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Abstract 

Bibliographic databases are vital for research but often struggle with data heterogeneity 

and limited analytical capabilities. This thesis addresses these issues by designing and 

implementing a modern, scalable bibliographic database system incorporating 

contemporary data engineering practices. 

Key objectives included developing a normalized database schema, integrating the Data 

Build Tool (DBT) for efficient ELT pipelines, and implementing a modular three-tier 

architecture (PostgreSQL, Python/Flask backend, web frontend). The methodology 

involved schema design, data ingestion from Crossref/OpenCitations, and DBT-managed 

SQL transformations for data cleaning and structuring. 

The resulting system demonstrates a robust architecture for bibliographic data 

management. The integration of DBT significantly enhances the maintainability and 

reliability of data transformations. This work provides a practical blueprint for applying 

modern ELT principles with DBT in bibliographic information systems, improving 

efficiency and analytical potential over traditional approaches. 

This thesis is written in English and is 100 pages long, including 5 chapters, 10 figures 

and 3 tables. 
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Annotatsioon 

“Bibliograafilise andmebaasi arhitektuuri kavandamine ja 

arendamine” 

Bibliograafilised andmebaasid on teadustöö jaoks üliolulised, kuid sageli on neil 

probleeme andmete heterogeensuse ja piiratud analüütiliste võimalustega. Käesolev 

lõputöö käsitleb neid probleeme, kavandades ja implementeerides kaasaegse, skaleeritava 

bibliograafilise andmebaasisüsteemi, mis rakendab tänapäevaseid andmetehnika 

praktikaid. 

Peamised eesmärgid hõlmasid normaliseeritud andmebaasiskeemi väljatöötamist, Data 

Build Tool’i (DBT) integreerimist tõhusate ELT (Extract, Load, Transform) andmetorude 

haldamiseks ning modulaarse kolmekihilise arhitektuuri (PostgreSQL, Python/Flask 

taustaprogramm, veebipõhine kasutajaliides) implementeerimist. Metoodika sisaldas 

skeemi kavandamist, andmete sissevõttu Crossrefi/OpenCitationsi API-dest ning DBT-

ga hallatud SQL-transformatsioone andmete puhastamiseks ja struktureerimiseks. 

Valminud süsteem demonstreerib robustset arhitektuuri bibliograafiliste andmete 

haldamiseks. DBT integreerimine parandab märkimisväärselt andmete 

transformatsiooniprotsesside hooldatavust ja usaldusväärsust. See töö pakub praktilist 

näidet kaasaegsete ELT põhimõtete ja DBT rakendamisest teadusinfosüsteemides, 

parandades tõhusust ja analüütilist potentsiaali võrreldes traditsiooniliste lähenemistega. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 100 leheküljel, 5 peatükki, 10 

joonist, 3 tabelit. 
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List of abbreviations and terms 

API Application Programming Interface 

DBT Data Build Tool 

DDL Data Definition Language 

DOI Digital Object Identifier 

ELT Extract, Load, Transform 

ERD Entity-Relationship Diagram 

FK Foreign Key 

JSON JavaScript Object Notation 

NF Normal Form 

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting 

OLAP Online Analytical Processing 

OLTP Online Transaction Processing 

ORCID Open Researcher and Contributor ID 

PK Primary Key 

RDBMS Relational Database Management System 

SQL Structured Query Language 

UI User Interface 
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1 Introduction 

This chapter introduces the motivation behind the development of a new bibliographic 

database, outlines the key challenges in the existing landscape, defines the scope of this 

thesis, and sets forth the objectives and research questions that will guide this work. 

Finally, it provides a brief overview of the thesis structure. 

1.1 Motivation and Problem Statement 

Importance of Bibliographic Databases 

Bibliographic databases are a fundamental tool of the information society. Researchers, 

students, professionals, and other individuals utilize them to locate relevant literature for 

their work or areas of interest. For librarians, these databases serve as a means to store 

bibliographic data concerning publications, their locations, and other details essential for 

library operations. Furthermore, policymakers employ bibliographic databases to monitor 

the progress of science, particularly to compare anticipated and actual outcomes and to 

assess or compare disciplines, fields, or research groups [1]. The visibility of publications 

in widely used bibliographic databases accessible on the World Wide Web is crucial for 

authors and publishers, as it ensures the dissemination of their research [2]. Therefore, 

accurate and up-to-date bibliographic data is indispensable for researchers across various 

domains [3]. 

The utility and impact of these databases, however, are increasingly dependent on the 

sophisticated computer science techniques employed to navigate and analyse their vast 

contents. As the volume of scholarly output continues its exponential growth, the methods 

for information retrieval and knowledge discovery built upon these databases have 

necessarily evolved. 

Historically, researchers relied on exact-match Boolean queries and early vector space 

models to retrieve scholarly documents from databases such as PubMed and MEDLINE. 

However, the limitations of Boolean-only interfaces and term-frequency–based 

ranking—particularly in handling user intent and semantic relationships—have spurred a 
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wave of innovations in retrieval algorithms, citation-based analysis, knowledge graph 

modelling, and artificial intelligence-driven search platforms. 

Several lines of research have sought to measure and improve the speed and relevance of 

scholarly search by leveraging advances in computer science algorithms and data 

structures. Early foundational work addressed the challenge of layering relevance ranking 

on databases that support only Boolean queries, such as PubMed. For instance, algorithms 

developed by Hristidis et al. demonstrated how conjunctive query generation could 

emulate ranked retrieval atop Boolean interfaces, achieving high relevance while 

reducing query and data transfer costs [4], [5]. Complementary studies highlighted the 

trade-offs between Boolean and ranked retrieval, showing that hybrid approaches often 

outperform either method alone for systematic biomedical searches [6]. 

Concurrently, the incorporation of graph-based and citation-aware ranking methods 

marked a significant evolution in academic search. Systems combining BM25 or TF-IDF 

text scoring with citation network metrics—such as PageRank and in/out-degree 

analysis—were found to enhance retrieval relevance on scholarly benchmarks [7], [8]. 

These hybrid IR frameworks have been validated on datasets such as the ACL Anthology, 

with empirical improvements in nDCG, precision, and recall over text-only baselines. 

The emergence of knowledge graphs and semantic embeddings further advanced 

academic search capabilities. Explicit Semantic Ranking (ESR), as deployed in Semantic 

Scholar, introduced knowledge graph embeddings to represent and rank queries and 

papers based on their semantic connections, yielding measurable improvements in 

retrieval quality on challenging queries [9]. Similar knowledge graph–driven methods, 

such as MedGraph and narrative query graph ranking, demonstrated superior 

performance to classical retrieval across extensive biomedical literature collections [10], 

[11]. 

Most recently, artificial intelligence and large language models (LLMs) have been 

integrated into academic search platforms. Systems like DocReLM leverage LLMs both 

to annotate training data and to traverse citation graphs as “search agents,” achieving 

substantial top-10 retrieval accuracy gains compared to Google Scholar and BM25 on 

targeted arXiv datasets [12]. Additional studies have explored transformer-based 

semantic matching, section-aware document alignment, and conversational interfaces 

powered by embeddings, reporting further improvements—though often without detailed 

latency or user-centric benchmarks [13], [14], [15]. 
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While these advancements in search algorithms, ranking techniques, and AI-driven 

analysis demonstrate the power of modern computer science in extracting knowledge 

from scientific literature, their effectiveness fundamentally hinges on the quality, 

structure, and accessibility of the underlying bibliographic data repositories. 

Sophisticated retrieval systems require robust, scalable, and well-managed databases 

capable of handling diverse and complex information efficiently. 

 

Key Challenges 

Despite the critical role of bibliographic databases, several key challenges persist in 

existing systems. The complexity and variety of bibliographic data are continuously 

increasing. Data are often provided by different and heterogeneous data sources and 

require discovery and integration, posing a significant challenge. For instance, specialized 

systems and targeted data mining efforts are sometimes necessary to effectively extract 

and structure bibliographic data from specific national research portals, such as the 

Estonian Research Information System (ETIS). Such portals can present unique and 

persistent challenges, including a high incidence of publications lacking standard Digital 

Object Identifiers (DOIs), which significantly complicates metadata retrieval and linking, 

and inconsistencies in how data is made available, thereby necessitating tailored 

extraction techniques. These techniques might include parsing directly from PDF 

documents or even employing web scraping methodologies when API-provided 

information is incomplete or lacks direct links to source files, all in an effort to compile 

usable bibliographic entries [16]. Moreover, enforcing a multidimensional approach to 

the analysis and management of bibliographic data remains an area where a reference 

design pattern and a specific conceptual model are still lacking [3]. While the need for 

such a multidimensional perspective is not new, it needs to be extended beyond the 

analysis phase to the design of bibliographic databases and data access services. 

Traditional relational database management systems, while suitable for day-to-day data 

storage and transactional processing, may not be appropriate for performing complex 

analytical tasks on a regular basis. 

Another significant challenge is author name disambiguation, which arises due to 

different authors sharing the same name. Existing strategies for addressing this problem 

include author grouping and author assignment methods, often relying on properties like 

co-authors, institutions, and keywords. However, these methods can be limited and 
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require sophisticated feature extraction and machine learning techniques for effective 

resolution [17]. 

Furthermore, the process of extracting and indexing textual data from publications, 

including handling synonymous relationships, compound terms, stemming, 

lemmatization, and stop-word removal, is crucial for topic-based analysis. Describing a 

collection of publications in terms of the topics it contains is essential for understanding 

research areas and identifying relevant trends. Integrating these diverse functionalities 

and providing flexible tools for data transformation and analysis remains a significant gap 

in many existing bibliographic database systems. The need for flexibly scaling data 

aggregation along analysis dimensions according to different aggregation criteria is often 

not well-supported [3]. 

Scope of the Thesis 

This thesis addresses the aforementioned challenges by proposing the design and 

implementation of a comprehensive bibliographic database system. The scope of this 

work includes: 

• Developing a scalable and normalized database architecture capable of storing and 

managing large volumes of heterogeneous bibliographic data. 

• Integrating Data Build Tool (DBT) to streamline and manage data transformation 

processes within the database. 

• Implementing a three-tier system architecture consisting of a database layer, a 

Python-based backend for data processing and API provision, and a user-friendly 

frontend for data interaction. 

This thesis will focus on demonstrating the feasibility and benefits of this integrated 

approach for enhancing the efficiency and analytical capabilities of bibliographic data 

management. 

1.2 Objectives and Research Questions 

 

Based on the motivation above, the main objectives of this thesis are defined as follows. 
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Design a scalable and normalized database architecture 

Develop a relational schema for the bibliographic database that is fully normalized and 

scalable. This includes modelling bibliographic records (e.g. articles, books, conference 

papers) and related entities (authors, organisations, etc.) in a way that minimizes 

redundancy and maximizes data integrity. The design should ensure that common 

operations (insertion of new records, updates to metadata, queries for references) are 

efficient and that the data remains consistent as it grows [18]. 

Integrate DBT for data transformation and loading  

Incorporate Data Build Tool (DBT) into the data pipeline to perform Extract-Load-

Transform (ELT) processes within the database environment. Unlike traditional ETL 

(Extract, Transform, Load) processes where data is transformed before loading, this 

project adopts the ELT paradigm, loading raw data first and then leveraging DBT to 

orchestrate transformations directly within the PostgreSQL database. By using DBT, the 

system should improve maintainability and accuracy of the data transformation 

workflows. This objective involves comparing the DBT-based approach to traditional 

ETL in terms of development agility and data quality. Notably, DBT’s modular, SQL-

driven transformations and testing framework can lead to faster development cycles and 

improved data reliability [19]. The thesis will implement transformation models in DBT 

to clean, normalize, and enrich incoming bibliographic records from various sources, 

demonstrating how this approach enhances the database’s quality and consistency. 

Implement a three-tier application 

Develop the bibliographic system as a three-tier architecture, with a relational database 

as the data tier, a Python-based backend service as the middle tier, and a web-based 

frontend as the presentation tier. The backend will expose an API or interface to the data, 

enforcing business rules and handling interactions between the user interface and the 

database. The frontend will provide a user-friendly access for tasks such as searching 

references and displaying records. This objective will validate the benefits of a three-tier 

design in the context of bibliographic databases, such as independent scalability of each 

tier and improved security (since the client does not directly access the database). 
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Research Questions 

1. How can a scalable and normalized relational database schema be effectively 

designed to accommodate the diverse metadata requirements of bibliographic 

records for bibliometric analysis? 

2. How does integrating DBT compare to traditional ETL (Extract, Transform, 

Load) approaches in terms of efficiency, maintainability, and flexibility for 

transforming heterogeneous bibliographic data? 

3. How can a three-tier architecture be implemented to provide a modular and 

accessible bibliographic database system that effectively separates data storage, 

business logic, and user interface concerns? 

4. What are the key considerations and challenges in applying DBT for specific 

bibliographic data transformation tasks, such as data cleaning, entity linking, and 

the generation of derived bibliometric variables? 

1.3 Thesis Structure 

The remainder of this thesis is organized as follows. 

Chapter 2: Background and Context – This chapter establishes the foundational 

knowledge for the research. It delves into the significance of bibliographic databases in 

academic research, examines existing metadata standards and formats such as BibTeX 

and Dublin Core, and discusses relational database theory and data warehousing concepts 

relevant to the project. A literature review of current bibliographic systems and data 

transformation tools is presented, highlighting research gaps, particularly the limited 

application of modern data transformation methodologies like DBT in this domain.  

Chapter 3: Methodology – This chapter details the systematic approach taken for the 

design and development of the bibliographic database system. It introduces the three-tier 

architecture (Presentation, Logic, and Data tiers) adopted for the project and elaborates 

on the system requirements and analysis that guided the design. The database architecture 

design strategy is presented, covering conceptual, logical, and physical schema design, 

including normalization, partitioning, and indexing strategies. The chapter explains the 

data transformation workflow using Data Build Tool (DBT), detailing the ELT process, 

model implementation strategy (staging, intermediate, target models), and the planned 

testing approach. Furthermore, the application tier design for the Flask-based backend 
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and web frontend is outlined, along with the research evaluation methods used to assess 

the system against the research questions. 

Chapter 4: Results – This chapter presents the outcomes and findings from the 

implementation of the bibliographic database system. It describes the successfully 

implemented system components across the data, logic, and presentation tiers. The 

database implementation results are detailed, including the final logical and physical 

schema, partitioning, indexing, and full-text search capabilities. The chapter then 

showcases the data transformation pipeline results achieved with DBT, including 

workflow execution, model implementation specifics (JSON parsing, surrogate key 

generation, incremental loading), and the outcomes of the comprehensive testing strategy. 

Finally, the application tier results are presented, demonstrating the functionality of the 

Flask web application, its interactive user interface features (search, filtering, pagination, 

detailed record display), and the basic JSON API endpoint. The chapter concludes with 

an evaluation of these results against the initial research questions. 

Chapter 5: Conclusion and Future Work – The final chapter summarizes the key findings 

and contributions of the thesis. It revisits the initial problem statement and objectives, 

demonstrating how the developed system addresses the challenges of bibliographic data 

management. The research questions are explicitly answered based on the evaluation 

presented in Chapter 4. The limitations of the current work, such as prototype scale and 

data source scope, are acknowledged. Finally, several avenues for future work are 

proposed, including expanding data integration, implementing advanced bibliometric and 

network analysis, leveraging machine learning and AI for semantic search and knowledge 

extraction, enhancing the frontend and visualization capabilities, and exploring cloud 

deployment and further performance optimization.
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2 Background and Context 

This chapter provides the essential background and context for the thesis. It begins by 

examining the crucial role of bibliographic databases in academic research, then discusses 

the prevalent metadata standards and formats used in these databases. Following this, it 

delves into the fundamental concepts of relational theory and data warehousing, 

highlighting their relevance to bibliographic data management. Finally, it reviews related 

work in the field of bibliographic systems and the use of data transformation tools. 

2.1 Bibliographic Databases in Academic Research 

Definition and Role 

Bibliographic databases contain bibliographic records which provide descriptive 

information about relevant information sources. They facilitate literature discovery by 

allowing users to search and browse publications based on various criteria such as 

authors, affiliations, titles, and publication dates [20]. Furthermore, bibliographic 

databases are essential for citation tracking, enabling the identification of influential 

works and the understanding of the relationships between different publications through 

citations. This citation information is crucial for researchers to understand the lineage and 

impact of scholarly work [21]. The visibility of publications in these databases ensures 

the dissemination of research findings to a wider audience [1]. 

State of the Art 

Several existing solutions for bibliographic databases are available, including both 

commercial and open-access options. Examples of widely used scholarly bibliographic 

databases for computer scientists include Google Scholar, Microsoft Academic Search, 

ACM Digital Library, IEEE Xplore, DBLP Computer Science Bibliography, and 

CiteSeerX [2]. Initiatives like Crossref and OpenCitations aim to provide openly 

accessible citation metadata [22]. 
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However, these existing systems often have limitations. Some are proprietary in nature, 

which can restrict access and usage [23]. Even those that are freely accessible might have 

heterogeneous inclusion requirements and varying levels of data quality. Furthermore, 

many traditional systems lack integrated tools for flexible data transformation and 

analysis. Some databases are primarily designed for information retrieval rather than in-

depth bibliometric analysis. The need for flexible scaling of data aggregation along 

analysis dimensions according to different criteria is often not well-supported. Moreover, 

the challenge of integrating data from different and heterogeneous data sources remains 

a significant hurdle [3]. While some systems offer APIs or OAI-PMH interfaces for data 

access, others, like Google Scholar and the Collection of Computer Science 

Bibliographies, do not [2]. 

2.2 Metadata Standards and Formats 

Several metadata standards and formats are used for describing and exchanging 

bibliographic information. 

BibTeX 

BibTeX is a widely accepted bibliographic metadata format, particularly within the 

computer science community. It is often used with the LaTeX word-processing 

application. A BibTeX file is a plain text file containing one or more entries, each 

describing a publication. Each entry starts with an entry type (e.g., @article, @book, 

@inproceedings) followed by a citation key and a set of fields enclosed in curly braces. 

These fields represent different attributes of the publication, such as author, title, journal, 

year, volume, and pages. The citation key is a unique identifier used to reference the entry 

within a LaTeX document. When the LaTeX document is compiled, BibTeX generates a 

list of references based on the selected citation style and the information in the BibTeX 

entries. BibTeX is crucial for referencing in computer science due to its simplicity, 

widespread support, and integration with document preparation tools used by researchers. 

Many bibliographic databases offer BibTeX as an export format [2]. 

Dublin Core 

The Dublin Core Metadata Initiative (DCMI) developed a common system for using 

metadata to describe web resources. This system aims to allow website authors to describe 
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their content in a way that can be discovered by keyword-based search engines. Dublin 

Core consists of a set of flexible metadata elements, including a core set of 15 elements 

and some additional ones. Examples of core elements include title, type, creator, issued, 

and bibliographicCitation. All elements are optional, can be repeated, and can appear in 

any order. Dublin Core Metadata can be presented in RDF/XML or embedded in the 

<head> section of HTML documents using <meta> tags. While Google Scholar supports 

Dublin Core tags, it is not recommended for journal papers as they are considered to 

“work poorly” [2]. 

BibTeX and Dublin Core are detailed due to their prominence in academic research and 

web metadata, respectively. Beyond these, other bibliographic data formats and protocols 

also serve various functions within the scholarly communication landscape. However, 

these are considered less central to the core design of this particular thesis—which 

prioritizes ingesting and transforming rich metadata directly from modern APIs like 

Crossref—and thus are mentioned more briefly. These additional formats and protocols 

include: 

• MARC (Machine-Readable Cataloging) is a standard developed by the Library of 

Congress [2]. 

• MODS (Metadata Object Description Schema) is another metadata standard 

emanating from the Library of Congress and defines the structure of bibliographic 

records. MODS can be converted to and from BibTeX and EndNote [24]. 

• PRISM (Publishing Requirements for Industry Standard Metadata) is another 

metadata standard [2]. 

• Highwire Press tags are HTML meta tags recommended by Google Scholar for 

indexing [2]. 

• RIS (Research Information Systems) format was developed by Thomson Reuters 

for applications like EndNote and ReferenceManager to import and export 

bibliographic metadata. RIS is also a frequently offered export format by 

bibliographic databases [2]. 

• DBLP XML is a special XML format developed by the DBLP Computer Science 

Bibliography, essentially BibTeX written in XML [2]. 

• OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is a 

protocol used to exchange metadata [25]. 



20 

2.3 Relational Theory and Data Warehousing 

Operational vs. Analytical Databases 

Relational database management systems (RDBMS) are traditionally used for day-to-day 

data storage and transactional processing, which is characteristic of Online Transaction 

Processing (OLTP) systems. OLTP systems are designed for high transaction volumes 

and focus on data integrity and consistency through normalization [26]. In contrast, 

Online Analytical Processing (OLAP) systems are designed for performing complex 

analytical tasks on large datasets, often involving multiple scans, joins, and summaries. 

OLAP systems often use a multidimensional data model, such as a star schema, to 

facilitate fast interactive browsing and analysis of hierarchical and summarized data. The 

response time of complex queries is a crucial factor in designing OLAP applications [1], 

[26]. 

Normalization and Data Modelling 

Normalization is a process of applying a set of rules to database design, primarily to 

achieve minimum redundancy in the data. The goal is to organize data in tables in such a 

way that dependencies between attributes are clear and logical, reducing the likelihood of 

data anomalies during updates and insertions [27]. Basic principles of normalization 

include [18]: 

• First Normal Form (1NF): Each cell in a table should contain a single value, and 

each column should have a unique name. 

• Second Normal Form (2NF): The table must be in 1NF, and all non-key attributes 

must be fully functionally dependent on the entire primary key. 

• Third Normal Form (3NF): The table must be in 2NF, and all non-key attributes 

must be non-transitively dependent on the primary key (i.e., no non-key attribute 

depends on another non-key attribute). 

For bibliographic databases, data modelling involves identifying the key entities (e.g., 

publications, authors, journals) and their relationships. An entity-relationship diagram 

(ERD) is often used to visually represent the database schema and the connections 

between tables [27]. Primary keys uniquely identify records within a table, and foreign 

keys establish relationships between tables by referencing primary keys in other tables. 
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Data Warehouse vs. Database 

Typical bibliographic needs for managing and retrieving publication metadata lean 

toward normalized operational structures (databases) to ensure data integrity, 

consistency, and efficient transactional operations like adding, updating, and searching 

records [26]. The relational model is well-suited for storing the structural information 

found in scientific articles [28]. 

However, bibliographic data can also benefit from partial warehousing and analytics 

features. For instance, OLAP technology can be applied to bibliographic databases for 

tasks such as periodic and ad hoc reporting, quality assurance, data integrity checking, 

and for research policy makers to monitor scientific development. This involves creating 

a data warehouse, which is a subject-oriented, integrated, time-variant, and non-volatile 

collection of data in support of management’s decision-making process. Data warehouses 

often use a multidimensional model (e.g., star schema) with fact tables containing 

measures (e.g., number of publications, citations) and dimension tables providing the 

context for analysis (e.g., year of publication, author affiliation. While building a full 

bibliographic data warehouse can be time-consuming, incorporating some analytical 

capabilities alongside a normalized operational database can enhance its utility for 

bibliometric analysis) [1], [26].  

While building a full bibliographic data warehouse can be time-consuming, incorporating 

analytical capabilities alongside a normalized operational database can enhance its utility. 

A well-structured and documented schema, even if normalized like the dwh schema 

implemented in this project, facilitates direct connection using standard SQL clients (e.g., 

pgAdmin, DBeaver) for complex, ad-hoc analytical queries and enables integration with 

external Business Intelligence platforms (e.g., Tableau, Power BI) for sophisticated 

visualization and reporting beyond the scope of typical OLTP applications. 

 

2.4 Literature Review 

This section provides a critical analysis of existing literature concerning bibliographic 

databases and related methodologies. It aims to establish the context for this research by 

examining the current state of bibliographic systems and identifying gaps in their 

documented development and architecture. Furthermore, it explores the potential 
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application of data build tools (DBT) within academic contexts, specifically concerning 

bibliographic data. 

Existing Bibliographic Systems 

As it was mentioned previously, the literature review on this particular topic which 

includes the actual design and implementation is very limited, however, it was possible 

to find a published work by K. Karamcheti’s titled as “Design and implementation of 

bibliographic database” (Master’s Thesis, University of Nevada, Las Vegas, 2007) 

Karamcheti investigated the design and implementation of a bibliographic database. The 

thesis focused on the identification and implementation of recursive queries. It detailed 

the creation of various database tables, defining primary and foreign keys, and presented 

the database entity relationship using UML notations. The database included a master 

table with cite key entries and their corresponding entry types for different bibliographic 

categories such as articles, books, and proceedings [18]. While Karamcheti’s work 

outlines the structural design of the database, it does not delve into the intricacies of its 

architecture or the detailed development process beyond the conceptual and logical 

modelling. 

Several other academic works address aspects of bibliographic databases, each with a 

specific focus: 

Modelling and Analysis 

Ferrara and Salini discuss ten challenges in modelling bibliographic data for bibliometric 

analysis, proposing a multidimensional model. Their work emphasizes the need for a 

multidimensional approach not only in analysis but also in database design and data 

access services [3]. Mallig developed a relational database schema specifically for 

bibliometric analysis, providing SQL queries to demonstrate its utility in calculating 

bibliometric indicators [28]. Cobo et al. presented a relational database model tailored for 

science mapping analysis, focusing on its application in various stages of the science 

mapping workflow [27]. These works primarily concentrate on the logical modelling and 

the analytical capabilities of bibliographic data rather than providing comprehensive 

details on the physical architecture or the development process. 
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Bibliometric Applications and OLAP 

Hudomalj and Vidmar explored the application of Online Analytical Processing (OLAP) 

technology to bibliographic databases, demonstrating its utility for reporting, quality 

assurance, and research policy analysis [1]. Georgieva-Trifonova proposed 

bgMath/OLAP, a system for warehousing and OLAP analysis of bibliographic data, 

aimed at monitoring and evaluating scientific development [26]. These studies highlight 

the analytical benefits of specific technologies applied to bibliographic data but do not 

provide an in-depth account of the underlying database development or architectural 

choices beyond the adoption of OLAP principles. 

Indexing and Data Integration 

Kusserow and Groppe surveyed the technical requirements for getting indexed by widely 

used bibliographic databases, offering insights into data formats and protocols [2]. Do et 

al. proposed a framework for integrating bibliographic data from heterogeneous digital 

libraries, including components for data collection, parsing, and duplicate checking [25]. 

Their work touches upon the challenges of data integration but does not detail the 

complete architecture of an integrated bibliographic database from the ground up. 

Author Name Disambiguation and Data Quality 

Silva focused on feature extraction for author name disambiguation in a bibliographic 

database, using the Authenticus database for Portuguese researchers [17]. Manghi et al. 

presented GDup, a system for entity deduplication in big data graphs for scholarly 

communication, addressing the problem of duplicate entities arising from multiple data 

sources [29]. These studies address specific data quality issues and propose solutions, but 

they do not provide a holistic view of bibliographic database development and 

architecture. 

Network Analysis and Citation Analysis 

Butt et al. developed a systematic metadata harvesting workflow for analysing scientific 

networks using data from Crossref and OpenCitations [22]. Zupic and Čater introduced 

various bibliometric methods, including citation analysis, co-citation analysis, and 

bibliographical coupling, providing a workflow for conducting bibliometric studies [21]. 
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Smalheiser et al. presented a web-based tool for citation analysis, illustrating different 

types of citation relationships [30]. Mallig also discussed the use of a structured 

bibliometric database as a resource for various bibliometric networks [28]. While these 

works extensively utilize bibliographic data for network and citation analysis, they do not 

primarily focus on the development and architectural aspects of the underlying databases 

themselves. 

2.5 Research Gaps 

While the reviewed literature offers valuable insights into various aspects of bibliographic 

databases, many works lack comprehensive details regarding the end-to-end development 

process and the underlying system architecture. Some limitations and areas of 

incompleteness include: 

• Limited Architectural Detail: Many studies focus on conceptual models or 

specific functionalities like analysis or disambiguation without providing a 

thorough exposition of the database architecture, including hardware 

considerations, specific software components, and data flow mechanisms. 

• Scarcity of Development Process Documentation: The process of building and 

deploying a bibliographic database, including data acquisition strategies, schema 

evolution, maintenance procedures, and scalability considerations, is often not 

presented. 

• Focus on Logical vs. Physical Implementation: The emphasis tends to be on the 

logical design of the database schema rather than the physical implementation 

details, such as indexing strategies, partitioning schemes, and optimization 

techniques for query performance. 

• Data Quality Challenges: Several sources acknowledge the persistent challenges 

of data quality in bibliographic databases, including heterogeneity, 

incompleteness, and the presence of duplicates. However, detailed accounts of 

strategies and architectures specifically designed to address these issues 

throughout the development lifecycle are often missing. 

• Limitations of Existing Online Databases: The literature points out that online 

bibliographic databases are often designed primarily for information retrieval 

rather than comprehensive bibliometric analysis, leading to limitations in data 
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accessibility and quality for analytical purposes. This motivates the development 

of in-house databases, but their detailed construction remains undocumented. 

• Challenges in Network Data Management: While network analysis of 

bibliographic data is a prominent area, the complexities of storing and efficiently 

querying network data within a bibliographic database architecture are not always 

fully addressed. 

Use of modern data transformation methodologies in Academic Context 

A thorough review of the provided sources reveals no direct mention or precedent of using 

data build tools (DBT) or similar modern data transformation methodologies specifically 

within the context of bibliographic databases or academic research data management. The 

literature predominantly discusses traditional database management systems, relational 

models, and OLAP technologies for organizing and analysing bibliographic information. 

The focus is on schema design, query optimization within these established paradigms, 

and addressing data quality through techniques like deduplication and record linkage. 

The absence of discussions around modern data transformation methodologies in the 

provided sources suggests a potential gap in the application of contemporary data 

transformation practices within the academic bibliographic domain. DBT’s focus on 

modular data modelling, version control for data transformations, and automated testing 

could offer significant advantages in building and maintaining robust and analytical-ready 

bibliographic databases. This includes streamlining the process of cleaning, transforming, 

and integrating data from diverse sources, which is a recurring challenge highlighted in 

the literature. 

The research questions introduced in this work in Section 1.2 are based on the gaps 

identified above. 
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3 Methodology 

This chapter details the methodological approach undertaken in the development of the 

bibliographic database. The design and implementation of the system have been guided 

by principles of modularity, scalability, and maintainability, resulting in a three-tier 

architectural pattern. Furthermore, the selection of specific tools and technologies was 

driven by their suitability for managing bibliographic data, facilitating robust data 

transformations, and providing an accessible user interface. 

3.1 The Three-Tier Architecture Pattern: A General Overview 

Three-tier architecture is a foundational design pattern in modern software engineering 

that partitions applications into three logical and often physical domains: the presentation 

tier (user interface), the logic or application tier (business logic, workflows, validation), 

and the data or persistence tier (databases, storage systems) [31], [32]. As illustrated 

in Figure 1, this model logically separates an application into three distinct, 

interconnected layers or tiers, each responsible for a specific set of functionalities: 

 

End User

Presentation Tier (Frontend)

Responsibilities:
- User Interface (UI/GUI)

- Display Info Collect Input

Logic Tier (Backend/Application)

Responsibilities:
- Business Logic Rules

- Processing Coordination

Data Tier (Backend/Database)

Responsibilities:
- Data Storage Management

- Data Integrity Security

Interacts

Requests Responses

Data Operations Returns Data

Figure 1. The Three-Tier Architecture in Software Engineering.  
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1. Presentation Tier (Frontend): This is the topmost layer, responsible for 

interacting with the user. It displays information to the user and collects user input. 

Its primary role is user interface (UI) management, handling how data is presented 

and how user actions are captured. It communicates user requests to the logic tier 

and presents responses received from it. Examples include web browsers 

rendering HTML pages, graphical user interfaces (GUIs) in desktop applications, 

or mobile app interfaces. 

2. Logic Tier (Backend/Application/Middle Tier): This tier acts as the 

intermediary between the Presentation and Data tiers. It contains the core business 

logic, processing rules, calculations, and workflows of the application. It receives 

requests from the Presentation tier, processes them (often involving complex 

operations or coordination), interacts with the Data tier to fetch or store 

information, and sends the results back to the Presentation tier. This layer ensures 

that business rules are consistently applied and isolates the presentation layer from 

direct database access. Examples include web servers running application code 

(like Python/Flask, Java Servlets, Node.js) or dedicated application servers. 

3. Data Tier (Backend/Database Tier): This is the foundational layer responsible 

for the persistent storage and management of application data. It typically consists 

of a database management system (DBMS) where data is stored, retrieved, 

updated, and deleted. The Logic Tier communicates with this tier to perform data 

operations. This layer ensures data integrity, security, and availability. Examples 

include relational databases (like PostgreSQL, MySQL), NoSQL databases, or 

other data storage systems. 

Benefits of the Three-Tier Architecture: 

• Modularity: Each tier can be developed, managed, and updated independently of 

the others, as long as the interfaces between them remain stable. This allows 

different teams to work on different tiers concurrently. 

• Scalability: Each tier can be scaled independently based on specific load 

requirements. For example, if the application logic becomes a bottleneck, more 

resources can be allocated to the Logic Tier without affecting the other tiers. 
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• Flexibility & Maintainability: Changes or technology upgrades in one tier (e.g., 

switching the database or redesigning the UI) have minimal impact on the other 

tiers, simplifying maintenance and allowing for easier technology evolution. 

• Improved Security: The separation enforces indirect access to the database (only 

via the Logic Tier), enhancing security by preventing direct client exposure to the 

data layer. 

• Reusability: The business logic encapsulated in the Logic Tier can potentially be 

reused by multiple presentation interfaces (e.g., a web UI and a mobile app). 

This architectural pattern provides a robust foundation for developing complex 

applications by promoting a clear separation of concerns, enhancing scalability, and 

simplifying development and maintenance. 

3.2 Requirements and System Analysis 

The development of a robust bibliographic database necessitates a well-defined 

architecture and a thorough understanding of system requirements. This section outlines 

the fundamental design principles, the rationale behind the selection of specific 

technologies, the chosen data sources, and the core functionalities implemented within 

this project. 

System Architecture 

To ensure a clear separation of concerns and facilitate maintainability and scalability, a 

three-tier architecture has been adopted for this bibliographic database project, as 

illustrated in Figure 2. This architectural pattern divides the system into 3 distinct layers: 

 

1. Data Layer:  

This foundational layer is responsible for the persistent storage of bibliographic data. It 

houses the PostgreSQL database, which stores both the initially ingested raw data (e.g., 

in the raw_crossref table) and the subsequently transformed and structured data 

produced by the Logic Layer. The database acts as the central repository, ensuring data 

integrity and availability for processing and analysis. The challenges associated with 

managing large volumes of bibliographic data [33] necessitate a robust and scalable 
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database solution like PostgreSQL. External data sources, namely the Crossref and 

OpenCitations APIs, provide the raw information that is ultimately stored in this layer. 

 

2. Logic Layer:  

This intermediary layer encapsulates the core processing logic, acting as the bridge 

between the external data sources and the final structured data used by the Presentation 

Layer. It encompasses two key functions: 

• Data Ingestion and Loading: 

 The Python script (crossref_opencitations_load.py) resides in this 

layer. It handles the logic for interacting with the external Crossref and 

OpenCitations APIs, fetching the required metadata and citation information, 

performing initial parsing, and loading this raw data into the raw_crossref 

table within the Data Layer. 

• Data Transformation:  

We utilize DBT (Data Build Tool) to manage the SQL-based transformations 

within this layer. DBT’s framework allows us to define data models as SQL 

queries that operate on the data stored in the Data Layer. These models are 

systematically organized into a pipeline comprising staging models (for initial 

cleaning and pre-processing steps), intermediate models (for structuring core 

entities and applying complex logic), and target models (optimized for the final 

schema and presentation). This layered approach ensures that data is progressively 

cleansed, transformed, structured, and integrated to meet analytical and 

presentation requirements. The use of DBT promotes version control for our data 

transformations, facilitates testing, and enhances the overall maintainability and 

reproducibility of our data pipelines. This aligns with the principles of fostering 

reproducible research, as mentioned in the context of shared platforms for 

bibliographic data [33]. The incremental building of these models, facilitated by 

DBT, allows us to process only new or changed data, improving the efficiency 

and reducing the processing time of our data pipelines [34]. 

 

3. Presentation Layer:  

Intended to provide user interaction via a Flask-based web application (app.py). This 

layer was designed to consume processed data from the Logic Layer (specifically a 
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planned presentation view), focusing on user experience and data display without 

handling underlying storage or complex transformation logic. 

 

Choice of Tools 

The selection of tools was driven by their suitability for each architectural layer, 

capabilities in handling bibliographic data, alignment with modern data engineering 

practices, community support, and open-source nature. 

• PostgreSQL: Chosen as the RDBMS for its reliability, advanced SQL features, 

data integrity support, scalability options (partitioning, indexing), and strong 

community support, making it suitable for managing both raw and transformed 

bibliographic data. Its scalability options, including replication and partitioning, 

provide a path for handling future growth in data volume and user traffic [35]. 

• Python: Selected for backend logic (data ingestion, API) due to its versatility, 

extensive libraries for API/database interaction, and widespread adoption.  

• DBT (Data Build Tool): Adopted to manage SQL transformations within 

PostgreSQL. The key reasons were its ability to version control SQL 

transformations, facilitate modular development, automate testing, and improve 

Presentation Layer

Logic Layer

Data Layer

Flask App
(app.py)

DBT Transformations
(Staging, Intermediate,

Target Models)

Python Logic
(crossref_opencitations_load.py)

PostgreSQL DB
Crossref API

OpenCitations API

User

Figure 2. System Architecture Diagram. 
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the maintainability and reliability of the data pipeline, aligning with modern data 

warehousing practices. DBT’s focus on data quality and the structured 

management of transformations aligns with best practices in data warehousing 

and data integration [36]. 

• Flask: Chosen for the presentation tier due to its lightweight nature and ease of 

use for developing web applications and APIs with Python, suitable for a proof-

of-concept. 

• Docker: Planned for containerizing the PostgreSQL database to ensure a 

reproducible and isolated environment for development and testing, simplifying 

setup. 

Key Libraries and Packages Used 

Beyond the core frameworks, several key Python libraries were essential for the project’s 

functionality, identified via import statements in the project’s scripts: 

• Flask: Provided the foundation for the web application, handling routing, 

requests, and responses (app.py). 

• psycopg2: Enabled interaction with the PostgreSQL database, allowing Python 

scripts (app.py, crossref_opencitations_load.py) to execute 

SQL queries and fetch results. 

• requests: Used by the data ingestion script 

(crossref_opencitations_load.py) to make HTTP calls to the 

Crossref and OpenCitations APIs. 

• pandas: Utilized in the ingestion script 

(crossref_opencitations_load.py) for previewing fetched data in a 

structured DataFrame format before database insertion. 

• subprocess: Employed by the ingestion script 

(crossref_opencitations_load.py) to execute the dbt run 

command programmatically via the trigger_dbt() function. 

• Other standard libraries like os, json, logging, sys, and urllib.parse 

were used for file system interaction, JSON handling, logging, system functions, 

and URL manipulation, respectively. 
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Choice of Data Sources 

The selection of data sources was guided by the need for comprehensive and openly 

accessible bibliographic and citation metadata. 

• Crossref: Chosen as the primary source for publication metadata due to its role 

as an open registry for DOIs and provider of rich, near real-time scholarly 

metadata. 

• OpenCitations: Selected to complement Crossref by providing open citation 

links, crucial for enabling citation analysis. Using both aimed to provide a 

comprehensive view without paywall restrictions.  

The use of both Crossref and OpenCitations as data sources ensures a comprehensive 

view of scholarly communication without the limitations of paywalls or licensing 

restrictions. 

Functional Requirements 

The bibliographic database was designed to meet several key functional requirements: 

• Bibliographic Record Storage: Store diverse entry types (articles, proceedings, 

books) with essential metadata (DOI, title, authors, dates) in a structured format. 

• Metadata Management: Effectively manage relationships between entities 

(authors, affiliations, entries) using the relational model. 

• Scalable Data Ingestion: Design an ingestion process capable of handling 

potentially large data volumes from APIs. 

• Analytical Queries: Ensure the final schema supports common analytical queries 

(citation counts, co-authorship). 

• Integration with Transformations: Integrate DBT seamlessly into the workflow 

for transforming raw data into a clean, reliable schema with enforced data 

integrity. 

• Type-Based Filtering: Allow users to filter search results based on specific 

publication types (e.g., journal-article, proceedings-paper) selected via interactive 

checkboxes in the user interface. The interface should display counts of matching 

records per type alongside the total counts for context. 
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• Detailed Record Display: Present search results clearly in the user interface, 

including primary author information in the main table view. An expandable 

section per entry must reveal comprehensive details, including a full list of all 

authors associated with the entry (with ORCID links and primary author 

indication), an interactive abstract display (allowing users to toggle between a 

preview and the full text), linked DOIs for citations and cited_by data, 

and other relevant metadata fields (e.g., Container Title, Volume, Issue). 

• Configurable Pagination: Provide users the ability to select the number of search 

results displayed per page (e.g., 10, 25, 50, 100) through a dropdown menu in the 

user interface. 

• Interactive Data Presentation: Enhance usability by truncating long text fields 

(e.g., titles, DOIs, organization names) in the results table, providing an intuitive 

mechanism (e.g., an expandable “Show full” element) for users to view the 

complete content on demand. 

• Support for External Analytics and Visualization: Ensure the final structured 

data schema (dwh) is designed and documented in a way that allows for direct 

querying via standard SQL database tools (like pgAdmin or DBeaver) and 

facilitates connection from external data visualization and Business Intelligence 

platforms (such as Tableau or Power BI) to enable advanced analytical 

exploration beyond the primary application interface. 

Non-Functional Requirements 

In addition to the core functional capabilities, the design also targeted key quality 

attributes. 

• Maintainability: Enhanced through DBT’s modularity, version control, and 

testing framework. 

• Performance: Addressed through database normalization, planned indexing 

strategies, and consideration of partitioning for potential large-scale data. 

• Reliability and Data Consistency: Ensured through planned database integrity 

constraints (PKs, FKs) and DBT tests for data quality validation. 

• Basic Security and Access Control: Included considerations for database 

authentication and secure credential management. 
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3.3 Database Architecture Design Strategy 

The database design followed a top-down approach across three abstraction layers, 

focusing on capturing appropriate decisions while maintaining traceability. The goal was 

to create a schema optimized for both operational data management and analytical 

querying needs inherent in bibliographic datasets.  

Conceptual Schema 

This schema aimed to answer: “What real-world facts must the system remember?” Based 

on project requirements (citation analysis, author tracking) and source capabilities 

(Crossref/OpenCitations), the core entities identified were as follows. 

Primary Entities: Entry (citable artefact), Author, Organization, Entry_Type (controlled 

vocabulary). The details and rationale are described in Table 1. 

Associative Entities: Entry_Author (many-to-many link, preserves author order), 

Author_Organization (many-to-many link). The details and rationale are described in 

Table 2. 
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Table 1. Conceptual Schema Primary Entities. 

Entity Business meaning Essential attributes Invariants & business rules 

Entry Any citable artefact (journal article, 
pre-print, book chapter, dataset …) 

DOI, title, publisher, 
issued-date, language, 
abstract 

• Every Entry must have exactly one Entry Type. • An Entry 
can exist with zero or many Authors (e.g., editorials). 

Author A person or collective credited on a work full name, ORCID 
• ORCID, when present, uniquely identifies an Author. • A 
single Author may have multiple concurrent or historical 
affiliations. 

Organization An institutional affiliation string 
normalized to a canonical form name • Name is treated case-insensitively; multiple spellings 

collapse to one Organization. 

Entry_Type 
Controlled vocabulary term supplied by 
Crossref (journal-article, 
proceedings-paper, …) 

type-name, optional 
description 

• Vocabulary is finite and slowly changing; new types are 
appended, never altered. 

 
Table 2. Conceptual Schema Associative Entities. 

Link Purpose Cardinality notes 

Entry_Author Resolves the many-to-many between Entry and Author and stores 
author order and “primary author” flag 

One row per (entry × author). Author sequence preserved via 
ordinality integer. 

Author_Organization Captures the many-to-many between Author and Organization 
together with affiliation order 

Allows an Author to be counted under multiple institutions in 
bibliometric roll-ups. 
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Key Design Logic: 

• Explicit associative tables were chosen over embedding lists (like JSON) to 

facilitate efficient relational querying (e.g., co-authorship analysis). 

• Including ORCID in Author aimed to support future identity resolution. 

• Modelling Entry_Type separately enables referential integrity and downstream 

filtering. 

• Citation links were viewed as relationships between Entry records, to be realized 

via joins in the logical model rather than a separate conceptual entity. 

This conceptual schema served as the blueprint for the subsequent logical design. 

Logical Schema 

The logical design translated conceptual entities into a relational structure optimized for 

data integrity and efficient transformation via DBT. 

Normalization strategy: 

• Third Normal Form (3NF): Targeted to minimize redundancy and update 

anomalies. 

• Surrogate Keys: Planned use of deterministic hashes (via DBT macro) as primary 

keys for efficient joins and idempotent loads. 

• Natural Keys Retained: Intended to retain keys like DOI or ORCID with UNIQUE 

constraints for external reconciliation. 

The high-level mapping from conceptual entities to planned relational tables is shown in 

Table 3. The relationships were visualized in an Entity-Relationship Diagram as 

presented in Figure 3.  
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Figure 3. Entity-Relationship Diagram for the Bibliographic Database. 
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Table 3. Mapping Conceptual Entities to Relational Tables. 

Conceptual entity Relational table Primary key Important constraints 

Entry dwh.entry (partitioned) (entry_id, publication_date) UNIQUE (doi, publication_date) to obey partition-key rule 

Author dwh.author author_id UNIQUE (lower(name), orcid) 

Organization dwh.organization id UNIQUE (lower(name)) 

Entry Type dwh.entry_type entry_type_id UNIQUE (entry_type_name) 

Entry Author dwh.entry_author 
(hash-partitioned) (entry_id, author_id) FK to both parent tables, ordinality NOT NULL 

Author Organization dwh.author_organization author_organization_surrogate_id FK to Author and Organization 
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Design Goals: 

• Minimal Redundancy: Ensuring author names, organization names, etc., are 

stored once. 

• Time-Variant Support: Planning to include updated_at timestamps for 

incremental processing and potential temporal analysis. 

• Flexible Analytics: Designing a star-like topology to support OLAP-style rollups. 

• Separation of Concerns: Defining clear boundaries between raw data ingestion, 

DBT transformations, and UI access. 

Physical Schema Design Rationale 

This layer focused on translating the logical design into concrete PostgreSQL objects, 

aiming to meet non-functional requirements like performance and scalability. The 

strategy included: 

Partitioning Strategy: 

• Rationale: To improve query performance by allowing the planner to skip 

irrelevant data partitions (partition pruning) and to manage large tables more 

effectively (e.g., for maintenance, bulk loading). 

• Planned Approach: Intended to use PostgreSQL’s declarative partitioning. The 

plan was to apply RANGE partitioning on the dwh.entry table using 

publication_date (yearly), aligning with common temporal filtering 

patterns. HASH partitioning was planned for dwh.entry_author based on 

entry_id to potentially improve join performance by co-locating related rows. 

Indexing Strategy: 

• Rationale: To accelerate data retrieval for common query patterns, especially 

search and joins. 

• Planned Approach: Intended to create PRIMARY KEY indexes (implicitly 

created) and FOREIGN KEY indexes to enforce relationships and speed up joins. 

Crucially, planned to utilize GIN indexes with the pg_trgm extension on text 

fields like title and author_name to efficiently support case-insensitive 
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substring searches (ILIKE ‘%term%’). Considered indexes on frequently 

filtered or sorted columns like publication_date. 

Constraint Policy: 

• Planned Approach: Intended to enforce UNIQUE constraints on natural keys 

(DOI, ORCID, names where applicable) and use FOREIGN KEY constraints to 

maintain referential integrity. Considered using DEFERRABLE constraints to 

allow bulk validation at the end of DBT transactions. 

Storage Parameters and Maintenance: 

• Planned Approach: Acknowledged the potential need to tune PostgreSQL 

parameters (e.g., fillfactor for tables with frequent updates, work_mem for 

transformations, autovacuum settings) based on observed workload and data 

volume, although specific values would depend on testing with actual large 

volume of data. Planned to rely on autovacuum for routine maintenance and 

potentially schedule ANALYZE commands to keep statistics up-to-date. 

3.4 Data Transformation Workflow with DBT 

The core of the data processing logic was planned around an ELT (Extract, Load, 

Transform) workflow managed by DBT as illustrated in Figure 4, leveraging the 

capabilities of the PostgreSQL database. 
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DBT Project Setup Strategy 

The DBT project was planned with the following configuration principles: 

• Source Definition: Explicitly define raw data tables (e.g., 

raw.raw_crossref) as DBT sources (sources.yml) for reliable 

referencing in staging models ({{ source(...) }}). 

• Target Schema Definition: Define final dwh tables also as sources where 

necessary to allow intermediate models to perform lookups (e.g., checking for 

existing IDs or values) without creating circular dependencies. 

• Custom Macro: Plan to implement reusable SQL logic snippets as macros, such 

as the surrogate_key() macro for generating consistent primary keys. 

Crossref API

OpenCitations API

Python Script

(crossref_opencitations_load.py)

PostgreSQL DB
(raw.raw_crossref)

Triggers
Data Source For

DBT Run

Staging Models
(stg_crossref.sql)

(Clean Cast)

Intermediate Models
(int_*.sql)

(Structure Logic)

Target Models
(dwh.*.sql)

(Incremental Load)

DBT Test Presentation View
(entry_details_vw)

Flask App

Validates

Figure 4. ELT workflow showing Python ingestion, DBT transformation/testing, and Flask app 
presentation. 
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• Profiles Configuration: Utilize profiles.yml to manage database 

connection details securely and separately from the model code. 

Data Ingestion Process Overview 

The planned workflow begins with data extraction and loading: 

• The Python script (crossref_opencitations_load.py) was designed to 

fetch data from Crossref/OpenCitations APIs. 

• Its role was to perform minimal initial parsing (e.g., extracting citation lists, basic 

metadata) and load the raw payloads into the raw.raw_crossref table in 

PostgreSQL (the ‘E’ and ‘L’ in ELT). 

• The script was planned to trigger the DBT transformation pipeline (dbt run) 

upon successful data loading and commit. 

DBT Model Implementation Strategy 

The transformation logic (‘T’ in ELT) was designed to be organized into a sequence of 

dependent DBT models, progressing from raw data to the final structured tables in the 

dwh schema. 

• Layering Approach: 

o Staging Models (stg_*.sql): Purpose: To select from raw source tables, 

perform initial cleaning (trimming, casing), basic type casting, and column 

renaming. Designed to provide a consistent base for downstream models. 

o Intermediate Models (int_*.sql): Purpose: To implement core business 

logic, structure data into entities (e.g., separate authors, organizations), 

handle complex transformations (like parsing JSON arrays), generate 

surrogate keys, and join intermediate entities where necessary. 

o Target Models (dwh.*.sql): Purpose: To select from relevant intermediate 

models, perform final joins to resolve foreign keys, and load data into the 

final dwh schema tables. 

• Incremental Processing: Target models were planned to be materialized as 

incremental, using a delete+insert strategy based on an updated_at 
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timestamp. This aimed to efficiently process only new or changed data during 

subsequent runs. 

• Presentation View (entry_details_vw.sql): Planned to create a 

denormalized view by joining relevant dwh tables. The purpose was to simplify 

data retrieval for the frontend application by providing a single interface, avoiding 

complex joins in the application code, and to structure data appropriately to 

support the planned complex display requirements of the frontend, such as 

providing necessary fields for detailed views including potentially aggregated 

author information. 

DBT Testing Strategy 

To ensure data quality and reliability (a key non-functional requirement), a robust testing 

strategy using DBT’s capabilities was planned: 

Generic Schema Tests: Intended to leverage built-in DBT tests defined in 

schema.yml file associated with the target models. This included planning tests for: 

• unique and not_null constraints on primary keys and other mandatory 

columns. 

• relationships tests to enforce referential integrity between tables (foreign key 

checks). 

• Potentially accepted_values for columns with controlled vocabularies (like 

entry_type_name). 

Singular Tests (Custom Logic): Planned to implement custom SQL queries (saved as 

.sql files in the tests directory) to validate specific business rules or data quality aspects 

pertinent to bibliographic data. Examples considered included checks for reasonable 

publication dates, valid DOI/ORCID formats (if present), and consistency rules (e.g., 

ensuring an entry with authors has a primary author marked). Each test query was 

designed to return failing rows, passing only if zero rows are returned. 
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DBT Workflow Execution Plan 

The standard development and update workflow involves executing the DBT commands 

sequentially: 

1. dbt run: Executes all defined models (.sql files) in the correct dependency 

order, applying materialization strategies (e.g., incremental updates for target 

tables). 

2. dbt test: Executes all defined tests (schema.yml tests and custom .sql 

tests).  

As implemented in this project’s data loading script 

(crossref_opencitations_load.py), the trigger_dbt() function 

automatically executes dbt run after new data is successfully loaded into 

raw.raw_crossref table. Then dbt test execution would typically be run 

immediately after dbt run in the script, or in a manual workflow or an automated 

orchestration setup (e.g., using cron, Airflow) to ensure data quality before the data is 

consumed by downstream applications like the Flask frontend. 

3.5 Application Tier Design Strategy 

The Presentation Layer was planned as a web application utilizing the Flask framework 

for backend logic and standard web technologies (HTML, CSS, JavaScript) for the 

frontend interface. The design strategy focused on creating an accessible and interactive 

user experience while maintaining a clear separation between the primary user interface 

and a distinct API endpoint for programmatic access. 

Backend Service Design (Flask) 

The core strategy for the Flask backend (app.py) involved acting as an intermediary, 

handling user requests, querying the database, processing data, and serving it to the 

frontend. Two distinct service patterns were planned: 

UI Rendering Logic: The primary route (/) was designed to manage the main user 

interface. The strategy involved: 
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1. Processing GET requests containing parameters for text search (title, author), 

publication type filtering (selected_types list), and pagination controls 

(page, per_page). 

2. Interacting with the PostgreSQL database (psycopg2) by querying the pre-

joined dwh.entry_details_vw. 

3. Employing a query strategy that dynamically constructed WHERE clauses based 

on user input (using ILIKE and ANY). A key part of the strategy was to leverage 

database aggregation features (specifically json_agg within CTEs) to 

efficiently bundle related information, such as all authors for an entry, into a 

structured JSON format suitable for passing to the frontend template. This aimed 

to minimize complex data manipulation in the application layer. 

4. Fetching summary counts for publication types (total vs. filtered) using separate 

GROUP BY queries to support the filter interface. 

5. Rendering the main HTML template (index.html) via Jinja2, passing the 

processed query results (including the aggregated JSON data), type counts, and 

current request parameters. 

JSON API Endpoint logic: (/api/entries): A separate GET endpoint was planned 

to provide basic programmatic data access. The strategy for this endpoint was simpler: 

• Accept basic search parameters (q, title, author) and a page number. 

• Execute a less complex query against dwh.entry_details_vw, using 

ILIKE and simple DISTINCT ON logic. 

• Omit the advanced type filtering planned for the main UI. 

• Return results directly as a JSON array. 
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Frontend Interface Design (index.html, CSS, JavaScript): 

The frontend design strategy focused on usability and effective data presentation using 

standard web technologies. 

Structure and Components: The interface (index.html) was planned using HTML, 

structured to include: 

1. A primary search form with inputs for title and author. 

2. A dropdown menu (<select>) enabling user selection of results per page. 

3. A dedicated section for publication type filtering, designed with checkboxes 

(<input type="checkbox">), including an “All Types” control and display 

areas for contextual type counts. 

4. A main results display area, envisioned as a table (<table>), showing key 

bibliographic fields. The design included handling long text via CSS-based 

truncation combined with interactive “Show full” elements. 

5. An expandable details section associated with each result row, planned to contain 

the full aggregated author list, an interactive abstract, linked citations/cited-by 

DOIs, and other metadata fields. 

6. Standard pagination controls (Previous/Next links). 

Styling and Interaction: 

• The strategy involved using CSS for visual styling, layout management (including 

responsive design considerations), and implementing features like text truncation 

and a background theme. 

• Client-side JavaScript was planned to enhance interactivity, specifically for 

managing the logic of the type filter checkboxes (coordinating “All Types” with 

individual selections) and implementing the “Show more”/ “Show less” toggle 

functionality for the abstract display within the details section. Static assets like 

CSS and images were planned to be served from a dedicated static folder managed 

by Flask. 
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3.6 Research Evaluation Methods 

This section outlines the planned approach for evaluating the implemented system 

(presented in Chapter 4) against the research questions (Section 1.2). Due to the prototype 

nature of the system developed using sample data on a personal computer, the evaluation 

will primarily rely on qualitative assessment of the system’s design, features, and 

observed behaviour, rather than quantitative benchmarking. 

The evaluation will address the research questions as follows: 

• RQ1 (Schema Design): Assess the effectiveness of the implemented dwh 

schema in representing bibliographic metadata and its potential scalability based 

on the chosen normalization strategy and physical design features (partitioning, 

indexing), referencing the design rationale (Sec 3.2). 

• RQ2 & RQ4 (DBT Integration & Challenges): Evaluate the DBT approach 

based on the implemented pipeline (Sec 4.3) by qualitatively assessing its 

maintainability (modularity, versioning), flexibility, and data quality benefits (via 

testing) compared conceptually to traditional ETL. Practical challenges 

encountered during implementation (e.g., handling JSON, incremental logic) will 

also be discussed. 

• RQ3 (Three-Tier Architecture): Evaluate the implemented architecture based 

on its success in achieving modularity (separation of concerns) and providing 

accessibility (via UI and API). Potential scalability and performance will be 

discussed qualitatively based on design choices and observed prototype 

behaviour. 
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4 Results 

This chapter presents the concrete outcomes and findings derived from the 

implementation phase of the bibliographic database system, following the design 

principles and methodology detailed in Chapter 3. The results described herein pertain to 

the functional prototype developed using sample data ingested from Crossref and 

OpenCitations, operating within the specific development environment outlined in 

Section 3.2. This chapter will detail the final implemented system components, the 

structure of the database as realized, the execution and validation of the data 

transformation pipeline, and the functionality of the application tier, concluding with an 

evaluation of these results against the research objectives set forth in Chapter 1. 

4.1 Implemented System Components 

The development effort successfully culminated in the implementation of the planned 

three-tier architecture, visually represented for this specific project in Figure 2. The final 

system comprises the following operational components, functioning cohesively as 

designed: 

1. Data Tier: A PostgreSQL database instance was configured, containing three 

distinct schemas relevant to the ELT process: 

• raw schema: Housing the raw_crossref table, which serves as the initial 

landing zone for data fetched from the external APIs. 

• dbt schema: Containing tables generated by DBT’s intermediate models 

(int_*.sql), holding structured data after initial transformations but before 

final loading.  

• dwh schema: Containing the set of normalized relational tables (entry, author, 

organization, entry_type, entry_author, author_organization) populated by the 

transformation process, along with the entry_details_vw presentation view 

designed for application access. 

2. Logic Tier: This layer consists of two key functional parts: 
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• The Python ingestion script (crossref_opencitations_load.py), 

which successfully fetches data from Crossref and OpenCitations APIs based on 

user input, performs necessary initial processing, loads the raw data into the 

raw.raw_crossref table, and subsequently triggers the DBT pipeline 

execution. 

• The Data Build Tool (DBT) project, encompassing a collection of SQL models 

and associated tests, which manages the Extract-Load-Transform (ELT) process, 

transforming data from the raw schema into the structured dwh schema. 

3. Presentation Tier: A Flask web application (app.py) was implemented, 

providing: 

• A web user interface rendered via index.html for searching and displaying 

bibliographic records, incorporating CSS for styling and client-side JavaScript for 

enhanced interactivity (e.g., type filtering, abstract toggling). 

• A functional JSON API endpoint (/api/entries) enabling programmatic data 

access with search and pagination features. 

These implemented components collectively form the working prototype evaluated in 

the subsequent sections. 

4.2 Database Implementation Results 

The PostgreSQL database was implemented successfully, realizing the logical and 

physical design strategies outlined in the methodology (Section 3.3). 

Logical Schema Implementation: 

The final database schema implemented within the dwh namespace accurately reflects 

the Entity-Relationship Diagram presented in the Figure 3. The core tables (entry, author, 

organization, entry_type) and associative tables (entry_author, author_organization) were 

created with their respective attributes and relationships, adhering to the principles of 

Third Normal Form (3NF). Surrogate keys (e.g., entry_id, author_id), generated 

deterministically by the DBT surrogate_key macro, serve as primary keys, 

facilitating efficient joins and data management. Key natural identifiers like doi, orcid, 
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organization.name, and entry_type.entry_type_name were retained as 

columns with appropriate UNIQUE constraints enforced to maintain data integrity and 

allow for external referencing. The overall structure in pgAdmin database administration 

tool, as visualized in Figure 5, demonstrates the normalized, relational model designed to 

minimize redundancy and represent bibliographic entities effectively.  

 

 

Figure 5. Structure of the dbt and dwh schemas in pgAdmin. 
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Physical Schema Implementation: 

The complete Data Definition Language (DDL) script detailing all tables, columns, data 

types, constraints and optimizations is provided in Appendix 2. 

Specific physical storage and access optimization features, planned in 3.3, were 

implemented to enhance performance and scalability: 

1. Partitioning: PostgreSQL’s declarative partitioning was successfully applied to 

the tables anticipated to grow largest: 

• dwh.entry: This table was partitioned by RANGE on the 

publication_date column. A PL/pgSQL script loop (included in 

Appendix 2) generated yearly partitions (e.g., entry_y2020, 

entry_y2021, ..., entry_y2030) along with a entry_legacy 

partition for pre-2000 entries. This physical structure, allows the query 

planner to potentially prune partitions based on date filters, improving 

query efficiency. 

• dwh.entry_author: This bridge table was partitioned by HASH on 

the entry_id column into 32 distinct partitions (entry_author_p0 

to entry_author_p31), distributing the author-entry links across 

multiple physical tables to potentially improve load balancing and join 

performance. The DDL for creating these partitions is also in Appendix 2. 

2. Indexing: A suite of indexes was created to optimize common data retrieval 

operations: 

• Primary Key indexes were automatically created on the surrogate keys of all 

tables. 

• Foreign Key indexes were created on columns like 

entry.entry_type_id, entry_author.author_id, 

author_organization.organization_id, etc., to accelerate join 

operations. 
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• GIN Trigram Indexes: Crucially for search functionality, GIN indexes 

using the pg_trgm extension were implemented on entry.title 

(idx_entry_title_trgm) and author.name 

(idx_author_name_trgm). These indexes are specifically designed to 

provide efficient support for the case-insensitive substring (ILIKE 

‘%term%’) searches performed by the application tier. 

• Other Indexes: An index on entry (publication_date DESC) 

(idx_entry_recent) was added to optimize default sorting by newest 

publication. A covering index idx_entry_author_lookup on 

entry_author(entry_id, author_id) was created to potentially 

enable index-only scans for queries retrieving both keys. 

3. Constraints: Primary Key, UNIQUE (on doi, orcid, 

organization.name, entry_type.name), and Foreign Key 

constraints were implemented as defined in the logical schema. As planned, 

Foreign Key constraints were defined using DEFERRABLE INITIALLY 

IMMEDIATE to allow constraint validation at the end of DBT’s transaction, 

potentially improving bulk insert performance. 

4. Full-Text Search Feature: A tsvector column named fts was added to the 

dwh.entry table. A trigger function (dwh.update_fts) and an associated 

trigger (trg_update_fts) were implemented to automatically populate this 

column with a concatenated vector of the entry’s title and abstract upon insertion 

or update. A GIN index (idx_entry_fts) was created on this fts column to 

enable efficient PostgreSQL full-text search capabilities. 

5. Storage Parameters: For the prototype development using limited data, default 

PostgreSQL storage parameters were generally sufficient. The primary 

adjustment was setting work_mem to 128MB within the Docker container’s 

PostgreSQL configuration to provide more memory for sorting and hashing 

operations during DBT model runs. Further tuning (e.g., fillfactor) would require 

analysis under realistic load conditions. 
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4.3 Data Transformation Pipeline Results (DBT) 

The transformation pipeline, orchestrated using DBT, was successfully implemented and 

executed, transforming the raw data loaded by the Python script into the structured dwh 

schema. 

Workflow Execution and Lineage: 

The DBT project, containing models for staging, intermediate processing, and final target 

table loading, executed without errors. The dbt run command successfully 

materialized all models in the correct sequence based on their dependencies defined using 

the ref() function. The visual representation of these dependencies and the overall data 

flow is confirmed by the DBT-generated lineage graph presented in Figure 7, which 

accurately depicts the progression from the raw.raw_crossref source through the 

various stg, int, and dwh models to the final entry_details_vw model. 

Evidence of a successful pipeline execution, including model completion status and 

timings for the sample dataset, is shown in the terminal output captured in Figure 6. 

 

Figure 6. Terminal Output of dbt run.
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Figure 7. DBT Data Lineage Graph.
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Model Implementation Details: 

The implemented DBT models successfully executed the transformation logic planned in 

Section 3.4: 

1. Staging (stg_crossref.sql): This model correctly selected data from the 

raw.raw_crossref source, applied basic cleaning functions like TRIM() for 

whitespace removal and LOWER() for standardizing casing on fields like type 

and language, performed necessary type casting (e.g., issued::DATE AS 

publication_date), and handled potential null values using COALESCE 

(e.g., COALESCE(doi, ‘unknown’)). 

2. Intermediate Models (int_*.sql): These models handled the core structuring 

and business logic: 

JSON Parsing: Models processing authors and organizations (e.g., 

int_author.sql, int_entry_author.sql, 

int_organization.sql, int_author_organization.sql) 

effectively utilized PostgreSQL’s jsonb_array_elements function to 

flatten nested JSON arrays (representing authors and their affiliations) from the 

staging layer into distinct relational rows. Where necessary (e.g., in 

int_entry.sql for abstracts, int_author_organization.sql for 

names), REGEXP_REPLACE was used to strip potential HTML tags embedded 

in text fields. 

Surrogate Key Generation: The custom surrogate_key() macro (defined in 

macros/surrogate_key.sql) was consistently invoked in models like 

int_entry, int_author, int_organization, etc., to generate 

unique, deterministic 64-bit integer surrogate keys based on combinations of 

relevant business attributes (e.g., {{ surrogate_key(["name", 

"orcid", "organizations"]) }} for author_id). 

Entity Structuring & Logic: Model int_entry_type.sql successfully 

identified distinct publication type strings from the staging data and generated 
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new sequential entry_type_ids only for types not already present in the 

dwh.entry_type table (by querying it as a source). 

int_entry_author.sql correctly associated entries with authors and 

captured the author sequence using jsonb_array_elements() WITH 

ORDINALITY. 

3. Target Models (dwh.*.sql): 

Incremental Loading: All models populating the main dwh tables 

(entry.sql, author.sql, etc.) were configured with 

materialized=‘incremental’ and 

incremental_strategy=‘delete+insert’. They incorporated the 

necessary {% if is_incremental() %} blocks to filter incoming data 

based on the updated_at timestamp, comparing it against the maximum 

updated_at value currently in the target table (WHERE updated_at > 

(SELECT COALESCE(MAX(updated_at), ‘1900-01-01’) FROM {{ 

this }})). This ensures that only new or modified records are processed during 

subsequent runs. 

Foreign Key Resolution: These models performed the final required joins 

between intermediate models to resolve foreign key relationships before inserting 

data into the target tables (e.g., entry.sql joins int_entry with 

entry_type on entry_type_name to get the correct entry_type_id). 

Presentation View (entry_details_vw.sql): This model was successfully 

implemented and materialized as a PostgreSQL VIEW. It performs the necessary 

LEFT JOIN operations across all primary and associative tables in the dwh 

schema (entry, entry_type, entry_author, author, 

author_organization, organization) to provide a single, 

denormalized interface for the Flask application. 
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Testing Results: 

The comprehensive testing strategy planned in Section 3.4 was implemented using 

DBT’s testing framework to validate the quality and integrity of the data within the 

final dwh schema. 

• Generic Schema Tests: As defined in models/target/dwh_schema.yml 

(see Appendix 3), tests for unique and not_null were applied to all primary 

keys and critical metadata fields. relationships tests were configured to enforce 

referential integrity for all foreign key relationships defined in the logical schema. 

• Singular Tests (Custom): Specific SQL-based tests were created in the tests/ 

directory (see Appendix 4) to validate domain-specific rules: 

assert_entry_publication_date_is_reasonable.sql (checking 

date ranges), assert_doi_format_if_present.sql (validating ‘10.’ 

prefix), assert_author_orcid_format.sql (checking ORCID pattern 

via regex), and assert_entry_has_primary_author.sql (ensuring 

entries with authors have a primary author marked). 

• Execution Outcome: The dbt test command was executed after dbt run 

during the pipeline execution. All the defined tests (combining generic and 

singular tests across all models and columns) passed successfully against the 

populated dwh schema using the sample dataset. The result of this successful 

validation is shown in Figure 8. This outcome confirms that the implemented 

transformation logic produced data that adheres to the defined structural 

constraints, referential integrity rules, and custom quality checks for the processed 

data. 



58 

 

Figure 8. Terminal Output of dbt test. 
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4.4 Application Tier Results 

The Presentation Tier, consisting of the Flask backend (app.py) and the interactive web 

frontend (index.html), was successfully implemented, providing functional access to 

the bibliographic data processed by the lower tiers and delivering the enhanced user 

experience features. 

As shown in the Figure 9, the Flask application runs without errors and provides the core 

functionalities. The primary web user interface, rendered via index.html, allows users 

to effectively interact with the system. Search inputs for title and author are functional. 

The implemented Type Filtering section enables users to refine results using checkboxes, 

with client-side JavaScript managing the “All Types” selection logic. Associated filtered 

and total counts for each type are accurately displayed based on backend queries. 

Furthermore, the results-per-page dropdown was successfully implemented, allowing 

users to control pagination (10, 25, 50, or 100 results). 

 

Figure 9.  Interactive faceted‑search interface of the Bibliographic Library application. 



60 

 

Search results are presented clearly in the main HTML table. Techniques for handling 

long text fields (DOI, Title, Organization) were implemented using CSS truncation 

combined with expandable <details> elements (“Show full”), which function 

correctly. A significant feature as presented in Figure 10, is the implemented “Show 

more” expandable section for each entry. This section successfully reveals 

comprehensive details fetched from the database, including the full list of authors 

(aggregated using json_agg in the backend query), with the primary author marked 

and ORCID links provided where available. The interactive abstract display was realized, 

showing an initial preview and using a JavaScript toggle button (“Show more”/ “Show 

less”) to correctly control the visibility of the full text. Linked DOIs for citation and cited-

by data are presented as functional hyperlinks, alongside other relevant metadata fields. 

Navigation through result pages using the “Previous” and “Next” links is operational.  

 

 

Figure 10. Entry Detailed Information Display. 
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The backend logic within app.py supports all these frontend features. The home() 

route correctly processes search, filter (selected_types), and pagination (page, 

per_page) parameters. The executed SQL query effectively uses CTEs and the 

json_agg function to aggregate author details into the necessary JSON structure passed 

to the template. Database queries for both the UI and API, executed via psycopg2 

against the dwh.entry_details_vw, function as implemented. 

 

4.5 Evaluation Against Research Questions 

This section evaluates the implemented system based on the results presented in Sections 

4.1-4.4, providing answers to the research questions posed in Section 1.2 through the 

qualitative assessment methods outlined in Section 3.6. 

RQ1 (Schema Design):  

The implemented dwh schema (Section 4.2, Appendix 2), adhering to 3NF principles, 

proved effective in representing the diverse metadata elements ingested from Crossref 

and OpenCitations for the sample data. The normalization resulted in reduced data 

redundancy, for instance, storing author and organization names uniquely, and 

established clear, maintainable relationships via foreign keys. The structure, utilizing 

distinct tables for core entities (entry, author, etc.) linked via associative tables 

(entry_author, author_organization), successfully handled complex, many-to-many 

relationships like multiple authors per paper or multiple affiliations per author, which are 

essential for accurate bibliometric analysis. Scalability potential was directly addressed 

through the successful implementation of physical design features. Notably, RANGE 

partitioning on the entry table by publication date (Section 4.2) allows the query planner 

to potentially skip irrelevant yearly partitions (partition pruning) during time-bound 

analyses, significantly improving query efficiency on large datasets. Similarly, HASH 

partitioning on the large entry_author bridge table aids load distribution. Strategic 

indexing, particularly the implemented GIN trigram indexes on title and author names, 

provides crucial support for efficient, case-insensitive substring searches (ILIKE), a 

common requirement in bibliographic exploration. While quantitative benchmarking was 
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outside the scope of this prototype evaluation, these implemented features provide a solid 

foundation for handling larger data volumes. 

RQ2 & RQ4 (DBT Integration & Challenges):  

The integration of DBT for managing the ELT pipeline (Section 4.3) demonstrated clear 

practical advantages over anticipated traditional ETL scripting methods. The modular 

project structure, breaking down transformations into distinct staging, intermediate, and 

target models (Figure 4), resulted in highly organized, readable, and consequently more 

maintainable SQL logic. Debugging specific transformation steps or adapting to source 

data changes becomes significantly easier due to this modularity. Furthermore, version 

controlling the entire DBT project enhances collaboration and traceability of changes. 

DBT’s automated dependency management ensured transformations executed in the 

correct sequence (Figure 7), preventing logical errors. The integrated testing framework 

proved invaluable for reliability; executing tests (generic schema tests like not_null, 

unique, relationships, and custom singular tests, (Figure 8, Appendix 3, Appendix 4)) 

after each dbt run provided automated validation of data quality and integrity rules, 

catching potential issues early and preventing the propagation of erroneous data into the 

final dwh schema.  

Key challenges encountered during implementation centered on handling the semi-

structured nature of the source data, specifically parsing nested JSON arrays (authors, 

affiliations) effectively within SQL, which required careful use of PostgreSQL’s 

jsonb_array_elements function and robust error handling in intermediate models. 

Additionally, correctly implementing and debugging the incremental loading strategy 

(delete+insert) necessitated careful management of updated_at timestamps and 

unique keys to ensure idempotency and avoid data duplication or loss, demanding more 

attention than simple full-refresh approaches. Designing meaningful custom data quality 

tests beyond basic integrity checks also required careful consideration of bibliographic 

domain specifics. 

RQ3 (Three-Tier Architecture):  

The system successfully implemented the planned three-tier architecture (Section 4.1), 

and the results confirm its benefits in this context. A clear separation of concerns was 

achieved: PostgreSQL effectively managed data persistence and integrity (Section 4.2); 
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DBT and Python handled the distinct data transformation and ingestion logic 

(Section 4.3); Flask, along with HTML/CSS/JavaScript, managed the presentation logic, 

API provision, and user interface rendering (Section 4.4). This modularity proved 

beneficial during development, allowing, for example, changes to DBT transformation 

models without impacting the Flask application code, provided the presentation view 

interface remained stable. This separation inherently supports independent development, 

testing, and potential deployment scaling of each tier. The architecture provides effective 

accessibility through two distinct interfaces tailored to different needs: the interactive web 

interface (Figure 9) offers a rich, user-friendly experience for direct exploration, including 

the implemented type filtering, configurable pagination, and detailed data views; the basic 

JSON API endpoint (/api/entries) provides straightforward programmatic access 

suitable for automated systems or other integrations. 

Crucially, the underlying structured dwh schema proved suitable for direct connection 

via standard SQL tools (like DBeaver), enabling advanced ad-hoc querying, and its design 

allows for integration with external BI platforms (e.g., Power BI, Tableau) for 

sophisticated visualization, demonstrating analytical potential beyond the implemented 

application. 

The prototype application, including all its interactive frontend features, exhibited good 

responsiveness during manual testing with the sample data. The architectural design 

incorporates elements conducive to scaling, such as database partitioning and indexing, 

and the potentially stateless nature of the Flask application lends itself well to horizontal 

scaling (running multiple instances). While the entry_details_vw simplified 

application development logic, the complex query utilizing json_agg for the main UI, 

though performant in the prototype, represents a component whose performance 

characteristics under significantly larger data volumes or high concurrent user load would 

warrant further analysis and potential optimization (e.g., query tuning, caching strategies) 

in a production scenario. 
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5 Conclusion and Future Work 

This thesis set out to address the challenges of data heterogeneity, maintainability, and 

limited analytical capabilities often found in traditional bibliographic database systems. 

By designing and implementing a modern bibliographic database architecture 

incorporating contemporary data engineering practices, this work successfully 

demonstrates a viable and improved approach. The project culminated in a functional 

prototype featuring a normalized PostgreSQL database optimized with physical design 

strategies, an ELT pipeline managed effectively by Data Build Tool (DBT), and a 

modular three-tier application structure providing user access via an interactive web 

interface and a basic API. 

5.1 Summary of Findings and Contributions 

The primary contribution of this thesis lies in the practical application and evaluation of 

modern data engineering tools and architectural patterns specifically within the 

bibliographic data domain. The key findings validate the effectiveness and benefits of the 

chosen methodologies. 

The development process confirmed that a relational schema, normalized to Third Normal 

Form (3NF) and augmented with physical optimizations like table partitioning and 

appropriate indexing (including GIN trigram indexes for text search), can effectively 

structure diverse bibliographic metadata while providing mechanisms to support 

scalability and efficient querying. 

The integration of DBT proved highly beneficial, successfully orchestrating an ELT 

pipeline within the PostgreSQL database. The results highlighted DBT's significant 

advantages in improving the development lifecycle through enhanced modularity 

(breaking down complex transformations), maintainability (facilitated by version control 

and clear SQL-based logic), and crucially, reliability (enforced through an integrated, 

automated testing framework for data quality and integrity). This demonstrated a marked 

improvement over the anticipated complexities of managing traditional ETL scripts. 

The implementation of the three-tier architecture successfully enforced a clear separation 

of concerns. This modularity between the data tier (PostgreSQL), the logic tier (Python 
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ingestion script, DBT transformations), and the presentation tier (Flask application 

serving HTML/CSS/JS) was evident during development and offers inherent advantages 

for independent maintenance, testing, and potential scaling of each component. The 

resulting system provides functional and accessible interfaces for both direct user 

interaction via the web UI and basic programmatic access via the JSON API. 

Answers to Research Questions 

Based on the evaluation of the results presented in Chapter 4, the research questions posed 

at the outset can be answered conclusively. The findings demonstrate that (RQ1) a 

scalable and normalized relational schema can be effectively designed for diverse 

bibliographic metadata by applying 3NF principles alongside physical design features 

like partitioning and specialized indexing. Furthermore, (RQ2 & RQ4) the integration of 

DBT for an ELT workflow provides substantial improvements in maintainability, 

reliability, and flexibility compared to traditional ETL, although it requires careful 

handling of semi-structured data parsing and incremental loading logic within SQL, 

alongside domain-specific testing. Finally, (RQ3) a three-tier architecture was 

successfully implemented, achieving modularity and providing distinct, accessible 

interfaces (an interactive web UI and a basic API) by clearly separating the data, logic 

(Python/DBT), and presentation (Flask/Web Frontend) layers. 

Limitations 

While the project successfully demonstrated the proposed architecture, several limitations 

should be acknowledged: 

• Prototype Scale and Evaluation: The system was developed and tested as a 

prototype using a limited sample dataset on a local development machine. 

Consequently, the performance evaluation remained qualitative. Rigorous 

quantitative benchmarking under realistic, large-scale data volumes and 

concurrent user loads was not performed, meaning the true scalability limits and 

potential bottlenecks (e.g., performance of complex queries with json_agg) 

were not empirically determined. 

• Data Source Scope: Data ingestion was confined to the Crossref and 

OpenCitations APIs. Integrating a wider array of sources (e.g., PubMed, Scopus, 

institutional repositories via OAI-PMH) would introduce significant additional 
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challenges related to schema mapping, varying data quality levels, different API 

protocols or data formats, and potentially more complex entity resolution 

requirements. 

• Feature Scope: The implemented system provides core functionalities for data 

storage, transformation, and interactive retrieval. Advanced features common in 

mature bibliometric systems, such as integrated topic modelling capabilities, 

complex citation network analysis beyond basic link storage, or built-in data 

visualization tools, were outside the scope of this implementation. 

• JSON API Functionality: The implemented JSON API endpoint offers only 

basic search capabilities with fixed pagination and lacks the more advanced 

filtering options available in the main web UI. It serves primarily as a proof-of-

concept for programmatic access rather than a fully developed, feature-rich API 

suitable for robust external integrations. 

5.2 Future Work 

The developed system provides a solid foundation that can be extended in several 

promising directions, incorporating more advanced techniques and expanding its 

capabilities: 

Expand Data Integration and Entity Resolution 

Incorporate a broader range of bibliographic data sources (e.g., Scopus API, PubMed E-

utilities, arXiv API, OAI-PMH feeds). This would necessitate extending ingestion scripts, 

developing new DBT staging models, and critically, implementing more robust entity 

resolution techniques (potentially ML-based) to handle variations and merge records 

effectively across diverse sources. 

Implement Advanced Bibliometric and Network Analysis 

Integrate more sophisticated analytical functionalities. This includes enhancing the 

storage and querying capabilities for citation network analysis (perhaps exploring graph 

database extensions or libraries like NetworkX) to enable complex graph metrics and 

community detection. Calculating standard bibliometric indicators (e.g., h-index) could 

also be added. 
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Leverage Machine Learning and AI 

Explore the application of ML and AI to enhance various aspects of the system: 

• Semantic Search and Recommendation: Implement vector embeddings (e.g., 

using models like Sentence-BERT on titles/abstracts) to enable semantic search, 

finding conceptually related papers beyond keyword matches, and build 

recommendation engines suggesting relevant articles or potential collaborators. 

• Enhanced Author Disambiguation: Apply advanced ML classification or 

clustering models, using features like co-authorship patterns, publication venues, 

topic distributions (derived from abstracts), and affiliation history, to significantly 

improve the accuracy of author name disambiguation. 

• Automated Knowledge Extraction: Utilize NLP techniques, potentially including 

Large Language Models (LLMs), to automatically extract structured information 

from abstracts or full texts (if available), such as research methods, datasets used, 

key findings, or even construct a knowledge graph of scholarly entities and 

relationships. 

• Topic Modelling and Trend Analysis: Employ advanced topic modelling 

techniques (e.g., dynamic topic models, hierarchical models) or transformer-based 

approaches to automatically identify fine-grained research topics, track their 

evolution over time, and potentially identify emerging research fronts. 

• Predictive Analytics: Investigate the use of ML models to predict future research 

impact (e.g., citation counts) or identify potentially fruitful research collaborations 

based on network features and historical data. 

• Intelligent Data Quality: Develop ML models for more sophisticated anomaly 

detection in metadata, identifying outliers or inconsistencies that might be missed 

by rule-based DBT tests. 

Enhance Frontend and Visualization 

Further develop the web user interface by adding features like user accounts, 

implementing more advanced search syntax (Boolean operators, field-specific queries), 

refining the UI/UX, and integrating data visualization libraries (e.g., D3.js, Plotly) to 
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present insights visually, such as publication trends, co-authorship networks derived from 

the data, or topic distributions. 

Cloud Deployment and Performance Optimization 

Migrate the system stack to a cloud platform for scalability and manageability. Conduct 

rigorous performance testing under load, optimizing database configurations, indexing, 

and computationally intensive queries or DBT models. Implement caching strategies 

where appropriate. 

Refine Data Quality Monitoring 

Enhance the data quality framework beyond DBT tests by integrating data profiling tools, 

establishing monitoring dashboards, and potentially developing semi-automated 

workflows for resolving identified data issues. 

5.3 Concluding Remarks 

This thesis successfully addressed the objective of designing and developing a modern 

architecture for a bibliographic database. By leveraging a normalized relational database, 

a modular three-tier structure, and the capabilities of DBT for managing an ELT pipeline, 

the project demonstrated a robust, maintainable, and scalable alternative to traditional 

approaches. The resulting functional prototype, complete with an interactive web 

interface, effectively showcases the benefits of integrating contemporary data engineering 

practices in the domain of scholarly information management. While limitations exist and 

avenues for future work, particularly those leveraging AI and machine learning, are 

plentiful, this research provides a valuable practical blueprint and a solid foundation for 

building a bibliographic information systems capable of handling the growing volume 

and complexity of scholarly data.
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Appendix 2 – Complete DDL for the dwh Schema 

 
-- PostgreSQL DDL for the dwh Schema 
-- Includes partitioning, indexes, and constraints. 
-- Requires PostgreSQL 13+. Assumes schema "dwh" already exists. 
----------------------------------------------------------------------------- 
-- 0. Extension & Search Path ----------------------------------------------- 
----------------------------------------------------------------------------- 
CREATE EXTENSION IF NOT EXISTS pg_trgm WITH SCHEMA dwh; 
SET search_path = dwh, pg_catalog; 
 
----------------------------------------------------------------------------- 
-- 1. Dimension Tables ------------------------------------------------------ 
----------------------------------------------------------------------------- 
 
DROP TABLE IF EXISTS dwh.author CASCADE; 
CREATE TABLE dwh.author ( 
    author_id      bigint PRIMARY KEY, 
    name           text, 
    orcid          text, 
    organizations  text, -- Raw text/JSON of affiliations 
    updated_at     timestamptz 
); 
CREATE INDEX IF NOT EXISTS idx_author_name_trgm ON dwh.author USING gin (name 
dwh.gin_trgm_ops); -- For ILIKE search 
 
DROP TABLE IF EXISTS dwh.organization CASCADE; 
CREATE TABLE dwh.organization ( 
    id        bigint PRIMARY KEY, 
    name      text UNIQUE, -- Canonicalized organization name 
    address   text, 
    contact_1 text, 
    contact_2 text, 
    email     text, 
    org_type  text, 
    updated_at timestamptz 
); 
 
DROP TABLE IF EXISTS dwh.entry_type CASCADE; 
CREATE TABLE dwh.entry_type ( 
    entry_type_id   bigint PRIMARY KEY, 
    entry_type_name text UNIQUE, -- Controlled vocabulary type name 
    entry_type_desc text 
); 
 
----------------------------------------------------------------------------- 
-- 2. Fact & Bridge Tables -------------------------------------------------- 
----------------------------------------------------------------------------- 
 
-- Entry table, range-partitioned by publication year 
DROP TABLE IF EXISTS dwh.entry CASCADE; 
CREATE TABLE dwh.entry ( 
    entry_id               bigint         NOT NULL, 
    source_id              bigint, 
    doi                    text, 
    title                  text, 
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    publisher              text, 
    type                   text, -- Original type string from source 
    entry_type_id          bigint, -- FK to dwh.entry_type 
    publication_date       date           NOT NULL, -- Partition key 
    language               text, 
    score                  double precision, 
    container_title        text, 
    page                   text, 
    isbn                   jsonb, 
    reference_count        integer, 
    is_referenced_by_count integer, 
    citations              jsonb, 
    cited_by               jsonb, 
    volume                 text, 
    issue                  text, 
    abstract               text, 
    raw_data               jsonb, 
    updated_at             timestamptz, 
    fts                    tsvector, -- Precomputed full-text search vector 
    PRIMARY KEY (entry_id, publication_date) -- Includes partition key 
) PARTITION BY RANGE (publication_date); 
 
-- Generate yearly partitions for dwh.entry (2000-2030 + legacy) 
DO $$ 
DECLARE 
    yr int; 
BEGIN 
    FOR yr IN 2000..2030 LOOP 
        EXECUTE format( 
            ‘CREATE TABLE IF NOT EXISTS dwh.entry_y%s PARTITION OF dwh.entry 
             FOR VALUES FROM (‘‘%s-01-01’’) TO (‘‘%s-01-01’’);’, 
            yr, yr, yr + 1 
        ); 
    END LOOP; 
    EXECUTE ‘CREATE TABLE IF NOT EXISTS dwh.entry_legacy PARTITION OF dwh.entry 
             FOR VALUES FROM (‘‘1900-01-01’’) TO (‘‘2000-01-01’’);’; -- Fallback 
partition 
END$$; 
 
-- Entry-Author bridge table, hash-partitioned by entry_id 
DROP TABLE IF EXISTS dwh.entry_author CASCADE; 
CREATE TABLE dwh.entry_author ( 
    entry_author_surrogate_id bigint NOT NULL, 
    author_id                 bigint NOT NULL, -- FK to dwh.author 
    entry_id                  bigint NOT NULL, -- Refers to entry_id in dwh.entry 
    is_primary_author         boolean, 
    author_sequence           integer, -- Order of author in the publication 
    updated_at                timestamptz, 
    PRIMARY KEY (entry_id, author_id) 
) PARTITION BY HASH (entry_id); 
 
-- Generate hash partitions for dwh.entry_author (32 buckets) 
DO $$ 
DECLARE i int; 
BEGIN 
    FOR i IN 0..31 LOOP 
        EXECUTE format( 
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            ‘CREATE TABLE IF NOT EXISTS dwh.entry_author_p%s PARTITION OF 
dwh.entry_author 
             FOR VALUES WITH (MODULUS 32, REMAINDER %s);’, 
            i, i 
        ); 
    END LOOP; 
END$$; 
 
-- Author-Organization bridge table 
DROP TABLE IF EXISTS dwh.author_organization CASCADE; 
CREATE TABLE dwh.author_organization ( 
    author_organization_surrogate_id bigint PRIMARY KEY, 
    author_id                 bigint NOT NULL, -- FK to dwh.author 
    organization_id           bigint NOT NULL, -- FK to dwh.organization 
    affiliation_sequence      integer, -- Order of affiliation for the author 
    is_primary_organization   boolean, 
    updated_at                timestamptz 
); 
 
----------------------------------------------------------------------------- 
-- 3. Indexes --------------------------------------------------------------- 
----------------------------------------------------------------------------- 
-- GIN trigram index for case-insensitive title search 
CREATE INDEX IF NOT EXISTS idx_entry_title_trgm ON dwh.entry USING gin (title 
dwh.gin_trgm_ops); 
 
-- Full-text search index using precomputed ‘fts’ column 
CREATE INDEX IF NOT EXISTS idx_entry_fts ON dwh.entry USING gin (fts); 
 
-- Index for sorting entries by recent publication date 
CREATE INDEX IF NOT EXISTS idx_entry_recent ON dwh.entry (publication_date 
DESC); 
 
-- Covering index for entry-author lookups 
CREATE INDEX IF NOT EXISTS idx_entry_author_lookup ON dwh.entry_author 
(entry_id, author_id); 
 
-- Indexes for author-organization lookups 
CREATE INDEX IF NOT EXISTS idx_author_org_author_lookup ON 
dwh.author_organization (author_id); 
CREATE INDEX IF NOT EXISTS idx_author_org_org_lookup ON dwh.author_organization 
(organization_id); 
 
----------------------------------------------------------------------------- 
-- 4. Full-Text Search Trigger ---------------------------------------------- 
----------------------------------------------------------------------------- 
-- Trigger function to update the ‘fts’ tsvector column in dwh.entry 
CREATE OR REPLACE FUNCTION dwh.update_fts() RETURNS trigger AS $$ 
BEGIN 
  NEW.fts := to_tsvector(‘simple’, coalesce(NEW.title,’’) || ‘ ‘ || 
coalesce(NEW.abstract,’’)); 
  RETURN NEW; 
END 
$$ LANGUAGE plpgsql; 
 
-- Trigger definition for dwh.entry updates/inserts 
DROP TRIGGER IF EXISTS trg_update_fts ON dwh.entry; 
CREATE TRIGGER trg_update_fts 
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BEFORE INSERT OR UPDATE ON dwh.entry 
FOR EACH ROW EXECUTE FUNCTION dwh.update_fts(); 
 
----------------------------------------------------------------------------- 
-- 5. Foreign Key Constraints ----------------------------------------------- 
----------------------------------------------------------------------------- 
-- Constraints added with DEFERRABLE INITIALLY IMMEDIATE as per thesis text 
 
ALTER TABLE dwh.entry 
ADD CONSTRAINT fk_entry_entry_type 
FOREIGN KEY (entry_type_id) REFERENCES dwh.entry_type(entry_type_id) 
DEFERRABLE INITIALLY IMMEDIATE; 
 
ALTER TABLE dwh.entry_author 
ADD CONSTRAINT fk_entry_author_author 
FOREIGN KEY (author_id) REFERENCES dwh.author(author_id) 
DEFERRABLE INITIALLY IMMEDIATE; 
 
ALTER TABLE dwh.author_organization 
ADD CONSTRAINT fk_author_organization_author 
FOREIGN KEY (author_id) REFERENCES dwh.author(author_id) 
DEFERRABLE INITIALLY IMMEDIATE; 
 
ALTER TABLE dwh.author_organization 
ADD CONSTRAINT fk_author_organization_organization 
FOREIGN KEY (organization_id) REFERENCES dwh.organization(id) 
DEFERRABLE INITIALLY IMMEDIATE; 
 
-- Note: A direct FK from dwh.entry_author to the partitioned dwh.entry table 
-- is omitted due to the complexity of referencing a composite partitioned key. 
-- This relationship integrity is intended to be enforced via DBT tests. 
 
----------------------------------------------------------------------------- 
-- End of DDL Script -------------------------------------------------------- 
----------------------------------------------------------------------------- 
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Appendix 3 – dwh_schema.yml configuration file 

version: 2 
 
models: 
  - name: entry # Corresponds to entry.sql -> dwh.entry table 
    description: "Stores detailed information about each publication entry." 
    columns: 
      - name: entry_id 
        description: "Surrogate primary key for the entry." 
        tests: 
          - unique # Ensures each entry_id is unique 
          - not_null # Ensures entry_id is never NULL 
      - name: publication_date 
        description: "The date of publication." 
        tests: 
          - not_null # Publication date is mandatory 
      - name: title 
        description: "Title of the publication." 
        tests: 
          - not_null # Title is mandatory 
      - name: entry_type_id 
        description: "Foreign key referencing the entry_type dimension." 
        tests: 
          - not_null 
          - relationships: # Checks referential integrity 
              to: ref(‘entry_type’) # References the dwh.entry_type table 
              field: entry_type_id # The primary key column in dwh.entry_type 
 
  - name: author # Corresponds to author.sql -> dwh.author table 
    description: "Stores information about unique authors." 
    columns: 
      - name: author_id 
        description: "Surrogate primary key for the author." 
        tests: 
          - unique 
          - not_null 
      - name: name 
        description: "Author’s name." 
        tests: 
          - not_null # Author name is mandatory 
 
  - name: entry_author # Corresponds to entry_author.sql -> dwh.entry_author 
table 
    description: "Junction table linking entries and authors." 
    columns: 
      # Note: Testing uniqueness on composite keys might require dbt_utils 
package 
      # or custom tests. Here we test individual FKs. 
      - name: entry_author_surrogate_id # If this is your intended unique key 
for the link 
        tests: 
          - unique 
          - not_null 
      - name: entry_id 
        description: "Foreign key referencing the entry." 
        tests: 
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          - not_null 
          - relationships: 
              to: ref(‘entry’) # References dwh.entry table 
              field: entry_id # Must match entry_id in dwh.entry 
      - name: author_id 
        description: "Foreign key referencing the author." 
        tests: 
          - not_null 
          - relationships: 
              to: ref(‘author’) # References dwh.author table 
              field: author_id # Must match author_id in dwh.author 
 
  - name: organization # Corresponds to organization.sql -> dwh.organization 
table 
    description: "Stores information about unique organizations." 
    columns: 
      - name: id # This is the organization_id 
        description: "Surrogate primary key for the organization." 
        tests: 
          - unique 
          - not_null 
      - name: name 
        description: "Organization name." 
        tests: 
          - not_null 
 
  - name: author_organization # Corresponds to author_organization.sql -> 
dwh.author_organization 
    description: "Junction table linking authors and organizations." 
    columns: 
      - name: author_organization_surrogate_id 
        tests: 
          - unique 
          - not_null 
      - name: author_id 
        tests: 
          - not_null 
          - relationships: 
              to: ref(‘author’) 
              field: author_id 
      - name: organization_id 
        tests: 
          - not_null 
          - relationships: 
              to: ref(‘organization’) # References dwh.organization table 
              field: id # The primary key column in dwh.organization 
 
  - name: entry_type # Corresponds to entry_type.sql -> dwh.entry_type 
    description: "Dimension table for publication types." 
    columns: 
      - name: entry_type_id 
        tests: 
          - unique 
          - not_null 
      - name: entry_type_name 
        tests: 
          - unique # Type names should also be unique 
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          - not_null 
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Appendix 4 – scripts of the dbt custom singular tests 

----------------------------------- 

-- 1. assert_author_orcid_format.sql: 

-- Checks if non-null ORCID values follow either the full URL format 

-- OR the standard numerical format (XXXX-XXXX-XXXX-XXX[X]). 

-- Passes if it returns 0 rows (i.e., all non-null ORCIDs match one of the 

patterns). 

 

SELECT 

    author_id, 

    orcid 

FROM 

    {{ ref('author') }} -- References dwh.author table 

WHERE 

    orcid IS NOT NULL 

    -- Check if the ORCID does NOT match either the URL pattern OR the 

numerical pattern 

    AND NOT ( 

        -- Pattern 1: Full URL (allowing http or https) 

        (orcid ~ '^https?://orcid\.org/\d{4}-\d{4}-\d{4}-\d{3}[\dX]$') 

        OR 

        -- Pattern 2: Just the numerical ID 

        (orcid ~ '^\d{4}-\d{4}-\d{4}-\d{3}[\dX]$') 

    ) 

 
----------------------------------- 

-- 2. assert_doi_format_if_present.sql: 

-- This test checks if non-null, non-'unknown' DOIs generally follow 

-- the common '10.' prefix format. 

-- It passes if it returns 0 rows. 

 

SELECT 

    entry_id, 

    doi 

FROM 

    {{ ref('entry') }} -- References dwh.entry table 

WHERE 

    doi IS NOT NULL 

    AND doi <> 'unknown' 

    AND doi NOT LIKE '10.%' -- Check if it starts with '10.' 

 
----------------------------------- 
-- 3. assert_entry_has_primary_author.sql 

-- Finds entries that HAVE authors linked, but none are marked as primary. 

-- Assumes is_primary_author = TRUE indicates the primary author based on 

source order. 

-- Note: This assumes that entries with authors *should* have a primary 

author. 

-- It will NOT return entries that have no authors at all. 

-- Passes if it returns 0 rows. 
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SELECT 

    e.entry_id 

FROM 

    {{ ref('entry') }} e 

LEFT JOIN 

    {{ ref('entry_author') }} ea 

    ON e.entry_id = ea.entry_id AND ea.is_primary_author = TRUE 

WHERE 

    -- Condition 1: Ensure the entry actually HAS authors linked in the 

junction table 

    e.entry_id IN (SELECT DISTINCT entry_id FROM {{ ref('entry_author') }}) 

    -- Condition 2: Ensure that among those authors, none met the specific 

LEFT JOIN condition (is_primary_author = TRUE) 

    AND ea.entry_id IS NULL 
 
----------------------------------- 
-- 4. assert_entry_publication_date_is_reasonable.sql 

-- This test checks if any publication dates are suspiciously far in the 

future 

-- or too far in the past (e.g., before 1900). 

-- It passes if it returns 0 rows. 

 

SELECT 

    entry_id, 

    publication_date 

FROM 

    {{ ref('entry') }} -- References dwh.entry table 

WHERE 

    publication_date > (CURRENT_DATE + interval '1 year') -- More than 1 year 

in the future? 

    OR publication_date < '1900-01-01' -- Before the year 1900? 
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Appendix 5 – scripts of the dbt models and the macro 

 

-- ================================ 

-- STAGING MODELS 

-- ================================ 

 

----------------------------------- 

-- 1. stg_crossref.sql: 

 

WITH base AS ( 

    SELECT 

        id, 

        doi, 

        title, 

        publisher, 

        type, 

        issued::DATE AS publication_date, 

        language, 

        authors, 

        score, 

        container_title, 

        page, 

        isbn, 

        reference_count, 

        is_referenced_by_count, 

        citations, 

        cited_by, 

        volume, 

        issue, 

        abstract, 

        raw_data 

    FROM {{ source('RAW', 'raw_crossref') }} 

) 

SELECT 

    id, 

    COALESCE(doi, 'unknown') AS doi, 

    TRIM(title) AS title, 

    TRIM(publisher) AS publisher, 

    LOWER(type) AS type, 

    publication_date, 

    LOWER(language) AS language, 

    authors, 

    score, 

    container_title, 

    page, 

    isbn, 

    reference_count, 

    is_referenced_by_count, 

    citations, 
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    cited_by, 

    volume, 

    issue, 

    abstract, 

    raw_data 

FROM base 

WHERE title IS NOT NULL 

 

----------------------------------- 

-- staging sources.yml: 

 

version: 2 

 

sources: 

  - name: RAW 

    schema: raw 

    tables: 

      - name: raw_crossref 

----------------------------------- 

 

-- ================================ 

-- INTERMEDIATE MODELS 

-- ================================ 

 

----------------------------------- 

-- 2. int_entry.sql: 

{{ config(materialized='table') }} 

 

WITH distinct_entries AS ( 

    SELECT DISTINCT 

        id AS source_id, 

        doi, 

        title, 

        publisher, 

        type, 

        publication_date, 

        language, 

        authors, 

        score, 

        container_title, 

        page, 

        isbn, 

        reference_count, 

        is_referenced_by_count, 

        citations, 

        cited_by, 

        volume, 

        issue, 

        REGEXP_REPLACE(CAST(abstract AS VARCHAR), '<[^>]+>', '', 'g') AS 

abstract, 
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        raw_data, 

        CURRENT_TIMESTAMP AS updated_at, 

        {{ surrogate_key(["id", "doi", "title", "publisher"]) }} AS entry_id 

    FROM {{ ref('stg_crossref') }} 

    WHERE title IS NOT NULL 

) 

SELECT 

    entry_id, 

    source_id, 

    doi, 

    title, 

    publisher, 

    type, 

    publication_date, 

    language, 

    authors, 

    score, 

    container_title, 

    page, 

    isbn, 

    reference_count, 

    is_referenced_by_count, 

    citations, 

    cited_by, 

    volume, 

    issue, 

    abstract, 

    raw_data, 

    updated_at 

FROM distinct_entries 

 

----------------------------------- 

-- 3. int_entry_type.sql: 

 

WITH distinct_types AS ( 

    SELECT DISTINCT 

        LOWER(type) AS type 

    FROM {{ ref('stg_crossref') }} 

), 

new_types AS ( 

    SELECT 

        type 

    FROM distinct_types 

    LEFT JOIN {{ source('DWH', 'entry_type') }} et 

    ON distinct_types.type = et.entry_type_name 

    WHERE et.entry_type_id IS NULL 

), 

max_id AS ( 

    SELECT COALESCE(MAX(entry_type_id), 0) AS max_id 

    FROM {{ source('DWH', 'entry_type') }} 

) 
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SELECT 

    ROW_NUMBER() OVER (ORDER BY type) + (SELECT max_id FROM max_id) AS 

entry_type_id, 

    type AS entry_type_name, 

    NULL AS entry_type_desc 

FROM new_types 

 

----------------------------------- 

-- 4. int_author.sql: 

 

{{ config(materialized='table') }} 

 

WITH distinct_authors AS ( 

    SELECT DISTINCT 

        author->>'name' AS name, 

        author->>'orcid' AS orcid, 

        author->>'affiliations' AS organizations, 

        CURRENT_TIMESTAMP AS updated_at 

    FROM {{ ref('stg_crossref') }}, 

         jsonb_array_elements(authors) AS author 

    WHERE author->>'name' IS NOT NULL 

) 

SELECT 

    {{ surrogate_key(["name", "orcid", "organizations"]) }} AS author_id, 

    name, 

    orcid, 

    organizations, 

    updated_at 

FROM distinct_authors 

WHERE name IS NOT NULL 

 

----------------------------------- 

-- 5. int_entry_author.sql: 

 

{{ config(materialized='table') }} 

 

WITH base_entries AS ( 

    SELECT DISTINCT 

        id AS source_id, 

        doi, 

        title, 

        publisher, 

        authors, 

        CURRENT_TIMESTAMP AS updated_at, 

        {{ surrogate_key(["id", "doi", "title", "publisher"]) }} AS entry_id 

    FROM {{ ref('stg_crossref') }} 

    WHERE title IS NOT NULL 

), 

expanded_authors AS ( 

    SELECT 



86 

        be.entry_id, 

        a.value, 

        a.ordinality, 

        be.updated_at 

    FROM base_entries be 

    CROSS JOIN LATERAL jsonb_array_elements(be.authors) WITH ORDINALITY AS 

a(value, ordinality) 

), 

final AS ( 

    SELECT 

        entry_id, 

        REGEXP_REPLACE(CAST(value->>'name' AS VARCHAR), '<[^>]+>', '', 'g') AS 

author_name, 

        ordinality, 

        updated_at 

    FROM expanded_authors 

    WHERE value->>'name' IS NOT NULL 

) 

SELECT 

    entry_id, 

    author_name, 

    updated_at, 

    ordinality, 

    {{ surrogate_key(["entry_id", "author_name"]) }} AS 

entry_author_surrogate_id 

FROM final 

 

----------------------------------- 

--6. int_organization.sql: 

 

{{ config(materialized='table') }} 

 

WITH extracted_organizations AS ( 

    SELECT DISTINCT 

        CASE  

            WHEN jsonb_typeof(org) = 'object' THEN TRIM(org->>'name') 

            ELSE TRIM(BOTH '"' FROM org::text) 

        END AS organization_name, 

        CURRENT_TIMESTAMP AS updated_at 

    FROM {{ ref('stg_crossref') }}, 

         jsonb_array_elements(authors) AS author, 

         LATERAL jsonb_array_elements( 

             CASE  

                 WHEN jsonb_typeof(author->'affiliations') = 'array' THEN 

author->'affiliations' 

                 ELSE jsonb_build_array(author->'affiliations') 

             END 

         ) AS org 

    WHERE author->>'name' IS NOT NULL 

      AND author->'affiliations' IS NOT NULL 

) 
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SELECT 

    {{ surrogate_key(["organization_name"]) }} AS organization_id, 

    organization_name, 

    updated_at 

FROM extracted_organizations 

WHERE organization_name IS NOT NULL 

  AND organization_name <> 'null' 

 

----------------------------------- 

-- 7. int_author_organization.sql: 

 

{{ config(materialized='table') }} 

 

WITH base_authors AS ( 

    SELECT DISTINCT 

        a.author_id, 

        a.name AS author_name, 

        a.organizations::jsonb AS organizations, -- Cast organizations to 

jsonb 

        CURRENT_TIMESTAMP AS updated_at 

    FROM {{ ref('int_author') }} a 

    WHERE organizations IS NOT NULL 

), 

expanded_organizations AS ( 

    SELECT 

        ba.author_id, 

        org.value AS organization, 

        org.ordinality, 

        ba.updated_at 

    FROM base_authors ba 

    CROSS JOIN LATERAL jsonb_array_elements( 

        CASE 

            WHEN jsonb_typeof(ba.organizations) = 'array' THEN 

ba.organizations 

            WHEN jsonb_typeof(ba.organizations) = 'string' THEN 

jsonb_build_array(ba.organizations) 

            ELSE '[]'::jsonb 

        END 

    ) WITH ORDINALITY AS org(value, ordinality) 

), 

final AS ( 

    SELECT 

        author_id, 

        REGEXP_REPLACE(CAST(organization AS VARCHAR), '<[^>]+>', '', 'g') AS 

organization_name, 

        ordinality, 

        updated_at 

    FROM expanded_organizations 

    WHERE organization IS NOT NULL 

) 

SELECT 
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    author_id, 

    REGEXP_REPLACE(CAST(organization_name AS VARCHAR), '["]', '', 'g') AS 

organization_name, -- Remove double quotes 

    updated_at, 

    ordinality, 

    {{ surrogate_key(["author_id", "organization_name"]) }} AS 

author_organization_surrogate_id 

FROM final 

 

----------------------------------- 

-- intermediate sources.yml: 

 

version: 2 

 

sources: 

  - name: DWH 

    schema: dwh   

    tables: 

      - name: entry_type 

#      - name: organization 

      - name: author 

 

       

----------------------------------- 

 

-- ================================ 

-- TARGET MODELS 

-- ================================ 

 

----------------------------------- 

-- 8. author_organization.sql: 

 

{{ 

    config( 

        materialized = 'incremental', 

        incremental_strategy = 'delete+insert', 

        unique_key = 'author_organization_surrogate_id' 

    ) 

}} 

 

WITH author_organizations AS ( 

    SELECT 

        iao.author_id, 

        iao.organization_name AS name, 

        iao.ordinality, 

        iao.updated_at, 

        iao.author_organization_surrogate_id 

    FROM {{ ref('int_author_organization') }} iao 

) 

SELECT 
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    ao.author_id, 

    o.id AS organization_id, 

    ao.author_organization_surrogate_id, 

    CASE WHEN ao.ordinality = 1 THEN TRUE ELSE FALSE END AS 

is_primary_organization, 

    GREATEST(ao.updated_at, o.updated_at) AS updated_at 

FROM author_organizations ao 

JOIN {{ ref('organization') }} o 

  ON LOWER(TRIM(ao.name)) = LOWER(TRIM(o.name)) 

{% if is_incremental() %} 

WHERE GREATEST(ao.updated_at, o.updated_at) > ( 

    SELECT COALESCE(MAX(updated_at), '1900-01-01') 

    FROM {{ this }} 

) 

{% endif %} 

ORDER BY ao.author_id, ao.ordinality 

 

----------------------------------- 

-- 9. author.sql: 

 

{{ 

    config( 

        materialized = 'incremental', 

        incremental_strategy = 'delete+insert', 

        unique_key = 'author_id' 

    ) 

}} 

 

SELECT 

    author_id, 

    name, 

    orcid, 

    organizations, 

    updated_at 

FROM {{ ref('int_author') }} 

{% if is_incremental() %} 

WHERE updated_at > (SELECT COALESCE(MAX(updated_at), '1900-01-01') FROM {{ 

this }}) 

{% endif %} 

 

----------------------------------- 

--10. entry_author.sql: 

 

{{ 

    config( 

        materialized = 'incremental', 

        incremental_strategy = 'delete+insert', 

        unique_key = 'entry_author_surrogate_id' 

    ) 

}} 
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WITH entry_authors AS ( 

    SELECT 

        iea.entry_id, 

        iea.author_name as name, 

        iea.ordinality, 

        iea.updated_at, 

        iea.entry_author_surrogate_id 

    FROM {{ ref('int_entry_author') }} iea 

) 

SELECT 

    ea.entry_id, 

    a.author_id, 

    ea.entry_author_surrogate_id, 

    CASE WHEN ea.ordinality = 1 THEN TRUE ELSE FALSE END AS is_primary_author, 

    GREATEST(ea.updated_at, a.updated_at) AS updated_at 

FROM entry_authors ea 

JOIN {{ ref('author') }} a 

  ON LOWER(TRIM(ea.name)) = LOWER(TRIM(a.name)) 

{% if is_incremental() %} 

WHERE GREATEST(ea.updated_at, a.updated_at) > ( 

    SELECT COALESCE(MAX(updated_at), '1900-01-01') 

    FROM {{ this }} 

) 

{% endif %} 

ORDER BY ea.entry_id, ea.ordinality 

 

----------------------------------- 

-- 11. entry_type.sql: 

 

{{ config(materialized='incremental')}} 

 

SELECT 

    entry_type_id, 

    entry_type_name, 

    entry_type_desc 

FROM {{ ref('int_entry_type') }} 

{% if is_incremental() %} 

WHERE entry_type_id > (SELECT COALESCE(MAX(entry_type_id),0) FROM {{ this }}) 

{% endif %} 

 

----------------------------------- 

-- 12. entry.sql: 

 

{{ 

    config( 

        materialized = 'incremental', 

        incremental_strategy = 'delete+insert', 

        unique_key = 'entry_id' 

    ) 

}} 
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SELECT 

    ie.entry_id, 

    ie.source_id, 

    ie.doi, 

    ie.title, 

    ie.publisher, 

    ie.type, 

    et.entry_type_id, 

    ie.publication_date, 

    ie.language, 

    ie.score, 

    ie.container_title, 

    ie.page, 

    ie.isbn, 

    ie.reference_count, 

    ie.is_referenced_by_count, 

    ie.citations, 

    ie.cited_by, 

    ie.volume, 

    ie.issue, 

    ie.abstract, 

    ie.raw_data, 

    ie.updated_at 

FROM {{ ref('int_entry') }} ie 

JOIN {{ ref('entry_type') }} et 

    ON ie.type = et.entry_type_name 

{% if is_incremental() %} 

WHERE ie.updated_at > ( 

    SELECT COALESCE(MAX(x.updated_at), '1900-01-01') 

    FROM (SELECT updated_at FROM {{ this }}) AS x 

) 

{% endif %} 

ORDER BY ie.entry_id 

 

----------------------------------- 

-- 13. organization.sql: 

 

{{ 

    config( 

        materialized = 'incremental', 

        incremental_strategy = 'delete+insert', 

        unique_key = 'id' 

    ) 

}} 

 

SELECT 

    organization_id AS id, 

    organization_name AS name, 

    NULL AS address, 

    NULL AS contact_1, 

    NULL AS contact_2, 
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    NULL AS email, 

    NULL AS org_type, 

    updated_at 

FROM {{ ref('int_organization') }} 

{% if is_incremental() %} 

WHERE updated_at > (SELECT COALESCE(MAX(updated_at), '1900-01-01') FROM {{ 

this }}) 

{% endif %} 

 

----------------------------------- 

-- 14. entry_details_vw.sql: 

 

{{ config(materialized='view') }} 

 

WITH entry_data AS ( 

    SELECT 

        e.entry_id, 

        e.source_id, 

        e.doi, 

        e.title, 

        e.publisher, 

        e.publication_date, 

        e.language, 

        e.score, 

        e.container_title, 

        e.page, 

        e.isbn, 

        e.reference_count, 

        e.is_referenced_by_count, 

        e.citations, 

        e.cited_by, 

        e.volume, 

        e.issue, 

        e.abstract, 

        e.updated_at, 

        et.entry_type_id, 

        et.entry_type_name 

    FROM {{ ref('entry') }} e 

    JOIN {{ ref('entry_type') }} et 

      ON e.entry_type_id = et.entry_type_id 

), 

author_data AS ( 

    SELECT 

        ea.entry_id, 

        a.author_id, 

        a.name AS author_name, 

        a.orcid, 

        ea.is_primary_author, 

        ea.updated_at AS entry_author_updated_at 

    FROM {{ ref('entry_author') }} ea 

    JOIN {{ ref('author') }} a 
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      ON ea.author_id = a.author_id 

), 

organization_data AS ( 

    SELECT 

        ao.author_id, 

        o.id, 

        o.name AS organization_name, 

        ao.is_primary_organization, 

        ao.updated_at AS author_organization_updated_at 

    FROM {{ ref('author_organization') }} ao 

    JOIN {{ ref('organization') }} o 

      ON ao.organization_id = o.id 

) 

SELECT 

    ed.entry_id, 

    ed.source_id, 

    ed.doi, 

    ed.title, 

    ed.publisher, 

    ed.publication_date, 

    ed.language, 

    ed.score, 

    ed.container_title, 

    ed.page, 

    ed.isbn, 

    ed.reference_count, 

    ed.is_referenced_by_count, 

    ed.citations, 

    ed.cited_by, 

    ed.volume, 

    ed.issue, 

    ed.abstract, 

    ed.updated_at AS entry_updated_at, 

    ed.entry_type_id, 

    ed.entry_type_name, 

    ad.author_id, 

    ad.author_name, 

    ad.orcid, 

    ad.is_primary_author, 

    ad.entry_author_updated_at, 

    od.id as organization_id, 

    od.organization_name, 

    od.is_primary_organization, 

    od.author_organization_updated_at 

FROM entry_data ed 

LEFT JOIN author_data ad 

  ON ed.entry_id = ad.entry_id 

LEFT JOIN organization_data od 

  ON ad.author_id = od.author_id 

where od.id is not null 
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----------------------------------- 

 

-- ================================ 

-- macro 

-- ================================ 

 

-- surrogate_key.sql macro: 

 

{% macro surrogate_key(columns) %} 

  abs( 

    hashtext( 

      concat( 

        {%- for column in columns -%} 

          coalesce(cast({{ column }} as text), '') 

          {%- if not loop.last -%}, {% endif -%} 

        {%- endfor -%} 

      ) 

    ) 

  ) 

{% endmacro %} 

 

----------------------------------- 
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Appendix 6 – app.py python script 

 

from flask import Flask, render_template, request, jsonify, 

send_from_directory 

import os 

import psycopg2 

from config import DB_CONFIG 

import json 

 

app = Flask(__name__, static_folder='static') 

 

# Serve static files (fix missing CSS and images) 

@app.route('/static/<path:filename>') 

def static_files(filename): 

    return send_from_directory(app.static_folder, filename) 

 

# Database Connection 

def get_db_connection(): 

    try: 

        return psycopg2.connect(**DB_CONFIG) 

    except psycopg2.Error as e: 

        print(f"Database connection error: {e}") 

        return None 

 

# Add JSON filter 

@app.template_filter('fromjson') 

def fromjson(value): 

    """ 

    Safely convert a JSON-encoded string coming from the database into a 

Python 

    object for Jinja templates. If the value is already a Python list or dict, 

    just return it unchanged. 

    """ 

    if isinstance(value, (list, dict)): 

        return value 

    try: 

        return json.loads(value) 

    except (TypeError, json.JSONDecodeError): 

        return [] 

 

# Define the selected columns 

SELECTED_COLUMNS = """ 

    doi, title, author_name, is_primary_author, orcid, publisher, 

publication_date, 

    language, score, container_title, page, isbn, reference_count, 

is_referenced_by_count, 

    citations, cited_by, volume, issue, organization_name, entry_type_name, 

abstract 

""" 
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@app.route("/", methods=["GET"]) 

def home(): 

    """Render the search page with optional query results.""" 

    title_query = request.args.get("title", "").strip() 

    author_query = request.args.get("author", "").strip() 

    selected_types = request.args.getlist("types") 

    page = int(request.args.get("page", 0)) 

    per_page = int(request.args.get("per_page", 10)) 

    offset = page * per_page 

     

    conn = get_db_connection() 

    if not conn: 

        return "Database connection error", 500 

 

    try: 

        cur = conn.cursor() 

         

        # Get total counts first 

        cur.execute(""" 

            SELECT entry_type_name, COUNT(DISTINCT title) as count  

            FROM dwh.entry_details_vw  

            GROUP BY entry_type_name  

            ORDER BY entry_type_name 

        """) 

        total_type_counts = dict(cur.fetchall()) 

        entry_types = list(total_type_counts.keys()) 

 

        # Build search conditions 

        search_conditions = [] 

        params = [] 

         

        if title_query: 

            search_conditions.append("LOWER(title) LIKE LOWER(%s)") 

            params.append(f"%{title_query}%") 

             

        if author_query: 

            search_conditions.append("LOWER(author_name) LIKE LOWER(%s)") 

            params.append(f"%{author_query}%") 

 

        # Build type filter condition 

        if selected_types and "all" not in selected_types: 

            search_conditions.append("entry_type_name = ANY(%s)") 

            params.append(selected_types) 

 

        # Main query with author grouping 

        where_clause = f"WHERE {' AND '.join(search_conditions)}" if 

search_conditions else "" 

        sql_query = f""" 

            WITH GroupedEntries AS ( 

                SELECT DISTINCT ON (title) 
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                    title, entry_type_name, doi, publication_date, publisher, 

                    reference_count, is_referenced_by_count, 

organization_name, 

                    container_title, score, volume, issue, language, isbn, 

                    page, abstract, citations, cited_by, 

                    author_name 

                FROM dwh.entry_details_vw 

                WHERE is_primary_author = true 

                {' AND ' + ' AND '.join(search_conditions) if 

search_conditions else ''} 

            ), 

            AuthorDetails AS ( 

                SELECT  

                    g.*, 

                    json_agg( 

                        DISTINCT jsonb_build_object( 

                            'name', a.author_name, 

                            'orcid', a.orcid, 

                            'is_primary', a.is_primary_author 

                        ) 

                    )::json as author_details 

                FROM GroupedEntries g 

                JOIN dwh.entry_details_vw a ON g.title = a.title 

                GROUP BY g.title, g.entry_type_name, g.doi, 

g.publication_date, g.publisher, 

                         g.reference_count, g.is_referenced_by_count, 

g.organization_name, 

                         g.container_title, g.score, g.volume, g.issue, 

g.language, g.isbn, 

                         g.page, g.abstract, g.citations, g.cited_by, 

g.author_name 

            ) 

            SELECT * FROM AuthorDetails 

            ORDER BY title 

            LIMIT %s OFFSET %s 

        """ 

        params.extend([per_page, offset]) 

 

        # Build a second WHERE clause that matches the main query’s logic, 

        # i.e. it also limits the rows to the primary author of each title. 

        filtered_where_clause = ( 

            "WHERE is_primary_author = true" 

            + (f" AND {' AND '.join(search_conditions)}" if search_conditions 

else "") 

        ) 

 

        filtered_count_sql = f""" 

            SELECT entry_type_name, COUNT(DISTINCT title) AS count 

            FROM dwh.entry_details_vw 

            {filtered_where_clause} 

            GROUP BY entry_type_name 
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        """ 

        cur.execute(filtered_count_sql, tuple(params[:-2]) if params else ()) 

        filtered_type_counts = dict(cur.fetchall()) 

 

        # Execute main query 

        cur.execute(sql_query, tuple(params)) 

        rows = cur.fetchall() 

        columns = [desc[0] for desc in cur.description] 

        entries = [dict(zip(columns, row)) for row in rows] if rows else [] 

 

    except psycopg2.Error as e: 

        print(f"Database query error: {e}") 

        entries = [] 

        entry_types = [] 

    finally: 

        cur.close() 

        conn.close() 

 

    return render_template( 

        "index.html", 

        entries=entries, 

        entry_types=entry_types, 

        type_counts=total_type_counts, 

        filtered_type_counts=filtered_type_counts, 

        selected_types=selected_types, 

        title_query=title_query, 

        author_query=author_query, 

        page=page, 

        per_page=per_page, 

        entries_count=len(entries) 

    ) 

 

# API Endpoints 

@app.route("/api/entries", methods=["GET"]) 

def api_get_entries(): 

    """API to fetch bibliographic records with pagination.""" 

    general_query = request.args.get("q", "").strip() 

    title_query = request.args.get("title", "").strip() 

    author_query = request.args.get("author", "").strip() 

    page = int(request.args.get("page", 0))  # Get the page number, default to 

0 

    limit = 10  # Changed from 200 to 10 records per page 

    offset = page * limit  # Calculate offset for pagination 

 

    conn = get_db_connection() 

    if not conn: 

        return jsonify({"error": "Database connection error"}), 500 

 

    try: 

        cur = conn.cursor() 
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        sql_query = f""" 

            SELECT DISTINCT ON (title, author_name) {SELECTED_COLUMNS} 

            FROM dwh.entry_details_vw 

            WHERE (%s = '' OR title ILIKE %s OR author_name ILIKE %s OR 

publisher ILIKE %s) 

            AND (%s = '' OR title ILIKE %s) 

            AND (%s = '' OR author_name ILIKE %s) 

            ORDER BY title, author_name, organization_name 

            LIMIT {limit} OFFSET {offset} 

        """ 

 

        cur.execute(sql_query, ( 

            general_query, f"%{general_query}%", f"%{general_query}%", 

f"%{general_query}%", 

            title_query, f"%{title_query}%", 

            author_query, f"%{author_query}%" 

        )) 

 

        rows = cur.fetchall() 

        columns = [desc[0] for desc in cur.description] 

        results = [dict(zip(columns, row)) for row in rows] if rows else [] 

 

    except psycopg2.Error as e: 

        print(f"Database query error: {e}") 

        results = [] 

    finally: 

        cur.close() 

        conn.close() 

 

    return jsonify(results) 

 

if __name__ == "__main__": 

    app.run(debug=True) 
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Appendix 7 – Source Code Repository 

The full source code for the project described in this thesis, ‘Design and development of 

a bibliographic database architecture,’ is publicly available on GitHub at the following 

URL:  

https://github.com/ManiBiglari/Bibliographic-Database-Project" 

https://github.com/ManiBiglari/Bibliographic-Database-Project

