

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

HYPERSPECTRAL IMAGING WITH JETSON TX2

HÜPERSPEKTRAAL-PILDITEHNIKA JETSON TX2 ABIL

MASTER THESIS

Student: Jalal Sadigli

Student code: 184359MAHM

Supervisor: Dhanushka Chamara Liyanage, Engineer

Co-supervisor: Mart Tamre ,professor

Tallinn 2021

AUTHOR’S DECLARATION

Hereby I declare that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“21” December 2020

Author: signed digitally

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

Non-exclusive Licence for Publication and Reproduction of
Graduation Thesis¹

I, Jalal Sadigli (date of birth: 31.08.1996) hereby

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis

HYPERSPECTRAL IMAGING WITH JETSON TX2, supervised by Dhanushka Chamara

Liyanage,

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be

entered in the digital collection of TalTech library until expiry of the term of

copyright;

1.2 published via the web of TalTech, incl. to be entered in the digital collection of

TalTech library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this

license.

2. I confirm that granting the non-exclusive license does not infringe third persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during

the validity period of restriction on access, except the university`s right to reproduce the thesis

only for preservation purposes.

Signed digitally

21/12/2020

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Jalal Sadigli,184359MAHM

Study programme,

main speciality: MAHM02/18 - Mechatronics

Supervisor(s): Engineer, Dhanushka Chamara Liyanage

Co-supervisor: Professor, Mart Tamre

Thesis topic:

(in English) HYPERSPECTRAL IMAGING WITH JETSON TX2

(in Estonian) HÜPERSPEKTRAAL-PILDITEHNIKA JETSON TX2 ABIL

Thesis main objectives:

1. Improve previously developed image acquisition method

2. Apply push broom scan method by controlling LTS300/M from NVIDIA Jetson

TX2 board

3. Apply Kmeans and MiniBatchKmeans algorithm for clustering

Thesis tasks and time schedule:

No Task description Deadline

1. Review previous work 15.10.2020

2.

Study of hyperspectral imaging techniques, principles and

features of the hyperspectral camera, NVIDIA Jetson TX2,

LTS300/M

30.10.2020

3.
Generating hyperspectral data cube using push broom scanner

method with the help of the LTS300/M

20.11.2020

4. Applying unsupervised machine learning algorithms 01.12.2020

5. Testing the system 21.12.2020

Language: English Deadline for submission of thesis: “21” December 2020

Student: Jalal Sadigli signed digitally “21” December 2020

Supervisor: ………………… …………………….. “.......”......................20….a

 /signature/

Head of study programme: …………… “.......”......................20…..a

 /signature/

Terms of thesis closed defence and/or restricted access conditions to be formulated on

the reverse side

5

CONTENTS

CONTENTS.. 5

PREFACE .. 7

LIST OF ABBREVIATIONS AND SYMBOLS .. 8

TABLES .. 9

1 INTRODUCTION ...10

1.1 Overview ..10

1.2 Motivation ...10

1.3 Aim ..11

1.4 Tasks ...11

1.5 Structure of the thesis ..11

2 LITERATURE REVIEW AND COMPONENTS OF THE SYSTEM13

2.1 Literature review ...13

2.2 Influence of illuminations ..15

2.3 Processing hyperspectral data in real time ..16

2.3.1 Anomaly detection ...16

2.3.2 Spectral unmixing ...17

2.3.3 FPGA based systems ..18

2.3.4 GPU based systems ...18

2.4 Unsupervised classification ..19

2.4.1 KMeans clustering ...19

2.4.2 Mini Batch KMeans clustering ..20

2.5 Hardware ..22

2.5.1 Overview ..22

2.5.2 NVIDIA TX2 ..23

2.5.3 Hyperspectral camera – XIMEA ...24

2.5.4 Thorlabs ...25

2.6 Software ...26

2.6.1 Jetsonpack ...26

2.6.2 Python ...26

3 DEVELOPMENT ..27

3.1 Hardware Subsystem ...27

3.1.1 NVIDIA Jetson TX2 ..27

3.1.2 Thorlabs LTS300/M ..29

3.1.3 The hyperspectral camera ..29

3.1.4 USB hub ...29

6

3.1.5 Debugging ..30

3.2 Software subsystem ...30

3.2.1 NVIDIA SDK Manager...30

3.2.2 Python ...30

3.2.3 xiCamTool ..31

3.3 Image Acquisition ..31

3.3.1 The motion stage ..31

3.3.2 The hyperspectral camera ..33

3.3.3 Preprocessing captured image ...34

3.3.4 Generating hyperspectral cube ..36

3.3.5 Kmeans clusterring ..38

3.3.6 Mini Batch Kmeans clustering ..39

3.4 Implementation ...39

3.4.1 The Motion Stage ..40

3.4.2 The hyperspectral camera ..41

3.4.3 Preprocessing captured images ...43

3.4.4 Generating hyperspectral cube ..43

3.4.5 Kmeans clustering ...45

3.4.6 MiniBatchKmeans clustering ..46

4 TESTING THE SYSTEM ..47

4.1 Overview ..47

4.2 Results ...48

5 SUMMARY ...51

5.1 Future work and suggestions ...51

6 KOKKUVÕTE ..52

6.1 Edasine töö ja ettepanekud ...52

LIST OF REFERENCES ...53

APPENDICES ..60

7

PREFACE

Department of Electrical and Power Engineering and Mechatronics of Tallinn University

of Technology provided the thesis. Major thesis work was done in the laboratory (NRG-

202) of the same department. After some discussions the topic was offered by co-

supervisor professor Mart Tamre.

Hyperspectral imaging is a spectroscopy-based analytical technique. For the same

spatial area, it collects hundreds of images at various wavelengths. Recent advances in

sensor design resulted in light weight cameras such as XIMEA xIQMQ022HG-IM-LS150-

VISNIR that is 32 gram [1] which makes it possible to use camera for remote sensing

applications. Hyperspectral cameras produce images which have rich information

content, in order to gather and process that data , powerful yet small computer is

needed. Jetson TX2 board is a one of the embedded computers that NVIDIA produces.

Besides portability, the board provide a large processing capability and having onboard

Graphics Processing Unit (GPU) allow the execution of instruction in parallel. With this

powerful embedded computer, real-time hyperspectral image processing application

was developed.

Keywords: hyperspectral imaging, real-time imaging setup, nvidia jetson tx2, on-board

hyperspectral processing, master thesis.

8

LIST OF ABBREVIATIONS AND SYMBOLS

API – Application Programming Interface

CMOS – Complementary Metal Oxide Semiconductor

CPU – Central Processing Unit

CUDA - Compute Unified Device Architecture

FPGA - Field Programmable Gate Array

FPS – Frame per Second

GPU – Graphical Processing Unit

HSI – Hyperspectral Imaging

IDE – Integrated Development Environment

LPDDR – Low Power Double Data Rate

OS – Operating System

SDK – Software Development Kit

UAV – Unmanned Aerial Vehicle

USB – Universal Serial Bus

VM – Virtual machine

WSL Windows Subsystem for Linux

9

TABLES

Table 1 – Result of the previous research

Table 2 – Relative Move command structure

Table 3 – Move Completed message structure

Table 4 – Homing command structure

10

1 INTRODUCTION

1.1 Overview

Hyperspectral imaging is a spectroscopy-based analytical technique. For the same

spatial area, it collects hundreds of images at various wavelengths. In contrast to human

eye which has three color receptors in the red, green and blue, hyperspectral imaging

check the continuous light spectrum with fine wavelength resolution for each pixel of

the object, not only in the visible but also in the near infrared. The recorded information

forms a so-called hyperspectral cube in which the spatial extent of the object is

represented by two dimensions and the spectral data by the third[2].

Every material has a particular spectral signature that can be used for its specific

identification as a fingerprint. Therefore, due to its non-destructive, standoff, and label-

free capability in recognizing the components of material, hyperspectral imaging finds

broad variety of applications in remote sensing[2]. In various fields, such as astronomy,

agriculture, molecular biology, biomedical imaging, climate and surveillance,

hyperspectral imaging is used.

Recent advances in sensor design resulted in light weight cameras such as XIMEA

xIQMQ022HG-IM-LS150-VISNIR that is 32 gram [1] which makes it possible to mount

the camera on Unmanned Aerial Vehicle (UAV). Having the camera on the UAV will let

us to do remote object detection and classification way easier.

Hyperspectral cameras produce images which have rich information content, in order to

gather and process that data , powerful yet small computer is needed. The NVIDIA

company has made great progress for the last few years. Jetson TX2 board is a one of

the embedded computers that NVIDIA produces. Besides portability, the board provide

a large processing capability and having onboard Graphics Processing Unit (GPU) allow

the execution of instruction in parallel[3][4].

1.2 Motivation

Hyperspectral imaging is an efficient and flexible instrument that can be used in a wide

range of practical application[5] such as solving problem in food analysis, precision

agriculture and others. Growing interest to the remote sensing, self-driving car makes

companies to develop hardware and/or software platforms to let computer vision

reachable to every developer.

11

Being around self-driving car, delivery robots in the campus of the university gave me

great interest in computer vision and machine learning. Working in those fields

motivates me to write this thesis.

1.3 Aim

The main goal for this thesis is getting data from the hyperspectral camera with the help

of GPU based embedded computer in real time to generate hyperspectral cube in order

to do real-time processing on the same single board computer.

1.4 Tasks

• Review precious works

• Setup, flash, configure the system

• Read documentation for the camera and its Application Programming Interface

(API)

• Control LTS300/M to apply push broom scanning

• Generate hyperspectral cube

• Check and verify the generated data cube

• Apply processing/Machine Learning techniques

• Test the system

1.5 Structure of the thesis

The thesis consists of four main parts. Introduction, literature review, development and

testing. In the introduction part, main idea is presented. It also includes motivation of

the author for the topic. Task definition and goal are clearly written as well as structure

of the thesis.

The literature review part contains theoretical background for hyperspectral imaging,

discuss research areas where hyperspectral imaging is used. Different methods for

generating hyperspectral data cube are described in this chapter. Second chapter is

about specifications and implementation of hardware and software components in

different research works. The same chapter also includes information about

unsupervised machine learning algorithms. In software and hardware section of the

second chapter, general overview of the system and its components are explained.

12

Third chapter is mainly for the development. It contains description of the system and

development from unboxing the components to assembling fully functional system.

At the beginning of the chapter, whole overview of the implemented components

hardware and software are represented. Then, usage of hardware and software

components separately is explained in detail. After that, main part of the software

implementation is described.

The fourth chapter is showing the result of testing the developed system.

The fifth and sixth chapters give short summary in English and Estonian respectively.

References and appendix are after summary chapters.

13

2 LITERATURE REVIEW AND COMPONENTS OF THE

SYSTEM

2.1 Literature review

Human eyes can perceive specific wavelengths from 380nm to 780nm which is called

visible spectrum. But in the electromagnetic spectrum there are a lot of wavelengths

out of visible spectrum which are invisible to human beings.

Developments in imaging technology, we can gather data for different wavelengths out

of visible spectrum and process it in a useful way. Hyperspectral imaging(HSI) is the

simultaneous processing and combination of spatial and corresponding spectral

information in an image space.

In the electromagnetic spectrum, hyperspectral sensors capture hundreds of images

and each individual pixel in the observed spectrum is a complete spectrum. HSI is thus

a three-dimensional data cube with two dimensions of spatial and a spectral dimension.

The spectral dimension enables the materials in the scene to be identified[6].

HSI allows us to discover the unexplored by visualizing information which is not visible

to human eye. Images captured from HSI camera are in the form of a hypercube which

is consist of n different band of same object.

There are three main techniques used for generating three-dimensional hypercube[7].

First one is spectral scanning which is sequential image of full spatial information. In

spectral scanning, output of each 2-D sensor represents single-colored, spatial map of

the object. Spectral scanning HSI systems are usually based on optical band-pass filters

which can be tunable or fixed. By changing one filter after another, the object is

spectrally scanned whilst the platform remains stationary[2][3][4].

Figure 1 – Spectral scanning[7].

14

Second one is spatial scanning which is sequential image of common spectral data. In

this method output of each 2-D dimensional sensor represents a full narrow line of

spectrum. Spatial scanning HSI devices generate image of the object stacking lines

together with the help of moving platform(push broom scan). Spatial scanning systems

are very common in remote sensing[9], [10].

Figure 2 – Spatial scanning[5].

Third one is snapshot or non-scanning where all spectral and spatial information are

captured simultaneously. In this method output of a single 2-D sensor contains all

spectral and spatial information. Snapshot HSI devices generate full hypercube at once

, without doing any scanning[10], [11].

Figure 3 – Snapshot [5].

Qualitative results can be obtained by using first and second methods, but they are not

efficient for collecting and processing the entire hypercube[5].

15

 Figure 4 – Hyperspectral cube[12].

In this thesis push broom method was used.

HSI is successfully employed in different industries. The analysis of the generated

hypercube allows for a detailed classification by the fingerprints of the

object[13][14][15][16][17][18][19]:

• Precision agriculture;

• Environment monitoring;

• Food sorting;

• Robotic vision;

• Blood/ urine analyzers;

• DNA sequencer;

• Print quality inspection;

• Night vision systems;

• Industrial gas leaks monitoring;

• Wounds imaging;

• Water monitoring analyzers;

2.2 Influence of illuminations

To find best source of illumination for hyperspectral image acquisition, previous master’s

degree students have made tests. As a source, students compared sun, fluorescent,

light-emitting diodes (LED), and incandescent. For HSI, Resonon Pika II which is in the

range of 400-1000nm and Resonon Near Infrared camera which is in the range of 1000-

1700nm were used. Following table shows result of their work[20].

16

Sources 380-700nm 400-1000nm

Sun + +

Incandescent + +

Fluorescent - -

LED + -

Table 1 – Result of the previous research[20].

Student concluded their work as incandescent light source is the best source for

HSI[20].

2.3 Processing hyperspectral data in real time

There are many significant applications for remotely sensed hyperspectral images since

its high-spectral resolution allows for more precise object detection and classification.

Real-time on-board implementation is strongly needed to enable immediate decision-

making in critical situations. As mentioned before, the hyperspectral camera collects

hundreds of images for the region of interest for different wavelengths. High spectral

resolution of hyperspectral cameras allows more efficient diagnostic capabilities than

conventional imaging in detection, and classification. In order to support quick decision-

making, real-time processing and analysis are needed to provide instant results. It is

extremely beneficial to be able to perform onboard processing. In image classification

and recognition, machine learning algorithms can realize high precision of

classification[21]. The enhanced spatial, spectral, and temporal resolutions given by

hyperspectral cameras require fast computing algorithms that can speed up the effective

use of hyperspectral data. To accelerate remote sensing techniques, methods rely on

dedicated hardware such as clusters, distributed systems, and specialized devices such

as GPUa or FPGAs(field programmable gate array) have been popularly used[22].

2.3.1 Anomaly detection

Anomaly detection is the process of identifying unexpected items or events that differ

from the norm in data sets. And unlabeled data, known as unsupervised anomaly

detection, is often used for anomaly detection. Detection of anomalies has two basic

assumptions:

• Anomalies only occur quite infrequently in the given data.

• Features of the anomalies differ significantly from ordinary cases[23].

17

In other words, anomaly detection is a technique of unsupervised target detection in

which no prior information available for the target or the background. Anomaly

Detection plays significant role in hyperspectral detection[24]. In practical applications,

real-time anomaly detection is more useful, especially the detection of moving targets

or instantaneous targets.

RX detector is one of the common algorithms for anomaly detection. To detect abnormal

data, RX detector implements the Mahalanobis distance between a test pixel and its

background metrics[24].

When the samples in the image do not conform to a linear distribution, RX detector

often fail to detect anomalous data[25]. To solve this problem new version of RX

algorithm was proposed which is called kernel RX. Kernel RX is a nonlinear version of

previous algorithm[25]. However , RX detector can easily designed into real-time

framework[24]. At the same time, due to computational complexity of the Kernel RX, it

can not be implemented in real-time. To make efficient processing in real-time equation

of the kernel RX is rewritten to support new proposed algorithm which is called casual

kernel RX detector[25]. With very clear boundaries, both algorithms can give bright

results, while RX detector alone itself generates very dark results with fuzzified

boundaries. Same results were produced by casual kernel RX and kernel RX algorithm,

but computing times are different[25].

2.3.2 Spectral unmixing

One of the most popular methods to process hyperspectral images is spectral

unmixing[26].

Due to lower spatial resolution of remote sensing spectroscopy, hyperspectral remote

sensing technology has a strong capacity for ground object detection. A single pixel that

leads to a remote sensing hyperspectral image generally contains more than one type

of feature coverage, resulting in a mixed pixel. The existence of a mixed pixel influences

the accuracy of the identification and classification of the ground object and hinders the

use and development of hyperspectral technology[26]. Two mixture models are

available. Linear and nonlinear mixture model[27]. Each pixel in the linear spectral

mixing model can be expressed as a linear end-member combination weighted by its

corresponding abundance[26]. For multicore implementation following algorithms can

be implemented[27]:

• Parallel Virtual Dimensionality.

• Parallel k-means.

18

• Parallel spatial-spectral preprocessing.

• Parallel N-FINDR .

• Parallel least squares.

Different methods such as nonnegative matrix factorization, Bayesian method, sparse

method were also proposed[26].

2.3.3 FPGA based systems

FPGAs are electronic component based around a matrix of programmable

interconnected configurable logic blocks. After production, FPGAs can be reprogrammed

to the desired application or functionality configurations. This feature distinguishes

FPGAs from custom manufactured Application Specific Integrated Circuits for design

tasks[28]. The mentioned feature gives makes development time for hardware and

software systems shorter compared to application specific integrated circuits. FPGAs can

provide better performance closer to GPUs[22]. FPGAs have the potential to increase

computational bandwidth due to their parallel nature in systems where software

performs processing functions on huge data[29].

Automatic target generation process is a widely used algorithm for target detection

mostly because of its aggressive performance. However, it has huge computation issue

due to inversion and multiplication of growing matrices. To handle this problem new fast

implementation of the algorithm was proposed based on FPGA[30].

As mentioned before, most widely used tool for analyzing hyperspectral images is

spectral unmixing. A new algorithm named FUN was proposed for real time processing

with spectral unmixing[31]. The implementation of this algorithm was done on FPGA

system[32].

With custom hardware architecture based on FPGA can get result of up to 96% quality

detection compared to a CPU based system[33].

2.3.4 GPU based systems

A GPU is a computer unit which performs fast mathematical calculations, mainly for

image rendering. GPUs were designed primarily to speed up process relateed to

image[34]. Parallel implementation of noise adaptive principal components algorithm

for feature extraction of hyperspectral image based on CPU-GPU collaboration is flexible

and efficient[35].

19

One of the most important topic with hyperscpetral images is spatial-spectral

classification. Parallel implementation of this classifier has advantages of spatial

piecewise smoothness and correlation of neighboring pixel[36].

Hundreds of narrow bands of the HSI sensor are used to capture accurate spectral

responses from objects. Band selection is popular for reducing dimensions of

hyperspectral data. The goal of band selection is to pick a small subset of hyperspectral

bands in order to minimize spectral redundancy and reduce computational costs while

reserving valuable spectral information for the scanned object[37]. Implemetation of

band selection on GPU is more efficient compared to CPU[38].

Parallel application of HSI over the serial application accompilishes considerable

improvement. However, there are still many enhancements required for real-time of

parallel implementation. The main point for this is because of large hyperspectral cube

with rich information which is needed to be processed in real time. One option to achieve

real-time implementation of applications isto use GPU.

2.4 Unsupervised classification

The unsupervised classification is the method of clustering without any prior

information. In hyperspectral image case the unsupervised method refers to spectral

similarities of the hyperspectral data. Assessments of relative pixel positions in the

image in an unsupervised classification helps to search for clusters within the data. It is

expected that each cluster represents unique properties[39].

2.4.1 KMeans clustering

The K-means clustering method's classification principle is that the sum of

squared distances from all the pixels in each cluster to the center point of that cluster

is the smallest. The center point of the initial clustering is randomly chosen at the

beginning of the clustering. To complete the initial clustering, other pixels to be clustered

are classified into one of the categories according to the initially specified principles.

Then adjust each class's clustering center point, change the center point of the

clustering, and classify again. Iterate this until position of the points of the clustering

center no longer varies. Before stopping iteration, make sure that best clustering center

is found. Then stop the iteration get the best result for clustering. The number of

selected categories cannot be changed during clustering with K-Means. Changing initial

clustering center point position is also affect the clustering result[40].

20

Figure 5 – Flow chart for KMeans algorithm[40].

2.4.2 Mini Batch KMeans clustering

K-means is one of the most common algorithms for clustering, mainly because of its

good performance over time. Because of its disadvantage of having the entire dataset

in main memory, the processing time of K-means increases with the growing size of the

datasets being examined. For this purpose, several methods for reducing the algorithm's

temporal and spatial cost have been suggested. The Mini batch K-means algorithm is

one of them. The key idea of the Mini Batch K-means algorithm is to use small random

data batches of a fixed size so that they can be stored in memory. A new random sample

is collected from the dataset for each iteration and used to update the clusters, and this

is repeated until convergence.

The pseudo code for Mini Batch KMeans classification is shown below.

21

Figure 6 – Pseudo code for Mini Batch KMeans algorithm[41].

MiniBatchKMeans converges more rapidly than KMeans, but there is a decrease in the

consistency of the results. In practice, this quality difference, as seen in the figure below,

may be very small.

22

Figure 7 – Kmeans vs MiniBatchKMeans.(train time is the time the algorithm spent on

separating image into clusters based on perceived similarities, inertia is a measure

how internally coherent clusters are.)[42].

In this thesis Mini Batch KMeans algorithm was used for online clustering and KMeans

algorithm for offline clustering. The results were compared at the end.

2.5 Hardware

2.5.1 Overview

Embedded computer, NVIDIA Jetson TX2, is used as main processing unit. NVIDIA TX2

board acquire images through the XIMEA xIQ hyperspectral camera. With the help of

Thorlabs LTS300/M motion stage spatial scanning can be implemented. Mini Universal

Serial Bus (USB) is used to control motion stage with special commands. The

hyperspectral camera is mounted on the motion stage and connected to NVIDIA board

through USB3.0.

23

Figure 8 – General overview of the system

2.5.2 NVIDIA TX2

As a result of constant progress in the development of embedded computers, the NVIDIA

company produced Jetson series[43]. Jetson TX2 is one of the fastest, most power

efficient embedded computer[44].

Single chip system used in the Jetson TX2 which includes 2 64-bit Central Processing

Unit (CPU) cores Denver 2, 4 CPU ARM Cortex-A57 cores and 256 Compute Unified

Device Architecture (CUDA) cores on the pascal architecture. Encoding and decoding of

4K x 2K video with frame rate of 60 frame per second (fps) is supported. 8 GB Low-

Power Double Data Rate (LPDDR) memory with a bandwith of 58.4GBps and 32GB eMMC

are included. For the connectivity, the module has Gigabit Ethernet port, Wi-Fi and

Bluetooth. Assembled dimension of the board is 50mm x 80mm[3][9][26].

Figure 9 – NVIDIA TX2 developer kit without accessories[45].

In addition to their portability, these boards provide a large processing capacity and

allow the execution of instructions in parallel as they have Graphics Processing

Units(GPU) onboard[4]. Jetson platforms are compatible with the JetPack Software

Development Kit(SDK), SDK has libraries for deep learning, computer vision and

24

accelerated computing[46]. Because of that, Jetsons are being used in various

applications, including embedded vision systems[47], [48], autonomous vehicles[49],

medical systems[50].

The emerging low-power multi-threaded architectures from ARM and NVIDIA can be a

practical approach for hyperspectral image processing as compared to a standard high-

performance multi core processor. The experimental results from earlier studies showed

that low power GPUs deliver reasonable performance and high power/energy grains[3].

2.5.3 Hyperspectral camera – XIMEA

Ximea xIQ MQ022HG-IM-LS150 VISNIR is an USB3.0 hyperspectral camera with

dimensions of 26 x 26 x 31mm and weight of 32g.It has 2.2 megapixel sensor which

can shoot 90fps. It can scan up to 850 lines per second. The sensor technology that is

used in the camera is based on standard Complementary Metal Oxide Semiconductor

(CMOS) with a native resolution of 2048 x1088 pixels. It can capture spectral range

between 470-900 nm with spatial resolution of 2048x5 lines in 3nm steps[51]. The

camera can be powered directly from USB due to its low power consumption which

makes it ideal for embedded vision systems. It can be used in applications from remote

sensing to optical sorting[52].

Figure 10 - Ximea xIQ MQ022HG-IM-LS150 VISNIR[1].

EDMUND OPTICS C series lens with 35mm focal length and aperture of F1.65 is installed

on the camera[53].

25

2.5.4 Thorlabs

For the push broom scan or in other name spatial scanning needs moving platform with

respect to object. With integrated stepper motor controller , Thorlabs LTS300/M which

is optimized for applications requiring high accuracy is great for this thesis[54].

Figure 11 – Thorlabs LTS300/M [54].

The stage has accuracy of 5.0 um It can be controlled via manual keypad or remote pc

over serial bus[54].

Communications parameters are fixed at:

• 115200 bits/sec;

• 8 data bits, 1 stop bit;

• No parity ;

• No handshake.

The communications protocol used in the Thorlabs controllers is based on the message

structure that always starts with a fixed length, 6-byte message header which, in some

cases, is followed by a variable length data packet. For simple commands, the 6-byte

message header is enough to convey the entire command. For more complex

commands, for example, when a set of parameters needs to be passed on, the 6 byte

header is not enough and in this case the header is followed by the data packet.

The header part of the message always contains information that indicates whether a

data packet follows the header and if so, the number of bytes that the data packet

contains. In this way the receiving process is able to keep tracks of the beginning and

the end of messages[55].

26

2.6 Software

2.6.1 Jetsonpack

The jetson development pack for linux for tegra is an installer that automates installing

and setting up a development environment required to develop for the NVIDIA jetson

embedded platform, including flashing the board with the latest available Operating

system (OS) image. Jetpack includes host and target tools, APIs, packages[56].

Inside Jetpack Software development kit (SDK) there are components for Deep learning

(TensorRT[57], cuDNN[58]), computer vision(VisionWorks[59], OpenCV[60]),

accelerated computing(cuBLAS[61], cuFFT[62]), graphics(Vulkan[63], OpenGL[64]),

Multimedia(libargus[65]) and many more.

Those components are widely used by researchers. Deep learning application based on

embedded GPU[66], accelerating deep learning frameworks with micro-batches[67],

GPU-SFFT[68] are some example for recent works.

2.6.2 Python

Python is the best choice as compared to other programming languages in many area

and applications[69]. Image processing[70][71][72] is one of them. Besides being an

extremely powerful programming language , another reason for choosing python as

programming tool is the camera. Ximea company has API for python and C++[73]. Also,

python has numpy[74] package that can handle n dimensional arrays which helps while

generating hypercube.

27

3 DEVELOPMENT

This chapter is about overall system in detail.

Figure 12 – overview of the system.

3.1 Hardware Subsystem

This section is about how hardware subsystem was developed. The subsystem consists

following components.

• Embedded board – NVIDIA Jetson TX2

• Motion stage – Thorlabs LS300/M

• Hyperspectral camera - Ximea xIQ MQ022HG-IM-LS150 VISNIR

• Debugging interfaces – keyboard/mouse/monitor

• Other accessories – USB hub, power supply, ethernet, etc.

3.1.1 NVIDIA Jetson TX2

In order to start working, Jetson TX2 board must be reflashed with its own Linux OS,

because password for the board was not found. To flash the board host machine with

Linux OS is needed. There were 3 methods available. First method is using host machine

with windows OS which has Ubuntu on VirtualBox[75]. The problem with this method is

while flashing the board, it keeps restarting itself which is a problem for VirtualBox

28

Machine(VM) to enumerate USB after restart. Second way to flash the board is using

Windows Subsystem for Linux(WSL)[76]. It is a subsystem developed for windows to

run Linux on it but at the time of starting this thesis , the WSL system was not developed

very well, and it was not a reliable system. Third and used method is installing Ubuntu

on a host machine. At the time of starting this work, the board was recommended to be

flashed by Ubuntu 16.04 or Ubuntu 18.04.

After installing OS on the host machine, NVIDIA SDK Manager was installed to the host

machine. SDK manager helps to install everything required for the board. Defining used

board in the SDK manager is enough to get all packages ready for flashing the board.

Figure 13 – Nvidia TX2 developer kit connection layout.

To make the board ready for flashing, board has to be in Force USB Recovery mode. To

make it so:

1. The device must be shut down, not in a suspended or sleep mode

2. Connect the Micro-B plug on the USB cable to the USB Micro-B port on the

device(4) and the other end to an available USB port on the host machine

3. Connect power adapter to the device(2)

4. While the system powered off, press and hold the Recovery Force button(20),

press and release the Power button(19), press and release the Reset button(22),

wait for 2 seconds and release the recovery force button.

29

When the board is in the Force USB Recovery Mode , then software components can be

flashed with the help of the NVIDIA SDK Manager.

3.1.2 Thorlabs LTS300/M

The travel stage for the moving the hyperspectral camera to scan objects requires 24V

DC voltage source which was provided with AC to DC adapter. The USB port on the

stage was used for communication between the stage and the board.

Figure 14 – LTS300/M wiring. Power supply(left), USB(right).

3.1.3 The hyperspectral camera

The hyperspectral camera was mounted on the stage with the help of 3D printed right

angle mounting bracket. The camera gets it power from USB port which is also used for

communication to the board.

Figure 15 – The camera installed on the motion stage.

3.1.4 USB hub

As there is only one USB Type-A port on the board, and there are at least 2 devices that

need communication over USB in the system, a USB HUB was used. The USB Hub must

be USB3.0 compatible, because the USB port on the camera is USB3.0

30

3.1.5 Debugging

As for all hardware system, a debugging interface is a must to have in the system. For

that purpose, a separate monitor/keyboard/mouse was connected to the board and also

internet over ethernet cable was provided to have SSL(Secure Socket Layer) connection

between the host and the board

3.2 Software subsystem

This section is about how software subsystem was developed. The subsystem consist

following components.

• Board flashing tool - NVIDIA SDK Manager

• Programming language - Python

• Debugging - xiCamTool

3.2.1 NVIDIA SDK Manager

NVIDIA SDK Manager was used on the host machine to download and prepare all

necessary packages for flashing the board

3.2.2 Python

Python 2.7.17 was installed with the SDK manager and used with this version without

updating it. No IDE(Integrated Development Environment) was used. All code was

written in the default text editor of Ubuntu.

Figure 16 - Imported libraries.

31

3.2.3 xiCamTool

To configure and test the camera, and check captured images, xiCamTool[77] was

used. It was installed with Ximea SDK for Ubuntu. The Ximea SDK also has all

necessary files for python API.

Figure 17 – Raw image from camera using xiCam tool.

3.3 Image Acquisition

This section is about how images were captured using the hyperspectral camera with

motion stage, and generating hyperspectral cube as a result of applying push broom

scan method

3.3.1 The motion stage

The LTS300/M is a linear translation stage that has own integrated controller which

means to control the stepper motor inside the stage requires only specific commands.

The commands were sent over USB cable. The motion stage is calibrated before starting

to work in order to force the controller to correct any mechanical errors present in the

system. Calibration files can be found on the website of the manufacturer[78].

The motion stage supports RS-232 and USB communication protocols. The

communication protocols are identical, so USB port on the motion stage can be used for

both. To get rid of enumeration part of the USB protocol, RS-232 was implemented.

32

Python has library called serial that can handle RS-232 communication protocol and

imported to the main code.

To give python script to access USB ports without having administrator rights, following

command line code was used.

-sudo chmod 666 /dev/ttyUSB0

To establish communication to the motion stage, a serial object must be created with

following settings.

• 115200 bits/sec;

• 8 data bits, 1 stop bit;

• No parity ;

• No handshake.

In general, two packages were sent to the motion stage.

1. Relative move command

2. Homing command

Relative move command was used to start a relative move with given relative distance.

There are two versions of this command: a shorter version and a longer version. Shorter

version has only 6-byte header while longer version has 6-byte header plus 6-byte data.

Shorter version uses predefined values for relative movement. Longer version uses

values that defined in data bytes. Values that are longer than a byte follow the intel

little-endian format

0 1 2 3 4 5 6 7 8 9 10 11

Header Data

48 04 06 00 0D 01 Chan ident Relative Distance

Table 2 – Relative Move command structure [55]

0th and 1st bytes represent code for relative move command(0x0448), 2nd and 3rd bytes

shows is there is data bytes or not(0x0006), 4th one is for bitwise or operation between

destination address with 0x80, 0x50 is the destination address for Generic USB

33

hardware unit.5th byte gives information about source. Source is the host machine and

0x01 corresponds to host machine.

6th and 7th bytes are there for channel identification, as our motion controller has one

channel then it should be 0100(0x0001), the last for bytes show relative distance that

motor will go.

Upon completion of the relative move the controller sends a message that indicate

completed movement with following structure

0 1 2 3 4 5

Header

64 04 Chan ident 00 81 50

Table 3 – Move Completed message structure[55]

Homing command was used to send the stage to home position. It has only one short

version. Information in header bytes are enough for this command.

0 1 2 3 4 5

Header

43 04 Chan ident 00 0D 01

Table 4 – Homing command structure[55]

Channel identification, source and destination address are same with the relative move

command, 0x01,0x01,0x0D respectively. 0x0443 is the code for homing command

3.3.2 The hyperspectral camera

The hyperspectral camera uses USB3.0 protocol for communication. USB3.0

implementation on Linux based systems has some problem that cannot allocate enough

buffer for USB3.0 compatible devices which in our cases was resulted as not getting all

frames that the camera captured. To increase buffer size for the camera, following

command line code was used.

sudo tee /sys/module/usbcore/parameters/usbfs_memory_mb >/dev/null <<<0 [79]

34

API from the XIMEA for python was used to access the hyperspectral camera. The API

creates an interface with which the features and all capabilities can be used.

To establish and get data from the camera following steps implemented.

• Imported API to the python code

• Created instance for the connected camera

• Changed basic settings of the camera

• Created instance for storing captured images

• Sent start acquisition command

• Captured images

• Sent stop acquisition command

• Disconnected from the connected camera

3.3.3 Preprocessing captured image

To obtain hyperspectral data, the sensor inside camera is covered with special filters.

Each filter is responsible for a range. But entire surface of the sensor is not covered with

the filters. Following figure shows the view of the sensor. Active area shows the covered

region of sensor[80]

Figure 18 – View of the sensor[80]

35

Wedge design is implemented on the sensor filter layout. 192 filters in the linescan

layout are organized in 192 bands of a fixed height over the fullwidth of the active area.

The width of the active area equals to 2040. The height of the active area equals to 192

times 5 pixels(the height of the bands in pixels). Position index 0 indicates the band at

the top of the active area. The position index is incremented to the bottom of the active

area. Following figure shows wedge layout of the sensor.

Figure 19 – wedge layout[80]

Two light-sensitive sensors designed for different ranges are composed together in the

camera. Between those filters there are empty interface zone of 120 row. Following

figure shows positions of the different sensors. After preprocessing active area becomes

960x2040.

Figure 20 – Filters and empty interface zone[80]

36

Figure 21 – empty interface zone and offsets from edges on a raw image[5].

3.3.4 Generating hyperspectral cube

Hyperspectral representation of an object is acquired by the line scan sensor which has

conventional sensor with specialized filters on top. Each filter emits only a small portion

of the entire spectrum that the object reflects[51]. All this small portion are then

combined to create a hyperspectral representation of the object: hyperspectral cube.

In case of the used camera which consists of a sensor with resolution of 2040*960 with

192 filter bands processed. Each band is 5(960/192) pixels in height, and 2040 pixels

in width. On the sensor wavelength specific regions are organized in adjacent bands.

Following figure shows generalized view for the sensor

Figure 21 – Generalized view for bands[80].

37

In order to every point of an object to get captured by the camera, it is needed to make

sure that each point passes through each individual band. To obtain whole data about

the reflection of light on the object for each band, series of images must be taken.

Figure 22 – Full scan of the object[80].

As seen from the figure above, a full scan of the object has three phases which are

start-up phase, steady-state phase, and shutdown-phase. t1, t2, t3 phases are

corresponding the start-up phase. During start-up phase not all captured data are used.

Only the part of the image which has white background is used to generate

hyperspectral cube. t4 is the steady state phase in which all captured data are used.

Length of the object defines the number of frames in steady state phase. t5 and others

corresponds to shut-down phase. As in the start-up phase not all captured data are

used.

After shut-down phase, all usable data from capture images are stitched together to

construct hyperspectral cube. To get a perfect hyperspectral cube the camera must

capture pictures in way that the object positioned perpendicular to the orientation of

the sensor. Any misalignment led to incorrectly stitched images.

Following figure shows hyperspectral cube that is generated by capturing and stitching

images ideally.

38

Figure 23 – Ideal hyperspectral cube

3.3.5 Kmeans clusterring

By attempting to divide samples into n groups of equal variances, the KMeans algorithm

clusters data, minimizing a criterion known as inertia or within-cluster sum-of-squares.

The number of clusters to be listed is required by this algorithm. It scales well across a

large number of samples and has been used in many different fields in a wide variety of

application areas. The K-means algorithm seeks to choose centroids that minimize

inertia, or the criterion of sum-of-squares within the cluster. As a measure of how

internally coherent clusters are, inertia can be recognized. There are three steps to the

algorithm in simple terms. The first step is to pick the original centroids, with samples

from the dataset being the most basic process. K-means consists of looping between

the two other stages after initialization. The first stage allocates each specimen to its

nearest centroid. By taking the mean value of all the samples assigned to each previous

centroid, the second step generates new centroids. The difference between the old

centroids and the new centroids is determined and these last two steps are repeated by

39

the algorithm until this value is less than a threshold. It repeats, in other words, until

the centroids do not shift dramatically[81].

3.3.6 Mini Batch Kmeans clustering

The MiniBatchKMeans is a version of the KMeans algorithm that uses mini batches to

decrease processing time while still trying to optimize the same objective function. Mini

batches are subsets of the input data, sampled randomly in each iteration of the training.

The amount of computation required to converge to a local solution is significantly

reduced by these mini batches. Mini-batch k-means yields results that are usually just

marginally worse than the regular algorithm, in contrast to other algorithms that

decrease the convergence time of k-means. Similar to vanilla k-means, the algorithm

iterates between two major stages. Samples are drawn randomly from the dataset in

the first stage, to form a mini batch. These are then allocated to the centroid that is

closest. The centroids are modified in the second stage. This is achieved on a per-sample

basis, in comparison to k-means. The assigned centroid is modified for every sample in

the mini batch by taking the streaming average of the sample and all previous samples

assigned to that centroid. These procedures are carried out before there is convergence

or a predetermined number of iterations[81].

3.4 Implementation

This section is about how the previous sections of this chapter implemented using

python programming language.

40

Figure 24 – Flow of the program

3.4.1 The Motion Stage

The motion stage can be controlled over USB port. Python has package which is called

pyserial for accessing serial port. Pyserial was installed running following command on

terminal.

pip install pyserial

After installing, module was imported to the program.

import serial

To have access to the serial port instance was created for handling port related settings

Figure 25 – Instance for serial port.

41

If there is not port related problems, then code shown in figure 15 opens the requested

port for communications.

After successfully creating port control instance, packets for relative movement and

homing are formed as in figure below.

Figure 26 – Packets for motion stage.

The value for relative distance will be explained in this section.

The packet for requesting position was created for debugging purposes to verify that

requested relative distance was reached. In program move completed message was

used to detect end of the movement

As speed of the stepper motor in motion stage is not same as the speed of the

execution of the python program, program has to wait until stepper finished the

requested relative movement.

3.4.2 The hyperspectral camera

Ximea Linux software package was installed to the board in order to make reliable

communication between the camera and the board. xiAPI for python was installed with

the package. To get xiAPI to work without any problem some packages has to be

downloaded and installed to the board.

Most of the camera controlling code developed on top of the xiAPI example for camera

control

NumPy package must be installed for numerical operations with following command.

Figure 27 – NumPy installing command.

Matplotlib package must be installed for visualization with following command.

42

Figure 28 – Matplotlib installing command.

Pillow and OpenCV must be installed as required from the API

Figure 29 – Pillow installing command.

Figure 30 – OpenCV installing command.

After installing all required modules, all the used ones were imported to the program.

Figure 31 – Imported modules.

After that instance for handling camera related tasks was created. Communication

between the board and the camera was opened, and also basic settings which were

taken from the previous[5] work passed to camera using camera instance.

Figure 32 – Camera settings.

43

After setting basic configurations, camera can start acquisition.

Figure 33 – acquisition start command.

3.4.3 Preprocessing captured images

As explained before , not all surface of sensor is covered with filters. In order to use

active area with filters , some constant was defined at the beginning of the program.

They are pixel height, offset from edges, starting and ending position of the empty

interface zone. After removing 2 offsets and the height of the empty interface zone,

height of the active are was formed. These variables were defined as constants to easily

change values for different cameras on the series.

Figure 34 – Constants for preprocessing.

The defined constants were used with NumPy array indexing to cut the edges as well as

empty interface region.

Figure 35 – Removing edges and empty interface region.

3.4.4 Generating hyperspectral cube

To get hyperspectral cube without any misalignments, some parameters for object were

defined such as object width. working distance, focal length.

To keep scanning time reasonable, object width can be modified according to the object.

Focal length for the lens is 35m , line height is 5px which means 27.5 micrometer .

44

From the equations of lenses[82], the 5px line on sensor corresponds to 313.5

micrometer.

Figure 36 – Defining object parameters.

Camera started to capture from edge of the object. In order to scan whole object with

0th band , at least (object width)/(object resolution) frames are needed, and to

complete scanning for all bands extra 191 frames are needed. If this is compared with

the previous work[5], it can be seen that this line does not waste extra 191 frames

Figure 37 – Defining frames variable.

To generate hyperspectral cube 3-dimensional array(bands, height, width) was needed.

With the help of NumPy module of python , it is easy to work with n dimensional

arrays.at the beginning array was initialized with zeros.

Figure 38 – Initializing 3D array for hyperspectral cube

The program must capture as much as “frames” variable. Making a loop that counts

captured frames was implemented. After every frame has taken, program waits until

move complement message which is an improvement to the previous work where 2nd

computer was used with windows OS to control the motion stage[5]. Commented out

lines were there for debugging purposes.

45

Figure 39 – Loop for frame capturing with motion stage control.

Another improvement to the previous work[5] is parsing image data for constructing

hyperspectral cube. In the previous work every pixel was scanned to generate data, but

in this work image data was parsed line by line.

Figure 40 – Parsing image data for bands.

After capturing all frames , hyperspectral cube can be viewed using view_cube() function

from spectral module in python.

3.4.5 Kmeans clustering

There are lots of python modules that make it easy to apply Kmeans clustering

algorithm. In this work scikit-learn was used because ,it is simple and efficient

one[42].

Every band is 2-dimensional array. Kmean from scikit requires 1-Dimensional array so

a buffer array was created to hold flattened array. Then number of clusters has to be

defined. After that using flattened array, kmeans instance was trained then the

instance was used to predict clusters in the image. After prediction completed,

prediction result converted back to 2-dimensional array. Matplotlib was used to

visualize result.

46

Figure 41 – Kmeans implementation.

3.4.6 MiniBatchKmeans clustering

When using Kmeans algorithm, data passed for training the model cannot be changed.

But in MiniBatchKmeans algorithm training data can be updated. This algorithm also

implemented from scikit-learn library. General sequence of both algorithms is the same,

but in MiniBatchKmean algorithm, small size of data can be used to train model. That’s

why, this algorithm was used directly on the data that had been extracted from captured

image to construct hyperspectral data. In every iteration,5px of image data was used

to train model.

Figure 42 – MiniBatchKmeans implementation.

For every iteration, extra ~60ms was spent for training the model.

OpenCV was used to visualize the result.

47

4 TESTING THE SYSTEM

This chapter is about procedures for testing and results.

4.1 Overview

All system components assembled in NRG-202 room. Available lighting in the room was

used, no special lamp was installed. Curtains were closed to block outer lightings.

Hardware components were powered with their own adapters. Objects were placed

400mm away from the camera. Objects’ width was configured on the software for

70mm. Black fabric was used to cancel light reflections between camera and the object.

Before starting system, some necessary commands were run on Ubuntu terminal. “sudo

tee /sys/module/usbcore/parameters/usbfs_memory_mb >/dev/null <<<0” for USB3

buffer problem for the camera and “sudo chmod 666 /dev/ttyUSB0” for using USB port

to communicate with the motion stage without administration privileges.

“datetime.datetime.now()” function from datetime module was used to measure timing

where appropriate. 2 fruits were used to test the system.

Figure 43 – the developed system(1-The motion stage, 2- The camera, 3- Jetson TX2,

4 – object to be scanned).

48

4.2 Results

While scanning the object for generating hyperspectral cube ~20us was spent on

extracting data(5x2040) for each band. Which is approximately 2 times faster than the

previous work[5] in which ~43us was spent. Controlling motion stage from the jetson

board helped to use the jetson as it meant for. Previously the motion stage was

controlled by another computer.

Scanning object with push broom method, stitching appropriate data together to

generate image for each band in real time and generating hypercube were successful.

System was tested with orange and lemon. While gathering data for generating image

for bands, same data was used for MiniBatchKmeans without any problem.

MiniBatchKmeans instance was configured for finding 2 clusters on software. For each

5x2040 portion of the image, approximately 60ms was spent on clustering and fitting

the data in clusters. At the end of the scanning the object, Kmeans algorithm was used

for offline processing. Kmeans algorithm was also configured for 2 clusters. Both

algorithms produced almost the same result, but if the result was compared with ground

truth image, it was obvious that bottom side of the objects were not clustered because

of the shadow of themselves.

Figure 44 – Raw data - Orange. Figure 45 – Ground truth - Orange

49

 Figure 46 – Clustering results - Orange. Figure 47 – Hyperspectral cube – Orange.

Figure 48 – Raw image - Lemon. Figure 49 – Hyperspectral cube -

 Lemon.

50

Figure 50 - Clustering results - Lemon. Figure 51 – Ground truth - lemon

51

5 SUMMARY

LTS300/M was successfully controlled by the Nvidia Jetson TX2 to apply push broom

scan method. Controlling LTS300/M directly from the board means that the system is

totally mobile now compared to the previous work. While scanning object, collected

information was used for both unsupervised clustering and hyperspectral cube

generating.

Result of the applied unsupervised algorithm was as expected. MiniBatchKMeans which

was used for online clustering generated almost same result as offline applied Kmeans

algorithm.

5.1 Future work and suggestions

Results were satisfactory, but the system still needs improvements:

• Scanning better to be performed from top side not from front side of the object

• Speed of the moving stage can be increased

• Better to implement edge detection algorithms to define start of the scanning

There is not much dataset for laboratory research, so it will be better to use the

developed system to generate datasets for different objects.

52

6 KOKKUVÕTE

LTS300 / M-i kontrollis edukalt Nvidia Jetson TX2, et rakendada luudade

tõukamismeetodit. LTS300 / M juhtimine otse laualt tähendab, et süsteem on võrreldes

eelmise tööga nüüd täiesti mobiilne. Objekti skannimise ajal kasutati kogutud teavet nii

järelevalveta klastrite loomiseks kui ka hüperspektrilise kuubi genereerimiseks.

Rakendatud järelevalveta algoritmi tulemus oli ootuspärane. Veebiklastrite jaoks

kasutatud MiniBatchKMeans andis peaaegu sama tulemuse kui võrguühenduseta

rakendatud Kmeansi algoritm.

6.1 Edasine töö ja ettepanekud

Tulemused olid rahuldavad, kuid süsteem vajab siiski täiendamist:

• Parem skaneerimine tuleb teha ülevalt, mitte esiosalt

• Liikuva etapi kiirust saab suurendada

• Parem rakendada servade tuvastamise algoritme, et määratleda skannimise

algus

Laboratoorsete uuringute jaoks pole palju andmekogumeid, seega on parem kasutada

väljatöötatud süsteemi erinevate objektide andmekogumite loomiseks

53

LIST OF REFERENCES

[1] “XIMEA - MQ022HG-IM-LS150-VISNIR.” [Online]. Available:

https://www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-

xispec/mq022hg-im-ls150-visnir. [Accessed: 04-Nov-2020].

[2] “What Is Hyperspectral Imaging? | NIREOS.” [Online]. Available:

https://www.nireos.com/hyperspectral-imaging/. [Accessed: 21-Dec-2020].

[3] P. H. Randhe, S. S. Durbha, and N. H. Younan, “Embedded high performance computing

for on-board hyperspectral image classification,” in Workshop on Hyperspectral Image and

Signal Processing, Evolution in Remote Sensing, 2016, vol. 0.

[4] “Embedded Systems Developer Kits & Modules from NVIDIA Jetson.” [Online].

Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/.

[Accessed: 03-Nov-2020].

[5] A. Palshin, “MOBILE HYPERSPECTRAL ACQUISITION SYSTEM,” 2019.

[6] H. Irmak, G. B. Akar, and S. E. Y, “IMAGE FUSION FOR HYPERSPECTRAL IMAGE

SUPER-RESOLUTION (1) Radar and Electronic Warfare Systems Business Sector ,

Aselsan Inc ., Ankara , TURKEY (2) Middle East Techical University , Dept . of Electrical

and Electronics Eng ., Ankara , TURKEY (3) Hac,” 2018 9th Work. Hyperspectral Image

Signal Process. Evol. Remote Sens., vol. 3, no. 1, pp. 1–5.

[7] Y. Oiknine, I. August, and A. Stern, “Along-track scanning using a liquid crystal

compressive hyperspectral imager,” Opt. Express, vol. 24, no. 8, p. 8446, Apr. 2016.

[8] “Spectral Imaging and Linear Unmixing | Nikon’s MicroscopyU.” [Online]. Available:

https://www.microscopyu.com/techniques/confocal/spectral-imaging-and-linear-unmixing.

[Accessed: 01-Dec-2020].

[9] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt., vol. 19, no.

1, p. 010901, Jan. 2014.

[10] G. Coltof, “Hyperspectral Techniques Explained,” 2012.

[11] “HYPERSPECTRAL IMAGING: One-shot camera obtains simultaneous hyperspectral data

| Laser Focus World.” [Online]. Available: https://www.laserfocusworld.com/detectors-

imaging/article/16562077/hyperspectral-imaging-oneshot-camera-obtains-simultaneous-

hyperspectral-data. [Accessed: 01-Dec-2020].

54

[12] “ESA - Hyperspectral image ‘data cube.’” [Online]. Available:

https://www.esa.int/ESA_Multimedia/Images/2014/04/Hyperspectral_image_data_cube.

[Accessed: 07-Dec-2020].

[13] A. Public, “Improves vision and discrimination power by using spectral signature

information of surface material / object being captured,” 2014.

[14] K. Safari, S. Prasad, and D. Labate, “A Multiscale Deep Learning Approach for High-

Resolution Hyperspectral Image Classification,” IEEE Geosci. Remote Sens. Lett., pp. 1–5,

Feb. 2020.

[15] S. T. Wahyuni Siregar, W. Handayani, and A. H. Saputro, “Bananas moisture content

prediction system using Visual-NIR imaging,” in Proceedings of the 2017 5th International

Conference on Instrumentation, Control, and Automation, ICA 2017, 2017, pp. 89–92.

[16] A. Soszyńska, M. Müller-Rowold, and R. Reulke, “Feasibility Study of Hyperspectral Line-

Scanning Camera Imagery for Remote Sensing Purposes,” in International Conference

Image and Vision Computing New Zealand, 2019, vol. 2018-November.

[17] R. T. Nallapu et al., “Smart camera system on-board a CubeSat for space-based object

reentry and tracking,” in 2018 IEEE/ION Position, Location and Navigation Symposium,

PLANS 2018 - Proceedings, 2018, pp. 1294–1301.

[18] D. Nakaya et al., “Development of high-performance pathological diagnosis software using

a hyperspectral camera,” in 2018 IEEE EMBS Conference on Biomedical Engineering and

Sciences, IECBES 2018 - Proceedings, 2019, pp. 217–220.

[19] M. De Landro et al., “Hyperspectral imaging system for monitoring laser-induced thermal

damage in gastric mucosa,” in IEEE Medical Measurements and Applications, MeMeA

2020 - Conference Proceedings, 2020.

[20] A. Zahavi, A. Palshin, D. C. Liyanage, and M. Tamre, “Influence of illumination sources on

hyperspectral imaging,” in Proceedings of the 2019 20th International Conference on

Research and Education in Mechatronics, REM 2019, 2019.

[21] Y. Li, J. Wang, T. Gao, Q. Sun, L. Zhang, and M. Tang, “Adoption of Machine Learning in

Intelligent Terrain Classification of Hyperspectral Remote Sensing Images,” Comput. Intell.

Neurosci., vol. 2020, p. 8886932, 2020.

[22] B. Yang, M. Yang, A. Plaza, L. Gao, and B. Zhang, “Dual-Mode FPGA Implementation of

Target and Anomaly Detection Algorithms for Real-Time Hyperspectral Imaging,” IEEE J.

Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 6, pp. 2950–2961, Jun. 2015.

55

[23] “Anomaly Detection for Dummies. Unsupervised Anomaly Detection for… | by Susan Li |

Towards Data Science.” [Online]. Available: https://towardsdatascience.com/anomaly-

detection-for-dummies-15f148e559c1. [Accessed: 26-Dec-2020].

[24] X. Yao and C. Zhao, “Kernel-band-projection algorithm for anomaly detection in

hyperspectral imagery,” in International Conference on Signal Processing Proceedings,

ICSP, 2019, vol. 2018-August, pp. 300–303.

[25] C. Zhao, W. You, J. Wang, and Y. Wang, “Kernel subspace-based real-time anomaly

detection for hyperspectral imagery,” in International Geoscience and Remote Sensing

Symposium (IGARSS), 2015, vol. 2015-November, pp. 1865–1868.

[26] J. Wei and X. Wang, “An Overview on Linear Unmixing of Hyperspectral Data,”

Mathematical Problems in Engineering, vol. 2020. Hindawi Limited, 2020.

[27] S. Bernabe, L. I. Jimenez, C. Garcia, J. Plaza, and A. Plaza, “Multicore Real-Time

Implementation of a Full Hyperspectral Unmixing Chain,” IEEE Geosci. Remote Sens.

Lett., vol. 15, no. 5, pp. 744–748, May 2018.

[28] “What is an FPGA? Field Programmable Gate Array.” [Online]. Available:

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html. [Accessed: 27-

Dec-2020].

[29] “FPGA-based Data Processing Increases Hyperspectral Camera Resolution | Electronic

Design.” [Online]. Available:

https://www.electronicdesign.com/technologies/fpgas/article/21800944/fpgabased-data-

processing-increases-hyperspectral-camera-resolution. [Accessed: 27-Dec-2020].

[30] J. Lei et al., “A Novel FPGA-Based Architecture for Fast Automatic Target Detection in

Hyperspectral Images,” Remote Sens., vol. 11, no. 2, p. 146, Jan. 2019.

[31] R. Guerra, L. Santos, S. Lopez, and R. Sarmiento, “A New Fast Algorithm for Linearly

Unmixing Hyperspectral Images,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp.

6752–6765, Dec. 2015.

[32] R. Guerra, S. López, and R. Sarmiento, “A FPGA implementation for linearly unmixing a

hyperspectral image using OpenCL,” in SPIE, 2017, vol. 10430, p. 16.

[33] S. Vellas, G. Lentaris, K. Maragos, D. Soudris, Z. Kandylakis, and K. Karantzalos, “FPGA

acceleration of hyperspectral image processing for high-speed detection applications,” in

Proceedings - IEEE International Symposium on Circuits and Systems, 2017.

[34] A. Yusuf and S. Alawneh, “A Survey of GPU Implementations for Hyperspectral Image

56

Classification in Remote Sensing,” Can. J. Remote Sens., vol. 44, no. 5, pp. 532–550, 2018.

[35] C. Li, Y. Peng, M. Su, and T. Jiang, “GPU Parallel Implementation for Real-Time Feature

Extraction of Hyperspectral Images,” Appl. Sci., vol. 10, no. 19, p. 6680, Sep. 2020.

[36] Z. Wu, Q. Wang, A. Plaza, J. Li, L. Sun, and Z. Wei, “Parallel Spatial-Spectral

Hyperspectral Image Classification with Sparse Representation and Markov Random Fields

on GPUs,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 6, pp. 2926–2938,

Jun. 2015.

[37] W. Sun and Q. Du, “Hyperspectral Band Selection: A Review,” IEEE Geosci. Remote Sens.

Mag., vol. 7, no. 2, pp. 118–139, 2019.

[38] A. Fontanella, E. Marenzi, E. Torti, G. Danese, A. Plaza, and F. Leporati, “A suite of

parallel algorithms for efficient band selection from hyperspectral images,” in Journal of

Real-Time Image Processing, 2018, vol. 15, no. 3, pp. 537–553.

[39] R. Nijhawan, I. Srivastava, and P. Shukla, “Land cover classification using super-vised and

unsupervised learning techniques,” in ICCIDS 2017 - International Conference on

Computational Intelligence in Data Science, Proceedings, 2018, vol. 2018-January, pp. 1–6.

[40] W. Lv and X. Wang, “Overview of Hyperspectral Image Classification,” J. Sensors, vol.

2020, p. 4817234, 2020.

[41] “ML | Mini Batch K-means clustering algorithm - GeeksforGeeks.” [Online]. Available:

https://www.geeksforgeeks.org/ml-mini-batch-k-means-clustering-algorithm/. [Accessed:

01-Jan-2021].

[42] “scikit-learn: machine learning in Python — scikit-learn 0.23.2 documentation.” [Online].

Available: https://scikit-learn.org/stable/. [Accessed: 21-Dec-2020].

[43] “Jetson Modules | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/embedded/jetson-modules. [Accessed: 03-Nov-2020].

[44] “Jetson TX2 Module | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/embedded/jetson-tx2mendeley. [Accessed: 03-Dec-2020].

[45] “Harness AI at the Edge with the Jetson TX2 Developer Kit | NVIDIA Developer.”

[Online]. Available: https://developer.nvidia.com/embedded/jetson-tx2-developer-kit.

[Accessed: 03-Dec-2020].

[46] “JetPack SDK | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/embedded/jetpack. [Accessed: 03-Nov-2020].

57

[47] S. Aldegheri and N. Bombieri, “Rapid Prototyping of Embedded Vision Systems:

Embedding Computer Vision Applications into Low-Power Heterogeneous Architectures,”

in Proceedings - IEEE International Symposium on Rapid System Prototyping, RSP, 2019,

vol. 2018-October, pp. 63–69.

[48] N. Deepika and V. V. Sajith Variyar, “Obstacle classification and detection for vision based

navigation for autonomous driving,” in 2017 International Conference on Advances in

Computing, Communications and Informatics, ICACCI 2017, 2017, vol. 2017-January, pp.

2092–2097.

[49] Y. K. Lai, C. Y. Ho, Y. H. Huang, C. W. Huang, Y. X. Kuo, and Y. C. Chung, “Intelligent

Vehicle Collision-Avoidance System with Deep Learning,” in 2018 IEEE Asia Pacific

Conference on Circuits and Systems, APCCAS 2018, 2019, pp. 123–126.

[50] J. Shihadeh, A. Ansari, and T. Ozunfunmi, “Deep Learning Based Image Classification for

Remote Medical Diagnosis,” in GHTC 2018 - IEEE Global Humanitarian Technology

Conference, Proceedings, 2019.

[51] Ximea, “Very compact hyperspectral cameras xiSpec,” pp. 4–6.

[52] “XIMEA - Hyperspectral Linescan USB3 camera 150 bands 470-900nm.” [Online].

Available: https://www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-

xispec/mq022hg-im-ls150-visnir. [Accessed: 03-Dec-2020].

[53] “35mm C Series VIS-NIR Fixed Focal Length Lens | Edmund Optics.” [Online]. Available:

https://www.edmundoptics.com/p/35mm-c-series-vis-nir-fixed-focal-length-lens/22384/.

[Accessed: 03-Dec-2020].

[54] “Thorlabs - LTS300/M 300 mm Translation Stage with Stepper Motor, Integrated

Controller, M6 Taps.” [Online]. Available:

https://www.thorlabs.com/thorproduct.cfm?partnumber=LTS300/M. [Accessed: 08-Nov-

2020].

[55] H. C. Protocol, “Thorlabs APT Motor Controllers Host-Controller Communications

Protocol,” no. 15, pp. 1–23, 2006.

[56] “JetPack L4T.” [Online]. Available: https://docs.nvidia.com/jetpack-

l4t/2_1/content/developertools/mobile/jetpack/jetpack_l4t/2.0/jetpack_l4t_main.htm#Syste

m_Requirements. [Accessed: 05-Dec-2020].

[57] “NVIDIA TensorRT | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/tensorrt. [Accessed: 05-Dec-2020].

58

[58] “NVIDIA cuDNN | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/cudnn. [Accessed: 05-Dec-2020].

[59] “VisionWorks | NVIDIA Developer.” [Online]. Available:

https://developer.nvidia.com/embedded/visionworks. [Accessed: 05-Dec-2020].

[60] “Home - OpenCV.” [Online]. Available: https://opencv.org/. [Accessed: 05-Dec-2020].

[61] “cuBLAS :: CUDA Toolkit Documentation.” [Online]. Available:

https://docs.nvidia.com/cuda/cublas/index.html. [Accessed: 05-Dec-2020].

[62] “cuFFT :: CUDA Toolkit Documentation.” [Online]. Available:

https://docs.nvidia.com/cuda/cufft/index.html. [Accessed: 05-Dec-2020].

[63] “Vulkan | NVIDIA Developer.” [Online]. Available: https://developer.nvidia.com/Vulkan.

[Accessed: 05-Dec-2020].

[64] “OpenGL - The Industry Standard for High Performance Graphics.” [Online]. Available:

https://www.opengl.org/. [Accessed: 05-Dec-2020].

[65] “Jetson Linux Multimedia API Reference: Libargus Camera API.” [Online]. Available:

https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html. [Accessed: 05-

Dec-2020].

[66] J. Xu, B. Wang, J. Li, C. Hu, and J. Pan, “Deep learning application based on embedded

GPU,” in 1st International Conference on Electronics Instrumentation and Information

Systems, EIIS 2017, 2018, vol. 2018-January, pp. 1–4.

[67] Y. Oyama, T. Ben-Nun, T. Hoefler, and S. Matsuoka, “Accelerating Deep Learning

Frameworks with Micro-Batches,” in Proceedings - IEEE International Conference on

Cluster Computing, ICCC, 2018, vol. 2018-September, pp. 402–412.

[68] O. Artiles and F. Saeed, “GPU-SFFT: A GPU based parallel algorithm for computing the

Sparse Fast Fourier Transform (SFFT) of k-sparse signals,” in Proceedings - 2019 IEEE

International Conference on Big Data, Big Data 2019, 2019, pp. 3303–3311.

[69] A. Kumar and S. P. Panda, “A Survey: How Python Pitches in IT-World,” in Proceedings

of the International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing: Trends, Prespectives and Prospects, COMITCon 2019, 2019, pp. 248–251.

[70] D. O. Dantas, H. Danilo Passos Leal, and D. O. Barros Sousa, “Fast multidimensional

image processing with OpenCL,” in Proceedings - International Conference on Image

Processing, ICIP, 2016, vol. 2016-August, pp. 1779–1783.

59

[71] T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing

and Deep learning,” in 34th International Technical Conference on Circuits/Systems,

Computers and Communications, ITC-CSCC 2019, 2019.

[72] H. Ucuzal, S. Yasar, and C. Colak, “Classification of brain tumor types by deep learning

with convolutional neural network on magnetic resonance images using a developed web-

based interface,” in 3rd International Symposium on Multidisciplinary Studies and

Innovative Technologies, ISMSIT 2019 - Proceedings, 2019.

[73] “APIs - APIs - ximea support.” [Online]. Available:

https://www.ximea.com/support/wiki/apis/APIs. [Accessed: 05-Dec-2020].

[74] “NumPy.” [Online]. Available: https://numpy.org/. [Accessed: 05-Dec-2020].

[75] “Oracle VM VirtualBox.” [Online]. Available: https://www.virtualbox.org/. [Accessed: 19-

Dec-2020].

[76] “Install Windows Subsystem for Linux (WSL) on Windows 10 | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-us/windows/wsl/install-win10. [Accessed: 19-

Dec-2020].

[77] “XIMEA CamTool - All products - ximea support.” [Online]. Available:

https://www.ximea.com/support/wiki/allprod/ximea_camtool. [Accessed: 19-Dec-2020].

[78] “300 mm Linear Translation Stage with Integrated Controller, Stepper Motor.” [Online].

Available:

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7652&pn=LTS300.

[Accessed: 03-Dec-2020].

[79] “Linux USB30 Support - APIs - ximea support.” [Online]. Available:

https://www.ximea.com/support/wiki/apis/Linux_USB30_Support. [Accessed: 21-Dec-

2020].

[80] “xiSpec linescan cameras sensor info and data processing,” pp. 1–8.

[81] “2.3. Clustering — scikit-learn 0.23.2 documentation.” [Online]. Available: https://scikit-

learn.org/stable/modules/clustering.html#k-means. [Accessed: 19-Dec-2020].

[82] “Lens Formula and Magnification | CK-12 Foundation.” [Online]. Available:

https://www.ck12.org/book/cbse-physics-book-class-x/section/1.6/. [Accessed: 19-Dec-

2020].

60

APPENDICES

61

62

