
DOCTORAL THESIS

Proof Theory of
Semi-Substructural Logics

Cheng-Syuan Wan

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

43/2025

Proof Theory of Semi-Substructural
Logics

CHENG-SYUAN WAN

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Information Technology) on 2 June 2025

Supervisor: Professor Tarmo Uustalu,
Tallinn University of Technology
Tallinn, Estonia
Reykjavik University
Reykjavik, Iceland

Co-supervisor: Professor Niccolò Veltri,
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Pierre-Louis Curien,
CNRS and Université de Paris,
Paris, France

Professor Peter Dybjer,
Chalmers University of Technology,
Göteborg, Sweden

Defence of the thesis: 25 June 2025, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Cheng-Syuan Wan
signature

Copyright: Cheng-Syuan Wan, 2025
ISSN 2585-6898 (publication)
ISBN 978-9916-80-324-0 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-325-7 (PDF)
DOI https://doi.org/10.23658/taltech.43/2025
Printed by EVG Print

Wan, C.-S. (2025). Proof Theory of Semi-Substructural Logics [TalTech Press]. https://
doi.org/10.23658/taltech.43/2025

https://digikogu.taltech.ee/et/Item/34f5f36e-f48f-400b-bca1-2a59ac30c392

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

43/2025

Pool-allstruktuursete loogikate
tõestusteooria

CHENG-SYUAN WAN

Contents

List of Publications 7

Author’s Contributions to the Publications 9

1 Introduction and Background 11
1.1 Substructural Logics and Categorical Semantics . 12

1.1.1 Substructural Logics . 12
1.1.2 Categorical Semantics . 15

1.2 Semi-Substructural Logics . 17
1.2.1 Motivation . 17
1.2.2 Sequent Calculus for Skew Monoidal Categories 18
1.2.3 The Coherence Problem of Skew Monoidal Categories 21

1.3 Focusing . 25
1.4 Interpolation Properties for Substructural Logics . 28
1.5 Ternary Relational Semantics for Lambek Calculus . 30
1.6 Contributions . 31
1.7 Thesis Structure . 33
1.8 Formalization . 33

2 Skew Non-Commutative Multiplicative Intuitionistic Linear Logic 35
2.1 Sequent calculus . 35
2.2 Equivalent calculi of SkNMILL . 44

2.2.1 Axiomatic calculus . 44
2.2.2 Tree sequent calculus. 48

2.3 Categorical Semantics . 53
2.4 Proof-Theoretic Semantics via Focusing . 54

2.4.1 A First (Naïve) Focused Sequent Calculus . 55
2.4.2 A Focused Sequent Calculus with Tag Annotations 57

3 Craig Interpolation for SkNMILL 69
3.1 Failure of Maehara Interpolation . 71
3.2 Craig Interpolation for SkNMILL . 73
3.3 More Admissible Equivalences of Derivations . 80
3.4 Proof-Relevant Interpolation . 81

4 A Commutative Extension of SkNMILL 85
4.1 Sequent Calculus . 85
4.2 Categorical Semantics . 89
4.3 A Focused Sequent Calculus with Tag Annotations . 91

5

5 Additive Extensions 97
5.1 Sequent Calculus . 97
5.2 Categorical Semantics . 98
5.3 A Focused Sequent Calculus with Tag Annotations . 101
5.4 Skew Exchange . 108
5.5 Linear Implication . 110

6 Semi-Substructural Logics Beyond Stoup 117
6.1 Skew Monoidal Bi-closed Categories . 118
6.2 Calculi for SkBiC . 119

6.2.1 Axiomatic Calculus . 119
6.2.2 Tree Sequent Calculus . 121

6.3 Relational Semantics of SkNMBiCA . 127
6.4 SkNMBiCA with Symmetry . 133

7 Conclusion 143

Bibliography 145

Acknowledgements 151

Abstract 153

Kokkuvõte 155

Curriculum Vitae 157

Elulookirjeldus 161

6

List of Publications

The present Ph.D. thesis is based on the following publications.

I T. Uustalu, N. Veltri, and C.-S. Wan. Proof theory of skew non-commutative
MILL. In A. Indrzejczak and M. Zawidzki, editors, Proceedings of 10th Inter-
national Conference on Non-classical Logics: Theory and Applications, NCL
2022, volume 358 of Electronic Proceedings in Theoretical Computer Science,
pages 118–135. Open Publishing Association, 2022 (Chapter 2)

II N. Veltri and C.-S. Wan. Semi-substructural logics with additives. In T. Kutsia,
D. Ventura, D. Monniaux, and J. F. Morales, editors, Proceedings of 18th Inter-
national Workshop on Logical and Semantic Frameworks, with Applications and
10th Workshop on Horn Clauses for Verification and Synthesis, LSFA/HCVS
2023, volume 402 of Electronic Proceedings in Theoretical Computer Science,
pages 63–80. Open Publishing Association, 2024 (Chapter 5)

III C.-S. Wan. Semi-substructural logics à la Lambek. In A. Indrzejczak and
M. Zawidzki, editors, Proceedings of 11th International Conference on Non-
classical Logics: Theory and Applications, NCL 2024, volume 415 of Electronic
Proceedings in Theoretical Computer Science, pages 195–213. Open Publishing
Association, 2024 (Chapter 6)

IV N. Veltri and C.-S. Wan. Craig interpolation for a semi-substructural logic.
Studia Logica, to appear (Chapters 2 and 3)

Chapter 4 and the second half of Chapter 6 (starting from Section 6.4) are not
covered by the publications above.

The work on this thesis also involved significant proof assistant formalization ef-
fort. The Agda code associated to the thesis is available in my GitHub repository
https://github.com/cswphilo/code-PhD-thesis.

7

https://github.com/cswphilo/code-PhD-thesis

Author’s Contributions to
the Publications

I My contribution to this work was to identify the research problem, to formulate
the main definitions, to prove the theorems, write the manuscript, and present
the paper at the corresponding conference.

II My contribution to this work was to identify the research problem, to formulate
the main definitions, to prove the theorems, implement proofs in Agda, write
the manuscript, and present the paper at the corresponding conference.

III I was the sole author. The results of the paper are my own, and I presented
the paper at the corresponding conference.

IV My contribution to this work was to identify the research problem, to formulate
the main definitions, to prove the theorems, and write the manuscript.

1 My contribution to the underlying material of Chapter 4, a collaborative work
with Niccolò Veltri, was to identify the research problem, to formulate the
main definitions, to prove the theorems, write the manuscript.

2 I was the sole author of the underlying material of the second half of Chapter
6.

9

Chapter 1

Introduction and
Background

Substructural logics can be understood through the lens of sequent calculus as
logical systems that omit or modify one or more structural rules. In the sequent
calculi for classical and intuitionistic logic with explicit structural rules, three key
structural rules govern how assumptions are handled: weakening, contraction, and
exchange. These rules permit assumptions to be discarded, duplicated, or reordered
freely, as shown below:

Γ ⊢ C
A,Γ ⊢ C

wk
A,A,Γ ⊢ C

A,Γ ⊢ C
ctr

Γ0, A,B,Γ1 ⊢ C

Γ0, B,A,Γ1 ⊢ C
ex

These structural rules effectively transform the list-like structure of antecedents
into sets, allowing arbitrary duplication and reordering of elements. Substructural
logics emerge when we selectively remove these rules, resulting in systems where
the antecedents maintain more rigid algebraic structures than sets. This restriction
creates logics that can more accurately model resource-sensitive or order-dependent
reasoning.

A canonical example is Lambek’s syntactic calculus [43], which eliminates weak-
ening, contraction, and exchange entirely. This system treats antecedents as or-
dered lists of formulae, making it particularly suited for analyzing linguistic struc-
tures. Different variations and extensions have emerged, including the non-asso-
ciative Lambek calculus [52], which relaxes the structure of antecedents. In this
system, antecedents are structured as binary trees rather than flat lists, meaning
(A,B), C and A, (B,C) are distinguished (see Section 2.2.2 for a formal definition
of trees). The structural rules governing associativity are formalized as follows:

T [U0, (U1, U2)] ⊢ C

T [(U0, U1), U2] ⊢ C
assoc1

T [(U0, U1), U2] ⊢ C

T [U0, (U1, U2)] ⊢ C
assoc2

Another significant development in substructural logic is Girard’s linear logic
[28], which offers a more nuanced approach to resource management. While it
generally prohibits weakening and contraction, it introduces modalities (also called
exponentials) that can selectively restore these capabilities for specific formulae.
This flexibility has proven valuable in both theoretical studies and practical appli-
cations.

11

1.1. SUBSTRUCTURAL LOGICS AND CATEGORICAL SEMANTICS

The deep connections between these systems become apparent when we exam-
ine their logical connectives. The fragment of intuitionistic linear logic without
exponentials shares its connectives with Lambek calculus (augmented with unit
and exchange), revealing fundamental structural similarities. This correspondence
extends to various non-commutative and non-associative variants, though these
variations are typically studied more in the context of Lambek calculus than in
linear logic. When non-commutative or non-associative linear logic is discussed, it
often includes (sub)exponentials that allow a modal formula to swap its position
with adjacent formula or allow a grouping of modal formulae to change the way it
is bracketed, see [10] for an example.

1.1 Substructural Logics and Categorical Seman-
tics

In this section and the rest of the thesis, we always use the typewriter font to
refer to a logic, understood as the set of judgements (sequents) provable in its
canonical proof system (ignoring that different proof systems for the same logic
may use slightly different judgement forms). For example, the non-commutative
multiplicative intuitionistic linear logic is denoted as NMILL.

We then use subscripts to denote specific formulations of proof systems for these
logics where S indicates sequent calculus (with and without stoup), T indicates tree
sequent calculus, and A indicates axiomatic calculus. For example, NMILLS refers to
the sequent calculus of non-commutative multiplicative intuitionistic linear logic.

1.1.1 Substructural Logics
As a foundational substructural logic, let us consider the sequent calculus for the
tensor-unit fragment of non-commutative multiplicative intuitionistic linear logic
(NMILLI,⊗):

A ⊢ A
ax ⊢ I IR

Γ0,Γ1 ⊢ C

Γ0, I,Γ1 ⊢ C
IL

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

⊗R
Γ0, A,B,Γ1 ⊢ C

Γ0, A⊗B,Γ1 ⊢ C
⊗L

A sequent Γ ⊢ C consists of antecedents forming the context (a list of formulae) Γ
and a single formula C as the succedent. Reading Γ ⊢ C tells us we can derive C
from the resources in Γ.

Stronger substructural logics are built incrementally from NMILLI,⊗ by adding
rules corresponding to new connectives, see Figure 1.1.

The first extension of NMILLI,⊗ comes from adding linear implications (⊸ and

⊸), also known as right and left residuations in Lambek calculus (written as ⧸
and ⧹ respectively). When we interpret antecedents as concatenation of resources,
the right rule for ⊸ can be understood in this way: if we can deduce B from
Γ, A, then using only Γ (meaning Γ has been divided from the right by A), we
can deduce a resource A ⊸ B. This can be read as “B that is divided by A
from the right”. The interpretation for ⊸follows the same pattern in the opposite
direction. Notice that two right rules of implication are invertible in any extension
constructed from the rules in Figure 1.1. In a proof tree, we sometimes use f to

12

CHAPTER 1. INTRODUCTION AND BACKGROUND

(NMILLI,⊗)
A ⊢ A

ax ⊢ I IR
Γ0,Γ1 ⊢ C

Γ0, I,Γ1 ⊢ C
IL

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

⊗R
Γ0, A,B,Γ1 ⊢ C

Γ0, A⊗B,Γ1 ⊢ C
⊗L

(linear implications)

Γ, A ⊢ B

Γ ⊢ A ⊸ B
⊸R

Γ ⊢ A ∆0, B,∆1 ⊢ C

∆0, A ⊸ B,Γ,∆1 ⊢ C
⊸L

A,Γ ⊢ B

Γ ⊢ B

⊸

A

⊸R
Γ ⊢ A ∆0, B,∆1 ⊢ C

∆0,Γ, B ⊸

A,∆1 ⊢ C

⊸L

(additives)

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧B

∧R
Γ0, Ai,Γ1 ⊢ C

Γ0, A1 ∧A2,Γ1 ⊢ C
∧Li

Γ ⊢ Ai

Γ ⊢ A1 ∨A2
∨Ri

Γ0, A,Γ1 ⊢ C Γ0, B,Γ1 ⊢ C

Γ0, A ∨B,Γ1 ⊢ C
∨L

(exchange)
Γ, A,B,∆ ⊢ C

Γ, B,A,∆ ⊢ C
exA,B

Figure 1.1: Rules for building sequent calculi of multiplicative and additive intuitionistic
linear logics through NMILLI,⊗

denote the derivation ends with a certain sequent. Therefore the invertibility of
two right rules of implication are expressed as two admissible rules below, which
are both proved by structural induction on the derivation f .

f
Γ ⊢ A ⊸ B
Γ, A ⊢ B ⊸R−1

f
Γ ⊢ B

⊸

A
A,Γ ⊢ B

⊸R−1

We can develop the additive extension of NMILLI,⊗ independently by incorpo-
rating rules for additive connectives ∧ and ∨ into the calculus. These connectives ∧
and ∨ carry their standard meaning from classical logic. An important distinction
lies in how the rules handle contexts: two-premises rules like ⊗R and ⊸L split
the context (called context-splitting rules), dividing antecedents between the two
premises. In contrast, ∧R and ∨L are context-sharing rules where all antecedent
resources remain identical in both premises. This sharing behavior is precisely why
we call them “additive” rules.

The final extension leads to a commutative system by adding the rule ex (we
sometimes omit the subscript when there is no ambiguity). For any extension
constructed from the commutative NMILLI,⊗ with the rules in Figure 1.1, the ad-
missibility of the following general permutation rules always holds:

Γ, A,Λ,∆ ⊢ C

Γ,Λ, A,∆ ⊢ C
exsA,Λ

Γ,Λ, A,∆ ⊢ C

Γ, A,Λ,∆ ⊢ C
exsΛ,A

They are both proved by induction on the complexity of Λ.
The commutative extensions of NMILLI,⊗ have two noteworthy features:

1. When the commutative extension includes linear implications, the two impli-
cations collapse into one. Specifically, formulae A ⊸ B and B

⊸

A become

13

1.1. SUBSTRUCTURAL LOGICS AND CATEGORICAL SEMANTICS

logically equivalent.

A ⊸ B ⊢ A ⊸ B
ax

A ⊸ B,A ⊢ B ⊸R−1

A,A ⊸ B ⊢ B
exA⊸B,A

A ⊸ B ⊢ B

⊸

A

⊸R

B

⊸

A ⊢ B

⊸

A
ax

A,B

⊸

A ⊢ B

⊸R−1

B

⊸

A,A ⊢ B
exA,B

⊸

A

B

⊸

A ⊢ A ⊸ B
⊸R

2. In non-commutative logics, when we look at left rules, principal formulae
always appear sandwiched between two contexts in the antecedents, since
the order of formulae matters and cannot be freely rearranged like in classical
logic. With the general exchange rule in place, we can place principal formulae
of left rules at either the leftmost or the rightmost position of antecedents.
For example, consider the (left) fixed version of ⊗L:

A,B,Γ ⊢ C

A⊗B,Γ ⊢ C
⊗L′

The rule ⊗L′ together with the general permutation rules could recover the
original ⊗L, i.e.

f
Γ, A,B,∆ ⊢ C

Γ, A⊗B,∆ ⊢ C
⊗L =

f
Γ, A,B,∆ ⊢ C

A,Γ, B,∆ ⊢ C
exsΓ,A

A,B,Γ,∆ ⊢ C
exsΓ,B

A⊗B,Γ,∆ ⊢ C
⊗L′

Γ, A⊗B,∆ ⊢ C
exsA⊗B,Γ

Other left rules follow a similar pattern. As a consequence, the commutative
extensions of NMILLI,⊗ admit equivalent variations where the ex rule becomes
implicit, meaning there is no formal ex rule presented and the antecedents
become multisets rather than lists.

As mentioned above, linear logic allows exponentials that selectively restore
weakening and contraction for specific formulae. The exponential operator ! (of-
ten read as “of course” or “bang”) marks formulae that can be treated more like
reusable/disposable resources, allowing them to be duplicated or discarded. While
a detailed discussion of exponentials lies beyond the scope of this thesis, read-
ers seeking comprehensive coverage can find it in Girard’s seminal work on linear
logic [28], while Abrusci’s work [1] specifically addresses non-commutative linear
logic. For reference, we present the rules here (note that the calculus is implicitly
commutative):

A,Γ ⊢ C

!A,Γ ⊢ C
!L !Γ ⊢ C

!Γ ⊢!C !R Γ ⊢ C
!A,Γ ⊢ C

wk
!A, !A,Γ ⊢ C

!A,Γ ⊢ C
ctr

These rules capture how exponential formulae behave from a bottom-up perspec-
tive: they can be derelicted (!L, removing ! from a banged formula in the an-
tecedent), promoted (!R, removing ! from the succedent formula when the formulae
in the antecedent are all banged, in particular also when the antecedent is empty),
weakened (wk, discarding a resource), or contracted (ctr, duplicating a resource).
Exponentials provide the flexibility when we need some formulae to behave like
formulae in classical/intuitionistic logic within our linear system.

14

CHAPTER 1. INTRODUCTION AND BACKGROUND

1.1.2 Categorical Semantics
The sound and complete categorical models of NMILLI,⊗ are monoidal categories,
which provide a natural semantic framework for understanding these logical sys-
tems. Monoidal categories are defined as follows:

Definition 1.1.1. A monoidal category C is a category with a unit object I and a
functor⊗ : C×C→ C with three natural isomorphisms λ, ρ, α typed λA : I⊗A ∼= A,
ρA : A ∼= A ⊗ I and αA,B,C : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C), satisfying Mac Lane’s
coherence conditions [46]:

(m1)
I⊗ I

I I

λIρI (m2)
(A⊗ I)⊗B A⊗ (I⊗B)

A⊗B A⊗B

αA,I,B

A⊗λBρA⊗B

(m3)
(I⊗A)⊗B I⊗ (A⊗B)

A⊗B

αI,A,B

λA⊗B λA⊗B

(m4)
(A⊗B)⊗ I A⊗ (B ⊗ I)

A⊗B

αA,B,I

ρA⊗B A⊗ρB

(m5)
(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗ (B ⊗ C))⊗D) (A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B⊗C,D

A⊗αB,C,DαA,B,C⊗D

αA⊗B,C,D αA,B,C⊗D

Kelly [39] observed that equations (m1), (m3), and (m4) can be derived from
(m2) and (m5).

An important property of monoidal categories is Mac Lane’s coherence theo-
rem [47] stating that, in any monoidal category, given any two parallel maps, if they
are constructed only via the identity, composition, the tensor, the two unitors and
the associator, then they are equal. In other words, in the free monoidal category
over a given set of objects, any two maps with the same domain and codomain are
equal, which also means that there is at most one element in the set of morphisms
between any two objects, i.e. the free monoidal category is thin.

Similar to the construction in the last section, categorical models of extensions
of NMILLI,⊗ are also constructed modularly from monoidal categories.

The categorical models of NMILLI,⊗ with rules for linear implications are
monoidal bi-closed categories:

Definition 1.1.2. A monoidal bi-closed category C is a monoidal category in ad-
dition with two functors ⊸ : Cop × C → C and ⊸: C × Cop → C forming two
adjunctions −⊗B ⊣ B ⊸ − and B ⊗− ⊣ − ⊸

B natural in B, respectively [44].

Remark 1.1.3. Lambek calculus with unit is also modelled by monoidal bi-
closed categories, while the original Lambek calculus (without unit) is modelled
by monoidal bi-closed categories without the unit I.

The categorical models of NMILLI,⊗ with rules of ∧ and ∨ are distributive
monoidal categories with binary products.

Definition 1.1.4. A distributive monoidal category with binary products C is a
monoidal category in addition with binary products (×) and coproducts (+) that

15

1.1. SUBSTRUCTURAL LOGICS AND CATEGORICAL SEMANTICS

are distributive, i.e. the canonical morphisms, (A⊗C)+(B⊗C)→ (A+B)⊗C and
(C⊗A)+(C⊗B)→ C⊗(A+B), have inverses l : (A+B)⊗C → (A⊗C)+(B⊗C)
and r : C ⊗ (A+B)→ (C ⊗ A) + (C ⊗B), respectively [6] (notice that the usual
definition of distributive monoidal categories does not include binary products).

The distributivity is required to correctly capture the provable sequents
(A ∨ B) ⊗ C ⊢ (A ⊗ C) ∨ (B ⊗ C) and C ⊗ (A ∨ B) ⊢ (C ⊗ A) ∨ (C ⊗ B) in
the extensions of NMILLI,⊗ with ∧ and ∨.

The categorical models of NMILLI,⊗ with ex are symmetric monoidal categories:

Definition 1.1.5. A braided monoidal category C is a monoidal category with
an additional natural isomorphism sA,B : A ⊗ B → B ⊗ A, called the braiding,
satisfying Joyal and Street’s hexagon identities [37]:

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

sA,(B⊗C)

αα

sA,B⊗C

α

B⊗sA,C

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

s(A⊗B),C

α−1α−1

A⊗sB,C

α−1

sA,C⊗B

For any braiding s on a monoidal category, s−1 is also a braiding [37].
A braided monoidal category is symmetric if s satisfies sB,A ◦ sA,B = idA⊗B .

Despite our approach of adding one structure at a time, we can also construct
arbitrary combinations of the aforementioned categories, which serve as categorical
semantics for their corresponding extensions of NMILLI,⊗. For instance, symmetric
monoidal closed categories provide categorical models of NMILLI,⊗ extended with
both linear implications and exchange.

Definition 1.1.6. A symmetric monoidal closed category C is a symmetric
monoidal category (Definition 1.1.5) equipped with a functor ⊸ : Cop × C → C
forming an adjunction −⊗B ⊣ B ⊸ − natural in B [25].

As noted earlier, the two implications collapse into one in the commutative case,
hence we only need one additional functor and adjunction to model this extension.

The exponentials in linear logic are modelled through the addition of a lin-
ear exponential comonad (!) on symmetric monoidal closed categories [8]. This
comonad serves as a bridge between linear and cartesian worlds, transforming
linear (resource-sensitive) formulae into cartesian (resource-insensitive) formulae.
Furthermore, intuitionistic linear logic with ! is equivalent to the linear-non-linear
logic of Benton (LNL [7]). LNL can be modelled via a symmetric monoidal ad-
junction between a symmetric monoidal closed category and a cartesian closed

16

CHAPTER 1. INTRODUCTION AND BACKGROUND

category. This adjunction provides a controlled mechanism for movement between
these categories. Since a detailed discussion of exponentials lies beyond the scope
of this thesis, we direct interested readers to Benton et al.’s papers [8, 7] for an
in-depth treatment of the linear exponential comonad and adjunction. For broader
perspectives and comprehensive surveys of categorical semantics, readers may con-
sult [22, 49].

1.2 Semi-Substructural Logics

1.2.1 Motivation

Left skew monoidal categories [61] are a weaker variant of Mac Lane’s monoidal
categories where the structural morphisms of associativity and unitality are not
required to be bidirectional, they are natural transformations with a particular ori-
entation. Therefore, they can be seen as semi-associative and semi-unital variants
of monoidal categories.

Definition 1.2.1. A left skew monoidal category C is a category with a unit object
I and a functor ⊗ : C × C → C with three natural transformations λ, ρ, α typed
λA : I⊗A→ A, ρA : A→ A⊗ I and αA,B,C : (A⊗B)⊗C → A⊗(B⊗C), satisfying
the Mac Lane axioms in Definition 1.1.1.

In contrast with Definition 1.1.1, equations (m1), (m3), and (m4) cannot be
derived from (m2) and (m5), making all five equations essential in the definition
of left skew monoidal categories.

Left skew monoidal categories arise naturally in the semantics of programming
languages [4], while the concept of semi-associativity is connected with combinato-
rial structures like the Tamari lattice and Stasheff associahedra [74, 51]. Left skew
monoidal categories quickly attracted significant attention from category theorists,
leading to numerous developments [41, 60, 42, 16, 11, 13, 14].

In the remainder of the thesis, we sometimes omit the word “left” when dis-
cussing left skew monoidal categories and related structures (such as left skew
monoidal closed categories and symmetric left skew monoidal categories) when no
right skew variants are under discussion.

The coherence problem for left skew monoidal categories differs significantly
from that of traditional monoidal categories. Unlike monoidal categories, where
the coherence theorem guarantees uniqueness of parallel morphisms in the free
monoidal category, the free skew monoidal category can have multiple distinct
morphisms between the same pair of objects.

Example 1.2.2. These diagrams illustrate two distinct morphisms between the
same objects in the free skew monoidal category. In each diagram, one path is
the identity morphism while the other is the combination of λ, ρ, and α. These
diagrams show the key feature of the free skew monoidal category that all of its

17

1.2. SEMI-SUBSTRUCTURAL LOGICS

characterizations should respect

A⊗B (A⊗ I)⊗B

̸=

A⊗ (I⊗B) A⊗ (I⊗B)

ρA⊗B

αA,I,BA⊗λB

A⊗ (I⊗B) A⊗B

̸=

(A⊗ I)⊗B (A⊗ I)⊗B

A⊗λB

ρA⊗BαA,I,B

The non-uniqueness of morphisms distinguishes the free skew monoidal category
from the free monoidal category. Specifically, some pairs of objects in the free
skew monoidal category have multiple morphisms between them. To address the
coherence problem, researchers have developed several approaches:

– Through rewriting techniques, Uustalu [62] showed that there is at most one
map between an object and its normal form.

– Through categorical methods, Lack and Street [42] established a faithful func-
tor to a category of ordinals, later elaborated by Bourke and Lack [12] with
explicit morphism descriptions.

– Through the focused proof system by Uustalu, Veltri, and Zeilberger [67],
which we will introduce in Section 1.2.3.

Skew monoidal categories and their variants lead us to consider coherence prob-
lems in a broader context. We call the logical correspondent to these variants of
skew monoidal categories semi-substructural logics. We use this term because these
are intermediate logics between non-associative and associative, as well as between
non-unital and unital variants of intuitionistic linear logic (or Lambek calculus),
offering finer control over structural properties like associativity and unitality.

1.2.2 Sequent Calculus for Skew Monoidal Categories
To formalize the logic of skew monoidal categories, Uustalu et al. [67] develop a
sequent calculus framework that captures the semi-associativity and semi-unitality
of skew monoidal categories. In this section, we review the sequent calculus in their
work [67].

Formulae are inductively generated by the grammar A,B ::= X | I | A ⊗ B,
where X comes from a fixed set At of atoms, I is a multiplicative verum, ⊗ is a
multiplicative conjunction.

The key feature is the modified sequent structure of the form S | Γ ⊢ A, where:

18

CHAPTER 1. INTRODUCTION AND BACKGROUND

– S is an optional formula, called the stoup (following Girard’s terminology
[29]). It will be written as − when S is empty.

– Γ is an ordered list of formulae, called the context.

– A is a single formula, call the succedent.

The derivations in the sequent calculus are generated inductively by the following
rules:

A | ⊢ A
ax

A | Γ ⊢ C

− | A,Γ ⊢ C
pass

− | Γ ⊢ C

I | Γ ⊢ C
IL

A | B,Γ ⊢ C

A⊗B | Γ ⊢ C
⊗L

− | ⊢ I IR
S | Γ ⊢ A − | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

The stoup plays a crucial role in representing the semi-associativity and semi-
unitality. By carefully restricting how introduction rules can interact with the
stoup and the context Γ, we can encode semi-associativity and semi-unitality in
a natural way. This framework allows only the specific direction of associativity
and unitality transformations presented in Definition 1.2.1, reflecting the “skew”
nature of the corresponding categorical structures.

The inference rules in SkNMILLI,⊗ are reminiscent of the ones in NMILLI,⊗, but
there are some crucial differences.

1. The left logical rules IL and ⊗L, read bottom-up, are only allowed to be
applied on the formula in the stoup position. In particular, there is no general
way to remove a unit I nor decompose a tensor A ⊗ B if these formulae are
located in the context and not in the stoup.

2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of the con-
clusion between the two premises whereby the formula in the stoup, in case
such a formula is present, has to be moved to the stoup of the first premise.
In particular, the stoup formula of the conclusion cannot be moved to the
antecedent of the second premise even if Γ is chosen to be empty.

3. The presence of the stoup implies a distinction between antecedents of forms
A | Γ and − | A,Γ. The structural rule pass (for ‘passivation’), read bottom-
up, allows the moving of the leftmost formula in the context to the stoup
position whenever the stoup is initially empty.

The restrictions in 1–3 are essential for precisely capturing all the features of skew
monoidal closed categories and nothing more. Notice also that, similarly to the
case of NMILLI,⊗, all structural rules of exchange, contraction, and weakening are
absent. We give names to derivations and we write f : S | Γ ⊢ A when f is a
particular derivation of the sequent S | Γ ⊢ A. We refer readers to Section 2.1 to
see how the design of the sequent calculus captures the natural transformation λ,
ρ, and α in Definition 1.2.1 while forbidding their inverses.

To address the coherence problem of skew monoidal categories, Uustalu et al.
define a congruence relation ⊜ on the sets of derivations in SkNMILLI,⊗, generated
by the pairs of derivations in Figure 1.2.

The sequent calculus SkNMILLI,⊗ is cut-free:

19

1.2. SEMI-SUBSTRUCTURAL LOGICS

I | ⊢ I
ax

⊜ − | ⊢ I IR

I | ⊢ I IL

A⊗B | ⊢ A⊗B
ax

⊜
A | ⊢ A

ax
B | ⊢ B

ax

− | B ⊢ B
pass

A | B ⊢ A⊗B
⊗R

A⊗B | ⊢ A⊗B
⊗L

f
A′ | Γ ⊢ A

− | A′,Γ ⊢ A
pass g

− | ∆ ⊢ B

− | A′,Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | Γ ⊢ A

g
− | ∆ ⊢ B

A′ | Γ,∆ ⊢ A⊗B
⊗R

− | A′,Γ,∆ ⊢ A⊗B
pass

f
− | Γ ⊢ A

I | Γ ⊢ A
IL g
− | ∆ ⊢ B

I | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
− | Γ ⊢ A

g
− | ∆ ⊢ B

− | Γ,∆ ⊢ A⊗B
⊗R

I | Γ,∆ ⊢ A⊗B
IL

f
A′ | B′,Γ ⊢ A

A′ ⊗B′ | Γ ⊢ A
⊗L g

− | ∆ ⊢ B

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | B′,Γ ⊢ A

g
− | ∆ ⊢ B

A′ | B′,Γ,∆ ⊢ A⊗B
⊗R

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗L

Figure 1.2: Equivalence of derivations in SkNMILLI,⊗

Proposition 1.2.3 ([67, Lemma 5]). The sequent calculus enjoys cut admissibility:
the following two cut rules are admissible.

S | Γ ⊢ A A | ∆ ⊢ C

S | Γ,∆ ⊢ C
scut

− | Γ ⊢ A S | ∆0, A,∆1 ⊢ C

S | ∆0,Γ,∆1 ⊢ C
ccut

Proposition 1.2.4 ([67, Lemma 10]). ⊗L and IL are invertible, i.e. the following
rules are admissible:

f
A⊗B | Γ ⊢ C

A | B,Γ ⊢ C
⊗L−1

f
I | Γ ⊢ C

− | Γ ⊢ C IL−1

Moreover, the invertible rules ⊗L−1 and IL−1 are compatible with the equiva-
lence relation in Figure 1.2, i.e.

⊗L−1(⊗L f) = f

IL−1(IL f) = f

⊗L(⊗L−1 f) ⊜ f

IL(IL−1 f) ⊜ f

Uustalu et al. proved that (SkNMILLI,⊗) is sound and complete with respect to
skew monoidal categories. They demonstrated this by establishing its equivalence

20

CHAPTER 1. INTRODUCTION AND BACKGROUND

to the following axiomatic (or Hilbert-style) calculus [67, Theorems 1 and 2]:

A ⊢A A
id

A ⊢A B B ⊢A C

A ⊢A C
comp A ⊢A C B ⊢A D

A⊗B ⊢A C ⊗D
⊗

I⊗A ⊢A A
λ

A ⊢A A⊗ I
ρ

(A⊗B)⊗ C ⊢A A⊗ (B ⊗ C)
α

(1.1)

The axiomatic calculus captures the free skew monoidal category generated by a set
At. The morphisms between formulae A and B are derivations of the sequent A ⊢A
B, quotiented by the congruence relation .= given in Figure 2 of [67]. Importantly,
this equivalence applies not only to the provability of sequents but also to their
proofs: for any two derivations f and g in the axiomatic calculus, if f .= g, then
their corresponding derivations f ′ and g′ are also equivalent in the sequent calculus
SkNMILLI,⊗, meaning f ′ ⊜ g′, and vice versa.

The proof of equivalence is covered by the one of Theorem 2.2.5, so we do not
reproduce it here.

1.2.3 The Coherence Problem of Skew Monoidal Categories
When we consider the congruence relation ⊜ from Figure 1.2 as a term rewrite
system (interpreting equations from left to right), we observe two key properties:
local confluence and strong normalization. These properties together ensure that
the system is confluent and has unique normal forms. These normal forms can
be described by a focused subsystem of the sequent calculus, which differs from
but shares key similarities with the system introduced by Andreoli [5] for classical
linear logic.

The derivations of the focused subsystem are generated inductively by the rules:

(left phase)
− | Γ ⊢L C

I | Γ ⊢L C
IL

A | B,Γ ⊢L C

A⊗B | Γ ⊢L C
⊗L

A | Γ ⊢L C

− | A,Γ ⊢L C
pass

(phase switch)
T | Γ ⊢R C

T | Γ ⊢L C
R2L

(right phase)
X | ⊢R X

ax
− | ⊢R I IR

T | Γ ⊢R A − | ∆ ⊢L B

T | Γ,∆ ⊢R A⊗B
⊗R

(1.2)

The metavariable T indicates an irreducible stoup, i.e. T ̸= I and T ̸= A ⊗ B (T
can also be empty).

The focused subcalculus (1.2) has similar rules to SkNMILLI,⊗ but with addi-
tional mode annotations. The bottom-up proof search strategy in (1.2) proceeds
as following:

(⊢L) Proof search begins in the left phase where we eagerly apply left invertible
rules (⊗L and IL) to the stoup formula. When the stoup becomes an atomic
formula, we switch to the right phase by applying R2L. When the stoup
becomes empty, we encounter a choice point: we can either apply pass to
move the head formula (if it exists) from the context into the stoup, or apply
R2L to switch the sequent’s phase. This choice point plays a crucial role in

21

1.2. SEMI-SUBSTRUCTURAL LOGICS

capturing the essential properties of the free skew monoidal category, which
we will elaborate upon later.

(⊢R) Within the right phase, we proceed by applying one of three rules as ap-
propriate: ax, IR, or ⊗R. It is important to note that when applying ⊗R,
its right premise transitions back to the left phase, enabling continued proof
search over the formulae in context ∆.

Although the focused calculus aims to provide a deterministic proof search strategy
by prioritizing left rules over right rules (with ax classified as a right rule), some
essential non-determinism remains within the calculus. This non-determinism is
necessary to capture the fundamental nature of the free skew monoidal category,
as demonstrated in Example 1.2.2. In particular, there are two types of essential
non-determinism:

1. In the left phase, when the stoup is empty, there is a choice of whether to
apply pass or R2L and sometimes both options lead to a derivation. For
example, the sequent X | I⊗Y ⊢R X⊗ (I⊗Y) has two distinct derivations in
the focused system and the corresponding derivations in SkNMILLI,⊗ are not
⊜-equivalent.

X | ⊢R X
ax

− | ⊢R I IR

Y | ⊢R Y
ax

Y | ⊢L Y
R2L

− | Y ⊢L Y
pass

− | Y ⊢R I⊗ Y
⊗R

− | Y ⊢L I⊗ Y
R2L

I | Y ⊢L I⊗ Y
IL

I⊗ Y | ⊢L I⊗ Y
⊗L

− | I⊗ Y ⊢L I⊗ Y
pass

X | I⊗ Y ⊢R X ⊗ (I⊗ Y) ⊗R

X | ⊢R X
ax

− | ⊢L I IR

Y | ⊢L Y
ax

Y | ⊢L Y
R2L

− | Y ⊢L Y
pass

I | Y ⊢L Y
IL

I⊗ Y | ⊢L Y
⊗L

− | I⊗ Y ⊢L Y
pass

− | I⊗ Y ⊢R I⊗ Y
⊗R

− | I⊗ Y ⊢L I⊗ Y
R2L

X | I⊗ Y ⊢R X ⊗ (I⊗ Y) ⊗R

Notice the colored rules in the derivations above. These two derivations
demonstrate different choices when the stoup is empty: in the first derivation,
we apply the pass rule, which leads to a proof. In contrast, the second
derivation immediately switches phase and then applies the ⊗R rule.

2. In phase R, the ⊗R rule splits the context in two parts and sends them to
different premises. Sometimes several splits can lead to a valid derivation.

22

CHAPTER 1. INTRODUCTION AND BACKGROUND

For example, the sequent X | I, Y ⊢F (X⊗ I)⊗Y has two distinct derivations.

X | ⊢R X
ax

− | ⊢R I IR

− | ⊢L I R2L

I | ⊢L I IL

− | I ⊢L I
pass

X | I ⊢R X ⊗ I ⊗R

Y | ⊢R Y
ax

Y | ⊢L Y
R2L

− | Y ⊢L Y
pass

X | I, Y ⊢R (X ⊗ I)⊗ Y
⊗R

X | ⊢R X
ax
− | ⊢R I IR

X | ⊢R X ⊗ I ⊗R

X | ⊢R X ⊗ I ⊗R

Y | ⊢R Y
ax

Y | ⊢L Y
R2L

− | Y ⊢L Y
pass

I | Y ⊢L Y
IL

− | I, Y ⊢L Y
pass

X | I, Y ⊢R (X ⊗ I)⊗ Y
⊗R

Notice that in the derivations above, the red I in the endsequent are sent to
different premises. Both derivations are valid in the focused calculus.

Theorem 1.2.5. The focused calculus (1.2) is equivalent to the unfocused calculus
SkNMILLI,⊗, meaning that the two statements below are true:

• For any derivation f : S | Γ ⊢ C, there exists a derivation focus f : S | Γ ⊢L
C.

• For any derivation in f : S | Γ ⊢ph C, there exists a derivation embph :
S | Γ ⊢ C, for all ph ∈ {L,R}.

The second statement is immediate: the embph functions can be defined by mutual
recursion where all functions erase the all phase annotations.
Lemma 1.2.6. All rules in phase R are admissible in phase L:

A | ⊢L A
axL − | ⊢L I IRL

f
S | Γ ⊢L A

g
− | ∆ ⊢L B

S | Γ,∆ ⊢L A⊗B
⊗RL

Proof.
Case IRL.

− | ⊢L I IRL = − | ⊢R I IR

− | ⊢L I R2L

Case ⊗RL(f, g). The proof proceeds by induction on f .
If f = ⊗L f ′, then

f ′

A′ | B′,Γ ⊢L A

A′ ⊗B′ | Γ ⊢L A
⊗L g

− | ∆ ⊢L B

A′ ⊗B′ | Γ,∆ ⊢L A⊗B
⊗RR

=

f ′

A′ | B′,Γ ⊢L A
g

− | ∆ ⊢L B

A′ | B′,Γ,∆ ⊢L A⊗B
⊗RR

A′ ⊗B′ | Γ,∆ ⊢L A⊗B
⊗L

23

1.2. SEMI-SUBSTRUCTURAL LOGICS

The cases of IL and pass are similar.
If f = R2L f ′, then

f ′

T | Γ ⊢R A

T | Γ ⊢L A
R2L g

− | ∆ ⊢L B

T | Γ,∆ ⊢L A⊗B
⊗RR

=

f ′

T | Γ ⊢R A
g

− | ∆ ⊢L B

T | Γ,∆ ⊢R A⊗B
⊗R

T | Γ,∆ ⊢L A⊗B
R2L

Notice that this is the base case of ⊗RL.
Case axL. The proof proceeds by induction on formula A.
If A = X, for some X ∈ At, then

X | ⊢L X
axL = X | ⊢R X

ax

X | ⊢L X
R2L

If A = I, then

I | ⊢L I axL =
− | ⊢R I IR

− | ⊢L I R2L

I | ⊢L I IL

If A = A′ ⊗B′, then

A′ ⊗B′ | ⊢L A′ ⊗B′ axL = A′ | ⊢L A′ axL
B′ | ⊢R B′ axL

− | B′ ⊢L B′ pass

A′ | B′ ⊢L A′ ⊗B′ ⊗RL

A′ ⊗B′ | ⊢L A′ ⊗B′ ⊗L

Lemma 1.2.6 allows the construction of the function focus : S | Γ ⊢ A →
S | Γ ⊢L A, replacing applications of each rule in the sequent calculus SkNMILLI,⊗

with inferences by the corresponding (admissible) focused rule in phase L.

Theorem 1.2.7. The functions embL and focus define a bijective correspondence
between the set of derivations of S | Γ ⊢ A quotiented by the equivalence relation ⊜
and the set of derivations of S | Γ ⊢L A:

• For all f, g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• For all f : S | Γ ⊢ A, embL (focus f) ⊜ f .

• For all f : S | Γ ⊢L A, focus (embL f) = f .

The focused sequent calculus solves the coherence problem for skew monoidal
categories by ensuring that all ⊜-equivalent derivations in the unfocused calculus
become syntactically identical. For any two morphisms in the free skew monoidal
category, we can determine their equality as follows: first, we interpret them into
the unfocused sequent calculus and then apply the focus function. If the two
resulting derivations are identical, then by Theorem 1.2.7, the unfocused derivations
are ⊜-equivalent. Since ⊜ is chosen to capture morphism equality in the free skew
monoidal category, this implies that the original two morphisms are equal.

24

CHAPTER 1. INTRODUCTION AND BACKGROUND

As discussed above, there have been different strategies to characterize mor-
phisms in the free skew monoidal category. Lack and Street [41] established nor-
mal forms where morphisms decompose into three sequential phases: (1) shrink
morphisms, where units are removed from the domain object by applications of λ
and some “necessary” applications of α (“necessary” in the sense that the reasso-
ciations make a new I appear on the left of a tensor, which can then be removed
by an application of λ, for example, reassociating (A ⊗ I) ⊗ B to A ⊗ (I ⊗ B) via
α so that λ becomes applicable); (2) Tamari morphisms (consisting solely of α
morphisms) that move brackets from left to right; and (3) swell morphisms (con-
sisting of ρ morphisms and “necessary” α morphisms) that add units. The shape of
morphisms is well-behaved under composition: when a sequence of shrink, Tamari,
and swell morphisms is composed, it can be rewritten and rearranged to maintain
this three-phase shape using naturality and the Mac Lane axioms.

Lack and Street’s normal forms are distinct from derivations in the focused se-
quent calculus. Consider, for example, morphisms from X ⊗ Y → X ⊗ Y (where
X,Y ∈ At) in the free skew monoidal category. Only one morphism exists. In Lack
and Street’s presentation, the morphism is composed of two parts: the identity
shrink morphism (where no unit is removed) followed by the identity swell mor-
phism (where no unit is added). In contrast, the sequent X ⊗ Y ⊢L X ⊗ Y has a
unique focused derivation:

X | ⊢R X
ax

Y | ⊢R Y
ax

Y | ⊢L Y
R2L

− | Y ⊢L Y
pass

X | Y ⊢R X ⊗ Y
⊗R

X | Y ⊢L X ⊗ Y
R2L

X ⊗ Y | ⊢L X ⊗ Y
⊗L

When translated back to the axiomatic calculus (1.1), this derivation becomes:

X ⊢A X ⊗ I
ρ

Y ⊢A Y
id

X ⊗ Y ⊢A (X ⊗ I)⊗ Y
⊗

(X ⊗ I)⊗ Y ⊢A X ⊗ (I⊗ Y)
α

X ⊢A X
id I⊗ Y ⊢A Y

λ

X ⊗ (I⊗ Y) ⊢A X ⊗ Y
⊗

(X ⊗ I)⊗ Y ⊢A X ⊗ Y
comp

X ⊗ Y ⊢A X ⊗ Y
comp

This derivation corresponds to the longer route (X ⊗ λY ◦ αX,I,Y ◦ ρX ⊗ Y) in the
second diagram of Mac Lane’s axiom in Definition 1.2.1, which is .=-equivalent to
the identity morphism in the axiomatic calculus.

1.3 Focusing
The goal of focusing is to eliminate redundant proofs that are fundamentally equiv-
alent. For example, the ⊜ relation introduced in the previous section is a way to
classify fundamentally equivalent proofs in SkNMILLI,⊗. Andreoli [5] approached
this problem for classical linear logic by first dividing the inference rules into two
groups: asynchronous and synchronous. Asynchronous rules are those where the
inverse of the rule is admissible. In SkNMILLI,⊗, examples of asynchronous rules
include ⊗L and IL. Conversely, synchronous rules are those that are non-invertible,

25

1.3. FOCUSING

such as ⊗R and IR in SkNMILLI,⊗. For consistency, we call asynchronous rules
invertible and synchronous rules non-invertible in the remainder of the section.

Let us now examine an example of a focused calculus for MILLI,⊗ with linear
implication (notice the dropped N for non-commutative), which we have adapted
from Howe’s PhD thesis [35].

(right invertible)
Γ ⇑ Λ, A⇒ B ⇑

Γ ⇑ Λ⇒ A ⊸ B ⇑ ⊸R
Γ ⇑ Λ⇒ P ⇓
Γ ⇑ Λ⇒ P ⇑ ⇑R

(left invertible)

Γ ⇑ Λ, A,B ⇒ P ⇓
Γ ⇑ Λ, A⊗B ⇒ P ⇓ ⊗L

Γ ⇑ Λ⇒ P ⇓
Γ ⇑ Λ, I⇒ P ⇓ IL

Γ, N ⇑ Λ⇒ P ⇓
Γ ⇑ Λ, N ⇒ P ⇓ Pop

(choice)
Γ ⇓ ⇒ P ⇑
Γ ⇑ ⇒ P ⇓ ⇓R

Γ ⇓ N ⇒ P ⇓
Γ, N ⇑ ⇒ P ⇓ Push

(right focusing)

Γ ⇓ ⇒ A ⇑ ∆ ⇓ ⇒ B ⇑
Γ,∆ ⇓ ⇒ A⊗B ⇑ ⊗R ⇓ ⇒ I ⇑ IR

Γ ⇑ ⇒ N ⇑
Γ ⇓ ⇒ N ⇑ ⇓L1

(left focusing)
⇓ A⇒ A ⇓ ax Γ ⇓ ⇒ A ⇑ ∆ ⇓ B ⇒ P ⇓

Γ,∆ ⇓ A ⊸ B ⇒ P ⇓ ⊸L

Γ ⇑ P ⇒ P ′ ⇓
Γ ⇓ P ⇒ P ′ ⇓

⇓L2

In the rules above, the metavariable P denotes a non-negative formula, i.e. P ̸=
A ⊸ B, while metavariable N indicates a non-positive formula, i.e. N ̸= I and
N ̸= A⊗B. Notice that atomic formulae are both non-negative and non-positive.

There are four types of sequents, which have different roles in the bottom-up
proof search strategy:

(⇑⇒⇑) Proof search begins with sequents of the form Γ ⇑ Λ ⇒ C ⇑ where Γ is a
multiset and Λ is a list. The right invertible rule ⊸R is applied eagerly to
decompose the succedent formulae until the succedent becomes non-negative.
At this point, we transition to the left invertible phase using the rule ⇑R,
which changes the up arrow to a down arrow in the succedent.

(⇑⇒⇓) In this phase, left invertible rules ⊗L and IL are applied eagerly to the list of
formulae Λ starting from the rightmost position. When the rightmost formula
is non-positive, it moves to the left side of the downarrow in the antecedent.
Once Λ becomes empty, we can either focus on the succedent using ⇓R or
select a specific formula from Γ using Push to focus on the antecedent. This
choice determines whether the sequent enters the right or left focusing phase.

(⇓⇒⇑) In the right focusing phase, the right side of the downarrow in the antecedent
remains empty. We apply ⊗R or IR based on the structure of the succedent

26

CHAPTER 1. INTRODUCTION AND BACKGROUND

formula. In the case of ⊗R, focusing continues on the subformulae of A⊗B.
When we encounter a non-positive succedent, we return to the right invertible
phase using the rule ⇓L1.

(⇓⇒⇓) In the left focusing phase, we can close the derivation using ax when the
sequent is in the correct shape. Otherwise, we can apply ⊸L. The right
premise of ⊸L maintains the left focusing phase, while the left premise tran-
sitions to the right focusing phase. This exemplifies the core principle of
focusing: once a formula is selected for focus, we continue decomposing it
and its subformulae until either the derivation closes or we must necessarily
switch to decomposing other formulae.

Example 1.3.1. Consider the sequent ⇑ X ⊗ (X ⊸ Y) ⇒ Z ⊸ (Y ⊗ Z) ⇑, the
focused proof is:

⇓ X ⇒ X ⇓ ax

X ⇑ ⇒ X ⇓ Push

X ⇑ ⇒ X ⇑ ⇑R

X ⇓ ⇒ X ⇑ ⇓L1 ⇓ Y ⇒ Y ⇓ ax

X ⇓ X ⊸ Y ⇒ Y ⇓ ⊸L

X,X ⊸ Y ⇑ ⇒ Y ⇓ Push

X,X ⊸ Y ⇑ ⇒ Y ⇑ ⇑R

X,X ⊸ Y ⇓ ⇒ Y ⇑ ⇓L1

⇓ Z ⇒ Z ⇓ ax

Z ⇑ ⇒ Z ⇓ Push

Z ⇑ ⇒ Z ⇑ ⇑R

Z ⇓ ⇒ Z ⇑ ⇓L1

Z,X ⊸ Y,X ⇓ ⇒ Y ⊗ Z ⇑ ⊗R

Z,X ⊸ Y,X ⇑ ⇒ Y ⊗ Z ⇓ ⇓R

Z,X ⊸ Y ⇑ X ⇒ Y ⊗ Z ⇓ Pop

Z ⇑ X,X ⊸ Y ⇒ Y ⊗ Z ⇓ Pop

Z ⇑ X ⊗ (X ⊸ Y)⇒ Y ⊗ Z ⇓ ⊗L

⇑ X ⊗ (X ⊸ Y), Z ⇒ Y ⊗ Z ⇓
Pop

⇑ X ⊗ (X ⊸ Y), Z ⇒ Y ⊗ Z ⇑
⇑R

⇑ X ⊗ (X ⊸ Y)⇒ Z ⊸ (Y ⊗ Z) ⇑ ⊸R

Notice the red sequent Z,X ⊸ Y,X ⇑ ⇒ Y ⊗ Z ⇓ is where we can choose either
focus on the succedent or focus on one of the formulae in context. In the derivation
above, we focus on succedent via the rule ⇓R. Alternatively, we can focus on
X ⊸ Y in the antecedent via the rule Pop, which would lead to a different proof:

⇓ X ⇒ X ⇓ ax

X ⇑ ⇒ X ⇓ Push

X ⇑ ⇒ X ⇑ ⇑R

X ⇓ ⇒ X ⇑ ⇓L1

⇓ Y ⇒ Y ⇓ ax

Y ⇑ ⇒ Y ⇓ Push

Y ⇑ ⇒ Y ⇑ ⇑R

Y ⇓ ⇒ Y ⇑ ⇓L1

⇓ Z ⇒ Z ⇓ ax

Z ⇑ ⇒ Z ⇓ Push

Z ⇑ ⇒ Z ⇑ ⇑R

Z ⇓ ⇒ Z ⇑ ⇓L1

Z, Y ⇓ ⇒ Y ⊗ Z ⇑ ⊗R

Z, Y ⇑ ⇒ Y ⊗ Z ⇓ ⇓R

Z ⇑ Y ⇒ Y ⊗ Z ⇓ Pop

Z ⇓ Y ⇒ Y ⊗ Z ⇓ ⇓L2

Z,X ⇑ X ⊸ Y ⇒ Y ⊗ Z ⇓ ⊸L

Z,X ⊸ Y,X ⇑ ⇒ Y ⊗ Z ⇓ Pop

27

1.4. INTERPOLATION PROPERTIES FOR SUBSTRUCTURAL LOGICS

Non-determinism appears in the above focused calculus in two ways: (i) the choice
between left and right focusing, and (ii) the selection of which formula to focus on
from the multiset Γ during left focusing. This means proof normal forms are unique
only up to permutation of non-invertible rules, a property known as weak focusing.
Chaudhuri et al. [19] strengthened this approach by introducing multi-focusing,
where multiple formulae can be focused and decomposed simultaneously. Their
system produces maximally multi-focused proofs that select the largest possible
set of formulae to focus at each step, achieving maximal parallelism. For unit-free
multiplicative classical linear logic, these proofs are equivalent to proof nets. This
approach has since been extended to other calculi [18, 15, 59, 55].

The focusing strategy introduced by Uustalu et al. [67] and employed through-
out this thesis proves to be a strong focusing strategy (see the first bullet of The-
orem 1.2.7). The stoup sequents in the focused calculus (1.2) eliminate choices in
antecedents. However, as we add more connectives in later chapters, designing a
strong focusing strategy becomes challenging. In our approach, we prioritize left
non-invertible rules over right ones. As discussed in Section 2.4.1, this strict or-
dering would result in an incomplete focused calculus. We address this issue by
introducing additional annotations on sequents and formulae. These annotations
ensure that left non-invertible rules are applied before right ones when reading
proofs bottom-up, except in cases where the proof requires a different order.

Strictly speaking, our strategy deviates from traditional focusing since we re-
lease the focus on the focused formula immediately after applying any non-invertible
rule, returning to the invertible phase. Nevertheless, we retain the term “focused
calculus” as our approach draws significant inspiration from the focusing principles.

1.4 Interpolation Properties for Substructural Log-
ics

Craig interpolation is a fundamental result in first-order logic, named after the
logician William Craig [20]. A logic L has the Craig interpolation property if,
for any formula A → C provable in L (where → is the implication connective in
L), there exists a formula D such that A → D and D → C are provable in L,
satisfying the variable condition: var(D) ⊆ var(A)∩ var(C), where var(A) is the set
of atomic formulae appearing in A. Craig interpolation has been mostly employed
to prove model-theoretical results, including Beth’s definability theorem [9], but
more recently it has found applications in other areas, e.g. in model checking [34].

Craig interpolation for substructural logics has been extensively studied, using
either algebraic or proof-theoretic techniques.

For substructural logics that lack a cut-free sequent calculus, such as arbitrary
extensions of the full Lambek calculus with exchange (FLe), Craig interpolation
is established using algebraic methods such as amalgamation. For further details
on this approach, see [26] and for the relationship between amalgamation and
interpolation properties in substructural logics, see [40].

For substructural logics that admit a cut-free sequent calculus, Craig interpola-
tion is typically proven by adapting Maehara’s method [48], which originally aimed
to prove interpolation for LK, a sequent calculus for classical logic. This includes
the full Lambek calculus (FL) and its extensions that incorporate various combina-
tions of weakening, exchange, and contraction. In the case of FL, for instance, the

28

CHAPTER 1. INTRODUCTION AND BACKGROUND

proof starts by establishing a stronger form of interpolation which we call Maehara
interpolation property (MIP) [53]. The latter property states:

(MIP for FL) Given f : Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a
formula D and two derivations g : Γ1 ⊢ D and h : Γ0, D,Γ2 ⊢ C, and
var(D) ⊆ var(Γ1) ∩ var(Γ0,Γ2, C)

Being a partition simply means that the ordered list of formulae Γ is equal to the
concatenation of Γ0,Γ1 and Γ2, i.e. Γ = Γ0,Γ1,Γ2. Maehara interpolation also
holds for the commutative variant of FL, called FLe. In the commutative case, Γ is
an unordered list of formulae, i.e. a finite multiset, and it is partitioned as a pair of
multisets instead of a triple of lists. This simplification is allowed by the fact that
the order of formulae in the antecedent is irrelevant, and therefore Γ0 and Γ2 can
be combined together into a single multiset.

FL without additive connectives enjoys a stronger variant of Maehara interpo-
lation where the variable condition is replaced by a variable multiplicity condition
[52]. Let σX(A) be the number of occurrences of the atomic formula X in the
formula A, and σX(Γ) be the number of occurrences of X in the list of formulae
Γ. The stronger variant of Maehara interpolation states:

(MIP for FL with variable multiplicity condition) Given f : Γ ⊢ C and a par-
tition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exist a formula D and two derivations g : Γ1 ⊢ D
and h : Γ0, D,Γ2 ⊢ C such that σX(D) ≤ σX(Γ1) and σX(D) ≤ σX(Γ0,Γ2, C)
for all atomic X.

Notice that Craig interpolation is a property of a logic (with a notion of impli-
cation), while Maehara interpolation is a property of a deductive system in which
it is possible to appropriately partition antecedents.

Maehara interpolation is a stronger form of the so-called deductive interpolation
property. A logic L has the deductive interpolation property if, for any formulae A
and C, whenever A ⊢ C (where ⊢ is the consequence relation of L), then there exists
a formula B such that A ⊢ B and B ⊢ C while also satisfying the usual variable
condition. Furthermore, if the sequent calculus of L admits the invertibility of
implication-right rules (as is the case in FL for both left and right implication), Craig
interpolation follows immediately as a consequence of deductive interpolation.

While Maehara’s method is often applicable to extensions of FL, it does not work
for some of its fragment, which therefore do not enjoy Maehara interpolation. This
is the case for fragments lacking multiplicative and/or additive conjunction, such
as the product-free (multiplicative-conjunction-free) Lambek calculus [54] (with
only left and right implications as connectives) and the implicational fragment
of intuitionistic logic [38]. The variant of Maehara interpolation satisfied by the
product-free Lambek calculus, which we call Maehara multi-interpolation property
(MMIP), is particularly relevant for our work. Here is its statement, which we have
slightly modified to better align with our forthcoming discussion:

(MMIP for product-free Lambek calculus) Given f : Γ ⊢ C and a partition
⟨Γ0,Γ1,Γ2⟩ of Γ, there exist

– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– derivations gi : ∆i ⊢ Di for all i ∈ [1, . . . , n],

29

1.5. TERNARY RELATIONAL SEMANTICS FOR LAMBEK CALCULUS

– a derivation h : Γ0, D1, . . . , Dn,Γ2 ⊢ C, such that

– σX(D1, . . . , Dn) ≤ σX(Γ1) and σX(D1, . . . , Dn) ≤ σX(Γ0,Γ2, C) for all
atomic formulae X.

Differently from Maehara interpolation, in the above property we look for a list
of interpolants instead of a single formula. This adjustment allows us to overcome
the difficulty caused by the absence of conjunction.

In Section 3, we will prove a Craig interpolation theorem for the sequent cal-
culus of skew monoidal closed categories via a skew variant of MMIP. Regarding
interpolation for the sequent calculus SkNMILLI,⊗, please refer to Remark 3.2.4.

1.5 Ternary Relational Semantics for Lambek Cal-
culus

In this thesis, beyond categorical models, we study ternary relational models for
semi-substructural logics. Ternary relational semantics is a classical approach for
studying non-associative Lambek calculus and its extensions [24]. The correspon-
dence theorem between frame conditions and logical properties is of interest in this
semantics. Because of its clarity and modularity, we can build semantics for exten-
sions of non-associative Lambek calculus by requiring additional frame conditions.
As we will show in Section 6.3, this modularity allows us to provide a proof for the
poset version of the main theorems concerning the interdefinability of a series of
skew categories discussed in [64].

In this section, we recapitulate the basics of ternary relational semantics.
Consider the (associative) Lambek calculus, where formulae (Fma) are induc-

tively generated by the grammar A,B ::= X | A ⊗ B | A⧹B | B ⧸A, where X
comes from a fixed set At of atoms, ⊗ is a multiplicative conjunction, and ⧹ (⧸)
is left (right) residuation. Derivations are generated inductively by the following
rules:

A ⊢A A
id

A ⊢A B B ⊢A C

A ⊢A C
comp A ⊢A C B ⊢A D

A⊗B ⊢A C ⊗D
⊗

C ⊢A A B ⊢A D

A⧹B ⊢A C ⧹D
⧹ C ⊢A A B ⊢A D

B ⧸A ⊢A D⧸C
⧸

A⊗B ⊢A C

B ⊢A A⧹C
⧹RES

B ⊢A A⧹C

A⊗B ⊢A C
⧹−1

RES

A⊗B ⊢A C

A ⊢A C ⧸B
⧸RES

A ⊢A C ⧸B

A⊗B ⊢A C
⧸−1

RES

(A⊗B)⊗ C ⊢A A⊗ (B ⊗ C)
α

A⊗ (B ⊗ C) ⊢A (A⊗B)⊗ C
α−1

(1.3)

The rules shown in black constitute the non-associative Lambek calculus. Adding
the rules shown in red yields the associative Lambek calculus.

A ternary frame is a pair ⟨W,R⟩, where W is a nonempty set and R is a
ternary relation on W . For Rabc where a, b, c ∈W , we interpret c as the “implicit”
multiplication of a and b. A function v : Fma → P(W) on a ternary frame is a

30

CHAPTER 1. INTRODUCTION AND BACKGROUND

valuation if it satisfies:

v(A⊗B) = {c : ∃a ∈ v(A), b ∈ v(B), Rabc}
v(A⧹B) = {c : ∀a ∈ v(A), b ∈W, Racb⇒ b ∈ v(B)}
v(B ⧸A) = {c : ∀a ∈ v(A), b ∈W, Rcab⇒ b ∈ v(B)}

A ternary relational model of non-associative Lambek calculus is a frame with a
valuation ⟨W,R, v⟩ and the following theorem holds:

Theorem 1.5.1. The non-associative Lambek calculus is sound and complete with
respect to ternary relational models.

Regarding the associative Lambek calculus, one should consider adding frame
conditions on ternary frames, analogous to adding frame conditions to Kripke
frames for semantics of modal logics:

Left Skew Associativity (LSA) ∀a, b, c, d, x ∈W,Rabx & Rxcd
−→ ∃y ∈W such that Rbcy & Rayd.

Right Skew Associativity (RSA) ∀a, b, c, d, x ∈W,Rbcx & Raxd
−→ ∃y ∈W such that Raby & Rycd.

Therefore, the ternary relation models ⟨W,R, v⟩ for the associative Lambek calculus
are the models of the non-associative Lambek calculus where R further satisfies
both LSA and RSA.

Theorem 1.5.2. The associative Lambek calculus is sound and complete with re-
spect to ternary relational models satisfying both LSA and RSA.

Notice that the frame conditions LSA and RSA are strongly connected to the
associativity axioms α and α−1. In Section 6, we will explore this connection in
depth through correspondence theorems (Theorems 6.3.7 and 6.4.11) that relate
various frame conditions to different presentations of structural axioms.

Ternary relational semantics were introduced by Meyer and Routley [57] within
the context of relevant logics. The Lambek calculus and its extensions have sev-
eral other semantics. For example, residuated lattices [27] provide a general and
modular semantic framework, establishing algebraic semantics for systems ranging
from the associative Lambek calculus to the full Lambek calculus. Phase seman-
tics [2, 30], although originating from linear logic, also applies to the Lambek
calculus because of the equivalence between the Lambek calculus and specific frag-
ments of linear logic. For a brief survey of semantics of the Lambek calculus, we
refer readers to [24]. For a detailed and comprehensive introduction to the Lambek
calculus, we refer readers to [52].

1.6 Contributions
This thesis makes several contributions to the proof-theoretical study of semi-
substructural logics and their categorical models.

First, we develop sequent calculi that correspond to several variants of skew
monoidal categories:

(i) skew monoidal closed categories (Definition 2.3.1),

31

1.6. CONTRIBUTIONS

(ii) symmetric skew monoidal closed categories (Definition 4.2.1),

(iii) distributive skew monoidal categories with binary products (Definition 5.2.1),

(iv) distributive symmetric skew monoidal categories with binary products (Sec-
tion 5.4), and

(v) distributive skew monoidal closed categories with binary products (Section
5.5).

For each logical system, we construct a corresponding focused calculus with addi-
tional annotations on sequents and formulae that guarantee strong focusing, which
not only provides a decision procedure for derivability but also solves the coherence
problem for the corresponding categorical models. The construction of this hierar-
chy of focused calculi requires careful consideration since strongly focused calculi
are sensitive to the addition of new connectives and new sequent inference rules.
This proof-theoretical investigation extends the work of [67] to a broader family of
logics that can be viewed as skew variants of intuitionistic linear logic.

Through our investigations, we discovered that these logics possess interesting
properties that set them apart from traditional substructural logics. In partic-
ular, the proof techniques typically used for establishing Craig interpolation in
linear logic do not extend directly to semi-substructural logics, requiring us to de-
velop new approaches. We overcome this challenge, using ideas similar to those
of Kanazawa [38] and Pentus [54], to prove Craig interpolation for the logic of
skew monoidal closed categories (Theorem 3.2.3). We also demonstrate that the
sequent calculus for the logic enjoys proof-relevant interpolation (Theorem 3.4.1),
a concept originally discussed by Čubrić [68] for intuitionistic logics and recently
by Saurin [58] for classical and intuitionistic linear logic.

While the sequent calculus with stoup (using sequents of the form S | Γ ⊢ C)
successfully characterizes many semi-substructural logics, we found it unsuitable for
certain logics arising from specific variants of skew monoidal categories, e.g. skew
monoidal bi-closed categories (Section 6.1) and symmetric skew monoidal bi-closed
categories (Section 6.4). For these systems, we employ axiomatic and tree sequent
calculi, an approach inspired by studies on non-associative Lambek calculus. We
also study the sound and complete ternary relational semantics, for which we prove
correspondence theorems linking frame conditions to structural axioms (Theorems
6.3.7 and 6.4.11). Studying such systems addresses a gap in the literature: to
our knowledge, extensions of non-associative Lambek calculus that feature either
a single-sided associativity axiom (α) or skew unitality (λ and ρ) as structural
rules have not been examined. Yet, it is precisely such rules that characterize the
semi-substructural logics explored in this thesis. This gap likely exists because
traditional treatments have naturally concentrated on well-established algebraic
structures, such as semigroups for associative Lambek calculus and monoids for
its unital variant. Consequently, semi-associative and semi-unital cases, which
represent less conventional algebraic alternatives, have received less attention.

32

CHAPTER 1. INTRODUCTION AND BACKGROUND

1.7 Thesis Structure
The remainder of this thesis is organized as follows:

– Chapter 2, based on [63] and part of [72], lays the groundwork by introduc-
ing skew non-commutative multiplicative intuitionistic linear logic (SkNMILL).
We present its sequent calculus formulation SkNMILLS, establish relationships
between various calculi (2.2), and explore both categorical semantics through
skew monoidal closed categories (Section 2.3) and proof-theoretic semantics
via focusing (Section 2.4).

– Chapter 3, based on [72], investigates Craig interpolation for SkNMILL, re-
vealing why traditional Maehara interpolation fails (Section 3.1) and using a
variation of Maehara interpolation for establishing (proof-relevant) interpo-
lation properties.

– Chapter 41 extends our proof-theoretical analysis to SkMILL, a skew com-
mutative extension of SkNMILL. In this sequent calculus, formulae can be
exchanged within the context, but the formula in the stoup cannot be ex-
changed with any formula in the context.

– Chapter 5, based on [71], broadens the scope by incorporating additive con-
nectives to the sequent calculus SkNMILLI,⊗ and investigating two further
extensions including skew exchange (Section 5.4) and linear implication (Sec-
tion 5.5).

– Chapter 6, based on [73] and an unpublished manuscript, moves beyond
the stoup-based approach to investigate semi-substructural logics requiring
different frameworks. It first explores the logic of skew monoidal bi-closed
categories (Section 6.2) and the corresponding relational semantics (Section
6.3), and then extends the analysis to symmetric skew monoidal bi-closed
categories (Section 6.4).

– Chapter 7 concludes by summarizing our contributions and discussing future
research directions.

1.8 Formalization
Given the complexity of proofs in this domain and their reliance on structural
induction, we have formalized key results using the proof assistant Agda (version
2.6.4.1). Our formalization includes:

– The sequent calculi SkMILLS, SkNMILLA, and their focused versions, with
equivalence relations on derivations.

– The focusing procedures for both SkMILLS and SkNMILLA (Sections 4.3 and
5.3).

Formalizations for other additive extensions and the tree sequent calculus were
deemed too complex to complete at this stage and are left for future work. The

1This chapter is based on a collaborative unpublished work with Niccolò Veltri.

33

1.8. FORMALIZATION

Agda code is available in my GitHub repository https://github.com/cswphilo/
code-PhD-thesis.

Additionally, Veltri has formalized related results for SkNMILLS, including the
Craig, Maehara, and proof-relevant interpolation properties. The associated code is
available at https://github.com/niccoloveltri/code-skewmonclosed/tree/
interpolation.

34

https://github.com/cswphilo/code-PhD-thesis
https://github.com/cswphilo/code-PhD-thesis
https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation
https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation

Chapter 2

Skew Non-Commutative
Multiplicative Intuitionistic
Linear Logic

We begin from a skew variant of non-commutative intuitionistic linear logic
(SkMILL), where the associativity and both unit laws hold only in one direction.
We present this logic through a sequent calculus SkNMILLS, which not only provides
a proof system but also precisely captures the categorical notion of skew monoidal
closed categories. We first develop the basic proof theory, then establish a focused
system that will be essential for solving the coherence problem for these categories.

2.1 Sequent calculus

We begin by introducing a sequent calculus SkNMILLS that formalizes a skew variant
of non-commutative multiplicative intuitionistic linear logic (NMILL), which we call
SkNMILL. While elements of SkNMILLS were briefly discussed in Section 1.2.2 since it
is extended from the sequent calculus of SkNMILLI,⊗ by adding the linear implication
⊸, we now present it in full detail to establish a foundation for the extensions that
follow.

Formulae are inductively generated by the grammar A,B ::= X | I | A ⊗ B |
A ⊸ B, where X comes from a fixed set At of atoms, I is a multiplicative verum,
⊗ is a multiplicative conjunction and ⊸ is a linear implication.

A sequent is a triple of the form S | Γ ⊢ A, where the succedent A is a single
formula (as in the sequent calculus for NMILL) and the antecedent is divided in two
parts: an optional formula S, called stoup [29], and an ordered list of formulae
Γ, called context. The peculiar design of sequents, involving the presence of the
stoup in the antecedent, comes from previous work on deductive systems with skew
structure by Uustalu, Veltri and Zeilberger [67, 66, 65, 69]. The metavariable S
always denotes a stoup, i.e., S can be a single formula or empty, in which case we
write S = −, and X,Y, Z are always names of atomic formulae.

Derivations of a sequent S | Γ ⊢ A are inductively generated by the following
rules:

35

2.1. SEQUENT CALCULUS

A | ⊢ A
ax

A | Γ ⊢ C

− | A,Γ ⊢ C
pass

− | Γ ⊢ A B | ∆ ⊢ C

A ⊸ B | Γ,∆ ⊢ C
⊸L

− | Γ ⊢ C

I | Γ ⊢ C
IL

A | B,Γ ⊢ C

A⊗B | Γ ⊢ C
⊗L

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R − | ⊢ I IR

S | Γ ⊢ A − | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

These inference rules in SkNMILLS are reminiscent of the ones in the sequent
calculus for NMILL [1], but there are some crucial differences.

1. The left logical rules IL, ⊗L and ⊸L, read bottom-up, are only allowed to be
applied on the formula in the stoup position. In particular, there is no general
way to remove a unit I nor decompose a tensor A ⊗ B if these formulae are
located in the context and not in the stoup (we will see in (2.3) that something
can actually be done to deal with implications A ⊸ B in the context).

2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of the con-
clusion between the two premises whereby the formula in the stoup, in case
such a formula is present, has to be moved to the stoup of the first premise.
In particular, the stoup formula of the conclusion cannot be moved to the
antecedent of the second premise even if Γ is chosen to be empty.

3. The presence of the stoup implies a distinction between antecedents of forms
A | Γ and − | A,Γ. The structural rule pass (for ‘passivation’), read bottom-
up, allows the moving of the leftmost formula in the context to the stoup
position whenever the stoup is initially empty.

4. The logical connectives of NMILL typically include two ordered implications⊸
and ⊸, which are two variants of linear implication arising from the removal
of the exchange rule from intuitionistic linear logic. In SkNMILL only one of
the ordered implications (the right implication ⊸) is present.

The restrictions in 1–4 are essential for precisely capturing all the features of skew
monoidal closed categories and nothing more, as we discuss in Section 2.3. Notice
also that, similarly to the case of NMILL, all structural rules of exchange, con-
traction, and weakening are absent. We give names to derivations and we write
f : S | Γ ⊢ A when f is a particular derivation of the sequent S | Γ ⊢ A.

Examples of valid derivations in the sequent calculus, corresponding to the
structural laws λ, ρ and α of skew monoidal closed categories (see Definition 2.3.1)

36

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

are given below.

(λ)

A | ⊢ A
ax

− | A ⊢ A
pass

I | A ⊢ A
IL

I⊗A | ⊢ A
⊗L

(ρ)

A | ⊢ A
ax
− | ⊢ I IR

A | ⊢ A⊗ I ⊗R

(α)

A | ⊢ A
ax

B | ⊢ B
ax

C | ⊢ C
ax

− | C ⊢ C
pass

B | C ⊢ B ⊗ C
⊗R

− | B,C ⊢ B ⊗ C
pass

A | B,C ⊢ A⊗ (B ⊗ C) ⊗R

A⊗B | C ⊢ A⊗ (B ⊗ C) ⊗L

(A⊗B)⊗ C | ⊢ A⊗ (B ⊗ C) ⊗L

(2.1)

Examples of non-derivable sequents include the “inverses” of the conclusions in
(2.1), obtained by swapping the stoup formula with the succedent formula. More
precisely, given any three atomic formulaeX, Y , and Z, the following three sequents
X | ⊢ I ⊗ X, X ⊗ I | ⊢ X and X ⊗ (Y ⊗ Z) | ⊢ (X ⊗ Y) ⊗ Z do not have a
derivation. All possible attempts of constructing a valid derivation for each of them
end in failure (a double question mark ?? means that no rule can be applied to
close the derivation).

(λ−1) (ρ−1)

??
X | ⊢ I

??
− | ⊢ X

X | ⊢ I⊗X
⊗R

??
X | I ⊢ X

X ⊗ I | ⊢ X
⊗L

(⊗R sends X to 1st premise) (IL does not act on I in context)

(α−1)
??

X | Y ⊗ Z ⊢ X ⊗ Y
??

− | ⊢ Z

X | Y ⊗ Z ⊢ (X ⊗ Y)⊗ Z
⊗R

X ⊗ (Y ⊗ Z) | ⊢ (X ⊗ Y)⊗ Z
⊗L

??
X | ⊢ X ⊗ Y

??
− | Y ⊗ Z ⊢ Z

X | Y ⊗ Z ⊢ (X ⊗ Y)⊗ Z
⊗R

X ⊗ (Y ⊗ Z) | ⊢ (X ⊗ Y)⊗ Z
⊗L

(⊗L does not act on ⊗ in context, so only ⊗R is applicable)
Analogously, the sequents I ⊸ A | ⊢ A and (A⊗B) ⊸ C | ⊢ A ⊸ (B ⊸ C) are
derivable, while generally their “inverses” are not. Also, a derivation of A | ⊢ B
always yields a derivation of I | ⊢ A ⊸ B, but there are A, B such that I | ⊢
A ⊸ B is derivable while A | ⊢ B is not (take, e.g., A = X, B = I⊗X).

Sets of derivations are quotiented by a congruence relation ⊜, generated by the
pairs of derivations in Figures 2.1 and 2.2.

The three equations in Figure 2.1 are η-conversions, completely characterizing
the ax rule on non-atomic formulae. The remaining equations in Figure 2.2 are
permutative conversions. The congruence ⊜ has been carefully chosen to serve as
the proof-theoretic counterpart of the equational theory of skew monoidal closed

37

2.1. SEQUENT CALCULUS

I | ⊢ I
ax

⊜ − | ⊢ I IR

I | ⊢ I IL

A⊗B | ⊢ A⊗B
ax

⊜
A | ⊢ A

ax
B | ⊢ B

ax

− | B ⊢ B
pass

A | B ⊢ A⊗B
⊗R

A⊗B | ⊢ A⊗B
⊗L

A ⊸ B | ⊢ A ⊸ B
ax

⊜

A | ⊢ A
ax

− | A ⊢ A
pass

B | ⊢ B
ax

A ⊸ B | A ⊢ B
⊸L

A ⊸ B | ⊢ A ⊸ B
⊸R

Figure 2.1: Equivalence of derivations in SkNMILLS: η-conversions

categories, introduced in Definition 2.3.1. The subsystem of equations involving
only (I,⊗) originated in [67] while the subsystem involving only ⊸ is from [65].

Theorem 2.1.1. The sequent calculus enjoys cut admissibility: the following two
cut rules are admissible.

S | Γ ⊢ A A | ∆ ⊢ C

S | Γ,∆ ⊢ C
scut

− | Γ ⊢ A S | ∆0, A,∆1 ⊢ C

S | ∆0,Γ,∆1 ⊢ C
ccut

Proof. The proof proceeds by induction on the height of derivations and the com-
plexity of cut formulae. Specifically, for scut, we first perform induction on the first
premise f , and if necessary, we perform subinduction on g or the complexity of the
cut formula A. For ccut, we start by performing induction on the right premise g
instead. The cases other than ⊸L and ⊸R have been discussed in [67, Lemma 5],
so we will only elaborate on the cases of ⊸.
We first deal with scut. If f = ⊸L(f ′, f ′′), then we permute scut up, i.e.

f ′

− | Γ ⊢ A′
f ′′

B′ | ∆ ⊢ A

A′ ⊸ B′ | Γ,∆ ⊢ A
⊸L g

A | Λ ⊢ C

A′ ⊸ B′ | Γ,∆,Λ ⊢ C
scut

= f ′

− | Γ ⊢ A′

f ′′

B′ | ∆ ⊢ A
g

A | Λ ⊢ C

B′ | ∆,Λ ⊢ C
scut

A′ ⊸ B′ | Γ,∆,Λ ⊢ C
⊸L

38

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

f
A′ | Γ ⊢ A

− | A′,Γ ⊢ A
pass g

− | ∆ ⊢ B

− | A′,Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | Γ ⊢ A

g
− | ∆ ⊢ B

A′ | Γ,∆ ⊢ A⊗B
⊗R

− | A′,Γ,∆ ⊢ A⊗B
pass

f
− | Γ ⊢ A

I | Γ ⊢ A
IL g
− | ∆ ⊢ B

I | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
− | Γ ⊢ A

g
− | ∆ ⊢ B

− | Γ,∆ ⊢ A⊗B
⊗R

I | Γ,∆ ⊢ A⊗B
IL

f
A′ | B′,Γ ⊢ A

A′ ⊗B′ | Γ ⊢ A
⊗L g

− | ∆ ⊢ B

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
A′ | B′,Γ ⊢ A

g
− | ∆ ⊢ B

A′ | B′,Γ,∆ ⊢ A⊗B
⊗R

A′ ⊗B′ | Γ,∆ ⊢ A⊗B
⊗L

f
− | Γ ⊢ C

g
D | ∆ ⊢ A

C ⊸ D | Γ,∆ ⊢ A
⊸L h

− | Λ ⊢ B

C ⊸ D | Γ,∆,Λ ⊢ A⊗B
⊗R
⊜

f
− | Γ ⊢ C

g
D | ∆ ⊢ A

h
− | Λ ⊢ B

D | ∆,Λ ⊢ A⊗B
⊗R

C ⊸ D | Γ,∆,Λ ⊢ A⊗B
⊸L

f
A′ | Γ, A ⊢ B

A′ | Γ ⊢ A ⊸ B
⊸R

− | A′,Γ ⊢ A ⊸ B
pass

⊜

f
A′ | Γ, A ⊢ B

− | A′,Γ, A ⊢ B
pass

− | A′,Γ ⊢ A ⊸ B
⊸R

f
− | Γ, A ⊢ B

− | Γ ⊢ A ⊸ B
⊸R

I | Γ ⊢ A ⊸ B
IL

⊜

f
− | Γ, A ⊢ B

I | Γ, A ⊢ B
IL

I | Γ ⊢ A ⊸ B
⊸R

f
A′ | B′,Γ, A ⊢ B

A′ | B′,Γ ⊢ A ⊸ B
⊸R

A′ ⊗B′ | Γ ⊢ A ⊸ B
⊗L

⊜

f
A′ | B′,Γ, A ⊢ B

A′ ⊗B′ | Γ, A ⊢ B
⊗L

A′ ⊗B′ | Γ ⊢ A ⊸ B
⊸R

f
− | Γ ⊢ A′

g
B′ | ∆, A ⊢ B

B′ | ∆ ⊢ A ⊸ B
⊸R

A′ ⊸ B′ | Γ,∆ ⊢ A ⊸ B
⊸L

⊜

f
− | Γ ⊢ A′

g
B′ | ∆, A ⊢ B

A′ ⊸ B′ | Γ, A ⊢ B
⊸L

A′ ⊸ B′ | Γ,∆ ⊢ A ⊸ B
⊸R

Figure 2.2: Equivalence of derivations in SkNMILLS: permutative conversions

39

2.1. SEQUENT CALCULUS

If f = ⊸R f ′, then we perform a subinduction on g. If g = ⊸L(g′, g′′), then

f ′

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

g′

− | ∆ ⊢ A
g′′

B | Λ ⊢ C

A ⊸ B | ∆,Λ ⊢ C
⊸L

S | Γ,∆,Λ ⊢ C
scut

= g′

− | ∆ ⊢ A

f ′

S | Γ, A ⊢ B
g′′

B | Λ ⊢ C

S | Γ, A,Λ ⊢ C
scut

S | Γ,∆,Λ ⊢ C
ccut

where the complexity of the cut formulae is reduced. For the rules other than ax,
we permute scut up. For example, if g = ⊸R g′, then

f ′

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

g′

A ⊸ B | ∆, A′ ⊢ B′

A ⊸ B | ∆ ⊢ A′ ⊸ B′ ⊸R

S | Γ,∆ ⊢ A′ ⊸ B′ scut

=

f ′

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R g′

A ⊸ B | ∆, A′ ⊢ B′

S | Γ,∆, A′ ⊢ B′ scut

S | Γ,∆ ⊢ A′ ⊸ B′ ⊸R

For ccut, if g = ⊸R g′, then we permute ccut up. If g = ⊸L(g′, g′′), we permute
ccut up as well, but depending on where the cut formula is placed, we either apply
ccut on f and g′ or f and g′′.

Moreover, more equations of derivations hold in SkNMILLS due to the cut-
elimination procedures defined in [67] and the proof of Theorem 2.1.1. This set of
equations fully describe the possible interactions between cut rules. The first set of
equations in Figure 2.3 shows that parallel composition of cut rules is commutative.
The second set of equations in Figure 2.4 shows that sequential composition of cut
rules is associative. Analogous equations have been proved in [67] for the fragment
of SkNMILLS without linear implication. Notice that the each pair of derivations in
these equations are strictly equal, not merely ⊜-related.

Proposition 2.1.2. The commutativity equations in Figure 2.3 and the associa-
tivity equations in Figure 2.4 are admissible.

Proof. The proof proceeds by mutual induction on the structure of derivations.
There are many cases to consider. We do not include the long proof here and refer
the interested reader to consult Veltri’s Agda formalization, https://github.com/
niccoloveltri/code-skewmonclosed/blob/interpolation/Equations.agda.
Heavy proofs by pattern matching like this one is where the employment of a
proof assistant becomes very helpful, in our experience.

Here are some other admissible rules relevant for the metatheory of this calculus.

• The left rules for I and ⊗ are invertible up to ⊜, and similarly the right rule
for ⊸. No other rule is invertible; in particular, the passivation rule pass is

40

https://github.com/niccoloveltri/code-skewmonclosed/blob/interpolation/Equations.agda
https://github.com/niccoloveltri/code-skewmonclosed/blob/interpolation/Equations.agda

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

f
S | Γ0 ⊢ A

g
− | Γ2 ⊢ B

h
A | Γ1, B,Γ3 ⊢ C

A | Γ1,Γ2,Γ3 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
scut

= g
− | Γ2 ⊢ B

f
S | Γ0 ⊢ A

h
A | Γ1, B,Γ3 ⊢ C

S | Γ0,Γ1, B,Γ3 ⊢ C
scut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
ccut

f
− | Γ1 ⊢ A

g
− | Γ3 ⊢ B

h
S | Γ0, A,Γ2, B,Γ4 ⊢ C

S | Γ0, A,Γ2,Γ3,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

= g
− | Γ3 ⊢ B

f
− | Γ1 ⊢ A

h
S | Γ0, A,Γ2, B,Γ4 ⊢ C

S | Γ0,Γ1,Γ2, B,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

Figure 2.3: Commutativity of cut

not.

f
A⊗B | Γ ⊢ C

A | B,Γ ⊢ C
⊗L−1

f
I | Γ ⊢ C

− | Γ ⊢ C IL−1

f
S | Γ ⊢ A ⊸ B

S | Γ, A ⊢ B
⊸R−1

⊗L−1(⊗L f) = f

IL−1(IL f) = f

⊸R−1(⊸R f) = f

⊗L(⊗L−1 f) ⊜ f

IL(IL−1 f) ⊜ f

⊸R(⊸R−1 f) ⊜ f

• Applications of the invertible left logical rules can be iterated, and similarly
for the invertible right ⊸R rule, resulting in the two admissible rules

S | Γ,∆ ⊢ C

[[S | Γ]]⊗ | ∆ ⊢ C
L⋆

S | Γ,∆ ⊢ C

S | Γ ⊢ [[∆ | C]]⊸
⊸R⋆

(2.2)

The interpretation of antecedents [[S | Γ]]⊗ in (2.2) is the formula obtained by
substituting the separator | and the commas with tensors, [[S | A1, . . . , An]]⊗ =
(. . . (([[S⟨⟨⊗A1)⊗A2) . . .)⊗An, where the interpretation of stoups is defined
by [[−⟨⟨ = I and [[A⟨⟨ = A. Dually, the formula [[∆ | C]]⊸ in (2.2) is obtained
by substituting | and commas with implications: [[A1, . . . , An | C]]⊸ = A1 ⊸
(A2 ⊸ (. . . ⊸ (An ⊸ C))).

• Another left implication rule, acting on a formula A ⊸ B in the context, is

41

2.1. SEQUENT CALCULUS

f
S | Γ0 ⊢ A

g
A | Γ1 ⊢ B

h
B | Γ2 ⊢ C

A | Γ1,Γ2 ⊢ C
scut

S | Γ0,Γ1,Γ2 ⊢ C
scut

=

f
S | Γ0 ⊢ A

g
A | Γ1 ⊢ B

S | Γ0,Γ1 ⊢ B
scut h

B | Γ2 ⊢ C

S | Γ0,Γ1,Γ2 ⊢ C
scut

f
− | Γ1 ⊢ A

g
S | Γ0, A,Γ2 ⊢ B

h
B | Γ3 ⊢ C

S | Γ0, A,Γ2,Γ3 ⊢ C
scut

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
ccut

=

f
− | Γ1 ⊢ A

g
S | Γ0, A,Γ2 ⊢ B

S | Γ0,Γ1,Γ2 ⊢ B
ccut h

B | Γ3 ⊢ C

S | Γ0,Γ1,Γ2,Γ3 ⊢ C
scut

f
− | Γ2 ⊢ A

g
− | Γ1, A,Γ3 ⊢ B

h
S | Γ0, B,Γ4 ⊢ C

S | Γ0,Γ1, A,Γ3,Γ4 ⊢ C
ccut

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

=

f
− | Γ2 ⊢ A

g
− | Γ1, A,Γ3 ⊢ B

S | Γ1,Γ2,Γ3 ⊢ B
ccut h

S | Γ0, B,Γ4 ⊢ C

S | Γ0,Γ1,Γ2,Γ3,Γ4 ⊢ C
ccut

Figure 2.4: Associativity of cut rules

42

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

derivable using cut:

f
− | Γ ⊢ A

g
S | ∆0, B,∆1 ⊢ C

S | ∆0, A ⊸ B,Γ,∆1 ⊢ C
⊸LC

=

f
− | Γ ⊢ A B | ⊢ B

ax

A ⊸ B | Γ ⊢ B
⊸L

− | A ⊸ B,Γ ⊢ B
pass g

S | ∆0, B,∆1 ⊢ C

S | ∆0, A ⊸ B,Γ,∆1 ⊢ C
ccut

(2.3)

SkNMILL as a Logic of Resources Like MILL and NMILL, SkNMILL can be inter-
preted through the lens of resource management. In this interpretation, formulae in
the sequent calculus SkNMILLS represent different types of resources. The primitive
resources are represented by atomic formulae. The compound formula A ⊗ B de-
notes having resource A followed by resource B, while I is “nothing”. A formula of
the form A ⊸ B describes a transformation method that converts resource A into
resource B when A ⊸ B is available just before A whereby the resource A ⊸ B
itself is also consumed. As with other substructural logics that lack weakening and
contraction rules, each resource can be used exactly once.

In a sequent, the antecedent lists the available resources, while the succedent
specifies the desired output resource. A derivation represents a specific method for
transforming the input resources into the target resource. This resource-oriented
perspective naturally leads to reading and constructing derivations from the con-
clusion upward to the premises. The antecedent maintains an ordered sequence of
resources, indicating their required consumption order—if resource A appears be-
fore resource B in the antecedent, then A must be used before B. When the stoup
position contains a resource, it indicates the resource that is immediately available
for use. Resources in the context must wait until after the resource in the stoup
has been consumed. In proof trees, time flows from bottom to top (conclusion to
premises), with the left premise always being processed temporally before the right
premise.

The context’s behavior resembles that of a stack (or queue) data structure.
When no resource is immediately available for consumption (i.e. the stoup is
empty), the next resource can be promoted to immediate availability through the
pass rule, which pops the leftmost element from the context and moves it to the
stoup. The ⊸R rule enables pushing new resources to the rightmost position of
the context. Through the ⊗L rule, an immediately available resource A ⊗ B can
be split into its components: A remains immediately available in the stoup, while
B is pushed to the top of the context for subsequent use. An immediately avail-
able I resource can be discarded via the IL rule, allowing the next context resource
to be accessed. The IR rule permits generation of I without cost. The ⊸L rule
handles situations where an immediately available resource A ⊸ B must be used
to produce C. This makes B accessible, but only after generating A using some
portion of the available resources. This process splits the context into Γ and ∆,
where Γ is used to produce A. Once accomplished, the process continues with B
immediately available and ∆ reserved for later use. In the ⊗R rule, a succedent
of form A ⊗ B requires first producing A and then B. This necessitates another
context split: the earlier-usable resources in Γ produce A in the left premise, while

43

2.2. EQUIVALENT CALCULI OF SKNMILL

the remaining resources in ∆ subsequently produce B in the right premise. A key
“skew” aspect of SkNMILL manifests here: an immediately available stoup resource
S must contribute to producing A, even if A could be produced without resources.

The second fundamental “skew” characteristic of SkNMILL restricts left rules to
operating solely on stoup formulae. In resource terms, it means that decomposing
resources is not permitted while they remain in the context.

2.2 Equivalent calculi of SkNMILL

We now present two equivalent calculi of SkNMILL. Both presentations illustrate
different aspects of the logic. We first present an axiomatic (Hilbert-style) calculus
that corresponds to the categorical semantics in a more direct manner. Then we
introduce a tree sequent calculus that treats structural rules explicitly and shows
that the peculiar antecedent of SkNMILL should be thought of as a tree associating
to the left rather than as a list with a distinguished first element. Each of these
formulations has its own emphasis, and their equivalence ensures we can freely
move between them while preserving the same logic.

2.2.1 Axiomatic calculus
The sequent calculus SkNMILLS has an equivalent axiomatic calculus SkNMILLA,
also called the Hilbert-style deductive system (similar correspondence has also been
shown in [67, 66, 65, 69]). Both calculi share the same formulae, but SkNMILLA uses
simpler sequents of the form A ⊢A B where both A and B are single formulae. The
derivation rules of SkNMILLA, shown below, directly mirror the structure of skew
monoidal closed categories from Definition 2.3.1, with π and π−1 corresponding to
the residuation operation of ⊗ and ⊸.

A ⊢A A
id

A ⊢A B B ⊢A C

A ⊢A C
comp

A ⊢A C B ⊢A D

A⊗B ⊢A C ⊗D
⊗ C ⊢A A B ⊢A D

A ⊸ B ⊢A C ⊸ D
⊸

I⊗A ⊢A A
λ

A ⊢A A⊗ I
ρ

(A⊗B)⊗ C ⊢A A⊗ (B ⊗ C)
α

A⊗B ⊢A C

A ⊢A B ⊸ C
π

A ⊢A B ⊸ C

A⊗B ⊢A C π−1

The derivations in SkNMILLA are quotiented by a congruence relation .=. This
relation is generated by the pairs of derivations shown in Figure 2.5, which state
that ⊸ is a functor and π is an isomorphism and natural on three arguments
together with the equations for skew monoidal categories from [67, Figure 2].

We show the equivalence between SkNMILLS and SkNMILLA with the following
lemmata.

Lemma 2.2.1. Given a formula A and contexts Γ and ∆, [[[[A | Γ]]⊗ | ∆]]⊗ = [[A |
Γ,∆]]⊗.

Proof. The proof proceeds by induction on Γ. If Γ = [], then [[[[A | []]]⊗∆]]⊗ =
[[A | Γ]]⊗ = [[A | [],∆]]⊗.
If Γ = (B,Γ′), then

44

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

A ⊢A A
id

B ⊢A B
id

A ⊸ B ⊢A A ⊸ B
⊸

.= A ⊸ B ⊢A A ⊸ B
id

f
A ⊢A B

g
B ⊢A C

A ⊢A C
comp

h
D ⊢A E

k
E ⊢A F

D ⊢A F
comp

C ⊸ D ⊢A A ⊸ F
⊸

.=

g
B ⊢A C

h
D ⊢A E

C ⊸ D ⊢A B ⊸ E
⊸

f
A ⊢A B

k
E ⊢A F

B ⊸ E ⊢A A ⊸ F
⊸

C ⊸ D ⊢A A ⊸ F
comp

f
A ⊢A A′

g
A′ ⊗B ⊸ C

A′ ⊢A B ⊸ C
π

A ⊢A B ⊸ C
comp

.=

f
A ⊢A A′ B ⊢A B

id

A⊗B ⊢A A′ ⊗B
⊗ g

A′ ⊗B ⊢A C

A⊗B ⊢A⊸ C
comp

A ⊢A B ⊸ C
π

f
A⊗B ⊢A C

g
C ⊢A C ′

A⊗B ⊢A C ′ comp

A ⊢A B ⊸ C ′ π

.=

f
A⊗B ⊢A C

A ⊢A B ⊸ C
π

B ⊢A B
id g

C ⊢A C ′

B ⊸ C ⊢A B ⊸ C ′ ⊸

A ⊢A B ⊸ C ′ comp

A ⊢A A
id f

B ⊢A B′

A⊗B ⊢A A⊗B′ ⊗

A ⊢A B ⊸ (A⊗B′)
π

.=
A⊗B′ ⊢A A⊗B′ id

A ⊢A B′ ⊸ (A⊗B′)
π

f
B ⊢A B′ A⊗B′ ⊢A A⊗B′ id

B′ ⊸ (A⊗B′) ⊢A B ⊸ (A⊗B′) ⊸

A ⊢A B ⊸ (A⊗B′)
comp

f
A ⊢A B ⊸ C

A⊗B ⊢A C π−1

A ⊢A B ⊸ C
π

.= f
A ⊢A B ⊸ C

f
A⊗B ⊢A C

A ⊢A B ⊸ C
π

A⊗B ⊢A C π−1

.= f
A⊗B ⊢A C

Figure 2.5: Additional equations on derivations of SkNMILLA

45

2.2. EQUIVALENT CALCULI OF SKNMILL

[[[[A | B,Γ′]]⊗ | ∆]]⊗ = [[[[A ⊗ B | Γ′]]⊗ | ∆]]⊗
I.H.= [[A ⊗ B | Γ′,∆]]⊗ = [[A |

B,Γ′,∆]]⊗

Lemma 2.2.2. Given a context Γ and a derivation f : A ⊢A B, the following rule
is admissible:

f
A ⊢A B

[[A | Γ]]⊗ ⊢A [[B | Γ]]⊗
[[f | Γ]]⊗

Proof. The proof proceeds by induction on Γ. If Γ = [], then f is the desired
derivation.
If Γ = (C,Γ′), then we construct the desired derivations as follows:

f
A ⊢A B C ⊢A C

id

A⊗ C ⊢A B ⊗ C
⊗

[[A⊗ C | Γ′]]⊗ ⊢A [[B ⊗ C | Γ′]]⊗
[[f ⊗ id | Γ′]]⊗

[[A | C,Γ′]]⊗ ⊢A [[B | C,Γ′]]⊗

The double-line inference rule denotes an equality of sequents.

Lemma 2.2.3. Given two formulae A and B and a context Γ, there exists a
derivation of the sequent [[A | B,Γ]]⊗ ⊢A A⊗ [[B | Γ]]⊗.

Proof. The proof proceeds by induction on Γ. If Γ = [], then the desired derivation
is id : A⊗B ⊢A A⊗B.
If Γ = (C,Γ′), then we construct the desired derivations as follows:

(A⊗B)⊗ C ⊢A A⊗ (B ⊗ C)
α

[[(A⊗B)⊗ C | Γ′]]⊗ ⊢A [[A⊗ (B ⊗ C) | Γ′]]⊗
[[α | Γ′]]⊗

[[A | B,C,Γ′]]⊗ ⊢A [[A | B ⊗ C,Γ′]]⊗
I.H.

[[A | B ⊗ C,Γ′]]⊗ ⊢A A⊗ [[B ⊗ C | Γ′]]⊗
[[A | B,C,Γ′]]⊗ ⊢A A⊗ [[B ⊗ C | Γ′]]⊗

comp

[[A | B,C,Γ′]]⊗ ⊢A A⊗ [[B | C,Γ′]]⊗

Lemma 2.2.4. Given a formula A and two contexts Γ and ∆, there exists a
derivation of the sequent [[A | Γ,∆]]⊗ ⊢A [[A | Γ]]⊗ ⊗ [[− | ∆]]⊗.

Proof. The desired derivation is constructed as follows:

[[A | Γ]]⊗ ⊢A [[A | Γ]]⊗ ⊗ I
ρ

[[[[A | Γ]]⊗ | ∆]]⊗ ⊢A [[[[A | Γ]]⊗ ⊗ I | ∆]]⊗
[[ρ | ∆]]⊗

[[[[A | Γ]]⊗ | ∆]]⊗ ⊢A [[[[A | Γ]]⊗ | I,∆]]⊗
Lemma 2.2.3

[[[[A | Γ]]⊗ | I,∆]]⊗ ⊢A [[A | Γ]]⊗ ⊗ [[I | ∆]]⊗
[[[[A | Γ]]⊗ | ∆]]⊗ ⊢A [[A | Γ]]⊗ ⊗ [[I | ∆]]⊗

comp

[[A | Γ,∆]]⊗ ⊢A [[A | Γ]]⊗ ⊗ [[I | ∆]]⊗
Lemma 2.2.1

[[A | Γ,∆]]⊗ ⊢A [[A | Γ]]⊗ ⊗ [[− | ∆]]⊗

Theorem 2.2.5. The calculi SkNMILLS and SkNMILLA are equivalent, meaning that
the two statements below are true:

46

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

• For any derivation f : S | Γ ⊢ C, there exists a derivation G2Af : [[S | Γ]]⊗ ⊢A
C.

• For any derivation f : A ⊢A C, there exists a derivation A2Gf : A | ⊢ C.

Proof. Both G2A and A2G are constructed by induction on the height of f .
We first construct G2A. For the base cases where f = ax or f = IR, the corre-
sponding SkNMILLA derivations are constructed as follows:

A | ⊢ A
ax 7→ A ⊢A A

id − | ⊢ I IR 7→ I ⊢A I id

Next we consider the inductive cases.
Case f = IL f ′

f ′

− | Γ ⊢ C

I | Γ ⊢ C
IL 7→

G2Af ′

[[I | Γ]]⊗ ⊢A C

Case f = ⊗L f ′

f ′

A | B,Γ ⊢ C

A⊗B | Γ ⊢ C
⊗L 7→

G2Af ′

[[A⊗B | Γ]]⊗ ⊢A C

Case f = pass f ′

f ′

A | Γ ⊢ C

− | A,Γ ⊢ C
pass 7→

I⊗A ⊢A A
λ

[[I⊗A | Γ]]⊗ ⊢A [[A | Γ]]⊗
[[λ | Γ]]⊗ G2Af ′

[[A | Γ]]⊗ ⊢A C

[[I⊗A | Γ]]⊗ ⊢A C
comp

Case f = ⊸R f ′

f ′

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R 7→

G2Af ′

[[S | Γ, A]]⊗ ⊢A B

[[S | Γ]]⊗ ⊗A ⊢A B

[[S | Γ]]⊗ ⊢A A ⊸ B
π

Case f = ⊗R(f ′, f ′′)

f ′

S | Γ ⊢ A
f ′′

− | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

7→ Lemma 2.2.4
[[S | Γ,∆]]⊗ ⊢A [[S | Γ]]⊗ ⊗ [[− | ∆]]⊗

G2Af ′

[[S | Γ]]⊗ ⊢A A
G2Af ′′

[[− | ∆]]⊗ ⊢A B

[[S | Γ]]⊗ ⊗ [[− | ∆]]⊗ ⊢A A⊗B
⊗

[[S | Γ,∆]]⊗ ⊢A A⊗B
comp

47

2.2. EQUIVALENT CALCULI OF SKNMILL

Case f = ⊸L(f ′, f ′′)

f ′

− | Γ ⊢ A
f ′′

B | ∆ ⊢ C

A ⊸ B | Γ,∆ ⊢ C
⊸L

7→
Lemma 2.2.4

[[A ⊸ B | Γ]]⊗ ⊢A (A ⊸ B)⊗ [[− | Γ]]⊗

A ⊸ B ⊢A A ⊸ B
id G2Af ′

[[− | Γ]]⊗ ⊢A A

(A ⊸ B)⊗ [[− | Γ]]⊗ ⊢A (A ⊸ B)⊗A
⊗ A ⊸ B ⊢A A ⊸ B

id

(A ⊸ B)⊗A ⊢A B
π−1

(A ⊸ B)⊗ [[− | Γ]]⊗ ⊢A B
comp

[[A ⊸ B | Γ]]⊗ ⊢A B
comp

[[[[A ⊸ B | Γ]]⊗ | ∆]]⊗ ⊢A [[B | ∆]]⊗
Lemma 2.2.2

[[A ⊸ B | Γ,∆]]⊗ ⊢A [[B | ∆]]⊗
Lemma 2.2.1 G2Af ′′

[[B | ∆]]⊗ ⊢A C

[[A ⊸ B | Γ,∆]]⊗ ⊢A C
comp

The construction of A2G also proceeds by induction f . For the identity rule,
A2G id = ax. The structural rules λ, ρ, and α are translated to their corresponding
SkNMILLS derivations shown in (2.1). The comp rule is handled by the admissible
scut rule. The translation of adjunction rules π and π−1 relies on the invertibility
of ⊗L and ⊸R rules in SkNMILLS. The functoriality rules (⊗ and ⊸) follow directly
from ⊗R, ⊗L, ⊸L, and ⊸R.

Remark 2.2.6. Both SkNMILLS (with its equivalence ⊜) and SkNMILLA (with its
equivalence .=) serve as presentations of the free skew monoidal closed category
(FSkMCl) over At. The functions G2A and A2G can be proved to preserve these
respective equivalence relations. Furthermore, G2A and A2G are inverses of each
other modulo equivalence of derivations, meaning that the equivalence between
SkNMILLS and SkNMILLA holds not just for derivability of sequents but also at the
level of derivations up to equivalence. For the proof that SkNMILLS with ⊜ forms the
FSkMCl, we refer readers to Theorem 2.3.6. For the proof of SkNMILLA with .=, we
refer readers to the beginning of Section 6.2.1, noting that while the construction
there is for a more complex calculus, it is a conservative extension of SkNMILLA.

In the next section, we introduce tree sequent calculus of SkNMILL, which is also
equivalent to SkNMILLS and SkNMILLA up to provability of sequents. In principle,
they should also be equivalent up to derivation equivalences under some well-defined
congruence relation on derivations in the tree calculus. However, this investigation
remains as future work.

2.2.2 Tree sequent calculus
Adapted from [52], we define trees inductively by the grammar T ::= Fma | − |
(T, T), where − is an empty tree. A context is a tree with a hole defined recursively
as C ::= [·] | (C, T) | (T, C). The substitution of a tree into a hole is defined
recursively:

subst([·], U) = U
subst((T ′, C), U) = (T ′, subst(C, U))
subst((C, T ′), U) = (subst(C, U), T ′)

We use T [·] to denote a context and T [U] to abbreviate subst(T [·], U). Some-
times we omit parentheses for trees when it does not cause ambiguity. Sequents in

48

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

SkNMILLT are in the form T ⊢T A where T is a tree and A is a single formula.
Derivations in SkNMILLT are generated recursively by the following rules:

A ⊢T A
ax

T [−] ⊢T C

T [I] ⊢T C
IL − ⊢T I IR

T [A,B] ⊢T C

T [A⊗B] ⊢T C
⊗L T ⊢T A U ⊢T B

T,U ⊢T A⊗B
⊗R

U ⊢T A T [B] ⊢T C

T [A ⊸ B,U] ⊢T C
⊸L

T,A ⊢T B

T ⊢T A ⊸ B
⊸R

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assoc

T [U] ⊢T C

T [−, U] ⊢T C
unitL

T [U,−] ⊢T C

T [U] ⊢T C
unitR

This calculus is similar to the ones for NL (non-associative Lambek calculus) [52]
and NL with unit [17] but with semi-unital (unitL and unitR) and semi-associative
(assoc) rules. The structural rule unitL, read bottom-up, removes an empty tree
from the left. It helps us to correctly characterize the axiom λ in SkNMILLT, i.e.
I ⊗ A ⊢T A is derivable while A ⊢T I ⊗ A is not. Analogously for the rule unitR,
from a bottom-up perspective, adds an empty tree from the right, and we cannot
capture ρ in SkNMILLT without unitR. Similarly, assoc captures α by allowing the
conversion of left-associative bracketing to right-associative bracketing among three
adjacent trees:

A ⊢T A
ax

−, A ⊢T A
unitL

I, A ⊢T A
IL

I⊗A ⊢T A
⊗L

??
X ⊢T I

??
− ⊢T X

X,− ⊢T I⊗X
⊗R

X ⊢T I⊗X
unitR

A ⊢T A
ax − ⊢T I IR

A,− ⊢T A⊗ I ⊗R

A ⊢T A⊗ I unitR

??
X,− ⊢T X

X, I ⊢T X
IL

X ⊗ I ⊢T X
⊗L

A ⊢T A
ax B ⊢T B

ax
C ⊢T C

ax

B,C ⊢T B ⊗ C
⊗R

A, (B,C) ⊢T A⊗ (B ⊗ C) ⊗R

(A,B), C ⊢T A⊗ (B ⊗ C)
assoc

(A⊗B), C ⊢T A⊗ (B ⊗ C) ⊗L

(A⊗B)⊗ C ⊢T A⊗ (B ⊗ C) ⊗L

??
X, (Y, Z) ⊢T (X ⊗ Y)⊗ Z

X, (Y ⊗ Z) ⊢T (X ⊗ Y)⊗ Z
⊗L

X ⊗ (Y ⊗ Z) ⊢T (X ⊗ Y)⊗ Z
⊗L

Remark 2.2.7. The tree sequent calculus presented here, particularly its feature
of applying rules within a tree context (e.g., rule ⊗L acting on a tree (A,B) within
a larger tree T [A,B]), might seem reminiscent of deep inference formalisms [33, 31,
32]. Deep inference systems are characterized by their ability to apply inference
rules at arbitrary depths within general syntactic structures.

However, the motivation and technical machinery differ significantly. The tree
calculus employed in this thesis serves first as an equivalent formalism to the stoup
calculus, and later (in Chapter 6) as a flexible calculus to characterize certain vari-
ants of skew monoidal categories that the stoup calculus cannot characterize. The
tree constructors (commas and, in Chapter 6, additionally with semicolons) define

49

2.2. EQUIVALENT CALCULI OF SKNMILL

grouping of formulae in the antecedent. Deep inference formalisms, in contrast, of-
ten pursue broader proof-theoretic goals, such as symmetry in derivations, locality
of rules, and normalization procedures applicable to a wide range of logics.

While the concept of “deep application” provides a point of initial comparison,
the design choices, the nature of the syntactic objects (trees of formulae versus
unified “structures”), and the primary applications within this thesis distinguish
tree sequent calculus from deep inference. For instance, proof normalization in this
thesis primarily relies on the focused stoup calculi, as the explicit structural rules
of the tree calculus complicate the equational theory of derivations.

Theorem 2.2.8. SkNMILLT is cut-free, i.e. the rule

f
U ⊢T A

g
T [A] ⊢T C

T [U] ⊢T C
cut

is admissible.

Proof. We perform induction on the structure of derivation f of the left premise,
and if necessary, we perform subinduction on the derivation g or the complexity
of the cut formula A. Cases of logical rules ax,⊗L,⊗R,⊸L, and ⊸R have been
discussed in [52], so we only elaborate on the new cases arising in SkNMILLT.

• The first new case is that f = IR, then we inspect the structure of g.

– If g = ax : I ⊢T I, then we define cut(IR, ax) = IR.
– If g = IL g′, then there are two subcases:

∗ if the I introduced by IL is the cut formula, then we define

− ⊢T I IR

g′

T [−] ⊢T C

T [I] ⊢T C
IL

T [−] ⊢T C
cut

= g′

T [−] ⊢T C

∗ if the I introduced by IL is not the cut formula, then we define

− ⊢T I IR

g′

T [−] ⊢T C

T [I] ⊢T C
IL

T {I:=−}[I] ⊢T C
cut

=
− ⊢T I ax g′

T [−] ⊢T C

T {I:=−}[−] ⊢T C
cut

T {I:=−}[I] ⊢T C
IL

where T {I:=−}[·] means that a formula occurrence I at some fixed
position in the context has been replaced by −.

– If g = R g′, where R is a one-premise rule different from IL, then
cut(IR,R g′) = R(cut(IR, g′)).

– The cases of an arbitrary two-premise rule are similar.

• The only other new cases are IL and the structural rules, which are all one-
premise left rules, where we can permute cut upwards. For example, if f =

50

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

unitL f ′, then we define

f ′

T ′[U] ⊢T A

T ′[−, U] ⊢T A
unitL g

T [A] ⊢T C

T [T ′[−, U]] ⊢T C
cut

=

f ′

T ′[U] ⊢T A
g

T [A] ⊢T
T [T ′[U]] ⊢T C

cut

T [T ′[−, U]] ⊢T C
unitL

The other cases are similar.

The proof of equivalence between SkNMILLS and SkNMILLT relies on the following
lemmata and definitions.

Definition 2.2.9. For any tree T , T ∗ is the formula obtained from T by replacing
commas with ⊗ and − with I, respectively.

Lemma 2.2.10. For any context T [·] and tree U , T [U]∗ = T [U∗]∗.

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then [U]∗ = U∗ by the definition of substitution.
If T [·] = (T ′[·], T ′′), then by inductive hypothesis, we have T ′[U]∗ = T ′[U∗]∗ and by
definition, we have (T ′[U], T ′′)∗ = T ′[U]∗ ⊗L T ′′∗ = T ′[U∗]∗⊗LT ′′∗ = (T ′[U∗], T ′′)∗.
The case T [·] = (T ′, T ′′[·]) is symmetric.

In the remainder of the section, we will refer to uses of this lemma by double
lines.

Lemma 2.2.11. Given a context T [·] and a derivation f : A ⊢A B, the following
rule is admissible:

f
A ⊢A B

T [A]∗ ⊢A T [B]∗ T [f]∗

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then we have T [A]∗ = A and T [B]∗ = B, and f is the desired derivation.
If T [·] = (T ′[·];T ′′), then we construct the desired derivation as follows:

f
A ⊢A B

T ′[A]∗ ⊢A T ′[B]∗ T ′[f]∗
T ′′∗ ⊢A T ′′∗ id

T ′[A]∗ ⊗ T ′′∗ ⊢A T ′[B]∗ ⊗ T ′′∗ ⊗

(T ′[A], T ′′)∗ ⊢A (T ′[B], T ′′)∗

The case T [·] = (T ′, T ′′[·]) is symmetric.

Definition 2.2.12. We define an encoding function [[− | −]] that transforms a tree
and an ordered list of formulae into a tree associating to the left:

[[T | []]] = T

[[T | B,Γ]] = [[(T,B) | Γ]]

Lemma 2.2.13. For any tree T and lists of formulae Γ and ∆, [[[[T | Γ]] | ∆]] =
[[T | Γ,∆]].

51

2.2. EQUIVALENT CALCULI OF SKNMILL

Proof. The proof proceeds by induction on ∆.
If ∆ = [], then [[[[T | Γ]] | []]] = [[T | Γ]] = [[T | Γ, []]] by definition.
If ∆ = (A,∆′), then by Definition 2.2.12, inductive hypothesis, and associativ-
ity of list concatenation, we have [[[[T | Γ]] | A,∆′]] = [[[[T | Γ, A]] | ∆′]] I.H.=
[[T | (Γ, A),∆′]] = [[T | Γ, (A,∆′)]].

With the above lemmata, definition, and the functions s(S) that maps a stoup
to a tree (i.e. s(S) = − if S = − or s(S) = B if S = B), we can state and prove
the equivalence between SkNMILLS and SkNMILLT.

Theorem 2.2.14. The calculi SkNMILLS and SkNMILLT are equivalent, meaning
that the two statements below are true:

• For any derivation f : S | Γ ⊢ C, there exists a derivation G2Tf :
[[s(S) | Γ]] ⊢T C.

• For any derivation f : T ⊢T C, there exists a derivation T2Gf : T ∗ | ⊢ C.

Proof. Both G2T and T2G are constructed by induction on height of f .
For G2T, the interesting cases are ⊗R and ⊸L. For example, if f = ⊗R(f ′, f ′′),

then by inductive hypothesis, we have two derivations G2T f ′ : [[s(S) | Γ]] ⊢T A
and G2T f ′′ : [[− | ∆]] ⊢T B. Our goal sequent is [[s(S) | Γ,∆]] ⊢T A⊗, which is
constructed as follows:

G2T f ′

[[s(S) | Γ]] ⊢T A
G2T f ′′

[[− | ∆]] ⊢T B

[[s(S) | Γ]], [[− | ∆]] ⊢T A⊗B
⊗R

[[[[s(S) | Γ]],− | ∆]] ⊢T A⊗B
assoc∗

[[[[s(S) | Γ]] | ∆]] ⊢T A⊗B
unitR

[[s(S) | Γ,∆]] ⊢T A⊗B
Lemma 2.2.13

where assoc∗ means multiple applications of assoc. The case of ⊸L is similar.
For T2G, the proof relies on Lemma 2.2.11 heavily. For example, when f =

unitR g, where we have g : T [U,−] ⊢T C. By inductive hypothesis, we have
T2G g : T [U∗⊗ I]∗ | ⊢ C. With Lemma 2.2.11, we construct the desired derivation
as follows:

U∗ | ⊢ U∗ ax
− | ⊢ I IR

U∗ | ⊢ U∗ ⊗ I ⊗R

T [U∗]∗ | ⊢ T [U∗ ⊗ I]∗ T [⊗R(ax, IR)]∗

T [U]∗ | ⊢ T [U,−]∗
T2G g

T [U,−]∗ | ⊢ C

T [U]∗ | ⊢ C
scut

The other cases are similar.

52

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

2.3 Categorical Semantics
Next we present a categorical semantics for SkNMILLS.

Definition 2.3.1. A (left) skew monoidal closed category C is a category with a
unit object I and two functors ⊗ : C × C → C and ⊸: Cop × C → C forming an
adjunction −⊗B ⊣ B ⊸ − natural in B, and three natural transformations λ, ρ,
α typed λA : I⊗A→ A, ρA : A→ A⊗ I and αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C),
satisfying the Mac Lane axioms in Definition 1.1.1.

Remark 2.3.2. The notion of skew monoidal closed category admits other equiva-
lent characterizations [60, 64]. Tuples of natural transformations (λ, ρ, α) are in bi-
jective correspondence with tuples of (extra)natural transformations (j, i, L) typed
jA : I → A ⊸ A, iA : I ⊸ A → A, LA,B,C : B ⊸ C →
(A ⊸ B) ⊸ (A ⊸ C). Moreover, α and L are interdefinable with a natural
transformation p typed pA,B,C : (A ⊗ B) ⊸ C → A ⊸ (B ⊸ C), embodying an
internal version of the adjunction between ⊗ and ⊸. Additionally, j and L are
interdefinable with natural transformations ĵA,B : C(A,B) → C(I, A ⊸ B) and
L̂A,B,C,D :

∫ E C(A,E ⊸ D)×C(B,C ⊸ E)→ C(A,B ⊸ (C ⊸ D)) respectively,
where

∫ E is a coend and C(A,B) means the set of morphisms from A to B. See
Remark 6.0.3 for the right skew correspondents.

Example 2.3.3 (from [64]). This example explains how to turn every categorical
model of MILL extended with a □-like modality of necessity (or something like the
exponential modality ! of linear logic) into a model of SkNMILL. Let (C, I,⊗,⊸) be a
(possibly symmetric) monoidal closed category and let (D, ε, δ) be a comonad on C,
where εA : DA→ A and δA : DA→ D (DA) are the counit and comultiplication
of D. Suppose the comonad D to be lax monoidal, i.e., coming with a map e :
I → DI and a natural transformation m typed mA,B : DA ⊗ DB → D (A ⊗ B)
cohering suitably with λ, ρ, α, ε and δ. Then C has also a skew monoidal closed
structure (I,⊗D,D⊸) given by A ⊗D B = A ⊗ DB and B D⊸ C = DB ⊸ C.
The adjunction − ⊗ DB ⊣ DB ⊸ − yields an adjunction − ⊗D B ⊣ B D⊸ −.
The structural laws are

λD
A = I⊗DA

I⊗εA // I⊗A
λA // A ρDA = A

ρA // A⊗ I A⊗e
// A⊗D I

αD
A,B,C = (A⊗DB)⊗DC

(A⊗DB)⊗δC
// (A⊗DB)⊗D (DC)

αA,DB,D(DC)
// A⊗ (DB ⊗D (DC))

A⊗mB,DC
// A⊗D (B ⊗DC)

(C, I,⊗D,D⊸) is a “genuine” skew monoidal closed category, in the sense that λD,
ρD and αD are all generally non-invertible.

Definition 2.3.4. A (strict) skew monoidal closed functor F : C → D between
skew monoidal closed categories (C, I,⊗,⊸) and (D, I′,⊗′,⊸′) is a functor from C
to D satisfying F I = I′, F (A⊗B) = FA⊗′ FB and F (A ⊸ B) = FA ⊸′ FB, also
preserving the structural laws λ, ρ and α on the nose.

The formulae, derivations and the equivalence relation ⊜ of the sequent calculus
for SkNMILL determine a skew monoidal closed category FSkMCl(At).

Definition 2.3.5. The skew monoidal closed category FSkMCl(At) has as objects
formulae; the operations I, ⊗ and ⊸ are the logical connectives. The set of maps

53

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

between objects A and B is the set of derivations A | ⊢ B quotiented by the
equivalence relation ⊜. The identity map on A is the equivalence class of axA, while
composition is given by scut. The structural laws λ, ρ, α are given by derivations
in (2.1).

This is a good definition since all equations of a skew monoidal closed category
turn out to hold.

Skew monoidal closed categories with given interpretations of atoms into them
constitute models of the sequent calculus of SkNMILL, in the sense specified by the
following theorem.

Theorem 2.3.6. Let D be a skew monoidal closed category. Given FAt : At→ |D|
providing evaluation of atomic formulae as objects of D, there exists a unique strict
skew monoidal closed functor F : FSkMCl(At)→ D.

Proof.
Existence. Let (D, I′,⊗′,⊸′) be a skew monoidal closed category. The action F0
on objects of the functor F is defined by induction on the input formula:

F0X = FAtX F0I = I′

F0(A⊗B) = F0A⊗′ F0B F0(A ⊸ B) = F0A ⊸′ F0B

The encoding of antecedents as formulae [[S | Γ]]⊗′ , introduced immediately after
(2.2), can be replicated also in D by simply replacing I and ⊗ with I′ and ⊗′ in the
definition, where now S is an optional object and Γ is a list of objects of D. Using
this encoding, it is possible to show that each rule in SkNMILLS is derivable in D. As
an illustrative case, consider the rule pass. Assume given a map f : [[A | Γ]]⊗′ → C
in D. Then, assuming Γ = A1, . . . , An, we can define the passivation of f typed
[[− | A,Γ]]⊗′ → C as

(. . . ((I′ ⊗′ A)⊗′ A1) . . .)⊗′ An

(...(λ′
A⊗′A1)...)⊗′An

// (. . . (A⊗′ A1) . . .)⊗′ An
f

// C

This implies the existence of a function F1, sending each derivation f : S | Γ ⊢ A
to a map F1f : F0([[S | Γ]]⊗) → FA in D, defined by induction on the derivation
f . When restricted to sequents of the form A | ⊢ B, the function F1 provides the
action of F on maps. It is possible to show that F is a functor and strictly preserves
the skew monoidal closed structure, so it is a skew monoidal closed functor.
Uniqueness. Consider another skew monoidal closed functor F ′ : FSkMCl(At)→ D
such that F ′X = FAtX for any atom X. We can verify that F ′ and F agree on
every object and morphism in FSkMCl(At) by induction on formulae and derivations
respectively.

Thus we have proved that FSkMCl(At) is the free skew monoidal closed category.

2.4 Proof-Theoretic Semantics via Focusing
The equivalence relation ⊜ from Figures 2.1 and 2.2 can also be viewed as an ab-
stract rewrite system, by orienting every equation from left to right. The resulting
rewrite system is locally confluent and strongly normalizing, thus confluent with
unique normal forms. Derivations in normal form thus correspond to canonical
representatives of ⊜-equivalence classes. These representatives can be organized

54

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

in a focused sequent calculus in the sense of [5], which describes, in a declarative
fashion, a particular root-first proof search strategy for the (original, unfocused)
sequent calculus.

2.4.1 A First (Naïve) Focused Sequent Calculus
As a first attempt to focusing, we naïvely merge together the rules of the focused
sequent calculi of skew monoidal categories [67] and skew prounital closed categories
[65]. In the resulting calculus, sequents have one of 3 possible subscript annotations,
corresponding to 3 different phases of proof search: RI for “right invertible”, LI for
“left invertible’, and F for “focusing”. We will see soon that this focused sequent
calculus is too permissive, in the sense that two distinct derivations in the focused
system can correspond to ⊜-equivalent sequent calculus derivations.

(right invertible)
S | Γ, A ⊢RI B

S | Γ ⊢RI A ⊸ B
⊸R

S | Γ ⊢LI P
S | Γ ⊢RI P

LI2RI

(left invertible)
− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B,Γ ⊢LI P
A⊗B | Γ ⊢LI P

⊗L
T | Γ ⊢F P

T | Γ ⊢LI P
F2LI

(focusing)
X | ⊢F X

ax
A | Γ ⊢LI P
− | A,Γ ⊢F P

pass
− | ⊢F I IR

T | Γ ⊢RI A − | ∆ ⊢RI B
T | Γ,∆ ⊢F A⊗B

⊗R
− | Γ ⊢RI A B | ∆ ⊢LI P

A ⊸ B | Γ,∆ ⊢F P
⊸L

(2.4)

In the rules above, the metavariable P denotes a positive formula, i.e. P ̸= A ⊸ B,
while metavariable T indicates a negative stoup, i.e. T ̸= I and T ̸= A⊗B (T can
also be empty).

We explain the rules of the focused sequent calculus from the perspective of
root-first proof search. The starting phase is ‘right invertible‘ RI.

(⊢RI) We repeatedly apply the right invertible rule ⊸R with the goal of reducing
the succedent to a positive formula P . When the succedent formula becomes
positive, we move to phase LI via LI2RI.

(⊢LI) We repeatedly destruct the stoup formula via application of left invertible
rules ⊗L and IL with the goal of making it negative. When this happens, we
move to phase F via F2LI.

(⊢F) We apply one of the five remaining rules ax, IR, pass, ⊗R or ⊸L. For the
passivation rule, we move the leftmost formula A in the context to the stoup
when the latter is empty. This allows us to start decomposing A using left
invertible rules in phase LI. The premises of ⊗R are both in phase RI since A
and B are generic formulae, in particular they could be implications. The first
premise of ⊸L is in phase RI for the same reason while the second premise
is in LI because the succedent formula P is positive.

The focused calculus in (2.4) is sound and complete with respect to SkNMILLS in
regards to derivability, but not equationally complete, i.e., there exist ⊜-equivalent
sequent calculus derivations which have multiple distinct derivations using the rules
in (2.4). In other words, the rules in (2.4) are too permissive. They facilitate two
forms of non-determinism in root-first proof search that should not be there.

55

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

(i) The first premise of the ⊗R rule is in phase RI, since A is potentially an im-
plication which the invertible right rule ⊸R could act upon. Proof search for
the first premise eventually hits phase F again, when we have the possibility
of applying the pass rule if the stoup is empty. This implies the existence
of situations where either of the rules ⊗R and pass can be applied first, in
both cases resulting in valid focused derivations. As an example, consider
the two distinct derivations of − | X,Γ,∆ ⊢F P ⊗ C under assumptions
f : X | Γ ⊢LI P and g : − | ∆ ⊢RI C.

f
X | Γ ⊢LI P
X | Γ ⊢RI P

sw g
− | ∆ ⊢RI C

X | Γ,∆ ⊢F P ⊗ C
⊗R

X | Γ,∆ ⊢LI P ⊗ C
sw

− | X,Γ,∆ ⊢F P ⊗ C
pass

f
X | Γ ⊢LI P
− | X,Γ ⊢F P

pass

− | X,Γ ⊢RI P
sw g

− | ∆ ⊢RI C
− | X,Γ,∆ ⊢F P ⊗ C

⊗R

(2.5)
Here and in the rest of the thesis, the rule sw above stands for a sequence
of (appropriately typed) phase switching inferences by LI2RI and F2LI. The
corresponding sequent calculus derivations are equated by congruence rela-
tion ⊜ because of the first equation from Figure 2.2, i.e., the permutative
conversion involving ⊗R and pass.

(ii) Rules ⊗R and ⊸L appear in the same phase F, though there are situations
where both rules can be applied first, which can lead to two distinct focused
derivations. More precisely, there are cases when ⊗R and ⊸L can be inter-
changeably applied. As an example, consider the following two valid deriva-
tions of A ⊸ X | Γ,∆,Λ ⊢F P ⊗D under the assumption of f : − | Γ ⊢RI A,
g : X | ∆ ⊢LI P and h : − | Λ ⊢RI D.

f
− | Γ ⊢RI A

g
X | ∆ ⊢LI P
X | ∆ ⊢RI P

sw h
− | Λ ⊢RI D

X | ∆,Λ ⊢F P ⊗D
⊗R

X | ∆,Λ ⊢LI P ⊗D
sw

A ⊸ X | Γ,∆,Λ ⊢F P ⊗D
⊸L

f
− | Γ ⊢RI A

g
X | ∆ ⊢LI P

A ⊸ X | Γ,∆ ⊢F P
⊸L

A ⊸ X | Γ,∆ ⊢RI P
sw h

− | Λ ⊢RI D
A ⊸ X | Γ,∆,Λ ⊢F P ⊗D

⊗R

(2.6)

The corresponding sequent calculus derivations, at the same time, are ⊜-
equivalent because of the 4th equation from Figure 2.2, the permutative con-
version for ⊗R and ⊸L.

To get rid of type (i) undesired non-determinism, one might try an idea sim-
ilar to the one that works in the skew monoidal non-closed case [67], namely, to
prioritize pass over ⊗R by requiring the first premise of the latter to be a sequent
in phase F. But this does not do the right thing in the skew monoidal closed case.

56

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

E.g., the sequent − | Y ⊢F (X ⊸ X)⊗Y becomes underivable while its counterpart
is derivable in SkNMILLS.

??
− | ⊢F X ⊸ X

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

− | Y ⊢F (X ⊸ X)⊗ Y
⊗R

An impulsive idea for eliminating undesired non-determinism of type (ii) is
to prioritize the application of ⊸L over ⊗R, e.g., by forcing the application of
⊸L in phase F whenever the stoup formula is an implication and restricting the
application of ⊗R to sequents where the stoup is empty or atomic. This too leads
to an unsound calculus, since the sequent X ⊸ Y | Z ⊢F (X ⊸ Y)⊗Z, which has
a derivable correspondent in SkNMILLS, would not be derivable by first applying
the ⊸L rule.

??
− | ⊢RI X

??
Y | X ⊢RI Y

Y | ⊢RI X ⊸ Y
⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢F Z
pass

− | Z ⊢RI Z
sw

Y | Z ⊢F (X ⊸ Y)⊗ Z
⊗R

Y | Z ⊢LI (X ⊸ Y)⊗ Z
sw

X ⊸ Y | Z ⊢F (X ⊸ Y)⊗ Z
⊸L

Dually, prioritizing the application of ⊗R over ⊸L leads to similar issues, e.g., the
sequent X ⊸ (Y ⊗ Z) | X ⊢F Y ⊗ Z would not be derivable by first applying the
⊗R rule while its counterpart is derivable in SkNMILLS.

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢F X
pass

− | X ⊢RI X
sw

??
Y | Z ⊢LI Y

Y ⊗ Z | ⊢LI Y
⊗L

X ⊸ (Y ⊗ Z) | X ⊢F Y
⊸L

X ⊸ (Y ⊗ Z) | X ⊢RI Y
sw ??

− | ⊢RI Z
X ⊸ (Y ⊗ Z) | X ⊢F Y ⊗ Z

⊗R

2.4.2 A Focused Sequent Calculus with Tag Annotations
In order to eliminate undesired non-determinism of type (i) between pass and ⊗R,
we need to restrict applications of pass in the derivation of the first premise of an
application of ⊗R. One way to achieve this is to force that such an application of
pass is allowed only if the leftmost formula of the context is new, in the sense that
it was not already present in the context before the ⊗R application. For example,
with this restriction in place, the application of pass in the 2nd derivation of (2.5)
would be invalid, since the formula X was already present in context before the
application of ⊗R.

57

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

Analogously, undesired non-determinism of type (ii) between ⊸L and ⊗R can
be eliminated by restricting applications of ⊸L after an application of ⊗R. This
can be achieved by forcing the subsequent application of ⊸L to split the context
into two parts Γ,∆ in such a way that Γ, i.e., the context of the first premise,
necessarily contains some new formula occurrences that were not in the context
before the first ⊗R application. Under this restriction, the application of ⊸L in
the 2nd derivation of (2.6) would become invalid, since all formulae in Γ are already
present in context before the application of ⊗R.

One way to distinguish between old and new formulae occurrences in the above
cases is to mark with a tag • each new formula appearing in context during the
building of a focused derivation. We christen a formula occurrence “new” when-
ever it is moved from the succedent to the context via an application of the right
implication rule ⊸R. In order to remember when we are building a derivation of
a sequent arising as the first premise of ⊗R, in which the distinction between old
and new formula is relevant, we mark such sequents with a tag • as well. More
generally, we write S | Γ ⊢xph C for a sequent that can be untagged or tagged,
i.e., the turnstile can be of the form ⊢ph or ⊢•ph, for ph ∈ {RI, LI,F}. This im-
plies that there are a total of six sequent phases, corresponding to the possible
combinations of three subscript phases with the untagged/tagged state. In tagged
sequents S | Γ ⊢•ph C, the formulae in the context Γ can be untagged or tagged,
i.e., they can be of the form A or A•; to be precise, all untagged formulae in Γ
must precede all tagged formulae (i.e., the context splits into untagged and tagged
parts and, instead of possibly tagged formulae, we could alternatively work with
contexts with two compartments). The formulae in the context of an untagged se-
quent S | Γ ⊢ph C must all be untagged (or, alternatively, the tagged compartment
must be empty). Given a context Γ, we write Γ◦ for the same context where all
tags have been removed from the formulae in it.

Derivations in the focused sequent calculus with tag annotations are generated
by the rules

(right invertible)
S | Γ, Ax ⊢xRI B
S | Γ ⊢xRI A ⊸ B

⊸R
S | Γ ⊢xLI P
S | Γ ⊢xRI P

LI2RI

(left invertible)
− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B,Γ ⊢LI P
A⊗B | Γ ⊢LI P

⊗L
T | Γ ⊢xF P

T | Γ ⊢xLI P
F2LI

(focusing)
X | ⊢xF X

ax
A | Γ◦ ⊢LI P
− | Ax,Γ ⊢xF P

pass
− | ⊢xF I IR

T | Γ◦ ⊢•RI A − | ∆◦ ⊢RI B
T | Γ,∆ ⊢xF A⊗B

⊗R
− | Γ◦ ⊢RI A B | ∆◦ ⊢LI P x = • ⊃ • ∈ Γ

A ⊸ B | Γ,∆ ⊢xF P
⊸L

(2.7)

Remember that P is a positive formula and T is a negative stoup. The side con-
dition in rule ⊸L reads: if x = •, then some formula in Γ must be tagged. For
the rule pass notice that, if x = •, it is actually forced that all formulae of Γ are
tagged since the preceding context formula A• is tagged. For the rules ⊗R and ⊸L
similarly notice that, if some formula of Γ is tagged, then all formulae of ∆ must
be tagged.

The rules in (2.7), when stripped of all the tags, are equivalent to the rules
in the naïve calculus (2.4). When building a derivation of an untagged sequent
S | Γ ⊢RI A, the only possible way to enter a tagged phase is via an application of
the ⊗R rule, so that sequents with turnstile marked ⊢•ph denote the fact that we
are performing proof search for the first premise of an ⊗R inference (and the stoup

58

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

is negative). The search for a proof of a tagged sequent T | Γ◦ ⊢•RI A proceeds as
follows:
(⊢•RI) We eagerly apply the right invertible rule ⊸R with the goal of reducing A

to a positive formula P . All formulae that get moved to the right end of the
context are “new”, and are therefore marked with •. When the succedent
formula becomes positive, we move to the tagged LI phase via LI2RI.

(⊢•LI) Since T is a negative stoup, we can only move to the tagged F phase via F2LI.

(⊢•F) The possible rules to apply (depending on the stoup and succedent formula)
are ax, IR, pass, ⊗R or ⊸L.

– If the stoup is empty, we have the possibility of applying the pass rule
and moving the leftmost formula A in the context to the stoup, but only
when this formula is marked by •. This restriction makes it possible to
remove undesired non-determinism of type (i). We then strip the context
of all tags and jump to the untagged LI phase.

– If we apply ⊗R, we remove all tags from the context Γ,∆ and move the
first premise to the tagged RI phase again. The tags are removed from
the context in order to reset tracking of new formulae.

– The most interesting case is ⊸L, which can only be applied if the Γ
part of the context Γ,∆ contains at least one tagged formula. This
side condition implements the restriction allowing the elimination of
undesired non-determinism of type (ii). All tags are removed from Γ,∆
and proof search continues in the appropriate untagged phases.

Remark 2.4.1. The focused calculus in the original work [63] includes four phases
of derivations with an additional “passivation” phase, while in this thesis, we
present an equivalent three-phase calculus to maintain consistency with other parts
of the thesis. In particular, we remove the passivation phase by moving the pass
rule to the focusing phase since it is a non-invertible rule.
The employment of tag annotations eliminates the two types of undesired non-
determinism. For example, only one of the two derivations in (2.5) is valid using
the rules in (2.7).

f
X | Γ ⊢•LI P
X | Γ ⊢•RI P

g
− | ∆ ⊢RI C

X | Γ,∆ ⊢F P ⊗ C
⊗R

X | Γ,∆ ⊢LI P ⊗ C
sw

− | X,Γ,∆ ⊢F P ⊗ C
pass

??
− | X,Γ ⊢•F P

− | X,Γ ⊢•RI P
sw g

− | ∆ ⊢RI C
− | X,Γ,∆ ⊢F P ⊗ C

⊗R

(same derivation as in (2.5)) (pass not applicable since X is not tagged)
Similarly for (2.6).

f
− | Γ ⊢RI A

g
X | ∆ ⊢•LI P
X | ∆ ⊢•RI P

sw h
− | Λ ⊢RI D

X | ∆,Λ ⊢F P ⊗D
⊗R

X | ∆,Λ ⊢LI P ⊗D
sw

A ⊸ X | Γ,∆,Λ ⊢F P ⊗D
⊸L

(same derivation as in (2.6))

??
A ⊸ X | Γ,∆ ⊢•F P

A ⊸ X | Γ,∆ ⊢•RI P
sw h
− | Λ ⊢RI D

A ⊸ X | Γ,∆,Λ ⊢F P ⊗D
⊗R

(⊸L not applicable since Γ is tag-free)

59

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

The extra restrictions on sequents and formulae that the rules in (2.7) impose in
comparison to those in (2.4) do not reduce derivability, e.g., the sequents − | Y ⊢F
(X ⊸ X)⊗Y , whose proof requires passivation of a new formula in the derivation
of the first premise of a ⊗R application, X ⊸ Y | Z ⊢RI (X ⊸ Y)⊗Z, whose proof
requires application of ⊗R before ⊸L, and X ⊸ (Y ⊗ Z) | X ⊢F Y ⊗ Z, which
needs ⊸L invoked before ⊗R, are all derivable.

X | ⊢F X
ax

X | ⊢LI X
sw

− | X• ⊢•F X
pass

− | X• ⊢•RI X
sw

− ⊢ ⊢•RI X ⊸ X
⊸R

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

− | Y ⊢F (X ⊸ X)⊗ Y
⊗R

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢F X
pass

− | X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸ Y | X• ⊢•F Y
⊸L

X ⊸ Y | X• ⊢•RI Y
sw

X ⊸ Y | ⊢•RI X ⊸ Y
⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢F Z
pass

− | Z ⊢RI Z
sw

X ⊸ Y | Z ⊢F (X ⊸ Y)⊗ Z
⊗R

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢F X
pass

− | X ⊢RI X
sw

Y | ⊢•F Y
ax

Y | ⊢•RI Y
sw

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢F Z
pass

− | Z ⊢RI Z
sw

Y | Z ⊢F Y ⊗ Z
⊗R

Y | Z ⊢LI Y ⊗ Z
sw

Y ⊗ Z | ⊢LI Y ⊗ Z
⊗L

X ⊸ (Y ⊗ Z) | X ⊢F Y ⊗ Z
⊸L

We should point out that although the focused calculus is free of the undesired
non-determinism that the naïve attempt (2.4) suffered from, it remains necessar-
ily non-deterministic. Specifically, the focused calculus (2.7) maintains two types
of essential non-determinism that parallel those in the focused calculus for skew
monoidal categories from Section 1.2.3. While the derivations are more intricate
due to the tag annotations and more additional phases and rules, the underlying
principle remains the same. These types of non-determinism reflect that SkNMILLS
contains sequents with multiple derivations that are not ⊜-equivalent. This justi-
fies viewing the tagged focused calculus as a generalization of the focused calculus
for skew monoidal categories (1.2).

1. In phase F, when the stoup is empty, there is a choice of whether to apply pass
or ⊗R and sometimes both options lead to a derivation. For example, the
sequent X | I⊗ Y ⊢F X ⊗ (I⊗ Y) has two distinct derivations in the focused

60

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

system and the corresponding derivations in SkNMILLS are not ⊜-equivalent.

X | ⊢•F X
ax

X | ⊢•RI X
sw

− | ⊢•F I IR

− | ⊢•RI I
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

− | Y ⊢F I⊗ Y
⊗R

− | Y ⊢LI I⊗ Y
sw

I | Y ⊢LI I⊗ Y
IL

I⊗ Y | ⊢LI I⊗ Y
⊗L

− | I⊗ Y ⊢F I⊗ Y
pass

− | I⊗ Y ⊢RI I⊗ Y
sw

X | I⊗ Y ⊢F X ⊗ (I⊗ Y) ⊗R

X | ⊢•F X
ax

X | ⊢•RI X
sw

− | ⊢•F I IR

− | ⊢•RI I
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢F Y
pass

− | Y ⊢LI Y
sw

I | Y ⊢LI
IL

I⊗ | ⊢LI Y
⊗L

I⊗ Y | ⊢LI Y
sw

− | I⊗ Y ⊢F Y
pass

− | I⊗ Y ⊢RI Y
sw

− | I⊗ Y ⊢F I⊗ Y
⊗R

− | I⊗ Y ⊢RI I⊗ Y
sw

X | I⊗ Y ⊢F X ⊗ (I⊗ Y) ⊗R

2. In phase F, if the succedent formula is A⊗B, and the rule ⊗R is to be applied,
the context can be split anywhere. Sometimes several of these splits can lead
to a derivation. For example, the sequent X | I, Y ⊢F (X ⊗ I) ⊗ Y has two
distinct derivations.

X | ⊢•F X
ax

X | ⊢•RI X
sw

− | ⊢F I IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

X | I ⊢•F X ⊗ I ⊗R

X | I ⊢•RI X ⊗ I
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

X | I, Y ⊢F (X ⊗ I)⊗ Y
⊗R

61

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

X | ⊢•F X
ax

X | ⊢•RI X
sw

− | ⊢F I IR

− | ⊢RI I
sw

X | ⊢•F X ⊗ I ⊗R

X | ⊢•RI X ⊗ I
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

Y | ⊢F Y
pass

− | Y ⊢LI Y
sw

I | Y ⊢LI Y
IL

− | I, Y ⊢F Y
pass

− | I, Y ⊢RI Y
sw

X | I, Y ⊢F (X ⊗ I)⊗ Y
⊗R

The presence of ⊸ adds two further types of essential nondeterminism.

3. This type is similar to type 2. In the focusing phase , if the stoup formula is
A ⊸ B, and the rule ⊸L is to be applied, the context can be split anywhere.
Again, sometimes several of these splits lead to a derivation. For example,
the sequent I ⊸ (X ⊸ Y) | I, X ⊢F Y has two derivations.

− | ⊢F I IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢F X
pass

− | X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸ Y | X ⊢F Y
⊸L

X ⊸ Y | X ⊢LI Y
sw

I ⊸ (X ⊸ Y) | I, X ⊢F Y
⊸L

− | ⊢F I IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢F X
pass

− | X ⊢LI X
sw

I | X ⊢LI X
IL

− | I, X ⊢F X
pass

− | I, X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸ Y | I, X ⊢F Y
⊸L

X ⊸ Y | I, X ⊢LI Y
sw

I ⊸ (X ⊸ Y) | I, X ⊢F Y
⊸L

4. Finally, in phase F, if the succedent formula is A⊗B and the stoup formula
is A′ ⊸ B′, then both ⊗R and ⊸L can be applied first and sometimes both
options lead to a derivation. For example, the sequent I ⊸ I | Z ⊢F (I ⊸ I)⊗Z

62

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

has two derivations.

− | ⊢F I IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI I
sw

I | ⊢LI I
IL

I ⊸ I | I• ⊢•F I ⊸L

I ⊸ I | I• ⊢•RI I
sw

I ⊸ I | ⊢•RI I ⊸ I ⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢F Z
pass

− | Z ⊢LI Z
sw

I ⊸ I | Z ⊢F (I ⊸ I)⊗ Z
⊗R

− | ⊢F I IR

− | ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI
sw

I | ⊢LI I
IL

I | ⊢LI I
sw

− | I• ⊢•F I
pass

− | I• ⊢•RI I
sw

− | ⊢•RI I ⊸ I ⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢F Z
pass

− | Z ⊢LI Z
sw

− | Z ⊢F (I ⊸ I)⊗ Z
⊗R

− | Z ⊢LI (I ⊸ I)⊗ Z
sw

I | Z ⊢LI (I ⊸ I)⊗ Z
IL

I ⊸ I | Z ⊢F (I ⊸ I)⊗ Z
⊸L

Note that, in the second derivation, the rule pass applies to the sequent
− | I• ⊢•F I only because the context formula I• is tagged.

Theorem 2.4.2. The focused sequent calculus is equivalent to SkNMILLS, meaning
that the two statements below are true:

• For any derivation f : S | Γ ⊢ C, there exists a derivation focus f : S | Γ ⊢RI
C.

• For any derivation in f : S | Γ ⊢xph C, there exists a derivation embph : S |
Γ ⊢ C, for all ph ∈ {RI, LI,F}.

The second statement is immediate: the embph functions can be defined by
mutual recursion where all functions erase the all phase and tag annotations. The
focus functions follows from the fact that the following rules are all admissible:

A | ⊢RI A axRI
A | Γ ⊢RI C
− | Γ ⊢RI C

passRI

− | Γ ⊢RI A B | ∆ ⊢RI C
A ⊸ B | Γ,∆ ⊢RI C ⊸LRI

− | Γ ⊢RI C
I | Γ ⊢RI C ILRI

A | B,Γ ⊢RI C
A⊗B | Γ ⊢RI C ⊗L

RI

− | ⊢RI I IRRI
S | Γ,Γ′ ⊢RI A − | ∆ ⊢RI B
S | Γ,∆ ⊢RI [[Γ′ | A]]⊸ ⊗B

⊗RRI
Γ′

(2.8)

63

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

The interesting one is ⊗RRI
Γ′ . The tensor right rule ⊗RRI, with premises and

conclusion in phase RI, is an instance of the latter with empty Γ′. Without this
generalization including the extra context Γ′, one quickly discovers that finding a
proof of ⊗RRI, proceeding by induction on the structure of the derivation of the
first premise, is not possible when this derivation ends with an application of ⊸R:

f
S | Γ, A′ ⊢RI B′

S | Γ ⊢RI A′ ⊸ B′ ⊸R g
− | ∆ ⊢RI B

S | Γ,∆ ⊢RI (A′ ⊸ B′)⊗B
⊗RRI

= ??

The inductive hypothesis applied to f and g would produce a derivation of the
wrong sequent. The use of Γ′ in the generalized rule ⊗RRI

Γ′ is there to fix precisely
this issue.

To prove the admissibility of ⊗RRI
Γ′ , it is essential to build a focused variant of

the rule ⊸R∗ in (2.2). We detail its construction in the upcoming proposition.

Proposition 2.4.3. The following rule, corresponding to an iterated ⊸-right rule,
is admissible:

S | Γ,Γ′x ⊢xRI C
S | Γ ⊢xRI [[Γ′ | C]]⊸

⊸R∗

Proof. By structural induction on Γ′:

• if Γ′ is empty, then take ⊸R∗ f = f ;

• if Γ′ = A,Γ′′, then ⊸R∗ f = ⊸R (⊸R∗ f), i.e.

f
S | Γ, Ax,Γ′′x ⊢xRI C

S | Γ ⊢xRI [[A,Γ′′ | C]]⊸
⊸R∗ =

f
S | Γ, Ax,Γ′′x ⊢xRI C

S | Γ, Ax ⊢xRI [[Γ′′ | C]]⊸
⊸R∗

S | Γ ⊢xRI A ⊸ [[Γ′′ | C]]⊸
⊸R

where by definition A ⊸ [[Γ′′ | C]]⊸ = [[A,Γ′′ | C]]⊸.

Proposition 2.4.4. The following rules, corresponding to different generalizations
of the ⊗-right rule, are admissible:

S | Γ,Γ′ ⊢RI A − | ∆ ⊢RI B
S | Γ,∆ ⊢RI [[Γ′ | A]]⊸ ⊗B

⊗RRI
Γ′

S | Γ,Γ′ ⊢LI P − | ∆ ⊢RI B
S | Γ,∆ ⊢LI [[Γ′ | P]]⊸ ⊗B

⊗RLI
Γ′

T | Γ,Γ′ ⊢F P − | ∆ ⊢RI B
T | Γ,∆ ⊢F [[Γ′ | P]]⊸ ⊗B

⊗RF
Γ′

Proof. The proof proceeds by mutual induction on the first premise of each rule,
which we always name f . The second premises are all named g.

Proof of ⊗RRI
Γ′ :

64

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

• If f = ⊸R f ′, then

f ′

S | Γ,Γ′, A′ ⊢RI B′

S | Γ,Γ′ ⊢RI A′ ⊸ B′ ⊸R g
− | ∆ ⊢RI B

S | Γ,∆ ⊢RI [[Γ′ | A′ ⊸ B′]]⊸ ⊗B
⊗RRI

Γ′

=
f ′

S | Γ,Γ′, A′ ⊢RI B′
g

− | ∆ ⊢RI B
S | Γ,∆ ⊢RI [[Γ′, A′ | B′]]⊸ ⊗B

⊗RRI
Γ′,A′

and [[Γ′ | A ⊸ B]]⊸ = [[Γ′, A | B]]⊸.

• If f = LI2RI f ′ then ⊗RRI
Γ′ (LI2RI f ′, g) = LI2RI (⊗RLI

Γ′ (f ′, g)).
(We do not explicitly show derivation trees in cases like this one, when rules
are simply permuted.)

Proof of ⊗RLI
Γ′ :

• If f = IL f ′, then ⊗RLI
Γ′ (IL f ′, g) = IL (⊗RLI

Γ′ (f ′, g)).

• If f = ⊗L f ′, then ⊗RLI
Γ′ (⊗L f ′, g) = ⊗L (⊗RLI

Γ′ (f ′, g)).

• If f = F2LI f ′, then ⊗RLI
Γ′ (F2LI f ′, g) = F2LI (⊗RF

Γ′ (f ′, g)).

Proof of ⊗RF
Γ′ :

• If f = ax, then Γ′ is empty and ⊗RF
() (ax, g) = ⊗R (ax, g).

• If f = IR, then Γ′ is empty and ⊗RF
() (IR, g) = ⊗R (IR, g).

• If f = pass f ′, the passivated formula (i.e. the formula that is moved to the
context from the stoup) can either belong to Γ or belong to Γ′. In the first
case, ⊗RF

Γ′ is permuted with pass, i.e. ⊗RF
Γ′ (pass f, g) = pass (⊗RF

Γ′ (f, g)).
In the second case, Γ is empty, Γ′ = A′,Γ′′ and we define:

f ′

A′ | Γ′′ ⊢LI P
− | A′,Γ′′ ⊢F P

pass g
− | ∆ ⊢RI B

− | ∆ ⊢F [[A′,Γ′′ | P]]⊸ ⊗B
⊗RF

A′,Γ′′

=

f ′

A′ | Γ′′ ⊢LI P
− | A′•,Γ′′• ⊢•F P

pass

− | A′•,Γ′′• ⊢•RI P
sw

− | ⊢•RI [[A′,Γ′′ | P]]⊸
⊸R∗ g

− | ∆ ⊢RI B
− | ∆ ⊢F [[A′,Γ′′ | P]]⊸ ⊗B

⊗R

• If f = ⊗R (f ′, f ′′), there are two possibilities, depending on whether the ⊗R
rule splits the context in Γ (or between Γ and Γ′) or properly in Γ′. The two

65

2.4. PROOF-THEORETIC SEMANTICS VIA FOCUSING

cases are analogous. We only show the second one, where Γ′ = Γ′
0,Γ′

1.

f ′

T | Γ,Γ′
0 ⊢•RI A′

f ′′

− | Γ′
1 ⊢RI B′

T | Γ,Γ′
0,Γ′

1 ⊢F A′ ⊗B′ ⊗R g
− | ∆ ⊢RI B

T | Γ,∆ ⊢F [[Γ′
0,Γ′

1 | A′ ⊗B′]]⊸ ⊗B
⊗RF

Γ′
0,Γ

′
1

=

f ′

T | Γ,Γ′
0 ⊢•RI A′

f ′′

− | Γ′
1 ⊢RI B′

T | Γ,Γ′•
0 ,Γ′•

1 ⊢•F A′ ⊗B′ ⊗R

T | Γ,Γ′•
0 ,Γ′•

1 ⊢•RI A′ ⊗B′ sw

T | Γ ⊢•RI [[Γ′
0,Γ′

1 | A′ ⊗B′]]⊸
⊸R∗ g

− | ∆ ⊢RI B
T | Γ,∆ ⊢F [[Γ′

0,Γ′
1 | A′ ⊗B′]]⊸ ⊗B

⊗R

• If f = ⊸L (f ′, f ′′), there are two possibilities, depending on whether the
⊸L rule splits the context in Γ or Γ′, i.e. whether at least one formula from
Γ′ is moved to the first premise f ′. In the first case, ⊸L can be applied
first, i.e. ⊗RF

Γ′ (⊸L (f ′, f ′′), g) = ⊸L (f ′,⊗RLI
Γ′ (f ′′, g)). In the second case,

Γ′ = Γ′
0,Γ′

1 with non-empty Γ′
0 and

f ′

− | Γ,Γ′
0 ⊢RI A′

f ′′

B′ | Γ′
1 ⊢LI P

A′ ⊸ B′ | Γ,Γ′
0,Γ′

1 ⊢F P
⊸L g

− | ∆ ⊢RI B
A′ ⊸ B′ | Γ,∆ ⊢F [[Γ′

0,Γ′
1 | P]]⊸ ⊗B

⊗RF
Γ′
0,Γ

′
1

=

f ′

− | Γ,Γ′
0 ⊢RI A′

f ′′

B′ | Γ′
1 ⊢LI P

A′ ⊸ B′ | Γ,Γ′•
0 ,Γ′•

1 ⊢•F P
⊸L

A′ ⊸ B′ | Γ,Γ′•
0 ,Γ′•

1 ⊢•RI P
sw

A′ ⊸ B′ | Γ ⊢•RI [[Γ′
0,Γ′

1 | P]]⊸
⊸R∗ g

− | ∆ ⊢RI B
A′ ⊸ B′ | Γ,∆ ⊢F [[Γ′

0,Γ′
1 | P]]⊸ ⊗B

⊗R

The last application of ⊸L is justified since Γ′
0 is non-empty.

The admissibility of the rules in (2.8) allows the construction of the function
focus : S | Γ ⊢ A → S | Γ ⊢RI A, replacing applications of each rule in SkNMILLS
with inferences by the corresponding admissible focused rule in phase RI.
Theorem 2.4.5. The functions embRI and focus define a bijective correspondence
between the set of derivations of S | Γ ⊢ A quotiented by the equivalence relation ⊜
and the set of derivations of S | Γ ⊢RI A:

• For all f, g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• For all f : S | Γ ⊢ A, embRI (focus f) ⊜ f .

• For all f : S | Γ ⊢RI A, focus (embRI f) = f .

Proof. The proof of each statement proceeds by induction on the appropriate struc-
ture, respectively. We refer the interested reader to consult Veltri’s Agda formaliza-
tion, https://github.com/niccoloveltri/code-skewmonclosed. However, the
focused calculus in the formalization includes four phases of derivations, since in [63]
we considered an extra “passivation” phase. In this thesis we only have 3 phases,
to keep the story consistent with the other parts of the thesis.

66

https://github.com/niccoloveltri/code-skewmonclosed

CHAPTER 2. SKEW NON-COMMUTATIVE MILL

The focused sequent calculus solves the coherence problem for skew monoidal
closed categories. As proved in Theorem 2.3.6, the sequent calculus for SkNMILL is
a presentation of the free skew monoidal closed category FSkMCl(At) on the set At.
The coherence problem is the problem of deciding whether two parallel maps in
FSkMCl(At) are equal. This is equivalent to deciding whether two sequent calculus
derivations f, g : A | ⊢ B are in the same ⊜-equivalence class. But that in turn is
the same as deciding whether focus f = focus g in the focused sequent calculus, and
deciding syntactic equality of focused derivations is straightforward. SkNMILLA is a
direct presentation of FSkMCl(At), but thanks to the bijection (up to .= resp. ⊜)
between SkNMILLA and SkNMILLS derivations, we can also decide if two SkNMILLA
derivations f, g : A ⊢A B are in the same .=-equivalence class.

67

Chapter 3

Craig Interpolation for
SkNMILL

After having established the sequent and focused calculi for SkNMILL, we now turn
to discuss another logical property, Craig interpolation.

In this chapter, we will prove Craig interpolation for SkNMILL via SkNMILLS by
adapting Maehara’s method. Moreover, we will prove proof-relevant interpolation
for SkNMILLS, which means that our interpolation procedure not only finds an
interpolant formula but also produces proofs well-behaved with respect to the scut
rule.

To prove Craig interpolation, we need to modify the statement of Maehara
interpolation. This modification is required due to issues similar to those encoun-
tered in the product-free Lambek calculus [54] and the implicational fragment of
intuitionistic logic [38], where Maehara interpolation fails. The main result of this
chapter is the following:

Theorem 3.2.1. In SkNMILLS, the following two interpolation properties hold:

(sMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exist

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C such that
– σX(D) ≤ σX(S,Γ0) and σX(D) ≤ σX(Γ1, C) for all atomic formulae

X.

(cMMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there
exist

– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– gi : − | ∆i ⊢ Di for all i ∈ {1, . . . , n},
– h : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C such that
– σX(D1, . . . , Dn) ≤ σX(Γ1) and σX(D1, . . . , Dn) ≤ σX(S,Γ0,Γ2, C) for

all atomic formulae X.

69

In SkNMILLS, the first property sMIP, which stands for stoup Maehara inter-
polation, resembles Maehara interpolation for the full Lambek calculus. Whereas
cMMIP, which stands for context Maehara multi-interpolation, is similar to Mae-
hara multi-interpolation for the product-free Lambek calculus, a fragment of the
Lambek calculus that excludes the product (multiplicative conjunction) and thus
only uses types formed with residuations (implications) ⧹ and ⧸. This restriction
results in a situation where a single formula may no longer suffice as an interpolant,
sometimes requiring a sequence of formulae instead.

Motivated by the categorical interpretation of SkNMILLS, we take one more
step and investigate the interplay between the admissible cut rules (called scut
and ccut) and the derivations produced by the interpolation algorithm of Theorem
3.2.1. In Section 2.1, we introduced an equivalence relation on derivations (⊜)
that captures η-conversions and permutative conversions, and is both sound and
complete with respect to the categorical semantics. We show that the sMIP and
cMMIP procedures of Theorem 3.2.1 are right inverses of the admissible rules scut
and ccut, respectively. Formally, we prove the following theorem:

Theorem 3.4.1.

(i) Let g : S | Γ0 ⊢ D and h : D | Γ1 ⊢ C be the derivations obtained by applying
the sMIP procedure on a derivation f : S | Γ ⊢ C with the partition ⟨Γ0,Γ1⟩.
Then scut(g, h) ⊜ f .

(ii) Let g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C and hi : − | ∆i ⊢ Di for i ∈ [1, . . . , n]
be derivations obtained by applying the cMMIP procedure on a derivation f :
S | Γ ⊢ C with the partition ⟨Γ0,Γ1,Γ2⟩. Then ccut∗([gi], h) ⊜ f .

In the above statement, ccut∗ denotes multiple applications of the admissible
ccut rule, one for each derivation hi. Theorems 3.2.1 and 3.4.1 together show that
SkNMILLS satisfies a proof-relevant form of Craig interpolation, in the sense formu-
lated in the early 1990s by Čubrić [68] in the setting of intuitionistic propositional
logic and recently discussed also by Saurin [58] for (extensions of) classical linear
logic.

We introduce a few admissible rules that will be employed later.
First, given a list of formulae ∆ = A1, . . . , An and a list of derivations fi : − |

Γi ⊢ Ai for i ∈ [1, . . . , n], we define an iterated version of ⊸L, consisting on n
applications of ⊸L, one for each derivation fi:

[fi]
[− | Γi ⊢ Ai]i

g
B | Λ ⊢ C

[[∆ | B]]⊸ | Γ1, . . . ,Γn,Λ ⊢ C
⊸L∗

= f1
− | Γ1 ⊢ A1

fn
− | Γn ⊢ An

g
B | Λ ⊢ C

An ⊸ B | Γn,Λ ⊢ C
⊸L

...
A2 ⊸ (. . . (An ⊸ B) . . .) | Γ2, . . . ,Γn,Λ ⊢ C

A1 ⊸ (A2 ⊸ (. . . (An ⊸ B) . . .)) | Γ1,Γ2, . . . ,Γn,Λ ⊢ C
⊸L

[[∆ | B]]⊸ | Γ1, . . . ,Γn,Λ ⊢ C

(3.1)

70

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

The rule ⊸L∗ has n + 1 premises, the first n are collected in the list of sequents
[− | Γi ⊢ Ai]i. If n = 0, then ⊸L∗([], g) = g.

Second, given a list of derivations fi : − | ∆i ⊢ Ai for i ∈ [1, . . . , n], we define an
iterated version of ccut, consisting on n applications of ccut, one for each derivation
fi:

[fi]
[− | ∆i ⊢ Ai]i

g
S | Γ0, A1, . . . , An,Γ1 ⊢ C

S | Γ0,∆1,∆2, . . . ,∆n,Γ1 ⊢ C
ccut∗

=
f1

− | ∆1 ⊢ A1

fn
− | ∆n ⊢ An

g
S | Γ0, A1, A2, . . . , An,Γ1 ⊢ C

S | Γ0, A1, A2, . . . ,∆n,Γ1 ⊢ C
ccut

...
S | Γ0, A1,∆2, . . . ,∆n,Γ1 ⊢ C

S | Γ0,∆1,∆2, . . . ,∆n,Γ1 ⊢ C
ccut

(3.2)

If n = 0, then ccut∗([], g) = g.

3.1 Failure of Maehara Interpolation
The goal of this chapter is proving that the logic SkNMILLS satisfies the Craig inter-
polation property. But, as already mentioned in the beginning of this chapter, we
cannot follow the same proof strategy used in the (associative or non-associative)
Lambek calculus, where Craig interpolation follows as a corollary to Maehara inter-
polation. This is because the sequent calculus of SkNMILLS does not enjoy Maehara
interpolation. Let us see why.

First, in analogy with the presence of two admissible cut rules (scut and ccut),
there are also two different forms of interpolation. This is because the subsequence
of the antecedent formulae for which we wish to find an interpolant can either
contain the stoup or it can be fully included in the context. More explicitly, given
an antecedent S | Γ, we can either: (i) split the context Γ = Γ1,Γ2 in two parts
and look for an interpolant of the sub-antecedent S | Γ1, or (ii) split the context
Γ = Γ0,Γ1,Γ2 in three parts and look for an interpolant of the sub-context Γ1. The
Maehara interpolation property in SkNMILLS would then consist of two statements,
a stoup Maehara interpolation (sMIP) and a context Maehara interpolation (cMIP):

(sMIP) Given f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exists

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C such that
– σX(D) ≤ σX(S,Γ0) and σX(D) ≤ σX(Γ1, C) for all atomic formulae X.

(cMIP) Given f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there exists

– an interpolant formula D,
– a derivation g : − | Γ1 ⊢ D,

71

3.1. FAILURE OF MAEHARA INTERPOLATION

– a derivation h : S | Γ0, D,Γ2 ⊢ C such that
– σX(D) ≤ σX(Γ1) and σX(D) ≤ σX(S,Γ0,Γ2, C).

However, this property is not provable in SkNMILLS. The problem lies in the
validity of the second statement cMIP. An attempt to prove this would proceed by
induction on the height of the derivation f : S | Γ ⊢ C and then inspecting what is
the last rule applied in f . The rules ⊗R and ⊸L split the context, so one should
be careful to consider all possible ways in which these splittings relate to the given
partition ⟨Γ0,Γ1,Γ2⟩ of Γ.

The critical case is f = ⊗R(f ′, f ′′) with the partition ⟨Γ0, (Γ′
1,Γ′′

1),Γ2⟩ and the
two derivations f ′ : S | Γ0,Γ′

1 ⊢ A and f ′′ : − | Γ′′
1 ,Γ2 ⊢ B. So this is the case when

the ⊗R rule splits Γ1 in two parts Γ′
1,Γ′′

1 . By induction on f ′ and the partition
⟨Γ0,Γ′

1, []⟩, we would be given a formula D and derivations g′ : − | Γ′
1 ⊢ D, and

h′ : S | Γ0, D ⊢ A. By applying the inductive hypothesis on f ′′ and the partition
⟨[],Γ′′

1 ,Γ2⟩, we would be given a formula E and derivations g′′ : − | Γ′′
1 ⊢ E and

h′′ : − | E,Γ2 ⊢ B. We obtain ⊗R(g′, g′′) : − | Γ′
1,Γ′′

1 ⊢ D ⊗ E, but we are unable
to construct the other desired proof of sequent S | Γ0, D ⊗E,Γ1 ⊢ A⊗B. We get
very close via ⊗R(h′, h′′) : S | Γ0, D,E,Γ1 ⊢ A ⊗ B, but we are unable to merge
D and E into D ⊗ E, since SkNMILLS the ⊗L cannot be applied on formulae in
context.

For a simple concrete counterexample, consider the derivation

X | ⊢ X
ax

Y | ⊢ Y
ax

− | Y ⊢ Y
pass

X | Y ⊢ X ⊗ Y
⊗R

Z | ⊢ Z
ax

− | Z ⊢ Z
pass

X | Y, Z ⊢ (X ⊗ Y)⊗ Z
⊗R

and the partition ⟨[], (Y, Z), []⟩. Suppose by contradiction that Maehara interpola-
tion holds, so we would have a formula D and the two derivations g : − | Y, Z ⊢ D
and h : X | D ⊢ (X ⊗ Y) ⊗ Z. The variable condition of Maehara interpolation
and the existence of the derivation g ensure that D does not contain atomic for-
mulae other than Y and Z, and the latter must have a unique occurrence in D.
Nevertheless, the existence of derivation h is absurd. Since X is atomic, h can only
be of the form: (i) f = ⊗R(f1, f2) for some derivations f1 : X | D ⊢ X ⊗ Y and
f2 : − | ⊢ Z, or (ii) f = ⊗R(f ′

1, f
′
2) for some derivations f ′

1 : X | ⊢ X ⊗ Y and
f ′
2 : − | D ⊢ Z. Case (i) is impossible since there is no such f2, while case (ii) is
impossible since there is no such f ′

1.
This situation is reminiscent of proving interpolation in the product-free Lam-

bek calculus [54] and in the implicational fragment of intuitionistic logic [38]. In
both these cases, Maehara interpolation fails because none of the multiplicative
(⊗) and additive (∧) conjunction is present. A concrete counterexample in the
product-free Lambek calculus (adapted from Kanazawa [38]) is given by the deriv-
able sequent W,W\Y,W,W\X,X\(Y \Z) ⊢ Z with the partition
⟨[], [W,W\Y,W,W\X], [X\(Y \Z)]⟩. This can be shown to not satisfy Maehara
interpolation property. In the presence of ⊗, Maehara’s method would produce the
interpolant formula X ⊗ Y . The situation of SkNMILLS is somewhere inbetween:
we have a multiplicative conjunction ⊗ but we cannot do much with it if a for-
mula A ⊗ B is in context instead of the stoup position, since the rule ⊗L cannot
be applied arbitrarily in the antecedent. The counterexample to MIP in product-

72

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

free Lambek calculus can, when appropriately modified, also work as a counterex-
ample to cMIP in SkNMILLS: consider the derivable sequent X ⊸ (Y ⊸ Z) |
W ⊸ X,W,W ⊸ Y,W ⊢ Z with the partition ⟨[], [W ⊸ X,W,W ⊸ Y,W], []⟩.

3.2 Craig Interpolation for SkNMILL
In this section, we show that SkNMILLS enjoys Craig interpolation, even though it
does not generally enjoy Maehara interpolation. This is again in analogy with the
product-free Lambek calculus without empty antecedents.

We showed in the previous section that SkNMILLS does not satisfy the context
Maehara interpolation property (cMIP). We prove now that instead it satisfies a
context Maehara multi-interpolation property (cMMIP). And the stoup Maehara
interpolation property (sMIP) also holds.

Theorem 3.2.1. In SkNMILLS, the following two interpolation properties hold:

(sMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1⟩ of Γ, there exist

– an interpolant formula D,
– a derivation g : S | Γ0 ⊢ D,
– a derivation h : D | Γ1 ⊢ C such that
– σX(D) ≤ σX(S,Γ0) and σX(D) ≤ σX(Γ1, C) for all atomic formulae

X.

(cMMIP) Given a derivation f : S | Γ ⊢ C and a partition ⟨Γ0,Γ1,Γ2⟩ of Γ, there
exist

– a partition ⟨∆1, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– gi : − | ∆i ⊢ Di for all i ∈ {1, . . . , n},
– h : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C such that
– σX(D1, . . . , Dn) ≤ σX(Γ1) and σX(D1, . . . , Dn) ≤ σX(S,Γ0,Γ2, C) for

all atomic formulae X.

These two statements of the theorem are proved mutually by structural induc-
tion on derivations. We separate the proofs for readability.

Proof of sMIP. We proceed by induction on the structure of f .
Case f = ax. Suppose f = ax : A | ⊢ A, which forces Γ0 = Γ1 = []. In this
case, the interpolant formula is A and g = h = ax : A | ⊢ A, where the variable
multiplicity condition is automatically satisfied.
Case f = IR. Since f : − | ⊢ I, this forces again Γ0 and Γ1 to be empty lists. In
this case, the interpolant formula is I and g = IR : − | ⊢ I and h = IL(IR) : I | ⊢ I,
where the variable multiplicity condition is vacuously satisfied.
Case f = IL f ′. Given a derivation f ′ : − | Γ ⊢ C, by induction on f ′ with the
same partition ⟨Γ0,Γ1⟩ of Γ we obtain

– a formula D,

– a derivation g′ : − | Γ0 ⊢ D,

73

3.2. CRAIG INTERPOLATION FOR SkNMILL

– a derivation h′ : D | Γ1 ⊢ C such that

– σX(D) ≤ σX(Γ0) and σX(Γ1, C) for all atomic formulae X.

In this case, the interpolant formula for f is D and the the two desired derivations
are g = IL g′ and h = h′. The variable multiplicity condition is automatically
satisfied.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case.
Case f = pass f ′. Let f ′ : A | Γ′ ⊢ C and Γ = A,Γ′. There are two subcases
determined by the partition ⟨Γ0,Γ1⟩ of Γ. Specifically, either Γ0 is an empty list
or not.

• If Γ0 = [], then the interpolant is I and the two desired derivations are IR and
IL(pass f ′). The variable multiplicity condition is satisfied because var(I) = ∅.

• If Γ0 = A,Γ′
0, then by induction on f ′ with the partition ⟨Γ′

0,Γ1⟩ we obtain

– a formula D,
– a derivation g′ : A | Γ′

0 ⊢ D,
– a derivation h′ : D | Γ1 ⊢ C such that
– σX(D) ≤ σX(A,Γ′

0) and σX(D) ≤ σX(Γ1, C) for all atomic formulae X.

In this case, the interpolant formula for f isD, and the two desired derivations
are g = pass g′ and h = h′. The variable multiplicity condition follows directly
from the inductive hypothesis.

Case f = ⊗R(f ′, f ′′). Let f ′ : S | Λ ⊢ A and f ′′ : − | Ω ⊢ B, so that Γ = Λ,Ω. We
need to check how the latter splitting of Γ compares to the given partition ⟨Γ0,Γ1⟩.
There are two possibilities:

• Γ0 is fully contained in Λ. This means that Λ = Γ0,Γ′
1 and Γ1 = Γ′

1,Ω. Then
f ′ : S | Γ0,Γ′

1 ⊢ A and f ′′ : − | Ω ⊢ B. In this case, by induction on f ′ with
the partition ⟨Γ0,Γ′

1⟩ we obtain

– a formula D,
– a derivation g′ : S | Γ0 ⊢ D,
– a derivation h′ : D | Γ′

1 ⊢ A such that
– σX(D) ≤ σX(S,Γ0) and σX(D) ≤ σX(Γ′

1, A) for all atomic formulae X.

The desired interpolant formula is D and the desired derivations are g = g′

and h = ⊗R(h′, f ′′) : D | Γ′
1,Ω ⊢ A⊗ B. The variable multiplicity condition

is satisfied because σX(D) ≤ σX(Γ′
1, A) ≤ σX(Γ′

1,Ω, A ⊗ B) for all atomic
formulae X.

• Γ0 splits between Λ and Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1, and
Γ′
0 is non-empty. Then f ′ : S | Λ ⊢ A and f ′′ : − | Γ′

0,Γ1 ⊢ B. In this case,
by induction on f ′ with the partition ⟨Λ, []⟩ and on f ′′ with the partition
⟨Γ′

0,Γ1⟩, respectively, we obtain

– formulae E and F ,
– derivations g′ : S | Λ ⊢ E and g′′ : − | Γ′

0 ⊢ F ,

74

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

– derivations h′ : E | ⊢ A and h′′ : F | Γ1 ⊢ B such that
– σX(E) ≤ σX(S,Λ) and σX(E) ≤ σX(A), and
– σX(F) ≤ σX(Γ′

0) and σX(F) ≤ σX(Γ1, B) for all atomic formulae X.

The desired interpolant formula is D = E ⊗ F and the desired derivations
are

g =
g′

S | Λ ⊢ E
g′′

− | Γ′
0 ⊢ F

S | Λ,Γ′
0 ⊢ E ⊗ F

⊗R h =
h′

E | ⊢ A

h′′

F | Γ1 ⊢ B

− | F,Γ1 ⊢ B
pass

E | F,Γ1 ⊢ A⊗B
⊗R

E ⊗ F | Γ1 ⊢ A⊗B
⊗L

The variable multiplicity condition is satisfied because σX(E⊗F) = σX(E)+
σX(F) ≤ σX(S,Λ) + σX(Γ′

0) = σX(S,Λ,Γ′
0) and σX(E ⊗ F) = σX(E) +

σX(F) ≤ σX(A) + σX(Γ1, B) = σX(A,Γ1, B) = σX(Γ1, A⊗B).

Case f = ⊸L(f ′, f ′′). Let f ′ : − | Λ ⊢ A and f ′′ : B | Ω ⊢ C, so that Γ =
Λ,Ω. Again we check how the latter splitting of Γ compares to the given partition
⟨Γ0,Γ1⟩. There are two possibilities:

• Γ1 is fully contained in Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1. Then
f ′ : − | Λ ⊢ A and f ′′ : B | Γ′

0,Γ1 ⊢ C. In this case, by induction on f ′′ with
the partition ⟨Γ′

0,Γ1⟩ we obtain

– a formula D,
– a derivation g′′ : B | Γ′

0 ⊢ D,
– a derivation h′′ : D | Γ1 ⊢ C such that
– σX(D) ≤ σX(B,Γ′

0) and σX(D) ≤ σX(Γ1, C) for all atomic formulae X.

The desired interpolant formula is D and the desired derivations are g =
⊸L(f ′, g′′) : A ⊸ B | Λ,Γ′

0 ⊢ D and h = h′′. The variable multiplicity
condition is satisfied because σX(D) ≤ σX(B,Γ′

0) ≤ σX(A ⊸ B,Λ,Γ′
0).

• Γ1 splits between Λ and Ω. This means that Λ = Γ0,Γ′
1 and Γ1 = Γ′

1,Ω, and
Γ′
1 is non-empty. Then f ′ : − | Γ0,Γ′

1 ⊢ A and f ′′ : B | Ω ⊢ C. Our goal is to
find a formula D and derivations g : A ⊸ B | Γ0 ⊢ D and h : D | Γ′

1,Ω ⊢ C.
By induction on f ′′ with the partition ⟨[],Ω⟩ we obtain

– a formula E,
– a derivation g′′ : B | ⊢ E,
– a derivation h′′ : E | Ω ⊢ C such that
– σX(E) ≤ σX(B) and σX(E) ≤ σX(Ω, C) for all atomic formulae X.

We also apply the cMMIP procedure (which, remember, is proved by mutual
induction with sMIP) on the derivation f ′ with the partition ⟨Γ0,Γ′

1, []⟩ and
obtain

– a partition ⟨∆1, . . . ,∆n⟩ of Γ′
1,

– a list of formulae D1, . . . , Dn,

75

3.2. CRAIG INTERPOLATION FOR SkNMILL

– a list of derivations g′i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n],
– a derivation h′ : − | Γ0, D1, . . . , Dn ⊢ A such that
– σX(D1, . . . , Dn) ≤ σX(Γ′

1) and σX(D1, . . . , Dn) ≤ σX(Γ0, A) for all
atomic formulae X.

The desired interpolant formula is D = D1 ⊸ (D2 ⊸ (. . . (Dn ⊸ E) . . .)).
The desired derivations g and h are constructed as follows:

g =

h′

− | Γ0, D1, . . . , Dn ⊢ A
g′′

B | ⊢ E

A ⊸ B | Γ0, D1, . . . , Dn ⊢ E
⊸L

A ⊸ B | Γ0 ⊢ D1 ⊸ (. . . (Dn ⊸ E) . . .) ⊸R∗

h =
[g′i]

[− | ∆i ⊢ Di]i
h′′

E | Ω ⊢ C

D1 ⊸ (. . . (Dn ⊸ E) . . .) | ∆1, . . . ,∆n,Ω ⊢ C
⊸L∗

Notice that Γ′
1 = ∆1, . . . ,∆n, so the variable multiplicity condition is easy to

check.

Proof of cMMIP. We proceed by induction on the structure of f .
Case f = ax. Suppose f = ax : A | ⊢ A, which means that Γ0 = Γ1 = Γ2 = []. In
this case, the desired partition of Γ1 is the empty one, i.e. n = 0. The desired lists
of formulae Di and of derivations hi are also empty. The desired derivation g is ax.
Case f = IR. Similar to the previous one.
Case f = IL f ′. Given a derivation f ′ : − | Γ ⊢ C, by induction on f ′ with the
same partition ⟨Γ0,Γ1,Γ2⟩ of Γ we obtain

– a partition ⟨∆0, . . . ,∆n⟩ of Γ1,

– a list of interpolant formulae D1, . . . , Dn,

– derivations g′i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n],

– a derivation h′ : − | Γ0, D1, . . . , Dn,Γ2 ⊢ C such that

– σX(D1, . . . , Dn) ≤ σX(Γ1) and σX(D1, . . . , Dn) ≤ σX(Γ0,Γ2, C) for all X.

The desired partition of Γ1 is ⟨∆0, . . . ,∆n⟩, the desired list of interpolant formulae
is D1, . . . , Dn. The desired derivations are gi = g′i for i ∈ [1, . . . , n] and h = IL h′.
The variable multiplicity condition is automatically satisfied.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case.
Case f = pass f ′. Let f ′ : A | Γ′ ⊢ C and Γ = A,Γ′. There are subcases determined
by the partition ⟨Γ0,Γ1,Γ2⟩ of Γ. The most interesting case is the one where Γ0 = []
and Γ1 = A,Γ′

1, so that Γ′ = Γ′
1,Γ2. The other possible cases are handled similarly

to the IL case discussed above. We apply the sMIP procedure (which, remember,
is proved by mutual induction with cMMIP) on the derivation f ′ and the partition
⟨Γ′

1,Γ2⟩, which gives us

– a formula D,

76

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

– a derivation g′ : A | Γ′
1 ⊢ D,

– a derivation h′ : D | Γ2 ⊢ C such that

– σX(D) ≤ σX(A,Γ′
1) and σX(D) ≤ σX(Γ2, C) for any X.

The desired partition of A,Γ′
1 is the singleton context [A,Γ′

1], i.e. n = 1. The de-
sired list of interpolant formulae is the singleton [D]. The desired list of derivations
gi is the singleton list consisting only of pass g′ : − | A,Γ′

1 ⊢ D and the desired
derivation h is pass h′ : − | D,Γ2 ⊢ C. The variable multiplicity condition follows
from the inductive hypothesis.
Case f = ⊗R(f ′, f ′′). Let f ′ : S | Λ ⊢ A and f ′′ : − | Ω ⊢ B, so that Γ = Λ,Ω.
We need to check how the latter splitting of Γ compares to the given partition
⟨Γ0,Γ1,Γ2⟩. There are three possibilities:

• Γ1 is fully contained in Ω. This means that Γ0 = Λ,Γ′
0 and Ω = Γ′

0,Γ1,Γ2.
Then f ′ : S | Λ ⊢ A and f ′′ : − | Γ′

0,Γ1,Γ2 ⊢ B. By inductive hypothesis on
f ′′ with partition ⟨Γ′

0,Γ1,Γ2⟩ we obtain

– a partition ⟨∆0, . . . ,∆n⟩ of Γ1,
– a list of interpolant formulae D1, . . . , Dn,
– derivations g′′i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n],
– a derivation h′′ : − | Γ′

0, D1, . . . , Dn,Γ2 ⊢ B such that
– σX(D1, . . . , Dn) ≤ σX(Γ1) and σX(D1, . . . , Dn) ≤ σX(Γ′

0,Γ2, B) for any
X.

The desired partition of Γ1 is ⟨∆0, . . . ,∆n⟩. The desired list of interpolant
formulae is D1, . . . , Dn. The desired derivation gi is g′′i for i ∈ [1, . . . , n] and
the desired derivation h is ⊗R(f ′, h′′). The variable multiplicity condition is
satisfied because σX(D1, . . . , Dn) ≤ σX(Γ′

0,Γ2, B) ≤ σX(S,Λ,Γ′
0,Γ2, A⊗ B)

for any X.

• Γ1 is fully contained in Λ. This case is analogous to the one above, but now
we have to use the inductive hypothesis on the derivation f ′ instead of f ′′.

• Γ1 splits between Λ and Ω. This means that Γ1 = Γ′
1,Γ′′

1 and Λ = Γ0,Γ′
1

and Ω = Γ′′
1 ,Γ2, and Γ′′

1 is non-empty. Then f ′ : S | Γ0,Γ′
1 ⊢ A and f ′′ :

− | Γ′′
1 ,Γ2 ⊢ B. By inductive hypothesis on f ′ with the partition ⟨Γ0,Γ′

1, []⟩
and on f ′′ with the partition ⟨[],Γ′′

1 ,Γ2⟩, respectively, we obtain

– a partition ⟨∆0, . . . ,∆n⟩ of Γ′
1 and a partition ⟨∆n+1, . . . ,∆m⟩ of Γ′′

1 ,
– two lists of interpolant formulae D1, . . . , Dn and Dn+1, . . . , Dm,
– derivations g′i : − | ∆i ⊢ Di, for i ∈ [1, . . . , n], and derivations g′j :
− | ∆j ⊢ Dj , for j ∈ [n+ 1, . . . ,m],

– derivations h′ : S | Γ0, D1, . . . , Dn ⊢ A and h′′ : − | Dn+1, . . . , Dm,Γ2 ⊢
B such that

– σX(D1, . . . , Dn) ≤ σX(Γ′
1) and σX(D1, . . . , Dn) ≤ σX(S,Γ0, A), and

– σX(Dn+1, . . . , Dm) ≤ σX(Γ′′
1) and σX(Dn+1, . . . , Dm) ≤ σX(Γ2, B) for

any X.

77

3.2. CRAIG INTERPOLATION FOR SkNMILL

The desired partition of Γ′
1,Γ′′

1 is ⟨∆0, . . . ,∆n,∆n+1, . . . ,∆m⟩. The desired
list of interpolant formulae is D1, . . . , Dn, Dn+1, . . . , Dm. The desired deriva-
tion g is

g′

S | Γ0, D1, . . . , Dn ⊢ A
g′′

− | Dn+1, . . . , Dm,Γ2 ⊢ B

S | Γ0, D1, . . . , Dn, Dn+1, . . . , Dm,Γ2 ⊢ A⊗B
⊗R

while the desired derivation hi is h′
i for i ∈ [1, . . . ,m]. For the variable

multiplicity condition, we have σX(D1, . . . , Dm) ≤ σX(S,Γ0, A,Γ2, B) =
σX(S,Γ0,Γ2, A⊗B) for any X.

Case f = ⊸L(f ′, f ′′). Analogous to the case of ⊗R above.

Notice that cMMIP is invoked in the proof of sMIP, in the case f = ⊸L(f ′, f ′′).
Conversely, sMIP is invoked in the proof of cMMIP, in the case f = pass f ′. The
proof of Theorem 3.2.1 describes an effective procedure for building interpolant
formulae and derivations. This procedure is terminating, since each recursive call
happens on a derivation with height strictly smaller than the one of the derivation in
input. This behavior is further confirmed in Veltri’s Agda formalization, https://
github.com/niccoloveltri/code-skewmonclosed/tree/interpolation, where
the inductive proof of sMIP/cMMIP is accepted by the proof assistant as terminat-
ing.

Example 3.2.2. Let us illustrate the interpolation procedure on a simple example.
We compute the stoup Maehara interpolant of the end-sequent in the derivation

X | ⊢ X
ax

− | X ⊢ X
pass Y | ⊢ Y

ax
W | ⊢W

ax

− |W ⊢W
pass

Y |W ⊢ Y ⊗W
⊗R

X ⊸ Y | X,W ⊢ Y ⊗W
⊸L

− | X ⊸ Y,X,W ⊢ Y ⊗W
pass

Z | ⊢ Z
ax

(Y ⊗W) ⊸ Z | X ⊸ Y,X,W ⊢ Z
⊸L

(3.3)

with the partition ⟨[X ⊸ Y], [X,W]⟩.
Following the procedure in the proof of Theorem 3.2.1, we are in the case when
the last rule is ⊸L and both lists in the partition ⟨[X ⊸ Y], [X,W]⟩ move to the
context of the left premise. This means that we need to apply the cMMIP procedure
to the derivation pass(⊸L(pass ax,⊗R(ax, pass ax))) : − | X ⊸ Y,X,W ⊢ Y ⊗W
(witnessing the left premise of ⊸L) with the partition ⟨[X ⊸ Y], [X,W], []⟩. This
produces

– a partition ⟨[X], [W]⟩ of [X,W],

– a list of interpolant formulae [X,W], and

– derivations g′1 = pass ax : − | X ⊢ X, and g′2 = pass ax : − | W ⊢ W , and
h′ = pass(⊸L(pass ax,⊗R(ax, pass ax))) : − | X ⊸ Y,X,W ⊢ Y ⊗W

satisfying the variable multiplicity condition. Next, we need to apply the sMIP pro-
cedure on the derivation ax : Z | ⊢ Z with the partition ⟨[], []⟩ which produces

78

https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation
https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

two derivations ax : Z | ⊢ Z and ax : Z | ⊢ Z. Then we obtain the desired
interpolant formula X ⊸ (W ⊸ Z) and the desired derivations

g =

h′

− | X ⊸ Y,X,W ⊢ Y ⊗W Z | ⊢ Z
ax

(Y ⊗W) ⊸ Z | X ⊸ Y,X,W ⊢ Z
⊸L

(Y ⊗W) ⊸ Z | X ⊸ Y,X ⊢W ⊸ Z
⊸R

(Y ⊗W) ⊸ Z | X ⊸ Y ⊢ X ⊸ (W ⊸ Z) ⊸R

h = g′1
− | X ⊢ X

g′2
− |W ⊢W Z | ⊢ Z

ax

W ⊸ Z |W ⊢ Z
⊸L

X ⊸ (W ⊸ Z) | X,W ⊢ Z
⊸L

Notice that this is crucially different from the result that Maehara’s method would
produce on the corresponding derivation in the associative Lambek calculus (with
⊗). The translation of derivation (3.3) in the associative Lambek calculus is

X ⊢ X
ax Y ⊢ Y

ax
W ⊢W

ax

Y,W ⊢ Y ⊗W
⊗R

Y ⧸X,X,W ⊢ Y ⊗W
⧸L

Z ⊢ Z
ax

Z ⧸ (Y ⊗W), Y ⧸X,X,W ⊢ Z
⧸L

Using the Maehara interpolation procedure defined in [52], the resulting interpolant
formula would be Z ⧸ (X ⊗W). Again, X and W can be tensored in the latter
formula since the Lambek calculus admits a general left rule for ⊗.

We conclude this section showing how Craig interpolation follows from stoup
Maehara interpolation.

Theorem 3.2.3. For any formulae A and C, if A ⊸ C is provable in SkNMILL,
then there exists a formula D such that both A ⊸ D and D ⊸ C are provable, and
var(D) ⊆ var(A) ∩ var(C).

Proof. A ⊸ C being provable means that there is a derivation f : − | ⊢ A ⊸ C.
By invertibility of the rule ⊸R, we obtain a derivation f ′ : − | A ⊢ C. Then by
running the sMIP procedure on f ′ with the partition ⟨[A], []⟩, we get

– a formula D,

– g′ : − | A ⊢ D,

– h′ : D | ⊢ C, and

– σX(D) ≤ σX(A) and σX(D) ≤ σX(C).

The formulae A ⊸ D and D ⊸ C are proved by the derivations ⊸R g′ : − | ⊢
A ⊸ D and ⊸R(pass h′) : − | ⊢ D ⊸ C, respectively. The variable condition is
implied by the variable multiplicity condition.

79

3.3. MORE ADMISSIBLE EQUIVALENCES OF DERIVATIONS

Remark 3.2.4. The interpolation property (sMIP) for SkNMILLI,⊗, the sequent
calculus for skew monoidal categories, is straightforwardly proved by observing the
sequents. In particular, for any derivation f : S | Γ ⊢ C with the partition ⟨Γ0,Γ1⟩,
we take the interpolant formula to be [[S | Γ0]]⊗ and the two desired derivations
are ax : [[S | Γ0]]⊗ | ⊢ [[S | Γ0]]⊗ and f ′ : [[S | Γ0]]⊗ | Γ1 ⊢ C obtained by applying
⊗L on f multiple times. The variable condition is satisfied since there is no linear
implication, meaning that the variables of any formula in the stoup is necessarily
contained in the set of variables of the succedent formula.

3.3 More Admissible Equivalences of Derivations
In this section we introduce an equation and two equivalences, that will be employed
later in Section 3.4. In the construction of the scut admissibility procedure (Section
2.1), the case when the first premise is of the form ⊸R f and the second premise
of the form ⊸L (g, h) (i.e. a principal cut when the cut formula is an implication)
is defined as follows:

f
S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

g
− | ∆ ⊢ A

h
B | Λ ⊢ C

A ⊸ B | ∆,Λ ⊢ C
⊸L

S | Γ,∆,Λ ⊢ C
scut

=

g
− | ∆ ⊢ A

f
S | Γ, A ⊢ B

S | Γ,∆ ⊢ B
ccut h

B | Λ ⊢ C

S | Γ,∆,Λ ⊢ C
scut

This equation can be generalized to one where ⊸R, ⊸L and ccut are replaced by
their iterated versions ⊸R∗, ⊸L∗ and ccut∗ introduced in Equations (2.2), (3.1)
and (3.2).

Proposition 3.3.1. Given a list of formulae Λ = A1, . . . , An, a derivation f :
S | Γ0,Λ ⊢ B and a list of derivations gi : − | ∆i ⊢ Ai for i ∈ [1, . . . , n], the
following equation is derivable:

f
S | Γ0,Λ ⊢ B

S | Γ0 ⊢ Λ ⊸∗ B
⊸R∗

[gi]
[− | ∆i ⊢ Ai]i

h
B | Γ1 ⊢ C

Λ ⊸∗ B | ∆1, . . . ,∆n,Γ1 ⊢ C
⊸L∗

S | Γ0,∆1, . . . ,∆n,Γ1 ⊢ C
scut

=

[gi]
[− | ∆i ⊢ Ai]i

f
S | Γ0,∆1, . . . ,∆n ⊢ B

S | Γ0,∆1, . . . ,∆n ⊢ B
ccut∗ h

B | Γ1 ⊢ C

S | Γ0,∆1, . . . ,∆n,Γ1 ⊢ C
scut

Proof. Proving the validity of the equation requires various applications of the
associativity equations in Proposition 2.1.2.

In Section 2.1, the admissibility of rule scut is proved by structural recursion
on the derivation of the left premise. This implies that “scut commutes with left
rules in first premise”, i.e. scut(⊙L f, g) = ⊙L(scut(f, g)) for any one-premise left

80

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

rule ⊙L among IL, ⊗L and pass, and also scut(⊸L(f, f ′), g) = ⊸L(f, scut(f ′, g)).
It is possible to also show that “scut commutes with right rules in second premise”,
but only up to equivalence ⊜.

Proposition 3.3.2. The following equivalences of derivations involving scut, ⊗R,
and ⊸R are admissible in SkNMILLS:

f
S | Γ ⊢ A

g
A | ∆ ⊢ B

h
− | Λ ⊢ C

A | ∆,Λ ⊢ B ⊗ C
⊗R

S | Γ,∆,Λ ⊢ B ⊗ C
scut

⊜

f
S | Γ ⊢ A

g
A | ∆ ⊢ B

S | Γ,∆ ⊢ B
scut h

− | Λ ⊢ C

S | Γ,∆,Λ ⊢ B ⊗ C
⊗R

f
S | Γ ⊢ B

g
A | ∆, B ⊢ C

A | ∆ ⊢ B ⊸ C
⊸R

S | Γ,∆ ⊢ B ⊸ C
scut

⊜

f
S | Γ ⊢ A

g
A | ∆, B ⊢ C

S | Γ,∆, B ⊢ C
scut

S | Γ,∆ ⊢ B ⊸ C
⊸R

Proof. Both equivalences are proved by structural induction on the derivation f .

3.4 Proof-Relevant Interpolation
So far we have established a procedure sMIP for effectively splitting a derivation
f : S | Γ1,Γ2 ⊢ C in two derivations g : S | Γ1 ⊢ D and h : − | Γ2 ⊢ C, with
D being “minimal” in the sense of satisfying an appropriate variable condition. A
natural question arises: what happens when we compose derivations g and h using
the admissible scut rule? Intuition suggests that we should get back the original
derivation f , at least modulo η-conversions and permutative conversions. This in
fact what happens, and this section is dedicated to proving this result.

Analogously, the cMMIP procedure splits a derivation f : S | Γ0,Γ1,Γ2 ⊢ C in
a tuple of derivations [hi : − | ∆i ⊢ Di]i and g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C, with
D1, . . . , Dn satisfying an appropriate variable condition. If we compose [hi] and g
using the admissible ccut∗ rule, we get back the original derivation modulo ⊜.

Similar questions have been considered by Čubrić [68] in the setting of intu-
itionistic propositional logic and by Saurin [58] for (extensions) of classical linear
logic. They call proof-relevant interpolation the study of interpolation procedures
in relationship to cut rules and equivalence of proofs, like our ⊜. In particular,
Čubrić and Saurin show that interpolation procedures are in a way “right inverses”
of cut rules. Here we show the same for SkNMILLS: the sMIP procedure is a right
inverse of scut, while the cMMIP procedure is a right inverse of ccut∗.

Theorem 3.4.1.

(i) Let g : S | Γ0 ⊢ D and h : D | Γ1 ⊢ C be the derivations obtained by applying
the sMIP procedure on a derivation f : S | Γ ⊢ C with the partition ⟨Γ0,Γ1⟩.
Then scut(g, h) ⊜ f .

(ii) Let g : S | Γ0, D1, . . . , Dn,Γ2 ⊢ C and hi : − | ∆i ⊢ Di for i ∈ [1, . . . , n]
be derivations obtained by applying the cMMIP procedure on a derivation f :
S | Γ ⊢ C with the partition ⟨Γ0,Γ1,Γ2⟩. Then ccut∗([gi], h) ⊜ f .

81

3.4. PROOF-RELEVANT INTERPOLATION

Proof. Similar to the proof of Theorem 3.2.1, statements (i) and (ii) are proved by
mutual induction on the structure of derivations. We focus on the proof of state-
ment (i), since (ii) is proved in a similar manner. We refer the interested reader to
Veltri’s Agda formalization, https://github.com/niccoloveltri/code-skewmon
closed/tree/interpolation, for all the technical details.

The proof relies on the computational behavior of the admissible rules scut and
ccut defined in [67] and the proof of Theorem 2.1.1.
Case f = ax. The goal reduces to scut(ax, ax) ⊜ ax, which holds by definition of
scut.
Case f = IR. The goal reduces to scut(IR, IL IR) ⊜ IR, which holds by definition of
scut.
Case f = IL f ′. The goal reduces to scut(IL g′, h′) ⊜ IL f ′1. By definition of scut
we have scut(IL g′, h′) = IL (scut(g′, h′)). By inductive hypothesis on f ′, we have
scut(g′, h′) ⊜ f ′ and then by congruence of ⊜, we obtain IL(scut(g′, h′)) ⊜ IL f ′, as
desired.
Cases f = ⊗L f ′ and f = ⊸R f ′. Analogous to the previous case. Though the case
of ⊸R requires an additional application of Proposition 3.3.2.
Case f = pass f ′. Two cases determined by whether Γ0 is empty or not.

• In the first case, the goal reduces to scut(IR, IL(pass f ′)) ⊜ pass f ′, which
holds by definition of scut.

• In the second case, the goal reduces to scut(pass g′, h′) ⊜ pass f ′. By def-
inition of scut we have scut(pass g′, h′) = pass(scut(g′, h′)). By inductive
hypothesis on f ′ and congruence, the latter is ⊜-related to pass f ′.

Case f = ⊗R(f ′, f ′′). Two cases determined by whether Γ0 is fully contained in the
context of the left premise or not.

• In the first case, the goal reduces to scut(g′,⊗R(h′, f ′′)) ⊜ ⊗R(f ′, f ′′). By
Proposition 3.3.2, we have scut(g′,⊗R(h′, f ′′)) ⊜ ⊗R(scut(g′, h′), f ′′). By in-
ductive hypothesis on f ′ and congruence, the latter is⊜-related to⊗R(f ′, f ′′).

• In the second case, the goal reduces to showing that the derivation
scut(⊗R(g, h′),⊗L (⊗R(h′, pass‘h′′))) is ⊜-related to ⊗R(f ′, f ′′). This is wit-
nessed by the following sequence of equivalences:

scut(⊗R(g, h′),⊗L(⊗R(h′, pass‘h′′)))
= scut(g′,⊗R(h′, scut(g′′, h′′))) (by definition of scut)
⊜ ⊗R(scut(g′, h′), scut(g′′, h′′)) (by Proposition 3.3.2)
⊜ ⊗R(f ′, f ′′) (by ind. hyp. on f ′ and f ′′

and congruence)

Case f = ⊸L(f ′, f ′′). Two cases determined by whether Γ1 is fully contained in
the context of the right premise or not.

• In the first case, the goal reduces to scut(⊸L(f ′, g′′), h′′) ⊜ ⊸L(f ′, f ′′).
By definition of scut, we have scut(⊸L(f ′, g′′), h′′) = ⊸L(f ′, (scut(g′′, h′′)).
By inductive hypothesis on f ′′ and congruence, the latter is ⊜-related to
⊸L(f ′, f ′′).

1Here g′ and h′ are as in the proof of Theorem 3.2.1. We follow the same convention for the
forthcoming cases too, where name of derivations will match the ones in the proof of Theorem
3.2.1

82

https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation
https://github.com/niccoloveltri/code-skewmonclosed/tree/interpolation

CHAPTER 3. CRAIG INTERPOLATION FOR SkNMILL

• In the second case, the goal reduces to showing that the derivation
scut(⊸R∗(⊸L(h′, g′′)),⊸L∗([g′i], h′′)) is ⊜-related to ⊸L(f ′, f ′′). This is
witnessed by the following sequence of equivalences:

scut(⊸R∗(⊸L(h′, g′′)),⊸L∗([g′i], h′′))
⊜ scut(ccut∗([g′i],⊸L(h′, g′′)), h′′) (by Proposition 3.3.1)
= ⊸L(ccut∗([g′i], h′), scut(h′′, g′′)) (by definition of scut and ccut∗)
⊜ ⊸L(f ′, f ′′) (by ind. hyp. on f ′ and f ′′

and congruence)

The final step employs the “inductive hypothesis” on f ′, which in this case
means the validity of statement (ii) for derivation f ′ (remember that state-
ments (i) and (ii) are proved simultaneously by structural induction on
derivations).

Having established the core theory of SkNMILL, including its sequent calculus,
categorical semantics, focused system, and interpolation properties, we now turn
to explore various extensions of this base system. The following two chapters
demonstrate the modularity of our framework by showing how SkNMILL can be
enriched with additional structure while preserving its essential skew character
and proof-theoretic properties.

83

Chapter 4

A Commutative Extension of
SkNMILL

We begin by investigating a commutative extension of SkNMILL that incorporates
a restricted form of exchange (skew exchange), leading to a language of symmetric
skew monoidal closed categories. For this extension, we develop not only the basic
sequent calculus but also extend the focused calculus in Section 2.4.2 to handle
skew exchange.

Veltri has recently investigated the proof theory of symmetric left skew monoidal
categories and symmetric left skew closed categories [69, 70]. These are variants
of Mac Lane’s symmetric monoidal categories and de Schippers’ symmetric closed
categories [23] which are originally introduced by Bourke and Lack [14] where
the natural isomorphism representing symmetry involves three objects rather than
two. Following the ideas in Veltri’s study, we discuss a commutative extension of
SkNMILL, that we call SkMILL (dropping the N for “non-commutative”), and its
connection to symmetric skew monoidal closed categories.

While Veltri’s studies addressed symmetric skew monoidal and symmetric skew
closed structures separately [69, 70], this chapter distinctively concentrates on the
integrated symmetric skew monoidal closed case. The core of this added complexity
lies in how the exchange (ex) rule affects the behavior of tagged formulae within the
focused calculus. In Chapter 2, formulae newly introduced into the context by the
right implication rule (⊸R) maintain predictable positions when the proof search
moves to the focusing phase. In SkMILL, however, the ex rule allows these new
formulae to be permuted and then to appear throughout the context. This behavior
demands a more complex tracking mechanism than what sufficed previously. This
enhanced tracking is essential for proving the admissibility of the tensor right rule
(⊗R) within each phase. As we have seen in Chapter 2, this is crucial for the
correctness of the focusing procedure.

4.1 Sequent Calculus
A sequent calculus for SkMILL (SkMILLS) is obtained by adding the following re-
stricted exchange rule to the collection of inference rules in SkNMILLS:

S | Γ, A,B,∆ ⊢ C

S | Γ, B,A,∆ ⊢ C
exA,B

85

4.1. SEQUENT CALCULUS

An application of rule exA,B results in the swapping of two adjacent formulae A
and B in the context. But notice that the exchange of the formula in the stoup
(when such formula exists) and a formula in context is not allowed. This implies
that a derivation corresponding to the structural law s of skew symmetric monoidal
closed categories (see Definition 4.2.1) exists, while a derivation corresponding to
the usual symmetry of (non-skew) symmetric monoidal categories does not:

A | ⊢ A
ax

C | ⊢ C
ax

− | C ⊢ C
pass

A | C ⊢ A⊗ C
⊗R

B | ⊢ B
ax

− | B ⊢ B
pass

A | C,B ⊢ (A⊗ C)⊗B
⊗R

A | B,C ⊢ (A⊗ C)⊗B
exC,B

A⊗B | C ⊢ (A⊗ C)⊗B
⊗L

(A⊗B)⊗ C | ⊢ (A⊗ C)⊗B
⊗L

??
X | ⊢ Y

??
− | Y ⊢ X

X | Y ⊢ Y ⊗X
⊗R

X ⊗ Y | ⊢ Y ⊗X
⊗L

??
X | Y ⊢ Y

??
− | ⊢ X

X | Y ⊢ Y ⊗X
⊗R

X ⊗ Y | ⊢ Y ⊗X
⊗L

(4.1)

The presence of the new ex rule requires the extension of the congruence relation
⊜ in Figures 2.1 and 2.2 with new generating equations in Figures 4.1 and 4.2.

The first equation states that swapping the same two formulae twice is the
same as doing nothing. The second equation is a form of Yang-Baxter equation,
stating that the two ways in which 3 adjacent formulae A,B,C can be turned to
C,B,A are the same. The remaining equations are permutative conversions. The
congruence ⊜ serves as the proof-theoretic counterpart of the equational theory of
symmetric skew monoidal closed categories, introduced in Definition 4.2.1. The
subsystem of equations involving only (I,⊗) comes from [69].

The rule ex allows us to swap the position of two adjacent formulae in the
context. But more general forms of exchange are admissible, where a formula is
swapped with a list of formulae.

Proposition 4.1.1. The following generalized exchange rules are admissible:

S | Γ, A,Λ,∆ ⊢ C

S | Γ,Λ, A,∆ ⊢ C
exsA,Λ

S | Γ,Λ, A,∆ ⊢ C

S | Γ, A,Λ,∆ ⊢ C
exsΛ,A (4.2)

Proof. We only show the proof of exsA,Λ, the proof of exsΛ,A is similar. The proof
proceeds by induction on Λ. If Λ is empty, then exsA,() simply returns the input
derivation. If Λ = Λ′, B, we first swap A and B and then apply the inductive
hypothesis:

f
S | Γ, A,Λ′, B,∆ ⊢ C

S | Γ,Λ′, B,A,∆ ⊢ C
exsA,(Λ′,B)

=

f
S | Γ, A,Λ′, B,∆ ⊢ C

S | Γ,Λ′, A,B,∆ ⊢ C
exsA,Λ′

S | Γ,Λ′, B,A,∆ ⊢ C
exA,B

86

CHAPTER 4. A COMMUTATIVE EXTENSION OF SkNMILL

f
S | Γ, A,B,∆ ⊢ C

S | Γ, B,A,∆ ⊢ C
exA,B

S | Γ, A,B,∆ ⊢ C
exB,A

⊜
f

S | Γ, A,B,∆ ⊢ C

f
S | Γ, A,B,D,∆ ⊢ C

S | Γ, A,D,B,∆ ⊢ C
exB,D

S | Γ, D,A,B,∆ ⊢ C
exA,D

S | Γ, D,B,A,∆ ⊢ C
exA,B

⊜

f
S | Γ, A,B,D,∆ ⊢ C

S | Γ, B,A,D,∆ ⊢ C
exA,B

S | Γ, B,D,A,∆ ⊢ C
exA,D

S | Γ, D,B,A,∆ ⊢ C
exB,D

f
− | Γ, A,B,∆ ⊢ C

− | Γ, B,A,∆ ⊢ C
exA,B

I | Γ, B,A,∆ ⊢ C
IL

⊜

f
− | Γ, A,B,∆ ⊢ C

I | Γ, A,B,∆ ⊢ C
IL

I | Γ, B,A,∆ ⊢ C
exA,B

f
A′ | Γ, A,B,∆ ⊢ C

A′ | Γ, B,A,∆ ⊢ C
exA,B

− | A′,Γ, B,A,∆ ⊢ C
pass

⊜

f
A′ | Γ, A,B,∆ ⊢ C

− | A′,Γ, A,B,∆ ⊢ C
pass

− | A′,Γ, B,A,∆ ⊢ C
exA,B

f
A′ | B′,Γ, A,B,∆ ⊢ C

A′ | B′,Γ, B,A,∆ ⊢ C
exA,B

A′ ⊗B′ | Γ, B,A,∆ ⊢ C
⊗L

⊜

f
A′ | B′,Γ, A,B,∆ ⊢ C

A′ ⊗B′ | Γ, A,B,∆ ⊢ C
⊗L

A′ ⊗B′ | Γ, B,A,∆ ⊢ C
exA,B

f
S | Γ0, A,B,Γ1 ⊢ A′

S | Γ0, B,A,Γ1 ⊢ A′
exA,B

g
− | ∆ ⊢ B′

S | Γ0, B,A,Γ1,∆ ⊢ A′ ⊗B′ ⊗R
⊜

f
S | Γ0, A,B,Γ1 ⊢ A′

g
− | ∆ ⊢ B′

S | Γ0, A,B,Γ1,∆ ⊢ A′ ⊗B′ ⊗R

S | Γ0, B,A,Γ1,∆ ⊢ A′ ⊗B′ exA,B

f
S | Γ ⊢ A′

g
− | ∆0, A,B,∆1 ⊢ B′

− | ∆0, B,A,∆1 ⊢ B′
exA,B

S | Γ,∆0, B,A,∆1 ⊢ A′ ⊗B′ ⊗R
⊜

f
S | Γ ⊢ A′

g
− | ∆0, A,B,∆1 ⊢ B′

S | Γ,∆0, A,B,∆1 ⊢ A′ ⊗B′ ⊗R

S | Γ,∆0, B,A,∆1 ⊢ A′ ⊗B′ exA,B

Figure 4.1: Additional equations of derivations in SkMILLS

87

4.1. SEQUENT CALCULUS

f
− | Γ0, A,B,Γ1 ⊢ A′

− | Γ0, B,A,Γ1 ⊢ A′
exA,B

g
B′ | ∆ ⊢ C

A′ ⊸ B′ | Γ0, B,A,Γ1,∆ ⊢ C
⊸L

⊜

f
− | Γ0, A,B,Γ1 ⊢ A′

g
B′ | ∆ ⊢ C

A′ ⊸ B′ | Γ0, A,B,Γ1,∆ ⊢ C
⊸L

A′ ⊸ B′ | Γ0, B,A,Γ1,∆ ⊢ C
exA,B

f
− | Γ ⊢ A′

g
B′ | ∆0, A,B,∆1 ⊢ C

B′ | ∆0, B,A,∆1 ⊢ C
exA,B

A′ ⊸ B′ | Γ,∆0, B,A,∆1 ⊢ C
⊸L

⊜

f
− | Γ ⊢ A′

g
B′ | ∆0, A,B,∆1 ⊢ C

A′ ⊸ B′ | Γ,∆0, A,B,∆1 ⊢ C
⊸L

A′ ⊸ B′ | Γ,∆0, B,A,∆1 ⊢ C
exA,B

f
S | Γ, A,B,∆, A′ ⊢ B′

S | Γ, B,A,∆, A′ ⊢ B′
exA,B

S | Γ, B,A,∆ ⊢ A′ ⊸ B′ ⊸R
⊜

f
S | Γ, A,B,∆, A′ ⊢ B′

S | Γ, A,B,∆ ⊢ A′ ⊸ B′ ⊸R

S | Γ, B,A,∆ ⊢ A′ ⊸ B′
exA,B

f
S | Γ, A,B,∆, A′, B′,Λ ⊢ C

S | Γ, A,B,∆, B′, A′,Λ ⊢ C
exA′,B′

S | Γ, B,A,∆, B′, A′,Λ ⊢ C
exA,B

⊜

f
S | Γ, A,B,∆, A′, B′,Λ ⊢ C

S | Γ, A,B,∆, B′, A′,Λ ⊢ C
exA,B

S | Γ, B,A,∆, B′, A′,Λ ⊢ C
exA′,B′

Figure 4.2: Additional equations of derivations in SkMILLS, continued

The two forms of cut rules are admissible also in SkMILL. The admissibility of
ccut is proved with the help of the general exchange rules in (4.2). For instance,

f
− | Γ ⊢ A

g
S | ∆0, A,B,∆1 ⊢ C

S | ∆0, B,A,∆1 ⊢ C
exA,B

S | ∆0, B,Γ,∆1 ⊢ C
ccut

=

f
− | Γ ⊢ A

g
S | ∆0, A,B,∆1 ⊢ C

S | ∆0,Γ, B,∆1 ⊢ C
ccut

S | ∆0, B,Γ,∆1 ⊢ C
exsΓ,B

f
− | Γ ⊢ B

g
S | ∆0, A,B,∆1 ⊢ C

S | ∆0, B,A,∆1 ⊢ C
exA,B

S | ∆0,Γ, A,∆1 ⊢ C
ccut

=

f
− | Γ ⊢ B

g
S | ∆0, A,Γ,∆1 ⊢ C

S | ∆0, A,Γ,∆1 ⊢ C
ccut

S | ∆0,Γ, A,∆1 ⊢ C
exsA,Γ

SkMILL can be seen as a logic of resources, akin to its non-commutative variant
SkNMILL, for which such an interpretation is provided in the end of Section 2. The
antecedent of a sequent contains the resources at hand, while the stoup position,
when it is non-empty, contains the resource that is immediately usable. Now the
resources in the context are not ordered anymore, but they are still ordered with
respect to the resource in the stoup. This implies that, when the resource in the
stoup has been used, it is possible to choose which resource in the context can be
spent next. It is also possible to rearrange the position of resources in the context
before splitting it when applying rules ⊸L and ⊗R.

88

CHAPTER 4. A COMMUTATIVE EXTENSION OF SkNMILL

((A⊗B)⊗ C)⊗D ((A⊗B)⊗D)⊗ C ((A⊗D)⊗B)⊗ C

((A⊗ C)⊗B)⊗D ((A⊗ C)⊗D)⊗B ((A⊗D)⊗ C)⊗B

sA⊗B,C,D sA,B,D⊗C

sA,B,C⊗D

sA⊗C,B,D sA,C,D⊗B

sA⊗D,B,C

((A⊗B)⊗ C)⊗D ((A⊗ C)⊗B)⊗D ((A⊗ C)⊗D)⊗B

(A⊗B)⊗ (C ⊗D) (A⊗ (C ⊗D))⊗B

sA,B,C⊗D sA⊗C,B,D

αA⊗B,C,D αA,C,D⊗B

sA,B,C⊗D

((A⊗B)⊗ C)⊗D ((A⊗B)⊗D)⊗ C ((A⊗D)⊗B)⊗ C

(A⊗ (B ⊗ C))⊗D (A⊗D)⊗ (B ⊗ C)

sA⊗B,C,D sA,B,D⊗C

αA,B,C⊗D αA⊗D,B,C

sA,B⊗C,D

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗D)⊗ C (A⊗ (B ⊗D))⊗ C A⊗ ((B ⊗D)⊗ C)

αA,B,C⊗D αA,B⊗C,D

sA⊗B,C,D A⊗sB,C,D

αA,B,D⊗C αA,B⊗D,C

(A⊗ C)⊗B

(A⊗B)⊗ C (A⊗B)⊗ C

sA,B,C sA,C,B

Figure 4.3: Equations related to the structural law s

4.2 Categorical Semantics
The categorical semantics of SkMILLS is given in terms of a symmetric extension of
skew monoidal closed categories.

Definition 4.2.1. A symmetric skew monoidal closed category [14] is a skew
monoidal closed category (in the sense of Definition 2.3.1) with a natural isomor-
phism s typed sA,B,C : (A ⊗ B) ⊗ C → (A ⊗ C) ⊗ B satisfying the equations in
Figure 4.3.

A (strict) symmetric skew monoidal closed functor is a (strict) skew monoidal
closed functor F : C→ D between symmetric skew monoidal closed categories that
preserves the structural law s on the nose.

The natural isomorphism s acts on three objects A,B,C: it fixes A and swaps
B and C. Therefore, there is a map between objects (. . . ((A⊗B1)⊗B2 . . .))⊗Bn

and (. . . ((A ⊗ Bi1) ⊗ Bi2 . . .))Bin for each permutation of indices i. Notice the
difference with the usual structural law σ of symmetry of Mac Lane, which is
typed σB,C : B⊗C → C⊗B. In a symmetric skew monoidal closed category there
is generally no map with such type (we will have a further discussion in Section

89

4.2. CATEGORICAL SEMANTICS

6.4). Clearly every symmetric monoidal closed category is also skew symmetric:

s′A,B,C = (A⊗B)⊗ C
αA,B,C

// A⊗ (B ⊗ C)
A⊗σB,C

// A⊗ (C ⊗B)
α−1

A,C,B
// (A⊗ C)⊗B

(4.3)

Example 4.2.2 (Example 2.3.3 ctd). Let (C, I,⊗,⊸) be a symmetric monoidal
closed category equipped with a symmetric lax monoidal comonad (D, ε, δ). Let
σ be its (non-skew) symmetry typed σB,C : B ⊗ C → C ⊗ B. Then the skew
monoidal closed structure (I,⊗D,D⊸) of Example 2.3.3 is also symmetric with
sDA,B,C : (A⊗DB)⊗DC → (A⊗DC)⊗DB defined as s′A,DB,DC in (4.3).

Remark 4.2.3. Similar to left skew monoidal closed categories, symmetric left
skew monoidal closed categories admit an equivalent characterization, i.e. the natu-
ral isomorphisms s are bijective with the natural isomorphisms s′ :
B ⊸ (A ⊸ C) → A ⊸ (B ⊸ C) [14]. In other words, s′ correctly characterizes
symmetry in a symmetric left skew non-monoidal closed category.

Similarly to the non-commutative case investigated in Section 2.3, the formulae,
derivations and the equivalence relation ⊜ of the sequent calculus for SkMILL deter-
mine a symmetric skew monoidal closed category FSymSkMCl(At). This is defined
analogously to the skew monoidal closed category FSkMCl(At) of Definition 2.3.5
with the addition of the structural law s given by the left derivation in (4.1).

Theorem 4.2.4. Let D be a symmetric skew monoidal closed category. Each
function FAt : At → |D| extends to a unique symmetric skew monoidal closed
functor F : FSymSkMCl(At)→ D.

Proof.
Existence. Let (D, I′,⊗′,⊸′) be a skew monoidal closed category. The construction
of F is analogous to the one given in the proof of Theorem 2.3.6. We only show
how to derive the exchange rule exA,B in D:

((((. . . ((S ⊗′ A1) . . .)⊗′ B)⊗′ A)⊗′ Aj) . . .)⊗′ An

((s((S⊗′A1)...),B,A⊗′Aj)...)⊗′An
//

((((. . . ((S ⊗′ A1) . . .)⊗′ A)⊗′ B)⊗′ Aj) . . .)⊗′ An
f

// C

(Here S is an object of D, not an optional formula.)
Uniqueness. Consider another symmetric skew monoidal closed functor
F ′ : FSymSkMCl(At) → D such that F ′X = FAtX for any atom X. We can
verify that F ′ and F agree on every object and morphism in FSymSkMCl(At) by
induction on formulae and derivations respectively.

As discussed in the end of Section 2.3, this can alternatively be shown by
constructing a Hilbert-style deductive system directly presenting the free symmetric
skew monoidal closed category on At and appropriately proving that it is equivalent
to the sequent calculus. The Hilbert-style system looks like the one for the non-
symmetric case in (2.2.1), with the addition of a rule for symmetry:

(A⊗B)⊗ C ⇒ (A⊗ C)⊗B
s

90

CHAPTER 4. A COMMUTATIVE EXTENSION OF SkNMILL

The congruence relation .= also needs to be extended with all the equations in-
volving symmetry in Definition 4.2.1. There exists a bijection between the set of
derivations of the SkMILL sequent A | ⊢ B modulo ⊜ and the set of derivations
of the sequent A⇒ B modulo .=.

4.3 A Focused Sequent Calculus with Tag Anno-
tations

SkMILL also has a tagged focused subsystem of derivations corresponding to normal
forms for the equivalence relation ⊜ in Figures 2.1, 2.2, 4.1 and 4.2.

(context)
S | Γ ...∆, Ax,Λ ⊢xC C

S | Γ, Ax ...∆,Λ ⊢xC C
ex

S | Γ ⊢xRI C
S | ...Γ ⊢xC C

RI2C

(right invertible)
S | Ax ...Γ ⊢xC B

S | Γ ⊢xRI A ⊸ B
⊸R

S | Γ ⊢xLI P
S | Γ ⊢xRI P

LI2RI

(left invertible)
− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B ...Γ ⊢C P

A⊗B | Γ ⊢LI P
⊗L

T | Γ ⊢xF P

T | Γ ⊢xLI P
F2LI

(focusing)
X | ⊢xF X

ax
A | Γ◦ ⊢LI P
− | Ax,Γ ⊢xF P

pass
− | ⊢xF I IR

T | Γ◦ ⊢•RI A − | ∆◦ ⊢RI B
T | Γ,∆ ⊢xF A⊗B

⊗R
− | Γ◦ ⊢RI A B | ∆◦ ⊢LI P x = • ⊃ • ∈ Γ

A ⊸ B | Γ,∆ ⊢xF P
⊸L

(4.4)

There are two main differences with the non-commutative focused calculus in (2.7):

• Root-first proof search now starts in a new phase C, where formulae in context
are permuted. The search in phase C starts from a sequent S | Γ ... ⊢C C and
ends in a sequent S | ...Γ′ ⊢C C, where Γ′ is a permutation of Γ. During
this process, the context is split into two parts Γ ...∆, where formulae in Γ
are ready to be moved and formulae in ∆ have been already moved to their
correct position. The rule ex moves one formula at a time (the rightmost
one in the left side of the context Γ) until every formula is moved somewhere
to the right of the separator When this happens, proof search continues
in phase RI. Notice that the sequent and formulae in context may also be
tagged and tags are preserved during the permutation phase. An important
difference with the non-commutative focused calculus is the fact that now
tagged and untagged formulae in context are mixed, while in (2.7) all tagged
formulae necessarily appear at the right end of the context.

• The other difference is in rules ⊸R and ⊗L, which, under the bottom-up
reading of the rules, are the only two rules where new formulae are added
to the context. The premises of these rules are now required to go back to
phase C in order to move the new formulae A to its correct position in the
context via an application of the rule ex.

Theorem 4.3.1. The focused sequent calculus in (4.4) is sound and complete with
respect to the sequent calculus of Section 4.1: there is a one-to-one correspondence
between the set of derivations of S | Γ ⊢ A quotiented by ⊜ and the set of derivations
of S | Γ ... ⊢C A.

91

4.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

Soundness is obtained by defining embedding functions embC : S | Γ ...∆ ⊢xC C →
S | Γ,∆ ⊢ A and embph : S | Γ ⊢xph A→ S | Γ ⊢ A, for all ph ∈ {C,RI, LI,F}, which
erase all phase and tag annotations. Completeness is justified by proving that the
following rules are admissible in phase C:

A | ... ⊢C A
axC

A | Γ ...∆ ⊢C C

− | Γ ...∆ ⊢C C
passC

S | Γ0, A,B,Γ1
...∆ ⊢C C

S | Γ0, B,A,Γ1
...∆ ⊢C C

exC

− | Γ ... ⊢C A B | ∆ ...Λ ⊢C C

A ⊸ B | Γ,∆ ...Λ ⊢C C
⊸LC

− | Γ ...∆ ⊢C C

I | Γ ...∆ ⊢C C ILC
A | B,Γ ...∆ ⊢C C

A⊗B | Γ ...∆ ⊢C C
⊗LC

S | Γ ... ⊢C A − | Γ′ ...∆ ⊢C B

S | Γ,Γ′ ...∆ ⊢C A⊗B
⊗RC

− | ... ⊢C I IRC
S | Γ, A ...∆ ⊢C B

S | Γ ...∆ ⊢C A ⊸ B
⊸RC

From the admissibility of these rules, we can define a focusing function focus :
S | Γ ⊢ A → S | Γ ... ⊢C A by induction on the input derivation. For example,
focus (⊸R f) = ⊸RC (focus f), which are both focused derivations of the sequent
S | Γ ... ⊢C A ⊸ B (notice that the rule ⊸RC moves A to the end of Γ, not to
the end of ∆, a difference that would make the rule inadmissible). Theorem 4.3.1
is then proved by showing the following three properties, proving that the set of
derivations of S | Γ ⊢ A quotiented by ⊜ is in bijection with the set of derivations
of S | Γ ... ⊢C A:

• For all f, g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• Given any f : S | Γ ⊢ A, embC (focus f) ⊜ f .

• Given any f : S | Γ ...∆ ⊢C A, focus (embC f) = f .

The focused sequent calculus can be used to decide whether two morphisms in
the free symmetric skew monoidal closed category are equal, in the sense of being
related by the equivalence relation generated by the equational theory of symmetric
skew monoidal closed categories. In the non-closed case, Veltri [69] showed that
the coherence problem has a more interesting solution than the one for non-skew
symmetric monoidal categories. In fact, there exist pairs of non-equal morphisms
which have the same underlying permutation of atomic formulae, a phenomenon
that is peculiar to the skew case and is not present in the usual non-skew case.
Veltri illustrates this by showing two distinct focused derivations of the sequent
− | X, I ⊗ Y

... ⊢C X ⊗ Y . Clearly, these derivations can also be replicated in the
focused sequent calculus (4.4) for SkMILL.

Similarly to the non-commutative case, the main challenge in the construction of
the focus function lies in proving the admissibility of ⊗RC, the right ⊗-rule in phase
C. We show how to adapt the admissibility of rule ⊸R∗ from Proposition 2.4.3
and the ⊗-right rules from Proposition 2.4.4 in the commutative focused calculus
and then show how this leads to the admissibility of ⊗RC.

To this end, we introduce some notation. We write Γ ↭ Γ′ when Γ is a
permutation of Γ′. We write Γ0; Γ1 ▷◁ Γ if the context Γ is equal to an interleaving
of Γ0 and Γ1, which can be formally described as the following inductive relation:

Γ0; ▷◁ Γ0 ; Γ1 ▷◁ Γ1

Γ0; Γ1 ▷◁ Γ
A,Γ0; Γ1 ▷◁ A,Γ

Γ0; Γ1 ▷◁ Γ
Γ0;A,Γ1 ▷◁ A,Γ

92

CHAPTER 4. A COMMUTATIVE EXTENSION OF SkNMILL

Assume Γ0; Γ1 ▷◁ Γ. If Γ is empty then both Γ0 and Γ1 are forced to be empty. If
Γ = A,Γ′ then A is either the leftmost formula of Γ0 or the leftmost formula of Γ1.
Crucially, the relative position of formulae in Γ0 is preserved in Γ and the same is
true for Γ1. When Γ0; Γ1 ▷◁ Γ, we write ΓΓx

1 to indicate the context Γ in which all
formulae in Γ1 have been assigned tag x and all formulae in Γ0 are kept untagged.

Proposition 4.3.2. The following rule, corresponding to an iterated
⊸-right rule, is admissible:

S | ΓΓx
1 ⊢xRI C Γ0; Γ1 ▷◁ Γ Γ1 ↭ Γ′

1

S | Γ0 ⊢xRI [[Γ′
1 | C]]⊸

⊸R∗

Proof. By structural induction on Γ′
1:

• If Γ′
1 is empty, then Γ1 is also empty and Γ = Γ0. Therefore we can take

⊸R∗ f = f ;

• If Γ′
1 = A,Γ′′

1 , then Γ1 is forced to be of the form Γ10, A,Γ11 such that
Γ10,Γ11 ↭ Γ′′

1 . Since Γ0; Γ1 ▷◁ Γ, then Γ0 = Γ00,Γ01 and Γ = Γ′, A,Γ′′

such that Γ00; Γ10 ▷◁ Γ′ and Γ01; Γ11 ▷◁ Γ′′. We then define ⊸R∗ f =
⊸R (ex (RI2C (⊸R∗f))), i.e.

f

S | (Γ′)Γx
10 , Ax, (Γ′′)Γx

11 ⊢xRI C
S | Γ00,Γ01 ⊢xRI [[A,Γ′′

1 | C]]⊸
⊸R∗ =

f

S | (Γ′)Γx
10 , Ax, (Γ′′)Γx

11 ⊢xRI C
S | Γ00, A

x,Γ01 ⊢xRI [[Γ′′
1 | C]]⊸

⊸R∗

S | ...Γ00, A
x,Γ01 ⊢xC [[Γ′′

1 | C]]⊸
RI2C

S | Ax ...Γ00,Γ01 ⊢xC [[Γ′′
1 | C]]⊸

ex

S | Γ00,Γ01 ⊢xRI [[A,Γ′′
1 | C]]⊸

⊸R

Proposition 4.3.3. The following rules, corresponding to different generalizations
of the ⊗-right rule, are admissible:

S | Γ ⊢RI A − | ∆ ⊢RI B
S | Γ0,∆ ⊢RI [[Γ′

1 | A]]⊸ ⊗B
⊗RRI

Γ′
1

S | Γ ⊢LI P − | ∆ ⊢RI B
S | Γ0,∆ ⊢LI [[Γ′

1 | P]]⊸ ⊗B
⊗RLI

Γ′
1

T | Γ ⊢F P − | ∆ ⊢RI B
T | Γ0,∆ ⊢F [[Γ′

1 | P]]⊸ ⊗B
⊗RF

Γ′
1

where all rules include side conditions Γ0; Γ1 ▷◁ Γ and Γ1 ↭ Γ′
1.

Proof. The proof proceeds by mutual induction on the left premise of each rule,
which we always name f . Second premises are all named g.

Proof of ⊗RRI
Γ′
1
:

93

4.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

• If f = ⊸R (ex (RI2C f ′)), then Γ = Γ′,Γ′′ and

f ′

S | Γ′, A′,Γ′′ ⊢RI B′

S | ...Γ′, A′,Γ′′ ⊢C B′ RI2C

S | A′ ...Γ′,Γ′′ ⊢C B′ ex

S | Γ′,Γ′′ ⊢RI A′ ⊸ B′ ⊸R g
− | ∆ ⊢RI B

S | Γ0,∆ ⊢RI [[Γ′
1 | A′ ⊸ B′]]⊸ ⊗B

⊗RRI
Γ′
1

=
f ′

S | Γ′, A′,Γ′′ ⊢RI B′
g

− | ∆ ⊢RI B
S | Γ0,∆ ⊢RI [[Γ′

1, A
′ | B′]]⊸ ⊗B

⊗RRI
Γ′
1,A

′

The application of ⊗RRI
Γ′
1,A

′ can be justified as follows. Since Γ is an interleav-
ing of Γ0 and Γ1, this implies that Γ0 = Γ00,Γ01 and Γ1 = Γ10,Γ11 so that
Γ00; Γ10 ▷◁ Γ′ and Γ01; Γ11 ▷◁ Γ′′. Then also Γ00,Γ01; Γ10, A

′,Γ11 ▷◁ Γ′, A′,Γ′′.
Moreover, since Γ10,Γ11 ↭ Γ′

1, then also Γ10, A
′,Γ11 ↭ Γ′

1, A
′.

• If f = LI2RI f ′, then ⊗RRI
Γ′
1
(LI2RI f ′, g) = LI2RI (⊗RLI

Γ′
1
(f ′, g)).

(We omit derivation trees in cases where rules are simply permuted.)

Proof of ⊗RLI
Γ′
1
:

• If f = IL f ′, then ⊗RLI
Γ′
1
(IL f ′, g) = IL (⊗RLI

Γ′
1
(f ′, g)).

• If f = ⊗L f ′, then ⊗RLI
Γ′
1
(⊗L f ′, g) = ⊗L (⊗RLI

Γ′
1
(f ′, g)).

• If f = F2LI f ′, then ⊗RLI
Γ′
1
(F2LI f ′, g) = F2LI (⊗RLI

Γ′
1
(f ′, g)).

Proof of ⊗RF
Γ′
1
:

• If f = ax, then Γ′
1 is empty and ⊗RF

() (ax, g) = ⊗R (ax, g).

• If f = IR, then Γ′
1 is empty and ⊗RF

() (IR, g) = ⊗R (IR, g).

• If f = pass f ′, the passivated formula A′ can either belong to Γ0 or to Γ1,
which follows from the assumption Γ0; Γ1 ▷◁ A′,Γ. In the first case Γ0 =
A′,Γ′

0 and pass can be applied first, i.e. ⊗RF
Γ′
1
(pass f ′, g) = pass (⊗RF

Γ′
1
(f ′, g)).

In the second case A′ is the leftmost formula of Γ1 and consequently it belongs
to Γ′

1 as well. Then

f
A′ | Γ ⊢LI P
− | A′,Γ ⊢F A

pass g
− | ∆ ⊢RI B

− | Γ0,∆ ⊢F [[Γ′
1 | P]]⊸ ⊗B

⊗RF
Γ′
1

=

f
A′ | Γ ⊢LI P

− | A′•,ΓΓ•
1 ⊢•F P

pass

− | A′•,ΓΓ•
1 ⊢•RI P

sw

− | Γ0 ⊢•RI [[Γ′
1 | P]]⊸

⊸R∗ g
− | ∆ ⊢RI B

− | Γ0,∆ ⊢F [[Γ′
1 | P]]⊸ ⊗B

⊗R

94

CHAPTER 4. A COMMUTATIVE EXTENSION OF SkNMILL

• If f = ⊗R (f ′, f ′′), then Γ = Γ′,Γ′′. This implies that Γ0 = Γ00,Γ01 and
Γ1 = Γ10,Γ11 so that Γ00; Γ10 ▷◁ Γ′ and Γ01; Γ11 ▷◁ Γ′′. Then

f ′

T | Γ′ ⊢•RI A′
f ′′

− | Γ′′ ⊢RI B′

T | Γ′,Γ′′ ⊢F A′ ⊗B′ ⊗R g
− | ∆ ⊢RI B

T | Γ00,Γ01,∆ ⊢F [[Γ′
1 | A′ ⊗B′]]⊸ ⊗B

⊗RF
Γ′
1

=

f ′

T | Γ′ ⊢•RI A′
f ′′

− | Γ′′ ⊢RI B′

T | (Γ′)Γ•
10 , (Γ′′)Γ•

11 ⊢•F A′ ⊗B′ ⊗R

T | (Γ′)Γ•
10 , (Γ′′)Γ•

11 ⊢•RI A′ ⊗B′
sw

T | Γ00,Γ01 ⊢•RI [[Γ′
1 | A′ ⊗B′]]⊸

⊸R∗ g
− | ∆ ⊢RI B

T | Γ00,Γ01,∆ ⊢F [[Γ′
1 | A′ ⊗B′]]⊸ ⊗B

⊗R

• If f = ⊸L (f ′, f ′′), then Γ = Γ′,Γ′′. This implies that Γ0 = Γ00,Γ01 and Γ1 =
Γ10,Γ11 so that Γ00; Γ10 ▷◁ Γ′ and Γ01; Γ11 ▷◁ Γ′′. We do further induction on
Γ10 to check if there is any formula in Γ′

1 coming from the left premise f ′. If
Γ10 is empty, then the ⊸L can be applied first, i.e. ⊗RF

Γ′
1
(⊸L (f ′, f ′′), g) =

⊸L (f ′,⊗RLI
Γ′
1
(f ′′, g)). If Γ10 is non-empty, then ⊗R must be applied before

⊸L, i.e.

f ′

− | Γ′ ⊢RI A′
f ′′

B′ | Γ′′ ⊢LI P
A′ ⊸ B′ | Γ′,Γ′′ ⊢F P

⊸L g
− | ∆ ⊢RI B

A′ ⊸ B′ | Γ00,Γ01,∆ ⊢F [[Γ′
1 | P]]⊸ ⊗B

⊗RF
Γ′
1

=

f ′

− | Γ′ ⊢RI A′
f ′′

B′ | Γ′′ ⊢LI P
A′ ⊸ B′ | (Γ′)Γ•

10 , (Γ′′)Γ•
11 ⊢•F P

⊸L

A′ ⊸ B′ | (Γ′)Γ•
10 , (Γ′′)Γ•

11 ⊢•RI P
sw

A′ ⊸ B′ | Γ00,Γ01 ⊢•RI [[Γ′
1 | P]]⊸

⊸R∗ g
− | ∆ ⊢RI B

A′ ⊸ B′ | Γ00,Γ01,∆ ⊢F [[Γ′
1 | P]]⊸ ⊗B

⊗R

The last application of ⊸L is justified since Γ10 is non-empty.

Proposition 4.3.4. The following rules are admissible:

S | Γ ... ⊢C A − | Γ ...∆ ⊢C B

S | Γ,Γ′ ...∆ ⊢C A⊗B
⊗RC

S | Γ ...∆ ⊢C A − | ∆′ ⊢RI B
S | Γ ...∆,∆′ ⊢C A⊗B

⊗RC-RI

Proof. The admissibility of ⊗RC is proved by induction on the structure of the
right premise.

• If g = ex g′, then ⊗RC (f, ex g′) = ex (⊗RC (f, g′)).

• If g = RI2C g′, then ⊗RC (f,RI2C g′) = ⊗RC-RI (f, g′).

The admissibility of ⊗RC-RI is proved by induction on the left premise.

• If f = ex f ′, then ⊗RC-RI (ex f ′, g) = ex (⊗RC-RI (f ′, g)).

95

4.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

• If f = RI2C f ′, then ⊗RC-RI (RI2C f ′, g) = RI2C (⊗RRI
() (f

′, g)), where ⊗RRI
()

is the first admissible rule ⊗RRI
Γ′
1
of Proposition 4.3.3 instantiated with empty

Γ′
1. The side conditions of this rule are automatically satisfied since Γ′

1 is
empty.

We conclude the section by introducing the focusing completeness theorem of
the focused calculus (4.4).

Theorem 4.3.5. The functions embRI and focus define a bijective correspondence
between the set of derivations of S | Γ ⊢ A quotiented by the equivalence relation ⊜
and the set of derivations of S | Γ ⊢RI A:

• For all f, g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• For all f : S | Γ ⊢ A, embRI (focus f) ⊜ f .

• For all f : S | Γ ⊢RI A, focus (embRI f) = f .

Proof. The proof is similar to the proof of Theorem 2.4.5. We refer the inter-
ested reader to consult the associated Agda formalization, https://github.com/
cswphilo/code-PhD-thesis/tree/main/sym-skew-mon-clo. However, the fo-
cused calculus in the formalization includes four phases of derivations, while in
this thesis, we only have three phases due to the consistency of the other parts of
the thesis.

96

https://github.com/cswphilo/code-PhD-thesis/tree/main/sym-skew-mon-clo
https://github.com/cswphilo/code-PhD-thesis/tree/main/sym-skew-mon-clo

Chapter 5

Additive Extensions

In this chapter, we first take a step back by studying the calculus SkNMILLAS, which
extends SkNMILLI,⊗ by incorporating both additive conjunction and disjunction.
Starting with this simpler fragment allows us to demonstrate the modularity of our
frameworks, both sequent and focused calculi. We then integrate SkNMILLAS with
skew exchange and linear implication to derive the sequent and focused calculi,
respectively.

5.1 Sequent Calculus
We introduce a sequent calculus SkNMILLAS with additives by enriching SkNMILLI,⊗

with additive conjunction and disjunction. Formulae are inductively generated by
the grammar A,B ::= X | A⊗B | I | A∧B | A∨B, where X comes from a set At
of atomic formulae. We use ∧ and ∨ to denote additive conjunction and additive
disjunction, respectively, while traditionally they are named & and ⊕ in linear logic
literature.

Derivations are inductively generated by the following rules and the rules in
SkNMILLS except those related to ⊸:

A | Γ ⊢ C

A ∧B | Γ ⊢ C
∧L1

B | Γ ⊢ C

A ∧B | Γ ⊢ C
∧L2

S | Γ ⊢ A S | Γ ⊢ B

S | Γ ⊢ A ∧B
∧R

A | Γ ⊢ C B | Γ ⊢ C

A ∨B | Γ ⊢ C
∨L

S | Γ ⊢ A

S | Γ ⊢ A ∨B
∨R1

S | Γ ⊢ B

S | Γ ⊢ A ∨B
∨R2

Notice that, similar to restrictions in SkNMILLI,⊗, left rules for ∧ and ∨ can only
be applied on the formula in the stoup position.

Theorem 5.1.1. SkNMILLAS enjoys cut admissibility: the following two cut rules
are admissible

S | Γ ⊢ A A | ∆ ⊢ C

S | Γ,∆ ⊢ C
scut

− | Γ ⊢ A S | ∆0, A,∆1 ⊢ C

S | ∆0,Γ,∆1 ⊢ C
ccut

Proof. Proof proceeds similarly to the proof of Theorem 2.1.1.

97

5.2. CATEGORICAL SEMANTICS

A ∧B | ⊢ A ∧B
ax

⊜
A | ⊢ A

ax

A ∧B | ⊢ A
∧L1

B | ⊢ B
ax

A ∧B | ⊢ B
∧L2

A ∧B | ⊢ A ∧B
∧R

A ∨B | ⊢ A ∨B
ax

⊜
A | ⊢ A

ax

A | ⊢ A ∨B
∨R1

B | ⊢ B
ax

B | ⊢ A ∨B
∨R2

A ∨B | ⊢ A ∨B
∨L

Figure 5.1: Equivalence of derivations in SkNMILLAS: η-conversions

While the left ∧-rules only act on the formula in stoup position (as all the other
left logical rules), other ∧-rules ∧LCi acting on formulae in context are admissible,
with this admissibility proved by induction on the height of derivations.

S | Γ, A,∆ ⊢ C

S | Γ, A ∧B,∆ ⊢ C
∧LC1

S | Γ, B,∆ ⊢ C

S | Γ, A ∧B,∆ ⊢ C
∧LC2

However, this is not the case for the other left logical rules. For example, there is
no way of constructing a general left ∨-rule ∨LC acting on a disjunction in context.
This rule should be forbidden since it would make some inadmissible sequents
provable in the sequent calculus. For example, the sequent X ∧ Y | Y ∨ X ⊢
(X ⊗ Y) ∨ (Y ⊗X) is not admissible (this can be proved using the normalization
procedure of Section 5.3) but a proof could be found using ∨LC:

X | ⊢ X
ax

Y | ⊢ Y
ax

− | Y ⊢ Y
pass

X | Y ⊢ X ⊗ Y
⊗R

X ∧ Y | Y ⊢ X ⊗ Y
∧L1

X ∧ Y | Y ⊢ (X ⊗ Y) ∨ (Y ⊗X) ∨R1

Y | ⊢ Y
ax

X | ⊢ X
ax

− | X ⊢ X
pass

Y | X ⊢ Y ⊗X
⊗R

X ∧ Y | X ⊢ Y ⊗X
∧L2

X ∧ Y | X ⊢ (X ⊗ Y) ∨ (Y ⊗X) ∨R2

X ∧ Y | Y ∨X ⊢ (X ⊗ Y) ∨ (Y ⊗X) ∨LC

The equations in Figures 5.1, 5.2, and 5.3 in addition to the equations in Fig-
ures 2.1, 2.2, excluding derivations related to ⊸, define a congruence relation ⊜.

The equations in Figure 5.1 are η-conversions of ∧ and ∨. The remaining
equations are permutative conversions. Similarly to those chosen in Figures 2.1
and 2.2, the congruence ⊜ is meant to serve as the proof-theoretic counterpart of
the equational theory of certain categories with skew structure.

5.2 Categorical Semantics
Definition 5.2.1. A distributive skew monoidal category with binary products is
a skew monoidal category (Definition 1.2.1) with binary products and coproducts
that is left-distributive, i.e., where the canonical morphism (A⊗ C) + (B ⊗ C)→
(A+B)⊗ C has an inverse l : (A+B)⊗ C → (A⊗ C) + (B ⊗ C).

Notice that we do not require right distributivity in this definition.

98

CHAPTER 5. ADDITIVE EXTENSIONS

f
Ai | Γ ⊢ A

A1 ∧A2 | Γ ⊢ A
∧Li g

− | ∆ ⊢ B

A1 ∧A2 | Γ,∆ ⊢ A⊗B
⊗R

⊜

f
Ai | Γ ⊢ A

g
− | ∆ ⊢ B

Ai | Γ,∆ ⊢ A⊗B
⊗R

A1 ∧A2 | Γ,∆ ⊢ A⊗B
∧Li

f1
A′ | Γ ⊢ A

f2
A′ | Γ ⊢ B

A′ | Γ ⊢ A ∧B
∧R

− | A′,Γ ⊢ A ∧B
pass

⊜

f1
A′ | Γ ⊢ A

− | A′,Γ ⊢ A
pass

f2
A′ | Γ ⊢ B

− | A′,Γ ⊢ B
pass

− | A′,Γ ⊢ A ∧B
∧R

f1
− | Γ ⊢ A

f2
− | Γ ⊢ B

− | Γ ⊢ A ∧B
∧R

I | Γ ⊢ A ∧B
IL

⊜

f1
− | Γ ⊢ A

I | Γ ⊢ A
IL

f2
− | Γ ⊢ B

I | Γ ⊢ B
IL

I | Γ ⊢ A ∧B
∧R

f1
A′ | B′,Γ ⊢ A

f2
A′ | B′,Γ ⊢ B

A′ | B′,Γ ⊢ A ∧B
∧R

A′ ⊗B′ | Γ ⊢ A ∧B
⊗L

⊜

f1
A′ | B′,Γ ⊢ A

A′ ⊗B′ | Γ ⊢ A
⊗L

f2
A′ | B′,Γ ⊢ B

A′ ⊗B′ | Γ ⊢ B
⊗L

A′ ⊗B′ | Γ ⊢ A ∧B
∧R

f1
Ai | Γ ⊢ A

f2
Ai | Γ ⊢ B

Ai | Γ ⊢ A ∧B
∧R

A1 ∧A2 | Γ ⊢ A ∧B
∧Li

⊜

f1
Ai | Γ ⊢ A

A1 ∧A2 | Γ ⊢ A
∧Li

f2
Ai | Γ ⊢ B

A1 ∧A2 | Γ ⊢ B
∧Li

A1 ∧A2 | Γ ⊢ A ∧B
∧R

f
A | Γ ⊢ Ai

− | A,Γ ⊢ Ai

pass

− | A,Γ ⊢ A1 ∨A2
∨Ri

⊜

f
A | Γ ⊢ Ai

A | Γ ⊢ A1 ∨A2
∨Ri

− | A,Γ ⊢ A1 ∨A2
pass

f
− | Γ ⊢ Ai

I | Γ ⊢ Ai
IL

I | Γ ⊢ A1 ∨A2
∨Ri

⊜

f
− | Γ ⊢ Ai

− | Γ ⊢ A1 ∨A2
∨Ri

I | Γ ⊢ A1 ∨A2
IL

f
A′ | B′,Γ ⊢ Ai

A′ ⊗B′ | Γ ⊢ Ai
⊗L

A′ ⊗B′ | Γ ⊢ A1 ∨A2
∨Ri

⊜

f
A′ | B′,Γ ⊢ Ai

A′ | B′,Γ ⊢ A1 ∨A2
∨Ri

A′ ⊗B′ | Γ ⊢ A1 ∨A2
⊗L

f
A′

i | Γ ⊢ Ai

A′
1 ∧A′

2 | Γ ⊢ Ai
∧Li

A′
1 ∧A′

2 | Γ ⊢ A1 ∨A2
∨Ri

⊜

f
A′

i | Γ ⊢ Ai

A′
i | Γ ⊢ A1 ∨A2

∨Ri

A′
1 ∧A′

2 | Γ ⊢ A1 ∨A2
∧Li

Figure 5.2: Equivalence of derivations in SkNMILLAS: permutative conversions

99

5.2. CATEGORICAL SEMANTICS

f
A′ | Γ ⊢ Ai

g
B′ | Γ ⊢ Ai

A′ ∨B′ | Γ ⊢ Ai
∨L

A′ ∨B′ | Γ ⊢ A1 ∨A2
∨Ri

⊜

f
A′ | Γ ⊢ Ai

A′ | Γ ⊢ A1 ∨A2
∨Ri

f
B′ | Γ ⊢ Ai

B′ | Γ ⊢ A1 ∨A2
∨Ri

A′ ∨B′ | Γ ⊢ A1 ∨A2
∨L

f1
A′ | Γ ⊢ A

f2
B′ | Γ ⊢ B

A′ ∨B′ | Γ ⊢ A
∨L g

− | ∆ ⊢ B

A′ ∨B′ | Γ,∆ ⊢ A⊗B
⊗R

⊜

f1
A′ | Γ ⊢ A

g
− | ∆ ⊢ B

A′ | Γ,∆ ⊢ A⊗B
⊗R

f2
B′ | Γ ⊢ A

g
− | ∆ ⊢ B

B′ | Γ,∆ ⊢ A⊗B
⊗R

A′ ∨B′ | Γ,∆ ⊢ A⊗B
∨L

f1
A′ | Γ ⊢ A

g1
A′ | Γ ⊢ B

A′ | Γ ⊢ A ∧B
∧R

f2
B′ | Γ ⊢ A

g2
B′ | Γ ⊢ B

B′ | Γ ⊢ A ∧B
∧R

A′ ∨B′ | Γ ⊢ A ∧B
∨L

⊜

f1
A′ | Γ ⊢ A

f2
B′ | Γ ⊢ A

A′ ∨B′ | Γ ⊢ A
∨L

g1
A′ | Γ ⊢ B

g2
B′ | Γ ⊢ B

A′ ∨B′ | Γ ⊢ B
∨L

A′ ∨B′ | Γ ⊢ A ∧B
∧R

Figure 5.3: Equivalence of derivations in SkNMILLAS: permutative conversions, continued

100

CHAPTER 5. ADDITIVE EXTENSIONS

Definition 5.2.2. A (strict) skew monoidal functor F : C → D between skew
monoidal categories (C, I,⊗,⊸) and (D, I′,⊗′,⊸′) is a functor from C to D satis-
fying F I = I′ and F (A⊗B) = FA⊗′ FB, also preserving the structural laws λ, ρ
and α on the nose.

Definition 5.2.3. A skew monoidal functor is distributive if it also strictly pre-
serves products, coproducts and l.

The formulae, derivations and the equivalence relation ⊜ of the sequent calculus
determine a syntactic distributive skew monoidal category with binary products
FDSkM(At) (an acronym for Free Distributive SkewMonoidal category with binary
products on the set At). Its objects are formulae. The operations I and ⊗ are
the logical connectives. The set of maps between objects A and B is the set
of derivations A | ⊢ B quotiented by the equivalence relation ⊜. The identity
map on A is the equivalence class of axA, while composition is given by scut.
The structural laws λ, ρ, α are all admissible. Products and coproducts are the
additive connectives ∧ and ∨. Left-distributivity follows from the logical rules of ∨
and ⊗. Distributive skew monoidal categories with binary products form models
of our sequent calculus. Moreover the sequent calculus, as a presentation of a
distributive skew monoidal category with binary products, is the initial one among
these models. Equivalently, FDSkM(At) is the free such category on the set At.

Theorem 5.2.4. Let D be a distributive skew monoidal category with binary prod-
ucts. Given a function FAt : At→ |D| evaluating atomic formulae as objects of D,
there exists a unique distributive skew monoidal functor F : FDSkM(At) → D for
which FX = FAtX, for any atom X.

The construction of the functor F and the proof of uniqueness proceed similarly
to the proof of Theorem 2.3.6.

5.3 A Focused Sequent Calculus with Tag Anno-
tations

When oriented from left-to-right, the equations in Figures 5.1, 5.2, and 5.3 become
a rewrite system, which is locally confluent and strongly normalizing, thus confluent
with unique normal forms. Here we provide an explicit description of the normal
forms of SkNMILLAS with respect to this rewrite system.

For any sequent S | Γ ⊢ A, a root-first proof search procedure can be defined
as follows. First apply right invertible rules on the sequent until the principal
connective of the succedent is non-negative, then apply left invertible rules until
the stoup becomes either empty or non-positive. At this point, if we do not insist
on focusing on a particular formula (either in the stoup or succedent, since no rule
acts on formulae in context) as in Andreoli’s focusing procedure [5], we obtain a

101

5.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

sequent calculus with a reduced proof search space, that looks like this:

(right invertible)
S | Γ ⊢RI A S | Γ ⊢RI B

S | Γ ⊢RI A ∧B
∧R

S | Γ ⊢LI P
S | Γ ⊢RI P

LI2RI

(left invertible)

− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B,Γ ⊢LI P
A⊗B | Γ ⊢LI P

⊗L

A | Γ ⊢LI P B | Γ ⊢LI P
A ∨B | Γ ⊢LI P

∨L
T | Γ ⊢F P

T | Γ ⊢LI P
F2LI

(focusing)
X | ⊢F X

ax
A | Γ ⊢LI P
− | A,Γ ⊢F P

pass
− | ⊢F I IR

T | Γ ⊢RI A − | ∆ ⊢RI B
T | Γ,∆ ⊢F A⊗B

⊗R
T | Γ ⊢RI A

T | Γ ⊢F A ∨B
∨R1

T | Γ ⊢RI B
T | Γ ⊢F A ∨B

∨R2

A | Γ ⊢LI P
A ∧B | Γ ⊢F P

∧L1
B | Γ ⊢LI P

A ∧B | Γ ⊢F P
∧L2

(5.1)

In the rules above, P is a positive formula, i.e. its principal connective is not ∧,
and T is a negative stoup, i.e. it is not I and its principal connective is neither ⊗
nor ∨.

This calculus is too permissive. The same sequent S | Γ ⊢RI A may have mul-
tiple derivations which correspond to ⊜-related derivations in the original sequent
calculus. This happens since certain sequents in phase ⊢F can be alternatively
proved by an application of a left non-invertible rule (pass, ∧L1 and ∧L2) or an ap-
plication of a right non-invertible rule (⊗R, ∨R1 and ∨R2). As concrete examples,
both sequents − | X,Y ⊢F X ⊗ Y and X ∧ Y | ⊢F X ∨ Y have multiple distinct
proofs in this calculus, but their corresponding proofs in the original calculus are
⊜-related.

In phase ⊢F, only non-invertible rules can be applied, so the question is: how
to arrange the order between non-invertible rules without causing undesired non-
determinism and losing completeness with respect to SkNMILLAS and its equivalence
relation ⊜? Similarly to the focused calculus in previous sections, our strategy is
to prioritize left non-invertible rules over right ones, unless this does not lead to
a valid derivation and the other way around is necessary. For example, consider
the sequent X ∧ Y | ⊢F (X ∧ Y) ∨ Z. Proof search fails if we apply ∧Li before
∨R1. A valid proof is obtained only when applying ∨R1 before ∧Li. Rule sw is an
abbreviation for the application of multiple consecutive phase switching rules.

X | ⊢F X
ax

X | ⊢LI X
F2LI

X ∧ Y | ⊢F X
∧L1

X ∧ Y | ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

X ∧ Y | ⊢F Y
∧L2

X ∧ Y | ⊢RI Y
sw

X ∧ Y | ⊢RI X ∧ Y
∧R

X ∧ Y | ⊢F (X ∧ Y) ∨ Z
∨R1

(5.2)

In this example it was possible to first apply ∨R1 since, after the application of ∧R,
different left ∧-rules are applied in different branches of the proof tree. If we would
have applied the same rule ∧L1 to both premises (imagine that X = Y for this to
be possible), then we could have obtained a ⊜-equivalent derivation by moving the
application of ∧L1 to the bottom of the proof tree.

102

CHAPTER 5. ADDITIVE EXTENSIONS

It is also possible that the two premises of ∧R correspond to ⊜-inequivalent
derivations. For example, consider the following proof of sequent − | I ⊗ X ⊢F
((I ⊗X) ∧ (I⊗X)) ∨ Y :

− | ⊢F I IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢RI X
sw

− | X ⊢F I⊗X
⊗R

− | X ⊢LI I⊗X
F2LI

I | X ⊢LI I⊗X
IL

I⊗X | ⊢LI I⊗X
⊗L

− | I⊗X ⊢F I⊗X
pass

− | I⊗X ⊢RI I⊗X
sw

− | ⊢F I IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢LI X
F2LI

I | X ⊢LI X
IL

I⊗X | ⊢LI X
⊗L

− | I⊗X ⊢F X
pass

− | I⊗X ⊢RI X
sw

− | I⊗X ⊢F I⊗X
⊗R

− | I⊗X ⊢RI I⊗X
sw

− | I⊗X ⊢RI (I⊗X) ∧ (I⊗X) ∧R

− | I⊗X ⊢F ((I⊗X) ∧ (I⊗X)) ∨ Y
∨R1

In this case, the right non-invertible rule ∨R1 must be applied before the left non-
invertible rule pass. This is because pass is used in the proof of the first premise
of ∧R, but it is not used in the proof of the second premise, ⊗R is used instead.
If both proofs of the premises would have used pass (for example, they could have
been the same exact proof), then it would have been possible to apply pass before
∨R1.

In general, a right non-invertible rule should be applied before a left non-
invertible one if, after the possible application of some ∧R rules, either: (i) a
right non-invertible rule or the ax rule is applied to one of the premises; (ii) ∧L1
and ∧L2 are applied to different premises. Therefore, we have to make sure that
in the focused sequent calculus, after the application of a right non-invertible rule,
not all premises use the same left non-invertible rule, because in this case the latter
rule could be applied first.

In order to keep track of this, we use a system of tag annotations and we
introduce new phases of proof search where sequents are annotated by list of tags.
There are four tags: P,C1,C2,R. Intuitively, they respectively correspond to rules
pass,∧L1,∧L2 and all the remaining non-invertible rules in phase ⊢F. A list of tags
l is called valid if it is non-empty and either (i) R ∈ l or (ii) both C1 ∈ l and
C2 ∈ l.

Derivations in the focused sequent calculus with tag annotations are generated

103

5.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

by the rules:

(right invertible)
S | Γ ⊢l1?RI A S | Γ ⊢l2?RI B

S | Γ ⊢l1?,l2?RI A ∧B
∧R

S | Γ ⊢t?LI P
S | Γ ⊢t?RI P

LI2RI

(left invertible)

− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B,Γ ⊢LI P
A⊗B | Γ ⊢LI P

⊗L

A | Γ ⊢LI P B | Γ ⊢LI P
A ∨B | Γ ⊢LI P

∨L
T | Γ ⊢t?F P

T | Γ ⊢t?LI P
F2LI

(focusing)

A | Γ ⊢LI P
− | A,Γ ⊢P?F P

pass
X | ⊢R?F X

ax

− | ⊢R?F I
IR

T | Γ ⊢lRI A − | ∆ ⊢RI B l valid
T | Γ,∆ ⊢R?F A⊗B

⊗R

T | Γ ⊢lRI A l valid
T | Γ ⊢R?F A ∨B

∨R1
T | Γ ⊢lRI B l valid
T | Γ ⊢R?F A ∨B

∨R2

A | Γ ⊢LI P
A ∧B | Γ ⊢C1?

F P
∧L1

B | Γ ⊢LI P
A ∧B | Γ ⊢C2?

F P
∧L2

(5.3)

We use l for lists of tags and t for single tags. The notation l? indicates that the
sequent is either untagged or assigned the list of tags l. Similarly for notation t?.
We discuss the proof search procedures of untagged and tagged sequents separately.
The proof search of a sequent S | Γ ⊢RI A proceeds as follows:

(⊢RI) We apply the right invertible rule ∧R eagerly to decompose the succedent
until its principal connective is not ∧, then we move to the left invertible
phase ⊢LI with an application of LI2RI.

(⊢LI) We apply left invertible rules until the stoup becomes irreducible, then move
to the focusing phase ⊢F with an application of F2LI.

(⊢F) We apply one of the remaining rules. Since the sequents are not marked by
tags at this point, rules pass, ax, IR and ∧Li can be directly applied when
stoups, contexts and succedents are of the appropriate form. If we decide to
apply a right non-invertible rule, we need to come up with a valid list of tags
l and subsequently continue proof search in tagged right invertible phase ⊢lRI,
which is described below. Notice that only the first premise of ⊗R is tagged,
the second premise is not, i.e. its proof search continues in phase ⊢RI.

The proof search of a sequent T | Γ ⊢lRI A proceeds as follows (notice that at this
point in proof search the stoup T is necessarily irreducible):

(⊢lRI) We apply the ∧R rule to decompose the succedent and split the list of tags
carefully until the succedent becomes non-negative and the list of tags be-
comes a singleton t, then we move to phase ⊢tLI with an application of LI2RI.

(⊢tLI) Since the stoup is either empty or a negative formula, we immediately switch
to phase ⊢F with an application of F2LI. This motivates why sequents in rules
IL, ⊗L, ∨L are not tagged.

104

CHAPTER 5. ADDITIVE EXTENSIONS

(⊢tF) If t = R we can apply either ax, IR or another right non-invertible rule.
Again, when applying right non-invertible rules we need to come up with a
new valid list of tags. Left non-invertible rules can be applied only when the
tag is correct, i.e. pass with tag P, ∧L1 with tag C1, and ∧L2 with tag C2.

The derivation in (5.2) can be reconstructed in the focused calculus with tag an-
notations.

X | ⊢F X
ax

X | ⊢LI X
sw

X ∧ Y | ⊢C1
F X

∧L1

X ∧ Y | ⊢C1
RI X

sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ∧ Y | ⊢C2
F Y

∧L2

X ∧ Y | ⊢C2
RI Y

sw

X ∧ Y | ⊢C1,C2
RI X ∧ Y

∧R

X ∧ Y | ⊢F (X ∧ Y) ∨ Z
∨R1

(5.4)

The list of tags [C1,C2] is valid since it contains both C1 and C2.
Notice that the list of tags is not predetermined when a right non-invertible

rule is applied, we have to come up with one ourselves. Practically, the list l
can be computed by continuing proof search until, in each branch, we hit the
first application of a rule in phase ⊢F, each with its own (necessarily uniquely
determined) single tag t. Take l as the concatenation of the resulting ts and check
whether it is valid. If it is not, backtrack and apply a left non-invertible rule
instead.

Theorem 5.3.1. The focused sequent calculus with tag annotations in (5.3) is
sound and complete with respect to the sequent calculus in SkNMILLAS.

Soundness is immediate because there exist functions embph : S | Γ ⊢l?ph A →
S | Γ ⊢ A, for all ph ∈ {RI, LI,F}, which erase all phase and tag annotations.
Completeness follows from the fact that the following rules are all admissible:

− | Γ ⊢RI C
I | Γ ⊢RI C ILRI

A | B,Γ ⊢RI C
A⊗B | Γ ⊢RI C ⊗L

RI

A | Γ ⊢RI C
− | A,Γ ⊢RI C

passRI
A | ⊢RI A axRI − | ⊢RI I IRRI

A | Γ ⊢RI C B | Γ ⊢RI C
A ∨B | Γ ⊢RI C ∨LRI

S | Γ ⊢RI A − | ∆ ⊢RI B
S | Γ,∆ ⊢RI A⊗B

⊗RRI

A | Γ ⊢RI C
A ∧B | Γ ⊢RI C

∧LRI1
B | Γ ⊢RI C

A ∧B | Γ ⊢RI C
∧LRI2

S | Γ ⊢RI A
S | Γ ⊢RI A ∨B

∨RRI
1

S | Γ ⊢RI B
S | Γ ⊢RI A ∨B

∨RRI
2

(5.5)

The admissibility of the rules in (5.5), apart from the right non-invertible ones,
is proved by structural induction on derivations. The same strategy cannot be
applied to right non-invertible rules. For example, if the premise of ∨RRI

1 ends with

105

5.3. A FOCUSED SEQUENT CALCULUS WITH TAG ANNOTATIONS

an application of ∧R, we get immediately stuck:

f
S | Γ ⊢RI A′

g
S | Γ ⊢RI B′

S | Γ ⊢RI A′ ∧B′ ∧R

S | Γ ⊢RI (A′ ∧B′) ∨B
∨RRI

1

= ??

The inductive hypothesis applied to f and g would produce wrong sequents for the
target conclusion. This is fixed by proving the admissibility of more general rules.
In order to state and prove this, we need to first introduce a few lemmata. The
first one shows that applying several ∧R rules in one step is admissible.

Let conj(A) be the list of formulae obtained by decomposing additive conjunc-
tions ∧ in the formula A. Concretely, conj(A) = conj(A′), conj(B′) if A = A′ ∧ B′

and conj(A) = A otherwise.

Lemma 5.3.2. The following rules

fs
[T | Γ ⊢tiF Pi]i∈[1,...,n]

T | Γ ⊢lRI A
∧R∗

t

fs
[S | Γ ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢RI A
∧R∗

are admissible, where conj(A) = [P1, . . . , Pn] and l = [t1, . . . , tn].

Proof. We show the case of ∧R∗
t , the other one is similar. Let fs : [T | Γ ⊢tiF Pi]i

be a list of derivations. The proof proceeds by induction on A.

• If A ̸= A′ ∧ B′, then fs consists of a single derivation f . Define ∧R∗
t fs =

F2LI (LI2RI f).

• If A = A′∧B′, then there exist lists of derivations fs1 : [T | Γ ⊢tiF Pi]i∈[1,...,m]
and fs2 : [T | Γ ⊢tiF Pi]i∈[m+1,...,n], and lists of tags l1 = t1, . . . , tm and
l2 = tm+1, . . . , tn, so that fs is the concatenation of fs1 and fs2 and l is the
concatenation of l1 and l2. Apply ∧R at the bottom, then proceed recursively:

fs
[T | Γ ⊢tiF Pi]i∈[1,...,n]

T | Γ ⊢l A′ ∧B′ ∧R∗
t

=

fs1
[T | Γ ⊢tiF Pi]i∈[1,...,m]

T | Γ ⊢l1RI A′
∧R∗

t

fs2
[T | Γ ⊢tiF Pi]i∈[m+1,...,n]

T | Γ ⊢l2RI B′
∧R∗

t

T | Γ ⊢l1,l2RI A′ ∧B′ ∧R

The second lemma corresponds to the invertibility of phase ⊢RI.

Lemma 5.3.3. Given f : S | Γ ⊢RI A, there is a list of derivations fs : [S | Γ ⊢LI
Pi]i∈[1,...,n] with f = ∧R∗fs.

Proof. The proof proceeds by structural induction on f : S | Γ ⊢RI A.

• If f = LI2RI f1, then A is non-negative. Take fs as the singleton list consist-
ing exclusively of f1.

106

CHAPTER 5. ADDITIVE EXTENSIONS

• If f = ∧R (f1, f2), then by inductive hypothesis we have fs1 : [S | Γ ⊢LI
Pi]i∈[1,...,n] and fs2 : [S | Γ ⊢LI P ′

i]i∈[1,...,m]. Take fs as the concatenation of
fs1 and fs2.

Proposition 5.3.4. The following rules

fs
[S | Γ ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢LI A ∨B
∨RLI

1

fs
[S | Γ ⊢LI Qi]i∈[1,...,m]

S | Γ ⊢LI A ∨B
∨RLI

2

fs
[S | Γ ⊢LI Pi]i∈[1,...,n] − | ∆ ⊢RI B′

S | Γ,∆ ⊢LI A⊗B′ ⊗RLI

are admissible, where conj(A) = [P1, . . . , Pn] and conj(B) = [Q1, . . . , Qm].

Proof. The list of derivations fs is non-empty, so we let fs = [f1, fs′]. We proceed
by induction on f1. We only present the proof for ∨RLI

1 , the admissibility of ∨RLI
2

and ⊗RLI is proved similarly.
If f1 ends with the application of a left invertible rule, then all the derivations

in fs′ necessarily end with the same rule as well. Therefore, we permute this rule
with ∨RLI

1 and apply the inductive hypothesis.
If f1 = F2LI f ′

1, then all the derivations in fs′ necessarily end with F2LI as well.
We generate a list of tags l by examining the shape of each derivation in fs: we
add P for each pass, C1 for each ∧L1, C2 for each ∧L2 and R for the remaining
rules. There are two possibilities:

• The resulting list l is valid. We switch to phase ⊢F and apply ∨R1 followed
by ∧R∗

t :

fs∗

[T | Γ ⊢F Pi]i∈[1,...,n]

[T | Γ ⊢LI Pi]i∈[1,...,n]
[F2LI]

T | Γ ⊢LI A ∨B
∨RLI

1

=

fs∗′

[T | Γ ⊢tiF Pi]i∈[1,...,n]

T | Γ ⊢lRI A
∧R∗

t

T | Γ ⊢F A ∨B
∨R1

T | Γ ⊢LI A ∨B
F2LI

A rule wrapped in square brackets, like [F2LI] above, denotes the application
of the rule to the conclusion of each derivation in the list. The list of deriva-
tions fs∗ is obtained from fs by applying [F2LI], i.e. fs = [F2LI] fs∗, while
fs∗′ is a list of derivations whose conclusions are tagged version of those in
fs∗, which can be easily constructed from fs∗.

• The list l is invalid. In this case, all elements in fs end with the same left
non-invertible rule, so we permute the rule down with ∨RLI

1 and continue
recursively. Here is an example where all derivations in fs end with an
application of pass, i.e. fs = [F2LI] ([pass] fs∗):

fs∗

[A′ | Γ ⊢LI Pi]i∈[1,...,n]

[− | A′,Γ ⊢LI Pi]i∈[1,...,n]
[pass]

[− | A′,Γ ⊢LI Pi]i∈[1,...,n]
[F2LI]

− | A′,Γ ⊢LI A ∨B
∨RLI

1

=

fs∗

[A′ | Γ ⊢LI Pi]i∈[1,...,n]

A′ | Γ ⊢LI A ∨B
∨RLI

1

− | A′,Γ ⊢F A ∨B
pass

− | A′,Γ ⊢LI A ∨B
F2LI

107

5.4. SKEW EXCHANGE

Finally, a right non-invertible rule in (5.5) is defined as follows: first invert its
premises (for ⊗RRI, only the left premise) using Lemma 5.3.3. Then apply the
corresponding generalized rule in Proposition 5.3.4.

We can construct a function focus : S | Γ ⊢ A → S | Γ ⊢RI A by structural re-
cursion on the input derivation. Each inference rule in SkNMILLAS is sent to the cor-
responding admissible rule in (5.5). For example, focus (∨R1 f) = ∨RRI

1 (focus f).
Furthermore, it can be shown that embRI and focus are each other’s inverses, in the
sense made precise by the following theorem.

Theorem 5.3.5. The functions embRI and focus define a bijective correspondence
between the set of derivations of S | Γ ⊢ A quotiented by the equivalence relation ⊜
and the set of derivations of S | Γ ⊢RI A:

• For all f, g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• For all f : S | Γ ⊢ A, embRI (focus f) ⊜ f .

• For all f : S | Γ ⊢RI A, focus (embRI f) = f .

Proof. The first bullet is proved by structural induction on the given equality proof
e : f ⊜ g. The other bullets are proved by structural induction on f . See the as-
sociated Agda formalization, https://github.com/cswphilo/code-PhD-thesis/
tree/main/skew-mon-conjunction-disjunction, for details.

5.4 Skew Exchange
We consider a “skew” commutative extension of the sequent calculus in SkNMILLAS
obtained by adding the skew exchange rule that has been introduced in Section 4.1:

S | Γ, A,B,∆ ⊢ C

S | Γ, B,A,∆ ⊢ C
ex

Note that exchanging the formula in the stoup, whenever the latter is non-empty,
with a formula in context is not allowed. The new rule ex comes with additional
permutative equations for the congruence relation ⊜ (Figure 5.4).

The resulting sequent calculus enjoys categorical semantics in distributive sym-
metric skew monoidal categories with binary products, that has a natural isomor-
phism sA,B,C : A⊗(B⊗C)→ A⊗(C⊗B) representing a form of “skew symmetry”
involving three objects instead of two (see Section 4).

The focused sequent calculus is extended with a new phase ⊢C (for “context”)
where the exchange rule can be applied. Rule ⊗L has to be modified, since we need
to give the possibility to move the formula B to a different position in the context.

S | Γ ...∆, A,Λ ⊢C C

S | Γ, A ...∆,Λ ⊢C C
ex

S | Γ ⊢RI C
S | ...Γ ⊢C C

RI2C
A | B ...Γ ⊢C P

A⊗B | Γ ⊢LI P
⊗L

Root-first proof search now begins in the new phase ⊢C, where formulae in context
are permuted. We start with a sequent S | Γ ... ⊢C C and end with a sequent
S | ...Γ′ ⊢C C where Γ′ is a permutation of Γ. In the process, the context is
divided into two parts Γ ...∆, where the formulae in Γ are ready to be moved while

108

https://github.com/cswphilo/code-PhD-thesis/tree/main/skew-mon-conjunction-disjunction
https://github.com/cswphilo/code-PhD-thesis/tree/main/skew-mon-conjunction-disjunction

CHAPTER 5. ADDITIVE EXTENSIONS

f
Ai | Γ, A,B,∆ ⊢ C

Ai | Γ, B,A,∆ ⊢ C
exA,B

A1 ∧A2 | Γ, B,A,∆ ⊢ C
∧Li

⊜

f
Ai | Γ, A,B,∆ ⊢ C

A1 ∧A2 | Γ, A,B,∆ ⊢ C
∧Li

A1 ∧A2 | Γ, B,A,∆ ⊢ C
exA,B

f
S | Γ, A,B,∆ ⊢ A′

S | Γ, B,A,∆ ⊢ A′
exA,B

g
S | Γ, A,B,∆ ⊢ B′

S | Γ, B,A,∆ ⊢ B′
exA,B

S | Γ, B,A,∆ ⊢ A′ ∧B′ ∧R

⊜

f
S | Γ, A,B,∆ ⊢ A′

g
S | Γ, A,B,∆ ⊢ B′

S | Γ, A,B,∆ ⊢ A′ ∧B′ ∧R

S | Γ, B,A,∆ ⊢ A′ ∧B′
exA,B

f
A′ | Γ, A,B,∆ ⊢ C

S | Γ, B,A,∆ ⊢ A′
exA,B

g
B′ | Γ, A,B,∆ ⊢ C

S | Γ, B,A,∆ ⊢ B′
exA,B

A′ ∨B′ | Γ, B,A,∆ ⊢ C
∨L

⊜

f
A′ | Γ, A,B,∆ ⊢ C

g
B′ | Γ, A,B,∆ ⊢ C

A′ ∨B′ | Γ, A,B,∆ ⊢ C
∨L

A′ ∨B′ | Γ, B,A,∆ ⊢ C
exA,B

f
S | Γ, A,B,∆ ⊢ Ai

S | Γ, B,A,∆ ⊢ Ai

exA,B

S | Γ, B,A,∆ ⊢ A1 ∨A2
∨Ri

⊜

f
S | Γ, A,B,∆ ⊢ Ai

A1 ∧A2 | Γ, A,B,∆ ⊢ C
∨Ri

S | Γ, B,A,∆ ⊢ A1 ∨A2
exA,B

Figure 5.4: Additional equations in SkNMILLAS with exchange

109

5.5. LINEAR IMPLICATION

those in ∆ have already been placed in their final position. Once all formulae in Γ
have been moved, we switch to phase ⊢RI with an application of rule RI2C. Note
that sequents in phase ⊢C are not marked by list of tags, since after the application
of right non-invertible rules there is no need to further permute formulae in context.
Moreover, no new formulae can appear in context via applications of rule ⊗L, since
the stoup is irreducible at this point.

As already mentioned, rule ⊗L has been modified. Its premise is now a sequent
in phase ⊢C, which allows a further application of ex for the relocation of the
formula B to a different position in the context.

5.5 Linear Implication

Finally, we consider a sequent calculus of SkNMILL enriched by ∧ and ∨. This is
obtained by extending the sequent calculus SkNMILLAS with a linear implication ⊸
and two introduction rules (alternatively, it can be considered as an extension of
SkNMILLS with four introduction rules for ∧ and ∨):

− | Γ ⊢ A B | ∆ ⊢ C

A ⊸ B | Γ,∆ ⊢ C
⊸L

S | Γ, A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

The presence of ⊸ requires the extension of the congruence relation ⊜ with addi-
tional permutative equations (Figure 5.5).

The sequent calculus enjoys categorical semantics in distributive skew monoidal
categories with binary products, which moreover are endowed with a closed struc-
ture, i.e. a functor ⊸: Cop×C→ C forming an adjunction −⊗B ⊣ B ⊸ − natural
in B (see Definition 2.3.1). There is no need to require left-distributivity, since this
can now be proved using the adjunction and the universal property of coproducts.

We now discuss the extension of the focused sequent calculus. This is more
complicated than the extension considered in Section 5.4. In order to understand
the increased complexity, let us include the two new rules ⊸R and ⊸L in the
“naive” focused sequent calculus in (5.1). The right ⊸-rule is invertible, so it
belongs to phase ⊢RI, while the left rule is not, so it goes in phase ⊢F.

− | Γ ⊢RI A B | ∆ ⊢LI P
A ⊸ B | Γ,∆ ⊢F P

⊸L
S | Γ, A ⊢RI B

S | Γ ⊢RI A ⊸ B
⊸R

As we know, this calculus is too permissive, and the inclusion of the above rules
increases the non-deterministic choices in proof search even further. As a strategy
for taming non-determinism, as before we decide to prioritize left non-invertible
rules over right non-invertible ones. So we need to think of all possible situations
when a right non-invertible rule must be applied before a left non-invertible one.
The presence of ⊸ creates two new possibilities: (i) ⊸L splits the context dif-
ferently in different premises, or (ii) left non-invertible rules manipulate formulae
that have been moved to the context by applications of ⊸R, i.e. the two types
of counterexamples (2.5) and (2.6) mentioned in Section 2.4.1. To understand the
former better, let us look at one example.

110

CHAPTER 5. ADDITIVE EXTENSIONS

f
Ai | Γ, A ⊢ B

Ai | Γ ⊢ A ⊸ B
⊸R

A1 ∧A2 | Γ ⊢ A ⊸ B
∧Li

⊜

f
Ai | Γ, A ⊢ B

A1 ∧A2 | Γ, A ⊢ B
∧Li

A1 ∧A2 | Γ ⊢ A ⊸ B
⊸R

f
− | Γ ⊢ A

g
B | ∆ ⊢ Ai

A ⊸ B | Γ,∆ ⊢ Ai
⊸L

A ⊸ B | Γ,∆ ⊢ A1 ∨A2
∨Ri

⊜
f

− | Γ ⊢ A

g
B | ∆ ⊢ Ai

B | ∆ ⊢ A1 ∨A2
∨Ri

A ⊸ B | Γ,∆ ⊢ A1 ∨A2
⊸L

f
A′ | Γ, A ⊢ B

A′ | Γ ⊢ A ⊸ B
⊸R

g
B′ | Γ, A ⊢ B

B′ | Γ ⊢ A ⊸ B
⊸R

A′ ∨B′ | Γ ⊢ A ⊸ B
∨L

⊜

f
A′ | Γ, A ⊢ B

g
B′ | Γ, A ⊢ B

A′ ∨B′ | Γ, A ⊢ B
∨L

A′ ∨B′ | Γ ⊢ A ⊸ B
⊸R

f
− | Γ ⊢ A

g
B | ∆ ⊢ A′

h
B | ∆ ⊢ B′

B | ∆ ⊢ A′ ∧B′ ∧R

A ⊸ B | Γ,∆ ⊢ A′ ∧B′ ⊸L

⊜

f
− | Γ ⊢ A

g
B | ∆ ⊢ A′

A ⊸ B | Γ,∆ ⊢ A′ ⊸L

f
− | Γ ⊢ A

h
B | ∆ ⊢ B′

A ⊸ B | Γ,∆ ⊢ B′ ⊸L

A ⊸ B | Γ,∆ ⊢ A′ ∧B′ ∧R

Figure 5.5: Additional equations in SkNMILLAS with linear implication

111

5.5. LINEAR IMPLICATION

Consider the sequent I ⊸ I | I, Y ⊢F (I ∧ I)⊗ Y and the following proof:

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

I ⊸ I | I ⊢F I ⊸L

I ⊸ I | I ⊢RI I
sw

− | ⊢F I IR

− | ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢LI I
F2LI

I | I ⊢LI I
IL

I ⊸ I | I ⊢F I ⊸L

I ⊸ I | I ⊢RI I
sw

I ⊸ I | I ⊢RI I ∧ I ∧R

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

I ⊸ I | I, Y ⊢F (I ∧ I)⊗ Y
⊗R

(5.6)

Here ⊗R must be applied first, before ⊸L. In the proofs of the two premises of
∧R, which prove the same sequent I ⊸ I | I ⊢RI I, rule ⊸L splits the context in
different ways: in the left branch the unit I in context is sent to the left premise,
while in the right branch it goes to the right premise. If the application of the rule
⊸L would have split the context in the same way, then we could have applied ⊸L
before ⊗R.

This motivates the addition of two new tags, corresponding to the two situations
previously discussed: on top of P,C1,C2 and R, a tag could either be of the form
Γ, for each context Γ, or of the form •. The validity condition for list of tags needs
to be updated. A list of tags l is now valid if it is non-empty and either (i) R ∈ l,
(ii) both C1 ∈ l and C2 ∈ l, (iii) there exist contexts Γ,Γ′ such that Γ ∈ l, Γ′ ∈ l
and Γ ̸= Γ′, or (iv) • ∈ l. Following the strategy in Section 2.4.2, on top of tag
annotations for sequents, we also require tag annotations for formulae in context.
There is only one tag • for formulae. The tag on the formula A• means that A has
been previously moved to the context by an application of ⊸R in phase ⊢lRI.

Here are the inference rules of the focused sequent calculus with linear implica-

112

CHAPTER 5. ADDITIVE EXTENSIONS

tion:

(right invertible)

S | Γ ⊢l1?RI A S | Γ ⊢l2?RI B

S | Γ ⊢l1?,l2?RI A ∧B
∧R

S | Γ, A•? ⊢l?RI B
S | Γ ⊢l?RI A ⊸ B

⊸R

S | Γ ⊢t?LI P
S | Γ ⊢t?RI P

LI2RI

(left invertible)

− | Γ ⊢LI P
I | Γ ⊢LI P

IL
A | B,Γ ⊢LI P
A⊗B | Γ ⊢LI P

⊗L

A | Γ ⊢LI P B | Γ ⊢LI P
A ∨B | Γ ⊢LI P

∨L
T | Γ ⊢t?F P

T | Γ ⊢t?LI P
F2LI

(focusing)

X | ⊢R?F X
ax
− | ⊢R?F I

IR

A | Γ◦ ⊢LI P
A ∧B | Γ ⊢C1?

F P
∧L1

B | Γ◦ ⊢LI P
A ∧B | Γ ⊢C2?

F P
∧L2

T | Γ◦ ⊢lRI A − | ∆◦ ⊢RI B l valid
T | Γ,∆ ⊢R?F A⊗B

⊗R

T | Γ◦ ⊢lRI A l valid
T | Γ ⊢R?F A ∨B

∨R1
T | Γ◦ ⊢lRI B l valid

T | Γ ⊢R?F A ∨B
∨R2

A | Γ◦ ⊢LI P
if A•? = A
then t does not exist or t = P
else t = •
− | A•?,Γ ⊢t?F P

pass

− | Γ,∆◦ ⊢RI A B | Λ◦ ⊢LI P
if ∆• is empty
then t does not exist or t = Γ
else t = •

A ⊸ B | Γ,∆•,Λ ⊢t?F P
⊸L

(5.7)

Again P indicates a non-negative formula, which now means that its principal
connective is neither ∧ nor ⊸. The notation Γ• means that all the formulae in Γ
are tagged, while Γ◦ indicates that all the tags on formulae in Γ have been erased.
We write A•? to denote A if the formula appears in an untagged sequent and A• if
it appears in a sequent marked with a list of tags l or a single tag t.

Tags of the form t = Γ are used to record different splitting of context in
applications of ⊸L, while tag t = • marks when rule ⊸L sends tagged formulae to
the left premise and when rule pass moves a tagged formula to the stoup.

Rule ⊸R moves a formula A from the succedent to the right end of the context.
If its conclusion is marked by a list of tags l, then A is also tagged with •.

The side condition in rule ⊸L should be read as follows. The tagged context
∆• starts with the leftmost tagged formula in the sequent. If ∆• is empty, then
the sequent is either untagged (so there is no t) or the tag t is equal to Γ. If ∆•

is non-empty, then t = •. In particular, ∆• contains at least one tagged formula,
which must have appeared in context from an application of ⊸R. If ∆• is empty
and t = Γ, no new (meaning: tagged with •) formula is moved to the left premise.
If t = Γ then we are performing proof search inside the premise of a right non-
invertible rule and t belongs to some valid list of tags l. List l could be valid
because of a different branch in the proof tree where ⊸L is also applied but the
context has been split differently (so its tag would be Γ′ for some Γ ̸= Γ′).

113

5.5. LINEAR IMPLICATION

Rule pass has a similar side condition to ⊸L. If A does not have a tag, then the
sequent is also untagged or the tag t is equal to P. If A has tag •, then t must also
be •. In other words, if t = • then the formula that pass moves to the stoup must
also be tagged with •, i.e. must have been added to the context by an application
of ⊸R.

We can reconstruct the derivation in (5.6) within the focused sequent calculus
with tags in (5.7).

− | ⊢F I IR

− | ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢LI I
F2LI

I | I ⊢LI I
IL

I ⊸ I | I ⊢[]
F I

⊸L

I ⊸ I | I ⊢[]
RI I

sw

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

− | ⊢F I IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

I ⊸ I | I ⊢[I]F I
⊸L

I ⊸ I | I ⊢[I]RI I
sw

I ⊸ I | I ⊢[],[I]
RI I ∧ I

∧R

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

I ⊸ I | I, Y ⊢F (I ∧ I)⊗ Y
⊗R

I ⊸ I | I, Y ⊢RI (I ∧ I)⊗ Y
sw

The list of tags [[], [I]] is valid since it contains distinct tags [] and [I], indicating
that there exist two applications of ⊸L that split the context differently.

Proving completeness of the extended focused sequent calculus is more involved
than in the absence of implication. Concretely, the complication resides in stating
and proving the analog of Proposition 5.3.4. First, define an operation impconj(A)
which produces a list of pairs of lists of formulae and formulae as follows:

impconj(A) = impconj(A′), impconj(B′) when A = A′ ∧B′

impconj(A) = ((A′,Γ′
1), B′

1), . . . , ((A′,Γ′
n), B′

n) when A = A′ ⊸ B′ and
impconj(B′)
= ([(Γ′

1, B
′
1), . . . , (Γ′

n, B
′
n)])

impconj(A) = ([], A) otherwise

For example,

impconj(A ⊸ (B ⊸ (X ∧ (C ∨D) ∧ (Y ⊸ Z))))
= [([A,B], X), ([A,B], C ∨D), ([A,B, Y], Z)]

Then we prove the adjusted Lemma 5.3.2 for the focused sequent calculus in
(5.7):

Lemma 5.5.1. The following rules

fs
[T | Γ,Γ′

i ⊢
ti
F Pi]i∈[1,...,n]

T | Γ ⊢lRI A
RI∗t

fs
[S | Γ,Γ′

i ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢RI A RI∗

are admissible, where impconj(A) = [(Γ′
1, P1), . . . , (Γ′

n, Pn)] and l = [t1, . . . , tn].

114

CHAPTER 5. ADDITIVE EXTENSIONS

Proof. The proof follows a similar structure to that of Lemma 5.3.2, with one key
difference: the additional case where A = A′ ⊸ B′. We have a collection of deriva-
tions fs′ : [T | Γ, A′•,Γ′′

i ⊢ Pi]i∈[1,...,n] and impconj(B′) = [(Γ′′
1 , P1), . . . , (Γ′′

n, Pn)],
where each Γ′

i is formed by adding A′• to the front of Γ′′
i for all i from 1 to n. We

apply ⊸R at bottom, then proceed recursively:

fs
[T | Γ,Γ′

i ⊢
ti
F Pi]i∈[1,...,n]

T | Γ ⊢lRI A′ ⊸ B′ RI∗t
=

fs′

[T | Γ, A′•,Γ′′
i ⊢

ti
F Pi]i∈[1,...,n]

T | Γ, A′• ⊢lRI B′ RI∗t

T | Γ ⊢lRI A′ ⊸ B′ ⊸R

The statement of Proposition 5.3.4 for the focused sequent calculus in (5.7)
then becomes:

Proposition 5.5.2. The following rules

fs
[S | Γ,Γ′

i ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢LI A ∨B
∨RLI

1

fs
[S | Γ,Γ′′

i ⊢LI Qi]i∈[1,...,m]

S | Γ ⊢LI A ∨B
∨RLI

2

fs
[S | Γ,Γ′

i ⊢LI Pi]i∈[1,...,n] − | ∆ ⊢RI B′

S | Γ,∆ ⊢LI A⊗B′ ⊗RLI

are admissible, where impconj(A) = [(Γ′
1, P1), . . . , (Γ′

n, Pn)] and
impconj(B) = [(Γ′′

1 , Q1), . . . , (Γ′′
m, Qm)].

Proof. The proof proceeds similarly to that of Proposition 5.3.4. The key case is
f1 = F2LIf ′

1. In this case, every derivation in fs must also end with F2LI. Our task
is to generate a list of tags l that records the structure of derivations in fs. We do
this by examining each derivation in fs and assigning tags based on specific rules
we encounter.

– For any f ′ = passf ′′, we check the passivated formula A. If it is tagged, then
we assign • to the derivation, otherwise we assign P.

– For conjunction rules, we add C1 when we see ∧L1, and C2 when we see ∧L2.

– For any f ′ = ⊸L(f ′′
1 , f

′′
2), if there is any tagged formula sent to f ′′

1 , then we
assign • to the derivation, otherwise we assign the context sent to f ′′

1 as the
tag.

– We assign R for the remaining rules.

The remaining procedure is similar to that in the proof of Proposition 5.3.4.

115

Chapter 6

Semi-Substructural Logics
Beyond Stoup

Having established the core theory of SkNMILL and explored several extensions, we
now turn to examining variants where the stoup sequent calculus approach fails
to capture the underlying structure. While the calculi discussed so far, including
their additive and symmetric extensions, work well with a stoup sequent calculus,
some semi-substructural logics do not fit this formalism.

Before we get into an example of such logics, we first distinguish left and right-
closed structures. The definitions of variants of skew monoidal closed categories
we have introduced in Chapters 2–5 are all right-closed. Logically speaking, they
all correspond to right residuation. The left-closed structure is similar to the right-
closed one but adjoint to left tensoring rather than right tensoring.1 For example,
left skew monoidal left-closed categories are defined as follows.

Definition 6.0.1. A left skew monoidal left-closed category C is a category with
a unit object I and two functors ⊗ : C×C→ C and ⊸: C×Cop → C forming an
adjunction B ⊗− ⊣ − ⊸

B natural in B,

Notice that the position of B at the left-hand side of the adjunction is now
at the left argument instead of the right compared to the definition of left skew
monoidal right-closed categories.

Left skew monoidal left-closed categories are not very well-behaved. In par-
ticular, we currently do not know how to develop a stoup sequent calculus for
them.

Left-closedness can be considered redundant in the sense that it reduces to
right-closedness for the reversed tensor. However, the price is that we need to
introduce right skewness. Given a left skew monoidal structure (I,⊗) on a category
C, we can define a reverse tensor ⊗rev that switches the two arguments of a tensor,
i.e. X ⊗rev Y = Y ⊗ X. The structure (I,⊗rev) on C is not left skew but right
skew monoidal. This duality generalizes to closed structures, in the sense that if
(I,⊗, ⊸) is left skew monoidal left-closed, the structure (I,⊗rev,

⊸) is right skew
monoidal right-closed. In a right skew monoidal category, the structural laws are

1We use the words “left-closed” and “right-closed” in the way Lambek [45] did. Many authors,
e.g. [36], use them the other way around.

117

6.1. SKEW MONOIDAL BI-CLOSED CATEGORIES

directed in the opposite direction compared to their left skew counterparts. The
formal definition of right skew monoidal right-closed categories is the following.

Definition 6.0.2. A right skew monoidal right-closed category C is a category with
a unit object I and two functors ⊗ : C×C→ C and ⊸ : Cop ×C→ C forming an
adjunction −⊗B ⊣ B ⊸ − natural in B, and three natural transformations typed
λR
A : A → I ⊗ A, ρRA : A ⊗ I → A and αR

A,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C. The
equations on morphisms are analogous to those in Definition 1.2.1 but modified to
fit the right skew monoidal structure.

Remark 6.0.3. Similar to Remark 2.3.2, natural transformations (λR, ρR, αR)
are in bijective correspondence with natural transformations (jR, iR, LR), typed as
jRA,B : C(I, A ⊸ B) → C(A,B), iRA : A → I ⊸ A and LR

A,B,C,D :
C(A,B ⊸ (C ⊸ D)) →

∫ E C(A,E ⊸ D) × C(B,C ⊸ E). In parts of the
next sections, where we only work with thin categories (for any two objects A and
B, C(A,B) is either empty or a singleton set), it is safe to replace

∫ E with an
existential quantifier.

In the rest of the thesis, we mainly consider right-closed structures, therefore,
when we mention “closed”, we always mean right-closed unless specified.

While constructing an axiomatic calculus is straightforward by reversing the
axioms λ, ρ, and α in SkNMILLA, developing a sequent calculus with stoup is chal-
lenging. The natural approach would be to create a dual version of SkNMILLS, where
sequents take the form Γ | S ⊢ A, swapping the positions of stoup and context. The
antecedents would form right-associative trees structured as (An, (. . . , (A1, A0)) . . .).
Nevertheless, ⊸ in right skew monoidal categories, by definition, is again a right
residuation, implying that ⊸L and ⊸R should resemble those in SkNMILLS. This
requirement then necessitates contexts to appear on the right-hand side of the
stoup.

To resolve this problem, we adapt the formalism from [52], using sequent cal-
culus with tree as antecedents to characterize these categories.

In subsequent sections, we first introduce skew monoidal bi-closed categories,
which could be thought of as categories generated by connecting isolated left
(C, I,⊗L,⊸L) and right (C, I,⊗R,⊸R) skew monoidal closed structures with the
isomorphism γ : A⊗L B → B⊗R A that allows us jumping back and forth between
two tensors. Next, we develop equivalent axiomatic and tree calculi to characterize
them. We then discuss sound and complete relational models of axiomatic calculi
and establishing correspondence theorems between frame conditions and structural
laws. In the last section, we extend the analysis to their symmetric extensions.

6.1 Skew Monoidal Bi-closed Categories
Definition 6.1.1. A skew monoidal bi-closed (SkBiC) is a category C that consists
of the following data: a left skew monoidal closed category (C, I,⊗L,⊸L) and two
functors ⊗R and ⊸R forming an adjunction −⊗R B ⊣ B ⊸R − natural in B, and
a natural isomorphism γ : A⊗L B → B ⊗R A.

It follows that (C, I,⊗R,⊸R) forms a right skew monoidal closed category, where
the right skew structural rules are dictated by the left skew ones via γ, i.e. λR = γ◦ρ,

118

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

ρR = γ−1 ◦ λ, and αR = γ ⊗R C ◦ γ ◦ α ◦ γ−1 ◦A⊗R γ−1 diagrammatically:

A I⊗R A

A A⊗L I

λR

ρ

γ

A⊗R I A

I⊗L A A

ρR

γ−1

λ

A⊗R (B ⊗R C) (A⊗R B)⊗R C

A⊗R (C ⊗L B) (B ⊗L A)⊗R C

(C ⊗L B)⊗L A C ⊗L (B ⊗L A)

αR

A⊗Rγ−1

γ−1

γ⊗RC

α

γ

Notice that Definition 6.1.1 combines concepts from skew bi-monoidal and skew
bi-closed categories as introduced in [64].

In contrast to the categorical model of associative Lambek calculus, monoidal
bi-closed category, we do not explicitly define both left (⧹) and right residuation
(⧸). Instead, we have two right residuations corresponding to different tensor
products. However, it is worth noting that a left residuation for one tensor can
be derived from the right residuation of the other tensor. Specifically, if we take
A ⊗R B = B ⊗L A, then (C, I,⊗L,⊸R) forms a left skew monoidal left-closed
category. In here we are more akin to the main reference [64], with the natural
isomorphism γ, and selecting a specific tensor, we can simulate both left and right
residuations.

In the rest of the section, we usually omit subscripts of natural transformations.

6.2 Calculi for SkBiC

6.2.1 Axiomatic Calculus

By defining new formulae and adding rules in SkNMILLA, we can have an axiomatic
calculus SkNMBiCA, where formulae (Fma) are inductively generated by the grammar
A,B ::= X | I | A⊗L B | A ⊸L B | A⊗R B | A ⊸R B. ⊗L and ⊸L (⊗R and ⊸R)
represent left (right) skew multiplicative conjunction and implication, respectively.

119

6.2. CALCULI FOR SkBiC

Derivations in SkNMBiCA are inductively generated by the following rules:

A ⊢A A
id

A ⊢A B B ⊢A C

A ⊢A C
comp

A ⊢A C B ⊢A D

A⊗L B ⊢A C ⊗L D
⊗L C ⊢A A B ⊢A D

A ⊸L B ⊢A C ⊸L D
⊸L C ⊢A A B ⊢A D

A ⊸R B ⊢A C ⊸R D
⊸R

I⊗L A ⊢A A
λ

A ⊢A A⊗L I
ρ

(A⊗L B)⊗L C ⊢A A⊗L (B ⊗L C)
α

A⊗L B ⊢A B ⊗R A
γ

A⊗R B ⊢A B ⊗L A
γ−1

A⊗L B ⊢A C

A ⊢A B ⊸L C
π

A⊗R B ⊢A C

A ⊢A B ⊸R C
πR

For any f : A ⊢A B and g : C ⊢A D, we define f ⊗R g as γ ◦ (g⊗L f) ◦ γ−1. λR, ρR,
and αR are also derivable.
Similar to the constructions in [67, 66, 65, 69, 63], SkNMBiCA generates the free skew
monoidal bi-closed category (FSkMBiC(At)) over a set At in the following way:

– Objects of FSkMBiC(At) are formulae (Fma).

– Morphisms between formulae A and B consist of derivations of sequents A ⊢
B. These morphisms are considered equivalent when they are related by the
congruence relation .=, which is defined similarly to Figure 2.5 but includes
additional equations where γ is an isomorphism:

A⊗R B ⊢A B ⊗L A
γ−1

B ⊗L A ⊢A A⊗R B
γ

A⊗R B ⊢A A⊗R B
comp

.=A⊗R B ⊢A A⊗R B
id

A⊗L B ⊢A B ⊗R A
γ

B ⊗R A ⊢A A⊗L B
γ−1

A⊗L B ⊢A A⊗L B
comp

.=A⊗L B ⊢A A⊗L B
id

Notice that by the definition of f ⊗R g and γ being an isomorphism, γ and
γ−1 are natural transformations. For example, γ ◦ f ⊗L g

.= γ ◦ f ⊗L g ◦ id .=
γ ◦ f ⊗L g ◦ γ−1 ◦ γ = g⊗R f ◦ γ. Similarly, naturality of (λR, ρR, αR) and the
Mac Lane axioms corresponding to them hold as well.

Theorem 6.2.1. Let D be a skew monoidal bi-closed category. Given FAt : At →
|D| providing evaluation of atomic formulae as objects of D, there exists a unique
skew monoidal bi-closed functor F : FSkMBiC(At)→ D.

Proof.
Existence. Let (D, I′,⊗′L,⊸′L,⊗′R,⊸′R) be a skew monoidal bi-closed category.
We define a function F0 : FSkMBiC(At)→ |D| by induction on the input formula:

F0X = FAtX F0I = I′

F0(A⊗L B) = F0A⊗′L F0B F0(A ⊸L B) = F0A ⊸′L F0B

F0(A⊗R B) = F0A⊗′R F0B F0(A ⊸R B) = F0A ⊸′R F0B

120

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

There exists a function F1 that maps every morphism in FSkMBiC(At) by replacing
I with I′, ⊗L with ⊗′L, and similarly for all other connectives. This means that given
any derivation f : A ⊢A B in FSkMBiC(At), F1 sends f to F1f : D(F0A,F0B), which
is defined by induction on f . The functor F : FSkMBiC(At) → D is then defined
by putting F0 and F1 together, which forms a skew monoidal bi-closed functor. It
is possible to show that F preserves the skew monoidal bi-closed structure, so it is
a skew monoidal bi-closed functor.
Uniqueness. Consider another skew monoidal closed functor F ′ : FSkMBiC(At)→ D
such that F ′X = FAtX for any atomX. We can verify that F ′ and F agree on every
object and morphism in FSkMBiC(At) by induction on formulae and derivations
respectively.

6.2.2 Tree Sequent Calculus

Trees in SkNMBiCT are inductively defined by the grammar T ::= Fma | − | (T, T) |
(T ;T). What we have defined are trees with two different ways of linking nodes:
through the use of commas and semicolons, corresponding to ⊗L and ⊗R, respec-
tively. Contexts and substitution are defined analogously to those of SkNMILLT.
Sequents are in the form T ⊢T A analogous to those in Section 2.2.2.
Derivations in SkNMBiCT are generated recursively by the following rules:

A ⊢T A
ax − ⊢T I IR

T [−] ⊢T C

T [I] ⊢T C
IL

T [A,B] ⊢T C

T [A⊗L B] ⊢T C
⊗LL

T ⊢T A U ⊢T B

T,U ⊢T A⊗L B
⊗LR

U ⊢T A T [B] ⊢T C

T [A ⊸L B,U] ⊢T C
⊸LL

T,A ⊢T B

T ⊢T A ⊸L B
⊸LR

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assocL

T [U] ⊢T C

T [−, U] ⊢T C
unitLL

T [U,−] ⊢T C

T [U] ⊢T C
unitRL

T [U0, U1] ⊢T C

T [U1;U0] ⊢T C
⊗comm

T [A;B] ⊢T C

T [A⊗R B] ⊢T C
⊗RL

T ⊢T A U ⊢T B

T ;U ⊢T A⊗R B
⊗RR

U ⊢T A T [B] ⊢T C

T [A ⊸R B;U] ⊢T C
⊸RL

T ;A ⊢T B

T ⊢T A ⊸R B
⊸RR

T [(U0;U1);U2] ⊢T C

T [U0; (U1;U2)] ⊢T C
assocR

T [U] ⊢T C

T [U ;−] ⊢T C
unitLR

T [−;U] ⊢T C

T [U] ⊢T C
unitRR

We can think of these rules as originating from two separate calculi: SkNMILLT (the
red part plus ax, IR, and IL) and another for right skew monoidal closed categories
(the blue part plus ax, IR, and IL), linked by ⊗comm, in other words, we can mimic
all the blue rules in the style of SkNMILLT (only commas appear in antecedents)
and conversely, the red rules can be expressed using the blue rules. For example,

121

6.2. CALCULI FOR SkBiC

we can express ⊗RL, ⊗RR and ⊸RL in the style of SkNMILLT:

T [A,B] ⊢T C

T [B ⊗R A] ⊢T C
⊗RL′ 7→

T [A,B] ⊢T C

T [B;A] ⊢T C
⊗comm

T [B ⊗R A] ⊢T C
⊗RL

T ⊢T A U ⊢T B

U, T ⊢T A⊗R B
⊗RR′ 7→

T ⊢T A U ⊢T B

T ;U ⊢T A⊗R B
⊗RL

U, T ⊢T A⊗R B
⊗comm

U ⊢T A T [B] ⊢T C

T [U,A ⊸R B] ⊢T C
⊸RL′ 7→

U ⊢T A T [B] ⊢T C

T [A ⊸R B;U] ⊢T C
⊸RL

T [U,A ⊸R B] ⊢T C
⊗comm

A, T ⊢T B

T ⊢T A ⊸R B
⊸RR′ 7→

A, T ⊢T B

T ;A ⊢T B
⊗comm

T ⊢T A ⊸R B
⊸RR

It is also possible to define a categorical model that models the simplified calculus by
explicitly defining A⊗RB = B⊗LA. Then in the categorical model, we immediately
get two residuations, and we do not have to discuss γ, so that the semantics is
simplified. However, we keep the complex form of syntax and semantics to follow
the main reference [64] and display the symmetry of the syntax.

Theorem 6.2.2. Similar to SkNMILLT, cut is admissible in SkNMBiCT.

U ⊢T A T [A] ⊢T C

T [U] ⊢T C
cut

Proof. The proof proceeds similarly to that of Theorem 2.2.8. For the new logical
rules in blue, the proofs follow the same pattern as their red counterparts. Since
⊗comm and all the logical and structural rules in blue are one-premise left rules,
we can permute cut upwards.

The equivalence between SkNMBiCA and SkNMBiCT can be proved by induction
on the height of derivations with the following admissible rules, definition, and
lemmata:

T [A⊗L B] ⊢A C

T [A,B] ⊢A C
⊗LL−1 T ⊢A A ⊸L B

T,A ⊢A B ⊸LR−1

T [A⊗R B] ⊢A C

T [A;B] ⊢A C
⊗RL−1 T ⊢A A ⊸R B

T ;A ⊢A B ⊸RR−1

Definition 6.2.3. For any tree T , T# is the formula obtained from T by replacing
commas with ⊗L and semicolons with ⊗R, and − with I, respectively.

Lemma 6.2.4. For any context T [·] and tree U , T [U]# = T [U#]#.

Proof. The proof proceeds similarly to the one of Lemma 2.2.10.

122

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

In the remainder of the chapter, we will refer to uses of this lemma by double
lines. For example, given a derivation f : T ′[A]# ⊗L T ′′# ⊢A C, we can rewrite the
antecedent of the conclusion sequent as

f
T ′[A]# ⊗L T ′′# ⊢A C

(T ′[A], T ′′)# ⊢A C

Lemma 6.2.5. Given a context T [·] and a derivation f : A ⊢A B, the following
rule is admissible:

f
A ⊢A B

T [A]# ⊢A T [B]#
T [f]#

Proof. The proof proceeds by induction on the structure of T [·].
If T [·] = [·], then we have T [A]# = A and T [B]# = B, and f is the desired
derivation.
If T [·] = (T ′[·];T ′′), then we construct the desired derivation as follows:

f
T ′[A]# ⊢A T ′[B]# T ′′# ⊢A T ′′# id

T ′[A]# ⊗R T ′′# ⊢A T ′[B]# ⊗R T ′′# ⊗R

(T ′[A];T ′′)# ⊢A (T ′[B];T ′′)#

The case T [·] = (T ′;T ′′[·]) is symmetric, while other cases are covered in the proof
of Lemma 2.2.11.

Theorem 6.2.6. SkNMBiCT is equivalent to SkNMBiCA, meaning that the following
two statements are true:

1. For any derivation f : A ⊢A C, there exists a derivation A2Tf : A ⊢T C.

2. For any derivation f : T ⊢T C, there exists a derivation T2Af : T# ⊢A C.

Proof. We first construct A2T by structural induction on the derivation f .
Case f = id.

A ⊢A A
id 7→ A ⊢T A

ax

Case f = comp(f ′, f ′′).

f ′

A ⊢A B
f ′′

B ⊢A C

A ⊢A C
comp 7→

A2Tf ′

A ⊢T B
A2Tf ′′

B ⊢T C

A ⊢T C
cut

Case f = ⊗L(f ′, f ′′).

f ′

A ⊢A C
f ′′

B ⊢A D

A⊗L B ⊢A C ⊗L D
⊗L 7→

A2Tf ′

A ⊢T C
A2Tf ′′

B ⊢T D

A,B ⊢T C ⊗L D
⊗LR

A⊗L B ⊢T C ⊗L D
⊗LL

123

6.2. CALCULI FOR SkBiC

Case f =⊸L (f ′, f ′′).

f ′

C ⊢A A
f ′′

B ⊢A D

A ⊸L B ⊢A C ⊸L D
⊸L 7→

A2Tf ′

C ⊢T A
A2Tf ′′

B ⊢T D

A ⊸L B,C ⊢T D
⊸LL

A ⊸L B ⊢T C ⊸L D
⊸LR

Case f = λ.

I⊗L A ⊢A A
λ 7→

A ⊢T A
ax

−, A ⊢T A unitLL

I, A ⊢T A
IL

I⊗L A ⊢T A
⊗LL

Case f = ρ.

A ⊢A A⊗L I
ρ 7→

A ⊢T A
ax − ⊢T I IR

A,− ⊢T A⊗L I ⊗RR

A ⊢T A⊗L I unitRL

Case f = α.

(A⊗L B)⊗L C ⊢A A⊗L (B ⊗L C)
α 7→

A ⊢T A
ax

B ⊢T B
ax

C ⊢T C
ax

B,C ⊢T B ⊗L C
⊗LR

A, (B,C) ⊢T A⊗L (B ⊗L C) ⊗LR

(A,B), C ⊢T A⊗L (B ⊗L C) assocL

(A⊗L B), C ⊢T A⊗L (B ⊗L C) ⊗
LL

(A⊗L B)⊗L C ⊢T A⊗L (B ⊗L C) ⊗
LL

Case f = γ.

A⊗L B ⊢A B ⊗R A
γ 7→

B ⊢T B
ax

A ⊢T A
ax

B;A ⊢T B ⊗R A
⊗RR

A,B ⊢T B ⊗R A
⊗comm

A⊗L B ⊢T B ⊗R A
⊗LL

Case f = γ−1.

A⊗R B ⊢A B ⊗L A
γ−1

7→

B ⊢T B
ax

A ⊢T A
ax

B,A ⊢T B ⊗L A
⊗LR

A;B ⊢T B ⊗L A
⊗comm−1

A⊗R B ⊢T B ⊗L A
⊗RL

124

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

Case f = π f ′.

f ′

A⊗L B ⊢A C

A ⊢A B ⊸L C
π 7→

A2Tf ′

A⊗L B ⊢T C

A,B ⊢T C
⊗LL−1

A ⊢T B ⊸L C
⊸LR

Case f = π−1 f ′.

f ′

A ⊢A B ⊸L C

A⊗L B ⊢A C
π−1 7→

A2Tf ′

A ⊢T B ⊸L C

A,B ⊢T C ⊸LR−1

A⊗L B ⊢T C
⊗LL

Other cases for ⊸R and πR are similar.
We construct T2A by structural induction on f as well.
Case f = ax.

A ⊢T A
ax 7→ A ⊢A A

id

Case f = IR.

− ⊢T I IR 7→ I ⊢A I id

Case f = IL f ′.
f ′

T [−] ⊢T C

T [I] ⊢T C
IL 7→

T2Af ′

T [−]# ⊢A C

T [I]# ⊢A C

Case f = ⊗comm f ′

f ′

T [U0, U1] ⊢T C

T [U1;U0] ⊢T C
⊗comm

7→

U#
1 ⊗R U#

0 ⊢A U#
0 ⊗L U#

1
γ−1

T [U#
1 ⊗R U#

0]# ⊢A T [U#
0 ⊗L U#

1]#
T [γ−1]#

T [U1;U0]# ⊢A T [U0, U1]#
T2Af′

T [U0, U1]# ⊢A C

T [U1;U0]# ⊢A C
comp

Case f = ⊗L f ′

f ′

T [A,B] ⊢T C

T [A⊗L B] ⊢T C
⊗LL 7→

T2Af ′

T [A,B]# ⊢A C

T [A⊗L B]# ⊢A C

125

6.2. CALCULI FOR SkBiC

Case f = ⊗LR(f ′, f ′′).

f ′

T ⊢T A
f ′′

U ⊢T B

T,U ⊢T A⊗L B
⊗LR 7→

T2Af ′

T# ⊢A A
T2Af ′′

U# ⊢A B

T# ⊗L U# ⊢A A⊗L B
⊗L

(T,U)# ⊢A A⊗L B

Case f = ⊸LL.

f ′

U ⊢T A
f ′′

T [B] ⊢T C

T [A ⊸L B,U] ⊢T C
⊸LL

7→

g
(A ⊸L B)⊗L U# ⊢A (A ⊸L B)⊗L A

T [(A ⊸L B)⊗L U#]# ⊢A T [(A ⊸L B)⊗L A]# T [g]#
h

(A ⊸L B)⊗L A ⊢A B

T [(A ⊸L B)⊗L A]# ⊢A T [B]# T [h]#

T [(A ⊸L B)⊗L U#]# ⊢A T [B]#
comp

T [(A ⊸L B), U]# ⊢A T [B]#
T2Af ′′

T [B]# ⊢A C

T [(A ⊸L B), U#]# ⊢A C
comp

where g = ⊗L(id,T2Af ′) and h = π−1(id).
Case f = ⊸LR f ′

f ′

T,A ⊢T B

T ⊢T A ⊸L B
⊸LR 7→

T2Af ′

T# ⊗L A ⊢A B

T# ⊢A A ⊸L B
π

Case f = assocL f ′

f ′

T [U0, (U1, U2)] ⊢T C

T [(U0, U1), U2] ⊢T C
assocL

7→

(U#
0 ⊗L U#

1)⊗L U#
2 ⊢A U#

0 ⊗L (U#
1 ⊗L U#

2)
α

T [(U#
0 ⊗L U#

1)⊗L U#
2]# ⊢A T [U#

0 ⊗L (U#
1 ⊗L U#

2)]#
T [α]#

T [(U0, U1), U2]# ⊢A T [U0, (U1, U2)]#
T2Af ′

T [U0, (U1, U2)]# ⊢A C

T [(U0, U1), U2]# ⊢T C
comp

Case f = unitLL f ′

f ′

T [U] ⊢T C

T [−, U] ⊢T C
unitLL

7→

I⊗L U# ⊢A U# λ

T [I⊗L U#]# ⊢A T [U#]# T [λ]#

T [−, U]# ⊢A T [U]#
T2Af ′

T [U]# ⊢T C

T [−, U]# ⊢A C
comp

126

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

Case f = unitRL f ′

f ′

T [U,−] ⊢T C

T [U] ⊢T C
unitRL

7→

U# ⊢A U# ⊗L I
ρ

T [U#]# ⊢A T [U# ⊗L I]# T [ρ]#

T [U]# ⊢A T [U,−]#
T2Af ′

T [U,−]# ⊢T C

T [U]# ⊢A C
comp

Other cases for right skew rules are similar.

6.3 Relational Semantics of SkNMBiCA
In this section, we present the relational semantics of SkNMBiCA, which is character-
ized modularly, allowing us to construct models for semi-substructural logics step
by step by incorporating additional structural conditions into the frame. More-
over, by adapting the definition from relational monoid [56], we extend the scope
of ternary relational semantics to include frame conditions on multiplicative unit.
The modularity of ternary frame semantics allows us to provide a proof for the
poset version of the main theorems concerning the interdefinability of a series of
skew structured categories discussed in [64].

A preordered ternary frame with a special subset is ⟨W,≤, I,L⟩, where W is
a set, ≤ is a preorder relation on W , I is a downwards closed subset of W , and
L is an arbitrary ternary relation on W , where L is upwards closed in the first
two arguments and downwards closed in the last argument with respect to ≤. For
example, given Labc, if we have a ≤ a′, b ≤ b′, and c′ ≤ c, then La′b′c′.
Definition 6.3.1. We list properties of ternary relations which we will focus on.

Left Skew Associativity (LSA) ∀a, b, c, d, x ∈W,Labx & Lxcd
−→ ∃y ∈W such that Lbcy & Layd.

Left Skew Left Unitality (LSLU) ∀a, b ∈W, e ∈ I,Leab −→ b ≤ a.

Left Skew Right Unitality (LSRU) ∀a ∈W, ∃e ∈ I such that Laea.
Right Skew Associativity (RSA) ∀a, b, c, d, x ∈W,Lbcx & Laxd

−→ ∃y ∈W such that Laby & Lycd.

Right Skew Left Unitality (RSLU) ∀a ∈W, ∃e ∈ I such that Leaa.
Right Skew Right Unitality (RSRU) ∀a, b ∈W, e ∈ I,Laeb −→ b ≤ a.

Given another ternary relation R, we define

LR-reverse ∀a, b, c ∈W,Labc←→ Rbac.

The associativity and unitality conditions are adapted from the theory of relational
monoids [56] and relational semantics for Lambek calculus [24].

A SkNMBiCA frame is a quintuple ⟨W,≤, I,L,R⟩, where LR-reverse is satisfied,
L satisfies LSA, LSLU, LSRU, and R automatically satisfies RSA, RSLU, RSRU
because of LR-reverse.

127

6.3. RELATIONAL SEMANTICS OF SkNMBiCA

Unlike studies in NL e.g. [24, 50, 52], where two associativity conditions simul-
taneously hold for a relation or not, we explore two relations where one satisfies
LSA and the other satisfies RSA. Another distinction from the existing studies on
semantics for NL with unit [17] (or non-commutative linear logic [1]) is that whileW
is commonly assumed to be a unital magma (or monoid in the case of linear logic),
here, we should consider that the unit behaves differently for different relations.

We denote the set of downwards closed subsets of W as P↓(W).

Definition 6.3.2. A function v : Fma→ P↓(W) on a SkNMBiCA frame is a valuation
if it satisfies:

v(I) = I
v(A⊗L B) = {c : ∃a ∈ v(A), b ∈ v(B), Labc}
v(A ⊸L B) = {c : ∀a ∈ v(A), b ∈W, Lcab⇒ b ∈ v(B)}
v(A⊗R B) = {c : ∃a ∈ v(A), b ∈ v(B), Rabc}
v(A ⊸R B) = {c : ∀a ∈ v(A), b ∈W, Rcab⇒ b ∈ v(B)}

We define a SkNMBiCA model to be a SkNMBiCA frame with a valuation function,
i.e. ⟨W,≤, I,L,R, v⟩. A sequent A ⊢A B is valid in a model ⟨W,≤, I,L,R, v⟩ if
v(A) ⊆ v(B) and is valid in a frame if for any v for that frame, v(A) ⊆ v(B).

Theorem 6.3.3 (Soundness). If a sequent A ⊢A B is provable in SkNMBiCA then
it is valid in any SkNMBiCA model.

Proof. The proof is adapted from [24, 52], where the cases of α and αR have been
discussed. Therefore, we only elaborate on new cases arising in SkNMBiCA.

– If the derivation is the axiom λ : I⊗L A ⊢A A, then for any SkNMBiCA model
⟨W, I,L,R, v⟩ and any a ∈ v(I⊗L A), there exist e ∈ I, a′ ∈ v(A), and Lea′a.
By LSLU, we know that a ≤ a′, and then a ∈ v(A).

– If the derivation is the axiom ρ : A ⊢A A ⊗L I, then for any SkNMBiCA model
⟨W, I,L,R, v⟩ and any a ∈ v(A), by LSRU, there exists e ∈ I such that Laea,
which means that a ∈ v(A⊗L I).

– If the derivation is the axiom γ : A⊗L B ⊢A B ⊗R A, then for any SkNMBiCA
model ⟨W, I,L,R, v⟩ and any c ∈ v(A⊗LB), there exist a ∈ v(A) and b ∈ v(B)
such that Labc. By LR-reverse, we have Rbac, therefore c ∈ v(B ⊗R A).

– The case of γ−1 is similar.

Definition 6.3.4. The canonical model of SkNMBiCA is ⟨W,≤, I,L,R, v⟩ where

– W = Fma and A ≤ B if and only if A ⊢A B,

– I = v(I),

– LABC if and only if C ⊢A A⊗L B,

– RABC if and only if C ⊢A A⊗R B, and

– v(A) = {B | B ⊢A A is provable in SkNMBiCA}.

Lemma 6.3.5. The canonical model is a SkNMBiCA model.

Proof.

128

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

– The set (Fma,⊢A) is a preorder because of the rules id and comp, and the set I
is downwards closed because of comp. The relations L and R are downwards
closed in their last argument because of the rule comp. They are upwards
closed in their first two arguments due to the rules ⊗L and ⊗R, respectively.
These facts ensure that ⟨Fma,⊢A, I,L,R⟩ is a ternary frame.

– We show two cases (LSRU and LSRU) of the proof that L,R satisfy their
corresponding conditions, while other cases are similar.

(LSLU) Given any two formulae A and B, and J ∈ I with LJAB, we have J ⊢A I,
and B ⊢A J ⊗L A, then we can construct B ⊢A A as follows:

B ⊢A J ⊗L A

J ⊢A I A ⊢A A
id

J ⊗L A ⊢A I⊗L A
⊗L

B ⊢A I⊗L A
comp

I⊗L A ⊢A A
λ

B ⊢A A
comp

(LSRU) By the axiom ρ, for any formula A, we have A ⊢A A⊗L I, i.e. LAIA.

– The valuation v is downwards closed because of the rule comp. The other
conditions on connectives are satisfied by definition.

Therefore, ⟨Fma,⊢A, I,L,R, v⟩ is a SkNMBiCA model.

Theorem 6.3.6 (Completeness). If A ⊢A B is valid in any SkNMBiCA model, then
it is provable in SkNMBiCA.

Proof. If A ⊢A B is valid in any SkNMBiCA model, then it is valid in the canonical
model, i.e. v(A) ⊆ v(B) in the canonical model. From A ⊢A A, by definition of v,
we have A ∈ v(A), and because v(A) ⊆ v(B), we know that A ∈ v(B), therefore
A ⊢A B.

We show a correspondence between frame conditions and the validity of struc-
tural laws in frames.

Theorem 6.3.7. For any ternary frame ⟨W,≤, I,L,R⟩,

LR-reverse holds ←→ γ and γ−1valid
α(R) valid ←→ LSA (RSA) holds ←→ L(R) valid
λ(R) valid ←→ LSLU (RSLU) holds ←→ j(R) valid
ρ(R) valid ←→ LSRU (RSRU) holds ←→ i(R) valid

Proof. The first case is that LR-reverse holds if and only if γ and γ−1 are valid,
i.e. v(A⊗L B) = v(B ⊗R A).

(−→) For any x ∈ v(A ⊗L B) ⊆ W , there exists a ∈ v(A), b ∈ v(B) and Labx.
By LR-reverse, we have Rbax meaning that x ∈ v(B ⊗R A). The other way
around is similar.

(←−) Suppose that for any v,A,B, we have v(A ⊗L B) = v(B ⊗R A). Consider
any a, b, x ∈ W such that Labx. We take v(A) = a↓ and v(B) = b↓ for some
A,B ∈ At. By the definition of v and assumption, x belongs to v(A ⊗L B)
which is equal to v(B ⊗R A), therefore Rbax. The other direction is similar.

129

6.3. RELATIONAL SEMANTICS OF SkNMBiCA

λ : LSLU holds if and only if λ is valid.

(−→) This is similar to case of λ in the proof of Theorem 6.3.3.
(←−) Suppose that λ is valid, i.e. for any A and v, we have v(I⊗L A) ⊆ v(A).

Consider any a, b ∈ W , e ∈ I such that Leab. We take v(A) = a↓ for
some A ∈ At. By Leab and the assumption, we know that b ∈ v(A),
which means that b ≤ a.

ρ : LSRU holds if and only if ρ is valid.

(−→) This is similar to case of ρ in the proof of Theorem 6.3.3.
(←−) Suppose ρ is valid, i.e. for any A and v, v(A) ⊆ v(A⊗L I). Consider any

a ∈ W . We take v(A) = a↓ for some A ∈ At. By the assumption, there
exist a′ ∈ v(A) and e ∈ I such that La′ea. Because L is upwards closed
in its first argument, we know that Laea.

α : LSA holds if and only if α is valid.

(−→) For any s ∈ v((A ⊗L B) ⊗L C), there exists a ∈ v(A), b ∈ v(B), x ∈
v(A ⊗L B), c ∈ v(C),Labx, and Lxcs. By LSA, there exists y ∈ W
such that Lbcy and Lays, then by definition of v, y ∈ v(B ⊗L C) and
s ∈ v(A⊗L (B ⊗L C)).

(←−) Suppose that α is valid, i.e. for anyA,B,C, v, we have v((A⊗LB)⊗LC) ⊆
v(A ⊗L (B ⊗L C)). Consider any a, b, x, c, d ∈ W such that Labx and
Lxcd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for some A,B,C ∈ At,
then we know that x ∈ v(A ⊗L B) and d ∈ v((A ⊗L B) ⊗L C). By
the assumption, d belongs to v(A ⊗L (B ⊗L C)) as well, which means
that there exist a′, b′, y, c′ ∈ W such that Lb′c′y and La′yd. Because L
is upwards closed in its first and second arguments, we have Lbcy and
Layd as desired.

L : LSA holds if and only if for any A,B,C and v, v(B ⊸L C) ⊆
v((A ⊸L B) ⊸L (A ⊸L C)).

(−→) For any s ∈ v(B ⊸L C), we show s ∈ v((A ⊸L B) ⊸L (A ⊸L C)).
By definition, from assumptions x ∈ v(A ⊸L B), Lsxy, y ∈
v(A ⊸L C), a ∈ A, c ∈W , and Lyac, we have to prove that c ∈ C. By
LSA, there exists x′ ∈ W such that Lxax′ and Lsx′c. We get x′ ∈ B
due to x ∈ v(A ⊸L B). Thus, we have c ∈ C because s ∈ v(B ⊸L C).

(←−) Suppose that for any A,B,C and v, we have v(B ⊸L C) ⊆
v((A ⊸L B) ⊸L (A ⊸L C)). Consider a, b, x, c, d ∈ W such that
Labx and Lxcd. Take v(A) = c↓, v(B) = {y | Lbcy}, and v(C) =
{d′ | ∃y ∈ v(B),Layd′} for some A,B,C ∈ At. Given any y ∈ v(B) and
any d′ ∈ W , if Layd′, then by definition of v(C), d′ ∈ v(C), therefore
a ∈ v(B ⊸L C). By assumption, a ∈ v((A ⊸L B) ⊸L (A ⊸L C)) as
well, which means that, for any b′ ∈ v(A ⊸L B), x′ ∈W , c′ ∈ v(A) and
d′ ∈ W , if Lab′x′, then x′ ∈ v(A ⊸L C), and if Lx′c′d′, then d′ ∈ C.
By the definition of v(B) and assumptions Labx and Lxcd, we have
b ∈ v(A ⊸L B), x ∈ v(A ⊸L C), therefore d ∈ v(C), which means that
there exists y ∈W such that Lbcy and Layd.

130

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

jR : RSLU holds if and only if for any A,B and v, if I ⊆ v(A ⊸R B), then
v(A) ⊆ v(B).

(−→) By RSLU, for all a ∈ v(A), there exists e ∈ I such that Reaa, then we
have a ∈ v(B) because e ∈ v(A ⊸R B).

(←−) Suppose that for any A,B and v, if I ⊆ v(A ⊸R B), then v(A) ⊆ v(B).
Consider any a ∈W . We take v(A) = a↓ and v(B) = {b | ∃e ∈ I,Reab}
for some A,B ∈ At. For any e′ ∈ I, a′ ∈ v(A), and b′ ∈ W , if Re′a′b′,
then because R is upwards closed in its second argument, we have
b′ ∈ v(B), which means e′ ∈ v(A ⊸R B). Therefore I ⊆ v(A ⊸R B).
From the assumption, we can now conclude that v(A) ⊆ v(B). In par-
ticular, a ∈ v(B), which means that there exists e ∈ I such that Reaa.

LR : RSA holds if and only if for any A,B,C,D and v, if v(A) ⊆
v(B ⊸R (C ⊸R D)) then there exists X such that v(A) ⊆ v(X ⊸R D)
and v(B) ⊆ v(C ⊸R X).

(−→) We expand the assumption.
For any A,B,C,D, a ∈ v(A), and b, z ∈ W , if b ∈ v(B) and Rabz then
z ∈ v(C ⊸R D) and for all z ∈ v(C ⊸R D), for all c, d ∈W if c ∈ v(C)
and Rzcd, then d ∈ v(D). In other words, for any z, d ∈W , if there are
a ∈ v(A), b ∈ v(B), c ∈ v(C), Rabz, and Rzcd, then d ∈ v(D).
We take E = B⊗RC and show it satisfies the two following statements:
– For any a ∈ v(A), we show that a ∈ v((B ⊗R C) ⊸R D). For any

x ∈ v(B ⊗R C) and d ∈ W , if Raxd, then by definition of ⊗R, we
have Rbcx, where b ∈ v(B) and c ∈ v(C). By RSA, there exists
z ∈ W such that Rabz, and Rzcd. By the expanded assumption,
d ∈ v(D). Therefore a ∈ v((B ⊗R C) ⊸R D).

– For any b ∈ v(B), c ∈ v(C), and x ∈ W , suppose Rbcx, then
x ∈ v(B⊗RC) by definition of⊗R. Therefore b ∈ v(C ⊸R (B⊗RC)).

(←−) Assume that, for any A,B,C,D and v, if v(A) ⊆ v(B ⊸R (C ⊸R D)),
then there exists X such that v(A) ⊆ v(X ⊸R D) and v(B) ⊆
v(C ⊸R X). Suppose that we have a, b, c, d, x ∈ W such that Raxd
and Rbcx, then we take v(A) = a↓, v(B) = b↓, v(C) = c↓, and v(D) =
{d′ | ∃y,Raby&Rycd′} for some A,B,C,D ∈ At. For any a′ ∈ v(A),
given any b′ ∈ v(B), x′ ∈ W , c′ ∈ v(C), d′ ∈ W such that Ra′b′x′ and
Rx′c′d′. Because R is upwards closed in its first and second arguments,
by the definition of v(D), we have d′ ∈ v(D), which means v(A) ⊆
v(B ⊸R (C ⊸R D)). By the assumption, there exists X such that
(1) v(A) ⊆ v(X ⊸R D), which means that for any a′ ∈ v(A), given any

x′ ∈ X, d′ ∈W , if Ra′x′d′, then d′ ∈ v(D), and
(2) v(B) ⊆ v(C ⊸R X), which means that for any b′ ∈ v(B), given any

c′ ∈ v(C) and x′ ∈W , if Rb′c′x′, then x′ ∈ v(X).
By Rbcx, and (2), we know that x ∈ v(X). By Raxd, and (1), we know
that d ∈ v(D), which means that there exists y ∈ W such that Raby
and Rycd.

The other cases are similar to the arguments above.

131

6.3. RELATIONAL SEMANTICS OF SkNMBiCA

A frame ⟨W,≤, I,L⟩ is left (right) skew associative if L satisfies LSA (RSA).
For other conditions, the naming is similar. If ⟨W,≤, I,L⟩ satisfies LSA, LSLU,
and LSRU (respectively RSA, RSLU, RSRU), then it is a left (respectively right)
skew frame.

We can think of a SkNMBiCA frame ⟨W,≤, I,L,R⟩ as a combination of two ternary
frames ⟨W,≤, I,L⟩ (left skew frame) and ⟨W,≤, I,R⟩ (right skew frame) sharing the
same set of possible worlds, where the ternary relations are interdefinable by LR-
reverse. Whenever LR-reverse holds, then ⟨W,≤, I,L⟩ is left skew if and only if
⟨W,≤, I,R⟩ is right skew. In fact, we have:

⟨W,≤, I,L⟩ left skew associative ←→ ⟨W,≤, I,R⟩ right skew associative
⟨W,≤, I,L⟩ left skew left unital ←→ ⟨W,≤, I,R⟩ right skew right unital
⟨W,≤, I,L⟩ left skew right unital ←→ ⟨W,≤, I,R⟩ right skew left unital

If we state the structural laws semantically rather than syntactically, as in the
sequent calculus SkNMBiCA, we can reformulate Theorem 6.3.7 without referring
to sequents and valuations. For example, we can define ⊗L on downwards closed
sets of worlds as A ⊗L B = {c : ∃a ∈ A & b ∈ B & Labc} and express α as
(A⊗L B)⊗L C ⊆ A⊗L (B ⊗L C). It is the case that α holds in a frame if and only
if it satisfies LSA.

We construct a thin SkBiC from the frame ⟨W,≤, I,L,R⟩ and provide algebraic
proofs for the main theorems in [64]. The objects in the category are downwards
closed subsets of W and for A,B, we have a map A→ B if and only if A ⊆ B.

Corollary 6.3.8. The category (P↓(W),⊆) generated from any SkNMBiCA frame
is a thin SkBiC.

A frame ⟨W,≤, I,L⟩ is associative normal if it satisfies LSA and RSA simul-
taneously, and left (right) unital normal if LSLU and RSLU (LSRU and RSRU)
are satisfied. Analogously, we define normality conditions on skew monoidal closed
categories.

Definition 6.3.9. A left skew monoidal closed category is

– associative normal if α is a natural isomorphism;

– left unital normal if λ is a natural isomorphism;

– right unital normal if ρ is a natural isomorphism.

Each normality condition can be expressed equivalently using j, i, and L. The
normality conditions for right skew monoidal closed categories follow the same
pattern, but with αR, λR, and ρR instead of α, λ, and ρ.

By Theorem 6.3.7, we have a thin version of the main results in [64].

Corollary 6.3.10. Given any frame, for the category (P↓(W),⊆) generated from
the frame we have:

(I,⊗L) left skew monoidal ←→ (I,⊸L) left skew closed
(I,⊗R) right skew monoidal ←→ (I,⊸R) right skew closed

132

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

Moreover, if the frame satisfies LR-reverse then:

(I,⊗L) left skew monoidal ←→ (I,⊗R) right skew monoidal
(I,⊸L) left skew closed ←→ (I,⊸R) right skew closed
(I,⊗L) associative normal ←→ (I,⊗R) associative normal
(I,⊗L) left unital normal ←→ (I,⊗R) right unital normal
(I,⊗L) right unital normal ←→ (I,⊗R) left unital normal
(I,⊸L) associative normal ←→ (I,⊸R) associative normal
(I,⊸L) left unital normal ←→ (I,⊸R) right unital normal
(I,⊸L) right unital normal ←→ (I,⊸R) left unital normal

6.4 SkNMBiCA with Symmetry
An exchange rule can be added to both associative and non-associative Lambek
calculus to allow permutation of formulae in context [52]. It is well-known that
two implications ⧹ and ⧸ collapse into one in commutative Lambek calculus, i.e.
for any formulae A and B, A⧹B is logically equivalent to B ⧸A. In particular,
consider an axiomatic presentation of non-associative Lambek calculus (1.3) with
exchange ex : A ⊗ B ⊢A B ⊗ A, both A⧹B ⊢A B ⧸A and B ⧸A ⊢A A⧹B are
provable.

(A⧹B)⊗A ⊢A A⊗ (A⧹B)
ex A⧹B ⊢A A⧹B

id

A⊗ (A⧹B) ⊢A B
⧹−1

RES

(A⧹B)⊗A ⊢A B
comp

A⧹B ⊢A B ⧸A
⧸RES

A⊗ (B ⧸A) ⊢A (B ⧸A)⊗A
ex

(B ⧸A) ⊢A B ⧸A
id

(B ⧸A)⊗A ⊢A B
⧸−1

RES

A⊗ (B ⧸A) ⊢A B
comp

B ⧸A ⊢A A⧹B
⧹RES

This leads to a natural question: can (and if so, how) SkNMILLA be extended with
exchange? An immediate idea is to add the the following axiom to SkNMILLA:

A⊗B ⊢A B ⊗A
ex

Following this axiom, we can define a derivable rule exr that swaps any two adjacent
formulae in the antecedent. This rule is defined through combinations of the axioms
ex and id and the rules comp and ⊗. For example, given a derivation f : (A⊗B)⊗
C ⊢A D and the goal sequent (B ⊗A)⊗ C ⊢A D, we can use the derivable rule:

f
(A⊗B)⊗ C ⊢A D

(B ⊗A)⊗ C ⊢A D
exr

=
B ⊗A ⊢A A⊗B

ex
C ⊢A C

id

(B ⊗A)⊗ C ⊢A (A⊗B)⊗ C
⊗ f

(A⊗B)⊗ C ⊢A D

(B ⊗A)⊗ C ⊢A D
comp

(6.1)

133

6.4. SkNMBiCA WITH SYMMETRY

However, as observed by Bourke and Lack [14], the axiom ex makes the calculus
fully normal, i.e. λ−1, ρ−1, and α−1 are provable.

λ−1 =
A⊗ I ⊢A I⊗A

ex I⊗A ⊢A A
λ

A⊗ I ⊢A A
comp

ρ−1 =
A ⊢A A⊗ I

ρ
A⊗ I ⊢A I⊗A

ex

A ⊢A I⊗A
comp

α−1 = (C ⊗B)⊗A ⊢A C ⊗ (B ⊗A)
α

(A⊗B)⊗ C ⊢A (A⊗B)⊗ C
id

(B ⊗A)⊗ C ⊢A (A⊗B)⊗ C
exr

C ⊗ (B ⊗A) ⊢A (A⊗B)⊗ C
exr

(C ⊗B)⊗A ⊢A (A⊗B)⊗ C
comp

(B ⊗ C)⊗A ⊢A (A⊗B)⊗ C
exr

A⊗ (B ⊗ C) ⊢A (A⊗B)⊗ C
exr

Therefore, we follow the design of axiomatic calculus (called Hilbert-style calcu-
lus in the original papers) in Veltri’s studies [69, 70], where symmetry is represented
by the following axioms (notations are modified to fit our discussion):

(A⊗B)⊗ C ⊢A (A⊗ C)⊗B
s

B ⊸ (A ⊸ C) ⊢A A ⊸ (B ⊸ C) s′

The axiom s is introduced for the axiomatic calculus of symmetric left skew monoidal
categories where ⊸ is not present, while s′ is the dual case for symmetric left skew
closed categories.

These axioms only take care of symmetric left skew categories. In the remainder
of the section, we first extend the proof-theoretical analysis to symmetric right
skew and symmetric skew monoidal bi-closed categories. We will first introduce
the definition of symmetric right skew monoidal closed categories, then prove the
equivalence of the axioms of symmetry proof-theoretically. After that we introduce
the commutative extension of SkNMBiCA (SkNMBiCT), called SkMBiCA (SkMBiCT) and
prove the equivalence of the axiomatic and tree calculi. Finally, we prove that
SkMBiCA is sound and complete with respect to the preordered ternary relation
model and extend Theorem 6.3.7 with the structural laws of symmetry.

Definition 6.4.1. A symmetric right skew monoidal closed category C is a right
skew monoidal closed category equipped with a natural isomorphism sRA,B,C :
A ⊗ (B ⊗ C) → B ⊗ (A ⊗ C) satisfying the equations in Figure 6.1, which are
similar to the ones in Figure 4.3 with modified bracketing.

Similar to what we saw in Remark 4.2.3, there exists a bijective correspon-
dence with natural isomorphisms s′R :

∫ F C(B,F ⊸ D) × C(A,C ⊸ F) →∫ E C(A,E ⊸ D)× C(B,C ⊸ E) in a symmetric right skew non-monoidal closed
category. We prove the bijective correspondence between s and sR and s′ and s′R

proof-theoretically. For a smoother discussion, we define derivable rules sr, s′r, and
sRr similarly to the definition of the rule exr in (6.1).

134

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

A⊗ (B ⊗ (C ⊗D)) B ⊗ (A⊗ (C ⊗D)) B ⊗ (C ⊗ (A⊗D))

A⊗ (C ⊗ (B ⊗D)) C ⊗ (A⊗ (B ⊗D)) C ⊗ (B ⊗ (A⊗D))

sR
A,B,C⊗D

A⊗sR
B,C,D

B⊗sR
A,C,D

sR
B,C,A⊗D

sR
A,C,B⊗D

C⊗sR
A,B,D

A⊗ (B ⊗ (C ⊗D)) A⊗ (C ⊗ (B ⊗D)) C ⊗ (A⊗ (B ⊗D))

(A⊗B)⊗ (C ⊗D) C ⊗ ((A⊗B)⊗D)

A⊗sR
A,C,B⊗D

αR
A,B,C⊗D

sR
A,C,B⊗D

C⊗αR
A,B,D

sR
A⊗B,C,D

A⊗ (B ⊗ (C ⊗D)) B ⊗ (A⊗ (C ⊗D)) B ⊗ (C ⊗ (A⊗D))

A⊗ ((B ⊗ C)⊗D) (B ⊗ C)⊗ (A⊗D)

sR
A,B,C⊗D

A⊗αR
B,C,D

B⊗sR
A,C,D

αR
B,C,A⊗D

sR
A,B⊗C,D

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

B ⊗ (A⊗ (C ⊗D)) B ⊗ ((A⊗ C)⊗D) (B ⊗ (A⊗ C))⊗D

A⊗αR
B,C,D

sA⊗B,C,D

αR
A,B⊗C,D

sR
A,B,C⊗D

B⊗αR
A,C,D

αR
B,A⊗C,D

B ⊗ (A⊗ C)

A⊗ (B ⊗ C) A⊗ (B ⊗ C)

sR
B,A,C

sR
A,B,C

Figure 6.1: Equations of morphisms in symmetric right skew monoidal closed category.

135

6.4. SkNMBiCA WITH SYMMETRY

Theorem 6.4.2. In an extension of SkNMILLA, if

s : (A⊗B)⊗ C ⊢A (A⊗ C)⊗B

is derivable in the calculus, then s′ is derivable and vice versa.
Proof. From s to s′.

B ⊸ (A ⊸ C) ⊢A B ⊸ (A ⊸ C)
ax

B ⊸ (A ⊸ C)⊗B ⊢A A ⊸ C
π−1

((B ⊸ (A ⊸ C))⊗B)⊗A ⊢A C
π−1

((B ⊸ (A ⊸ C))⊗A)⊗B ⊢A C
sr

(B ⊸ (A ⊸ C))⊗A ⊢A B ⊸ C
π

B ⊸ (A ⊸ C) ⊢A A ⊸ (B ⊸ C)
π

From s′ to s.
(A⊗ C)⊗B ⊢A (A⊗ C)⊗B

ax

A⊗ C ⊢A B ⊸ ((A⊗ C)⊗B)
π

A ⊢A C ⊸ (B ⊸ ((A⊗ C)⊗B))
π

A ⊢A B ⊸ (C ⊸ ((A⊗ C)⊗B)) s′r

A⊗B ⊢A C ⊸ ((A⊗ C)⊗B) π−1

(A⊗B)⊗ C ⊢A (A⊗ C)⊗B
π−1

Theorem 6.4.3. In an extension of SkNMILLA, if

sR : A⊗ (B ⊗ C) ⊢A B ⊗ (A⊗ C)

is derivable, then the statement
s′R : If there exists a formula F such that two sequents B ⊢A F ⊸ D

and A ⊢A C ⊸ F are derivable, then there exists a formula E such
that two sequents A ⊢A E ⊸ D and B ⊢A C ⊸ E are derivable.

holds.
Conversely, if s′R holds in the calculus, then sR is derivable.
Proof. From sR to s′R. Suppose that there exists a formula F such that two se-
quents B ⊢A F ⊸ D and A ⊢A C ⊸ F derivable, then we take E = B ⊗ C and
construct desired derivations of A ⊢A (B ⊗ C) ⊸ D and B ⊢A C ⊸ (B ⊗ C) as
follows:

B ⊢A B
id

Assumption
A ⊢A C ⊸ F

A⊗ C ⊢A F π−1

B ⊗ (A⊗ C) ⊢A B ⊗ F
⊗

Assumption
B ⊢A F ⊸ D

B ⊗ F ⊢A D π−1

B ⊗ (A⊗ C) ⊢A D
comp

A⊗ (B ⊗ C) ⊢A D
sRr

A ⊢A (B ⊗ C) ⊸ D
π

B ⊗ C ⊢A B ⊗ C
id

B ⊢A C ⊸ (B ⊗ C)
π

136

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

From s′R to sR. To prove the sequent A⊗(B⊗C) ⊢A B⊗(A⊗C), we start from the
following two axiom sequents id : B⊗(A⊗C) ⊢A B⊗(A⊗C) and id : A⊗C ⊢A A⊗C.
By applying π on both sequents, we obtain π id : B ⊢A (A⊗ C) ⊸ (B ⊗ (A⊗ C))
and π id : A ⊢A C ⊸ (A⊗ C). We take A⊗ C = F to apply s′R, then there exists
a formula E such that two sequents A ⊢A E ⊸ (B ⊗ (A ⊗ C)) and B ⊢A C ⊸ E
hold. The desired derivation is constructed as follows:

A ⊢A A
id

By s′R

B ⊢A C ⊸ E

B ⊗ C ⊢A E π−1

A⊗ (B ⊗ C) ⊢A A⊗ E
⊗

By s′R

A ⊢A E ⊸ (B ⊗ (A⊗ C))
A⊗ E ⊢A B ⊗ (A⊗ C) π−1

A⊗ (B ⊗ C) ⊢A B ⊗ (A⊗ C)
comp

Definition 6.4.4. A symmetric skew monoidal bi-closed category (SymSkMBiC) is
a skew monoidal bi-closed category with the natural isomorphism s as in Defini-
tion 4.2.1. sR is defined as B ⊗L γ ◦ γ ◦ s ◦ γ−1 ◦A⊗R γ−1, diagrammatically:

A⊗R (B ⊗R C) A⊗R (C ⊗L B) (C ⊗L B)⊗L A

B ⊗R (A⊗R C) B ⊗R (C ⊗L A) (C ⊗L A)⊗L B

A⊗Rγ−1

sR

γ−1

s

B⊗Rγ γ

The axiomatic calculus that is sound and complete with respect to SymSkMBiC is
SkMBiCA which is extended from SkNMBiCA by adding the axiom:

(A⊗L B)⊗L C ⊢A (A⊗L C)⊗L B
s

The axiom sR is defined by transforming the diagram in Definition 6.4.4 into a
proof in SkMBiCA, and then by Theorems 6.4.2 and 6.4.3, s′ and s′R are derivable
in SkMBiCA.

Moreover, we can construct the free SymSkMBiC (FSymSkMBiC(At)) over a set
At by a similar construction of FSkMBiC(At) in Section 6.2.1.

On the other hand, the commutative extension of SkNMBiCT (SkMBiCT) is defined
by adding the following two rules:

T [(U0, U1), U2] ⊢T C

T [(U0, U2), U1] ⊢T C
exL

T [U0; (U1;U2)] ⊢T C

T [U1; (U0;U2)] ⊢T C
exR

A result similar to Theorems 6.4.2 and 6.4.3 can also be proved in SkMBiCT. We
adopt a symmetric presentation to emphasize that SkMBiCT should be viewed as a
combination of two distinct calculi, connected through the rule ⊗comm.

Moreover, SkMBiCA and SkMBiCT are equivalent.

137

6.4. SkNMBiCA WITH SYMMETRY

Theorem 6.4.5. SkMBiCA is equivalent to SkMBiCT, meaning that the following two
statements are true:

• For any derivation f : A ⊢A C, there exists a derivation A2Tf : A ⊢T C.

• For any derivation f : T ⊢T C, there exists a derivation T2Af : T# ⊢A C,
where T# transforms a tree into a formula by replacing commas with ⊗L and
semicolons with ⊗R, and − with I, respectively.

Proof. We extend the proof of Theorem 6.2.6 by examining the additional cases of
s (for A2T) and exL and exR (for T2A).
Case f = s

(A⊗L B)⊗L C ⊢A (A⊗L C)⊗L B
s

7→

A ⊢T A
ax

C ⊢T C
ax

A,C ⊢T A⊗L C
⊗LR

B ⊢T B
ax

(A,C), B ⊢T (A⊗L C)⊗L B
⊗LR

(A,B), C ⊢T (A⊗L C)⊗L B
exL

(A⊗L B), C ⊢T (A⊗L C)⊗L B
⊗LL

(A⊗L B)⊗L C ⊢T (A⊗L C)⊗L B
⊗LL

Case f = exL f ′

f ′

T [(U0, U1), U2] ⊢T C

T [(U0, U2), U1] ⊢T C
exL

7→

(U#
0 ⊗L U#

2)⊗L U#
1 ⊢T (U#

0 ⊗L U#
1)⊗L U#

2

s

T [(U#
0 ⊗L U#

2)⊗L U#
1]# ⊢T T [(U#

0 ⊗L U#
1)⊗L U#

2]#
T [s]#

T [(U0, U2), U1]# ⊢A T [(U0, U1), U2]#
T2Af ′

T [(U0, U1), U2]# ⊢T C

T [(U0, U2), U1]# ⊢T C
comp

Case f = exR f ′

f ′

T [U0; (U1;U2)] ⊢T C

T [U1; (U0;U2)] ⊢T C
exR

7→

U#
1 (⊗RU#

0 ⊗R U#
2) ⊢T U#

0 ⊗R (U#
1 ⊗R U#

2)
sR

T [U#
1 ⊗R (U#

0 ⊗R U#
2)]# ⊢T T [U#

0 ⊗R (U#
1 ⊗R U#

2)]#
T [sR]#

T [U1; (U0;U2)]# ⊢A T [U0; (U1;U2)]#
T2Af ′

T [U0; (U1;U2)]# ⊢T C

T [U1; (U0;U2)]# ⊢T C
comp

Recall that in commutative Lambek calculus (both associative and
non-associative), the two implications collapse into one. However, this is not the

138

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

case in either SkMBiCA or SkMBiCT. Specifically, for any formulae A and B, neither
of the sequents A ⊸L B ⊢i A ⊸R B nor A ⊸R B ⊢i A ⊸L B (i ∈ {A,T})
is provable. We demonstrate this non-provability by taking A and B as atomic
formulae.

??
(X ⊸L Y)⊗R X ⊢A Y

X ⊸L Y ⊢A X ⊸R Y
πR

??
(X ⊸R Y)⊗L X ⊢A Y

X ⊸R Y ⊢A X ⊸L Y
π

??
(X ⊸L Y);X ⊢T Y

(X ⊸L Y)⊗R X ⊢T Y
⊗RL

X ⊸L Y ⊢T X ⊸R Y
⊸RR

??
(X ⊸R Y), X ⊢T Y

(X ⊸R Y)⊗L X ⊢T Y
⊗LL

X ⊸R Y ⊢T X ⊸L Y
⊸RR

Lastly, we can analyze skew symmetry through the lens of ternary relational seman-
tics and obtain a sound and complete model of SkMBiCA. Furthermore, we obtain
the correspondence theorem of ternary frame conditions and validity of structural
laws.

Definition 6.4.6. We list the frame conditions properties of skew commutativity:

Left Skew Commutativity (LSC) ∀a, b, c, d, x ∈W,Labx & Lxcd
−→ ∃y ∈W s.t. Lacy & Lybd.

Right Skew Commutativity (RSC) ∀a, b, c, d, x ∈W,Lbcx & Laxd
−→ ∃y ∈W s.t. Lacy & Lbyd.

A SkMBiCA frame is a SkNMBiCA frame where L and R additionally satisfy LSC
and RSC, respectively. A SkMBiCA model is a SkMBiCA frame with a valuation
function.

Theorem 6.4.7 (Soundness). If a sequent A ⊢A B is provable in SkMBiCA then it
is valid in any SkMBiCA model.

Proof. The proof is extended from the proof of Theorem 6.3.3 by examining one
additional case, f = s : (A⊗L B)⊗L C ⊢A (A⊗L C)⊗L B. For any SkMBiCA model
⟨W, I,L,R, v⟩ and any d ∈ v((A⊗LB)⊗LC), there exist x ∈ v(A⊗LB) and c ∈ v(C)
such that Lxcd. Moreover, there exist a ∈ v(A) and b ∈ v(B) such that Labx. By
LSC, we know that there exist y ∈W such that Lacy and Lybd, which means that
d ∈ v((A⊗L C)⊗L B).

Definition 6.4.8. The canonical model of SkMBiCA is ⟨W,≤, I,L,R, v⟩ where

– W = Fma and A ≤ B if and only if A ⊢A B,

– I = v(I),

– LABC if and only if C ⊢A A⊗L B,

– RABC if and only if C ⊢A A⊗R B, and

– v(A) = {B | B ⊢A A is provable in SkMBiCA}.

Lemma 6.4.9. The canonical model is a SkMBiCA model.

139

6.4. SkNMBiCA WITH SYMMETRY

Proof. The proof proceeds similarly to the proof of Lemma 6.3.5 but with one
additional case showing that LSC is satisfied.
Given five formulae A,B,C,C ′, D and two derivations f : C ′ ⊢A A ⊗L B and g :
D ⊢A C ′⊗LC, then we take A⊗LC as the desired formula. The first desired sequent
A⊗L C ⊢A A⊗L C is derivable and the other desired sequent D ⊢A (A⊗L C)⊗L B
is constructed as follows:

g
D ⊢A C ′ ⊗L C

f
C ′ ⊢A A⊗L B C ⊢A C

ax

C ′ ⊗L C ⊢A (A⊗L B)⊗L C
⊗L

(A⊗L C)⊗L B ⊢A (A⊗L B)⊗L C
s

C ′ ⊗L C ⊢A (A⊗L C)⊗L B
comp

D ⊢A (A⊗L C)⊗L B
comp

Following the same argument in the proof of Theorem 6.3.6, we have:

Theorem 6.4.10 (Completeness). If A ⊢A B is valid in any SkMBiCA model, then
it is provable in SkMBiCA.

Finally, we extend the correspondence between frame conditions and validity of
structural laws to the symmetric case.

Theorem 6.4.11. For any ternary frame ⟨W,≤, I,L⟩,

s valid ←→ LSC holds ←→ s′ valid

sR valid ←→ RSC holds ←→ s′R valid

Proof. s : LSC holds if and only if s is valid.

(−→) This is similar to the case of s in the proof of Theorem 6.4.7.
(←−) Suppose that s is valid, i.e. for any A,B,C, v((A ⊗L B) ⊗L C) ⊆

v((A ⊗L C) ⊗L B). Consider any a, b, c, d, x ∈ W such that Labx and
Lxcd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for some A,B,C ∈ At,
then we know that x ∈ v(A ⊗L B) and d ∈ v((A ⊗L B) ⊗L C). By the
assumption, d ∈ v((A⊗LC)⊗LB) as well, which means that there exist
a′, b′, y, c′ ∈W such that La′c′y and Lyb′d. Because L is upward closed
in its first and second argument, we have Lacy and Lybd as desired.

s′ : LSC holds if and only if s′ is valid.

(−→) Suppose that LSC holds, we show that for any A,B,C,
v(B ⊸L (A ⊸L C)) ⊆ v(A ⊸L (B ⊸L C)). Consider any d ∈ v(B ⊸L

(A ⊸L C)). Assume that there exists a ∈ v(A), b ∈ v(B), and x, c ∈W
such that Ldax and Lxbc. Our goal is to prove that c ∈ v(C). By LSC,
there exists y ∈ W such that Ldby and Lyac, then by the assumption
d ∈ v(B ⊸L (A ⊸L C)), we know that c ∈ v(C).

(←−) Suppose that s′ is valid, i.e. for any A,B,C, v(B ⊸L (A ⊸L C)) ⊆
v(A ⊸L (B ⊸L C)). Consider any a, b, c, d, x ∈ W such that Labx and
Lxcd. Take v(A) = b↓, v(B) = c↓, and v(C) = {d′ | ∃y.Lacy&Lybd}
for some A,B,C ∈ At. Consider any c′ ∈ v(B), b′ ∈ v(A), y′, d′ ∈ W ,

140

CHAPTER 6. SEMI-SUBSTRUCTURAL LOGICS BEYOND STOUP

Lac′y′ and Ly′b′d′. Because L is upwards closed in its second argument,
we have Lacy′ and Ly′bd′, which means that y′ ∈ v(A ⊸L C) and
d′ ∈ v(C), therefore a ∈ v(B ⊸L (A ⊸L C)). By validity of s′, Labx,
and Lxcd, we know that d ∈ v(C), i.e. there exists y ∈ W such that
Lacy and Lybd.

sR : RSC holds if and only if sR is valid.

(−→) Suppose that RSC holds, we show that for any A,B,C, v(A ⊗R (B ⊗R

C)) ⊆ v(B ⊗R (A ⊗R C)). Consider any d ∈ v(A ⊗R (B ⊗R C)). By
definition, there exists a ∈ v(A), b ∈ v(B), c ∈ v(C), x ∈ v(B ⊗R C)
such that Lbcx and Laxd. By RSC, there exists y ∈ W such that Lacy
and Lbyd, then by definition, we know that y ∈ v(A⊗RC) and therefore
d ∈ v(B ⊗R (A⊗R C)).

(←−) Suppose that sR is valid. Consider any a, b, c, d, x ∈ W such that Lbcx
and Laxd. We take v(A) = a↓, v(B) = b↓, v(C) = c↓ for some A,B,C ∈
At, then we know that x ∈ v(B ⊗R C) and d ∈ v(A ⊗R (B ⊗R C)). By
the assumption, d ∈ v(B ⊗R (A ⊗R C)) as well, which means that that
there exist a′, b′, y, c′ ∈ W such that La′c′y and Lb′yd. Because L is
upwards closed in its first and second argument, we have Lacy and Lbyd
as desired.

s′R : RSC holds if and only if s′R is valid.

(−→) Suppose that RSC holds, we show that for any formulae A,B,C, D,
if there exists a formula F such that v(B) ⊆ v(F ⊸R D) and v(A) ⊆
v(C ⊸R F) then there exists a formula E such that v(A) ⊆ v(E ⊸R D)
and v(B) ⊆ v(C ⊸R E). Take E = B ⊗R C, then clearly v(B) ⊆
v(C ⊸R (B ⊗R C)). For any a ∈ v(A), if there exist x ∈ v(B ⊸R C)
and d ∈ W such that Laxd, then by definition, there exist b ∈ v(B)
and c ∈ v(C) such that Lbcx. By RSC, there exists y ∈ W such that
Lacy and Lbyd, then by v(B) ⊆ v(F ⊸R D), d ∈ v(D), therefore
a ∈ v(E ⊸R D).

(←−) Suppose that s′R is valid. Consider any a, b, c, d, x ∈ W such that Lbcx
and Laxd. Take v(A) = a↓, v(B) = b↓, v(C) = c↓, and v(D) = {d′ |
∃y.Lacy&Lbyd} for some A,B,C,D ∈ At. Clearly, v(A) is a subset of
v(C ⊸R (A ⊗R C)). For any b′ ∈ v(B), if there exist y′ ∈ v(A ⊗R C)
and d′ ∈ W and Lb′y′d′, then by definition, there exist a′ ∈ v(A) and
c′ ∈ v(C) such that La′c′y′. Because L is upwards closed in its first
and second argument, we have Lacy′ and Lby′d′, which means that
d′ ∈ v(D) and therefore v(B) ∈ v((A⊗R C) ⊸R D). Take F = A⊗R C,
then by s′R, there exists a formula E such that v(A) ⊆ v(E ⊸R D) and
v(B) ⊆ v(C ⊸R E). By b ∈ v(C ⊸R E) and Lbcx, we have x ∈ v(E).
By a ∈ v(E ⊸R D) and Laxd, we have d ∈ v(D), which means that
there exists y ∈W such that Lacy and Lbyd, as desired.

141

Chapter 7

Conclusion

This thesis investigated semi-substructural logics, which arise naturally from the
study of skew monoidal categories, following the project initiated by Uustalu,Veltri,
and Zeilberger [67]. We extended their analysis to various variants of skew monoidal
categories, solving their coherence problems following the approach in [67], i.e.
through the development of appropriate focused proof systems. These investiga-
tions led us to identify a broader class of logics that we term semi-substructural
logics.

This perspective is particularly evidenced by our results on Craig interpola-
tion for SkNMILL. We show that while Craig interpolation holds for this logic, it
cannot be established through traditional Maehara’s method. Instead, we devel-
oped a modified version of Maehara’s method that simultaneously establishes two
forms of interpolation: stoup Maehara interpolation (sMIP) and context Maehara
multi-interpolation (cMMIP). Furthermore, similar to Čubrić [68] and Saurin’s [58]
work on proof-relevant interpolation for intuitionistic and linear logic, we prove
that our interpolation procedures are right inverses of the admissible cut rules.
This demonstrates that semi-substructural logics can exhibit rich proof-theoretic
properties that deserve study in their own right.

The development of relational semantics for semi-substructural logics and the
establishment of correspondence theorems further reinforces this view. These re-
sults show that semi-substructural logics have well-behaved semantic interpreta-
tions and satisfy important meta-logical properties. The correspondence theorems
in particular demonstrate that the structural rules of these logics correspond nat-
urally to frame conditions in the relational semantics, much like in modal and
substructural logics.

Taken together, these results establish semi-substructural logics as a new inter-
esting class of logical systems. While their origin in the study of skew categorical
structures provided the initial motivation, our work shows that they possess rich
logical properties that make them interesting objects of study in their own right.
The proof theory, model theory, and categorical semantics of these logics form a co-
herent picture that suggests their fundamental importance in logic and theoretical
computer science.

Looking forward, this work opens several promising directions for future re-
search.

1. One direction is to investigate whether tag annotations can scale to non-skew

143

classical and intuitionistic linear logic. The starting point is the multiplica-
tive additive linear logic (MALL). The non-skew setting presents additional
complexity compared to the skew case, since multiple formulae can be under
focus simultaneously during the synchronous phase (our focusing phase). Our
calculus aims to provide an alternative presentation of the maximally multi-
focused proofs described by Chaudhuri et al. [19], where normal forms are
intrinsic to the system itself rather than identified through external criteria.

2. Another direction is to understand the universal property of interpolant
triples (D, g, h) produced by Maehara’s method in (semi-)substructural log-
ics. This involves exploring different notions of equality between interpolants
from a category-theoretic perspective, from strict equality and identical deriva-
tions, to more relaxed notions based on isomorphisms or triples being de-
termined uniquely up to zigzag. We aim to characterize interpolants and
derivations through universal properties and determine whether Maehara’s
interpolation procedures are not just right but also left inverses of cut rules.

3. Beyond the category-theoretical aspect, we will investigate extending these
results to other semi-substructural logics, particularly the fully additive cal-
culi where uniform interpolation property [3] may arise.

4. A deeper exploration of symmetric right skew closed categories remains as
future work, particularly focusing on their coherence conditions without rely-
ing on monoidal structures. This investigation builds upon the foundational
work of Day and Laplaza [21], who explored a hierarchy of closed categories,
from symmetric monoidal closed through symmetric closed and closed, to
non-associative closed categories. Their research provided concrete examples
where the Day convolution version of structural laws fails to be bijective. This
approach will extend the framework by studying symmetric skew closed cat-
egories. Unlike symmetric closed categories which are inherently associative,
we have seen that symmetric skew closed categories are not automatically as-
sociative, providing an opportunity for more fine-grained work on this topic.

5. In Section 6.4, we have established results for the special case of poset cat-
egories, where there is at most one morphism between each pair of objects.
The natural next step is to extend these results to non-poset categories,
which requires finding appropriate coherence conditions for symmetric right
skew closed categories. This extension will extend the Eilenberg-Kelly theo-
rem [25, 64] to symmetric skew monoidal closed categories.

144

Bibliography

[1] V. M. Abrusci. Non-commutative intuitionistic linear logic. Mathematical
Logic Quarterly, 36(4):297–318, 1990.

[2] V. M. Abrusci. Phase semantics and sequent calculus for pure noncommutative
classical linear propositional logic. Journal of Symbolic Logic, 56(4):1403–1451,
1991.

[3] M. Alizadeh, F. Derakhshan, and H. Ono. Uniform interpolation in substruc-
tural logics. The Review of Symbolic Logic, 7(3):455–483, 2014.

[4] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors.
Logical Methods in Computer Science, 11(1), 2015.

[5] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):297–347, 1992.

[6] H.-J. Baues, M. Jibladze, and A. Tonks. Cohomology of monoids in monoidal
categories. Contemporary Mathematics, 202:137–166, 1997.

[7] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models
(extended abstract). In L. Pacholski and J. Tiuryn, editors, Selected Papers
from the 8th International Workshop on Computer Science Logic 1994, volume
933 of Lecture Notes in Computer Science, page 121–135. Springer, 1995.

[8] P. N. Benton, G. M. Bierman, V. d. Paiva, and M. Hyland. Linear λ-calculus
and categorial models revisited. In E. Börger, G. Jäger, H. K. Büning, S. Mar-
tini, and M. M. Richter, editors, Selected Papers from the 6th International
Workshop on Computer Science Logic 1992, volume 702 of Lecture Notes in
Computer Science, page 61–84. Springer, 1993.

[9] E. W. Beth. On Padoa’s method in the theory of definition. Indagationes
Mathematicae (Proceedings), 56:330–339, 1953.

[10] E. Blaisdell, M. Kanovich, S. L. Kuznetsov, E. Pimentel, and A. Scedrov.
Non-associative, non-commutative multi-modal linear logic. In J. Blanchette,
L. Kovács, and D. Pattinson, editors, Proceedings of the 11th International
Joint Conference on Automated Reasoning, IJCAR 2022, volume 13385 of
Lecture Notes in Computer Science, pages 449–467. Springer, 2022.

[11] J. Bourke. Skew structures in 2-category theory and homotopy theory. Journal
of Homotopy and Related Structures, 12(1):31–81, 2017.

145

BIBLIOGRAPHY

[12] J. Bourke and S. Lack. Free skew monoidal categories. Journal of Pure and
Applied Algebra, 222(10):3255–3281, 2018.

[13] J. Bourke and S. Lack. Skew monoidal categories and skew multicategories.
Journal of Algebra, 506:237–266, 2018.

[14] J. Bourke and S. Lack. Braided skew monoidal categories. Theory and Appli-
cations of Categories, 35(2):19–63, 2020.

[15] T. Brock-Nannestad and N. Guenot. Multi-focused cut elimination. Mathe-
matical Structures in Computer Science, 28(5):614–650, 2017.

[16] M. Buckley, R. Garner, S. Lack, and R. Street. The Catalan simplicial set.
Mathematical Proceedings of Cambridge Philosophical Society, 158(2):211–222,
2015.

[17] M. Bulińska. On the complexity of nonassociative Lambek calculus with unit.
Studia Logica, 93(1):1–14, 2009.

[18] K. Chaudhuri, S. Hetzl, and D. Miller. A multi-focused proof system isomor-
phic to expansion proofs. Journal of Logic and Computation, 26(2):577–603,
2014.

[19] K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via multi-
focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong, editors, Proceed-
ings of 5th IFIP International Conference on Theoretical Computer Science,
TCS 2008, volume 273 of International Federation of Information Processing
Series, pages 383–396. Springer, 2008.

[20] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

[21] B. Day and M. Laplaza. On embedding closed categories. Bulletin of the
Australian Mathematical Society, 18(3):357–371, 1978.

[22] V. de Paiva. Categorical semantics of linear logic for all. In L. C. Pereira,
E. H. Haeusler, and V. de Paiva, editors, Advances in Natural Deduction, pages
181–192. Springer, 2014.

[23] W. J. de Schipper. Symmetric closed categories, volume 64 of Mathematical
Centre Tracts. CWI, Amsterdam, 1975.

[24] K. Došen. A brief survey of frames for the Lambek calculus. Mathematical
Logic Quarterly, 38(1):179–187, 1992.

[25] S. Eilenberg and G. M. Kelly. Closed categories. In S. Eilenberg, D. K.
Harrison, S. Mac Lane, and H. Röhrl, editors, Proceedings of Conference on
Categorical Algebra (La Jolla, 1965), pages 421–562. Springer, 1966.

[26] W. Fussner and S. Santschi. Interpolation in linear logic and related systems.
ACM Transactions on Computational Logic, 25(4):1–19, 2024.

[27] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An
Algebraic Glimpse at Substructural Logics, volume 151 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 2007.

146

BIBLIOGRAPHY

[28] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[29] J.-Y. Girard. A new constructive logic: classical logic. Mathematical Structures
in Computer Science, 1(3):255–296, 1991.

[30] J.-Y. Girard. Linear logic: its syntax and semantics. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Note Series, pages 1–42. Cambridge University
Press, 1995.

[31] A. Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 8(1):1, 2007.

[32] A. Guglielmi. Deep inference. In B. Woltzenlogel Paleo and D. Delahaye,
editors, All About Proofs, Proofs for All, volume 55 of Studies in Logic, pages
164–172. College Publications, 2015.

[33] A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calcu-
lus of structures. In L. Fribourg, editor, Proceedings of the 15th International
Workshop on Computer Science Logic 2001, volume 2142 of Lecture Notes in
Computer Science, page 54–68. Springer, 2001.

[34] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. ACM SIGPLAN Notices, 39(1):232–244, 2004.

[35] J. M. Howe. Proof Search Issues in Some Non-Classical Logics. Ph.D. thesis,
University of St. Andrews, 1998.

[36] M. Hyland, I. López Franco, and C. Vasilakopoulou. Hopf measuring
comonoids and enrichment. Proceedings of the London Mathematical Society,
115(5):1118–1148, 2017.

[37] A. Joyal and R. Street. Braided tensor categories. Advances in Mathematics,
102(1):20–78, 1993.

[38] M. Kanazawa. Computing interpolants in implicational logics. Annals of Pure
and Applied Logic, 142(1-3):125–201, 2006.

[39] G. Kelly. On Maclane’s conditions for coherence of natural associativities,
commutativities, etc. Journal of Algebra, 1(4):397–402, 1964.

[40] H. Kihara and H. Ono. Interpolation properties, Beth definability properties
and amalgamation properties for substructural logics. Journal of Logic and
Computation, 20(4):823–875, 2009.

[41] S. Lack and R. Street. Skew monoidales, skew warpings and quantum cate-
gories. Theory and Applications of Categories, 26(15):385–402, 2012.

[42] S. Lack and R. Street. Triangulations, orientals, and skew monoidal categories.
Advances in Mathematics, 258:351–396, 2014.

[43] J. Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65(3):154–170, 1958.

[44] J. Lambek. Deductive systems and categories I: Syntactic calculus and resid-
uated categories. Mathematical Systems Theory, 2(4):287–318, 1968.

147

BIBLIOGRAPHY

[45] J. Lambek. Deductive systems and categories II. standard constructions and
closed categories. In P. J. Hilton, editor, Category Theory, Homology Theory
and Their Applications volmume 1, volume 86 of Lecture Notes in Mathemat-
ics, pages 76–122. Springer, 1969.

[46] S. Mac Lane. Natural associativity and commutativity. Rice University Stud-
ies, 49(4):28–46, 1963.

[47] S. Mac Lane. Categories for the Working Mathematician, volume 5 ofGraduate
Texts in Mathematics. Springer, 2nd edition, 1978.

[48] S. Maehara. Craig’s interpolation theorem. Sugaku, 12(4):235–237, 1961.

[49] P.-A. Melliès. Categorical semantics of linear logic. In P.-L. Curien, H. Her-
belin, J.-L. Krivine, and P.-A. Melliès, editors, Interactive Models of Compu-
tation and Program Behavior, volume 27 of Panoramas et syntheses, pages
15–215. Société Mathématique de France, 2009.

[50] M. Moortgat. Multimodal linguistic inference. Journal of Logic, Language and
Information, 5(3–4):349–385, 1996.

[51] M. Moortgat. The Tamari order for d3 and derivability in semi-associative
Lambek-Grishin calculus. Talk at 16th Workshop on Computational Logic
and Applications, CLA 2020, 2020. Slides available at: http://cla.tcs.uj.
edu.pl/history/2020/pdfs/CLA_slides_Moortgat.pdf.

[52] R. Moot and C. Retoré. The logic of categorial grammars: A deductive account
of natural language syntax and semantics, volume 6850 of Lecture Notes in
Computer Science. Springer, 2012.

[53] H. Ono. Proof-theoretic methods in nonclassical logic –an introduction. In
M. Dezani-Ciancaglini, M. Okada, and M. Takahashi, editors, Theories of
Types and Proofs, pages 207–254. The Mathematical Society of Japan, 1998.

[54] M. Pentus. Product-free Lambek calculus and context-free grammars. Journal
of Symbolic Logic, 62(2):648–660, 1997.

[55] E. Pimentel, V. Nigam, and J. Neto. Multi-focused proofs with different polar-
ity assignments. Electronic Notes in Theoretical Computer Science, 323:163–
179, 2016.

[56] K. Rosenthal. Relational monoids, multirelations, and quantalic recognizers.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 38(2):161–171,
1997.

[57] R. Routley and R. Meyer. The semantics of entailment. In H. Leblanc, editor,
Truth, Syntax and Modality, pages 199–243. Elsevier, 1973.

[58] A. Saurin. Interpolation as cut-introduction: On the computational content of
Craig-Lyndon interpolation. In M. Fernandez, editor, 10th International Con-
ference on Formal Structures for Computation and Deduction (FSCD 2025),
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl Pub-
lishing, to appear. Manuscript available at https://www.irif.fr/_media/
users/saurin/pub/interpolation_as_cut_introduction.pdf.

148

http://cla.tcs.uj.edu.pl/history/2020/pdfs/CLA_slides_Moortgat.pdf
http://cla.tcs.uj.edu.pl/history/2020/pdfs/CLA_slides_Moortgat.pdf
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction.pdf
https://www.irif.fr/_media/users/saurin/pub/interpolation_as_cut_introduction.pdf

BIBLIOGRAPHY

[59] G. Scherer. Multi-focusing on extensional rewriting with sums. In T. Al-
tenkirch, editor, 13th International Conference on Typed Lambda Calculi and
Applications (TLCA 2015), volume 38 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 317–331. Dagstuhl Publishing, 2015.

[60] R. Street. Skew-closed categories. Journal of Pure and Applied Algebra,
217(6):973–988, 2013.

[61] K. Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Math-
ematics, 231(3–4):1694–1730, 2012.

[62] T. Uustalu. Coherence for skew-monoidal categories. In N. Krishnaswami
and P. Levy, editors, Proceedings of 5th Workshop on Mathematically Struc-
tured Functional Programming 2014 (MSFP 2014), volume 153 of Electronic
Proceedings in Theoretical Computer Science, pages 68–77. Open Publishing
Association, 2014.

[63] T. Uustalu, N. Veltri, and C.-S. Wan. Proof theory of skew non-commutative
MILL. In A. Indrzejczak and M. Zawidzki, editors, Proceedings of 10th Inter-
national Conference on Non-classical Logics: Theory and Applications, NCL
2022, volume 358 of Electronic Proceedings in Theoretical Computer Science,
pages 118–135. Open Publishing Association, 2022.

[64] T. Uustalu, N. Veltri, and N. Zeilberger. Eilenberg-Kelly reloaded. volume
352 of Electronic Notes in Theoretical Computer Science, 352:233–256, 2020.

[65] T. Uustalu, N. Veltri, and N. Zeilberger. Deductive systems and coherence for
skew prounital closed categories. In C. Sacerdoti Coen and A. Tiu, editors,
Proceedings of 15th Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, LFMTP 2020, volume 332 of Electronic Proceedings
in Theoretical Computer Science, pages 35–53. Open Publishing Association,
2021.

[66] T. Uustalu, N. Veltri, and N. Zeilberger. Proof theory of partially normal skew
monoidal categories. In D. I. Spivak and J. Vicary, editors, Proceedings of 3rd
Annual International Applied Category Theory Conference 2020, ACT 2020,
volume 333 of Electronic Proceedings in Theoretical Computer Science, pages
230–246. Open Publishing Association, 2021.

[67] T. Uustalu, N. Veltri, and N. Zeilberger. The sequent calculus of skew
monoidal categories. In C. Casadio and P. J. Scott, editors, Joachim Lambek:
The Interplay of Mathematics, Logic, and Linguistics, volume 20 of Outstand-
ing Contributions to Logic, pages 377–406. Springer, 2021.

[68] D. Čubrić. Interpolation property for bicartesian closed categories. Archive
for Mathematical Logic, 33(4):291–319, 1994.

[69] N. Veltri. Coherence via focusing for symmetric skew monoidal categories.
In A. Silva, R. Wassermann, and R. de Queiroz, editors, Proceedings of 27th
International Workshop on Logic, Language, Information, and Computation,
WoLLIC 2021, volume 13028 of Lecture Notes in Computer Science, pages
184–200. Springer, 2021.

149

BIBLIOGRAPHY

[70] N. Veltri. Coherence via focusing for symmetric skew monoidal and symmetric
skew closed categories. Journal of Logic and Computation, to appear.

[71] N. Veltri and C.-S. Wan. Semi-substructural logics with additives. In T. Kut-
sia, D. Ventura, D. Monniaux, and J. F. Morales, editors, Proceedings of 18th
International Workshop on Logical and Semantic Frameworks, with Applica-
tions and 10th Workshop on Horn Clauses for Verification and Synthesis,
LSFA/HCVS 2023, volume 402 of Electronic Proceedings in Theoretical Com-
puter Science, pages 63–80. Open Publishing Association, 2024.

[72] N. Veltri and C.-S. Wan. Craig interpolation for a semi-substructural logic.
Studia Logica, to appear.

[73] C.-S. Wan. Semi-substructural logics à la Lambek. In A. Indrzejczak and
M. Zawidzki, editors, Proceedings of 11th International Conference on Non-
classical Logics: Theory and Applications, NCL 2024, volume 415 of Electronic
Proceedings in Theoretical Computer Science, pages 195–213. Open Publishing
Association, 2024.

[74] N. Zeilberger. A sequent calculus for a semi-associative law. Logical Methods
in Computer Science, 15(1), 2019.

150

Acknowledgements

I sincerely thank my supervisors, Tarmo Uustalu and Niccolò Veltri. They not only
gave me the invaluable opportunity to pursue a PhD in Tallinn but also showed
faith in a novice initially without a computer science background, meticulously
cultivating me to be a qualified researcher. Their enthusiasm, academic integrity,
and curiosity for logic guided me throughout this challenging yet rewarding PhD
career.

Many thanks to my colleagues in the Logic and Semantics group and the Labo-
ratory for Compositional Systems and Methods. The time we shared in discussions
was invaluable.

I would also like to thank everyone who participated in the review process for
this thesis. Thanks to their diligent efforts, numerous typos have been corrected,
and several parts of the thesis have been improved. The thesis is significantly better
as a result of their contributions.

My heartfelt thanks to my parents, Chi-Hsiung and Hui-Chen, for their consis-
tent encouragement.

Finally, special thanks to my wife, Wan-Chen, for her unwavering love and
support.

My research was supported by the ESF funded Estonian IT Academy research
measure (project 2014-2020.4.05.19-0001) and the Estonian Research Council grant
PSG749. My participation in many conferences and workshops was generously
supported by the EU COST Actions CA19135 (CERCIRAS) and CA20111 (Eu-
roProofNet), the student travel awards of the Association for Symbolic Logic, and
the MSCA Action “Philosophical, Logical, and Experimental Routes to Substruc-
turality” (PLEXUS).

151

Abstract

Proof Theory of Semi-Substructural Logics

In this thesis, we investigate the proof theory of semi-substructural logics. These
emerge as the logical counterparts of skew monoidal categories and their variants.
Unlike traditional monoidal categories, skew monoidal categories relax the associa-
tivity and unitality laws from natural isomorphisms to natural transformations with
specific orientations, making these logics intermediate between non-commutative
intuitionistic linear logic or Lambek calculus and their non-associative variants.

We begin with a proof-theoretical analysis of skew monoidal closed categories
via their corresponding logic, skew non-commutative multiplicative intuitionistic
linear logic (SkNMILL) with the sequent calculus with stoup (SkNMILLS). We prove
that SkNMILLS enjoys cut-elimination, Craig interpolation, variations of Maehara
interpolation and proof-relevant interpolation. An interesting problem with vari-
ants of skew monoidal categories is their coherence problem, i.e. can we have an
effective method to determine whether there is a canonical morphism between two
objects and whether there can be at most one, or how to enumerate them or how
to establish equality of two morphisms if there can be multiple morphisms. The
case of skew monoidal categories is more delicate than that of monoidal categories
because the relaxation allows for multiple canonical morphisms for some pairs of
objects. To solve the coherence problem, we develop a focused sequent calculus with
tag annotations that derives just one representative for every equivalence class of
derivations in SkNMILLS.

Subsequently, we extend both SkNMILLS and its focused calculus to several vari-
ants: a commutative extension (SkMILLS) with restricted exchange involving three
objects rather than two, an additive extension (SkNMILLAS) with conjunction and
disjunction, and their combinations, each of which corresponds to a specialization
of skew monoidal categories.

For semi-substructural logics that cannot be characterized well by the stoup
sequent calculus approach, e.g., skew monoidal bi-closed categories, we develop
axiomatic and tree sequent calculi inspired from non-associative Lambek calculus
and prove their equivalence. Additionally, we prove soundness and completeness
with respect to ternary relational semantics for these logics and the correspondence
theorem between structural laws and frame conditions.

These investigations demonstrate, we believe, that semi-substructural logics are
interesting and enjoy rich syntactic and semantic properties, beyond their motiva-
tion as logical counterparts of variants of skew monoidal categories.

Some of the key results, in particular, cut-elimination and normalization for
SkMILLS and SkNMILLAS, were formalized in the Agda proof assistant in the process
of writing this thesis.

153

Kokkuvõte
Pool-allstruktuursete loogikate tõestusteooria

Käesolevas doktoritöös uurime pool-allstruktuursete loogikate tõestusteooriat.
Need loogikasüsteemid on kiivmonoidiliste kategooriate ja nende mitmesuguste va-
riantide loogikalisteks vasteteks. Erinevalt normaalsetest monoidilistest kategoo-
riatest on assotsiatiivsuse ja ühikuseadused kiivmonoidilistes kategooriates loomu-
like isomorfismide asemel spetsiifilise suunaga loomulikud teisendused. Nõnda pai-
gutuvad need loogikad mittekommutatiivse intuitsionistliku loogika ja Lambeki
arvutuse ning nende mitteassotsiatiivsete nõrgenduste vahele.

Me alustame kiivmonoidilistele suletud kategooriatele vastava loogika ehk kii-
va mittekommutatiivse intuitsionistliku lineaarloogika (SkNMILL) eripositsiooniga
sekventsiarvutuse (SkNMILLS) tõestusteoreetilise analüüsiga. Me näitame, arvutusel
SkNMILLS on lõikereegli lubatavuse ja Craigi interpoleeritavuse omadused, nimelt
Maehara interpoleeritavus teatud kujul ja ka tuletusi arvestav interpolatsioon. Hu-
vitavaks küsimuseks kiivmonoidiliste kategooriate variantide puhul on nende kohe-
rentsiprobleem ehk et kas leidub efektiivne meetod määramaks, kas kahe objekti
vahel leidub kanooniline morfism ja kas neid on ülimalt üks või kuidas neid loet-
leda või kuidas teha kindlaks teha kahe morfismi võrdsus, kui neid saab olla mitu.
Kiivmonoidiliste kategooriate juhtum on keerulisem kui monoidiliste kategooriate
oma—kahe objekti vahel võib leiduda mitu kanoonilist morfismi. Koherentsiprob-
leemi lahendamiseks arendame me arvutusest SkNMILLS märgendeid kasutava foku-
seeritud versiooni, milles arvutuse SkNMILLS ekvivalentsed tuletused on esindatud
üheainsa tuletusega.

Edasi käsitleme mitut sekventsiarvutuse SkNMILLS laiendust koos fokuseeritud
versioonidega: kommutatiivset laiendust (SkMILLS), mida iseloomustab piiratud
vahetusreegel, aditiivset laiendust (SkNMILLAS), mis toetab konjunktsiooni ja dis-
junktsiooni konnektiive, ja nende kombinatsiooni. Igaüks neist laiendustest vastab
kiivmonoidiliste kategooriate teatud spetsialisatsioonile.

Poolstruktuursete loogikate jaoks, mida ei saa õigesti kirjeldada eripositsiooni-
ga sekventsiarvutuse abil, nagu nt kiivmonoidiliste bi-suletud kategooriate loogika,
ammutame inspiratsiooni mitteassotsiatiivse Lambeki arvutuse jaoks tehtud töö-
dest. Me esitame nende jaoks aksiomaatilised ja puusekventside arvutused ning
näitame, et nad on ekvivalentsed. Lisaks näitame nende korrektsuse ja täielikku-
se ternaarse relatsioonilise semantika suhtes ning vastavusteoreemi struktuursete
seaduste ja raamitingimuste vahel.

Meie hinnangul näitavad need leiud, et pool-allstruktuursed loogikad on deduk-
tiivsete ja semantiliste omaduste poolest rikkad ning pakuvad loogikasüsteemidena
enamat huvi kui et on kiivmonoidiliste kategooriate variantide loogikalised vasted.

Mitu võtmetulemust, sh lõikereeglite lubatavuse ja tõestuste normaliseeritavuse
arvutuste SkMILLS ja SkNMILLAS juures, formaliseerisime töö käigus tõestusassis-
tendiga Agda.

155

Curriculum Vitae

Personal data

Name Cheng-Syuan Wan
Date and place of birth 6 June 1994, Taoyuan, Taiwan (R.O.C)
Nationality Taiwan (R.O.C)

Contact information

Address Tallinn University of Technology,
Department of Software Science,
Akadeemia tee 21B, 12618 Tallinn, Estonia

Phone +372 5911 1080
E-mail cswan@cs.ioc.ee

Education

2021–. . . Tallinn University of Technology, School of Information Technologies,
PhD studies in information and communication technologies

2017–2020 National Chung Cheng University, College of Humanities,
Philosophy, MA

2012–2016 National Chung Cheng University, College of Humanities,
Philosophy, BA

Language competence

Chinese native
English fluent

Employment

• 2021– . . . Early Stage Researcher at Tallinn University of Technology, De-
partment of Software Science

Defended theses

• 2020, Notes on Curry-Howard-Lambek Correspondence, MA, supervisor Prof.
Ren-June Wang, National Chung Cheng University.

157

Scientific work
Papers

1. T. Uustalu, N. Veltri, and C.-S. Wan. Proof theory of skew non-commutative
MILL. In A. Indrzejczak and M. Zawidzki, editors, Proceedings of 10th Inter-
national Conference on Non-classical Logics: Theory and Applications, NCL
2022, volume 358 of Electronic Proceedings in Theoretical Computer Science,
pages 118–135. Open Publishing Association, 2022

2. N. Veltri and C.-S. Wan. Semi-substructural logics with additives. In T. Kut-
sia, D. Ventura, D. Monniaux, and J. F. Morales, editors, Proceedings of 18th
International Workshop on Logical and Semantic Frameworks, with Appli-
cations and 10th Workshop on Horn Clauses for Verification and Synthesis,
LSFA/HCVS 2023, volume 402 of Electronic Proceedings in Theoretical Com-
puter Science, pages 63–80. Open Publishing Association, 2024

3. C.-S. Wan. Semi-substructural logics à la Lambek. In A. Indrzejczak and
M. Zawidzki, editors, Proceedings of 11th International Conference on Non-
classical Logics: Theory and Applications, NCL 2024, volume 415 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 195–213. Open
Publishing Association, 2024

4. N. Veltri and C.-S. Wan. Craig interpolation for a semi-substructural logic.
Studia Logica, to appear

Conference presentations

• Proof Theory of Semi-Substructural Logics

– Workshop on Proof, Argumentation, Computation, Modalities And Nega-
tion (PACM∧N) 2025, Rome.

• Semi-Substructural Logics à la Lambek

– International conference on Non-classical Logics: Theory and Applica-
tions (NCL) 2024, Łódź.

• Craig Interpolation for Semi-Substructural Logics

– Proof Society International School and Workshop 2024, Birmingham;
– International Workshop on Trends in Linear Logic and Applications

(TLLA) 2024, Tallinn.

• Semi-Substructural Logics with Additives

– International Workshop on Logical and Semantic Frameworks, with Ap-
plications (LSFA) 2023, Rome.

• Towards Skew Non-Commutative MILL with Additives

– Logic Colloquium 2023, Milan.

• Skew Multiplicative Intuitionistic Linear Logic

158

– Inaugural conference of the MSCA Action Philosophical, Logical and
Experimental Routes to Substructurality (PLEXUS), Lisbon;

– World Logic Day 2023, Logic in Estonia Workshop, Tallinn.

• Proof Theory of Skew Non-Commutative MILL

– Logic Colloquium 2022, Reykjavík;
– Joint Estonian-Latvian Theory Days 2022, Riga;
– International conference on Non-classical Logics: Theory and Applica-

tions (NCL) 2022, Łódź;
– World Logic Day 2022, Logic in Estonia Workshop, Tallinn.

159

Elulookirjeldus

Isikuandmed

Nimi Cheng-Syuan Wan
Sünniaeg ja -koht 6. juuni 1994, Taoyuan, Taiwan
Kodakondsus Taiwani (Hiina Vabariigi)

Kontaktandmed

Aadress Tallinna Tehnikaülikool,
tarkvarateaduse instituut,
Akadeemia tee 21B, 12618 Tallinn, Eesti

Telefon +372 5911 1080
E-post cswan@cs.ioc.ee

Haridus

2021–. . . Tallinna Tehnikaülikool, infotehnoloogia teaduskond,
doktorantuur info- ja kommunikatsioonitehnoloogias

2017–2020 Rahvuslik Chung Chengi Ülikool, humanitaarteaduste kolledž,
MA filosoofias

2012–2016 Rahvuslik Chung Chengi Ülikool, humanitaarteaduste kolledž,
BA filosoofias

Keelteoskus

hiina emakeel
inglise valdab vabalt

Teenistuskäik

• 2021– . . . doktorant-nooremteadur, Tallinna Tehnikaülikool, tarkvarateaduse
instituut

Kaitstud lõputööd

• 2020, Notes on Curry-Howard-Lambek Correspondence, MA, juhendaja prof.
Ren-June Wang, Rahvuslik Chung Chengi Ülikool

161

Teadustegevus
Publikatsioonid

1. T. Uustalu, N. Veltri, and C.-S. Wan. Proof theory of skew non-commutative
MILL. In A. Indrzejczak and M. Zawidzki, editors, Proceedings of 10th Inter-
national Conference on Non-classical Logics: Theory and Applications, NCL
2022, volume 358 of Electronic Proceedings in Theoretical Computer Science,
pages 118–135. Open Publishing Association, 2022

2. N. Veltri and C.-S. Wan. Semi-substructural logics with additives. In T. Kut-
sia, D. Ventura, D. Monniaux, and J. F. Morales, editors, Proceedings of 18th
International Workshop on Logical and Semantic Frameworks, with Appli-
cations and 10th Workshop on Horn Clauses for Verification and Synthesis,
LSFA/HCVS 2023, volume 402 of Electronic Proceedings in Theoretical Com-
puter Science, pages 63–80. Open Publishing Association, 2024

3. C.-S. Wan. Semi-substructural logics à la Lambek. In A. Indrzejczak and
M. Zawidzki, editors, Proceedings of 11th International Conference on Non-
classical Logics: Theory and Applications, NCL 2024, volume 415 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 195–213. Open
Publishing Association, 2024

4. N. Veltri and C.-S. Wan. Craig interpolation for a semi-substructural logic.
Studia Logica, to appear

Konverentsiettekanded

• Proof Theory of Semi-Substructural Logics

– Workshop on Proof, Argumentation, Computation, Modalities And Ne-
gation (PACM∧N) 2025, Rome.

• Semi-Substructural Logics à la Lambek

– International conference on Non-classical Logics: Theory and Applica-
tions (NCL) 2024, Łódź.

• Craig Interpolation for Semi-Substructural Logics

– Proof Society International School and Workshop, Birmingham 2024;
– International Workshop on Trends in Linear Logic and Applications

(TLLA) 2024, Tallinn.

• Semi-Substructural Logics with Additives

– International Workshop on Logical and Semantic Frameworks, with App-
lications (LSFA) 2023, Rome.

• Towards Skew Non-Commutative MILL with Additives

– Logic Colloquium 2023, Milano.

• Skew Multiplicative Intuitionistic Linear Logic

162

– MSCA aktsiooni Philosophical, Logical and Experimental Routes to
Substructurality (PLEXUS) avakonverents, Lissabon;

– Ülemaailmse loogikapäeva 2023 Logic in Estonia töötuba, Tallinn.

• Proof Theory of Skew Non-Commutative MILL

– Logic Colloquium 2022, Reykjavík;
– Eesti-Läti ühised arvutiteaduse teooriapäevad 2022, Riia;
– International conference on Non-classical Logics: Theory and Applica-

tions (NCL) 2022, Łódź;
– Ülemaailmse loogikapäeva 2022 Logic in Estonia töötuba, Tallinn.

163

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-325-7 (PDF)

	List of Publications
	Author's Contributions to the Publications
	Introduction and Background
	Substructural Logics and Categorical Semantics
	Substructural Logics
	Categorical Semantics

	Semi-Substructural Logics
	Motivation
	Sequent Calculus for Skew Monoidal Categories
	The Coherence Problem of Skew Monoidal Categories

	Focusing
	Interpolation Properties for Substructural Logics
	Ternary Relational Semantics for Lambek Calculus
	Contributions
	Thesis Structure
	Formalization

	Skew Non-Commutative Multiplicative Intuitionistic Linear Logic
	Sequent calculus
	Equivalent calculi of SkNMILL
	Axiomatic calculus
	Tree sequent calculus

	Categorical Semantics
	Proof-Theoretic Semantics via Focusing
	A First (Naïve) Focused Sequent Calculus
	A Focused Sequent Calculus with Tag Annotations

	Craig Interpolation for SkNMILL
	Failure of Maehara Interpolation
	Craig Interpolation for SkNMILL
	More Admissible Equivalences of Derivations
	Proof-Relevant Interpolation

	A Commutative Extension of SkNMILL
	Sequent Calculus
	Categorical Semantics
	A Focused Sequent Calculus with Tag Annotations

	Additive Extensions
	Sequent Calculus
	Categorical Semantics
	A Focused Sequent Calculus with Tag Annotations
	Skew Exchange
	Linear Implication

	Semi-Substructural Logics Beyond Stoup
	Skew Monoidal Bi-closed Categories
	Calculi for SkBiC
	Axiomatic Calculus
	Tree Sequent Calculus

	Relational Semantics of SkBiCA
	SkBiCA with Symmetry

	Conclusion
	Bibliography
	Acknowledgements
	Abstract
	Kokkuvõte
	Curriculum Vitae
	Elulookirjeldus
	Blank Page
	Blank Page

