
Tallinn 2025

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

Mani Biglari 194233IASM

Design and development of a bibliographic
database architecture

Master’s thesis

Supervisor: Aleksei Tepljakov

 Ph.D.

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Arvutisüsteemide instituut

Mani Biglari 194233IASM

Bibliograafilise andmebaasi arhitektuuri
kavandamine ja arendamine

magistritöö

Juhendaja: Aleksei Tepljakov

 Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mani Biglari

11.05.2025

4

Abstract

Bibliographic databases are vital for research but often struggle with data heterogeneity

and limited analytical capabilities. This thesis addresses these issues by designing and

implementing a modern, scalable bibliographic database system incorporating

contemporary data engineering practices.

Key objectives included developing a normalized database schema, integrating the Data

Build Tool (DBT) for efficient ELT pipelines, and implementing a modular three-tier

architecture (PostgreSQL, Python/Flask backend, web frontend). The methodology

involved schema design, data ingestion from Crossref/OpenCitations, and DBT-managed

SQL transformations for data cleaning and structuring.

The resulting system demonstrates a robust architecture for bibliographic data

management. The integration of DBT significantly enhances the maintainability and

reliability of data transformations. This work provides a practical blueprint for applying

modern ELT principles with DBT in bibliographic information systems, improving

efficiency and analytical potential over traditional approaches.

This thesis is written in English and is 100 pages long, including 5 chapters, 10 figures

and 3 tables.

5

Annotatsioon

“Bibliograafilise andmebaasi arhitektuuri kavandamine ja

arendamine”

Bibliograafilised andmebaasid on teadustöö jaoks üliolulised, kuid sageli on neil

probleeme andmete heterogeensuse ja piiratud analüütiliste võimalustega. Käesolev

lõputöö käsitleb neid probleeme, kavandades ja implementeerides kaasaegse, skaleeritava

bibliograafilise andmebaasisüsteemi, mis rakendab tänapäevaseid andmetehnika

praktikaid.

Peamised eesmärgid hõlmasid normaliseeritud andmebaasiskeemi väljatöötamist, Data

Build Tool’i (DBT) integreerimist tõhusate ELT (Extract, Load, Transform) andmetorude

haldamiseks ning modulaarse kolmekihilise arhitektuuri (PostgreSQL, Python/Flask

taustaprogramm, veebipõhine kasutajaliides) implementeerimist. Metoodika sisaldas

skeemi kavandamist, andmete sissevõttu Crossrefi/OpenCitationsi API-dest ning DBT-

ga hallatud SQL-transformatsioone andmete puhastamiseks ja struktureerimiseks.

Valminud süsteem demonstreerib robustset arhitektuuri bibliograafiliste andmete

haldamiseks. DBT integreerimine parandab märkimisväärselt andmete

transformatsiooniprotsesside hooldatavust ja usaldusväärsust. See töö pakub praktilist

näidet kaasaegsete ELT põhimõtete ja DBT rakendamisest teadusinfosüsteemides,

parandades tõhusust ja analüütilist potentsiaali võrreldes traditsiooniliste lähenemistega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 100 leheküljel, 5 peatükki, 10

joonist, 3 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

DBT Data Build Tool

DDL Data Definition Language

DOI Digital Object Identifier

ELT Extract, Load, Transform

ERD Entity-Relationship Diagram

FK Foreign Key

JSON JavaScript Object Notation

NF Normal Form

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

OLAP Online Analytical Processing

OLTP Online Transaction Processing

ORCID Open Researcher and Contributor ID

PK Primary Key

RDBMS Relational Database Management System

SQL Structured Query Language

UI User Interface

7

Table of Contents
1 Introduction ... 10

1.1 Motivation and Problem Statement .. 10

1.2 Objectives and Research Questions .. 13
1.3 Thesis Structure .. 15

2 Background and Context ... 17
2.1 Bibliographic Databases in Academic Research .. 17

2.2 Metadata Standards and Formats .. 18
2.3 Relational Theory and Data Warehousing .. 20

2.4 Literature Review ... 21
2.5 Research Gaps .. 24

3 Methodology .. 26
3.1 The Three-Tier Architecture Pattern: A General Overview 26

3.2 Requirements and System Analysis ... 28
3.3 Database Architecture Design Strategy .. 34

3.4 Data Transformation Workflow with DBT .. 40
3.5 Application Tier Design Strategy ... 44
3.6 Research Evaluation Methods .. 47

4 Results ... 48
4.1 Implemented System Components ... 48

4.2 Database Implementation Results .. 49
4.3 Data Transformation Pipeline Results (DBT) .. 53

4.4 Application Tier Results ... 59
4.5 Evaluation Against Research Questions ... 61

5 Conclusion and Future Work ... 64
5.1 Summary of Findings and Contributions .. 64

5.2 Future Work .. 66
5.3 Concluding Remarks .. 68

References .. 69
Appendix 1 – Non-exclusive licence for reproduction and publication 72
Appendix 2 – Complete DDL for the dwh Schema .. 73
Appendix 3 – dwh_schema.yml configuration file .. 77
Appendix 4 – scripts of the dbt custom singular tests .. 80
Appendix 5 – scripts of the dbt models and the macro .. 82
Appendix 6 – app.py python script ... 95
Appendix 7 – Source Code Repository .. 100

8

List of figures

Figure 1. The Three-Tier Architecture in Software Engineering. 26

Figure 2. System Architecture Diagram. .. 30

Figure 3. Entity-Relationship Diagram for the Bibliographic Database. 37

Figure 4. ELT workflow showing Python ingestion, DBT transformation/testing, and

Flask app presentation. ... 41

Figure 5. Structure of the dbt and dwh schemas in pgAdmin. 50

Figure 6. Terminal Output of dbt run. ... 53

Figure 7. DBT Data Lineage Graph. .. 54

Figure 8. Terminal Output of dbt test. .. 58

Figure 9.  Interactive faceted‑search interface of the Bibliographic Library application.

 .. 59

Figure 10. Entry Detailed Information Display. ... 60

9

List of tables

Table 1. Conceptual Schema Primary Entities. .. 35

Table 2. Conceptual Schema Associative Entities. .. 35

Table 3. Mapping Conceptual Entities to Relational Tables. ... 38

10

1 Introduction

This chapter introduces the motivation behind the development of a new bibliographic

database, outlines the key challenges in the existing landscape, defines the scope of this

thesis, and sets forth the objectives and research questions that will guide this work.

Finally, it provides a brief overview of the thesis structure.

1.1 Motivation and Problem Statement

Importance of Bibliographic Databases

Bibliographic databases are a fundamental tool of the information society. Researchers,

students, professionals, and other individuals utilize them to locate relevant literature for

their work or areas of interest. For librarians, these databases serve as a means to store

bibliographic data concerning publications, their locations, and other details essential for

library operations. Furthermore, policymakers employ bibliographic databases to monitor

the progress of science, particularly to compare anticipated and actual outcomes and to

assess or compare disciplines, fields, or research groups [1]. The visibility of publications

in widely used bibliographic databases accessible on the World Wide Web is crucial for

authors and publishers, as it ensures the dissemination of their research [2]. Therefore,

accurate and up-to-date bibliographic data is indispensable for researchers across various

domains [3].

The utility and impact of these databases, however, are increasingly dependent on the

sophisticated computer science techniques employed to navigate and analyse their vast

contents. As the volume of scholarly output continues its exponential growth, the methods

for information retrieval and knowledge discovery built upon these databases have

necessarily evolved.

Historically, researchers relied on exact-match Boolean queries and early vector space

models to retrieve scholarly documents from databases such as PubMed and MEDLINE.

However, the limitations of Boolean-only interfaces and term-frequency–based

ranking—particularly in handling user intent and semantic relationships—have spurred a

11

wave of innovations in retrieval algorithms, citation-based analysis, knowledge graph

modelling, and artificial intelligence-driven search platforms.

Several lines of research have sought to measure and improve the speed and relevance of

scholarly search by leveraging advances in computer science algorithms and data

structures. Early foundational work addressed the challenge of layering relevance ranking

on databases that support only Boolean queries, such as PubMed. For instance, algorithms

developed by Hristidis et al. demonstrated how conjunctive query generation could

emulate ranked retrieval atop Boolean interfaces, achieving high relevance while

reducing query and data transfer costs [4], [5]. Complementary studies highlighted the

trade-offs between Boolean and ranked retrieval, showing that hybrid approaches often

outperform either method alone for systematic biomedical searches [6].

Concurrently, the incorporation of graph-based and citation-aware ranking methods

marked a significant evolution in academic search. Systems combining BM25 or TF-IDF

text scoring with citation network metrics—such as PageRank and in/out-degree

analysis—were found to enhance retrieval relevance on scholarly benchmarks [7], [8].

These hybrid IR frameworks have been validated on datasets such as the ACL Anthology,

with empirical improvements in nDCG, precision, and recall over text-only baselines.

The emergence of knowledge graphs and semantic embeddings further advanced

academic search capabilities. Explicit Semantic Ranking (ESR), as deployed in Semantic

Scholar, introduced knowledge graph embeddings to represent and rank queries and

papers based on their semantic connections, yielding measurable improvements in

retrieval quality on challenging queries [9]. Similar knowledge graph–driven methods,

such as MedGraph and narrative query graph ranking, demonstrated superior

performance to classical retrieval across extensive biomedical literature collections [10],

[11].

Most recently, artificial intelligence and large language models (LLMs) have been

integrated into academic search platforms. Systems like DocReLM leverage LLMs both

to annotate training data and to traverse citation graphs as “search agents,” achieving

substantial top-10 retrieval accuracy gains compared to Google Scholar and BM25 on

targeted arXiv datasets [12]. Additional studies have explored transformer-based

semantic matching, section-aware document alignment, and conversational interfaces

powered by embeddings, reporting further improvements—though often without detailed

latency or user-centric benchmarks [13], [14], [15].

12

While these advancements in search algorithms, ranking techniques, and AI-driven

analysis demonstrate the power of modern computer science in extracting knowledge

from scientific literature, their effectiveness fundamentally hinges on the quality,

structure, and accessibility of the underlying bibliographic data repositories.

Sophisticated retrieval systems require robust, scalable, and well-managed databases

capable of handling diverse and complex information efficiently.

Key Challenges

Despite the critical role of bibliographic databases, several key challenges persist in

existing systems. The complexity and variety of bibliographic data are continuously

increasing. Data are often provided by different and heterogeneous data sources and

require discovery and integration, posing a significant challenge. For instance, specialized

systems and targeted data mining efforts are sometimes necessary to effectively extract

and structure bibliographic data from specific national research portals, such as the

Estonian Research Information System (ETIS). Such portals can present unique and

persistent challenges, including a high incidence of publications lacking standard Digital

Object Identifiers (DOIs), which significantly complicates metadata retrieval and linking,

and inconsistencies in how data is made available, thereby necessitating tailored

extraction techniques. These techniques might include parsing directly from PDF

documents or even employing web scraping methodologies when API-provided

information is incomplete or lacks direct links to source files, all in an effort to compile

usable bibliographic entries [16]. Moreover, enforcing a multidimensional approach to

the analysis and management of bibliographic data remains an area where a reference

design pattern and a specific conceptual model are still lacking [3]. While the need for

such a multidimensional perspective is not new, it needs to be extended beyond the

analysis phase to the design of bibliographic databases and data access services.

Traditional relational database management systems, while suitable for day-to-day data

storage and transactional processing, may not be appropriate for performing complex

analytical tasks on a regular basis.

Another significant challenge is author name disambiguation, which arises due to

different authors sharing the same name. Existing strategies for addressing this problem

include author grouping and author assignment methods, often relying on properties like

co-authors, institutions, and keywords. However, these methods can be limited and

13

require sophisticated feature extraction and machine learning techniques for effective

resolution [17].

Furthermore, the process of extracting and indexing textual data from publications,

including handling synonymous relationships, compound terms, stemming,

lemmatization, and stop-word removal, is crucial for topic-based analysis. Describing a

collection of publications in terms of the topics it contains is essential for understanding

research areas and identifying relevant trends. Integrating these diverse functionalities

and providing flexible tools for data transformation and analysis remains a significant gap

in many existing bibliographic database systems. The need for flexibly scaling data

aggregation along analysis dimensions according to different aggregation criteria is often

not well-supported [3].

Scope of the Thesis

This thesis addresses the aforementioned challenges by proposing the design and

implementation of a comprehensive bibliographic database system. The scope of this

work includes:

• Developing a scalable and normalized database architecture capable of storing and

managing large volumes of heterogeneous bibliographic data.

• Integrating Data Build Tool (DBT) to streamline and manage data transformation

processes within the database.

• Implementing a three-tier system architecture consisting of a database layer, a

Python-based backend for data processing and API provision, and a user-friendly

frontend for data interaction.

This thesis will focus on demonstrating the feasibility and benefits of this integrated

approach for enhancing the efficiency and analytical capabilities of bibliographic data

management.

1.2 Objectives and Research Questions

Based on the motivation above, the main objectives of this thesis are defined as follows.

14

Design a scalable and normalized database architecture

Develop a relational schema for the bibliographic database that is fully normalized and

scalable. This includes modelling bibliographic records (e.g. articles, books, conference

papers) and related entities (authors, organisations, etc.) in a way that minimizes

redundancy and maximizes data integrity. The design should ensure that common

operations (insertion of new records, updates to metadata, queries for references) are

efficient and that the data remains consistent as it grows [18].

Integrate DBT for data transformation and loading

Incorporate Data Build Tool (DBT) into the data pipeline to perform Extract-Load-

Transform (ELT) processes within the database environment. Unlike traditional ETL

(Extract, Transform, Load) processes where data is transformed before loading, this

project adopts the ELT paradigm, loading raw data first and then leveraging DBT to

orchestrate transformations directly within the PostgreSQL database. By using DBT, the

system should improve maintainability and accuracy of the data transformation

workflows. This objective involves comparing the DBT-based approach to traditional

ETL in terms of development agility and data quality. Notably, DBT’s modular, SQL-

driven transformations and testing framework can lead to faster development cycles and

improved data reliability [19]. The thesis will implement transformation models in DBT

to clean, normalize, and enrich incoming bibliographic records from various sources,

demonstrating how this approach enhances the database’s quality and consistency.

Implement a three-tier application

Develop the bibliographic system as a three-tier architecture, with a relational database

as the data tier, a Python-based backend service as the middle tier, and a web-based

frontend as the presentation tier. The backend will expose an API or interface to the data,

enforcing business rules and handling interactions between the user interface and the

database. The frontend will provide a user-friendly access for tasks such as searching

references and displaying records. This objective will validate the benefits of a three-tier

design in the context of bibliographic databases, such as independent scalability of each

tier and improved security (since the client does not directly access the database).

15

Research Questions

1. How can a scalable and normalized relational database schema be effectively

designed to accommodate the diverse metadata requirements of bibliographic

records for bibliometric analysis?

2. How does integrating DBT compare to traditional ETL (Extract, Transform,

Load) approaches in terms of efficiency, maintainability, and flexibility for

transforming heterogeneous bibliographic data?

3. How can a three-tier architecture be implemented to provide a modular and

accessible bibliographic database system that effectively separates data storage,

business logic, and user interface concerns?

4. What are the key considerations and challenges in applying DBT for specific

bibliographic data transformation tasks, such as data cleaning, entity linking, and

the generation of derived bibliometric variables?

1.3 Thesis Structure

The remainder of this thesis is organized as follows.

Chapter 2: Background and Context – This chapter establishes the foundational

knowledge for the research. It delves into the significance of bibliographic databases in

academic research, examines existing metadata standards and formats such as BibTeX

and Dublin Core, and discusses relational database theory and data warehousing concepts

relevant to the project. A literature review of current bibliographic systems and data

transformation tools is presented, highlighting research gaps, particularly the limited

application of modern data transformation methodologies like DBT in this domain.

Chapter 3: Methodology – This chapter details the systematic approach taken for the

design and development of the bibliographic database system. It introduces the three-tier

architecture (Presentation, Logic, and Data tiers) adopted for the project and elaborates

on the system requirements and analysis that guided the design. The database architecture

design strategy is presented, covering conceptual, logical, and physical schema design,

including normalization, partitioning, and indexing strategies. The chapter explains the

data transformation workflow using Data Build Tool (DBT), detailing the ELT process,

model implementation strategy (staging, intermediate, target models), and the planned

testing approach. Furthermore, the application tier design for the Flask-based backend

16

and web frontend is outlined, along with the research evaluation methods used to assess

the system against the research questions.

Chapter 4: Results – This chapter presents the outcomes and findings from the

implementation of the bibliographic database system. It describes the successfully

implemented system components across the data, logic, and presentation tiers. The

database implementation results are detailed, including the final logical and physical

schema, partitioning, indexing, and full-text search capabilities. The chapter then

showcases the data transformation pipeline results achieved with DBT, including

workflow execution, model implementation specifics (JSON parsing, surrogate key

generation, incremental loading), and the outcomes of the comprehensive testing strategy.

Finally, the application tier results are presented, demonstrating the functionality of the

Flask web application, its interactive user interface features (search, filtering, pagination,

detailed record display), and the basic JSON API endpoint. The chapter concludes with

an evaluation of these results against the initial research questions.

Chapter 5: Conclusion and Future Work – The final chapter summarizes the key findings

and contributions of the thesis. It revisits the initial problem statement and objectives,

demonstrating how the developed system addresses the challenges of bibliographic data

management. The research questions are explicitly answered based on the evaluation

presented in Chapter 4. The limitations of the current work, such as prototype scale and

data source scope, are acknowledged. Finally, several avenues for future work are

proposed, including expanding data integration, implementing advanced bibliometric and

network analysis, leveraging machine learning and AI for semantic search and knowledge

extraction, enhancing the frontend and visualization capabilities, and exploring cloud

deployment and further performance optimization.

17

2 Background and Context

This chapter provides the essential background and context for the thesis. It begins by

examining the crucial role of bibliographic databases in academic research, then discusses

the prevalent metadata standards and formats used in these databases. Following this, it

delves into the fundamental concepts of relational theory and data warehousing,

highlighting their relevance to bibliographic data management. Finally, it reviews related

work in the field of bibliographic systems and the use of data transformation tools.

2.1 Bibliographic Databases in Academic Research

Definition and Role

Bibliographic databases contain bibliographic records which provide descriptive

information about relevant information sources. They facilitate literature discovery by

allowing users to search and browse publications based on various criteria such as

authors, affiliations, titles, and publication dates [20]. Furthermore, bibliographic

databases are essential for citation tracking, enabling the identification of influential

works and the understanding of the relationships between different publications through

citations. This citation information is crucial for researchers to understand the lineage and

impact of scholarly work [21]. The visibility of publications in these databases ensures

the dissemination of research findings to a wider audience [1].

State of the Art

Several existing solutions for bibliographic databases are available, including both

commercial and open-access options. Examples of widely used scholarly bibliographic

databases for computer scientists include Google Scholar, Microsoft Academic Search,

ACM Digital Library, IEEE Xplore, DBLP Computer Science Bibliography, and

CiteSeerX [2]. Initiatives like Crossref and OpenCitations aim to provide openly

accessible citation metadata [22].

18

However, these existing systems often have limitations. Some are proprietary in nature,

which can restrict access and usage [23]. Even those that are freely accessible might have

heterogeneous inclusion requirements and varying levels of data quality. Furthermore,

many traditional systems lack integrated tools for flexible data transformation and

analysis. Some databases are primarily designed for information retrieval rather than in-

depth bibliometric analysis. The need for flexible scaling of data aggregation along

analysis dimensions according to different criteria is often not well-supported. Moreover,

the challenge of integrating data from different and heterogeneous data sources remains

a significant hurdle [3]. While some systems offer APIs or OAI-PMH interfaces for data

access, others, like Google Scholar and the Collection of Computer Science

Bibliographies, do not [2].

2.2 Metadata Standards and Formats

Several metadata standards and formats are used for describing and exchanging

bibliographic information.

BibTeX

BibTeX is a widely accepted bibliographic metadata format, particularly within the

computer science community. It is often used with the LaTeX word-processing

application. A BibTeX file is a plain text file containing one or more entries, each

describing a publication. Each entry starts with an entry type (e.g., @article, @book,

@inproceedings) followed by a citation key and a set of fields enclosed in curly braces.

These fields represent different attributes of the publication, such as author, title, journal,

year, volume, and pages. The citation key is a unique identifier used to reference the entry

within a LaTeX document. When the LaTeX document is compiled, BibTeX generates a

list of references based on the selected citation style and the information in the BibTeX

entries. BibTeX is crucial for referencing in computer science due to its simplicity,

widespread support, and integration with document preparation tools used by researchers.

Many bibliographic databases offer BibTeX as an export format [2].

Dublin Core

The Dublin Core Metadata Initiative (DCMI) developed a common system for using

metadata to describe web resources. This system aims to allow website authors to describe

19

their content in a way that can be discovered by keyword-based search engines. Dublin

Core consists of a set of flexible metadata elements, including a core set of 15 elements

and some additional ones. Examples of core elements include title, type, creator, issued,

and bibliographicCitation. All elements are optional, can be repeated, and can appear in

any order. Dublin Core Metadata can be presented in RDF/XML or embedded in the

<head> section of HTML documents using <meta> tags. While Google Scholar supports

Dublin Core tags, it is not recommended for journal papers as they are considered to

“work poorly” [2].

BibTeX and Dublin Core are detailed due to their prominence in academic research and

web metadata, respectively. Beyond these, other bibliographic data formats and protocols

also serve various functions within the scholarly communication landscape. However,

these are considered less central to the core design of this particular thesis—which

prioritizes ingesting and transforming rich metadata directly from modern APIs like

Crossref—and thus are mentioned more briefly. These additional formats and protocols

include:

• MARC (Machine-Readable Cataloging) is a standard developed by the Library of

Congress [2].

• MODS (Metadata Object Description Schema) is another metadata standard

emanating from the Library of Congress and defines the structure of bibliographic

records. MODS can be converted to and from BibTeX and EndNote [24].

• PRISM (Publishing Requirements for Industry Standard Metadata) is another

metadata standard [2].

• Highwire Press tags are HTML meta tags recommended by Google Scholar for

indexing [2].

• RIS (Research Information Systems) format was developed by Thomson Reuters

for applications like EndNote and ReferenceManager to import and export

bibliographic metadata. RIS is also a frequently offered export format by

bibliographic databases [2].

• DBLP XML is a special XML format developed by the DBLP Computer Science

Bibliography, essentially BibTeX written in XML [2].

• OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is a

protocol used to exchange metadata [25].

20

2.3 Relational Theory and Data Warehousing

Operational vs. Analytical Databases

Relational database management systems (RDBMS) are traditionally used for day-to-day

data storage and transactional processing, which is characteristic of Online Transaction

Processing (OLTP) systems. OLTP systems are designed for high transaction volumes

and focus on data integrity and consistency through normalization [26]. In contrast,

Online Analytical Processing (OLAP) systems are designed for performing complex

analytical tasks on large datasets, often involving multiple scans, joins, and summaries.

OLAP systems often use a multidimensional data model, such as a star schema, to

facilitate fast interactive browsing and analysis of hierarchical and summarized data. The

response time of complex queries is a crucial factor in designing OLAP applications [1],

[26].

Normalization and Data Modelling

Normalization is a process of applying a set of rules to database design, primarily to

achieve minimum redundancy in the data. The goal is to organize data in tables in such a

way that dependencies between attributes are clear and logical, reducing the likelihood of

data anomalies during updates and insertions [27]. Basic principles of normalization

include [18]:

• First Normal Form (1NF): Each cell in a table should contain a single value, and

each column should have a unique name.

• Second Normal Form (2NF): The table must be in 1NF, and all non-key attributes

must be fully functionally dependent on the entire primary key.

• Third Normal Form (3NF): The table must be in 2NF, and all non-key attributes

must be non-transitively dependent on the primary key (i.e., no non-key attribute

depends on another non-key attribute).

For bibliographic databases, data modelling involves identifying the key entities (e.g.,

publications, authors, journals) and their relationships. An entity-relationship diagram

(ERD) is often used to visually represent the database schema and the connections

between tables [27]. Primary keys uniquely identify records within a table, and foreign

keys establish relationships between tables by referencing primary keys in other tables.

21

Data Warehouse vs. Database

Typical bibliographic needs for managing and retrieving publication metadata lean

toward normalized operational structures (databases) to ensure data integrity,

consistency, and efficient transactional operations like adding, updating, and searching

records [26]. The relational model is well-suited for storing the structural information

found in scientific articles [28].

However, bibliographic data can also benefit from partial warehousing and analytics

features. For instance, OLAP technology can be applied to bibliographic databases for

tasks such as periodic and ad hoc reporting, quality assurance, data integrity checking,

and for research policy makers to monitor scientific development. This involves creating

a data warehouse, which is a subject-oriented, integrated, time-variant, and non-volatile

collection of data in support of management’s decision-making process. Data warehouses

often use a multidimensional model (e.g., star schema) with fact tables containing

measures (e.g., number of publications, citations) and dimension tables providing the

context for analysis (e.g., year of publication, author affiliation. While building a full

bibliographic data warehouse can be time-consuming, incorporating some analytical

capabilities alongside a normalized operational database can enhance its utility for

bibliometric analysis) [1], [26].

While building a full bibliographic data warehouse can be time-consuming, incorporating

analytical capabilities alongside a normalized operational database can enhance its utility.

A well-structured and documented schema, even if normalized like the dwh schema

implemented in this project, facilitates direct connection using standard SQL clients (e.g.,

pgAdmin, DBeaver) for complex, ad-hoc analytical queries and enables integration with

external Business Intelligence platforms (e.g., Tableau, Power BI) for sophisticated

visualization and reporting beyond the scope of typical OLTP applications.

2.4 Literature Review

This section provides a critical analysis of existing literature concerning bibliographic

databases and related methodologies. It aims to establish the context for this research by

examining the current state of bibliographic systems and identifying gaps in their

documented development and architecture. Furthermore, it explores the potential

22

application of data build tools (DBT) within academic contexts, specifically concerning

bibliographic data.

Existing Bibliographic Systems

As it was mentioned previously, the literature review on this particular topic which

includes the actual design and implementation is very limited, however, it was possible

to find a published work by K. Karamcheti’s titled as “Design and implementation of

bibliographic database” (Master’s Thesis, University of Nevada, Las Vegas, 2007)

Karamcheti investigated the design and implementation of a bibliographic database. The

thesis focused on the identification and implementation of recursive queries. It detailed

the creation of various database tables, defining primary and foreign keys, and presented

the database entity relationship using UML notations. The database included a master

table with cite key entries and their corresponding entry types for different bibliographic

categories such as articles, books, and proceedings [18]. While Karamcheti’s work

outlines the structural design of the database, it does not delve into the intricacies of its

architecture or the detailed development process beyond the conceptual and logical

modelling.

Several other academic works address aspects of bibliographic databases, each with a

specific focus:

Modelling and Analysis

Ferrara and Salini discuss ten challenges in modelling bibliographic data for bibliometric

analysis, proposing a multidimensional model. Their work emphasizes the need for a

multidimensional approach not only in analysis but also in database design and data

access services [3]. Mallig developed a relational database schema specifically for

bibliometric analysis, providing SQL queries to demonstrate its utility in calculating

bibliometric indicators [28]. Cobo et al. presented a relational database model tailored for

science mapping analysis, focusing on its application in various stages of the science

mapping workflow [27]. These works primarily concentrate on the logical modelling and

the analytical capabilities of bibliographic data rather than providing comprehensive

details on the physical architecture or the development process.

23

Bibliometric Applications and OLAP

Hudomalj and Vidmar explored the application of Online Analytical Processing (OLAP)

technology to bibliographic databases, demonstrating its utility for reporting, quality

assurance, and research policy analysis [1]. Georgieva-Trifonova proposed

bgMath/OLAP, a system for warehousing and OLAP analysis of bibliographic data,

aimed at monitoring and evaluating scientific development [26]. These studies highlight

the analytical benefits of specific technologies applied to bibliographic data but do not

provide an in-depth account of the underlying database development or architectural

choices beyond the adoption of OLAP principles.

Indexing and Data Integration

Kusserow and Groppe surveyed the technical requirements for getting indexed by widely

used bibliographic databases, offering insights into data formats and protocols [2]. Do et

al. proposed a framework for integrating bibliographic data from heterogeneous digital

libraries, including components for data collection, parsing, and duplicate checking [25].

Their work touches upon the challenges of data integration but does not detail the

complete architecture of an integrated bibliographic database from the ground up.

Author Name Disambiguation and Data Quality

Silva focused on feature extraction for author name disambiguation in a bibliographic

database, using the Authenticus database for Portuguese researchers [17]. Manghi et al.

presented GDup, a system for entity deduplication in big data graphs for scholarly

communication, addressing the problem of duplicate entities arising from multiple data

sources [29]. These studies address specific data quality issues and propose solutions, but

they do not provide a holistic view of bibliographic database development and

architecture.

Network Analysis and Citation Analysis

Butt et al. developed a systematic metadata harvesting workflow for analysing scientific

networks using data from Crossref and OpenCitations [22]. Zupic and Čater introduced

various bibliometric methods, including citation analysis, co-citation analysis, and

bibliographical coupling, providing a workflow for conducting bibliometric studies [21].

24

Smalheiser et al. presented a web-based tool for citation analysis, illustrating different

types of citation relationships [30]. Mallig also discussed the use of a structured

bibliometric database as a resource for various bibliometric networks [28]. While these

works extensively utilize bibliographic data for network and citation analysis, they do not

primarily focus on the development and architectural aspects of the underlying databases

themselves.

2.5 Research Gaps

While the reviewed literature offers valuable insights into various aspects of bibliographic

databases, many works lack comprehensive details regarding the end-to-end development

process and the underlying system architecture. Some limitations and areas of

incompleteness include:

• Limited Architectural Detail: Many studies focus on conceptual models or

specific functionalities like analysis or disambiguation without providing a

thorough exposition of the database architecture, including hardware

considerations, specific software components, and data flow mechanisms.

• Scarcity of Development Process Documentation: The process of building and

deploying a bibliographic database, including data acquisition strategies, schema

evolution, maintenance procedures, and scalability considerations, is often not

presented.

• Focus on Logical vs. Physical Implementation: The emphasis tends to be on the

logical design of the database schema rather than the physical implementation

details, such as indexing strategies, partitioning schemes, and optimization

techniques for query performance.

• Data Quality Challenges: Several sources acknowledge the persistent challenges

of data quality in bibliographic databases, including heterogeneity,

incompleteness, and the presence of duplicates. However, detailed accounts of

strategies and architectures specifically designed to address these issues

throughout the development lifecycle are often missing.

• Limitations of Existing Online Databases: The literature points out that online

bibliographic databases are often designed primarily for information retrieval

rather than comprehensive bibliometric analysis, leading to limitations in data

25

accessibility and quality for analytical purposes. This motivates the development

of in-house databases, but their detailed construction remains undocumented.

• Challenges in Network Data Management: While network analysis of

bibliographic data is a prominent area, the complexities of storing and efficiently

querying network data within a bibliographic database architecture are not always

fully addressed.

Use of modern data transformation methodologies in Academic Context

A thorough review of the provided sources reveals no direct mention or precedent of using

data build tools (DBT) or similar modern data transformation methodologies specifically

within the context of bibliographic databases or academic research data management. The

literature predominantly discusses traditional database management systems, relational

models, and OLAP technologies for organizing and analysing bibliographic information.

The focus is on schema design, query optimization within these established paradigms,

and addressing data quality through techniques like deduplication and record linkage.

The absence of discussions around modern data transformation methodologies in the

provided sources suggests a potential gap in the application of contemporary data

transformation practices within the academic bibliographic domain. DBT’s focus on

modular data modelling, version control for data transformations, and automated testing

could offer significant advantages in building and maintaining robust and analytical-ready

bibliographic databases. This includes streamlining the process of cleaning, transforming,

and integrating data from diverse sources, which is a recurring challenge highlighted in

the literature.

The research questions introduced in this work in Section 1.2 are based on the gaps

identified above.

26

3 Methodology

This chapter details the methodological approach undertaken in the development of the

bibliographic database. The design and implementation of the system have been guided

by principles of modularity, scalability, and maintainability, resulting in a three-tier

architectural pattern. Furthermore, the selection of specific tools and technologies was

driven by their suitability for managing bibliographic data, facilitating robust data

transformations, and providing an accessible user interface.

3.1 The Three-Tier Architecture Pattern: A General Overview

Three-tier architecture is a foundational design pattern in modern software engineering

that partitions applications into three logical and often physical domains: the presentation

tier (user interface), the logic or application tier (business logic, workflows, validation),

and the data or persistence tier (databases, storage systems) [31], [32]. As illustrated

in Figure 1, this model logically separates an application into three distinct,

interconnected layers or tiers, each responsible for a specific set of functionalities:

End User

Presentation Tier (Frontend)

Responsibilities:
- User Interface (UI/GUI)

- Display Info Collect Input

Logic Tier (Backend/Application)

Responsibilities:
- Business Logic Rules

- Processing Coordination

Data Tier (Backend/Database)

Responsibilities:
- Data Storage Management

- Data Integrity Security

Interacts

Requests Responses

Data Operations Returns Data

Figure 1. The Three-Tier Architecture in Software Engineering.

27

1. Presentation Tier (Frontend): This is the topmost layer, responsible for

interacting with the user. It displays information to the user and collects user input.

Its primary role is user interface (UI) management, handling how data is presented

and how user actions are captured. It communicates user requests to the logic tier

and presents responses received from it. Examples include web browsers

rendering HTML pages, graphical user interfaces (GUIs) in desktop applications,

or mobile app interfaces.

2. Logic Tier (Backend/Application/Middle Tier): This tier acts as the

intermediary between the Presentation and Data tiers. It contains the core business

logic, processing rules, calculations, and workflows of the application. It receives

requests from the Presentation tier, processes them (often involving complex

operations or coordination), interacts with the Data tier to fetch or store

information, and sends the results back to the Presentation tier. This layer ensures

that business rules are consistently applied and isolates the presentation layer from

direct database access. Examples include web servers running application code

(like Python/Flask, Java Servlets, Node.js) or dedicated application servers.

3. Data Tier (Backend/Database Tier): This is the foundational layer responsible

for the persistent storage and management of application data. It typically consists

of a database management system (DBMS) where data is stored, retrieved,

updated, and deleted. The Logic Tier communicates with this tier to perform data

operations. This layer ensures data integrity, security, and availability. Examples

include relational databases (like PostgreSQL, MySQL), NoSQL databases, or

other data storage systems.

Benefits of the Three-Tier Architecture:

• Modularity: Each tier can be developed, managed, and updated independently of

the others, as long as the interfaces between them remain stable. This allows

different teams to work on different tiers concurrently.

• Scalability: Each tier can be scaled independently based on specific load

requirements. For example, if the application logic becomes a bottleneck, more

resources can be allocated to the Logic Tier without affecting the other tiers.

28

• Flexibility & Maintainability: Changes or technology upgrades in one tier (e.g.,

switching the database or redesigning the UI) have minimal impact on the other

tiers, simplifying maintenance and allowing for easier technology evolution.

• Improved Security: The separation enforces indirect access to the database (only

via the Logic Tier), enhancing security by preventing direct client exposure to the

data layer.

• Reusability: The business logic encapsulated in the Logic Tier can potentially be

reused by multiple presentation interfaces (e.g., a web UI and a mobile app).

This architectural pattern provides a robust foundation for developing complex

applications by promoting a clear separation of concerns, enhancing scalability, and

simplifying development and maintenance.

3.2 Requirements and System Analysis

The development of a robust bibliographic database necessitates a well-defined

architecture and a thorough understanding of system requirements. This section outlines

the fundamental design principles, the rationale behind the selection of specific

technologies, the chosen data sources, and the core functionalities implemented within

this project.

System Architecture

To ensure a clear separation of concerns and facilitate maintainability and scalability, a

three-tier architecture has been adopted for this bibliographic database project, as

illustrated in Figure 2. This architectural pattern divides the system into 3 distinct layers:

1. Data Layer:

This foundational layer is responsible for the persistent storage of bibliographic data. It

houses the PostgreSQL database, which stores both the initially ingested raw data (e.g.,

in the raw_crossref table) and the subsequently transformed and structured data

produced by the Logic Layer. The database acts as the central repository, ensuring data

integrity and availability for processing and analysis. The challenges associated with

managing large volumes of bibliographic data [33] necessitate a robust and scalable

29

database solution like PostgreSQL. External data sources, namely the Crossref and

OpenCitations APIs, provide the raw information that is ultimately stored in this layer.

2. Logic Layer:

This intermediary layer encapsulates the core processing logic, acting as the bridge

between the external data sources and the final structured data used by the Presentation

Layer. It encompasses two key functions:

• Data Ingestion and Loading:

 The Python script (crossref_opencitations_load.py) resides in this

layer. It handles the logic for interacting with the external Crossref and

OpenCitations APIs, fetching the required metadata and citation information,

performing initial parsing, and loading this raw data into the raw_crossref

table within the Data Layer.

• Data Transformation:

We utilize DBT (Data Build Tool) to manage the SQL-based transformations

within this layer. DBT’s framework allows us to define data models as SQL

queries that operate on the data stored in the Data Layer. These models are

systematically organized into a pipeline comprising staging models (for initial

cleaning and pre-processing steps), intermediate models (for structuring core

entities and applying complex logic), and target models (optimized for the final

schema and presentation). This layered approach ensures that data is progressively

cleansed, transformed, structured, and integrated to meet analytical and

presentation requirements. The use of DBT promotes version control for our data

transformations, facilitates testing, and enhances the overall maintainability and

reproducibility of our data pipelines. This aligns with the principles of fostering

reproducible research, as mentioned in the context of shared platforms for

bibliographic data [33]. The incremental building of these models, facilitated by

DBT, allows us to process only new or changed data, improving the efficiency

and reducing the processing time of our data pipelines [34].

3. Presentation Layer:

Intended to provide user interaction via a Flask-based web application (app.py). This

layer was designed to consume processed data from the Logic Layer (specifically a

30

planned presentation view), focusing on user experience and data display without

handling underlying storage or complex transformation logic.

Choice of Tools

The selection of tools was driven by their suitability for each architectural layer,

capabilities in handling bibliographic data, alignment with modern data engineering

practices, community support, and open-source nature.

• PostgreSQL: Chosen as the RDBMS for its reliability, advanced SQL features,

data integrity support, scalability options (partitioning, indexing), and strong

community support, making it suitable for managing both raw and transformed

bibliographic data. Its scalability options, including replication and partitioning,

provide a path for handling future growth in data volume and user traffic [35].

• Python: Selected for backend logic (data ingestion, API) due to its versatility,

extensive libraries for API/database interaction, and widespread adoption.

• DBT (Data Build Tool): Adopted to manage SQL transformations within

PostgreSQL. The key reasons were its ability to version control SQL

transformations, facilitate modular development, automate testing, and improve

Presentation Layer

Logic Layer

Data Layer

Flask App
(app.py)

DBT Transformations
(Staging, Intermediate,

Target Models)

Python Logic
(crossref_opencitations_load.py)

PostgreSQL DB
Crossref API

OpenCitations API

User

Figure 2. System Architecture Diagram.

31

the maintainability and reliability of the data pipeline, aligning with modern data

warehousing practices. DBT’s focus on data quality and the structured

management of transformations aligns with best practices in data warehousing

and data integration [36].

• Flask: Chosen for the presentation tier due to its lightweight nature and ease of

use for developing web applications and APIs with Python, suitable for a proof-

of-concept.

• Docker: Planned for containerizing the PostgreSQL database to ensure a

reproducible and isolated environment for development and testing, simplifying

setup.

Key Libraries and Packages Used

Beyond the core frameworks, several key Python libraries were essential for the project’s

functionality, identified via import statements in the project’s scripts:

• Flask: Provided the foundation for the web application, handling routing,

requests, and responses (app.py).

• psycopg2: Enabled interaction with the PostgreSQL database, allowing Python

scripts (app.py, crossref_opencitations_load.py) to execute

SQL queries and fetch results.

• requests: Used by the data ingestion script

(crossref_opencitations_load.py) to make HTTP calls to the

Crossref and OpenCitations APIs.

• pandas: Utilized in the ingestion script

(crossref_opencitations_load.py) for previewing fetched data in a

structured DataFrame format before database insertion.

• subprocess: Employed by the ingestion script

(crossref_opencitations_load.py) to execute the dbt run

command programmatically via the trigger_dbt() function.

• Other standard libraries like os, json, logging, sys, and urllib.parse

were used for file system interaction, JSON handling, logging, system functions,

and URL manipulation, respectively.

32

Choice of Data Sources

The selection of data sources was guided by the need for comprehensive and openly

accessible bibliographic and citation metadata.

• Crossref: Chosen as the primary source for publication metadata due to its role

as an open registry for DOIs and provider of rich, near real-time scholarly

metadata.

• OpenCitations: Selected to complement Crossref by providing open citation

links, crucial for enabling citation analysis. Using both aimed to provide a

comprehensive view without paywall restrictions.

The use of both Crossref and OpenCitations as data sources ensures a comprehensive

view of scholarly communication without the limitations of paywalls or licensing

restrictions.

Functional Requirements

The bibliographic database was designed to meet several key functional requirements:

• Bibliographic Record Storage: Store diverse entry types (articles, proceedings,

books) with essential metadata (DOI, title, authors, dates) in a structured format.

• Metadata Management: Effectively manage relationships between entities

(authors, affiliations, entries) using the relational model.

• Scalable Data Ingestion: Design an ingestion process capable of handling

potentially large data volumes from APIs.

• Analytical Queries: Ensure the final schema supports common analytical queries

(citation counts, co-authorship).

• Integration with Transformations: Integrate DBT seamlessly into the workflow

for transforming raw data into a clean, reliable schema with enforced data

integrity.

• Type-Based Filtering: Allow users to filter search results based on specific

publication types (e.g., journal-article, proceedings-paper) selected via interactive

checkboxes in the user interface. The interface should display counts of matching

records per type alongside the total counts for context.

33

• Detailed Record Display: Present search results clearly in the user interface,

including primary author information in the main table view. An expandable

section per entry must reveal comprehensive details, including a full list of all

authors associated with the entry (with ORCID links and primary author

indication), an interactive abstract display (allowing users to toggle between a

preview and the full text), linked DOIs for citations and cited_by data,

and other relevant metadata fields (e.g., Container Title, Volume, Issue).

• Configurable Pagination: Provide users the ability to select the number of search

results displayed per page (e.g., 10, 25, 50, 100) through a dropdown menu in the

user interface.

• Interactive Data Presentation: Enhance usability by truncating long text fields

(e.g., titles, DOIs, organization names) in the results table, providing an intuitive

mechanism (e.g., an expandable “Show full” element) for users to view the

complete content on demand.

• Support for External Analytics and Visualization: Ensure the final structured

data schema (dwh) is designed and documented in a way that allows for direct

querying via standard SQL database tools (like pgAdmin or DBeaver) and

facilitates connection from external data visualization and Business Intelligence

platforms (such as Tableau or Power BI) to enable advanced analytical

exploration beyond the primary application interface.

Non-Functional Requirements

In addition to the core functional capabilities, the design also targeted key quality

attributes.

• Maintainability: Enhanced through DBT’s modularity, version control, and

testing framework.

• Performance: Addressed through database normalization, planned indexing

strategies, and consideration of partitioning for potential large-scale data.

• Reliability and Data Consistency: Ensured through planned database integrity

constraints (PKs, FKs) and DBT tests for data quality validation.

• Basic Security and Access Control: Included considerations for database

authentication and secure credential management.

34

3.3 Database Architecture Design Strategy

The database design followed a top-down approach across three abstraction layers,

focusing on capturing appropriate decisions while maintaining traceability. The goal was

to create a schema optimized for both operational data management and analytical

querying needs inherent in bibliographic datasets.

Conceptual Schema

This schema aimed to answer: “What real-world facts must the system remember?” Based

on project requirements (citation analysis, author tracking) and source capabilities

(Crossref/OpenCitations), the core entities identified were as follows.

Primary Entities: Entry (citable artefact), Author, Organization, Entry_Type (controlled

vocabulary). The details and rationale are described in Table 1.

Associative Entities: Entry_Author (many-to-many link, preserves author order),

Author_Organization (many-to-many link). The details and rationale are described in

Table 2.

35

Table 1. Conceptual Schema Primary Entities.

Entity Business meaning Essential attributes Invariants & business rules

Entry Any citable artefact (journal article,
pre-print, book chapter, dataset …)

DOI, title, publisher,
issued-date, language,
abstract

• Every Entry must have exactly one Entry Type. • An Entry
can exist with zero or many Authors (e.g., editorials).

Author A person or collective credited on a work full name, ORCID
• ORCID, when present, uniquely identifies an Author. • A
single Author may have multiple concurrent or historical
affiliations.

Organization An institutional affiliation string
normalized to a canonical form name • Name is treated case-insensitively; multiple spellings

collapse to one Organization.

Entry_Type
Controlled vocabulary term supplied by
Crossref (journal-article,
proceedings-paper, …)

type-name, optional
description

• Vocabulary is finite and slowly changing; new types are
appended, never altered.

Table 2. Conceptual Schema Associative Entities.

Link Purpose Cardinality notes

Entry_Author Resolves the many-to-many between Entry and Author and stores
author order and “primary author” flag

One row per (entry × author). Author sequence preserved via
ordinality integer.

Author_Organization Captures the many-to-many between Author and Organization
together with affiliation order

Allows an Author to be counted under multiple institutions in
bibliometric roll-ups.

36

Key Design Logic:

• Explicit associative tables were chosen over embedding lists (like JSON) to

facilitate efficient relational querying (e.g., co-authorship analysis).

• Including ORCID in Author aimed to support future identity resolution.

• Modelling Entry_Type separately enables referential integrity and downstream

filtering.

• Citation links were viewed as relationships between Entry records, to be realized

via joins in the logical model rather than a separate conceptual entity.

This conceptual schema served as the blueprint for the subsequent logical design.

Logical Schema

The logical design translated conceptual entities into a relational structure optimized for

data integrity and efficient transformation via DBT.

Normalization strategy:

• Third Normal Form (3NF): Targeted to minimize redundancy and update

anomalies.

• Surrogate Keys: Planned use of deterministic hashes (via DBT macro) as primary

keys for efficient joins and idempotent loads.

• Natural Keys Retained: Intended to retain keys like DOI or ORCID with UNIQUE

constraints for external reconciliation.

The high-level mapping from conceptual entities to planned relational tables is shown in

Table 3. The relationships were visualized in an Entity-Relationship Diagram as

presented in Figure 3.

37

Figure 3. Entity-Relationship Diagram for the Bibliographic Database.

38

Table 3. Mapping Conceptual Entities to Relational Tables.

Conceptual entity Relational table Primary key Important constraints

Entry dwh.entry (partitioned) (entry_id, publication_date) UNIQUE (doi, publication_date) to obey partition-key rule

Author dwh.author author_id UNIQUE (lower(name), orcid)

Organization dwh.organization id UNIQUE (lower(name))

Entry Type dwh.entry_type entry_type_id UNIQUE (entry_type_name)

Entry Author dwh.entry_author
(hash-partitioned) (entry_id, author_id) FK to both parent tables, ordinality NOT NULL

Author Organization dwh.author_organization author_organization_surrogate_id FK to Author and Organization

39

Design Goals:

• Minimal Redundancy: Ensuring author names, organization names, etc., are

stored once.

• Time-Variant Support: Planning to include updated_at timestamps for

incremental processing and potential temporal analysis.

• Flexible Analytics: Designing a star-like topology to support OLAP-style rollups.

• Separation of Concerns: Defining clear boundaries between raw data ingestion,

DBT transformations, and UI access.

Physical Schema Design Rationale

This layer focused on translating the logical design into concrete PostgreSQL objects,

aiming to meet non-functional requirements like performance and scalability. The

strategy included:

Partitioning Strategy:

• Rationale: To improve query performance by allowing the planner to skip

irrelevant data partitions (partition pruning) and to manage large tables more

effectively (e.g., for maintenance, bulk loading).

• Planned Approach: Intended to use PostgreSQL’s declarative partitioning. The

plan was to apply RANGE partitioning on the dwh.entry table using

publication_date (yearly), aligning with common temporal filtering

patterns. HASH partitioning was planned for dwh.entry_author based on

entry_id to potentially improve join performance by co-locating related rows.

Indexing Strategy:

• Rationale: To accelerate data retrieval for common query patterns, especially

search and joins.

• Planned Approach: Intended to create PRIMARY KEY indexes (implicitly

created) and FOREIGN KEY indexes to enforce relationships and speed up joins.

Crucially, planned to utilize GIN indexes with the pg_trgm extension on text

fields like title and author_name to efficiently support case-insensitive

40

substring searches (ILIKE ‘%term%’). Considered indexes on frequently

filtered or sorted columns like publication_date.

Constraint Policy:

• Planned Approach: Intended to enforce UNIQUE constraints on natural keys

(DOI, ORCID, names where applicable) and use FOREIGN KEY constraints to

maintain referential integrity. Considered using DEFERRABLE constraints to

allow bulk validation at the end of DBT transactions.

Storage Parameters and Maintenance:

• Planned Approach: Acknowledged the potential need to tune PostgreSQL

parameters (e.g., fillfactor for tables with frequent updates, work_mem for

transformations, autovacuum settings) based on observed workload and data

volume, although specific values would depend on testing with actual large

volume of data. Planned to rely on autovacuum for routine maintenance and

potentially schedule ANALYZE commands to keep statistics up-to-date.

3.4 Data Transformation Workflow with DBT

The core of the data processing logic was planned around an ELT (Extract, Load,

Transform) workflow managed by DBT as illustrated in Figure 4, leveraging the

capabilities of the PostgreSQL database.

41

DBT Project Setup Strategy

The DBT project was planned with the following configuration principles:

• Source Definition: Explicitly define raw data tables (e.g.,

raw.raw_crossref) as DBT sources (sources.yml) for reliable

referencing in staging models ({{ source(...) }}).

• Target Schema Definition: Define final dwh tables also as sources where

necessary to allow intermediate models to perform lookups (e.g., checking for

existing IDs or values) without creating circular dependencies.

• Custom Macro: Plan to implement reusable SQL logic snippets as macros, such

as the surrogate_key() macro for generating consistent primary keys.

Crossref API

OpenCitations API

Python Script

(crossref_opencitations_load.py)

PostgreSQL DB
(raw.raw_crossref)

Triggers
Data Source For

DBT Run

Staging Models
(stg_crossref.sql)

(Clean Cast)

Intermediate Models
(int_*.sql)

(Structure Logic)

Target Models
(dwh.*.sql)

(Incremental Load)

DBT Test Presentation View
(entry_details_vw)

Flask App

Validates

Figure 4. ELT workflow showing Python ingestion, DBT transformation/testing, and Flask app
presentation.

42

• Profiles Configuration: Utilize profiles.yml to manage database

connection details securely and separately from the model code.

Data Ingestion Process Overview

The planned workflow begins with data extraction and loading:

• The Python script (crossref_opencitations_load.py) was designed to

fetch data from Crossref/OpenCitations APIs.

• Its role was to perform minimal initial parsing (e.g., extracting citation lists, basic

metadata) and load the raw payloads into the raw.raw_crossref table in

PostgreSQL (the ‘E’ and ‘L’ in ELT).

• The script was planned to trigger the DBT transformation pipeline (dbt run)

upon successful data loading and commit.

DBT Model Implementation Strategy

The transformation logic (‘T’ in ELT) was designed to be organized into a sequence of

dependent DBT models, progressing from raw data to the final structured tables in the

dwh schema.

• Layering Approach:

o Staging Models (stg_*.sql): Purpose: To select from raw source tables,

perform initial cleaning (trimming, casing), basic type casting, and column

renaming. Designed to provide a consistent base for downstream models.

o Intermediate Models (int_*.sql): Purpose: To implement core business

logic, structure data into entities (e.g., separate authors, organizations),

handle complex transformations (like parsing JSON arrays), generate

surrogate keys, and join intermediate entities where necessary.

o Target Models (dwh.*.sql): Purpose: To select from relevant intermediate

models, perform final joins to resolve foreign keys, and load data into the

final dwh schema tables.

• Incremental Processing: Target models were planned to be materialized as

incremental, using a delete+insert strategy based on an updated_at

43

timestamp. This aimed to efficiently process only new or changed data during

subsequent runs.

• Presentation View (entry_details_vw.sql): Planned to create a

denormalized view by joining relevant dwh tables. The purpose was to simplify

data retrieval for the frontend application by providing a single interface, avoiding

complex joins in the application code, and to structure data appropriately to

support the planned complex display requirements of the frontend, such as

providing necessary fields for detailed views including potentially aggregated

author information.

DBT Testing Strategy

To ensure data quality and reliability (a key non-functional requirement), a robust testing

strategy using DBT’s capabilities was planned:

Generic Schema Tests: Intended to leverage built-in DBT tests defined in

schema.yml file associated with the target models. This included planning tests for:

• unique and not_null constraints on primary keys and other mandatory

columns.

• relationships tests to enforce referential integrity between tables (foreign key

checks).

• Potentially accepted_values for columns with controlled vocabularies (like

entry_type_name).

Singular Tests (Custom Logic): Planned to implement custom SQL queries (saved as

.sql files in the tests directory) to validate specific business rules or data quality aspects

pertinent to bibliographic data. Examples considered included checks for reasonable

publication dates, valid DOI/ORCID formats (if present), and consistency rules (e.g.,

ensuring an entry with authors has a primary author marked). Each test query was

designed to return failing rows, passing only if zero rows are returned.

44

DBT Workflow Execution Plan

The standard development and update workflow involves executing the DBT commands

sequentially:

1. dbt run: Executes all defined models (.sql files) in the correct dependency

order, applying materialization strategies (e.g., incremental updates for target

tables).

2. dbt test: Executes all defined tests (schema.yml tests and custom .sql

tests).

As implemented in this project’s data loading script

(crossref_opencitations_load.py), the trigger_dbt() function

automatically executes dbt run after new data is successfully loaded into

raw.raw_crossref table. Then dbt test execution would typically be run

immediately after dbt run in the script, or in a manual workflow or an automated

orchestration setup (e.g., using cron, Airflow) to ensure data quality before the data is

consumed by downstream applications like the Flask frontend.

3.5 Application Tier Design Strategy

The Presentation Layer was planned as a web application utilizing the Flask framework

for backend logic and standard web technologies (HTML, CSS, JavaScript) for the

frontend interface. The design strategy focused on creating an accessible and interactive

user experience while maintaining a clear separation between the primary user interface

and a distinct API endpoint for programmatic access.

Backend Service Design (Flask)

The core strategy for the Flask backend (app.py) involved acting as an intermediary,

handling user requests, querying the database, processing data, and serving it to the

frontend. Two distinct service patterns were planned:

UI Rendering Logic: The primary route (/) was designed to manage the main user

interface. The strategy involved:

45

1. Processing GET requests containing parameters for text search (title, author),

publication type filtering (selected_types list), and pagination controls

(page, per_page).

2. Interacting with the PostgreSQL database (psycopg2) by querying the pre-

joined dwh.entry_details_vw.

3. Employing a query strategy that dynamically constructed WHERE clauses based

on user input (using ILIKE and ANY). A key part of the strategy was to leverage

database aggregation features (specifically json_agg within CTEs) to

efficiently bundle related information, such as all authors for an entry, into a

structured JSON format suitable for passing to the frontend template. This aimed

to minimize complex data manipulation in the application layer.

4. Fetching summary counts for publication types (total vs. filtered) using separate

GROUP BY queries to support the filter interface.

5. Rendering the main HTML template (index.html) via Jinja2, passing the

processed query results (including the aggregated JSON data), type counts, and

current request parameters.

JSON API Endpoint logic: (/api/entries): A separate GET endpoint was planned

to provide basic programmatic data access. The strategy for this endpoint was simpler:

• Accept basic search parameters (q, title, author) and a page number.

• Execute a less complex query against dwh.entry_details_vw, using

ILIKE and simple DISTINCT ON logic.

• Omit the advanced type filtering planned for the main UI.

• Return results directly as a JSON array.

46

Frontend Interface Design (index.html, CSS, JavaScript):

The frontend design strategy focused on usability and effective data presentation using

standard web technologies.

Structure and Components: The interface (index.html) was planned using HTML,

structured to include:

1. A primary search form with inputs for title and author.

2. A dropdown menu (<select>) enabling user selection of results per page.

3. A dedicated section for publication type filtering, designed with checkboxes

(<input type="checkbox">), including an “All Types” control and display

areas for contextual type counts.

4. A main results display area, envisioned as a table (<table>), showing key

bibliographic fields. The design included handling long text via CSS-based

truncation combined with interactive “Show full” elements.

5. An expandable details section associated with each result row, planned to contain

the full aggregated author list, an interactive abstract, linked citations/cited-by

DOIs, and other metadata fields.

6. Standard pagination controls (Previous/Next links).

Styling and Interaction:

• The strategy involved using CSS for visual styling, layout management (including

responsive design considerations), and implementing features like text truncation

and a background theme.

• Client-side JavaScript was planned to enhance interactivity, specifically for

managing the logic of the type filter checkboxes (coordinating “All Types” with

individual selections) and implementing the “Show more”/ “Show less” toggle

functionality for the abstract display within the details section. Static assets like

CSS and images were planned to be served from a dedicated static folder managed

by Flask.

47

3.6 Research Evaluation Methods

This section outlines the planned approach for evaluating the implemented system

(presented in Chapter 4) against the research questions (Section 1.2). Due to the prototype

nature of the system developed using sample data on a personal computer, the evaluation

will primarily rely on qualitative assessment of the system’s design, features, and

observed behaviour, rather than quantitative benchmarking.

The evaluation will address the research questions as follows:

• RQ1 (Schema Design): Assess the effectiveness of the implemented dwh

schema in representing bibliographic metadata and its potential scalability based

on the chosen normalization strategy and physical design features (partitioning,

indexing), referencing the design rationale (Sec 3.2).

• RQ2 & RQ4 (DBT Integration & Challenges): Evaluate the DBT approach

based on the implemented pipeline (Sec 4.3) by qualitatively assessing its

maintainability (modularity, versioning), flexibility, and data quality benefits (via

testing) compared conceptually to traditional ETL. Practical challenges

encountered during implementation (e.g., handling JSON, incremental logic) will

also be discussed.

• RQ3 (Three-Tier Architecture): Evaluate the implemented architecture based

on its success in achieving modularity (separation of concerns) and providing

accessibility (via UI and API). Potential scalability and performance will be

discussed qualitatively based on design choices and observed prototype

behaviour.

48

4 Results

This chapter presents the concrete outcomes and findings derived from the

implementation phase of the bibliographic database system, following the design

principles and methodology detailed in Chapter 3. The results described herein pertain to

the functional prototype developed using sample data ingested from Crossref and

OpenCitations, operating within the specific development environment outlined in

Section 3.2. This chapter will detail the final implemented system components, the

structure of the database as realized, the execution and validation of the data

transformation pipeline, and the functionality of the application tier, concluding with an

evaluation of these results against the research objectives set forth in Chapter 1.

4.1 Implemented System Components

The development effort successfully culminated in the implementation of the planned

three-tier architecture, visually represented for this specific project in Figure 2. The final

system comprises the following operational components, functioning cohesively as

designed:

1. Data Tier: A PostgreSQL database instance was configured, containing three

distinct schemas relevant to the ELT process:

• raw schema: Housing the raw_crossref table, which serves as the initial

landing zone for data fetched from the external APIs.

• dbt schema: Containing tables generated by DBT’s intermediate models

(int_*.sql), holding structured data after initial transformations but before

final loading.

• dwh schema: Containing the set of normalized relational tables (entry, author,

organization, entry_type, entry_author, author_organization) populated by the

transformation process, along with the entry_details_vw presentation view

designed for application access.

2. Logic Tier: This layer consists of two key functional parts:

49

• The Python ingestion script (crossref_opencitations_load.py),

which successfully fetches data from Crossref and OpenCitations APIs based on

user input, performs necessary initial processing, loads the raw data into the

raw.raw_crossref table, and subsequently triggers the DBT pipeline

execution.

• The Data Build Tool (DBT) project, encompassing a collection of SQL models

and associated tests, which manages the Extract-Load-Transform (ELT) process,

transforming data from the raw schema into the structured dwh schema.

3. Presentation Tier: A Flask web application (app.py) was implemented,

providing:

• A web user interface rendered via index.html for searching and displaying

bibliographic records, incorporating CSS for styling and client-side JavaScript for

enhanced interactivity (e.g., type filtering, abstract toggling).

• A functional JSON API endpoint (/api/entries) enabling programmatic data

access with search and pagination features.

These implemented components collectively form the working prototype evaluated in

the subsequent sections.

4.2 Database Implementation Results

The PostgreSQL database was implemented successfully, realizing the logical and

physical design strategies outlined in the methodology (Section 3.3).

Logical Schema Implementation:

The final database schema implemented within the dwh namespace accurately reflects

the Entity-Relationship Diagram presented in the Figure 3. The core tables (entry, author,

organization, entry_type) and associative tables (entry_author, author_organization) were

created with their respective attributes and relationships, adhering to the principles of

Third Normal Form (3NF). Surrogate keys (e.g., entry_id, author_id), generated

deterministically by the DBT surrogate_key macro, serve as primary keys,

facilitating efficient joins and data management. Key natural identifiers like doi, orcid,

50

organization.name, and entry_type.entry_type_name were retained as

columns with appropriate UNIQUE constraints enforced to maintain data integrity and

allow for external referencing. The overall structure in pgAdmin database administration

tool, as visualized in Figure 5, demonstrates the normalized, relational model designed to

minimize redundancy and represent bibliographic entities effectively.

Figure 5. Structure of the dbt and dwh schemas in pgAdmin.

51

Physical Schema Implementation:

The complete Data Definition Language (DDL) script detailing all tables, columns, data

types, constraints and optimizations is provided in Appendix 2.

Specific physical storage and access optimization features, planned in 3.3, were

implemented to enhance performance and scalability:

1. Partitioning: PostgreSQL’s declarative partitioning was successfully applied to

the tables anticipated to grow largest:

• dwh.entry: This table was partitioned by RANGE on the

publication_date column. A PL/pgSQL script loop (included in

Appendix 2) generated yearly partitions (e.g., entry_y2020,

entry_y2021, ..., entry_y2030) along with a entry_legacy

partition for pre-2000 entries. This physical structure, allows the query

planner to potentially prune partitions based on date filters, improving

query efficiency.

• dwh.entry_author: This bridge table was partitioned by HASH on

the entry_id column into 32 distinct partitions (entry_author_p0

to entry_author_p31), distributing the author-entry links across

multiple physical tables to potentially improve load balancing and join

performance. The DDL for creating these partitions is also in Appendix 2.

2. Indexing: A suite of indexes was created to optimize common data retrieval

operations:

• Primary Key indexes were automatically created on the surrogate keys of all

tables.

• Foreign Key indexes were created on columns like

entry.entry_type_id, entry_author.author_id,

author_organization.organization_id, etc., to accelerate join

operations.

52

• GIN Trigram Indexes: Crucially for search functionality, GIN indexes

using the pg_trgm extension were implemented on entry.title

(idx_entry_title_trgm) and author.name

(idx_author_name_trgm). These indexes are specifically designed to

provide efficient support for the case-insensitive substring (ILIKE

‘%term%’) searches performed by the application tier.

• Other Indexes: An index on entry (publication_date DESC)

(idx_entry_recent) was added to optimize default sorting by newest

publication. A covering index idx_entry_author_lookup on

entry_author(entry_id, author_id) was created to potentially

enable index-only scans for queries retrieving both keys.

3. Constraints: Primary Key, UNIQUE (on doi, orcid,

organization.name, entry_type.name), and Foreign Key

constraints were implemented as defined in the logical schema. As planned,

Foreign Key constraints were defined using DEFERRABLE INITIALLY

IMMEDIATE to allow constraint validation at the end of DBT’s transaction,

potentially improving bulk insert performance.

4. Full-Text Search Feature: A tsvector column named fts was added to the

dwh.entry table. A trigger function (dwh.update_fts) and an associated

trigger (trg_update_fts) were implemented to automatically populate this

column with a concatenated vector of the entry’s title and abstract upon insertion

or update. A GIN index (idx_entry_fts) was created on this fts column to

enable efficient PostgreSQL full-text search capabilities.

5. Storage Parameters: For the prototype development using limited data, default

PostgreSQL storage parameters were generally sufficient. The primary

adjustment was setting work_mem to 128MB within the Docker container’s

PostgreSQL configuration to provide more memory for sorting and hashing

operations during DBT model runs. Further tuning (e.g., fillfactor) would require

analysis under realistic load conditions.

53

4.3 Data Transformation Pipeline Results (DBT)

The transformation pipeline, orchestrated using DBT, was successfully implemented and

executed, transforming the raw data loaded by the Python script into the structured dwh

schema.

Workflow Execution and Lineage:

The DBT project, containing models for staging, intermediate processing, and final target

table loading, executed without errors. The dbt run command successfully

materialized all models in the correct sequence based on their dependencies defined using

the ref() function. The visual representation of these dependencies and the overall data

flow is confirmed by the DBT-generated lineage graph presented in Figure 7, which

accurately depicts the progression from the raw.raw_crossref source through the

various stg, int, and dwh models to the final entry_details_vw model.

Evidence of a successful pipeline execution, including model completion status and

timings for the sample dataset, is shown in the terminal output captured in Figure 6.

Figure 6. Terminal Output of dbt run.

54

Figure 7. DBT Data Lineage Graph.

55

Model Implementation Details:

The implemented DBT models successfully executed the transformation logic planned in

Section 3.4:

1. Staging (stg_crossref.sql): This model correctly selected data from the

raw.raw_crossref source, applied basic cleaning functions like TRIM() for

whitespace removal and LOWER() for standardizing casing on fields like type

and language, performed necessary type casting (e.g., issued::DATE AS

publication_date), and handled potential null values using COALESCE

(e.g., COALESCE(doi, ‘unknown’)).

2. Intermediate Models (int_*.sql): These models handled the core structuring

and business logic:

JSON Parsing: Models processing authors and organizations (e.g.,

int_author.sql, int_entry_author.sql,

int_organization.sql, int_author_organization.sql)

effectively utilized PostgreSQL’s jsonb_array_elements function to

flatten nested JSON arrays (representing authors and their affiliations) from the

staging layer into distinct relational rows. Where necessary (e.g., in

int_entry.sql for abstracts, int_author_organization.sql for

names), REGEXP_REPLACE was used to strip potential HTML tags embedded

in text fields.

Surrogate Key Generation: The custom surrogate_key() macro (defined in

macros/surrogate_key.sql) was consistently invoked in models like

int_entry, int_author, int_organization, etc., to generate

unique, deterministic 64-bit integer surrogate keys based on combinations of

relevant business attributes (e.g., {{ surrogate_key(["name",

"orcid", "organizations"]) }} for author_id).

Entity Structuring & Logic: Model int_entry_type.sql successfully

identified distinct publication type strings from the staging data and generated

56

new sequential entry_type_ids only for types not already present in the

dwh.entry_type table (by querying it as a source).

int_entry_author.sql correctly associated entries with authors and

captured the author sequence using jsonb_array_elements() WITH

ORDINALITY.

3. Target Models (dwh.*.sql):

Incremental Loading: All models populating the main dwh tables

(entry.sql, author.sql, etc.) were configured with

materialized=‘incremental’ and

incremental_strategy=‘delete+insert’. They incorporated the

necessary {% if is_incremental() %} blocks to filter incoming data

based on the updated_at timestamp, comparing it against the maximum

updated_at value currently in the target table (WHERE updated_at >

(SELECT COALESCE(MAX(updated_at), ‘1900-01-01’) FROM {{

this }})). This ensures that only new or modified records are processed during

subsequent runs.

Foreign Key Resolution: These models performed the final required joins

between intermediate models to resolve foreign key relationships before inserting

data into the target tables (e.g., entry.sql joins int_entry with

entry_type on entry_type_name to get the correct entry_type_id).

Presentation View (entry_details_vw.sql): This model was successfully

implemented and materialized as a PostgreSQL VIEW. It performs the necessary

LEFT JOIN operations across all primary and associative tables in the dwh

schema (entry, entry_type, entry_author, author,

author_organization, organization) to provide a single,

denormalized interface for the Flask application.

57

Testing Results:

The comprehensive testing strategy planned in Section 3.4 was implemented using

DBT’s testing framework to validate the quality and integrity of the data within the

final dwh schema.

• Generic Schema Tests: As defined in models/target/dwh_schema.yml

(see Appendix 3), tests for unique and not_null were applied to all primary

keys and critical metadata fields. relationships tests were configured to enforce

referential integrity for all foreign key relationships defined in the logical schema.

• Singular Tests (Custom): Specific SQL-based tests were created in the tests/

directory (see Appendix 4) to validate domain-specific rules:

assert_entry_publication_date_is_reasonable.sql (checking

date ranges), assert_doi_format_if_present.sql (validating ‘10.’

prefix), assert_author_orcid_format.sql (checking ORCID pattern

via regex), and assert_entry_has_primary_author.sql (ensuring

entries with authors have a primary author marked).

• Execution Outcome: The dbt test command was executed after dbt run

during the pipeline execution. All the defined tests (combining generic and

singular tests across all models and columns) passed successfully against the

populated dwh schema using the sample dataset. The result of this successful

validation is shown in Figure 8. This outcome confirms that the implemented

transformation logic produced data that adheres to the defined structural

constraints, referential integrity rules, and custom quality checks for the processed

data.

58

Figure 8. Terminal Output of dbt test.

59

4.4 Application Tier Results

The Presentation Tier, consisting of the Flask backend (app.py) and the interactive web

frontend (index.html), was successfully implemented, providing functional access to

the bibliographic data processed by the lower tiers and delivering the enhanced user

experience features.

As shown in the Figure 9, the Flask application runs without errors and provides the core

functionalities. The primary web user interface, rendered via index.html, allows users

to effectively interact with the system. Search inputs for title and author are functional.

The implemented Type Filtering section enables users to refine results using checkboxes,

with client-side JavaScript managing the “All Types” selection logic. Associated filtered

and total counts for each type are accurately displayed based on backend queries.

Furthermore, the results-per-page dropdown was successfully implemented, allowing

users to control pagination (10, 25, 50, or 100 results).

Figure 9.  Interactive faceted‑search interface of the Bibliographic Library application.

60

Search results are presented clearly in the main HTML table. Techniques for handling

long text fields (DOI, Title, Organization) were implemented using CSS truncation

combined with expandable <details> elements (“Show full”), which function

correctly. A significant feature as presented in Figure 10, is the implemented “Show

more” expandable section for each entry. This section successfully reveals

comprehensive details fetched from the database, including the full list of authors

(aggregated using json_agg in the backend query), with the primary author marked

and ORCID links provided where available. The interactive abstract display was realized,

showing an initial preview and using a JavaScript toggle button (“Show more”/ “Show

less”) to correctly control the visibility of the full text. Linked DOIs for citation and cited-

by data are presented as functional hyperlinks, alongside other relevant metadata fields.

Navigation through result pages using the “Previous” and “Next” links is operational.

Figure 10. Entry Detailed Information Display.

61

The backend logic within app.py supports all these frontend features. The home()

route correctly processes search, filter (selected_types), and pagination (page,

per_page) parameters. The executed SQL query effectively uses CTEs and the

json_agg function to aggregate author details into the necessary JSON structure passed

to the template. Database queries for both the UI and API, executed via psycopg2

against the dwh.entry_details_vw, function as implemented.

4.5 Evaluation Against Research Questions

This section evaluates the implemented system based on the results presented in Sections

4.1-4.4, providing answers to the research questions posed in Section 1.2 through the

qualitative assessment methods outlined in Section 3.6.

RQ1 (Schema Design):

The implemented dwh schema (Section 4.2, Appendix 2), adhering to 3NF principles,

proved effective in representing the diverse metadata elements ingested from Crossref

and OpenCitations for the sample data. The normalization resulted in reduced data

redundancy, for instance, storing author and organization names uniquely, and

established clear, maintainable relationships via foreign keys. The structure, utilizing

distinct tables for core entities (entry, author, etc.) linked via associative tables

(entry_author, author_organization), successfully handled complex, many-to-many

relationships like multiple authors per paper or multiple affiliations per author, which are

essential for accurate bibliometric analysis. Scalability potential was directly addressed

through the successful implementation of physical design features. Notably, RANGE

partitioning on the entry table by publication date (Section 4.2) allows the query planner

to potentially skip irrelevant yearly partitions (partition pruning) during time-bound

analyses, significantly improving query efficiency on large datasets. Similarly, HASH

partitioning on the large entry_author bridge table aids load distribution. Strategic

indexing, particularly the implemented GIN trigram indexes on title and author names,

provides crucial support for efficient, case-insensitive substring searches (ILIKE), a

common requirement in bibliographic exploration. While quantitative benchmarking was

62

outside the scope of this prototype evaluation, these implemented features provide a solid

foundation for handling larger data volumes.

RQ2 & RQ4 (DBT Integration & Challenges):

The integration of DBT for managing the ELT pipeline (Section 4.3) demonstrated clear

practical advantages over anticipated traditional ETL scripting methods. The modular

project structure, breaking down transformations into distinct staging, intermediate, and

target models (Figure 4), resulted in highly organized, readable, and consequently more

maintainable SQL logic. Debugging specific transformation steps or adapting to source

data changes becomes significantly easier due to this modularity. Furthermore, version

controlling the entire DBT project enhances collaboration and traceability of changes.

DBT’s automated dependency management ensured transformations executed in the

correct sequence (Figure 7), preventing logical errors. The integrated testing framework

proved invaluable for reliability; executing tests (generic schema tests like not_null,

unique, relationships, and custom singular tests, (Figure 8, Appendix 3, Appendix 4))

after each dbt run provided automated validation of data quality and integrity rules,

catching potential issues early and preventing the propagation of erroneous data into the

final dwh schema.

Key challenges encountered during implementation centered on handling the semi-

structured nature of the source data, specifically parsing nested JSON arrays (authors,

affiliations) effectively within SQL, which required careful use of PostgreSQL’s

jsonb_array_elements function and robust error handling in intermediate models.

Additionally, correctly implementing and debugging the incremental loading strategy

(delete+insert) necessitated careful management of updated_at timestamps and

unique keys to ensure idempotency and avoid data duplication or loss, demanding more

attention than simple full-refresh approaches. Designing meaningful custom data quality

tests beyond basic integrity checks also required careful consideration of bibliographic

domain specifics.

RQ3 (Three-Tier Architecture):

The system successfully implemented the planned three-tier architecture (Section 4.1),

and the results confirm its benefits in this context. A clear separation of concerns was

achieved: PostgreSQL effectively managed data persistence and integrity (Section 4.2);

63

DBT and Python handled the distinct data transformation and ingestion logic

(Section 4.3); Flask, along with HTML/CSS/JavaScript, managed the presentation logic,

API provision, and user interface rendering (Section 4.4). This modularity proved

beneficial during development, allowing, for example, changes to DBT transformation

models without impacting the Flask application code, provided the presentation view

interface remained stable. This separation inherently supports independent development,

testing, and potential deployment scaling of each tier. The architecture provides effective

accessibility through two distinct interfaces tailored to different needs: the interactive web

interface (Figure 9) offers a rich, user-friendly experience for direct exploration, including

the implemented type filtering, configurable pagination, and detailed data views; the basic

JSON API endpoint (/api/entries) provides straightforward programmatic access

suitable for automated systems or other integrations.

Crucially, the underlying structured dwh schema proved suitable for direct connection

via standard SQL tools (like DBeaver), enabling advanced ad-hoc querying, and its design

allows for integration with external BI platforms (e.g., Power BI, Tableau) for

sophisticated visualization, demonstrating analytical potential beyond the implemented

application.

The prototype application, including all its interactive frontend features, exhibited good

responsiveness during manual testing with the sample data. The architectural design

incorporates elements conducive to scaling, such as database partitioning and indexing,

and the potentially stateless nature of the Flask application lends itself well to horizontal

scaling (running multiple instances). While the entry_details_vw simplified

application development logic, the complex query utilizing json_agg for the main UI,

though performant in the prototype, represents a component whose performance

characteristics under significantly larger data volumes or high concurrent user load would

warrant further analysis and potential optimization (e.g., query tuning, caching strategies)

in a production scenario.

64

5 Conclusion and Future Work

This thesis set out to address the challenges of data heterogeneity, maintainability, and

limited analytical capabilities often found in traditional bibliographic database systems.

By designing and implementing a modern bibliographic database architecture

incorporating contemporary data engineering practices, this work successfully

demonstrates a viable and improved approach. The project culminated in a functional

prototype featuring a normalized PostgreSQL database optimized with physical design

strategies, an ELT pipeline managed effectively by Data Build Tool (DBT), and a

modular three-tier application structure providing user access via an interactive web

interface and a basic API.

5.1 Summary of Findings and Contributions

The primary contribution of this thesis lies in the practical application and evaluation of

modern data engineering tools and architectural patterns specifically within the

bibliographic data domain. The key findings validate the effectiveness and benefits of the

chosen methodologies.

The development process confirmed that a relational schema, normalized to Third Normal

Form (3NF) and augmented with physical optimizations like table partitioning and

appropriate indexing (including GIN trigram indexes for text search), can effectively

structure diverse bibliographic metadata while providing mechanisms to support

scalability and efficient querying.

The integration of DBT proved highly beneficial, successfully orchestrating an ELT

pipeline within the PostgreSQL database. The results highlighted DBT's significant

advantages in improving the development lifecycle through enhanced modularity

(breaking down complex transformations), maintainability (facilitated by version control

and clear SQL-based logic), and crucially, reliability (enforced through an integrated,

automated testing framework for data quality and integrity). This demonstrated a marked

improvement over the anticipated complexities of managing traditional ETL scripts.

The implementation of the three-tier architecture successfully enforced a clear separation

of concerns. This modularity between the data tier (PostgreSQL), the logic tier (Python

65

ingestion script, DBT transformations), and the presentation tier (Flask application

serving HTML/CSS/JS) was evident during development and offers inherent advantages

for independent maintenance, testing, and potential scaling of each component. The

resulting system provides functional and accessible interfaces for both direct user

interaction via the web UI and basic programmatic access via the JSON API.

Answers to Research Questions

Based on the evaluation of the results presented in Chapter 4, the research questions posed

at the outset can be answered conclusively. The findings demonstrate that (RQ1) a

scalable and normalized relational schema can be effectively designed for diverse

bibliographic metadata by applying 3NF principles alongside physical design features

like partitioning and specialized indexing. Furthermore, (RQ2 & RQ4) the integration of

DBT for an ELT workflow provides substantial improvements in maintainability,

reliability, and flexibility compared to traditional ETL, although it requires careful

handling of semi-structured data parsing and incremental loading logic within SQL,

alongside domain-specific testing. Finally, (RQ3) a three-tier architecture was

successfully implemented, achieving modularity and providing distinct, accessible

interfaces (an interactive web UI and a basic API) by clearly separating the data, logic

(Python/DBT), and presentation (Flask/Web Frontend) layers.

Limitations

While the project successfully demonstrated the proposed architecture, several limitations

should be acknowledged:

• Prototype Scale and Evaluation: The system was developed and tested as a

prototype using a limited sample dataset on a local development machine.

Consequently, the performance evaluation remained qualitative. Rigorous

quantitative benchmarking under realistic, large-scale data volumes and

concurrent user loads was not performed, meaning the true scalability limits and

potential bottlenecks (e.g., performance of complex queries with json_agg)

were not empirically determined.

• Data Source Scope: Data ingestion was confined to the Crossref and

OpenCitations APIs. Integrating a wider array of sources (e.g., PubMed, Scopus,

institutional repositories via OAI-PMH) would introduce significant additional

66

challenges related to schema mapping, varying data quality levels, different API

protocols or data formats, and potentially more complex entity resolution

requirements.

• Feature Scope: The implemented system provides core functionalities for data

storage, transformation, and interactive retrieval. Advanced features common in

mature bibliometric systems, such as integrated topic modelling capabilities,

complex citation network analysis beyond basic link storage, or built-in data

visualization tools, were outside the scope of this implementation.

• JSON API Functionality: The implemented JSON API endpoint offers only

basic search capabilities with fixed pagination and lacks the more advanced

filtering options available in the main web UI. It serves primarily as a proof-of-

concept for programmatic access rather than a fully developed, feature-rich API

suitable for robust external integrations.

5.2 Future Work

The developed system provides a solid foundation that can be extended in several

promising directions, incorporating more advanced techniques and expanding its

capabilities:

Expand Data Integration and Entity Resolution

Incorporate a broader range of bibliographic data sources (e.g., Scopus API, PubMed E-

utilities, arXiv API, OAI-PMH feeds). This would necessitate extending ingestion scripts,

developing new DBT staging models, and critically, implementing more robust entity

resolution techniques (potentially ML-based) to handle variations and merge records

effectively across diverse sources.

Implement Advanced Bibliometric and Network Analysis

Integrate more sophisticated analytical functionalities. This includes enhancing the

storage and querying capabilities for citation network analysis (perhaps exploring graph

database extensions or libraries like NetworkX) to enable complex graph metrics and

community detection. Calculating standard bibliometric indicators (e.g., h-index) could

also be added.

67

Leverage Machine Learning and AI

Explore the application of ML and AI to enhance various aspects of the system:

• Semantic Search and Recommendation: Implement vector embeddings (e.g.,

using models like Sentence-BERT on titles/abstracts) to enable semantic search,

finding conceptually related papers beyond keyword matches, and build

recommendation engines suggesting relevant articles or potential collaborators.

• Enhanced Author Disambiguation: Apply advanced ML classification or

clustering models, using features like co-authorship patterns, publication venues,

topic distributions (derived from abstracts), and affiliation history, to significantly

improve the accuracy of author name disambiguation.

• Automated Knowledge Extraction: Utilize NLP techniques, potentially including

Large Language Models (LLMs), to automatically extract structured information

from abstracts or full texts (if available), such as research methods, datasets used,

key findings, or even construct a knowledge graph of scholarly entities and

relationships.

• Topic Modelling and Trend Analysis: Employ advanced topic modelling

techniques (e.g., dynamic topic models, hierarchical models) or transformer-based

approaches to automatically identify fine-grained research topics, track their

evolution over time, and potentially identify emerging research fronts.

• Predictive Analytics: Investigate the use of ML models to predict future research

impact (e.g., citation counts) or identify potentially fruitful research collaborations

based on network features and historical data.

• Intelligent Data Quality: Develop ML models for more sophisticated anomaly

detection in metadata, identifying outliers or inconsistencies that might be missed

by rule-based DBT tests.

Enhance Frontend and Visualization

Further develop the web user interface by adding features like user accounts,

implementing more advanced search syntax (Boolean operators, field-specific queries),

refining the UI/UX, and integrating data visualization libraries (e.g., D3.js, Plotly) to

68

present insights visually, such as publication trends, co-authorship networks derived from

the data, or topic distributions.

Cloud Deployment and Performance Optimization

Migrate the system stack to a cloud platform for scalability and manageability. Conduct

rigorous performance testing under load, optimizing database configurations, indexing,

and computationally intensive queries or DBT models. Implement caching strategies

where appropriate.

Refine Data Quality Monitoring

Enhance the data quality framework beyond DBT tests by integrating data profiling tools,

establishing monitoring dashboards, and potentially developing semi-automated

workflows for resolving identified data issues.

5.3 Concluding Remarks

This thesis successfully addressed the objective of designing and developing a modern

architecture for a bibliographic database. By leveraging a normalized relational database,

a modular three-tier structure, and the capabilities of DBT for managing an ELT pipeline,

the project demonstrated a robust, maintainable, and scalable alternative to traditional

approaches. The resulting functional prototype, complete with an interactive web

interface, effectively showcases the benefits of integrating contemporary data engineering

practices in the domain of scholarly information management. While limitations exist and

avenues for future work, particularly those leveraging AI and machine learning, are

plentiful, this research provides a valuable practical blueprint and a solid foundation for

building a bibliographic information systems capable of handling the growing volume

and complexity of scholarly data.

69

References

[1] E. Hudomalj and G. Vidmar, ‘OLAP and bibliographic databases’, Kluwer
Academic Publishers, 2003.

[2] A. Kusserow and S. Groppe, ‘Getting Indexed by Bibliographic Databases in the
Area of Computer Science 1 MOTIVATION’, 2014. [Online]. Available:
http://creativecommons.org/licenses/by/3.0/

[3] A. Ferrara and S. Salini, ‘Ten challenges in modeling bibliographic data for
bibliometric analysis’, Scientometrics, vol. 93, no. 3, pp. 765–785, Dec. 2012,
doi: 10.1007/s11192-012-0810-x.

[4] V. Hristidis, Y. Hu, and P. G. Ipeirotis, ‘Relevance-based retrieval on hidden-
web text databases without ranking support’, IEEE Trans Knowl Data Eng, vol.
23, no. 10, pp. 1555–1568, Oct. 2011, doi: 10.1109/TKDE.2010.183.

[5] V. Hristidis, Y. Hu, and P. G. Ipeirotis, ‘Ranked Queries over Sources with
Boolean Query Interfaces without Ranking Support’, in IEEE 26th International
Conference on Data Engineering and Workshops, IEEE, 2010.

[6] S. Karimi, J. Zobel, S. Pohl, and F. Scholer, ‘The challenge of high recall in
biomedical systematic search’, in Proceedings of the third international
workshop on Data and text mining in bioinformatics, ACM Digital Library,
2013.

[7] S. Khalid and S. Wu, ‘Supporting Scholarly Search by Query Expansion and
Citation Analysis’, in Engineering, Technology & Applied Science Research,
2020, pp. 6102–6108.

[8] S. Khalid, S. Wu, A. Wahid, A. Alam, and I. Ullah, ‘An Effective Scholarly
Search by Combining Inverted Indices and Structured Search with Citation
Networks Analysis’, IEEE Access, vol. 9, pp. 120210–120226, 2021, doi:
10.1109/ACCESS.2021.3107939.

[9] C. Xiong, R. Power, and J. Callan, ‘Explicit semantic ranking for academic
search via knowledge graph embedding’, in 26th International World Wide Web
Conference, WWW 2017, International World Wide Web Conferences Steering
Committee, 2017, pp. 1271–1279. doi: 10.1145/3038912.3052558.

[10] H. Kroll, P. Sackhoff, T. Breuer, R. Schenkel, and W.-T. Balke, ‘Ranking
Narrative Query Graphs for Biomedical Document Retrieval (Technical Report)’,
Dec. 2024, [Online]. Available: http://arxiv.org/abs/2412.15232

[11] I. A. Ebeid and E. Pierce, ‘MedGraph: An experimental semantic information
retrieval method using knowledge graph embedding for the biomedical citations
indexed in PubMed’, 2021. [Online]. Available:
http://www.nlm.nih.gov/pubs/factsheets/medline.html

[12] G. Wei et al., ‘DocReLM: Mastering Document Retrieval with Language
Model’, May 2024, [Online]. Available: http://arxiv.org/abs/2405.11461

[13] G. Mitrov, B. Stanoev, S. Gievska, G. Mirceva, and E. Zdravevski, ‘Combining
Semantic Matching, Word Embeddings, Transformers, and LLMs for Enhanced
Document Ranking: Application in Systematic Reviews’, Big Data and
Cognitive Computing, vol. 8, no. 9, p. 110, Sep. 2024, doi:
10.3390/bdcc8090110.

[14] P. Schneider and F. Matthes, ‘Conversational Exploratory Search of Scholarly
Publications Using Knowledge Graphs’, Oct. 2024, [Online]. Available:
http://arxiv.org/abs/2410.00427

70

[15] G. E. Lee and A. Sun, ‘Mirror Matching: Document Matching Approach in Seed-
driven Document Ranking for Medical Systematic Reviews’, Dec. 2021,
https://arxiv.org/pdf/2112.14318.

[16] S. Arachchige Yasith Hasantha Ariyasena, ‘Bibliographic data mining based on
the Estonian Research Information System’, TalTech, Tallinn, 2021.

[17] J. M. B. Silva and F. Silva, ‘Feature extraction for the author name
disambiguation problem in a bibliographic database’, in Proceedings of the ACM
Symposium on Applied Computing, Association for Computing Machinery, Apr.
2017, pp. 783–789. doi: 10.1145/3019612.3019663.

[18] K. Karamcheti, ‘Design and implementation of bibliographic database’, 2008.
doi: 10.25669/p6v2-8sb2.

[19] R. Lakshmanasamy and G. Ganachari, ‘Integration of Dbt With Modern Data
Stack Technologies’, Oct. 2023. [Online]. Available: www.ijfmr.com

[20] A. Rahaman, R. Dilip, and T. B. Vidyapeeth, ‘A Study of Effective Structures
Bibliographic Database: Essential Tool to Find Descriptive Records of Relevant
Information Sources’, 2023, doi: 10.53555/sfs.v10i1.298.

[21] I. Zupic and T. Čater, ‘Bibliometric Methods in Management and Organization’,
Organ Res Methods, vol. 18, no. 3, pp. 429–472, Jul. 2015, doi:
10.1177/1094428114562629.

[22] B. H. Butt, M. Rafi, and M. Sabih, ‘A systematic metadata harvesting workflow
for analysing scientific networks’, PeerJ Comput Sci, vol. 7, pp. 1–19, Mar.
2021, doi: 10.7717/peerj-cs.421.

[23] P. L. Mabry, X. Yan, V. Pentchev, R. Van Rennes, S. H. McGavin, and J. V.
Wittenberg, ‘CADRE: A Collaborative, Cloud-Based Solution for Big
Bibliographic Data Research in Academic Libraries’, Front Big Data, vol. 3,
Nov. 2020, doi: 10.3389/fdata.2020.556282.

[24] B. Trushkowsky, K. Campbell, and J. Forbes, ‘An Architecture for a
Collaborative Bibliographic database’, in Proceedings of the 2007 conference on
Diversity in computing, 2007.

[25] T. Do, D. Lam, and T. Huynh, ‘A Framework for Integrating Bibliographical
Data of Computer Science Publications’, in Computing, Management and
Telecommunications (ComManTel), 2014 International Conference on, 2014.

[26] T. Georgieva-Trifonova, ‘Warehousing and OLAP Analysis of Bibliographic
Data’, Intell Inf Manag, vol. 03, no. 05, pp. 190–197, 2011, doi:
10.4236/iim.2011.35023.

[27] M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, and D. Saucedo Aranda,
‘A Relational Database Model for Science Mapping Analysis’, 2015.

[28] N. Mallig, ‘A relational database for bibliometric analysis’, J Informetr, vol. 4,
no. 4, pp. 564–580, Oct. 2010, doi: 10.1016/j.joi.2010.06.007.

[29] P. Manghi, C. Atzori, M. De Bonis, and A. Bardi, ‘Entity deduplication in big
data graphs for scholarly communication’, Data Technologies and Applications,
vol. 54, no. 4, pp. 409–435, Aug. 2020, doi: 10.1108/DTA-09-2019-0163.

[30] N. R. Smalheiser, J. Schneider, V. I. Torvik, D. P. Fragnito, and E. E. Tirk, ‘The
Citation Cloud of a biomedical article: a free, public, web-based tool enabling
citation analysis’, Journal of the Medical Library Association, vol. 110, no. 1, pp.
103–108, Jan. 2022, doi: 10.5195/jmla.2022.1117.

[31] V. Sadikov and W. Pidkameny, ‘Complete Separation of the 3 Tiers - Divide and
Conquer’, May 2014, Accessed: Apr. 27, 2025. [Online]. Available:
https://arxiv.org/pdf/1405.1618

71

[32] A. Khalilipour, M. Challenger, M. Onat, H. Gezgen, and G. Kardas, ‘Refactoring
Legacy Software for Layer Separation’, International Journal of Software
Engineering and Knowledge Engineering, vol. 31, no. 2, pp. 217–247, Feb. 2021,
doi: 10.1142/S0218194021500066.

[33] P. L. Mabry, X. Yan, V. Pentchev, R. Van Rennes, S. H. McGavin, and J. V.
Wittenberg, ‘CADRE: A Collaborative, Cloud-Based Solution for Big
Bibliographic Data Research in Academic Libraries’, Front Big Data, vol. 3,
Nov. 2020, doi: 10.3389/fdata.2020.556282.

[34] M. S. Farhan, A. Youssef, and L. Abdelhamid, ‘A Model for Enhancing
Unstructured Big Data Warehouse Execution Time’, Big Data and Cognitive
Computing, vol. 8, no. 2, Feb. 2024, doi: 10.3390/bdcc8020017.

[35] M. Patel and M. Bhise, ‘Query Complexity Based Optimal Processing of Raw
Data’, IEEE Region 10 Humanitarian Technology Conference, R10-HTC, vol.
2022-September, pp. 38–43, 2022, doi: 10.1109/R10-HTC54060.2022.9929945.

[36] A. A. A. Fernandes, M. Koehler, N. Konstantinou, P. Pankin, N. W. Paton, and
R. Sakellariou, ‘Data Preparation: A Technological Perspective and Review’, SN
Comput Sci, vol. 4, no. 4, Jul. 2023, doi: 10.1007/s42979-023-01828-8.

72

Appendix 1 – Non-exclusive licence for reproduction and publication of a

graduation thesis1

I Mani Biglari

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Design and development of a bibliographic database architecture”, supervised

by Aleksei Tepljakov.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

11.05.2025

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s application for restriction on access to the graduation

thesis that has been signed by the school’s dean, except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation

thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

73

Appendix 2 – Complete DDL for the dwh Schema

-- PostgreSQL DDL for the dwh Schema
-- Includes partitioning, indexes, and constraints.
-- Requires PostgreSQL 13+. Assumes schema "dwh" already exists.

-- 0. Extension & Search Path ---

CREATE EXTENSION IF NOT EXISTS pg_trgm WITH SCHEMA dwh;
SET search_path = dwh, pg_catalog;

-- 1. Dimension Tables --

DROP TABLE IF EXISTS dwh.author CASCADE;
CREATE TABLE dwh.author (
 author_id bigint PRIMARY KEY,
 name text,
 orcid text,
 organizations text, -- Raw text/JSON of affiliations
 updated_at timestamptz
);
CREATE INDEX IF NOT EXISTS idx_author_name_trgm ON dwh.author USING gin (name
dwh.gin_trgm_ops); -- For ILIKE search

DROP TABLE IF EXISTS dwh.organization CASCADE;
CREATE TABLE dwh.organization (
 id bigint PRIMARY KEY,
 name text UNIQUE, -- Canonicalized organization name
 address text,
 contact_1 text,
 contact_2 text,
 email text,
 org_type text,
 updated_at timestamptz
);

DROP TABLE IF EXISTS dwh.entry_type CASCADE;
CREATE TABLE dwh.entry_type (
 entry_type_id bigint PRIMARY KEY,
 entry_type_name text UNIQUE, -- Controlled vocabulary type name
 entry_type_desc text
);

-- 2. Fact & Bridge Tables --

-- Entry table, range-partitioned by publication year
DROP TABLE IF EXISTS dwh.entry CASCADE;
CREATE TABLE dwh.entry (
 entry_id bigint NOT NULL,
 source_id bigint,
 doi text,
 title text,

74

 publisher text,
 type text, -- Original type string from source
 entry_type_id bigint, -- FK to dwh.entry_type
 publication_date date NOT NULL, -- Partition key
 language text,
 score double precision,
 container_title text,
 page text,
 isbn jsonb,
 reference_count integer,
 is_referenced_by_count integer,
 citations jsonb,
 cited_by jsonb,
 volume text,
 issue text,
 abstract text,
 raw_data jsonb,
 updated_at timestamptz,
 fts tsvector, -- Precomputed full-text search vector
 PRIMARY KEY (entry_id, publication_date) -- Includes partition key
) PARTITION BY RANGE (publication_date);

-- Generate yearly partitions for dwh.entry (2000-2030 + legacy)
DO $$
DECLARE
 yr int;
BEGIN
 FOR yr IN 2000..2030 LOOP
 EXECUTE format(
 ‘CREATE TABLE IF NOT EXISTS dwh.entry_y%s PARTITION OF dwh.entry
 FOR VALUES FROM (‘‘%s-01-01’’) TO (‘‘%s-01-01’’);’,
 yr, yr, yr + 1
);
 END LOOP;
 EXECUTE ‘CREATE TABLE IF NOT EXISTS dwh.entry_legacy PARTITION OF dwh.entry
 FOR VALUES FROM (‘‘1900-01-01’’) TO (‘‘2000-01-01’’);’; -- Fallback
partition
END$$;

-- Entry-Author bridge table, hash-partitioned by entry_id
DROP TABLE IF EXISTS dwh.entry_author CASCADE;
CREATE TABLE dwh.entry_author (
 entry_author_surrogate_id bigint NOT NULL,
 author_id bigint NOT NULL, -- FK to dwh.author
 entry_id bigint NOT NULL, -- Refers to entry_id in dwh.entry
 is_primary_author boolean,
 author_sequence integer, -- Order of author in the publication
 updated_at timestamptz,
 PRIMARY KEY (entry_id, author_id)
) PARTITION BY HASH (entry_id);

-- Generate hash partitions for dwh.entry_author (32 buckets)
DO $$
DECLARE i int;
BEGIN
 FOR i IN 0..31 LOOP
 EXECUTE format(

75

 ‘CREATE TABLE IF NOT EXISTS dwh.entry_author_p%s PARTITION OF
dwh.entry_author
 FOR VALUES WITH (MODULUS 32, REMAINDER %s);’,
 i, i
);
 END LOOP;
END$$;

-- Author-Organization bridge table
DROP TABLE IF EXISTS dwh.author_organization CASCADE;
CREATE TABLE dwh.author_organization (
 author_organization_surrogate_id bigint PRIMARY KEY,
 author_id bigint NOT NULL, -- FK to dwh.author
 organization_id bigint NOT NULL, -- FK to dwh.organization
 affiliation_sequence integer, -- Order of affiliation for the author
 is_primary_organization boolean,
 updated_at timestamptz
);

-- 3. Indexes ---

-- GIN trigram index for case-insensitive title search
CREATE INDEX IF NOT EXISTS idx_entry_title_trgm ON dwh.entry USING gin (title
dwh.gin_trgm_ops);

-- Full-text search index using precomputed ‘fts’ column
CREATE INDEX IF NOT EXISTS idx_entry_fts ON dwh.entry USING gin (fts);

-- Index for sorting entries by recent publication date
CREATE INDEX IF NOT EXISTS idx_entry_recent ON dwh.entry (publication_date
DESC);

-- Covering index for entry-author lookups
CREATE INDEX IF NOT EXISTS idx_entry_author_lookup ON dwh.entry_author
(entry_id, author_id);

-- Indexes for author-organization lookups
CREATE INDEX IF NOT EXISTS idx_author_org_author_lookup ON
dwh.author_organization (author_id);
CREATE INDEX IF NOT EXISTS idx_author_org_org_lookup ON dwh.author_organization
(organization_id);

-- 4. Full-Text Search Trigger --

-- Trigger function to update the ‘fts’ tsvector column in dwh.entry
CREATE OR REPLACE FUNCTION dwh.update_fts() RETURNS trigger AS $$
BEGIN
 NEW.fts := to_tsvector(‘simple’, coalesce(NEW.title,’’) || ‘ ‘ ||
coalesce(NEW.abstract,’’));
 RETURN NEW;
END
$$ LANGUAGE plpgsql;

-- Trigger definition for dwh.entry updates/inserts
DROP TRIGGER IF EXISTS trg_update_fts ON dwh.entry;
CREATE TRIGGER trg_update_fts

76

BEFORE INSERT OR UPDATE ON dwh.entry
FOR EACH ROW EXECUTE FUNCTION dwh.update_fts();

-- 5. Foreign Key Constraints ---

-- Constraints added with DEFERRABLE INITIALLY IMMEDIATE as per thesis text

ALTER TABLE dwh.entry
ADD CONSTRAINT fk_entry_entry_type
FOREIGN KEY (entry_type_id) REFERENCES dwh.entry_type(entry_type_id)
DEFERRABLE INITIALLY IMMEDIATE;

ALTER TABLE dwh.entry_author
ADD CONSTRAINT fk_entry_author_author
FOREIGN KEY (author_id) REFERENCES dwh.author(author_id)
DEFERRABLE INITIALLY IMMEDIATE;

ALTER TABLE dwh.author_organization
ADD CONSTRAINT fk_author_organization_author
FOREIGN KEY (author_id) REFERENCES dwh.author(author_id)
DEFERRABLE INITIALLY IMMEDIATE;

ALTER TABLE dwh.author_organization
ADD CONSTRAINT fk_author_organization_organization
FOREIGN KEY (organization_id) REFERENCES dwh.organization(id)
DEFERRABLE INITIALLY IMMEDIATE;

-- Note: A direct FK from dwh.entry_author to the partitioned dwh.entry table
-- is omitted due to the complexity of referencing a composite partitioned key.
-- This relationship integrity is intended to be enforced via DBT tests.

-- End of DDL Script --

77

Appendix 3 – dwh_schema.yml configuration file

version: 2

models:
 - name: entry # Corresponds to entry.sql -> dwh.entry table
 description: "Stores detailed information about each publication entry."
 columns:
 - name: entry_id
 description: "Surrogate primary key for the entry."
 tests:
 - unique # Ensures each entry_id is unique
 - not_null # Ensures entry_id is never NULL
 - name: publication_date
 description: "The date of publication."
 tests:
 - not_null # Publication date is mandatory
 - name: title
 description: "Title of the publication."
 tests:
 - not_null # Title is mandatory
 - name: entry_type_id
 description: "Foreign key referencing the entry_type dimension."
 tests:
 - not_null
 - relationships: # Checks referential integrity
 to: ref(‘entry_type’) # References the dwh.entry_type table
 field: entry_type_id # The primary key column in dwh.entry_type

 - name: author # Corresponds to author.sql -> dwh.author table
 description: "Stores information about unique authors."
 columns:
 - name: author_id
 description: "Surrogate primary key for the author."
 tests:
 - unique
 - not_null
 - name: name
 description: "Author’s name."
 tests:
 - not_null # Author name is mandatory

 - name: entry_author # Corresponds to entry_author.sql -> dwh.entry_author
table
 description: "Junction table linking entries and authors."
 columns:
 # Note: Testing uniqueness on composite keys might require dbt_utils
package
 # or custom tests. Here we test individual FKs.
 - name: entry_author_surrogate_id # If this is your intended unique key
for the link
 tests:
 - unique
 - not_null
 - name: entry_id
 description: "Foreign key referencing the entry."
 tests:

78

 - not_null
 - relationships:
 to: ref(‘entry’) # References dwh.entry table
 field: entry_id # Must match entry_id in dwh.entry
 - name: author_id
 description: "Foreign key referencing the author."
 tests:
 - not_null
 - relationships:
 to: ref(‘author’) # References dwh.author table
 field: author_id # Must match author_id in dwh.author

 - name: organization # Corresponds to organization.sql -> dwh.organization
table
 description: "Stores information about unique organizations."
 columns:
 - name: id # This is the organization_id
 description: "Surrogate primary key for the organization."
 tests:
 - unique
 - not_null
 - name: name
 description: "Organization name."
 tests:
 - not_null

 - name: author_organization # Corresponds to author_organization.sql ->
dwh.author_organization
 description: "Junction table linking authors and organizations."
 columns:
 - name: author_organization_surrogate_id
 tests:
 - unique
 - not_null
 - name: author_id
 tests:
 - not_null
 - relationships:
 to: ref(‘author’)
 field: author_id
 - name: organization_id
 tests:
 - not_null
 - relationships:
 to: ref(‘organization’) # References dwh.organization table
 field: id # The primary key column in dwh.organization

 - name: entry_type # Corresponds to entry_type.sql -> dwh.entry_type
 description: "Dimension table for publication types."
 columns:
 - name: entry_type_id
 tests:
 - unique
 - not_null
 - name: entry_type_name
 tests:
 - unique # Type names should also be unique

79

 - not_null

80

Appendix 4 – scripts of the dbt custom singular tests

-- 1. assert_author_orcid_format.sql:

-- Checks if non-null ORCID values follow either the full URL format

-- OR the standard numerical format (XXXX-XXXX-XXXX-XXX[X]).

-- Passes if it returns 0 rows (i.e., all non-null ORCIDs match one of the

patterns).

SELECT

 author_id,

 orcid

FROM

 {{ ref('author') }} -- References dwh.author table

WHERE

 orcid IS NOT NULL

 -- Check if the ORCID does NOT match either the URL pattern OR the

numerical pattern

 AND NOT (

 -- Pattern 1: Full URL (allowing http or https)

 (orcid ~ '^https?://orcid\.org/\d{4}-\d{4}-\d{4}-\d{3}[\dX]$')

 OR

 -- Pattern 2: Just the numerical ID

 (orcid ~ '^\d{4}-\d{4}-\d{4}-\d{3}[\dX]$')

)

-- 2. assert_doi_format_if_present.sql:

-- This test checks if non-null, non-'unknown' DOIs generally follow

-- the common '10.' prefix format.

-- It passes if it returns 0 rows.

SELECT

 entry_id,

 doi

FROM

 {{ ref('entry') }} -- References dwh.entry table

WHERE

 doi IS NOT NULL

 AND doi <> 'unknown'

 AND doi NOT LIKE '10.%' -- Check if it starts with '10.'

-- 3. assert_entry_has_primary_author.sql

-- Finds entries that HAVE authors linked, but none are marked as primary.

-- Assumes is_primary_author = TRUE indicates the primary author based on

source order.

-- Note: This assumes that entries with authors *should* have a primary

author.

-- It will NOT return entries that have no authors at all.

-- Passes if it returns 0 rows.

81

SELECT

 e.entry_id

FROM

 {{ ref('entry') }} e

LEFT JOIN

 {{ ref('entry_author') }} ea

 ON e.entry_id = ea.entry_id AND ea.is_primary_author = TRUE

WHERE

 -- Condition 1: Ensure the entry actually HAS authors linked in the

junction table

 e.entry_id IN (SELECT DISTINCT entry_id FROM {{ ref('entry_author') }})

 -- Condition 2: Ensure that among those authors, none met the specific

LEFT JOIN condition (is_primary_author = TRUE)

 AND ea.entry_id IS NULL

-- 4. assert_entry_publication_date_is_reasonable.sql

-- This test checks if any publication dates are suspiciously far in the

future

-- or too far in the past (e.g., before 1900).

-- It passes if it returns 0 rows.

SELECT

 entry_id,

 publication_date

FROM

 {{ ref('entry') }} -- References dwh.entry table

WHERE

 publication_date > (CURRENT_DATE + interval '1 year') -- More than 1 year

in the future?

 OR publication_date < '1900-01-01' -- Before the year 1900?

82

Appendix 5 – scripts of the dbt models and the macro

-- ================================

-- STAGING MODELS

-- ================================

-- 1. stg_crossref.sql:

WITH base AS (

 SELECT

 id,

 doi,

 title,

 publisher,

 type,

 issued::DATE AS publication_date,

 language,

 authors,

 score,

 container_title,

 page,

 isbn,

 reference_count,

 is_referenced_by_count,

 citations,

 cited_by,

 volume,

 issue,

 abstract,

 raw_data

 FROM {{ source('RAW', 'raw_crossref') }}

)

SELECT

 id,

 COALESCE(doi, 'unknown') AS doi,

 TRIM(title) AS title,

 TRIM(publisher) AS publisher,

 LOWER(type) AS type,

 publication_date,

 LOWER(language) AS language,

 authors,

 score,

 container_title,

 page,

 isbn,

 reference_count,

 is_referenced_by_count,

 citations,

83

 cited_by,

 volume,

 issue,

 abstract,

 raw_data

FROM base

WHERE title IS NOT NULL

-- staging sources.yml:

version: 2

sources:

 - name: RAW

 schema: raw

 tables:

 - name: raw_crossref

-- ================================

-- INTERMEDIATE MODELS

-- ================================

-- 2. int_entry.sql:

{{ config(materialized='table') }}

WITH distinct_entries AS (

 SELECT DISTINCT

 id AS source_id,

 doi,

 title,

 publisher,

 type,

 publication_date,

 language,

 authors,

 score,

 container_title,

 page,

 isbn,

 reference_count,

 is_referenced_by_count,

 citations,

 cited_by,

 volume,

 issue,

 REGEXP_REPLACE(CAST(abstract AS VARCHAR), '<[^>]+>', '', 'g') AS

abstract,

84

 raw_data,

 CURRENT_TIMESTAMP AS updated_at,

 {{ surrogate_key(["id", "doi", "title", "publisher"]) }} AS entry_id

 FROM {{ ref('stg_crossref') }}

 WHERE title IS NOT NULL

)

SELECT

 entry_id,

 source_id,

 doi,

 title,

 publisher,

 type,

 publication_date,

 language,

 authors,

 score,

 container_title,

 page,

 isbn,

 reference_count,

 is_referenced_by_count,

 citations,

 cited_by,

 volume,

 issue,

 abstract,

 raw_data,

 updated_at

FROM distinct_entries

-- 3. int_entry_type.sql:

WITH distinct_types AS (

 SELECT DISTINCT

 LOWER(type) AS type

 FROM {{ ref('stg_crossref') }}

),

new_types AS (

 SELECT

 type

 FROM distinct_types

 LEFT JOIN {{ source('DWH', 'entry_type') }} et

 ON distinct_types.type = et.entry_type_name

 WHERE et.entry_type_id IS NULL

),

max_id AS (

 SELECT COALESCE(MAX(entry_type_id), 0) AS max_id

 FROM {{ source('DWH', 'entry_type') }}

)

85

SELECT

 ROW_NUMBER() OVER (ORDER BY type) + (SELECT max_id FROM max_id) AS

entry_type_id,

 type AS entry_type_name,

 NULL AS entry_type_desc

FROM new_types

-- 4. int_author.sql:

{{ config(materialized='table') }}

WITH distinct_authors AS (

 SELECT DISTINCT

 author->>'name' AS name,

 author->>'orcid' AS orcid,

 author->>'affiliations' AS organizations,

 CURRENT_TIMESTAMP AS updated_at

 FROM {{ ref('stg_crossref') }},

 jsonb_array_elements(authors) AS author

 WHERE author->>'name' IS NOT NULL

)

SELECT

 {{ surrogate_key(["name", "orcid", "organizations"]) }} AS author_id,

 name,

 orcid,

 organizations,

 updated_at

FROM distinct_authors

WHERE name IS NOT NULL

-- 5. int_entry_author.sql:

{{ config(materialized='table') }}

WITH base_entries AS (

 SELECT DISTINCT

 id AS source_id,

 doi,

 title,

 publisher,

 authors,

 CURRENT_TIMESTAMP AS updated_at,

 {{ surrogate_key(["id", "doi", "title", "publisher"]) }} AS entry_id

 FROM {{ ref('stg_crossref') }}

 WHERE title IS NOT NULL

),

expanded_authors AS (

 SELECT

86

 be.entry_id,

 a.value,

 a.ordinality,

 be.updated_at

 FROM base_entries be

 CROSS JOIN LATERAL jsonb_array_elements(be.authors) WITH ORDINALITY AS

a(value, ordinality)

),

final AS (

 SELECT

 entry_id,

 REGEXP_REPLACE(CAST(value->>'name' AS VARCHAR), '<[^>]+>', '', 'g') AS

author_name,

 ordinality,

 updated_at

 FROM expanded_authors

 WHERE value->>'name' IS NOT NULL

)

SELECT

 entry_id,

 author_name,

 updated_at,

 ordinality,

 {{ surrogate_key(["entry_id", "author_name"]) }} AS

entry_author_surrogate_id

FROM final

--6. int_organization.sql:

{{ config(materialized='table') }}

WITH extracted_organizations AS (

 SELECT DISTINCT

 CASE

 WHEN jsonb_typeof(org) = 'object' THEN TRIM(org->>'name')

 ELSE TRIM(BOTH '"' FROM org::text)

 END AS organization_name,

 CURRENT_TIMESTAMP AS updated_at

 FROM {{ ref('stg_crossref') }},

 jsonb_array_elements(authors) AS author,

 LATERAL jsonb_array_elements(

 CASE

 WHEN jsonb_typeof(author->'affiliations') = 'array' THEN

author->'affiliations'

 ELSE jsonb_build_array(author->'affiliations')

 END

) AS org

 WHERE author->>'name' IS NOT NULL

 AND author->'affiliations' IS NOT NULL

)

87

SELECT

 {{ surrogate_key(["organization_name"]) }} AS organization_id,

 organization_name,

 updated_at

FROM extracted_organizations

WHERE organization_name IS NOT NULL

 AND organization_name <> 'null'

-- 7. int_author_organization.sql:

{{ config(materialized='table') }}

WITH base_authors AS (

 SELECT DISTINCT

 a.author_id,

 a.name AS author_name,

 a.organizations::jsonb AS organizations, -- Cast organizations to

jsonb

 CURRENT_TIMESTAMP AS updated_at

 FROM {{ ref('int_author') }} a

 WHERE organizations IS NOT NULL

),

expanded_organizations AS (

 SELECT

 ba.author_id,

 org.value AS organization,

 org.ordinality,

 ba.updated_at

 FROM base_authors ba

 CROSS JOIN LATERAL jsonb_array_elements(

 CASE

 WHEN jsonb_typeof(ba.organizations) = 'array' THEN

ba.organizations

 WHEN jsonb_typeof(ba.organizations) = 'string' THEN

jsonb_build_array(ba.organizations)

 ELSE '[]'::jsonb

 END

) WITH ORDINALITY AS org(value, ordinality)

),

final AS (

 SELECT

 author_id,

 REGEXP_REPLACE(CAST(organization AS VARCHAR), '<[^>]+>', '', 'g') AS

organization_name,

 ordinality,

 updated_at

 FROM expanded_organizations

 WHERE organization IS NOT NULL

)

SELECT

88

 author_id,

 REGEXP_REPLACE(CAST(organization_name AS VARCHAR), '["]', '', 'g') AS

organization_name, -- Remove double quotes

 updated_at,

 ordinality,

 {{ surrogate_key(["author_id", "organization_name"]) }} AS

author_organization_surrogate_id

FROM final

-- intermediate sources.yml:

version: 2

sources:

 - name: DWH

 schema: dwh

 tables:

 - name: entry_type

- name: organization

 - name: author

-- ================================

-- TARGET MODELS

-- ================================

-- 8. author_organization.sql:

{{

 config(

 materialized = 'incremental',

 incremental_strategy = 'delete+insert',

 unique_key = 'author_organization_surrogate_id'

)

}}

WITH author_organizations AS (

 SELECT

 iao.author_id,

 iao.organization_name AS name,

 iao.ordinality,

 iao.updated_at,

 iao.author_organization_surrogate_id

 FROM {{ ref('int_author_organization') }} iao

)

SELECT

89

 ao.author_id,

 o.id AS organization_id,

 ao.author_organization_surrogate_id,

 CASE WHEN ao.ordinality = 1 THEN TRUE ELSE FALSE END AS

is_primary_organization,

 GREATEST(ao.updated_at, o.updated_at) AS updated_at

FROM author_organizations ao

JOIN {{ ref('organization') }} o

 ON LOWER(TRIM(ao.name)) = LOWER(TRIM(o.name))

{% if is_incremental() %}

WHERE GREATEST(ao.updated_at, o.updated_at) > (

 SELECT COALESCE(MAX(updated_at), '1900-01-01')

 FROM {{ this }}

)

{% endif %}

ORDER BY ao.author_id, ao.ordinality

-- 9. author.sql:

{{

 config(

 materialized = 'incremental',

 incremental_strategy = 'delete+insert',

 unique_key = 'author_id'

)

}}

SELECT

 author_id,

 name,

 orcid,

 organizations,

 updated_at

FROM {{ ref('int_author') }}

{% if is_incremental() %}

WHERE updated_at > (SELECT COALESCE(MAX(updated_at), '1900-01-01') FROM {{

this }})

{% endif %}

--10. entry_author.sql:

{{

 config(

 materialized = 'incremental',

 incremental_strategy = 'delete+insert',

 unique_key = 'entry_author_surrogate_id'

)

}}

90

WITH entry_authors AS (

 SELECT

 iea.entry_id,

 iea.author_name as name,

 iea.ordinality,

 iea.updated_at,

 iea.entry_author_surrogate_id

 FROM {{ ref('int_entry_author') }} iea

)

SELECT

 ea.entry_id,

 a.author_id,

 ea.entry_author_surrogate_id,

 CASE WHEN ea.ordinality = 1 THEN TRUE ELSE FALSE END AS is_primary_author,

 GREATEST(ea.updated_at, a.updated_at) AS updated_at

FROM entry_authors ea

JOIN {{ ref('author') }} a

 ON LOWER(TRIM(ea.name)) = LOWER(TRIM(a.name))

{% if is_incremental() %}

WHERE GREATEST(ea.updated_at, a.updated_at) > (

 SELECT COALESCE(MAX(updated_at), '1900-01-01')

 FROM {{ this }}

)

{% endif %}

ORDER BY ea.entry_id, ea.ordinality

-- 11. entry_type.sql:

{{ config(materialized='incremental')}}

SELECT

 entry_type_id,

 entry_type_name,

 entry_type_desc

FROM {{ ref('int_entry_type') }}

{% if is_incremental() %}

WHERE entry_type_id > (SELECT COALESCE(MAX(entry_type_id),0) FROM {{ this }})

{% endif %}

-- 12. entry.sql:

{{

 config(

 materialized = 'incremental',

 incremental_strategy = 'delete+insert',

 unique_key = 'entry_id'

)

}}

91

SELECT

 ie.entry_id,

 ie.source_id,

 ie.doi,

 ie.title,

 ie.publisher,

 ie.type,

 et.entry_type_id,

 ie.publication_date,

 ie.language,

 ie.score,

 ie.container_title,

 ie.page,

 ie.isbn,

 ie.reference_count,

 ie.is_referenced_by_count,

 ie.citations,

 ie.cited_by,

 ie.volume,

 ie.issue,

 ie.abstract,

 ie.raw_data,

 ie.updated_at

FROM {{ ref('int_entry') }} ie

JOIN {{ ref('entry_type') }} et

 ON ie.type = et.entry_type_name

{% if is_incremental() %}

WHERE ie.updated_at > (

 SELECT COALESCE(MAX(x.updated_at), '1900-01-01')

 FROM (SELECT updated_at FROM {{ this }}) AS x

)

{% endif %}

ORDER BY ie.entry_id

-- 13. organization.sql:

{{

 config(

 materialized = 'incremental',

 incremental_strategy = 'delete+insert',

 unique_key = 'id'

)

}}

SELECT

 organization_id AS id,

 organization_name AS name,

 NULL AS address,

 NULL AS contact_1,

 NULL AS contact_2,

92

 NULL AS email,

 NULL AS org_type,

 updated_at

FROM {{ ref('int_organization') }}

{% if is_incremental() %}

WHERE updated_at > (SELECT COALESCE(MAX(updated_at), '1900-01-01') FROM {{

this }})

{% endif %}

-- 14. entry_details_vw.sql:

{{ config(materialized='view') }}

WITH entry_data AS (

 SELECT

 e.entry_id,

 e.source_id,

 e.doi,

 e.title,

 e.publisher,

 e.publication_date,

 e.language,

 e.score,

 e.container_title,

 e.page,

 e.isbn,

 e.reference_count,

 e.is_referenced_by_count,

 e.citations,

 e.cited_by,

 e.volume,

 e.issue,

 e.abstract,

 e.updated_at,

 et.entry_type_id,

 et.entry_type_name

 FROM {{ ref('entry') }} e

 JOIN {{ ref('entry_type') }} et

 ON e.entry_type_id = et.entry_type_id

),

author_data AS (

 SELECT

 ea.entry_id,

 a.author_id,

 a.name AS author_name,

 a.orcid,

 ea.is_primary_author,

 ea.updated_at AS entry_author_updated_at

 FROM {{ ref('entry_author') }} ea

 JOIN {{ ref('author') }} a

93

 ON ea.author_id = a.author_id

),

organization_data AS (

 SELECT

 ao.author_id,

 o.id,

 o.name AS organization_name,

 ao.is_primary_organization,

 ao.updated_at AS author_organization_updated_at

 FROM {{ ref('author_organization') }} ao

 JOIN {{ ref('organization') }} o

 ON ao.organization_id = o.id

)

SELECT

 ed.entry_id,

 ed.source_id,

 ed.doi,

 ed.title,

 ed.publisher,

 ed.publication_date,

 ed.language,

 ed.score,

 ed.container_title,

 ed.page,

 ed.isbn,

 ed.reference_count,

 ed.is_referenced_by_count,

 ed.citations,

 ed.cited_by,

 ed.volume,

 ed.issue,

 ed.abstract,

 ed.updated_at AS entry_updated_at,

 ed.entry_type_id,

 ed.entry_type_name,

 ad.author_id,

 ad.author_name,

 ad.orcid,

 ad.is_primary_author,

 ad.entry_author_updated_at,

 od.id as organization_id,

 od.organization_name,

 od.is_primary_organization,

 od.author_organization_updated_at

FROM entry_data ed

LEFT JOIN author_data ad

 ON ed.entry_id = ad.entry_id

LEFT JOIN organization_data od

 ON ad.author_id = od.author_id

where od.id is not null

94

-- ================================

-- macro

-- ================================

-- surrogate_key.sql macro:

{% macro surrogate_key(columns) %}

 abs(

 hashtext(

 concat(

 {%- for column in columns -%}

 coalesce(cast({{ column }} as text), '')

 {%- if not loop.last -%}, {% endif -%}

 {%- endfor -%}

)

)

)

{% endmacro %}

95

Appendix 6 – app.py python script

from flask import Flask, render_template, request, jsonify,

send_from_directory

import os

import psycopg2

from config import DB_CONFIG

import json

app = Flask(__name__, static_folder='static')

Serve static files (fix missing CSS and images)

@app.route('/static/<path:filename>')

def static_files(filename):

 return send_from_directory(app.static_folder, filename)

Database Connection

def get_db_connection():

 try:

 return psycopg2.connect(**DB_CONFIG)

 except psycopg2.Error as e:

 print(f"Database connection error: {e}")

 return None

Add JSON filter

@app.template_filter('fromjson')

def fromjson(value):

 """

 Safely convert a JSON-encoded string coming from the database into a

Python

 object for Jinja templates. If the value is already a Python list or dict,

 just return it unchanged.

 """

 if isinstance(value, (list, dict)):

 return value

 try:

 return json.loads(value)

 except (TypeError, json.JSONDecodeError):

 return []

Define the selected columns

SELECTED_COLUMNS = """

 doi, title, author_name, is_primary_author, orcid, publisher,

publication_date,

 language, score, container_title, page, isbn, reference_count,

is_referenced_by_count,

 citations, cited_by, volume, issue, organization_name, entry_type_name,

abstract

"""

96

@app.route("/", methods=["GET"])

def home():

 """Render the search page with optional query results."""

 title_query = request.args.get("title", "").strip()

 author_query = request.args.get("author", "").strip()

 selected_types = request.args.getlist("types")

 page = int(request.args.get("page", 0))

 per_page = int(request.args.get("per_page", 10))

 offset = page * per_page

 conn = get_db_connection()

 if not conn:

 return "Database connection error", 500

 try:

 cur = conn.cursor()

 # Get total counts first

 cur.execute("""

 SELECT entry_type_name, COUNT(DISTINCT title) as count

 FROM dwh.entry_details_vw

 GROUP BY entry_type_name

 ORDER BY entry_type_name

 """)

 total_type_counts = dict(cur.fetchall())

 entry_types = list(total_type_counts.keys())

 # Build search conditions

 search_conditions = []

 params = []

 if title_query:

 search_conditions.append("LOWER(title) LIKE LOWER(%s)")

 params.append(f"%{title_query}%")

 if author_query:

 search_conditions.append("LOWER(author_name) LIKE LOWER(%s)")

 params.append(f"%{author_query}%")

 # Build type filter condition

 if selected_types and "all" not in selected_types:

 search_conditions.append("entry_type_name = ANY(%s)")

 params.append(selected_types)

 # Main query with author grouping

 where_clause = f"WHERE {' AND '.join(search_conditions)}" if

search_conditions else ""

 sql_query = f"""

 WITH GroupedEntries AS (

 SELECT DISTINCT ON (title)

97

 title, entry_type_name, doi, publication_date, publisher,

 reference_count, is_referenced_by_count,

organization_name,

 container_title, score, volume, issue, language, isbn,

 page, abstract, citations, cited_by,

 author_name

 FROM dwh.entry_details_vw

 WHERE is_primary_author = true

 {' AND ' + ' AND '.join(search_conditions) if

search_conditions else ''}

),

 AuthorDetails AS (

 SELECT

 g.*,

 json_agg(

 DISTINCT jsonb_build_object(

 'name', a.author_name,

 'orcid', a.orcid,

 'is_primary', a.is_primary_author

)

)::json as author_details

 FROM GroupedEntries g

 JOIN dwh.entry_details_vw a ON g.title = a.title

 GROUP BY g.title, g.entry_type_name, g.doi,

g.publication_date, g.publisher,

 g.reference_count, g.is_referenced_by_count,

g.organization_name,

 g.container_title, g.score, g.volume, g.issue,

g.language, g.isbn,

 g.page, g.abstract, g.citations, g.cited_by,

g.author_name

)

 SELECT * FROM AuthorDetails

 ORDER BY title

 LIMIT %s OFFSET %s

 """

 params.extend([per_page, offset])

 # Build a second WHERE clause that matches the main query’s logic,

 # i.e. it also limits the rows to the primary author of each title.

 filtered_where_clause = (

 "WHERE is_primary_author = true"

 + (f" AND {' AND '.join(search_conditions)}" if search_conditions

else "")

)

 filtered_count_sql = f"""

 SELECT entry_type_name, COUNT(DISTINCT title) AS count

 FROM dwh.entry_details_vw

 {filtered_where_clause}

 GROUP BY entry_type_name

98

 """

 cur.execute(filtered_count_sql, tuple(params[:-2]) if params else ())

 filtered_type_counts = dict(cur.fetchall())

 # Execute main query

 cur.execute(sql_query, tuple(params))

 rows = cur.fetchall()

 columns = [desc[0] for desc in cur.description]

 entries = [dict(zip(columns, row)) for row in rows] if rows else []

 except psycopg2.Error as e:

 print(f"Database query error: {e}")

 entries = []

 entry_types = []

 finally:

 cur.close()

 conn.close()

 return render_template(

 "index.html",

 entries=entries,

 entry_types=entry_types,

 type_counts=total_type_counts,

 filtered_type_counts=filtered_type_counts,

 selected_types=selected_types,

 title_query=title_query,

 author_query=author_query,

 page=page,

 per_page=per_page,

 entries_count=len(entries)

)

API Endpoints

@app.route("/api/entries", methods=["GET"])

def api_get_entries():

 """API to fetch bibliographic records with pagination."""

 general_query = request.args.get("q", "").strip()

 title_query = request.args.get("title", "").strip()

 author_query = request.args.get("author", "").strip()

 page = int(request.args.get("page", 0)) # Get the page number, default to

0

 limit = 10 # Changed from 200 to 10 records per page

 offset = page * limit # Calculate offset for pagination

 conn = get_db_connection()

 if not conn:

 return jsonify({"error": "Database connection error"}), 500

 try:

 cur = conn.cursor()

99

 sql_query = f"""

 SELECT DISTINCT ON (title, author_name) {SELECTED_COLUMNS}

 FROM dwh.entry_details_vw

 WHERE (%s = '' OR title ILIKE %s OR author_name ILIKE %s OR

publisher ILIKE %s)

 AND (%s = '' OR title ILIKE %s)

 AND (%s = '' OR author_name ILIKE %s)

 ORDER BY title, author_name, organization_name

 LIMIT {limit} OFFSET {offset}

 """

 cur.execute(sql_query, (

 general_query, f"%{general_query}%", f"%{general_query}%",

f"%{general_query}%",

 title_query, f"%{title_query}%",

 author_query, f"%{author_query}%"

))

 rows = cur.fetchall()

 columns = [desc[0] for desc in cur.description]

 results = [dict(zip(columns, row)) for row in rows] if rows else []

 except psycopg2.Error as e:

 print(f"Database query error: {e}")

 results = []

 finally:

 cur.close()

 conn.close()

 return jsonify(results)

if __name__ == "__main__":

 app.run(debug=True)
	

100

Appendix 7 – Source Code Repository

The full source code for the project described in this thesis, ‘Design and development of

a bibliographic database architecture,’ is publicly available on GitHub at the following

URL:

https://github.com/ManiBiglari/Bibliographic-Database-Project"

https://github.com/ManiBiglari/Bibliographic-Database-Project

