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1 INTRODUCTION 

1.1 Problem statement 

During the design process in research laboratories as well as in industries and also for 

control purposes, one of the problems encountered after mechanical modeling is the 

measurement of physical parameters and coefficients. This can sometimes be very time 

consuming and costly. The purpose of this thesis is to estimate these parameters 

without a need to build measurement equipment but to use numerical methods. 

Obviously, one of the simplest ways to estimate the parameters is to visualize the 

output of the system and correct the parameters by trial and error. Surely this method 

is not accurate and cannot be used in meticulous design or for MIMO systems. At the 

same time, it is not usable during the design process of the controller or even the 

estimation of the control coefficients. Therefore, obtained experimental results should 

be compared and fit to the first principal model of the process. Obviously, issues such 

as divergence and local minimum need to be resolved. In addition, some methods for 

data fitting in nonlinear dynamic systems can suffer from slow and/or local convergence, 

which should be solved in this thesis. It is assumed that only partial state measurement 

is available from experiments, and that the parameters appear nonlinearly in the system 

equations. Simultaneously estimation of two or more parameters are considered. 

Another goal of this thesis is to provide general software package that can run the 

Simulink (linear or nonlinear) model separately. It means it is possible easily to evaluate 

different types of optimization methods and combination of them.  

The identification techniques have been used for many years  

- To provide a complete set of code, with a focus on the physical parameters of 

the system.  

- General software package  

- Comparing the identification methods and using the appropriate one 

- Combination of methods in order to find the best one.  

1.2 Methodology 

As mentioned before, the mechanical kinetic models usually contain unknown 

parameters, which need to be measured by test facilities. Those experiments sometimes 

can be expensive and time consuming. Moreover, in some cases such as hysteresis, 

dead-zone parameters, magnetic parameters and friction coefficients in multi-coupled 

systems, measuring the parameters is almost impossible. However, the better 

alternative can be estimation the parameters by optimizing the fit of the model to 
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experimental data. This task can be computationally challenging due to the presence of 

local optima and disposition. While a variety of optimization methods have been 

suggested to overcome these issues, it is not obvious how to choose the best one, since 

many factors can influence their performance. In this thesis, we try to develop a robust 

method and appropriate code to estimate the parameters for certain types of dynamic 

systems. To do so, it is assumed that the relevant expert has a thorough understanding 

of the physics of identified mechatronics systems and is mastered in the mathematical 

equations of system. The reason is that, in principle, all of the estimated parameters 

have meaningful physical dimensions and are within reasonable range.  

1.3 Contents 

In order to complete work on time, the following procedures may progress: Chapter 2 

presents an overview of intelligent optimization and a survey of historical and recent 

developments with PSO hybridization Perspectives. In chapter 3, the dynamic systems 

identification optimization software package which has been done based on intelligent 

methods is introduced and a simple example is solved. In chapter 4 estimation of an 

unknown parameter of filter in HVAC and filter clogging prediction is done using 

mentioned package. Chapter 5 describes the physic-based modeling and simulation of 

AHU and HVAC components such as heater, heat recovery ventilator and zone model. 
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2 LITERATURE OVERVIEW 

2.1 Intelligent Optimization 

In general, optimal selection and design in projects will produce the best possible 

answer to a particular situation. The suitable production in various technical and 

engineering fields depends on the precise design, size, material, cost, machine 

operating cost, weight and power consumption. For example, there are different shapes 

and materials to make magnetic actuators, but which one will have the better results? 

Is aluminum or a special alloy better, or better than a composite material? On the other 

hand, what is its shape, size and weight depending on the material used? We see that 

there are numerous design and decision methods in each case, but what is the best way 

and how to find it? Thus, given the issues raised, we realize the importance of 

optimization. So: "Our goal is to look for the best answer in the space of possible 

answers". Since the outcome depends on the solution method, it is important to choose 

an appropriate method to solve the problem under consideration. For this reason, 

several optimization methods have been proposed since the 1940s. These include 

methods such as counting method, classical methods (linear and nonlinear constrained 

and unconstrained eg. Second-order cone programming, Lagrangian, Simplex, 

Reduced-Gradient, Multivariate Optimization) and intelligent methods (genetic 

algorithm, neural networks, species colony searching algorithms, fuzzy and tabu 

search). 

Classical methods are based on mathematical principles which in practice have problems 

in terms of runtime and large amounts of computing and memory, but are highly 

accurate.  

2.2 Advantage of Intelligent methods 

However, solving complex problems using ways such as linear programming and Jacobi 

slope methods is extremely complex and sometimes impossible. For this reason, 

nowadays, the motivation of a powerful method in highly sophisticated optimization has 

led researchers to use intelligent and evolutionary optimization techniques. The general 

features of these methods are as follows:  

1. The intelligent algorithm does not require the derivatives of the objective 

function and only uses the evaluation of the decision variables in the objective 

function. Therefore, it does not impose a constraint on the objective function in 

terms of derivability. 
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2. The intelligent algorithm performs a search in parallel with a set of decision 

variables, each of which (equivalent to one chromosome) can be a possible 

answer to the problem. However, other methods continue to search with only 

one set of decision variables that are only one possible answer to the problem.  

3. The algorithms use random and statistical transmission. These approaches 

use statistical rules to guide the search. The search process is not based on pure 

accident. Rather, it uses random search as a tool to achieve a better search 

domain.  

4. Algorithms work with coded decision variables and hence it is a high-coherence 

optimization program. Based on above mentioned, the optimization problems in 

different contexts can be easily defined in an intelligent algorithm program.  

5. The intelligent algorithms are based on natural evolution. These algorithms do 

not use for example gradient information to search for the optimal state and 

since they search for the optimal state in parallel with a population of decision 

variables, they are therefore more capable of finding the general optimal state. 

Therefore, they are suitable algorithm for complex optimization.  

2.3 Particle Swarm Optimization  

 

Particle Swarm Optimization (PSO) is a global optimization model that has improved in 

the last two decades due to its ease of use in complex problems, which cannot be 

achieved using traditional definitive algorithms. Optimization of particles is based on 

herd behavior and social cooperation of bird and fish and is strongly derived from the 

evolutionary behavior of these organisms. This thesis provides a comprehensive review 

of the PSO algorithm with special emphasis on its most basic development as well as 

some of the latest implementations. Types of PSOs include: Discrete and binary PSO, 

Hybrid PSO, Gaussian PSO. 

2.4 Survey of Hybridization Approaches 

The literature on PSO combination algorithms is quite powerful and growing. Sengupta 

et al. In [1] collected a survey on PSO hybridization. In this section, some of the most 

prominent works as well as some recent approaches are stated. 

 
Hybridization of PSO using Genetic Algorithms (GA) 

Common approaches to GA and PSO hybridization uses the two consecutive or parallel 

methods or using GA operators such as mutation, and reproduction within the PSO 

framework. Authors in [2] have used one algorithm to reach the stop criterion to process 
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the final solution in another algorithm for accurate adjustment. How is the selected stop 

criterion different? They use a method of moving between algorithms when an algorithm 

cannot repeat the previous results more than a number of repetitions.Over the years, 

some authors have suggested a fuzzy approach to PSO-GA. Ghamisi and Benediktsson 

[1] introduced a selection method using PSO and GA hybridization. This method was 

evaluated in the superstructure data set as well as for road application. This method 

can automatically select the most instructive features at an acceptable processing time 

and does not require users to pre-determine the number of desired features. Nick et al. 

performs GA-PSO and a combination of other hybridization methods to optimize the 

asphalt coating inspection [2].Using PSO-GA, Lee et al. in [5] Created a mathematical 

model of the object and determined its highest potential parameter. The results show 

an increase in speed and superior optimization compared to GA. 

A brief list of PSO and GA algorithm is given in Table 1. 

Table 1. Hybridized GA-PSO algorithms. 

Author/s: Year Algorithm Application 

Robinson et al. [3] 

 

2002 PSO-GA Engineering design  

Ghamisi and Benedictsson [1] 2015 GA-PSO Feature  

Nik, Nejad and Zakeri [2] 2016 GA-PSO Inspection Unit 

Li et al. [4] 2018 PSO-GA Optimization of a field 

layout 

 
PSO using Differential Evolution (DE) 

Difference Evolution (DE) is an effective metaheuristic method for solving global 

optimization problems. There are several methods of combining DE with PSO in the 

literatures, some of which are described below. In 2001, Handellas [5] introduced a 

combination of particle evolution and differentiation (SDEA) algorithms and tested it on 

a series of experimental problems. The SDEA algorithm acts like a particle swarm, 

except that DE is implemented as an alternative to move particles from areas with worse 

performance to better locations.  

In [7] Seyed Mahmoudian et al. identified the maximum power point in partial shadow 

conditions. The simulation and experimental results have confirmed in a variety of 

partial conditions, and therefore its reliability in global optimal tracking. Boonserm and 

Sitjongsataporn [8] regulated DE, PSO, and ABC with their regulatory weights, which 

are determined using a sigmoid membership function. DE has helped eliminate the 
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possibility of premature convergence, and PSO has accelerated the optimization 

process.  

A brief list of PSO and DE algorithm is given in Table 2. 

Table 2. Hybridized DE-PSO algorithms. 

Author/s: Year Algorithm Application 

Hendtlass [5] 

 

2001 SDEA 
 

Global Optimization  

Seyed mahmoudian et al. [6] 

 

2015 DEPSO 

 

Power Generation 

Boonserm and Sitjongsataporn [7] 2017 Scout DEPSO 

 

Numerical 

Optimization 

 
PSO using Simulated Annealing (SA) 

Zhao et al. [9] proposed a model for activity-based multi objective network and used a 

new PSO and SA-based exploration to solve the multi objective problem. Sudibyo et al. 

[10] used PSO-SA to control the temperature of the distillation reaction in a nonlinear 

model prediction control (NMPC) and pointed to the algorithm's efficiency to find the 

optimal result of hybridization. Javidrad and Nazari [11] have recently provided a PSO-

SA that SA find the best particle if the PSO does not show progress in the performance, 

which may occur several times during the repetition cycles. This sharing process is 

sustainable as long as the convergence criteria are not met. Li et al. [12] introduced an 

efficient energy management plan to increase the fuel efficiency of a Plug-In hybrid 

electric vehicle. 

A brief list of PSO and SA algorithm is given in Table 3.  

Table 3. Hybridized SA-PSO algorithms. 

Author/s: Year Algorithm Application 

Zhao et al. [8] 2005 SDEA Virtual Enterprise 

Sudibyo et al. [9] 2015 SA-PSO Predictive Control 

Javidrad and Nazari [10] 2017 SA-PSO Global Optimization 

Li et al. [11] 

 

2017 SA-PSO 

 

Hybrid Electric 

Vehicle 
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PSO using Ant Colony Optimization (ACO) 

The Ant Clony Optimization (ACO) proposed by Marco Dorigo [13] took the organized 

communication resulting using the idea of ant colonies. Shelokar et al. [14] presented 

the PSACO to have a rapid exploration in the search domain. The first part of the 

algorithm works to generate initial solutions on the PSO, while the particle position is 

updated by the ACO in the next part. This strategy has proven to be almost optimal for 

very non-convex problems. 

Mandloi et al. [12] used a hybrid algorithm with a possible novel search method by 

integrating the axial search approach provided by ants in ACO and the speed-based 

search-oriented mechanism adopted by the particles in the PSO. The metric of 

probability used in this algorithm includes weight exploration values obtained from the 

distance and velocity. Junliang et al. [16] proposed a hybrid optimization algorithm 

(HOA) that exploits the benefits of global search and rapid convergence in PSO, allowing 

early convergence to capture ACO. The algorithm converges to the desired solution by 

setting its initial parameters by PSO. 

A brief list of PSO and ACO algorithm is given in Table 4.  

Table 4. Hybridized ACO-PSO algorithms. 

Author/s: Year Algorithm Application 

Marco Dorigo [13] 1991 ACO Communication  

Shelokar et al. [14] 2007 PSACO 
 

continuous 
optimization 

Mandloi and Bhatia [12] 2016 PSO, ACO Large-MIMO 
detection 

Junliang et al. [15] 
 

2017 HOA Traveling salesman 
problem 

 

PSO using Cuckoo Search (CS) 

The CS provided by Xin-She Yang and Suash Deb was developed based on the breeding 

behavior of cuckoos related to the climatic nature of birds and flies. After that, Lotfi 

[17] introduced the Hybrid PSOCS algorithm, which uses PSO to increase the ability of 

cuckoos to communicate with each other to reduce the likelihood of their birds being 

identified and released by host birds. During migration, each cuckoo registers its best 

personal characters, thus creating the best in the global. 
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A brief list of PSO and CS algorithm is given in Table 5.  

Table 5. Hybridized CS-PSO algorithms. 

Author/s: Year Algorithm Application 

Ghodrati and Lotfi [16] 2012 Hybrid CS/PSO 

 

Global optimization 

Guo et al. [17] 2016 PSOCS 

 

Global optimization  

Chi et al. [18] 2019 CSPSO Optimization  

 

PSO using Artificial Bee Colony (ABC) 

The ABC was introduced in 2009 by Karaboga and Basturk and distributed activities in 

accordance with the colonies of bees. Gao et al. [19] presented an algorithm based on 

PSO and ABC with the parallel implementation of ABC and PSO and the exchange of 

information between swarm particles and bee colonies. 

Zhou and Young [20] introduced PSO-DE-PABC based on PSO, ABC and DE. Divergence 

increases with the creation of new locations around random particles through PSO-DE-

PABC, while PSO-DE-GABC increases the search rate by creating divergence optimized 

by differential vectors and Dimension Factor (DF). Sedighizadeh and Mazaheripour [21] 

used the PSO-ABC algorithm with the best personal scores for each entity and mostly 

refined it through the PSO and ABC phases.  

A brief list of PSO and ABC algorithm is given in Table 6. 

Table 6. Hybridized PSO-ABC algorithms. 

Author/s: Year Algorithm Application 

Shi, et al. [19] 2010 IABAP Global optimization 

Zhou and Yang [20] 2015 PSO-DE-PABC 

and PSO-DE-

GABC  

Optimization  

Sedighizadeh and Mazaheripour 

[21]  

2017 PSO-ABC  Multi objective 

2.5 Case study object 

Given the HVAC project in the department of computer systems at Tallinn University of 

Technology, it was decided to perform a part as a case study of a thesis. Heating, 

Ventilation and Air Conditioning (HVAC) is a technology for interiors and vehicles. HVAC 

is an important part of residential structures such as single family homes, apartment 
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buildings, hotels and old residential areas, medium to large industrial and office 

buildings such as skyscrapers and hospitals, vehicles such as cars, trains, airplanes, 

ships and so on. Wang Shengwei et al. in [22] provided a structure for supervisory 

control of building HVAC systems. They concluded that the technique to optimize the 

solutions should have high computational efficiency and high ability to find global 

minimums. Research and development in supervisory control of HVAC systems indicates 

the significant energy saving or cost savings in buildings when using optimal strategies. 

Sporr et al. [23] gathered the data in Building Information Modeling (BIM) to optimize 

a prefabricated building and to change existing controllers. They found a way to identify 

and complete lost information that is necessary to create an air quality controller. 

Compared to the classical optimization methods in the parameter estimation process, 

the intelligent method will be chosen according to its many capabilities. It seems that 

the PSO method and its combination is more capable and popular than the others for 

its accuracy and particularly speed. However, as mentioned in the previous section, this 

method has its limitations and authors have proposed combinatorial methods to 

overcome its drawbacks. The other issue is that the efficiency of a method will be 

achieved after observing the results. Depending on the problem, one technique may 

perform better than the other. The ABC algorithm can overcome the convergence issues 

faced by PSO. The thesis continues to combine PSO with GA and ABC methods and to 

compare its results.  
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3 OPTIMIZATION TECHNIQUES 

The goal of optimization is to achieve the "best" design relative to a set of prioritized 

criteria or constraints, and to optimize (minimize or maximize) factors such as 

productivity, power, reliability and longevity. This process is known as optimization. 

Engineering optimization is a topic that uses optimization techniques to achieve design 

goals in engineering such as multilayer laminar flow coefficient and clogging filter in 

HVAC system. Depending on the features of the algorithm, there are several ways to 

classify optimization algorithms (Figure 1). 

 

Figure 1. Classification of optimization techniques [22]  

3.1 GA theory 

Genetic Algorithm is a search and optimization algorithm based on the principles of 

genetic science and natural selection. Genetic algorithms create a group of individuals 
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and develop in conditions whose overall purpose is to maximize the fitness of the whole 

population or minimize a population-related cost.  

Since the genetic algorithm is derived from both computer science and natural genetics, 

the terms used in it are a combination of natural and synthetic terms. The basic 

concepts that are important to understanding a genetic algorithm are: 

Chromosomes: The basis of a genetic algorithm is to convert each set of answers into 

a coding answer. This is called a chromosome. It also called individual, the string and 

the structure. They can also be called genotypes. 

Phenotype: Each chromosome corresponds to a set of answers. The set corresponding 

to each chromosome is called a phenotype. 

Gene: The elements of a chromosome are usually numbers. Genes have been called 

feature or character. 

Location: The location of the gene on the chromosome is called a location. 

Population: A set of chromosomes is called a population. 

Generation: Each iteration of the algorithm is called a generation. 

The pseudo-code of the genetic algorithm is given in Figure 2: 

 

Figure 2. Pseudo-code of the genetic algorithm 

The most important and basic type of genetic algorithm is binary genetic algorithm in 

which variables are coded binary. This type of genetic algorithm is also called discrete 

genetic algorithm. Because the variables do not have continuous changes and cannot 

take any value at all. The set of problem variables, for which the optimal value must be 

found, is encoded in binary strings and overlapped. Thus a chromosome is obtained 

from the problem variables. How the binary genetic algorithm works and its different 

stages can be seen in Figure 3. 

Generate the initial population. 
Perform the following steps until the conditions are fulfilled: 
- Evaluate, sort, and remove additional members of the population. 
- Select some of the best members of the population as parents, apply 

the intersection operator between them. 
- And create a population of children. 
- Select some of the best members of the population as parents, apply 

the mutate operator between them 
- And create a population of mutants. 
- Merge the main population, the offspring, and the mutant population. 

end 
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3.2 PSO theory 

Particle Swarm Optimization (PSO) is a population-based random optimization 

algorithm that is simulated by the social behavior of a group of birds.  

  

Figure 3. Working principle of binary genetic algorithm and its different steps 

In the particle optimization algorithm, there are a number of creatures, which we call 

particles, and are scattered in a functional search space that we intend to minimize (or 

optimize). Each particle calculates the value of the objective function in the position of 

the space in which it is located. It then selects the direction of motion by combining its 

current location information and the best location it has been in, as well as the 

information of one or sum of best particles. All particles choose the direction of motion, 

and once the motion is completed, one step of the algorithm is completed. These steps 

are repeated several times until the desired result is obtained. In fact, the bulk or swarm 

of the particles that search for the minimum of a function act like a bunch of birds 

looking for food. Given this, a new speed is calculated at each stage for the birds. The 

particle swarm algorithm has two main operators: 

• Speed update operator 

• Position update operator 
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At the beginning of the algorithm, a number of birds are randomly generated. Then 

each of them is assigned a speed. Based on the current speed of the bird and its distance 

from the best position ever seen or found by the adjacent birds, a new speed is 

calculated for the bird; and given that the speed value is equal to the amount of bird 

displacement in one step, the new bird position can be obtained in the next step after 

updating the position. This process is then carried out to a specified number of iterations 

and finally the best meeting place for all birds is presented as the answer to the problem. 

In order to better understand the assumption, we want to find the highest point in a 

space of Figure 4. In fact, finding the highest point means to find the objective function 

in question. 

 

Figure 4. Search space to find the highest point 

In order to find the highest point, some particles are randomly generated first, then 

scattered throughout the space. This is actually like making an initial answer to the 

problem. For each particle like 𝑖, 𝑥௜ as the particle position, 𝑣௜ as the particle velocity 

and 𝑦௜  as the best position that the particle 𝑖 itself has ever experienced and defined as 

the best personal experience. In other words, 𝑦௜ is the position oh highest point. The 

highest altitude function, 𝑓௜,௕௘௦௧, is the objective function of the problem. 

It should be noted that in the first step the 𝑦௜ is the position of 𝑥௜ because the particle 

had only the same experience. Finally, the particle that has the best position in terms 

of altitude (the objective function of the problem, 𝑓௚,௕௘௦௧) among all the particles is 

defined as 𝑦ො. 

It should be noted that at the beginning of the particle motion (first step) the velocity 

of all particles is assumed to be zero, and the velocity, 𝑣௜, and position, 𝑥௜, are then 

updated according to the formulas of the particle optimization algorithm (PSO). Figure 

5 shows the randomly scattered particles in order to find the highest point (the best 

value of the objective function). Figure 5 also indicates the velocities of each particle by 

vectors as direction of movement. 
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Figure 5. Scattering of particles to find the highest point 

After randomizing the particles in space in order to find the highest point and defining 

the related parameters, the position and velocity of each particle must be updated in 

order to new search in space. For this purpose, as stated earlier, the motion of each 

particle, 𝑖, is obtained as a form of three vectors, the current vector of the particle, the 

vector of the best personal experience, and the vector of the best particle position, 𝑦ො. 

Figure 6 shows the vectors determining the direction of movement of the particles. 

 

Figure 6. Update Particle velocity and location in PSO Algorithm  

It can be seen from Figure 6, vector (1) represents a coefficient as direction of the 

previous movement of the 𝑖 -particle. Vector (2) represents a coefficient from the vector 

of the current position to the location of the best 𝑖 -particle personal experience,𝑦௜. 

Vector (3) represents the coefficient as the current position vector to the best particle 

location, 𝑦ො. Finally, based on the result of the above three vectors, the new i-particle 

velocity is denoted as (4). The new position of the 𝑖 -particle is obtained by transferring 

the linear position to the new velocity. The relationships are as follows [2]:  

𝑣௜௝[𝑡 + 1] = 𝑤𝑣௜௝[𝑡] + 𝑐ଵ𝑟ଵ𝑦௜௝[𝑡] − 𝑥௜௝[𝑡] + 𝑐ଶ𝑟ଶ𝑦ො௝[𝑡], (1) 

𝑥௜௝[𝑡 + 1] = 𝑥௜௝[𝑡] + 𝑣௜௝[𝑡 + 1] (2) 

In above equations, 𝑤 is the inertia coefficient, random numbers with uniform 

distributed over the interval [0,1] is presented by 𝑟ଵ,𝑟ଶ. Learning coefficients are 𝑐ଵ, 𝑐ଶ.  

Coefficients 𝑟ଵ,𝑟ଶ create a variety of solutions that allow for a more thorough search of 

space. The learning coefficient, 𝑐ଵ is related to the personal experiences of each particle, 

and the learning coefficient, 𝑐ଶ is related to the collective experiences. 

1 
Current position 

4 
3 

2     Best particle 

New position 

 بهترين موقعيت
 تجربه شده

Best personal 
experience 
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3.3 ABC theory 

ABC is a metaheuristic algorithm that was inspired by the seductive behavior of bees, 

and was proposed by Dervis Karaboga in 2005. This is a simple and powerful algorithm 

that can be used to solve a wide range of practical and real optimization problems. 

The ABC colony consists of three groups of bees including working bees, scouts and 

onlookers. The number of bees working in the colony is equal to the number of food 

sources around the hive. The abandoned bee whose food source has been abandoned, 

becomes a scout and begins to search for a new food source. Onlookers watch the work 

of working bees and choose food sources depending on their search. The main steps of 

this algorithm are as follows [24]: 

 Initial food sources are produced for all employed bees 

 REPEAT 

o Each employed bee goes to a food source in her memory and determines 

a closest source, then evaluates its nectar amount and dances in the hive 

o Each onlooker watches the dance of employed bees and chooses one of 

their sources depending on the dances, and then goes to that source. 

After choosing a neighbour around that, she evaluates its nectar amount. 

o Abandoned food sources are determined and are replaced with the new 

food sources discovered by scouts. 

o The best food source found so far is registered. 

 UNTIL (requirements are met) 

In the ABC algorithm, the first half of the crowd includes working bees, and the second 

half is made up of onlooker bees. The number of working bees is equal to the number 

of solutions. The ABC randomly generates the initial distributed population of SN 

solutions (food sources), where the SN shows its size. 

Let 𝑋௜ = ൛𝑥௜,ଵ, 𝑥௜,ଶ, 𝑥௜,ଷ, … 𝑥௜,௡ൟ represent the 𝑖௧௛ solution in the swarm, where 𝑛 is the 

dimension size. 

Each employed bee 𝑥௝  generates a new candidate solution 𝑉௜  in the neighborhood of its 

present position as equation below [24]: 

𝑣௜,௞ = 𝑥௜,௞ + ∅௜,௞ × ൫𝑥௜,௞ − 𝑥௝,௞൯ (3) 

where 𝑥௝  is a randomly selected candidate solution (𝑖 ≠ 𝑗), k is a random dimension index 

selected from the set {1,2, … , 𝑛}, and ∅௜,௞ is a random number within [-1,1]. Once the 

new candidate solution 𝑣௜ is generated, a greedy selection is used. If the fitness value 

of 𝑣௜   is better than that of its parent 𝑥௜, then update 𝑥௜ with 𝑣௜; otherwise keep 𝑥௜ 

unchanged. After all, working bees complete the search process. They share information 

about their food resources with onlooker bees through wagon dances. The onlooker 

evaluates the nectar information obtained from all working bees and selects a food 
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source with probability related to the amount of nectar. This choice is probably a roulette 

wheel selection mechanism, which is described as the following equation: 

𝑃௜ =
𝑓𝑖𝑡௜

∑ 𝑓𝑖𝑡௝௝

 (4) 

where 𝑓𝑖𝑡௜  is the fitness value of the 𝑖௧௛ solution in the swarm. As seen, the better the 

solution 𝑖, the higher the probability of the 𝑖௧௛ food source selected. If a position cannot 

be improved over a predefined number (called limit) of cycles, then the food source is 

abandoned. Assume that the abandoned source is 𝑥௜, and then the scout bee discovers 

a new food source to be replaced with 𝑖௧௛ as equation below : 

𝑥௜,௞ = 𝑙𝑏௞ + ∅௜,௞ × (𝑢𝑏௞ − 𝑙𝑏௞) (5) 

where ∅௜,௞ = 𝑟𝑎𝑛𝑑(0,1) is a random number within [0,1] based on a normal distribution, 

and 𝑙𝑏௞ , 𝑢𝑏௞  are lower and upper boundaries of the 𝑘௧௛ dimension, respectively. 

3.4 Introducing Dynamic Systems Identification Software 

Package 

Based on the concepts introduced in previous chapter, a comprehensive software 

package is implemented to identify and model dynamic systems using intelligent 

optimization algorithms using Matlab programming and Simulink software. This package 

is applicable to any dynamic model graphically designed in Simulink, and therefore 

offers a unique approach to system modeling and system identification and tools. It 

should be noted that all parts of this software have been implemented by the executives 

of this research project. It can be considered as a complementary tool to the Matlab 

software, which can meet the ever-increasing needs which are expanding in various 

research fields. In the following we will try to review the structure of this software 

package and implicitly teach how to use it. 

In models with physical descriptions, the actual parameters are used and all the 

parameters have a meaningful dimension. For example, the value of resistance, the 

hardness coefficient of a spring, the heat capacity of a material and so on are physical 

parameters. Experts have unique concepts for these dimensions. In this type of 

modeling, the main problem is to determine the appropriate and correct parameter 

values. In this case, the system identification is reduced to parameter identification 

since the structure of the model is sure enough clear, and the main problem is to find 

the unknown parameters. But the presence of an expert who is proficient in the details 

of the system and can provide a physical description of the phenomenon is a 

prerequisite for this type of identification and modeling. 

In contrast, there are models which parameters do not have a clear physical meaning. 

Rather, the parameters and unknowns in this type of model are a combination or 
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function of the physical parameters. For example, the damping coefficient in a second-

order dynamic system (mechanical or electrical) is a function of resistance, capacity 

and induction coefficient (for electrical system) or mass, spring stiffness and dumping 

(for mechanical system). Therefore, the parameters themselves have no independent 

meaning and have only a descriptive effect on the system. 

In some cases, there is no model at all and the type and order of the model must be 

determined, in such case, for non-linear systems, there is basically no precise and 

universal approach. On the other hand, for linear systems, the type and order of model 

can be determined by the methods described earlier (Figure 1). However, one of the 

advantages of intelligent optimization and developed software package is that this tool 

can also be used to determine the type of a model. As an example of using this package, 

it can be mentioned in the design of linear and nonlinear controllers. This package also 

allows us to optimizes the controller's coefficients. For instance, it can be used to find 

the best PID controller coefficients for nonlinear systems. 

Alternatively, this tool can be used to optimize the performance of a control approach 

(eg sliding mode control or SMC) and adjust its parameters and optimize its 

performance by means of the algorithms embedded in the package. As a result, the 

parameters and even the controller structure that performs best and most efficiently 

will be provided by the software. 

The impressive flexibility of this package makes it a simple (practical) and versatile tool. 

Certainly, examining the models and issues that have been resolved in this thesis 

confirms the applicability and high use of this software package. 

This package has several files; each is described below: 

 

Genetic algorithm implementation files 

ga.m It is a script that contains the implementation of the structure of 

the continuous genetic algorithm. 

ArithmeticCrossover.m It is a function in which the operator of the computational junction 

for continuous problems is implemented. 

Mutate.m It is a function in which the mutate operator is implemented for 

continuous problems. 

RouletteWheelSelction.m It is a function that has been implemented to sample a discrete 

distribution. This process is known as Roulette Wheel Selection in 

computational texts and genetic algorithms books and is used to 

select parents in each generation. 

PSO implementation files 

pso.m A script containing the definition and implementation of the 

particle swarm optimization algorithm, or PSO. 
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ABC implementation files 

abc.m A script containing the definition and implementation of the 

artificial bee colony algorithm, or ABC. 

 

PSO-GA implementation files 

psoga.m A script containing the definition and implementation of the hybrid 

of PSO and genetic algorithm. 

 

PSO-ABC implementation files 

psoabc.m A script containing the definition and implementation of the hybrid 

of PSO and artificial bee colony algorithm. 

 

 

Simulation files and connection to Simulink 

DefineProblems.m Practical script in which all the information of the problem is 

defined. The only place where the user actually needs to make 

changes is this file. 

GetParams.m It includes a function definition that receives parameter values 

from the optimization algorithm and prepares them for use in the 

Simulink model. 

LoadNominalData.m The measured and experimental data is called by this file and 

prepared for use in the optimization and modeling process. 

MyCost.m containing cost function. In this file, optimization criteria are 

defined mathematically. In this way, minimizing these criteria 

means improving the proposed model. 

SimulateModel.m This file implements the core of the optimization section. The 

parameters’ value obtained by the optimization algorithm are 

transferred to the Simulink file. The simulation is then performed 

and the result is returned. 

 

Shared files 

GetClockString.m This file is to create a numeric string using the computer's clock 

and date. This is done so that, when the modeling program is run 

several times, the results are stored in separate files and do not  

loss of the previous modeling results. 

PlotResults.m Plots the obtained best output from the modeling. 

3.5 Solving a simple example 

One of the most widely used models in scientific studies are populated models that have 

many applications in the fields of biology, medicine, medical engineering, health, 

sociology and economics. For example, assume that we have a system which increasing 
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the population of one quantity, 𝑥, leads to decreasing another, 𝑦 and we have a 

nonlinear differential equation as: 

�̇� = 𝑎𝑥 − 𝑏𝑥𝑦 (6) 

�̇� = −𝑐𝑥 + 𝑑𝑥𝑦 (7) 

Where all the parameters 𝑎, 𝑏, 𝑐, 𝑑 are assumed positive, and of course the equations 

are implemented in such a way that the values of the states are always positive. 

The positive and negative effects of the population of 𝑥 and 𝑦 on each other are fully 

reflected in the above model. The measurements have also been made and we want to 

find the best values of the 4 parameters of the model, so that it has the best and most 

compatibility with the measured data. 

The dynamic model of the system is implemented in the form of a graphical model in 

SIMULINK. In this model, unknown parameters are entered with the corresponding 

variable name. In addition, outputs are delivered to Matlab in the form of arrays with 

the general name of simout. The target variables and the tracked outputs in the dynamic 

system must always be stored in the form of the simout and delivered as an array to 

Matlab (Workspace). Figure 7 shows the graphic design of the model: 

 

Figure 7. Graphic implementation of the model in SIMULINK  

The goal is to minimize the objective function (Eq.(9)). For general approach 

programming, almost two algorithms use the same functions. 

In order to define this problem in software package, first DefineProblem.m file is 

changed. The code for this problem can be found in appendix 0. 

In this program, first the model name (which is the Simulink file name) is defined. Then, 

different parameters are defined. In the parameter definition, the range of changes are 

determined. Based on parameters definition, the program calls the optimization 

algorithm to estimate the parameters.  

By applying the changes in the cost function, the synchronization between the 

optimization problem and the optimal parameters determination can be obtained. This 
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code is shown below. In this code, the sum of the mean squares error between the 

model output and the experimental data (here nominal data) is calculated and returned 

as an output of the cost function. the code can be found in appendix 0.  

 

Figure 8. Convergence plot of GA(left) and PSO(right) algorithm 

 

Figure 9. Comparison of actual and model proposed by Genetic Algorithm 

Table 7. Simulation results, nonlinear dynamic model 

Parameter PSO GA Nominal or desired 

value 

a 1.1908 1.1876 1.2 

b 0.5943 0.5915 0.6 

c 0.8049 0.8090 0.8 

d 0.3028 0.3029 0.3 

J, cost function 0.0237 0.0242 0 
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Figure 8 and Figure 9 show the final results. The first plot relates to the process of 

decreasing the cost function, known as the evolution or convergence graph. The second 

is the plot of matching and comparing the modeling results with the nominal model 

data. Table 7 shows the unknown parameters using two algorithm search. The PSO 

algorithm has minimized the cost function more compare to GA. In the next chapter, 

we will see that PSOABC algorithm even is better than PSO for HVAC filter. Compare to 

nominal value, the results are satisfied. For example, for estimating unknown parameter 

𝑎, the error is about 0.76%. For 𝑏, 𝑐, 𝑑 the deviation is about 0.95%, 0.61% and 0.93% 

respectively.  
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4 PARAMETER ESTIMATION AND CLOGGING 

PREDICTION  

This chapter and obtained results is based for conference or journal article. This chapter 

presents the literature review of the method used to model, estimate unknown 

parameter and prediction of components in the HVAC systems. Almost all HVAC 

systems, utilize the filter to provide clean and fresh air to the zones. Having an effective 

model could be important tools for filter designers, building designers and building 

energy managers as well as those who are attempting to optimize building energy 

performance through the use of dynamic model-based control systems. 

In the design process in research laboratories as well as in industries and also for control 

purposes, one of the problems encountered after mechanical modeling is the 

measurement of physical parameters and coefficients. This can sometimes be very time 

consuming and costly. The purpose of this work is to estimate parameters based on 

physical based dynamic model by intelligent optimization methods in applying filter 

performance models and the identification of model parameter values required to make 

performance models useful and accurate. A dynamic-based model has been developed 

which, when combined with standard test data provided by system manufacturers or 

measured data provided by BIMs, allows the modeler to identify the parameters that 

govern the behavior of the system particularly pressure drop.The estimated parameters 

were obtained using real measurements. Different HVAC system data from building sites 

of Tallinn and Helsinki is used which the results have shown the ABC and PSO-ABC have 

good performance for estimating the unknown parameters of filters in HVAC systems. 

Both polynomial and exponential patterns can be used for prediction of filters clogging 

in some finite range.  

The parameter estimation divided into two parts, estimating laminar flow transition in 

the filter model from sequential (on/off) air handling unit and also prediction of clogging 

the filter from process (continuous) air handling unit.  

4.1 System description 

HVAC systems have been used around the world as an important part of energy 

consumption. Therefore, studies are needed to predict the energy consumption of HVAC 

components. For this goal, demonstrating these components using the equivalent model 

and estimating its parameter is an important area for study. Usually manufactures of 

HVAC components modules provide some information to obtain model parameters using 

standard test conditions.  
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In this research a method for parameter estimation of equivalent filter model is 

proposed using real measurements. Data has been used from the Tallinn site (unit 333, 

467, 469, 471,474,479) and Helsinki site (units 1740, 1741, 1742, 1743, 1744, 1745). 

The application of intelligent algorithms for parameter estimation and clogging 

prediction of a system based on real measurements is designed. The filter part of HVAC 

system was selected but the approach to solve the problem is general which can be 

represented in a form of nonlinear dynamic graphical model in SIMULINK and unknown 

parameters are entered with the corresponding variable name. The filter was chosen 

due to find parameters in order to be able predict future clogging values and get to 

know when we need to change the filter in order to save finances. Furthermore, filter 

behavior makes it possible to use mentioned techniques. 

Methods available in Matlab Parameter Estimator Toolbox are: Gradient descent, 

Nonlinear least squares, Pattern search, Simplex search. Pattern search including 

Positive basic Np1-2N, Genetic algorithm, Latin hypercube and Nelder-Mead. 

Thus other intelligent pattern search base methods like ABC, ant colony or hybridization 

of any type of algorithm are not available. Other Additional drawback of the parameter 

estimation toolbox in Matlab is about cost functions which is only Sum Squared Error 

and Sum-Absolute Error. Proposed application provides possibility to use this work it is 

possible to use any type of search algorithm and any metrics to evaluate the accuracy 

of estimation. 

4.2 Optimization method for parameter estimation of nonlinear 

systems 

Consider a nonlinear implicit system modelled by:  

𝑦 = 𝑓(𝑥; 𝑦; 𝑢; 𝑝) (8) 

where that 𝑥, 𝑦, 𝑢, 𝑝 are states, outputs, inputs and unknown parameters of the model, 

respectively. In addition, 𝑓 is a nonlinear function. 

The parameter estimation process is formulated as a nonlinear optimization problem. 

For this purpose an objective function (fitness function) which measures the proximity 

of the actual system output (𝑦௥) obtained from sampled measures in relation to the 

output (𝑦) of the solution of implicit mathematical model (Eq.(8)) for value of the 

parameter vector 𝑝௜: 

min (𝐽(𝑝)) = ඩ൭
1

𝑛
෍(𝑥௜ − 𝑥ො௜)ଶ

௡

௜ୀଵ

൱ + ൭
1

𝑛
෍(𝑦௜ − 𝑦ො௜)

ଶ

௡

௜ୀଵ

൱ 

𝑠. 𝑡.         𝑝௜௠௜௡ < 𝑝௜ < 𝑝௜௠௔௫ 

(9) 
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Where 𝑛 is the number of samples measured. The search interval of the parameters is 

defined by 𝑝௜௠௜௡ and 𝑝௜௠௔௫. 

The GA, PSO, ABC, PSOGA and PSOABC optimization algorithms were used to estimate 

the parameters. Obtained values and real measurements are compared and the cost 

function which is difference between those is minimized by means of parameter 

changing. 

4.3 Modeling and parameter estimation of the return filter in 

HVAC system 

The filters in HVAC systems are components that make resistance through flow and 

drop the pressure in an air stream network branch. There are two types of common 

filter called pleated and bag filter. 

The consistency of the obtained unknown parameter depends on the geometry, clogging 

and properties of the filter. However, sometimes it is difficult to calculate these 

parameters with some additional software like finite element software. In addition, 

preparation of facilities to measure the parameters undergoes the high cost. Here, we 

have approached two methods, first using operating points in order to estimate the 

coefficient of laminar flow transition. Second, using time variable coefficient of clogging 

in the filter model which is exactly like practical filters in the sites. In first method, the 

unknown parameter is determined from a nominal operating condition. In other words, 

it is useful for representing complex components, where it is difficult to determine the 

theoretical pressure drop of a clogged filter and its geometry. Thus if the pressure drop 

versus nominal flow rate is mentioned in the datasheet of manufacture, or measured 

data is available, it is possible to obtain the pressure drop as a function of its mass flow 

rate during its working time. This filter identification method is useful since the result 

can be applied to other components like heat coefficients of heat exchanger. The mass 

flow rate through the inlet must be exactly the same as the mass flow rate through the 

outlet. Energy can enter and exit the filter through the fluid ports. It is assumed that 

no heat exchange occurs between the wall and the environment. In addition, no work 

is done on or by fluid. The energy flow through inlet must be exactly equal to the energy 

flow through outlet. It is assumed that this parameter is constant during the time.  

External forces on the fluid include those due to pressure and those caused by viscous 

friction in component walls. Body forces like gravity are ignored. The expression of 

friction forces in terms of a loss factor 𝜉 yields the semi-empirical expression. This type 

of formulation is to allow for a change in sign as the direction of the stream: [25] 

∆𝑝 = 𝜉 
�̇� |�̇�|

2𝜌𝑆ଶ
 

(10) 
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where: 

∆𝑝 is the pressure drop through input and output of filter, 𝜉 is the loss factor. Fluid 

density describes by 𝜌 and the flow area by 𝑆. 

It is assumed that the resistance is adiabatic. It does not exchange heat with the 

environment. 

The drop of pressure is proportional to the square of the mixture mass flow rate (dry 

air, water vapor and other gas like CO2) and inversely proportional to the mixture 

density (or covertly inlet temperature and pressure). The constant of proportionality 

(ratio between two directly proportional quantities) is determined from a nominal 

operating condition and it is used when empirical data on the pressure losses and flow 

rates through a component is available, but detailed geometry information is 

unavailable. 

For modeling, the loss factor 𝜉 is not required as a parameter. Instead, it is automatically 

computed from the nominal condition derived in the current thesis as: 

𝜉

2𝑆ଶ
=

𝜌∗∆𝑝∗

�̇�∗
ଶ

 (11) 

where the asterisk (*) denotes a value at the nominal operating condition. It can be 

selected from desired and appropriate point of empirical data. 

𝜌 =
𝑝௜௡௟௘௧

𝑅𝑇௜௡௟௘௧

 (12) 

∆𝑝 =
𝜌∗∆𝑝∗

�̇�∗
ଶ

( �̇�ට�̇�ଶ + �̇�௟௔௠
ଶ )

𝑅 𝑇௜௡௟௘௧

𝑝௜௡௟௘௧

 
(13) 

�̇�௟௔௠ mixture mass flow rate threshold for laminar flow and is equal to  

�̇�௟௔௠ = 𝑓௟௔௠ × �̇�∗, (14) 

where: 

𝑓௟௔௠ - fraction of nominal mixture mass flow rate for laminar flow transition; 

�̇�∗ - nominal flow rate obtained from filter data sheet or empirical data; 

𝑝௜௡௟௘௧  - inlet pressure 𝑃𝑎; 

𝑇௜௡௟௘௧  - inlet temperature 𝐾; 

𝜌  -inlet temperature 𝑘𝑔/𝑚ଷ; 

𝑅௔ - dry air specific gas constant, 287.048;  𝐽/(𝑘𝑔𝐾); 

𝑅௪ - water specific gas constant, 461.52; 𝐽/(𝑘𝑔𝐾); 

𝑅௚ - trace gas specific gas constant, 188.92;  𝐽/(𝑘𝑔𝐾); 

The 𝑅 = (𝑅௔ + 𝑅௪ + 𝑅௚) 3⁄  is mixture specific gas constant. 

The measurements for the estimation (𝑢௥, 𝑦௥) were obtained from a building information 

model (BIM) and building automation system (BAS) and applied for building in Tallinn. 

This system is presented in Figure 10. There is two filters, one in supply air channel and 

another in return. The measured pressure in the filters are used for periodic overhaul 

and replacement of filters in the case of over pressure drop.  
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Figure 10. Diagram of filter in AHU of HVAC system 

Measurement intervals of pressure drop were registered every 15 min and data is raw 

without any mean value calculation. The measurements are composed of set of one 

year. Before using the method, the parameter search region (upper and lower limits of 

parameters) need to be defined. To define upper and lower limits, a region can be 

created using as initial value the parameter obtained from datasheet at standard test 

condition. However, in the case of unavailable datasheet, the expert can set the lower 

and upper limits in the range of common value in the similar component. Selecting the 

infinity range will increase the estimation time and leads to other local optima.  

The data from unit 333 which operates as on/off controller or thermostat is used for 

this section. The nominal flow rate 2.71 m3/s, and nominal pressure drop 43.3 Pa is 

selected from mean of empirical data. Laminar fraction that is going to be estimated is 

initially 820e-3 and assumed the density is constant and sample time is equal to 15 

min. 

Based on the concepts introduced, a comprehensive software package (including 

Simulink, mfiles and algorithms codes) is implemented to identify and model dynamic 

systems based on intelligent optimization algorithms using Matlab and Simulink 

software. This package is applicable to any dynamic model graphically designed in 

Simulink, and therefore offers a unique approach for system identification and 

modeling. Each searching algorithm starts Simulink (linear or nonlinear) model 

independently. Alternatively, this tool can be used to optimize the performance of a 

control approach (eg sliding mode control or SMC) to adjust its parameters and optimize 

its performance by means of the algorithms embedded in the package. As a result, the 

parameters and even the controller structure that performs best and most efficiently 

will be provided by the software. 
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Figure 11. Supply filter pressure drop over time, unit 333 

Figure 11 and Figure 12 show the result of modeling and simultaneously using PSOABC 

algorithm for finding the unknown laminar flow parameter to fit the output with 

empirical data of unit 333. The offset in Figure 12 is caused by misreadings in DAQ 

module and is not possible in real situation.  

 

Figure 12. Supply filter pressure drop tracking 

The tracking is acceptable, and thus, obtained unknown parameter is estimated. The 

summary of comparisons among algorithm are listed in Table 8.  

The method is also applied to 1745-unit data due to its continuous behavior. The 

tracking is acceptable and means that obtained unknown parameter is reliable. The set 

of return filters is selected since the clogging rate of return filter is higher than supply 

filter due to sources like cooking, odour material and air molecule with more surface 

groups. 
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Figure 13. Return filter pressure drop, unit 1745 

 

Figure 14. Cost function history, 𝝃 estimation  

 

Table 8. Algorithm Comparison results 

Algorithm GA PSO ABC PSO-GA PSO-ABC 

Pop size 80 80 50 50 50 

𝑓௟௔௠ 800e-3 761e-3 400e-3 687e-3 420e-3 

R 

RMSE 

0.95 

3.18 

0.94 

5.37 

0.95 

2.89 

0.95 

3.22 

0.99 

2.77 

 
In Table 8, the result of algorithms with different sizes of the population is summarized. 

In order to find the best solution, the root mean square error (RMSE) is calculated which 

indicates the minimum error or minimum pressure difference between the simulated 
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and measured data. Pearson R correlation coefficient between simulated and measured 

data is also calculated for observing best tracking beside minimizing error. Comparing 

the results, the PSOABC method with the population size of 50 is the best solution. The 

PSOABC algorithm has been used for next part of this research which is estimating the 

dynamic of filter clogging.  

 

4.4 Filter clogging estimation and prediction in HVAC systems 
In previous section, it is assumed that the clogged filter has static behavior during time 

and we only selected the nominal or working point described before. However, the filter 

clogging coefficient is changing during the time. This change is much more noticeable 

in return air duct.  

It is possible to present the clogging by the dynamic function which is related to 

pressure drop, input pressure and temperature to filter and flow rate.  

𝑓(𝑡)௖௟௢௚ =
∆𝑝

�̇�ඥ�̇�ଶ + �̇�௟௔௠
ଶ 𝑝௜௡௟௘௧

𝑅 𝑇௜௡௟௘௧

 (15) 

In this derived equation in the current thesis, the �̇� is flow rate, 𝑚ଷ/𝑠. Since �̇� is located 

in denominator, the output in the case of no flow rate can be diverge. We know that 

𝑓(𝑡)௖௟௢௚  is changing during the time due to molecular aggregation and can result in 

deterioration of product quality and longer processing times and thus, loss of energy. 

For model of this occurrence, and to avoid denominator divergence, the polynomial and 

exponential functions have been presented as the model the clogging, then the 

coefficients of these function obtained by mentioned intelligent method. 

𝑓(𝑡)ୡ୪୭୥ଵ = 𝐾ଵ 𝑡ଶ + 𝐾ଶ 𝑡 + 𝐾ଷ (16) 

𝑓(𝑡)ୡ୪୭୥ଶ = 𝐿ଵ 𝑒௅మ௧ + 𝐿ଷ (17) 

It is obvious that the inputs of model including flow rate and temperature which change 

the density of moist air are time-varying imported from experimental data.  
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Figure 15. Polynomial model result 

 
The software package runs the model based on PSOABC algorithm and minimizes the 

cost function to estimate the clogging coefficient which is error of simulated and 

measured data. Figure 15 shows the result of estimation. The estimated clogged 

coefficients are shown in Table 9. 

 

Figure 16. Pressure drop (measured and simulated), inputs (Temperature and flow 
rate) 
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Figure 17. Tracking of final result 

Apart from parameter estimation approach, it is necessary to check the graphs to be 

sure that simulated data tracks the measured data properly (Figure 17). The reason is 

that; the cost function is calculated by the RMSE equation. It sometimes has been seen 

the RMSE is low even with unsuitable tracking. In other words, it is possible to have 

better RMSE with weak tracking or vice versa.  

 

Figure 18. Cost function history, clogging estimation  

4.5 Other units 

To ensure the verification of result and to predict the clogging behavior, additional data 

has been used. Those include AHU data from Tallinn site 467, 469, 471,474,479 starting 

from January 2019 as well as data from Helsinki units 1740, 1741, 1742, 1743, 1744 

starting from July 2019.  
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Above mentioned procedure was applied to all units. The result is summarized in Table 

9. For some units, the exponential model has better correlation, for instance, R=0.97 

in unit 1740, but in general the polynomial model has better performance. Apart from 

small RMSE or high R, the tracking of signal should also take into account. Polynomial 

pattern for clogging estimation in unit 1744 is not satisfactory. The reason is due to 

high SNR which affected the algorithm to recognize the data as polynomial shape. The 

same happened in 479 on Tallinn site. The graphs and results are added in the appendix 

0.  

Table 9. Clogging estimation for different AHUs 

Unit Polynomial Exponential 

1740 K1 = 1.4982e-13 
K2 = 1.1279e-20 
K3 = 7.6221 
R=0.95 
RMSE=4.88 

L1 = 0.16315 
L2 = 5.4651e-07 
L3 = 8.1607 
R = 0.97 
RMSE = 2.63 

1741 K1 = 1.6804e-13 
K2 = 4.9267e-18 
K3 = 11.721 
R = 0.95 
RMSE = 3.18 

L1 = 0.19125 
L2 = 7.1593e-07 
L3 = 11.541 
R = 0.95 
RMSE = 3.22 

1742 K1 = 1.0771e-13 
K2 = 8.0959e-21 
K3 = 6.9975 
R = 0.94 
RMSE =4.96 

L1 = 0.20098 
L2 = 4.6134e-07 
L3 = 7.0652 
R = 0.95 
RMSE = 4.44 

1743 K1 = 2.5828e-13 
K2 = 1.9564e-20 
K3 = 2.335 
R = 0.97 
RMSE = 2.57 

L1 = 0.58915 
L2 = 5.3708e-07 
L3 = 1.644 
R = 0.97 
RMSE =2.56 

1744 K1 = 3.3533e-14 
K2 = 1.9012e-20 
K3 = 0.48454 
R = 0.82 
RMSE = 4.00 

L1 = 0.036141 
L2 = 5.5991e-07 
L3 = 0.63698 
R = 0.78 
RMSE = 3.39 

1745 K1 = 3.37e-13 
K2 = 7.65e-07 
K3 = 2.54 
R = 0.99 
RMSE =2.86 

L1 = 0.17109 
L2 = 4.2036e-07 
L3 = 6.1421 
R = 0.98 
RMSE = 2.91 

467  K1 = 8.8444e-14 
K2 = 8.9899e-07 
K3 = 15.959 
R = 0.86 
RMSE = 19.67 

L1 = 0.18306 
L2 = 7.1988e-07 
L3 = 17.131 
R = 0.81 
RMSE = 21.39 

469 K1 = 4.9701e-13 
K2 = 3.0123e-07 
K3 = 13.914 
R = 0.91 
RMSE = 23.09 

L1 = 1.5794 
L2 = 4.6837e-07 
L3 = 12.93 
R = 0.91 
RMSE = 23.73 

471 K1 = 1.6705e-15 
K2 = 3.3374e-10 
K3 = 1.3081 
R = 0.95 
RMSE = 6.60 

L1 = 1.7813e-05 
L2 = 6.7614e-07 
L3 = 1.4364 
R = 0.94 
RMSE = 5.83 

474 K1 = 1.1353e-14 
K2 = 1.2732e-07 
K3 = 0.60997 
R = 0.92 
RMSE = 14.20 

L1 = 0.058933 
L2 = 3.1593e-07 
L3 = 1.1639 
R = 0.89 
RMSE = 16.05 

479 K1 = 1.8719e-21 
K2 = 6.3969e-15 
K3 = 8.6174 
R = 0.94 
RMSE = 44.01 

L1 = 0.1682 
L2 = 2.1296e-07 
L3 = 1.2532 
R = 0.78  
RMSE = 21.58 

 
The next step is prediction of the filter clogging. As the AHU airflow is reduced in clogged 

filter, less and less air from the duct will pass. In supply air duct, the cooling water in 

coil is still flowing through the coils but with no air-flow, there is no heat absorbed into 
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the coils and refrigerant. If the temperature of cooling coil falls below the freezing point, 

moisture in the air around the coil begins freezing. If the air filter is changed, problem 

remains until the evaporator coil is defrosted. Technicians change filters according to 

the general rule once or twice per year. In many cases time of change does not much 

depend on the rate of clogging of the filter. Thus, the overhaul time prediction is 

important for building sites in order to optimize the energy consumption in HVAC 

systems.  

Figure 19 shows the prediction for Helsinki units. The constant inputs are considered to 

simplicity. The pressure drop due to clogging is predicted for next 60 days. Result shows 

that the polynomial pattern for estimating the clogged filter is more realistic. In 

exponential pattern, the pressure drop increases dramatically which is not very close to 

real site data.  

 

 

Figure 19. Clogging prediction  

4.6 Conclusion 

Based on results provided above, the performance of polynomial model for clogged filter 

leads to acceptable correlation between model and test. However, for more accurate 

exponential clogged filter estimation, the larger amount of data (without any disruption) 
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in one year is needed. The reason is that maybe in clogged filter, the rate of occlusion 

is higher than clean filter. In the other words, this occlusion may decrease the 

ventilation of air through filter exponentially especially in the longer time period. It is 

worth mentioning that the effect of a clogging on pressure drop can be presented as a 

second order polynomial, as it can be seen from the results. 

Presenting a clogged filter with an exponential function has the advantage that we will 

never encounter a declining function during estimation and evaluation, which is 

consistent with the concept of clogging. Although estimation with a polynomial function 

provides better correlation value, one should take into account that the second-order 

function is always ascending and has no minimum point. 

The obtained results show that clogging of the filter can be estimate with polynomial 

and exponential function. However, the power function, 𝑓(𝑡)ୡ୪୭୥ଷ = 𝑃ଵ 𝑡௉మ + 𝑃ଷ can also be 

examined and compared.  
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5 PHYSICS-BASED DYNAMIC MODELING OF HVAC 

SYSTEM 

The main purpose of this chapter is to model a dynamic of the HVAC system. Modeling 

of HVAC systems is essential for the study, evaluation and optimization of energy 

consumption and indoor air quality. Effective and accessible models of system 

performance can be an important tool for HVAC component designers and building 

energy managers, as well as those who use model-based dynamic control systems to 

optimize building energy performance. 

HVAC modeling techniques are divided into data-driven or black box, physics-based, 

and gray-box models. Models can also be classified as linear or nonlinear, static or 

dynamic, explicit or implicit, discrete or continuous, definite or possible and deductible, 

inductive or floating. Gray box models are combined models including block-box and 

physic-based model. Both physics-based and data-driven methods can lead to linear or 

nonlinear, static or dynamic models, and explicit or implicit. Physics-based techniques 

usually lead to continuous and definite models. However, data-driven techniques 

generally lead to discrete and definite or random models. 

During the development of physics-based HVAC system models, static models are 

commonly used for slow-moving like temperature and humidity process. Dynamic ones 

are used for fast movement like the temperature of the mixed air and the concentration 

of carbon dioxide (CO2) in the mixing box, and the flow rate and water flow through the 

damper and valve, respectively. Other example of dynamic models are fans and pumps. 

This is because fast-moving processes are many orders of magnitude faster than slow-

moving processes in HVAC systems. Both static and dynamic models can also be 

developed for a similar subsystem. Sometimes, dynamic physics-based models are 

presented by the thermal network method. In this method, heat transfer in HVAC 

components is often modeled by an electrical network in which the resistors and 

capacitors show the thermal resistance and the capacitor, respectively, while the current 

and voltage represent the heat and temperature transfer, respectively [26], [27]. 

5.1 HVAC Modeling Techniques 

Major techniques are used for modeling HVAC systems such as:   

 Frequency Domain Models [28], 

 Data mining algorithm [29], 

 Fuzzy Logic Models [30], 

 Statistical models [31], 

 State-Space [32], 
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 Geometric (Thin plate spline approximation) [33], 

 Case-Based Reasoning [34], 

 Stochastic models [35], 

 Instantaneous models [36]. 

5.2 White box model (physics-based) 

Physics-based models are also known as the main analytical models, forward models or 

white box models. These models are based on accurate knowledge of the process and 

its basic physical principles. They require considerable effort to develop and calibrate. 

Although physics-based models usually act as time domain differential equations, they 

can be easily converted to frequency domain TFs (Transfer Function) or time-domain 

SS (Steady State) representations.  

In this project, the Simscape toolbox is used at the beginning. However, using the 

mathematical equations and modeling in Simulink has its own advantage like 

simplification, converting to SS model and so on. Thus, the Simulink is applied for 

modeling and simulation. The first version of HVAC modeling which is presented by 

Simscape can be seen in the following: 

The temperature of a single zone using the mass parameter model in [37] by applying 

heat equilibrium in the zone air has presented equilibrium in the zone air as follows:   

𝜌௔𝑉௭𝐶௭

𝑑𝑇௭

𝑑𝑡
= 𝑚ௌ஺𝐶௣௔(𝑇ௌ஺ − 𝑇௭) + 𝑈௪௔𝐴௪௔(𝑇௪௔ − 𝑇௭) + 𝑈௪ௗ𝐴௪ௗ(𝑇௪ௗ − 𝑇௭) + 𝑄௟ + 𝑄௜௡௧ 

(18) 

 

Figure 20. Zone model (Simscape model) 
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Figure 21. Heat transfer in Zone model (Simscape model) 

The dynamic temperature model of the heating and cooling coil can be derived from the 

energy balance in the air and water heat exchanger. The mass balance on the side of 

the air gives the ratio of the moisture content of the outlet air. Outlet water and air 

temperatures are as follows [26]: 

𝐶௪௠

𝑑𝑇௪௢

𝑑𝑡
= 𝑚௪𝐶௣௪(𝑇௪௜ − 𝑇௪௢) − (𝑈𝐴)௖௖(𝑇௪௢ − 𝑇௔௢) (19) 

𝐶௣௠

𝑑𝑇௪௢

𝑑𝑡
= (𝑈𝐴)௖௖(𝑇௪௢ − 𝑇௔௢) − 𝑚௔𝐶௣௔(𝑇௔௢ − 𝑇௔௜) (20) 

For simplification, the steady state model named effectiveness-NTU method can be 

applied which is usually use for cooling tower. 

𝑇௛௢௧,௢௨௧ = 𝑇௛௢௧,௜௡ − 
�̇�

൫�̇�௛௢௧ 𝐶௣,௛௢௧൯
 

(21) 

𝑇௖௢௟ௗ,௢௨௧ = 𝑇௖௢௟ௗ,௜௡ + 
�̇�

൫�̇�௖௢௟ௗ  𝐶௣,௖௢௟ௗ൯
 

(22) 

Where 

�̇� = 𝜀ே்௎ �̇� 𝐶௠௜௡(𝑇௛௢௧,௜௡ − 𝑇௖௢௟ௗ,௜௡) (23) 

The supply duct model represents the heat transfer between the air inside the duct and 

the ambient [38] given as follows: 

𝑑𝑇௦ௗ௜

𝑑𝑡
=

4𝑈௦ௗ(𝑇௔௠௕ − 𝑇௦ௗ௜)

𝐶௦ௗ𝐷௦ௗ𝜌௔

 (24) 
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The mixed air temperature is the linear combination of return air and fresh outside air 

temperature given as [39] 

𝑇௠ =
𝑚଴𝑇଴ + (𝑚ௌ஺ − 𝑚଴)𝑇௭

𝑚ௌ஺

 (25) 

By substituting all temperature variables with the variables of CO2 concentration or the 

relative humidity ratio in the above equation, a similar linear relationship can be found 

to the CO2 concentration of the mixed air or humidity ratio. 

In the damper model presented in [30], the mass flow rate of air through the damper 

depends on the damper flow coefficient, the pressure difference across the damper, and 

the location-dependent flow cross-sectional area of the damper. It is assume that 

control signal is between 𝑢(𝑡) = [0 1] 

𝑚௔ = 𝐶ௗ௣ට𝜌௔∆𝑃ௗ௣𝐴ௗ௣(∅) (26) 

Which 𝐴ௗ௣(∅)is changed based on 𝑢(𝑡) 

 

Figure 22. Damper model (Simscape model) 

The valve opening depends upon the control signal and the valve authority [40]. The 

power consumption of the fan or pump depends on the flow rate, pressure difference 

between inlet and outlet and efficiency of the fan or pump [41]. The temperature of the 

water in boiler is given with heat supplied and difference in supply temperature [42]. 

𝑑𝑇௕௢௜௟௘௥

𝑑𝑡
=

1

𝑚௪𝐶௣௪

ൣ𝑄௛௘௔௧ + 𝑚௪𝐶௣௪(𝑇௪௜ − 𝑇௪௢)൧ (27) 
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5.3 Simulation 

Whole system  

 

Figure 23. overview of whole system (Simulink and Simscape model) 

 

Figure 24. AHU model (Simulink and Simscape model) 

 

Heater 

 

Figure 25. Heater model (simulink model) 

Using equations (21)-(23) in function Heater, see Appendix 0, the results provided in 

Figure 26 were obtained. 
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Figure 26. Air temperature after heater  

 

Air fan control 

 

Figure 27. Air fan model in Simscape 

 

 

Figure 28. Air fan control model (Simulink model) 
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Figure 29. Air fan validation model in Simulink 

 

 

Figure 30. Air fan sub-model in Simulink  

 

 

Figure 31. Fan orifice pressure drop, open loop simulation, input: ASFAV, output: 
ASFPDE 
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Figure 32. Close loop simulation, input: Setpoint ASFPDESP, output: ASFPDE 

Heat Recovery Ventilator (HRV) 

 

Figure 33. Heat Recovery Ventilator simulink model (HRV) 

 

 

Figure 34. Simulation output, air zone supply air temperature 
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Figure 35. Simulation output, energy recovery ventilator temperature 

 

 

Figure 36. Simulation output, duct temperature after heater coil 
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Figure 37. Simulation output, supply air duct flow rate 

 

 

Figure 38. Simulation output, fan control using pressure drop of fan orifice 
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system works in such a way that the desired temperature is sent to the zones. As shown 

in Figure 35, the additional temperature or energy present in the return duct channel is 

applied to the supply duct, which reduces the energy consumption of the AHU system. 

Therefore, the return temperature, which is about 9௢𝐶, enters the heat exchanger and 

the output temperature of the exchanger reaches 20௢𝐶 degrees (Figure 36). It should 

be noted that this graph depends on the AHCVO signal. This is controlled by the 

AHCSWst command and applies the desired heater temperature to the AHU system. 

The air supply temperature delivered to the zones is completely dependent on the flow 

rate. Thus, the BAS calculates the appropriate signal considering the temperatures as 

well as flow rate. In other words, control commands are the result of calculating a set 

of processes and the controller considers other coupled components to generate 

appropriate command (Figure 37). Figure 38 shows that the flow rate is controlled by a 

separate cascade control system with the help of a pressure sensor. In this figure, ΔP 

and closed loop controller error are observed. Due to the lack of sufficient information 

from BAS supervisory control, the separate controller was designed and applied in 

modeling.  

The purpose of this modeling and simulation is to identify the system and examine 

methods in simulation to reduce energy consumption. It is also helpful to compare 

standard simulated model with measured data in different units for fault detection. 

It should be noted that this thesis is part of the project in Centre for Intelligent Systems 

and Nearly Zero Energy Buildings research group in TalTech and this section is in 

progress.  

5.4 Recommendations for future work 

The aim of this thesis was to  

 Development of simulation framework for HVAC system, 

 Development of new software package based on intelligent search algorithm, 

 Implementation of the method on Tallinn and Helsinki sites, 

 Prediction of clogging in filters, 

 Estimate the physical parameters in the physic-based dynamic models.  

Among studied methods GA, PSO, ABC and their hybridization were selected and applied 

and simulated output was compared to experimental output.  

Experiments showed by using developed package software, it is possible to find multi 

unknown parameters in MISO modeling. As a case study, multi inputs were dynamic of 

temperature and volumetric flow rate. Best method is PSOABC which has high 

correlation, less RMSE and best tracking. The filter clogging is predicted in the presence 
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of other dynamics like measured temperature and measured flow rate. Using long time 

duration data brings the accuracy of the prediction. 

Despite considerable work on unknown parameter estimation, possible areas that 

require further investigation still exist and are summarized as follows: 

 Performance comparison of different cost function metrics, 

 Study of other intelligent search algorithms such as SA, DE and GSO, 

 Develop the code as MIMO. 

Improving the HVAC model and validation with experimental data including: 

 Heat and cool coil analysis, identification and modeling, 

 Fouling in heat coil section, its effect in power consumption and prediction for 

periodic cleaning, 

 Behavior of damper and modeling the CO2 control, 

 Black-box and gray-box modeling of HVAC system and components, 

 Study on factors that affect the efficiency and power consume, 

 HVAC control systems. 
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Summary 

The residential HVAC systems can consume more than 60% of the total energy in a 

house which results in higher operating costs and environmental pollution. The HVAC is 

a complex system with variable loads caused by the changes in weather and occupancy. 

The energy consumption of the HVAC systems can be reduced by adapting to the ever 

changing loads and implementation of energy conservation strategies along with the 

appropriate maintenance or overhaul service. Almost all HVAC systems, utilize the filter 

to provide clean and fresh air to the zones. Having an effective and accessible models 

of the performance of these systems could be important tools for filter designers, 

building designers and building energy managers as well as those who are attempting 

to optimize building energy performance through the use of dynamic model-based 

control systems.  

In this thesis, the parameters based on physical based dynamic model by intelligent 

optimization methods is estimated. The filter clogging in HVAC system on Tallinn and 

Helsinki sites is estimated and predicted based on this research method. GA, PSO, ABC 

and hybridization optimization algorithms were used to estimate the parameters of a 

moist air flow. The estimated parameters were obtained using real measurements. 

Different HVAC system data from building sites of Tallinn and Helsinki is used which the 

results have shown the ABC and PSO-ABC have good performance for estimating the 

unknown parameters of filters in HVAC systems. Both polynomial and exponential 

patterns can be used for prediction of filters clogging in some finite range. For more 

precise and longer period predictions engineers need more data without any faults in 

the systems. 
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Kokkuvõte 

Elamute HVAC süsteemid võivad tarbida üle 60% maja koguenergiast, mille tulemuseks 

on suuremad tegevuskulud ja keskkonnareostus. HVAC on keeruline süsteem, mille 

muutuvad koormused mõjutavad seda ilmastiku ja täituvuse muutuste tõttu. HVAC-

süsteemide energiatarbimist saab vähendada pidevalt muutuvate koormuste 

kahanemisega ja energiasäästu strateegiate rakendamisega (s.h. hooldus- või 

kapitaalremonditeenustega). Peaaegu kõikides HVAC süsteemides kasutatakse filtreid, 

et tagada tsoonidele puhas ja värske õhk. Selliste süsteemide täpsemad ja efektiivsed 

mudelid on oluline vahend filtrite disaineritele, hoonete projekteerijatele ning ka neile, 

kes optimeerivad hoonete energiatõhusust dünaamiliste mudelipõhiste 

juhtimissüsteemide abil. 

Selles lõputöös vaadeldatakse erinevaid intelligentseid optimeerimis meetodeid ja 

leiakse füüsikaliste dünaamiliste mudelite parameetreid. Hinnatakse ja ennustatakse 

filtrite ummistumist HVAC süsteemis Tallinna ja Helsingi. GA, PSO, ABC ja 

hübriidoptimeerimise algoritme kasutati õhuvoolu parameetrite hindamiseks. 

Hinnangulised parameetrid saadi reaalsete mõõtmiste abil. Kasutatakse erinevate HVAC 

süsteemide andmeid Tallinna ja Helsingi, kus on nii ON-OFF kui ka pideva juhtimisega 

süsteemid. Tulemused on näidanud, et ABC ja PSO-ABC algoritmite saab kasutadaH 

HVAC süsteemide filtrite tundmatute parameetrite hindamisel. Nii polünomiaalsed kui 

ka eksponentsiaalsed mudeleid saab kasutada  filtrite ummistuse prognoseerimiseks. 

Selleks et garanteerida pikemat prognoositäpsust, on vaja rohkem andmeid kus ei esine 

süsteemi vigu. 
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Appendix  

Other units result 

Units 1740,1741,1742,1743,1744,1745 

Start 7/2019 

 

1740 

  

    K1 = 1.4982e-13,     K2 = 1.1279e-20,     K3 = 7.6221 

 

 

L1 = 0.16315 ,     L2 = 5.4651e-07,     L3 = 8.1607 

 

1741 

  

    K1 = 1.6804e-13,     K2 = 4.9267e-18,     K3 = 11.721 
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    L1 = 0.19125,     L2 = 7.1593e-07,     L3 = 11.541 

 

1742 

   

    K1 = 1.0771e-13,     K2 = 8.0959e-21,     K3 = 6.9975 

 

 

    L1 = 0.20098,     L2 = 4.6134e-07,     L3 = 7.0652 

 

1743 

 

    K1 = 2.5828e-13,     K2 = 1.9564e-20,     K3 = 2.335 
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    L1 = 0.58915,     L2 = 5.3708e-07,     L3 = 1.644 

 

1744 

   

    K1 = 3.3533e-14,     K2 = 1.9012e-20,     K3 = 0.48454 

 

    L1 = 0.036141,     L2 = 5.5991e-07,     L3 = 0.63698 
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Units 467, 469, 471,474,479 

Start January 2019 

467 

 

    K1 = 1.9185e-14,     K2 = 5.2584e-09,     K3 = 0.35383 
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  L1 = 0.18306,    L2 = 7.1988e-07,    L3 = 17.131 
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    K1 = 4.9701e-13,     K2 = 3.0123e-07,     K3 = 13.914 

 

 

    L1 = 1.5794,     L2 = 4.6837e-07,     L3 = 12.93 
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471 

 

  

    K1 = 1.6705e-15,     K2 = 3.3374e-10,     K3 = 1.3081 
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474 

 

  

    K1 = 1.1353e-14,     K2 = 1.2732e-07,     K3 = 0.60997 
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After three times attemp, from figure, it seems the tracking for exponentioal clogging 

model is not satisfied like polynominal. However, the R is near polynomial result. 

 

479 
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M-files 

DefineProblem.m 
%% Load Model Data 
  
modelname='mymodel1'; 
data=LoadNominalData(modelname); 
  
%% Define Parameters 
  
params.a.Range=[0.9 1.5]; 
params.a.Value=[]; 
params.a.IsVariable=true; 
  
params.b.Range=[0.3 0.9]; 
params.b.Value=[]; 
params.b.IsVariable=true; 
  
params.c.Range=[0.5 1.1]; 
params.c.Value=[]; 
params.c.IsVariable=true; 
  
params.d.Range=[0.1 0.5]; 
params.d.Value=[]; 
params.d.IsVariable=true; 
  
nVar=0; 
param_names=fieldnames(params)'; 
for p=param_names 
    param=p{1}; 
    params.(param).Min=min(params.(param).Range); 
    params.(param).Max=max(params.(param).Range); 
    params.(param).Fixed=~isempty(params.(param).Value); 
     
    if ~params.(param).Fixed 
        nVar=nVar+1; 
    end 
end 
  
data.params=params; 
  
%% Define Decision Variables 
  
VarSize=[1 nVar];   % Size of Decision Variables Matrix 
  
VarMin=0;         % Lower Bound of Variables 
VarMax=1;         % Upper Bound of Variables 
  
%% Define Objective Function 
  
CostFunction=@(sol) MyCost(sol,data);    % Cost Function 
 

Mycost.m 
function [z, info]=MyCost(sol,data) 
  
    params=GetParams(sol,data); 
     
    out=SimulateModel(data.modelname,params); 
  
    t=out(:,1); 
    x=out(:,2); 
    y=out(:,3); 
     
    z=sqrt(mean((x-data.x).^2))+sqrt(mean((y-data.y).^2)); 
     
    info.t=t; 
    info.x=x; 
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    info.y=y; 
    info.params=params; 
     
end 
 
Fan orifice mode which is used to control the flow rate of fan.  
function delP  = FanOrifice(mdot,param) 
  
delta_p_nominal=param(1);  % { 'Pa'   }Nominal pressure drop 
mdot_nominal=param(2); % = { 'kg/s'  }; % Nominal mass flow rate 
rho_nominal=param(3);  % = {0,     'kg/m^3'}; % Nominal density 
laminar_fraction=param(4);   %{1e-3,  '1'     }; % Fraction of nominal 
mass flow rate for laminar transition 
mdot_lam = laminar_fraction * mdot_nominal; % Mass flow rate threshold 
for laminar flow 
  
% Square of mass flow rate linearized near zero flow 
mdot_sqr = mdot * sqrt(mdot^2 + mdot_lam^2);    % eq  1.a 
% % Pressure-flow relation 
%     %delP=p_inlet - p_outlet 
%     delP = delta_p_nominal / mdot_nominal^2 * mdot_sqr;   % eq 1 
rho_outlet=0.955;  % kg/m^3 
rho_inlet=rho_outlet; 
% Pressure-flow relation 
if rho_nominal > 0 
    rho_avg = (rho_inlet + rho_outlet)/2;   %   inlet and outlet density 
.. compressibility of gas 
    delP = rho_nominal * delta_p_nominal / mdot_nominal^2 * mdot_sqr / 
rho_avg;   % eq 2 
else  % rho_nominal=0 
    %delP=p_inlet - p_outlet 
    delP = delta_p_nominal / mdot_nominal^2 * mdot_sqr;   % eq 1 
end 
 

Heat or energy recovery ventilator model. 
function [dTeao, dTfao ] = ERV(u,Teao,Tfao,param) 
  
Teai=u(1); 
mea_dot=u(2); 
Tfai=u(3); 
mfa_dot=u(4); 
Cam=param(1); 
Cpa=param(2); 
UAcc=param(3); 
c1=param(4); 
c2=param(5); 
  
dTeao=(1/Cam)*(mea_dot*Cpa*(Teai-Teao)-UAcc*(((Teai+Teao)/2)-
((Tfai+Tfao)/2)))+c1; 
dTfao=(1/Cam)*(UAcc*(((Teai+Teao)/2)-((Tfai+Tfao)/2))-mfa_dot*Cpa*(Tfao-
Tfai))+c2; 
 

Heatermodel. 
function [T_cold_out, T_hot_out ] = Heater(u,param,eps_NTU) 
  
T_cold_in=u(1); 
T_hot_in=u(2); 
m_dot_cold=u(3); 
m_dot_hot=u(4); 
Cpa=param(1); % 1012   J/(kg*K) Specific heat of air at constant pressure [J/KgK] 
Cpw=param(2); % 4181.3 J/(kg*K) Specific heat of water at constant pressure [J/KgK] 
Cp_hot=Cpw; 
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Cp_cold=Cpa; 
if m_dot_hot*Cp_hot > m_dot_cold*Cp_cold 
    Q_dot=eps_NTU*m_dot_cold*Cp_cold*(T_hot_in-T_cold_in); 
else 
    Q_dot=eps_NTU*m_dot_hot*Cp_hot*(T_hot_in-T_cold_in); 
end 
T_cold_out = T_cold_in+Q_dot/(m_dot_cold*Cp_cold); 
T_hot_out = T_hot_in-Q_dot/(m_dot_hot*Cp_hot); 

 
 


