 5.

Lastly, as stated before, the MDC propagation utility class should also contains methods

to manage MDC lifecycle in terms of clearing it after a process has finished. For that

purpose, an example can be seen on Figure 15.

38

public static void clearJmsThreadContextValues() {

 ThreadContext.remove(JMS_MESSAGE_ID);

 ThreadContext.remove(JMS_CORRELATION_ID);

 ThreadContext.remove(JMS_PROPERTIES);

 ThreadContext.remove(JMS_DESTINATION);

 ThreadContext.remove(JMS_REPLY_DEST);

}

Figure 15. JMS Logger MDC clearing example

4.2.3 Automated tests

In order to support any healthy development lifecycle, the author believes that creating

automated tests are an appropriate way to prevent future issues and unwanted

development-related regression. For the JMS logging library described, the author chose

to write integration tests on top of the Spring framework support as the latter is widely

used in LHV IT infrastructure.

The tests cover logging for both incoming and outgoing messages and they assert that a

preconfigured logger actually does write the JMS traffic event logs to a log file. These

tests can be seen in Appendix 6.

4.3 JMS logging library for Spring framework

From author’s experience, when dealing with Spring framework’s JMS features, the

noteable components for interacting with JMS brokers are the JmsTemplate bean

component and the JmsListener annotation. The JmsTemplate’s main usage purpose in

an application’s program flow is to send outgoing messages and JmsListener annotation

is used to define a method to retrieve messages from specificed destination [24]. For the

framework specific logging library, the author will focus on intercepting or wrapping any

logging operations with a focus on these components.

4.3.1 Logging incoming messages

In order to simplify any initial JMS traffic logging implementations for development

teams, the author believes that incoming message handling should be able to intercept

traffic for the existing JmsListener annotated methods and work out-of-the-box. This

could be achieved by using Spring Boot’s auto configuration capabilities to configure all

the JMS listener methods to implement a predefined message listener adapter which acts

39

as an interceptor before a message is passed to the application’s own program flow [32]

[33].

As this library does not intend to break any existing implementations while attaching it

to a Spring project, the author chose to make auto configuration only run if a certain

configuration property value is present in the application’s configuration files. As the

traffic logger also supports disabling payload logging for certain destinations, this option

should also be propagated to the auto configuration procedure. A working example of this

kind of a configuration can be seen on Figure 16.

@Configuration

@ConditionalOnProperty(name = "jms.loggingListenersEnabled", havingValue =

 "true")

@EnableConfigurationProperties(JmsConfigProperties.class)

public class LhvJmsListenerAutoConfiguration implements JmsListenerConfigurer
{

 @Resource

 DefaultMessageHandlerMethodFactory handlerMethodFactory;

 @Resource

 JmsConfigProperties jmsProperties;

 @Bean

 public LoggingJmsListenerEndpointRegistry tracingJmsListenerRegistry() {

 var logger = new JmsLogger(LogManager.getLogger("jmsListenerLogger"),

 jmsProperties.getDestinationsExcludedFromBodyLogging());

 return new LoggingJmsListenerEndpointRegistry(handlerMethodFactory,

 logger);

 }

 @Override

 public void configureJmsListeners(JmsListenerEndpointRegistrar registrar)

 {

 registrar.setEndpointRegistry(tracingJmsListenerRegistry());

 }

}

Figure 16. Spring boot’s auto configuration example for JMS listeners

As the figure above shows, the configuration is only enabled if a property named

jms.loggingListenersEnabled has a value of „true“ set. If applicable, then the

configuration class initializes an endpoint registry which takes the JmsLogger as one of

the arguments.

40

The whole contents of the LoggingJmsListenerEndpointRegistry created for this

intercepting process can be seen in Appendix 7 as it contains several Spring Framework

related configuration techniques and self-declared classes to achieve the required result.

A noteable feature for the interceptor is how it operates on a message. Similarly to the

MDC context filling in the JMS logging library itself described in chapter 4.2, the Spring

specific library solution also operates on the Log4j2’s MDC in author’s proposed

solution. This is due to the fact that JMS logging library’s mechanism handles incoming

and outgoing messages the same way. But as a event context differs for both of them, the

interceptor checks message properties and applies relevant complementary data to the

MDC itself, considering that a message is guaranteed to be an incoming message at that

point.

As per the log row format in chapter 4.1, the native JMS logging library does not populate

the following data to the MDC:

 Correlation ID

 Request ID

 User ID

From an incoming message’s perspective, as the Message intstance properties could

contain the correlation and user identifier, these values should be retrieved from there

with the help of a shared enum property keys described in Appendix 5. For the correlation

identifier – if the value is not defined, the author believes that it should be generated by

the logging mechanism itself as described in chapter 2.4. For the request identifier – the

value should be generated for every message by the application as it is done the same way

for HTTP traffic logging. Lastly, if there exists no user identifier in the message

properties, the author believes this value should be left empty as there is no other

reasonable way to fill that data.

After populating context values to the MDC and logging the message down, the Message

interface instance is passed on to the application to consume. After the consumption has

been done, the MDC is cleared in order to make sure no context data is left to the MDC

for any following operations on that current Java thread.

41

4.3.2 Logging outgoing messages

While the proposed incoming message interception logic resulted in a solution where no

actual development team attention is needed code-wise, the Spring’s JmsTemplate

interception support for outgoing messages is a bit more lacking and the author believes

that achieving it may require multiple iterations of deep dive research and development

across the Spring Framework’s Messaging API and protocols1 [34] [35].

That being said, the author believes that an alternative approach which wraps logging

operations around the JmsTemplate is more suitable for making sure that a developer-

friendly solution will be achieved. In order to also give flexibility for these logging

operations and JmsTemplate usages while sending messages, the author believes it is best

not to develop a fixed solution with POJOs (Plain Old Java Object) but rather benefit

from interfaces and also support preconfigured solutions as the latter might be enough for

some applications while sending messages to the broker.

Starting off with a POJO interface which ultimately would get converted to a JMS

message, a proposed example can be seen on Figure 17.

public interface OutgoingJmsMessage {

 Destination getJmsDestination();

 Destination getJmsReplyToDestination();

 String getJmsCorrelationId();

 String getMessageId();

 String getMessageCorrelationId();

 Object getContent();

 String getContentType();

 MessageCreator getJmsMessageCreator();

}

Figure 17. Outgoing JMS message interface example.

As it can be seen from the figure above, the OutgoingJmsMessage interface contracts all

the required fields to send a JMS message in terms of the destination and the message

contents. It is also accompanied by message specific optional context fields, which could

1 An existing feature request has been opened on 20th of May 2019 in Spring Framework’s Github

repository to tackle the JmsTemplate’s interception limitation [Online]. Available:

https://github.com/spring-projects/spring-framework/issues/22999. [Accessed 20 April 2021]

https://github.com/spring-projects/spring-framework/issues/22999

42

be filled to achieve more comprehensive understanding of the message on consumer side

and also in log analysis. Also, if an application is still requiring database table persistence

for tracking unsent messages, the author proposes OutgoingJmsMessage interface to be

accompanied with another interface which would support persistence related audit fields

as Figure 18 shows.

public interface PersistentAuditedOutgoingJmsMessage

 <T extends Temporal> extends OutgoingJmsMessage {

 Boolean isSent();

 String getLastRequestId();

 String getCreatedBy();

 T getCreatedDtime();

 String getModifiedBy();

 T getModifiedDtime();

}

Figure 18. Example for outgoing JMS message interface with persistence field support.

In order to tie the created POJO interfaces with message sending logic and support

applications to use their own preferred way of sending them, a JmsMessageSender

interface is proposed and it would also be accompanied by a default implementation class

DefaultJmsMessageSender which does the required minimum for traffic logging and

mapping existing audit data from MDC to the Message.

public Message send(OutgoingJmsMessage outgoingJmsMessage) {

 var messageRef = new AtomicReference<Message>();

 jmsTemplate.send(outgoingJmsMessage.getJmsDestination(), session -> {

 Message message = outgoingJmsMessage

 .getJmsMessageCreator()

 .createMessage(session);

 populateMessageFieldsAndProperties(message, outgoingJmsMessage);

 messageRef.set(message);

 return message;

 });

 var message = messageRef.get();

 jmsLogger.logMessage(message);

 return message;

 }

Figure 19. Example of DefaultJmsMessageSender solution of logging outgoing messages.

As Figure 19 shows, the DefaultJmsMessageSender uses the JmsTemplate capabilities to

send a message to the designated destination while creating the Message interface

instance using the previously shown POJO interface’s getJmsMessageCreator() method.

The author believes that outgoing traffic log collection can and should only occur when

43

a JMS broker has confirmed message delivery and set a JMSMessageID to the Message

object [10]. Due to that, the log collection is to be done outside of the message sending

operations. To achieve that, the message is saved to the thread safe AtomicReference

instance in the sending flow and retrieved later in order to trigger log collection [36].

Also, on Figure 19 a method populateMessageFieldsAndProperties is called. As the

outgoing message should be trustworthy for any consumer, this method maps any

auditable context from the OutgoingJmsMessage interface to the Message interface sent

to the broker. The author’s proposed default solution fills the following fields:

 Message interface’s JMSCorrelationId if set;

 Message interface’s JMSReplyTo if set;

 Message interface’s property “X-MESSAGE-ID” if set;

 Message interface’s property “X-MESSAGE-CORRELATION-ID” if set;

 Message interface’s property “Content-Type” if set;

 Message interface’s property “X-Correlation-ID”

The proposed implementations and interfaces for contracting message sending and

context filling can be seen in full in Appendices 8 and 9.

44

5 Usability

For message queue traffic logging to be up to audit logging requirements, the log rows

must give answers to the questions of who, what, where, whence and when as stated in

chapter 3.1. In order to assert that the log row format answers these questions with the

implementation of the logging libraries, the output data for both incoming and outgoing

messages is presented in Table 3Table 2 and Table 3.

Table 2. Log row representation of an outgoing message

Field Value

Host PC332145

Log type S

Timestamp 2021-04-19T11:31:11,821+0300

Correlation ID fa6465c3-14e6-42fb-9444-e802b20a150c

Request ID tcDNGIE1

User ID 9183501

JMS Message ID ID:PC332145-38865-1618821068996-1:1:4:1:1

JMS Correlation ID -

JMS Destination queue://SOME.QUEUE

JMS Reply To -

JMS Properties {"X_SYSTEM_ID":"TransactionSystem", {"X-
Correlation-ID":" fa6465c3-14e6-42fb-9444-
e802b20a150c"}

JMS Payload {"key":"value", "key2":"value2", …}

Table 3. Log row representation of an incoming message

Field Value

Host PC332146

Log type C

Timestamp 2021-04-19T11:31:12,154+0300

Correlation ID fa6465c3-14e6-42fb-9444-e802b20a150c

Request ID L3nfCNWj

45

User ID 9183501

JMS Message ID ID:PC332145-38865-1618821068996-1:1:4:1:1

JMS Correlation ID -

JMS Destination queue://SOME.QUEUE

JMS Reply To -

JMS Properties {"X_SYSTEM_ID":"TransactionSystem", {"X-
Correlation-ID":" fa6465c3-14e6-42fb-9444-
e802b20a150c"}

JMS Payload {"key":"value", "key2":"value2", …}

As the tables above show, a host named „PC332145“ has sent a message at „2021-04-

19T11:31:11,821+0300“ to „queue://SOME.QUEUE“ and a host named „PC332146“

consumed it at „2021-04-19T11:31:12,154+0300“. The log entries also both contain the

same JMS Message identifier, properties and payload. If dealing with ActiveMQ message

broker, the contents could have also be seen in a similar way from the UI as Figure 1 in

chapter 2.3 shows.

As the traffic log events certainly do answer all the questions about a message’s

whereabouts and its contents, these kind of log entries could be used for further log

analysis in terms of troubleshooting, audit trailing or monitoring.

5.1 Troubleshooting message broker issues

To understand what went wrong with message consumption, the traffic log events should

be correlatable to other system logs. As this was proven to be applicable for HTTP request

troubleshooting in chapter 2.4, the author expects the same for JMS traffic

troubleshooting.

For example, considering that there is an error in application logs which happened on a

thread named „DefaultMessageListenerContainer-1“ as Figure 20 shows.

Figure 20. Application error log example on JMS listener thread

46

Based on the thread name, relevant presumptions could be made that the message should

be present in the JMS traffic log. Using the request_id value, a corresponding message

could be found as Figure 21 shows.

Figure 21. Lightweight example of incoming JMS log message

Considering the knowledge gathered, it could be said that the consumption of this

message from “PC456” did not succeed because some locking process took too long and

a time out was triggered. As there could be a retry configuration set for message

consumption, the jms_message_id or correlation_id values could be used to find any retry

messages that got consumed after the failed message consumption as Figure 22 shows.

Figure 22. Lightweight example of retried incoming JMS message in logs

For the retry message log row on the figure above, it can also be seen that there is a new

value in the jms_properties field named JMSXDeliveryCount. This is due to the redelivery

operation and the JMS broker has set corresponding property to the message indicating

the number of attempts there have been to send this message to a consumer [37].

5.2 Analysis and monitoring

From an application monitoring point of view, the proposed log format and its

implementation details provide enough data in author’s opinion to develop initial

monitoring checks for traffic flow. Some possible scenarios which could be developed

are the following (but not limited to):

 Monitoring job to return a count of messages consumed in the last 15 minutes;

 Monitoring job to return a count of messages produced in the last 15 minutes;

 Monitoring job to return a count of messages produced that have not retrieved an

expected reply message in the last 15 minutes;

47

From the perspective of audit analysis, the proposed solution provides a better audit trail

as every message is subject for logging and while a database-based audit logging did

collect the traffic logs, on the case of a database exception, the log entries got rollbacked

without any retention as described in chapter 2.2.4.

Also, as the log entries contain key correlation fields in terms of the correlation, request

and user identifier, the traffic log entries could be subject to complex analysis models and

security monitoring in author’s opinion.

48

Conclusion

Logging message traffic between applications and messaging servers could provide a

valuable audit trail for any information system. According to the author’s research and

observation of topics on this matter, no extensive nor comprehensive research or study

has been made for this particular type of log collection. This thesis covered the existing

logging practices in LHV Bank and formulated a problem regarding the lack of traffic

logging for message brokerage on application side. Also, the thesis analysed message

contexts and offered solutions to gain the most knowledge from log collection on message

production and consumption.

As the proposed solutions in this thesis corresponded most requirement accordance from

Tiit Hallas’ study “Logging Requirement Analysis and Specification for Development

Based on Governmental Institutions of Estonia”, the results have proven to be applicable.

The outcome libraries have been applied to selected applications in LHV Bank’s IT-

infrastructure. The log collection methodology and the implementation logic has proven

to be a success from the stakeholders’ point of view.

The outcome of thesis is two separate Java libraries combined from Appendices 5, 6, 7,

8 and 9 and a document describing log format and library usages (Appendix 10) which is

also reflected to LHV Bank’s documentation space for the institution’s IT-development

teams to refer to.

The author of thesis gives out special thanks to Tiit Hallas and Toomas Lepikult for the

supervision and contribution to this thesis and also Heiki Hiisjärv for his insights and

inputs during the code review procedures.

49

References

[1] Estonian Financial Supervision Authority, “Requirements for the organisation of

the information technology and information security of the subject of financial

supervision,” 30 June 2020. [Online]. Available:

https://www.fi.ee/en/guides/pangandus-ja-krediit/requirements-organisation-

information-technology-and-information-security-subject-financial. [Accessed 13

March 2021].

[2] Estonian Financial Supervision Authority, “Requirements for the organisation of

the information technology and information security of the subject of financial

supervision,” 2020.

[3] Amazon Web Services, Inc, “Message Queues,” [Online]. Available:

https://aws.amazon.com/message-queue/. [Accessed 24 February 2021].

[4] T. Hallas, “Logging Requirement Analysis and Specification for Development

Based on Governmental Institutions of Estonia,” Tallinn, 2014.

[5] AS LHV Bank, "Brief history of LHV," [Online]. Available:

https://www.lhv.ee/en/about. [Accessed 24 February 2021].

[6] AS LHV Bank, “Status page,” [Online]. Available: https://status.lhv.ee/.

[Accessed 13 March 2021].

[7] S. Colebourne, “Best Practices for Designing and Implementing a Library in

Java,” Oracle Corporation, [Online]. Available:

https://www.oracle.com/corporate/features/library-in-java-best-practices.html.

[Accessed 20 3 2021].

[8] Oracle Corporation, “Java Community Process,” 16 March 2015. [Online].

Available: https://jcp.org/en/jsr/detail?id=343. [Accessed 21 March 2021].

[9] Rapid7, “Rapid7 blog,” 23 December 2016. [Online]. Available:

https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/. [Accessed 21

March 2021].

[10] Oracle Corporation, “Interface Message: Java(TM) EE 7 Specification APIs,”

[Online]. Available:

https://docs.oracle.com/javaee/7/api/javax/jms/Message.html. [Accessed 24

March 2021].

[11] Oracle Corporation, “Understanding Message ID and Correlation ID Patterns for

JMS Request/Response,” [Online]. Available:

https://docs.oracle.com/cd/E13171_01/alsb/docs25/interopjms/MsgIDPatternforJ

MS.html. [Accessed 28 March 2021].

[12] Oracle Corporation, “Controlling Message Acknowledgment,” 2010. [Online].

Available: https://docs.oracle.com/cd/E19798-01/821-1841/bncfw/index.html.

[Accessed 29 March 2021].

50

[13] The Apache Software Foundation, “ActiveMQ Message Redelivery and DLQ

Handling,” [Online]. Available: https://activemq.apache.org/message-redelivery-

and-dlq-handling.html. [Accessed 29 March 2021].

[14] Apache Software Foundation, “Apache Tomcat 7: The AJP Connector,”

[Online]. Available: https://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html.

[Accessed 8 April 2021].

[15] IBM Cloud Education, “Message Brokers,” 23 January 2020. [Online].

Available: https://www.ibm.com/cloud/learn/message-brokers. [Accessed 13

April 2021].

[16] The Apache Software Foundation, “How does a Queue compare to a Topic,”

[Online]. Available: https://activemq.apache.org/how-does-a-queue-compare-to-

a-topic. [Accessed 14 April 2021].

[17] Oracle Corporation, “The Request-Reply Pattern,” 2010. [Online]. Available:

https://docs.oracle.com/cd/E19340-01/820-6424/aerby/index.html. [Accessed 14

April 2021].

[18] Oracle Corporation, “Java Logging Overview,” [Online]. Available:

https://docs.oracle.com/en/java/javase/15/core/java-logging-overview.html.

[Accessed 14 April 2021].

[19] R. Kuć, “Java Logging Best Practices: Sematext,” 3 August 2020. [Online].

Available: https://sematext.com/blog/java-logging-best-practices/. [Accessed 14

April 2021].

[20] The Apache Software Foundation, “Thread Context: Log4j 2 API,” [Online].

Available: https://logging.apache.org/log4j/2.x/manual/thread-context.html.

[Accessed 14 April 2021].

[21] Oracle Corporation, “Java 9 HttpClient API reference,” [Online]. Available:

https://docs.oracle.com/javase/9/docs/api/jdk/incubator/http/HttpClient.html.

[Accessed 14 April 2021].

[22] Oracle Corporation, “Java 8 HttpURLConnection API,” [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html.

[Accessed 14 April 2021].

[23] Tom Akehurst, “Which Java HTTP client should I use in 2020?,” 12 October

2020. [Online]. Available: https://www.mocklab.io/blog/which-java-http-client-

should-i-use-in-2020/. [Accessed 14 April 2021].

[24] VMware, Inc., “JMS (Java Message Service): Spring framework

documentation,” 13 April 2021. [Online]. Available:

https://docs.spring.io/spring-

framework/docs/5.3.6/reference/html/integration.html#jms. [Accessed 14 April

2021].

[25] The Apache Software Foundation, “Configuration: Log4j2 Documentation,” 6

March 2021. [Online]. Available:

https://logging.apache.org/log4j/2.x/manual/configuration.html. [Accessed 15

April 2021].

[26] The Apache Software Foundation, “Layouts: Log4j2 Documentation,” 6 March

2021. [Online]. Available:

https://logging.apache.org/log4j/2.x/manual/layouts.html. [Accessed 20 April

2021].

51

[27] The Apache Software Foundation, “Appenders: Log4j2 Documentation,” 6

March 2021. [Online]. Available:

https://logging.apache.org/log4j/2.x/manual/appenders.html. [Accessed 20 April

2021].

[28] The Apache Software Foundation, “Interface Logger,” [Online]. Available:

https://logging.apache.org/log4j/2.x/log4j-

api/apidocs/org/apache/logging/log4j/Logger.html. [Accessed 14 April 2021].

[29] Oracle Corporation, “Interface TextMessage: Java(TM) EE 7 Specification

APIs,” [Online]. Available: https://javaee.github.io/javaee-

spec/javadocs/javax/jms/TextMessage.html. [Accessed 14 April 2021].

[30] Oracle Corporation, “Interface BytesMessage: Java(TM) EE 7 Specification

APIs,” [Online]. Available:

https://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html. [Accessed 14

April 2021].

[31] The Apache Software Foundation, “Class ThreadContext,” [Online]. Available:

https://logging.apache.org/log4j/2.x/log4j-

api/apidocs/org/apache/logging/log4j/ThreadContext.html. [Accessed 14 April

2021].

[32] VMware, Inc., “Creating Your Own Auto-configuration: Spring Boot,” [Online].

Available: https://docs.spring.io/spring-boot/docs/current/reference/html/spring-

boot-features.html#boot-features-developing-auto-configuration. [Accessed 20

April 2021].

[33] VMware, Inc., “Class JmsListenerEndpointRegistry: Spring Framework API,”

[Online]. Available: https://docs.spring.io/spring-

framework/docs/current/javadoc-

api/org/springframework/jms/config/JmsListenerEndpointRegistry.html.

[Accessed 20 April 2021].

[34] VMware, Inc., “Package org.springframework.messaging: Spring Framework

API,” [Online]. Available: https://docs.spring.io/spring-

framework/docs/current/javadoc-api/org/springframework/messaging/package-

summary.html. [Accessed 20 April 2021].

[35] VMware, Inc., “Class JmsTemplate: Spring Framework API,” [Online].

Available: https://docs.spring.io/spring-framework/docs/current/javadoc-

api/org/springframework/jms/core/JmsTemplate.html. [Accessed 20 April 2021].

[36] J. Jenkov, “AtomicReference,” 26 January 2016. [Online]. Available:

http://tutorials.jenkov.com/java-util-concurrent/atomicreference.html. [Accessed

20 April 2021].

[37] The Apache Software Foundation, “ActiveMQ Message Properties,” [Online].

Available: https://activemq.apache.org/activemq-message-properties. [Accessed

21 April 2021].

52

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Erik Ehrbach

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Message traffic audit logging between application and messaging server on

the example of LHV bank”, supervised by Tiit Hallas and Toomas Lepikult

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

27.04.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

53

Appendix 2 – Application HTTP access log file example

Log

type

Timestamp Correlation

id

Request id Session id Domain Client

IP

Method URL Payload Status User id

C 2021-03-21

10:56:38.246

+0200

e80fdd2a mpfTgWXY olALUHjT sandboxapi.lhv.eu 8.8.8.8 GET /v1/accounts NULL Not applicable for

request log row

S 2021-03-21

10:56:38.514

+0200

e80fdd2a mpfTgWXY olALUHjT Not applicable for response log row “{…}” 200 53434

C 2021-03-21

10:57:39.246

+0200

564a9b6a AUYL0AnS olALUHjT sandboxapi.lhv.eu 8.8.8.8 POST /v1/consents “{…}” Not applicable for

request log row

S 2021-03-21

10:57:39.450

+0200

564a9b6a AUYL0AnS olALUHjT Not applicable for response log row “{…}” 201 53434

54

Appendix 3 – Application HTTP client log file example

Log

type

Timestamp Correlation

id

Request id Session id Log record

id

Node Method URL Payload Status User

id

C 2021-03-21

10:56:38.246

+0200

e80fdd2a mpfTgWXY olALUHjT FewQ7Wb9 PROD-

HOST01

GET https//api.sid.ee/v1/info NULL NULL 53434

S 2021-03-21

10:56:38.471

+0200

e80fdd2a mpfTgWXY olALUHjT FewQ7Wb9 PROD-

HOST01

GET https//api.sid.ee/v1/info {…} 200 53434

C 2021-03-21

10:56:38.472

+0200

e80fdd2a mpfTgWXY olALUHjT 2ArCREgG PROD-

HOST01

POST https//api.sid.ee/v1/auth {…} NULL 53434

S 2021-03-21

10:56:38.471

+0200

e80fdd2a mpfTgWXY olALUHjT 2ArCREgG PROD-

HOST01

POST https//api.sid.ee/v1/auth {…} 200 53434

55

Appendix 4 – Database-logged message queue traffic examples

QUEUE_MESSAGE_INCOMING table

QUMI_

ID

DESTINATION CONTENT CONTENT_TYPE MESSAGE_

ID

CORRELATI

ON_ID

USER_I

D

CREATED_

DTIME

MODIFIED_D

TIME

543 LHV.QUEUE.REQ 0x7B2….7D application/json REQasd721 NULL 53434 2021-03-21

10:56:38.246

+0200

2021-03-21

10:56:38.246

+0200

544 LHV.QUEUE.REQ 0x7B2….7D application/json REQfsa391 NULL 53434 2021-03-21

10:56:41.105

+0200

2021-03-21

10:56:41.105

+0200

QUEUE_MESSAGE_OUTGOING table

QUMO

_ID

QUMI

_ID

DESTINATI

ON

IS_SE

NT

CONTENT CONTENT_

TYPE

MESSAGE_

ID

CORRELATIO

N_ID

USER

_ID

CREATE

D_DTIME

MODIFIED_

DTIME

421 543 LHV.QUEUE.

RESP

1 0x7B2….1E application/jso

n

RESasd721 REQasd721 53434 2021-03-21

10:56:38.74

6 +0200

2021-03-21

10:56:38.913

+0200

422 544 LHV.QUEUE.

RESP

1 0x7B2….1E application/jso

n

RESfsa391 REQfsa391 53434 2021-03-21

10:56:41.25

9 +0200

2021-03-21

10:56:41.514

+0200

56

Appendix 5 – Shared JMS properties enum class

public enum JmsProperty {

 /**

 * Content-Type. Used to describe the content structure of the message.

 * I.e application/json, application/xml

 */

 CONTENT_TYPE("Content-Type"),

 /**

 * X-Correlation-ID. Used to correlate the message throughout any HTTP

 * requests made across different applications

 */

 X_CORRELATION_ID("X-Correlation-ID"),

 /**

 * X-MESSAGE-ID. Used to identify the message in an

 * application/business logic scope. Usually persisted in DB as well.

 */

 X_MESSAGE_ID("X-MESSAGE-ID"),

 /**

 * X-MESSAGE-CORRELATION-ID. Used to identify message(s) in an

 * application/business logic scope in a request-response manner.

 * Usually persisted in DB as well.

 */

 X_MESSAGE_CORRELATION_ID("X-MESSAGE-CORRELATION-ID"),

 /**

 * X-SYSTEM-ID. Used to identify the message origin system. I.e PAYMENTS

 */

 X_SYSTEM_ID("X-SYSTEM-ID"),

 /**

 * X-USER-ID. Used to identify the authenticated user or system.

 */

 X_USER_ID("X-USER-ID"),

 /**

 * X-USER-ID-ROLE. Used to identify the customer/user whose role is

 * acted upon.

 */

 X_USER_ID_ROLE("X-USER-ID-ROLE");

57

 @Getter

 private final String propertyName;

 JmsProperty(String propertyName) {

 this.propertyName = propertyName;

 }

}

58

Appendix 6 – Automated tests for JMS logging library

Incoming message log output test

@ExtendWith(SpringExtension.class)

@SpringBootTest(classes = TestApplication.class)

class JmsListenerLoggerTest {

 @Autowired

 private JmsTemplate jmsTemplate;

 private final CountDownLatch lock = new CountDownLatch(1);

 private final AtomicReference<Message> receivedMessage = new

 AtomicReference<>();

 private final JmsLogger jmsListenerLogger = new

 JmsLogger(LogManager.getLogger("jmsListenerLogger"));

 @JmsListener(destination = "SOME.QUEUE")

 public void handle(Message message) throws JMSException {

 ThreadContextUtil.addToContext("correlationId",

 message.getStringProperty("X-Correlation-ID"));

 ThreadContextUtil.addToContext("requestId",

 LoggingUtil.getRandomHash());

 ThreadContextUtil.addToContext("userId",

 message.getStringProperty("X-USER-ID"));

 jmsListenerLogger.logMessage(message);

 receivedMessage.set(message);

 lock.countDown();

 }

 @Test

 void shouldLogJmsBody() throws InterruptedException, IOException,

 JMSException {

 var destination = new ActiveMQQueue("SOME.QUEUE");

 var replyToDestination = new ActiveMQTopic("SOME.TOPIC");

 this.jmsTemplate.send(destination, (session) -> {

 TextMessage textMessage = session.createTextMessage();

 textMessage.setText("Hello, world - listener test!");

 textMessage.setJMSCorrelationID("ID:someJmsCorrId");

 textMessage.setJMSDestination(destination);

 textMessage.setJMSReplyTo(replyToDestination);

 textMessage.setStringProperty("X-USER-ID", "999");

 textMessage.setStringProperty("X-Correlation-ID",

 "abcdCorrelationId123456");

 textMessage.setStringProperty("test", "value");

 textMessage.setStringProperty("test2", "value2");

 return textMessage;

 });

 lock.await(400, TimeUnit.MILLISECONDS);

 String file = FileUtils.readFileToString(new

 File("jms_in.log"), StandardCharsets.UTF_8);

 String[] split = file.split("\n");

 assertTrue(split.length > 0);

59

 String logMessageRow = split[split.length-1];

 String[] logMessageParts = logMessageRow.split("\\|");

 assertEquals(InetAddress.getLocalHost().getHostName(),

 logMessageParts[0],

 "Host name not correct");

 assertEquals("C", logMessageParts[1],

 "Log type not correct");

 DateTimeFormatter formatter =

 DateTimeFormatter.ofPattern("yyyy-MM-dd'T'HH:mm:ss,SSSZ");

 assertDoesNotThrow(() ->

 OffsetDateTime.parse(logMessageParts[2], formatter),

 "Log offset datetime not parseable");

 assertEquals("abcdCorrelationId123456", logMessageParts[3],

 "Correlation ID not correct");

 assertTrue(logMessageParts[4].matches("[A-Za-z0-9]{8}"),

 "Request ID not in correct format");

 assertEquals("999", logMessageParts[5],

 "User ID not correct");

 assertEquals(receivedMessage.get().getJMSMessageID(),

 logMessageParts[6],

 "JMS Message ID not correct");

 assertEquals("ID:someJmsCorrId", logMessageParts[7],

 "JMS Correlation ID not correct");

 assertEquals("queue://SOME.QUEUE", logMessageParts[8],

 "JMS Destination not correct");

 assertEquals("topic://SOME.TOPIC", logMessageParts[9],

 "JMS Reply to Destination not correct");

 assertEquals("{\"X-USER-

 ID\":\"999\",\"test2\":\"value2\",\"test\":\"value\"," +

 "\"X-Correlation-ID\":\"abcdCorrelationId123456\"}",

 logMessageParts[10],

 "JMS Message properties not correct");

 assertEquals("Hello, world - listener test!",

 logMessageParts[11],

 "JMS Message content not correct!");

 }

}

Outgoing message log output test

@ExtendWith(SpringExtension.class)

@SpringBootTest(classes = TestApplication.class)

class JmsSenderLoggerTest {

 @Autowired

 private JmsTemplate jmsTemplate;

 private final JmsLogger jmsSenderLogger = new

60

 JmsLogger(LogManager.getLogger("jmsSenderLogger"));

 @Test

 void shouldLogJmsBody() throws IOException, JMSException {

 ThreadContextUtil.addToContext("requestId",

 LoggingUtil.getRandomHash());

 ThreadContextUtil.addToContext("correlationId",

 "abcdCorrelationId123456");

 ThreadContextUtil.addToContext("userId", "999");

 var destination = new ActiveMQTopic("SOME.TOPIC");

 var replyToDestination = new ActiveMQQueue("SOME.QUEUE");

 AtomicReference<Message> sentMessage = new

 AtomicReference<>();

 this.jmsTemplate.send(destination, (session) -> {

 TextMessage textMessage = session.createTextMessage();

 textMessage.setText("Hello, world - sender test!");

 textMessage.setJMSCorrelationID("ID:someJmsCorrId");

 textMessage.setJMSDestination(destination);

 textMessage.setJMSReplyTo(replyToDestination);

 textMessage.setStringProperty("X-USER-ID",

 ThreadContextUtil.getFromContext("userId"));

 textMessage.setStringProperty("X-Correlation-ID",

 ThreadContextUtil.getFromContext("correlationId"));

 textMessage.setStringProperty("test", "value");

 textMessage.setStringProperty("test2", "value2");

 sentMessage.set(textMessage);

 return textMessage;

 });

 jmsSenderLogger.logMessage(sentMessage.get());

 String file = FileUtils.readFileToString(new

 File("jms_out.log"), StandardCharsets.UTF_8);

 String[] split = file.split("\n");

 assertTrue(split.length > 0);

 String logMessageRow = split[split.length-1];

 String[] logMessageParts = logMessageRow.split("\\|");

 assertEquals(InetAddress.getLocalHost().getHostName(),

 logMessageParts[0],

 "Host name not correct");

 assertEquals("S", logMessageParts[1],

 "Log type not correct");

 DateTimeFormatter formatter =

 DateTimeFormatter.ofPattern("yyyy-MM-dd'T'HH:mm:ss,SSSZ");

 assertDoesNotThrow(() ->

 OffsetDateTime.parse(logMessageParts[2], formatter),

 "Log offset datetime not parseable");

 assertEquals("abcdCorrelationId123456", logMessageParts[3],

 "Correlation ID not correct");

 assertEquals(ThreadContextUtil.getFromContext(„requestId),

 logMessageParts[4],

 "Request ID not correct");

61

 assertEquals("999", logMessageParts[5],

 "User ID not correct");

 assertEquals(sentMessage.get().getJMSMessageID(),

 logMessageParts[6],

 "JMS Message ID not correct");

 assertEquals("ID:someJmsCorrId ", logMessageParts[7],

 "JMS Correlation ID not correct");

 assertEquals("topic://SOME.TOPIC", logMessageParts[8],

 "JMS Destination not correct");

 assertEquals("queue://SOME.QUEUE", logMessageParts[9],

 "JMS Reply to Destination not correct");

 assertEquals("{\"X-USER-

 ID\":\"999\",\"test2\":\"value2\",\"test\":\"value\"," +

 "\"X-Correlation-ID\":\"abcdCorrelationId123456\"}",

 logMessageParts[10],

 "JMS Message properties not correct");

 assertEquals("Hello, world - sender test!",

 logMessageParts[11],

 "JMS Message content not correct!");

 }

}

62

Appendix 7 – Incoming message listener registry example for

logging incoming messages

@Log4j2

public class LoggingJmsListenerEndpointRegistry extends

 JmsListenerEndpointRegistry implements BeanFactoryAware {

 private BeanFactory beanFactory;

 private final MessageHandlerMethodFactory messageHandlerMethodFactory;

 private final JmsLogger jmsLogger;

 public LoggingJmsListenerEndpointRegistry(MessageHandlerMethodFactory

 messageHandlerMethodFactory, JmsLogger jmsLogger) {

 this.messageHandlerMethodFactory = messageHandlerMethodFactory;

 this.jmsLogger = jmsLogger;

 }

 @Override

 public void setBeanFactory(BeanFactory beanFactory) throws BeansException

 {

 this.beanFactory = beanFactory;

 }

 @Override

 public void registerListenerContainer(JmsListenerEndpoint endpoint,

 JmsListenerContainerFactory<?> factory, boolean startImmediately)

 {

 if (endpoint instanceof MethodJmsListenerEndpoint) {

 endpoint = replaceMethodJmsListenerEndpoint(

 (MethodJmsListenerEndpoint) endpoint);

 }

 super.registerListenerContainer(endpoint, factory, startImmediately);

 }

 private JmsListenerEndpoint replaceMethodJmsListenerEndpoint(

 MethodJmsListenerEndpoint original) {

 MethodJmsListenerEndpoint replacement =

 new LoggingMethodJmsListenerEndpoint();

 replacement.setBean(original.getBean());

 replacement.setMethod(original.getMethod());

 replacement.setMostSpecificMethod(original.getMostSpecificMethod());

 replacement

 .setMessageHandlerMethodFactory(messageHandlerMethodFactory);

 replacement.setBeanFactory(beanFactory);

63

 replacement.setId(original.getId());

 replacement.setDestination(original.getDestination());

 replacement.setSelector(original.getSelector());

 replacement.setSubscription(original.getSubscription());

 replacement.setConcurrency(original.getConcurrency());

 return replacement;

 }

 private class LoggingMethodJmsListenerEndpoint extends

 MethodJmsListenerEndpoint {

 @Override

 protected MessagingMessageListenerAdapter

 createMessageListenerInstance() {

 return new LoggingMessageListenerAdapter();

 }

 }

 private class LoggingMessageListenerAdapter extends

 MessagingMessageListenerAdapter {

 @Override

 public void onMessage(final Message message, final Session session)

 throws JMSException {

 populateThreadContextForIncomingMessage(message);

 jmsLogger.logMessage(message);

 super.onMessage(message, session);

 clearThreadContext();

 }

 private void populateThreadContextForIncomingMessage(Message message)

 throws JMSException {

 var httpCorrelationId = message

 .getStringProperty(JmsProperty.X_CORRELATION_ID

 .getPropertyName());

 if (StringUtils.isBlank(httpCorrelationId)) {

 log.debug("Incoming JMS message does not have a " +

 + " X-Correlation-ID property set. Generating new UUID.");

 httpCorrelationId = UUID.randomUUID().toString();

 }

 ThreadContext.put("correlationId", httpCorrelationId);

 ThreadContext.put("requestId", LoggingUtil.getRandomHash());

 var userId = message

 .getStringProperty(JmsProperty.X_USER_ID.getPropertyName());

 if (StringUtils.isNotBlank(userId)) {

 ThreadContext.put("userId", userId);

 }

 }

 private void clearThreadContext() {

64

 JmsLoggerThreadContextUtil.clearJmsThreadContextValues();

 ThreadContext.remove("userId");

 ThreadContext.remove("requestId");

 ThreadContext.remove("correlationId");

 }

 }

}

65

Appendix 8 – JmsMessageSender interface example

public interface JmsMessageSender {

 Message send(OutgoingJmsMessage message);

 /**

 * Default method to populate the {@link javax.jms.Message} with values

 * from {@link OutgoingJmsMessage}.

 * Also generates or sets the correlation id from ThreadContext to

 * Message property {@link JmsProperty#X_CORRELATION_ID}

 * @param message - message that the fields and properties are populated

 * to.

 * @param outgoingJmsMessage - data object which is holding the values

 * that need to be reflected on the message

 * @throws JMSException - if the JMS Provider fails to set any field or

 * property

 */

 default void populateMessageFieldsAndProperties(Message message,

 OutgoingJmsMessage outgoingJmsMessage) throws JMSException {

 if (StringUtils.hasText(outgoingJmsMessage.getJmsCorrelationId())) {

 message

 .setJMSCorrelationID(outgoingJmsMessage.getJmsCorrelationId());

 }

 if (outgoingJmsMessage.getJmsReplyToDestination() != null) {

 message

 .setJMSReplyTo(outgoingJmsMessage.getJmsReplyToDestination());

 }

 if (StringUtils.hasText(outgoingJmsMessage.getMessageId())) {

 message

 .setStringProperty(JmsProperty.X_MESSAGE_ID.getPropertyName(),

 outgoingJmsMessage.getMessageId());

 }

 if (StringUtils.hasText(

 outgoingJmsMessage.getMessageCorrelationId())) {

 message.setStringProperty(

 JmsProperty.X_MESSAGE_CORRELATION_ID.getPropertyName(),

 outgoingJmsMessage.getMessageCorrelationId());

 }

 if (outgoingJmsMessage.getContent() != null &&

 StringUtils.hasText(outgoingJmsMessage.getContentType())) {

 message.setStringProperty(

 JmsProperty.CONTENT_TYPE.getPropertyName(),

 outgoingJmsMessage.getContentType());

 }

66

 var correlationId = ThreadContext.get("correlationId");

 if (!StringUtils.hasText(correlationId)) {

 correlationId = UUID.randomUUID().toString();

 ThreadContext.put("correlationId", correlationId);

 }

 message.setStringProperty(

 JmsProperty.X_CORRELATION_ID.getPropertyName(), correlationId);

 }

}

67

Appendix 9 – DefaultJmsMessageSender and

OutgoingJmsMessage implementation examples

public class DefaultJmsMessageSender implements JmsMessageSender {

 private final JmsTemplate jmsTemplate;

 private final JmsLogger jmsLogger;

 public DefaultJmsMessageSender(JmsTemplate jmsTemplate,

 JmsLogger jmsLogger) {

 if (jmsTemplate == null) {

 throw new IllegalArgumentException(

 "Argument jmsTemplate cannot be null");

 }

 if (jmsLogger == null) {

 throw new IllegalArgumentException(

 "Argument jmsLogger cannot be null");

 }

 this.jmsTemplate = jmsTemplate;

 this.jmsLogger = jmsLogger;

 }

 /**

 * Default implementation which expects the message creator to just

 * handle the creation of the message body.

 * Fields and properties are populated with overridable {@link

 * #populateMessageFieldsAndProperties(Message, OutgoingJmsMessage)}

 * after message has been created by {@link

 * OutgoingJmsMessage#getJmsMessageCreator()}

 *

 * @param outgoingJmsMessage - object which the message content is

 * created from

 * @return sent message

 */

 @Override

 public Message send(OutgoingJmsMessage outgoingJmsMessage) {

 var messageRef = new AtomicReference<Message>();

 jmsTemplate.send(outgoingJmsMessage.getJmsDestination(), session -> {

 Message message = outgoingJmsMessage

 .getJmsMessageCreator()

 .createMessage(session);

 populateMessageFieldsAndProperties(message, outgoingJmsMessage);

 messageRef.set(message);

 return message;

 });

68

 var message = messageRef.get();

 jmsLogger.logMessage(message);

 return message;

 }

}

OutgoingJmsMessage implementation example

@Data

@Builder

public class OutgoingMqMessage implements OutgoingJmsMessage {

 private Destination jmsDestination;

 private Destination jmsReplyToDestination;

 private String jmsCorrelationId;

 private String messageId;

 private String messageCorrelationId;

 private String content;

 private String contentType;

 @Override

 public MessageCreator getJmsMessageCreator() {

 return (session -> {

 var bytesMessage = session.createBytesMessage();

 bytesMessage

 .writeBytes(content.getBytes(StandardCharsets.UTF_8));

 bytesMessage

 .setStringProperty(JmsProperty.X_USER_ID.getPropertyName(),

 SecurityContextHolder

 .getContext()

 .getAuthentication()

 .getPrincipal()

 .toString());

 bytesMessage

 .setStringProperty(JmsProperty.X_SYSTEM_ID.getPropertyName(),

 "TransactionSystem");

 return bytesMessage;

 });

 }

69

Appendix 10 – Log format and library usage guide for

messaging server traffic log collection

JMS logs (ActiveMQ)

Applications should log detailed information about its JMS messages. Messages can be

either incoming or outgoing.

JMS incoming/outgoing pattern layouts

Incoming

1. Host – A host’s identifier, who is consuming the message.

2. Log type – A value to represent the message type as client (C);

3. Log datetime – ISO8601 format with timezone (2015-02-05T09:43:37.780

+02:00);

4. Correlation ID – unique identifcator which is usually from HTTP header (X-

Correlation-ID) for identifying processes throughout multiple applications. If not

from HTTP header, the producer produced the incoming message while not in

request context and generated a new correlation ID. (9c4d44d7-acf9-4345-90b0-

2dc5f2c39996). Should be retrieved by calling javax.jms.Message.getString

Property("X-Correlation-ID")

5. Request ID – unique identificator for the current "request", random 8 character

string. Generated automatically when message consumer is starting to process the

message. (52g5c9ag);

6. User ID – authenticated user token represented as string (123);

7. JMS Message ID – a unique id for the incoming message. Generated by the JMS

provider when sending the message. (ID:PC123-60303-1599224823894-

3:1:54:5:32)

8. JMS Correlation ID – a correlating id for a message if it's a response to a message.

Usually originates from the JMS Message ID of the initial message. Can also be

application specific value (ID:PC456-55779-1602707201349-3:1:3156:3:345,

70

REQ70a289c92a8d4dd5be3b8568d9bc5007, CLIENTSYSTEM_1613650265472

_82754);

9. JMS Destination – a string representation of the JMS destination from

javax.jms.Message.getJMSDestination() (queue://SOME.QUEUE)

10. JMS Reply to destination – a string representation of the JMS reply to destination

from javax.jms.Message.getJMSReplyTo(). Should be filled whenever a producer

expects a response for the message. (topic://SOME.TOPIC.RESPONSE);

11. JMS Properties - JSON-based key-value map of the properties from javax.

jms.Message;

12. Message body

Outgoing

1. Host – A host’s identifier, who is producing the message.

2. Log type – A value to represent the message type as server (S);

3. Log datetime – ISO8601 format with timezone (2015-02-05T09:43:37.780

+02:00);

4. Correlation ID – unique identifcator which is usually from HTTP header (X-

Correlation-ID) for identifying processes throughout multiple applications. If not

in request context, this should be generated. Should be set by calling

javax.jms.Message.setStringProperty("X-Correlation-ID", "9c4d44d7-acf9-4345

-90b0-2dc5f2c39996") (9c4d44d7-acf9-4345-90b0-2dc5f2c39996)

5. Request ID – unique identificator for current request, random 8 character string.

If not in request context or it's missing, this may be empty (52g5c9ag)

6. User ID – authenticated user token represented as string (123);

7. JMS Message ID – a unique id for the outgoing message. Generated by the JMS

provider when sending the message. (ID:PC123-50354-1596054135146-

3:1:10:5:152)

8. JMS Correlation ID – a correlating id for a message if it’s a response to a

preceding message. Usually originates from the JMS Message ID of the initial

message. Can also be application specific value (ID:PC345-55779-

1602707201349-3:1:3156:3:345, REQ70a289c92a8d4dd5be3b8568d9bc5007,

CLIENTSYSTEM _1613650265472_82754).

9. JMS Destination – a string representation of the JMS destination from

javax.jms.Message.getJMSDestination() (queue://SOME.QUEUE)

71

10. JMS Reply to destination – a string representation of the JMS reply to destination

from javax.jms.Message.getJMSReplyTo(). Should be filled whenever an

outgoing message is expected to retrieve a response for the message.

(topic://SOME.TOPIC.RESPONSE);

11. JMS Properties - JSON-based key-value map of the properties from javax.

jms.Message;

12. Message body

Log4j2 config

Pattern properties

<Properties>

 <!--.....-->

 <Property name="app">some-system-name</Property>

 <Property name="logDir">${sys:logging.path:-build/logs}</Property>

 <Property name="jmsListenerLoggingFormat">${hostName}\tC

 \t%date{ISO8601}%date{Z}

 \t%replace{%X{correlationId}}{^$}{-}

 \t%replace{%X{requestId}{^$}{-}\t%replace{%X{userId}}{^$}{-}

 \t%X{jmsMessageId}\t%replace{%X{jmsCorrelationId}}{^$}{-}

 \t%X{jmsDestination}\t%replace{%X{jmsReplyToDestination}}{^$}{-}

 \t%replace{%X{jmsProperties}}{^$}{-}\t%replace{%message}{^$}{-}%n

 </Property>

 <Property name="jmsSenderLoggingFormat">${hostName}\tS

 \t%date{ISO8601}%date{Z}

 \t%replace{%X{correlationId}}{^$}{-}

 \t%replace{%X{requestId}{^$}{-}\t%replace{%X{userId}}{^$}{-}

 \t%X{jmsMessageId}\t%replace{%X{jmsCorrelationId}}{^$}{-}

 \t%X{jmsDestination}\t%replace{%X{jmsReplyToDestination}}{^$}{-}

 \t%replace{%X{jmsProperties}}{^$}{-}\t%replace{%message}{^$}{-}%n

 </Property>

 <!--.....-->

</Properties>

File appenders

72

<RollingFile name="JmsListenerLoggerRollingFile"

 fileName="${logDir}/${app}-jms-incoming.log"

 filePattern="${logDir}/${app}-jms-incoming.%d{yyyy-MM-dd}.log.gz">

 <PatternLayout pattern="${jmsListenerLoggingFormat}" charset="UTF-8"/>

 <TimeBasedTriggeringPolicy/>

</RollingFile>

<RollingFile name="JmsSenderLoggerRollingFile"

 fileName="${logDir}/${app}-jms-outgoing.log"

 filePattern="${logDir}/${app}-jms-outgoing.%d{yyyy-MM-dd}.log.gz">

 <PatternLayout pattern="${jmsSenderLoggingFormat}" charset="UTF-8"/>

 <TimeBasedTriggeringPolicy/>

</RollingFile>

Libraries

Logger library:

1. Add a dependency to your project

 dependencies {

 implementation 'ee.logging:logger-jms'

}

2. Add Log4j2 patterns and configurations described above

Log incoming message:

If you are using Spring, you should relate to spring-jms-starter library for attaching

logger automatically to every incoming message listener via autoconfiguration. If not

using Spring, you should manually log messages.

 private final JmsLogger jmsListenerLogger = new

 JmsLogger(LogManager.getLogger("jmsListenerLogger"));

 @JmsListener(destination = "SOME.QUEUE")

 public void handle(Message message) throws JMSException {

 // fill in thread context

 // ...

 jmsListenerLogger.logMessage(message);

 // ...

 ///do logic

 }

Log outgoing message:

73

Since JMS message id gets generated by the JMS provider during send, we need to

log the message after that. One example for achieving this would be to use

AtomicReference which is basically just a volatile reference for retrieving the message

object modified by the JMS provider.

 JmsLogger jmsSenderLogger = new

 JmsLogger(LogManager.getLogger("jmsSenderLogger"));

 var messageRef = new AtomicReference<Message>();

 jmsTemplate.send(messageObject.getJmsDestination(), session -> {

 Message message = messageObject

 .getJmsMessageCreator()

 .createMessage(session);

 messageRef.set(message);

 return message;

 });

 var message = messageRef.get();

 jmsSenderLogger.logMessage(message);

Spring JMS starter library (strongly recommended):

This library provides contracts for sending messages and also contracts for handling

persisted messages. It also provides a DefaultJmsMessageSender implementation of

sending and logging the message via logger. JmsMessageSender interface has a default

method to populate the outgoing message with additional context.

1. Add a dependencies to your project

 dependencies {

 implementation 'ee.spring:spring-jms-starter'

 implementation 'ee.logging:logger-jms'

 implementation

 'org.springframework.boot:spring-boot-starter-activemq'

 }

2. Add Log4j2 patterns and configurations described above

3. Enable JMS listener logging which attaches logging capabilities to every

@JmsListener annotated listener method to log incoming messages. Add config

property:

jms.loggingListenersEnabled=true

74

4. If you want to omit message body logging for specific destinations you are

listening or producing messages to, add the destination to configuration’s

exclusion list:

jms.destinationsExcludedFromBodyLogging=some.queue,some.topic

Receiving messages

To receive messages from JMS destination, just create a spring annotated listener

method.

 @JmsListener(destination = "SOME.QUEUE")

 public void handle(Message message) {

 //Do logic

 }

Sending messages

Create your own implementation of JmsMessageSender or use DefaultJmsMessage

Sender and inject a bean instance of it into Spring’s context:

@Log4j2

@AllArgsConstructor

public class MyJmsMessageSender implements JmsMessageSender {

 private final JmsTemplate jmsTemplate;

 private final JmsLogger jmsLogger;

 @Override

 public Message send(OutgoingJmsMessage outgoingJmsMessage) {

 var messageRef = new AtomicReference<Message>();

 jmsTemplate

 .send(outgoingJmsMessage.getJmsDestination(), session -> {

 Message message = outgoingJmsMessage

 .getJmsMessageCreator()

 .createMessage(session);

 populateMessageFieldsAndProperties(

 message, outgoingJmsMessage);

 messageRef.set(message);

 return message;

 });

 var message = messageRef.get();

 jmsLogger.logMessage(message);

 return message;

 }

}

75

Create your own implementation of OutgoingJmsMessage:

@Data

public class MyOutgoingJmsMessage implements OutgoingJmsMessage {

 private Destination jmsDestination;

 private Destination jmsReplyToDestination;

 private String jmsCorrelationId;

 private String messageId;

 private String messageCorrelationId;

 private String content;

 private String contentType;

 @Override

 public MessageCreator getJmsMessageCreator() {

 return session -> {

 var msg = session.createTextMessage();

 msg.setText(this.getContent());

 return msg;

 };

 }

}

Call out your JmsMessageSender implementation to send the message:

@Service

public class MyService {

 private final JmsMessageSender myJmsMessageSender;

 @Autowired

 public MyService (JmsMessageSender myJmsMessageSender) {

 this.myJmsMessageSender = myJmsMessageSender;

 }

 public void myMethodToSendMessage(OutgoingJmsMessage message) {

 myJmsMessageSender.send(message);

 }

}

