
 

TALLINN UNIVERSITY OF TECHNOLOGY 

SCHOOL OF ENGINEERING 

Department of Electrical Power Engineering and Mechatronics 

 
 

  

 
 
 
 
 
 

HYPERSPECTRAL IMAGING WITH JETSON TX2 
 

HÜPERSPEKTRAAL-PILDITEHNIKA JETSON TX2 ABIL 
 

MASTER THESIS 
 
 
 
 
 
 

Student: Jalal Sadigli 

Student code: 184359MAHM 

 
Supervisor: Dhanushka Chamara Liyanage, Engineer 

Co-supervisor: Mart Tamre  ,professor 

  

 
 
 
 
 
 
 
 
 
 
 

Tallinn 2021 



AUTHOR’S DECLARATION 
 

 

Hereby I declare that I have written this thesis independently. 

No academic degree has been applied for based on this material. All works, major 

viewpoints and data of the other authors used in this thesis have been referenced. 

 

 

 

“21” December 2020 

 

Author: signed digitally 

 

 

 

 

Thesis is in accordance with terms and requirements 

 

“.......” .................... 20…. 

 

Supervisor: …......................... 

/signature/ 

 

 

Accepted for defence 

 

“.......”....................20… . 

 

Chairman of theses defence commission: ................................................. 

       /name and signature/ 



Non-exclusive Licence for Publication and Reproduction of 
Graduation Thesis¹  
 

 

I, Jalal Sadigli (date of birth: 31.08.1996) hereby 

 

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis 

HYPERSPECTRAL IMAGING WITH JETSON TX2, supervised by Dhanushka Chamara 

Liyanage, 

 

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be 

entered in the digital collection of TalTech library until expiry of the term of 

copyright; 

 

1.2 published via the web of TalTech, incl. to be entered in the digital collection of 

TalTech library until expiry of the term of copyright. 

 

1.3 I am aware that the author also retains the rights specified in clause 1 of this 

license. 

 

2. I confirm that granting the non-exclusive license does not infringe third persons' 

intellectual property rights, the rights arising from the Personal Data Protection Act or 

rights arising from other legislation. 

 

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during 

the validity period of restriction on access, except the university`s right to reproduce the thesis 

only for preservation purposes. 

 

Signed digitally 

 

21/12/2020 

 

 

 



Department of Electrical Power Engineering and Mechatronics 

THESIS TASK 

 

Student:                Jalal Sadigli,184359MAHM 

Study programme, 

main speciality:        MAHM02/18 - Mechatronics 

Supervisor(s):          Engineer, Dhanushka Chamara Liyanage 

Co-supervisor:         Professor, Mart Tamre 

 

Thesis topic: 

(in English) HYPERSPECTRAL IMAGING WITH JETSON TX2  

(in Estonian)  HÜPERSPEKTRAAL-PILDITEHNIKA JETSON TX2 ABIL 

Thesis main objectives:  

1. Improve previously developed image acquisition method  

2. Apply push broom scan method by controlling LTS300/M from NVIDIA Jetson 

TX2 board 

3. Apply Kmeans and MiniBatchKmeans algorithm for clustering 

Thesis tasks and time schedule: 

No Task description Deadline 

1. Review previous work 15.10.2020 

2. 

Study of hyperspectral imaging techniques, principles and 

features of the hyperspectral camera, NVIDIA Jetson TX2, 

LTS300/M 

30.10.2020 

3. 
Generating hyperspectral data cube using push broom scanner 

method with the help of the LTS300/M 

20.11.2020 

 

4. Applying unsupervised machine learning algorithms 01.12.2020 

5. Testing the system 21.12.2020 

 

Language: English  Deadline for submission of thesis: “21” December 2020 

Student: Jalal Sadigli  signed digitally  “21” December 2020   

Supervisor: ………………… …………………….. “.......”......................20….a 

                                          /signature/ 

Head of study programme: ……………   ..................... “.......”......................20…..a 

      /signature/ 

Terms of thesis closed defence and/or restricted access conditions to be formulated on 

the reverse side 

 



5 

CONTENTS 

 

CONTENTS........................................................................................................ 5 

PREFACE .......................................................................................................... 7 

LIST OF ABBREVIATIONS AND SYMBOLS .............................................................. 8 

TABLES ............................................................................................................ 9 

1 INTRODUCTION .............................................................................................10 

1.1 Overview ................................................................................................10 

1.2 Motivation ...............................................................................................10 

1.3 Aim ........................................................................................................11 

1.4 Tasks .....................................................................................................11 

1.5 Structure of the thesis ..............................................................................11 

2 LITERATURE REVIEW AND COMPONENTS OF THE SYSTEM ..................................13 

2.1 Literature review .....................................................................................13 

2.2 Influence of illuminations ..........................................................................15 

2.3 Processing hyperspectral data in real time ..................................................16 

2.3.1 Anomaly detection .............................................................................16 

2.3.2 Spectral unmixing .............................................................................17 

2.3.3 FPGA based systems ..........................................................................18 

2.3.4 GPU based systems ...........................................................................18 

2.4 Unsupervised classification ........................................................................19 

2.4.1 KMeans clustering .............................................................................19 

2.4.2 Mini Batch KMeans clustering ..............................................................20 

2.5 Hardware ................................................................................................22 

2.5.1 Overview ..........................................................................................22 

2.5.2 NVIDIA TX2 ......................................................................................23 

2.5.3 Hyperspectral camera – XIMEA ...........................................................24 

2.5.4 Thorlabs ...........................................................................................25 

2.6 Software .................................................................................................26 

2.6.1 Jetsonpack .......................................................................................26 

2.6.2 Python .............................................................................................26 

3 DEVELOPMENT ..............................................................................................27 

3.1 Hardware Subsystem ...............................................................................27 

3.1.1 NVIDIA Jetson TX2 ............................................................................27 

3.1.2 Thorlabs LTS300/M ............................................................................29 

3.1.3 The hyperspectral camera ..................................................................29 

3.1.4 USB hub ...........................................................................................29 



6 

3.1.5 Debugging ........................................................................................30 

3.2 Software subsystem .................................................................................30 

3.2.1 NVIDIA SDK Manager.........................................................................30 

3.2.2 Python .............................................................................................30 

3.2.3 xiCamTool ........................................................................................31 

3.3 Image Acquisition ....................................................................................31 

3.3.1 The motion stage ..............................................................................31 

3.3.2 The hyperspectral camera ..................................................................33 

3.3.3 Preprocessing captured image .............................................................34 

3.3.4 Generating hyperspectral cube ............................................................36 

3.3.5 Kmeans clusterring ............................................................................38 

3.3.6 Mini Batch Kmeans clustering ..............................................................39 

3.4 Implementation .......................................................................................39 

3.4.1 The Motion Stage ..............................................................................40 

3.4.2 The hyperspectral camera ..................................................................41 

3.4.3 Preprocessing captured images ...........................................................43 

3.4.4 Generating hyperspectral cube ............................................................43 

3.4.5 Kmeans clustering .............................................................................45 

3.4.6 MiniBatchKmeans clustering ................................................................46 

4 TESTING THE SYSTEM ....................................................................................47 

4.1 Overview ................................................................................................47 

4.2 Results ...................................................................................................48 

5 SUMMARY .....................................................................................................51 

5.1 Future work and suggestions .....................................................................51 

6 KOKKUVÕTE ..................................................................................................52 

6.1 Edasine töö ja ettepanekud .......................................................................52 

LIST OF REFERENCES .......................................................................................53 

APPENDICES ....................................................................................................60 

 

  



7 

PREFACE 

Department of Electrical and Power Engineering and Mechatronics of Tallinn University 

of Technology provided the thesis. Major thesis work was done in the laboratory (NRG-

202) of the same department. After some discussions the topic was offered by co-

supervisor professor Mart Tamre.  

 

Hyperspectral imaging is a spectroscopy-based analytical technique. For the same 

spatial area, it collects hundreds of images at various wavelengths. Recent advances in 

sensor design resulted in light weight cameras such as XIMEA xIQMQ022HG-IM-LS150-

VISNIR that is 32 gram [1] which makes it possible to use camera for remote sensing 

applications. Hyperspectral cameras produce images which have rich information 

content, in order to gather and process that data , powerful yet small computer is 

needed. Jetson TX2 board is a one of the embedded computers that NVIDIA produces. 

Besides portability, the board provide a large processing capability and having onboard  

Graphics Processing Unit (GPU) allow the execution of instruction in parallel. With this 

powerful embedded computer, real-time hyperspectral image processing application 

was developed. 

Keywords: hyperspectral imaging, real-time imaging setup, nvidia jetson tx2, on-board 

hyperspectral processing, master thesis. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

API – Application Programming Interface 

CMOS – Complementary Metal Oxide Semiconductor 

CPU – Central Processing Unit 

CUDA - Compute Unified Device Architecture 

FPGA  - Field Programmable Gate Array 

FPS – Frame per Second 

GPU – Graphical Processing Unit 

HSI – Hyperspectral Imaging 

IDE – Integrated Development Environment 

LPDDR – Low Power Double Data Rate 

OS – Operating System 

SDK – Software Development Kit 

UAV – Unmanned Aerial Vehicle 

USB – Universal Serial Bus 

VM – Virtual machine 

WSL Windows Subsystem for Linux 
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1 INTRODUCTION 

1.1 Overview 

Hyperspectral imaging is a spectroscopy-based analytical technique. For the same 

spatial area, it collects hundreds of images at various wavelengths. In contrast to human 

eye which has three color receptors in the red, green and blue, hyperspectral imaging 

check the continuous light spectrum with fine wavelength resolution for each pixel of 

the object, not only in the visible but also in the near infrared. The recorded information 

forms a so-called hyperspectral cube in which the spatial extent of the object is 

represented by two dimensions and the spectral data by the third[2].  

Every material has a particular spectral signature that can be used for its specific 

identification as a fingerprint. Therefore, due to its non-destructive, standoff, and label-

free capability in recognizing the components of material, hyperspectral imaging finds 

broad variety of applications in remote sensing[2]. In  various fields, such as astronomy, 

agriculture, molecular biology, biomedical imaging, climate and surveillance, 

hyperspectral imaging is used. 

 

Recent advances in sensor design resulted in light weight cameras such as XIMEA 

xIQMQ022HG-IM-LS150-VISNIR that is 32 gram [1] which makes it possible to mount 

the camera on Unmanned Aerial Vehicle (UAV). Having the camera on the UAV will let 

us to do remote object detection and classification way easier. 

 

Hyperspectral cameras produce images which have rich information content, in order to 

gather and process that data , powerful yet small computer is needed. The NVIDIA 

company has made great progress for the last few years. Jetson TX2 board is a one of 

the embedded computers that NVIDIA produces. Besides portability, the board provide 

a large processing capability and having onboard  Graphics Processing Unit (GPU) allow 

the execution of instruction in parallel[3][4]. 

 

1.2 Motivation 

Hyperspectral imaging is an efficient and flexible instrument that can be used in a wide 

range of practical application[5] such as solving problem in food analysis, precision 

agriculture and others. Growing interest to the remote sensing, self-driving car makes 

companies to develop hardware and/or software platforms to let computer vision 

reachable to every developer. 
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Being around self-driving car, delivery robots in the campus of the university gave me 

great interest in computer vision and machine learning. Working in those fields 

motivates me to write this thesis. 

1.3 Aim 

The main goal for this thesis is getting data from the hyperspectral camera with the help 

of GPU based embedded computer in real time to generate hyperspectral cube in order 

to do real-time processing on the same single board computer. 

1.4 Tasks 

• Review precious works 

• Setup, flash, configure the system 

• Read documentation for the camera and its Application Programming Interface 

(API) 

• Control LTS300/M to apply push broom scanning 

• Generate hyperspectral cube 

• Check and verify the generated data cube 

• Apply processing/Machine Learning techniques 

• Test the system 

 

 

1.5 Structure of the thesis 

The thesis consists of four main parts. Introduction, literature review, development and 

testing. In the introduction part, main idea is presented. It also includes motivation of 

the author for the topic. Task definition and goal are clearly written as well as structure 

of the thesis. 

 

The literature review part contains theoretical background for hyperspectral imaging, 

discuss research areas where hyperspectral imaging is used. Different methods for 

generating hyperspectral data cube are described in this chapter. Second chapter is 

about specifications and implementation of hardware and software components in 

different research works. The same chapter also includes information about 

unsupervised machine learning algorithms. In software and hardware section of the 

second chapter, general overview of the system and its components are explained. 
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Third chapter is mainly for the development. It contains description of the system and 

development from unboxing the components to assembling fully functional system. 

At the beginning of the chapter, whole overview of the implemented components 

hardware and software  are represented. Then, usage of hardware and software 

components separately is explained  in detail. After that, main part of the software 

implementation is described. 

The fourth chapter is showing the result of testing the developed system. 

The fifth and sixth chapters give short summary in English and Estonian respectively. 

References and appendix are after summary chapters. 
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2 LITERATURE REVIEW AND COMPONENTS OF THE 

SYSTEM 

2.1 Literature review  

Human eyes can perceive  specific wavelengths from 380nm to 780nm which is called 

visible spectrum. But in the electromagnetic spectrum there are a lot of wavelengths 

out of visible spectrum which are invisible to human beings. 

 

Developments in imaging technology, we can gather data for different wavelengths out 

of visible spectrum and process it in a useful way. Hyperspectral imaging(HSI) is the 

simultaneous processing and combination of spatial and corresponding spectral 

information in an image space. 

  

In the electromagnetic spectrum, hyperspectral sensors capture hundreds of images 

and each individual pixel in the observed spectrum is a complete spectrum. HSI is thus 

a three-dimensional data cube with two dimensions of spatial and a spectral dimension. 

The spectral dimension enables the materials in the scene to be identified[6]. 

 

HSI allows us to discover the unexplored by visualizing information which is not visible 

to human eye. Images captured from HSI camera are in the form of a hypercube which 

is consist of n different band of same object.  

 

There are three main techniques used for generating three-dimensional hypercube[7]. 

First one is spectral scanning which is sequential image of full spatial information. In 

spectral scanning, output of each 2-D sensor represents single-colored, spatial map of 

the object. Spectral scanning HSI systems are usually based on optical band-pass filters 

which can be tunable or fixed. By changing one filter after another, the object is 

spectrally scanned whilst the platform remains stationary[2][3][4]. 

 

Figure 1 – Spectral scanning[7]. 
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Second one is spatial scanning which is sequential image of common spectral data. In 

this method output of each 2-D dimensional sensor represents a full narrow line of 

spectrum. Spatial scanning HSI devices generate image of the object stacking lines 

together with the help of moving platform(push broom scan). Spatial scanning systems 

are very common in remote sensing[9], [10]. 

 

Figure 2 – Spatial scanning[5]. 

 

Third one is snapshot  or non-scanning where all spectral and spatial information are 

captured simultaneously. In this method output of a single 2-D sensor contains all 

spectral and spatial information. Snapshot HSI devices generate full hypercube at once 

, without doing any scanning[10], [11]. 

 

Figure 3 – Snapshot [5]. 

Qualitative results can be obtained by using first and second methods, but they are not 

efficient for collecting and processing the entire hypercube[5]. 
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 Figure 4 – Hyperspectral cube[12]. 

In this thesis push broom method was used. 

 

HSI is successfully employed in different industries. The analysis of the generated 

hypercube allows for a detailed classification by the fingerprints of the 

object[13][14][15][16][17][18][19]: 

• Precision agriculture; 

• Environment monitoring; 

• Food sorting; 

• Robotic vision; 

• Blood/ urine analyzers; 

• DNA sequencer; 

• Print quality inspection; 

• Night vision systems; 

• Industrial gas leaks monitoring;  

• Wounds imaging; 

• Water monitoring analyzers; 

2.2 Influence of illuminations 

To find best source of illumination for hyperspectral image acquisition, previous master’s 

degree students have made tests. As a source, students compared  sun, fluorescent, 

light-emitting diodes (LED), and incandescent. For HSI, Resonon Pika II which is in the 

range of 400-1000nm and Resonon Near Infrared camera which is in the range of 1000-

1700nm were used. Following table shows result of their work[20]. 
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Sources 380-700nm 400-1000nm 

Sun + + 

Incandescent + + 

Fluorescent  - - 

LED + - 

Table 1 – Result of the previous research[20]. 

Student concluded their work as incandescent light source is the best source for 

HSI[20]. 

2.3 Processing hyperspectral data in real time 

There are many significant applications for remotely sensed hyperspectral images since 

its high-spectral resolution allows for more precise object detection and classification. 

Real-time on-board implementation is strongly needed to enable immediate decision-

making in critical situations. As mentioned before, the hyperspectral camera collects 

hundreds of images for the region of interest for different wavelengths. High spectral 

resolution of hyperspectral cameras allows more efficient diagnostic capabilities than 

conventional imaging in detection, and classification. In order to support quick decision-

making, real-time processing and analysis are needed to provide instant results. It is 

extremely beneficial to be able to perform onboard processing. In image classification 

and recognition, machine learning algorithms can realize high precision of 

classification[21]. The enhanced spatial, spectral, and temporal resolutions given by 

hyperspectral cameras require fast computing algorithms that can speed up the effective 

use of hyperspectral data. To accelerate remote sensing techniques, methods rely on 

dedicated hardware such as clusters, distributed systems, and specialized devices such 

as GPUa or FPGAs(field programmable gate array) have been popularly used[22]. 

2.3.1 Anomaly detection 

Anomaly detection is the process of identifying unexpected items or events that differ 

from the norm in data sets. And unlabeled data, known as unsupervised anomaly 

detection, is often used for anomaly detection. Detection of anomalies has two basic 

assumptions: 

• Anomalies only occur quite infrequently in the given data. 

• Features of the anomalies differ significantly from ordinary cases[23]. 
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In other words, anomaly detection is a technique of unsupervised target detection in 

which no prior information available for the target or the background. Anomaly 

Detection plays significant role in hyperspectral detection[24]. In practical applications, 

real-time anomaly detection is more useful, especially the detection of moving targets 

or instantaneous targets. 

RX detector is one of the common algorithms for anomaly detection. To detect abnormal 

data, RX detector implements the Mahalanobis distance between a test pixel and its 

background metrics[24]. 

When the samples in the image do not conform to a linear distribution, RX detector 

often fail to detect anomalous data[25]. To solve this problem new version of RX 

algorithm was proposed which is called kernel RX. Kernel RX is a nonlinear version of 

previous algorithm[25]. However , RX detector can easily designed into real-time 

framework[24]. At the same time, due to computational complexity of the Kernel RX, it 

can not be implemented in real-time. To make efficient processing in real-time equation 

of the kernel RX is rewritten to support new proposed algorithm which is called casual 

kernel RX detector[25]. With very clear boundaries, both algorithms can give bright 

results, while RX detector alone itself generates very dark results with fuzzified 

boundaries. Same results were produced by casual kernel RX and kernel RX algorithm, 

but computing times are different[25].  

2.3.2 Spectral unmixing 

One of the most popular methods to process hyperspectral images is spectral 

unmixing[26]. 

Due to lower spatial resolution of remote sensing spectroscopy, hyperspectral remote 

sensing technology has a strong capacity for ground object detection. A single pixel that 

leads to a remote sensing hyperspectral image generally contains more than one type 

of feature coverage, resulting in a mixed pixel. The existence of a mixed pixel influences 

the accuracy of the identification and classification of the ground object and hinders the 

use and development of hyperspectral technology[26]. Two mixture models are 

available. Linear and nonlinear mixture model[27]. Each pixel in the linear spectral 

mixing model can be expressed as a linear end-member combination weighted by its 

corresponding abundance[26]. For multicore implementation following algorithms can 

be implemented[27]: 

• Parallel Virtual Dimensionality. 

• Parallel k-means.  
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• Parallel spatial-spectral preprocessing.  

• Parallel N-FINDR . 

• Parallel least squares.  

Different methods such as nonnegative matrix factorization, Bayesian method, sparse 

method were also proposed[26].  

2.3.3 FPGA based systems 

FPGAs are electronic component based around a matrix of programmable 

interconnected configurable logic blocks. After production, FPGAs can be reprogrammed 

to the desired application or functionality configurations. This feature distinguishes 

FPGAs from custom manufactured Application Specific Integrated Circuits for design 

tasks[28]. The mentioned feature gives makes development time for hardware and 

software systems shorter compared to application specific integrated circuits. FPGAs can 

provide better performance closer to GPUs[22]. FPGAs have the potential to increase 

computational bandwidth due to their parallel nature in systems where software 

performs processing functions on huge data[29]. 

Automatic target generation process is a widely used  algorithm for target detection 

mostly because of its aggressive performance. However, it has huge computation issue 

due to inversion and multiplication of growing matrices. To handle this problem new fast 

implementation of the algorithm was proposed based on FPGA[30]. 

As mentioned before, most widely used tool for analyzing hyperspectral images is 

spectral unmixing. A new algorithm named FUN was proposed for real time processing 

with spectral unmixing[31]. The implementation of this algorithm was done on FPGA 

system[32]. 

With custom hardware architecture based on FPGA can get result of up to 96% quality 

detection compared to a CPU based system[33]. 

2.3.4 GPU based systems 

A GPU is a computer unit which performs fast mathematical calculations, mainly for 

image rendering. GPUs were designed primarily to speed up process relateed to 

image[34]. Parallel implementation of noise adaptive principal components algorithm 

for feature extraction of hyperspectral image based on CPU-GPU collaboration is flexible 

and efficient[35]. 
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One of the most important topic with hyperscpetral images is spatial-spectral 

classification. Parallel implementation of this classifier has advantages of spatial 

piecewise smoothness and correlation of neighboring pixel[36]. 

Hundreds of narrow bands of the HSI sensor are used to capture accurate spectral 

responses from objects. Band selection is popular for reducing dimensions of 

hyperspectral data. The goal of band selection is to pick a small subset of hyperspectral 

bands in order to minimize spectral redundancy and reduce computational costs while 

reserving valuable spectral information for the scanned object[37]. Implemetation of 

band selection on GPU is more efficient compared to CPU[38]. 

Parallel application of HSI over the serial application accompilishes considerable 

improvement. However, there are still many enhancements required for real-time of 

parallel implementation. The main point for this is because of large hyperspectral cube 

with rich information which is needed to be processed in real time. One option to achieve 

real-time implementation of applications isto use GPU. 

2.4 Unsupervised classification  

The unsupervised classification is the method of clustering without any prior 

information. In hyperspectral image case the unsupervised method refers to spectral 

similarities of the hyperspectral data. Assessments of relative pixel positions in the 

image in an unsupervised classification helps to search for clusters within the data. It is 

expected that each cluster represents unique properties[39]. 

2.4.1 KMeans clustering 

The K-means clustering method's classification principle is that the sum of 

squared distances from all the pixels in each cluster to the center point of that cluster 

is the smallest. The center point of the initial clustering is randomly chosen at the 

beginning of the clustering. To complete the initial clustering, other pixels to be clustered 

are classified into one of the categories according to the initially specified principles. 

Then adjust each class's clustering center point, change the center point of the 

clustering, and classify again. Iterate this until position of the points of the clustering 

center no longer varies. Before stopping iteration, make sure that best clustering center 

is found. Then stop the iteration get the best result for clustering. The number of 

selected categories cannot be changed during clustering with K-Means. Changing initial 

clustering center point position is also affect the clustering result[40].  
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Figure 5 – Flow chart for KMeans algorithm[40]. 

2.4.2 Mini Batch KMeans clustering 

K-means is one of the most common algorithms for clustering, mainly because of its 

good performance over time. Because of its disadvantage of having the entire dataset 

in main memory, the processing time of K-means increases with the growing size of the 

datasets being examined. For this purpose, several methods for reducing the algorithm's 

temporal and spatial cost have been suggested. The Mini batch K-means algorithm is 

one of them. The key idea of the Mini Batch K-means algorithm is to use small random 

data batches of a fixed size so that they can be stored in memory. A new random sample 

is collected from the dataset for each iteration and used to update the clusters, and this 

is repeated until convergence. 

The pseudo code for Mini Batch KMeans classification is shown below. 
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Figure 6 – Pseudo code for Mini Batch KMeans algorithm[41]. 

MiniBatchKMeans converges more rapidly than KMeans, but there is a decrease in the 

consistency of the results. In practice, this quality difference, as seen in the figure below, 

may be very small. 
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Figure 7 – Kmeans vs MiniBatchKMeans.(train time is the time the algorithm spent on 

separating image into clusters based on perceived similarities, inertia is a measure 

how internally coherent clusters are.)[42]. 

In this thesis Mini Batch KMeans algorithm was used for online clustering and KMeans 

algorithm for offline clustering. The results were compared at the end. 

2.5 Hardware 

2.5.1 Overview 

Embedded computer, NVIDIA Jetson TX2, is used as main processing unit. NVIDIA TX2 

board acquire images through the XIMEA xIQ hyperspectral camera. With the help of 

Thorlabs LTS300/M motion stage spatial scanning can be implemented. Mini Universal 

Serial Bus (USB) is used to control motion stage with special commands. The 

hyperspectral camera is mounted on the motion stage and connected to NVIDIA board 

through USB3.0. 
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Figure 8 – General overview of the system 

 

2.5.2 NVIDIA TX2 

As a result of constant progress in the development of embedded computers, the NVIDIA 

company produced Jetson series[43]. Jetson TX2 is one of the fastest, most power 

efficient embedded computer[44]. 

Single chip system used in the Jetson TX2 which includes 2 64-bit Central Processing 

Unit (CPU) cores Denver 2, 4 CPU ARM Cortex-A57 cores and 256 Compute Unified 

Device Architecture (CUDA) cores on the pascal architecture. Encoding and decoding of 

4K x 2K video with frame rate of 60 frame per second (fps) is supported. 8 GB Low-

Power Double Data Rate (LPDDR) memory with a bandwith of 58.4GBps and 32GB eMMC 

are included. For the connectivity, the module has Gigabit Ethernet port, Wi-Fi and 

Bluetooth. Assembled dimension of the board is 50mm x 80mm[3][9][26].  

 

Figure 9 – NVIDIA TX2 developer kit without accessories[45]. 

In addition to their portability, these boards provide a large processing capacity and 

allow the execution of instructions in parallel as they have Graphics Processing 

Units(GPU) onboard[4]. Jetson platforms are compatible with the JetPack Software 

Development Kit(SDK), SDK has libraries for deep learning, computer vision and 
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accelerated computing[46]. Because of that, Jetsons are being used in various 

applications, including embedded vision systems[47], [48], autonomous vehicles[49], 

medical systems[50]. 

The emerging low-power multi-threaded architectures from ARM and NVIDIA can be a 

practical approach for hyperspectral image processing as compared to a standard high-

performance multi core processor. The experimental results from earlier studies showed 

that low power GPUs deliver reasonable performance and high power/energy grains[3]. 

2.5.3 Hyperspectral camera – XIMEA 

Ximea xIQ MQ022HG-IM-LS150 VISNIR is an USB3.0 hyperspectral camera with 

dimensions of 26 x 26 x 31mm and weight of 32g.It has 2.2 megapixel sensor which 

can shoot 90fps. It can scan up to 850 lines per second. The sensor technology that is 

used in the camera is based on standard Complementary Metal Oxide Semiconductor 

(CMOS) with a native resolution of 2048 x1088 pixels. It can capture spectral range 

between 470-900 nm with spatial resolution of 2048x5 lines in 3nm steps[51]. The 

camera can be powered directly from USB due to its low power consumption which 

makes it ideal for embedded vision systems. It can be used in applications from remote 

sensing to optical sorting[52]. 

 

Figure 10 - Ximea xIQ MQ022HG-IM-LS150 VISNIR[1]. 

 

EDMUND OPTICS C series lens with 35mm focal length and aperture of F1.65 is installed 

on the camera[53].   
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2.5.4 Thorlabs 

For the push broom scan or in other name spatial scanning needs moving platform with 

respect to object. With integrated stepper motor controller , Thorlabs LTS300/M which 

is optimized for applications requiring high accuracy is great for this thesis[54]. 

 

Figure 11 – Thorlabs LTS300/M [54]. 

The stage has accuracy of 5.0 um It can be controlled via manual keypad or remote pc 

over serial bus[54]. 

Communications parameters are fixed at: 

• 115200 bits/sec;  

• 8 data bits, 1 stop bit;  

• No parity ; 

• No handshake. 

The communications protocol used in the Thorlabs controllers is based on the message 

structure that always starts with a fixed length, 6-byte message header which, in some 

cases, is followed by a variable length data packet. For simple commands, the 6-byte 

message header is enough to convey the entire command. For more complex 

commands, for example, when a set of parameters needs to be passed on, the 6 byte 

header is not enough and in this case the header is followed by the data packet. 

 

The header part of the message always contains information that indicates whether a 

data packet follows the header and if so, the number of bytes that the data packet 

contains. In this way the receiving process is able to keep tracks of the beginning and 

the end of messages[55]. 
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2.6 Software 

2.6.1 Jetsonpack 

The jetson development pack for linux for tegra is an installer that automates installing 

and setting up a development environment required to develop for the NVIDIA jetson 

embedded platform, including flashing the board with the latest available Operating 

system (OS) image. Jetpack includes host and target tools, APIs, packages[56]. 

 

Inside Jetpack Software development kit (SDK) there are components for Deep learning 

(TensorRT[57], cuDNN[58]), computer vision(VisionWorks[59], OpenCV[60]), 

accelerated computing(cuBLAS[61], cuFFT[62]), graphics(Vulkan[63], OpenGL[64]), 

Multimedia(libargus[65]) and many more. 

 

Those components are widely used by researchers. Deep learning application based on 

embedded GPU[66], accelerating deep learning frameworks with micro-batches[67], 

GPU-SFFT[68] are some example for recent works. 

2.6.2 Python 

Python is the best choice as compared to other programming languages in many area 

and applications[69]. Image processing[70][71][72] is one of them. Besides being an 

extremely powerful programming language , another reason for choosing python as 

programming tool is the camera. Ximea company has API for python and C++[73]. Also, 

python has numpy[74] package that can handle n dimensional arrays which helps while 

generating hypercube. 
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3 DEVELOPMENT 

This chapter is about overall system in detail.  

 

Figure 12 – overview of the system. 

3.1 Hardware Subsystem 

This section is about how hardware subsystem was developed. The subsystem consists 

following components. 

• Embedded board – NVIDIA Jetson TX2 

• Motion stage – Thorlabs LS300/M 

• Hyperspectral camera - Ximea xIQ MQ022HG-IM-LS150 VISNIR 

• Debugging interfaces – keyboard/mouse/monitor 

• Other accessories – USB hub, power supply, ethernet, etc. 

3.1.1 NVIDIA Jetson TX2  

In order to start working, Jetson TX2 board must be reflashed with its own Linux OS, 

because password for the board was not found. To flash the board host machine with 

Linux OS is needed. There were 3 methods available. First method is using host machine 

with windows OS which has Ubuntu on VirtualBox[75]. The problem with this method is 

while flashing the board, it keeps restarting itself which is a problem for VirtualBox 
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Machine(VM) to enumerate USB after restart. Second way to flash the board is using 

Windows Subsystem for Linux(WSL)[76]. It is a subsystem developed for windows to 

run Linux on it but at the time of starting this thesis , the WSL system was not developed 

very well, and it was not a reliable system. Third and used method is installing Ubuntu 

on a host machine. At the time of starting this work, the board was recommended to be 

flashed by Ubuntu 16.04 or Ubuntu 18.04. 

After installing OS on the host machine, NVIDIA SDK Manager was installed to the host 

machine. SDK manager helps to install everything required for the board. Defining used 

board in the SDK manager is enough to get all packages ready for flashing the board. 

 

Figure 13 – Nvidia TX2 developer kit connection layout. 

To make the board ready for flashing, board has to be in Force USB Recovery mode. To 

make it so: 

1. The device must be shut down, not in a suspended or sleep mode 

2. Connect the Micro-B plug on the USB cable to the USB Micro-B port on the 

device(4) and the other end to an available USB port on the host machine 

3. Connect power adapter to the device(2) 

4. While the system powered off, press and hold the Recovery Force button(20), 

press and release the Power button(19), press and release the Reset button(22), 

wait for 2 seconds and release the recovery force button. 
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When the board is in the Force USB Recovery Mode , then software components can be 

flashed with the help of the NVIDIA SDK Manager. 

3.1.2 Thorlabs LTS300/M 

The travel stage for the moving the hyperspectral camera to scan objects requires 24V 

DC voltage source which was provided with AC to DC adapter. The USB port on the 

stage was used for communication between the stage and the board. 

 

Figure 14 – LTS300/M wiring. Power supply(left), USB(right). 

3.1.3 The hyperspectral camera 

The hyperspectral camera was mounted on the stage with the help of 3D printed right 

angle mounting bracket. The camera gets it power from USB port which is also used for 

communication to the board. 

 

Figure 15 – The camera installed on the motion stage. 

3.1.4 USB hub 

As there is only one USB Type-A port on the board, and there are at least 2 devices that 

need communication over USB in the system, a USB HUB was used. The USB Hub must 

be USB3.0 compatible, because the USB port on the camera is USB3.0 
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3.1.5 Debugging  

As for all hardware system, a debugging interface is a must to have in the system. For 

that purpose, a separate monitor/keyboard/mouse was connected to the board and also 

internet over ethernet cable was provided to have SSL(Secure Socket Layer) connection 

between the host and the board 

3.2 Software subsystem 

This section is about how software subsystem was developed. The subsystem consist 

following components. 

• Board flashing tool - NVIDIA SDK Manager 

• Programming language - Python 

• Debugging - xiCamTool 

3.2.1 NVIDIA SDK Manager 

NVIDIA SDK Manager was used on the host machine to download and prepare all 

necessary packages for flashing the board 

3.2.2 Python 

Python 2.7.17 was installed with the SDK manager and used with this version without 

updating it. No IDE(Integrated Development Environment) was used. All code was 

written in the default text editor of Ubuntu. 

 

Figure 16  - Imported libraries. 



31 

3.2.3 xiCamTool 

To configure and test the camera, and check captured images, xiCamTool[77] was 

used. It was installed with Ximea SDK for Ubuntu. The Ximea SDK also has all 

necessary files for python API. 

 

Figure 17 – Raw image from camera using xiCam tool. 

3.3 Image Acquisition  

This section is about how images were captured using the hyperspectral camera with 

motion stage, and generating hyperspectral cube as a result of applying push broom 

scan method 

3.3.1 The motion stage 

The LTS300/M is a linear translation stage that has own integrated controller which 

means to control the stepper motor inside the stage requires only specific commands. 

The commands were sent over USB cable. The motion stage is calibrated before starting 

to work in order to force the controller to correct any mechanical errors present in the 

system. Calibration files can be found on the website of the manufacturer[78].  

The motion stage supports RS-232 and USB  communication protocols. The 

communication protocols are identical, so USB port on the motion stage can be used for 

both. To get rid of enumeration part of the USB protocol, RS-232 was implemented. 
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Python has library called serial that can handle RS-232 communication protocol and 

imported to the main code. 

To give python script to access USB ports without having administrator rights, following 

command line code was used. 

-sudo chmod 666 /dev/ttyUSB0 

To establish communication to the motion stage, a serial object must be created with 

following settings. 

• 115200 bits/sec;  

• 8 data bits, 1 stop bit;  

• No parity ; 

• No handshake. 

In general, two packages were sent to the motion stage. 

1. Relative move command 

2. Homing command 

Relative move command was used to start a relative move with given relative distance. 

There are two versions of this command: a shorter version and a longer version. Shorter 

version has only 6-byte header while longer version has 6-byte header plus 6-byte data. 

Shorter version uses predefined values for relative movement. Longer version uses 

values that defined in data bytes. Values that are longer than a byte follow the intel 

little-endian format 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

48 04 06 00 0D 01 Chan ident Relative Distance 

Table 2 – Relative Move command structure [55] 

0th and 1st bytes represent code for relative move command(0x0448), 2nd and 3rd bytes 

shows is there is data bytes or not(0x0006), 4th one is for bitwise or operation between 

destination address with 0x80, 0x50 is the destination address for Generic USB 
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hardware unit.5th  byte gives information about source. Source is the host machine and 

0x01 corresponds to host machine.  

6th and 7th bytes are there for channel identification, as our motion controller has one 

channel then it should be 0100(0x0001), the last for bytes show relative distance that 

motor will go. 

Upon completion of the relative move the controller sends a message that indicate 

completed movement with following structure 

0 1 2 3 4 5 

Header 

64 04 Chan ident 00 81 50 

Table 3 – Move Completed message structure[55] 

Homing command was used to send the stage to home position. It has only one short 

version. Information in header bytes are enough for this command. 

0 1 2 3 4 5 

Header 

43 04 Chan ident 00 0D 01 

Table 4 – Homing command structure[55] 

Channel identification, source and destination address are same with the relative move 

command, 0x01,0x01,0x0D respectively. 0x0443 is the code for homing command 

3.3.2 The hyperspectral camera 

The hyperspectral camera uses USB3.0 protocol for communication. USB3.0 

implementation on Linux based systems has some problem that cannot allocate enough 

buffer for USB3.0 compatible devices which in our cases was resulted as not getting all 

frames that the camera captured. To increase buffer size for the camera, following 

command line code was used. 

sudo tee /sys/module/usbcore/parameters/usbfs_memory_mb >/dev/null <<<0 [79] 



34 

API from the XIMEA for python was used to access the hyperspectral camera. The API 

creates an interface with which the features and all capabilities can be used. 

To establish and get data from the camera following steps implemented. 

• Imported API to the python code 

• Created instance for the connected camera 

• Changed basic settings of the camera 

• Created instance for storing captured images 

• Sent start acquisition command 

• Captured images 

• Sent stop acquisition command 

• Disconnected from the connected camera 

3.3.3 Preprocessing captured image 

To obtain hyperspectral data, the sensor inside camera is covered with special filters. 

Each filter is responsible for a range. But entire surface of the sensor is not covered with 

the filters. Following figure shows the view of the sensor. Active area shows the covered 

region of sensor[80] 

 

Figure 18 – View of the sensor[80] 
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Wedge design is implemented on the sensor filter layout. 192 filters in the linescan 

layout are organized in 192 bands of a fixed height over the fullwidth of the active area. 

The width of the active area equals to 2040. The height of the active area equals to 192 

times 5 pixels(the height of the bands in pixels). Position index 0 indicates the band at 

the top of the active area. The position index is incremented to the bottom of the active 

area. Following figure shows wedge layout of the sensor. 

 

Figure 19 – wedge layout[80] 

Two light-sensitive sensors designed for different ranges are composed together in the 

camera. Between those filters there are empty  interface zone of 120 row. Following 

figure shows positions of the different sensors. After preprocessing active area becomes 

960x2040. 

 

Figure 20 – Filters and empty interface zone[80] 



36 

 

Figure 21 – empty interface zone and offsets from edges on a raw image[5]. 

3.3.4 Generating hyperspectral cube 

Hyperspectral representation of an object is acquired by the line scan sensor which has 

conventional sensor with specialized filters on top. Each filter emits only a small portion 

of the entire spectrum that the object reflects[51]. All this small portion are then 

combined to create a hyperspectral representation of the object: hyperspectral cube. 

In case of the used camera which consists of a sensor with resolution of 2040*960 with 

192 filter bands processed. Each band is 5(960/192) pixels in height, and 2040 pixels 

in width. On the sensor wavelength specific regions are organized in adjacent bands. 

Following figure shows generalized view for the sensor 

 

Figure 21 – Generalized view for bands[80]. 
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In order to every point of an object to get captured by the camera, it is needed to make 

sure that each point passes through each individual band. To obtain whole data about 

the reflection of light on the object for each band, series of images must be taken. 

 

Figure 22 – Full scan of the object[80]. 

As seen from the figure above, a full scan of the object has three phases which are 

start-up phase, steady-state phase, and shutdown-phase. t1, t2, t3 phases are 

corresponding the start-up phase. During start-up phase not all captured data are used. 

Only the part of the image which has white background is used to generate 

hyperspectral cube. t4 is the steady state phase in which all captured data are used. 

Length of the object defines the number of frames in steady state phase. t5 and others 

corresponds to shut-down phase. As in the start-up phase not all captured data are 

used. 

After shut-down phase, all usable data from capture images are stitched together to 

construct hyperspectral cube. To get a perfect hyperspectral cube the camera must 

capture pictures in way that the object positioned perpendicular to the orientation of 

the sensor. Any misalignment led to incorrectly stitched images. 

Following figure shows hyperspectral cube that is generated by capturing and stitching 

images ideally. 
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Figure 23 – Ideal hyperspectral cube 

3.3.5 Kmeans clusterring  

By attempting to divide samples into n groups of equal variances, the KMeans algorithm 

clusters data, minimizing a criterion known as inertia or within-cluster sum-of-squares. 

The number of clusters to be listed is required by this algorithm. It scales well across a 

large number of samples and has been used in many different fields in a wide variety of 

application areas. The K-means algorithm seeks to choose centroids that minimize 

inertia, or the criterion of sum-of-squares within the cluster. As a measure of how 

internally coherent clusters are, inertia can be recognized. There are three steps to the 

algorithm in simple terms. The first step is to pick the original centroids, with samples 

from the dataset being the most basic process. K-means consists of looping between 

the two other stages after initialization. The first stage allocates each specimen to its 

nearest centroid. By taking the mean value of all the samples assigned to each previous 

centroid, the second step generates new centroids. The difference between the old 

centroids and the new centroids is determined and these last two steps are repeated by 
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the algorithm until this value is less than a threshold. It repeats, in other words, until 

the centroids do not shift dramatically[81]. 

3.3.6 Mini Batch Kmeans clustering 

The MiniBatchKMeans is a version of the KMeans algorithm that uses mini batches to 

decrease processing time while still trying to optimize the same objective function. Mini 

batches are subsets of the input data, sampled randomly in each iteration of the training. 

The amount of computation required to converge to a local solution is significantly 

reduced by these mini batches. Mini-batch k-means yields results that are usually just 

marginally worse than the regular algorithm, in contrast to other algorithms that 

decrease the convergence time of k-means. Similar to vanilla k-means, the algorithm 

iterates between two major stages. Samples are drawn randomly from the dataset in 

the first stage, to form a mini batch. These are then allocated to the centroid that is 

closest. The centroids are modified in the second stage. This is achieved on a per-sample 

basis, in comparison to k-means. The assigned centroid is modified for every sample in 

the mini batch by taking the streaming average of the sample and all previous samples 

assigned to that centroid. These procedures are carried out before there is convergence 

or a predetermined number of iterations[81]. 

3.4 Implementation 

This section is about how  the previous sections of this chapter implemented using 

python programming language. 
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Figure 24 – Flow of the program 

3.4.1 The Motion Stage 

The motion stage can be controlled over USB port. Python has package which is called 

pyserial for accessing serial port. Pyserial was installed running following command on 

terminal. 

pip install pyserial 

After installing, module was imported to the program. 

import serial 

To have access to the serial port instance was created for handling port related settings 

 

Figure 25 – Instance for serial port. 
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If there is not port related problems, then code shown in figure 15 opens the requested 

port for communications. 

After successfully creating port control instance, packets for relative movement and 

homing are formed as in figure below. 

 

Figure 26 – Packets for motion stage. 

The value for relative distance will be explained in this section.  

The packet for requesting position was created for debugging purposes to verify that 

requested relative distance was reached. In program move completed message was 

used to detect end of the movement 

As speed of the stepper motor in motion stage is not same as the speed of the 

execution of the python program, program has to wait until stepper finished the 

requested relative movement. 

 

 

3.4.2 The hyperspectral camera 

Ximea Linux software package was installed to the board in order to make reliable 

communication between the camera and the board. xiAPI for python was installed with 

the package. To get xiAPI to work without any problem some packages has to be 

downloaded and installed to the board. 

Most of the camera controlling code developed on top of the xiAPI example for camera 

control 

NumPy package must be installed for numerical operations with following command. 

 

Figure 27 – NumPy installing command. 

Matplotlib package must be installed for visualization with following command. 
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Figure 28 – Matplotlib installing command. 

Pillow and OpenCV must be installed as required from the API 

 

Figure 29 – Pillow installing command. 

 

Figure 30 – OpenCV installing command. 

After installing all required modules, all the used ones were imported to the program. 

 

 

Figure 31 – Imported modules. 

 

After that instance for handling camera related tasks was created. Communication 

between the board and the camera was opened, and also basic settings which were 

taken from the previous[5] work passed to camera using camera instance. 

 

Figure 32 – Camera settings. 
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After setting basic configurations, camera can start acquisition. 

 

Figure 33 – acquisition start command.  

3.4.3 Preprocessing captured images 

As explained before , not all surface of sensor is covered with filters. In order to use 

active area with filters , some constant was defined at the beginning of the program. 

They are pixel height, offset from edges, starting and ending position of the empty 

interface zone. After removing 2 offsets and the height of the empty interface zone, 

height of the active are was formed. These variables were defined as constants to easily 

change values for different cameras on the series. 

 

Figure 34 – Constants for preprocessing. 

The defined constants were used with NumPy array indexing to cut the edges as well as 

empty interface region. 

 

Figure 35 – Removing edges and empty interface region. 

3.4.4 Generating hyperspectral cube 

To get hyperspectral cube without any misalignments, some parameters for object were 

defined such as object width. working distance, focal length. 

To keep scanning time reasonable, object width can be modified according to the object. 

Focal length for the lens is 35m , line height is 5px which means 27.5 micrometer . 
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From the equations of lenses[82], the 5px line on sensor corresponds to 313.5 

micrometer. 

 

Figure 36 – Defining object parameters. 

Camera started to capture from edge of the object. In order to scan whole object with 

0th band , at least (object width)/(object resolution) frames are needed, and to 

complete scanning for all bands extra 191 frames are needed. If this is compared with 

the previous work[5], it can be seen that this line does not waste extra 191 frames 

 

 

Figure 37 – Defining frames variable. 

To generate hyperspectral cube 3-dimensional array(bands, height, width) was needed. 

With the help of NumPy module of python , it is easy to work with n dimensional 

arrays.at the beginning array was initialized with zeros. 

 

Figure 38 – Initializing 3D array for hyperspectral cube 

The program must capture as much as “frames” variable. Making a loop that counts 

captured frames was implemented. After every frame has taken, program waits until 

move complement message which is an improvement to the previous work where 2nd 

computer was used with windows OS to control the motion stage[5]. Commented out 

lines were there for debugging purposes. 
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Figure 39 – Loop for frame capturing with motion stage control. 

Another improvement to the previous work[5] is parsing image data for constructing 

hyperspectral cube. In the previous work every pixel was scanned to generate data, but 

in this work image data was parsed line by line. 

 

Figure 40 – Parsing image data for bands. 

After capturing all frames , hyperspectral cube can be viewed using view_cube() function 

from spectral module in python. 

3.4.5 Kmeans clustering 

There are lots of python modules that make it easy to apply Kmeans clustering 

algorithm. In this work scikit-learn was used because ,it is simple and efficient 

one[42]. 

Every band is 2-dimensional array. Kmean from scikit requires 1-Dimensional array so 

a buffer array was created to hold flattened array. Then number of clusters has to be 

defined. After that using flattened array, kmeans instance was trained then the 

instance was used to predict clusters in the image. After prediction completed, 

prediction result converted back to 2-dimensional array. Matplotlib was used to 

visualize result. 
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Figure 41 – Kmeans implementation. 

3.4.6 MiniBatchKmeans clustering 

When using Kmeans algorithm, data passed for training the model cannot be changed. 

But in MiniBatchKmeans algorithm training data can be updated. This algorithm also 

implemented from scikit-learn library. General sequence of both algorithms is the same, 

but in MiniBatchKmean algorithm, small size of data can be used to train model. That’s 

why, this algorithm was used directly on the data that had been extracted from captured 

image to construct hyperspectral data. In every iteration,5px of image data was used 

to train model. 

 

Figure 42 – MiniBatchKmeans implementation. 

For every iteration, extra ~60ms was spent for training the model. 

OpenCV was used to visualize the result. 
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4 TESTING THE SYSTEM 

This chapter is about procedures for testing and results. 

4.1 Overview 

All system components assembled in NRG-202 room. Available lighting in the room was 

used, no special lamp was installed. Curtains were closed to block outer lightings. 

Hardware components were powered with their own adapters. Objects were placed 

400mm away from the camera. Objects’ width was configured on the software for 

70mm. Black fabric was used to cancel light reflections between camera and the object. 

Before starting system, some necessary commands were run on Ubuntu terminal. “sudo 

tee /sys/module/usbcore/parameters/usbfs_memory_mb >/dev/null <<<0” for USB3 

buffer problem for the camera and “sudo chmod 666 /dev/ttyUSB0” for using USB port 

to communicate with the motion stage without administration privileges. 

“datetime.datetime.now()” function from datetime module was used to measure timing 

where appropriate. 2 fruits were used to test the system. 

 

Figure 43 – the developed system(1-The motion stage, 2- The camera, 3- Jetson TX2, 

4 – object to be scanned). 
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4.2 Results 

While scanning the object for generating hyperspectral cube ~20us was spent on 

extracting data(5x2040) for each band. Which is approximately 2 times faster than the 

previous work[5] in which ~43us was spent. Controlling motion stage from the jetson 

board helped to use the jetson as it meant for. Previously the motion stage was 

controlled by another computer.  

Scanning object with push broom method, stitching appropriate data together to 

generate image for each band in real time and generating hypercube were successful. 

System was tested with orange and lemon. While gathering data for generating image 

for bands, same data was used for MiniBatchKmeans without any problem. 

MiniBatchKmeans instance was configured for finding 2 clusters on software. For each 

5x2040 portion of the image, approximately 60ms was spent on clustering and fitting 

the data in clusters. At the end of the scanning the object, Kmeans algorithm was used 

for offline processing. Kmeans algorithm was also configured for 2 clusters. Both 

algorithms produced almost the  same result, but if the result was compared with ground 

truth image, it was obvious that bottom side of the objects were not clustered because 

of the shadow of themselves. 

 

Figure 44 – Raw data - Orange.                        Figure 45 – Ground truth - Orange 
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   Figure 46 – Clustering results - Orange.         Figure 47 – Hyperspectral cube – Orange. 

 

 

 

Figure 48 – Raw image - Lemon.                      Figure 49 – Hyperspectral cube - 

                                                      Lemon. 
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Figure 50 - Clustering results - Lemon.                    Figure 51 – Ground truth - lemon 
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5 SUMMARY 

LTS300/M was successfully controlled by the Nvidia Jetson TX2 to apply push broom 

scan method. Controlling LTS300/M directly from the board means that the system is 

totally mobile now compared to the previous work. While scanning object, collected 

information was used for both unsupervised clustering and hyperspectral cube 

generating. 

Result of the applied unsupervised algorithm was as expected. MiniBatchKMeans which 

was used for online clustering generated almost same result as offline applied Kmeans 

algorithm.  

5.1 Future work and suggestions 

Results were satisfactory, but the system still needs improvements: 

• Scanning better to be performed from top side not from front side of the object 

• Speed of the moving stage can be increased 

• Better to implement edge detection algorithms to define start of the scanning 

There is not much dataset for laboratory research, so it will be better to use the 

developed system to generate datasets for different objects. 

  



52 

6 KOKKUVÕTE 

LTS300 / M-i kontrollis edukalt Nvidia Jetson TX2, et rakendada luudade 

tõukamismeetodit. LTS300 / M juhtimine otse laualt tähendab, et süsteem on võrreldes 

eelmise tööga nüüd täiesti mobiilne. Objekti skannimise ajal kasutati kogutud teavet nii 

järelevalveta klastrite loomiseks kui ka hüperspektrilise kuubi genereerimiseks. 

Rakendatud järelevalveta algoritmi tulemus oli ootuspärane. Veebiklastrite jaoks 

kasutatud MiniBatchKMeans andis peaaegu sama tulemuse kui võrguühenduseta 

rakendatud Kmeansi algoritm. 

6.1  Edasine töö ja ettepanekud 

Tulemused olid rahuldavad, kuid süsteem vajab siiski täiendamist: 

• Parem skaneerimine tuleb teha ülevalt, mitte esiosalt 

• Liikuva etapi kiirust saab suurendada 

• Parem rakendada servade tuvastamise algoritme, et määratleda skannimise 

algus 

Laboratoorsete uuringute jaoks pole palju andmekogumeid, seega on parem kasutada 

väljatöötatud süsteemi erinevate objektide andmekogumite loomiseks 
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